National Library of Energy BETA

Sample records for oil district heat

  1. ,,,"Electricity","Natural Gas","Fuel Oil","District Heat","District...

    U.S. Energy Information Administration (EIA) Indexed Site

    Oil","District Heat","District Chilled Water","Propane","Othera" "All Buildings ...117,52,8,117,43,"Q","Q" "District Chilled Water ......",50,50,50,21,3,43,50,"Q","Q" ...

  2. ,,,"Electricity","Natural Gas","Fuel Oil","District Heat","District...

    U.S. Energy Information Administration (EIA) Indexed Site

    Oil","District Heat","District Chilled Water","Propane","Othera" "All Buildings ...,1839,5891,2354,"Q","Q" "District Chilled Water ......",2750,2750,2750,1316,749,2354,2750...

  3. Susanville District Heating District Heating Low Temperature...

    Open Energy Info (EERE)

    Susanville District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Susanville District Heating District Heating Low Temperature...

  4. Kethcum District Heating District Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Kethcum District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Kethcum District Heating District Heating Low Temperature Geothermal...

  5. Midland District Heating District Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Midland District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Midland District Heating District Heating Low Temperature Geothermal...

  6. Pagosa Springs District Heating District Heating Low Temperature...

    Open Energy Info (EERE)

    Pagosa Springs District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Pagosa Springs District Heating District Heating Low...

  7. Philip District Heating District Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Philip District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Philip District Heating District Heating Low Temperature Geothermal...

  8. Geothermal District Heating Economics

    Energy Science and Technology Software Center (OSTI)

    1995-07-12

    GEOCITY is a large-scale simulation model which combines both engineering and economic submodels to systematically calculate the cost of geothermal district heating systems for space heating, hot-water heating, and process heating based upon hydrothermal geothermal resources. The GEOCITY program simulates the entire production, distribution, and waste disposal process for geothermal district heating systems, but does not include the cost of radiators, convectors, or other in-house heating systems. GEOCITY calculates the cost of district heating basedmore » on the climate, population, and heat demand of the district; characteristics of the geothermal resource and distance from the distribution center; well-drilling costs; design of the distribution system; tax rates; and financial conditions.« less

  9. PIA - Northeast Home Heating Oil Reserve System (Heating Oil...

    Energy Savers [EERE]

    Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil)...

  10. Elko County School District District Heating Low Temperature...

    Open Energy Info (EERE)

    Elko County School District District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Elko County School District District Heating Low Temperature...

  11. Warm Springs Water District District Heating Low Temperature...

    Open Energy Info (EERE)

    Water District District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Warm Springs Water District District Heating Low Temperature Geothermal...

  12. PIA - Northeast Home Heating Oil Reserve System (Heating Oil...

    Broader source: Energy.gov (indexed) [DOE]

    Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) (3.31 MB) More Documents & Publications PIA - WEB Physical ...

  13. ,"Total District Heat Consumption (trillion Btu)",,,,,"District...

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Consumption (trillion Btu)",,,,,"District Heat Energy Intensity (thousand Btusquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  14. Compare All CBECS Activities: District Heat Use

    U.S. Energy Information Administration (EIA) Indexed Site

    District Heat Use Compare Activities by ... District Heat Use Total District Heat Consumption by Building Type Commercial buildings in the U.S. used a total of approximately 433...

  15. Litchfield Correctional Center District Heating Low Temperature...

    Open Energy Info (EERE)

    Litchfield Correctional Center District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Litchfield Correctional Center District Heating Low Temperature...

  16. Manzanita Estates District Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Manzanita Estates District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Manzanita Estates District Heating Low Temperature Geothermal Facility...

  17. Designs for maximum utilization of district heating systems ...

    Office of Scientific and Technical Information (OSTI)

    AND UTILIZATION; DISTRICT HEATING; DESIGN; ECONOMIC ANALYSIS; GEOTHERMAL DISTRICT HEATING; COST; EFFICIENCY; SENSITIVITY; ECONOMICS; GEOTHERMAL HEATING; HEATING Geothermal ...

  18. Boise geothermal district heating system

    SciTech Connect (OSTI)

    Hanson, P.J.

    1985-10-01

    This document describes the Boise geothermal district heating project from preliminary feasibility studies completed in 1979 to a fully operational system by 1983. The report includes information about the two local governments that participated in the project - the City of Boise, Idaho and the Boise Warm Springs Water District. It also discusses the federal funding sources; the financial studies; the feasibility studies conducted; the general system planning and design; design of detailed system components; the legal issues involved in production; geological analysis of the resource area; distribution and disposal; the program to market system services; and the methods of retrofitting buildings to use geothermal hot water for space heating. Technically this report describes the Boise City district heating system based on 170/sup 0/F water, a 4000 gpm production system, a 41,000 foot pipeline system, and system economies. Comparable data are also provided for the Boise Warm Springs Water District. 62 figs., 31 tabs.

  19. Table 5a. Total District Heat Consumption per Effective Occupied...

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Total District Heat Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using District Heat (thousand) Total District Heat Consumption...

  20. Residential heating oil price

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 7.6 cents from a week ago to $2.97 per gallon. That's down $1.05 from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.94 per gallon, down 6.7 cents from last week, and down $1.07

  1. Residential heating oil price

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 6.3 cents from a week ago to $2.91 per gallon. That's down $1.10 from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.88 per gallon, down 6.8 cents from last week, and down $1.13

  2. Residential heating oil price

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 7.5 cents from a week ago to $2.84 per gallon. That's down $1.22 from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.80 per gallon, down 7.4 cents from last week, and down $1.23

  3. Residential heating oil price

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 4.1 cents from a week ago to $2.89 per gallon, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.84 per gallon, down 5.4 cents from last week

  4. Residential heating oil price

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 3.6 cents from a week ago to $3.04 per gallon. That's down 99.4 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $3.01 per gallon, down 3.6 cents from last week, and down $1.01

  5. Major Fuels","Electricity","Natural Gas","Fuel Oil","District...

    U.S. Energy Information Administration (EIA) Indexed Site

    (million square feet)","Total of Major Fuels","Electricity","Natural Gas","Fuel Oil","District Heat" "All Buildings ...",4657,67338,81552,66424,10...

  6. Major Fuels","Electricity",,"Natural Gas","Fuel Oil","District

    U.S. Energy Information Administration (EIA) Indexed Site

    of Buildings (thousand)","Floorspace (million square feet)","Sum of Major Fuels","Electricity",,"Natural Gas","Fuel Oil","District Heat" ,,,,"Primary","Site" "All Buildings...

  7. Cedarville School District Retrofit of Heating and Cooling Systems...

    Energy Savers [EERE]

    Cedarville School District Retrofit of Heating and Cooling Systems with Geothermal Heat Pumpsand Ground Source Water Loops Cedarville School District Retrofit of Heating and...

  8. Residential heating oil prices available

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil prices available The average retail price for home heating oil is $2.41 per gallon, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region currently average $2.35 per gallon. This is Marcela Rourk with EIA, in Washington.

  9. Warren Estates District Heating Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Warren Estates District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Warren Estates District Heating Low Temperature Geothermal Facility Facility...

  10. Idaho Capitol Mall District Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Idaho Capitol Mall District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Idaho Capitol Mall District Heating Low Temperature Geothermal Facility...

  11. Fort Boise Veteran's Hospital District Heating Low Temperature...

    Open Energy Info (EERE)

    Fort Boise Veteran's Hospital District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Fort Boise Veteran's Hospital District Heating Low Temperature...

  12. Heating Oil Reserve History | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heating Oil Reserve History Heating Oil Reserve History Creation of an emergency reserve of heating oil was directed by President Clinton on July 10, 2000, when he directed ...

  13. Microsoft Word - Heating Oil Season.docx

    Broader source: Energy.gov (indexed) [DOE]

    4-2015 Heating Oil Season Northeast Home Heating Oil Reserve Trigger Mechanism (Cents per Gallon, Except Where Noted) Week Residential Heating Oil Price Average Brent Spot Price ...

  14. Heating Oil and Propane Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Holiday Release Schedule The Heating Oil and Propane Update is produced during the winter heating season, which extends from October through March of each year. The standard ...

  15. Heating Oil and Propane Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Maps of states participating in Winter Fuels Survey Residential propane PADD map Residential heating oil PADD map

  16. District heating strategy model: community manual

    SciTech Connect (OSTI)

    Hrabak, R. A.; Kron, Jr., N. F.; Pferdehirt, W. P.

    1981-10-01

    The US Department of Housing and Urban Development (HUD) and the US Department of Energy (DOE) cosponsor a program aimed at increasing the number of district heating and cooling systems. Twenty-eight communities have received HUD cooperative agreements to aid in a national feasibility assessment of district heating and cooling systems. The HUD/DOE program includes technical assistance provided by Argonne National Laboratory and Oak Ridge National Laboratory. Part of this assistance is a computer program, called the district heating strategy model, that performs preliminary calculations to analyze potential district heating and cooling systems. The model uses information about a community's physical characteristics, current electricity-supply systems, and local economic conditions to calculate heat demands, heat supplies from existing power plants and a new boiler, system construction costs, basic financial forecasts, and changes in air-pollutant emissions resulting from installation of a district heating and cooling system. This report explains the operation of the district heating strategy model, provides simplified forms for organizing the input data required, and describes and illustrates the model's output data. The report is written for three groups of people: (1) those in the HUD/DOE-sponsored communities who will be collecting input data, and studying output data, to assess the potential for district heating and cooling applications in their communiites; (2) those in any other communities who may wish to use the model for the same purpose; and (3) technical-support people assigned by the national laboratories to explain to community personnel how the model is used.

  17. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price increases The average retail price for home heating oil rose 6-tenths of a cent from a week ago to $2.18 per gallon. That's down 79 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.13 per gallon, unchanged from last week, and down 88

  18. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 1.9 cents from a week ago to $2.16 per gallon. That's down 75 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.11 per gallon, down 2.8 cents from last week, and down 77

  19. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 5.1 cents from a week ago to $2.11 per gallon. That's down 72 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.05 per gallon, down 5.3 cents from last week, and down 75

  20. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 5 cents from a week ago to $2.06 per gallon. That's down 75 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.01 per gallon, down 4.1 cents from last week, and down 78

  1. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 1.8 cents from a week ago to $2.82 per gallon. That's down $1.36 from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.79 per gallon, down 1.5 cents from last week, and down $1.34

  2. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price increases The average retail price for home heating oil rose 1.8 cents from a week ago to $2.08 per gallon. That's down 72 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.02 per gallon, up 3-tenths of a cent from last week, and down 76

  3. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 1.9 cents from a week ago to $2.80 per gallon. That's down $1.44 from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.78 per gallon, down 1.2 cents from last week, and down $1.40

  4. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price increases The average retail price for home heating oil rose 1 cent from a week ago to $2.09 per gallon. That's down 82 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.02 per gallon, up 8-tenths of a cent from last week, and down 85

  5. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential heating oil price increases The average retail price for home heating oil rose 1.1 cents from a week ago to $2.10 per gallon. That's down 94 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.04 per gallon, up 2.3 cents from last week, and down 95

  6. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential heating oil price decreases The average retail price for home heating oil fell 9-tenths of a cent from a week ago to $2.09 per gallon. That's down $1.09 from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.04 per gallon, down 1-tenth of a cent from last week, and down $1.11

  7. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential heating oil price decreases The average retail price for home heating oil fell 5-tenths of a cent from a week ago to $2.09 per gallon. That's down $1.20 from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.03 per gallon, down 9-tenths of a cent from last week, and down $1.22

  8. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential heating oil price increases The average retail price for home heating oil rose 6-tenths of a cent from a week ago to $2.10 per gallon. That's down $1.11 from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.04 per gallon, up 5-tenths of a cent from last week, and down $1.14

  9. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential heating oil price increases The average retail price for home heating oil rose 2.6 cents from a week ago to $2.12 per gallon. That's down 91 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.06 per gallon, up 2.1 cents from last week, and down 94

  10. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential heating oil price increases The average retail price for home heating oil rose 1 cent from a week ago to $2.13 per gallon. That's down 80 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.07 per gallon, up 9-tenths of a cent from last week, and down 83

  11. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 10.5 cents from a week ago to $2.93 per gallon, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.90 per gallon, down 10.4 cents from last week. This is Marcela Rourk

  12. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 2.3 cents from a week ago to $2.38 per gallon. That's down 99 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.32 per gallon, down 3.1 cents from last week, and down $1.00

  13. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 1.5 cents from a week ago to $2.36 per gallon. That's down 97 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.31 per gallon, down 2-tenths of a cent from last week, and down 96

  14. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 3 cents from a week ago to $2.33 per gallon. That's down 89 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.28 per gallon, down 3.5 cents from last week, and down 9

  15. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 7.6 cents from a week ago to $2.26 per gallon. That's down 89 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.19 per gallon, down 8.9 cents from last week, and down 92

  16. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 4.5 cents from a week ago to $2.21 per gallon. That's down 87 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.15 per gallon, down 3.6 cents from last week, and down 89

  17. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 3.5 cents from a week ago to $2.18 per gallon. That's down 87 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.13 per gallon, down 2.2 cents from last week, and down 88

  18. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    5, 2014 Residential heating oil price decreases The average retail price for home heating oil fell 1.9 cents from a week ago to $3.43 per gallon. That's down 39 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $3.38 per gallon, down 2.6 cents from last week, and down 38.7

  19. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    7, 2014 Residential heating oil price decreases The average retail price for home heating oil fell 7.8 cents from a week ago to $3.14 per gallon. That's down 81.1 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $3.12 per gallon, down 6.5 cents from last week, and down 79.9

  20. Residential heating oil prices available

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil prices available The average retail price for home heating oil is $3.52 per gallon. That's down 32.7 cents from a year ago, based on the U.S. Energy Information Administration's weekly residential heating fuel price survey. Heating oil prices in the New England region are at $3.48 per gallon, down 29.1 cents from a year ago. This is Marcela Rourk, with EIA, in Washington

  1. Residential heating oil prices decline

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 2 cents from a week ago to $3.36 per gallon. That's down 52.5 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $3.31 per gallon, down 1.3 cents from last week, and down 52.6

  2. Residential heating oil prices decline

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 6.3 cents from a week ago to $3.08 per gallon. That's down 90.3 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $3.05 per gallon, down 6.8 cents from last week, and down 91.6

  3. Residential heating oil prices decline

    U.S. Energy Information Administration (EIA) Indexed Site

    2, 2014 Residential heating oil prices decline The average retail price for home heating oil is $3.48 per gallon. That's down 4.5 cents from a week ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $3.43 per gallon, down 5.7 cents from last week. This is Amerine Woodyard

  4. Residential heating oil prices decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil prices decrease The average retail price for home heating oil fell 1.7 cents from a week ago to $4.02 per gallon. That's up 1.7 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to 4.01 per gallon, down 6-tenths of a cent from last week, and up 5.8

  5. Residential heating oil prices decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    9, 2014 Residential heating oil price decreases The average retail price for home heating oil fell 2.9 cents from a week ago to $3.45 per gallon. That's down 36.6 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $3.41 per gallon, down 3 cents from last week, and down 35

  6. Residential heating oil prices increase

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil prices increase The average retail price for home heating oil rose 5.4 cents from a week ago to $4.04 per gallon. That's up 4.9 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region rose to 4.02 per gallon, up 5.6 cents from last week, and up 8

  7. Residential heating oil prices increase

    U.S. Energy Information Administration (EIA) Indexed Site

    3, 2014 Residential heating oil prices increase The average retail price for home heating oil rose 4.4 cents from a week ago to $4.06 per gallon. That's up 4.1 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region rose to 4.03 per gallon, up 2.5 cents from last week, and up 6

  8. Residential heating oil prices increase

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil prices increase The average retail price for home heating oil rose 12 cents from a week ago to $4.18 per gallon. That's up 13 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region rose to 4.13 per gallon, up 9.8 cents from last week, and up 12.9 cents from a

  9. Residential heating oil prices increase

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil prices increase The average retail price for home heating oil rose 3.9 cents last week to $3.96 per gallon. That's down 2.6 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. The price for heating oil in the New England region averaged 3.92 per gallon, up 5.2 cents from last week, and 1.7

  10. Residential heating oil prices increase

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil prices increase The average retail price for home heating oil rose 2.9 cents from a week ago to $3.98 per gallon. That's up 6-tenths of a penny from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region rose to 3.96 per gallon, up 4.1 cents from last week, and up 4.8

  11. Boise City Geothermal District Heating District Heating Low Temperatur...

    Open Energy Info (EERE)

    66.20x109 Btuyr 19.40 GWhyr Delat T 53.00 F Load Factor 0.07 Contact Kent Johnson; 208-384-3926 References Oregon Institute of Technology's Geo-Heat Center1 Boise...

  12. San Bernardino District Heating District Heating Low Temperature...

    Open Energy Info (EERE)

    Annual Generation 75.00x109 Btuyr 22.00 GWhyr Delat T 24.00 F Load Factor 0.20 Start Up Date 1983 Contact 909-384-5298 References Oregon Institute of Technology's Geo-Heat...

  13. City of Klamath Falls District Heating District Heating Low Temperatur...

    Open Energy Info (EERE)

    Annual Generation 35.00x109 Btuyr 10.30 GWhyr Delat T 32.00 F Load Factor 0.25 Start Up Date 1981 Contact 541-883-5316 References Oregon Institute of Technology's Geo-Heat...

  14. Biomass Derivatives Competitive with Heating Oil Costs.

    Energy Savers [EERE]

    Biomass Derivatives Competitive with Heating Oil Costs Transportation fuel Heat or electricity * Data are from literature, except heating oil is adjusted from 2011 winter average * ...

  15. Geothermal district heating and cooling in Vicenza, Italy

    SciTech Connect (OSTI)

    Leoni, P.

    1995-06-01

    The discovery of a large low-enthalpy geothermal water reservoir under the city of Vicenza (110,000 people) in northern Italy, through an oil prospecting venture, opened up the opportunity to install a district heating system with low energy consumption. Although the geothermal water is at 67{degrees}C, this is insufficient for heating the city`s commercial and residential buildings using their existing high-temperature heat distribution systems. Heat pumps are, therefore, used to obtain optimum useful heat energy from the geothermal source. Experience so far suggests that the system can reduce energy consumption by up to 60%, or 3885 MWh/year. The 2000 m deep well was completed in 1983 and is the first such well in Italy to be located within an urban area, making it ideal as a heat source for a district heating system. It produces 100 m{sup 3}/h of low salt-content water. The {open_quotes}Vicenza{close_quotes} geothermal heating and cooling project was developed by {open_quotes}Aziende Industriali Muncipalizzate{close_quotes} from 1988 to 1991, a utility company owned by the city of Vicenza, with the purpose of distributing approximately 40,000 MWh year to residential and commercial buildings. The project includes the installation of a power plant, and a district heating and cooling network. A reduction in the consumption of conventional fuels both for heating and domestic water has been achieved through a highly-efficient thermodynamic system based on reversible heat pumps. The system provides heating in the winter and air conditioning in summer.

  16. Heating Oil and Propane Update

    Gasoline and Diesel Fuel Update (EIA)

    The Federal forms below are required for State Energy Officials participating in the State Heating Oil and Propane Program (SHOPP) to execute their cooperative agreements with the ...

  17. DOE to Purchase Heating Oil for the Northeast Home Heating Oil...

    Energy Savers [EERE]

    Purchase Heating Oil for the Northeast Home Heating Oil Reserve DOE to Purchase Heating Oil for the Northeast Home Heating Oil Reserve June 23, 2008 - 1:29pm Addthis WASHINGTON, DC ...

  18. Lower oil prices also cutting winter heating oil and propane...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    see even lower natural gas and heating oil bills this winter than previously expected ... said the average household heating with oil will experience a 41% drop in heating oil ...

  19. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 8 cents from a week ago to $3.21 per gallon. That's down 98.7 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $3.18 per gallon, down 8.1 cents from last week, and down 96.1 cents from a year ago. This is Marcela Rourk

  20. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 17.7 cents from a week ago to $3.03 per gallon. That's down $1.09 from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.99 per gallon, down 18.2 cents from last week, and down $1.08 from a year ago. This is Marcela Rourk

  1. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 3.8 cents from a week ago to $3.33 per gallon. That's down 59.1 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $3.28 per gallon, down 3.7 cents from last week, and down 58.8 cents from a year ago. This is Marcela Rourk, with EIA, in Washington.

  2. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    6, 2014 Residential heating oil price decreases The average retail price for home heating oil rose 1.6 cents from a week ago to $4.24 per gallon. That's up 8.9 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region rose to 4.16 per gallon, up 6-tenths of a cent from last week, and up 3.9 cents from a year ago. This is Marcela Rourk, with EIA, in Washington. For more information, contact

  3. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Residential heating oil price decreases The average retail price for home heating oil fell 1.6 cents from a week ago to $3.42 per gallon. That's down 39.5 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $3.37 per gallon, down 1.2 cents from last week, and down 39.7 cents from a year ago. This is Marcela Rourk, with EIA, in Washington. For more information, contact Marcela

  4. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 10.5 cents from a week ago to $3.22 per gallon. That's down 73.6 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $3.19 per gallon, down 9 cents from last week, and down 73.1 cents from a year ago. This is Marcela Rourk, with EIA, in Washington.

  5. Residential heating oil price increases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price increases The average retail price for home heating oil rose 11.2 cents from a week ago to $2.91 per gallon. That's down $1.33 from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region rose to $2.87 per gallon, up 9.8 cents from last week, and down $1.29 from a year ago. This is Marcela Rourk with EIA, in Washington.

  6. Residential heating oil price increases

    U.S. Energy Information Administration (EIA) Indexed Site

    9, 2015 Residential heating oil price increases The average retail price for home heating oil rose 11.7 cents from a week ago to $3.03 per gallon. That's down $1.20 from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region rose to $2.99 per gallon, up 12 cents from last week, and down $1.16 from a year ago. This is Marcela Rourk

  7. Residential heating oil price increases

    U.S. Energy Information Administration (EIA) Indexed Site

    5, 2015 Residential heating oil price increases The average retail price for home heating oil rose 14.7 cents from a week ago to $3.19 per gallon. That's down $1.06 from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region rose to $3.15 per gallon, up 15.9 cents from last week, and down $1.00 from a year ago. This is Marcela Rourk

  8. Residential heating oil price increases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price increases The average retail price for home heating oil rose 10.3 cents from a week ago to $3.29 per gallon. That's down 93.7 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region rose to $3.26 per gallon, up 10.4 cents from last week, and down 89.3 cents from a year ago. This is Marcela Rourk

  9. Residential heating oil prices decline

    U.S. Energy Information Administration (EIA) Indexed Site

    9, 2014 Residential heating oil price decreases The average retail price for home heating oil fell 3.3 cents from a week ago to $3.38 per gallon. That's down 43.9 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $3.33 per . gallon, down 3.5 cents from last week, and down 44.6 cents from a year ago

  10. Residential heating oil prices decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    5, 2014 Residential heating oil prices decrease The average retail price for home heating oil fell 1.8 cents from a week ago to $4.00 per gallon. That's down 2-tenths of a cent from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to 4.01 per gallon, down 8-tenths of a cent from last week, and up 4.4

  11. Residential heating oil prices increase

    U.S. Energy Information Administration (EIA) Indexed Site

    5, 2014 Residential heating oil prices increase The average retail price for home heating oil rose 6.5 cents from a week ago to $4.24 per gallon. That's up 14.9 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region rose to 4.17 per gallon, up 4.1 cents from last week, and up 13.4 cents from a year ago. This is Amerine Woodyard, with EIA, in Washington. For more information, contact Marcela

  12. Residential heating oil prices increase

    U.S. Energy Information Administration (EIA) Indexed Site

    4, 2013 Residential heating oil prices increase The average retail price for home heating oil rose 2.9 cents from last week to $3.92 per gallon. That's down 11 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. The price for heating oil in the New England region averaged 3.87 per gallon, up 2.5 cents from last week, but down 7.1 cents from a year earlier. This is Marlana Anderson

  13. New Mexico State University District Heating Low Temperature...

    Open Energy Info (EERE)

    Heating Low Temperature Geothermal Facility Jump to: navigation, search Name New Mexico State University District Heating Low Temperature Geothermal Facility Facility New...

  14. Heating Oil and Propane Update

    Gasoline and Diesel Fuel Update (EIA)

    Respondents Q1: What is the purpose of this survey? The U.S. Energy Information Administration (EIA) Form EIA-877, "Winter Heating Fuels Telephone Survey," is designed to collect data on State-level stocks and residential prices of No. 2 heating oil and propane during the heating season. The data are used to monitor the prices of propane and No. 2 heating oil during the heating season, and to report to the Congress and others when requested. Q2: How does the survey work? The EIA-877

  15. GEOTHERMAL DISTRICT HEATING Dr. John W. Lund, PE Emeritus Director

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DISTRICT HEATING Dr. John W. Lund, PE Emeritus Director Geo-Heat Center Oregon Institute of Technology Klamath Falls, OR GEOTHERMAL DISTRICT HEATING/COOLING Geothermal resource supplying thermal energy to a group of buildings, providing: *Space heating and cooling *Domestic hot water heating *Industrial process heat Could be a hybrid system augmented by: *Heat Pump to boost temperature *Conventional boiler for peaking MAJOR SYSTEM COMPONENTS 1. Heat Production - well field(s) * Production wells

  16. Alternative institutional vehicles for geothermal district heating

    SciTech Connect (OSTI)

    Bressler, S.; Gardner, T.C.; King, D.; Nimmons, J.T.

    1980-06-01

    The attributes of various institutional entities which might participate in various phases of geothermal heating applications are described. Public entities considered include cities, counties, and special districts. Private entities discussed include cooperative organizations and non-member-owned private enterprises. The powers, authority and manner of operation of each of the institutional entities are reviewed. Some of the public utility regulatory implications which may affect choices among available alternatives are considered. (MHR)

  17. Preliminary business plan: Plzen district heating system upgrade

    SciTech Connect (OSTI)

    1996-06-01

    The district heating system of the City of Plzen, Czech Republic, needs to have physical upgrades to replace aging equipment and to comply with upcoming environmental regulations. Also, its ownership and management are being changed as a result of privatization. As majority owner, the City has the primary goal of ensuring that the heating needs of its customers are met as reliably and cost-effectively as possible. This preliminary business plan is part of the detailed analysis (5 reports in all) done to assist the City in deciding the issues. Preparation included investigation of ownership, management, and technology alternatives; estimation of market value of assets and investment requirements; and forecasting of future cash flow. The district heating system consists of the Central Plzen cogeneration plant, two interconnected heating plants [one supplying both hot water and steam], three satellite heating plants, and cooperative agreements with three industrial facilities generating steam and hot water. Most of the plants are coal-fired, with some peaking units fired by fuel oil.

  18. Field performance of a premium heating oil

    SciTech Connect (OSTI)

    Santa, T.; Jetter, S.

    1997-01-01

    As part of ongoing research to provide quality improvements to heating oil, Mobil Oil together with Santa Fuel conducted a field trial to investigate the performance of a new premium heating oil. This premium heating oil contains an additive system designed to minimize sludge related problems in the fuel delivery system of residential home heating systems. The additive used was similar to others reported at this and earlier BNL conferences, but was further developed to enhance its performance in oil heat systems. The premium heating oil was bulk additized and delivered to a subset of the customer base. The performance of this premium heating oil is discussed.

  19. Cedarville School District Retrofit of Heating and Cooling Systems with

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Heat Pumpsand Ground Source Water Loops | Department of Energy Cedarville School District Retrofit of Heating and Cooling Systems with Geothermal Heat Pumpsand Ground Source Water Loops Cedarville School District Retrofit of Heating and Cooling Systems with Geothermal Heat Pumpsand Ground Source Water Loops Project objectives: Improve the indoor air quality and lower the cost of cooling and heating the buildings that make up the campus of Cedarville High School and Middle School.;

  20. Gila Hot Springs District Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Low Temperature Geothermal Facility Facility Gila Hot Springs Sector Geothermal energy Type District Heating Location Gila Hot Springs, New Mexico Coordinates Show Map...

  1. Releases from the Heating Oil Reserve | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Releases from the Heating Oil Reserve Releases from the Heating Oil Reserve The Northeast Home Heating Oil Reserve (NEHHOR), a one million barrel supply of ultra low sulfur ...

  2. Northeast Home Heating Oil Reserve (NEHHOR) Guidelines for Release...

    Energy Savers [EERE]

    Heating Oil Reserve Northeast Home Heating Oil Reserve (NEHHOR) Guidelines for Release Northeast Home Heating Oil Reserve (NEHHOR) Guidelines for Release The Energy Policy and ...

  3. HISTORICAL NORTHEAST HOME HEATING OIL RESERVE (NEHHOR) TRIGGER...

    Office of Environmental Management (EM)

    HISTORICAL NORTHEAST HOME HEATING OIL RESERVE (NEHHOR) TRIGGER REPORTS HISTORICAL NORTHEAST HOME HEATING OIL RESERVE (NEHHOR) TRIGGER REPORTS Historical Northeast Home Heating Oil ...

  4. NORTHEAST HOME HEATING OIL RESERVE TRIGGER MECHANISM | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NORTHEAST HOME HEATING OIL RESERVE TRIGGER MECHANISM NORTHEAST HOME HEATING OIL RESERVE TRIGGER MECHANISM Historical Northeast Home Heating Oil Reserve Trigger Mechanism Charts ...

  5. Heating Oil Reserve | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heating Oil Reserve Heating Oil Reserve The Northeast Home Heating Oil Reserve is a one million barrel supply of ultra low sulfur distillate (diesel) that provides protection for homes and businesses in the northeastern United States should a disruption in supplies occur. The Northeast Home Heating Oil Reserve is a one million barrel supply of ultra low sulfur distillate (diesel) that provides protection for homes and businesses in the northeastern United States should a disruption in supplies

  6. Blueprint for financing geothermal district heating in California

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Technical Report: Blueprint for financing geothermal district heating in California Citation Details In-Document Search Title: Blueprint for financing geothermal district heating in California The current legal and investment climate surrounding geothermal development is depicted. Changes that would make the climate more favorable to direct heat geothermal development are recommended. The Boise, Susanville, and Brady Hot Springs projects are analyzed.

  7. Residential heating oil price virtually unchanged

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price virtually unchanged The average retail price for home heating oil fell 1-tenth of a cent from a week ago to $2.13 per gallon. That's down 76 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.07 per gallon, down 2-tenths of a cent from last week, and down 78

  8. Residential heating oil prices virtually unchanged

    U.S. Energy Information Administration (EIA) Indexed Site

    9, 2014 Residential heating oil price decreases The average retail price for home heating oil fell 7.2 cents from a week ago to $4.12 per gallon. That's up 9.4 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to 4.07 per gallon, down 6.3 cents from last week, and up 9.4

  9. Korea District Heating Corporation | Open Energy Information

    Open Energy Info (EERE)

    Korea (Republic) Zip: 463 908 Product: Korea-based organisation seeking to promote energy conservation and improve living standards through the efficient use of district...

  10. World Energy Projection System Plus Model Documentation: District Heat Model

    Reports and Publications (EIA)

    2011-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) District Heat Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  11. District Wide Geothermal Heating Conversion Blaine County School District

    Broader source: Energy.gov [DOE]

    This project will impact the geothermal energy development market by showing that ground source heat pump systems using production and re-injection wells has the lowest total cost of ownership of available HVAC replacement options.

  12. State heating oil and propane program

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    The following is a report of New Hampshire's participation in the State Heating Oil and Propane Program (SHOPS) for the 1990--91 heating season. The program is a joint effort between participating states and the Department of Energy (DOE), Energy Information Administration (EYE) to collect retail price data for heating oil and propane through phone surveys of 25 oil and 20 propane retailers in New Hampshire. SHOPS is funded through matching grants from DOE and the participating state. (VC)

  13. Texas - RRC District 1 Crude Oil + Lease Condensate Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Texas - RRC District 1 Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 96 2010's 263 893 2,031 2,360 2,887 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil

  14. Texas - RRC District 10 Crude Oil + Lease Condensate Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Texas - RRC District 10 Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 198 2010's 243 290 347 351 363 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus

  15. Texas - RRC District 5 Crude Oil + Lease Condensate Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Texas - RRC District 5 Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 24 2010's 22 28 65 47 62 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease

  16. Texas - RRC District 6 Crude Oil + Lease Condensate Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Texas - RRC District 6 Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 224 2010's 240 232 252 267 299 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus

  17. Texas - RRC District 9 Crude Oil + Lease Condensate Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Texas - RRC District 9 Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 149 2010's 155 181 177 195 209 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus

  18. Residential heating oil prices virtually unchanged

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Residential heating oil prices virtually unchanged The average retail price for home heating oil rose 2-tenths of a cent from a week ago to $4.24 per gallon. That's up 8.2 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to 4.16 per gallon, down 1.7 cents from last week, and up 3.2 cents from a year ago. This is Marcela Rourk, with EIA, in Washington. For more information,

  19. Residential heating oil prices virtually unchanged

    U.S. Energy Information Administration (EIA) Indexed Site

    0, 2014 Residential heating oil price decreases The average retail price for home heating oil fell 1.9 cents from a week ago to $4.23 per gallon. That's up 5.1 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to 4.15 per gallon, down 8-tenths of a cent from last week, and up 1.5 cents from a year ago. This is Marcela Rourk, with EIA, in Washington. For more information, contact

  20. Residential heating oil prices virtually unchanged

    U.S. Energy Information Administration (EIA) Indexed Site

    5, 2014 Residential heating oil price decreases The average retail price for home heating oil fell 1.6 cents from a week ago to $4.23 per gallon. That's up 14.9 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to 4.15 per gallon, down 6-tenths of a cent from last week, and up 10.8

  1. Residential heating oil prices virtually unchanged

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Residential heating oil price decreases The average retail price for home heating oil fell 3.1 cents from a week ago to $4.20 per gallon. That's up 13.6 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to 4.14 per gallon, down 1.4 cents from last week, and up 11 cents from a year ago. This is Marcela Rourk, with EIA, in Washington. For more information, contact Marcela Rourk at

  2. Residential heating oil prices virtually unchanged

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil prices virtually unchanged The average retail price for home heating oil fell 4-tenths of a penny from a week ago to $3.95 per gallon. That's down 8-tenths of a penny from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region rose 3.92 per gallon, up 3-tenths of a cent from last week, and up 3 cents from a year ago

  3. 1992 National census for district heating, cooling and cogeneration

    SciTech Connect (OSTI)

    Not Available

    1993-07-01

    District energy systems are a major part of the energy use and delivery infrastructure of the United States. With nearly 6,000 operating systems currently in place, district energy represents approximately 800 billion BTU per hour of installed thermal production capacity, and provides over 1.1 quadrillion BTU of energy annually -- about 1.3% of all energy used in the US each year. Delivered through more that 20,000 miles of pipe, this energy is used to heat and cool almost 12 billion square feet of enclosed space in buildings that serve a diverse range of office, education, health care, military, industrial and residential needs. This Census is intended to provide a better understanding of the character and extent of district heating, cooling and cogeneration in the United States. It defines a district energy system as: Any system that provides thermal energy (steam, hot water, or chilled water) for space heating, space cooling, or process uses from a central plant, and that distributes the energy to two or more buildings through a network of pipes. If electricity is produced, the system is a cogenerating facility. The Census was conducted through surveys administered to the memberships of eleven national associations and agencies that collectively represent the great majority of the nation`s district energy system operators. Responses received from these surveys account for about 11% of all district systems in the United States. Data in this report is organized and presented within six user sectors selected to illustrate the significance of district energy in institutional, community and utility settings. Projections estimate the full extent of district energy systems in each sector.

  4. Texas - RRC District 8 Crude Oil + Lease Condensate Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Texas - RRC District 8 Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,985 2010's 2,254 2,709 3,304 3,356 4,142 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude

  5. Northeast Home Heating Oil Reserve (NEHHOR) Weekly Trigger Report...

    Office of Environmental Management (EM)

    Weekly Trigger Report Northeast Home Heating Oil Reserve (NEHHOR) Weekly Trigger Report The weekly report for the current heating oil season shows the differential levels required ...

  6. Indirect heating pyrolysis of oil shale

    DOE Patents [OSTI]

    Jones, Jr., John B.; Reeves, Adam A.

    1978-09-26

    Hot, non-oxygenous gas at carefully controlled quantities and at predetermined depths in a bed of lump oil shale provides pyrolysis of the contained kerogen of the oil shale, and cool non-oxygenous gas is passed up through the bed to conserve the heat

  7. Community Renewable Energy Success Stories Webinar: District Heating with Renewable Energy (text version)

    Office of Energy Efficiency and Renewable Energy (EERE)

    Below is the text version of the webinar titled "District Heating with Renewable Energy," originally presented on November 20, 2012.

  8. No. 2 heating oil/propane program

    SciTech Connect (OSTI)

    McBrien, J.

    1991-06-01

    During the 1990/91 heating season, the Massachusetts Division of Energy Resources (DOER) participated in a joint data collection program between several state energy offices and the federal Department of Energy's (DOE) Energy Information Administration (EIA). The purpose of the program was to collect and monitor retail and wholesale heating oil and propane prices and inventories from October 1990 through March 1991. This final report begins with an overview of the unique events which had an impact on the reporting period. Next, the report summarizes the results from the residential heating oil and propane price surveys conducted by DOER over the 1990/91 heating season. The report also incorporates the wholesale heating oil and propane prices and inventories collected by the EIA and distributed to the states.

  9. Combined Heat and Power, Waste Heat, and District Energy

    Broader source: Energy.gov [DOE]

    Presentation—given at the Fall 2011 Federal Utility Partnership Working Group (FUPWG) meeting—covers combined heat and power (CHP) technologies and their applications.

  10. Table 42. Residual Fuel Oil Prices by PAD District and State

    Gasoline and Diesel Fuel Update (EIA)

    Information Administration Petroleum Marketing Annual 1995 245 Table 42. Residual Fuel Oil Prices by PAD District and State (Cents per Gallon Excluding Taxes) - Continued...

  11. Table 42. Residual Fuel Oil Prices by PAD District and State

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Information AdministrationPetroleum Marketing Annual 1998 203 Table 42. Residual Fuel Oil Prices by PAD District and State (Cents per Gallon Excluding Taxes) - Continued...

  12. Carbon footprints of heating oil and LPG heating systems

    SciTech Connect (OSTI)

    Johnson, Eric P.

    2012-07-15

    For European homes without access to the natural gas grid, the main fuels-of-choice for heating are heating oil and LPG. How do the carbon footprints of these compare? Existing literature does not clearly answer this, so the current study was undertaken to fill this gap. Footprints were estimated in seven countries that are representative of the EU and constitute two-thirds of the EU-27 population: Belgium, France, Germany, Ireland, Italy, Poland and the UK. Novelties of the assessment were: systems were defined using the EcoBoiler model; well-to-tank data were updated according to most-recent research; and combustion emission factors were used that were derived from a survey conducted for this study. The key finding is that new residential heating systems fuelled by LPG are 20% lower carbon and 15% lower overall-environmental-impact than those fuelled by heating oil. An unexpected finding was that an LPG system's environmental impact is about the same as that of a bio heating oil system fuelled by 100% rapeseed methyl ester, Europe's predominant biofuel. Moreover, a 20/80 blend (by energy content) with conventional heating oil, a bio-heating-oil system generates a footprint about 15% higher than an LPG system's. The final finding is that fuel switching can pay off in carbon terms. If a new LPG heating system replaces an ageing oil-fired one for the final five years of its service life, the carbon footprint of the system's final five years is reduced by more than 50%.

  13. Feasibility analysis of geothermal district heating for Lakeview, Oregon

    SciTech Connect (OSTI)

    Not Available

    1980-12-23

    An analysis of the geothermal resource at Lakeview, Oregon, indicates that a substantial resource exists in the area capable of supporting extensive residential, commercial and industrial heat loads. Good resource productivity is expected with water temperatures of 200{degrees}F at depths of 600 to 3000 feet in the immediate vicinity of the town. Preliminary district heating system designs were developed for a Base Case serving 1170 homes, 119 commercial and municipal buildings, and a new alcohol fuel production facility; a second design was prepared for a downtown Mini-district case with 50 commercial users and the alcohol plant. Capital and operating costs were determined for both cases. Initial development of the Lakeview system has involved conducting user surveys, well tests, determinations of institutional requirements, system designs, and project feasibility analyses. A preferred approach for development will be to establish the downtown Mini-district and, as experience and acceptance are obtained, to expand the system to other areas of town. Projected energy costs for the Mini-district are $10.30 per million Btu while those for the larger Base Case design are $8.20 per million Btu. These costs are competitive with costs for existing sources of energy in the Lakeview area.

  14. Life cycle assessment of base-load heat sources for district heating system options

    SciTech Connect (OSTI)

    Ghafghazi, Saeed; Sowlati, T.; Sokhansanj, Shahabaddine; Melin, Staffan

    2011-03-01

    Purpose There has been an increased interest in utilizing renewable energy sources in district heating systems. District heating systems are centralized systems that provide heat for residential and commercial buildings in a community. While various renewable and conventional energy sources can be used in such systems, many stakeholders are interested in choosing the feasible option with the least environmental impacts. This paper evaluates and compares environmental burdens of alternative energy source options for the base load of a district heating center in Vancouver, British Columbia (BC) using the life cycle assessment method. The considered energy sources include natural gas, wood pellet, sewer heat, and ground heat. Methods The life cycle stages considered in the LCA model cover all stages from fuel production, fuel transmission/transportation, construction, operation, and finally demolition of the district heating system. The impact categories were analyzed based on the IMPACT 2002+ method. Results and discussion On a life-cycle basis, the global warming effect of renewable energy options were at least 200 kgeqCO2 less than that of the natural gas option per MWh of heat produced by the base load system. It was concluded that less than 25% of the upstream global warming impact associated with the wood pellet energy source option was due to transportation activities and about 50% of that was resulted from wood pellet production processes. In comparison with other energy options, the wood pellets option has higher impacts on respiratory of inorganics, terrestrial ecotoxicity, acidification, and nutrification categories. Among renewable options, the global warming impact of heat pump options in the studied case in Vancouver, BC, were lower than the wood pellet option due to BC's low carbon electricity generation profile. Ozone layer depletion and mineral extraction were the highest for the heat pump options due to extensive construction required for these

  15. A multicriteria approach to evaluate district heating system options

    SciTech Connect (OSTI)

    Ghafghazi, Saeed; Sowlati, T.; Sokhansanj, Shahabaddine; Melin, Staffan

    2009-07-01

    District energy systems, in which renewable energy sources may be utilized, are centralized systems to provide energy to residential and commercial buildings. The aim of this paper is to evaluate and rank energy sources available for a case of district heating system in Vancouver, Canada, based on multiple criteria and the view points of different stakeholders, and to show how communication would affect the ranking of alternatives. The available energy sources are natural gas, biomass (wood pellets), sewer heat, and geothermal heat. The evaluation criteria include GHG emissions, particulate matter emissions, maturity of technology, traffic load, and local source. In order to rank the energy options the PROMETHEE method is used. In this paper, two different scenarios were developed to indicate how the communication between the stakeholders would affect their preferences about criteria weights and would change the ranking of alternatives. The result of this study shows that without communication the best energy source for the considered district energy system is different for different stakeholders. While, addressing concerns through efficient communication would result in a general consensus. In this case, wood pellet is the best energy alternative for all the stakeholders.

  16. District-heating strategy model: computer programmer's manual

    SciTech Connect (OSTI)

    Kuzanek, J.F.

    1982-05-01

    The US Department of Housing and Urban Development (HUD) and the US Department of Energy (DOE) cosponsor a program aimed at increasing the number of district heating and cooling (DHC) systems. Such systems can reduce the amount and costs of fuels used to heat and cool buildings in a district. Twenty-eight communities have agreed to aid HUD in a national feasibility assessment of DHC systems. The HUD/DOE program entails technical assistance by Argonne National Laboratory and Oak Ridge National Laboratory. The assistance includes a computer program, called the district heating strategy model (DHSM), that performs preliminary calculations to analyze potential DHC systems. This report describes the general capabilities of the DHSM, provides historical background on its development, and explains the computer installation and operation of the model - including the data file structures and the options. Sample problems illustrate the structure of the various input data files, the interactive computer-output listings. The report is written primarily for computer programmers responsible for installing the model on their computer systems, entering data, running the model, and implementing local modifications to the code.

  17. Biomass Derivatives Competitive with Heating Oil Costs. | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Derivatives Competitive with Heating Oil Costs. Biomass Derivatives Competitive with Heating Oil Costs. Presentation at the May 9, 2012, Pyrolysis Oil Workship on biomass derivatives competitive with heating oil costs. pyrolysis_levine.pdf (733.32 KB) More Documents & Publications Challenge # 1. Feedstock & Production Thermochemical Conversion Proceeses to Aviation Fuels A Review of DOE Biofuels Program

  18. Residential heating oil prices decline

    Gasoline and Diesel Fuel Update (EIA)

    propane price increase slightly The average retail price for propane is 2.41 per gallon, up 1-tenth of a cent from last week, based on the residential heating fuel survey by the ...

  19. Bio-Oil Deployment in the Home Heating Market

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bio-Oil Deployment in the Home Heating Market March 23, 2015 Dr. Thomas A. Butcher ... and end user acceptance. * Heating oil and diesel transportation both use the same ...

  20. Northeast Home Heating Oil Reserve - Guidelines for Release | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Heating Oil Reserve » Northeast Home Heating Oil Reserve - Guidelines for Release Northeast Home Heating Oil Reserve - Guidelines for Release The Energy Policy and Conservation Act, as amended, sets conditions for the release of the Northeast Home Heating Oil Reserve. The Secretary of Energy has the authority to sell, exchange, or otherwise dispose of petroleum distillate from the Reserve in order to maintain the quality or quantity of the petroleum distillate or to maintain the

  1. Technical Information Exchange on Pyrolysis Oil: Potential for a renewable heating oil substitution

    Broader source: Energy.gov [DOE]

    Two-day agenda from the workshop: Technical Information Exchange on Pyrolysis Oil: Potential for a renewable heating oil substitution fuel in New England.

  2. Process for heating coal-oil slurries

    DOE Patents [OSTI]

    Braunlin, W.A.; Gorski, A.; Jaehnig, L.J.; Moskal, C.J.; Naylor, J.D.; Parimi, K.; Ward, J.V.

    1984-01-03

    Controlling gas to slurry volume ratio to achieve a gas holdup of about 0.4 when heating a flowing coal-oil slurry and a hydrogen containing gas stream allows operation with virtually any coal to solvent ratio and permits operation with efficient heat transfer and satisfactory pressure drops. The critical minimum gas flow rate for any given coal-oil slurry will depend on numerous factors such as coal concentration, coal particle size distribution, composition of the solvent (including recycle slurries), and type of coal. Further system efficiency can be achieved by operating with multiple heating zones to provide a high heat flux when the apparent viscosity of the gas saturated slurry is highest. Operation with gas flow rates below the critical minimum results in system instability indicated by temperature excursions in the fluid and at the tube wall, by a rapid increase and then decrease in overall pressure drop with decreasing gas flow rate, and by increased temperature differences between the temperature of the bulk fluid and the tube wall. At the temperatures and pressures used in coal liquefaction preheaters the coal-oil slurry and hydrogen containing gas stream behaves essentially as a Newtonian fluid at shear rates in excess of 150 sec[sup [minus]1]. The gas to slurry volume ratio should also be controlled to assure that the flow regime does not shift from homogeneous flow to non-homogeneous flow. Stable operations have been observed with a maximum gas holdup as high as 0.72. 29 figs.

  3. Process for heating coal-oil slurries

    DOE Patents [OSTI]

    Braunlin, Walter A.; Gorski, Alan; Jaehnig, Leo J.; Moskal, Clifford J.; Naylor, Joseph D.; Parimi, Krishnia; Ward, John V.

    1984-01-03

    Controlling gas to slurry volume ratio to achieve a gas holdup of about 0.4 when heating a flowing coal-oil slurry and a hydrogen containing gas stream allows operation with virtually any coal to solvent ratio and permits operation with efficient heat transfer and satisfactory pressure drops. The critical minimum gas flow rate for any given coal-oil slurry will depend on numerous factors such as coal concentration, coal particle size distribution, composition of the solvent (including recycle slurries), and type of coal. Further system efficiency can be achieved by operating with multiple heating zones to provide a high heat flux when the apparent viscosity of the gas saturated slurry is highest. Operation with gas flow rates below the critical minimum results in system instability indicated by temperature excursions in the fluid and at the tube wall, by a rapid increase and then decrease in overall pressure drop with decreasing gas flow rate, and by increased temperature differences between the temperature of the bulk fluid and the tube wall. At the temperatures and pressures used in coal liquefaction preheaters the coal-oil slurry and hydrogen containing gas stream behaves essentially as a Newtonian fluid at shear rates in excess of 150 sec.sup. -1. The gas to slurry volume ratio should also be controlled to assure that the flow regime does not shift from homogeneous flow to non-homogeneous flow. Stable operations have been observed with a maximum gas holdup as high as 0.72.

  4. Reduction of pumping energy losses in district heating and cooling systems

    SciTech Connect (OSTI)

    Zakin, J.L.; Christensen, R.N.

    1992-10-01

    This project was designed to find effective surfactant friction reducing additives for use in district heating systems with temperatures of 50 to 90[degrees]C and effective additives fore district cooling systems with temperatures of 5 to 15[degrees]C. Heat transfer measurements in conventional shell and tube heat exchangers and in plate heat exchangers were also carried out to see how seriously these surfactant drag reducing additives reduce heat transfer coefficients.

  5. Reduction of pumping energy losses in district heating and cooling systems. Final report

    SciTech Connect (OSTI)

    Zakin, J.L.; Christensen, R.N.

    1992-10-01

    This project was designed to find effective surfactant friction reducing additives for use in district heating systems with temperatures of 50 to 90{degrees}C and effective additives fore district cooling systems with temperatures of 5 to 15{degrees}C. Heat transfer measurements in conventional shell and tube heat exchangers and in plate heat exchangers were also carried out to see how seriously these surfactant drag reducing additives reduce heat transfer coefficients.

  6. State Heating Oil and Propane Program

    U.S. Energy Information Administration (EIA) Indexed Site

    Program Marcela Rourk 2014 SHOPP Workshop October 8, 2014 | Washington, DC Key Topics Marcela Rourk, Washington, DC October 8, 2014 2 * Expansion of propane data collection * EIA resources available to States * Improvements to SHOPP What is SHOPP? Marcela Rourk, Washington, DC October 8, 2014 3 * State Heating Oil and Propane Program (SHOPP) - cooperative data collection effort between EIA and State Energy Offices (SEOs) - data used by policymakers, industry analysts, and consumers - collects

  7. Table 42. Residual Fuel Oil Prices by PAD District and State

    Gasoline and Diesel Fuel Update (EIA)

    55.1 47.1 W W 55.1 46.2 See footnotes at end of table. 42. Residual Fuel Oil Prices by PAD District and State Energy Information Administration Petroleum...

  8. Table 42. Residual Fuel Oil Prices by PAD District and State

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    45.5 49.2 W W 44.5 45.4 See footnotes at end of table. 42. Residual Fuel Oil Prices by PAD District and State Energy Information Administration Petroleum...

  9. Heating Oil and Propane Update - Energy Information Administration

    U.S. Energy Information Administration (EIA) Indexed Site

    all Petroleum Reports Heating Oil and Propane Update Note: The heating season is over. Data for residential and wholesale prices for heating oil and propane will return in October 2016. Weekly heating oil and propane prices are only collected during the heating season, which extends from October through March. Propane Heating oil Residential propane graphs Residential Propane (dollars per gallon)more price data › change from 03/28/16 week ago year ago U.S. Average 2.008 -0.006 -0.284 East

  10. DOE to Sell 35,000 Barrels of Oil from the Northeast Home Heating Oil Reserve

    Broader source: Energy.gov [DOE]

    WASHINGTON, DC - The U.S. Department of Energy announced today that it will sell approximately 35,000 barrels of home heating oil from the Northeast Home Heating Oil Reserve (NEHHOR).  The Reserve...

  11. Development of advanced low-temperature heat transfer fluids for district heating and cooling, final report

    SciTech Connect (OSTI)

    Cho, Y.I.; Lorsch, H.G.

    1991-03-31

    The feasibility of adding phase change materials (PCMS) and surfactants to the heat transfer fluids in district cooling systems was investigated. It increases the thermal capacity of the heat transfer fluid and therefore decreases the volume that needs to be pumped. It also increases the heat transfer rate, resulting in smaller heat exchangers. The thermal behavior of two potential PCMS, hexadecane and tetradecane paraffin wax, was experimentally evaluated. The heat of fusion of these materials is approximately 60% of that of ice. They exhibit no supercooling and are stable under repeated thermal cycling. While test results for laboratory grade materials showed good agreement with data in the literature, both melting point and heat of fusion for commercial grade hexadecane were found to be considerably lower than literature values. PCM/water mixtures were tested in a laboratory-scale test loop to determine heat transfer and flow resistance properties. For 10% and 25% PCM/water slurries, the heat transfer enhancement was found to be approximately 18 and 30 percent above the value for water, respectively. Within the turbulent region, there is only a minor pumping penalty from the addition of up to 25% PCM to the water. Research is continuing on these fluids in order to determine their behavior in large-size loops and to arrive at optimum formulations.

  12. EERE Success Story-Alaska Gateway School District Adopts Combined Heat

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Power | Department of Energy Alaska Gateway School District Adopts Combined Heat and Power EERE Success Story-Alaska Gateway School District Adopts Combined Heat and Power May 7, 2013 - 12:00am Addthis In Tok, Alaska, the economic impact of high fuel prices was crippling the community's economy€, especially for the Alaska Gateway School District, with staff laid off and double duties assigned to many. To help offset high energy costs, the school district decided to replace its

  13. DOE Announces Award of a Contract to Repurchase Heating Oil for...

    Energy Savers [EERE]

    Award of a Contract to Repurchase Heating Oil for the Northeast Home Heating Oil Reserve DOE Announces Award of a Contract to Repurchase Heating Oil for the Northeast Home Heating ...

  14. NORTHEAST HOME HEATING OIL RESERVE (NEHHOR) QUESTIONS AND ANSWERS

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Questions and Answers document is a compilation of the most commonly asked questions (and answers) concerning the online auction system for the Northeast Home Heating Oil Reserve.

  15. Techno-economic analysis of renewable energy source options for a district heating project

    SciTech Connect (OSTI)

    Ghafghazi, S.; Sowlati, T.; Sokhansanj, Shahabaddine; Melin, Staffan

    2009-09-01

    With the increased interest in exploiting renewable energy sources for district heating applications, the economic comparison of viable options has been considered as an important step in making a sound decision. In this paper, the economic performance of several energy options for a district heating system in Vancouver, British Columbia, is studied. The considered district heating system includes a 10 MW peaking/ backup natural gas boiler to provide about 40% of the annual energy requirement and a 2.5 MW base-load system. The energy options for the base-load system include: wood pellet, sewer heat, and geothermal heat. Present values of initial and operating costs of each system were calculated over 25-year service life of the systems, considering depreciation and salvage as a negative cost item. It was shown that the wood pellet heat producing technologies provided less expensive energy followed by the sewer heat recovery, geothermal and natural gas systems. Among wood pellet technologies, the grate burner was a less expensive option than powder and gasifier technologies. It was found that using natural gas as a fuel source for the peaking/backup system accounted for more than 40% of the heat production cost for the considered district heating center. This is mainly due to the high natural gas prices which cause high operating costs over the service life of the district heating system. Variations in several economic inputs did not change the ranking of the technology options in the sensitivity analysis. However, it was found that the results were more sensitive to changes in operating costs of the system than changes in initial investment. It is economical to utilize wood pellet boilers to provide the base-load energy requirement of district heating systems Moreover, the current business approach to use natural gas systems for peaking and backup in district heating systems could increase the cost of heat production significantly.

  16. Proceedings of the 1998 oil heat technology conference

    SciTech Connect (OSTI)

    McDonald, R.J.

    1998-04-01

    The 1998 Oil Heat Technology Conference was held on April 7--8 at Brookhaven National Laboratory (BNL) under sponsorship by the US Department of Energy, Office of Building Technologies, State and Community Programs (DOE/BTS). The meeting was held in cooperation with the Petroleum Marketers Association of America (PMAA). Fourteen technical presentations was made during the two-day program, all related to oil-heat technology and equipment, these will cover a range of research, developmental, and demonstration activities being conducted within the United States and Canada, including: integrated oil heat appliance system development in Canada; a miniature heat-actuated air conditioner for distributed space conditioning; high-flow fan atomized oil burner (HFAB) development; progress in the development of self tuning oil burners; application of HFAB technology to the development of a 500 watt; thermophotovoltaic (TPV) power system; field tests of the Heat Wise Pioneer oil burner and Insight Technologies AFQI; expanded use of residential oil burners to reduce ambient ozone and particulate levels by conversion of electric heated homes to oilheat; PMAA`s Oil Heat Technician`s Manual (third edition); direct venting concept development; evolution of the chimney; combating fuel related problems; the effects of red dye and metal contamination on fuel oil stability; new standard for above ground and basement residential fuel oil storage; plastic and steel composite secondary contained tanks; and money left on the table: an economic analysis of tank cleaning.

  17. Characterization of selected application of biomass energy technologies and a solar district heating and cooling system

    SciTech Connect (OSTI)

    D'Alessio, Dr., Gregory J.; Blaunstein, Robert P.

    1980-09-01

    The following systems are discussed: energy self-sufficient farms, wood gasification, energy from high-yield silviculture farms, and solar district heating and cooling. System descriptions and environmental data are included for each one. (MHR)

  18. Lower oil prices also cutting winter heating oil and propane bills

    U.S. Energy Information Administration (EIA) Indexed Site

    Lower oil prices also cutting winter heating oil and propane bills Lower oil prices are not only driving down gasoline costs, but U.S. consumers will also see a bigger savings in their heating oil and propane bills this winter. In its new short-term forecast, the U.S. Energy Information Administration said households that use heating oil most of which are located in the Northeast will pay on average $1,779 this winter. That's 25% less or a savings of nearly $600 compared with last winter. The

  19. Economics of power plant district and process heating in Richland, Washington

    SciTech Connect (OSTI)

    Fassbender, L.L.; Bloomster, C.H.

    1981-04-01

    The economic feasibility of utilizing hot water from nuclear reactors to provide district heating for private residences in Richland, Washington, and space and process heating for nearby offices, part of the Hanford Reservation, and the Lamb-Weston potato processing plant is assessed. Specifically, the practicality of using hot water from the Washington Public Power Supply System's WNP-1 reactor, which is currently under construction on the Hanford Reservation, just north of the City of Richland is established. World-wide experience with district heating systems and the advantages of using these systems are described. The GEOCITY computer model used to calculate district heating costs is described and the assumptions upon which the costs are based are presented. District heating costs for the city of Richland, process heating costs for the Lamb-Weston potato processing plant, district heating costs for the Horn Rapids triangle area, and process heating costs for the 300 and 3000 areas are discussed. An economic analysis is discussed and institutional restraints are summarized. (MCW)

  20. ,"TX, RRC District 10 Crude Oil plus Lease Condensate Proved...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  1. ,"TX, RRC District 4 Onshore Crude Oil plus Lease Condensate...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  2. ,"TX, RRC District 3 Onshore Crude Oil plus Lease Condensate...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  3. ,"TX, RRC District 2 Onshore Crude Oil plus Lease Condensate...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  4. Conductivity heating a subterranean oil shale to create permeability and subsequently produce oil

    SciTech Connect (OSTI)

    Van Meurs, P.; DeRouffignac, E.P.; Vinegar, H.J.; Lucid, M.F.

    1989-12-12

    This patent describes an improvement in a process in which oil is produced from a subterranean oil shale deposit by extending at least one each of heat-injecting and fluid-producing wells into the deposit, establishing a heat-conductive fluid-impermeable barrier between the interior of each heat-injecting well and the adjacent deposit, and then heating the interior of each heat-injecting well at a temperature sufficient to conductively heat oil shale kerogen and cause pyrolysis products to form fractures within the oil shale deposit through which the pyrolysis products are displaced into at least one production well. The improvement is for enhancing the uniformity of the heat fronts moving through the oil shale deposit. Also described is a process for exploiting a target oil shale interval, by progressively expanding a heated treatment zone band from about a geometric center of the target oil shale interval outward, such that the formation or extension of vertical fractures from the heated treatment zone band to the periphery of the target oil shale interval is minimized.

  5. DOE Awards Storage Contracts for Northeast Home Heating Oil Reserve |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Storage Contracts for Northeast Home Heating Oil Reserve DOE Awards Storage Contracts for Northeast Home Heating Oil Reserve August 18, 2011 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy (DOE) today announced that new contracts have been awarded for commercial storage of 650,000 barrels of ultra low sulfur distillate (ULSD) for the Northeast Home Heating Oil Reserve (NEHHOR). Awards were made to two companies for storage in New England--Hess Corporation

  6. DOE Seeks Commercial Storage for Northeast Home Heating Oil Reserve |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy for Northeast Home Heating Oil Reserve DOE Seeks Commercial Storage for Northeast Home Heating Oil Reserve March 14, 2011 - 1:00pm Addthis Washington, DC - The Department of Energy, through its agent, DLA Energy, has issued a solicitation for new contracts to store two million barrels of ultra low sulfur distillate for the Northeast Home Heating Oil Reserve in New York Harbor and New England. Offers are due no later than 9:00 a.m. EDT on March 29, 2011. Of the U.S.

  7. A Geothermal District-Heating System and Alternative Energy Research...

    Open Energy Info (EERE)

    2 Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources Project Type Topic 3 Low Temperature...

  8. Texas - RRC District 3 Onshore Crude Oil + Lease Condensate Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Texas - RRC District 3 Onshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 257 2010's 272 261 428 500 613 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil

  9. Texas - RRC District 4 Onshore Crude Oil + Lease Condensate Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Texas - RRC District 4 Onshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 92 2010's 207 222 203 256 257 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil

  10. Texas - RRC District 7B Crude Oil + Lease Condensate Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Texas - RRC District 7B Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 102 2010's 102 126 134 113 148 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus

  11. Texas - RRC District 7C Crude Oil + Lease Condensate Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Texas - RRC District 7C Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 509 2010's 618 672 891 964 1,298 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus

  12. Tips: Natural Gas and Oil Heating Systems | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    more about energy-efficient furnaces and boilers. Addthis Related Articles Tips: Natural Gas and Oil Heating Systems Energy Saver Guide: Tips on Saving Money and Energy at Home...

  13. Tips: Natural Gas and Oil Heating Systems | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Furnaces and boilers Oil-fired boilers and furnaces Gas-fired boilers and furnaces ... Federal tax credits are available for geothermal heat pumps through 2016. Learn more. Federal ...

  14. Northeast Home Heating Oil Reserve- Online Bidding System

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy has developed an on-line bidding system - an anonymous auction program - for the sale of product from the one million barrel Northeast Home Heating Oil Reserve.

  15. Northeast Home Heating Oil Reserve (NEHHOR) Releases | Department of Energy

    Energy Savers [EERE]

    Releases Northeast Home Heating Oil Reserve (NEHHOR) Releases The Northeast Home Heating Oil Reserve (NEHHOR), a one million barrel supply of ultra low sulfur distillate (diesel), was created to build a buffer to allow commercial companies to compensate for interruptions in supply during severe winter weather, The first emergency use of NEHHOR was in 2012. Emergency Loans after Hurricane Sandy In late October 2012, Hurricane Sandy made landfall on the northeastern shore of the United States,

  16. Alaska Gateway School District Adopts Combined Heat and Power

    Broader source: Energy.gov [DOE]

    Tok School's use of a biomass combined heat and power system is helping the school to save on energy costs.

  17. State of Maine residential heating oil survey 2001-02 season summary [SHOPP

    SciTech Connect (OSTI)

    Elder, Betsy

    2002-05-22

    This, as the title implies, is a summary report of the price trends for heating oil, propane and kerosene heating fuels for the heating season.

  18. Texas - RRC District 2 Onshore Crude Oil + Lease Condensate Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Texas - RRC District 2 Onshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 66 2010's 154 691 1,508 1,857 2,110 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude

  19. Texas - RRC District 8A Crude Oil + Lease Condensate Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Texas - RRC District 8A Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,790 2010's 1,822 1,800 1,758 1,736 1,668 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude

  20. Texas--RRC District 1 Crude Oil Reserves in Nonproducing Reservoirs

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Texas--RRC District 1 Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 4 13 2000's 12 9 11 14 9 15 26 27 34 26 2010's 144 436 1,266 1,324 1,427 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release

  1. Texas--RRC District 10 Crude Oil Reserves in Nonproducing Reservoirs

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Texas--RRC District 10 Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 6 5 2000's 7 8 7 6 5 6 9 12 16 29 2010's 35 51 70 70 46 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  2. Texas--RRC District 2 Onshore Crude Oil Reserves in Nonproducing Reservoirs

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Texas--RRC District 2 Onshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 5 7 2000's 9 12 14 12 13 16 16 16 8 14 2010's 53 242 711 615 825 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release

  3. Texas--RRC District 3 Onshore Crude Oil Reserves in Nonproducing Reservoirs

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Texas--RRC District 3 Onshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 24 26 2000's 34 29 41 37 21 19 18 22 18 26 2010's 37 19 118 163 189 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release

  4. Texas--RRC District 4 Onshore Crude Oil Reserves in Nonproducing Reservoirs

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Texas--RRC District 4 Onshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 7 9 2000's 8 8 5 7 4 17 4 2 2 1 2010's 80 3 1 7 6 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  5. Texas--RRC District 5 Crude Oil Reserves in Nonproducing Reservoirs

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Texas--RRC District 5 Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 5 5 2000's 6 4 4 2 1 1 1 1 0 1 2010's 0 1 29 12 28 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  6. Texas--RRC District 6 Crude Oil Reserves in Nonproducing Reservoirs

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Texas--RRC District 6 Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 60 10 2000's 9 20 14 16 15 3 17 18 10 12 2010's 11 16 32 18 40 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  7. Texas--RRC District 7B Crude Oil Reserves in Nonproducing Reservoirs

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Texas--RRC District 7B Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 12 6 2000's 5 1 2 5 5 3 5 1 9 8 2010's 8 13 19 12 16 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  8. Texas--RRC District 7C Crude Oil Reserves in Nonproducing Reservoirs

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Texas--RRC District 7C Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 10 33 2000's 34 45 36 12 14 31 120 137 156 221 2010's 286 301 438 400 642 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release

  9. Texas--RRC District 8 Crude Oil Reserves in Nonproducing Reservoirs

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Texas--RRC District 8 Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 168 234 2000's 280 237 258 165 218 333 466 454 537 679 2010's 790 934 1,144 1,057 1,441 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015

  10. Texas--RRC District 9 Crude Oil Reserves in Nonproducing Reservoirs

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Texas--RRC District 9 Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 4 4 2000's 11 11 16 16 9 9 9 12 8 25 2010's 21 20 32 20 39 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  11. EA-0923: Winnett School District Boiler Replacement Project, Winnett, Montana

    Office of Energy Efficiency and Renewable Energy (EERE)

    This EA evaluates the environmental impacts of the proposal to replace the Winnett School District complex's existing oil-fired heating system with a new coal-fired heating system with funds...

  12. PROCEEDINGS OF THE 1998 OIL HEAT TECHNOLOGY CONFERENCE

    SciTech Connect (OSTI)

    MCDONALD,R.J.

    1998-04-01

    The 1998 Oil Heat Technology Conference will be held on April 7--8 at Brookhaven National Laboratory (BNL) under sponsorship by the US Department of Energy, Office of Building Technologies, State and Community Programs (DOE/BTS). The meeting will be held in cooperation with the Petroleum Marketers Association of America (PMAA). The 1998 Oil Heat Technology Conference, will be the twelfth since 1984, is an important technology transfer activity and is supported by the ongoing Combustion Equipment Technology (Oilheat R and D) program at BNL. The reason for the conference is to provide a forum for the exchange of information and perspectives among international researchers, engineers, manufacturers and marketers of oil-fired space-conditioning equipment. They will provide a channel by which information and ideas can be exchanged to examine present technologies, as well as helping to develop the future course for oil heating advancement. These conferences also serve as a stage for unifying government representatives, researchers, fuel oil marketers, and other members of the oil-heat industry in addressing technology advancements in this important energy use sector. The specific objectives of the Conference are to: (1) Identify and evaluate the current state-of-the-art and recommend new initiatives for higher efficiency, a cleaner environment, and to satisfy consumer needs cost-effectively, reliably, and safely; and (2) Foster cooperative interactions among federal and industrial representatives for the common goal of sustained economic growth and energy security via energy conservation.

  13. District Wide Geothermal Heating Conversion Blaine County School...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This project will impact the geothermal energy development market by showing that ground source heat pump systems using production and re-injection wells has the lowest total cost ...

  14. Oregon Institute of Technology District Heating Low Temperature...

    Open Energy Info (EERE)

    Annual Generation 46.60x109 Btuyr 13.70 GWhyr Delat T 57.00 F Load Factor 0.25 Start Up Date 1964 Contact 541-885-1691 References Oregon Institute of Technology's Geo-Heat...

  15. Particulate matter emissions from combustion of wood in district heating applications

    SciTech Connect (OSTI)

    Ghafghazi, S.; Sowlati, T.; Sokhansanj, Shahabaddine; Bi, X.T.; Melin, Staffan

    2011-01-01

    The utilization of wood biomass to generate district heat and power in communities that have access to this energy source is increasing. In this paper the effect of wood fuel properties, combustion condition, and flue gas cleaning system on variation in the amount and formation of particles in the flue gas of typical district heating wood boilers are discussed based on the literature survey. Direct measurements of particulate matter (PM) emissions from wood boilers with district heating applications are reviewed and presented. Finally, recommendations are given regarding the selection of wood fuel, combustion system condition, and flue gas cleaning system in district heating systems in order to meet stringent air quality standards. It is concluded that utilization of high quality wood fuel, such as wood pellets produced from natural, uncontaminated stem wood, would generate the least PM emissions compared to other wood fuel types. Particulate matter emissions from grate burners equipped with electrostatic precipitators when using wood pellets can be well below stringent regulatory emission limit such as particulate emission limit of Metro Vancouver, Canada.

  16. State Heating Oil & Propane Program. Final report 1997/98 heating season

    SciTech Connect (OSTI)

    Hunton, G.

    1998-06-01

    The following is a summary report of the New Hampshire Governor`s Office of Energy and Community Services (ECS) participation in the State Heating Oil and Propane Program (SHOPP) for the 1997/98 heating season. SHOPP is a cooperative effort, linking energy offices in East Coast and Midwest states, with the Department of Energy (DOE), Energy Information Administration (EIA) for the purpose of collecting retail price data for heating oil and propane. The program is funded by the participating state with a matching grant from DOE. SHOPP was initiated in response to congressional inquires into supply difficulties and price spikes of heating oil and propane associated with the winter of 1989/90. This is important to New Hampshire because heating oil controls over 55% of the residential heating market statewide. Propane controls 10% of the heating market statewide and is widely used for water heating and cooking in areas of the state where natural gas is not available. Lower installation cost, convenience, lower operating costs compared to electricity, and its perception as a clean heating fuel have all worked to increase the popularity of propane in New Hampshire and should continue to do so in the future. Any disruption in supply of these heating fuels to New Hampshire could cause prices to skyrocket and leave many residents in the cold.

  17. DOE Announces Award of a Contract to Repurchase Heating Oil for the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Northeast Home Heating Oil Reserve | Department of Energy Award of a Contract to Repurchase Heating Oil for the Northeast Home Heating Oil Reserve DOE Announces Award of a Contract to Repurchase Heating Oil for the Northeast Home Heating Oil Reserve July 23, 2008 - 2:15pm Addthis WASHINGTON, DC - The U.S. Department of Energy today announced the award of a contract to Hess Corporation for the delivery of approximately 808,625 gallons (approximately 19,250 barrels) of home heating oil for the

  18. Construction-employment opportunities of four oil-replacing space-heating alternatives for core areas of thirteen major northeastern and midwestern cities

    SciTech Connect (OSTI)

    Santini, D.J.; Wernette, D.R.

    1980-07-01

    Construction employment opportunities are compared for four oil-replacing technologies providing equivalent space-heating services to the core areas of 13 major northeastern and midwestern cities. The four technologies are: cogeneration district heating, coal gasification, coal liquefaction and electrification (coal-fired power plant). It is observed that the district-heating option places a higher percentage of its capital stock within the center city. It also requires lower occupational skills for its construction than the other three alternatives. In view of the lower average educational level of minorities and their concentration in urban areas, substantially more minority employment should occur if district heating is implemented. This alternative also will provide employment opportunities for unemployed nonminority construction laborers and contribute indirectly to the improvement of inner-city neighborhoods where many unemployed construction laborers live.

  19. Proceedings of the 1997 oil heat technology conference and workshop

    SciTech Connect (OSTI)

    McDonald, R.J.

    1997-09-01

    This report documents the Proceedings of the 1997 Oil Heat Technology Conference and Workshop, held on April 3--4 at Brookhaven National Laboratory (BNL), and sponsored by the US Department of Energy--Office of Building Technologies, State and Community programs (DOE-BTS), in cooperation with the Petroleum Marketers Association of America (PMAA). This Conference is a key technology transfer activity supported by the ongoing Combustion Equipment Technology (Oil-Heat R and D) program at BNL, and is aimed at providing a forum for the exchange of information among international researchers, engineers, manufacturers, and marketers of oil-fired space-conditioning equipment. The objectives of the Conference were to: identify and evaluate the state-of-the-art and recommend new initiatives for higher efficiency, a cleaner environment, and to satisfy consumer needs cost-effectively, reliably, and safely: and foster cooperation among federal and industrial representatives with the common goal of sustained national economic growth and energy security via energy conservation. The 1997 Oil Technology Conference comprised: (a) five plenary sessions devoted to presentations and summations by public and private sector industry representatives from the US, and Canada, and (b) four workshops which focused on mainstream issues in oil-heating technology. This book contains 14 technical papers and four summaries from the workshops. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  20. Proceedings of the 1993 oil heat technology conference and workshop

    SciTech Connect (OSTI)

    McDonald, R.J.

    1993-09-01

    This report documents the proceedings of the 1993 Oil Heat Technology Conference and Workshop, held on March 25--26 at Brookhaven National Laboratory (BNL), and sponsored by the US Department of Energy - Office of Building Technologies (DOE-OBT), in cooperation with the Petroleum Marketers Association of America. This Conference, which was the seventh held since 1984, is a key technology-transfer activity supported by the ongoing Combustion Equipment Technology (Oil-Heat R&D) program at BNL, and is aimed at providing a forum for the exchange of information among international researchers, engineers, manufacturers, and marketers of oil-fired space- conditioning equipment. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  1. Ultra Low Sulfur Home Heating Oil Demonstration Project

    SciTech Connect (OSTI)

    Batey, John E.; McDonald, Roger

    2015-09-30

    This Ultra Low Sulfur (ULS) Home Heating Oil Demonstration Project was funded by the New York State Energy Research and Development Authority (NYSERDA) and has successfully quantified the environmental and economic benefits of switching to ULS (15 PPM sulfur) heating oil. It advances a prior field study of Low Sulfur (500 ppm sulfur) heating oil funded by NYSERDA and laboratory research conducted by Brookhaven National Laboratory (BNL) and Canadian researchers. The sulfur oxide and particulate matter (PM) emissions are greatly reduced as are boiler cleaning costs through extending cleaning intervals. Both the sulfur oxide and PM emission rates are directly related to the fuel oil sulfur content. The sulfur oxide and PM emission rates approach near-zero levels by switching heating equipment to ULS fuel oil, and these emissions become comparable to heating equipment fired by natural gas. This demonstration project included an in-depth review and analysis of service records for both the ULS and control groups to determine any difference in the service needs for the two groups. The detailed service records for both groups were collected and analyzed and the results were entered into two spreadsheets that enabled a quantitative side-by-side comparison of equipment service for the entire duration of the ULS test project. The service frequency for the ULS and control group were very similar and did indicate increased service frequency for the ULS group. In fact, the service frequency with the ULS group was slightly less (7.5 percent) than the control group. The only exception was that three burner fuel pump required replacement for the ULS group and none were required for the control group.

  2. LOW SULFUR HOME HEATING OIL DEMONSTRATION PROJECT SUMMARY REPORT.

    SciTech Connect (OSTI)

    BATEY, J.E.; MCDONALD, R.J.

    2005-06-01

    This project was funded by NYSERDA and has clearly demonstrated many advantages of using low sulfur content heating oil to provide thermal comfort in homes. Prior laboratory research in the United States and Canada had indicated a number of potential benefits of using lower sulfur (0.05%) heating oil. However, this prior research has not resulted in the widespread use of low sulfur fuel oil in the marketplace. The research project described in this report was conducted with the assistance of a well-established fuel oil marketer in New York State (NYS) and has provided clear proof of the many real-world advantages of marketing and using low sulfur content No. 2 fuel oil. The very positive experience of the participating marketer over the past three years has already helped to establish low sulfur heating oil as a viable option for many other fuel marketers. In large part, based on the initial findings of this project and the experience of the participating NYS oilheat marketer, the National Oilheat Research Alliance (NORA) has already fully supported a resolution calling for the voluntary use of low sulfur (0.05 percent) home heating oil nationwide. The NORA resolution has the goal of converting eighty percent of all oil-heated homes to the lower sulfur fuel (0.05 percent by weight) by the year 2007. The Oilheat Manufacturers Association (OMA) has also passed a resolution fully supporting the use of lower sulfur home heating oil in the equipment they manufacture. These are important endorsements by prominent national oil heat associations. Using lower sulfur heating oil substantially lowers boiler and furnace fouling rates. Laboratory studies had indicated an almost linear relationship between sulfur content in the oil and fouling rates. The completed NYSERDA project has verified past laboratory studies in over 1,000 occupied residential homes over the course of three heating seasons. In fact, the reduction in fouling rates so clearly demonstrated by this project is

  3. Heating oil and propane households bills to be lower this winter...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heating oil and propane households bills to be lower this winter despite recent cold spell Despite the recent cold weather, households that use heating oil or propane as their main ...

  4. Impact of Interruptible Natural Gas Service on Northeast Heating Oil Demand

    Reports and Publications (EIA)

    2001-01-01

    Assesses the extent of interruptible natural gas contracts and their effect on heating oil demand in the Northeast.

  5. Influence of district heating water temperatures on the fuel saving and reduction of ecological cost of the heat generation

    SciTech Connect (OSTI)

    Portacha, J.; Smyk, A.; Zielinski, A.; Misiewicz, L.

    1998-07-01

    Results of examinations carried out on the district heating water temperature influence in the cogeneration plant with respect to both the fuel economy and the ecological cost reduction of heat generation for the purposes of heating and hot service water preparation are presented in this paper. The decrease of water return temperature effectively contributes to the increase of fuel savings in all the examined cases. The quantitative savings depend on the outlet water temperature of the cogeneration plant and on the fuel type combusted at the alternative heat generating plant. A mathematical model and a numerical method for calculations of annual cogeneration plant performance, e.g. annual heat and electrical energy produced in cogeneration mode, and the annual fuel consumption, are also discussed. In the discussed mathematical model, the variable operating conditions of cogeneration plant vs. outside temperature and method of control can be determined. The thermal system of cogeneration plant was decomposed into subsystems so as to set up the mathematical model. The determination of subsystem tasks, including a method of convenient aggregation thereof is an essential element of numerical method for calculations of a specific cogeneration plant thermal system under changing conditions. Costs of heat losses in the environment, resulting from the pollutants emission, being formed in the fuel combustion process in the heat sources, were defined. In addition, the environment quantitative and qualitative pollution characteristics were determined both for the heat generation in a cogeneration plant and for an alternative heat-generating plant. Based on the calculations, a profitable decrease of ecological costs is achieved in the cogeneration economy even if compared with the gas-fired heat generating plant. Ecological costs of coal-fired heat generating plant are almost three time higher than those of the comparable cogeneration plant.

  6. Net Movements of Crude Oil and Petroleum Products by Pipeline, Tanker, Barge, and Rail Between PAD Districts, January 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    January 2014 (Thousand Barrels) Commodity PAD District 1 PAD District 2 PAD District 3 Receipts Shipments Net Receipts Receipts Shipments Net Receipts Receipts Shipments Net Receipts Crude Oil 1 ................................................................ 11,209 1,213 9,996 35,554 35,363 190 23,680 28,598 -4,918 Petroleum Products 2 .............................................. 106,990 8,669 107,347 29,831 18,055 -6,599 16,594 124,991 -103,885 Pentanes Plus

  7. Life cycle assessment of an energy-system with a superheated steam dryer integrated in a local district heat and power plant

    SciTech Connect (OSTI)

    Bjoerk, H.; Rasmuson, A.

    1999-07-01

    Life cycle assessment (LCA) is a method for analyzing and assessing the environmental impact of a material, product or service throughout the entire life cycle. In this study 100 GWh heat is to be demanded by a local heat district. A mixture of coal and wet biofuel is frequently used as fuel for steam generation (Case 1). A conversion of the mixed fuel to dried biofuel is proposed. In the district it is also estimated that it is possible for 4000 private houses to convert from oil to wood pellets. It is proposed that sustainable solution to the actual problem is to combine heat and power production together with an improvement in the quality of wood residues and manufacture of pellets. It is also proposed that a steam dryer is integrated to the system (Case 2). Most of the heat from the drying process is used by the municipal heating networks. In this study the environmental impact of the two cases is examined with LCA. Different valuation methods shows the Case 2 is an improvement over Case 1, but there is diversity in the magnitudes of environmental impact in the comparison of the cases. The differences depend particularly on how the emissions of CO{sub 2}, NO{sub x} and hydrocarbons are estimated. The impact of the organic compounds from the exhaust gas during the drying is estimated as low in all of the three used methods.

  8. Proceedings of the 1991 Oil Heat Technology Conference and Workshop

    SciTech Connect (OSTI)

    McDonald, R.J.

    1992-07-01

    This Conference, which was the sixth held since 1984, is a key technology-transfer activity supported by the ongoing Combustion Equipment Technology program at BNL, and is aimed at providing a forum for the exchange of information among international researchers, engineers, manufacturers, and marketers of oil-fired space-conditioning equipment. The objectives of the Conference were to: Identify and evaluate the state-of-the-art and recommend; new initiatives to satisfy consumer needs cost-effectively, reliably, and safely; Foster cooperation among federal and industrial representatives with the common goal of national security via energy conservation. The 1991 Oil Technology Conference comprised: (a) two plenary sessions devoted to presentations and summations by public and private sector representatives from the United States, Europe, and Canada; and, (b) four workshops which focused on mainstream issues in oil-heating technology. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  9. Evaluation of the heating operation and transmission district: Feasibility of cogeneration. Final report

    SciTech Connect (OSTI)

    Cable, J.H.; Gilday, L.T.; Moss, M.E.

    1995-11-01

    The General Services Administration, through its National Capital Region, operates a district heating system - called the Heating Operation and Transmission District - that provides steam to approximately 100 government buildings in Washington, D.C. HOTD is examining a host of options that will improve its ability to provide reliable, environmentally sound, and cost-effective service to its customers. This report evaluates one of those options - cogeneration, a technology that would enable HOTD to produce steam and electricity simultaneously. The study concluded that, under current regulations, cogeneration is not attractive economically because the payback period (15 years) exceeds Federal return-on-investment guidelines. However, if the regulatory environment changes to allow wheeling (transmission of power by a non-utility power producer to another user), cogeneration would be attractive; HOTD would save anywhere from $38 million to $118 million and the investment would pay back in 7 to 10 years. Although incorporating cogeneration into the HOTD system has no strong benefit at this time, the report recommends that GSA reevaluate cogeneration in one or two years because Federal regulations regarding wheeling are under review. It also recommends that GSA work with the District of Columbia government to develop standards for cogeneration.

  10. Fuel quality issues in the oil heat industry

    SciTech Connect (OSTI)

    Litzke, Wai-Lin

    1992-12-01

    The quality of fuel oil plays an essential role in combustion performance and efficient operation of residential heating equipment. With the present concerns by the oil-heat industry of declining fuel-oil quality, a study was initiated to identify the factors that have brought about changes in the quality of distillate fuel. A background of information will be provided to the industry, which is necessary to deal with the problems relating to the fuel. The high needs for servicing heating equipment are usually the result of the poor handling characteristics of the fuel during cold weather, the buildup of dirt and water in storage tanks, and microbial growth. A discussion of how to deal with these problems is presented in this paper. The effectiveness of fuel additives to control these problems of quality is also covered to help users better understand the functions and limitations of chemical treatment. Test data have been collected which measure and compare changes in the properties of fuel using selected additives.

  11. Reduction of pumping energy losses in district heating and cooling systems

    SciTech Connect (OSTI)

    Zakin, J.L.

    1991-12-01

    This project was designed to explore the effects of different structures of cationic surfactant drag reducing additives on their efficiency and on their effective temperature ranges. The goal was to develop surfactant systems that would be useful in the appropriate temperature ranges for district heating systems (50--110{degree}C) and for district cooling systems (2--20{degree}C). To this end the chemical compositions of quaternary annonium salts and of counter-ions were varied. More than twenty different commercial or semi commercial quarterly ammonium salts from US suppliers and two from a German supplier (Hoechst) were tested along with thirty five different counter-ions. In addition, blends of several of each were also tested. A further object of this project was to check the compatibility of surfactant drag reducers with commercial or semi-commercial corrosion inhibitors in regard to maintaining their drag reducing ability and corrosion inhibiting capability.

  12. Reduction of pumping energy losses in district heating and cooling systems. Final report

    SciTech Connect (OSTI)

    Zakin, J.L.

    1991-12-01

    This project was designed to explore the effects of different structures of cationic surfactant drag reducing additives on their efficiency and on their effective temperature ranges. The goal was to develop surfactant systems that would be useful in the appropriate temperature ranges for district heating systems (50--110{degree}C) and for district cooling systems (2--20{degree}C). To this end the chemical compositions of quaternary annonium salts and of counter-ions were varied. More than twenty different commercial or semi commercial quarterly ammonium salts from US suppliers and two from a German supplier (Hoechst) were tested along with thirty five different counter-ions. In addition, blends of several of each were also tested. A further object of this project was to check the compatibility of surfactant drag reducers with commercial or semi-commercial corrosion inhibitors in regard to maintaining their drag reducing ability and corrosion inhibiting capability.

  13. Michigan residential heating oil and propane price survey: 1995--1996 heating season. Final report

    SciTech Connect (OSTI)

    Moriarty, C.

    1996-05-01

    This report summarizes the results of a survey of residential No. 2 distillate fuel (home heating oil) and liquefied petroleum gas (propane) prices over the 1995--1996 heating season in Michigan. The Michigan`s Public Service Commission (MPSC) conducted the survey under a cooperative agreement with the US Department of Energy`s (DOE) Energy Information Administration (EIA). This survey was funded in part by a grant from the DOE. From October 1995 through March 1996, the MPSC surveyed participating distributors by telephone for current residential retail home heating oil and propane prices. The MPSC transmitted the data via a computer modem to the EIA using the Petroleum Electronic Data Reporting Option (PEDRO). Survey results were published in aggregate on the MPSC World Wide Web site at http://ermisweb.state.mi.us/shopp. The page was updated with both residential and wholesale prices immediately following the transmission of the data to the EIA. The EIA constructed the survey using a sample of Michigan home heating oil and propane retailers. The sample accounts for different sales volumes, geographic location, and sources of primary supply.

  14. State heating oil and propane program. Final report, 1990--1991

    SciTech Connect (OSTI)

    Not Available

    1991-12-31

    The following is a report of New Hampshire`s participation in the State Heating Oil and Propane Program (SHOPS) for the 1990--91 heating season. The program is a joint effort between participating states and the Department of Energy (DOE), Energy Information Administration (EYE) to collect retail price data for heating oil and propane through phone surveys of 25 oil and 20 propane retailers in New Hampshire. SHOPS is funded through matching grants from DOE and the participating state. (VC)

  15. DOE Seeks Commercial Storage to Complete Fill of Northeast Home Heating Oil

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reserve | Department of Energy to Complete Fill of Northeast Home Heating Oil Reserve DOE Seeks Commercial Storage to Complete Fill of Northeast Home Heating Oil Reserve August 26, 2011 - 1:00pm Addthis Washington, DC - The Department of Energy (DOE), through its agent DLA Energy, has issued a solicitation seeking commercial storage contracts for the remaining 350,000 barrels of ultra low sulfur distillate needed to complete the fill of the Northeast Home Heating Oil Reserve. Offers are due

  16. DOE Will Convert Northeast Home Heating Oil Reserve to Ultra Low Sulfur

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Distillate | Department of Energy Will Convert Northeast Home Heating Oil Reserve to Ultra Low Sulfur Distillate DOE Will Convert Northeast Home Heating Oil Reserve to Ultra Low Sulfur Distillate February 1, 2011 - 12:00pm Addthis Washington, DC - The current inventory of the Northeast Home Heating Oil Reserve will be converted to cleaner burning ultra low sulfur distillate to comply with new, more stringent fuel standards by some Northeastern states, the U.S. Department of Energy (DOE) said

  17. State Heating Oil and Propane Program Expansion of Propane Data Collection

    U.S. Energy Information Administration (EIA) Indexed Site

    State Heating Oil and Propane Program Expansion of Propane Data Collection Marcela Rourk April 14, 2014 | Washington, DC Key Topics Marcela Rourk, Washington, DC April 14, 2014 2 * Overview and history of State Heating Oil and Propane Program (SHOPP) * Expansion of propane data collection * What is expected of SEOs that participate? * Benefits of participation What is SHOPP? Marcela Rourk, Washington, DC April 14, 2014 3 * State Heating Oil and Propane Program (SHOPP) - cooperative data

  18. DOE Accepts Bids for Northeast Home Heating Oil Stocks | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Accepts Bids for Northeast Home Heating Oil Stocks DOE Accepts Bids for Northeast Home Heating Oil Stocks February 3, 2011 - 12:00pm Addthis Washington, DC - The U.S. Department of Energy (DOE) today has awarded contracts to three companies who successfully bid for the purchase of 984,253 barrels of heating oil from the Northeast Home Heating Oil Reserve. Awardee Amount Morgan Stanley 500,000 barrels Shell Trading U.S. Company 250,000 barrels George E. Warren Corporation 234,253

  19. DOE Completes Sale of Northeast Home Heating Oil Stocks | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Completes Sale of Northeast Home Heating Oil Stocks DOE Completes Sale of Northeast Home Heating Oil Stocks February 10, 2011 - 12:00pm Addthis Washington, DC - The U.S. Department of Energy (DOE) today has awarded contracts to four companies who successfully bid for the purchase of 1,000,000 barrels of heating oil from the Northeast Home Heating Oil Reserve storage sites in Groton and New Haven, CT. Hess Groton Terminal, Groton, CT Shell Trading U.S. Company 150,000 barrels Sprague

  20. Testing, Evaluation, and Qualification of Bio-Oil for Heating Presentation for BETO 2015 Project Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing, Evaluation, and Qualification of Bio-Oil for Heating March 26, 2015 Dr. Thomas A. Butcher Brookhaven National Laboratory This presentation does not contain any proprietary, confidential, or otherwise restricted information Goal Statement 2 * The goal of this project is to enable the replacement of 20% of the petroleum-derived heating oil in the Northeast with infrastructure compatible bio-oil by 2020 thereby stabilizing the supply and cost peaks for heating oil. * Heating oil and diesel

  1. Technical Information Exchange on Pyrolysis Oil: Potential for a Renewab;e Heating Oil Substation Fuel in New England

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report summarizes the results of an information exchange sponsored by the DOE/EERE Bioenergy Technologies Office in Manchester, New Hampshire, on May 9-10, 2012. The participand identifies top challenges regarding feedstocks and production, logistics and compatibility, and operational issues, then prioritized next steps for expanding use of pyrolysis oil as a replacement for home heating oil in the Northeast

  2. Final report of the Rhode Island State Energy Office on residential no. 2 heating oil and propane prices [SHOPP

    SciTech Connect (OSTI)

    McClanahan, Janice

    2001-04-01

    Summary report on residential No.2 heating oil and propane prepared under grant. Summarizes the monitoring and analysis of heating oil and propane prices from October 2000 through March 2001.

  3. Well blowout rates in California Oil and Gas District 4--Update and Trends

    SciTech Connect (OSTI)

    Jordan, Preston D.; Benson, Sally M.

    2009-10-01

    Well blowouts are one type of event in hydrocarbon exploration and production that generates health, safety, environmental and financial risk. Well blowouts are variously defined as 'uncontrolled flow of well fluids and/or formation fluids from the wellbore' or 'uncontrolled flow of reservoir fluids into the wellbore'. Theoretically this is irrespective of flux rate and so would include low fluxes, often termed 'leakage'. In practice, such low-flux events are not considered well blowouts. Rather, the term well blowout applies to higher fluxes that rise to attention more acutely, typically in the order of seconds to days after the event commences. It is not unusual for insurance claims for well blowouts to exceed US$10 million. This does not imply that all blowouts are this costly, as it is likely claims are filed only for the most catastrophic events. Still, insuring against the risk of loss of well control is the costliest in the industry. The risk of well blowouts was recently quantified from an assembled database of 102 events occurring in California Oil and Gas District 4 during the period 1991 to 2005, inclusive. This article reviews those findings, updates them to a certain extent and compares them with other well blowout risk study results. It also provides an improved perspective on some of the findings. In short, this update finds that blowout rates have remained constant from 2005 to 2008 within the limits of resolution and that the decline in blowout rates from 1991 to 2005 was likely due to improved industry practice.

  4. Operation and performance of a 350 kW (100 RT) single-effect/double-lift absorption chiller in a district heating network

    SciTech Connect (OSTI)

    Schweigler, C.J.; Preissner, M.; Demmel, S.; Hellmann, H.M.; Ziegler, F.F.

    1998-10-01

    The efficiency of combined heat, power, and cold production in total energy systems could be improved significantly if absorption chillers were available that could be driven with limited mass flows of low-temperature hot water. In the case of district heat-driven air conditioning, for example, currently available standard absorption chillers are often not applied because they cannot provide the low hot water return temperature and the specific cooling capacity per unit hot water mass flow that are required by many district heating networks. Above all, a drastic increase in the size of the machine (total heat exchanger area) due to low driving temperature differences if of concern in low-temperature applications. A new type of multistage lithium bromide/water absorption chiller has been developed for the summertime operating conditions of district heating networks. It provides large cooling of the district heating water (some 30 K) and large cooling capacity per unit hot water mass flow. Two pilot plants of this novel absorption chiller were designed within the framework of a joint project sponsored by the German Federal Ministry of Education, Science, Research and Technology (BMBF), a consortium of 15 district heating utilities, and two manufacturers. The plants have been operated since summer 1996 in the district heating networks of Berlin and Duesseldorf. This paper describes the concept, installation, and control strategy of the two pilot plants, and it surveys the performance and operating experience of the plants under varying practical conditions.

  5. Annual emissions and air-quality impacts of an urban area district-heating system: Boston case study

    SciTech Connect (OSTI)

    Bernow, S.S.; McAnulty, D.R.; Buchsbaum, S.; Levine, E.

    1980-02-01

    A district-heating system, based on thermal energy from power plants retrofitted to operate in the cogeneration mode, is expected to improve local air quality. This possibility has been examined by comparing the emissions of five major atmospheric pollutants, i.e., particulates, sulfur oxides, carbon monoxide, hydrocarbons, and nitrogen oxides, from the existing heating and electric system in the City of Boston with those from a proposed district heating system. Detailed, spatial distribution of existing heating load and fuel mix is developed to specify emissions associated with existing heating systems. Actual electric-power-plant parameters and generation for the base year are specified. Additional plant fuel consumption and emissions resulting from cogeneration operation have been estimated. Six alternative fuel-emissions-control scenarios are considered. The average annual ground-level concentrations of sulfur oxides are calculated using a modified form of the EPA's Climatological Dispersion Model. This report describes the methodology, the results and their implications, and the areas for extended investigation. The initial results confirm expectations. Average sulfur oxides concentrations at various points within and near the city drop by up to 85% in the existing fuels scenarios and by 95% in scenarios in which different fuels and more-stringent emissions controls at the plants are used. These reductions are relative to concentrations caused by fuel combustion for heating and large commercial and industrial process uses within the city and Boston Edison Co. electric generation.

  6. Number 2 heating oil/propane program. Final report, 1991/92

    SciTech Connect (OSTI)

    McBrien, J.

    1992-06-01

    During the 1991--92 heating season, the Massachusetts Division of Energy Resources (DOER) participated in a joint data collection program between several state energy offices and the federal Department of Energy`s (DOE) Energy Information Administration (EIA). The purpose of the program was to collect and monitor retail and wholesale heating oil and propane prices and inventories from October, 1991 through March, 1992. This final report begins with an overview of the unique events which had an impact on the reporting period. Next, the report summarizes the results from the residential heating oil and propane price surveys conducted by DOER over the 1991--1992 heating season. The report also incorporates the wholesale heating oil and propane prices and inventories collected by the EIA and distributed to the states. Finally, the report outlines DOER`s use of the data and responses to the events which unfolded during the 1991--1992 heating season.

  7. Short-Term Energy Outlook Model Documentation: Regional Residential Heating Oil Price Model

    Reports and Publications (EIA)

    2009-01-01

    The regional residential heating oil price module of the Short-Term Energy Outlook (STEO) model is designed to provide residential retail price forecasts for the 4 census regions: Northeast, South, Midwest, and West.

  8. No. 2 heating oil/propane program. Final report, 1992/93

    SciTech Connect (OSTI)

    McBrien, J.

    1993-05-01

    During the 1992--93 heating season, the Massachusetts Division Energy Resources (DOER) participated in a joint data collection program between several state energy offices and the federal Department of Energy`s (DOE) Energy Information Administration (EIA). The purpose of the program was to collect and monitor retail and wholesale heating oil and propane prices and inventories from October, 1992 through March, 1993. This final report begins with an overview of the unique events which had an impact on the petroleum markets prior to and during the reporting period. Next, the report summarizes the results from residential heating oil and propane price surveys conducted by DOER over the 1992--93 heating season. The report also incorporates the wholesale heating oil and propane prices and inventories collected by the EIA and distributed to the states. Finally, the report outlines DOER`s use of the data.

  9. No. 2 heating oil/propane program. Final report, 1990/91

    SciTech Connect (OSTI)

    McBrien, J.

    1991-06-01

    During the 1990/91 heating season, the Massachusetts Division of Energy Resources (DOER) participated in a joint data collection program between several state energy offices and the federal Department of Energy`s (DOE) Energy Information Administration (EIA). The purpose of the program was to collect and monitor retail and wholesale heating oil and propane prices and inventories from October 1990 through March 1991. This final report begins with an overview of the unique events which had an impact on the reporting period. Next, the report summarizes the results from the residential heating oil and propane price surveys conducted by DOER over the 1990/91 heating season. The report also incorporates the wholesale heating oil and propane prices and inventories collected by the EIA and distributed to the states.

  10. State heating oil and propane program. Final report, 1996--1997

    SciTech Connect (OSTI)

    Hunton, G.

    1997-08-01

    The following is a summary report of the New Hampshire Governor`s Office of Energy and Community Services (ECS) participation in the State Heating Oil and Propane Program (SHOPP) for the 1996-97 heating season. SHOPP is a cooperative effort, linking energy offices in East Coast and Midwest states, with the Department of Energy (DOE), Energy Information Administration (EIA) for the purpose of collecting retail price data for heating oil and propane. The program funded by the participating state with a matching grant from DOE. SHOPP was initiated in response to congressional inquires into supply difficulties and price spikes of heating oil and propane associated with the winter of 1989/90. This is important to New Hampshire because heating oil controls over 55% of the residential heating market statewide. Propane controls 10% of the heating market statewide and is widely used in rural areas where Natural GAs is not available. Lower installation cost, convenience, lower operating costs compared to electricity and its perception as a clean heating fuel has increased the popularity of propane in New Hampshire and should continue to do so in the future. Any disruption in supply of these heating fuels to New Hampshire could cause prices to skyrocket and leave many residents in the cold.

  11. User manual for AQUASTOR: a computer model for cost analysis of aquifer thermal energy storage coupled with district heating or cooling systems. Volume I. Main text

    SciTech Connect (OSTI)

    Huber, H.D.; Brown, D.R.; Reilly, R.W.

    1982-04-01

    A computer model called AQUASTOR was developed for calculating the cost of district heating (cooling) using thermal energy supplied by an aquifer thermal energy storage (ATES) system. The AQUASTOR model can simulate ATES district heating systems using stored hot water or ATES district cooling systems using stored chilled water. AQUASTOR simulates the complete ATES district heating (cooling) system, which consists of two principal parts: the ATES supply system and the district heating (cooling) distribution system. The supply system submodel calculates the life-cycle cost of thermal energy supplied to the distribution system by simulating the technical design and cash flows for the exploration, development, and operation of the ATES supply system. The distribution system submodel calculates the life-cycle cost of heat (chill) delivered by the distribution system to the end-users by simulating the technical design and cash flows for the construction and operation of the distribution system. The model combines the technical characteristics of the supply system and the technical characteristics of the distribution system with financial and tax conditions for the entities operating the two systems into one techno-economic model. This provides the flexibility to individually or collectively evaluate the impact of different economic and technical parameters, assumptions, and uncertainties on the cost of providing district heating (cooling) with an ATES system. This volume contains the main text, including introduction, program description, input data instruction, a description of the output, and Appendix H, which contains the indices for supply input parameters, distribution input parameters, and AQUASTOR subroutines.

  12. ,"TX, RRC District 7B Crude Oil plus Lease Condensate Proved...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  13. ,"TX, RRC District 7C Crude Oil plus Lease Condensate Proved...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  14. ,"TX, RRC District 1 Crude Oil plus Lease Condensate Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  15. ,"TX, RRC District 9 Crude Oil plus Lease Condensate Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  16. ,"TX, RRC District 8 Crude Oil plus Lease Condensate Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  17. ,"TX, RRC District 6 Crude Oil plus Lease Condensate Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  18. ,"TX, RRC District 5 Crude Oil plus Lease Condensate Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  19. ,"TX, RRC District 8A Crude Oil plus Lease Condensate Proved...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  20. Crude Oil Movements of Crude of by Rail between PAD Districts

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Crude Oil Fuel Ethanol Biodiesel Period-Unit: Monthly-Thousand Barrels Annual-Thousand Barrels Download Series History Download Series History Definitions, Sources & Notes ...

  1. No. 2 heating oil/propane program 1994--1995. Final report

    SciTech Connect (OSTI)

    McBrien, J.

    1995-05-01

    During the 1994--95 heating season, the Massachusetts Division of Energy Resources (DOER) participated in a joint data collection program between several state energy offices and the federal Department of Energy`s (DOE) Energy Information Administration (EIA). The purpose of the program was to collect and monitor retail and wholesale heating oil and propane prices and inventories from October 1994 through March 1995. This program augmented the existing Massachusetts data collection system and served several important functions. The information helped the federal and state governments respond to consumer, congressional and media inquiries regarding No. 2 oil and propane. The information also provided policy decision-makers with timely, accurate and consistent data to monitor current heating oil and propane markets and develop appropriate state responses when necessary. In addition, the communication network between states and the DOE was strengthened through this program. This final report begins with an overview of the unique events that had an impact on the petroleum markets prior to and during the reporting period. Next, the report summarizes the results from residential heating oil and propane price surveys conducted by DOER over the 1994--95 heating season. The report also incorporates the wholesale heating oil and propane prices and inventories collected by EIA and distributed to the states. Finally, the report outlines DOER`s use of the data.

  2. District Energy Technologies | Department of Energy

    Office of Environmental Management (EM)

    through the centralized system. District energy systems often operate with combined heat and power (CHP) and waste heat recovery technologies. Learn more about district energy...

  3. Crude Oil Movements of Crude of by Rail between PAD Districts

    U.S. Energy Information Administration (EIA) Indexed Site

    2010 2011 2012 2013 2014 2015 View History From PADD 1 to PADD 2 0 0 0 0 0 0 2010-2015 ... See movements of crude oil by rail for movements by rail within PADDs and tofrom Canada. ...

  4. User manual for AQUASTOR: a computer model for cost analysis of aquifer thermal-energy storage oupled with district-heating or cooling systems. Volume II. Appendices

    SciTech Connect (OSTI)

    Huber, H.D.; Brown, D.R.; Reilly, R.W.

    1982-04-01

    A computer model called AQUASTOR was developed for calculating the cost of district heating (cooling) using thermal energy supplied by an aquifer thermal energy storage (ATES) system. the AQUASTOR Model can simulate ATES district heating systems using stored hot water or ATES district cooling systems using stored chilled water. AQUASTOR simulates the complete ATES district heating (cooling) system, which consists of two prinicpal parts: the ATES supply system and the district heating (cooling) distribution system. The supply system submodel calculates the life-cycle cost of thermal energy supplied to the distribution system by simulating the technical design and cash flows for the exploration, development, and operation of the ATES supply system. The distribution system submodel calculates the life-cycle cost of heat (chill) delivered by the distribution system to the end-users by simulating the technical design and cash flows for the construction and operation of the distribution system. The model combines the technical characteristics of the supply system and the technical characteristics of the distribution system with financial and tax conditions for the entities operating the two systems into one techno-economic model. This provides the flexibility to individually or collectively evaluate the impact of different economic and technical parameters, assumptions, and uncertainties on the cost of providing district heating (cooling) with an ATES system. This volume contains all the appendices, including supply and distribution system cost equations and models, descriptions of predefined residential districts, key equations for the cooling degree-hour methodology, a listing of the sample case output, and appendix H, which contains the indices for supply input parameters, distribution input parameters, and AQUASTOR subroutines.

  5. Tips: Natural Gas and Oil Heating Systems | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    a new energy-efficient furnace to save money over the long term. Install a new energy-efficient furnace to save money over the long term. If you plan to buy a new heating system,...

  6. Development and certification of the innovative pioneer oil burner for residential heating appliances

    SciTech Connect (OSTI)

    Kamath, B.

    1997-09-01

    The Pioneer burner represents another important milestone for the oil heat industry. It is the first practical burner design that is designated for use in small capacity heating appliances matching the needs of modern energy efficient home designs. Firing in the range of 0.3 GPH to 0.65 GPH (40,000-90,000 Btu/hr) it allows for new oil heating appliance designs to compete with the other major fuel choices in the small design load residential market. This market includes energy efficient single family houses, town-houses, condominiums, modular units, and mobile homes. The firing range also is wide enough to cover a large percentage of more conventional heating equipment and home designs as well. Having recently passed Underwriters Laboratory certification tests the burner in now being field tested in several homes and samples are being made available to interested boiler and furnace manufacturers for product development and application testing.

  7. ,"Total Crude Oil and Petroleum Products Net Receipts by Pipeline, Tanker, Barge and Rail between PAD Districts"

    U.S. Energy Information Administration (EIA) Indexed Site

    Net Receipts by Pipeline, Tanker, Barge and Rail between PAD Districts" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Total Crude Oil and Petroleum Products Net Receipts by Pipeline, Tanker, Barge and Rail between PAD Districts",5,"Monthly","6/2016","1/15/1981" ,"Release

  8. Well blowout rates and consequences in California Oil and Gas District 4 from 1991 to 2005: Implications for geological storage of carbon dioxide

    SciTech Connect (OSTI)

    Jordan, Preston; Jordan, Preston D.; Benson, Sally M.

    2008-05-15

    Well blowout rates in oil fields undergoing thermally enhanced recovery (via steam injection) in California Oil and Gas District 4 from 1991 to 2005 were on the order of 1 per 1,000 well construction operations, 1 per 10,000 active wells per year, and 1 per 100,000 shut-in/idle and plugged/abandoned wells per year. This allows some initial inferences about leakage of CO2 via wells, which is considered perhaps the greatest leakage risk for geological storage of CO2. During the study period, 9% of the oil produced in the United States was from District 4, and 59% of this production was via thermally enhanced recovery. There was only one possible blowout from an unknown or poorly located well, despite over a century of well drilling and production activities in the district. The blowout rate declined dramatically during the study period, most likely as a result of increasing experience, improved technology, and/or changes in safety culture. If so, this decline indicates the blowout rate in CO2-storage fields can be significantly minimized both initially and with increasing experience over time. Comparable studies should be conducted in other areas. These studies would be particularly valuable in regions with CO2-enhanced oil recovery (EOR) and natural gas storage.

  9. Impacts of the Weatherization Assistance Program in fuel-oil heated houses

    SciTech Connect (OSTI)

    Levins, W.P.; Ternes, M.P.

    1994-10-01

    In 1990, the US Department of Energy (DOE) initiated a national evaluation of its lowincome Weatherization Assistance Program. This report, which is one of five parts of that evaluation, evaluates the energy savings and cost-effectiveness of the Program as it had been applied to single-family houses heated primarily by fuel-oil. The study was based upon a representative sample (41 local weatherization agencies, 222 weatherized and 115 control houses) from the nine northeastern states during 1991 and 1992 program years. Dwelling-specific and agency-level data on measures installed, costs, and service delivery procedures were collected from the sampled agencies. Space-heating fuel-oil consumption, indoor temperature, and outdoor temperature were monitored at each house. Dwelling characteristics, air-leakage measurements, space-heating system steady-state efficiency measurements, safety inspections, and occupant questionnaires were also collected or performed at each monitored house. We estimate that the Program weatherized a total of 23,400 single-family fuel-oil heated houses in the nine northeastern states during program years 1991 and 1992. Annual fuel-oil savings were calculated using regression techniques to normalize the savings to standard weather conditions. For the northeast region, annual net fuel-oil savings averaged 160 gallons per house, or 17.7% of pre-weatherization consumption. Although indoor temperatures changed in individual houses following weatherization, there was no average change and no significant difference as compared to the control houses; thus, there was no overall indoor temperature takeback effect influencing fuel-oil savings. The weatherization work was performed cost effectively in these houses from the Program perspective, which included both installation costs and overhead and management costs but did not include non-energy benefits (such as employment and environmental).

  10. Influence of lubricant oil on heat transfer performance of refrigerant flow boiling inside small diameter tubes. Part I: Experimental study

    SciTech Connect (OSTI)

    Wei, Wenjian; Ding, Guoliang; Hu, Haitao; Wang, Kaijian

    2007-10-15

    Two-phase flow pattern and heat transfer characteristics of refrigerant-oil mixture flow boiling inside small tubes with inside diameters of 6.34 mm and 2.50 mm are investigated experimentally. The test condition of nominal oil concentration is from 0% to 5%, mass flux from 200 to 400 kg m{sup -2} s{sup -1}, heat flux from 3.2 to 14 kW m{sup -2}, evaporation temperature of 5 C, inlet quality from 0.1 to 0.8, and quality change from 0.1 to 0.2. Wavy, wavy-annular, annular and mist-annular flow pattern in 6.34 mm tube are observed, while only slug-annular and annular flow pattern are observed in 2.50 mm tube. Oil presence can make annular flow to form early and to retard to diminish in quality direction at nominal oil concentration {>=}3%. Augmentation effect of oil on heat transfer coefficient becomes weakened or even diminishes for small diameter tube while detrimental effect of oil on small tube performance becomes more significant than large tube. For both test tubes, variation of heat transfer coefficient and enhanced factor with oil concentration is irregular. Two-phase heat transfer multiplier with refrigerant-oil mixture properties increases consistently and monotonically with local oil concentration at different vapor quality. (author)

  11. Exploration and drilling for geothermal heat in the Capital District, New York. Volume 4. Final report

    SciTech Connect (OSTI)

    Not Available

    1983-08-01

    The Capital District area of New York was explored to determine the nature of a hydrothermal geothermal system. The chemistry of subsurface water and gas, the variation in gravity, magnetism, seismicity, and temperature gradients were determined. Water and gas analyses and temperature gradient measurements indicate the existence of a geothermal system located under an area from Ballston Spa, southward to Altamont, and eastward toward Albany. Gravimetric and magnetic surveys provided little useful data but microseismic activity in the Altamont area may be significant. Eight wells about 400 feet deep, one 600 feet and one 2232 feet were drilled and tested for geothermal potential. The highest temperature gradients, most unusual water chemistries, and greatest carbon dioxide exhalations were observed in the vicinity of the Saratoga and McGregor faults between Saratoga Springs and Schenectady, New York, suggesting some fault control over the geothermal system. Depths to the warm fluids within the system range from 500 meters (Ballston Spa) to 2 kilometers (Albany).

  12. Exploration and drilling for geothermal heat in the Capital District, New York. Final report

    SciTech Connect (OSTI)

    Not Available

    1983-08-01

    The Capital District area of New York was explored to determine the nature of a hydrothermal geothermal system. The chemistry of subsurface water and gas, the variation in gravity, magnetism, seismicity, and temperature gradients were determined. Water and gas analyses and temperature gradient measurements indicate the existence of a geothermal system located under an area from Ballston Spa, southward to Altamont, and eastware toward Albany. Gravimetric and magnetic surveys provided little useful data but microseismic activity in the Altamont area may be significant. Eight wells about 400 feet deep, one 600 feet and one 2232 feet were drilled and tested for geothermal potential. The highest temperature gradients, most unusual water chemistries, and greatest carbon dioxide exhalations were observed in the vicinity of the Saratoga and McGregor faults between Saratoga Springs and Schenectady, New York, suggesting some fault control over the geothermal system. Depths to the warm fluids within the system range from 500 meters (Ballston Spa) to 2 kilometers (Albany).

  13. Condensing heat-exchanger systems for oil-fired residential/commercial furnaces and boilers Phase I and II

    SciTech Connect (OSTI)

    Ball, D.A.; White, E.L.; Lux, J.J. Jr.; Locklin, D.W.

    1982-10-01

    The objective of the program reported was to provide supporting research to aid in the development and demonstration of oil-fired residential and commercial heating equipment that will operate in a condensing mode. Materials for heat exchangers are screened through coupon testing in a furnace simulator test rig and in an alternate immersion test rig. Condensate from oil-fired systems is characterized. Some general issues related to field application are treated, including heat exchanger fouling, venting of combustion gases, disposal of flue gas condensate, other means of condensate disposal, and evaluation of codes and standards. A heat transfer analysis is presented for general heat exchangers. (LEW)

  14. Influence of lubricant oil on heat transfer performance of refrigerant flow boiling inside small diameter tubes. Part II: Correlations

    SciTech Connect (OSTI)

    Wei, Wenjian; Ding, Guoliang; Hu, Haitao; Wang, Kaijian

    2007-10-15

    The predictive ability of the available state-of-the-art heat transfer correlations of refrigerant-oil mixture is evaluated with the present experiment data of small tubes with inside diameter of 6.34 mm and 2.50 mm. Most of these correlations can be used to predict the heat transfer coefficient of 6.34 mm tube, but none of them can predict heat transfer coefficient of 2.50 mm tube satisfactorily. A new correlation of two-phase heat transfer multiplier with local properties of refrigerant-oil mixture is developed. This correlation approaches the actual physical mechanism of flow boiling heat transfer of refrigerant-oil mixture and can reflect the actual co-existing conditions of refrigerant and lubricant oil. More than 90% of the experiment data of both test tubes have less than {+-}20% deviation from the prediction values of the new correlations. (author)

  15. Heat Transfer and Thermophotovoltaic Power Generation in Oil-fired Heating Systems

    SciTech Connect (OSTI)

    Butcher, T.; Hammonds, J.S.; Horne, E.; Kamath, B.; Carpenter, J.; Woods, D.R.

    2010-10-21

    The focus of this study is the production of electric power in an oil-fired, residential heatingsystem using thermophotovoltaic (TPV) conversion devices. This work uses experimental, computational, and analytical methods to investigate thermal mechanisms that drive electric power production in the TPV systems. An objective of this work is to produce results that will lead to the development of systems that generate enough electricity such that the boiler is self-powering. An important design constraint employed in this investigation is the use of conventional, yellow-flame oil burners, integrated with a typical boiler. The power production target for the systems developed here is 100 W - the power requirement for a boiler that uses low-power auxiliary components. The important heattransfer coupling mechanisms that drive power production in the systems studied are discussed. The results of this work may lead to the development of systems that export power to the home electric system.

  16. State of Missouri 1991--1992 Energy Information Administration State Heating Oil and Propane Program (SHOPP)

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    The objective of the Missouri State Heating Oil and Propane Program was to develop a joint state-level company-specific data collective effort. The State of Missouri provided to the US Department of Energy's Energy Information Administration company specific price and volume information on residential No. 2 heating oil and propane on a semimonthly basis. The energy companies participating under the program were selected at random by the US Department of Energy and provided to the Missouri Department of Natural Resources' Division of Energy prior to the implementation of the program. The specific data collection responsibilities for the Missouri Department of Natural Resources' Division of Energy included: (1) Collection of semimonthly residential heating oil and propane prices, collected on the first and third Monday from August 1991 through August 1992; and, (2) Collection of annual sales volume data for residential propane for the period September 1, 1990 through August 31. 1991. This data was required for the first report only. These data were provided on a company identifiable level to the extent permitted by State law. Information was transmitted to the US Department of Energy's Energy Information Administration through the Petroleum Electronic Data Reporting Option (PEDRO).

  17. Impacts of the Weatherization Assistance Program in Fuel-Oil Heated Houses

    SciTech Connect (OSTI)

    Levins, W.P.

    1994-01-01

    In 1990, the U.S. Department of Energy (DOE) initiated a national evaluation of its low-income Weatherization Assistance Program. This report, which is one of five parts of that evaluation, evaluates the energy savings and cost-effectiveness of the Program as it had been applied to single-family houses heated primarily by fuel-oil. The study was based upon a representative sample (41 local weatherization agencies, 222 weatherized and 115 control houses) from the nine northeastern states during 1991 and 1992 program years. Dwelling-specific and agency-level data on measures installed, costs, and service delivery procedures were collected from the sampled agencies. Space-heating fuel-oil consumption, indoor temperature, and outdoor temperature were monitored at each house. Dwelling characteristics, air-leakage measurements, space-heating system steady-state efficiency measurements, safety inspections, and occupant questionnaires were also collected or performed at each monitored house. We estimate that the Program weatherized a total of 23,400 single-family fuel-oil heated houses in the nine northeastern states during program years 1991 and 1992. Annual fuel-oil savings were calculated using regression techniques to normalize the savings to standard weather conditions. For the northeast region, annual net fuel-oil savings averaged 160 gallons per house, or 17.7% of pre-weatherization consumption. Although indoor temperatures changed in individual houses following weatherization, there was no average change and no significant difference as compared to the control houses; thus, there was no overall indoor temperature takeback effect influencing fuel-oil savings. The weatherization work was performed cost effectively in these houses from the Program perspective, which included both installation costs and overhead and management costs but did not include non-energy benefits (such as employment and environmental). Total average costs were $1819 per house ($1192 for

  18. Direct use of geothermal energy, Elko, Nevada district heating. Final report

    SciTech Connect (OSTI)

    Lattin, M.W.; Hoppe, R.D.

    1983-06-01

    In early 1978 the US Department of Energy, under its Project Opportunity Notice program, granted financial assistance for a project to demonstrate the direct use application of geothermal energy in Elko, Nevada. The project is to provide geothermal energy to three different types of users: a commercial office building, a commercial laundry and a hotel/casino complex, all located in downtown Elko. The project included assessment of the geothermal resource potential, resource exploration drilling, production well drilling, installation of an energy distribution system, spent fluid disposal facility, and connection of the end users buildings. The project was completed in November 1982 and the three end users were brought online in December 1982. Elko Heat Company has been providing continuous service since this time.

  19. Report to Congress on the feasibility of establishing a heating oil component to the Strategic Petroleum Reserve. Volume 1

    SciTech Connect (OSTI)

    1998-06-01

    In the Autumn of 1996, consumers and Members of Congress from the Northeast expressed concern about high prices for heating oil and historically low levels of inventories. Some Members of Congress advocated building a Federal inventory of heating oil as part of the Strategic Petroleum Reserve (SPR). Regional reserves are authorized as part of the SPR for import dependent regions by the Energy Policy and Conservation Act. In response, the Department of Energy (DOE) proposed a series of studies related to heating fuels, including a study of the desirability, feasibility, and cost of creating a Federal reserve containing distillate fuel. This report documents that study.

  20. SOLAR HEATING OF TANK BOTTOMS Application of Solar Heating to Asphaltic and Parrafinic Oils Reducing Fuel Costs and Greenhouse Gases Due to Use of Natural Gas and Propane

    SciTech Connect (OSTI)

    Eugene A. Fritzler

    2005-09-01

    The sale of crude oil requires that the crude meet product specifications for BS&W, temperature, pour point and API gravity. The physical characteristics of the crude such as pour point and viscosity effect the efficient loading, transport, and unloading of the crude oil. In many cases, the crude oil has either a very high paraffin content or asphalt content which will require either hot oiling or the addition of diluents to the crude oil to reduce the viscosity and the pour point of the oil allowing the crude oil to be readily loaded on to the transport. Marginal wells are significantly impacted by the cost of preheating the oil to an appropriate temperature to allow for ease of transport. Highly paraffinic and asphaltic oils exist throughout the D-J basin and generally require pretreatment during cold months prior to sales. The current study addresses the use of solar energy to heat tank bottoms and improves the overall efficiency and operational reliability of stripper wells.

  1. Heat

    U.S. Energy Information Administration (EIA) Indexed Site

    Release date: April 2015 Revised date: May 2016 Heat pumps Furnaces Indiv- idual space heaters District heat Boilers Pack- aged heating units Other All buildings 87,093 80,078 11,846 8,654 20,766 5,925 22,443 49,188 1,574 Building floorspace (square feet) 1,001 to 5,000 8,041 6,699 868 1,091 1,747 Q 400 3,809 Q 5,001 to 10,000 8,900 7,590 1,038 1,416 2,025 Q 734 4,622 Q 10,001 to 25,000 14,105 12,744 1,477 2,233 3,115 Q 2,008 8,246 Q 25,001 to 50,000 11,917 10,911 1,642 1,439 3,021 213 2,707

  2. Evaluation of Gas, Oil and Wood Pellet Fueled Residential Heating System Emissions Characteristics

    SciTech Connect (OSTI)

    McDonald, R.

    2009-12-01

    particulate per unit of energy, expressed as milligrams per Mega-Joule (mg/MJ) versus the different sulfur contents of four different heating fuels. These were tested in a conventional cast iron boiler equipped with a flame retention head burner. The fuels included a typical ASTM No. 2 fuel oil with sulfur below 0.5 percent (1520 average ppm S), an ASTM No. 2 fuel oil with very high sulfur content (5780 ppm S), low sulfur heating oil (322 ppm S) and an ultra low sulfur diesel fuel (11 ppm S). Three additional oil-fired heating system types were also tested with normal heating fuel, low sulfur and ultralow sulfur fuel. They included an oil-fired warm air furnace of conventional design, a high efficiency condensing warm air furnace, a condensing hydronic boiler and the conventional hydronic boiler as discussed above. The linearity in the results was observed with all of the different oil-fired equipment types (as shown in the second figure on the next page). A linear regression of the data resulted in an Rsquared value of 0.99 indicating that a very good linear relationship exits. This means that as sulfur decreases the PM 2.5 emissions are reduced in a linear manner within the sulfur content range tested. At the ultra low sulfur level (15 ppm S) the amount of PM 2.5 had been reduced dramatically to an average of 0.043 mg/MJ. Three different gas-fired heating systems were tested. These included a conventional in-shot induced draft warm air furnace, an atmospheric fired hydronic boiler and a high efficiency hydronic boiler. The particulate (PM 2.5) measured ranged from 0.011 to 0.036 mg/MJ. depending on the raw material source used in their manufacture. All three stoves tested were fueled with premium (low ash) wood pellets obtained in a single batch to provide for uniformity in the test fuel. Unlike the oil and gas fired systems, the wood pellet stoves had measurable amounts of particulates sized above the 2.5-micron size that defines fine particulates (less than 2.5 microns

  3. Oil

    Broader source: Energy.gov [DOE]

    The Energy Department works to ensure domestic and global oil supplies are environmentally sustainable and invests in research and technology to make oil drilling cleaner and more efficient.

  4. District heating and cooling systems for communities through power plant retrofit distribution network, Phase 2. Final report, March 1, 1980-January 31, 1984. Volume 5, Appendix A

    SciTech Connect (OSTI)

    Not Available

    1984-01-31

    This volume contains the backup data for the portion of the load and service assessment in Section 2, Volume II of this report. This includes: locations of industrial and commercial establishments, locations of high rise buildings, data from the Newark (Essex County) Directory of Business, data from the Hudson County Industrial Directory, data from the N. J. Department of Energy Inventory of Public Buildings, data on commercial and industrial establishments and new developments in the Hackensack Meadowlands, data on urban redevelopment and Operation Breakthrough, and list of streets in the potential district heating areas of Newark/Harrison and Jersey City/Hoboken.

  5. Oil heat venting technology and NFPA standard 31 revision year 2000

    SciTech Connect (OSTI)

    Krajewski, R.F.

    1997-09-01

    The revision of National Fire Protection Association (NFPA) Standard 31 for the year 2000 offers an opportunity to update the Appendix which currently offers recommendations for basic metal relining of masonry chimneys up to and including 25 feet. The paper discusses the proposed update of the existing recommendations to include flexible (rough) metal liners. In addition, the discussion addresses the inclusion of additional information for unlined (non-conforming), lined (conforming to NFPA 211) masonary chimneys, insulated metal chimneys, chimney heights beyond what are now published, as well as power venting both forced and induced draft. Included in the paper is a discussion of the existing Oil Heat Vent Analysis Program (OHVAP Version 3.0) and issues that need resolution to make it a better vent system model.

  6. District cooling gets hot

    SciTech Connect (OSTI)

    Seeley, R.S.

    1996-07-01

    Utilities across the country are adopting cool storage methods, such as ice-storage and chilled-water tanks, as an economical and environmentally safe way to provide cooling for cities and towns. The use of district cooling, in which cold water or steam is pumped to absorption chillers and then to buildings via a central community chiller plant, is growing strongly in the US. In Chicago, San Diego, Pittsburgh, Baltimore, and elsewhere, independent district-energy companies and utilities are refurbishing neglected district-heating systems and adding district cooling, a technology first developed approximately 35 years ago.

  7. New Jersey's 2nd congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    district in New Jersey. Registered Energy Companies in New Jersey's 2nd congressional district Bartholomew Heating and Cooling Fishermen s Energy Fishermen s Energy of New...

  8. Michigan residential No. 2 fuel oil and propane price survey for the 1990/91 heating season. Final report

    SciTech Connect (OSTI)

    Not Available

    1991-10-01

    This report summarizes the results of a survey of home heating oil and propane prices over the 1990/1991 heating season in Michigan. The survey was conducted under a cooperative agreement between the State of Michigan, Michigan Public Service Commission and the US Department of Energy (DOE), Energy Information Administration (EIA), and was funded by a grant from EIA. From October 1990 through May 1991, participating dealers/distributions were called and asked for their current residential retail prices of No. 2 home heating oil and propane. This information was then transmitted to the EIA, bi-monthly using an electronic reporting system called Petroleum Data Reporting Option (PEDRO). The survey was conducted using a sample provided by EIA of home heating oil and propane retailers which supply Michigan households. These retailers were contacted the first and third Mondays of each month. The sample was designed to account for distributors with different sales volumes, geographic distributions and sources of primary supply. It should be noted that this simple is different from the sample used in prior year surveys.

  9. Michigan residential No. 2 fuel oil and propane price survey for the 1990/91 heating season

    SciTech Connect (OSTI)

    Not Available

    1991-10-01

    This report summarizes the results of a survey of home heating oil and propane prices over the 1990/1991 heating season in Michigan. The survey was conducted under a cooperative agreement between the State of Michigan, Michigan Public Service Commission and the US Department of Energy (DOE), Energy Information Administration (EIA), and was funded by a grant from EIA. From October 1990 through May 1991, participating dealers/distributions were called and asked for their current residential retail prices of No. 2 home heating oil and propane. This information was then transmitted to the EIA, bi-monthly using an electronic reporting system called Petroleum Data Reporting Option (PEDRO). The survey was conducted using a sample provided by EIA of home heating oil and propane retailers which supply Michigan households. These retailers were contacted the first and third Mondays of each month. The sample was designed to account for distributors with different sales volumes, geographic distributions and sources of primary supply. It should be noted that this simple is different from the sample used in prior year surveys.

  10. U.S. Weekly Heating Oil and Propane Prices (October - March)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Area: U.S. East Coast (PADD 1) New England (PADD 1A) Connecticut Maine Massachusetts New Hampshire Rhode Island Vermont Central Atlantic (PADD 1B) Delaware District of Columbia ...

  11. Preliminary conceptual design for geothermal space heating conversion of school district 50 joint facilities at Pagosa Springs, Colorado. GTA Report No. 6

    SciTech Connect (OSTI)

    Engen, I.A.

    1981-11-01

    This feasibility study and preliminary conceptual design effort assesses the conversion of Colorado School District 50 facilities - a high school and gym, and a middle school building - at Pagosa Springs, Colorado to geothermal space heating. A preliminary cost-benefit assessment made on the basis of estimated costs for conversion, system maintenance, debt service, resource development, electricity to power pumps, and savings from reduced natural gas consumption concluded that an economic conversion depended on development of an adequate geothermal resource (approximately 150/sup 0/F, 400 gpm). Material selection assumed that the geothermal water to the main supply system was isolated to minimize effects of corrosion and deposition, and that system-compatible components would be used for the building modifications. Asbestos-cement distribution pipe, a stainless steel heat exchanger, and stainless steel lined valves were recommended for the supply, heat transfer, and disposal mechanisms, respectively. A comparison of the calculated average gas consumption cost, escalated at 10% per year, with conversion project cost, both in 1977 dollars, showed that the project could be amortized over less than 20 years at current interest rates. In view of the favorable economics and the uncertain future availability and escalating cost of natural gas, the conversion appears economicaly feasible and desirable.

  12. Crude Oil Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Information AdministrationPetroleum Marketing Annual 2001 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

  13. Crude Oil Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Information AdministrationPetroleum Marketing Annual 1998 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

  14. Crude Oil Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Information AdministrationPetroleum Marketing Annual 1999 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

  15. Winter Heating Fuels - Energy Information Administration

    U.S. Energy Information Administration (EIA) Indexed Site

    Click on map above to view state-specific heating fuel data Propane Heating oil Natural gas Electricity For more data on: Heating oil and propane prices - Heating Oil and Propane ...

  16. Alternative Fuels Data Center: Mesa Unified School District Reaps...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    These savings are a combination of low propane pricing and reduced maintenance costs thanks to fewer oil changes and engine failures. The district also realized emissions ...

  17. Crude Oil Prices Table 21. Domestic Crude Oil First Purchase...

    U.S. Energy Information Administration (EIA) Indexed Site

    Information Administration Petroleum Marketing Annual 1995 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

  18. Buildings","All Buildings with Space Heating","Space-Heating Energy Sources Used

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Space-Heating Energy Sources, Number of Buildings, 1999" ,"Number of Buildings (thousand)" ,"All Buildings","All Buildings with Space Heating","Space-Heating Energy Sources Used (more than one may apply)" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat","Propane","Othera" "All Buildings ................",4657,4016,1880,2380,377,96,307,94 "Building Floorspace"

  19. Hydrogen Removal From Heating Oil of a Parabolic Trough Increases the Life

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FreedomCAR and Fuel Partnership Hydrogen Production Technical Team This roadmap was created by the Hydrogen Production Technical Team (HPTT) of the FreedomCAR and Fuel Partnership. This is a partnership of industry's U.S. Council for Automotive Research (USCAR), energy companies and the U.S. Department of Energy (DOE) to advance technologies that enable reduced oil consumption and increased energy efficiency in passenger vehicles. The Partnership focuses on the pre-competitive, high-risk

  20. Elko District Heat District Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Annual Generation 22.20x109 Btuyr 6.50 GWhyr Delat T 40.00 F Load Factor 0.19 Start Up Date 1981 Contact Mike Lattin; 775-738-2210 References Oregon Institute of...

  1. Technical Information Exchange on Pyrolysis Oil: Potential for...

    Energy Savers [EERE]

    renewable heating oil substitution Technical Information Exchange on Pyrolysis Oil: Potential for a renewable heating oil substitution Two-day agenda from the workshop: Technical ...

  2. International District Energy Association

    Broader source: Energy.gov [DOE]

    Since its formation in 1909, the International District Energy Association (IDEA) has served as a principal industry advocate and management resource for owners, operators, developers, and suppliers of district heating and cooling systems in cities, campuses, bases, and healthcare facilities. Today, with over 1,400 members in 26 countries, IDEA continues to organize high-quality technical conferences that inform, connect, and advance the industry toward higher energy efficiency and lower carbon emissions through innovation and investment in scalable sustainable solutions. With the support of DOE, IDEA performs industry research and market analysis to foster high impact projects and help transform the U.S. energy industry. IDEA was an active participant in the original Vision and Roadmap process and has continued to partner with DOE on combined heat and power (CHP) efforts across the country.

  3. Oil and gas leasing in proposed wilderness areas: the Wyoming District Court's interpretation of Section 603 of the Federal Land Policy Management Act of 1976 - Rocky Mountain Oil and Gas Association v. Andrus, 500 F. Supp. 1338 (D. Wyo. 1980), appeal docketed, No. 81-1040 (10th Cir. Jan. 5, 1981)

    SciTech Connect (OSTI)

    Corbett, H.E.

    1982-01-01

    Plaintiff Rocky Mountain Oil and Gas Association, a non-profit trade association, brought suit against the Secretary of the Interior, challenging land management policies of the Department of the Interior which plaintiff contended have effectively prohibited oil and gas exploration in areas proposed as wilderness under the Federal Land Policy Management Act of 1976 (FLPMA). The principal issue at trial was Interior's interpretation of the wilderness study provisions contained in Section 603 of the Act, which directed that activities on oil and gas leases in proposed wilderness areas be managed so as to prevent impairment of wilderness values. The United States Court for the District of Wyoming, Kerr, J., held that strict application of the non-impairment standard of Section 603, FLPMA, by the Department of the Interior virtually halted oil and gas exploration in proposed wilderness areas, and is therefore statutorily erroneous, clearly contrary to Congressional intent, and counter-productive to public interest. The Trial Court's decision is being appealed to the Tenth Circuit Court of Appeals under the title Rocky Mountain Oil and Gas Association v. Watt. 91 references.

  4. "Table B21. Space-Heating Energy Sources, Floorspace, 1999"

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Space-Heating Energy Sources, Floorspace, 1999" ,"Total Floorspace (million square feet)" ,"All Buildings","All Buildings with Space Heating","Space-Heating Energy Sources Used (more than one may apply)" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat","Propane","Othera" "All Buildings ................",67338,61612,32291,37902,5611,5534,2728,945 "Building

  5. "Table B22. Primary Space-Heating Energy Sources, Number of Buildings, 1999"

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Primary Space-Heating Energy Sources, Number of Buildings, 1999" ,"Number of Buildings (thousand)" ,"All Buildings","All Buildings with Space Heating","Primary Space-Heating Energy Source Useda" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat" "All Buildings ................",4657,4016,1128,2189,302,77 "Building Floorspace" "(Square Feet)" "1,001 to 5,000

  6. "Table B23. Primary Space-Heating Energy Sources, Floorspace, 1999"

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Primary Space-Heating Energy Sources, Floorspace, 1999" ,"Total Floorspace (million square feet)" ,"All Buildings","All Buildings with Space Heating","Primary Space-Heating Energy Source Useda" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat" "All Buildings ................",67338,61602,17627,32729,3719,5077 "Building Floorspace" "(Square Feet)" "1,001 to 5,000

  7. Omaha Public Power District- Commercial Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Omaha Public Power District (OPPD) offers incentives for commercial and industrial customers to install energy-efficient heat pumps and replace/retrofit existing lighting systems. The Commercial...

  8. Central Lincoln People's Utility District- Renewable Energy Incentive Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Central Lincoln People's Utility District provides financial incentives for its commercial and residential customers to install photovoltaic (PV), solar water heating, wind, and hydro electric...

  9. Menominee Tribal Enterprises (MTE) Biomass CHP District Energy...

    Office of Environmental Management (EM)

    ... energy costs MTE Menominee Tribal Enterprises New Fuel Processing & Storage Hammer Mill Fuel Storage MTE Menominee Tribal Enterprises District Heating System Benefits * ...

  10. State of Missouri 1991--1992 Energy Information Administration State Heating Oil and Propane Program (SHOPP). Final report, August 9, 1991--August 8, 1992

    SciTech Connect (OSTI)

    Not Available

    1992-12-31

    The objective of the Missouri State Heating Oil and Propane Program was to develop a joint state-level company-specific data collective effort. The State of Missouri provided to the US Department of Energy`s Energy Information Administration company specific price and volume information on residential No. 2 heating oil and propane on a semimonthly basis. The energy companies participating under the program were selected at random by the US Department of Energy and provided to the Missouri Department of Natural Resources` Division of Energy prior to the implementation of the program. The specific data collection responsibilities for the Missouri Department of Natural Resources` Division of Energy included: (1) Collection of semimonthly residential heating oil and propane prices, collected on the first and third Monday from August 1991 through August 1992; and, (2) Collection of annual sales volume data for residential propane for the period September 1, 1990 through August 31. 1991. This data was required for the first report only. These data were provided on a company identifiable level to the extent permitted by State law. Information was transmitted to the US Department of Energy`s Energy Information Administration through the Petroleum Electronic Data Reporting Option (PEDRO).

  11. Applied Solutions Webinar: Insights Into District Energy

    Broader source: Energy.gov [DOE]

    Local governments and their communities that inhabit dense locations can take advantage of district heating and/or cooling systems as a way to increase energy efficiency and reliability while...

  12. Influence of frequency, grade, moisture and temperature on Green River oil shale dielectric properties and electromagnetic heating processes

    SciTech Connect (OSTI)

    Hakala, J. Alexandra [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Stanchina, William [Univ. of Pittsburgh, PA (United States); National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Soong, Yee [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Hedges, Sheila [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States)

    2011-01-01

    Development of in situ electromagnetic (EM) retorting technologies and design of specific EM well logging tools requires an understanding of various process parameters (applied frequency, mineral phases present, water content, organic content and temperature) on oil shale dielectric properties. In this literature review on oil shale dielectric properties, we found that at low temperatures (<200 C) and constant oil shale grade, both the relative dielectric constant (?') and imaginary permittivity (?'') decrease with increased frequency and remain constant at higher frequencies. At low temperature and constant frequency, ?' decreases or remains constant with oil shale grade, while ?'' increases or shows no trend with oil shale grade. At higher temperatures (>200 C) and constant frequency, epsilon' generally increases with temperature regardless of grade while ?'' fluctuates. At these temperatures, maximum values for both ?' and ?'' differ based upon oil shale grade. Formation fluids, mineral-bound water, and oil shale varve geometry also affect measured dielectric properties. This review presents and synthesizes prior work on the influence of applied frequency, oil shale grade, water, and temperature on the dielectric properties of oil shales that can aid in the future development of frequency- and temperature-specific in situ retorting technologies and oil shale grade assay tools.

  13. Local Power Empowers: CHP and District Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Local Power Empowers: CHP and District Energy Local Power Empowers: CHP and District Energy This webinar, held on Nov. 10, 2010, provides information on combined heat and power and district energy. Transcript Presentation (1.8 MB) More Documents & Publications Effective O&M Policy in Public Buildings Preparing for the Arrival of Electric Vehicle Quality Assurance for Residential Retrofit Programs

  14. Research, development, and testing of a prototype two-stage low-input rate oil burner for variable output heating system applications

    SciTech Connect (OSTI)

    Krajewski, R.F.; Butcher, T.A.

    1997-09-01

    The use of a Two-Stage Fan Atomized Oil Burner (TSFAB) in space and water heating applications will have dramatic advantages in terms of it`s potential for a high Annual Fuel Utilization Efficiency (AFUE) and/or Energy Factor (EF) rating for the equipment. While demonstrations of a single rate burner in an actual application have already yielded sufficient confidence that space and domestic heating loads can be met at a single low firing rate, this represents only a narrow solution to the diverse nature of building space heating and domestic water loads that the industry must address. The mechanical development, proposed control, and testing of the Two-Stage burner is discussed in terms of near term and long term goals.

  15. "Table B27. Space Heating Energy Sources, Floorspace for Non-Mall Buildings, 2003"

    U.S. Energy Information Administration (EIA) Indexed Site

    7. Space Heating Energy Sources, Floorspace for Non-Mall Buildings, 2003" ,"Total Floorspace (million square feet)" ,"All Buildings*","Buildings with Space Heating","Space-Heating Energy Sources Used (more than one may apply)" ,,,"Elec- tricity","Natural Gas","Fuel Oil","District Heat","Propane","Other a" "All Buildings* ...............",64783,60028,28600,36959,5988,5198,3204,842

  16. Heating oil supply/price monitoring report: Part I. Historic data, August 1978-July 1979. Part II. Current data, August 1979-May 1980

    SciTech Connect (OSTI)

    Not Available

    1980-08-01

    The 1973-1974 oil embargo brought national realization to the importance, and need for the collection and analysis of energy data. The Maine Office of Energy Resources (OER) is responsible for the establishment and implementation of energy plans and policies in the State of Maine. The Supply/Price Monitoring System has been created to assist energy planners both in Maine and the nation. This survey is used to analyze trends in home heating oil supply and price, and as a tool in responding to inquiries from: citizens, other state agencies, federal and local offices, and the Office of the Governor. This report will describe the Supply/Price Monitoring System, and the results obtained from the survey, during the period August 1, 1979 through May 31, 1980. Historical data is also provided as required by the aforementioned agreement between the OER and the US Department of Energy.

  17. Heating oil supply/price monitoring report. Part I. Historic data, August 1978-July 1979; Part II. Current data, August 1979-May 1980

    SciTech Connect (OSTI)

    Not Available

    1980-08-01

    The 1973-1974 oil embargo brought national realization to the importance, and need for the collection and analysis of energy data. The Maine Office of Energy Resources (OER) is responsible for the establishment and implementation of energy plans and policies in the State of Maine. The Supply/Price Monitoring System has been created to assist energy planners both in Maine and the nation. This survey is used to analyze trends in home heating oil supply and price, and as a tool in responding to inquiries from: citizens, other state agencies, federal and local offices, and the Office of the Governor. This report will describe the Supply/Price Monitoring System, and the results obtained from the survey, during the period August 1, 1979 through May 31, 1980. Historical data are also provided as required by the aforementioned agreement between the OER and the US Department of Energy.

  18. Additional Storage Contracts Awarded for Northeast Home Heating...

    Broader source: Energy.gov (indexed) [DOE]

    storage services for the one million barrel Northeast Home Heating Oil Reserve (NEHHOR). ... The Northeast Home Heating Oil Reserve was authorized by Congress in the Energy Policy Act ...

  19. Data-Driven Mailing Helps Heat Up Untapped Seattle Market

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... next winter. * Heating a Seattle home with oil produces more carbon emissions and air pollution than other heating systems. * Upgrading from oil to an efficient gas furnace or ...

  20. Oil Refund Decisions | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    During the period 1973 through 1981, the Federal government imposed price and allocation controls of crude oil and refined petroleum products, such as gasoline and heating oil. ...

  1. White Pine Co. Public School System Biomass Conversion Heating Project

    SciTech Connect (OSTI)

    Paul Johnson

    2005-11-01

    The White Pine County School District and the Nevada Division of Forestry agreed to develop a pilot project for Nevada using wood chips to heat the David E. Norman Elementary School in Ely, Nevada. Consideration of the project was triggered by a ''Fuels for Schools'' grant that was brought to the attention of the School District. The biomass project that was part of a district-wide energy retrofit, called for the installation of a biomass heating system for the school, while the current fuel oil system remained as back-up. Woody biomass from forest fuel reduction programs will be the main source of fuel. The heating system as planned and completed consists of a biomass steam boiler, storage facility, and an area for unloading and handling equipment necessary to deliver and load fuel. This was the first project of it's kind in Nevada. The purpose of the DOE funded project was to accomplish the following goals: (1) Fuel Efficiency: Purchase and install a fuel efficient biomass heating system. (2) Demonstration Project: Demonstrate the project and gather data to assist with further research and development of biomass technology; and (3) Education: Educate the White Pine community and others about biomass and other non-fossil fuels.

  2. Process for oil shale retorting using gravity-driven solids flow and solid-solid heat exchange

    DOE Patents [OSTI]

    Lewis, A.E.; Braun, R.L.; Mallon, R.G.; Walton, O.R.

    1983-09-21

    A cascading bed retorting process and apparatus are disclosed in which cold raw crushed shale enters at the middle of a retort column into a mixer stage where it is rapidly mixed with hot recycled shale and thereby heated to pyrolysis temperature. The heated mixture then passes through a pyrolyzer stage where it resides for a sufficient time for complete pyrolysis to occur. The spent shale from the pyrolyzer is recirculated through a burner stage where the residual char is burned to heat the shale which then enters the mixer stage.

  3. Process for oil shale retorting using gravity-driven solids flow and solid-solid heat exchange

    DOE Patents [OSTI]

    Lewis, Arthur E.; Braun, Robert L.; Mallon, Richard G.; Walton, Otis R.

    1986-01-01

    A cascading bed retorting process and apparatus in which cold raw crushed shale enters at the middle of a retort column into a mixer stage where it is rapidly mixed with hot recycled shale and thereby heated to pyrolysis temperature. The heated mixture then passes through a pyrolyzer stage where it resides for a sufficient time for complete pyrolysis to occur. The spent shale from the pyrolyzer is recirculated through a burner stage where the residual char is burned to heat the shale which then enters the mixer stage.

  4. Conceptual design phase of a district heating and cooling plant with cogeneration to serve James Madison University and the Harrisonburg Electric Commission

    SciTech Connect (OSTI)

    Belcher, J.B.

    1995-12-31

    A unique opportunity for cooperation and community development exists in Harrisonburg, Virginia. James Madison University, located in Harrisonburg, is undergoing an aggressive growth plan of its academic base which also includes the physical expansion of its campus. The City of Harrisonburg is presently supplying steam to meet a portion of the heating needs of the existing James Madison campus from a city owned and operated waste-to-energy plant. In an effort of cooperation, Harrisonburg and James Madison University have now negotiated an agreement for the city to provide all of the heating and cooling requirements of the new campus expansion. In another unique turn of events, the local electrical power distributor, Harrisonburg Electric Commission, approached the city concerning the inclusion of cogeneration in the project in order to reduce and maintain existing electric rates thus further benefiting the community. Through the cooperation of these three entities, the conceptual design phase of the project has been completed. The plant design developed through this process includes 3,000 tons of chilled water capacity, an additional 64,000 lb/hr of steam capacity and 2.5 MW of cogeneration capacity. This paper describes the conceptual design process for this interesting project.

  5. Geothermal heating facilities for Frontier Inn, Susanville, California

    SciTech Connect (OSTI)

    Not Available

    1982-03-01

    The Frontier Inn, located in Susanville, California, is a 38 unit motel composed of six major sections (coffee shop, A frame units, apartments, back units, two story units and office). These sections were built over a number of years and exhibit widely varying types of construction. Space heating is provided by primarily electric resistance equipment with some propane use. Domestic hot water is provided primarily by propane with some electric resistance. The coffee shop uses fuel oil for both space and domestic hot water heating. The City of Susanville is currently in the process of installing a geothermal district heating system. Although the motel site is not located in the area of present construction activity, it is expected that the pipeline will be extended in the near future. This study examines the potential of retrofitting the existing heating facilities at the Frontier Inn to geothermal.

  6. Table 21. Domestic Crude Oil First Purchase Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Administration Petroleum Marketing Annual 1996 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

  7. Table 21. Domestic Crude Oil First Purchase Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    AdministrationPetroleum Marketing Annual 1998 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

  8. Table 21. Domestic Crude Oil First Purchase Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Administration Petroleum Marketing Annual 1995 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

  9. Prime Supplier Sales Volumes of Distillate Fuel Oils and Kerosene...

    Gasoline and Diesel Fuel Update (EIA)

    Marketing Annual 1997 401 Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils and Kerosene by PAD District and State (Thousand Gallons per Day) - Continued...

  10. Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils...

    U.S. Energy Information Administration (EIA) Indexed Site

    Marketing Annual 1999 359 Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils and Kerosene by PAD District and State (Thousand Gallons per Day) - Continued...

  11. Report to Congress on the feasibility of establishing a heating oil component to the Strategic Petroleum Reserve. Volume 2: Appendices

    SciTech Connect (OSTI)

    1998-06-01

    Nine appendices to the main report are included in this volume. They are: Northeastern US distillate supply systems; New England fuel oil storage capacities and inventories; Characteristics of the northeast natural gas market; Documentation of statistical models and calculation of benefits; Regional product reserve study; Other countries` experience with refined product storage; Global refining supply demand appraisal; Summary of federal authorities relevant to the establishment of petroleum product reserves; Product stability and turnover requirements.

  12. Technical Information Exchange on Pyrolysis Oil: Potential for...

    Energy Savers [EERE]

    Renewab;e Heating Oil Substation Fuel in New England Technical Information Exchange on Pyrolysis Oil: Potential for a Renewab;e Heating Oil Substation Fuel in New England This ...

  13. Project Profile: The Sacramento Municipal Utility District Consumnes Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plant Solar Augmentation Project | Department of Energy The Sacramento Municipal Utility District Consumnes Power Plant Solar Augmentation Project Project Profile: The Sacramento Municipal Utility District Consumnes Power Plant Solar Augmentation Project SMUD Logo -- This project is inactive -- The Sacramento Municipal Utility District (SMUD), under the Concentrating Solar Power (CSP) Heat Integration for Baseload Renewable Energy Development (HIBRED) program, is demonstrating a hybrid CSP

  14. Energy-materials industry in the Tenth Federal Reserve District

    SciTech Connect (OSTI)

    Allman, D.N.

    1982-01-01

    The Tenth District's role as an energy supplier changed between 1960 and 1980. The seven states (Colorado, Kansas, Missouri, Nebraska, New Mexico, Oklahoma, and Wyoming) making up the District produced the equivalent of 6.8 billion barrels of crude oil, or 37.4% of the total US output in 1980. Although production of energy materials grew steadily during the 1960s, most of the growth following the 1973 oil embargo has outpaced that of the US as a whole. This article traces the changes in production and value of crude oil, natural gas, coal, and uranium for the District and the individual states. Only crude oil has declined in importance. 6 references, 3 figures, 6 tables. (DCK)

  15. Oil-futures markets

    SciTech Connect (OSTI)

    Prast, W.G.; Lax, H.L.

    1983-01-01

    This book on oil futures trading takes a look at a market and its various hedging strategies. Growing interest in trading of commodity futures has spread to petroleum, including crude oil, and key refined products such as gasoline and heating oil. This book describes how the international petroleum trade is structured, examines the working of oil futures markets in the United States and the United Kingdom, and assesses the possible courses of further developments.

  16. DOE - Fossil Energy: Soap, Bugs and Other Ways to Produce Oil

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    It hardly flows out of a jar, much less out of an oil reservoir. But if the oil is heated, it becomes thinner and more slippery. To heat heavy oil in a reservoir, oil companies ...

  17. Integrating district cooling with cogeneration

    SciTech Connect (OSTI)

    Spurr, M.

    1996-11-01

    Chillers can be driven with cogenerated thermal energy, thereby offering the potential to increase utilization of cogeneration throughout the year. However, cogeneration decreases electric output compared to condensing power generation in power plants using a steam cycle (steam turbine or gas turbine combined cycle plants). The foregone electric production increases with increasing temperature of heat recovery. Given a range of conditions for key variables (such as cogeneration utilization, chiller utilization, cost of fuel, value of electricity, value of heat and temperature of heat recovered), how do technology alternatives for combining district cooling with cogeneration compare? This paper summarizes key findings from a report recently published by the International Energy Agency which examines the energy efficiency and economics of alternatives for combining cogeneration technology options (gas turbine simple cycle, diesel engine, steam turbine, gas turbine combined cycle) with chiller options (electric centrifugal, steam turbine centrifugal one-stage steam absorption, two-stage steam absorption, hot water absorption).

  18. Empire District Electric- Low Income New Homes Program

    Broader source: Energy.gov [DOE]

    Empire District Electric offers rebates for energy efficient measures and appliances in new, low-income homes. Rebates are available for several types of building insulation, heat pumps, central...

  19. Southern Power District- Residential Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Southern Power District (SPD) offers rebates for the purchase and installation of efficient air source heat pumps, water heaters, attic insulation, LED lighting, and HVAC tune-ups. All equipment...

  20. Nebraska Preparing for the Upcoming Heating Season

    U.S. Energy Information Administration (EIA) Indexed Site

    Heating Oil Propane Residential Propane Price http:www.neo.ne.govstatshtml86.html Residential Heating Oil Price http:www.neo.ne.govstatshtml87.html Weekly Report Using ...

  1. Category:Congressional Districts | Open Energy Information

    Open Energy Info (EERE)

    19th congressional district California's 1st congressional district California's 20th congressional district California's 21st congressional district California's 22nd...

  2. Missouri Clean Energy District

    Broader source: Energy.gov [DOE]

    In July 2010 Missouri enacted the Property Assessed Clean Energy Act, which led to the creation of the statewide Missouri Clean Energy District (MCED) in January 2011.

  3. H. R. 3856: A Bill to amend the Internal Revenue Code of 1986 to impose an excise tax on windfall profits derived from home heating oil, and for other purposes. Introduced in the House of Representatives, One Hundredth First Congress, Second Session, January 23, 1990

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    The tax would be imposed on the producer or importer of the home heating oil. The amount of the tax would be 90 percent of the windfall profit on each barrel, which is defined as the gross profit over the producer's or importer's average gross profit per barrel from home heating oil sold during November 1989. If significant sales were not made by any person during November 1989, the amount will be determined by the Secretary based on national averages. The bill also establishes a Home Heating Oil Trust Fund to finance grants under the Low-Income Home Energy Assistance Act of 1981.

  4. Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Petroleum Marketing Annual 1999 295 Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes by PAD District and State (Thousand Gallons per Day) - Continued...

  5. Norms, Standards, and Legislation for Fast Pyrolysis Bio-oils from Lignocellulosic Biomass

    SciTech Connect (OSTI)

    Oasmaa, Anja; van de Beld, Bert; Saari, Pia; Elliott, Douglas C.; Solantausta, Yrjo

    2015-04-16

    Fast pyrolysis of woody biomass is close to full maturity, with first-of-its-kind commercial size installations for fuel production being commissioned in Finland (Fortum) and in The Netherlands (Empyro), and in the design phase in Brazil (Ensyn). In the industrial-scale combustion tests, the use of fast pyrolysis bio-oil (FPBO) has been demonstrated to be a viable option to replace heavy fuel oil in district heating applications. Commercially usable district heating boilers and burners suitable for FPBO are available. There is research on diesel-engine and gas-turbine applications but, so far, no proven demonstrations. FPBO is completely different from mineral oils; hence, standards are needed. Analytical methods have been systematically validated and modifications to the standards as well as completely new methods have been made. Two ASTM burner fuel standards already exist and European boiler fuel grades are being developed under CEN. The focus on CEN standardization is on boiler use, because of its commercial readiness.

  6. District of Columbia - Compare - U.S. Energy Information Administration

    U.S. Energy Information Administration (EIA) Indexed Site

    (EIA) District of Columbia District of Columbia

  7. District of Columbia - Rankings - U.S. Energy Information Administration

    U.S. Energy Information Administration (EIA) Indexed Site

    (EIA) District of Columbia District of Columbia

  8. District of Columbia - Search - U.S. Energy Information Administration

    U.S. Energy Information Administration (EIA) Indexed Site

    (EIA) District of Columbia District of Columbia

  9. Residential Heating Oil Weekly Heating Oil and Propane Prices (October -

    U.S. Energy Information Administration (EIA) Indexed Site

    March) 2.094 2.089 2.096 2.122 2.132 2.131 1990-2016 East Coast (PADD 1) 2.100 2.095 2.101 2.127 2.137 2.136 1990-2016 New England (PADD 1A) 2.043 2.034 2.039 2.061 2.070 2.068 1990-2016 Connecticut 2.192 2.209 2.199 2.237 2.238 2.233 1990-2016 Maine 1.779 1.750 1.747 1.774 1.788 1.792 1990-2016 Massachusetts 2.133 2.115 2.126 2.140 2.157 2.155 1990-2016 New Hampshire 2.013 2.010 1.993 1.995 1.995 1.993 1990-2016 Rhode Island 2.111 2.093 2.123 2.157 2.178 2.169 1990-2016 Vermont 1.795 1.789

  10. Wholesale Heating Oil Weekly Heating Oil and Propane Prices ...

    Gasoline and Diesel Fuel Update (EIA)

    Maine 1.124 1.150 1.251 1.328 1.348 1.302 2013-2016 Massachusetts 1.190 1.214 1.349 1.389 1.406 1.364 2013-2016 New Hampshire 1.072 1.092 1.239 1.239 1.263 1.225 2013-2016 Rhode ...

  11. Upgrading heavy gas oils

    SciTech Connect (OSTI)

    Ferguson, S.; Reese, D.D.

    1986-05-20

    A method is described of neutralizing the organic acidity in heavy gas oils to produce a neutralization number less than 1.0 whereby they are rendered suitable as lube oil feed stocks which consists essentially of treating the heavy gas oils with a neutralizing amount of monoethanolamine to form an amine salt with the organic acids and then heating the thus-neutralized heavy gas oil at a temperature at least about 25/sup 0/F greater than the boiling point of water and for a time sufficient to convert the amine salts to amides.

  12. Cooling, Heating and Power in the Nation's Colleges and Universities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This 2002 study presents data on cooling, heating, and power in the collegeuniversity ... Campus: A Survey of Thermal Energy Storage Use in Campus District Energy Systems, May 2005

  13. System for increasing corona inception voltage of insulating oils

    DOE Patents [OSTI]

    Rohwein, Gerald J.

    1998-01-01

    The Corona Inception Voltage of insulating oils is increased by repetitive cycles of prestressing the oil with a voltage greater than the corona inception voltage, and either simultaneously or serially removing byproducts of corona by evacuation and heating the oil.

  14. Heating Oil and Propane Update

    Gasoline and Diesel Fuel Update (EIA)

    Total Consumption Electric Power Other Sectors Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2010 2011 2012 2013 2014 2015 View History U.S. 1,023 1,022 1,024 1,027 1,030 1,037 2003-2015 Alabama 1,018 1,018 1,016 1,017 1,025 1,030 2007-2015 Alaska 1,005 1,013 1,012 1,002 1,002 1,001 2007-2015 Arizona 1,016 1,015 1,021 1,025 1,029 1,039 2007-2015 Arkansas 1,012 1,017 1,015

  15. Heating Oil and Propane Update

    Gasoline and Diesel Fuel Update (EIA)

    State Energy Offices Q1: What price should be reported to EIA when submitting weekly data? EIA requests that you collect / report the residential credit price (keep-full prices being preferred) and that all prices exclude taxes for the Monday of each survey week, even if that Monday falls on a holiday. Prices should not include discounts for payment of cash or for payment made within a short period of time. However, if a company deals exclusively in cash, then this price should be reported and

  16. Oil shale retorting method and apparatus

    SciTech Connect (OSTI)

    York, E.D.

    1983-03-22

    Disclosed is an improved method and apparatus for the retorting of oil shale and the formation of spent oil shale having improved cementation properties. The improved method comprises passing feed comprising oil shale to a contacting zone wherein the feed oil shale is contacted with heat transfer medium to heat said shale to retorting temperature. The feed oil shale is substantially retorted to form fluid material having heating value and forming partially spent oil shale containing carbonaceous material. At least a portion of the partially spent oil shale is passed to a combustion zone wherein the partially spent oil shale is contacted with oxidizing gas comprising oxygen and steam to substantially combust carbonaceous material forming spent oil shale having improved cementation properties.

  17. BLM Prineville District Office | Open Energy Information

    Open Energy Info (EERE)

    Prineville District Office Jump to: navigation, search Name: BLM Prineville District Office Place: Prineville, Oregon References: BLM Prineville District Office Directory1 This...

  18. BLM Vale District Office | Open Energy Information

    Open Energy Info (EERE)

    Vale District Office Jump to: navigation, search Name: BLM Vale District Office Place: Vale, Oregon ParentHolding Organization: BLM References: BLM Vale District Office...

  19. Southern Nevada Health District | Open Energy Information

    Open Energy Info (EERE)

    Health District Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Southern Nevada Health District Author Southern Nevada Health District Published...

  20. Westlands Water District | Open Energy Information

    Open Energy Info (EERE)

    Westlands Water District Jump to: navigation, search Name: Westlands Water District Place: California Sector: Solar Product: Water district in central California which administers...

  1. Public Utility District #1 Of Jefferson County

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Commissioners July 2,2008 Dana Roberts, District 1 M. Kelly Hays, District 2 Wayne G. King, District 3 Mark Gendron, Vice President Northwest Requirements Marketing James G....

  2. Combustion heater for oil shale

    DOE Patents [OSTI]

    Mallon, Richard G.; Walton, Otis R.; Lewis, Arthur E.; Braun, Robert L.

    1985-01-01

    A combustion heater for oil shale heats particles of spent oil shale containing unburned char by burning the char. A delayed fall is produced by flowing the shale particles down through a stack of downwardly sloped overlapping baffles alternately extending from opposite sides of a vertical column. The delayed fall and flow reversal occurring in passing from each baffle to the next increase the residence time and increase the contact of the oil shale particles with combustion supporting gas flowed across the column to heat the shale to about 650.degree.-700.degree. C. for use as a process heat source.

  3. Combustion heater for oil shale

    DOE Patents [OSTI]

    Mallon, R.; Walton, O.; Lewis, A.E.; Braun, R.

    1983-09-21

    A combustion heater for oil shale heats particles of spent oil shale containing unburned char by burning the char. A delayed fall is produced by flowing the shale particles down through a stack of downwardly sloped overlapping baffles alternately extending from opposite sides of a vertical column. The delayed fall and flow reversal occurring in passing from each baffle to the next increase the residence time and increase the contact of the oil shale particles with combustion supporting gas flowed across the column to heat the shale to about 650 to 700/sup 0/C for use as a process heat source.

  4. Metro Wastewater Reclamation District Biomass Facility | Open...

    Open Energy Info (EERE)

    Wastewater Reclamation District Biomass Facility Jump to: navigation, search Name Metro Wastewater Reclamation District Biomass Facility Facility Metro Wastewater Reclamation...

  5. Cretaceous Cogollo Group study - District Zulia Occidental

    SciTech Connect (OSTI)

    Lagazzi, R.; D`Antonio, G.; Hung, O.; Avila, A.

    1996-08-01

    The Cretaceous Cogollo Group, with over 1500 feet of platform carbonate and shale section, contains important oil accumulations in the west portion of the Maracaibo basin. However, after discovery of the major oil fields, all subsequent exploration and exploitation efforts led to disappointing results. This paper summarizes the study of the Cogollo Group in the Lake Maracaibo West Coast area, where light Cretaceous oil may have an impact on the total reserves. After integrating the Cogollo Group into the regional framework, the study focuses on the District Zulia Occidental, where over 40 deep wells either penetrated or tested the reservoir. Structural and stratigraphic descriptions are enriched by a significant amount of core and petrophysical data that leads to a better understanding of the reservoir layering and pore geometry. Well production performance and reservoir data are incorporated to the study as additional tools to determine the size of the oil accumulations. Finally, the study addresses the possibility of drilling slant or horizontal wells as a way to reduce the number of dry holes or marginal producers.

  6. NGNP Process Heat Utilization: Liquid Metal Phase Change Heat Exchanger

    SciTech Connect (OSTI)

    Piyush Sabharwall; Mike Patterson; Vivek Utgikar; Fred Gunnerson

    2008-09-01

    One key long-standing issue that must be overcome to fully realize the successful growth of nuclear power is to determine other benefits of nuclear energy apart from meeting the electricity demands. The Next Generation Nuclear Plant (NGNP) will most likely be producing electricity and heat for the production of hydrogen and/or oil retrieval from oil sands and oil shale to help in our national pursuit of energy independence. For nuclear process heat to be utilized, intermediate heat exchange is required to transfer heat from the NGNP to the hydrogen plant or oil recovery field in the most efficient way possible. Development of nuclear reactor - process heat technology has intensified the interest in liquid metals as heat transfer media because of their ideal transport properties. Liquid metal heat exchangers are not new in practical applications. An important rational for considering liquid metals is the potential convective heat transfer is among the highest known. Thus explains the interest in liquid metals as coolant for intermediate heat exchange from NGNP. For process heat it is desired that, intermediate heat exchangers (IHX) transfer heat from the NGNP in the most efficient way possible. The production of electric power at higher efficiency via the Brayton Cycle, and hydrogen production, requires both heat at higher temperatures and high effectiveness compact heat exchangers to transfer heat to either the power or process cycle. Compact heat exchangers maximize the heat transfer surface area per volume of heat exchanger; this has the benefit of reducing heat exchanger size and heat losses. High temperature IHX design requirements are governed in part by the allowable temperature drop between the outlet and inlet of the NGNP. In order to improve the characteristics of heat transfer, liquid metal phase change heat exchangers may be more effective and efficient. This paper explores the overall heat transfer characteristics and pressure drop of the phase change

  7. Heavy oil transportation by pipeline

    SciTech Connect (OSTI)

    Gerez, J.M.; Pick, A.R.

    1996-12-31

    Worldwide there are a number of pipelines used to transport heavy crude oils. The operations are facilitated in a variety of ways. For example, the Alyeska pipeline is an insulated pipeline transporting warm oil over 800 miles. This 48-inch line experiences limited heat loss due to the insulation, volume of oil contained, and heat gain due to friction and pumping. Some European trunk lines periodically handle heavy and waxy crudes. This is achieved by proper sizing of batches, following waxy crudes with non-waxy crudes, and increased use of scrapers. In a former Soviet republic, the transportation of heavy crude oil by pipeline has been facilitated by blending with a lighter Siberian crude. The paper describes the pipeline transport of heavy crudes by Interprovincial Pipe Line Inc. The paper describes enhancing heavy oil transportation by emulsion formation, droplet suspension, dilution, drag reducing agents, and heating.

  8. High-Temperature Nuclear Reactors for In-Situ Recovery of Oil from Oil Shale

    SciTech Connect (OSTI)

    Forsberg, Charles W.

    2006-07-01

    The world is exhausting its supply of crude oil for the production of liquid fuels (gasoline, jet fuel, and diesel). However, the United States has sufficient oil shale deposits to meet our current oil demands for {approx}100 years. Shell Oil Corporation is developing a new potentially cost-effective in-situ process for oil recovery that involves drilling wells into oil shale, using electric heaters to raise the bulk temperature of the oil shale deposit to {approx}370 deg C to initiate chemical reactions that produce light crude oil, and then pumping the oil to the surface. The primary production cost is the cost of high-temperature electrical heating. Because of the low thermal conductivity of oil shale, high-temperature heat is required at the heater wells to obtain the required medium temperatures in the bulk oil shale within an economically practical two to three years. It is proposed to use high-temperature nuclear reactors to provide high-temperature heat to replace the electricity and avoid the factor-of-2 loss in converting high-temperature heat to electricity that is then used to heat oil shale. Nuclear heat is potentially viable because many oil shale deposits are thick (200 to 700 m) and can yield up to 2.5 million barrels of oil per acre, or about 125 million dollars/acre of oil at $50/barrel. The concentrated characteristics of oil-shale deposits make it practical to transfer high-temperature heat over limited distances from a reactor to the oil shale deposits. (author)

  9. Tips: Heating and Cooling | Department of Energy

    Energy Savers [EERE]

    Year and Fuel Type (Quadrillion Btu and Percent of Total). ... and cooling Natural gas and oil heating Programmable ... Rebates & Tax Credits Federal tax credits are available for ...

  10. Energy and economic implications of combining district cooling with cogeneration

    SciTech Connect (OSTI)

    Spurr, M.; Larsson, I.

    1995-12-31

    Chillers can be driven with cogenerated thermal energy, thereby offering the potential to increase utilization of cogeneration throughout the year. However, cogeneration decreases electric output compared to condensing power generation. The foregone electric production increases with increasing temperature of heat recovery. The economics of alternatives for combining district cooling with cogeneration depend on many variables, including cogeneration utilization, chiller utilization, value of electricity, value and temperature of heat recovered and other factors.

  11. Abandoned Texas oil fields

    SciTech Connect (OSTI)

    Not Available

    1980-12-01

    Data for Texas abandoned oil fields were primarily derived from two sources: (1) Texas Railroad Commission (TRRC), and (2) Dwight's ENERGYDATA. For purposes of this report, abandoned oil fields are defined as those fields that had no production during 1977. The TRRC OILMASTER computer tapes were used to identify these abandoned oil fields. The tapes also provided data on formation depth, gravity of oil production, location (both district and county), discovery date, and the cumulative production of the field since its discovery. In all, the computer tapes identified 9211 abandoned fields, most of which had less than 250,000 barrel cumulative production. This report focuses on the 676 abandoned onshore Texas oil fields that had cumulative production of over 250,000 barrels. The Dwight's ENERGYDATA computer tapes provided production histories for approximately two-thirds of the larger fields abandoned in 1966 and thereafter. Fields which ceased production prior to 1966 will show no production history nor abandonment date in this report. The Department of Energy hopes the general availability of these data will catalyze the private sector recovery of this unproduced resource.

  12. EA-1922: Combined Power and Biomass Heating System, Fort Yukon, Alaska

    Broader source: Energy.gov [DOE]

    DOE (lead agency), Denali Commission (cooperating agency) and USDA Rural Utilities Services (cooperating agency) are proposing to provide funding to support the final design and construction of a biomass combined heat and power plant and associated district heating system to the Council of Athabascan Tribal Governments and the Gwitchyaa Zhee Corporation. The proposed biomass district heating system would be located in Fort Yukon Alaska.

  13. District Technical Sergeant | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    District Technical Sergeant District Technical Sergeant A Manhattan Engineering District technical sergeant looks over nearly completed construction at Y-12.

  14. District of Columbia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    (District of Columbia) Glacial Energy Holdings (District of Columbia) Hess Retail Natural Gas and Elec. Acctg. (District of Columbia) Integrys Energy Services, Inc. (District...

  15. The Future of Home Heating

    Broader source: Energy.gov (indexed) [DOE]

    as B10 High heating efficiency Costly replacement for oil system Shale gas vs FRAC Act? ... Redistribution Via truck from Canada Via tanker from Canada, Venez., VI, And "Other" ...

  16. Industrial Process Heating - Technology Assessment

    Broader source: Energy.gov (indexed) [DOE]

    ... fuels 29 such as natural gas, coal, biomass and fuel oils. ... heat energy through combustion of solid, liquid, or 46 ... low cost 77 fuel or by products for use in steam generation. ...

  17. Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Total Fuel Oil Consumption and Expenditures, 1999" ,"All Buildings Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings (thousand)","Floorspac...

  18. Solar retorting of oil shale

    DOE Patents [OSTI]

    Gregg, David W.

    1983-01-01

    An apparatus and method for retorting oil shale using solar radiation. Oil shale is introduced into a first retorting chamber having a solar focus zone. There the oil shale is exposed to solar radiation and rapidly brought to a predetermined retorting temperature. Once the shale has reached this temperature, it is removed from the solar focus zone and transferred to a second retorting chamber where it is heated. In a second chamber, the oil shale is maintained at the retorting temperature, without direct exposure to solar radiation, until the retorting is complete.

  19. Development of Nuclear Renewable Oil Shale Systems for Flexible Electricity and Reduced Fossil Fuel Emissions

    SciTech Connect (OSTI)

    Daniel Curtis; Charles Forsberg; Humberto Garcia

    2015-05-01

    We propose the development of Nuclear Renewable Oil Shale Systems (NROSS) in northern Europe, China, and the western United States to provide large supplies of flexible, dispatchable, very-low-carbon electricity and fossil fuel production with reduced CO2 emissions. NROSS are a class of large hybrid energy systems in which base-load nuclear reactors provide the primary energy used to produce shale oil from kerogen deposits and simultaneously provide flexible, dispatchable, very-low-carbon electricity to the grid. Kerogen is solid organic matter trapped in sedimentary shale, and large reserves of this resource, called oil shale, are found in northern Europe, China, and the western United States. NROSS couples electricity generation and transportation fuel production in a single operation, reduces lifecycle carbon emissions from the fuel produced, improves revenue for the nuclear plant, and enables a major shift toward a very-low-carbon electricity grid. NROSS will require a significant development effort in the United States, where kerogen resources have never been developed on a large scale. In Europe, however, nuclear plants have been used for process heat delivery (district heating), and kerogen use is familiar in certain countries. Europe, China, and the United States all have the opportunity to use large scale NROSS development to enable major growth in renewable generation and either substantially reduce or eliminate their dependence on foreign fossil fuel supplies, accelerating their transitions to cleaner, more efficient, and more reliable energy systems.

  20. Carbon sequestration in depleted oil shale deposits

    SciTech Connect (OSTI)

    Burnham, Alan K; Carroll, Susan A

    2014-12-02

    A method and apparatus are described for sequestering carbon dioxide underground by mineralizing the carbon dioxide with coinjected fluids and minerals remaining from the extraction shale oil. In one embodiment, the oil shale of an illite-rich oil shale is heated to pyrolyze the shale underground, and carbon dioxide is provided to the remaining depleted oil shale while at an elevated temperature. Conditions are sufficient to mineralize the carbon dioxide.

  1. Heat pipe array heat exchanger

    DOE Patents [OSTI]

    Reimann, Robert C.

    1987-08-25

    A heat pipe arrangement for exchanging heat between two different temperature fluids. The heat pipe arrangement is in a ounterflow relationship to increase the efficiency of the coupling of the heat from a heat source to a heat sink.

  2. Oil-shale utilization at Morgantown, WV

    SciTech Connect (OSTI)

    Shang, J.Y.; Notestein, J.E.; Mei, J.S.; Romanosky, R.R.; King, J.A.; Zeng, L.W.

    1982-01-01

    Fully aware of the nation's need to develop high-risk and long-term research in eastern oil-shale and low-grade oil-shale utilization in general, the US DOE/METC initiated an eastern oil-shale characterization program. In less than 3 months, METC produced shale oil from a selected eastern-US oil shale with a Fischer assay of 8.0 gallons/ton. In view of the relatively low oil yield from this particular oil shale, efforts were directed to determine the process conditions which give the highest oil yield. A 2-inch-diameter electrically heated fluidized-bed retort was constructed, and Celina oil shale from Tennessee was selected to be used as a representative eastern oil shale. After more than 50 runs, the retorting data were analyzed and reviewed and the best oil-yield operating condition was determined. In addition, while conducting the oil-shale retorting experiments, a number of technical problems were identified, addressed, and overcome. Owing to the inherent high rates of heat and mass transfers inside the fluidized bed, the fluidized-bed combustor and retorting appear to be a desirable process technology for an effective and efficient means for oil-shale utilization. The fluidized-bed operation is a time-tested, process-proven, high-throughput, solid-processing operation which may contribute to the efficient utilization of oil-shale energy.

  3. Fuel oil quality task force

    SciTech Connect (OSTI)

    Laisy, J.; Turk, V.

    1997-09-01

    In April, 1996, the R.W. Beckett Corporation became aware of a series of apparently unrelated symptoms that made the leadership of the company concerned that there could be a fuel oil quality problem. A task force of company employees and industry consultants was convened to address the topic of current No. 2 heating oil quality and its effect on burner performance. The task force studied changes in fuel oil specifications and trends in properties that have occurred over the past few years. Experiments were performed at Beckett and Brookhaven National Laboratory to understand the effect of changes in some fuel oil properties. Studies by other groups were reviewed, and field installations were inspected to gain information about the performance of fuel oil that is currently being used in the U.S. and Canada. There was a special concern about the use of red dye in heating oils and the impact of sulfur levels due to the October, 1993 requirement of low sulfur (<0.05%) for on-highway diesel fuel. The results of the task force`s efforts were published in July, 1996. The primary conclusion of the task force was that there is not a crisis or widespread general problem with fuel oil quality. Localized problems that were seen may have been related to refinery practices and/or non-traditional fuel sources. System cleanliness is very important and the cause of many oil burner system problems. Finally, heating oil quality should get ongoing careful attention by Beckett engineering personnel and heating oil industry groups.

  4. U.S. monthly oil production tops 8 million barrels per day for...

    U.S. Energy Information Administration (EIA) Indexed Site

    households using propane and heating oil will see the biggest savings....with propane expenditures down 27% this winter compared with last winter and heating oil bills down 15%. ...

  5. BLM Burns District Office | Open Energy Information

    Open Energy Info (EERE)

    Burns District Office Jump to: navigation, search Name: BLM Burns District Office Place: Hines, Oregon References: BLM Burns District Office1 This article is a stub. You can help...

  6. BLM Elko District Office | Open Energy Information

    Open Energy Info (EERE)

    Elko District Office Jump to: navigation, search Name: BLM Elko District Office Place: Elko, Nevada References: BLM Elko District Office Website1 This article is a stub. You can...

  7. World oil trends

    SciTech Connect (OSTI)

    Anderson, A. )

    1991-01-01

    This book provides data on many facets of the world oil industry topics include; oil consumption; oils share of energy consumption; crude oil production; natural gas production; oil reserves; prices of oil; world refining capacity; and oil tankers.

  8. Merced Irrigation District | Open Energy Information

    Open Energy Info (EERE)

    Irrigation District Place: California Website: mercedid.com Twitter: @MercedID Facebook: https:www.facebook.comMercedIrrigationDistrict Outage Hotline: 209-722-3041...

  9. Connecticut's 3rd congressional district: Energy Resources |...

    Open Energy Info (EERE)

    can help OpenEI by expanding it. This page represents a congressional district in Connecticut. Registered Energy Companies in Connecticut's 3rd congressional district Avalence...

  10. Connecticut's 2nd congressional district: Energy Resources |...

    Open Energy Info (EERE)

    can help OpenEI by expanding it. This page represents a congressional district in Connecticut. US Recovery Act Smart Grid Projects in Connecticut's 2nd congressional district...

  11. Twin Falls District | Open Energy Information

    Open Energy Info (EERE)

    District Jump to: navigation, search Name: BML Twin Falls District Office Address: 2536 Kimberly Road Place: Twin Falls, ID Zip: 83301 Phone Number: 208-736-2350 Website:...

  12. BLM Boise District Office | Open Energy Information

    Open Energy Info (EERE)

    Boise District Office Jump to: navigation, search Name: BLM Boise District Office Abbreviation: Boise Place: Boise, Idaho ParentHolding Organization: BLM Idaho State Office...

  13. BLM Winnemucca District Office | Open Energy Information

    Open Energy Info (EERE)

    Winnemucca District Office Jump to: navigation, search Name: BLM Winnemucca District Office Abbreviation: Winnemucca Address: 5100 E. Winnemucca Blvd. Place: Winnemucca, Nevada...

  14. California's 42nd congressional district: Energy Resources |...

    Open Energy Info (EERE)

    district Inland Empire Utilities Agency IEUA Scheuten Solar USA Inc US South Coast Air Quality Management District SCAQMD Western Ethanol Company LLC Utility Companies in...

  15. Dawson Power District | Open Energy Information

    Open Energy Info (EERE)

    Dawson Power District Jump to: navigation, search Name: Dawson Power District Place: Nebraska Phone Number: 308-324-2386 Website: dawsonpower.com Twitter: @DawsonPower Facebook:...

  16. Montana Association of Conservation Districts Webpage | Open...

    Open Energy Info (EERE)

    Districts Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Association of Conservation Districts Webpage Abstract Homepage of...

  17. California's 43rd congressional district: Energy Resources |...

    Open Energy Info (EERE)

    can help OpenEI by expanding it. This page represents a congressional district in California. Registered Energy Companies in California's 43rd congressional district Ecosystem...

  18. California's 21st congressional district: Energy Resources |...

    Open Energy Info (EERE)

    can help OpenEI by expanding it. This page represents a congressional district in California. Registered Energy Companies in California's 21st congressional district Agrimass...

  19. California's 41st congressional district: Energy Resources |...

    Open Energy Info (EERE)

    can help OpenEI by expanding it. This page represents a congressional district in California. Registered Energy Companies in California's 41st congressional district BCL...

  20. California's 18th congressional district: Energy Resources |...

    Open Energy Info (EERE)

    can help OpenEI by expanding it. This page represents a congressional district in California. Registered Energy Companies in California's 18th congressional district 1st Light...

  1. California's 38th congressional district: Energy Resources |...

    Open Energy Info (EERE)

    can help OpenEI by expanding it. This page represents a congressional district in California. Registered Energy Companies in California's 38th congressional district California...

  2. California's 45th congressional district: Energy Resources |...

    Open Energy Info (EERE)

    can help OpenEI by expanding it. This page represents a congressional district in California. Registered Energy Companies in California's 45th congressional district Chuckawalla...

  3. Massachusetts's 2nd congressional district: Energy Resources...

    Open Energy Info (EERE)

    can help OpenEI by expanding it. This page represents a congressional district in Massachusetts. Registered Energy Companies in Massachusetts's 2nd congressional district Alyra...

  4. Pascoag Utility District | Open Energy Information

    Open Energy Info (EERE)

    search Name: Pascoag Utility District Place: Rhode Island Website: www.pud-ri.org Twitter: @PascoagUtility Facebook: https:www.facebook.comPascoagUtilityDistrict Outage...

  5. Bio-oil fractionation and condensation

    DOE Patents [OSTI]

    Brown, Robert C; Jones, Samuel T; Pollard, Anthony

    2013-07-02

    A method of fractionating bio-oil vapors which involves providing bio-oil vapors comprising bio-oil constituents is described. The bio-oil vapors are cooled in a first stage which comprises a condenser having passages for the bio-oil separated by a heat conducting wall from passages for a coolant. The coolant in the condenser of the first stage is maintained at a substantially constant temperature, set at a temperature in the range of 75 to 100.degree. C., to condense a first liquid fraction of liquefied bio-oil constituents in the condenser of the first stage. The first liquid fraction of liquified bio-oil constituents from the condenser in the first stage is collected. Also described are steps for subsequently recovering further liquid fractions of liquefied bio-oil constituents. Particular compositions of bio-oil condensation products are also described.

  6. Washington School District Makes the Grade in Energy Efficiency

    Broader source: Energy.gov [DOE]

    Camas School District in Washington becomes the first school district to reach Better Buildings Challenge goals.

  7. Buildings","All Heated

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Heating Equipment, Number of Buildings, 1999" ,"Number of Buildings (thousand)" ,"All Buildings","All Heated Buildings","Heating Equipment (more than one may apply)" ,,,"Heat Pumps","Furnaces","Individual Space Heaters","District Heat","Boilers","Packaged Heating Units","Other" "All Buildings ................",4657,4016,492,1460,894,96,581,1347,185 "Building

  8. Buildings","All Heated

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Heating Equipment, Floorspace, 1999" ,"Total Floorspace (million square feet)" ,"All Buildings","All Heated Buildings","Heating Equipment (more than one may apply)" ,,,"Heat Pumps","Furnaces","Individual Space Heaters","District Heat","Boilers","Packaged Heating Units","Other" "All Buildings ................",67338,61602,8923,14449,17349,5534,19522,25743,4073

  9. Process for removing heavy metal compounds from heavy crude oil

    DOE Patents [OSTI]

    Cha, Chang Y.; Boysen, John E.; Branthaver, Jan F.

    1991-01-01

    A process is provided for removing heavy metal compounds from heavy crude oil by mixing the heavy crude oil with tar sand; preheating the mixture to a temperature of about 650.degree. F.; heating said mixture to up to 800.degree. F.; and separating tar sand from the light oils formed during said heating. The heavy metals removed from the heavy oils can be recovered from the spent sand for other uses.

  10. Oil shale, tar sands, and related materials

    SciTech Connect (OSTI)

    Stauffer, H.C.

    1981-01-01

    This sixteen-chapter book focuses on the many problems and the new methodology associated with the commercialization of the oil shale and tar sand industry. Topics discussed include: an overview of the Department of Energy's oil shale R, D, and D program; computer simulation of explosive fracture of oil shale; fracturing of oil shale by treatment with liquid sulfur dioxide; chemistry of shale oil cracking; hydrogen sulfide evolution from Colorado oil shale; a possible mechanism of alkene/alkane production in oil shale retorting; oil shale retorting kinetics; kinetics of oil shale char gasification; a comparison of asphaltenes from naturally occurring shale bitumen and retorted shale oils: the influence of temperature on asphaltene structure; beneficiation of Green River oil shale by density methods; beneficiation of Green River oil shale pelletization; shell pellet heat exchange retorting: the SPHER energy-efficient process for retorting oil shale; retorted oil shale disposal research; an investigation into the potential economics of large-scale shale oil production; commercial scale refining of Paraho crude shale oil into military specification fuels; relation between fuel properties and chemical composition; chemical characterization/physical properties of US Navy shale-II fuels; relation between fuel properties and chemical composition: stability of oil shale-derived jet fuel; pyrolysis of shale oil residual fractions; synfuel stability: degradation mechanisms and actual findings; the chemistry of shale oil and its refined products; the reactivity of Cold Lake asphaltenes; influence of thermal processing on the properties of Cold Lake asphaltenes: the effect of distillation; thermal recovery of oil from tar sands by an energy-efficient process; and hydropyrolysis: the potential for primary upgrading of tar sand bitumen.

  11. The Future of Home Heating | Department of Energy

    Office of Environmental Management (EM)

    Technical Information Exchange on Pyrolysis Oil: Potential for a Renewab;e Heating Oil Substation Fuel in New England Performance of Biofuels and Biofuel Blends A Life-Cycle ...

  12. Air-Source Heat Pumps | Department of Energy

    Energy Savers [EERE]

    When displacing oil (i.e., the oil system remains, but operates less frequently), the average annual savings are near 3,000 kWh (or about 300). Types of Air-Source Heat Pumps The ...

  13. Enhanced oil recovery system

    DOE Patents [OSTI]

    Goldsberry, Fred L.

    1989-01-01

    All energy resources available from a geopressured geothermal reservoir are used for the production of pipeline quality gas using a high pressure separator/heat exchanger and a membrane separator, and recovering waste gas from both the membrane separator and a low pressure separator in tandem with the high pressure separator for use in enhanced oil recovery, or in powering a gas engine and turbine set. Liquid hydrocarbons are skimmed off the top of geothermal brine in the low pressure separator. High pressure brine from the geothermal well is used to drive a turbine/generator set before recovering waste gas in the first separator. Another turbine/generator set is provided in a supercritical binary power plant that uses propane as a working fluid in a closed cycle, and uses exhaust heat from the combustion engine and geothermal energy of the brine in the separator/heat exchanger to heat the propane.

  14. Process for converting heavy oil deposited on coal to distillable oil in a low severity process

    DOE Patents [OSTI]

    Ignasiak, Teresa; Strausz, Otto; Ignasiak, Boleslaw; Janiak, Jerzy; Pawlak, Wanda; Szymocha, Kazimierz; Turak, Ali A.

    1994-01-01

    A process for removing oil from coal fines that have been agglomerated or blended with heavy oil comprises the steps of heating the coal fines to temperatures over 350.degree. C. up to 450.degree. C. in an inert atmosphere, such as steam or nitrogen, to convert some of the heavy oil to lighter, and distilling and collecting the lighter oils. The pressure at which the process is carried out can be from atmospheric to 100 atmospheres. A hydrogen donor can be added to the oil prior to deposition on the coal surface to increase the yield of distillable oil.

  15. Methods for deoxygenating biomass-derived pyrolysis oil

    SciTech Connect (OSTI)

    Baird, Lance Awender; Brandvold, Timothy A.

    2015-06-30

    Methods for deoxygenating a biomass-derived pyrolysis oil are provided. A method for deoxygenating a biomass-derived pyrolysis oil comprising the steps of combining a biomass-derived pyrolysis oil stream with a heated low-oxygen-pyoil diluent recycle stream to form a heated diluted pyoil feed stream is provided. The heated diluted pyoil feed stream has a feed temperature of about 150.degree. C. or greater. The heated diluted pyoil feed stream is contacted with a first deoxygenating catalyst in the presence of hydrogen at first hydroprocessing conditions effective to form a low-oxygen biomass-derived pyrolysis oil effluent.

  16. Technical Information Exchange on Pyrolysis Oil: Potential for...

    Broader source: Energy.gov (indexed) [DOE]

    Potential for a renewable heating oil substitution fuel in New England - Agenda Time Pre-Conference Presentation and Discussion (Grenier Room) May 8, 2012; Manchester New Hampshire ...

  17. Enhanced heat transfer using nanofluids

    DOE Patents [OSTI]

    Choi, Stephen U. S.; Eastman, Jeffrey A.

    2001-01-01

    This invention is directed to a method of and apparatus for enhancing heat transfer in fluids such as deionized water. ethylene glycol, or oil by dispersing nanocrystalline particles of substances such as copper, copper oxide, aluminum oxide, or the like in the fluids. Nanocrystalline particles are produced and dispersed in the fluid by heating the substance to be dispersed in a vacuum while passing a thin film of the fluid near the heated substance. The fluid is cooled to control its vapor pressure.

  18. Turlock Irrigation District- PV Rebate

    Broader source: Energy.gov [DOE]

    Turlock Irrigation District (TID) offers an incentive program to their customers who install solar photovoltaic (PV) systems. In keeping with the terms of the California Solar Initiative, the inc...

  19. Missouri School District Charges Up

    Broader source: Energy.gov [DOE]

    Missouri's Lee's Summit R-7 school district's distribution fleet was tired. Many of the vehicles had racked up more than 300,000 miles and made frequent trips to the shop to repair the 20 plus-year-old parts.

  20. Oil shale retort apparatus

    DOE Patents [OSTI]

    Reeves, Adam A.; Mast, Earl L.; Greaves, Melvin J.

    1990-01-01

    A retorting apparatus including a vertical kiln and a plurality of tubes for delivering rock to the top of the kiln and removal of processed rock from the bottom of the kiln so that the rock descends through the kiln as a moving bed. Distributors are provided for delivering gas to the kiln to effect heating of the rock and to disturb the rock particles during their descent. The distributors are constructed and disposed to deliver gas uniformly to the kiln and to withstand and overcome adverse conditions resulting from heat and from the descending rock. The rock delivery tubes are geometrically sized, spaced and positioned so as to deliver the shale uniformly into the kiln and form symmetrically disposed generally vertical paths, or "rock chimneys", through the descending shale which offer least resistance to upward flow of gas. When retorting oil shale, a delineated collection chamber near the top of the kiln collects gas and entrained oil mist rising through the kiln.

  1. EIA-813, Monthly Crude Oil Report Page 1 U. S. DEPARTMENT OF...

    Gasoline and Diesel Fuel Update (EIA)

    transporting Alaskan crude oil by water in the 50 States and the District of Columbia. ... month, corrected to 60 degrees Fahrenheit (F) less basic sediment and water (BS&W). ...

  2. EIA-803, Weekly Crude Oil Stocks Report Page 1 U. S. DEPARTMENT...

    Gasoline and Diesel Fuel Update (EIA)

    transporting Alaskan crude oil by water in the 50 States and the District of Columbia. ... reported corrected to 60 degrees Fahrenheit ( 0 F) less basic sediment and water (BS&W). ...

  3. Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    839.2 135.0 1,251.9 See footnotes at end of table. 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes by PAD District and State Energy Information Administration ...

  4. All

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Natural gas Fuel oil District heat All buildings 5,557 4,722 1,819 2,322 205 47 Building ... Buildings with space heating All buildings Electricity Natural gas Fuel oil District heat ...

  5. Process for oil shale retorting

    DOE Patents [OSTI]

    Jones, John B.; Kunchal, S. Kumar

    1981-10-27

    Particulate oil shale is subjected to a pyrolysis with a hot, non-oxygenous gas in a pyrolysis vessel, with the products of the pyrolysis of the shale contained kerogen being withdrawn as an entrained mist of shale oil droplets in a gas for a separation of the liquid from the gas. Hot retorted shale withdrawn from the pyrolysis vessel is treated in a separate container with an oxygenous gas so as to provide combustion of residual carbon retained on the shale, producing a high temperature gas for the production of some steam and for heating the non-oxygenous gas used in the oil shale retorting process in the first vessel. The net energy recovery includes essentially complete recovery of the organic hydrocarbon material in the oil shale as a liquid shale oil, a high BTU gas, and high temperature steam.

  6. Home Heating

    Broader source: Energy.gov [DOE]

    Your choice of heating technologies impacts your energy bill. Learn about the different options for heating your home.

  7. Venezuelan oil

    SciTech Connect (OSTI)

    Martinez, A.R. )

    1989-01-01

    Oil reserves have been known to exist in Venezuela since early historical records, however, it was not until the 20th century that the extensive search for new reserves began. The 1950's marked the height of oil exploration when 200 new oil fields were discovered, as well as over 60{percent} of proven reserves. Venezuela now produces one tone in seven of crude oil consumption and the country's abundant reserves such as the Bolivar Coastal field in the West of the country and the Orinoco Belt field in the East, will ensure it's continuing importance as an oil producer well into the 21st century. This book charts the historical development of Venezuela oil and provides a chronology of all the significant events which have shaped the oil industry of today. It covers all the technical, legal, economic and political factors which have contributed to the evolution of the industry and also gives information on current oil resources and production. Those events significant to the development of the industry, those which were influential in shaping future policy and those which precipitated further action are included. The book provides a source of reference to oil companies, oil economists and petroleum geologists.

  8. Oil shale combustion/retorting

    SciTech Connect (OSTI)

    Not Available

    1983-05-01

    The Morgantown Energy Technology Center (METC) conducted a number of feasibility studies on the combustion and retorting of five oil shales: Celina (Tennessee), Colorado, Israeli, Moroccan, and Sunbury (Kentucky). These studies generated technical data primarily on (1) the effects of retorting conditions, (2) the combustion characteristics applicable to developing an optimum process design technology, and (3) establishing a data base applicable to oil shales worldwide. During the research program, METC applied the versatile fluidized-bed process to combustion and retorting of various low-grade oil shales. Based on METC's research findings and other published information, fluidized-bed processes were found to offer highly attractive methods to maximize the heat recovery and yield of quality oil from oil shale. The principal reasons are the fluidized-bed's capacity for (1) high in-bed heat transfer rates, (2) large solid throughput, and (3) selectivity in aromatic-hydrocarbon formation. The METC research program showed that shale-oil yields were affected by the process parameters of retorting temperature, residence time, shale particle size, fluidization gas velocity, and gas composition. (Preferred values of yields, of course, may differ among major oil shales.) 12 references, 15 figures, 8 tables.

  9. Native Village of Teller Addresses Heating Fuel Shortage, Improves...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    utility, which runs its own diesel fuel bulk storage facility for the diesel generators. However, residential heating oil and fuel for all public buildings except the...

  10. H. R. 3710: A Bill to amend the Internal Revenue Code of 1986 to allow individuals a credit for expenditures to remove and replace underground home heating oil storage tanks in certain areas. Introduced in the House of Representatives, One Hundredth First Congress, First Session, November 17, 1989

    SciTech Connect (OSTI)

    Not Available

    1989-01-01

    The bill would allow a tax credit in the amount equal to 25 percent of the removal and replacement expenditures made by the taxpayer during the taxable year, not to exceed 2000 dollars. The tank must be located at the principal residence of the taxpayer, be used to store heating oil for the residence, and be located in a critical aquifer protection area, as defined in the Public Health Service Act.

  11. ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Fuel Oil Consumption and Expenditure Intensities for Non-Mall Buildings, 2003" ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures" ,"per Building (gallons)","per Square Foot...

  12. ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Fuel Oil Consumption and Expenditure Intensities, 1999" ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures" ,"per Building (gallons)","per Square Foot (gallons)","per Worker...

  13. Crude Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    Barrels) Product: Crude Oil Liquefied Petroleum Gases Distillate Fuel Oil Residual Fuel Oil Still Gas Petroleum Coke Marketable Petroleum Coke Catalyst Petroleum Coke Other Petroleum Products Natural Gas Coal Purchased Electricity Purchased Steam Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area 2010 2011 2012 2013 2014 2015 View History U.S. 0 0 0 0 0 0 1986-2015 East Coast (PADD 1) 0 0 0 0

  14. BLM Battle Mountain District Office | Open Energy Information

    Open Energy Info (EERE)

    Mountain District Office Jump to: navigation, search Logo: BLM Battle Mountain District Office Name: BLM Battle Mountain District Office Abbreviation: Battle Mountain Address: 50...

  15. PP-174 Imperial Irrigation District | Department of Energy

    Energy Savers [EERE]

    4 Imperial Irrigation District PP-174 Imperial Irrigation District Presidential permit authorizing Imperial Irrigation District to construct, operate, and maintain electric ...

  16. Bureau Valley School District Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Valley School District Wind Farm Jump to: navigation, search Name Bureau Valley School District Wind Farm Facility Bureau Valley School District Sector Wind energy Facility Type...

  17. District steam and the St. Louis steam loop

    SciTech Connect (OSTI)

    Tierney, T.M.; Sauer, H.J. Jr.

    1999-07-01

    Owned and operated by large public electric utilities, district steam systems flourished in most northern US cities in the first half of this century. Following World War II, however, district steam systems became minor and, in some cases, unprofitable portions of the utilities' operations. Consequently, public utilities ceased promoting district steam to existing and potential customers, leading to the decline of their use. In recent years, district steam systems have been revitalized by independent enterprises that have the commitment and expertise to make these systems once again reliable and cost-effective energy sources. This paper reports on one such system, The St. Louis Steam Loop. The St. Louis steam loop consists of 22 miles of insulated underground steam piping encompassing a 400-square block area in the city's downtown business district. The loop is supplied with steam by the Ashley Plant, which was built in 1904 for the St. Louis World's Fair. Due to the rising cost of oil, which has been used to fuel the Ashley Plant since 1972, and the subsequent loss of customers, many people considered the steam system a dinosaur in the jet age. In 1982, Trigen-St. Louis Energy Corporation purchased the steam system and embarked on an aggressive campaign to upgrade all aspects of the system, including valves, piping, and meters. In 1999, Trigen-St. Louis will install an ISMW state-of-the-art combustion turbine cogenerator to provide 95% of the steam to the steam loop. A primary reason for the St. Louis Steam Loop's longevity is that it has reliably supplied steam to many downtown buildings for the better part of the 20th century.

  18. Trends in heavy oil production and refining in California

    SciTech Connect (OSTI)

    Olsen, D.K.; Ramzel, E.B.; Pendergrass, R.A. II

    1992-07-01

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production and is part of a study being conducted for the US Department of Energy. This report summarizes trends in oil production and refining in Canada. Heavy oil (10{degrees} to 20{degrees} API gravity) production in California has increased from 20% of the state`s total oil production in the early 1940s to 70% in the late 1980s. In each of the three principal petroleum producing districts (Los Angeles Basin, Coastal Basin, and San Joaquin Valley) oil production has peaked then declined at different times throughout the past 30 years. Thermal production of heavy oil has contributed to making California the largest producer of oil by enhanced oil recovery processes in spite of low oil prices for heavy oil and stringent environmental regulation. Opening of Naval Petroleum Reserve No. 1, Elk Hills (CA) field in 1976, brought about a major new source of light oil at a time when light oil production had greatly declined. Although California is a major petroleum-consuming state, in 1989 the state used 13.3 billion gallons of gasoline or 11.5% of US demand but it contributed substantially to the Nation`s energy production and refining capability. California is the recipient and refines most of Alaska`s 1.7 million barrel per day oil production. With California production, Alaskan oil, and imports brought into California for refining, California has an excess of oil and refined products and is a net exporter to other states. The local surplus of oil inhibits exploitation of California heavy oil resources even though the heavy oil resources exist. Transportation, refining, and competition in the market limit full development of California heavy oil resources.

  19. Trends in heavy oil production and refining in California

    SciTech Connect (OSTI)

    Olsen, D.K.; Ramzel, E.B.; Pendergrass, R.A. II.

    1992-07-01

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production and is part of a study being conducted for the US Department of Energy. This report summarizes trends in oil production and refining in Canada. Heavy oil (10{degrees} to 20{degrees} API gravity) production in California has increased from 20% of the state's total oil production in the early 1940s to 70% in the late 1980s. In each of the three principal petroleum producing districts (Los Angeles Basin, Coastal Basin, and San Joaquin Valley) oil production has peaked then declined at different times throughout the past 30 years. Thermal production of heavy oil has contributed to making California the largest producer of oil by enhanced oil recovery processes in spite of low oil prices for heavy oil and stringent environmental regulation. Opening of Naval Petroleum Reserve No. 1, Elk Hills (CA) field in 1976, brought about a major new source of light oil at a time when light oil production had greatly declined. Although California is a major petroleum-consuming state, in 1989 the state used 13.3 billion gallons of gasoline or 11.5% of US demand but it contributed substantially to the Nation's energy production and refining capability. California is the recipient and refines most of Alaska's 1.7 million barrel per day oil production. With California production, Alaskan oil, and imports brought into California for refining, California has an excess of oil and refined products and is a net exporter to other states. The local surplus of oil inhibits exploitation of California heavy oil resources even though the heavy oil resources exist. Transportation, refining, and competition in the market limit full development of California heavy oil resources.

  20. Overview of direct use R&D at the Geo-Heat Center

    SciTech Connect (OSTI)

    Lienau, P.J.

    1997-12-31

    Geo-Heat Center research, during the past year, on geothermal district heating and greenhouse projects is intended to improve the design and cost effectiveness of these systems. The largest geothermal district heating system in the U.S., proposed at Reno, is describe and is one of 271 collocated sites in western states could benefit from the research. The geothermal district heating research investigated a variety of factors that could reduce development cost for residential areas. Many greenhouse operators prefer the {open_quotes}bare tube{close_quotes} type heating system. As facilities using these types of heating systems expand they could benefit from peaking with fossil fuels. It is possible to design a geothermal heating system for only 60% of the peak heat loss of a greenhouse and still meet over 90% of the annual heat energy needs of the structure. The design and cost effectiveness of this novel approach is summarized.

  1. System for increasing corona inception voltage of insulating oils

    DOE Patents [OSTI]

    Rohwein, G.J.

    1998-05-19

    The Corona Inception Voltage of insulating oils is increased by repetitive cycles of prestressing the oil with a voltage greater than the corona inception voltage, and either simultaneously or serially removing byproducts of corona by evacuation and heating the oil. 5 figs.

  2. Downtown district cooling: A 21st century approach

    SciTech Connect (OSTI)

    1995-12-01

    On December 1, 1992, the Board of Directors of the Metropolitan Pier and Exposition Authority (MPEA) met on Chicago`s historic Navy Pier and ushered in a new era of competition for energy supply in Chicago. The MPEA, a state agency created for the purposes of promoting and operating fair and exposition facilities within the Chicago area (including the McCormick Place exposition center and Navy Pier), voted to accept a third-party proposal to provide district heating and cooling services to the existing McCormick Place facilities and a million square feet of new exposition space. The winning bidder was a joint venture between Trigen Energy, the nation`s largest provider of district energy services, and Peoples Gas, the gas distribution company which serves Chicago. This vote culminated two years of effort by the Energy Division of Chicago`s Department of Environment to analyze the feasibility and promote the implementation of a district energy system to serve the expanded McCormick Place and its environs in the South Loop neighborhood. Initial services began in November, 1993, with a new hot and cold water piping system interconnecting the three existing exhibition facilities. The final buildout of the system, with a combined peak demand predicted at 160 MMBtu of heating and 15,920 tons of and cooling, is scheduled for completion in the summer of 1997.

  3. California Local Air Districts | Open Energy Information

    Open Energy Info (EERE)

    by District Phone Number: Varies by local district Website: www.arb.ca.govcapcoaroster.h This article is a stub. You can help OpenEI by expanding it. References Retrieved from...

  4. Refundable Clean Heating Fuel Tax Credit (Personal)

    Broader source: Energy.gov [DOE]

    The value of the tax credit is $0.01/gallon for each percent of biodiesel blended with conventional home heating oil, up to a maximum of $0.20/ gallon. In other words, the purchaser of a mixture ...

  5. Ben South (Tannehill) oil field, Stonewall, County, Texas

    SciTech Connect (OSTI)

    Hillock, R.T.

    1984-01-01

    Ben South is one of 157 Tannehill oil fields on the northeastern shelf of the Permian basin. Texas Railroad Commission District 7B has 66 Tannehill oil fields while District 8A has 21. The discovery well for the Ben South field was the Ryder Scott Management (Sauder) 1 McMeans, completed in 1973. Ben South field production has totaled 749,340 bbl of oil through March 1983 from 13 wells. Oil production is from the lower Tannehill (lower Wolfcamp) sands underlying the Stockwether Limestone. These Tannehill sands were deposited in a fluvial environment. Channel-fill and point-bar deposits make up the pay sands. The trapping mechanism is both stratigraphic and structural.

  6. Massachusetts's 7th congressional district: Energy Resources...

    Open Energy Info (EERE)

    Networking Organizations in Massachusetts's 7th congressional district Northeast Energy Efficiency Partnerships, Inc Registered Energy Companies in Massachusetts's 7th...

  7. District of Columbia Heat Content of Natural Gas Deliveries to...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,030 1,025 1,021 1,014 1,014 1,025 1,034 1,037 1,043 1,041 1,047 1,048 2014 1,041 1,035 1,031 1,038 1,035 1,038 1,038 ...

  8. District of Columbia Heat Content of Natural Gas Deliveries to...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,027 1,028 1,035 2010's 1,014 1,016 1,029 1,048 1,037 1,044

  9. Trends in Commercial Buildings--District Heat Detail

    U.S. Energy Information Administration (EIA) Indexed Site

    confidence ranges. If you have trouble viewing this page, please contact the National Energy Information Center at (202) 586-8800. Energy Information Administration Commercial...

  10. Biomass District Heat System for Interior Rural Alaska Villages

    SciTech Connect (OSTI)

    Wall, William A.; Parker, Charles R.

    2014-09-01

    Alaska Village Initiatives (AVI) from the outset of the project had a goal of developing an integrated village approach to biomass in Rural Alaskan villages. A successful biomass project had to be ecologically, socially/culturally and economically viable and sustainable. Although many agencies were supportive of biomass programs in villages none had the capacity to deal effectively with developing all of the tools necessary to build a complete integrated program. AVI had a sharp learning curve as well. By the end of the project with all the completed tasks, AVI developed the tools and understanding to connect all of the dots of an integrated village based program. These included initially developing a feasibility model that created the capacity to optimize a biomass system in a village. AVI intent was to develop all aspects or components of a fully integrated biomass program for a village. This meant understand the forest resource and developing a sustainable harvest system that included the “right sized” harvest equipment for the scale of the project. Developing a training program for harvesting and managing the forest for regeneration. Making sure the type, quality, and delivery system matched the needs of the type of boiler or boilers to be installed. AVI intended for each biomass program to be of the scale that would create jobs and a sustainable business.

  11. Fort Bidwell Indian Community - Geothermal District Heating and...

    Broader source: Energy.gov (indexed) [DOE]

    - Develop full community support for project and future geothermal projects - Develop a GIS system for location of all buildings and attached infrastructure - One stop geothermal ...

  12. Alaska Gateway School District Adopts Combined Heat and Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    savings, Tok School has been able to rehire three staff members for the school: music teacher, counselor, and boiler operator. Once more savings are realized and biomass...

  13. Marketing the Klamath Falls Geothermal District Heating system

    SciTech Connect (OSTI)

    Rafferty, K.

    1993-06-01

    The new marketing strategy for the Klamath Falls system has concentrated on offering the customer an attractive and easy to understand rate structure, reduced retrofit cost and complexity for his building along with an attractive package of financing and tax credits. Initial retrofit costs and life-cycle cost analysis have been conducted on 22 buildings to date. For some, the retrofit costs are simply too high for the conversion to make sense at current geothermal rates. For many, however, the prospects are good. At this writing, two new customers are now connected and operating with 5 to 8 more buildings committed to connect this construction season after line extensions are completed. This represents nearly a 60% increase in the number of buildings connected to the system and a 40% increase in system revenue.

  14. BSU GHP District Heating and Cooling System (PHASE I) Geothermal...

    Open Energy Info (EERE)

    Total Project Cost 20,000,000.00 Principal Investigator(s) James W. Lowe, PE, Director, Engineering Operations, Facilities Planning and Management Targets Milestones -...

  15. Low Temperature Direct Use District Heating Geothermal Facilities...

    Open Energy Info (EERE)

    >

    Temperature: 79.0u00b0C, 174.0u00b0FnFlow: 4,000 gpm, 15,160 LminnAnnual Generation: 66.2 x109 Btuyrn

    ","title":"Boise City...

  16. BSU GHP District Heating and Cooling System (Phase I) | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Retrofit of the Local 150 of International Union of Operating Engineers Analysis & Tools to Spur Increased Deployment Measuring the Costs and Economic, Social, and Environmental ...

  17. District of Columbia Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    and Commercial Consumers by Local Distributio 9.96 9.53 10.72 10.55 12.56 15.35 1989-2016 Commercial Average Price 9.50 9.30 10.21 10.24 10.24 11.31

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,014 1,016 1,029 1,048 1,037 1,044 2007-2015

  18. Geothermal District Heating System City of Klamath Falls | Open...

    Open Energy Info (EERE)

    The system is not geologically homogeneous. Great variations in horizontal permeability and many vertical discontinuities exist because of stratigraphy and structure of...

  19. District of Columbia Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    1 1,049 1,043 1,040 1,035 1,034

  20. Cedarville School District Retrofit of Heating and Cooling Systems...

    Open Energy Info (EERE)

    The campus is served by antiquated air conditioning units combined with natural gas, and with very poor EER estimated at 6+-. - Monitor for 3 years the performance of the...

  1. Crude Oil and Petroleum Products Movements by Pipeline between PAD

    U.S. Energy Information Administration (EIA) Indexed Site

    Districts Product: Crude Oil and Petroleum Products Crude Oil Petroleum Products Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Isobutane/Isobutylene Normal Butane/Butylene Motor Gasoline Blend. Comp. (MGBC) MGBC - Reformulated MGBC - Reformulated RBOB MGBC - RBOB for Blending w/ Alcohol* MGBC - Conventional MGBC - CBOB MGBC - Conventional GTAB MGBC - Conventional Other Renewable Fuels Renewable Diesel Fuel Finished Motor Gasoline Reformulated Gasoline Conventional

  2. RESEARCH OIL RECOVERY MECHANISMS IN HEAVY OIL RESERVOIRS

    SciTech Connect (OSTI)

    Anthony R. Kovscek; William E. Brigham

    1999-06-01

    The United States continues to rely heavily on petroleum fossil fuels as a primary energy source, while domestic reserves dwindle. However, so-called heavy oil (10 to 20{sup o}API) remains an underutilized resource of tremendous potential. Heavy oils are much more viscous than conventional oils. As a result, they are difficult to produce with conventional recovery methods such as pressure depletion and water injection. Thermal recovery is especially important for this class of reservoirs because adding heat, usually via steam injection, generally reduces oil viscosity dramatically. This improves displacement efficiency. The research described here was directed toward improved understanding of thermal and heavy-oil production mechanisms and is categorized into: (1) flow and rock properties; (2) in-situ combustion; (3) additives to improve mobility control; (4) reservoir definition; and (5) support services. The scope of activities extended over a three-year period. Significant work was accomplished in the area of flow properties of steam, water, and oil in consolidated and unconsolidated porous media, transport in fractured porous media, foam generation and flow in homogeneous and heterogeneous porous media, the effects of displacement pattern geometry and mobility ratio on oil recovery, and analytical representation of water influx. Significant results are described.

  3. Production of hydrogen from oil shale

    SciTech Connect (OSTI)

    Schora, F. C.; Feldkirchner, H. L.; Janka, J. C.

    1985-12-24

    A process for production of hydrogen from oil shale fines by direct introduction of the oil shale fines into a fluidized bed at temperatures about 1200/sup 0/ to about 2000/sup 0/ F. to obtain rapid heating of the oil shale. The bed is fluidized by upward passage of steam and oxygen, the steam introduced in the weight ratio of about 0.1 to about 10 on the basis of the organic carbon content of the oil shale and the oxygen introduced in less than the stoichiometric quantity for complete combustion of the organic carbonaceous kerogen content of the oil shale. Embodiments are disclosed for heat recovery from the spent shale and heat recovery from the spent shale and product gas wherein the complete process and heat recovery is carried out in a single reaction vessel. The process of this invention provides high conversion of organic carbon component of oil shale and high production of hydrogen from shale fines which when used in combination with a conventional oil shale hydroconversion process results in increased overall process efficiency of greater than 15 percent.

  4. Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment

    Buildings Energy Data Book [EERE]

    3 Main Commercial Primary Energy Use of Heating and Cooling Equipment as of 1995 Heating Equipment | Cooling Equipment Packaged Heating Units 25% | Packaged Air Conditioning Units 54% Boilers 21% | Room Air Conditioning 5% Individual Space Heaters 2% | PTAC (2) 3% Furnaces 20% | Centrifugal Chillers 14% Heat Pumps 5% | Reciprocating Chillers 12% District Heat 7% | Rotary Screw Chillers 3% Unit Heater 18% | Absorption Chillers 2% PTHP & WLHP (1) 2% | Heat Pumps 7% 100% | 100% Note(s):

  5. Thermal project to heat Paluxy oil

    SciTech Connect (OSTI)

    Mickey, V.

    1984-05-01

    A steam injection project aimed at encouraging low gravity crude to the surface is reported for the Devil's River (Paluxy) field in Val Verde County, Texas. By using natural gas produced in the field from the 9000-ft Strawn Formation steam can be produced economically for injection into the 300- to 350-ft Paluxy Formation where 17 gravity crude is found. Petro Imperial conducted a thermal pilot test on its Glasscock Ranch lease 32 miles southwest of Sonora. Steam and oxygen were injected in a huff-and-puff mode on 2 of the 11 wells--each for ca 15 hr. The wells responded with a 6 bopd flow rate that declined in a few hours subsequent to the steam injection. A permit has been granted that will allow steam injection through a central location in a 5-spot pattern.

  6. Heating Oil and Propane Update - Revision report

    Gasoline and Diesel Fuel Update (EIA)

    Revision reports Revision report 2015-2016 Revision report 2014-2015

  7. State Heating Oil and Propane Program

    U.S. Energy Information Administration (EIA) Indexed Site

    ... EIA's Office of Communications is currently highlighting an energy fact for each state every week on our Facebook page (examples below). They will also be creating a central ...

  8. Commercial Buildings Characteristics 1992

    U.S. Energy Information Administration (EIA) Indexed Site

    electricity, natural gas, fuel oil, district heat, district chilled water, propane, wood, coal, and active solar. In this survey, information about the use of these energy sources...

  9. EECBG Success Story: Energy Efficiency Upgrades Part of Winning Formula for Oregon School District

    Broader source: Energy.gov [DOE]

    The rural community of Vernonia, Oregon is incorporating energy efficiency measures into the school district buildings, including an energy efficient integrated heating and cooling system. This feature, along with upgrades to the building envelope and lighting, are estimated to reduce the school district’s annual energy usage by 43 percent. Learn more.

  10. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    . Fuel Oil Expenditures by Census Region for Non-Mall Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per...

  11. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for Non-Mall Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  12. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Fuel Oil Expenditures by Census Region, 1999" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per Square Foot"...

  13. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Expenditures by Census Region for All Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per...

  14. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  15. Crude Oil and Petroleum Products Movements by Tanker and Barge between PAD

    U.S. Energy Information Administration (EIA) Indexed Site

    Districts Product: Crude Oil and Petroleum Products Crude Oil Petroleum Products Liquefied Petroleum Gases Propane/Propylene Unfinished Oils Motor Gasoline Blending Components MGBC - Reformulated MGBC - Reformulated RBOB MGBC - RBOB for Blending w/ Alcohol* MGBC - RBOB for Blending w/ Ether* MGBC - Reformulated GTAB* MGBC - Conventional MGBC - CBOB MGBC - Conventional GTAB MGBC - Conventional Other Renewable Fuels Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Finished Motor

  16. High efficiency shale oil recovery

    SciTech Connect (OSTI)

    Adams, D.C.

    1992-01-01

    The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated on a small scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although an oil shale batch sample is sealed in the batch kiln from the start until the end of the run, the process conditions for the batch are the same as the conditions that an element of oil shale would encounter in a continuous process kiln. Similar chemical and physical (heating, mixing) conditions exist in both systems. The two most important data objectives in this phase of the project are to demonstrate (1) that the heat recovery projected for this project is reasonable and (2) that an oil shale kiln will run well and not plug up due to sticking and agglomeration. The following was completed and is reported on this quarter: (1) A software routine was written to eliminate intermittently inaccurate temperature readings. (2) We completed the quartz sand calibration runs, resolving calibration questions from the 3rd quarter. (3) We also made low temperature retorting runs to identify the need for certain kiln modifications and kiln modifications were completed. (4) Heat Conductance data on two Pyrolysis runs were completed on two samples of Occidental oil shale.

  17. Processes for converting lignocellulosics to reduced acid pyrolysis oil

    DOE Patents [OSTI]

    Kocal, Joseph Anthony; Brandvold, Timothy A

    2015-01-06

    Processes for producing reduced acid lignocellulosic-derived pyrolysis oil are provided. In a process, lignocellulosic material is fed to a heating zone. A basic solid catalyst is delivered to the heating zone. The lignocellulosic material is pyrolyzed in the presence of the basic solid catalyst in the heating zone to create pyrolysis gases. The oxygen in the pyrolysis gases is catalytically converted to separable species in the heating zone. The pyrolysis gases are removed from the heating zone and are liquefied to form the reduced acid lignocellulosic-derived pyrolysis oil.

  18. Oil shale retorting with steam and produced gas

    SciTech Connect (OSTI)

    Merrill, L.S. Jr.; Wheaton, L.D.

    1991-08-20

    This patent describes a process for retorting oil shale in a vertical retort. It comprises introducing particles of oil shale into the retort, the particles of oil shale having a minimum size such that the particles are retained on a screen having openings 1/4 inch in size; contacting the particles of oil shale with hot gas to heat the particles of oil shale to a state of pyrolysis, thereby producing retort off-gas; removing the off-gas from the retort; cooling the off-gas; removing oil from the cooled off-gas; separating recycle gas from the off-gas, the recycle gas comprising steam and produced gas, the steam being present in amount, by volume, of at least 50% of the recycle gas so as to increase the yield of sand oil; and heating the recycle gas to form the hot gas.

  19. Heat exchanger-accumulator

    DOE Patents [OSTI]

    Ecker, Amir L.

    1980-01-01

    What is disclosed is a heat exchanger-accumulator for vaporizing a refrigerant or the like, characterized by an upright pressure vessel having a top, bottom and side walls; an inlet conduit eccentrically and sealingly penetrating through the top; a tubular overflow chamber disposed within the vessel and sealingly connected with the bottom so as to define an annular outer volumetric chamber for receiving refrigerant; a heat transfer coil disposed in the outer volumetric chamber for vaporizing the liquid refrigerant that accumulates there; the heat transfer coil defining a passageway for circulating an externally supplied heat exchange fluid; transferring heat efficiently from the fluid; and freely allowing vaporized refrigerant to escape upwardly from the liquid refrigerant; and a refrigerant discharge conduit penetrating sealingly through the top and traversing substantially the length of the pressurized vessel downwardly and upwardly such that its inlet is near the top of the pressurized vessel so as to provide a means for transporting refrigerant vapor from the vessel. The refrigerant discharge conduit has metering orifices, or passageways, penetrating laterally through its walls near the bottom, communicating respectively interiorly and exteriorly of the overflow chamber for controllably carrying small amounts of liquid refrigerant and oil to the effluent stream of refrigerant gas.

  20. Table 2.3 Manufacturing Energy Consumption for Heat, Power, and...

    U.S. Energy Information Administration (EIA) Indexed Site

    Manufacturing Energy Consumption for Heat, Power, and Electricity Generation by End Use, 2006 End-Use Category Net Electricity 1 Residual Fuel Oil Distillate Fuel Oil LPG 2 and NGL ...

  1. Heat exchanger

    DOE Patents [OSTI]

    Daman, Ernest L.; McCallister, Robert A.

    1979-01-01

    A heat exchanger is provided having first and second fluid chambers for passing primary and secondary fluids. The chambers are spaced apart and have heat pipes extending from inside one chamber to inside the other chamber. A third chamber is provided for passing a purge fluid, and the heat pipe portion between the first and second chambers lies within the third chamber.

  2. Putnam District, Connecticut: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Putnam District, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.9257629, -71.9104934 Show Map Loading map......

  3. District of Columbia | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    District of Columbia Denise Peoples honored for 30 years of service Four sworn in as NNSA's newest members of the Senior Executive Service corps NNSA Headquarters

  4. Pennsylvania's 19th congressional district: Energy Resources...

    Open Energy Info (EERE)

    Registered Energy Companies in Pennsylvania's 19th congressional district Carlisle Construction Materials Enginuity Energy, LLC Keystone Biofuels PaceControls LLC Soy Energy...

  5. Nevada Irrigation District | Open Energy Information

    Open Energy Info (EERE)

    search Name: Nevada Irrigation District Place: California Website: nidwater.com Outage Hotline: (530) 273-6185 References: EIA Form EIA-861 Final Data File for 2010 -...

  6. TWDB Groundwater Conservation Districts website | Open Energy...

    Open Energy Info (EERE)

    TWDB Groundwater Conservation Districts website Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: TWDB Groundwater Conservation...

  7. Douglas County School District Success Story

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    district in the state, had mounting maintenance needs and failing infrastructure with aging buildings. This was compounded by a budget already stretched to the limit, declining...

  8. California's 19th congressional district: Energy Resources |...

    Open Energy Info (EERE)

    Chowchilla Biomass Facility Fresno Biomass Facility Madera Biomass Facility SPI Sonora Biomass Facility Utility Companies in California's 19th congressional district Modesto...

  9. Pennsylvania's 1st congressional district: Energy Resources ...

    Open Energy Info (EERE)

    in Pennsylvania's 1st congressional district PECO Energy Co Retrieved from "http:en.openei.orgwindex.php?titlePennsylvania%27s1stcongressionaldistrict&oldid198299...

  10. Pennsylvania's 13th congressional district: Energy Resources...

    Open Energy Info (EERE)

    in Pennsylvania's 13th congressional district PECO Energy Co Retrieved from "http:en.openei.orgwindex.php?titlePennsylvania%27s13thcongressionaldistrict&oldid198281...

  11. California's 28th congressional district: Energy Resources |...

    Open Energy Info (EERE)

    in California's 28th congressional district Angeleno Group Retrieved from "http:en.openei.orgwindex.php?titleCalifornia%27s28thcongressionaldistrict&oldid181514...

  12. California's 37th congressional district: Energy Resources |...

    Open Energy Info (EERE)

    37th congressional district Angeleno Group Hydrogen Ventures Retrieved from "http:en.openei.orgwindex.php?titleCalifornia%27s37thcongressionaldistrict&oldid181534...

  13. Pennsylvania's 8th congressional district: Energy Resources ...

    Open Energy Info (EERE)

    in Pennsylvania's 8th congressional district PECO Energy Co Retrieved from "http:en.openei.orgwindex.php?titlePennsylvania%27s8thcongressionaldistrict&oldid198313...

  14. California's 26th congressional district: Energy Resources |...

    Open Energy Info (EERE)

    in California's 26th congressional district Angeleno Group Retrieved from "http:en.openei.orgwindex.php?titleCalifornia%27s26thcongressionaldistrict&oldid181511...

  15. California's 35th congressional district: Energy Resources |...

    Open Energy Info (EERE)

    in California's 35th congressional district Angeleno Group Retrieved from "http:en.openei.orgwindex.php?titleCalifornia%27s35thcongressionaldistrict&oldid181530...

  16. California's 33rd congressional district: Energy Resources |...

    Open Energy Info (EERE)

    in California's 33rd congressional district Angeleno Group Retrieved from "http:en.openei.orgwindex.php?titleCalifornia%27s33rdcongressionaldistrict&oldid181527...

  17. California's 32nd congressional district: Energy Resources |...

    Open Energy Info (EERE)

    in California's 32nd congressional district Angeleno Group Retrieved from "http:en.openei.orgwindex.php?titleCalifornia%27s32ndcongressionaldistrict&oldid181525...

  18. California's 31st congressional district: Energy Resources |...

    Open Energy Info (EERE)

    in California's 31st congressional district Angeleno Group Retrieved from "http:en.openei.orgwindex.php?titleCalifornia%27s31stcongressionaldistrict&oldid181523...

  19. California's 34th congressional district: Energy Resources |...

    Open Energy Info (EERE)

    in California's 34th congressional district Angeleno Group Retrieved from "http:en.openei.orgwindex.php?titleCalifornia%27s34thcongressionaldistrict&oldid181528...

  20. California's 23rd congressional district: Energy Resources |...

    Open Energy Info (EERE)

    23rd congressional district NGEN Partners LLC (Southern California) Retrieved from "http:en.openei.orgwindex.php?titleCalifornia%27s23rdcongressionaldistrict&oldid181505...

  1. California's 36th congressional district: Energy Resources |...

    Open Energy Info (EERE)

    in California's 36th congressional district Angeleno Group Retrieved from "http:en.openei.orgwindex.php?titleCalifornia%27s36thcongressionaldistrict&oldid181532...

  2. California's 39th congressional district: Energy Resources |...

    Open Energy Info (EERE)

    39th congressional district Angeleno Group Hydrogen Ventures Retrieved from "http:en.openei.orgwindex.php?titleCalifornia%27s39thcongressionaldistrict&oldid181537...

  3. Connecticut's 5th congressional district: Energy Resources |...

    Open Energy Info (EERE)

    in Connecticut. Registered Energy Companies in Connecticut's 5th congressional district Efficiency Lighting & Maintenance Inc Electro Energy Inc FuelCell Energy Inc FuelCell...

  4. Photovoltaic System in Philadelphia Center City District

    Broader source: Energy.gov [DOE]

    This photograph features a 3-kilowatt photovoltaic (PV) installation on the roof of a building in the Center City District of Philadelphia, Pennsylvania.

  5. Connecticut's 1st congressional district: Energy Resources |...

    Open Energy Info (EERE)

    1st congressional district Aztech Engineers Connecticut Light and Power Infinity Fuel Cell and Hydrogen Inc LiquidPiston Inc Nxegen SmartPower United Technologies Corp...

  6. Empire District Electric- Residential Energy Efficiency Rebate

    Broader source: Energy.gov [DOE]

    The Empire District Electric Company offers rebates for customers who construct highly efficient homes and purchase efficient central air conditioners. Eligible customers include residential...

  7. Turlock Irrigation District | Open Energy Information

    Open Energy Info (EERE)

    @TurlockID Facebook: https:www.facebook.compagesTurlock-Irrigation-District112344728820408 Outage Hotline: 209-883-8301 or (209) 892-4936 (from Patterson) Outage Map:...

  8. Pennsylvania's 9th congressional district: Energy Resources ...

    Open Energy Info (EERE)

    Registered Energy Companies in Pennsylvania's 9th congressional district Energex Pellet Fuel Inc Retrieved from "http:en.openei.orgwindex.php?titlePennsylvania%27s9thc...

  9. Massachusetts's 10th congressional district: Energy Resources...

    Open Energy Info (EERE)

    Registered Energy Companies in Massachusetts's 10th congressional district AXI LLC BioEnergy International LLC Bluestone Energy Services Ltd Eco Power Solutions Heliotronics...

  10. California's 20th congressional district: Energy Resources |...

    Open Energy Info (EERE)

    California. Registered Energy Companies in California's 20th congressional district BioEnergy Solutions BES Castle Cooke Inc Great Valley Ethanol LLC Mt Poso Cogeneration Pacific...

  11. California's 22nd congressional district: Energy Resources |...

    Open Energy Info (EERE)

    22nd congressional district Advanced Conservation Systems Bill Robinson (Train2Build) BioEnergy Solutions BES California Sunrise Alternative Energy Development LLC Castle Cooke Inc...

  12. Pennsylvania's 5th congressional district: Energy Resources ...

    Open Energy Info (EERE)

    Solarity Energy Generation Facilities in Pennsylvania's 5th congressional district Montgomery Biomass Facility Retrieved from "http:en.openei.orgwindex.php?titlePennsylvania...

  13. California's 46th congressional district: Energy Resources |...

    Open Energy Info (EERE)

    in California's 46th congressional district 808 Investments LLC All Valley Solar Allegro Biodiesel Corporation Altra Inc American Elements Amonix Inc Assured Power and...

  14. California's 47th congressional district: Energy Resources |...

    Open Energy Info (EERE)

    US Recovery Act Smart Grid Projects in California's 47th congressional district City of Anaheim Smart Grid Project Registered Energy Companies in California's 47th...

  15. California's 40th congressional district: Energy Resources |...

    Open Energy Info (EERE)

    US Recovery Act Smart Grid Projects in California's 40th congressional district City of Anaheim Smart Grid Project Registered Energy Companies in California's 40th...

  16. Pennsylvania's 17th congressional district: Energy Resources...

    Open Energy Info (EERE)

    Registered Energy Companies in Pennsylvania's 17th congressional district Agra Bio Fuels Independence Biofuels Inc Pennsylvania Department of Environmental Protection DEP...

  17. Pennsylvania's 14th congressional district: Energy Resources...

    Open Energy Info (EERE)

    district Alcoa BPL Global Enerlogics Networks IBACOS Kurt J Lesker Company PNC Financial Services Plextronics Plextronics Inc Propel IT Inc. Siemens Westinghouse Power...

  18. Central Lincoln People's Utility District - Residential Energy...

    Broader source: Energy.gov (indexed) [DOE]

    electric Program Info Sector Name Utility Administrator Central Lincoln People(tm)s Utility District Website http:clpud.orgrebate-information State Oregon Program Type...

  19. Truckee Donner Public Utility District - Energy Conservation...

    Broader source: Energy.gov (indexed) [DOE]

    rebates 10,000 Program Info Sector Name Utility Administrator Truckee Donner Public Utility District Website http:www.tdpud.org State California Program Type Rebate...

  20. Energy Sources and Systems Analysis: 40 South Lincoln Redevelopment District (Full Report)

    SciTech Connect (OSTI)

    Not Available

    2011-08-01

    This report presents the results of a case study to analyze district energy systems for their potential use in a project that involves redeveloping 270 units of existing public housing, along with other nearby sites. When complete, the redevelopment project will encompass more than 900 mixed-income residential units, commercial and retail properties, and open space. The analysis estimated the hourly heating, cooling, domestic hot water, and electric loads required by the community; investigated potential district system technologies to meet those needs; and researched available fuel sources to power such systems.