Powered by Deep Web Technologies
Note: This page contains sample records for the topic "oil energy intensity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

An energy-economic oil production model  

Science Journals Connector (OSTI)

......for more advanced energy-economic models...efficient (less energy intensive) than...hand, Germany's GDP per capita is much larger than...assumption that 100% of energy supply stems from oil. When oil demand is inelastic, this......

Peter Berg; Paul Hanz; Ian Milton

2013-04-01T23:59:59.000Z

2

Energy Intensity Strategy  

E-Print Network (OSTI)

Our presentation will cover how we began the journey of conserving energy at our facility. We’ll discuss a basic layout of our energy intensity plan and the impact our team has had on the process, what tools we’re using, what goals have been...

Rappolee, D.; Shaw, J.

2008-01-01T23:59:59.000Z

3

Oil | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oil Oil Oil Oil Prices, 2000-2008 For the first time since 1995, U.S. oil production has surpassed imports. Explore the trend with our interactive chart. | Graphic by Daniel Wood, Energy Department. For the first time since 1995, U.S. oil production has surpassed imports. Explore the trend with our interactive chart. | Graphic by Daniel Wood, Energy Department. Oil is used for heating and transportation -- most notably, as fuel for gas-powered vehicles. America's dependence on foreign oil has declined in recent years, but oil prices have increased. The Energy Department supports research and policy options to increase our domestic supply of oil while ensuring environmentally sustainable supplies domestically and abroad, and is investing in research, technology and

4

Unlocking energy intensive habits  

NLE Websites -- All DOE Office Websites (Extended Search)

energy intensive habits energy intensive habits Presentation at LBL Oct 10, 2013 by Hal Wilhite Professor and Research Director University of Oslo Centre for Development and the Environment Source: WWF US EIA Outlook 2011 Conventional framing of the energy consumption and savings * Sovereign consumers * Economically rational and persistentely reflexive. * Uninfluenced by social and material conditions of everyday life * Focus on efficiency and not on size and volume which is for the most part treated as an indifferent variable Cognitive reductionism The change of frame * From individual to socio-material * From rational/reflexive experience-based (practical) knowledge * From efficiency to reduction A theory of habit * Acknowledges the role of lived experience (history, both cultural and personal) in forming

5

energy intensity | OpenEI  

Open Energy Info (EERE)

intensity intensity Dataset Summary Description Energy intensity data and documentation published by the U.S. DOE's office of Energy Efficiency and Renewable Energy (EERE). Energy intensity is defined as: amount of energy used in producing a given level of output or activity; expressed as energy per unit of output. This is the energy intensity of the the electricity sector, which is an energy consuming sector that generates electricity. Data are organized to separate electricity-only generators from combined heat and power (CHP) generators. Data is available for the period 1949 - 2004. Source EERE Date Released May 31st, 2006 (8 years ago) Date Updated Unknown Keywords Electricity Energy Consumption energy intensity fossil fuels renewable energy Data application/vnd.ms-excel icon electricity_indicators.xls (xls, 2.1 MiB)

6

ITP Energy Intensive Processes: Energy-Intensive Processes Portfolio...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

teChnologIes Program IntroduCtIon the research and development (r&d) portfolio for energy-Intensive Processes (eIP) addresses the top technology opportunities to save energy...

7

Changes in Energy Intensity 1985-1991  

Gasoline and Diesel Fuel Update (EIA)

Changes in Energy Intensity Changes in Energy Intensity 1985-1991 Overview Full Report The focus is on intensity of energy use measured by energy consumption relative to constant...

8

EIA - AEO2010 - Energy intensity trends in AEO2010  

Gasoline and Diesel Fuel Update (EIA)

intensity trends in AEO2010 intensity trends in AEO2010 Annual Energy Outlook 2010 with Projections to 2035 Figure 17. Trends in U.S. oil prices, energy consumption, and economic output, 1950-2035 Click to enlarge » Figure source and data excel logo Energy intensity trends in AEO2010 Energy intensity—energy consumption per dollar of real GDP—indicates how much energy a country uses to produce its goods and services. From the early 1950s to the early 1970s, U.S. total primary energy consumption and real GDP increased at nearly the same annual rate (Figure 17). During that period, real oil prices remained virtually flat. In contrast, from the mid-1970s to 2008, the relationship between energy consumption and real GDP growth changed, with primary energy consumption growing at less than one-third the previous average rate and real GDP growth continuing to grow at its historical rate. The decoupling of real GDP growth from energy consumption growth led to a decline in energy intensity that averaged 2.8 percent per year from 1973 to 2008. In the AEO2010 Reference case, energy intensity continues to decline, at an average annual rate of 1.9 percent from 2008 to 2035.

9

Iron and Steel Energy Intensities  

U.S. Energy Information Administration (EIA) Indexed Site

If you are having trouble, call 202-586-8800 for help. Home > >Energy Users > Energy Efficiency Page > Iron and Steel Energy Intensities First Use of Energy Blue Bullet First Use/Value of Production Blue Bullet First Use/Ton of steel End Uses of Consumption Blue Bullet Total End Use/Value of Production Blue Bullet Total End Use/Ton of Steel Boiler Fuel as End Use Blue Bullet Boiler Fuel /Value of Production Blue Bullet Boiler Fuel /Ton of Steel Process Heating as End Use Blue Bullet Process Heating Fuel /Ton of Steel Blue Bullet Process Heating /Value of Production Machine Drive as End Use Blue Bullet Machine Drive Fuel/Ton of Steel Blue Bullet Machine Drive Fuel /Value of Production Expenditures Blue Bullet Purchased Fuel /Ton of Steel Blue Bullet Purchased Fuel /Value of Production

10

Energy Intensity Baselining and Tracking Guidance  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Learn more at betterbuildings.energy.gov Energy Intensity Baselining and Tracking Guidance i Preface The U.S. Department of Energy's (DOE) Better Buildings, Better Plants Program...

11

Enhanced Oil Recovery | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Enhanced Oil Recovery Enhanced Oil Recovery Thanks in part to innovations supported by the Office of Fossil Energy's National Energy Technology Laboratory over the past 30 years,...

12

Energy Intensity Baselining and Tracking Guidance  

Energy.gov (U.S. Department of Energy (DOE))

The Energy Intensity Baselining and Tracking Guidance for the Better Buildings, Better Plants Program helps companies meet the program’s reporting requirements by describing the steps necessary to develop an energy consumption and energy intensity baseline and calculating consumption and intensity changes over time.

13

Analysis and Decomposition of the Energy Intensity of Industries in  

NLE Websites -- All DOE Office Websites (Extended Search)

and Decomposition of the Energy Intensity of Industries in and Decomposition of the Energy Intensity of Industries in California Title Analysis and Decomposition of the Energy Intensity of Industries in California Publication Type Journal Article Year of Publication 2012 Authors de la du Can, Stephane Rue, Ali Hasanbeigi, and Jayant A. Sathaye Journal Energy Policy Volume 46 Pagination 234-245 Keywords california, co2 emissions, energy intensity, energy use Abstract In 2008, the gross domestic product (GDP) of California industry was larger than GDP of industry in any other U.S. states. This study analyses the energy use of and output from seventeen industry subsectors in California and performs decomposition analysis to assess the influence of different factors on California industry energy use. The logarithmic mean Divisia index method is used for the decomposition analysis. The decomposition analysis results show that the observed reduction of energy use in California industry since 2000 is the result of two main factors: the intensity effect and the structural effect. The intensity effect has started pushing final energy use downward in 2000 and has since amplified. The second large effect is the structural effect. The significant decrease of the energy-intensive "Oil and Gas Extraction" subsector's share of total industry value added, from 15% in 1997 to 5% in 2008, and the increase of the non-energy intensive "Electric and electronic equipment manufacturing" sector's share of value added, from 7% in 1997 to 30% in 2008, both contributed to a decrease in the energy intensity in the industry sector

14

Description of Energy Intensity Tables (12)  

U.S. Energy Information Administration (EIA) Indexed Site

3. Description of Energy Intensity Data Tables 3. Description of Energy Intensity Data Tables There are 12 data tables used as references for this report. Specifically, these tables are categorized as tables 1 and 2 present unadjusted energy-intensity ratios for Offsite-Produced Energy and Total Inputs of Energy for 1985, 1988, 1991, and 1994; along with the percentage changes between 1985 and the three subsequent years (1988, 1991, and 1994) tables 3 and 4 present 1988, 1991, and 1994 energy-intensity ratios that have been adjusted to the mix of products shipped from manufacturing establishments in 1985 tables 5 and 6 present unadjusted energy-intensity ratios for Offsite-Produced Energy and Total Inputs of Energy for 1988, 1991, and 1994; along with the percentage changes between 1988 and the two subsequent

15

World Best Practice Energy Intensity Values for Selected Industrial Sectors  

E-Print Network (OSTI)

world best practice energy intensity values for productionWorld best practice energy intensity values for productionWorld Best Practice Final Energy Intensity Values for Aluminium Production (

Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

2007-01-01T23:59:59.000Z

16

World Best Practice Energy Intensity Values for Selected Industrial Sectors  

E-Print Network (OSTI)

Best Practice Final Energy Intensity Values for Stand-AloneBest Practice Final Energy Intensity Values for Stand-AloneBest Practice Primary Energy Intensity Values for Stand-

Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

2007-01-01T23:59:59.000Z

17

Impact Factors of Energy Intensity in China  

E-Print Network (OSTI)

Energy intensity reflects energy usage efficiency in the production and consumption process, and leads to carbon dioxide emissions and the energy security of an economy. Liao et al. (2007) analyzed factors contribute to the fluctuation of China’s energy intensity from 1997 to 2006, and found that efficiency effects and structural effects are the major impacting factors. Therefore, they suggested that China should attach more importance to optimizing its sectoral structure, and lowering its investment ratio in the future. However, economic development and energy intensity are influenced by many factors. In their research, Liao et al. (2007) omitted some important contributing factors to energy intensities, and their suggestions also had some practical limitations. First of all, Liao et al. (2007) did not analyze impacts from energy prices in energy usage efficiency. In the existing literature, Birol and Keppler (2000) applied economics theory and suggested that higher energy prices can induce the improvements in energy usage efficiency, thereby lowering energy intensity. Hang and Tu (2007) studied the influence of energy price on the Chinese economy's energy intensity and their empirical results also showed that higher energy prices can lower energy intensity. Because energy prices have been regulated by the

unknown authors

18

Refining Crude Oil - Energy Explained, Your Guide To Understanding Energy -  

Gasoline and Diesel Fuel Update (EIA)

Oil and Petroleum Products > Refining Crude Oil Oil and Petroleum Products > Refining Crude Oil Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the Climate Where Emissions Come From Outlook for Future Emissions Recycling and Energy Nonrenewable Sources Oil and Petroleum Products Refining Crude Oil Where Our Oil Comes From Imports and Exports Offshore Oil and Gas Use of Oil Prices and Outlook Oil and the Environment Gasoline Where Our Gasoline Comes From Use of Gasoline Prices and Outlook

19

Bio Oils Energy | Open Energy Information  

Open Energy Info (EERE)

Oils Energy Oils Energy Jump to: navigation, search Name Bio-Oils Energy Place Madrid, Spain Zip 28010 Sector Biofuels Product Madrid-based biofuels producer with plans to build a 500-tonne plant in Huelva. Coordinates 40.4203°, -3.705774° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.4203,"lon":-3.705774,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

20

ESMAP-China Energy Intensity Reduction Strategy | Open Energy Information  

Open Energy Info (EERE)

Intensity Reduction Strategy Intensity Reduction Strategy Jump to: navigation, search Name China-ESMAP Low Carbon Growth Country Studies Program Agency/Company /Organization Energy Sector Management Assistance Program of the World Bank Sector Energy, Land Focus Area Energy Efficiency, Renewable Energy, Forestry, Agriculture Topics Low emission development planning, Policies/deployment programs, Background analysis Website http://www.esmap.org/filez/pub Country China Eastern Asia References China Energy Intensity Reduction Strategy[1] Overview "The study involves the development of pragmatic "implementation" focused policy notes to support the Government of China's goal of reducing energy intensity in China focusing on: Reevaluation of renewable energy targets, growth path, and related

Note: This page contains sample records for the topic "oil energy intensity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Technical Change, Investment and Energy Intensity  

E-Print Network (OSTI)

This paper analyzes the role of different components of technical change on energy intensity by applying a Translog variable cost function setting to the new EU KLEMS dataset for 3 selected EU countries (Italy, Finland and ...

Kratena, Kurt

22

Sustaining Performance Improvements in Energy Intensive Industries  

E-Print Network (OSTI)

Experience has shown that significant opportunity for performance improvements exists in energy intensive operations. Often, efforts to improve efficiency focus on vendor-led initiatives to improve operations of particular equipment. This approach...

Moore, D. A.

2005-01-01T23:59:59.000Z

23

Fossil Energy Research Benefits Enhanced Oil Recovery  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Research Benefits Energy Research Benefits Enhanced Oil Recovery EOR helps increase domestic oil supplies while also providing a way to safely and permanently store CO 2 underground. Enhanced Oil Recovery (EOR) is a way to squeeze out additional, hard- to-recover barrels of oil remaining in older fields following conventional production operations. It can also be used to permanently store carbon dioxide (CO 2 ) underground. Thanks in part to innovations supported by the Office of Fossil Energy's National Energy Technology Laboratory (NETL) over the past 30 years, the United States is a world leader in the number of EOR projects (200) and volume of oil production (over

24

EIA Energy Efficiency-Commercial Buildings Sector Energy Intensities,  

U.S. Energy Information Administration (EIA) Indexed Site

Commercial Buildings Sector Energy Intensities Commercial Buildings Sector Energy Intensities Commercial Buildings Sector Energy Intensities: 1992- 2003 Released Date: December 2004 Page Last Revised: August 2009 These tables provide estimates of commercial sector energy consumption and energy intensities for 1992, 1995, 1999 and 2003 based on the Commercial Buildings Energy Consumption Survey (CBECS). They also provide estimates of energy consumption and intensities adjusted for the effect of weather on heating, cooling, and ventilation energy use. Total Site Energy Consumption (U.S. and Census Region) Html Excel PDF bullet By Principal Building Activity (Table 1a) html Table 1a excel table 1a. pdf table 1a. Weather-Adjusted by Principal Building Activity (Table 1b) html table 1b excel table 1b pdf table 1b.

25

International Energy Outlook 1999 - World Oil Markets  

Gasoline and Diesel Fuel Update (EIA)

oil.gif (4669 bytes) oil.gif (4669 bytes) A moderate view of future oil market developments is reflected in IEO99. Sustained high levels of oil prices are not expected, whereas continued expansion of the oil resource base is anticipated. The crude oil market was wracked with turbulence during 1998, as prices fell by one-third on average from 1997 levels. Even without adjusting for inflation, the world oil price in 1998 was the lowest since 1973. The declining oil prices were influenced by an unexpected slowdown in the growth of energy demand worldwide—less than any year since 1990—and by increases in oil supply, particularly in 1997. Although the increase in world oil production in 1998 was smaller than in any year since 1993, efforts to bolster prices by imposing further limits on production were

26

Analysis of the Energy Intensity of Industries in California  

E-Print Network (OSTI)

the aggregate energy-intensity of industry. Applied Energyindustries with final energy intensities of 12.3 Billion BtuAs mentioned, the energy intensity of this sector is much

Can, Stephane de la Rue du

2014-01-01T23:59:59.000Z

27

China-Energy Intensity Reduction Strategy | Open Energy Information  

Open Energy Info (EERE)

Website http:www.esmap.orgfilezpub Country China Eastern Asia References China Energy Intensity Reduction Strategy1 Overview "The study involves the development of...

28

Measuring energy efficiency: Is energy intensity a good evidence base?  

Science Journals Connector (OSTI)

Abstract There is a widespread assumption in energy statistics and econometrics that energy intensity and energy efficiency are equivalent measures of energy performance of economies. The paper points to the discrepancy between the engineering concept of energy efficiency and the energy intensity as it is understood in macroeconomic statistics. This double discrepancy concerns definitions (while engineering concept of energy efficiency is based on the thermodynamic definition, energy intensity includes economic measures) and use. With regard to the latter, the authors conclude that energy intensity can only provide indirect and delayed evidence of technological and engineering energy efficiency of energy conversion processes, which entails shortcomings for management and policymaking. Therefore, we suggest to stop considering subsectoral, sectoral and other levels of energy intensities as aggregates of lower-level energy efficiency. It is suggested that the insufficiency of energy intensity indicators can be compensated with the introduction of thermodynamic indicators describing energy efficiency at the physical, technological, enterprise, sub-sector, sectoral and national levels without references to any economic or financial parameters. Structured statistical data on thermodynamic efficiency is offered as a better option for identifying break-through technologies and technological bottle-necks that constrain efficiency advancements. It is also suggested that macro-level thermodynamic indicators should be based on the thermodynamic first law efficiency and the energy quality problem may be left to enterprise-level thermoeconomic optimization.

L. Proskuryakova; A. Kovalev

2015-01-01T23:59:59.000Z

29

ITP Energy Intensive Processes: Improved Heat Recovery in Biomass...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Intensive Processes: Improved Heat Recovery in Biomass-Fired Boilers ITP Energy Intensive Processes: Improved Heat Recovery in Biomass-Fired Boilers biomass-firedboilers.pd...

30

Reducing Industrial Energy Intensity in the Southeast Project...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Energy Intensity in the Southeast Project Fact Sheet Reducing Industrial Energy Intensity in the Southeast Project Fact Sheet This fact sheet contains details regarding...

31

Oil and Gas Gateway | Open Energy Information  

Open Energy Info (EERE)

Oil and Gas Gateway Oil and Gas Gateway Jump to: navigation, search Oil and Gas Companies The oil and gas industry is the largest energy industry in the world, with companies spanning the globe. The map below depicts the top oil companies. Anyone can add another company to this list. Add a new Oil and Gas Company Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":500,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

32

China energy issues : energy intensity, coal liquefaction, and carbon pricing  

E-Print Network (OSTI)

In my dissertation I explore three independent, but related, topics on China's energy issues. First, I examine the drivers for provincial energy-intensity trends in China, and finds that technology innovation is the key ...

Wu, Ning, Ph. D. Massachusetts Institute of Technology

2011-01-01T23:59:59.000Z

33

Energy use and carbon dioxide emissions in energy-intensive industries in key developing countries  

E-Print Network (OSTI)

R. Schaeffer, 1997, “Energy Intensity in the Iron and Steelwhich is the ratio of the actual energy intensity to thebest practice energy intensity, where the best practice

Price, Lynn; Worrell, Ernst; Phylipsen, Dian

1999-01-01T23:59:59.000Z

34

Energy-Efficiency Technologies and Benchmarking the Energy Intensity for the Textile Industry  

E-Print Network (OSTI)

Benchmarking the Energy Intensity for the Textile Industryand Comparing the Energy Intensity in the Textile Industrywere visited. The energy intensity of each plant was

Hasanbeigi, Ali

2014-01-01T23:59:59.000Z

35

International Energy Outlook 2006 - World Oil Markets  

Gasoline and Diesel Fuel Update (EIA)

Oil Markets Oil Markets International Energy Outlook 2006 Chapter 3: World Oil Markets In the IEO2006 reference case, world oil demand increases by 47 percent from 2003 to 2030. Non-OECD Asia, including China and India, accounts for 43 percent of the increase. In the IEO2006 reference case, world oil demand grows from 80 million barrels per day in 2003 to 98 million barrels per day in 2015 and 118 million barrels per day in 2030. Demand increases strongly despite world oil prices that are 35 percent higher in 2025 than in last yearÂ’s outlook. Much of the growth in oil consumption is projected for the nations of non-OECD Asia, where strong economic growth is expected. Non-OECD Asia (including China and India) accounts for 43 percent of the total increase in world oil use over the projection period.

36

The spatial scales, distribution, and intensity of natural marine hydrocarbon seeps near Coal Oil Point, California  

E-Print Network (OSTI)

area) are not well established, either globally or within strong source areas such as near Coal OilThe spatial scales, distribution, and intensity of natural marine hydrocarbon seeps near Coal Oil hydrocarbon seepage from marine environments is an important source of methane and other gases

Washburn, Libe

37

CBECS 1989 - Energy End-use Intensities in Commercial Buildings -- Detailed  

U.S. Energy Information Administration (EIA) Indexed Site

Publication > Detailed Tables Publication > Detailed Tables 1989 Energy End-Use Intensities Detailed Tables Energy End Uses Ranked by Energy Consumption, 1989 Energy End Uses Ranked by Energy Consumption, 1989 Source: Energy Information Administration, Office of Energy Markets and End Use, Forms EIA-871A through F of the 1989 Commercial Buildings Energy Consumption Survey. Table Organization The following 13 tables present detailed energy end-use consumption data from the 1989 CBECS. Summary tables for all major fuels (electricity, natural gas, fuel oil, and district heat) appear first, followed by separate tables for each of the four major fuels. Within each energy sourceÂ’s group of tables, there is a table showing end-use consumption, a table showing end-use intensities (consumption per square foot), and a table (except for fuel oil and district heat) showing the end-use shares of total consumption.

38

BP Oil Spill Update | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

BP Oil Spill Update BP Oil Spill Update BP Oil Spill Update August 10, 2010 - 10:48am Addthis Sec. Chu working on solutions to the BP Oil spill with a member of the Federal Science Team. | Energy Department Photo | Sec. Chu working on solutions to the BP Oil spill with a member of the Federal Science Team. | Energy Department Photo | Secretary Chu Secretary Chu Former Secretary of Energy "We also must remain focused on helping the people, businesses and communities in the Gulf Coast region who have been affected by this spill." Secretary Steven Chu As you may know, I've spent much of the last three months working to help contain the BP oil spill. I recently returned from my seventh trip to Houston, and I thought this would be a good opportunity to update you on our work to seal the damaged well in the Gulf.

39

Energy use and energy intensity of the U.S. chemical industry  

E-Print Network (OSTI)

23 5.3 Energy Use and Energy Intensity of Chlorine44314 Energy Use and Energy Intensity of the U.S. ChemicalEnergy Use and Energy Intensity of the U.S. Chemical

Worrell, Ernst; Phylipsen, Dian; Einstein, Dan; Martin, Nathan

2000-01-01T23:59:59.000Z

40

Table 22. Energy Intensity, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Intensity, Projected vs. Actual" Energy Intensity, Projected vs. Actual" "Projected" " (quadrillion Btu / real GDP in billion 2005 chained dollars)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",11.24893441,11.08565002,10.98332766,10.82852279,10.67400621,10.54170176,10.39583203,10.27184573,10.14478673,10.02575883,9.910410202,9.810812106,9.69894802,9.599821783,9.486985399,9.394733753,9.303329725,9.221322623 "AEO 1995",,10.86137373,10.75116461,10.60467959,10.42268977,10.28668187,10.14461664,10.01081222,9.883759026,9.759022105,9.627404949,9.513643295,9.400418762,9.311729546,9.226142899,9.147374752,9.071102491,8.99599906 "AEO 1996",,,10.71047701,10.59846153,10.43655044,10.27812088,10.12746866,9.9694713,9.824165152,9.714832565,9.621874334,9.532324916,9.428169355,9.32931308,9.232716414,9.170931044,9.086870061,9.019963901,8.945602337

Note: This page contains sample records for the topic "oil energy intensity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Energy End-Use Intensities in Commercial Buildings 1992 - Index...  

U.S. Energy Information Administration (EIA) Indexed Site

2 Energy End-Use Intensities 1992 Energy End-Use Intensities Overview Tables National estimates of energy consumption by fuel (electricity and natural gas) and end use (heating,...

42

China's energy intensity and its determinants at the provincial level  

E-Print Network (OSTI)

Energy intensity is defined as the amount of energy consumed per dollar of GDP (Gross Domestic Product). The People's Republic of China's (China's) energy intensity has been declining significantly since the late 1970s. ...

Zhang, Xin, S.M. Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

43

Renewable Energy Can Help Reduce Oil Dependency  

ScienceCinema (OSTI)

In a speech to the Economic Club of Kansas City on June 23, 2010, NREL Director Dan Arvizu takes a realistic look at how renewable energy can help reduce America's dependence on oil, pointing out that the country gets as much energy from renewable sources now as it does from offshore oil production. For a transcript, visit http://www.nrel.gov/director/pdfs/energy_overview_06_10.pdf

Arvizu, Dan

2013-05-29T23:59:59.000Z

44

ANALYSIS ON THE MAJOR INFLUENCE FACTORS OF ENERGY INTENSITY CHANGING  

E-Print Network (OSTI)

Based on the energy intensity data of period 1990-2008, this paper uses impulse response function and variance decomposition model to empirical analysis the main influencing factors and effects of energy intensity,. The empirical results show that: the energy intensity of itself, and the proportion of secondary industry have a larger impact on energy intensity; the change of energy price and technological progress also play a certain impact on energy intensity; and the link with the internal relations and interaction mechanisms, which can play an active role in improving energy efficiency.

Xia Wang; Lu Tang

45

AN INTENSE LOW ENERGY MUON SOURCE FOR THE MUON COLLIDER  

E-Print Network (OSTI)

AN INTENSE LOW ENERGY MUON SOURCE FOR THE MUON COLLIDER D. Taqqu Paul Scherrer Institut, Villigen, CH Abstract A scheme for obtaining an intense source of low energy muons is described. It is based of the decay muons an intense intermediate energy muon beam is obtained. For the specific case of negative

McDonald, Kirk

46

Department of Energy Announces Two Additional Loans of Oil from...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Additional Loans of Oil from the Strategic Petroleum Reserve Department of Energy Announces Two Additional Loans of Oil from the Strategic Petroleum Reserve September 2, 2005 -...

47

Energy Department Announces Emergency Oil Loan In Response to...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emergency Oil Loan In Response to Hurricane Isaac-Related Request Energy Department Announces Emergency Oil Loan In Response to Hurricane Isaac-Related Request August 31, 2012 -...

48

International Energy Outlook - World Oil Markets  

Gasoline and Diesel Fuel Update (EIA)

World Oil Markets World Oil Markets International Energy Outlook 2004 World Oil Markets In the IEO2004 forecast, OPEC export volumes are expected to more than double while non-OPEC suppliers maintain their edge over OPEC in overall production. Prices are projected to rise gradually through 2025 as the oil resource base is further developed. Throughout most of 2003, crude oil prices remained near the top of the range preferred by producers in the Organization of Petroleum Exporting Countries (OPEC), $22 to $28 per barrel for the OPEC “basket price.” OPEC producers continued to demonstrate disciplined adherence to announced cutbacks in production. Throughout 2003, the upward turn in crude oil prices was brought about by a combination of three factors. First, a general strike against the Chavez regime resulted in a sudden loss of much of Venezuela’s oil exports. Although the other OPEC producers agreed to increase their production capacities to make up for the lost Venezuelan output, the obvious strain on worldwide spare capacity kept prices high. Second, price volatility was exacerbated by internal conflict in Nigeria. Third, prospects for a return to normalcy in the Iraqi oil sector remained uncertain as residual post-war turmoil continued in Iraq.

49

Modeling of Energy Production Decisions: An Alaska Oil Case Study  

E-Print Network (OSTI)

energy security costs, and peak oil as emergencies, we will2007). The world will reach peak oil production rates, atwhen oil price is high, then the first peak in drilling cost

Leighty, Wayne

2008-01-01T23:59:59.000Z

50

Energy resource management for energy-intensive manufacturing industries  

SciTech Connect

A program to introduce energy resource management into an energy-intensive manufacturing industry is presented. The food industry (SIC No. 20) was chosen and 20 companies were selected for interviews, but thirteen were actually visited. The methodology for this program is detailed. Reasons for choosing the food industry are described. The substance of the information gained and the principal conclusions drawn from the interviews are given. Results of the model Energy Resource Management Plan applied to three companies are compiled at length. Strategies for dissemination of the information gained are described. (MCW)

Brenner, C.W.; Levangie, J.

1981-10-01T23:59:59.000Z

51

Table 23. Energy Intensity, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Energy Intensity, Projected vs. Actual Energy Intensity, Projected vs. Actual (quadrillion Btu / $Billion Nominal GDP) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 20.1 18.5 16.9 15.5 14.4 13.2 AEO 1983 19.9 18.7 17.4 16.2 15.1 14.0 9.5 AEO 1984 20.1 19.0 17.7 16.5 15.5 14.5 10.2 AEO 1985 20.0 19.1 18.0 16.9 15.9 14.7 13.7 12.7 11.8 11.0 10.3 AEO 1986 18.3 17.8 16.8 16.1 15.2 14.3 13.4 12.6 11.7 10.9 10.2 9.5 8.9 8.3 7.8 AEO 1987 17.6 17.0 16.3 15.4 14.5 13.7 12.9 12.1 11.4 8.2 AEO 1989* 16.9 16.2 15.2 14.2 13.3 12.5 11.7 10.9 10.2 9.6 9.0 8.5 8.0 AEO 1990 16.1 15.4 11.7 8.6 6.4 AEO 1991 15.5 14.9 14.2 13.6 13.0 12.5 11.9 11.3 10.8 10.3 9.7 9.2 8.7 8.3 7.9 7.4 7.0 6.7 6.3 6.0 AEO 1992 15.0 14.5 13.9 13.3 12.7 12.1 11.6 11.0 10.5 10.0 9.5 9.0 8.6 8.1 7.7 7.3 6.9 6.6 6.2 AEO 1993 14.7 13.9 13.4 12.8 12.3 11.8 11.2 10.7 10.2 9.6 9.2 8.7 8.3 7.8 7.4 7.1 6.7 6.4

52

Oil/Liquids | Open Energy Information  

Open Energy Info (EERE)

Oil/Liquids Oil/Liquids < Oil Jump to: navigation, search Click to return to AEO2011 page AEO2011 Data From AEO2011 report Full figure data for Figure 93. Reference Case Tables Table 1. Total Energy Supply, Disposition, and Price Summary Table 11. Liquid Fuels Supply and Disposition Table 12. Petroleum Product Prices Table 14. Oil and Gas Supply Table 21. Carbon Dioxide Emissions by Sector and Source - New England Table 22. Carbon Dioxide Emissions by Sector and Source- Middle Atlantic Table 23. Carbon Dioxide Emissions by Sector and Source - East North Central Table 24. Carbon Dioxide Emissions by Sector and Source - West North Central Table 25. Carbon Dioxide Emissions by Sector and Source - South Atlantic Table 26. Carbon Dioxide Emissions by Sector and Source - East South

53

Going beyond energy intensity to understand the energy metabolism of nations: The case of Argentina  

Science Journals Connector (OSTI)

The link between energy consumption and economic growth has been widely studied in the economic literature. Understanding this relationship is important from both an environmental and a socio-economic point of view, as energy consumption is crucial to economic activity and human environmental impact. This relevance is even higher for developing countries, since energy consumption per unit of output varies through the phases of development, increasing from an agricultural stage to an industrial one and then decreasing for certain service based economies. In the Argentinean case, the relevance of energy consumption to economic development seems to be particularly important. While energy intensity seems to exhibit a U-Shaped curve from 1990 to 2003 decreasing slightly after that year, total energy consumption increases along the period of analysis. Why does this happen? How can we relate this result with the sustainability debate? All these questions are very important due to Argentinean hydrocarbons dependence and due to the recent reduction in oil and natural gas reserves, which can lead to a lack of security of supply. In this paper we study Argentinean energy consumption pattern for the period 1990–2007, to discuss current and future energy and economic sustainability. To this purpose, we developed a conventional analysis, studying energy intensity, and a non conventional analysis, using the Multi-Scale Integrated Analysis of Societal and Ecosystem Metabolism (MuSIASEM) accounting methodology. Both methodologies show that the development process followed by Argentina has not been good enough to assure sustainability in the long term. Instead of improving energy use, energy intensity has increased. The current composition of its energy mix, and the recent economic crisis in Argentina, as well as its development path, are some of the possible explanations.

Marina Recalde; Jesús Ramos-Martin

2012-01-01T23:59:59.000Z

54

Analysis and Decomposition of the Energy Intensity of Industries in California  

E-Print Network (OSTI)

World Best Practice Energy Intensity Values for Selectedworld-best-practice-energy-intensity-values- selected-2005. Changes in energy intensities of Thai industry between

Can, Stephane de la Rue de

2014-01-01T23:59:59.000Z

55

Automated Checkpointing for Enabling Intensive Applications on Energy Harvesting Devices  

E-Print Network (OSTI)

Automated Checkpointing for Enabling Intensive Applications on Energy Harvesting Devices Azalia intensive computation on ultra-low power devices with discontinuous energy-harvesting supplies. We devise on a battery-less RF energy-harvester platform. Extensive experiments targeting applications in medical implant

56

BEAM INTENSITY AND ENERGY CONTROL FOR THE SPIRAL2 FACILITY  

E-Print Network (OSTI)

BEAM INTENSITY AND ENERGY CONTROL FOR THE SPIRAL2 FACILITY C. Jamet, T. Andre, B. Ducoudret, C to control both beam intensity and energy by non-interceptive methods at the linac exit. The beam current will range in intensity from a few 10 A to 1mA for ions, up to 5 mA for deuterons, and in energy from 0.75 up

Paris-Sud XI, Université de

57

Oil & Gas Research | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research Research Oil & Gas Research Section 999 Report to Congress DOE issues the 2013 annual plan for the ultra-deepwater and unconventional fuels program. Read more DOE Signs MOU with Alaska New accord to help develop Alaska's potentially vast and important unconventional energy resources. Read more Methane Hydrate R&D DOE is conducting groundbreaking research to unlock the energy potential of gas hydrates. Read more LNG Safety Research Report This Report to Congress summarizes the progress of DOE's LNG safety research Read more FE's Office of Oil & Natural Gas supports research and policy options to ensure environmentally sustainable domestic and global supplies of oil and natural gas. Resource/Safety R&D Hydraulic Fracturing & Shale Gas Research. Natural gas from shales has the

58

Reducing Industrial Energy Intensity in the Southeast Project...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Authority and its project partners will establish the Southeastern Center for Industrial Energy Intensity Reduction (the Center) to inform industrial facilities about the U.S....

59

Comparison of International Energy Intensities across the G7...  

U.S. Energy Information Administration (EIA) Indexed Site

Comparison of International Energy Intensities across the G7 and other parts of Europe, including Ukraine Elizabeth Sendich November 2014 Independent Statistics & Analysis...

60

An energy-economic oil production model  

Science Journals Connector (OSTI)

......underlying economic factors such as labour or capital investment into oil infrastructure...L, Res), (1.4) where K denotes capital; L, labour and Res, natural resources...including other energy sources such as natural gas, coal, hydro and nuclear power, and......

Peter Berg; Paul Hanz; Ian Milton

2013-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil energy intensity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

An energy-economic oil production model  

Science Journals Connector (OSTI)

......such as natural gas, coal, hydro and nuclear power...perspective, this energy-economic model offers an opportunity...Testimony before the Joint Economic Committee of the US Congress...HOEOEK, M. (2010) Coal and oil: the dark monarchs...2001) Introduction to Economic Growth, 2nd edn. New......

Peter Berg; Paul Hanz; Ian Milton

2013-04-01T23:59:59.000Z

62

Energy End-Use Intensities in Commercial Buildings 1989 -- Executive  

U.S. Energy Information Administration (EIA) Indexed Site

9 Energy End-Use Intensities > Executive Summary 9 Energy End-Use Intensities > Executive Summary Executive Summary Energy End Uses Ranked by Energy Consumption, 1989 Energy End Uses Ranked by Energy Consumption, 1989 Source: Energy Information Administration, Office of Energy Markets and End Use, Forms EIA-871A through F of the 1989 Commercial Buildings Energy Consumption Survey. divider line The demand for energy in U.S. stores, offices, schools, hospitals, and other commercial buildings has been increasing. This report examines energy intensities in commercial buildings for nine end uses: space heating, cooling, ventilation, lighting, water heating, cooking, refrigeration, office equipment, and "other." The objective of this analysis was to increase understanding of how energy is used in commercial buildings and to identify targets for greater energy efficiency which could moderate future growth in demand.

63

Energy Efficient Pump Control for an Offshore Oil Processing System  

E-Print Network (OSTI)

Energy Efficient Pump Control for an Offshore Oil Processing System Zhenyu Yang Kian Soleiman Bo, Denmark. Abstract: The energy efficient control of a pump system for an offshore oil processing system control, energy saving 1. INTRODUCTION Pump systems have been extensively used in offshore oil & gas

Yang, Zhenyu

64

Energy & Financial Markets: What Drives Crude Oil Prices? - Energy  

U.S. Energy Information Administration (EIA) Indexed Site

& Financial Markets - U.S. Energy Information Administration (EIA) & Financial Markets - U.S. Energy Information Administration (EIA) U.S. Energy Information Administration - EIA - Independent Statistics and Analysis Sources & Uses Petroleum & Other Liquids Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas Exploration and reserves, storage, imports and exports, production, prices, sales. Electricity Sales, revenue and prices, power plants, fuel use, stocks, generation, trade, demand & emissions. Consumption & Efficiency Energy use in homes, commercial buildings, manufacturing, and transportation. Coal Reserves, production, prices, employ- ment and productivity, distribution, stocks, imports and exports. Renewable & Alternative Fuels

65

EIA - International Energy Outlook 2007-Low World Oil Price Projections  

Gasoline and Diesel Fuel Update (EIA)

Low World Oil Price Case Projections (1990-2030) Low World Oil Price Case Projections (1990-2030) International Energy Outlook 2007 Low World Oil Price Projections Tables (1990-2030) Formats Table Data Titles (1 to 12 complete) Low World Oil Price Projections Tables. Need help, contact the National Energy Information Center at 202-586-8800. Low World Oil Price Projections Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table E1 World Total Energy Consumption by Region, Low World Oil Price Case Table E1. World Total Energy Consumption by Region. Need help, contact the National Energy Information Center at 202-586-8800. Table E2 World Total Energy Consumption by Region and Fuel, Low World Oil Price Case Table E2. World Total Energy Consumption by Region and Fuel. Need help, contact the National Energy Information Center at 202-586-8800.

66

China targets 20% reduction in energy intensity by 2010  

Science Journals Connector (OSTI)

Though China has made great achievement in energy conservation in the last two decades, its energy consumption is increasing rapidly. In March 2006, China's government set a target for reducing its energy intensity by 20% by 2010 compared to the 2005 value. In this paper, we analyse China's current energy efficiency situations, and put forward some policy implications on energy saving.

Hua Liao; Ying Fan; Yi-Ming Wei

2009-01-01T23:59:59.000Z

67

Enhanced Oil Recovery | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Enhanced Oil Recovery Enhanced Oil Recovery Cross-section illustrating how carbon dioxide and water can be used to flush residual oil from a subsurface rock formation between...

68

Deepwater Oil & Gas Resources | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Deepwater Oil & Gas Resources Deepwater Oil & Gas Resources The United States has significant natural gas and oil reserves. But many of these resources are increasingly harder to...

69

OGEL (Oil, Gas & Energy Law Intelligence): Focussing on recent developments in the area of oil-gas-energy law,  

E-Print Network (OSTI)

About OGEL OGEL (Oil, Gas & Energy Law Intelligence): Focussing on recent developments in the area of oil-gas-energy law, regulation, treaties, judicial and arbitral cases, voluntary guidelines, tax and contracting, including the oil-gas- energy geopolitics. For full Terms & Conditions and subscription rates

Dixon, Juan

70

A Comparison of Iron and Steel Production Energy Intensity in China and the U.S  

E-Print Network (OSTI)

of Iron and Steel Production Energy Use and Energy Intensityof Iron and Steel Production Energy Intensity in China andof Iron and Steel Production Energy Intensity in China and

Price, Lynn

2014-01-01T23:59:59.000Z

71

Southeastern Center for Industrial Energy Intensity Reduction  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy’s (DOE’s) Advanced Manufacturing Office (AMO; formerly the Industrial Technologies Program) has developed multiple resources and a best practices suite of tools to...

72

A Comparison of Iron and Steel Production Energy Use and Energy Intensity in China and the U.S.  

E-Print Network (OSTI)

Fuel Oil Natural Gas million kWh NAICS Residual Fuel OilNAICS Iron and Steel Mills Steel Products from Purchased Steel Residual Fuel Oil Distillate Fuel Oil Natural GasNAICS Industry Other Shipments of Energy Sources Produced Onsite Total Electricity Residual Fuel Oil Distillate Fuel Oil Natural Gas

Hasanbeigi, Ali

2012-01-01T23:59:59.000Z

73

Energy End-Use Intensities in Commercial Buildings 1992  

U.S. Energy Information Administration (EIA) Indexed Site

Overview > Tables Overview > Tables 1992 Energy End-Use Intensities Tables Energy Consumption by End Use, 1992 Figure on Energy Consumption By End Use, 1992 Source: Energy Information Administration, Office of Energy Markets and End Use, Forms EIA-871A through F of the 1992 Commercial Buildings Energy Consumption Survey. divider line To View and/or Print Reports (requires Adobe Acrobat Reader) - Download Adobe Acrobat Reader If you experience any difficulties, visit our Technical Frequently Asked Questions. divider line Tables - (file size 31,655 bytes), pages 6. - requires Adobe Acrobat Reader Consumption of All Major Fuels by End Uses, 1992 Energy End-Use Intensities for All Major Fuels, 1992 Consumption of Electricity by End Uses, 1992 Energy End-Use Intensities for Electricity, 1992

74

Phoenix Canada Oil Company | Open Energy Information  

Open Energy Info (EERE)

Canada Oil Company Canada Oil Company Jump to: navigation, search Name Phoenix Canada Oil Company Place Toronto, Ontario, Canada Zip M5J 1S9 Sector Hydro, Hydrogen, Solar Product Oil and gas exploration company, with a US division, Phoenix International Energy Inc, developing a solar hydrogen production process catalysed with platinum group metals aligned with various ligands. Coordinates 43.64856°, -79.385324° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.64856,"lon":-79.385324,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

75

Zhuhai Oil Energy Science and Technology | Open Energy Information  

Open Energy Info (EERE)

Zhuhai Oil Energy Science and Technology Zhuhai Oil Energy Science and Technology Jump to: navigation, search Name Zhuhai Oil Energy Science and Technology Place Zhuhai, China Sector Biofuels Stock Symbol BMGP Coordinates 22.27094°, 113.577261° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":22.27094,"lon":113.577261,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

76

Oil Study Guide - High School | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High School Oil Study Guide - High School Oil Study Guide - High School More Documents & Publications Inspection Report: INS-L-12-06 Fossil Energy Today - First Quarter, 2012 SPR...

77

High-Intensity Discharge Lighting Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High-Intensity Discharge Lighting Basics High-Intensity Discharge Lighting Basics High-Intensity Discharge Lighting Basics August 15, 2013 - 5:59pm Addthis High-intensity discharge (HID) lighting provides the highest efficacy and longest service life of any lighting type. It can save 75%-90% of lighting energy when it replaces incandescent lighting. Illustration of a high-intensity discharge (HID) lIllustration amp. The lamp is a tall cylindrical shape, and a cutout of the outer tube shows the materials inside. A long, thin cylinder called the arc tube runs through the lamp between two electrodes. The space around the arc tube is labeled as a vacuum. In a high-intensity discharge lamp, electricity arcs between two electrodes, creating an intensely bright light. Mercury, sodium, or metal halide gas

78

Energy Policy 35 (2007) 52675286 The implications of the historical decline in US energy intensity  

E-Print Network (OSTI)

Energy Policy 35 (2007) 5267­5286 The implications of the historical decline in US energy intensity 2007 Abstract This paper analyzes the influence of the long-run decline in US energy intensity change) and adjustments in the energy demand of individual industries (intensity change), and identifies

79

NETL: Oil & Natural Gas - Energy Infrastructure  

NLE Websites -- All DOE Office Websites (Extended Search)

Oil and Natural Gas Supply Oil and Natural Gas Supply Energy Infrastructure NETL's Energy Infrastructure and Security Research Group (EISRG) has a key supporting role in emergency preparedness and response. The EISRG develops high-level analytical visualizations that are used to study critical U.S. energy infrastructures and their inter-relationships during natural and manmade emergencies. By deploying resources and providing vital information in a timely manner, EISRG improves the ability of government agencies and the energy sector to prevent, prepare for, and respond to hazards, emergencies, natural disasters, or any other threat to the nation's energy supply. NETL coordinated and provided information on an ongoing basis during every major landfall event of the 2005 hurricane season , including Hurricanes Katrina and Rita, as well as during Hurricanes Charley, Frances, and Ivan in 2004. NETL also has participated in exercises to prepare for events with varying degrees of impact, such as pipeline disruptions, local power outages, and transportation interruptions, such as the 2005 Powder River Basin rail service suspension, which resulted in curtailment of coal deliveries to major customers over a six-month period.

80

Category:Oil and Gas | Open Energy Information  

Open Energy Info (EERE)

Gas Gas Jump to: navigation, search This category includes companies and information related to oil (petroleum) or natural gas. Pages in category "Oil and Gas" The following 114 pages are in this category, out of 114 total. A Abu Dhabi National Oil Company Abu Dhabi Supreme Petroleum Council Al Furat Petroleum Company Alabama Oil and Gas Board Alaska Division of Oil and Gas Alaska Oil and Gas Conservation Commission Algeria Ministry of Energy and Mining Archaeological Resource Protection Act Archaeological Resources Protection Act Arizona Oil and Gas Commission Arkansas Oil and Gas Commission B Bahrain National Gas and Oil Authority Bald and Golden Eagle Protection Act C California Division of Oil, Gas, and Geothermal Resources California Environmental Quality Act

Note: This page contains sample records for the topic "oil energy intensity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Energy Market Impacts of Alternative Greenhouse Gas Intensity Reduction Goals  

Gasoline and Diesel Fuel Update (EIA)

1 1 Energy Market Impacts of Alternative Greenhouse Gas Intensity Reduction Goals March 2006 Energy Information Administration Office of Integrated Analysis and Forecasting U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Service Reports are prepared by the Energy Information Administration upon special request and are based on assumptions specified by the requester. Energy Information Administration / Energy Market Impacts of Alternative Greenhouse Gas Intensity Reduction Goals

82

Energy intensity in China's iron and steel sector  

E-Print Network (OSTI)

In this study, I examine the spatial and economic factors that influence energy intensity in China's iron and steel sector, namely industrial value added, renovation investment, coke consumption, and local coke supply. ...

Xu, Jingsi, M.C.P. Massachusetts Institute of Technology

2011-01-01T23:59:59.000Z

83

High energy density physics generated by intense heavy ion beams  

Science Journals Connector (OSTI)

Intense ion beams from accelerators are now available to generate high energy density matter and to study astrophysical phenomena in the laboratory under controlled and reproducible conditions. A detailed unde...

D. H. H. Hoffmann; V. E. Fortov; M. Kuster; V. Mintsev…

2009-08-01T23:59:59.000Z

84

Some Intensive and Extensive Quantities in High-Energy Collisions  

E-Print Network (OSTI)

We review the evolution of some statistical and thermodynamical quantities measured in difference sizes of high-energy collisions at different energies. We differentiate between intensive and extensive quantities and discuss the importance of their distinguishability in characterizing possible critical phenomena of nuclear collisions at various energies with different initial conditions.

A. Tawfik

2013-10-02T23:59:59.000Z

85

Thesis Oral Energy-efficient Data-intensive  

E-Print Network (OSTI)

Thesis Oral Energy-efficient Data-intensive Computing with a Fast Array of Wimpy Nodes Vijay has raised datacenter energy demand and created an increasingly large financial burden and scaling challenge: Peak energy requirements today are a significant cost of provisioning

86

A Comparison of Iron and Steel Production Energy Intensity in China and the U.S  

E-Print Network (OSTI)

Production Energy Use and Energy Intensity in China and theGJ/t crude steel Primary Energy Intensity* kgce/t GJ/t crudeChina U.S. Final Energy Intensity No. 5b Scenarios Country

Price, Lynn

2014-01-01T23:59:59.000Z

87

Department of Energy Commercial Building Benchmarks (New Construction): Energy Use Intensities, May 5, 2009  

Energy.gov (U.S. Department of Energy (DOE))

This file contains the energy use intensities (EUIs) for the benchmark building files by building type and climate zone.

88

Energy Information Administration (EIA) - High World Oil Price Case  

Gasoline and Diesel Fuel Update (EIA)

High World Oil Price Case Projections Tables (1990-2030) High World Oil Price Case Projections Tables (1990-2030) International Energy Outlook 2007 High World Oil Price Case Projections Tables (1990-2030) Formats Data Table Titles (1 to 12 complete) High World Oil Price Case Projections Tables. Need help, contact the National Energy Information Center at 202-586-8800. High World Oil Price Case Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table D1 World Total Primary Energy Consumption by Region Table D1. World Total Primary Energy Consumption by Region. Need help, contact the National Energy Information Center at 202-586-8800. Table D2 World Total Energy Consumption by Region and Fuel Table D2. World total Energy Consumption by Region and Fuel. Need help, contact the National Energy Information Center at 202-586-8800.

89

United Oil Company | Open Energy Information  

Open Energy Info (EERE)

Company Jump to: navigation, search Name: United Oil Company Place: Pittsburgh, Pennsylvania Product: Vegetable-Oil producer Biodiesel producer based in Pittsburgh, PA References:...

90

Could energy intensive industries be powered by carbonfree electricity?  

E-Print Network (OSTI)

chemical services -- for example, coal, converted to coke, acts as a reducing agent in blast furnaces.) (a comes from coal, oil, and natural gas. What infrastructure would be required to deliver the same amount to Royal Society T E X Paper #12; 2 David J C MacKay FRS Primary energy consumption: 2740TWh/y Coal: 475TWh

MacKay, David J.C.

91

Peak Oil, Peak Energy Mother Nature Bats Last  

E-Print Network (OSTI)

Peak Oil, Peak Energy Mother Nature Bats Last Martin Sereno 1 Feb 2011 (orig. talk: Nov 2004) #12;Oil is the Lifeblood of Industrial Civilization · 80 million barrels/day, 1000 barrels/sec, 1 cubicPods to the roads themselves) · we're not "addicted to oil" -- that's like saying a person has an "addiction

Sereno, Martin

92

EIA - Annual Energy Outlook 2008 (Early Release)-Energy Intensity Section  

Gasoline and Diesel Fuel Update (EIA)

Intensity Intensity Annual Energy Outlook 2008 (Early Release) Energy Intensity Figure 7. Energy use per capita and per dollar of gross domestic product, 1980-2030 (index, 1980 = 1). Need help, contact the National Energy Information Center at 202-586-8800. figure data Energy intensity, measured as energy use (in thousand Btu) per dollar of GDP (in 2000 dollars), is projected to decline at an average annual rate of 1.6 percent from 2006 to 2030 in the AEO2008 reference case (Figure 7). Although energy use generally increases as the economy grows, continuing improvement in the energy efficiency of the U.S. economy and a shift to less energy-intensive activities are projected to keep the rate of energy consumption growth lower than the rate of GDP growth. Since 1992, the energy intensity of the U.S. economy has declined on

93

,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)"  

U.S. Energy Information Administration (EIA) Indexed Site

Standard Errors for Table 10.9;" " Unit: Percents." ,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)" ,,,"Coal Coke" "NAICS"," ","Total","...

94

,,"Distillate Fuel Oil",,,"Alternative Energy Sources(b)"  

U.S. Energy Information Administration (EIA) Indexed Site

8 Relative Standard Errors for Table 10.8;" " Unit: Percents." ,,"Distillate Fuel Oil",,,"Alternative Energy Sources(b)" ,,,"Coal Coke" "NAICS"," ","Total","...

95

Oil shale as an energy source in Israel  

SciTech Connect

Reserves, characteristics, energetics, chemistry, and technology of Israeli oil shales are described. Oil shale is the only source of energy and the only organic natural resource in Israel. Its reserves of about 12 billion tons will be enough to meet Israel`s requirements for about 80 years. The heating value of the oil shale is 1,150 kcal/kg, oil yield is 6%, and sulfur content of the oil is 5--7%. A method of oil shale processing, providing exhaustive utilization of its energy and chemical potential, developed in the Technion, is described. The principal feature of the method is a two-stage pyrolysis of the oil shale. As a result, gas and aromatic liquids are obtained. The gas may be used for energy production in a high-efficiency power unit, or as a source for chemical synthesis. The liquid products can be an excellent source for production of chemicals.

Fainberg, V.; Hetsroni, G. [Technion-Israel Inst. of Tech., Haifa (Israel)

1996-01-01T23:59:59.000Z

96

Energy Intensity of Federal Buildings Slashed 25% in Past Decade  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. General Services Administration (GSA), which builds and manages federal buildings, recently announced that it cut federal energy spending by $65.5 million in fiscal year (FY) 2012 by reducing the energy use intensity levels in its buildings by nearly 25% since FY 2003.

97

Enhanced Oil Recovery | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Enhanced Oil Recovery Enhanced Oil Recovery Enhanced Oil Recovery Cross-section illustrating how carbon dioxide and water can be used to flush residual oil from a subsurface rock formation between wells. Cross-section illustrating how carbon dioxide and water can be used to flush residual oil from a subsurface rock formation between wells. Crude oil development and production in U.S. oil reservoirs can include up to three distinct phases: primary, secondary, and tertiary (or enhanced) recovery. During primary recovery, the natural pressure of the reservoir or gravity drive oil into the wellbore, combined with artificial lift techniques (such as pumps) which bring the oil to the surface. But only about 10 percent of a reservoir's original oil in place is typically produced during primary recovery. Secondary recovery techniques extend a

98

Target Allocation Methodology for China's Provinces: Energy Intensity in the 12th FIve-Year Plan  

E-Print Network (OSTI)

projections of energy and intensity for the 12 th FYP werelevel projections of energy and intensity for the 12 th FYPth APPENDIX Table A-2 Energy Intensity Target Allocation

Ohshita, Stephanie

2011-01-01T23:59:59.000Z

99

Peak Oil Food Network | Open Energy Information  

Open Energy Info (EERE)

Network Network Jump to: navigation, search Name Peak Oil Food Network Place Crested Butte, Colorado Zip 81224 Website http://www.PeakOilFoodNetwork. References Peak Oil Food Network[1] LinkedIn Connections This article is a stub. You can help OpenEI by expanding it. The Peak Oil Food Network is a networking organization located in Crested Butte, Colorado, and is open to the general public that seeks to promote the creation of solutions to the challenge of food production impacted by the peak phase of global oil production. Private citizens are encouraged to join and contribute by adding comments, writing blog posts or adding to discussions about food and oil related topics. Peak Oil Food Network can be followed on Twitter at: http://www.Twitter.com/PeakOilFoodNtwk Peak Oil Food Network on Twitter

100

SCENARIOS WITH AN INTENSIVE CONTRIBUTION OF NUCLEAR ENERGY TO THE WORLD ENERGY SUPPLY  

E-Print Network (OSTI)

1 SCENARIOS WITH AN INTENSIVE CONTRIBUTION OF NUCLEAR ENERGY TO THE WORLD ENERGY SUPPLY H of primary energy demand by 250% in 2050 we find that a nuclear intensive scenario assuming the development level. Electricity production amounts to almost 40% of the primary energy supplyi , mostly i Here

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "oil energy intensity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

B. Appendix: Scaling of Cost with Energy and Intensity  

NLE Websites -- All DOE Office Websites (Extended Search)

B. Appendix: Scaling of Cost with Energy and Intensity B. Appendix: Scaling of Cost with Energy and Intensity With the two ongoing studies, one for the physics program, [1] and one for the accelerator and facilities [2] on the "Neutrino Factory Based on a Muon Storage Ring", a number of interesting suggestions and ideas came up. Almost immediately the question of scaling cost with the storage ring energy and with intensity came up. Nevertheless, it was impossible to explore all those questions in great detail, either in the report or in the preliminary cost estimate that is presented in Appendix A. During the study it became more and more clear, that one of the unique features of a neutrino source, namely the possibility to balance the cost of the accelerator with the cost of the detector, would urge the accelerator people to find an answer to this

102

Energy Use and Energy Intensity of the U.S. Chemical Industry | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

Intensity of the U.S. Chemical Industry Intensity of the U.S. Chemical Industry Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories

103

The decline of the world’s energy intensity  

Science Journals Connector (OSTI)

Energy intensity of the total primary energy supply (TPES), total final energy consumption (TFC) and LOSSES in the conversion from TPES to TFC were analyzed for the World, OECD and Rest of the World (ROW) countries. LOSSES increased significantly for all groups of countries due to the increase of electricity production from coal in the period studied (1971–2008). Electricity share final consumption almost doubled, increasing from 8.8% to 17.2% in the period studied. However the energy intensity of LOSSES remained practically constant, which reflects the fact that the efficiency of electricity generation from coal (the main source of electricity) remained practically constant in that period. Despite the attractiveness of end-use devices running on electricity such as computers, which is typical of modern societies, the CO2 emissions are bound to increase unless coal is replaced by less carbon emitting sources such as natural gas, renewables and nuclear energy.

José Goldemberg; Luiz Tadêo Siqueira Prado

2011-01-01T23:59:59.000Z

104

A Comparison of Iron and Steel Production Energy Use and Energy Intensity in China and the U.S.  

E-Print Network (OSTI)

23 5. Comparison of Energy Intensity of Iron and Steelthe U.S. . 27 5.1. Energy Intensity of Iron and27 5.2. Energy Intensity of Iron and Steel Production in

Hasanbeigi, Ali

2012-01-01T23:59:59.000Z

105

Oil Pollution Act | Open Energy Information  

Open Energy Info (EERE)

Pollution Act Pollution Act Jump to: navigation, search Statute Name Oil Pollution Act Year 1990 Url OPA.jpg Description The Oil Pollution Act (OPA) of 1990 streamlined and strengthened EPA's ability to prevent and respond to catastrophic oil spills. References OPA[1] Federal Oil and Gas[2] The Oil Pollution Act (OPA) of 1990 streamlined and strengthened EPA's ability to prevent and respond to catastrophic oil spills. A trust fund financed by a tax on oil is available to clean up spills when the responsible party is incapable or unwilling to do so. The OPA requires oil storage facilities and vessels to submit to the federal government response plans detailing how they will respond to large discharges. EPA has published regulations for aboveground storage facilities; the Coast Guard

106

Enhanced Oil Recovery Affects the Future Energy Mix | GE Global...  

NLE Websites -- All DOE Office Websites (Extended Search)

Affects the Future Energy Mix Enhanced Oil Recovery Affects the Future Energy Mix Trevor Kirsten 2012.11.19 One of the fascinating things about my job is contemplating questions...

107

FE Oil and Natural Gas News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of Fossil Energy's National Energy Technology Laboratory (NETL) has given rise to a major new research consortium to promote advanced technology for low-impact oil and gas drilling...

108

Energy prices and energy intensity in China : a structural decomposition analysis and econometric study  

E-Print Network (OSTI)

Since the start of its economic reforms in 1978, China's energy prices relative to other prices have increased. At the same time, its energy intensity, i.e., physical energy consumption per unit of Gross Domestic Product ...

Shi, Xiaoyu, M.C.P. Massachusetts Institute of Technology

2005-01-01T23:59:59.000Z

109

The energy required to produce materials: constraints on energy-intensity improvements, parameters of demand  

Science Journals Connector (OSTI)

...processes. Data for iron energy intensity are adapted...are adapted from Choate Green-[16]. Production...15 Smil, V . 2008 Energy in nature and society...Choate, WT , and JAS Green. 2003 US energy requirements for aluminum...

2013-01-01T23:59:59.000Z

110

Energy prices and energy intensity in China : a structural decomposition analysis and econometrics study  

E-Print Network (OSTI)

Since the start of its economic reforms in 1978, China's energy prices relative to other prices have increased. At the same time, its energy intensity, i.e., energy consumption per unit of Gross Domestic Product (GDP), has ...

Shi, Xiaoyu

2006-01-01T23:59:59.000Z

111

National Level Co-Control Study of the Targets for Energy Intensity and Sulfur Dioxide in China  

E-Print Network (OSTI)

world-best-practice-energy- intensity-values-selected-World Best Practice Energy Intensity Values for Selectedof the Targets for Energy Intensity and Sulfur Dioxide in

Zhou, Nan

2013-01-01T23:59:59.000Z

112

A Comparison of Iron and Steel Production Energy Use and Energy Intensity  

NLE Websites -- All DOE Office Websites (Extended Search)

A Comparison of Iron and Steel Production Energy Use and Energy Intensity A Comparison of Iron and Steel Production Energy Use and Energy Intensity in China and the U.S. Title A Comparison of Iron and Steel Production Energy Use and Energy Intensity in China and the U.S. Publication Type Report Year of Publication 2011 Authors Hasanbeigi, Ali, Lynn K. Price, Nathaniel T. Aden, Zhang Chunxia, Li Xiuping, and Shangguan Fangqin Date Published June/2011 Publisher Lawrence Berkeley National Laboratory; Iron & Steel Research Institute, Iron and Steel Industry Keywords energy intensity, energy use, Low Emission & Efficient Industry Abstract Production of iron and steel is an energy-intensive manufacturing process. In 2006, the iron and steel industry accounted for 13.6% and 1.4% of primary energy consumption in China and the U.S., respectively (U.S. DOE/EIA, 2010a; Zhang et al., 2010). The energy efficiency of steel production has a direct impact on overall energy consumption and related carbon dioxide (CO2) emissions. The goal of this study is to develop a methodology for making an accurate comparison of the energy intensity (energy use per unit of steelproduced) of steel production. The methodology is applied to the steel industry in China and the U.S. The methodology addresses issues related to boundary definitions, conversion factors, and indicators in order industry energy use to develop a common framework for comparing steel intensity energy use.

113

Energy Supply Crude Oil Production (a)  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Supply Energy Supply Crude Oil Production (a) (million barrels per day) .............................. 6.22 6.29 6.42 7.02 7.11 7.29 7.61 7.97 8.26 8.45 8.57 8.86 6.49 7.50 8.54 Dry Natural Gas Production (billion cubic feet per day) ........................... 65.40 65.49 65.76 66.34 65.78 66.50 67.11 67.88 67.99 67.74 67.37 67.70 65.75 66.82 67.70 Coal Production (million short tons) ...................................... 266 241 259 250 245 243 264 256 258 249 265 262 1,016 1,008 1,033 Energy Consumption Liquid Fuels (million barrels per day) .............................. 18.36 18.55 18.59 18.45 18.59 18.61 19.08 18.90 18.69 18.67 18.91 18.82 18.49 18.80 18.77 Natural Gas (billion cubic feet per day) ........................... 81.09 62.38 63.72 71.27 88.05 59.49 60.69 74.92 85.76 59.40 60.87 72.53 69.60 70.72 69.58 Coal (b) (million short tons) ......................................

114

Optimization of Power-Intensive Energy Systems with Carbon Capture  

Science Journals Connector (OSTI)

Optimization of Power-Intensive Energy Systems with Carbon Capture ... Three concepts for capturing CO2 from natural gas-fired combined gas/steam turbine power plants are evaluated and compared in this paper: (A) sepn. of CO2 from exhaust gas coming from a std. ...

Xuesong Zheng; Jin-Kuk Kim

2011-09-07T23:59:59.000Z

115

International Energy Outlook 2001 - World Oil Markets  

Gasoline and Diesel Fuel Update (EIA)

World Oil Markets World Oil Markets picture of a printer Printer Friendly Version (PDF) In the IEO2001 forecast, periodic production adjustments by OPEC members are not expected to have a significant long-term impact on world oil markets. Prices are projected to rise gradually through 2020 as the oil resource base is expanded. Crude oil prices remained above $25 per barrel in nominal terms for most of 2000 and have been near $30 per barrel in the early months of 2001. Prices were influenced by the disciplined adherence to announced cutbacks in production by members of the Organization of Petroleum Exporting Countries (OPEC). OPECÂ’s successful market management strategy was an attempt to avoid a repeat of the ultra-low oil price environment of 1998 and early 1999. Three additional factors contributed to the resiliency of oil prices in

116

Oil's Impact on Our National Security | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oil's Impact on Our National Security Oil's Impact on Our National Security Oil's Impact on Our National Security April 25, 2011 - 6:12pm Addthis John Schueler John Schueler Former New Media Specialist, Office of Public Affairs Our dependence on foreign oil not only impacts hard working Americans at the pump, but it also compromises the security of our troops, as transporting large quantities of oil to our armed forces is often a dangerous and costly endeavor. The Department of Energy is committed to reducing our dependence on oil and supporting our armed forces, and that's why we've been collaborating with the Department of Defense throughout this administration to develop clean energy technologies and get them into the field. Tomorrow, Deputy Secretary Daniel Poneman will join Deputy Secretary of

117

Gas and Oil (Maryland) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Oil (Maryland) and Oil (Maryland) Gas and Oil (Maryland) < Back Eligibility Commercial Construction Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State Maryland Program Type Siting and Permitting Provider Maryland Department of the Environment The Department of the Environment has the authority to enact regulations pertaining to oil and gas production, but it cannot prorate or limit the output of any gas or oil well. A permit from the Department is required prior to the drilling of a well for exploration, production, or underground storage of oil or gas. An environmental assessment must be submitted along with the permit application, and the Department may deny permits that propose drilling which may pose a substantial threat to public safety or

118

Oman Oil Company | Open Energy Information  

Open Energy Info (EERE)

Oman Oil Company Oman Oil Company Jump to: navigation, search Logo: Oman Oil Company (S.A.O.C.) Name Oman Oil Company (S.A.O.C.) Place Muscat, Oman Product Oil exploration and production Year founded 1966 Phone number + 968 - 2457 3100 Website http://www.oman-oil.com/ Coordinates 23.607918997246°, 58.492176532745° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":23.607918997246,"lon":58.492176532745,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

119

Energy Department Announces Emergency Oil Loan In Response to Hurricane  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emergency Oil Loan In Response to Emergency Oil Loan In Response to Hurricane Isaac-Related Request Energy Department Announces Emergency Oil Loan In Response to Hurricane Isaac-Related Request August 31, 2012 - 11:17am Addthis News Media Contact (202) 586-4940 WASHINGTON, DC - Following a request yesterday from Marathon Petroleum Company, U.S. Secretary of Energy Steven Chu announced today that the Energy Department has agreed to lend 1 million barrels of sweet crude oil from the Strategic Petroleum Reserve's (SPR) Bayou Choctaw site in Louisiana to address the short term impact on the company's refining capacity caused by Hurricane Isaac, which is resulting in limited crude oil shortages. The loan, which is distinct from a release from the SPR, will be provided to Marathon Petroleum Company under short-term contractual agreements.

120

Energy end-use intensities in commercial buildings  

SciTech Connect

This report examines energy intensities in commercial buildings for nine end uses: space heating, cooling, ventilation, lighting, water heating, cooking, refrigeration, office equipment, and other. The objective of this analysis was to increase understanding of how energy is used in commercial buildings and to identify targets for greater energy efficiency which could moderate future growth in demand. The source of data for the analysis is the 1989 Commercial Buildings Energy Consumption survey (CBECS), which collected detailed data on energy-related characteristics and energy consumption for a nationally representative sample of approximately 6,000 commercial buildings. The analysis used 1989 CBECS data because the 1992 CBECS data were not yet available at the time the study was initiated. The CBECS data were fed into the Facility Energy Decision Screening (FEDS) system, a building energy simulation program developed by the US Department of Energy`s Pacific Northwest Laboratory, to derive engineering estimates of end-use consumption for each building in the sample. The FEDS estimates were then statistically adjusted to match the total energy consumption for each building. This is the Energy Information Administration`s (EIA) first report on energy end-use consumption in commercial buildings. This report is part of an effort to address customer requests for more information on how energy is used in buildings, which was an overall theme of the 1992 user needs study. The end-use data presented in this report were not available for publication in Commercial Buildings Energy Consumption and Expenditures 1989 (DOE/EIA-0318(89), Washington, DC, April 1992). However, subsequent reports on end-use energy consumption will be part of the Commercial Buildings Energy Consumption and Expenditures series, beginning with a 1992 data report to be published in early 1995.

Not Available

1994-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil energy intensity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

EIA Energy Efficiency-Residential Sector Energy Intensities, 1978-2001  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Sector Energy Intensities Residential Sector Energy Intensities RESIDENTIAL SECTOR ENERGY INTENSITIES: 1978-2005 Released Date: August 2004 Page Last Modified:June 2009 These tables provide estimates of residential sector energy consumption and energy intensities for 1978 -1984, 1987, 1990, 1993, 1997, 2001 and 2005 based on the Residential Energy Consumption Survey (RECS). Total Site Energy Consumption (U.S. and Census Region) Html Excel PDF By Type of Housing Unit (Table 1a) html Table 1a excel table 1a. excel table 1a. Weather-Adjusted by Type of Housing Unit (Table 1b) html table 1b excel table 1b excel table 1b Total Primary Energy Consumption (U.S. and Census Region) By Type of Housing Unit (Table 1c) html Table 1c excel table 1c excel table 1c Weather-Adjusted by Type of Housing Unit (Table 1d)

122

Our Dependence on Foreign Oil Is Declining | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dependence on Foreign Oil Is Declining Dependence on Foreign Oil Is Declining Our Dependence on Foreign Oil Is Declining March 1, 2012 - 11:02am Addthis Image courtesy of whitehouse.gov Image courtesy of whitehouse.gov Megan Slack Deputy Director of Digital Content, White House Office of Digital Strategy What are the key facts? America's dependence on foreign oil has decreased every year since President Obama took office. We need an all-out, all-of-the-above strategy to protect Americans from high energy prices in the long run. Editor's Note: This post originally appeared on the White House Blog. America's dependence on foreign oil has gone down every single year since President Obama took office. In 2010, we imported less than 50 percent of the oil our nation consumed-the first time that's happened in 13

123

Our Dependence on Foreign Oil Is Declining | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Our Dependence on Foreign Oil Is Declining Our Dependence on Foreign Oil Is Declining Our Dependence on Foreign Oil Is Declining March 1, 2012 - 11:02am Addthis Image courtesy of whitehouse.gov Image courtesy of whitehouse.gov Megan Slack Deputy Director of Digital Content, White House Office of Digital Strategy What are the key facts? America's dependence on foreign oil has decreased every year since President Obama took office. We need an all-out, all-of-the-above strategy to protect Americans from high energy prices in the long run. Editor's Note: This post originally appeared on the White House Blog. America's dependence on foreign oil has gone down every single year since President Obama took office. In 2010, we imported less than 50 percent of the oil our nation consumed-the first time that's happened in 13

124

Table 6. Energy intensity by state (2000 - 2010  

U.S. Energy Information Administration (EIA) Indexed Site

Energy intensity by state (2000 - 2010)" Energy intensity by state (2000 - 2010)" "thousand Btu per dollar of GDP" ,,,,,,,,,,,,"Change" ,,,,,,,,,,,,"2000 to 2010" "State",2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percent","Absolute" "Alabama",18.27258197,17.12573602,17.40982338,17.21199023,16.87274619,16.36600572,16.26201029,16.16667416,15.88996309,15.31511861,15.97051076,-0.1259849985,-2.302071213 "Alaska",21.74118991,20.61708506,19.78031734,20.18143227,20.28953911,21.09573287,18.72961653,17.79373817,15.85124571,14.13669694,14.24461661,-0.3448097058,-7.496573297 "Arizona",8.723022426,8.474435286,8.399371812,7.993493579,8.274516227,7.602521438,7.232690272,7.328159916,7.62679414,7.507000095,7.628169778,-0.1255129924,-1.094852647

125

Department of Energy Announces Oil Loan from the Strategic Petroleum  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oil Loan from the Strategic Oil Loan from the Strategic Petroleum Reserve Department of Energy Announces Oil Loan from the Strategic Petroleum Reserve January 20, 2006 - 11:07am Addthis WASHINGTON, DC - The Department of Energy (DOE) today announced that Secretary Samuel W. Bodman has approved an emergency loan of 871,000 barrels of crude oil from the Strategic Petroleum Reserve (SPR) to the Total Petrochemicals USA, Inc. refinery in Port Arthur, Texas. This loan comes in response to a barge accident in the Sabine Neches Ship Channel earlier this week, during which 94 concrete pilings dropped from the barge into the channel. In order to ensure that this accident does not put a strain on U.S. supplies of refined products, the delivery of crude oil from the West Hackberry SPR site will begin tomorrow.

126

SPR Crude Oil Acquisition Procedures | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SPR Crude Oil Acquisition Procedures SPR Crude Oil Acquisition Procedures SPR Crude Oil Acquisition Procedures Section 301(e)(2) of the Energy Policy Act of 2005 (Public Law 109-58) directs the Secretary of Energy to develop procedures to acquire petroleum, subject to certain conditions, in quantities to fill the Strategic Petroleum Reserve (SPR) to the authorized one billion barrel capacity. On April 24, 2006, a Notice of Proposed Rulemaking (NOPR) for acquisition of crude oil for the SPR was published in the Federal Register. The procedures include provisions for acquisition through several means, including direct purchase, by transfer of royalty oil from the Department of the Interior, and by receipt of premium barrels resulting from deferral of scheduled deliveries of petroleum for the Reserve.

127

The Department of Energy's Scientific Response to the Oil Spill |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Department of Energy's Scientific Response to the Oil Spill The Department of Energy's Scientific Response to the Oil Spill The Department of Energy's Scientific Response to the Oil Spill May 28, 2010 - 12:00am Addthis At the request of President Obama, Secretary Chu and the Department of Energy's National Laboratories are providing round-the-clock scientific support to help inform strategies to stop the BP oil spill. Secretary Chu has spent several days in Houston monitoring the top kill attempt, analyzing the data as it comes in and helping to develop strategies to give it the best chances of success. In the days leading up to the "top kill" attempt, the Secretary and his team of scientists provided expert advice and technical support to test the assumptions behind BP's work and to offer analytical rigor. When diagnostic and pressure tests

128

The causes of the high energy intensity of the Kazakh economy: A characterization of its energy system  

Science Journals Connector (OSTI)

Abstract The primary energy intensity of Kazakhstan is among the highest in the world. The aim of this paper is to explore, in a quantitative way, the reasons for this condition, and to highlight the opportunities for improvement. To do so, we have developed a detailed ‘bottom-up’ model of the Kazakh energy sector. With this model, we have calculated the potential energy savings on both the demand and supply sides, and for all the economy sectors. This potential is defined as the difference between the current energy consumption in each sector/activity and the energy consumption if best available technologies or energy efficiency standards prevailing in developed countries were adopted in Kazakhstan. We conclude that the main causes of the energy inefficiency in Kazakhstan are: the excessive energy demand of buildings (especially for space heating) in the household and service sector, the inefficiency of the industry sector, particularly in the iron and steel and non-ferrous metals subsectors, the obsolescence of the heating and power generation assets, and the inefficient management of associated gas (flaring and re-injection in oil wells). With current energy efficiency standards prevailing in developed countries, the primary energy consumption in Kazakhstan in 2010 would be reduced by 48.6%, from 75.4 to 38.7 Mtoe.

Antonio Gómez; César Dopazo; Norberto Fueyo

2014-01-01T23:59:59.000Z

129

Pricey Oil, Cheap Natural Gas, and Energy Costs  

E-Print Network (OSTI)

Historically, oil and natural gas prices have moved hand in hand. However, in the past few years, while oil prices climbed to near record peaks, natural gas prices fell to levels not seen since the mid-1970s as a result of new hydraulic fracturing technology. U.S. consumer energy expenditures are still mainly driven by oil prices, so household energy bills got little relief as natural gas prices fell. Moreover, even though the United States has trimmed crude oil imports, they still equal a substantial share of gross domestic product. The price of oil approached record high levels earlier this year. At the same time though, natural gas prices reached their lowest level since the mid-1970s, as Figure 1 shows. How has this price divergence affected U.S. consumer energy costs? Have households and businesses moved away from expensive oil to cheaper natural gas to meet their energy needs? In this Economic Letter, we examine the extent to which U.S. consumers already have benefited by substituting natural gas for oil, and how much they potentially stand to gain if they were to continue to do so. We also analyze recent trends in domestic crude oil production and imports in order to grasp how much the United States pays foreign producers for oil. Oil prices neared historically high levels earlier this year. From December 2008 to their recent peak in March 2012, Brent crude prices more than tripled. This included a 28 % jump during the first four months of 2011, when oil prices responded to Middle East oil supply disruptions by climbing to $124 per barrel. It also includes a 17 % increase in the first three months of 2012. Since that peak, crude oil prices have dropped 25%. But they are still up 137 % from their most recent low in December 2008. By contrast, since January 2010, natural gas fell from $5.67 per thousand cubic feet to $2.42, or 57%, thanks in large part to the growing use of hydraulic fracturing technology. This divergence in oil and natural gas prices is unprecedented in magnitude and duration. Moreover, it is expected to persist throughout the year, according to prices in the futures market.

Hale; Fernanda Nechio

2012-01-01T23:59:59.000Z

130

Iran Oil and Gas | Open Energy Information  

Open Energy Info (EERE)

Iran Oil and Gas Iran Oil and Gas Jump to: navigation, search Logo: Iran Oil and Gas Country Iran Name Iran Oil and Gas Address Unit #16, 3rd Fl., Bldg. No. 2, 9th Narenjestan St., North Pasdaran Ave. City Tehran, Iran Website http://www.iranoilgas.com/news Coordinates 35.6961111°, 51.4230556° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.6961111,"lon":51.4230556,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

131

National Iranian Oil Company | Open Energy Information  

Open Energy Info (EERE)

Iranian Oil Company Iranian Oil Company Jump to: navigation, search Logo: National Iranian Oil Company Name National Iranian Oil Company Address Public Relations, 1st floor, 3rd NIOC Headquarters, No. 18, Roodsar St., Hafez St. Place Tehran, Iran Website http://www.nioc.ir/Portal/Home Coordinates 35.6961111°, 51.4230556° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.6961111,"lon":51.4230556,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

132

Oil Sands Feedstocks | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Sands Feedstocks Oil Sands Feedstocks Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and...

133

Tips: Natural Gas and Oil Heating Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural Gas and Oil Heating Systems Natural Gas and Oil Heating Systems Tips: Natural Gas and Oil Heating Systems May 30, 2012 - 5:41pm Addthis Install a new energy-efficient furnace to save money over the long term. Install a new energy-efficient furnace to save money over the long term. If you plan to buy a new heating system, ask your local utility or state energy office about the latest technologies on the market. For example, many newer models have designs for burners and heat exchangers that are more efficient during operation and cut heat loss when the equipment is off. Consider a sealed-combustion furnace -- they are safer and more efficient. Long-Term Savings Tip Install a new energy-efficient furnace to save money over the long term. Look for the ENERGY STAR® and EnergyGuide labels to compare efficiency and

134

A2E: Adaptively Aggressive Energy Efficient DVFS Scheduling for Data Intensive Applications  

E-Print Network (OSTI)

A2E: Adaptively Aggressive Energy Efficient DVFS Scheduling for Data Intensive Applications Li Tan strategy to achieve energy efficiency for data intensive applications, and further save energy via five memory and disk access intensive benchmarks with imbalanced branches against another two energy

135

Virginia Gas and Oil Act (Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Virginia Gas and Oil Act (Virginia) Virginia Gas and Oil Act (Virginia) Virginia Gas and Oil Act (Virginia) < Back Eligibility Commercial Construction Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Systems Integrator Utility Program Info State Virginia Program Type Safety and Operational Guidelines Siting and Permitting Provider Virginia Department of Mines, Minerals, and Energy The Gas and Oil Act addresses the exploration, development, and production of oil and gas resources in the Commonwealth of Virginia. It contains provisions pertaining to wells and well spacing, permits and fees, ownership of coalbed methane gas, and land leases. No county, city, town or other political subdivision of the Commonwealth may impose any condition, or require any other local license, permit, fee or bond to perform any gas,

136

FE Oil and Natural Gas News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oil and Natural Gas News Oil and Natural Gas News FE Oil and Natural Gas News RSS November 15, 2013 Energy Department Authorizes Additional Volume at Proposed Freeport LNG Facility to Export Liquefied Natural Gas The Department of Energy announced the conditional authorization for Freeport LNG Expansion, L.P. and FLNG Liquefaction, LLC to export liquefied natural gas to countries that do not have a Free Trade Agreement with the U.S. This is the fifth conditional authorization the Department has announced. August 23, 2013 DOE and the Bureau of Safety and Environmental Enforcement Sign Memorandum of Collaboration for Safe Offshore Energy Development The Department of Energy's (DOE) Office of Fossil Energy and The Bureau of Safety and Environmental Enforcement (BSEE) signed a Memorandum of

137

Supercomputing and Energy in China: How Investment in HPC Affects Oil Security  

E-Print Network (OSTI)

in HPC Affects Oil Security Jordan WILSON Researcher, StudyChina’s energy security challenge briefly, an oil deficit ofOil Weapon: Myth of China’s Vulnerability,” China Security,

WILSON, Jordan

2014-01-01T23:59:59.000Z

138

OIL SHALE RESEARCH. CHAPTER FROM THE ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1979  

E-Print Network (OSTI)

from In-Situ Retorting of Oil Shale," Energy and Environmentintimate contact ~lith the oil and shale, Retort waters area Control Technology for Oil Shale Retort Water J. P. Fox,

,

2012-01-01T23:59:59.000Z

139

OIL SHALE RESEARCH. CHAPTER FROM THE ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1979  

E-Print Network (OSTI)

from In-Situ Retorting of Oil Shale," Energy and EnvironmentTrace Contaminants in Oil Shale Retort Water M. J. Kland, A.Organic Arsenic Compounds 1n Oil Shale Process Waters R. H.

,

2012-01-01T23:59:59.000Z

140

OIL SHALE RESEARCH. CHAPTER FROM THE ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1979  

E-Print Network (OSTI)

each of retort water and shale oil, about 10 1 000 standardfrom In-Situ Retorting of Oil Shale," Energy and Environmentanic species present in shale oils process waters, gases,

,

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil energy intensity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

OIL SHALE RESEARCH. CHAPTER FROM THE ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1979  

E-Print Network (OSTI)

from In-Situ Retorting of Oil Shale," Energy and EnvironmentStudies Trace Contaminants in Oil Shale Retort Water M. J.Organic Arsenic Compounds 1n Oil Shale Process Waters R. H.

,

2012-01-01T23:59:59.000Z

142

Fact #554: January 19, 2009 Energy Intensity of Light Rail Transit...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4: January 19, 2009 Energy Intensity of Light Rail Transit Systems Fact 554: January 19, 2009 Energy Intensity of Light Rail Transit Systems According to the 2007 National Transit...

143

FE Oil and Natural Gas News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June 23, 2010 June 23, 2010 Successful Oil and Gas Technology Transfer Program Extended to 2015 The Stripper Well Consortium - a program that has successfully provided and transferred technological advances to small, independent oil and gas operators over the past nine years - has been extended to 2015 by the U.S. Department of Energy. March 30, 2010 Results from DOE Expedition Confirm Existence of Resource-Quality Gas Hydrate in Gulf of Mexico Gas hydrate, a potentially immense energy resource, occurs at high saturations within reservoir-quality sands in the Gulf of Mexico, according to reports released by the Office of Fossil Energy's National Energy Technology Laboratory. March 1, 2010 Alabama Injection Project Aimed at Enhanced Oil Recovery, Testing Important Geologic CO2 Storage

144

Contributions of weather and fuel mix to recent declines in U.S. energy and carbon intensity  

E-Print Network (OSTI)

of the decrease in energy intensity during the study period,trends in U. S. energy intensity: An index number analysis,industry structure and energy intensity, Energy Economics

Davis, W. Bart; Sanstad, Alan H.; Koomey, Jonathan G.

2002-01-01T23:59:59.000Z

145

A STAGED MUON-BASED FACILITY TO ENABLE INTENSITY AND ENERGY FRONTIER SCIENCE IN THE US*  

E-Print Network (OSTI)

A STAGED MUON-BASED FACILITY TO ENABLE INTENSITY AND ENERGY FRONTIER SCIENCE IN THE US* Jean. It requires facilities at both high energy and high intensity frontiers. Neutrino oscillations are irrefutable precision flavour physics at the high intensity frontier. At the high energy frontier, a multi-TeV lepton

McDonald, Kirk

146

Multi-energy CT Based on a Prior Rank, Intensity and Sparsity Model (PRISM)  

E-Print Network (OSTI)

Multi-energy CT Based on a Prior Rank, Intensity and Sparsity Model (PRISM) Hao Gao1 , Hengyong Yu2 spectrum. Besides, the energy-dependent intensity information can be incorporated into the PRISM in terms on the generalized rank and sparsity of a multi-energy image, and intensity/spectral characteristics of base

Soatto, Stefano

147

Energy Integration Describes Sound-Intensity Coding in an Insect Auditory System  

E-Print Network (OSTI)

Energy Integration Describes Sound-Intensity Coding in an Insect Auditory System Tim Gollisch receptor; hearing; sound intensity; energy; model; locust Auditory receptor cells are commonly measurements of intensity-duration tradeoffs sug- gest that the stimulus energy is the crucial variable (Garner

Benda, Jan

148

Effect of pulse intensity distributions on fragment internal energy in the infrared multiphoton dissociation of vinyl  

E-Print Network (OSTI)

Effect of pulse intensity distributions on fragment internal energy in the infrared multiphoton of laser intensity on the production of fragment energy distribu- tions. Laser induced fluorescence (LIF pumping is pro- portional to the light intensity, the final energy of the parent molecule

Zare, Richard N.

149

Peak Oil Awareness Network | Open Energy Information  

Open Energy Info (EERE)

Awareness Network Awareness Network Jump to: navigation, search Name Peak Oil Awareness Network Place Crested Butte, Colorado Zip 81224 Website http://www.PeakOilAwarenessNet Coordinates 38.8697146°, -106.9878231° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.8697146,"lon":-106.9878231,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

150

Oil & Gas Science and Technology --Rev. IFP Energies nouvelles Copyright 2010 IFPEN Energies nouvelles  

E-Print Network (OSTI)

Oil & Gas Science and Technology -- Rev. IFP Energies nouvelles Copyright © 2010 IFPEN Energies to an effective thermal management system and to maintain safety, perfor- #12;2 Oil & Gas Science and Technology of Michigan, Ann Arbor, Michigan, 48109 - USA 2 U.S. Army Tank Automotive Research, Development

Stefanopoulou, Anna

151

EIA Energy Efficiency-Iron and Steel Energy Intensity, 1998-2002  

Gasoline and Diesel Fuel Update (EIA)

Iron and Steel Manufacturing Energy Intensities, 1998, 2002, and 2006 Below are data for iron and steel industry from the 1998, 2002, and 2006 Manufacturing Energy Consumption Survey (MECS). The tables provide estimates for energy consumed for all purposes, end uses of fuel consumption, offsite-produced fuel consumption, expenditures for purchased energy, as well as energy intensities per value of production and per ton of steel. Energy Consumption 1998, 2002, and 2006 Table 1. Consumption of Energy for All Purposes (First Use) html Table 1 excel table 1. pdf table 1. Table 2. End Uses of Fuel Consumption html table 2. excel table 2. pdf table 2. Table 3. Offsite-Produced Fuel Consumption html table 3. excel table 3. pdf table 3. Table 4. Expenditures for Purchased Energy

152

State Home Oil Weatherization (SHOW) Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Home Oil Weatherization (SHOW) Program Home Oil Weatherization (SHOW) Program State Home Oil Weatherization (SHOW) Program < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Ventilation Manufacturing Maximum Rebate $500/household Program Info State Oregon Program Type State Rebate Program Rebate Amount Blower-door test - 100% of the cost up to $100. All other technologies are 25% of the total cost, up to $150 or $500, depending on the upgrade. Provider Oregon Department of Energy Oregon homeowners and renters who heat with oil, wood, propane, kerosene, or butane are eligible for home weatherization rebates of up to $500. A

153

Canada Oil and Gas Operations Act (Canada) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Canada Oil and Gas Operations Act (Canada) Canada Oil and Gas Operations Act (Canada) Canada Oil and Gas Operations Act (Canada) < Back Eligibility Commercial Construction Developer Fuel Distributor Industrial Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info Start Date 1985 Program Type Environmental Regulations Equipment Certification Fees Generating Facility Rate-Making Generation Disclosure Industry Recruitment/Support Safety and Operational Guidelines Siting and Permitting Provider Canada National Energy Board The purpose of this Act is to promote safety, the protection of the environment, the conservation of oil and gas resources, joint production arrangements, and economically efficient infrastructures.

154

Energy and Financial Markets Overview: Crude Oil Price Formation  

Gasoline and Diesel Fuel Update (EIA)

Richard Newell, Administrator Richard Newell, Administrator May 5, 2011 Energy and Financial Markets Overview: Crude Oil Price Formation EIA's Energy and Financial Markets Initiative 2 Richard Newell, May 5, 2011 * Collection of critical energy information to improve market transparency - improved petroleum storage capacity data - other improvements to data quality and coverage * Analysis of energy and financial market dynamics to improve understanding of what drives energy prices - internal analysis and sponsorship of external research * Outreach with other Federal agencies, experts, and the public - expert workshops - public sessions at EIA's energy conferences - solicitation of public comment on EIA's data collections

155

Target Allocation Methodology for China's Provinces: Energy Intensity in the 12th FIve-Year Plan  

E-Print Network (OSTI)

energy intensity (energy per unit GDP) in the 11 th FYP. Forintensity (total energy per unit GDP)  industrial energyof total (primary) energy per unit GDP in fixed 2005 RMB [

Ohshita, Stephanie

2011-01-01T23:59:59.000Z

156

HIGH INTENSITY LOW-ENERGY POSITRON SOURCE AT JEFFERSON  

SciTech Connect

We present a novel concept of a low-energy e{sup +} source with projected intensity on the order of 10{sup 10} slow e{sup +}/s. The key components of this concept are a continuous wave e{sup -} beam, a rotating positron-production target, a synchronized raster/anti-raster, a transport channel, and extraction of e{sup +} into a field-free area through a magnetic plug for moderation in a cryogenic solid. Components were designed in the framework of GEANT4-based (G4beamline) Monte Carlo simulation and TOSCA magnetic field calculation codes. Experimental data to demonstrate the effectiveness of the magnetic plug is presented.

Serkan Golge, Bogdan Wojtsekhowski, Branislav Vlahovic

2012-07-01T23:59:59.000Z

157

The energy required to produce materials: constraints on energy-intensity improvements, parameters of demand  

Science Journals Connector (OSTI)

...data for embodied energy comes from Ashby-[10], for material prices for metals from the...10]. Plastic prices are for year 2011...2009. Figure 7. Energy intensity e versus...Natl Acad. Sci. USA 107, 20 905-20...an environmental history of the twentieth-century...

2013-01-01T23:59:59.000Z

158

FE Oil and Natural Gas News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 30, 2009 July 30, 2009 DOE Leads National Research Program in Gas Hydrates The U.S. Department of Energy today told Congress the agency is leading a nationwide program in search of naturally occurring natural gas hydrates - a potentially significant storehouse of methane--with far reaching implications for the environment and the nation's future energy supplies. July 30, 2009 DOE Showcases Websites for Tight Gas Resource Development Two U.S. Department of Energy projects funded by the Office of Fossil Energy's National Energy Technology Laboratory provide quick and easy web-based access to sought after information on tight-gas sandstone plays. May 18, 2009 DOE-Supported Publication Boosts Search for Oil, Natural Gas by Petroleum Operators A comprehensive publication detailing the oil-rich fields of Utah and

159

FE Oil and Natural Gas News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

January 4, 2012 January 4, 2012 DOE-Sponsored Online Mapping Portal Helps Oil and Gas Producers Comply with New Mexico Compliance Rules An online mapping portal to help oil and natural gas operators comply with a revised New Mexico waste pit rule has been developed by a team of New Mexico Tech researchers. December 21, 2011 DOE RFP Seeks Projects for Improving Environmental Performance of Unconventional Natural Gas Technologies Research projects to study ways for improving the environmental performance of unconventional gas development are being sought by the National Energy Technology Laboratory, a facility of the U.S. Department of Energy's Office of Fossil Energy. November 22, 2011 DOE Selects Projects Aimed at Reducing Drilling Risks in Ultra-Deepwater The U.S. Department of Energy's Office of Fossil Energy has selected six

160

Contributions of weather and fuel mix to recent declines in U.S. energy and carbon intensity  

E-Print Network (OSTI)

in a lower energy-and-carbon-intensive mix of economicintensity into fuel mix and energy intensity terms. Thisof fuel mix and weather on energy and carbon intensity using

Davis, W. Bart; Sanstad, Alan H.; Koomey, Jonathan G.

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil energy intensity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

OpenEI:Projects/Improvements Oil and Gas | Open Energy Information  

Open Energy Info (EERE)

Improvements Oil and Gas Improvements Oil and Gas Jump to: navigation, search This page is used to coordinate plans for creating content for the Oil and Gas Gateway. Contents 1 Oil | Energy Basics 2 Oil | General Classification 3 Oil | Uses 3.1 Fuels 3.2 Derivatives 3.3 Agriculture 4 Natural Gas | Energy Basics 5 Natural Gas | General Classification 5.1 Biogas 6 Natural Gas | Uses 6.1 Power Generation 6.2 Domestic Use 6.3 Transportation 6.4 Fertilizers 6.5 Aviation 6.6 Creation of Hydrogen 6.7 Additional Uses 7 State Oil and Gas Boards, Commissions, etc. 8 Federal Statutes, Laws, Regulations related to Oil and Gas 9 International Oil and Gas Boards, Commissions, etc. 10 Private Datasets 11 Oil and Gas Companies 12 Other Notes 12.1 Definitely Helpful 12.2 Possibly Helpful 13 Project Participants Oil | Energy Basics

162

Energy intensity and the energy mix: What works for the environment?  

Science Journals Connector (OSTI)

Abstract In the absence of carbon sequestration, mitigating carbon emissions can be achieved through a mix of two broad policy approaches: (i) reducing energy intensity by improving energy efficiency and conservation, and (ii) changing the fuel mix. This paper investigates the long-run relationship between energy intensity, the energy mix, and per capita carbon emissions; while controlling for the level of economic activity, the economic structure measured by the relative size of the manufacturing sector, and the differences in institutional qualities across countries. We aim to answer two particularly important policy questions. First, to what extent these policy approaches are effective in mitigating emissions in the long-run? Second, which institutional qualities significantly contribute to better long-run environmental performance? We use historical data for 131 countries in a heterogeneous panel framework for the period 1972–2010. We find that less dependence on fossil fuel and lower energy intensity reduce emissions in the long run. A goal of 10% reduction in CO2 levels in the long-run requires reducing the share of fossil fuel in total energy use by 11%, or reducing energy intensity by 13%. In addition, specific institutional qualities such as better corruption control and judiciary independence contribute to mitigating levels of emissions.

Amany A. El Anshasy; Marina-Selini Katsaiti

2014-01-01T23:59:59.000Z

163

Present and future perspectives for high energy density physics with intense heavy ion and laser beams  

E-Print Network (OSTI)

Present and future perspectives for high energy density physics with intense heavy ion and laser18, deliver an intense uranium beam that deposit about 1 kJ0g specific energy in solid matter. Using 2004! Abstract Intense heavy ion beams from the Gesellschaft für Schwerionenforschung ~GSI, Darmstadt

164

Physics of neutralization of intense high-energy ion beam pulses by electronsa...  

E-Print Network (OSTI)

Physics of neutralization of intense high-energy ion beam pulses by electronsa... I. D. Kaganovich beams,13 the physics of solar flares,14 high-intensity high- energy particle beam propagation Neutralization and focusing of intense charged particle beam pulses by electrons form the basis for a wide range

Kaganovich, Igor

165

ISSUANCE 2015-01-26: Energy Conservation Program: Energy Conservation Standards for High-Intensity Lamps, Notice to Reopen Comment Period  

Energy.gov (U.S. Department of Energy (DOE))

Energy Conservation Program: Energy Conservation Standards for High-Intensity Lamps, Notice to Reopen Comment Period

166

An Analysis of Residential Energy Intensity in Iran, A System Dynamics Approach  

E-Print Network (OSTI)

Abstract: substantial development of counties needs to use the resources in an efficient way. One indicator that shows the degree of efficient use of energy resources is energy intensity. Statistics show that Iran’s energy intensity was in a bad situation during past years and if this manner of using energy resources continues, it will get worse.In this study a system dynamics approach is used to model changes of energy intensity in residential sector in Iran. By implementation and simulation of this model we found some reasons of this problem in Iran. Then we tried to introduce some policies to make steady improvement in energy intensity in the future. Keywords:

Mohamed M. Jamshidi

167

EIA: High Oil Prices, GHG Controls Would Help Clean Energy Grow...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EIA: High Oil Prices, GHG Controls Would Help Clean Energy Grow EIA: High Oil Prices, GHG Controls Would Help Clean Energy Grow April 1, 2009 - 11:35am Addthis The growth of...

168

FE Oil and Natural Gas News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

November 9, 2012 November 9, 2012 Energy Department Provides Additional Emergency Fuel Loan to Department of Defense as Part of Hurricane Sandy and Nor'easter Recovery As part of the government-wide response and recovery effort for Hurricane Sandy and the Nor'easter, the Energy Department is providing the Department of Defense with additional ultra-low sulfur diesel fuel from the Northeast Home Heating Oil Reserve in response to a request from the State of Connecticut. November 2, 2012 Energy Department to Loan Emergency Fuel to Department of Defense as Part of Hurricane Sandy Response Release from Northeast Home Heating Oil Reserve to Provide Additional Source of Diesel for Emergency Response in New York/New Jersey Area August 31, 2012 Energy Department Advances Research on Methane Hydrates - the World's

169

ITP Energy Intensive Processes: Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry  

Energy.gov (U.S. Department of Energy (DOE))

Portfolio of projects focused on investments in high-impact, crosscutting opportunities that provide significant energy savings and carbon reductions across a broad industrial base

170

Heating Oil Reserve | Department of Energy  

Energy Savers (EERE)

Energy Support Center issued a solicitation to companies willing to provide the storage tanks, heating stocks, or a combination. Contracts were awarded and, by October 13, 2000,...

171

Oil and Gas | Open Energy Information  

Open Energy Info (EERE)

represents a non-renewable energy sector. Retrieved from "http:en.openei.orgwindex.php?titleOilandGas&oldid335172" Category:...

172

Table 22. Energy Intensity, Projected vs. Actual Projected  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Intensity, Projected vs. Actual Energy Intensity, Projected vs. Actual Projected (quadrillion Btu / real GDP in billion 2005 chained dollars) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 11.2 11.1 11.0 10.8 10.7 10.5 10.4 10.3 10.1 10.0 9.9 9.8 9.7 9.6 9.5 9.4 9.3 9.2 AEO 1995 10.9 10.8 10.6 10.4 10.3 10.1 10.0 9.9 9.8 9.6 9.5 9.4 9.3 9.2 9.1 9.1 9.0 AEO 1996 10.7 10.6 10.4 10.3 10.1 10.0 9.8 9.7 9.6 9.5 9.4 9.3 9.2 9.2 9.1 9.0 8.9 AEO 1997 10.3 10.3 10.2 10.1 9.9 9.8 9.7 9.6 9.5 9.4 9.3 9.2 9.2 9.1 9.0 8.9 AEO 1998 10.1 10.1 10.1 10.0 9.9 9.8 9.7 9.6 9.5 9.5 9.4 9.3 9.2 9.1 9.0 AEO 1999 9.6 9.7 9.7 9.7 9.6 9.4 9.3 9.1 9.0 8.9 8.8 8.7 8.6 8.5 AEO 2000 9.4 9.4 9.3 9.2 9.1 9.0 8.9 8.8 8.7 8.7 8.6 8.5 8.4 AEO 2001 8.7 8.6 8.5 8.4 8.3 8.1 8.0 7.9 7.8 7.6 7.5 7.4

173

Could energy-intensive industries be powered by carbon-free electricity?  

Science Journals Connector (OSTI)

...Gutowski and Ernst Worrell Could energy-intensive industries be powered...MacKay, DJC . 2008 Sustainable energy-without the hot air. Cambridge...com . 3 Gallman, PG . 2011 Green alternatives and national energy strategy: the facts behind the...

2013-01-01T23:59:59.000Z

174

Determinants of energy intensity in industrialized countries : a comparison of China and India  

E-Print Network (OSTI)

The amount of final energy per unit of economic output (usually in terms of gross domestic product, or GDP), known as energy intensity, is often used to measure the effectiveness of energy use and the consumption patterns ...

Huang, Feiya

2006-01-01T23:59:59.000Z

175

Peak Oil and Fusion Energy Development  

Science Journals Connector (OSTI)

If industrial civilization does not figure out how to survive and thrive without cheap fossil energy, then technological civilization will be a short blip in the history of our species. A child born in 1990, if s...

Chang Shuk Kim

2008-01-01T23:59:59.000Z

176

Use of ultrasonic energy to decrease the gel strength of waxy crude oil  

SciTech Connect

This patent describes improvement in a process for flowing waxy crude oil through a pipe line. The improvement comprises: applying ultrasonic energy to the flowing crude oil prior to or after combining with the crude oil a solution of polymeric wax crystal modifier whereby the gel strength of the crude oil-wax crystal modifier is lowered.

Scribner, M.E.

1991-01-08T23:59:59.000Z

177

Vast Energy Resource in Residual Oil Zones, FE Study Says | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vast Energy Resource in Residual Oil Zones, FE Study Says Vast Energy Resource in Residual Oil Zones, FE Study Says Vast Energy Resource in Residual Oil Zones, FE Study Says July 20, 2012 - 1:00pm Addthis Washington, DC - Billions of barrels of oil that could increase domestic supply, help reduce imports, and increase U.S. energy security may be potentially recoverable from residual oil zones, according to initial findings from a study supported by the U.S. Department of Energy's Office of Fossil Energy (FE). The recently completed study, conducted by researchers at the University of Texas-Permian Basin (UTPB), is one of several FE-supported research projects providing insight that will help tap this valuable-but-overlooked resource. Residual oil zones, called ROZs, are areas of immobile oil found below the oil-water contact of a reservoir. ROZs are similar to reservoirs in the

178

SPR - Historical Oil Sales and Exchanges | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- Historical Oil Sales and Exchanges SPR - Historical Oil Sales and Exchanges SPR - Historical Oil Sales and Exchanges More Documents & Publications SPR Annual Reports to Congress...

179

Oil Study Guide - Middle School | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Middle School Oil Study Guide - Middle School Oil Study Guide - Middle School More Documents & Publications Oil Study Guide - High School evaluationegstech2008.pdf A History of...

180

CHEM 740: ENERGIES, INTENSITIES AND POTENTIALS: CONCEPTS AND TOOLS IN SPECTROSCOPY  

E-Print Network (OSTI)

1 CHEM 740: ENERGIES, INTENSITIES AND POTENTIALS: CONCEPTS AND TOOLS IN SPECTROSCOPY Fall 2001 Instructor: R.J. Le Roy Wednesday Evenings The patterns of energy levels and transition intensities observed energy curves or surfaces characterizing the forces between the component atoms. This course will discuss

Le Roy, Robert J.

Note: This page contains sample records for the topic "oil energy intensity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Optimization Intensive Energy Harvesting Mahsan Rofouei, Mohammad Ali Ghodrat, Miodrag Potkonjak  

E-Print Network (OSTI)

Optimization Intensive Energy Harvesting Mahsan Rofouei, Mohammad Ali Ghodrat, Miodrag Potkonjak of primary limiting factors of MSs is their energy sensitivity. In order to overcome this limitation, we have developed an optimization intensive approach for energy harvesting. Our goal is to size and position

Potkonjak, Miodrag

182

Changes in Energy Intensity in the Manufacturing Sector 1985-1994  

U.S. Energy Information Administration (EIA) Indexed Site

Changes in Energy Intensity in the Manufacturing Sector 1985 - 1994 Full Report Introduction Summary of Data Data Tables Data Summaries All (20-39) Food (20) Textiles (22) Apparel (23) Lumber (24) Furniture (25) Paper (26) Printing (27) Chemicals (28) Refineries (29) Rubber (30) Stone (32) Metals (33) Fab. Metals (34) Machinery (35) El. Equip.(36) Instruments (38) Misc. (39) Appendices Survey Design Quality of Data Sector Description Nonobservation Errors Glossary Intensity Sites Commercial Residential Transportation International Manufacturing Energy Intensity Changes in Energy Intensity Click for Full Graph Manufacturing Energy Consumption Consumption of Energy Click for Full Graph Manufacturing Shipments History of Shipments Click for Full Graph The focus of this data report is on intensity of energy use, measured by energy consumption relative to constant dollar shipments of manufactured products -- commonly called energy intensities (EI) by energy analysts. This report explicitly relates changes in two energy measures of energy intensity to efficiency, while being cognizant that there are structural and behavioral effects enmeshed in those measures of energy efficiency. Reporting EI serves to continue the Intensity Change report series.

183

Performance comparison of thermal energy storage oils for solar cookers during charging  

Science Journals Connector (OSTI)

Abstract Charging experiments to evaluate the thermal performance of three thermal energy storage oils for solar cookers are presented. An experimental setup using an insulated 20 L storage tank is used to perform the experiments. The three thermal oils evaluated are Sunflower Oil, Shell Thermia C and Shell Thermia B. Energy and exergy based thermal performance parameters are evaluated. A new parameter, the exergy factor, is proposed which evaluates the ratio of the exergy content to the energy content. Sunflower Oil performs better than the other thermal oils under high power charging. Thermal performances of the oils are comparable under low power charging.

Ashmore Mawire; Abigail Phori; Simeon Taole

2014-01-01T23:59:59.000Z

184

Energy policies in a macroeconomic model: an analysis of energy taxes when oil prices decline  

Science Journals Connector (OSTI)

Economic planners and policy-makers have been acquainted, in the last fifteen years, with unanticipated oil price increases. The energy economics literature is abundant ... rules that would mitigate the negative ...

P. Capros; P. Karadeloglou; G. Mentzas

1992-01-01T23:59:59.000Z

185

Reducing Industrial Energy Intensity in the Southeast Project Fact Sheet  

Energy.gov (U.S. Department of Energy (DOE))

This fact sheet contains details regarding a Save Energy Now industrial energy efficiency project that the U.S. Department of Energy funded in Mississippi.

186

Modeling of Energy Production Decisions: An Alaska Oil Case Study  

E-Print Network (OSTI)

and Weimer, D.L. (1984) Oil prices shock, market response,OPEC behavior and world oil prices (pp. 175-185) London:many decades. Recent high oil prices have caused oil-holding

Leighty, Wayne

2008-01-01T23:59:59.000Z

187

EIA - Assumptions to the Annual Energy Outlook 2010 - Oil and Gas Supply  

Gasoline and Diesel Fuel Update (EIA)

Oil and Gas Supply Module Oil and Gas Supply Module Assumptions to the Annual Energy Outlook 2010 Oil and Gas Supply Module Figure 8. Natural Gas Transmission and Distribution Model Regions. The NEMS Oil and Gas Supply Module (OGSM) constitutes a comprehensive framework with which to analyze oil and gas natural gas exploration and development on a regional basis (Figure 7). The OGSM is organized into 4 submodules: Onshore Lower 48 Oil and Gas Supply Submodule, Offshore Oil and Gas Supply Submodule, Oil Shale Supply submodule, and Alaska Oil and Gas Supply Submodule. A detailed description of the OGSM is provided in the EIA publication, Model Documentation Report: The Oil and Gas Supply Module (OGSM), DOE/EIA-M063(2010), (Washington, DC, 2010). The OGSM provides crude oil and natural gas short-term supply parameters to both the Natural

188

World Best Practice Energy Intensity Values for Selected Industrial Sectors  

E-Print Network (OSTI)

report describes best practices in energy efficiency for keyImproving Energy Efficiency of shape casting. Best practice

Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

2007-01-01T23:59:59.000Z

189

Estimating material and energy intensities of urban areas  

E-Print Network (OSTI)

The objective of this thesis is to develop methods to estimate, analyze and visualize the resource intensity of urban areas. Understanding the resource consumption of the built environment is particularly relevant in cities ...

Quinn, David James, Ph. D. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

190

The Peak of the Oil Age – Analyzing the world oil production Reference Scenario in World Energy Outlook 2008  

Science Journals Connector (OSTI)

The assessment of future global oil production presented in the IEA’s World Energy Outlook 2008 (WEO 2008) is divided into 6 fractions; four relate to crude oil, one to non-conventional oil, and the final fraction is natural-gas-liquids (NGL). Using the production parameter, depletion-rate-of-recoverable-resources, we have analyzed the four crude oil fractions and found that the 75 Mb/d of crude oil production forecast for year 2030 appears significantly overstated, and is more likely to be in the region of 55 Mb/d. Moreover, analysis of the other fractions strongly suggests lower than expected production levels. In total, our analysis points to a world oil supply in 2030 of 75 Mb/d, some 26 Mb/d lower than the IEA predicts. The connection between economic growth and energy use is fundamental in the IEA’s present modelling approach. Since our forecast sees little chance of a significant increase in global oil production, our findings suggest that the “policy makers, investors and end users” to whom WEO 2008 is addressed should rethink their future plans for economic growth. The fact that global oil production has very probably passed its maximum implies that we have reached the Peak of the Oil Age.

Kjell Aleklett; Mikael Höök; Kristofer Jakobsson; Michael Lardelli; Simon Snowden; Bengt Söderbergh

2010-01-01T23:59:59.000Z

191

Modeling the Energy Demands and Greenhouse Gas Emissions of the Canadian Oil Sands Industry  

Science Journals Connector (OSTI)

In this study, the energy requirements associated with producing synthetic crude oil (SCO) and bitumen from oil sands are modeled and quantified, on the basis of current commercially used production schemes. The production schemes were (a) mined bitumen, ...

Guillermo Ordorica-Garcia; Eric Croiset; Peter Douglas; Ali Elkamel; Murlidhar Gupta

2007-06-01T23:59:59.000Z

192

EIA - The National Energy Modeling System: An Overview 2003-Oil and Gas  

Gasoline and Diesel Fuel Update (EIA)

Oil and Gas Supply Module Oil and Gas Supply Module The National Energy Modeling System: An Overview 2003 Oil and Gas Supply Module The oil and gas supply module (OGSM) consists of a series of process submodules that project the availability of: Domestic crude oil production and dry natural gas production from onshore, offshore, and Alaskan reservoirs Imported pipeline–quality gas from Mexico and Canada Imported liquefied natural gas. Figure 12. Oil and Gas Supply Module Regions. Need help, contact the National Energy Information Center at 202-202-586-8800. Figure 13. Oil and Gas Suppply Module Structure. Need help, contact the National Energy Information Center at 202-586-8800. Oil and Gas Supply Module Table. Need help, contact the National Energy Information Center at 202-586-8800.

193

Improved Product Energy Intensity Benchmarking Metrics for Thermally Concentrated Food Products  

Science Journals Connector (OSTI)

Improved Product Energy Intensity Benchmarking Metrics for Thermally Concentrated Food Products ... Sogut, Z.; Ilten, N.; Oktay, Z.Energetic and exergetic performance evaluation of the quadruple-effect evaporator unit in tomato paste evaporation Energy 2010, 35, 3821– 3826 ...

Michael E. Walker; Craig S. Arnold; David J. Lettieri; Margot J. Hutchins; Eric Masanet

2014-09-12T23:59:59.000Z

194

Acoustic Energy: An Innovative Technology for Stimulating Oil Wells  

SciTech Connect

The objective of this investigation was to demonstrate the effectiveness of sonication in reducing the viscosity of heavy crude oils. Sonication is the use of acoustic or sound energy to produce physical and/or chemical changes in materials, usually fluids. The goal of the first project phase was to demonstrate a proof of concept for the project objective. Batch tests of three commercially available, single-weight oils (30-, 90-, and 120-wt) were performed in the laboratory. Several observations and conclusions were made from this series of experiments. These include the following: (1) In general, the lower the acoustic frequency, the greater the efficiency in reducing the viscosity of the oils; (2) Sonication treatment of the three oils resulted in reductions in viscosity that ranged from a low of 31% to a high of 75%; and (3) The results of the first phase of the project successfully demonstrated that sonication could reduce the viscosity of oils of differing viscosity. The goal of the second project phase was to demonstrate the ability of sonication to reduce the viscosity of three crude oils ranging from a light crude to a heavy crude. The experiments also were designed to examine the benefits of two proprietary chemical additives used in conjunction with sonication. Acoustic frequencies ranging from 800 Hz to 1.6 kHz were used in these tests, and a reactor chamber was designed for flow-through operation with a capacity of one gallon (3.8 liters). The three crude oils selected for use in the testing program were: (1) a heavy crude from California with a viscosity of approximately 65,000 cP (API gravity about 12{sup o}), (2) a crude from Alabama with a significant water content and a viscosity of approximately 6,000 cP (API gravity about 22 {sup o}), and (3) a light crude from the Middle East with a viscosity of approximately 700 cP (API gravity about 32{sup o}). The principal conclusions derived from the second project phase include the following: (1) The application of acoustic energy (sonication) significantly reduced the viscosity of crude oils, and the amount of viscosity reduction resulting is greater for more viscous, heavy crude oils than it is for less viscous, light crude oils. (2) Test results showed that after being heated, resulting viscosity reductions were not sustained following treatment to the extent that post-sonication reductions were sustained. (3) The maximum viscosity reductions in Oils 1, 2, and 3 due to sonication were 43%, 76%, and 6%, respectively. Samples of Oil 2 associated with larger viscosity reductions often exhibited a definite water separation layer follow the tests, whereas reductions of approximately 23% were measured when this separation was not observed. (4) It was observed that neither horn design nor the reduction of input power by 25% had very little effect on the ability of sonication to alter crude oil viscosity. (5) The chemical additives produced a range of viscosity reduction from 37% to a maximum of 94% with the largest reductions being facilitated by the abundant water present Oil 2. If the Oil 2 results are not considered, the maximum reduction was 73%. The effects of the additives and sonication are enhanced by each other. (6) In only one test did the viscosity return to as much as 50% of the pre-treatment value during a period of 30 days following treatment; recovery was much less in all other cases. Therefore, more than half of the viscosity reduction was maintained for a month without additional treatment. (7) Possible applications, market potential, and economic value of the implementation of a mature sonication technology within the petroleum industry were identified, and it was estimated that the potential exists that more than a billion barrels of oil could be upgraded or produced annually as a result. The project results successfully demonstrated that sonication alone and in combination with chemical additives can effectively reduce the viscosity of crude oils having a broad range of viscosity/API gravity values. Several recommendations are made for follow-on

Edgar, Dorland E.; Peters, Robert W.; Johnson, Donald O.; Paulsen, P. David; Roberts, Wayne

2006-04-30T23:59:59.000Z

195

Optically Interconnected Data Center Architecture for Bandwidth Intensive Energy Efficient Networking  

E-Print Network (OSTI)

Optically Interconnected Data Center Architecture for Bandwidth Intensive Energy Efficient) 854 2900, e-mail: howard@ee.columbia.edu ABSTRACT The relentless rise of data-intensive cloud will either be prohibitively costly, overly complex, or result in unsustainable energy requirements. Network

Bergman, Keren

196

Mapping the Energy Distribution of SERRS Hot Spots from Anti-Stokes to Stokes Intensity Ratios  

E-Print Network (OSTI)

Mapping the Energy Distribution of SERRS Hot Spots from Anti- Stokes to Stokes Intensity Ratios in the anti-Stokes to Stokes intensity ratios in single-molecule surface-enhanced resonance Raman scattering-enhanced Raman scattering. Moreover, a methodology to estimate the distribution of resonance energies

Brolo, Alexandre G.

197

The implications of the declining energy return on investment of oil production  

Science Journals Connector (OSTI)

...and NJ Hagens. 2008 Energy return on investment...and CAS Hall. 2011 Energy return on investment...future. In Biofuels, solar and wind as renewable energy systems: benefits and...Ultra-deepwater Gulf of Mexico oil and gas: energy...

2014-01-01T23:59:59.000Z

198

World Best Practice Energy Intensity Values for Selected Industrial Sectors  

E-Print Network (OSTI)

and 30% of total energy consumption in China. During the30 kWh/ADt 54 for total energy consumption of 11.2 GJ/ADt (leads to a total overall energy consumption value of 11.1

Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

2007-01-01T23:59:59.000Z

199

EIA-Assumptions to the Annual Energy Outlook - Oil and Gas Supply Module  

Gasoline and Diesel Fuel Update (EIA)

Oil and Gas Supply Module Oil and Gas Supply Module Assumptions to the Annual Energy Outlook 2007 Oil and Gas Supply Module Figure 7. Oil and Gas Supply Model Regions. Need help, contact the National Energy Information Center at 202-586-8800. The NEMS Oil and Gas Supply Module (OGSM) constitutes a comprehensive framework with which to analyze oil and gas supply on a regional basis (Figure 7). A detailed description of the OGSM is provided in the EIA publication, Model Documentation Report: The Oil and Gas Supply Module (OGSM), DOE/EIA-M063(2006), (Washington, DC, 2006). The OGSM provides crude oil and natural gas short-term supply parameters to both the Natural Gas Transmission and Distribution Module and the Petroleum Market Module. The OGSM simulates the activity of numerous firms that produce oil and natural

200

EIA - Assumptions to the Annual Energy Outlook 2008 - Oil and Gas Supply  

Gasoline and Diesel Fuel Update (EIA)

Oil and Gas Supply Module Oil and Gas Supply Module Assumptions to the Annual Energy Outlook 2008 Oil and Gas Supply Module Figure 7. Oil and Gas Supply Module. Need help, contact the National Energy Information Center at 202-586-8800. The NEMS Oil and Gas Supply Module (OGSM) constitutes a comprehensive framework with which to analyze oil and gas supply on a regional basis (Figure 7). A detailed description of the OGSM is provided in the EIA publication, Model Documentation Report: The Oil and Gas Supply Module (OGSM), DOE/EIA-M063(2007), (Washington, DC, 2007). The OGSM provides crude oil and natural gas short-term supply parameters to both the Natural Gas Transmission and Distribution Module and the Petroleum Market Module. The OGSM simulates the activity of numerous firms that produce oil and natural

Note: This page contains sample records for the topic "oil energy intensity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Modelling of CO2 content in the atmosphere until 2300: influence of energy intensity of gross domestic product and carbon intensity of energy  

Science Journals Connector (OSTI)

The study provides a model of CO2 content in the atmosphere based on the global carbon cycle and the Kaya identity. The influences of: 1) energy intensity of GDP; 2) carbon intensity of energy on CO2 trajectories are given under four scenarios. The results from the most optimistic and technologically challenging scenario show that the atmospheric CO2 concentration can stabilise at 610 ppmv. It is also shown that the annual growth rates of atmospheric CO2 peak for all the scenarios before 2100 due to the expected world population peak in 2075 and the large share of fossil fuel energy.

Wojciech M. Budzianowski

2013-01-01T23:59:59.000Z

202

Definition: Reduced Oil Usage (Not Monetized) | Open Energy Information  

Open Energy Info (EERE)

Usage (Not Monetized) Usage (Not Monetized) Jump to: navigation, search Dictionary.png Reduced Oil Usage (Not Monetized) The functions that provide this benefit eliminate the need to send a line worker or crew to the switch or capacitor locations to operate them eliminate the need for truck rolls to perform diagnosis of equipment condition, and reduce truck rolls for meter reading and measurement purposes. This reduces the fuel consumed by a service vehicle or line truck. The use of plug-in electric vehicles can also lead to this benefit since the electrical energy used by plug-in electric vehicles displaces the equivalent amount of oil.[1] References ↑ SmartGrid.gov 'Description of Benefits' An LikeLike UnlikeLike You like this.Sign Up to see what your friends like. inline Glossary Definition

203

PNNL Data-Intensive Computing for a Smarter Energy Grid  

SciTech Connect

The Middleware for Data-Intensive Computing (MeDICi) Integration Framework, an integrated platform to solve data analysis and processing needs, supports PNNL research on the U.S. electric power grid. MeDICi is enabling development of visualizations of grid operations and vulnerabilities, with goal of near real-time analysis to aid operators in preventing and mitigating grid failures.

Carol Imhoff; Zhenyu (Henry) Huang [Henry; Daniel Chavarria

2009-11-01T23:59:59.000Z

204

PNNL Data-Intensive Computing for a Smarter Energy Grid  

ScienceCinema (OSTI)

The Middleware for Data-Intensive Computing (MeDICi) Integration Framework, an integrated platform to solve data analysis and processing needs, supports PNNL research on the U.S. electric power grid. MeDICi is enabling development of visualizations of grid operations and vulnerabilities, with goal of near real-time analysis to aid operators in preventing and mitigating grid failures.

Carol Imhoff; Zhenyu (Henry) Huang; Daniel Chavarria

2012-12-31T23:59:59.000Z

205

Office of Fossil Energy Oil & Natural Gas Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Fossil Energy Fossil Energy Oil & Natural Gas Technology Detection and Production of Methane Hydrate End of Phase 2 Topical Report Reporting Period: June, 2007-June, 2008 Submitted by: Rice University and University of Houston George J. Hirasaki and Walter Chapman, Chemical and Biomolecular Engineering Gerald R. Dickens, Colin A. Zelt, and Brandon E. Dugan, Earth Science Kishore K. Mohanty, University of Houston June, 2008 DOE Award No.: DE-FC26-06NT42960 Rice University - MS 362 6100 Main St. Houston, TX 77251-1892 Phone: 713-348-5416; FAX: 713-348-5478; Email: gjh@rice.edu University of Houston Department of Chemical Engineering 4800 Calhoun Street Houston, TX 77204-4004 Prepared for: United States Department of Energy National Energy Technology Laboratory

206

A Comparison of Iron and Steel Production Energy Use and Energy Intensity in China and the U.S.  

E-Print Network (OSTI)

to be world average energy intensities for the production ofWorld Steel Association (worldsteel) since imported products can be from different countries and will thus vary in their energy consumption during production

Hasanbeigi, Ali

2012-01-01T23:59:59.000Z

207

DRAFT DO NOT QUOTE Energy Prices and Energy Intensity in China: A Structural Decomposition Analysis and Econometrics Study  

E-Print Network (OSTI)

Since the start of its economic reforms in 1978, China's energy prices relative to other prices have increased. At the same time, its energy intensity, i.e., energy consumption per unit of Gross Domestic Product (GDP), has declined dramatically, by about 70%, in spite of increases in energy consumption. Is this just a coincidence? Or does a systematic relationship exist between energy prices and energy intensity? In this study, we examine whether and how China’s energy price changes affect its energy intensity trend during 1980-2002 at a macro level. We conduct the research by using two complementary economic models: the input-output-based structural decomposition analysis (SDA) and econometric regression models and by using a decomposition method of own-price elasticity of energy intensity. Findings include a negative own-price elasticity of energy intensity, a price-inducement effect on energyefficiency improvement, and a greater sensitivity (in terms of the reaction of energy intensity towards changes in energy prices) of the industry sector, compared to the overall economy. Analysts can use these results as a starting point for China's energy and carbon

Xiaoyu Shi; Karen R. Polenske; Xiaoyu Shi; Karen R. Polenske

2005-01-01T23:59:59.000Z

208

The informational content of oil and natural gas prices in energy fund performance  

Science Journals Connector (OSTI)

This paper explores whether the informational content of oil and gas prices has an impact on energy mutual fund returns. We first re-visit the relationship between oil and gas prices and energy index returns; our findings confirm that better energy index performance is associated with oil and gas price increases. Using the Fama and MacBeth (1973) two-stage regressions, we find that the information contained in oil and gas prices also plays a significant role in explaining energy mutual fund returns, making these an alternative investment to direct energy stock investments.

Viet Do; Tram Vu

2012-01-01T23:59:59.000Z

209

Yemen Ministry of Oil and Minerals | Open Energy Information  

Open Energy Info (EERE)

Yemen Ministry of Oil and Minerals Yemen Ministry of Oil and Minerals Jump to: navigation, search Logo: Yemen Ministry of Oil and Minerals Country Yemen Name Yemen Ministry of Oil and Minerals Website http://www.mom.gov.ye/en/ References Yemen Ministry of Oil and Minerals Website[1] The Yemen Ministry of Oil and Minerals Website contains some content in English. Associated Organizations Yemeni Company for Oil-Product Distribution Petroleum Exploration and Production Authority Safr Company for Scouting Production Operations Organization of Oil Scouting Aden Refinery Company Yemen Company for Oil Refining Yemen Investments Company for Oil & Mineral Geological Land Survey & Mineral Wealth Organization References ↑ "Yemen Ministry of Oil and Minerals Website" Retrieved from "http://en.openei.org/w/index.php?title=Yemen_Ministry_of_Oil_and_Minerals&oldid=334954"

210

Modeling of Energy Production Decisions: An Alaska Oil Case Study  

E-Print Network (OSTI)

2007). The world will reach peak oil production rates, atenergy security costs, and peak oil as emergencies, we willwhen oil price is high, then the first peak in drilling cost

Leighty, Wayne

2008-01-01T23:59:59.000Z

211

Modeling of Energy Production Decisions: An Alaska Oil Case Study  

E-Print Network (OSTI)

of papers on the Gulf of Mexico oil industry is perhaps theof offshore oil and gas activities in the Gulf of Mexico:in oil exploration and development in the Gulf of Mexico.

Leighty, Wayne

2008-01-01T23:59:59.000Z

212

Modeling of Energy Production Decisions: An Alaska Oil Case Study  

E-Print Network (OSTI)

the green light for drilling when oil price is high, thenthe U.S. Oil and Gas Producing Industry, Section 1: Drillingwell) Well Drilling Costs Alaska onshore oil wells and dry

Leighty, Wayne

2008-01-01T23:59:59.000Z

213

Modeling of Energy Production Decisions: An Alaska Oil Case Study  

E-Print Network (OSTI)

of papers on the Gulf of Mexico oil industry is perhaps theof offshore oil and gas activities in the Gulf of Mexico:oil and gas activities by water depth in the Gulf of Mexico

Leighty, Wayne

2008-01-01T23:59:59.000Z

214

The Naval Petroleum and Oil Shale Reserves | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

The Naval Petroleum and Oil Shale Reserves The Naval Petroleum and Oil Shale Reserves To ensure sufficient fuel for the fleet, the Government began withdrawing probable oil-bearing...

215

Form:Federal Oil and Gas Statute | Open Energy Information  

Open Energy Info (EERE)

Oil and Gas Statute Jump to: navigation, search Federal Oil and Gas Statute This is the "Federal Oil and Gas Statute" form. To create a page with this form, enter the page name...

216

Modeling of Energy Production Decisions: An Alaska Oil Case Study  

E-Print Network (OSTI)

that controls demand for oil. ” 6.6 Hedging behavior inauthors model demand and all three phases in oil supply –future supply and demand for US crude oil resources. A

Leighty, Wayne

2008-01-01T23:59:59.000Z

217

Modeling of Energy Production Decisions: An Alaska Oil Case Study  

E-Print Network (OSTI)

Economics of Undiscovered Oil and Gas in the Central North1993) Mathematical theory of oil and gas recovery: withapplications to ex-USSR oil and gas fields, Boston: Kluwer

Leighty, Wayne

2008-01-01T23:59:59.000Z

218

Energy Production, Frictional Dissipation, and Maximum Intensity of a Numerically Simulated Tropical Cyclone  

E-Print Network (OSTI)

0 Energy Production, Frictional Dissipation, and Maximum Intensity of a Numerically Simulated) viewed as a heat engine converts heat energy extracted from the ocean to kinetic energy of the TC, which is eventually dissipated due to surface friction. Since the energy production rate is a linear function while

Wang, Yuqing

219

Energy Production, Frictional Dissipation, and Maximum Intensity of a Numerically Simulated Tropical Cyclone*  

E-Print Network (OSTI)

Energy Production, Frictional Dissipation, and Maximum Intensity of a Numerically Simulated as a heat engine converts heat energy extracted from the ocean into the kinetic energy of the TC, which is eventually dissipated due to surface friction. Since the energy production rate is a linear function while

Wang, Yuqing

220

EIA - Assumptions to the Annual Energy Outlook 2009 - Oil and Gas Supply  

Gasoline and Diesel Fuel Update (EIA)

Oil and Gas Supply Module Oil and Gas Supply Module Assumptions to the Annual Energy Outlook 2009 Oil and Gas Supply Module Figure 7. Oil and Gas Supply Model Regions. Need help, contact the National Energy Information Center at 202-586-8800. Table 9.1. Crude Oil Technically Recoverable Resources. Need help, contact the Naitonal Energy Information Center at 202-586-8800. printer-friendly version Table 9.2. Natural Gas Technically Recoverable Resources. Need help, contact the National Energy Information Center at 202-586-8800. Table 9.2. Continued printer-friendly version Table 9.3. Assumed Size and Initial Production year of Major Announced Deepwater Discoveries. Need help, contact the National Energy Information Center at 202-586-8800. printer-friendly version Table 9.4. Assumed Annual Rates of Technological Progress for Conventional Crude Oil and Natural Gas Sources. Need help, contact the National Energy Information Center at 202-586-8800.

Note: This page contains sample records for the topic "oil energy intensity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Oil Overcharge Refund Cases 1997 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 Oil Overcharge Refund Cases 1997 During the period 1973 through 1981, the Federal government imposed price and allocation controls of crude oil and refined petroleum products,...

222

Impact of 1973 Oil Embargo and 2005 Katrina on Energy Efficiency  

E-Print Network (OSTI)

influence that they had on the world through oil. One of the many results of the oil embargo was higher oil prices all through out the western world, particularly North America. The embargo forced to consider many things about energy..., such as the cost and supply, which up to 1973 no one had worried about. Although the embargo ended only years after it began in 1973, the Oil Producing and Exporting Countries (OPEC) nations had quadrupled the price of oil in the west. The rising oil prices...

Mehta, P.

223

Letter to the editor The bio-fuel debate and fossil energy use in palm oil  

E-Print Network (OSTI)

Letter to the editor The bio-fuel debate and fossil energy use in palm oil production: a critique-fuels based on palm oil to re- duce greenhouse gas emissions, due account should be taken of carbon emissions fuel use in palm oil pro- duction, making a number of assumptions that I believe to be incorrect

224

Externality Regulation in Oil and Gas Encyclopedia of Energy, Natural Resource, and  

E-Print Network (OSTI)

Externality Regulation in Oil and Gas Chapter 56 Encyclopedia of Energy, Natural Resource Unitization: Compulsory unitization legislation enables a majority of producers on an oil or gas field resource, congestion exter- nality, minimum oil/gas ratio, monopsony power, pipeline transportation, no

Garousi, Vahid

225

Energy End-Use Intensities in Commercial Buildings 1989 data -- Publication  

U.S. Energy Information Administration (EIA) Indexed Site

End-Use Intensities Executive Summary > Publication and Tables End-Use Intensities Executive Summary > Publication and Tables Publication and Tables Energy End Uses Ranked by Energy Consumption, 1989 Figure on Energy End Uses Ranked by Energy Consumption, 1989 Source: Energy Information Administration, Office of Energy Markets and End Use, Forms EIA-871A through F of the 1989 Commercial Buildings Energy Consumption Survey. Divider Bar To View and/or Print Reports (requires Adobe Acrobat Reader) - Download Adobe Acrobat Reader If you experience any difficulties, visit our Technical Frequently Asked Questions. Divider Bar You have the option of downloading the entire report or selected sections of the report. Full Report - Energy End-Use Intensities in Commercial Buildings (1989 data) (file size .89 MB) pages: 140

226

VEE-0028 - In the Matter of Laney Oil Company, Inc. | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

28 - In the Matter of Laney Oil Company, Inc. 28 - In the Matter of Laney Oil Company, Inc. VEE-0028 - In the Matter of Laney Oil Company, Inc. On June 18, 1996, the Laney Oil Company, Inc., (Laney Oil) of Monroe, North Carolina, filed an Application for Exception with the Office of Hearings and Appeals of the Department of Energy. In its Application, Laney Oil requests relief from the obligation to file the Energy Information Administration's (EIA) form entitled "Resellers'/Retailers' Monthly Petroleum Product Sales Report" (Form EIA-782B). As explained below, we have decided that the Application for Exception should be granted in part. vee0028.pdf More Documents & Publications VEE-0037 - In the Matter of W. Gordon Smith Company VEE-0080 - In the Matter of Potter Oil Co., Inc. VEE-0030 - In the Matter of Lee Oil Company

227

Policies for eliminating low-efficiency production capacities and improving energy efficiency of energy-intensive industries in China  

Science Journals Connector (OSTI)

Abstract China faced the greatest challenge in balancing its economic growth, energy and resource security as well as environmental pollution. The energy-intensive industries, which used to be the major force driving China?s economic growth, had seriously exhausted the countries? natural resources and energy, and at the same time polluted the environment because of the severe surplus of low-efficiency production capacities. As a result, the Chinese government had initiated multiple economic and administrative policies to eliminate these low-efficiency production capacities intended to improve the energy efficiency of energy-intensive industries. These policies are summarized in this paper, along with export tax rebating rate, resource tax, administrative audit and approvals, differential electric power pricing and shutting down the low-efficiency production capacities. The paper also evaluates the effects of these policies by analyzing several key indicators about the energy-intensive industries, including fixed asset investment growth rate, energy-intensity of industrial added-value, waste gas emission-intensity of industrial added-value. The VALDEX methodology is selected to examine the improving trends of energy-efficiency for energy-intensive industries. The analyzing results show that firstly the development of low-efficiency capacities tends to be more sensitive to the policies, so the policies that China had enacted really exert very important effects on improving the energy-efficiency of energy-intensive industries. However, the effects of economic policies seem more faster and obvious than the fiscal policies. Besides, the results also show that polices which are designed to reserve energy may not necessarily exert the same effects on reducing emissions. There is still large room for improving the energy efficiency of energy-intensive industries, substantial improvement still needs to be done for current policies’ system. Some suggestions for future work are provided.

Li Li; Jianjun Wang; Zhongfu Tan; Xinquan Ge; Jian Zhang; Xiaozhe Yun

2014-01-01T23:59:59.000Z

228

World Best Practice Energy Intensity Values for Selected Industrial Sectors  

E-Print Network (OSTI)

Heat of reaction Steam, heating and losses Fractionation and compression Separation Total Note: Primary energy includes electricity generation, transmission, and distribution losses

Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

2007-01-01T23:59:59.000Z

229

ITP Energy Intensive Processes: Improved Heat Recovery in Biomass...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

INDUSTRIAL TECHNOLOGIES PROGRAM Improved Heat Recovery in Biomass-Fired Boilers Reducing Superheater Corrosion to Enable Maximum Energy Effi ciency This project will develop...

230

The structure and intensity of energy use: Trends in five OECD nations  

SciTech Connect

This paper examines trends in the structure and intensity of final energy demand in five OECD nations between 1973 and 1988. Our focus is on primary energy use, which weights fuels by their thermal content and multiplies district heat and electricity by factors of 1.15 and 3.24 to approximate the losses that occur in the conversion and distribution of these energy carriers. Growth in the level of energy-using activities, given 1973 energy intensities (energy use per unit of activity), would have raised primary energy use by 47% in the US, 44% in Norway, 33% in Denmark, 37% in West Germany, and 54% in Japan. Reductions in end-use energy intensities, given 1973 activity levels, would have reduced primary energy use by 20% in the US, 3% in Norway, 20% in Denmark, 17% in West Germany, and 14% in Japan. Growth in national income parallelled increases in a weighted index of energy-using activities in the US, West Germany, and Denmark but substantially outstripped activity growth in Norway and Japan. We conclude that changes in the structure of a nation's economy may lead to substantial changes in its energy/GDP ratio that are unrelated to changes in the technical efficiency of energy utilization. Similarly, changes in energy intensities may be greater or less than the aggregate change in the energy/GDP ratio of a given country, a further warning that this ratio may be an unreliable indicator of technical efficiency.

Howarth, R.B.; Schipper, L.; Andersson, B.

1992-06-01T23:59:59.000Z

231

The structure and intensity of energy use: Trends in five OECD nations  

SciTech Connect

This paper examines trends in the structure and intensity of final energy demand in five OECD nations between 1973 and 1988. Our focus is on primary energy use, which weights fuels by their thermal content and multiplies district heat and electricity by factors of 1.15 and 3.24 to approximate the losses that occur in the conversion and distribution of these energy carriers. Grouch in the level of energy-using activities, given 1973 energy intensities (energy use per unit of activity), would have raised primary energy use by 46% in the US, 42% in Norway, 33% in Denmark, 37% in West Germany, and 53% in Japan. Reductions in end-use energy intensities, given 1973 activity levels, would have reduced primary energy use by 19% in the US, 3% in Norway, 20% in Denmark, 15% in West Germany, and l4% in Japan. Growth in national income parallelled increases in a weighted index of energy-using activities in the US, West Germany, and Denmark but substantially outstripped activity growth in Norway and Japan. We conclude that changes in the structure of a nation's economy may lead to substantial changes in its energy/GDP ratio that are unrelated to changes in the technical efficiency of energy utilization. Similarly, changes in energy intensities may be greater or less than the aggregate change in the energy/GDP ratio of a given country, a further warning that this ratio may be an unreliable indicator of technical efficiency.

Howarth, R.B.; Schipper, L. (Lawrence Berkeley Lab., CA (United States)); Andersson, B. (Stockholm School of Economics (Sweden))

1992-09-01T23:59:59.000Z

232

The structure and intensity of energy use: Trends in five OECD nations  

SciTech Connect

This paper examines trends in the structure and intensity of final energy demand in five OECD nations between 1973 and 1988. Our focus is on primary energy use, which weights fuels by their thermal content and multiplies district heat and electricity by factors of 1.15 and 3.24 to approximate the losses that occur in the conversion and distribution of these energy carriers. Growth in the level of energy-using activities, given 1973 energy intensities (energy use per unit of activity), would have raised primary energy use by 47% in the US, 44% in Norway, 33% in Denmark, 37% in West Germany, and 54% in Japan. Reductions in end-use energy intensities, given 1973 activity levels, would have reduced primary energy use by 20% in the US, 3% in Norway, 20% in Denmark, 17% in West Germany, and 14% in Japan. Growth in national income parallelled increases in a weighted index of energy-using activities in the US, West Germany, and Denmark but substantially outstripped activity growth in Norway and Japan. We conclude that changes in the structure of a nation`s economy may lead to substantial changes in its energy/GDP ratio that are unrelated to changes in the technical efficiency of energy utilization. Similarly, changes in energy intensities may be greater or less than the aggregate change in the energy/GDP ratio of a given country, a further warning that this ratio may be an unreliable indicator of technical efficiency.

Howarth, R.B.; Schipper, L.; Andersson, B.

1992-06-01T23:59:59.000Z

233

The structure and intensity of energy use: Trends in five OECD nations. Revision  

SciTech Connect

This paper examines trends in the structure and intensity of final energy demand in five OECD nations between 1973 and 1988. Our focus is on primary energy use, which weights fuels by their thermal content and multiplies district heat and electricity by factors of 1.15 and 3.24 to approximate the losses that occur in the conversion and distribution of these energy carriers. Grouch in the level of energy-using activities, given 1973 energy intensities (energy use per unit of activity), would have raised primary energy use by 46% in the US, 42% in Norway, 33% in Denmark, 37% in West Germany, and 53% in Japan. Reductions in end-use energy intensities, given 1973 activity levels, would have reduced primary energy use by 19% in the US, 3% in Norway, 20% in Denmark, 15% in West Germany, and l4% in Japan. Growth in national income parallelled increases in a weighted index of energy-using activities in the US, West Germany, and Denmark but substantially outstripped activity growth in Norway and Japan. We conclude that changes in the structure of a nation`s economy may lead to substantial changes in its energy/GDP ratio that are unrelated to changes in the technical efficiency of energy utilization. Similarly, changes in energy intensities may be greater or less than the aggregate change in the energy/GDP ratio of a given country, a further warning that this ratio may be an unreliable indicator of technical efficiency.

Howarth, R.B.; Schipper, L. [Lawrence Berkeley Lab., CA (United States); Andersson, B. [Stockholm School of Economics (Sweden)

1992-09-01T23:59:59.000Z

234

Energy Conservation and Efficiency Improvement for the Electric Motors Operating in U.S. Oil Fields  

E-Print Network (OSTI)

energy use in the U.S. is comparable to all auto energy use. Electric motors are the largest users of energy in all mineral extraction activities. In oil fields, electric motors drive the pumping units used for lifting the oil and water to the surface...

Ula, S.; Cain, W.; Nichols, T.

235

National Energy Board Act Part VI (Oil and Gas) Regulations (Canada)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations from the National Energy Board cover licensing for oil and gas, including the exportation and importation of natural gas. The regulations also cover inspections, reporting...

236

Carbon dioxide emissions intensity of Portuguese industry and energy sectors: A convergence analysis and econometric approach  

Science Journals Connector (OSTI)

Abstract Given the relevance of energy and pollution issues for industrialised countries and the importance of industry and energy sectors to the achievement of their economic and environmental goals, it is important to know if there is a common pattern of emissions intensity, fuel intensity and energy intensity, between industries, to know if it justifies a more specific application of energy policies between sectors, which sectors have the greatest potential for reducing energy use and which are the long term effects of those specific variables on the mitigation of emissions. We found that although there is literature on decomposition of effects that affect emissions, the study of the convergence and of the relationships between these variables does not include ratios or effects that result from the decomposition analysis. Thus, the above questions are not answered, much less for the Portuguese reality. The purpose of this paper is to study: (i) the existence of convergence of some relevant ratios as Carbon Dioxide (CO2) emissions intensity, CO2 emissions by fossil fuel consumption, fossil fuel intensity, energy intensity and economic structure, between industry and energy sectors in Portugal, and (ii) the influence that the consumption of fossil fuels, the consumption of aggregate energy and GDP have on CO2 emissions, and the influence that the ratios in which CO2 emissions intensity decomposes can affect that variable, using an econometric approach, namely Panel corrected standard errors estimator. We concluded that there is sigma convergence for all ratios with exception of fossil fuel intensity. Gamma convergence verifies for all ratios, with exception of CO2 emissions by fossil fuel. From the econometric approach we concluded that the considered variables have a significant importance in explaining CO2 emissions and CO2 emissions intensity.

Victor Moutinho; Margarita Robaina-Alves; Jorge Mota

2014-01-01T23:59:59.000Z

237

A Comparison of Iron and Steel Production Energy Intensity in China and the  

NLE Websites -- All DOE Office Websites (Extended Search)

A Comparison of Iron and Steel Production Energy Intensity in China and the A Comparison of Iron and Steel Production Energy Intensity in China and the U.S Title A Comparison of Iron and Steel Production Energy Intensity in China and the U.S Publication Type Conference Proceedings Year of Publication 2011 Authors Price, Lynn K., Ali Hasanbeigi, Nathaniel T. Aden, Zhang Chunxia, Li Xiuping, and Shangguan Fangqin Conference Name ACEEE Industrial Summer Study Date Published 07/2011 Publisher American Council for an Energy-Efficient Economy Conference Location New York Keywords china, energy intensity, iron and steel, Low Emission & Efficient Industry, united states Abstract The goal of this study was to develop a methodology for making an accurate comparison of the energy intensity of steel production in China and the U.S. The methodology addresses issues related to boundary definitions, conversion factors, and industry structure. In addition to the base case analysis, six scenarios were developed to assess the effect of different factors such as the share of electric arc furnace (EAF) steel production, conversion factors for the embodied energy of imported and exported intermediary and auxiliary products, and the differences in net calorific values of the fuels. The results of the analysis show that for the whole iron and steel production process, the final energy intensity in 2006 was equal to 14.90 GJ/tonne crude steel in the U.S. and 23.11 GJ/tonne crude steel in China in the base scenario. In another scenario that assumed the Chinese share of electric arc furnace production in 2006 (i.e. 10.5%) in the U.S., the energy intensity of steel production in the U.S. increased by 54% to 22.96GJ/tonne crude steel. Thus, when comparing the energy intensity of the U.S and Chinese steel industry,the structure of the industry should be taken into account.

238

Department of Energy to Release Oil from the Strategic Petroleum Reserve |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to Release Oil from the Strategic Petroleum to Release Oil from the Strategic Petroleum Reserve Department of Energy to Release Oil from the Strategic Petroleum Reserve June 23, 2011 - 1:00pm Addthis Washington, DC - U.S. Energy Secretary Steven Chu announced today that the U.S. and its partners in the International Energy Agency have decided to release a total of 60 million barrels of oil onto the world market over the next 30 days to offset the disruption in the oil supply caused by unrest in the Middle East. As part of this effort, the U.S. will release 30 million barrels of oil from the Strategic Petroleum Reserve (SPR). The SPR is currently at a historically high level with 727 million barrels. "We are taking this action in response to the ongoing loss of crude oil due to supply disruptions in Libya and other countries and their impact on the

239

Department of Energy to Release Oil from the Strategic Petroleum Reserve |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to Release Oil from the Strategic Petroleum to Release Oil from the Strategic Petroleum Reserve Department of Energy to Release Oil from the Strategic Petroleum Reserve June 23, 2011 - 12:00am Addthis Washington, DC - U.S. Energy Secretary Steven Chu announced today that the U.S. and its partners in the International Energy Agency have decided to release a total of 60 million barrels of oil onto the world market over the next 30 days to offset the disruption in the oil supply caused by unrest in the Middle East. As part of this effort, the U.S. will release 30 million barrels of oil from the Strategic Petroleum Reserve (SPR). The SPR is currently at a historically high level with 727 million barrels. "We are taking this action in response to the ongoing loss of crude oil due to supply disruptions in Libya and other countries and their impact on the

240

Natural Gas Production and U.S. Oil Imports | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural Gas Production and U.S. Oil Imports Natural Gas Production and U.S. Oil Imports Natural Gas Production and U.S. Oil Imports January 26, 2012 - 11:14am Addthis Matthew Loveless Matthew Loveless Data Integration Specialist, Office of Public Affairs What are the key facts? Over the next 33 years, the Energy Information Administration expect domestic natural gas production to increase to 28 trillion cubic feet per year, contributing to a decline in U.S. reliance on imported crude oil. During the State of the Union speech Tuesday night, President Obama spoke of the importance of reducing our reliance on imported oil by increasing domestic energy production. As the U.S. has only 2 percent of the world's oil reserves, natural gas and renewable energy production will play an important role in reducing our net oil imports.

Note: This page contains sample records for the topic "oil energy intensity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Department of Energy to Release Oil from the Strategic Petroleum Reserve |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to Release Oil from the Strategic Petroleum to Release Oil from the Strategic Petroleum Reserve Department of Energy to Release Oil from the Strategic Petroleum Reserve June 23, 2011 - 12:00am Addthis Washington, DC - U.S. Energy Secretary Steven Chu announced today that the U.S. and its partners in the International Energy Agency have decided to release a total of 60 million barrels of oil onto the world market over the next 30 days to offset the disruption in the oil supply caused by unrest in the Middle East. As part of this effort, the U.S. will release 30 million barrels of oil from the Strategic Petroleum Reserve (SPR). The SPR is currently at a historically high level with 727 million barrels. "We are taking this action in response to the ongoing loss of crude oil due to supply disruptions in Libya and other countries and their impact on the

242

Natural Gas Production and U.S. Oil Imports | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural Gas Production and U.S. Oil Imports Natural Gas Production and U.S. Oil Imports Natural Gas Production and U.S. Oil Imports January 26, 2012 - 11:14am Addthis Matthew Loveless Matthew Loveless Data Integration Specialist, Office of Public Affairs What are the key facts? Over the next 33 years, the Energy Information Administration expect domestic natural gas production to increase to 28 trillion cubic feet per year, contributing to a decline in U.S. reliance on imported crude oil. During the State of the Union speech Tuesday night, President Obama spoke of the importance of reducing our reliance on imported oil by increasing domestic energy production. As the U.S. has only 2 percent of the world's oil reserves, natural gas and renewable energy production will play an important role in reducing our net oil imports.

243

Transforming the Oil Industry into the Energy Industry  

E-Print Network (OSTI)

SECURITY AND CLIMATE CHANGE concerns, transportation is the principal culprit. It consumes half the oil

Sperling, Daniel; Yeh, Sonia

2009-01-01T23:59:59.000Z

244

Energy End-Use Intensities in Commercial Buildings 1995 - Index...  

U.S. Energy Information Administration (EIA) Indexed Site

1995 End-Use Data 1995 End-Use Data Overview Tables National estimates of energy consumption by fuel (electricity and natural gas) and end use (heating, cooling, lighting, etc.)...

245

Oil imports: US energy dependence remains high after the Gulf War  

SciTech Connect

When Saddam Hussein sent his troops across the border into oil-rich Kuwait on Aug. 2, 1990, the stage was set for yet another global oil shock. To most everyone's surprise, the gulf war's impact on oil supplies was less traumatic, in the long run, than expected. But the situation nonetheless forces the US to confront its continued dependence on oil imports. During the last major energy crisis, in 1978-1979, oil shortages resulted in higher prices and prompted Americans to save energy. Oil imports shrank. But the subsequent fall in oil prices prompted consumers to return to bigger, less-efficient cars, and oil imports climbed back up. Then Saddam plundered his neighbor, putting the torch to more than 500 Kuwaiti oil wells and sparking the US to re-examine its energy policies. This article examines the issues involved in increased U.S. dependence on foreign oil. Areas covered are history of U.S. oil dominance, postwar (WWII) import quotas, the birth of OPEC, Reagan and Bush Administration energy policies, gas mileage standards, and the future of continued dependence.

Cooper, M.H.

1991-08-23T23:59:59.000Z

246

The role of energy intensity improvement in the AR4 GHG stabilization scenarios  

Science Journals Connector (OSTI)

This study analyzes the role of energy intensity improvement in the short term (to the year 2020) and midterm (to the year 2050) in the context of long-term greenhouse gases (GHG) stabilization scenarios. The dat...

Tatsuya Hanaoka; Mikiko Kainuma; Yuzuru Matsuoka

2009-05-01T23:59:59.000Z

247

Cost Minimization in an Energy-Intensive Plant Using Mathematical Programming Approaches  

Science Journals Connector (OSTI)

Cost Minimization in an Energy-Intensive Plant Using Mathematical Programming Approaches ... This creates a potential opportunity to reduce average operating costs by changing the operating mode and production rates depending on the power costs. ...

M. G. Ierapetritou; D. Wu; J. Vin; P. Sweeney; M. Chigirinskiy

2002-09-24T23:59:59.000Z

248

Energy Policy 30 (2002) 151163 Aggregating physical intensity indicators: results of applying the  

E-Print Network (OSTI)

indicators measure the energy used per dollar of GDP produced by some sector, sub-sector, industry or productEnergy Policy 30 (2002) 151­163 Aggregating physical intensity indicators: results of applying School of Resource and Environmental Management, Energy Research Group, Simon Fraser University, Burnaby

249

An energy-saving oil drilling rig for recovering potential energy and decreasing motor power  

Science Journals Connector (OSTI)

An energy-saving oil drilling rig is researched. A large accumulator is adopted in this rig to store the energy of the motor during the auxiliary time of lifting the drill stem and the potential energy of the drill stem when lowered. The equipped power of this rig decreases remarkably compared with the conventional drilling rig, and this rig can also recover and reuse the potential energy of the drill stem. Therefore, this rig owns remarkable energy-saving effect compared with the conventional drilling rig, and the energy-saving effect of the energy-saving oil drilling rig is also verified by the field tests. The mathematical model of the energy-saving oil drilling rig lowering the drill stem was derived and simulation analysis was conducted. Through simulation the curves of the drill stem lowering velocity and lowering displacement with time were obtained, and some conclusions were reached: (1) the heavier the drill stem lowered, the higher the lowering velocity is, and the shorter the lowering time is; (2) the smaller the displacement of the variable pump-motor, the higher the lowering velocity is, and the shorter the lowering time is.

Lujun Zhang

2011-01-01T23:59:59.000Z

250

Application of solar energy in the oil industry—Current status and future prospects  

Science Journals Connector (OSTI)

Abstract The scope of this review is to highlight the potential contributions of solar energy in meeting the energy requirements of the oil and gas industry. It includes an assessment of the key factors that impact the world energy scene and the anticipated role of solar energy up to 2035. It appears that oil and gas will continue to play a dominant role in meeting world energy demand over the next two decades, accounting for nearly 60% of total primary energy, and reaching around 9960 Mtoe in 2035. The energy consumption of the oil and gas industries is nearly 10% of its total energy production and is expected to grow to a higher value with the growth of the share of unconventional oil and gas resources. The amounts of energy projected to be consumed by the oil and gas industry is estimated to be at least 39.4 EJ by 2035. The energy supply to meet the demand of the oil and gas industry is based mostly on hydrocarbon energy sources, which leads to high levels of ecological footprints. Solar energy utilization within the industry will reduce its fossil fuels consumption, and therefore reduce its ecological footprints. Specifically, solar energy will help the industry in meeting part of its energy requirements in locations where conventional fuels, such as natural gas, are limited. This paper reviews various efforts made in developing solar technologies to suit the oil and gas industry. It also shows that some upstream oil and gas industries have already utilized solar energy in demonstration field applications. The review concludes that the application of solar energy in the oil and gas industry presents a very good opportunity for future business of the renewable energy industry. These opportunities includes the use of photovoltaic and solar thermal technologies.

M. Absi Halabi; A. Al-Qattan; A. Al-Otaibi

2015-01-01T23:59:59.000Z

251

DOE Science Showcase - Oil Shale Research | OSTI, US Dept of Energy, Office  

Office of Scientific and Technical Information (OSTI)

Oil Shale Research Oil Shale Research Oil shale has been recognized as a potentially valuable U.S. energy resource for a century. Obstacles to its use have included the expense of current shale-oil production technologies and their effects on our environment. The energy landscape is evolving. Technology has advanced, global economic, political, and market conditions have changed and the regulatory landscape has matured. Recent efforts to realize the potential of this vast resource is a major focus of DOE's Fossil Energy program research. Read more about recent developments in fuel extraction, water management and efforts to advance the use of oil shales for energy In the OSTI Collections: Oil Shales, by Dr. William Watson, Physicist, OSTI staff. Image Credit: Argonne National Laboratory

252

Energy use and carbon dioxide emissions in energy-intensive industries in key developing countries  

SciTech Connect

The industrial sector is the most important end-use sector in developing countries in terms of energy use and was responsible for 50% of primary energy use and 53% of associated carbon dioxide emissions in 1995 (Price et al., 1999). The industrial sector is extremely diverse, encompassing the extraction of natural resources, conversion of these resources into raw materials, and manufacture of finished products. Five energy-intensive industrial subsectors account for the bulk of industrial energy use and related carbon dioxide emissions: iron and steel, chemicals, petroleum refining, pulp and paper, and cement. In this paper, we focus on the steel and cement sectors in Brazil, China, India, and Mexico.1 We review historical trends, noting that China became the world's largest producer of cement in 1985 and of steel in 1996. We discuss trends that influence energy consumption, such as the amount of additives in cement (illustrated through the clinker/cement ratio), the share of electric arc furnaces, and the level of adoption of continuous casting. To gauge the potential for improvement in production of steel and cement in these countries, we calculate a ''best practice'' intensity based on use of international best practice technology to produce the mix of products manufactured in each country in 1995. We show that Brazil has the lowest potential for improvement in both sectors. In contrast, there is significant potential for improvement in Mexico, India, and especially China, where adoption of best practice technologies could reduce energy use and carbon dioxide emissions from steel production by 50% and cement production by 37%. We conclude by comparing the identified potential for energy efficiency improvement and carbon dioxide emissions reduction in these key developing countries to that of the U.S. This comparison raises interesting questions related to efforts to improve energy efficiency in developing countries, such as: what is the appropriate role of industrialized countries in promoting the adoption of low carbon technologies, how do international steel and cement companies influence the situation, and how can such information be used in the context of Clean Development Mechanism in the Kyoto Protocol?

Price, Lynn; Worrell, Ernst; Phylipsen, Dian

1999-09-01T23:59:59.000Z

253

Refining intensity, energy consumption, and pulp quality in two-stage chip refining  

SciTech Connect

This paper reports on thermomechanical pulps produced in two pilot plant installations. Both installations were conventional two-stage systems in which the first stage was pressurized and the second was atmospheric. At a given specific energy, pulp quality was improved. Alternatively, for a given pulp quality, the energy consumption was reduced when refining in the first stage was carried out at a high refining intensity. High refining intensity was reached by operating the first stage either at a high rotational speed or low consistency. There were indications that these benefits could be enhanced if the second stage were operated at a low refining intensity.

Miles, K.B.; May, W.D.; Karnis, A. (Pulp and Paper Research Inst. of Canada, 570 St. John's Boulevard, Pointe Claire, Quebec H9R 3J9 (CA))

1991-03-01T23:59:59.000Z

254

Oil-Fired Boilers and Furnaces | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oil-Fired Boilers and Furnaces Oil-Fired Boilers and Furnaces Oil-Fired Boilers and Furnaces May 16, 2013 - 3:15pm Addthis Diagram of an oil boiler. New tanks are generally double-wall or have a spill container built underneath to reduce the chances of an oil spill. Typically, the tank drip pan shown here is required only for single-wall tanks and would extend the full width of the tank. | Photo courtesy State of Massachusetts. Diagram of an oil boiler. New tanks are generally double-wall or have a spill container built underneath to reduce the chances of an oil spill. Typically, the tank drip pan shown here is required only for single-wall tanks and would extend the full width of the tank. | Photo courtesy State of Massachusetts. What does this mean for me? If you have an oil furnace or boiler, you can now burn oil blended

255

Releasing Oil from the SPR | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Releasing Oil from the SPR Releasing Oil from the SPR Releasing Oil from the SPR The Strategic Petroleum Reserve exists, first and foremost, as an emergency response tool the President can use should the United States be confronted with an economically-threatening disruption in oil supplies. Statutory Authority for an SPR Drawdown Standard Sales Provisions Historical Oil Sales and Exchanges SPR Crude Oil Assays 2011 IEA Response System for Oil Supply Emergencies A Presidentially-directed release has occurred three times under these conditions. First, in 1991, at the beginning of Operation Desert Storm, the United States joined its allies in assuring the adequacy of global oil supplies when war broke out in the Persian Gulf. An emergency sale of SPR crude oil was announced the day the war began.

256

Oil-Fired Boilers and Furnaces | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oil-Fired Boilers and Furnaces Oil-Fired Boilers and Furnaces Oil-Fired Boilers and Furnaces May 16, 2013 - 3:15pm Addthis Diagram of an oil boiler. New tanks are generally double-wall or have a spill container built underneath to reduce the chances of an oil spill. Typically, the tank drip pan shown here is required only for single-wall tanks and would extend the full width of the tank. | Photo courtesy State of Massachusetts. Diagram of an oil boiler. New tanks are generally double-wall or have a spill container built underneath to reduce the chances of an oil spill. Typically, the tank drip pan shown here is required only for single-wall tanks and would extend the full width of the tank. | Photo courtesy State of Massachusetts. What does this mean for me? If you have an oil furnace or boiler, you can now burn oil blended

257

Illinois DNR oil and gas division | Open Energy Information  

Open Energy Info (EERE)

DNR oil and gas division DNR oil and gas division Jump to: navigation, search State Illinois Name Illinois DNR oil and gas division City, State Springfield, IL Website http://dnr.state.il.us/mines/d References Illinois DNR Oil and Gas[1] The Illinois DNR Oil and Gas division is located in Springfield, Illinois. About The Oil and Gas Division is one of four divisions within the Illinois Department of Natural Resources, Office of Mines and Minerals. Created in 1941, the Division of Oil & Gas is the regulatory authority in Illinois for permitting, drilling, operating, and plugging oil and gas production wells. The Division implements the Illinois Oil and Gas Act and enforces standards for the construction and operation of related production equipment and facilities. References

258

Solar?energy conversion at high solar intensities  

Science Journals Connector (OSTI)

The concentration of sunlight offers distinct advantages for solar–electrical generation either by thermal conversion or by photovoltaics. A large variety of concentration techniques are available with concentration ratios of 1–1000. Concentration is required for thermal conversion systems to attain the high temperatures needed for efficiencies in the desired range of about 25%–35%. The projected costs for some of the solar thermal systems (especially the central receiver and the fixed mirror) indicate that they could be economically competitive in the southwestern states. The southwest may be required for these high?concentration systems to overcome the main disadvantage of concentration which is the use of the direct component of sunlight only. Other concerns of high?intensity systems are in tracking requirements reflective surface accuracy and material lifetimes of both the reflecting and absorbing components. Selective surface absorbers will be required for systems with concentration ratios below a few hundred. The present high cost of solar?cell?generated electricity can be reduced considerably by using concentrators. Cells can be used with any of the concentrator designs and the major concern is keeping them at acceptable operating temperatures. Planar silicon cells vertical multijunction and gallium–aluminum–arsenide cells all look attractive for concentrating systems.

Charles E. Backus

1975-01-01T23:59:59.000Z

259

Energy Intensity Development of the German Iron and Steel Industry between 1991 and 2007 Marlene Arensa), 1)  

E-Print Network (OSTI)

1 Energy Intensity Development of the German Iron and Steel Industry between 1991 and 2007 Marlene industry, energy intensity 1) Corresponding Author. Tel: +49 721 6809 408, fax: +49 721 6809 272, marlene a decomposition method [25]. Kim and Worrell (2002) compared energy and CO2intensity in the steel sector among

Paris-Sud XI, Université de

260

Energy Intense Equipment Purchasing Behaviour: A Review of the Literature i How do consumers and firms purchase equipment  

E-Print Network (OSTI)

Energy Intense Equipment Purchasing Behaviour: A Review of the Literature i CIEEDAC How do, 2007 #12;Energy Intense Equipment Purchasing Behaviour: A Review of the Literature ii Executive Summary Energy intense equipment purchasing behaviour: A review of the literature. CIEEDAC has been charged

Note: This page contains sample records for the topic "oil energy intensity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

2011 IEA Response System for Oil Supply Emergencies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2011 IEA Response System for Oil Supply Emergencies 2011 IEA Response System for Oil Supply Emergencies 2011 IEA Response System for Oil Supply Emergencies Emergency response to oil supply disruptions has remained a core mission of the International Energy Agency since its founding in 1974. This information pamphlet explains the decisionmaking process leading to an IEA collective action, the measures available - focusing on stockdraw - and finally, the historical background of major oil supply disruptions and the IEA response to them. It also demonstrates the continuing need for emergency preparedness, including the growing importance of engaging key transition and emerging economies in dialogue about energy security. 2011 IEA Response System for Oil Supply Emergencies More Documents & Publications IEA Response System for Oil Supply Emergencies 2012

262

2011 IEA Response System for Oil Supply Emergencies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 IEA Response System for Oil Supply Emergencies 1 IEA Response System for Oil Supply Emergencies 2011 IEA Response System for Oil Supply Emergencies Emergency response to oil supply disruptions has remained a core mission of the International Energy Agency since its founding in 1974. This information pamphlet explains the decisionmaking process leading to an IEA collective action, the measures available - focusing on stockdraw - and finally, the historical background of major oil supply disruptions and the IEA response to them. It also demonstrates the continuing need for emergency preparedness, including the growing importance of engaging key transition and emerging economies in dialogue about energy security. 2011 IEA Response System for Oil Supply Emergencies More Documents & Publications IEA Response System for Oil Supply Emergencies 2012

263

Could energy intensive industries be powered by carbon-free electricity?  

E-Print Network (OSTI)

chemical services ­ for example, coal, converted to coke, acts as a reducing agent in blast furnaces.) (a comes from coal, oil, and natural gas. What infrastructure would be required to deliver the same amount to Royal Society TEX Paper #12;2 David J C MacKay FRS Primary energy consumption: 2740TWh/y Coal: 475 TWh

MacKay, David J.C.

264

Rising tide of U.S. oil imports sparks debate on energy security  

SciTech Connect

This paper reviews the historical trends in domestic oil production and the oil imports. The paper exposes government policies related to developing more strategic plans for curtailing such increases in imports while showing the continued increase in demand. It provides information from the Energy Information Administration on net oil imports as a share of US oil consumption. It also provides information showing the sources of current US imports. Discussion is made on the potential threat to national security as a result of political instability in numerous of these oil exporting countries.

Crow, P.

1996-06-17T23:59:59.000Z

265

EIA-813, Monthly Crude Oil Report Page 1 U. S. DEPARTMENT OF ENERGY  

U.S. Energy Information Administration (EIA) Indexed Site

13, Monthly Crude Oil Report Page 1 13, Monthly Crude Oil Report Page 1 U. S. DEPARTMENT OF ENERGY ENERGY INFORMATION ADMINISTRATION Washington, D. C. 20585 OMB No. 1905-0165 Expiration Date: 05/31/2016 (Revised 2013) EIA-813 MONTHLY CRUDE OIL REPORT INSTRUCTIONS .................................................................................................................................................................................... QUESTIONS If you have any questions about Form EIA-813 after reading the instructions, please contact the Survey Manager at (202) 586-3536. PURPOSE The Energy Information Administration (EIA) Form EIA-813, "Monthly Crude Oil Report," is used to collect data on end-of- month stocks of crude oil, and movements of crude oil by pipeline. A summary of the data appear on EIA's website at

266

The impact of oil prices on income and energy  

Science Journals Connector (OSTI)

The major determinant of real income growth in Korea is real oil prices, followed by money supply, exchange rates, ... longer horizon, the effects of exchange rates, oil prices, government spending, and money sup...

Young U. Glasure; Aie-Rie Lee

2002-05-01T23:59:59.000Z

267

Form:Federal Oil and Gas Regulation | Open Energy Information  

Open Energy Info (EERE)

Regulation Jump to: navigation, search Federal Oil and Gas Regulation This is the "Federal Oil and Gas Regulation" form. To create a page with this form, enter the page name below;...

268

Title 40 CFR 112 Oil Pollution Prevention | Open Energy Information  

Open Energy Info (EERE)

12 Oil Pollution Prevention Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- Federal RegulationFederal Regulation: Title 40 CFR 112 Oil Pollution...

269

16 TAC 3 - Oil and Gas Division | Open Energy Information  

Open Energy Info (EERE)

TAC 3 - Oil and Gas Division Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: 16 TAC 3 - Oil and Gas DivisionLegal Abstract...

270

WSDNR Oil and Gas Forms | Open Energy Information  

Open Energy Info (EERE)

Oil and Gas Forms Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: WSDNR Oil and Gas FormsLegal Abstract The Washington State...

271

Oil and Gas Well Drilling | Open Energy Information  

Open Energy Info (EERE)

Not Provided Check for DOI availability: http:crossref.org Online Internet link for Oil and Gas Well Drilling Citation Jeff Tester. 2011. Oil and Gas Well Drilling. NA. NA....

272

EIA-Annual Energy Outlook 2010 - Low Oil PriceTables  

Gasoline and Diesel Fuel Update (EIA)

Oil Price Tables (2007-2035) Oil Price Tables (2007-2035) Annual Energy Outlook 2010 Main Low Oil Price Tables (2007- 2035) Table Title Formats Summary Low Oil Price Case Tables PDF Gif Year-by-Year Low Oil Price Case Tables Excel Gif Table 1. Total Energy Supply and Disposition Summary Excel Gif Table 2. Energy Consumption by Sector and Source Excel Gif Table 3. Energy Prices by Sector and Source Excel Gif Table 4. Residential Sector Key Indicators and Consumption Excel Gif Table 5. Commercial Sector Indicators and Consumption Excel Gif Table 6. Industrial Sector Key Indicators and Consumption Excel Gif Table 7. Transportation Sector Key Indicators and Delivered Energy Consumption Excel Gif Table 8. Electricity Supply, Disposition, Prices, and Emissions Excel Gif Table 9. Electricity Generating Capacity

273

EIA: High Oil Prices, GHG Controls Would Help Clean Energy Grow  

Energy.gov (U.S. Department of Energy (DOE))

The growth of renewable energy and renewable fuels in the United States will be significantly greater under scenarios involving high oil prices and stricter controls on greenhouse gas (GHG) emissions, according to DOE's Energy Information Administration (EIA).

274

Modeling of Energy Production Decisions: An Alaska Oil Case Study  

E-Print Network (OSTI)

Oil Simulator, 1995) to simulate the effects of water injection rates, the cumulative production of the field,

Leighty, Wayne

2008-01-01T23:59:59.000Z

275

EIA - International Energy Outlook 2008-Defining the Limits of Oil  

Gasoline and Diesel Fuel Update (EIA)

Mid-Term Prospects for Nuclear Electricity Generation in China, India, and the United States Mid-Term Prospects for Nuclear Electricity Generation in China, India, and the United States Around the world, nuclear power plants are getting renewed attention and consideration as an option for electricity generation to meet rising demand in the future. For many years, analysts expected nuclear power to grow slowly in the short term and decline in the long term. More recently, however, many countries have begun looking anew at nuclear power to displace generation from fossil fuels, in response to both sustained high prices for oil and natural gas and the desire to reduce carbon dioxide emissions. In addition, concerns about energy security among those nations that rely heavily on fossil fuel imports have made nuclear power an attractive option for electricity production.

276

New York Oil and Gas DOEC | Open Energy Information  

Open Energy Info (EERE)

DOEC DOEC Jump to: navigation, search State New York Name New York Oil and Gas DOEC Address 625 Broadway City, State Albany, New York Zip 12233-0001 Website http://www.dec.ny.gov/energy/2 Coordinates 42.6533334°, -73.7489462° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.6533334,"lon":-73.7489462,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

277

Energy End-Use Intensities in Commercial Buildings1992 -- Overview/End-Use  

U.S. Energy Information Administration (EIA) Indexed Site

> Overview > Overview 1992 Energy End-Use Intensities Overview Energy Consumption by End Use, 1992 Figure on Energy Consumption By End Use, 1992 Source: Energy Information Administration, Office of Energy Markets and End Use, Forms EIA-871A through F of the 1992 Commercial Buildings Energy Consumption Survey. End-Use Estimation Methodology The end-use estimates had two main sources: (1) survey data collected by the Commercial Buildings Energy Consumption Survey (CBECS) and (2) building energy simulations provided by the Facility Energy Decision Screening (FEDS) system. The CBECS provided data on building characteristics and total energy consumption (i.e., for all end uses) for a national sample of commercial buildings. Using data collected by the CBECS, the FEDS engineering modules were used to produce estimates of energy consumption by end use. The FEDS engineering estimates were then statistically adjusted to match the CBECS total energy consumption.

278

Experimental Observation of Electrons Accelerated in Vacuum to Relativistic Energies by a High-Intensity Laser  

Science Journals Connector (OSTI)

Free electrons have been accelerated in vacuum to MeV energies by a high-intensity subpicosecond laser pulse ( 1019 W/cm2, 300 fs). The experimental data are in good agreement with the relativistic motion of electrons in a spatially and temporally finite electromagnetic field, both in terms of maximum energy and scattering angle.

G. Malka; E. Lefebvre; J. L. Miquel

1997-04-28T23:59:59.000Z

279

Explaining Long-Run Changes in the Energy Intensity of the U.S. Economy  

E-Print Network (OSTI)

Recent events have revived interest in explaining the long-run changes in the energy intensity of the U.S. economy. We use a KLEM dataset for 35 industries over 39 years to decompose changes in the aggregate energy-GDP ...

Sue Wing, Ian.

280

Changes in Energy Intensity in the Manufacturing Sector 1985-1994  

U.S. Energy Information Administration (EIA) Indexed Site

1. Introduction Rankeda EI Numbers of Total Inputs of Energy SIC Codeb Intensity for 1985c Intensity for 1994c 29 18.11 25.85 26 17.82 17.71 33 19.57 16.27 32 14.75 14.69 28 11.09 12.14 All 5.34 5.77 24 5.24 5.05 22 4.07 3.82 20 2.41 2.72 30 2.81 2.22 34 1.91 1.98 25 1.37 1.16 39 1.14 1.16 38 0.92 1.10 36 1.11 0.90 35 1.14 0.86 27 0.62 0.74 23 0.47 0.38 c For this report, all energy-intensity ratios are presented in units of thousands of Btu per 1992 constant dollars. Source: Table 12 of this report. The focus of this data report is on energy consumption relative to constant dollar shipments of manufactured products -- commonly called energy intensities (EI) by energy analysts. This report presents two measures of energy consumption, Offsite-Produced Energy and Total Inputs of Energy,

Note: This page contains sample records for the topic "oil energy intensity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Changes in Energy Intensity in the Manufacturing Sector 1985-1994  

U.S. Energy Information Administration (EIA) Indexed Site

1. Introduction Rankeda EI Numbers of Total Inputs of Energy SIC Codeb Intensity for 1985c Intensity for 1994c 29 18.11 25.85 26 17.82 17.71 33 19.57 16.27 32 14.75 14.69 28 11.09 12.14 All 5.34 5.77 24 5.24 5.05 22 4.07 3.82 20 2.41 2.72 30 2.81 2.22 34 1.91 1.98 25 1.37 1.16 39 1.14 1.16 38 0.92 1.10 36 1.11 0.90 35 1.14 0.86 27 0.62 0.74 23 0.47 0.38 c For this report, all energy-intensity ratios are presented in units of thousands of Btu per 1992 constant dollars. Source: Table 12 of this report. The focus of this data report is on energy consumption relative to constant dollar shipments of manufactured products -- commonly called energy intensities (EI) by energy analysts. This report presents two measures of energy consumption, Offsite-Produced Energy and Total Inputs of Energy,

282

Climate Policy Design for Energy-Intensive Industries - And The Rest of Us  

NLE Websites -- All DOE Office Websites (Extended Search)

Climate Policy Design for Energy-Intensive Industries - And The Rest of Us Climate Policy Design for Energy-Intensive Industries - And The Rest of Us Speaker(s): Holmes Hummel Date: January 8, 2009 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Richard Diamond Driving the U.S. energy system toward climate stabilization requires integration of multiple policy instruments in a staged series of legislative and regulatory policy vehicles. Qualifying the limitations of a cap-and-trade approach, Dr. Hummel will present a framework for orienting and organizing a multi-faceted policy development process. After surveying key design recommendations for specific sectors, the presentation will drill deeper into the specific challenge of engaging energy-intensive industries subject to global competition. After briefly discussing some of

283

Future world oil production: Growth, plateau, or peak?1 Larry Hughes and Jacinda Rudolph  

E-Print Network (OSTI)

Energy Systems 2010 #12;Future world oil production: Growth, plateau, or peak? Larry Hughes2 and Jacinda governments to reduce their energy intensity (6), the growth in oil production resumed in the mid-1980s World Energy Outlook, production is projected to increase to 103.8 million barrels of oil a day by 2030

Hughes, Larry

284

Energy intensities, \\{EROIs\\} (energy returned on invested), and energy payback times of electricity generating power plants  

Science Journals Connector (OSTI)

The energy returned on invested, EROI, has been evaluated for typical power plants representing wind energy, photovoltaics, solar thermal, hydro, natural gas, biogas, coal and nuclear power. The strict exergy concept with no “primary energy weighting”, updated material databases, and updated technical procedures make it possible to directly compare the overall efficiency of those power plants on a uniform mathematical and physical basis. Pump storage systems, needed for solar and wind energy, have been included in the EROI so that the efficiency can be compared with an “unbuffered” scenario. The results show that nuclear, hydro, coal, and natural gas power systems (in this order) are one order of magnitude more effective than photovoltaics and wind power.

D. Weißbach; G. Ruprecht; A. Huke; K. Czerski; S. Gottlieb; A. Hussein

2013-01-01T23:59:59.000Z

285

VEE-0035 - In the Matter of Rice Oil Company, Inc. | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

35 - In the Matter of Rice Oil Company, Inc. 35 - In the Matter of Rice Oil Company, Inc. VEE-0035 - In the Matter of Rice Oil Company, Inc. On October 22, 1996, Rice Oil Company, Inc. (Rice) of Greenfield, Massachusetts filed an Application for Exception with the Office of Hearings and Appeals (OHA) of the Department of Energy (DOE). In its Application, Rice requests that it be relieved of the requirement to file Form EIA-782B, entitled "Resellers/Retailers' Monthly Petroleum Product Sales Report" (Form EIA- 782B), and Form EIA-821, entitled "Annual Fuel Oil and Kerosene Sales Report". vee0035.pdf More Documents & Publications VEE-0082 - In the Matter of Fleischli Oil Company VEE-0085 - In the Matter of Smith Brothers Gas Company VEE-0066 - In the Matter of Taylor Oil Company

286

Colorado Oil and Gas Conservation Commission | Open Energy Information  

Open Energy Info (EERE)

Oil and Gas Conservation Commission Oil and Gas Conservation Commission Name Colorado Oil and Gas Conservation Commission Place Denver, Colorado References COGCC Website[1] This article is a stub. You can help OpenEI by expanding it. Colorado Oil and Gas Conservation Commission is an organization based in Denver, Colorado. The mission of the Colorado Oil and Gas Conservation Commission (COGCC) is to foster the responsible development of Colorado's oil and gas natural resources. Responsible development results in: The efficient exploration and production of oil and gas resources in a manner consistent with the protection of public health, safety and welfare The prevention of waste The protection of mineral owners' correlative rights The prevention and mitigation of adverse environmental impacts

287

Portfolio Manager Technical Reference: U.S. National Energy Use Intensity |  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. National Energy Use U.S. National Energy Use Intensity Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder

288

National Level Co-Control Study of the Targets for Energy Intensity and  

NLE Websites -- All DOE Office Websites (Extended Search)

National Level Co-Control Study of the Targets for Energy Intensity and National Level Co-Control Study of the Targets for Energy Intensity and Sulfur Dioxide in China Title National Level Co-Control Study of the Targets for Energy Intensity and Sulfur Dioxide in China Publication Type Report LBNL Report Number LBNL-5253E Year of Publication 2011 Authors Zhou, Nan, Lynn K. Price, Nina Zheng, Jing Ke, and Ali Hasanbeigi Date Published 10/2011 Publisher Lawrence Berkerley National Laboratory ISBN Number LBNL-5253E Keywords china, china energy, co-control, energy intensity, industrial energy efficiency, iron and steel industry, Low Emission & Efficient Industry, policy studies, sulfur dioxide Abstract Since 2006, China has set goals of reducing energy intensity, emissions, and pollutants in multiple guidelines and in the Five Year Plans. Various strategies and measures have then been taken to improve the energy efficiency in all sectors and to reduce pollutants. Since controlling energy, CO2 emissions, and pollutants falls under the jurisdiction of different government agencies in China, many strategies are being implemented to fulfill only one of these objectives.Co-controls or integrated measures could simultaneously reduce greenhouse gas (GHG)emissions and criteria air pollutant emissions. The targets could be met in a more cost effective manner if the integrated measures can be identified and prioritized. This report provides analysis and insights regarding how these targets could be met via co-control measures focusing on both CO2 and SO2 emissions in the cement, iron & steel, and power sectors to 2030 in China. An integrated national energy and emission model was developed in order to establish a baseline scenario that was used to assess the impact of actions already taken by the Chinese government as well as planned and expected actions. In addition, CO2 mitigation scenarios and SO2 control scenarios were also established to evaluate the impact of each of the measures and the combined effects.

289

A High Intensity Linear e+ e- Collider Facility at Low Energy  

E-Print Network (OSTI)

I discuss a proposal for a high intensity $e^+e^-$ linear collider operated at low center of mass energies $\\sqrt{s}intensity beams. Such a facility would provide high statistics samples of (charmed) vector mesons and would permit searches for LFV with unprecedented precision in decays of $\\tau$ leptons and mesons. Implications on the design of the linear accelerator are discussed together with requirements to achieve luminosities of $10^{35}$ cm$^{-2}$s$^{-1}$ or more.

A. Schoning

2006-10-23T23:59:59.000Z

290

A Comparison of Iron and Steel Production Energy Use and Energy Intensity in China and the U.S.  

SciTech Connect

Production of iron and steel is an energy-intensive manufacturing process. In 2006, the iron and steel industry accounted for 13.6% and 1.4% of primary energy consumption in China and the U.S., respectively (U.S. DOE/EIA, 2010a; Zhang et al., 2010). The energy efficiency of steel production has a direct impact on overall energy consumption and related carbon dioxide (CO2) emissions. The goal of this study is to develop a methodology for making an accurate comparison of the energy intensity (energy use per unit of steel produced) of steel production. The methodology is applied to the steel industry in China and the U.S. The methodology addresses issues related to boundary definitions, conversion factors, and indicators in order to develop a common framework for comparing steel industry energy use. This study uses a bottom-up, physical-based method to compare the energy intensity of China and U.S. crude steel production in 2006. This year was chosen in order to maximize the availability of comparable steel-sector data. However, data published in China and the U.S. are not always consistent in terms of analytical scope, conversion factors, and information on adoption of energy-saving technologies. This study is primarily based on published annual data from the China Iron & Steel Association and National Bureau of Statistics in China and the Energy Information Agency in the U.S. This report found that the energy intensity of steel production is lower in the United States than China primarily due to structural differences in the steel industry in these two countries. In order to understand the differences in energy intensity of steel production in both countries, this report identified key determinants of sector energy use in both countries. Five determinants analyzed in this report include: share of electric arc furnaces in total steel production, sector penetration of energy-efficiency technologies, scale of production equipment, fuel shares in the iron and steel industry, and final steel product mix in both countries. The share of lower energy intensity electric arc furnace production in each country was a key determinant of total steel sector energy efficiency. Overall steel sector structure, in terms of average plant vintage and production capacity, is also an important variable though data were not available to quantify this in a scenario. The methodology developed in this report, along with the accompanying quantitative and qualitative analyses, provides a foundation for comparative international assessment of steel sector energy intensity.

Hasanbeigi, Ali; Price, Lynn; Aden, Nathaniel; Chunxia, Zhang; Xiuping, Li; Fangqin, Shangguan

2011-06-15T23:59:59.000Z

291

VEE-0080 - In the Matter of Potter Oil Co., Inc. | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

VEE-0080 - In the Matter of Potter Oil Co., Inc. VEE-0080 - In the Matter of Potter Oil Co., Inc. VEE-0080 - In the Matter of Potter Oil Co., Inc. On April 18, 2001, Potter Oil Co., Inc. (Potter) filed an Application for Exception with the Office of Hearings and Appeals of the Department of Energy. In its Application, Potter requests that it be relieved of the requirement that it file the Energy Information Administration's (EIA) form entitled "Resellers'/Retailers' Monthly Petroleum Product Sales Report" (Form EIA-782B). As explained below, we have determined that the Application for Exception should be denied. vee0080.pdf More Documents & Publications VEE-0016 - In the Matter of Heller & Sons Distributing, Inc. VEE-0032 - In the Matter of Thomas Oil Company VEE-0039 - In the Matter of Froman Oil Company

292

New Zealand Energy Data: Oil Consumption by Fuel and Sector | OpenEI  

Open Energy Info (EERE)

Oil Consumption by Fuel and Sector Oil Consumption by Fuel and Sector Dataset Summary Description The New Zealand Ministry of Economic Development publishes energy data including many datasets related to oil and other petroleum products. Included here are two oil consumption datasets: quarterly petrol consumption by sector (agriculture, forestry and fishing; industrial; commercial; residential; transport industry; and international transport), from 1974 to 2010; and oil consumption by fuel type (petrol, diesel, fuel oil, aviation fuels, LPG, and other), also for the years 1974 through 2010. The full 2010 Energy Data File is available: http://www.med.govt.nz/upload/73585/EDF%202010.pdf. Source New Zealand Ministry of Economic Development Date Released Unknown Date Updated July 02nd, 2010 (4 years ago)

293

LEE-0138 - In the Matter of O'Brian Oil Company | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LEE-0138 - In the Matter of O'Brian Oil Company LEE-0138 - In the Matter of O'Brian Oil Company LEE-0138 - In the Matter of O'Brian Oil Company On July 18, 1994 and November 22, 1995, O'Brian Oil Company (O'Brian) of Shellsburg, Iowa, filed Applications for Exception with the Office of Hearings and Appeals of the Department of Energy. In its Applications, O'Brian requests that it be relieved of the requirement that it file the Energy Information Administration's (EIA) form entitled "Resellers'/Retailers' Monthly Petroleum Product Sales Report" (Form EIA-782B). As explained below, we have determined that the Applications for Exception should be denied. LEE-0138 More Documents & Publications VEE-0013 - In the Matter of O'Brian Oil Company VEE-0081 - In the Matter of North Side Coal & Oil Co., Inc.

294

Assumptions to the Annual Energy Outlook - Oil and Gas Supply Module  

Gasoline and Diesel Fuel Update (EIA)

Oil and Gas Supply Module Oil and Gas Supply Module Assumption to the Annual Energy Outlook Oil and Gas Supply Module Figure 7. Oil and Gas Supply Model Regions. Having problems, call our National Energy Information Center at 202-586-8800 for help. Table 50. Crude Oil Technically Recoverable Resources (Billion barrels) Printer Friendly Version Crude Oil Resource Category As of January 1, 2002 Undiscovered 56.02 Onshore 19.33 Northeast 1.47 Gulf Coast 4.76 Midcontinent 1.12 Southwest 3.25 Rocky Moutain 5.73 West Coast 3.00 Offshore 36.69 Deep (>200 meter W.D.) 35.01 Shallow (0-200 meter W.D.) 1.69 Inferred Reserves 49.14 Onshore 37.78 Northeast 0.79 Gulf Coast 0.80 Midcontinent 3.73 Southwest 14.61 Rocky Mountain 9.91 West Coast 7.94

295

VEE-0013 - In the Matter of O'Brian Oil Company | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

VEE-0013 - In the Matter of O'Brian Oil Company VEE-0013 - In the Matter of O'Brian Oil Company VEE-0013 - In the Matter of O'Brian Oil Company On July 18, 1994 and November 22, 1995, O'Brian Oil Company (O'Brian) of Shellsburg, Iowa, filed Applications for Exception with the Office of Hearings and Appeals of the Department of Energy. In its Applications, O'Brian requests that it be relieved of the requirement that it file the Energy Information Administration's (EIA) form entitled "Resellers'/Retailers' Monthly Petroleum Product Sales Report" (Form EIA-782B). As explained below, we have determined that the Applications for Exception should be denied. vee0013.pdf More Documents & Publications LEE-0138 - In the Matter of O'Brian Oil Company VEE-0081 - In the Matter of North Side Coal & Oil Co., Inc.

296

LEE-0163 - In the Matter of Pierce Oil Co., Inc. | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LEE-0163 - In the Matter of Pierce Oil Co., Inc. LEE-0163 - In the Matter of Pierce Oil Co., Inc. LEE-0163 - In the Matter of Pierce Oil Co., Inc. On September 20, 1994, Pierce Oil Co., Inc. (Pierce) of Price, Utah, filed an Application for Exception with the Office of Hearings and Appeals of the Department of Energy. In its Application, Pierce requests that it be relieved of the requirement that it file the Energy Information Administration's (EIA) form entitled "Resellers'/Retailers' Monthly Petroleum Product Sales Report" (Form EIA-782B). As explained below, we have determined that the Application for Exception should be denied. lee0163.pdf More Documents & Publications OHA EIA CASES ARCHIVE FILE VEE-0030 - In the Matter of Lee Oil Company VEE-0081 - In the Matter of North Side Coal & Oil Co., Inc.

297

VEE-0021 - In the Matter of Jacobs Oil Company | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

VEE-0021 - In the Matter of Jacobs Oil Company VEE-0021 - In the Matter of Jacobs Oil Company VEE-0021 - In the Matter of Jacobs Oil Company On August 16, 1996 Jacobs Oil Company (Jacobs) of Dysart, Pennsylvania filed an Application for Exception with the Office of Hearings and Appeals (OHA) of the Department of Energy (DOE). In its Application, Jacobs requests that it be relieved of the requirement that it file the Energy Information Administration's (EIA) form entitled "Resellers'/Retailers' Monthly Petroleum Product Sales Report" (Form EIA-782B). As explained below, we have determined that the Application for Exception should be denied. vee0021.pdf More Documents & Publications VEE-0081 - In the Matter of North Side Coal & Oil Co., Inc. VEE-0067 - In the Matter of M.L. Halle Oil Service, Inc.

298

VEE-0039 - In the Matter of Froman Oil Company | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9 - In the Matter of Froman Oil Company 9 - In the Matter of Froman Oil Company VEE-0039 - In the Matter of Froman Oil Company On February 11, 1997, Froman Oil Company (Froman) filed an Application for Exception with the Office of Hearings and Appeals of the Department of Energy. In its Application, Froman requests that it be relieved of the requirement that it file the Energy Information Administration's (EIA) form entitled "Resellers'/Retailers' Monthly Petroleum Product Sales Report" (Form EIA-782B). As explained below, we have determined that the Application for Exception should be denied. vee0039.pdf More Documents & Publications VEE-0080 - In the Matter of Potter Oil Co., Inc. VEE-0032 - In the Matter of Thomas Oil Company VEE-0016 - In the Matter of Heller & Sons Distributing

299

In-situ determination of energy species yields of intense particle beams  

DOE Patents (OSTI)

An arrangement is provided for the in-situ determination of energy species yields of intense particle beams. The beam is directed onto a target surface of known composition, such that Rutherford backscattering of the beam occurs. The yield-energy characteristic response of the beam to backscattering from the target is analyzed using Rutherford backscattering techniques to determine the yields of energy species components of the beam.

Kugel, Henry W. (Somerset, NJ); Kaita, Robert (Englishtown, NJ)

1987-01-01T23:59:59.000Z

300

Republic of Iraq - Ministry of Oil | Open Energy Information  

Open Energy Info (EERE)

Republic of Iraq - Ministry of Oil Republic of Iraq - Ministry of Oil Jump to: navigation, search Logo: Republic of Iraq - Ministry of Oil Country Iraq Name Republic of Iraq - Ministry of Oil Address Oil Complex Building Port Saeed Street City Baghdad Website http://www.oil.gov.iq/ Coordinates 33.3157°, 44.3922° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.3157,"lon":44.3922,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "oil energy intensity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Oil and Gas Production (Missouri) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Production (Missouri) Production (Missouri) Oil and Gas Production (Missouri) < Back Eligibility Agricultural Commercial Construction Fed. Government Industrial Institutional Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative State/Provincial Govt Tribal Government Utility Program Info State Missouri Program Type Siting and Permitting Provider Missouri Department of Natural Resources A State Oil and Gas Council regulates and oversees oil and gas production in Missouri, and conducts a biennial review of relevant rules and regulations. The waste of oil and gas is prohibited. This legislation contains additional information about the permitting, establishment, and operation of oil and gas wells, while additional regulations address oil and gas drilling and production and well spacing and unitization

302

Growing Energy- How Biofuels Can Help End America's Oil Dependence  

Energy.gov (U.S. Department of Energy (DOE))

America's oil dependence threatens our national security, economy, and environment. We consume 25 percent of the world's total oil production, but we have 3 percent of its known reserves. We spend tens of billions of dollars each year to import oil from some of the most unstable regions of the world. This costly habit endangers our health: America's cars, trucks, and buses account for 27 percent of U.S. global warming pollution, as well as soot and smog that damage human lungs.

303

Energy intensities and CO2 emissions in Catalonia: a SAM analysis  

Science Journals Connector (OSTI)

In this paper, we estimate sectoral energy intensities and CO2 emissions for the Catalonian economy. In order to evaluate energy intensities, we use the SAM (Social Accounting Matrix) multiplier analysis applied to a SAM of the economy. CO2 emissions are estimated by means of the Leontief input-output submodel of the SAM, together with a table of coefficients of emissions per unit of monetary expenditures. This new methodology allows us to dispense with energy input-output tables for the base period. Our results are of the same order of magnitude as others obtained by physical measurement methods. We also simulate how changes in demand and energy energy efficiency parameters may affect CO2 emissions for the economy.

Antonio Manresa; Ferran Sancho

2004-01-01T23:59:59.000Z

304

Department of Energy Announces Two Additional Loans of Oil from the  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Two Additional Loans of Oil from the Two Additional Loans of Oil from the Strategic Petroleum Reserve Department of Energy Announces Two Additional Loans of Oil from the Strategic Petroleum Reserve September 2, 2005 - 9:43am Addthis WASHINGTON, D.C. - Secretary of Energy Samuel W. Bodman announced today that the Department of Energy has approved two additional loans of crude oil from the Strategic Petroleum Reserve (SPR). "We are committed to doing everything in our power to meet the immediate needs of those directly affected by Hurricane Katrina. By utilizing the resources from the Strategic Petroleum Reserve, we will help minimize any potential supply disruptions as a result of the hurricane. With the Reserve fully operational, we will be able to start delivering this oil as soon as tomorrow," Secretary Bodman said. "In addition, we are continuing to review

305

Department of Energy Announces Second Loan of Oil from the Strategic  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Second Loan of Oil from the Second Loan of Oil from the Strategic Petroleum Reserve Department of Energy Announces Second Loan of Oil from the Strategic Petroleum Reserve September 1, 2005 - 9:41am Addthis WASHINGTON, D.C. - Secretary of Energy Samuel W. Bodman announced today that the Department of Energy has approved an additional loan request of one million barrels of crude oil from the Strategic Petroleum Reserve (SPR). "We are committed to doing everything in our power to meet the immediate needs of those directly affected by Hurricane Katrina. By utilizing the resources from the Strategic Petroleum Reserve, we will help minimize any potential supply disruptions as a result of the hurricane. With the Reserve fully operational, we will be able to start delivering this oil as soon as

306

Department of Energy Announces Loan of Oil from the Strategic Petroleum  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Loan of Oil from the Strategic Loan of Oil from the Strategic Petroleum Reserve Department of Energy Announces Loan of Oil from the Strategic Petroleum Reserve September 1, 2005 - 9:03am Addthis WASHINGTON, D.C. - Secretary of Energy Samuel W. Bodman announced today that the Department of Energy has approved a request for a loan of 6 million barrels of crude oil from the Strategic Petroleum Reserve (SPR). "We are committed to doing everything in our power to meet the immediate needs of those directly affected by Hurricane Katrina. By utilizing the resources from the Strategic Petroleum Reserve, we will help minimize any potential supply disruptions as a result of the hurricane. With the Reserve fully operational, we will be able to start delivering this oil as soon as tomorrow," Secretary Bodman said. "In addition, we are continuing to review

307

The Faces of Energy: Richard Kauffman's Journey From The Oil Crisis to  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Faces of Energy: Richard Kauffman's Journey From The Oil Crisis The Faces of Energy: Richard Kauffman's Journey From The Oil Crisis to Clean Tech The Faces of Energy: Richard Kauffman's Journey From The Oil Crisis to Clean Tech September 22, 2011 - 12:26pm Addthis Richard Kauffman has recently joined the Energy Department as a Senior Advisor and is one of the country's leading experts on private sector investment in clean energy. Photo Credit: Quentin Kruger, Department of Energy Richard Kauffman has recently joined the Energy Department as a Senior Advisor and is one of the country's leading experts on private sector investment in clean energy. Photo Credit: Quentin Kruger, Department of Energy Karissa Marcum Public Affairs Specialist, Office of Public Affairs "For me this is my opportunity to serve. My hope is that I will bring

308

Oil or Hazardous Spills Releases Law (Georgia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oil or Hazardous Spills Releases Law (Georgia) Oil or Hazardous Spills Releases Law (Georgia) Oil or Hazardous Spills Releases Law (Georgia) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Program Info State Georgia Program Type Environmental Regulations Safety and Operational Guidelines Provider Georgia Department of Natural Resources The Oil or Hazardous Spills Law requires notice to the Environmental

309

State Oil and Gas Boards | Open Energy Information  

Open Energy Info (EERE)

Boards Boards Jump to: navigation, search State Oil and Gas Board and Commission sites are related to oil and gas production, well sites, and any other relevant data and information. The Interstate Oil and Gas Compact Commission is a multi-state government agency that promotes the quality of life for all Americans. This list is where information for OpenEI pages is held, and also, in most cases, where oil and gas data can be derived, open to the public. In many cases, EIA may hold the data related to Oil and Gas. Also, some datasets may only contain a state report pdf, in which case the data would need to be pulled out of the pdf and put into an excel or xml. Here are the states: State link Information Contact info Alabama Alabama Oil and Gas Board The State Oil and Gas Board of Alabama is a regulatory agency of the State of Alabama with the statutory charge of preventing waste and promoting the conservation of oil and gas while ensuring the protection of both the environment and the correlative rights of owners. The Board is granted broad authority in Alabama oil and gas conservation statutes to promulgate and enforce rules and regulations to ensure the conservation and proper development of Alabama's petroleum resources. 420 Hackberry Lane Tuscaloosa, AL 35401 205.349.2852

310

Oil's Impact on Our National Security | Department of Energy  

Office of Environmental Management (EM)

Schueler Former New Media Specialist, Office of Public Affairs Our dependence on foreign oil not only impacts hard working Americans at the pump, but it also compromises the...

311

FE Oil and Natural Gas News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June 20, 2012 Research Projects to Address Technical Challenges Facing Small Oil and Natural Gas Producers Selected by DOE for Further Development Nine new research projects aimed...

312

FE Oil and Natural Gas News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to newly released informational materials. July 19, 2011 Website Provides Data for Key Oil Play in North Dakota, Eastern Montana A new web-based geographic information system...

313

Energy security and crude oil in Atlantic Canada Larry Hughes, PhD  

E-Print Network (OSTI)

(oil products, natural gas, and electricity). This energy is then distributed for conversion February 2012 (Amends version of 31 January 2012) Overview Unlike most of Canada which uses natural gas for refining in Atlantic Canada is imported The majority of the region's crude oil suppliers (both domestic

Hughes, Larry

314

Energy (Oil and Gas) Exploration (and Development) on the U.S.  

E-Print Network (OSTI)

Energy (Oil and Gas) Exploration (and Development) on the U.S. Arctic Continental Shelf Jeff Walker Regional Supervisor, Field Operations Minerals Management Service, Alaska Region Jeffrey.walker@mms.gov 3rd of an Ice-Diminishing Arctic on Exploratory Activities Arctic nations will pursue oil and gas. Offshore

Kuligowski, Bob

315

Ris Energy Report 2 Biodiesel is produced from vegetable oils that have been  

E-Print Network (OSTI)

6.2 Risø Energy Report 2 Biodiesel is produced from vegetable oils that have been chemically (canola) oil with methanol. Biodiesel can be burned directly in diesel engines. Robert Diesel himself to producing low-cost biodiesel is to select clever blends of the cheapest feedstocks available, while main

316

The relationship between maximum tolerated light intensity and photoprotective energy dissipation in the photosynthetic antenna: chloroplast gains and losses  

Science Journals Connector (OSTI)

...tolerated light intensity and photoprotective energy dissipation in the photosynthetic antenna...photoinhibition by non-photochemical energy dissipation (NPQ) has been recently...membrane. protective non-photochemical energy dissipation|thylakoid membrane|photosystem...

2014-01-01T23:59:59.000Z

317

Innovative Techniques of Multiphase Flow in Pipeline System for Oil?Gas Gathering and Transportation with Energy?Saving and Emission?Reduction  

Science Journals Connector (OSTI)

Multiphase flow measurement desanding dehumidification and heat furnace are critical techniques for the oil and gas gathering and transportation which influnce intensively the energy?saving and emission?reduction in the petroleum industry. Some innovative techniques were developed for the first time by the present research team including an online recognation instrument of multiphase flow regime a water fraction instrument for multuphase flow a coiled tube desanding separator with low pressure loss and high efficiency a supersonic swirling natural gas dehumifier and a vacuum phase?change boiler. With an integration of the above techniques a new oil gas gathering and transpotation system was proposed which reduced the establishment of one metering station and several transfer stations compared with the tranditional system. The oil and gas mixture transpotation in single pipes was realized. The improved techniques were applied in the oilfields in China and promoted the productivity of the oilfields by low energy consumption low emissions high efficiency and great security.

Bofeng Bai; Liejin Guo; Shaojun Zhang; Ximin Zhang; Hanyang Gu

2010-01-01T23:59:59.000Z

318

VEE-0064 - In the Matter of Belcourt Oil Company | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

VEE-0064 - In the Matter of Belcourt Oil Company VEE-0064 - In the Matter of Belcourt Oil Company VEE-0064 - In the Matter of Belcourt Oil Company On July 23, 1999, Belcourt Oil Company (Belcourt) of Belcourt, North Dakota filed an Application for Exception with the Office of Hearings and Appeals (OHA) of the Department of Energy (DOE). In its Application, Belcourt requests that it be relieved of the requirement to file Form EIA-782B, entitled "Resellers/Retailers' Monthly Petroleum Product Sales Report" (Form EIA-782B). As explained below, we have determined that the Application for Exception should be denied. vee0064.pdf More Documents & Publications VEE-0086 - In the Matter of Jefferson City Oil Co., Inc. VEE-0067 - In the Matter of M.L. Halle Oil Service, Inc. VEE-0085 - In the Matter of Smith Brothers Gas Company

319

VEE-0066 - In the Matter of Taylor Oil Company | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

VEE-0066 - In the Matter of Taylor Oil Company VEE-0066 - In the Matter of Taylor Oil Company VEE-0066 - In the Matter of Taylor Oil Company On July 30, 1999, Taylor Oil Company (Taylor) of Somerville, New Jersey filed an Application for Exception with the Office of Hearings and Appeals (OHA) of the Department of Energy (DOE). In its Application, Taylor requests that it be relieved of the requirement to file Form EIA-782B, entitled "Resellers/Retailers' Monthly Petroleum Product Sales Report" (Form EIA-782B). As explained below, we have determined that the Application for Exception should be denied. vee0066.pdf More Documents & Publications VEE-0067 - In the Matter of M.L. Halle Oil Service, Inc. VEE-0085 - In the Matter of Smith Brothers Gas Company VEE-0030 - In the Matter of Lee Oil Company

320

Annual Energy Outlook with Projections to 2025-Market Trends - Oil and  

Gasoline and Diesel Fuel Update (EIA)

Oil and Natural Gas Oil and Natural Gas Index (click to jump links) Natural Gas Consumption and Prices Natural Gas Production Natural Gas Imports and Wellhead Prices Natural Gas Alternative Cases Oil Prices and Reserve Additions Oil Production Alaskan Oil Production and Oil Imports Petroleum Refining Refined Petroleum Products Natural Gas Consumption and Prices Projected Increases in Natural Gas Use Are Led by Electricity Generators Figure 85. Natural gas consumption by end-use sector, 1990-2025 (trillion cubic feet). Having problems, call our National Energy Information Center at 202-586-8800 for help. Figure data Total natural gas consumption is projected to increase from 2002 to 2025 in all the AEO2004 cases. The projections for domestic natural gas consumption in 2025 range from 29.1 trillion cubic feet per year in the low economic

Note: This page contains sample records for the topic "oil energy intensity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

File:BOEMRE OCS.oil.gas.2007-12.map.pdf | Open Energy Information  

Open Energy Info (EERE)

OCS.oil.gas.2007-12.map.pdf OCS.oil.gas.2007-12.map.pdf Jump to: navigation, search File File history File usage Outer Continental Shelf (OCS) Oil & Gas Leasing Program 2007 - 2012 Size of this preview: 700 × 600 pixels. Full resolution ‎(5,250 × 4,500 pixels, file size: 1.39 MB, MIME type: application/pdf) Description Outer Continental Shelf (OCS) Oil & Gas Leasing Program 2007 - 2012 Sources Bureau of Ocean Energy Management, Regulation and Enforcement (BOEMRE) Related Technologies Oil, Natural Gas Creation Date 2008-09-12 Extent Continental US plus Alaska Countries United States UN Region Northern America US Outer Continental Shelf (OCS) Oil & Gas Leasing Program 2007 - 2012. Includes Atlantic, Gulf of Mexico, Pacific and Alaska Regions.Shows existing leases, areas available for leasing, areas withdrawn from leasing,

322

Department of Energy Commercial Building Benchmarks (New Construction): Energy Use Intensities, May 5, 2009  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Benchmarks Benchmarks New Construction Energy Use Intensities (EUIs) [kBtu/ft 2 /yr] May 5, 2009 Miami Houston Phoenix Atlanta Los Angeles Las Vegas San Francisco Baltimore Albuquerque Seattle Chicago Denver Minneapolis Helena Duluth Fairbanks 2003 CBECS Avg. Climate Zone 1A 2A 2B 3A 3B 3B 3C 4A 4B 4C 5A 5B 6A 6B 7 8 Large Office 39 42 40 39 32 40 34 43 39 37 43 38 47 44 49 62 99 Medium Office 38 44 42 44 35 41 40 51 43 46 53 47 59 54 62 82 94 Small Office 46 48 49 46 36 44 38 53 47 47 61 52 70 62 77 110 80 Warehouse 15 15 15 16 14 16 14 18 17 16 21 20 26 23 27 43 48 Stand-alone Retail 48 46 46 41 34 41 35 45 42 40 48 45 54 51 61 88 70 Strip Mall 46 44 44 44 35 43 38 48 45 42 51 47 60 55 66 99 110 Primary School 65 71 69 69 57 65 71 78 68 65 85 74 99 88 107 147 68 Secondary School 69 74 74 73 50 68 67 87 72 72 99 81 117 101 128 181 80 Supermarket 161 171 161 175 155 162 171 191 174 186 206 188 224 209 240

323

Fuel Oil and Kerosene Sales - Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

Petrolem Reports Petrolem Reports Fuel Oil and Kerosene Sales With Data for 2012 | Release Date: November 15, 2013 | Next Release Date: November 2014 Previous Issues Year: 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 Go The Fuel Oil and Kerosene Sales 2012 report provides information, illustrations and State-level statistical data on end-use sales of kerosene; No.1, No. 2, and No. 4 distillate fuel oil; and residual fuel oil. State-level kerosene sales include volumes for residential, commercial, industrial, farm, and all other uses. State-level distillate sales include volumes for residential, commercial, industrial, oil company, railroad, vessel bunkering, military, electric utility, farm, on-highway, off-highway construction, and other uses. State-level residual fuel sales

324

Heating Oil and Propane Update - Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

all Petroleum Reports all Petroleum Reports Heating Oil and Propane Update Weekly heating oil and propane prices are only collected during the heating season, which extends from October through March. U.S. Heating Oil and Propane Prices Residential Heating Oil Graph. Residential Propane Graph. change from change from Heating Oil 12/16/2013 week ago year ago Propane 12/16/2013 week ago year ago Residential 3.952 values are down 0.004 values are down 0.008 Residential 2.712 values are up 0.091 values are up 0.469 Wholesale 3.074 values are down 0.063 values are not available NA Wholesale 1.637 values are up 0.113 values are not available NA Note: Price in dollars per gallon, excluding taxes. Values shown on the graph and corresponding data pages for the previous week may be revised to account for late submissions and corrections.

325

Regulation of Oil and Gas Resources (Florida) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Regulation of Oil and Gas Resources (Florida) Regulation of Oil and Gas Resources (Florida) Regulation of Oil and Gas Resources (Florida) < Back Eligibility Commercial Construction Developer Fed. Government Fuel Distributor Industrial Installer/Contractor Institutional Investor-Owned Utility Municipal/Public Utility Retail Supplier Rural Electric Cooperative Systems Integrator Transportation Utility Program Info State Florida Program Type Safety and Operational Guidelines Provider Florida Department of Environmental Protection It is the public policy of the state to conserve and control the natural resources of oil and gas, and their products; to prevent waste of oil and gas; to provide for the protection and adjustment of the rights of landowners, producers, and interested parties; and to safeguard the health,

326

Oil Overcharge Refund Cases 2004 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oil Overcharge Refund Cases 2004 Oil Overcharge Refund Cases 2004 Oil Overcharge Refund Cases 2004 During the period 1973 through 1981, the Federal government imposed price and allocation controls of crude oil and refined petroleum products, such as gasoline and heating oil. During that period and for many years afterwards, the DOE had an enforcement program. When a firm was found to have overcharged, the DOE generally required the firm to make refunds to its customers. However, because of the price controls in place at the time and the manner in which the petroleum industry operates, it was impossible for the DOE to determine in many cases who was injured by the overcharges. In those cases involving overcharges related to the price of refined petroleum products, the Office of Hearings and Appeals instituted claims

327

Oil and Gas Program (Tennessee) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oil and Gas Program (Tennessee) Oil and Gas Program (Tennessee) Oil and Gas Program (Tennessee) < Back Eligibility Commercial Construction Fuel Distributor General Public/Consumer Industrial Installer/Contractor Investor-Owned Utility Municipal/Public Utility Retail Supplier Rural Electric Cooperative Utility Program Info State Tennessee Program Type Environmental Regulations Siting and Permitting Provider Department Of Environment and Conservation The Oil and Gas section of the Tennessee Code, found in Title 60, covers all regulations, licenses, permits, and laws related to the production of natural gas. The laws create the Oil and Gas Board, composed of the commissioner of environment and conservation or the commissioner's designee, who shall act as chair, the designee of the commissioner of

328

VEE-0036 - In the Matter of Kalamazoo Oil Co. | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

36 - In the Matter of Kalamazoo Oil Co. 36 - In the Matter of Kalamazoo Oil Co. VEE-0036 - In the Matter of Kalamazoo Oil Co. On November 26, 1996, Kalamazoo Oil Co. (Kalamazoo), of Kalamazoo, Michigan, filed an Application for Exception with the Office of Hearings and Appeals of the Department of Energy. In its Application, Kalamazoo requests that it be relieved of the requirement that it file the Energy Information Administration's (EIA) form entitled "Resellers'/Retailers' Monthly Petroleum Product Sales Report" (Form EIA-782B). As explained below, we have determined that the Application for Exception should be denied. vee0036.pdf More Documents & Publications VEE-0026 - In the Matter of R.W. Hays Co. VEE-0081 - In the Matter of North Side Coal & Oil Co., Inc. VEE-0085 - In the Matter of Smith Brothers Gas Company

329

LEE-0152 - In the Matter of Sound Oil Company | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LEE-0152 - In the Matter of Sound Oil Company LEE-0152 - In the Matter of Sound Oil Company LEE-0152 - In the Matter of Sound Oil Company On August 16, 1994, Sound Oil Company (Sound) of Seattle Washington, filed an Application for Exception with the Office of Hearings and Appeals of the Department of Energy. In its Application, Sound requests that it be relieved of the requirement that it file the Energy Information Administration's (EIA) form entitled "Resellers'/Retailers' Monthly Petroleum Product Sales Report" (Form EIA-782B). As explained below, we have determined that the Application for Exception should be denied. lee0152.pdf More Documents & Publications OHA EIA CASES ARCHIVE FILE TEE-0068 - In the Matter of Bowlin Travel Centers, Inc. VEE-0030 - In the Matter of Lee Oil Company

330

VEE-0030 - In the Matter of Lee Oil Company | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

30 - In the Matter of Lee Oil Company 30 - In the Matter of Lee Oil Company VEE-0030 - In the Matter of Lee Oil Company On July 19, 1996, Lee Oil Company (Lee), located in Greensboro, North Carolina, filed an Application for Exception with the Office of Hearings and Appeals (OHA) of the Department of Energy. In its Application, Lee requests that it be relieved of the requirement that it file the Energy Information Administration's (EIA) form entitled "Resellers'/Retailers' Monthly Petroleum Product Sales Report" (Form EIA-782B). As explained below, we have determined that the Application for Exception should be granted. vee0030.pdf More Documents & Publications VEE-0026 - In the Matter of R.W. Hays Co. VEE-0017 - In the Matter of Visa Petroleum, Inc. VEE-0021 - In the Matter of Jacobs Oil Company

331

VEE-0056 - In the Matter of Stacey Oil Co. | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

56 - In the Matter of Stacey Oil Co. 56 - In the Matter of Stacey Oil Co. VEE-0056 - In the Matter of Stacey Oil Co. On April 2, 1999, Stacey Oil Co. (Stacey), of Whitefish, Montana, filed an Application for Exception with the Office of Hearings and Appeals of the Department of Energy. In its Application, Stacey requests that it be relieved of the requirement that it file the Energy Information Administration's (EIA) form entitled "Resellers'/Retailers' Monthly Petroleum Product Sales Report" (Form EIA- 782B). As explained below, we have determined that the Application for Exception should be granted for a temporary period. vee0056.pdf More Documents & Publications VEE-0026 - In the Matter of R.W. Hays Co. VEE-0036 - In the Matter of Kalamazoo Oil Co. VEE-0059 - In the Matter of XXXX

332

Energy Department Launches Public-Private Initiative to Help Oil and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Public-Private Initiative to Help Oil Public-Private Initiative to Help Oil and Natural Gas Industry Strengthen Its Cybersecurity Capabilities Energy Department Launches Public-Private Initiative to Help Oil and Natural Gas Industry Strengthen Its Cybersecurity Capabilities June 27, 2013 - 3:19pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - As part of the Obama Administration's commitment to protecting America's critical energy infrastructure, U.S. Energy Secretary Ernest Moniz today announced a new public-private partnership to strengthen protection of the nation's oil and natural gas infrastructure from cyber attacks. Led by the Energy Department in collaboration with industry experts, the Department of Homeland Security, and other stakeholders, the initiative will create a tool that allows owners and

333

California and New Mexico: Sapphire Energy Advances the Commercialization of Algae Crude Oil  

Office of Energy Efficiency and Renewable Energy (EERE)

The Sapphire Green Crude Farm is the first algae-to-energy facility. If adopted and commercialized by other refineries, this algae-based crude oil is a viable “green” alternative fuel option.

334

Smart Grid as a Driver for Energy-Intensive Industries: A Data Center Case  

NLE Websites -- All DOE Office Websites (Extended Search)

Smart Grid as a Driver for Energy-Intensive Industries: A Data Center Case Smart Grid as a Driver for Energy-Intensive Industries: A Data Center Case Study Title Smart Grid as a Driver for Energy-Intensive Industries: A Data Center Case Study Publication Type Conference Paper LBNL Report Number LBNL-6104E Year of Publication 2012 Authors Ganti, Venkata, and Girish Ghatikar Conference Name Grid-Interop 2012 Date Published 12/2012 Conference Location Irving, TX Keywords data centers, market sectors, technologies Abstract The Smart Grid facilitates integration of supply- and demand-side services, allowing the end-use loads to be dynamic and respond to changes in electricity generation or meet localized grid needs. Expanding from previous work, this paper summarizes the results from field tests conducted to identify demand response opportunities in energy-intensive industrial facilities such as data centers. There is a significant opportunity for energy and peak-demand reduction in data centers as hardware and software technologies, sensing, and control methods can be closely integrated with the electric grid by means of demand response. The paper provides field test results by examining distributed and networked data center characteristics, end-use loads and control systems, and recommends opportunities and challenges for grid integration. The focus is on distributed data centers and how loads can be "migrated" geographically in response to changing grid supply (increase/decrease). In addition, it examines the enabling technologies and demand-response strategies of high performance computing data centers. The findings showed that the studied data centers provided average load shed of up to 10% with short response times and no operational impact. For commercial program participation, the load-shed strategies must be tightly integrated with data center automation tools to make them less resource-intensive.

335

Oil and Gas Conservation (South Dakota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Conservation (South Dakota) Conservation (South Dakota) Oil and Gas Conservation (South Dakota) < Back Eligibility Utility Fed. Government Commercial Investor-Owned Utility State/Provincial Govt Industrial Municipal/Public Utility Local Government Installer/Contractor Rural Electric Cooperative Tribal Government Program Info State South Dakota Program Type Siting and Permitting Provider South Dakota Department of Environment and Natural Resources The Minerals and Mining Program oversees the regulation of oil and gas exploration, recovery, and reclamation activities in South Dakota. Permits are required for drilling of oil or gas wells, and the SD Codified Laws contain provisions pertaining to well testing, classification, metering, operation, and spacing. Additional regulations are contained in the SD

336

Oil and Gas Conservation (Nebraska) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Conservation (Nebraska) Conservation (Nebraska) Oil and Gas Conservation (Nebraska) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Nebraska Program Type Siting and Permitting Provider Nebraska Oil and Gas Conservation Commission This section establishes the state's interest in encouraging the development, production, and utilization of natural gas and oil resources in a manner which will prevent waste and lead to the greatest ultimate

337

A multivariate analysis of the energy intensity of sprawl versus compact living in the U.S. for 2003  

E-Print Network (OSTI)

Household energy consumption Sprawl Compact living Energy impact We explore the energy intensity of sprawl versus compact living by analyzing the total energy requirements of U.S. households for the year 2003. The methods used are based on previous studies on energy cost of living. Total energy requirement

Vermont, University of

338

Laser-Energy Transfer and Enhancement of Plasma Waves and Electron Beams by Interfering High-Intensity Laser Pulses  

E-Print Network (OSTI)

Laser-Energy Transfer and Enhancement of Plasma Waves and Electron Beams by Interfering High-Intensity) The effects of interference due to crossed laser beams were studied experimentally in the high- intensity regime. Two ultrashort (400 fs), high-intensity (4 1017 and 1:6 1018 W=cm2) and 1 m wavelength laser

Umstadter, Donald

339

Energy-Efficiency Technologies and Benchmarking the Energy Intensity for the Textile Industry  

E-Print Network (OSTI)

Energy-Efficiency Technologies and Benchmarking the EnergyEnvironmental Energy Technologies Division Lawrence BerkeleyIsfahan University of Technology Mohamad Abdolrazaghi,

Hasanbeigi, Ali

2014-01-01T23:59:59.000Z

340

Energy use and energy intensity of the U.S. chemical industry  

E-Print Network (OSTI)

costs, fixed costs and ethylene price Purchased energy costsfeedstock and energy prices, ethylene yield (per unit ofof ethylene produced) and the generally higher energy prices

Worrell, Ernst; Phylipsen, Dian; Einstein, Dan; Martin, Nathan

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil energy intensity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Arizona Oil and Gas Commission | Open Energy Information  

Open Energy Info (EERE)

Oil and Gas Commission Oil and Gas Commission Jump to: navigation, search Logo: Arizona Oil and Gas Commission State Arizona Name Arizona Oil and Gas Commission Address 416 W. Congress Street, Suite 100 City, State Tucson, Arizona Zip 85701 Website http://www.azogcc.az.gov/ Coordinates 32.221642°, -110.977439° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.221642,"lon":-110.977439,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

342

Bio-Heating Oil Tax Credit (Personal) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bio-Heating Oil Tax Credit (Personal) Bio-Heating Oil Tax Credit (Personal) Bio-Heating Oil Tax Credit (Personal) < Back Eligibility Commercial Residential Savings Category Biofuels Alternative Fuel Vehicles Bioenergy Maximum Rebate $500 per year Program Info Start Date 01/01/2008 State Maryland Program Type Personal Tax Credit Rebate Amount $0.03/gallon of biodiesel Provider Revenue Administration Division Maryland allows individuals and corporations to take an income tax credit of $0.03/gallon for purchases of biodiesel used for space heating or water heating. The maximum credit is $500 per year. It may not be refunded or carried over to subsequent years. In order to qualify for the tax credit, the heating oil must be at least 5% biodiesel sourced from U.S. Environmental Protection Agency (EPA) approved feedstocks or be accepted

343

Bio-Heating Oil Tax Credit (Corporate) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bio-Heating Oil Tax Credit (Corporate) Bio-Heating Oil Tax Credit (Corporate) Bio-Heating Oil Tax Credit (Corporate) < Back Eligibility Commercial Industrial Savings Category Biofuels Alternative Fuel Vehicles Bioenergy Maximum Rebate $500 per year Program Info Start Date 01/01/2008 State Maryland Program Type Corporate Tax Credit Rebate Amount $0.03/gallon Provider Revenue Administration Division Maryland allows individuals and corporations to take an income tax credit of $0.03/gallon for purchases of biodiesel used for space heating or water heating. The maximum credit is $500 per year. It may not be refunded or carried over to subsequent years. In order to qualify for the tax credit, the heating oil must be at least 5% biodiesel sourced from U.S. Environmental Protection Agency (EPA) approved feedstocks or be accepted

344

Oil and Gas Wells: Regulatory Provisions (Kansas) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oil and Gas Wells: Regulatory Provisions (Kansas) Oil and Gas Wells: Regulatory Provisions (Kansas) Oil and Gas Wells: Regulatory Provisions (Kansas) < Back Eligibility Commercial Fuel Distributor Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State Kansas Program Type Environmental Regulations Provider Health and Environment It shall be unlawful for any person, firm or corporation having possession or control of any natural gas well, oil well or coalbed natural gas well, whether as a contractor, owner, lessee, agent or manager, to use or permit the use of gas by direct well pressure. Any person or persons, firm, company or corporation violating any of the provisions of this act shall be deemed guilty of a misdemeanor, and upon conviction shall be fined in any

345

Oil and Gas Field Code Master List - Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

Oil and Gas Field Code Master List Oil and Gas Field Code Master List With Data for 2012 | Release Date: May 8, 2013 | Next Release Date: April 2014 Previous Issues Year: 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1998 1997 1996 1995 Go Comprehensive listing of U.S. oil and gas field names. Oil and Gas Field Code Master List 2012 Definition of a Field Afield is defined as "an area consisting of a single reservoir ormultiple reservoirs all grouped on, or related to, the same individual geological structural feature and/or stratigraphic condition. There may be two or more reservoirs in a field which are separated vertically by intervening impervious strata, or laterally by local geologic barriers, or by both." More › About the Field Code Master List Related Links

346

Bahrain National Gas and Oil Authority | Open Energy Information  

Open Energy Info (EERE)

Bahrain National Gas and Oil Authority Bahrain National Gas and Oil Authority Jump to: navigation, search Logo: Bahrain National Gas and Oil Authority Country Bahrain Name Bahrain National Gas and Oil Authority Address 1435 Manama-Bahrain City Manama, Bahrain Website http://www.noga.gov.bh/en/defa Coordinates 26.231155°, 50.5705391° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.231155,"lon":50.5705391,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

347

Category:Federal Oil and Gas Statutes | Open Energy Information  

Open Energy Info (EERE)

Statutes Statutes Jump to: navigation, search Add a new Federal Oil and Gas Statute You need to have JavaScript enabled to view the interactive timeline. Further results for this query.DECADEFederal Oil and Gas Royalty Simplification and Fairness Act of 19961996-01-010Year: 1996 Federal Onshore Oil and Gas Leasing Reform Act of 1987 (FOOGLRA)1987-01-010Year: 1987 Federal Oil and Gas Royalty Management Act of 19821982-01-010Year: 1982 Indian Mineral Development Act of 19821982-01-010Year: 1982 Federal Land Policy and Management Act of 19761976-01-010Year: 1976 Mining and Minerals Policy Act of 19701970-01-010Year: 1970 Mineral Leasing Act for Acquired Lands of 19471947-01-010Year: 1947 Indian Mineral Leasing Act of 19381938-01-010Year: 1938 Mineral Leasing Act of 19201920-01-010Year: 1920

348

Abu Dhabi National Oil Company | Open Energy Information  

Open Energy Info (EERE)

Oil Company Oil Company Jump to: navigation, search Logo: Abu Dhabi National Oil Company Name Abu Dhabi National Oil Company Place Abu Year founded 1971 Phone number 971-2-6020000 Website http://www.adnoc.ae/default.as Coordinates 24.493064080334°, 54.370239274576° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":24.493064080334,"lon":54.370239274576,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

349

State of Kuwait Ministry of Oil | Open Energy Information  

Open Energy Info (EERE)

State of Kuwait Ministry of Oil State of Kuwait Ministry of Oil Jump to: navigation, search Logo: State of Kuwait Ministry of Oil Country Kuwait Name State of Kuwait Ministry of Oil City Kuwait City, Kuwait Website http://www.moo.gov.kw/ Coordinates 29.3697222°, 47.9783333° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.3697222,"lon":47.9783333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

350

West Virginia Office of Oil and Gas | Open Energy Information  

Open Energy Info (EERE)

Virginia Office of Oil and Gas Virginia Office of Oil and Gas Jump to: navigation, search State West Virginia Name West Virginia Office of Oil and Gas Address 601 57th Street, SE City, State Charleston, West Virginia Zip 25304-2345 Website http://www.dep.wv.gov/oil-and- Coordinates 38.31256°, -81.570616° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.31256,"lon":-81.570616,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

351

Methods of Managing Water in Oil Shale Development - Energy Innovation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Methods of Managing Water in Oil Shale Development Colorado School of Mines Contact CSM About This Technology Technology Marketing SummaryThis invention is a system and method of...

352

Modeling of Energy Production Decisions: An Alaska Oil Case Study  

E-Print Network (OSTI)

TCF) of proven natural gas reserves and over 100 TCF ofTCF) of known natural gas reserves on the North Slope tothe oil reserve while others are above the gas cap. For

Leighty, Wayne

2008-01-01T23:59:59.000Z

353

Oman Ministry of Oil and Gas | Open Energy Information  

Open Energy Info (EERE)

Oman Ministry of Oil and Gas Oman Ministry of Oil and Gas Jump to: navigation, search Logo: Oman Ministry of Oil and Gas Country Oman Name Oman Ministry of Oil and Gas Address Al-Khuwair, Ministry Streets, Opposite Sultan Qaboos Street City Muscat Website http://www.mog.gov.om/english/ Coordinates 23.6138199°, 58.5922413° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":23.6138199,"lon":58.5922413,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

354

Category:Federal Oil and Gas Regulations | Open Energy Information  

Open Energy Info (EERE)

Add a new Federal Oil and Gas Regulation This category currently contains no pages or media. Retrieved from "http:en.openei.orgwindex.php?titleCategory:FederalOilandGasReg...

355

Form:Oil and Gas Company | Open Energy Information  

Open Energy Info (EERE)

Oil and Gas Company" form. To create a page with this form, enter the page name below; if a page with that name already exists, you will be sent to a form to edit that page. Create...

356

Department of Energy Announces Third Loan of Oil from the Strategic  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Third Loan of Oil from the Strategic Third Loan of Oil from the Strategic Petroleum Reserve Department of Energy Announces Third Loan of Oil from the Strategic Petroleum Reserve September 1, 2005 - 9:42am Addthis WASHINGTON, D.C. - Secretary of Energy Samuel W. Bodman announced today that the Department of Energy has approved another loan request of 1.5 million barrels of crude from the Strategic Petroleum Reserve (SPR). "We are committed to doing everything in our power to meet the immediate needs of those directly affected by Hurricane Katrina. By utilizing the resources from the Strategic Petroleum Reserve, we will help minimize any potential supply disruptions as a result of the hurricane. With the Reserve fully operational, we will be able to start delivering this oil as soon as tomorrow," Secretary Bodman said. "In addition, we are continuing to review

357

A Comprehensive System of Energy Intensity Indicators for the U.S.: Methods, Data and Key Trends  

SciTech Connect

This report describes a comprehensive system of energy intensity indicators for the United States that has been developed for the Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) over the past decade. This system of indicators is hierarchical in nature, beginning with detailed indexes of energy intensity for various sectors of the economy, which are ultimately aggregated to an overall energy intensity index for the economy as a whole. The aggregation of energy intensity indexes to higher levels in the hierarchy is performed with a version of the Log Mean Divisia Index (LMDI) method. Based upon the data and methods in the system of indicators, the economy-wide energy intensity index shows a decline of about 14% in 2010 relative to a 1985 base year. Discussion of energy intensity indicators for each of the broad end-use sectors of the economy—residential, commercial, industrial, and transportation—is presented in the report. An analysis of recent changes in the efficiency of electricity generation in the U.S. is also included. A detailed appendix describes the data sources and methodology behind the energy intensity indicators for each sector.

Belzer, David B.

2014-08-31T23:59:59.000Z

358

Analyzing intramolecular vibrational energy redistribution via the overlap intensity-level velocity correlator  

E-Print Network (OSTI)

Numerous experimental and theoretical studies have established that intramolecular vibrational energy redistribution (IVR) in isolated molecules has a heirarchical tier structure. The tier structure implies strong correlations between the energy level motions of a quantum system and its intensity-weighted spectrum. A measure, which explicitly accounts for this correaltion, was first introduced by one of us as a sensitive probe of phase space localization. It correlates eigenlevel velocities with the overlap intensities between the eigenstates and some localized state of interest. A semiclassical theory for the correlation is developed for systems that are classically integrable and complements earlier work focusing exclusively on the chaotic case. Application to a model two dimensional effective spectroscopic Hamiltonian shows that the correlation measure can provide information about the terms in the molecular Hamiltonian which play an important role in an energy range of interest and the character of the dynamics. Moreover, the correlation function is capable of highlighting relevant phase space structures including the local resonance features associated with a specific bright state. In addition to being ideally suited for multidimensional systems with a large density of states, the measure can also be used to gain insights into the phase space transport and localization. It is argued that the overlap intensity-level velocity correlation function provides a novel way of studying vibrational energy redistribution in isolated molecules. The correlation function is ideally suited to analyzing the parametric spectra of molecules in external fields.

Srihari Keshavamurthy; Nicholas R. Cerruti; Steven Tomsovic

2002-02-02T23:59:59.000Z

359

Comparison Study of Energy Intensity in the Textile Industry: A Case Study in Five Textile Sub-sectors  

E-Print Network (OSTI)

This paper contributes to the understanding of energy use in the textile industry by comparing the energy intensity of textile plants in five major sub-sectors, i.e. spinning, weaving, wet-processing, worsted fabric manufacturing, and carpet...

Hasanbeigi, A.; Hasanabadi, A.; Abdorrazaghi, M.

2011-01-01T23:59:59.000Z

360

Exploring the Effect of Inter-Stop Transport Distances on Traction Energy Cost Intensities of Freight Trains  

Science Journals Connector (OSTI)

With a computer-aided simulation approach, this research analyzes the change of the traction energy cost intensity of a typically formed Chinese freight ... than 20.00 km to decrease the traction energy cost per ...

Xuesong Feng; Haidong Liu; Keqi Wu

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil energy intensity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Arctic Oil and Natural Gas Potential Philip Budzik U.S. Energy Information Administration  

Gasoline and Diesel Fuel Update (EIA)

Arctic Oil and Natural Gas Potential Arctic Oil and Natural Gas Potential Philip Budzik U.S. Energy Information Administration Office of Integrated Analysis and Forecasting Oil and Gas Division October, 2009 Introduction The Arctic is defined as the Northern hemisphere region located north of the Arctic Circle, the circle of latitude where sunlight is uniquely present or absent for 24 continuous hours on the summer and winter solstices, respectively. The Arctic Circle spans the globe at 66.56° (66°34') north latitude (Figure 1). 1 The Arctic could hold about 22 percent of the world's undiscovered conventional oil and natural gas resources. The prospects for Arctic oil and natural gas production are discussed taking into consideration the nature of the resources, the cost of developing them, and the

362

Guidance for Requesting Emergency Oil from the SPR | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services » Petroleum Reserves » Strategic Petroleum Reserve » Services » Petroleum Reserves » Strategic Petroleum Reserve » Guidance for Requesting Emergency Oil from the SPR Guidance for Requesting Emergency Oil from the SPR If hurricanes or other unexpected physical conditions disrupt either crude oil imports or domestic production, the Strategic Petroleum Reserve (SPR) is ready to make replacement oil available to the extent approved by the President and/or the Secretary of Energy. This section provides SPR contacts and guidance for requesting emergency assistance, should physical events impede your supplies and no immediate supply alternatives remain. The SPR will be available to enter into emergency time exchanges to provide replacement crude oil until delivery of alternative barrels can be secured. SPR Contacts

363

25. anniversary of the 1973 oil embargo: Energy trends since the first major U.S. energy crisis  

SciTech Connect

The purpose of this publication is not to assess the causes of the 1973 energy crisis or the measures that were adopted to resolve it. The intent is to present some data on which such analyses can be based. Many of the trends presented here fall into two distinct periods. From 1973 to the mid-1980`s, prices continued at very high levels, in part because of a second oil shock in 1979--80. During this period, rapid progress was made in raising American oil production, reducing dependence on oil imports, and improving end-use efficiency. After the oil price collapse of the mid-1980`s, however, prices retreated to more moderate levels, the pace of efficiency gains slowed, American oil production fell, and the share of imports rose. 30 figs.

NONE

1998-08-01T23:59:59.000Z

364

EIA - International Energy Outlook 2008-Defining the Limits of Oil  

Gasoline and Diesel Fuel Update (EIA)

Defining the Limits of Oil Production Defining the Limits of Oil Production Preparing mid-term projections of oil production requires an assessment of the availability of resources to meet production requirements, particularly for the later years of the 2005-2030 projection period in IEO2008. The IEO2008 oil production projections were limited by three factors: the estimated quantity of petroleum in place before production begins (“petroleum-initially-in-place” or IIP), the percentage of IIP extracted over the life of a field (ultimate recovery factor), and the amount of oil that can be produced from a field in a single year as a function of its remaining reserves. Total IIP resources are the quantities of petroleum—both conventional and unconventional—estimated to exist originally in naturally occurring accumulations.a IIP resources are those quantities of petroleum which are estimated, on a given date, to be contained in known accumulations, plus those quantities already produced, as well as those estimated quantities in accumulations yet to be discovered. The estimate of IIP resources includes both recoverable and unrecoverable resources.

365

2011 Intensity -1 INTENSITY OF SOUND  

E-Print Network (OSTI)

the rate at which energy is passing a certain point. This concept involves sound intensity. Consider the sound intensity. Recall the time rate of energy transfer is called "power". Thus, sound intensity2011 Intensity - 1 INTENSITY OF SOUND The objectives of this experiment are: · To understand

Glashausser, Charles

366

Baryon Acoustic Oscillation Intensity Mapping as a Test of Dark Energy  

E-Print Network (OSTI)

The expansion of the universe appears to be accelerating, and the mysterious anti-gravity agent of this acceleration has been called ``dark energy''. To measure the dynamics of dark energy, Baryon Acoustic Oscillations (BAO) can be used. Previous discussions of the BAO dark energy test have focused on direct measurements of redshifts of as many as $10^9$ individual galaxies, by observing the 21cm line or by detecting optical emission. Here we show how the study of acoustic oscillation in the 21 cm brightness can be accomplished by economical three dimensional intensity mapping. If our estimates gain acceptance they may be the starting point for a new class of dark energy experiments dedicated to large angular scale mapping of the radio sky, shedding light on dark energy.

Tzu-Ching Chang; Ue-Li Pen; Jeffrey B. Peterson; Patrick McDonald

2008-01-27T23:59:59.000Z

367

The relationship between energy intensity and income levels: Forecasting long term energy demand in Asian emerging countries  

SciTech Connect

This paper analyzes long-term trends in energy intensity for ten Asian emerging countries to test for a non-monotonic relationship between energy intensity and income in the author's sample. Energy demand functions are estimated during 1973--1990 using a quadratic function of log income. The long-run coefficient on squared income is found to be negative and significant, indicating a change in trend of energy intensity. The estimates are then used to evaluate a medium-term forecast of energy demand in the Asian countries, using both a log-linear and a quadratic model. It is found that in medium to high income countries the quadratic model performs better than the log-linear, with an average error of 9% against 43% in 1995. For the region as a whole, the quadratic model appears more adequate with a forecast error of 16% against 28% in 1995. These results are consistent with a process of dematerialization, which occurs as a result of a reduction of resource use per unit of GDP once an economy passes some threshold level of GDP per capita.

Galli, R. (Birkbeck Coll., London (United Kingdom) Univ. della Svizzera Italiana, Lugano (Switzerland). Facolta di Scienze Economiche)

1998-01-01T23:59:59.000Z

368

Energy Use Intensity and its Influence on the Integrated Daylighting Design of a Large Net Zero Energy Building: Preprint  

NLE Websites -- All DOE Office Websites (Extended Search)

Use Intensity and its Use Intensity and its Influence on the Integrated Daylighting Design of a Large Net Zero Energy Building Preprint Rob Guglielmetti, Jennifer Scheib, Shanti D. Pless, and Paul Torcellini National Renewable Energy Laboratory Rachel Petro RNL Design Presented at the ASHRAE Winter Conference Las Vegas, Nevada January 29 - February 2, 2011 Conference Paper NREL/CP-5500-49103 March 2011 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No. DE-AC36-08GO28308. Accordingly, the US Government and Alliance retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes.

369

Mississippi State Oil and Gas Board | Open Energy Information  

Open Energy Info (EERE)

Oil and Gas Board Oil and Gas Board Jump to: navigation, search State Mississippi Name Mississippi State Oil and Gas Board Address 500 Greymont Ave., Suite E City, State Jackson, MS Zip 39202-3446 Website http://www.ogb.state.ms.us/ Coordinates 32.304339°, -90.169735° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.304339,"lon":-90.169735,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

370

Railroad Commission of Texas, Oil and Gas Division | Open Energy  

Open Energy Info (EERE)

Railroad Commission of Texas, Oil and Gas Division Railroad Commission of Texas, Oil and Gas Division Jump to: navigation, search State Texas Name Texas Railroad Commission, Oil and Gas Division Address 1701 N. Congress City, State Austin, Texas Zip 78711-2967 Website http://www.rrc.state.tx.us/dat Coordinates 30.2759689°, -97.7359951° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.2759689,"lon":-97.7359951,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

371

Pennsylvania Bureau of Oil and Gas Management | Open Energy Information  

Open Energy Info (EERE)

Bureau of Oil and Gas Management Bureau of Oil and Gas Management Jump to: navigation, search State Pennsylvania Name Pennsylvania Bureau of Oil and Gas Management Address Rachel Carson State Office Building City, State Harrisburg, PA Zip 17105-8765 Website http://www.dep.state.pa.us/dep Coordinates 40.267244°, -76.886214° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.267244,"lon":-76.886214,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

372

Oil Overcharge Refund Cases 1998 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 8 Oil Overcharge Refund Cases 1998 During the period 1973 through 1981, the Federal government imposed price and allocation controls of crude oil and refined petroleum products, such as gasoline and heating oil. During that period and for many years afterwards, the DOE had an enforcement program. When a firm was found to have overcharged, the DOE generally required the firm to make refunds to its customers. However, because of the price controls in place at the time and the manner in which the petroleum industry operates, it was impossible for the DOE to determine in many cases who was injured by the overcharges. In those cases involving overcharges related to the price of refined petroleum products, the Office of Hearings and Appeals instituted claims

373

Oil Overcharge Refund Cases 2001 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 1 Oil Overcharge Refund Cases 2001 During the period 1973 through 1981, the Federal government imposed price and allocation controls of crude oil and refined petroleum products, such as gasoline and heating oil. During that period and for many years afterwards, the DOE had an enforcement program. When a firm was found to have overcharged, the DOE generally required the firm to make refunds to its customers. However, because of the price controls in place at the time and the manner in which the petroleum industry operates, it was impossible for the DOE to determine in many cases who was injured by the overcharges. In those cases involving overcharges related to the price of refined petroleum products, the Office of Hearings and Appeals instituted claims

374

Oklahoma Corporate Commission Oil and Gas | Open Energy Information  

Open Energy Info (EERE)

Corporate Commission Oil and Gas Corporate Commission Oil and Gas Jump to: navigation, search State Oklahoma` Name Oklahoma Corporate Commission Oil and Gas City, State Oklahoma City, Oklahoma Zip 73152-2000 Website http://www.occeweb.com/og/ogho Coordinates 35.49°, -97.51° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.49,"lon":-97.51,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

375

Louisiana DNR Oil and Gas Division | Open Energy Information  

Open Energy Info (EERE)

DNR Oil and Gas Division DNR Oil and Gas Division Jump to: navigation, search State Louisiana Name Louisiana DNR Oil and Gas Division Address P.O. Box 94396 City, State Baton Rouge, LA Zip 70804-9396 Website http://dnr.louisiana.gov/index Coordinates 30.45°, -91.15° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.45,"lon":-91.15,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

376

Oil Overcharge Refund Cases 2006 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 6 Oil Overcharge Refund Cases 2006 During the period 1973 through 1981, the Federal government imposed price and allocation controls of crude oil and refined petroleum products, such as gasoline and heating oil. During that period and for many years afterwards, the DOE had an enforcement program. When a firm was found to have overcharged, the DOE generally required the firm to make refunds to its customers. However, because of the price controls in place at the time and the manner in which the petroleum industry operates, it was impossible for the DOE to determine in many cases who was injured by the overcharges. In those cases involving overcharges related to the price of refined petroleum products, the Office of Hearings and Appeals instituted claims

377

Oil Overcharge Refund Cases 2003 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 3 Oil Overcharge Refund Cases 2003 During the period 1973 through 1981, the Federal government imposed price and allocation controls of crude oil and refined petroleum products, such as gasoline and heating oil. During that period and for many years afterwards, the DOE had an enforcement program. When a firm was found to have overcharged, the DOE generally required the firm to make refunds to its customers. However, because of the price controls in place at the time and the manner in which the petroleum industry operates, it was impossible for the DOE to determine in many cases who was injured by the overcharges. In those cases involving overcharges related to the price of refined petroleum products, the Office of Hearings and Appeals instituted claims

378

Oil Overcharge Refund Cases 1999 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9 9 Oil Overcharge Refund Cases 1999 During the period 1973 through 1981, the Federal government imposed price and allocation controls of crude oil and refined petroleum products, such as gasoline and heating oil. During that period and for many years afterwards, the DOE had an enforcement program. When a firm was found to have overcharged, the DOE generally required the firm to make refunds to its customers. However, because of the price controls in place at the time and the manner in which the petroleum industry operates, it was impossible for the DOE to determine in many cases who was injured by the overcharges. In those cases involving overcharges related to the price of refined petroleum products, the Office of Hearings and Appeals instituted claims

379

Arkansas Oil and Gas Commission | Open Energy Information  

Open Energy Info (EERE)

Arkansas Oil and Gas Commission Arkansas Oil and Gas Commission Jump to: navigation, search State Arkansas Name Arkansas Oil and Gas Commission Address 301 Natural Resources Dr. Ste 102 City, State Little Rock, AR Zip 72205 Website http://www.aogc.state.ar.us/JD Coordinates 34.7586275°, -92.3894219° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.7586275,"lon":-92.3894219,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

380

Oil and Gas Exploration (Connecticut) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exploration (Connecticut) Exploration (Connecticut) Oil and Gas Exploration (Connecticut) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State Connecticut Program Type Siting and Permitting These regulations apply to activities conducted for the purpose of obtaining geological, geophysical, or geochemical information about oil or gas including seismic activities but excluding exploratory well drilling or aerial surveys. Such exploration for oil or gas must be registered with the

Note: This page contains sample records for the topic "oil energy intensity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Oil Overcharge Refund Cases 2008 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 8 Oil Overcharge Refund Cases 2008 During the period 1973 through 1981, the Federal government imposed price and allocation controls of crude oil and refined petroleum products, such as gasoline and heating oil. During that period and for many years afterwards, the DOE had an enforcement program. When a firm was found to have overcharged, the DOE generally required the firm to make refunds to its customers. However, because of the price controls in place at the time and the manner in which the petroleum industry operates, it was impossible for the DOE to determine in many cases who was injured by the overcharges. In those cases involving overcharges related to the price of refined petroleum products, the Office of Hearings and Appeals instituted claims

382

Alaska Division of Oil and Gas | Open Energy Information  

Open Energy Info (EERE)

Division of Oil and Gas Division of Oil and Gas Jump to: navigation, search State Alaska Name Alaska Division of Oil and Gas Address 550 W. 7th Ave., Suite 1100 City, State Anchorage, Alaska Zip 99501 Website http://dog.dnr.alaska.gov/ Coordinates 61.2154607°, -149.8928599° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":61.2154607,"lon":-149.8928599,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

383

Oil Overcharge Refund Cases 1996 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 6 Oil Overcharge Refund Cases 1996 During the period 1973 through 1981, the Federal government imposed price and allocation controls of crude oil and refined petroleum products, such as gasoline and heating oil. During that period and for many years afterwards, the DOE had an enforcement program. When a firm was found to have overcharged, the DOE generally required the firm to make refunds to its customers. However, because of the price controls in place at the time and the manner in which the petroleum industry operates, it was impossible for the DOE to determine in many cases who was injured by the overcharges. In those cases involving overcharges related to the price of refined petroleum products, the Office of Hearings and Appeals instituted claims

384

Balaji Agro Oils Ltd BAOL | Open Energy Information  

Open Energy Info (EERE)

Balaji Agro Oils Ltd BAOL Balaji Agro Oils Ltd BAOL Jump to: navigation, search Name Balaji Agro Oils Ltd. (BAOL) Place Vijayawada, Andhra Pradesh, India Zip 520 007 Sector Biomass Product Vijayawada-based, biomass project developers. Coordinates 16.50794°, 80.64239° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":16.50794,"lon":80.64239,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

385

Oil Overcharge Refund Cases 2004 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 4 Oil Overcharge Refund Cases 2004 During the period 1973 through 1981, the Federal government imposed price and allocation controls of crude oil and refined petroleum products, such as gasoline and heating oil. During that period and for many years afterwards, the DOE had an enforcement program. When a firm was found to have overcharged, the DOE generally required the firm to make refunds to its customers. However, because of the price controls in place at the time and the manner in which the petroleum industry operates, it was impossible for the DOE to determine in many cases who was injured by the overcharges. In those cases involving overcharges related to the price of refined petroleum products, the Office of Hearings and Appeals instituted claims

386

Oil Overcharge Refund Cases 2000 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0 0 Oil Overcharge Refund Cases 2000 During the period 1973 through 1981, the Federal government imposed price and allocation controls of crude oil and refined petroleum products, such as gasoline and heating oil. During that period and for many years afterwards, the DOE had an enforcement program. When a firm was found to have overcharged, the DOE generally required the firm to make refunds to its customers. However, because of the price controls in place at the time and the manner in which the petroleum industry operates, it was impossible for the DOE to determine in many cases who was injured by the overcharges. In those cases involving overcharges related to the price of refined petroleum products, the Office of Hearings and Appeals instituted claims

387

Montana Board of Oil and Gas Conservation | Open Energy Information  

Open Energy Info (EERE)

Oil and Gas Conservation Oil and Gas Conservation Jump to: navigation, search State Montana Name Montana Board of Oil and Gas Conservation Address 2535 St. Johns Avenue City, State Billings, Montana Zip 59102 Website http://bogc.dnrc.mt.gov/defaul Coordinates 45.772091°, -108.580921° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.772091,"lon":-108.580921,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

388

Wyoming Oil and Gas Conservation Commission | Open Energy Information  

Open Energy Info (EERE)

Wyoming Oil and Gas Conservation Commission Wyoming Oil and Gas Conservation Commission Jump to: navigation, search State Wyoming Name Wyoming Oil and Gas Conservation Commission Address 2211 King Blvd City, State Casper, Wyoming Zip 82602 Website http://wogcc.state.wy.us/ Coordinates 42.8433001°, -106.3511243° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.8433001,"lon":-106.3511243,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

389

Virginia Division of Oil and Gas | Open Energy Information  

Open Energy Info (EERE)

Division of Oil and Gas Division of Oil and Gas Jump to: navigation, search State Virginia Name Virginia Division of Oil and Gas Address 1100 Bank Street City, State Richmond, Virginia Zip 23219 Website http://www.dmme.virginia.gov/d Coordinates 37.5373074°, -77.4334187° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.5373074,"lon":-77.4334187,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

390

Kentucky DNR Oil and Gas Division | Open Energy Information  

Open Energy Info (EERE)

DNR Oil and Gas Division DNR Oil and Gas Division Jump to: navigation, search State Kentucky Name Kentucky DNR Oil and Gas Division Address 1025 Capital Center Drive City, State Frankfort, KY Zip 40601 Website http://oilandgas.ky.gov/Pages/ Coordinates 38.1819649°, -84.8153457° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.1819649,"lon":-84.8153457,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

391

Oil and Gas on Public Lands (Texas) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

on Public Lands (Texas) on Public Lands (Texas) Oil and Gas on Public Lands (Texas) < Back Eligibility Utility Fed. Government Commercial Investor-Owned Utility Industrial Construction Municipal/Public Utility Local Government Rural Electric Cooperative Tribal Government Program Info State Texas Program Type Siting and Permitting Provider Texas General Land Office The School Land Board may choose to lease lands for the production of oil and natural gas, on the condition that oil and gas resources are leased together and separate from other minerals. Lands that may be leased include: (1) islands, saltwater lakes, bays, inlets, marshes, and reefs owned by the state within tidewater limits; (2) the portion of the Gulf of Mexico within the jurisdiction of the state; (3) all unsold surveyed and

392

Oil Overcharge Refund Cases 2005 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5 5 Oil Overcharge Refund Cases 2005 During the period 1973 through 1981, the Federal government imposed price and allocation controls of crude oil and refined petroleum products, such as gasoline and heating oil. During that period and for many years afterwards, the DOE had an enforcement program. When a firm was found to have overcharged, the DOE generally required the firm to make refunds to its customers. However, because of the price controls in place at the time and the manner in which the petroleum industry operates, it was impossible for the DOE to determine in many cases who was injured by the overcharges. In those cases involving overcharges related to the price of refined petroleum products, the Office of Hearings and Appeals instituted claims

393

Utah Oil and Gas Board | Open Energy Information  

Open Energy Info (EERE)

Oil and Gas Board Oil and Gas Board Jump to: navigation, search State Utah Name Utah Oil and Gas Board Address 1594 West North Temple City, State Salt Lake City, Utah Zip 84116 Website http://oilgas.ogm.utah.gov/ Coordinates 40.7721389°, -111.9374208° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.7721389,"lon":-111.9374208,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

394

Oil Overcharge Refund Cases 2002 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 2 Oil Overcharge Refund Cases 2002 During the period 1973 through 1981, the Federal government imposed price and allocation controls of crude oil and refined petroleum products, such as gasoline and heating oil. During that period and for many years afterwards, the DOE had an enforcement program. When a firm was found to have overcharged, the DOE generally required the firm to make refunds to its customers. However, because of the price controls in place at the time and the manner in which the petroleum industry operates, it was impossible for the DOE to determine in many cases who was injured by the overcharges. In those cases involving overcharges related to the price of refined petroleum products, the Office of Hearings and Appeals instituted claims

395

GAMUT: A computer code for. gamma. -ray energy and intensity analysis  

SciTech Connect

GAMUT is a computer code to analyze {gamma}-ray energies and intensities. It does a linear least-squares fit of measured {gamma}-ray energies from one or more experiments to the level scheme. GAMUT also performs a non-linear least-squares analysis of branching intensities. For both energy and intensity data, a statistical Chi-square analysis is performed with an iterative uncertainty adjustment. The uncertainties of outlying measured values and sets of measurements with x{sup 2}/f>1 are increased, and the calculation is repeated until the uncertainties are consistent with the fitted values. GAMUT accepts input from standard or special-format ENSDF data sets. The special-format ENSDF data sets were designed to permit analysis of more than one set of measurements associated with a single ENSDF data set. GAMUT prepares a standard ENSDF format output data set containing the adjusted values. If more than one input ENSDF data set is provided, GAMUT creates an ADOPTED LEVELS, GAMMAS data set containing the adjusted level and {gamma}-ray energies and branching intensities from each level normalized to 100 for the strongest {gamma}-ray. GAMUT also provides a summary of the results and an extensive log of the iterative analysis. GAMUT is interactive prompting the user for input and output file names and for default calculation options. This version of GAMUT has adjustable dimensions so that any maximum number of data sets, levels, and {gamma}-rays can be established at the time of implementation. 6 refs.

Firestone, R.B.

1991-05-01T23:59:59.000Z

396

Category:State Oil and Gas Boards | Open Energy Information  

Open Energy Info (EERE)

State Oil and Gas Board State Oil and Gas Board Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":500,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026 further results","default":"","geoservice":"google","zoom":false,"width":"600px","height":"350px","centre":false,"layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","icon":"","visitedicon":"","forceshow":true,"showtitle":true,"hidenamespace":false,"template":false,"title":"","label":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"locations":[{"text":"

397

Statement from Energy Secretary Bodman on OPEC's Decision to Cut Crude Oil  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bodman on OPEC's Decision to Cut Bodman on OPEC's Decision to Cut Crude Oil Production Statement from Energy Secretary Bodman on OPEC's Decision to Cut Crude Oil Production October 19, 2006 - 9:17am Addthis "We continue to believe that it is best for oil producers and consumers alike to allow free markets to determine issues of supply, demand and price. Despite the recent downturn in crude oil prices, they remain at historically high levels, clearly indicating a global demand for petroleum products. And as past experience has shown, market intervention is not beneficial for producing or consuming nations. "While U.S. gasoline prices have fallen, crude inventories are high and our economy remains strong, we must reduce America's dependence on foreign energy sources, as President Bush has said time and again. To do so, we

398

VEE-0061 - In the Matter of Paul Smith Oil Company | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

61 - In the Matter of Paul Smith Oil Company 61 - In the Matter of Paul Smith Oil Company VEE-0061 - In the Matter of Paul Smith Oil Company On May 24, 1999, Paul Smith Oil Company (Smith) filed an Application for Exception with the Office of Hearings and Appeals of the Department of Energy. In its Application, Smith asks that it be relieved of the requirement that it file the Energy Information Administration's (EIA) form entitled "Resellers'/Retailers' Monthly Petroleum Product Sales Report" (Form EIA-782B). As explained below, we have determined that the Application for Exception should be denied. vee0061.pdf More Documents & Publications VEE-0085 - In the Matter of Smith Brothers Gas Company VEE-0037 - In the Matter of W. Gordon Smith Company VEE-0060 - In the Matter of Blakeman Propane

399

Energy use and carbon dioxide emissions in energy-intensive industries in key developing countries  

E-Print Network (OSTI)

Egypt, and Iran. The methodologies described here were developed through collaboration with international energy efficiency

Price, Lynn; Worrell, Ernst; Phylipsen, Dian

1999-01-01T23:59:59.000Z

400

Differential directional intensities of low energy cosmic ray muons near sea level  

E-Print Network (OSTI)

DIFFERENTIAL DIRECTIOiNAL INTEiNSITIES OF LOW ENERGY COSMIC RAY MUONS liR SEA LEVEL A Thesis by DAVID RUDOLPH DURDA Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement for the degree of MASTER... OF SCIENCE May 1970 Physics DIFFERENTIAL DIRECTIONAL INTENSITIES OF LOW ENERGY COSMIC RAY MUONS NEAR SEA LEVEL A Thesis by DAVID RUDOLPH DURDA Approved as to style and content by: C airman o Committee Hea o Department Me er Mem er May 1970...

Durda, David Rudolph

2012-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "oil energy intensity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Modeling of Energy Production Decisions: An Alaska Oil Case Study  

E-Print Network (OSTI)

RR-08-26 Modeling of Energy Production Decisions: An Alaskarapid or gradual energy production in the future? • Doesnet social benefit from energy production and achieving a

Leighty, Wayne

2008-01-01T23:59:59.000Z

402

The Oil Security Metrics Model: A Tool for Evaluating the Prospective Oil Security Benefits of DOE's Energy Efficiency and Renewable Energy R&D Programs  

SciTech Connect

Energy technology R&D is a cornerstone of U.S. energy policy. Understanding the potential for energy technology R&D to solve the nation's energy problems is critical to formulating a successful R&D program. In light of this, the U.S. Congress requested the National Research Council (NRC) to undertake both retrospective and prospective assessments of the Department of Energy's (DOE's) Energy Efficiency and Fossil Energy Research programs (NRC, 2001; NRC, 2005). ("The Congress continued to express its interest in R&D benefits assessment by providing funds for the NRC to build on the retrospective methodology to develop a methodology for assessing prospective benefits." NRC, 2005, p. ES-2) In 2004, the NRC Committee on Prospective Benefits of DOE's Energy Efficiency and Fossil Energy R&D Programs published a report recommending a new framework and principles for prospective benefits assessment. The Committee explicitly deferred the issue of estimating security benefits to future work. Recognizing the need for a rigorous framework for assessing the energy security benefits of its R&D programs, the DOE's Office of Energy Efficiency and Renewable Energy (EERE) developed a framework and approach for defining energy security metrics for R&D programs to use in gauging the energy security benefits of their programs (Lee, 2005). This report describes methods for estimating the prospective oil security benefits of EERE's R&D programs that are consistent with the methodologies of the NRC (2005) Committee and that build on Lee's (2005) framework. Its objective is to define and implement a method that makes use of the NRC's typology of prospective benefits and methodological framework, satisfies the NRC's criteria for prospective benefits evaluation, and permits measurement of that portion of the prospective energy security benefits of EERE's R&D portfolio related to oil. While the Oil Security Metrics (OSM) methodology described in this report has been specifically developed to estimate the prospective oil security benefits of DOE's R&D programs, it is also applicable to other strategies and policies aimed at changing U.S. petroleum demand.

Greene, David L [ORNL; Leiby, Paul Newsome [ORNL

2006-05-01T23:59:59.000Z

403

Alaska oil and gas: Energy wealth or vanishing opportunity  

SciTech Connect

The purpose of the study was to systematically identify and review (a) the known and undiscovered reserves and resources of arctic Alaska, (b) the economic factors controlling development, (c) the risks and environmental considerations involved in development, and (d) the impacts of a temporary shutdown of the Alaska North Slope Oil Delivery System (ANSODS). 119 refs., 45 figs., 41 tabs.

Thomas, C.P.; Doughty, T.C.; Faulder, D.D.; Harrison, W.E.; Irving, J.S.; Jamison, H.C.; White, G.J.

1991-01-01T23:59:59.000Z

404

Modeling Free Energies of Solvation in Olive Oil  

Science Journals Connector (OSTI)

In particular, it has been shown that these partition coefficients correlate with the partitioning of the drugs into rat and human tissue. ... Meyer, K. H.; Hopff, H. Theory of narcosis by inhalation anesthetics. ... A hypothesis relating oil-water partition coefficients and vapor pressures of nonelectrolytes to their penetration rates through biological membranes J. Theor. ...

Adam C. Chamberlin; David G. Levitt; Christopher J. Cramer; Donald G. Truhlar

2008-10-16T23:59:59.000Z

405

The Oil Security Metrics Model: A Tool for Evaluating the Prospective Oil Security Benefits of DOE's Energy Efficiency and Renewable Energy R&D Programs  

NLE Websites -- All DOE Office Websites (Extended Search)

505 505 The Oil Security Metrics Model: A Tool for Evaluating the Prospective Oil Security Benefits of DOE's Energy Efficiency and Renewable Energy R&D Programs May 2006 David L. Greene Corporate Fellow Paul N. Leiby Senior Research Staff DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via the U.S. Department of Energy (DOE) Information Bridge: Web site: http://www.osti.gov/bridge Reports produced before January 1, 1996, may be purchased by members of the public from the following source: National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 Telephone: 703-605-6000 (1-800-553-6847) TDD: 703-487-4639 Fax: 703-605-6900 E-mail: info@ntis.fedworld.gov

406

Energy and the Oil-Importing Developing Countries  

Science Journals Connector (OSTI)

...PROBLEMS FOR RURAL NEW AND RENEWABLE ENERGY-SYSTEMS, JOURNAL OF ENERGY...relatively highly endowed with renewable energy resources. The amount of...Confer-ence on New and Renewable Sources of Energy was for adequate management...

Joy Dunkerley; William Ramsay

1982-05-07T23:59:59.000Z

407

EDUCATION: Energy capital's colleges tailor new programs to oil and gas  

E-Print Network (OSTI)

find is that any course we offer in the energy arena gets an enormous number of students wanting EDUCATION: Energy capital's colleges tailor new programs to oil and gas industry (Wednesday University laboratory here allows computer talent to test how their models and complex formulas may work

Alvarez, Pedro J.

408

Teamwork Plus Technology Equals Reduced Emissions, Reduced Energy Usage, and Improved Productivity for an Oil Production Facility  

E-Print Network (OSTI)

Teamwork plus Technology Equals Reduced Emissions, Reduced Energy Usage, and Improved Productivity for an Oil Production Facility Garth Booker P Eng Extraction Energy Engineer Suncor Energy Company Fort McMurray, Alberta, Canada ABSTRACT...Teamwork plus Technology Equals Reduced Emissions, Reduced Energy Usage, and Improved Productivity for an Oil Production Facility Garth Booker P Eng Extraction Energy Engineer Suncor Energy Company Fort McMurray, Alberta, Canada ABSTRACT...

Booker, G.; Robinson, J.

409

Energy Secretary Bodman in Turkey to Highlight Importance of Expanding Oil  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

in Turkey to Highlight Importance of in Turkey to Highlight Importance of Expanding Oil and Gas Supply and Infrastructure Energy Secretary Bodman in Turkey to Highlight Importance of Expanding Oil and Gas Supply and Infrastructure November 16, 2007 - 4:31pm Addthis ISTANBUL, TURKEY - U.S. Secretary of Energy Samuel W. Bodman today highlighted the significance of improving U.S.-Turkish business relationships, enhancing investment opportunities in the energy sector, and increasing the diversity of energy supply, suppliers and transportation routes to improve energy security and promote economic growth. "Turkey is an important energy gateway between the East and the West," Secretary Bodman said. "Fostering an environment that promotes investment opportunities as well as diversity of energy supply and suppliers through

410

Energy systems transformation  

Science Journals Connector (OSTI)

...coal (27.3%), natural gas (21.4%), and nuclear...TPES for oil, coal, natural gas, and nuclear energy...To generate energy, capital-intensive technology...pipelines, liquefied natural gas supertankers), and...

A. T. C. Jérôme Dangerman; Hans Joachim Schellnhuber

2013-01-01T23:59:59.000Z

411

Essays on Oil, Energy, and Oil Self-Sufficiency in the U.S.  

E-Print Network (OSTI)

Economy CIA Central Intelligence Agency DOE Department of Energy EIA Energy Information Administration GAIDS Generalized Almost Ideal Demand System GDP Gross Domestic Product LA/AI Linear Approximate Almost Ideal Demand System LA/GAI Linear...

Rowland, Christopher Scott

2013-09-30T23:59:59.000Z

412

Category:Oil and Gas Companies | Open Energy Information  

Open Energy Info (EERE)

Category Category Edit History Facebook icon Twitter icon » Category:Oil and Gas Companies Jump to: navigation, search Add a new Oil and Gas Company Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":500,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026 further results","default":"","geoservice":"google","zoom":false,"width":"600px","height":"350px","centre":false,"layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","icon":"","visitedicon":"","forceshow":true,"showtitle":true,"hidenamespace":false,"template":false,"title":"","label":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"locations":[{"text":"

413

Alaska Oil and Gas Conservation Commission | Open Energy Information  

Open Energy Info (EERE)

Conservation Commission Conservation Commission Jump to: navigation, search Logo: Alaska Oil and Gas Conservation Commission State Alaska Name Alaska Oil and Gas Conservation Commission Address 333 W. 7th Ave., Ste. 100 City, State Anchorage, Alaska Zip 9950 Website http://doa.alaska.gov/ogc/ Coordinates 61.215808°, -149.8889769° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":61.215808,"lon":-149.8889769,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

414

Alabama Oil and Gas Board | Open Energy Information  

Open Energy Info (EERE)

Board Board Jump to: navigation, search Logo: Alabama Oil and Gas Board State Alabama Name Alabama Oil and Gas Board Address 420 Hackberry Lane City, State Tuscaloosa, AL Zip 35401 Website http://www.gsa.state.al.us/ogb Coordinates 33.2121633°, -87.5431231° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.2121633,"lon":-87.5431231,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

415

File:OilSands.pdf | Open Energy Information  

Open Energy Info (EERE)

OilSands.pdf OilSands.pdf Jump to: navigation, search File File history File usage File:OilSands.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Go to page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 Go! next page → next page → Full resolution ‎(1,275 × 1,650 pixels, file size: 1.69 MB, MIME type: application/pdf, 85 pages) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 14:24, 14 February 2012 Thumbnail for version as of 14:24, 14 February 2012 1,275 × 1,650, 85 pages (1.69 MB) Graham7781 (Talk | contribs)

416

North Dakota Industrial Commission, Oil and Gas Divisioin | Open Energy  

Open Energy Info (EERE)

North Dakota Industrial Commission, Oil and Gas Divisioin North Dakota Industrial Commission, Oil and Gas Divisioin Jump to: navigation, search State North Dakota Name North Dakota Industrial Commission, Oil and Gas Divisioin Address 600 East Boulevard Ave Dept 405 City, State Bismarck, North Dakota Zip 58505-0840 Website https://www.dmr.nd.gov/oilgas/ Coordinates 46.8206977°, -100.7827515° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.8206977,"lon":-100.7827515,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

417

Study: Algae Could Replace 17% of U.S. Oil Imports | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Study: Algae Could Replace 17% of U.S. Oil Imports Study: Algae Could Replace 17% of U.S. Oil Imports Study: Algae Could Replace 17% of U.S. Oil Imports April 13, 2011 - 6:30pm Addthis Algae samples back at the NREL lab, ready to be analyzed and run through the Fluorescent-Activated Cell Sorter, or FACS, which separates the cells. | Credit: NREL Staff Photographer Dennis Schroeder. Algae samples back at the NREL lab, ready to be analyzed and run through the Fluorescent-Activated Cell Sorter, or FACS, which separates the cells. | Credit: NREL Staff Photographer Dennis Schroeder. Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs Every day, the United States spends about $1 billion to import foreign oil, money that we could be investing in American energy and the American economy. President Obama recently announced an ambitious but achievable

418

Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry  

Energy.gov (U.S. Department of Energy (DOE))

Portfolio of projects focused on investments in high-impact, crosscutting opportunities that provide significant energy savings and carbon reductions across a broad industrial base

419

Coherent backscattering of intense light by cold atoms with degenerate energy levels: Diagrammatic treatment  

E-Print Network (OSTI)

We present a generalization of the diagrammatic pump-probe approach to coherent backscattering (CBS) of intense laser light for atoms with degenerate energy levels. We employ this approach for a characterization of the double scattering signal from optically pumped atoms with the transition $J_g\\rightarrow J_e=J_g+1$ in the helicity preserving polarization channel. We show that, in the saturation regime, the internal degeneracy becomes manifest for atoms with $J_g\\geq 1$, leading to a faster decrease of the CBS enhancement factor with increasing saturation parameter than in the non-degenerate case.

V. N. Shatokhin; R. Blattmann; T. Wellens; A. Buchleitner

2014-07-10T23:59:59.000Z

420

High-energy-density physics experiments with intense heavy ion beams  

Science Journals Connector (OSTI)

In this paper we discuss physical and technical issues of high-energy-density physics (HEDP) experiments with intense heavy ion beams that are being performed at the Gesellschaft für Schwerionenforschung (GSI), Darmstadt. Special attention is given to a comparison of some recent results on expansion dynamics of evaporating lead that have been obtained in heavy ion beam driven HIHEX (Heavy-Ion Heating and Expansion) experiments at GSI-Darmstadt and in high-explosive driven shock wave loading and release experiments at IPCP–Chernogolovka.

D. Varentsov; V. Ya. Ternovoi; M. Kulish; D. Fernengel; A. Fertman; A. Hug; J. Menzel; P. Ni; D.N. Nikolaev; N. Shilkin; V. Turtikov; S. Udrea; V.E. Fortov; A.A. Golubev; V.K. Gryaznov; D.H.H. Hoffmann; V. Kim; I.V. Lomonosov; V. Mintsev; B.Yu. Sharkov; A. Shutov; P. Spiller; N.A. Tahir; H. Wahl

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil energy intensity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Category:International Oil and Gas Boards | Open Energy Information  

Open Energy Info (EERE)

Boards Boards Jump to: navigation, search Add a new International Oil and Gas Board Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":500,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026 further results","default":"","geoservice":"google","zoom":false,"width":"600px","height":"350px","centre":false,"layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","icon":"","visitedicon":"","forceshow":true,"showtitle":true,"hidenamespace":false,"template":false,"title":"","label":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"locations":[{"text":"

422

Could a Common Household Fungus Reduce Oil Imports? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Could a Common Household Fungus Reduce Oil Imports? Could a Common Household Fungus Reduce Oil Imports? Could a Common Household Fungus Reduce Oil Imports? June 21, 2011 - 11:37am Addthis A view of Aspergillus niger with the fungus’ DNA highlighted in green | Photo Courtesy of: PNNL. A view of Aspergillus niger with the fungus' DNA highlighted in green | Photo Courtesy of: PNNL. Ben Squires Analyst, Office of Energy Efficiency & Renewable Energy What does this mean for me? The Department's Pacific Northwest National Laboratory (PNNL) are working to harness the natural process that spoils fruits and vegetables as a way to make fuel and other petroleum substitutes from the parts of plants that we can't eat. The genetic bases of the behaviors and abilities of these two industrially relevant fungal strains will allow researchers to exploit

423

Could a Common Household Fungus Reduce Oil Imports? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

a Common Household Fungus Reduce Oil Imports? a Common Household Fungus Reduce Oil Imports? Could a Common Household Fungus Reduce Oil Imports? June 21, 2011 - 11:37am Addthis A view of Aspergillus niger with the fungus’ DNA highlighted in green | Photo Courtesy of: PNNL. A view of Aspergillus niger with the fungus' DNA highlighted in green | Photo Courtesy of: PNNL. Ben Squires Analyst, Office of Energy Efficiency & Renewable Energy What does this mean for me? The Department's Pacific Northwest National Laboratory (PNNL) are working to harness the natural process that spoils fruits and vegetables as a way to make fuel and other petroleum substitutes from the parts of plants that we can't eat. The genetic bases of the behaviors and abilities of these two industrially relevant fungal strains will allow researchers to exploit

424

Kansas Oil and Gas Conservation Commission | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Kansas Oil and Gas Conservation Commission Jump to: navigation, search State Kansas Name Kansas Oil and Gas Conservation Commission Address 1500 SW Arrowhead Road City, State Topeka, KS Zip 66604-4027 Website http://www.kcc.state.ks.us/con Coordinates 39.04059°, -95.756198° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.04059,"lon":-95.756198,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

425

Indiana DNR Division of Oil and Gas | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Indiana DNR Division of Oil and Gas Jump to: navigation, search State Indiana Name Indiana DNR Division of Oil and Gas Address 402 W. Washington St., Rm. 293 City, State Indianapolis, IN Zip 46204 Website http://www.in.gov/dnr/dnroil/ Coordinates 39.741129°, -86.412336° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.741129,"lon":-86.412336,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

426

State of Missouri 1991--1992 Energy Information Administration State Heating Oil and Propane Program (SHOPP)  

SciTech Connect

The objective of the Missouri State Heating Oil and Propane Program was to develop a joint state-level company-specific data collective effort. The State of Missouri provided to the US Department of Energy's Energy Information Administration company specific price and volume information on residential No. 2 heating oil and propane on a semimonthly basis. The energy companies participating under the program were selected at random by the US Department of Energy and provided to the Missouri Department of Natural Resources' Division of Energy prior to the implementation of the program. The specific data collection responsibilities for the Missouri Department of Natural Resources' Division of Energy included: (1) Collection of semimonthly residential heating oil and propane prices, collected on the first and third Monday from August 1991 through August 1992; and, (2) Collection of annual sales volume data for residential propane for the period September 1, 1990 through August 31. 1991. This data was required for the first report only. These data were provided on a company identifiable level to the extent permitted by State law. Information was transmitted to the US Department of Energy's Energy Information Administration through the Petroleum Electronic Data Reporting Option (PEDRO).

Not Available

1992-01-01T23:59:59.000Z

427

Effect of oil prices on returns to alternative energy investments.  

E-Print Network (OSTI)

??This paper presents the role of alternative energy technologies in displacing fossil fuels as the world's primary energy source. To that end, a CAPM-GARCH multi-factor… (more)

Schmitz, Anthony

2009-01-01T23:59:59.000Z

428

Modeling of Energy Production Decisions: An Alaska Oil Case Study  

E-Print Network (OSTI)

Sustainable Transportation Energy Pathways (STEPS) Program, the Chevron Graduate Fellowship at UC Davis, and the Graduate Automotive Technology Education (

Leighty, Wayne

2008-01-01T23:59:59.000Z

429

Energy and the Oil-Importing Developing Countries  

Science Journals Connector (OSTI)

...for the transfer of energy technology already...to instructions in energy conservation. But...be consistent with national objectives and with sensi-ble overall energy and development goals...both a problem and a challenge to the worldwide...regional elec-tric grids to enable sharing...

Joy Dunkerley; William Ramsay

1982-05-07T23:59:59.000Z

430

Neutron-scattering study of the magnon energies and intensities in iron  

Science Journals Connector (OSTI)

The magnetic inelastic neutron scattering at low temperatures has been measured from a large single crystal of Fe54(12 at.% Si) up to energy transfers of 100 meV using the constant-Q spectrometer at the Los Alamos pulsed neutron source. The spin-wave energies and intensities were obtained from the data by using a multichannel maximum-entropy technique, and we show that much more detailed information can be obtained from the maximum-entropy analysis. The observed spin-wave dispersion relations obtained in the present experiment are in excellent agreement with earlier data, and we observe a sharp falloff of the (001) magnon intensity at approximately 80 meV, which is in accord with previous experimental measurements and multiband theoretical calculations of the dynamic susceptibility of iron. We also compare the data rate obtained with the constant-Q spectrometer to a triple-axis instrument and find that the spectrometer is competitive for this type of measurement.

M. Yethiraj; R. A. Robinson; D. S. Sivia; J. W. Lynn; H. A. Mook

1991-02-01T23:59:59.000Z

431

Understanding Crude Oil Prices  

E-Print Network (OSTI)

and Income on Energy and Oil Demand,” Energy Journal 23(1),2006. “China’s Growing Demand for Oil and Its Impact on U.S.in the supply or demand for oil itself could be regarded as

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

432

Heavy Oil Database from the National Institute for Petroleum and Energy Research (NIPER)  

DOE Data Explorer (OSTI)

The Heavy Oil Database resulted from work funded by DOE and performed at the National Institute for Petroleum and Energy Research (NIPER). It contains information on more than 500 resevoirs in a Microsoft Excel spreadsheet. The information was collected in 1992 and updated periodically through 2003. Save the zipped file to your PC, then open to access the data.

433

New Mexico Oil Conservation Division | Open Energy Information  

Open Energy Info (EERE)

Conservation Division Conservation Division Jump to: navigation, search State New Mexico Name New Mexico Oil Conservation Division Address 1220 South St. Francis Drive City, State Santa Fe, New Mexico Zip 87505 Website http://www.emnrd.state.nm.us/o Coordinates 35.669674°, -105.957212° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.669674,"lon":-105.957212,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

434

California Division of Oil, Gas, and Geothermal Resources | Open Energy  

Open Energy Info (EERE)

Geothermal Resources Geothermal Resources Jump to: navigation, search State California Name California Division of Oil, Gas, and Geothermal Resources (CDOGGR) Address 801 K Street, MS 20-20 City, State Sacramento, CA Zip 95814-3530 Website http://www.consrv.ca.gov/dog/O Coordinates 38.580104°, -121.496008° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.580104,"lon":-121.496008,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

435

Oregon Oil, Gas, and Geothermal | Open Energy Information  

Open Energy Info (EERE)

Geothermal Geothermal Jump to: navigation, search State Oregon Name Oregon Oil, Gas, and Geothermal Address 229 Broadalbin St. SW City, State Albany, Oregon Zip 97321 Website http://www.oregongeology.org/m Coordinates 44.6358741°, -123.1071584° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.6358741,"lon":-123.1071584,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

436

Nebraska Oil and Gas Conservation Commission | Open Energy Information  

Open Energy Info (EERE)

State Nebraska State Nebraska Name Nebraska Oil and Gas Conservation Commission Address 922 Illinois City, State Sidney, Nebraska Zip 69162 Website http://www.nogcc.ne.gov/ Coordinates 41.1449288°, -102.9758174° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.1449288,"lon":-102.9758174,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

437

Colorado Oil and Gas Commission | Open Energy Information  

Open Energy Info (EERE)

State Colorado State Colorado Name Colorado Oil and Gas Commission Address 1120 Lincoln Street, Suite 801 City, State Denver, CO Zip 80203 Website http://cogcc.state.co.us/ Coordinates 39.734421°, -104.985764° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.734421,"lon":-104.985764,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

438

Bartlesville Energy Technology Center enhanced oil recovery project data base  

SciTech Connect

The BETC Enhanced Oil Recovery Data Base is currently being developed to provide an information resource to accelerate the advancement and applications of EOR technology. The primary initial sources of data have been the Incentive and Cost-Shared Programs. The data base presently contains information on 607 EOR projects. This includes 410 of the approximately 423 projects which operators originally applied for certification with the Incentive Program; 20 EOR projects under the Cost-Shared Program; and a data base relating to 177 projects developed by Gulf Universities Research Consortium. In addition, relevant data from all previous DOE-funded contractor EOR data bases will be integrated into the BETC data base. Data collection activities from publicly available information sources is continuing on an on-going basis to insure the accuracy and timeliness of the information within the data base. The BETC data base is being developed utilizing a commercial data base management system. The basic structure of the data base is presented as Appendix I. This data base includes information relating to reservoir characteristics, process-specific data, cost information, production data, and contact persons for each project. The preliminary list of data elements and the current density of occurrence is presented as Appendix II. A basic profile of the types of projects contained within the developmental data base is contained in Appendix III. Appendix IV presents a number of system output reports to illustrate potential data base applications. Plans to eventually place the data base in a computer system which would be publicly accessible are currently under active consideration. A list of Incentive projects processed to date by BETC is provided as Appendix V. Appendix VI gives a detailed report by EOR Process for all projects in the BETC's Enhanced Oil Recovery Data Base.

Not Available

1982-03-01T23:59:59.000Z

439

Straight Vegetable Oil as a Vehicle Fuel? (Fact Sheet), Energy...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

many vehicle owners and fleet managers seek- ing to reduce emissions and support U.S. energy security. Questions sometimes arise about the viability of fueling vehicles with...

440

Energy and protein value of low glucosinolate or dehulled rapeseed oil-meals  

E-Print Network (OSTI)

to the substitution method in order to assess the energy and protein value of three types of rapeseed oils energy in Kcal /kg dry matter were 3 828, 3 698-2 916, 2 575-3 3°ij 2 693 and 2 722, 2 16o, respectively as the previous regimen for each of both periods. Skim milk was offered either as such or after transformation

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "oil energy intensity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)"  

U.S. Energy Information Administration (EIA) Indexed Site

0.9 Relative Standard Errors for Table 10.9;" 0.9 Relative Standard Errors for Table 10.9;" " Unit: Percents." ,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Electricity","Natural","Residual",,,"and" "Code(a)","Subsector and Industry","Consumed(d)","Switchable","Switchable","Receipts(e)","Gas","Fuel Oil","Coal","LPG","Breeze","Other(f)" ,,"Total United States" 311,"Food",8,15,9,21,19,18,0,27,0,41 311221," Wet Corn Milling",0,0,0,0,0,0,0,0,0,0

442

Energy and the Oil-Importing Developing Countries  

Science Journals Connector (OSTI)

...relatively highly endowed with renewable energy resources. The amount...hydropower-both conventional and mini-hydro schemes-could turn...Confer-ence on New and Renewable Sources of Energy was for adequate...institution of regional elec-tric grids to enable sharing of hydroelec-tricity...

Joy Dunkerley; William Ramsay

1982-05-07T23:59:59.000Z

443

Energy and the Oil-Importing Developing Countries  

Science Journals Connector (OSTI)

...300 person days of work per year to gather...point after 1973, to 5 percent...factors of production, but there...Domestic Energy Production Even though...Increasing energy production at home has...drilled in non-OPEC de-veloping...about 10 to 25 per-cent of...

Joy Dunkerley; William Ramsay

1982-05-07T23:59:59.000Z

444

Energy and Financial Markets Overview: Crude Oil Price Formation  

U.S. Energy Information Administration (EIA) Indexed Site

John Maples John Maples 2011 EIA Energy Conference April 26, 2011 Transportation and the Environment Light-duty vehicle combined Corporate Average Fuel Economy Standards (CAFE) in three cases, 2005-2035 2 0 20 40 60 80 2005 2010 2015 2020 2025 2030 2035 miles per gallon Source: EIA, Annual Energy Outlook 2011 CAFE6 CAFE3 Reference John Maples, April 26, 2011 Light-duty vehicle delivered energy consumption and total transportation carbon dioxide emissions, 2005-2035 3 0 5 10 15 20 2005 2010 2015 2020 2025 2030 2035 Reference CAFE3 CAFE6 quadrillion Btu 0 500 1000 1500 2000 2500 2005 2010 2015 2020 2025 2030 2035 million metric tons carbon dioxide equivalent Source: EIA, Annual Energy Outlook 2011 John Maples, April 26, 2011 Distribution of new light-duty vehicle sales by price, 2010 and 2025 (2009$) 4 Source: EIA, Annual Energy Outlook 2011

445

Department of Energy Activities in Response to the Deepwater BP Oil Spill  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Activities in Response to the Deepwater BP Oil Spill Activities in Response to the Deepwater BP Oil Spill At the request of the President, Secretary Chu and Secretary Salazar traveled to Houston and participated in meetings today with DOE and national lab staff, industry officials and other engineers and scientists involved in finding solutions to cap the flow of oil and contain the spill. Secretary Chu assembled a group of top scientific experts from inside and outside of government to join in today's discussions in Houston about possible solutions. This team includes: * Dr. Tom Hunter, Director of the Department of Energy's Sandia National Labs * Dr. George A. Cooper, an expert in materials science and retired professor from UC Berkeley * Richard Lawrence Garwin, a physicist and IBM Fellow Emeritus

446

Conventional Energy (Oil, Gas, and Coal) Forum & Associated Vertical Business Development Best Practices in Indian Country  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CONVENTIONAL ENERGY (OIL, GAS & COAL) FORUM & CONVENTIONAL ENERGY (OIL, GAS & COAL) FORUM & ASSOCIATED VERTICAL BUSINESS DEVELOPMENT BEST PRACTICES IN INDIAN COUNTRY March 1, 2012 MANDALAY BAY RESORT AND CASINO NORTH CONVENTION CENTER 3950 Las Vegas Blvd. South, Las Vegas, NV 89119 The dynamic world of conventional energy (focusing on oil, gas and coal energy) is a critical piece of the American energy portfolio. This strategic energy forum will focus on recent trends, existing successful partnerships, and perspectives on the future of conventional energy and how tribal business interests are evolving to meet the interests and needs of new tribal energy economies. The third of a series of planned DOE Office of Indian Energy-sponsored strategic energy development & investment forums, this forum will provide an opportunity for Tribal leaders, federal

447

Electric-field-induced turbulent energy cascade in an oil-in-oil emulsion  

E-Print Network (OSTI)

We observe electro-hydrodynamically driven turbulent flows at low Reynolds numbers in a two-fluid emulsion consisting of micron-scale droplets. In the presence of electric fields, the droplets produce interacting hydrodynamic flows which result in a dynamical organization at a spatial scale much larger than the size of the individual droplets. We characterize the dynamics associated with these structures by both video imaging and a simultaneous, in situ, measurement of the time variation of the bulk Reynolds stress with a rheometer. The results display scale invariance in the energy spectra in both space and time.

Atul Varshney; Mayur Sathe; Shankar Ghosh; Anand Yethiraj; S. Bhattacharya; J. B. Joshi

2014-12-11T23:59:59.000Z

448

Electric-field-induced turbulent energy cascade in an oil-in-oil emulsion  

E-Print Network (OSTI)

We observe electro-hydrodynamically driven turbulent flows at low Reynolds numbers in a two-fluid emulsion consisting of micron-scale droplets. In the presence of electric fields, the droplets produce interacting hydrodynamic flows which result in a dynamical organization at a spatial scale much larger than the size of the individual droplets. We characterize the dynamics associated with these structures by both video imaging and a simultaneous, in situ, measurement of the time variation of the bulk Reynolds stress with a rheometer. The results display scale invariance in the energy spectra in both space and time.

Varshney, Atul; Ghosh, Shankar; Yethiraj, Anand; Bhattacharya, S; Joshi, J B

2014-01-01T23:59:59.000Z

449

Energy input, carbon intensity and cost for ethanol produced from farmed seaweed  

Science Journals Connector (OSTI)

Abstract Macroalgae, commonly known as seaweed, has received significant interest as a potential source of ethanol because of its fast growth, significant sugar content and successful lab-scale conversion to ethanol. Issues such as energy input in seaweed conversion, lifecycle emissions, global production potential and cost have received limited attention. To address this gap, a well-to-tank model of ethanol production from brown seaweed is developed and applied to the case of ethanol production from Saccharina latissima in British Columbia, Canada. Animal feed is proposed as a co-product and co-product credits are estimated. In the case considered, seaweed ethanol is found to have an energy return on invested (EROI) of 1.7 and a carbon intensity (CI) of 10.8 gCO2e MJ?1. Ethanol production from conventionally farmed seaweed could cost less than conventional ethanol and be produced on a scale comparable to 1% of global gasoline production. A drying system is required in regions such as British Columbia that require seasonal seaweed storage due to a limited harvest season. The results are significantly influenced by variations in animal feed processing energy, co-product credit value, seaweed composition, the value of seaweed animal feed and the cost of seaweed farming. We find EROI ranges from 0.64 to 26.7, CI from 33 to ?41 gCO2e MJ?1 and ethanol production is not financially viable without animal feed production in some scenarios.

Aaron Philippsen; Peter Wild; Andrew Rowe

2014-01-01T23:59:59.000Z

450

Intensity and energy modulated radiotherapy with proton beams: Variables affecting optimal prostate plan  

Science Journals Connector (OSTI)

Inverse planning for intensity- and energy-modulated radiotherapy (IEMRT) with proton beams involves the selection of (i) the relative importance factors to control the relative importance of the target and sensitive structures (ii) an appropriate energy resolution to achieve an acceptable depth modulation (iii) an appropriate beamlet width to modulate the beam laterally and (iv) a sufficient number of beams and their orientations. In this article we investigate the influence of these variables on the optimized dose distribution of a simulated prostate cancer IEMRT treatment. Good dose conformation for this prostate case was achieved using a constellation of I factors for the target rectum bladder and normal tissues of 500 50 15 and 1 respectively. It was found that for an active beam delivery system the energy resolution should be selected on the basis of the incident beams’ energy spread (? E ) and the appropriate energy resolution varied from 1 MeV at ? E =0.0? to ?5? MeV at ? E =2.0? MeV . For a passive beam delivery system the value of the appropriate depth resolution for inverse planning may not be critical as long as the value chosen is at least equal to one-half the FWHM of the primary beam Bragg peak. Results indicate that the dose grid element dimension should be equal to or no less than 70% of the beamlet width. For this prostate case we found that a maximum of three to four beam ports is required since there was no significant advantage to using a larger number of beams. However for a small number (?4) of beams the selection of beam orientations while having only a minor effect on target coverage strongly influenced the sensitive structure sparing and normal tissue integral dose.

Collins Yeboah; George A. Sandison; Alexei V. Chvetsov

2002-01-01T23:59:59.000Z

451

Impacts of Intensive Management and Landscape Structure on Timber and Energy Wood Production and net CO2 Emissions from Energy Wood Use of Norway Spruce  

Science Journals Connector (OSTI)

The aim of this study was to analyze the effects of intensive management and forest landscape structure (in terms of age class distribution) on timber and energy wood production (m3 ha?1), net present value (NPV,...

Johanna Routa; Seppo Kellomäki; Heli Peltola

2012-03-01T23:59:59.000Z

452

Energy and the Oil-Importing Developing Countries  

Science Journals Connector (OSTI)

...other areas, Nepal and central Tanzania, it has been claimed that...options such as biomass and other solar resources. The international...some other energy options. Solar resources, both direct and...Thailand, Jamaica, Peru, Tanzania, Indo-nesia, Ivory Coast...

Joy Dunkerley; William Ramsay

1982-05-07T23:59:59.000Z

453

The effects of mixing energy on water column oil  

E-Print Network (OSTI)

/water system was mixed in a reactor and sampled after 48 h. Three experimental runs were performed for eight increasing mixing energies: 0 s?¹, 2.6 s?¹, 7.4 s?¹, 10.8 s?¹, 13.4 s?¹, 14.6 s?¹, 15.6 s?¹ and 20.4 s?¹. GC-MS was used to analyze the samples...

Rogers, Ellen Tiffany

2012-06-07T23:59:59.000Z

454

A review of existing commercial energy use intensity and load-shape studies  

SciTech Connect

This paper reviews and compares existing studies of energy use intensities (EUIs) and load shapes (LSs) in the commercial sector, focusing on studies that used California data. Our review of EUI studies found fairly good agreement on electric lighting and cooling EUIs. Other EUIs, notably electric miscellaneous in offices, retail, and food stores; electric refrigeration in restaurants and warehouses; electric cooking in restaurants; and electric water heating and ventilation for all types of premises exhibited the largest variations. The major variations in gas EUIs were found in restaurants (all end uses) and food stores (cooking and water heating). Our review of LS studies, which included existing LSs in use by Southern California Edison (SCE) Company, the California Energy Commission (CEC), and a Lawrence Berkeley Laboratory (LBL) study, uncovered two significant features of existing LS estimates. First, LSs were generally not consistent between studies (e.g., SCE and CEC had different load shapes for the same end use in the same type of premises), but these differences could often be related to differences in assumptions for operating hours. Second, for a given type of premise, LSs were often identical for each month and for peak and standard-days, suggesting that, according to some studies, these end uses were not affected by seasonal or climatic influences. 21 refs., 6 figs., 1 tab.

Akbari, H.; Turiel, I.; Eto, J.; Heinemeier, K.; Lebot, B.; Rainer, L.

1990-08-01T23:59:59.000Z

455

File:BOEMRE oil.gas.plant.platform.sta.brbra.map.4.2010.pdf | Open Energy  

Open Energy Info (EERE)

oil.gas.plant.platform.sta.brbra.map.4.2010.pdf oil.gas.plant.platform.sta.brbra.map.4.2010.pdf Jump to: navigation, search File File history File usage Federal Leases in Pacific Ocean, near Santa Barbara Channel Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 234 KB, MIME type: application/pdf) Description Federal Leases in Pacific Ocean, near Santa Barbara Channel Sources Bureau of Ocean Energy Management, Regulation and Enforcement (BOEMRE) Related Technologies Oil, Natural Gas Creation Date 2010-04 Extent Santa Barbara Channel Countries United States UN Region Northern America States California Locations of oil and separation and treatment plants, oil separation, gas processing, and treatment plants, oil spill response vessels, platforms,

456

A new approach to estimate commercial sector end-use load shapes and energy use intensities  

SciTech Connect

We discuss the application of an end-use load shape estimation technique to develop annual energy use intensities (EUIs) and hourly end-use load shapes (LSs) for commercial buildings in the Pacific Gas and Electric Company (PG&E) service territory. Results will update inputs for the commercial sector energy and peak demand forecasting models used by PG&E and the California Energy Commission (CEC). EUIs were estimated for 11 building types, up to 10 end uses, 3 fuel types, 2 building vintages, and up to 5 climate regions. The integrated methodology consists of two major parts. The first part is the reconciliation of initial end-use load-shape estimates with measured whole-building load data to produce intermediate EUIs and load shapes, using LBL`s End-use Disaggregation Algorithm, EDA. EDA is a deterministic hourly algorithm that relies on the observed characteristics of the measured hourly whole-building electricity use and disaggregates it into major end-use components. The end-use EUIs developed through the EDA procedure represent a snap-shot of electricity use by building type and end-use for two regions of the PG&E service territory, for the year that disaggregation is performed. In the second part of the methodology, we adjust the EUIs for direct application to forecasting models based on factors such as climatic impacts on space-conditioning EUIs, fuel saturation effects, building and equipment vintage, and price impacts. Core data for the project are detailed on-site surveys for about 800 buildings, mail surveys ({approximately}6000), load research data for over 1000 accounts, and hourly weather data for five climate regions.

Akbari, H.; Eto, J.; Konopacki, S.; Afzal, A.; Heinemeier, K.; Rainer, L.

1994-08-01T23:59:59.000Z

457

Energy Information Administration survey of national oil and gas reserves  

SciTech Connect

A description is given of the reserves estimation program of the Energy Information Administration (EIA). EIA sends survey forms to the top 500 operators in the United States and to about 750 small operators who account for significant amounts of production within selected states. An 8% random sample is taken of the remaining small operators. Data are presented which compare the findings of EIA with those of the American Petroleum Institute and the American Gas Association for 1977, 1978, and 1979. 21 figures. (JMT)

Boyd, E.R.

1981-06-01T23:59:59.000Z

458

Short-Term Energy Outlook Supplement: Status of Libyan Loading Ports and Oil and Natural Gas Fields  

Gasoline and Diesel Fuel Update (EIA)

Short-Term Energy Outlook Supplement: Short-Term Energy Outlook Supplement: Status of Libyan Loading Ports and Oil and Natural Gas Fields Tuesday, September 10, 2013, 10:00AM EST Overview During July and August 2013, protests at major oil loading ports in the central-eastern region of Libya forced the complete or partial shut-in of oil fields linked to the ports. As a result of protests at ports and at some oil fields, crude oil production fell to 1.0 million barrels per day (bbl/d) in July and 600,000 bbl/d in August, although the production level at the end of August was far lower. At the end of August, an armed group blocked pipelines that connect the El Sharara and El Feel (Elephant) fields to the Zawiya and Mellitah export terminals, respectively, forcing the shutdown of those fields. El Sharara had been

459

China's Global Oil Strategy  

E-Print Network (OSTI)

capability to secure oil transport security. Additionally,international oil agreements: 1) ensuring energy security;security, and many argue that as the second-largest consumer of oil

Thomas, Bryan G

2009-01-01T23:59:59.000Z

460

Understanding Crude Oil Prices  

E-Print Network (OSTI)

2004. “OPEC’s Optimal Crude Oil Price,” Energy Policy 32(2),023 Understanding Crude Oil Prices James D. Hamilton Junedirectly. Understanding Crude Oil Prices* James D. Hamilton

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil energy intensity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Understanding Crude Oil Prices  

E-Print Network (OSTI)

2004. “OPEC’s Optimal Crude Oil Price,” Energy Policy 32(2),percent change in real oil price. Figure 3. Price of crude023 Understanding Crude Oil Prices James D. Hamilton June

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

462

Understanding Crude Oil Prices  

E-Print Network (OSTI)

2004. “OPEC’s Optimal Crude Oil Price,” Energy Policy 32(2),percent change in real oil price. Figure 3. Price of crudein predicting quarterly real oil price change. variable real

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

463

Energy performances of intensive and extensive short rotation cropping systems for woody biomass production in the EU  

Science Journals Connector (OSTI)

Abstract One of the strategies to ensure energy security and to mitigate climate change in the European Union (EU) is the establishment and the use of short rotation woody crops (SRWCs) for the production of renewable energy. \\{SRWCs\\} are cultivated in the EU under different management systems. Addressing the energy security problems through \\{SRWCs\\} requires management systems that maximize the net energy yield per unit land area. We assembled and evaluated on-farm data from within the EU, (i) to understand the relationship between the SRWC yields and spatial distribution of precipitation, as well as the relationship between SRWC yield and the planting density, and (ii) to investigate whether extensively managed SRWC systems are more energy efficient than their intensively managed counterparts. We found that SRWC yield ranged from 1.3 to 24 t ha?1 y?1 (mean 9.3±4.2 t ha?1 y?1) across sites. We looked for, but did not find a relationship between yield and annual precipitation as well as between yield and planting density. The energy inputs of extensively managed SRWC systems ranged from 3 to 8 GJ ha?1 y?1 whereas the energy ratio (i.e. energy output to energy input ratio) varied from 9 to 29. Although energy inputs (3–16 GJ ha?1y?1) were larger in most cases than those of extensively managed SRWC systems, intensively managed SRWC systems in the EU had higher energy ratios, i.e. between 15 and 62. The low energy ratio of extensively managed SRWC systems reflected their lower biomass yield per unit area. Switching from intensively managed SRWC systems to extensively managed ones thus creates an energy gap, and will require more arable land to be brought into production to compensate for the yield loss. Consequently, extensification is not the most appropriate path to the success of the wide scale deployment of SRWC for bioenergy production in the EU.

S. Njakou Djomo; A. Ac; T. Zenone; T. De Groote; S. Bergante; G. Facciotto; H. Sixto; P. Ciria Ciria; J. Weger; R. Ceulemans

2015-01-01T23:59:59.000Z

464

Collisionless absorption, hot electron generation, and energy scaling in intense laser-target interaction  

E-Print Network (OSTI)

Among the various attempts to understand collisionless absorption of intense ultrashort laser pulses a variety of models has been invented to describe the laser beam target interaction. In terms of basic physics collisionless absorption is understood now as the interplay of the oscillating laser field with the space charge field produced in the plasma. A first approach to this idea is realized in Brunel's model the essence of which consists in the formation of an oscillating charge cloud in the vacuum in front of the target. The investigation of statistical ensembles of orbits shows that the absorption process is localized at the ion-vacuum interface and in the skin layer: Single electrons enter into resonance with the laser field thereby undergoing a phase shift which causes orbit crossing and braking of Brunel's laminar flow. This anharmonic resonance acts like an attractor for the electrons and leads to the formation of a Maxwellian tail in the electron energy spectrum. Most remarkable results of our inves...

Liseykina, T; Murakami, M

2014-01-01T23:59:59.000Z

465

A Comparison of Iron and Steel Production Energy Use and Energy Intensity in China and the U.S.  

E-Print Network (OSTI)

of Iron and Steel Production Energy Use and Energy Intensityof Iron and Steel Production Energy Use and Energy Intensitycomparisons of steel production energy efficiency and CO 2

Hasanbeigi, Ali

2012-01-01T23:59:59.000Z

466

Analysis of two-dimensional high-energy photoelectron momentum distributions in the single ionization of atoms by intense laser pulses  

E-Print Network (OSTI)

, using longer pulses at lower intensities. The energy spectra above 4Up, where Up is the ponderomotive energy, have been found to vary rapidly with small changes in laser intensities 10,11 when laser pulseAnalysis of two-dimensional high-energy photoelectron momentum distributions in the single

Lin, Chii-Dong

467

Target Allocation Methodology for China's Provinces: Energy Intensity in the 12th FIve-Year Plan  

E-Print Network (OSTI)

energy in the total energy mix was determined in theOther energy in the total energy mix was much smaller thanwell as the different mix of energy and economic structure

Ohshita, Stephanie

2011-01-01T23:59:59.000Z

468

Hydrotreating of oil from eastern oil shale  

SciTech Connect

Oil shale provides one of the major fossil energy reserves for the United States. The quantity of reserves in oil shale is less than the quantity in coal, but is much greater (by at least an order of magnitude) than the quantity of crude oil reserves. With so much oil potentially available from oil shale, efforts have been made to develop techniques for its utilization. In these efforts, hydrotreating has proved to be an acceptable technique for upgrading raw shale oil to make usuable products. The present work demonstrated the use of the hydrotreating technique for upgrading an oil from Indiana New Albany oil shale.

Scinta, J.; Garner, J.W.

1984-01-01T23:59:59.000Z

469

A Comparison of Iron and Steel Production Energy Intensity in China and the U.S  

E-Print Network (OSTI)

2: Final to Primary Energy Conversion Factor in 2006 Finalinternational average energy conversion factors are used forenergy structure. The energy conversion factors for external

Price, Lynn

2014-01-01T23:59:59.000Z

470

Self-focusing, channel formation, and high-energy ion generation in interaction of an intense short laser pulse with a He jet  

E-Print Network (OSTI)

Self-focusing, channel formation, and high-energy ion generation in interaction of an intense short of interaction of a relativistically intense 4-TW, 400-fs laser pulse with a He gas jet. We observe a stable data, we reconstructed the axial profile of laser channel and on-axis laser intensity. The estimated

Umstadter, Donald

471

Mexico’s Deteriorating Oil Outlook: Implications and Energy Options for the Future  

E-Print Network (OSTI)

No. 8: David Shields, Mexico’s Deteriorating Oil Outlook:and Brazil, would help Mexico’s oil industry become moreof California, Berkeley Mexico’s Deteriorating Oil Outlook:

Shields, David

2008-01-01T23:59:59.000Z

472

Mexico’s Deteriorating Oil Outlook: Implications and Energy Options for the Future  

E-Print Network (OSTI)

No. 8: David Shields, Mexico’s Deteriorating Oil Outlook:years. Estimating oil reserves in Mexico has long been aof as yet unproven oil reserves in Mexico’s part of the

Shields, David

2008-01-01T23:59:59.000Z

473

Energy dependence, oil prices and exchange rates: the Dominican economy since 1990  

Science Journals Connector (OSTI)

This paper studies the impact that oil prices have had on the floating exchange rate ... these two variables for large developed economies and oil-producing countries, always including the 1970s oil crises in the...

Diego Méndez-Carbajo

2011-04-01T23:59:59.000Z

474

OIL SHALE RESEARCH. CHAPTER FROM THE ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1979  

E-Print Network (OSTI)

oil, water, spent shale, and gas. These data were enteredtoxic trace elements in oil shale gases and is using thisin the raw oil shale and input gases that is accounted for

,

2012-01-01T23:59:59.000Z

475

Mexico’s Deteriorating Oil Outlook: Implications and Energy Options for the Future  

E-Print Network (OSTI)

D ecline A ccelerates Mexico’s crude oil production, whichonly 43 percent of Mexico’s crude oil production, comparedb/d going forward. Mexico’s crude oil output could drop to

Shields, David

2008-01-01T23:59:59.000Z

476

Title 30 USC 226 Lease of Oil and Gas Lands | Open Energy Information  

Open Energy Info (EERE)

StatuteStatute: Title 30 USC 226 Lease of Oil and Gas LandsLegal Abstract Section 226 - Lease of Oil and Gas Lands in Subchapter IV: Oil and Gas under Title 30: Mineral Lands and...

477

Enhanced-oil-recovery thermal processes, annex IV. Venezuela-MEM/USA-DOE fossil-energy report IV-1  

SciTech Connect

The Agreement between the United States and Venezuela was designed to further energy research and development in six areas. This report focuses on Annex IV - Enhanced-Oil-Recovery Thermal Processes which was divided into seven tasks. This report will discuss the information developed within Task I related to the Department of Energy providing data on the performance of insulated oil-well tubulars. Surface generated steam has been traditionally used in thermal enhanced oil recovery processes. In past years the tubing through which the steam is injected into the reservoir has been bare with relatively high heat losses. In recent years however various materials and designs for insulating the tubing to reduce heat losses have been developed. Evaluation of several of these designs in an instrumented test tower and in an oil field test environment was undertaken. These tests and the resulting data are presented.

Peterson, G.; Schwartz, E.

1983-04-01T23:59:59.000Z

478

Used oil disposal and recycling in the United States  

SciTech Connect

Used oil represents an important energy resource, which, if properly managed and reused, could lessen US dependence on imported fuels. About 1.4 million gallons of used oil is generated annually in the United States. Of that total, about 70% is recycled: 57% is used as fuel and 12% is refined. In August 1992, the US Environmental Protection Agency adopted standards for recycling of used oil, and many states also regulate used oil (six states list used oil as hazardous waste). This report reviews the sources of used oil and methods of disposition, focusing on reprocessing and re-refining. About 83% of the recycled used oil is reprocessed for use as fuel. However, concern about the level of lead in such fuel is increasing. Re-refining used oil is an environmentally friendly process that yields higher energy savings than reprocessing; however, it is more capital-intensive. Reprocessing used oil for use as fuel yields an energy savings (over disposal) of 131,130 Btu/gal, while re-refining the oil for reuse as lube oil saves 180,000 Btu/gal, an advantage of 48,870 Btu/gal. However, further research is needed to enhance re- refining and to demonstrate the quality and competitiveness of its products.

Karvelas, D.E.; Daniels, E.J.

1993-07-01T23:59:59.000Z

479

An Empirical Analysis of Energy Intensity and Its Determinants at the State Level  

E-Print Network (OSTI)

that rising per capita income and higher energy prices have played an important part in lowering energy consumption to GDP ­ has long been of interest to energy researchers. Understanding the drivers of energy con. Efficiency refers to the reduced energy use per unit of economic activity within a particular sector (e

480

heavy_oil | netl.doe.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Heavy Oil Publications KMD Contacts Project Summaries EPAct 2005 Arctic Energy Office Announcements Software Stripper Wells Heavy oil is a vast U.S. oil resource that is...

Note: This page contains sample records for the topic "oil energy intensity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

A Comparison of Iron and Steel Production Energy Use and Energy Intensity in China and the U.S.  

E-Print Network (OSTI)

25 Table 18: Total Energy Consumption of China's Steelalmost doubled, but total energy consumption only increasedsources of total energy consumption data for China’s iron

Hasanbeigi, Ali

2012-01-01T23:59:59.000Z

482

Proc. 27th IEEE International Performance Computing and Communications Conference (IPCCC), Dec. 2008. Distributed Energy-Efficient Scheduling for Data-Intensive Applications with  

E-Print Network (OSTI)

. 2008. 1 Distributed Energy-Efficient Scheduling for Data-Intensive Applications with Deadline the performance of data-intensive applications on data grids, a large number of data replicas inevitably increase energy dissipation in storage resources on the data grids. In order to implement a data grid with high

Qin, Xiao

483

A New System of Energy Intensity Indicators for the U.S. Economy Focus on Manufacturing  

E-Print Network (OSTI)

The U.S. commitment to energy efficiency and conservation policy was emphasized in the National Energy Policy (NEP) made public in May 2001. Recommendation 14 in Chapter 4 of the NEP - "Making Energy Efficiency a National Priority" -recommended...

Roop, J. M.

484

Could energy-intensive industries be powered by carbon-free electricity?  

Science Journals Connector (OSTI)

...possibility of converting industrial energy demand to electricity, and...decarbonization of the whole energy system using wind, biomass, solar power in deserts and...one-third of the world's energy consumption [1]; most of...

2013-01-01T23:59:59.000Z

485

US Crude oil exports  

Gasoline and Diesel Fuel Update (EIA)

2014 EIA Energy Conference U.S. Crude Oil Exports July 14, 2014 By Lynn D. Westfall U.S. Energy Information Administration U.S. crude oil production has grown by almost 50% since...

486

Department of Energy, Office of Naval Petroleum & Oil Shale Reserves  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Request for Records Disposition Authority Leave Blank (NARA Use Only) (See Instructions on reverse) Job Number I / {£. 0- _~ To. National Archives and Records Administration (NIR) NI-'-r 3 7- 6 6 J Washington, DC 20408 Date Received 1 From (Agencyor establishment) Department of Energy Notification to Agency 2 MajorSubdivrsion In accordance with the provisions of 44 Assistant Secretary for Fossil Energy USC 3303a. the disposition request. In- cluding amendments. ISapproved except for 3 Minorsubcrvrsron Items that may be marked "disposrtron not Office of Naval Petroleum & Oil Shale Reserves approved" or "withdrawn" In column 10 4 Nameof Personwith whom to confer 5 Telephone (Includearea code) [ Pamela Gentel 301-903-1856 6 Agency Certification

487

Effects of mitigating fouling on the energy efficiency of crude-oil distillation  

SciTech Connect

An analysis was performed to determine the effects of fouling of the preheat train on the energy efficiency of a typical crude-distillation unit with a capacity of 100,000 bbl/day. A spreadsheet analysis was developed to calculate the thermal duty for each of the heat exchanger groups that heat the crude oil from ambient conditions to the distillation temperature. A fouling-rate model developed in a previous study was applied to calculate the fouling resistance as a function of time. Improvements in the energy efficiency were analyzed for different mitigation scenarios. The analysis shows economic incentives for new and improved techniques for mitigating fouling of the preheat train.

Panchal, C.B.; Huangfu, E.P.

2000-06-01T23:59:59.000Z

488

U.S. Department of Energy FreedomCAR & Vehicle Technologies Program: Oil Bypass Filter Technology Evaluation Seventh Quarterly Report April - June 2004  

SciTech Connect

This Oil Bypass Filter Technology Evaluation quarterly report (April–June 2004) details the ongoing fleet evaluation of an oil bypass filter technology by the Idaho National Engineering and Environmental Laboratory (INEEL) for the U.S. Department of Energy’s (DOE) FreedomCAR & Vehicle Technologies Program. Eight INEEL four-cycle diesel engine buses used to transport INEEL employees on various routes and six INEEL Chevrolet Tahoes with gasoline engines are equipped with oil bypass filter systems from the puraDYN Corporation. The bypass filters are reported to have engine oil filtering capability of <1 micron and a built-in additive package to facilitate extended oil-drain intervals. This quarter, the eight diesel engine buses traveled 85,632 miles. As of the end of June 2004, the eight buses have accumulated 498,814 miles since the beginning of the test and 473,192 miles without an oil change. This represents an avoidance of 39 oil changes, which equates to 1,374 quarts (343 gallons) of new oil not consumed and, furthermore, 1,374 quarts of waste oil not generated. One bus had its oil changed due to the degraded quality of the engine oil. Also this quarter, the six Tahoe test vehicles traveled 48,193 miles; to date, the six Tahoes have accumulated 109,708 total test miles. The oil for all six of the Tahoes was changed this quarter due to low Total Base Numbers (TBN). The oil used initially in the Tahoe testing was recycled oil; the recycled oil has been replaced with Castrol virgin oil, and the testing was restarted. However, the six Tahoe’s did travel a total of 98,266 miles on the initial engine oil. This represents an avoidance of 26 oil changes, which equates to 130 quarts (32.5 gallons) of new oil not consumed and, consequently, 130 quarts of waste oil not generated. Based on the number of oil changes avoided by the test buses and Tahoes to date, the potential engine oil savings if an oil bypass filter system were used was estimated for the INEEL, DOE complex and all Federal fleets of on-road vehicles. The estimated potential annual engine oil savings for the three fleets are: INEEL – 3,400 gallons, all DOE fleets – 32,000 gallons, and all Federal fleet – 1.7 million gallons.

Larry Zirker; James Francfort; Jordan Fielding

2004-08-01T23:59:59.000Z

489

Inertial fusion energy issues of intense heavy ion and laser beams interacting with ionized matter studied at GSI-Darmstadt  

Science Journals Connector (OSTI)

European activities on inertial fusion energy are coordinated by “keep in touch activities” of the European Fusion Programme coordinated by the European Commission. There is no general inertial fusion program in Europe. Instead, a number of activities relevant to inertial fusion are carried out by university groups and research centers. The Helmholtz-Research Center GSI-Darmstadt (Gesellschaft für Schwerionenforschung) operates accelerator facilities which provide the highest intensity for heavy ion beams and therefore key issues of ion beam driven fusion can be addressed. In addition to the accelerator facilities, one high-energy laser system is available (nhelix: nanosecond high-energy laser for ion experiments) and another one is under construction (PHELIX: petawatt high-energy laser for ion experiments). The heavy ion synchrotron facility, SIS18 (Schwer-Ionen-Synchrotron 18) recently delivered an intense uranium beam that deposits about 1 kJ/g specific energy in solid matter. Using this beam, experiments have been performed where solid Pb- and Ta-targets have been heated to the level of 1 eV. Experiments to study interaction mechanism of heavy ion beams with matter have been continued and are reported here.

D.H.H. Hoffmann; A. Blazevic; S. Korostiy; P. Ni; S.A. Pikuz; B. Rethfeld; O. Rosmej; M. Roth; N.A. Tahir; S. Udrea; D. Varentsov; K. Weyrich; B.Yu. Sharkov; Y. Maron

2007-01-01T23:59:59.000Z

490

U.S. Department of Energy Naval Petroleum and Oil Shale Reserves combined financial statements, September 30, 1996 and 1995  

SciTech Connect

The Naval Petroleum and Oil Shale Reserves (NPOSR) produces crude oil and associated hydrocarbons from the Naval Petroleum Reserves (NPR) numbered 1, 2, and 3, and the Naval Oil Shale Reserves (NOSR) numbered 1, 2, and 3 in a manner to achieve the greatest value and benefits to the US taxpayer. NPOSR consists of the Naval Petroleum Reserve in California (NPRC or Elk Hills), which is responsible for operations of NPR-1 and NPR-2; the Naval Petroleum Oil Shale Reserve in Colorado, Utah, and Wyoming (NPOSR-CUW), which is responsible for operations of NPR-3, NOSR-1, 2, and 3 and the Rocky Mountain Oilfield Testing Center (RMOTC); and NPOSR Headquarters in Washington, DC, which is responsible for overall program direction. Each participant shares in the unit costs and production of hydrocarbons in proportion to the weighted acre-feet of commercially productive oil and gas formations (zones) underlying the respective surface lands as of 1942. The participating shares of NPR-1 as of September 30, 1996 for the US Government and Chevron USA, Inc., are listed. This report presents the results of the independent certified public accountants` audit of the Department of Energy`s (Department) Naval Petroleum and Oil Shale Reserves (NPOSR) financial statements as of September 30, 1996.

NONE

1997-03-01T23:59:59.000Z

491