National Library of Energy BETA

Sample records for oil demand china

  1. Chinese Oil Demand: Steep Incline Ahead

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Chinese Oil Demand: Steep Incline Ahead Malcolm Shealy Alacritas, Inc. April 7, 2008 Oil Demand: China, India, Japan, South Korea 0 2 4 6 8 1995 2000 2005 2010 Million BarrelsDay ...

  2. International Oil Supplies and Demands

    SciTech Connect (OSTI)

    Not Available

    1992-04-01

    The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--1990 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world's dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group's thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

  3. International Oil Supplies and Demands

    SciTech Connect (OSTI)

    Not Available

    1991-09-01

    The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--90 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world's dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group's thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

  4. China, India demand cushions prices

    SciTech Connect (OSTI)

    Boyle, M.

    2006-11-15

    Despite the hopes of coal consumers, coal prices did not plummet in 2006 as demand stayed firm. China and India's growing economies, coupled with solid supply-demand fundamentals in North America and Europe, and highly volatile prices for alternatives are likely to keep physical coal prices from wide swings in the coming year.

  5. International Transportation Energy Demand Determinants (ITEDD): Prototype Results for China

    U.S. Energy Information Administration (EIA) Indexed Site

    Jim Turnure, Director Office of Energy Consumption & Efficiency Analysis, EIA EIA Conference: Asian Energy Demand July 14, 2014 | Washington, DC International Transportation Energy Demand Determinants (ITEDD): Prototype Results for China Dawn of new global oil market paradigm? 2 Jim Turnure, EIA Conference July 14, 2014 * Conventional wisdom has centered around $100-120/barrel oil and 110-115 million b/d global liquid fuel demand in the long term (2030-2040) * Demand in non-OECD may push

  6. China's Coal: Demand, Constraints, and Externalities

    SciTech Connect (OSTI)

    Aden, Nathaniel; Fridley, David; Zheng, Nina

    2009-07-01

    This study analyzes China's coal industry by focusing on four related areas. First, data are reviewed to identify the major drivers of historical and future coal demand. Second, resource constraints and transport bottlenecks are analyzed to evaluate demand and growth scenarios. The third area assesses the physical requirements of substituting coal demand growth with other primary energy forms. Finally, the study examines the carbon- and environmental implications of China's past and future coal consumption. There are three sections that address these areas by identifying particular characteristics of China's coal industry, quantifying factors driving demand, and analyzing supply scenarios: (1) reviews the range of Chinese and international estimates of remaining coal reserves and resources as well as key characteristics of China's coal industry including historical production, resource requirements, and prices; (2) quantifies the largest drivers of coal usage to produce a bottom-up reference projection of 2025 coal demand; and (3) analyzes coal supply constraints, substitution options, and environmental externalities. Finally, the last section presents conclusions on the role of coal in China's ongoing energy and economic development. China has been, is, and will continue to be a coal-powered economy. In 2007 Chinese coal production contained more energy than total Middle Eastern oil production. The rapid growth of coal demand after 2001 created supply strains and bottlenecks that raise questions about sustainability. Urbanization, heavy industrial growth, and increasing per-capita income are the primary interrelated drivers of rising coal usage. In 2007, the power sector, iron and steel, and cement production accounted for 66% of coal consumption. Power generation is becoming more efficient, but even extensive roll-out of the highest efficiency units would save only 14% of projected 2025 coal demand for the power sector. A new wedge of future coal consumption is

  7. Enhanced Oil Recovery to Fuel Future Oil Demands | GE Global...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enhanced Oil Recovery to Fuel Future Oil Demands Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) ...

  8. International Oil Supplies and Demands. Volume 2

    SciTech Connect (OSTI)

    Not Available

    1992-04-01

    The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--1990 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world`s dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group`s thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

  9. International Oil Supplies and Demands. Volume 1

    SciTech Connect (OSTI)

    Not Available

    1991-09-01

    The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--90 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world`s dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group`s thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

  10. How much will low prices stimulate oil demand?

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Information Administration, Petroleum Supply Monthly and Petroleum Marketing Monthly (as of September 2015) Oil & Money Conference | How Much Will Low Prices Stimulate Oil Demand? ...

  11. China shows increasing interest in heavy oil and oil sands

    SciTech Connect (OSTI)

    Not Available

    1986-12-01

    China and Canadian and US groups are cooperating in several areas to develop the heavy oil, asphalt, and oil sand deposits of China. The agreements dealing with exploration and upgrading are briefly described. The majority of the paper describes the occurrences of heavy oil, asphalt, and oil sands in China. 1 figure.

  12. Economic Rebalancing and Electricity Demand in China

    SciTech Connect (OSTI)

    He, Gang; Lin, Jiang; Yuan, Alexandria

    2015-11-01

    Understanding the relationship between economic growth and electricity use is essential for power systems planning. This need is particularly acute now in China, as the Chinese economy is going through a transition to a more consumption and service oriented economy. This study uses 20 years of provincial data on gross domestic product (GDP) and electricity consumption to examine the relationship between these two factors. We observe a plateauing effect of electricity consumption in the richest provinces, as the electricity demand saturates and the economy develops and moves to a more service-based economy. There is a wide range of forecasts for electricity use in 2030, ranging from 5,308 to 8,292 kWh per capita, using different estimating functions, as well as in existing studies. It is therefore critical to examine more carefully the relationship between electricity use and economic development, as China transitions to a new growth phase that is likely to be less energy and resource intensive. The results of this study suggest that policymakers and power system planners in China should seriously re-evaluate power demand projections and the need for new generation capacity to avoid over-investment that could lead to stranded generation assets.

  13. Oil, gas tanker industry responding to demand, contract changes

    SciTech Connect (OSTI)

    True, W.R.

    1998-03-02

    Steady if slower growth in demand for crude oil and natural gas, low levels of scrapping, and a moderate newbuilding pace bode well for the world`s petroleum and natural-gas shipping industries. At year-end 1997, several studies of worldwide demand patterns and shipping fleets expressed short and medium-term optimism for seaborne oil and gas trade and fleet growth. The paper discusses steady demand and shifting patterns, the aging fleet, the slowing products traffic, the world`s fleet, gas carriers, LPG demand, and LPG vessels.

  14. Jordan ships oil shale to China

    SciTech Connect (OSTI)

    Not Available

    1986-12-01

    Jordan and China have signed an agreement to develop oil shale processing technology that could lead to a 200 ton/day oil shale plant in Jordan. China will process 1200 tons of Jordanian oil shale at its Fu Shun refinery. If tests are successful, China could build the demonstration plant in Jordan's Lajjun region, where the oil shale resource is estimated at 1.3 billion tons. China plans to send a team to Jordan to conduct a plant design study. A Lajjun oil shale complex could produce as much as 50,000 b/d of shale oil. An earlier 500 ton shipment of shale is said to have yielded promising results.

  15. Demand for oil and energy in developing countries

    SciTech Connect (OSTI)

    Wolf, C. Jr.; Relles, D.A.; Navarro, J.

    1980-05-01

    How much of the world's oil and energy supply will the non-OPEC less-developed countries (NOLDCs) demand in the next decade. Will their requirements be small and thus fairly insignificant compared with world demand, or large and relatively important. How will world demand be affected by the economic growth of the NOLDCs. In this report, we try to develop some reasonable forecasts of NOLDC energy demands in the next 10 years. Our focus is mainly on the demand for oil, but we also give some attention to the total commercial energy requirements of these countries. We have tried to be explicit about the uncertainties associated with our forecasts, and with the income and price elasticities on which they are based. Finally, we consider the forecasts in terms of their implications for US policies concerning the NOLDCs and suggest areas of future research on NOLDC energy issues.

  16. Residential Electricity Demand in China -- Can Efficiency Reverse the Growth?

    SciTech Connect (OSTI)

    Letschert, Virginie; McNeil, Michael A.; Zhou, Nan

    2009-05-18

    The time when energy-related carbon emissions come overwhelmingly from developed countries is coming to a close. China has already overtaken the United States as the world's leading emitter of greenhouse gas emissions. The economic growth that China has experienced is not expected to slow down significantly in the long term, which implies continued massive growth in energy demand. This paper draws on the extensive expertise from the China Energy Group at LBNL on forecasting energy consumption in China, but adds to it by exploring the dynamics of demand growth for electricity in the residential sector -- and the realistic potential for coping with it through efficiency. This paper forecasts ownership growth of each product using econometric modeling, in combination with historical trends in China. The products considered (refrigerators, air conditioners, fans, washing machines, lighting, standby power, space heaters, and water heating) account for 90percent of household electricity consumption in China. Using this method, we determine the trend and dynamics of demandgrowth and its dependence on macroeconomic drivers at a level of detail not accessible by models of a more aggregate nature. In addition, we present scenarios for reducing residential consumption through efficiency measures defined at the product level. The research takes advantage of an analytical framework developed by LBNL (BUENAS) which integrates end use technology parameters into demand forecasting and stock accounting to produce detailed efficiency scenarios, thus allowing for a technologically realistic assessment of efficiency opportunities specifically in the Chinese context.

  17. Oil shale research in China

    SciTech Connect (OSTI)

    Jianqiu, W.; Jialin, Q. (Beijing Graduate School, Petroleum Univ., Beijing (CN))

    1989-01-01

    There have been continued efforts and new emergence in oil shale research in Chine since 1980. In this paper, the studies carried out in universities, academic, research and industrial laboratories in recent years are summarized. The research areas cover the chemical structure of kerogen; thermal behavior of oil shale; drying, pyrolysis and combustion of oil shale; shale oil upgrading; chemical utilization of oil shale; retorting waste water treatment and economic assessment.

  18. Precambrian oil and gas in China

    SciTech Connect (OSTI)

    Sisheng Hao; Guangdi Liu

    1989-03-01

    Abundant Precambrian oil and gas occurring mainly in two large basins, Sichuan basin in southwestern China and Bohai Bay basin in northern China, account for a considerable portion of the reserves and production in China. The Precambrian producing formations are all carbonates. Weiyuan gas field in Sichuan basin is one of the large gas fields in China. Its gas is produced primarily from the dolomite of the Dengying Formation (Sinian System) and was generated chiefly in the algal dolomite of the same system. However, a deeper origin for the gas cannot be ruled out. Renqiu oil field in Bohai Bay basin, a buried-hill oil field, is also one of the largest oil fields in China. The oil is produced primarily from the dolomite of the Wumishan Formation of the middle-upper Proterozoic and was generated chiefly in the Oligocene Shahejie Formation. It is also possible that the oil was partly sourced by middle-upper Proterozoic rocks. In addition, many oil and gas shows have been found in the middle-upper Proterozoic of the Yanshan fold-belt at the northern margin of the Bohai Bay basin. According to an organic geochemical study, the middle-upper Proterozoic in the area has a good potential for hydrocarbon generation, and formation conditions for indigenous hydrocarbon accumulation should exist in the Bohai Bay basin and nearby Yanshan foldbelt. From the analyses of hydrocarbon generation, reservoir, cap rock, trapping, and preservation, the presentation systematically describes the petroleum geological features and hydrocarbon prospects of the Precambrian in China.

  19. D1 Oils China Ltd | Open Energy Information

    Open Energy Info (EERE)

    Ltd Jump to: navigation, search Name: D1 Oils China Ltd Place: Chengdu, Sichuan Province, China Product: Chengdu-based joint venture between D1 Oils and Sichuan Yangtze River...

  20. 15th US-China Oil and Gas Industry Forum Opens in Chongqing, China |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 15th US-China Oil and Gas Industry Forum Opens in Chongqing, China 15th US-China Oil and Gas Industry Forum Opens in Chongqing, China September 17, 2015 - 9:17am Addthis 15th US-China Oil and Gas Industry Forum Opens in Chongqing, China This morning, Assistant Secretary for Fossil Energy Chris Smith, along with Zhang Yuqing, Deputy Administrator of China's National Energy Administration (NEA), opened the 15th US-China Oil and Gas Industry Forum (OGIF) in Chongqing,

  1. Impact of Interruptible Natural Gas Service on Northeast Heating Oil Demand

    Reports and Publications (EIA)

    2001-01-01

    Assesses the extent of interruptible natural gas contracts and their effect on heating oil demand in the Northeast.

  2. Projection of Chinese motor vehicle growth, oil demand, and CO{sub 2}emissions through 2050.

    SciTech Connect (OSTI)

    Wang, M.; Huo, H.; Johnson, L.; He, D.

    2006-12-20

    As the vehicle population in China increases, oil consumption and carbon dioxide (CO{sub 2}) emissions associated with on-road transportation are rising dramatically. During this study, we developed a methodology to project trends in the growth of the vehicle population, oil demand, and CO{sub 2} emissions associated with on-road transportation in China. By using this methodology, we projected--separately--the number of highway vehicles, motorcycles, and rural vehicles in China through 2050. We used three scenarios of highway vehicle growth (high-, mid-, and low-growth) to reflect patterns of motor vehicle growth that have occurred in different parts of the world (i.e., Europe and Asia). All are essentially business-as-usual scenarios in that almost none of the countries we examined has made concerted efforts to manage vehicle growth or to offer serious alternative transportation means to satisfy people's mobility needs. With this caveat, our projections showed that by 2030, China could have more highway vehicles than the United States has today, and by 2035, it could have the largest number of highway vehicles in the world. By 2050, China could have 486-662 million highway vehicles, 44 million motorcycles, and 28 million rural vehicles. These numbers, which assume essentially unmanaged vehicle growth, would result in potentially disastrous effects on the urban infrastructure, resources, and other social and ecological aspects of life in China. We designed three fuel economy scenarios, from conservative to aggressive, on the basis of current policy efforts and expectations of near-future policies in China and in developed countries. It should be noted that these current and near-future policies have not taken into consideration the significant potential for further fuel economy improvements offered by advanced technologies such as electric drive technologies (e.g., hybrid electric vehicles and fuel-cell vehicles). By using vehicle growth projections and potential

  3. Fact Sheet: U.S. and China Actions Matter for Global Energy Demand...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in oil, gas, coal, and renewables. The U.S. and China's Strategic Economic Dialogue (SED) Action Plans: The U.S. and China's five Action Plans - developed under the SED Ten...

  4. Fact Sheet: U.S. and China Actions Matter for Global Energy Demand...

    Broader source: Energy.gov (indexed) [DOE]

    The U.S. and China are the world's largest energy consumers and are expected to remain the ... and, Providing consistent policies for investment in oil, gas, coal, and renewables. ...

  5. China-Transportation Demand Management in Beijing: Mitigation...

    Open Energy Info (EERE)

    demand management (TDM) in Beijing in order to manage the steadily increasing traffic density. The project provides capacity building for decision-makers and transport planners in...

  6. An overview of energy supply and demand in China

    SciTech Connect (OSTI)

    Liu, F.; Davis, W.B.; Levine, M.D.

    1992-05-01

    Although China is a poor country, with much of its population still farming for basic subsistence in rural villages, China is rich in energy resources. With the world`s largest hydropower potential, and ranking third behind the US and USSR in coal reserves, China is in a better position than many other developing countries when planning for its future energy development and self-sufficiency. China is now the third largest producer and consumer of commercial energy, but its huge populace dilutes this impressive aggregate performance into a per capita figure which is an order of magnitude below the rich industrialized nations. Despite this fact, it is still important to recognize that China`s energy system is still one of the largest in the world. A system this size allows risk taking and can capture economies of scale. The Chinese have maintained rapid growth in energy production for several decades. In order to continue and fully utilize its abundant resources however, China must successfully confront development challenges in many areas. For example, the geographic distribution of consumption centers poorly matches the distribution of resources, which makes transportation a vital but often weak link in the energy system. Another example -- capital -- is scarce relative to labor, causing obsolete and inefficiently installed technology to be operated well beyond what would be considered its useful life in the West. Major improvements in industrial processes, buildings, and other energy-using equipment and practices are necessary if China`s energy efficiency is to continue to improve. Chinese energy planners have been reluctant to invest in environmental quality at the expense of more tangible production quotas.

  7. Fact Sheet: U.S. and China Actions Matter for Global Energy Demand, for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Global Environmental Quality, and for the Challenge of Global Climate Change | Department of Energy S. and China Actions Matter for Global Energy Demand, for Global Environmental Quality, and for the Challenge of Global Climate Change Fact Sheet: U.S. and China Actions Matter for Global Energy Demand, for Global Environmental Quality, and for the Challenge of Global Climate Change December 5, 2008 - 4:58pm Addthis The U.S. is committed to working together with China to tackle current energy

  8. An overview of energy supply and demand in China

    SciTech Connect (OSTI)

    Liu, F.; Davis, W.B.; Levine, M.D.

    1992-05-01

    Although China is a poor country, with much of its population still farming for basic subsistence in rural villages, China is rich in energy resources. With the world's largest hydropower potential, and ranking third behind the US and USSR in coal reserves, China is in a better position than many other developing countries when planning for its future energy development and self-sufficiency. China is now the third largest producer and consumer of commercial energy, but its huge populace dilutes this impressive aggregate performance into a per capita figure which is an order of magnitude below the rich industrialized nations. Despite this fact, it is still important to recognize that China's energy system is still one of the largest in the world. A system this size allows risk taking and can capture economies of scale. The Chinese have maintained rapid growth in energy production for several decades. In order to continue and fully utilize its abundant resources however, China must successfully confront development challenges in many areas. For example, the geographic distribution of consumption centers poorly matches the distribution of resources, which makes transportation a vital but often weak link in the energy system. Another example -- capital -- is scarce relative to labor, causing obsolete and inefficiently installed technology to be operated well beyond what would be considered its useful life in the West. Major improvements in industrial processes, buildings, and other energy-using equipment and practices are necessary if China's energy efficiency is to continue to improve. Chinese energy planners have been reluctant to invest in environmental quality at the expense of more tangible production quotas.

  9. Evidence is growing on demand side of an oil peak

    SciTech Connect (OSTI)

    2009-07-15

    After years of continued growth, the number of miles driven by Americans started falling in December 2007. Not only are the number of miles driven falling, but as cars become more fuel efficient, they go further on fewer gallons - further reducing demand for gasoline. This trend is expected to accelerate. Drivers include, along with higher-efficiency cars, mass transit, reversal in urban sprawl, biofuels, and plug-in hybrid vehicles.

  10. Secretary Chu Postpones China Trip to Continue Work on BP Oil...

    Energy Savers [EERE]

    Postpones China Trip to Continue Work on BP Oil Spill Response Efforts Secretary Chu Postpones China Trip to Continue Work on BP Oil Spill Response Efforts May 21, 2010 - 12:00am ...

  11. Factors that will influence oil and gas supply and demand in the 21st century

    SciTech Connect (OSTI)

    Holditch, S.A.; Chianelli, R.R.

    2008-04-15

    A recent report published by the National Petroleum Council (NPC) in the United States predicted a 50-60% growth in total global demand for energy by 2030. Because oil, gas, and coal will continue to be the primary energy sources during this time, the energy industry will have to continue increasing the supply of these fuels to meet this increasing demand. Achieving this goal will require the exploitation of both conventional and unconventional reservoirs of oil and gas in (including coalbed methane) an environmentally acceptable manner. Such efforts will, in turn, require advancements in materials science, particularly in the development of materials that can withstand high-pressure, high-temperature, and high-stress conditions.

  12. How Can China Lighten Up? Urbanization, Industrialization and Energy Demand Scenarios

    SciTech Connect (OSTI)

    Aden, Nathaniel T.; Zheng, Nina; Fridley, David G.

    2009-07-01

    Urbanization has re-shaped China's economy, society, and energy system. Between 1990 and 2007 China added 290 million new urban residents, bringing the total urbanization rate to 45%. This population adjustment spurred energy demand for construction of new buildings and infrastructure, as well as additional residential use as rural biomass was replaced with urban commercial energy services. Primary energy demand grew at an average annual rate of 10% between 2000 and 2007. Urbanization's effect on energy demand was compounded by the boom in domestic infrastructure investment, and in the export trade following World Trade Organization (WTO) accession in 2001. Industry energy consumption was most directly affected by this acceleration. Whereas industry comprised 32% of 2007 U.S. energy use, it accounted for 75% of China's 2007 energy consumption. Five sub-sectors accounted for 78% of China's industry energy use in 2007: iron and steel, energy extraction and processing, chemicals, cement, and non-ferrous metals. Ferrous metals alone accounted for 25% of industry and 18% of total primary energy use. The rapid growth of heavy industry has led China to become by far the world's largest producer of steel, cement, aluminum, and other energy-intensive commodities. However, the energy efficiency of heavy industrial production continues to lag world best practice levels. This study uses scenario analysis to quantify the impact of urbanization and trade on industrial and residential energy consumption from 2000 to 2025. The BAU scenario assumed 67% urbanization, frozen export amounts of heavy industrial products, and achievement of world best practices by 2025. The China Lightens Up (CLU) scenario assumed 55% urbanization, zero net exports of heavy industrial products, and more aggressive efficiency improvements by 2025. The five dominant industry sub-sectors were modeled in both scenarios using a LEAP energy end-use accounting model. The results of this study show that a CLU

  13. Secretary Chu Postpones China Trip to Continue Work on BP Oil Spill

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Response Efforts | Department of Energy Postpones China Trip to Continue Work on BP Oil Spill Response Efforts Secretary Chu Postpones China Trip to Continue Work on BP Oil Spill Response Efforts May 21, 2010 - 12:00am Addthis Washington DC -- Energy Secretary Steven Chu will postpone a trip to China, scheduled for next week, at the request of President Obama and stay in the country to continue his work on response efforts to the BP oil spill. "Finding a solution to this crisis is a

  14. OPEC and lower oil prices: Impacts on production capacity, export refining, domestic demand and trade balances

    SciTech Connect (OSTI)

    Fesharaki, F.; Fridley, D.; Isaak, D.; Totto, L.; Wilson, T.

    1988-12-01

    The East-West Center has received a research grant from the US Department of Energy's Office of Policy, Planning, and Analysis to study the impact of lower oil prices on OPEC production capacity, on export refineries, and petroleum trade. The project was later extended to include balance-of-payments scenarios and impacts on OPEC domestic demand. As the study progressed, a number of preliminary presentations were made at the US Department of Energy in order to receive feedback from DOE officials and to refine the focus of our analysis. During one of the presentations on June 4, 1987, the then Director of Division of Oil and Gas, John Stanley-Miller, advised us to focus our work on the Persian Gulf countries, since these countries were of special interest to the United States Government. Since then, our team has visited Iran, the United Arab Emirates, and Saudi Arabia and obtained detailed information from other countries. The political turmoil in the Gulf, the Iran/Iraq war, and the active US military presence have all worked to delay the final submission of our report. Even in countries where the United States has close ties, access to information has been difficult. In most countries, even mundane information on petroleum issues are treated as national secrets. As a result of these difficulties, we requested a one-year no cost extension to the grant and submitted an Interim Report in May 1988. As part of our grant extension request, we proposed to undertake additional tasks which appear in this report. 20 figs., 21 tabs.

  15. Oil and natural gas supply and demand trends in North America...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TX By Adam Sieminski U.S. Energy Information Administration Historical and projected oil prices 2 crude oil price price per barrel (real 2010 dollars) Sources: U.S. Energy...

  16. Petroleum geology of Giant oil and gas fields in Turpan Basin Xinjiang China

    SciTech Connect (OSTI)

    Boliang, Hu; Jiajing, Yang,

    1995-08-01

    Turpan Basin is the smallest and the last development basin in three big basins of Xinjiang autonomous region, P.R. China. Since April, 1989, the Shanshan oilfield was discovered, the Oinling, Wenjisang, Midang, Baka, Qiudong and North Putaogou fields were discovered. In 1994, the crude oil productivity of Turpan Basin was a Million tons, with an estimated output of 3 million tons per year by 1995; obviously a key oil productive base in the west basins of China, Tarim, Jungar, Chaidam, Hexi, Erduos and Sichuan Basins. The Turpan Basin is an intermontane basin in a eugeosyncline foldbelt of the north Tianshan Mountains. The oil and gas was produced from the payzone of the Xishanyao, Sanjianfang and Qiketai Formatiosn of the Middle Jurassic series. The geochemical characteristics of the crude oil and gas indicate they derive from the Middle to Lower Jurassic coal series, in which contains the best oil-prone source rocks in the basin.

  17. Economic evaluation on CO₂-EOR of onshore oil fields in China

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wei, Ning; Li, Xiaochun; Dahowski, Robert T.; Davidson, Casie L.; Liu, Shengnan; Zha, Yongjin

    2015-06-01

    Carbon dioxide enhanced oil recovery (CO₂-EOR) and sequestration in depleted oil reservoirs is a plausible option for utilizing anthropogenic CO₂ to increase oil production while storing CO₂ underground. Evaluation of the storage resources and cost of potential CO₂-EOR projects is an essential step before the commencement of large-scale deployment of such activities. In this paper, a hybrid techno-economic evaluation method, including a performance model and cost model for onshore CO₂-EOR projects, has been developed based on previous studies. Total 296 onshore oil fields, accounting for about 70% of total mature onshore oil fields in China, were evaluated by the techno-economicmore » method. The key findings of this study are summarized as follows: (1) deterministic analysis shows there are approximately 1.1 billion tons (7.7 billion barrels) of incremental crude oil and 2.2 billion tons CO₂ storage resource for onshore CO₂-EOR at net positive revenue within the Chinese oil fields reviewed under the given operating strategy and economic assumptions. (2) Sensitivity study highlights that the cumulative oil production and cumulative CO₂ storage resource are very sensitive to crude oil price, CO₂ cost, project lifetime, discount rate and tax policy. High oil price, short project lifetime, low discount rate, low CO₂ cost, and low tax policy can greatly increase the net income of the oil enterprise, incremental oil recovery and CO₂ storage resource. (3) From this techno-economic evaluation, the major barriers to large-scale deployment of CO₂-EOR include complex geological conditions, low API of crude oil, high tax policy, and lack of incentives for the CO₂-EOR project.« less

  18. Economic evaluation on CO₂-EOR of onshore oil fields in China

    SciTech Connect (OSTI)

    Wei, Ning; Li, Xiaochun; Dahowski, Robert T.; Davidson, Casie L.; Liu, Shengnan; Zha, Yongjin

    2015-06-01

    Carbon dioxide enhanced oil recovery (CO₂-EOR) and sequestration in depleted oil reservoirs is a plausible option for utilizing anthropogenic CO₂ to increase oil production while storing CO₂ underground. Evaluation of the storage resources and cost of potential CO₂-EOR projects is an essential step before the commencement of large-scale deployment of such activities. In this paper, a hybrid techno-economic evaluation method, including a performance model and cost model for onshore CO₂-EOR projects, has been developed based on previous studies. Total 296 onshore oil fields, accounting for about 70% of total mature onshore oil fields in China, were evaluated by the techno-economic method. The key findings of this study are summarized as follows: (1) deterministic analysis shows there are approximately 1.1 billion tons (7.7 billion barrels) of incremental crude oil and 2.2 billion tons CO₂ storage resource for onshore CO₂-EOR at net positive revenue within the Chinese oil fields reviewed under the given operating strategy and economic assumptions. (2) Sensitivity study highlights that the cumulative oil production and cumulative CO₂ storage resource are very sensitive to crude oil price, CO₂ cost, project lifetime, discount rate and tax policy. High oil price, short project lifetime, low discount rate, low CO₂ cost, and low tax policy can greatly increase the net income of the oil enterprise, incremental oil recovery and CO₂ storage resource. (3) From this techno-economic evaluation, the major barriers to large-scale deployment of CO₂-EOR include complex geological conditions, low API of crude oil, high tax policy, and lack of incentives for the CO₂-EOR project.

  19. Issues in International Energy Consumption Analysis: Chinese Transportation Fuel Demand

    Reports and Publications (EIA)

    2014-01-01

    Since the 1990s, China has experienced tremendous growth in its transportation sector. By the end of 2010, China's road infrastructure had emerged as the second-largest transportation system in the world after the United States. Passenger vehicle sales are dramatically increasing from a little more than half a million in 2000, to 3.7 million in 2005, to 13.8 million in 2010. This represents a twenty-fold increase from 2000 to 2010. The unprecedented motorization development in China led to a significant increase in oil demand, which requires China to import progressively more petroleum from other countries, with its share of petroleum imports exceeding 50% of total petroleum demand since 2009. In response to growing oil import dependency, the Chinese government is adopting a broad range of policies, including promotion of fuel-efficient vehicles, fuel conservation, increasing investments in oil resources around the world, and many others.

  20. Scenarios of Building Energy Demand for China with a Detailed Regional Representation

    SciTech Connect (OSTI)

    Yu, Sha; Eom, Jiyong; Zhou, Yuyu; Evans, Meredydd; Clarke, Leon E.

    2014-02-07

    Building energy consumption currently accounts for 28% of Chinas total energy use and is expected to continue to grow induced by floorspace expansion, income growth, and population change. Fuel sources and building services are also evolving over time as well as across regions and building types. To understand sectoral and regional difference in building energy use and how socioeconomic, physical, and technological development influence the evolution of the Chinese building sector, this study developed a building energy use model for China downscaled into four climate regions under an integrated assessment framework. Three building types (rural residential, urban residential, and commercial) were modeled specifically in each climate region. Our study finds that the Cold and Hot Summer Cold Winter regions lead in total building energy use. The impact of climate change on heating energy use is more significant than that of cooling energy use in most climate regions. Both rural and urban households will experience fuel switch from fossil fuel to cleaner fuels. Commercial buildings will experience rapid growth in electrification and energy intensity. Improved understanding of Chinese buildings with climate change highlighted in this study will help policy makers develop targeted policies and prioritize building energy efficiency measures.

  1. Upper Permian lacustrine oil shales, southern Junggar basin, northwest China

    SciTech Connect (OSTI)

    Carroll, A.R.; Brassell, S.C.; Graham, S.A. )

    1992-12-01

    Upper Permian organic-rich lacustrine mudstones (oil shales) that crop out in the southern Junggar basin rank among the richest and thickest petroleum source rock intervals in the world, with maximum TOC values reaching 34% and Rock-Eval pyrolytic yields (S[sub 2]) up to 200 kg HC/t rock. Lacustrine sedimentary facies define an overall transgressive-regressive cycle of approximately 2000 m gross thickness, which includes approximately 800 m of source rocks averaging 4.1% TOC and 26.2 kg HC/t rock. Basinal facies comprise silicic, organic-rich, laminated lacustrine mudstones and interbedded siltstones; organic matter contained in the mudstones ranges in composition from type I to type III. Basinal facies were deposited in a deep, oxygen-deficient, stratified lake. Lake-margin facies consist of nonlaminated siliciclastic mudstones, rippled dolomitic silstones and sandstones, and minor limestones. Maximum TOC values are approximately 6%. Desiccation cracks are common in the marginal facies, but evaporite minerals are rare or absent. Biomarker correlation parameters measured from rock extracts exhibit significant stratigraphic variability, but strongly support the hypothesis that Upper Permian lacustrine oil shales charge the giant Karamay field in the northwestern Junggar basin. Karamay oils are characterized by high relative abundances of [beta]-carotane. This characteristic is restricted to desiccated facies in the outcrop sections, however. We therefore propose that an abundance of [beta]-carotane indicates elevated environmental salinities during deposition of the oil shales. 16 figs., 9 tabs.

  2. Extreme Energy in China

    SciTech Connect (OSTI)

    Khanna, Nina; Fridley, David; Cai, Lixue

    2013-06-01

    Over the last decade, China has focused its policies simultaneously on moderating the rapid energy demand growth that has been driven by three decades of rapid economic growth and industrialization and on increasing its energy supply. In spite of these concerted efforts, however, China continues to face growing energy supply challenges, particularly with accelerating demand for oil and natural gas, both of which are now heavily dependent on imports. On the supply side, the recent 11th and 12th Five-Year Plans have emphasized accelerating conventional and nonconventional oil and gas exploration and development through pricing reforms, pipeline infrastructure expansions and 2015 production targets for shale gas and coal seam methane. This study will analyze China’s new and nonconventional oil and gas resources base, possible development paths and outlook, and the potential role for these nonconventional resources in meeting oil and gas demand. The nonconventional resources currently being considered by China and included in this study include: shale gas, coal seam methane (coal mine methane and coal bed methane), tight gas, in-situ coal gasification, tight oil and oil shale, and gas hydrates.

  3. Biomarker analysis of Upper Permian lacustrine oil shales, Junggar basin, NW China

    SciTech Connect (OSTI)

    Carroll, A. )

    1990-05-01

    Upper Permian lacustrine oil shales containing up to 34% TOC (total organic carbon) underlie approximately 50,000 km{sup 2} of the Junggar basin in western China, and appear to be the principal source of oils in the giant Karamay field in the northwestern Junggar and in several recent discoveries in other areas of the basin. The siliceous oil shales were deposited in a sediment-starved foreland basin during a period of predominantly humid climate. Previous biomarker studies of crude oils from Karamay field have documented an abundance of {beta}-carotane (which in some cases dominates the aliphatic hydrocarbon distribution) and gammacerane, suggesting a source bed deposited under hypersaline conditions. However, relatively complete outcrop exposures of finely laminated oil shales in the southern Junggar conspicuously lack evaporites, extensive dessication horizons, or other sedimentological evidence of playa lake environments. Indeed, the aliphatic hydrocarbon distribution in bitumen extracts from southern Junggar oil shales appear characteristic of freshwater to brakish water deposition of organic matter in an anoxic lake. Normal alkanes show a slight odd-over-even preference with relatively low levels of the C{sub 22}, n-alkane, pristane/phytane ratios close to unity, low {beta}-carotane and gammacerane levels, and the absence of C{sub 34}-C{sub 35} hopanes. This apparent difference in source bed depositional environments may be due to tectonic partitioning between separate depocenters of the Late Permian Junggar basin. Alternatively, hypersaline oil shale facies may be limited to deeper basinal areas, whereas upslope southern Junggar sediments record highstands in lake level or influx of fresh water from the adjacent drainage areas.

  4. Landsat and SPOT data for oil exploration in North-Western China

    SciTech Connect (OSTI)

    Nishidai, Takashi

    1996-07-01

    Satellite remote sensing technology has been employed by Japex to provide information related to oil exploration programs for many years. Since the beginning of the 1980`s, regional geological interpretation through to advanced studies using satellite imagery with high spectral and spatial resolutions (such as Landsat TM and SPOT HRV), have been carried out, for both exploration programs and for scientific research. Advanced techniques (including analysis of airborne hyper-multispectral imaging sensor data) as well as conventional photogeological techniques were used throughout these programs. The first program using remote sensing technology in China focused on the Tarim Basin, Xinjiang Uygur Autonomous Region, and was carried out using Landsat MSS data. Landsat MSS imagery allows us to gain useful preliminary geological information about an area of interest, prior to field studies. About 90 Landsat scenes cover the entire Xinjiang Uygru Autonomous Region, this allowed us to give comprehensive overviews of 3 hydrocarbon-bearing basins (Tarim, Junggar, and Turpan-Hami) in NW China. The overviews were based on the interpretations and assessments of the satellite imagery and on a synthesis of the most up-to-date accessible geological and geophysical data as well as some field works. Pairs of stereoscopic SPOT HRV images were used to generate digital elevation data with a 40 in grid cover for part of the Tarim Basin. Topographic contour maps, created from this digital elevation data, at scales of 1:250,000 and 1:100,000 with contour intervals of 100 m and 50 m, allowed us to make precise geological interpretation, and to carry out swift and efficient geological field work. Satellite imagery was also utilized to make medium scale to large scale image maps, not only to interpret geological features but also to support field workers and seismic survey field operations.

  5. Oil

    Broader source: Energy.gov [DOE]

    The Energy Department works to ensure domestic and global oil supplies are environmentally sustainable and invests in research and technology to make oil drilling cleaner and more efficient.

  6. Too early to tell on $100 oil

    U.S. Energy Information Administration (EIA) Indexed Site

    Presentation to: April 8, 2008 Lehman Brothers oil outlook: Stronger signals of weaker prices Adam Robinson What's driving oil markets today? u Not the short run: Oil prices go up every time the US economy gets worse u It's tempting to argue that the rise in oil prices now is simply a continuation of past trends - The cost of F&D continues to march up - Demand in China growing faster with no signs of slowdown - Upstream and downstream supply bottlenecks are permanent u We think current price

  7. China's energy outlook

    SciTech Connect (OSTI)

    Fridley, D.

    1991-03-01

    Economic reform in China has given a major boost to the development of China's energy industries. Demand for energy has risen steadily in response to the rapid expansion of the economy over the past ten years, while economic liberalization and deregulation have stimulated energy output as the energy industries found new sources of capital, labor, and investment opportunities. In the first half of 1980s, the coal, oil, and electric power industries all experienced accelerating rates of growth. After mid-decade, however, an overheating economy, rising inflation, and lower international oil prices had a serious impact on the vitality of the energy industries. At a time when energy demand was soaring, the state-owned energy industries faced a decline in the real value of their output, excessive debt, falling productivity, and sharply higher costs of production. These trends have continued into 1990 despite the economic slowdown engineered in late 1988 and, if left unmanaged, will constrain the ability of the domestic energy industries to meet the energy needs of China's modernization program. This in turn could lead to progressively higher imports of energy, particularly oil, and could limit the speed and scope of economic expansion in the 1990s and beyond. 2 figs., 18 tabs.

  8. Development of natural gas vehicles in China

    SciTech Connect (OSTI)

    Zongmin, Cheng

    1996-12-31

    Past decade and current status of development of natural gas vehicles (NGVs) in China is described. By the end of 1995, 35 CNG refueling stations and 9 LPG refueling stations had been constructed in 12 regions, and 33,100 vehicles had been converted to run on CNG or LPG. China`s automobile industry, a mainstay of the national economy, is slated for accelerated development over next few years. NGVs will help to solve the problems of environment protection, GHGs mitigation, and shortage of oil supply. The Chinese government has started to promote the development of NGVs. Projects, investment demand, GHG mitigation potential, and development barriers are discussed. China needs to import advanced foreign technologies of CNGs. China`s companies expect to cooperate with foreign partners for import of CNG vehicle refueling compressors, conversions, and light cylinders, etc.

  9. Guangdong, China: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Companies in Guangdong, China BSL-Solar Big China Solar Energy Group China Guangdong Nuclear Power Company Guangdong Baolihua New Energy Corporation Zhuhai Oil Energy Science and...

  10. Demand Reduction

    Broader source: Energy.gov [DOE]

    Grantees may use funds to coordinate with electricity supply companies and utilities to reduce energy demands on their power systems. These demand reduction programs are usually coordinated through...

  11. Too early to tell on $100 oil

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Confidential Presentation to: April 7, 2008 Middle East oil demand and Lehman Brothers oil price outlook Adam Robinson Middle East oil demand u Three pillars of Middle East oil ...

  12. Drivers of Future Energy Demand

    U.S. Energy Information Administration (EIA) Indexed Site

    Drivers of Future Energy Demand in China Asian Energy Demand Outlook 2014 EIA Energy Conference July 14, 2014 Valerie J. Karplus MIT Sloan School of Management 2 www.china.org.cn www.flickr.com www.wikimedia.org globalchange.mit.edu Global Climate Change Human Development Local Pollution Industrial Development & Resource Needs How to balance? 0 500 1000 1500 2000 2500 3000 3500 4000 1981 1991 2001 2011 Non-material Sectors/Other Construction Commercial consumption Residential consumption

  13. China

    National Nuclear Security Administration (NNSA)

    9%2A en NNSA Transfers Responsibility for Radiation Detection System to China Customs http:nnsa.energy.govmediaroompressreleasesnnsa%E2%80%99s-second-line-defense

  14. PetroChina Company Limited | Open Energy Information

    Open Energy Info (EERE)

    China's largest oil and gas company. PetroChina is involved in exploration, development, production and marketing of crude oil and natural gas; refining, transportation, storage...

  15. Demand Response

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demand Response Assessment for Eastern Interconnection Youngsun Baek, Stanton W. Hadley, Rocio Martinez, Gbadebo Oladosu, Alexander M. Smith, Fran Li, Paul Leiby and Russell Lee ...

  16. Tectonic controls on Upper Permian lacustrine oil shales in the Junggar basin, NW China

    SciTech Connect (OSTI)

    Carroll, A.R.; Brassell, S.C.; Graham, S.A. )

    1991-03-01

    Collision of the Tarim craton with the southern margin of Asia during the Late Carboniferous-Early Permian resulted in uplift of an ancestral Tian Shan range and geographic isolation of the previously marine Junggar basin. Dramatic shifts from marine to nonmarine sedimentation took place in both the southern Junggar and northern Tarim basins during the Permina. Paleocurrent analysis indicate that by the Late Permian, coarse-grained sediments in both basins were being supplied predominantly from the area of the Tian Shan. During the Late Permian, the southern Junggar received in excess of 5,000 m of nonmarine sediments, including approximately 1,000 m of laminated, highly organic-rich lacustrine mudstones (oil shales). These deposits commonly have TOCs of 20-30%, and Rock-Eval pyrolitic yields reaching 2,000 mg/g, ranking them among the most prolific petroleum source rocks in the world. Based on a comparison of the distribution of steranes and extended tricyclic terpanes, these Upper Permian oil shales appear to be the primary source of oils in the giant Karamay field in the northwestern Junggar basin. Ancestral uplift of the Tian Shan thus produced a complex tectono-hydrologic partitioning of the Late Permina Junggar basin, which exerted a strong influence on the character of petroleum source rocks deposited within the basin.

  17. China Integrated Energy | Open Energy Information

    Open Energy Info (EERE)

    integrated energy company in China engaged in three business segments: the production and sale of biodiesel, the wholesale distribution of finished oil and heavy oil...

  18. Proceedings of the Chinese-American symposium on energy markets and the future of energy demand

    SciTech Connect (OSTI)

    Meyers, S.

    1988-11-01

    The Symposium was organized by the Energy Research Institute of the State Economic Commission of China, and the Lawrence Berkeley Laboratory and Johns Hopkins University from the United States. It was held at the Johns Hopkins University Nanjing Center in late June 1988. It was attended by about 15 Chinese and an equal number of US experts on various topics related to energy demand and supply. Each presenter is one of the best observers of the energy situation in their field. A Chinese and US speaker presented papers on each topic. In all, about 30 papers were presented over a period of two and one half days. Each paper was translated into English and Chinese. The Chinese papers provide an excellent overview of the emerging energy demand and supply situation in China and the obstacles the Chinese planners face in managing the expected increase in demand for energy. These are matched by papers that discuss the energy situation in the US and worldwide, and the implications of the changes in the world energy situation on both countries. The papers in Part 1 provide historical background and discuss future directions. The papers in Part 2 focus on the historical development of energy planning and policy in each country and the methodologies and tools used for projecting energy demand and supply. The papers in Part 3 examine the pattern of energy demand, the forces driving demand, and opportunities for energy conservation in each of the major sectors in China and the US. The papers in Part 4 deal with the outlook for global and Pacific region energy markets and the development of the oil and natural gas sector in China.

  19. Commercial & Industrial Demand Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events Skip navigation links Smart Grid Demand Response Agricultural Residential Demand Response Commercial & Industrial Demand Response Cross-sector Demand Response...

  20. Oil and Gas Research| GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oil & Gas We're balancing the increasing demand for finite resources with technology that ensures access to energy for generations to come. Home > Innovation > Oil & Gas ...

  1. China Energy Primer

    SciTech Connect (OSTI)

    Ni, Chun Chun

    2009-11-16

    Based on extensive analysis of the 'China Energy Databook Version 7' (October 2008) this Primer for China's Energy Industry draws a broad picture of China's energy industry with the two goals of helping users read and interpret the data presented in the 'China Energy Databook' and understand the historical evolution of China's energy inustry. Primer provides comprehensive historical reviews of China's energy industry including its supply and demand, exports and imports, investments, environment, and most importantly, its complicated pricing system, a key element in the analysis of China's energy sector.

  2. China Energy Group - Sustainable Growth Through EnergyEfficiency

    SciTech Connect (OSTI)

    Levine, Mark; Fridley, David; Lin, Jiang; Sinton, Jonathan; Zhou,Nan; Aden, Nathaniel; Huang, Joe; Price, Lynn; McKane, Aimee T.

    2006-03-20

    China is fueling its phenomenal economic growth with huge quantities of coal. The environmental consequences reach far beyond its borders--China is second only to the United States in greenhouse gas emissions. Expanding its supply of other energy sources, like nuclear power and imported oil, raises trade and security issues. Soaring electricity demand necessitates the construction of 40-70 GW of new capacity per year, creating sustained financing challenges. While daunting, the challenge of meeting China's energy needs presents a wealth of opportunities, particularly in meeting demand through improved energy efficiency and other clean energy technologies. The China Energy Group at the Lawrence Berkeley National Laboratory (LBNL) is committed to understanding these opportunities, and to exploring their implications for policy and business. We work collaboratively with energy researchers, suppliers, regulators, and consumers in China and elsewhere to: better understand the dynamics of energy use in China. Our Research Focus Encompasses Three Major Areas: Buildings, Industry, and Cross-Cutting Activities. Buildings--working to promote energy-efficient buildings and energy-efficient equipment used in buildings. Current work includes promoting the design and use of minimum energy efficiency standards and energy labeling for appliances, and assisting in the development and implementation of building codes for energy-efficient residential and commercial/public buildings. Past work has included a China Residential Energy Consumption Survey and a study of the health impacts of rural household energy use. Industry--understanding China's industrial sector, responsible for the majority of energy consumption in China. Current work includes benchmarking China's major energy-consuming industries to world best practice, examining energy efficiency trends in China's steel and cement industries, implementing voluntary energy efficiency agreements in various industries, and

  3. Assessment of thermal evolution stages and oil-gas migration of carbonate source rocks of early tertiary in eastern Sichuan, China, by organic inclusion analysis

    SciTech Connect (OSTI)

    Shi Jixi; Li Benchao; Fu Jiamo

    1989-03-01

    The Jialinjiang Formation of early Tertiary in Sichuan, China, is a series of limestone and dolomite sediments deposited in a platform shoal environment. The diagenetic sequence and organic inclusions trapped in minerals of 95 samples from 20 drillings have been studied. At the late diagenetic stage, pale yellow organic inclusions consisted of liquid hydrocarbons disseminated in pore-infiltrating dolomite, and the homogeneous temperature of contemporaneous saline liquid inclusions possessing a low gas-liquid ratio was 86/degree/C. This indicates the evolution of the organic matter had gone over the oil generating threshold and oil formation had initiated. In the limestone formed at the late diagenetic stage, more brown-yellow organic inclusions were scattered and/or developed along with fissures, comprising 60-70% liquid hydrocarbons and 30-40% gaseous hydrocarbons. Contemporaneous saline liquid inclusions with gas-liquid ratios of 5-10% had homogeneous temperatures of 90/degree/-130/degree/C. These findings show that the organic material had entered a high evolution stage and oil migration had taken place on a large scale.

  4. Examining Future Global Energy Demand

    U.S. Energy Information Administration (EIA) Indexed Site

    Examining Future Global Transportation Energy Demand For EIA Energy Conference July 11, 2016 | Washington, DC By John Maples Outline * Model overview - Passenger travel - Freight travel - Energy consumption for 16 regions: * USA, Canada, Mexico/Chile, OECD Europe, Japan, S. Korea, Australia/New Zealand * Russia, Non-OECD Europe/Eurasia, China, India, Non-OECD Asia, Middle East, Africa, Brazil, Other South/Central * IEO2016 Reference case transportation projections * Preliminary scenario results

  5. Zhuhai Oil Energy Science and Technology | Open Energy Information

    Open Energy Info (EERE)

    it. Zhuhai Oil Energy Science and Technology is a company based in Zhuhai, China. Zhuai Oil Energy produces biofuels and recently increased its production capacity to 60 metric...

  6. China's coal market: is peak demand insight?

    U.S. Energy Information Administration (EIA) Indexed Site

    a slight recovery by 2020. * Coal-fired generation will continue to be squeezed by non-fossil generation resources. * Renewable, nuclear, and gas plant additions will remain ...

  7. An Anatomy of China's Energy Insecurity and Its Strategies

    SciTech Connect (OSTI)

    Kong, Bo

    2005-12-06

    China’s energy insecurity largely originates from its constrained availability, questionable reliability, and uncertain affordability of its oil supplies. The country’s fast industrialization and urbanization, together with demand for infrastructure and increasing popularity of automobiles, requires a lot of energy, but it consumes energy both intensively and inefficiently, threatening the environmental well-being of China and its neighbors. China’s risk aversion and poor energy policy making system further magnifies its perceptions of the low availability, reliability and affordability of oil imports, which further compounds its sense of energy insecurity. Distrustful of the market, and suspicious of other major energy players in the international market, the Chinese leadership relies on the state-centered approach, or economic nationalism, rather than a market approach to enhance its energy security. However, the country lacks not only an energy policy making system that can make and implement sound energy policies but also an energy market that relies on market prices to allocate energy resources efficiently. As a result of this domestic failure, China has pushed its national flagship companies to undertake a global scavenger hunt for energy while muddling along a messy road of energy reform at home. Setbacks in acquiring new sources of oil have validated the Chinese leadership’s belief that the international oil market is not free and China’s access to international oil is not guaranteed through the market. China’s problems in the international energy market are also perceived as evidence of attempts to prevent China from exerting international influence. China’s leadership is convinced that China should focus on areas where western capital is not heavily concentrated or where western influences are weak. With the recent revaluation of Chinese currency and growing economy, China has both the wherewithal and appetite to acquire more oil assets

  8. Catagenesis of organic matter of oil source rocks in Upper Paleozoic coal formation of the Bohai Gulf basin (eastern China)

    SciTech Connect (OSTI)

    Li, R.X.; Li, Y.Z.; Gao, Y.W.

    2007-05-15

    The Bohai Gulf basin is the largest petroliferous basin in China. Its Carboniferous-Permian deposits are thick (on the average, ca. 600 m) and occur as deeply as 5000 m. Coal and carbonaceous shale of the Carboniferous Taiyuan Formation formed in inshore plain swamps. Their main hydrocarbon-generating macerals are fluorescent vitrinite, exinite, alginite, etc. Coal and carbonaceous shale of the Permian Shanxi Formation were deposited in delta-alluvial plain. Their main hydrocarbon-generating macerals are vitrinite, exinite, etc. The carbonaceous rocks of these formations are characterized by a high thermal maturity, with the vitrinite reflectance R{sub 0} > 2.0%. The Bohai Gulf basin has been poorly explored so far, but it is highly promising for natural gas.

  9. Demand Response | Department of Energy

    Energy Savers [EERE]

    Technology Development Smart Grid Demand Response Demand Response Demand Response Demand response provides an opportunity for consumers to play a significant role in the ...

  10. Cross-sector Demand Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events Skip navigation links Smart Grid Demand Response Agricultural Residential Demand Response Commercial & Industrial Demand Response Cross-sector Demand Response...

  11. Residential Demand Sector Data, Commercial Demand Sector Data, Industrial Demand Sector Data - Annual Energy Outlook 2006

    SciTech Connect (OSTI)

    2009-01-18

    Tables describing consumption and prices by sector and census division for 2006 - includes residential demand, commercial demand, and industrial demand

  12. Response to several FOIA requests - Renewable Energy. Demand...

    Broader source: Energy.gov (indexed) [DOE]

    Demand for fossil fuels surely will overrun supply sooner or later, as indeed it already has in the casc of United States domestic oil drilling. Recognition also is growing that ...

  13. Ethanol Demand in United States Gasoline Production

    SciTech Connect (OSTI)

    Hadder, G.R.

    1998-11-24

    The Oak Ridge National Laboratory (OWL) Refinery Yield Model (RYM) has been used to estimate the demand for ethanol in U.S. gasoline production in year 2010. Study cases examine ethanol demand with variations in world oil price, cost of competing oxygenate, ethanol value, and gasoline specifications. For combined-regions outside California summer ethanol demand is dominated by conventional gasoline (CG) because the premised share of reformulated gasoline (RFG) production is relatively low and because CG offers greater flexibility for blending high vapor pressure components like ethanol. Vapor pressure advantages disappear for winter CG, but total ethanol used in winter RFG remains low because of the low RFG production share. In California, relatively less ethanol is used in CG because the RFG production share is very high. During the winter in California, there is a significant increase in use of ethanol in RFG, as ethanol displaces lower-vapor-pressure ethers. Estimated U.S. ethanol demand is a function of the refiner value of ethanol. For example, ethanol demand for reference conditions in year 2010 is 2 billion gallons per year (BGY) at a refiner value of $1.00 per gallon (1996 dollars), and 9 BGY at a refiner value of $0.60 per gallon. Ethanol demand could be increased with higher oil prices, or by changes in gasoline specifications for oxygen content, sulfur content, emissions of volatile organic compounds (VOCS), and octane numbers.

  14. Demand Response Analysis Tool

    Energy Science and Technology Software Center (OSTI)

    2012-03-01

    Demand Response Analysis Tool is a software developed at the Lawrence Berkeley National Laboratory. It is initially funded by Southern California Edison. Our goal in developing this tool is to provide an online, useable, with standardized methods, an analysis tool to evaluate demand and demand response performance of commercial and industrial facilities. The tool provides load variability and weather sensitivity analysis capabilities as well as development of various types of baselines. It can be usedmore » by researchers, real estate management firms, utilities, or any individuals who are interested in analyzing their demand and demand response capabilities.« less

  15. Demand Response Analysis Tool

    SciTech Connect (OSTI)

    2012-03-01

    Demand Response Analysis Tool is a software developed at the Lawrence Berkeley National Laboratory. It is initially funded by Southern California Edison. Our goal in developing this tool is to provide an online, useable, with standardized methods, an analysis tool to evaluate demand and demand response performance of commercial and industrial facilities. The tool provides load variability and weather sensitivity analysis capabilities as well as development of various types of baselines. It can be used by researchers, real estate management firms, utilities, or any individuals who are interested in analyzing their demand and demand response capabilities.

  16. What Can China Do? China's Best Alternative Outcome for Energy Efficiency and CO2 Emissions

    SciTech Connect (OSTI)

    G. Fridley, David; Zheng, Nina; T. Aden, Nathaniel

    2010-07-01

    sequestration (CCS) and integrated mine-mouth generation. The CIS and AIS results are also contextualized and compared to model scenarios in other published studies. The results of this study show that China's energy and CO{sub 2} emissions will not likely peak before 2030, although growth is expected to slow after 2020. Moreover, China will be able to meet its 2020 carbon intensity reduction target of 40 to 45% under both CIS and AIS, but only meet its 15% non-fossil fuel target by 2020 under AIS. Under both scenarios, efficiency remains a key resource and has the same, if not greater, mitigation potential as new technologies in transport and power sectors. In the transport sector, electrification will be closely linked the degree of decarbonization in the power sector and EV deployment has little or no impact on China's crude oil import demand. Rather, power generation improvements have the largest sector potential for overall emission mitigation while mine-mouth power generation and CCS have limited mitigation potential compared to fuel switching and efficiency improvements. Comparisons of this study's results with other published studies reveal that CIS and AIS are within the range of other national energy projections but alternative studies rely much more heavily on CCS for carbon reduction. The McKinsey study, in particular, has more optimistic assumptions for reductions in crude oil imports and coal demand in its abatement scenario and has much higher gasoline reduction potential for the same level of EV deployment. Despite these differences, this study's scenario analysis of both transport and power sectors illustrate the necessity for continued efficiency improvements and aggressive power sector decarbonization in flattening China's CO{sub 2} emissions.

  17. Demand Dispatch-Intelligent

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Contract: DE-FE0004001 Demand Dispatch- ... ISO Independent System Operators LMP Locational Marginal Price MW Mega-watt MWh ... today My generator may come on and off ...

  18. Managing Increased Charging Demand

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Managing Increased Charging Demand Carrie Giles ICF International, Supporting the Workplace Charging Challenge Workplace Charging Challenge Do you already own an EV? Are you...

  19. Residential Demand Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in-home displays with controllable home area network capabilities and thermal storage devices for home heating. Goals and objectives: Reduce the City's NCP demand above...

  20. World Oil Prices and Production Trends in AEO2008 (released in AEO2008)

    Reports and Publications (EIA)

    2008-01-01

    Annual Energy Outlook 2008 (AEO) defines the world oil price as the price of light, low-sulfur crude oil delivered in Cushing, Oklahoma. Since 2003, both "above ground" and "below ground" factors have contributed to a sustained rise in nominal world oil prices, from $31 per barrel in 2003 to $69 per barrel in 2007. The AEO2008 reference case outlook for world oil prices is higher than in the AEO2007 reference case. The main reasons for the adoption of a higher reference case price outlook include continued significant expansion of world demand for liquids, particularly in non-OECD (Organization for Economic Cooperation and Development) countries, which include China and India; the rising costs of conventional non-OPEC (Organization of the Petroleum Exporting Countries) supply and unconventional liquids production; limited growth in non-OPEC supplies despite higher oil prices; and the inability or unwillingness of OPEC member countries to increase conventional crude oil production to levels that would be required for maintaining price stability. The Energy Information Administration will continue to monitor world oil price trends and may need to make further adjustments in future AEOs.

  1. Investigation of structural changes in residential electricity demand

    SciTech Connect (OSTI)

    Chern, W.S.; Bouis, H.E.

    1982-09-23

    The purpose of this study was to investigate the stability of aggregate national residential electricity demand coefficients over time. The hypothesis is maintained that the aggregate residential demand is the sum of various end-use demand components. Since the end-use composition changes over time, the demand relationship may change as well. Since the end-use composition differs among regions, the results obtained from this study can be used for making inferences about regional differences in electricity demand relationships. There are two additional sources for a possible structural change. One is that consumers may react differently to declining and rising prices, secondly, the impact of the 1973 oil embargo may have shifted demand preferences. The electricity demand model used for this study is presented. A moving regression method was employed to investigate changes in residential electricity demand over time. The statistical results show a strikingly consistent pattern of change for most of the structural variables. The most important finding of this study is that the estimated structure of residential electricity demand changes systematically over time as a result of changes in the characteristics (both durability and saturation level) of the stock of appliances. Furthermore, there is not strong evidence that the structural changes in demand occurred due to either the reversal of the declining trend of electricity prices or the impact of the 1973 oil embarge. (LCL)

  2. Demand Response- Policy

    Broader source: Energy.gov [DOE]

    Demand response is an electricity tariff or program established to motivate changes in electric use by end-use customers, designed to induce lower electricity use typically at times of high market prices or when grid reliability is jeopardized.

  3. Demand Dispatch-Intelligent

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Demand Dispatch-Intelligent Demand for a More Efficient Grid 10 August 2011 DOE/NETL- DE-FE0004001 U.S. Department of Energy Office of Electricity Delivery and Energy Reliability Prepared by: National Energy Technology Laboratory Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal

  4. Demand Response Dispatch Tool

    SciTech Connect (OSTI)

    2012-08-31

    The Demand Response (DR) Dispatch Tool uses price profiles to dispatch demand response resources and create load modifying profiles. These annual profiles are used as inputs to production cost models and regional planning tools (e.g., PROMOD). The tool has been effectively implemented in transmission planning studies conducted by the Western Electricity Coordinating Council via its Transmission Expansion Planning and Policy Committee. The DR Dispatch Tool can properly model the dispatch of DR resources for both reliability and economic conditions.

  5. Hubei Xinda Bio oil Technology Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Xinda Bio oil Technology Co Ltd Jump to: navigation, search Name: Hubei Xinda Bio-oil Technology Co Ltd Place: Hubei Province, China Product: Hubei-based biofuel producer....

  6. Climate policy implications for agricultural water demand

    SciTech Connect (OSTI)

    Chaturvedi, Vaibhav; Hejazi, Mohamad I.; Edmonds, James A.; Clarke, Leon E.; Kyle, G. Page; Davies, Evan; Wise, Marshall A.; Calvin, Katherine V.

    2013-03-01

    water delivery and irrigation system efficiencies. These could potentially reduce demands substantially. However, overall demands remained high under our fossil-fuel-only tax policy. In contrast, when all carbon was priced, increases in agricultural water demands were smaller than under the fossil-fuel-only policy and were driven primarily by increased demands for water by non-biomass crops such as rice. Finally we estimate the geospatial pattern of water demands and find that regions such as China, India and other countries in south and east Asia might be expected to experience greatest increases in water demands.

  7. Demand Response Dispatch Tool

    Energy Science and Technology Software Center (OSTI)

    2012-08-31

    The Demand Response (DR) Dispatch Tool uses price profiles to dispatch demand response resources and create load modifying profiles. These annual profiles are used as inputs to production cost models and regional planning tools (e.g., PROMOD). The tool has been effectively implemented in transmission planning studies conducted by the Western Electricity Coordinating Council via its Transmission Expansion Planning and Policy Committee. The DR Dispatch Tool can properly model the dispatch of DR resources for bothmore » reliability and economic conditions.« less

  8. Demand Response | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demand Response Demand Response Demand Response Demand response provides an opportunity for consumers to play a significant role in the operation of the electric grid by reducing or shifting their electricity usage during peak periods in response to time-based rates or other forms of financial incentives. Demand response programs are being used by electric system planners and operators as resource options for balancing supply and demand. Such programs can lower the cost of electricity in

  9. Demand Charges | Open Energy Information

    Open Energy Info (EERE)

    Demand Charges Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleDemandCharges&oldid488967" Feedback Contact needs updating Image needs...

  10. China energy databook

    SciTech Connect (OSTI)

    Sinton, J.E.; Levine, M.D.; Feng Liu; Davis, W.B.; Jiang Zhenping; Zhuang Xing; Jiang Kejun; Zhou Dadi

    1992-12-31

    The Energy Analysis Program (EAP) at the Lawrence Berkeley Laboratory (LBL) first became involved in Chinese energy issues through a joint China-US symposium on markets and demand for energy held in Nanjing in November of 1988. Discovering common interests, EAP began to collaborate on projects with the Energy Research Institute (ERI) of China`s State Planning Commission. In the course of this work it became clear that a major issue in the furtherance of our research was the acquisition of reliable data. In addition to other, more focused activities-evaluating programs of energy conservation undertaken in China and the prospects for making Chinese industrics morc energy-efficient, preparing historical reviews of cncrgy supply and demand in the People`s Republic of China, sponsoring researchers from China to work with experts at LBL on such topics as energy efficiency standards for buildings, adaptation of US energy analysis software to Chinese conditions, and transportation issues-we decided to compile, assess, and organize Chinese energy data. Preparing this volume confronted us with a number of difficult issues. The most frustrating usually involved the different approaches to sectoral divisions taken in China and the US. For instance, fuel used by motor vehicles belonging to industrial enterprises is counted as industrial consumption in China; only fuel use by vehicles belonging to enterprises engaged primarily in transportation is countcd as transportation use. The estimated adjustment to count all fuel use by vehicles as transportation energy use is quite large, since a large fraction of motor vehicles belong to industrial enterprises. Similarly, Chinese industrial investment figures are skewed compared to those collected in the US because a large portion of enterprises` investment funds is directed towards providing housing and social services for workers and their families.

  11. Sustainable energy in china: the closing window of opportunity

    SciTech Connect (OSTI)

    Fei Feng; Roland Priddle; Leiping Wang; Noureddine Berrah

    2007-03-15

    China's remarkable economic growth has been supported by a generally adequate and relatively low-cost supply of energy, creating the world's largest coal industry, its second-largest oil market, and an eclectic power business that is adding capacity at an unprecedented rate. If energy requirements continue to double every decade, China will not be able to meet the energy demands of the present without seriously compromising the ability of future generations to meet their own energy needs. This title uses historical data from 1980 and alternative scenarios through 2020 to assess China's future energy requirements and the resources to meet them. It calls for a high-level commitment to develop and implement an integrated, coordinated, and comprehensive energy policy. The authors recommend eight building blocks to reduce energy consumption growth well below the targeted rate of economic growth, to use national resources on an economically and environmentally sound basis, and to establish a robust energy system that can better ensure the security of a diverse supply of competitively priced energy forms. Sustainability calls for persistence of effort, greater reliance on advanced energy technologies, and better standards enforcement. Achieving these goals will require policy initiatives that restrict demand and create a 'resources-conscious society', reconcile energy needs with environmental imperatives, rationalize pricing, and tackle supply security. While the challenges are daunting, China has a unique opportunity to position itself as a world leader in the application of cutting-edge energy developments to create a sustainable energy sector effectively supporting a flourishing economy and society.

  12. travel-demand-modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Travel Demand Modeling for a Small sized MPO Using TRANSIMS Mohammad Sharif Ullah Champaign County Regional Planning Commission 1776 E Washington Street, Urbana, IL 61802 Phone: 217 328 3313 Ext 124 Email: This email address is being protected from spambots. You need JavaScript enabled to view it. List of Authors ================ Mohammad Sharif Ullah, Senior Transportation Engineer, CCRPC, Urbana, IL Asadur Rahman, PhD student, IIT, Chicago, IL Rita Morocoima-Black, Planning & Comm.

  13. China energy databook

    SciTech Connect (OSTI)

    Sinton, J.E.; Levine, M.D.; Feng Liu; Davis, W.B. ); Jiang Zhenping; Zhuang Xing; Jiang Kejun; Zhou Dadi )

    1992-11-01

    The Energy Analysis Program (EAP) at the Lawrence Berkeley Laboratory (LBL) first becamc involved in Chinese energy issues through a joint China-US symposium on markets and demand for energy held in Nanjing in November of 1988. Discovering common interests, EAP began to collaborate on projects with the Energy Research Institute (ERI) of China's State Planning Commission. In the course of this work it became clear that a major issue in the furtherance of our research was the acquisition of reliable data. In addition to other, more focused activities-evaluating programs of energy conservation undertaken in China and the prospects for making Chinese industries more energy-efficient, preparing historical reviews of energy supply and demand in the People's Republic of China, sponsoring researchers from China to work with experts at LBL on such topics as energy efficiency standards for buildings, adaptation of US energy analysis software to Chinese conditions, and transportation issues-we decided to compile, assess, and organize Chinese energy data. We are hopeful that this volume will not only help us in our work, but help build a broader community of Chinese energy policy studies within the US.

  14. Heavy oil expansions gather momentum worldwide

    SciTech Connect (OSTI)

    Moritis, G.

    1995-08-14

    Cold production, wormholes, foamy oil mechanism, improvements in thermal methods, and horizontal wells are some of the processes and technologies enabling expansion of the world`s heavy oil/bitumen production. Such processes were the focus of the International Heavy Oil Symposium in Calgary, June 19--21. Unlike conventional oil production, heavy oil/bitumen extraction is more a manufacturing process where technology enables the business and does not just add value. The current low price spreads between heavy oil/light oil indicate that demand for heavy oil is high. The paper first discusses the price difference between heavy and light oils, then describes heavy oil production activities in Canada at Cold Lake, in Venezuela in the Orinoco belt, and at Kern River in California.

  15. China Energy Databook. Revision 4

    SciTech Connect (OSTI)

    Sinton, J. E.; Fridley, D. G.; Levine, M. D.; Yang, F.; Zhenping, J.; Xing, Z.; Kejun, J.; Xiaofeng, L.

    1996-09-01

    The Energy Analysis Program at LBL first became involved in Chinese energy issues through a joint China-US symposium on markets and energy demand held in Nanjing Nov. 1988. EAP began to collaborate on projects with the Energy Research Institute of China`s State Planning Commission. It was decided to compile, assess, and organize Chinese energy data. Primary interest was to use the data to help understand the historical evolution and likely future of the Chinese energy system; thus the primary criterion was to relate the data to the structure of energy supply and demand in the past and to indicate probable developments (eg, as indicated by patterns of investment). Caveats are included in forewords to both the 1992 and 1996 editions. A chapter on energy prices is included in the 1996 edition. 1993 energy consumption data are not included since there was a major disruption in energy statistical collection in China that year.

  16. China energy databook

    SciTech Connect (OSTI)

    Sinton, J.E.; Levine, M.D.; Feng Liu; Davis, W.B. ); Jiang Zhenping; Zhuang Xing; Jiang Kejun; Zhou Dadi )

    1992-01-01

    The Energy Analysis Program (EAP) at the Lawrence Berkeley Laboratory (LBL) first became involved in Chinese energy issues through a joint China-US symposium on markets and demand for energy held in Nanjing in November of 1988. Discovering common interests, EAP began to collaborate on projects with the Energy Research Institute (ERI) of China's State Planning Commission. In the course of this work it became clear that a major issue in the furtherance of our research was the acquisition of reliable data. In addition to other, more focused activities-evaluating programs of energy conservation undertaken in China and the prospects for making Chinese industrics morc energy-efficient, preparing historical reviews of cncrgy supply and demand in the People's Republic of China, sponsoring researchers from China to work with experts at LBL on such topics as energy efficiency standards for buildings, adaptation of US energy analysis software to Chinese conditions, and transportation issues-we decided to compile, assess, and organize Chinese energy data. Preparing this volume confronted us with a number of difficult issues. The most frustrating usually involved the different approaches to sectoral divisions taken in China and the US. For instance, fuel used by motor vehicles belonging to industrial enterprises is counted as industrial consumption in China; only fuel use by vehicles belonging to enterprises engaged primarily in transportation is countcd as transportation use. The estimated adjustment to count all fuel use by vehicles as transportation energy use is quite large, since a large fraction of motor vehicles belong to industrial enterprises. Similarly, Chinese industrial investment figures are skewed compared to those collected in the US because a large portion of enterprises' investment funds is directed towards providing housing and social services for workers and their families.

  17. Renewable energy development in China

    SciTech Connect (OSTI)

    Junfeng, Li

    1996-12-31

    This paper presents the resources availability, technologies development and their costs of renewable energies in China and introduces the programs of renewable energies technologies development and their adaptation for rural economic development in China. As the conclusion of this paper, renewable energies technologies are suitable for some rural areas, especially in the remote areas for both household energy and business activities energy demand. The paper looks at issues involving hydropower, wind energy, biomass combustion, geothermal energy, and solar energy.

  18. Demand Response Quick Assessment Tool

    Energy Science and Technology Software Center (OSTI)

    2008-12-01

    DRQAT (Demand Response Quick Assessment Tool) is the tool for assessing demand response saving potentials for large commercial buildings. This tool is based on EnergyPlus simulations of prototypical buildings and HVAC equipment. The opportunities for demand reduction and cost savings with building demand responsive controls vary tremendously with building type and location. The assessment tools will predict the energy and demand savings, the economic savings, and the thermal comfor impact for various demand responsive strategies.more » Users of the tools will be asked to enter the basic building information such as types, square footage, building envelope, orientation, utility schedule, etc. The assessment tools will then use the prototypical simulation models to calculate the energy and demand reduction potential under certain demand responsive strategies, such as precooling, zonal temperature set up, and chilled water loop and air loop set points adjustment.« less

  19. Water issues associated with heavy oil production.

    SciTech Connect (OSTI)

    Veil, J. A.; Quinn, J. J.; Environmental Science Division

    2008-11-28

    Crude oil occurs in many different forms throughout the world. An important characteristic of crude oil that affects the ease with which it can be produced is its density and viscosity. Lighter crude oil typically can be produced more easily and at lower cost than heavier crude oil. Historically, much of the nation's oil supply came from domestic or international light or medium crude oil sources. California's extensive heavy oil production for more than a century is a notable exception. Oil and gas companies are actively looking toward heavier crude oil sources to help meet demands and to take advantage of large heavy oil reserves located in North and South America. Heavy oil includes very viscous oil resources like those found in some fields in California and Venezuela, oil shale, and tar sands (called oil sands in Canada). These are described in more detail in the next chapter. Water is integrally associated with conventional oil production. Produced water is the largest byproduct associated with oil production. The cost of managing large volumes of produced water is an important component of the overall cost of producing oil. Most mature oil fields rely on injected water to maintain formation pressure during production. The processes involved with heavy oil production often require external water supplies for steam generation, washing, and other steps. While some heavy oil processes generate produced water, others generate different types of industrial wastewater. Management and disposition of the wastewater presents challenges and costs for the operators. This report describes water requirements relating to heavy oil production and potential sources for that water. The report also describes how water is used and the resulting water quality impacts associated with heavy oil production.

  20. Oil/Liquids | Open Energy Information

    Open Energy Info (EERE)

    oil prices grow to about 125 per barrel (2009 dollars) in 2035. In this environment, net imports of energy meet a major, but declining, share of total U.S. energy demand in the...

  1. Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Total Fuel Oil Consumption and Expenditures, 1999" ,"All Buildings Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings (thousand)","Floorspac...

  2. Economic Effects of High Oil Prices (released in AEO2006)

    Reports and Publications (EIA)

    2006-01-01

    The Annual Energy Outlook 2006 projections of future energy market conditions reflect the effects of oil prices on the macroeconomic variables that affect oil demand, in particular, and energy demand in general. The variables include real gross domestic product (GDP) growth, inflation, employment, exports and imports, and interest rates.

  3. OPEC production: Untapped reserves, world demand spur production expansion

    SciTech Connect (OSTI)

    Ismail, I.A.H. )

    1994-05-02

    To meet projected world oil demand, almost all members of the Organization of Petroleum Exporting Countries (OPEC) have embarked on ambitious capacity expansion programs aimed at increasing oil production capabilities. These expansion programs are in both new and existing oil fields. In the latter case, the aim is either to maintain production or reduce the production decline rate. However, the recent price deterioration has led some major OPEC producers, such as Saudi Arabia and Iran, to revise downward their capacity plans. Capital required for capacity expansion is considerable. Therefore, because the primary source of funds will come from within each OPEC country, a reasonably stable and relatively high oil price is required to obtain enough revenue for investing in upstream projects. This first in a series of two articles discusses the present OPEC capacity and planned expansion in the Middle East. The concluding part will cover the expansion plans in the remaining OPEC countries, capital requirements, and environmental concerns.

  4. Demand Response Programs, 6. edition

    SciTech Connect (OSTI)

    2007-10-15

    The report provides a look at the past, present, and future state of the market for demand/load response based upon market price signals. It is intended to provide significant value to individuals and companies who are considering participating in demand response programs, energy providers and ISOs interested in offering demand response programs, and consultants and analysts looking for detailed information on demand response technology, applications, and participants. The report offers a look at the current Demand Response environment in the energy industry by: defining what demand response programs are; detailing the evolution of program types over the last 30 years; discussing the key drivers of current initiatives; identifying barriers and keys to success for the programs; discussing the argument against subsidization of demand response; describing the different types of programs that exist including:direct load control, interruptible load, curtailable load, time-of-use, real time pricing, and demand bidding/buyback; providing examples of the different types of programs; examining the enablers of demand response programs; and, providing a look at major demand response programs.

  5. Unconventional Oil and Gas Resources

    SciTech Connect (OSTI)

    2006-09-15

    World oil use is projected to grow to 98 million b/d in 2015 and 118 million b/d in 2030. Total world natural gas consumption is projected to rise to 134 Tcf in 2015 and 182 Tcf in 2030. In an era of declining production and increasing demand, economically producing oil and gas from unconventional sources is a key challenge to maintaining global economic growth. Some unconventional hydrocarbon sources are already being developed, including gas shales, tight gas sands, heavy oil, oil sands, and coal bed methane. Roughly 20 years ago, gas production from tight sands, shales, and coals was considered uneconomic. Today, these resources provide 25% of the U.S. gas supply and that number is likely to increase. Venezuela has over 300 billion barrels of unproven extra-heavy oil reserves which would give it the largest reserves of any country in the world. It is currently producing over 550,000 b/d of heavy oil. Unconventional oil is also being produced in Canada from the Athabasca oil sands. 1.6 trillion barrels of oil are locked in the sands of which 175 billion barrels are proven reserves that can be recovered using current technology. Production from 29 companies now operating there exceeds 1 million barrels per day. The report provides an overview of continuous petroleum sources and gives a concise overview of the current status of varying types of unconventional oil and gas resources. Topics covered in the report include: an overview of the history of Oil and Natural Gas; an analysis of the Oil and Natural Gas industries, including current and future production, consumption, and reserves; a detailed description of the different types of unconventional oil and gas resources; an analysis of the key business factors that are driving the increased interest in unconventional resources; an analysis of the barriers that are hindering the development of unconventional resources; profiles of key producing regions; and, profiles of key unconventional oil and gas producers.

  6. Demand Response Research Center and Open Automated Demand Response

    Broader source: Energy.gov (indexed) [DOE]

    ... Capacity Bidding Real- Dme Pricing Demand Response Opportunities: Advance Notice and Duration of Response End Use Type Modulate OnOff Max. Response Time HVAC Chiller ...

  7. National Microalgae Biofuel Production Potential and Resource Demand

    SciTech Connect (OSTI)

    Wigmosta, Mark S.; Coleman, Andre M.; Skaggs, Richard; Huesemann, Michael H.; Lane, Leonard J.

    2011-04-14

    Microalgae continue to receive global attention as a potential sustainable "energy crop" for biofuel production. An important step to realizing the potential of algae is quantifying the demands commercial-scale algal biofuel production will place on water and land resources. We present a high-resolution national resource and oil production assessment that brings to bear fundamental research questions of where open pond microalgae production can occur, how much land and water resource is required, and how much energy is produced. Our study suggests under current technology microalgae have the potential to generate 220 billion liters/year of oil, equivalent to 48% of current U.S. petroleum imports for transportation fuels. However, this level of production would require 5.5% of the land area in the conterminous U.S., and nearly three times the volume of water currently used for irrigated agriculture, averaging 1,421 L water per L of oil. Optimizing the selection of locations for microalgae production based on water use efficiency can greatly reduce total water demand. For example, focusing on locations along the Gulf Coast, Southeastern Seaboard, and areas adjacent to the Great Lakes, shows a 75% reduction in water demand to 350 L per L of oil produced with a 67% reduction in land use. These optimized locations have the potential to generate an oil volume equivalent to 17% of imports for transportation fuels, equal to the Energy Independence and Security Act year 2022 "advanced biofuels" production target, and utilizing some 25% of the current irrigation consumptive water demand for the U. S. These results suggest that, with proper planning, adequate land and water are available to meet a significant portion of the U.S. renewable fuel goals.

  8. Upgrading Orinoco Belt heavy oil

    SciTech Connect (OSTI)

    Aliantara, J.; Castillo, O.

    1982-05-01

    Petroleos de Venezuela, S.A. (PDVSA), in an effort to develop new oil resources, has undertaken a program to evaluate and develop the Orinoco Heavy Oil Belt, in the eastern part of Venezuela. Lagoven, S.A., a subsidiary of PDVSA, has been assigned the responsibility for developing and upgrading part of the Orinoco belt. This paper describes the most relevant aspects of Lagoven's first upgrading module, a facility that will convert Orinoco oil into a premium crude with a very high yield of products of great market demand.

  9. Demand Response Technology Roadmap A

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    meetings and workshops convened to develop content for the Demand Response Technology Roadmap. The project team has developed this companion document in the interest of providing...

  10. DemandDirect | Open Energy Information

    Open Energy Info (EERE)

    DemandDirect Place: Woodbury, Connecticut Zip: 6798 Sector: Efficiency, Renewable Energy, Services Product: DemandDirect provides demand response, energy efficiency, load...

  11. Winners and losers from cheaper oil

    SciTech Connect (OSTI)

    Boyer, E.

    1984-11-26

    Oil prices are slipping despite OPEC's efforts to prop them up by cutting production. Abundant oil and slack demand will press prices into a substantial drop. That portends more growth, less inflation, and good news for industries, especially the airline and automobile industries. Banks and some oil companies could be hurt, but chemical and steel companies will benefit. Concerns that the country will drop conservation efforts overlook the efficiency improvements already embedded in new machinery and automobiles and the insulation installed in buildings.

  12. World oil trends

    SciTech Connect (OSTI)

    Anderson, A. )

    1991-01-01

    This book provides data on many facets of the world oil industry topics include; oil consumption; oils share of energy consumption; crude oil production; natural gas production; oil reserves; prices of oil; world refining capacity; and oil tankers.

  13. China energy databook. 1992 Edition

    SciTech Connect (OSTI)

    Sinton, J.E.; Levine, M.D.; Feng Liu; Davis, W.B.; Jiang Zhenping; Zhuang Xing; Jiang Kejun; Zhou Dadi

    1992-11-01

    The Energy Analysis Program (EAP) at the Lawrence Berkeley Laboratory (LBL) first becamc involved in Chinese energy issues through a joint China-US symposium on markets and demand for energy held in Nanjing in November of 1988. Discovering common interests, EAP began to collaborate on projects with the Energy Research Institute (ERI) of China`s State Planning Commission. In the course of this work it became clear that a major issue in the furtherance of our research was the acquisition of reliable data. In addition to other, more focused activities-evaluating programs of energy conservation undertaken in China and the prospects for making Chinese industries more energy-efficient, preparing historical reviews of energy supply and demand in the People`s Republic of China, sponsoring researchers from China to work with experts at LBL on such topics as energy efficiency standards for buildings, adaptation of US energy analysis software to Chinese conditions, and transportation issues-we decided to compile, assess, and organize Chinese energy data. We are hopeful that this volume will not only help us in our work, but help build a broader community of Chinese energy policy studies within the US.

  14. Energy Demand in China (Carbon Cycle 2.0)

    ScienceCinema (OSTI)

    Price, Lynn

    2011-06-08

    Lynn Price, LBNL scientist, speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

  15. Demand Response for Ancillary Services

    SciTech Connect (OSTI)

    Alkadi, Nasr E; Starke, Michael R

    2013-01-01

    Many demand response resources are technically capable of providing ancillary services. In some cases, they can provide superior response to generators, as the curtailment of load is typically much faster than ramping thermal and hydropower plants. Analysis and quantification of demand response resources providing ancillary services is necessary to understand the resources economic value and impact on the power system. Methodologies used to study grid integration of variable generation can be adapted to the study of demand response. In the present work, we describe and illustrate a methodology to construct detailed temporal and spatial representations of the demand response resource and to examine how to incorporate those resources into power system models. In addition, the paper outlines ways to evaluate barriers to implementation. We demonstrate how the combination of these three analyses can be used to translate the technical potential for demand response providing ancillary services into a realizable potential.

  16. Automated Demand Response and Commissioning

    SciTech Connect (OSTI)

    Piette, Mary Ann; Watson, David S.; Motegi, Naoya; Bourassa, Norman

    2005-04-01

    This paper describes the results from the second season of research to develop and evaluate the performance of new Automated Demand Response (Auto-DR) hardware and software technology in large facilities. Demand Response (DR) is a set of activities to reduce or shift electricity use to improve the electric grid reliability and manage electricity costs. Fully-Automated Demand Response does not involve human intervention, but is initiated at a home, building, or facility through receipt of an external communications signal. We refer to this as Auto-DR. The evaluation of the control and communications must be properly configured and pass through a set of test stages: Readiness, Approval, Price Client/Price Server Communication, Internet Gateway/Internet Relay Communication, Control of Equipment, and DR Shed Effectiveness. New commissioning tests are needed for such systems to improve connecting demand responsive building systems to the electric grid demand response systems.

  17. China facing revamp of outmoded crude tanker terminal system

    SciTech Connect (OSTI)

    Not Available

    1994-05-09

    Expectations of soaring growth in China's crude oil imports has officials taking another look at the country's coastal crude oil tanker terminals. At first glance, plans to add China's coastal tanker terminal capacity would seem to slightly exceed projected needs. However, officials say, existing major terminals are already woefully underutilized. That over capacity will only worsen as plans proceed to construct a number of major new terminals to accommodate the expected surge in calls by large ocean going tankers as exports increase. The paper describes China's existing crude tanker terminals, expansion plans, the reason for terminal underutilization, and the outlook for China becoming a net crude importer by 1995.

  18. The Development of Methanol Industry and Methanol Fuel in China

    SciTech Connect (OSTI)

    Li, W.Y.; Li, Z.; Xie, K.C.

    2009-07-01

    In 2007, China firmly established itself as the driver of the global methanol industry. The country became the world's largest methanol producer and consumer. The development of the methanol industry and methanol fuel in China is reviewed in this article. China is rich in coal but is short on oil and natural gas; unfortunately, transportation development will need more and more oil to provide the fuel. Methanol is becoming a dominant alternative fuel. China is showing the rest of the world how cleaner transportation fuels can be made from coal.

  19. Honeywell Demonstrates Automated Demand Response Benefits for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Honeywell Demonstrates Automated Demand Response Benefits for Utility, Commercial, and Industrial Customers Honeywell Demonstrates Automated Demand Response Benefits for Utility, ...

  20. Demand Response for Ancillary Services

    Office of Energy Efficiency and Renewable Energy (EERE)

    Methodologies used to study grid integration of variable generation can be adapted to the study of demand response. In the present work, we describe and implement a methodology to construct detailed temporal and spatial representations of demand response resources and to incorporate those resources into power system models. In addition, the paper outlines ways to evaluate barriers to implementation. We demonstrate how the combination of these three analyses can be used to assess economic value of the realizable potential of demand response for ancillary services.

  1. Imported resources - oil crude oil processing in the Czech Republic and its prospectives

    SciTech Connect (OSTI)

    Soucek, I.; Ottis, I.

    1995-12-01

    This paper examines the availability of various crude oils, addressing specifically crude oil pipelines to the Czech Republic, both existing and under construction. Secondly, the economic status of two main Czech refineries is examined in comparison to international trends, technical configurations, and product supply and demand.

  2. Demand Response- Policy: More Information

    Broader source: Energy.gov [DOE]

    OE's commitment to ensuring non-wires options to modernize the nation's electricity delivery system includes ongoing support of a number of national and regional activities in support of demand response.

  3. Residential Demand Module - NEMS Documentation

    Reports and Publications (EIA)

    2014-01-01

    Model Documentation - Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code.

  4. Industrial Demand Module - NEMS Documentation

    Reports and Publications (EIA)

    2014-01-01

    Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Module. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code.

  5. D1 Oils CEEP JV | Open Energy Information

    Open Energy Info (EERE)

    and the Center for Energy and Environment Protection (CEEP) to produce biodiesel from jatropha in southern China. References: D1 Oils & CEEP JV1 This article is a stub. You can...

  6. Demand Response Spinning Reserve Demonstration

    SciTech Connect (OSTI)

    Eto, Joseph H.; Nelson-Hoffman, Janine; Torres, Carlos; Hirth,Scott; Yinger, Bob; Kueck, John; Kirby, Brendan; Bernier, Clark; Wright,Roger; Barat, A.; Watson, David S.

    2007-05-01

    The Demand Response Spinning Reserve project is a pioneeringdemonstration of how existing utility load-management assets can providean important electricity system reliability resource known as spinningreserve. Using aggregated demand-side resources to provide spinningreserve will give grid operators at the California Independent SystemOperator (CAISO) and Southern California Edison (SCE) a powerful, newtool to improve system reliability, prevent rolling blackouts, and lowersystem operating costs.

  7. OIl Speculation

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... "detailed inventory data for China continues to test observers' powers of deduction. ... Table 2: Estimates and robust test statistics for the futures excess return forecasting ...

  8. PIA - Northeast Home Heating Oil Reserve System (Heating Oil...

    Energy Savers [EERE]

    Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil)...

  9. Venezuelan oil

    SciTech Connect (OSTI)

    Martinez, A.R. )

    1989-01-01

    Oil reserves have been known to exist in Venezuela since early historical records, however, it was not until the 20th century that the extensive search for new reserves began. The 1950's marked the height of oil exploration when 200 new oil fields were discovered, as well as over 60{percent} of proven reserves. Venezuela now produces one tone in seven of crude oil consumption and the country's abundant reserves such as the Bolivar Coastal field in the West of the country and the Orinoco Belt field in the East, will ensure it's continuing importance as an oil producer well into the 21st century. This book charts the historical development of Venezuela oil and provides a chronology of all the significant events which have shaped the oil industry of today. It covers all the technical, legal, economic and political factors which have contributed to the evolution of the industry and also gives information on current oil resources and production. Those events significant to the development of the industry, those which were influential in shaping future policy and those which precipitated further action are included. The book provides a source of reference to oil companies, oil economists and petroleum geologists.

  10. ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Fuel Oil Consumption and Expenditure Intensities for Non-Mall Buildings, 2003" ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures" ,"per Building (gallons)","per Square Foot...

  11. ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Fuel Oil Consumption and Expenditure Intensities, 1999" ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures" ,"per Building (gallons)","per Square Foot (gallons)","per Worker...

  12. Crude Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    Barrels) Product: Crude Oil Liquefied Petroleum Gases Distillate Fuel Oil Residual Fuel Oil Still Gas Petroleum Coke Marketable Petroleum Coke Catalyst Petroleum Coke Other Petroleum Products Natural Gas Coal Purchased Electricity Purchased Steam Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area 2010 2011 2012 2013 2014 2015 View History U.S. 0 0 0 0 0 0 1986-2015 East Coast (PADD 1) 0 0 0 0

  13. Impact and future of heavy oil produciton

    SciTech Connect (OSTI)

    Olsen, D.K, )

    1996-01-01

    Heavy oil resources are becoming increaingly important in meeting world oil demand. Heavy oil accounts for 10% of the worlds current oil production and is anticipated to grow significantly. Recent narrowing of the price margins between light and heavy oil and the development of regional heavy oil markets (production, refining and marketing) have prompted renewed investment in heavy oil. Production of well known heavy oil resources of Canada, Venezuela, United States, and elsewhere throughout the world will be expanded on a project-by-project basis. Custom refineries designed to process these heavy crudes are being expanded. Refined products from these crudes will be cleaner than ever before because of the huge investment. However, heavy oil still remains at a competitive disadvantage due to higher production, transportation and refining have to compete with other investment opportunities available in the industry. Expansion of the U.S. heavy oil industry is no exception. Relaxation of export restrictions on Alaskan North Slope crude has prompted renewed development of California's heavy oil resources. The location, resource volume, and oil properties of the more than 80-billion barrel U.S. heavy oil resource are well known. Our recent studies summarize the constraints on production, define the anticipated impact (volume, location and time frame) of development of U.S. heavy oil resources, and examines the $7-billion investment in refining units (bottoms conversion capacity) required to accommodate increased U.S. heavy oil production. Expansion of Canadian and Venezuelan heavy oil and tar sands production are anticipated to dramatically impact the U.S. petroleum market while displacing some imported Mideast crude.

  14. Impact and future of heavy oil produciton

    SciTech Connect (OSTI)

    Olsen, D.K,

    1996-12-31

    Heavy oil resources are becoming increaingly important in meeting world oil demand. Heavy oil accounts for 10% of the worlds current oil production and is anticipated to grow significantly. Recent narrowing of the price margins between light and heavy oil and the development of regional heavy oil markets (production, refining and marketing) have prompted renewed investment in heavy oil. Production of well known heavy oil resources of Canada, Venezuela, United States, and elsewhere throughout the world will be expanded on a project-by-project basis. Custom refineries designed to process these heavy crudes are being expanded. Refined products from these crudes will be cleaner than ever before because of the huge investment. However, heavy oil still remains at a competitive disadvantage due to higher production, transportation and refining have to compete with other investment opportunities available in the industry. Expansion of the U.S. heavy oil industry is no exception. Relaxation of export restrictions on Alaskan North Slope crude has prompted renewed development of California`s heavy oil resources. The location, resource volume, and oil properties of the more than 80-billion barrel U.S. heavy oil resource are well known. Our recent studies summarize the constraints on production, define the anticipated impact (volume, location and time frame) of development of U.S. heavy oil resources, and examines the $7-billion investment in refining units (bottoms conversion capacity) required to accommodate increased U.S. heavy oil production. Expansion of Canadian and Venezuelan heavy oil and tar sands production are anticipated to dramatically impact the U.S. petroleum market while displacing some imported Mideast crude.

  15. Environmental issues in China

    SciTech Connect (OSTI)

    Travis, P.S.

    1991-10-01

    Global concern about the environment is increasing, and the People's Republic of China (PRC) is not immune from such concerns. The Chinese face issues similar to those of many other developing nations. The US Department of Energy is particularly interested in national and world pollution issues, especially those that may infringe on other countries' economic growth and development. The DOE is also interested in any opportunities that might exist for US technical assistance and equipment in combating environmental problems. Our studies of articles in the China Daily, and English-language daily newspaper published by the Chinese government, show that population, pollution, and energy are major concerns of the Chinese Communist Party. Thus this report emphasizes the official Chinese government view. Supporting data were also obtained from other sources. Regardless of the severity of their various environmental problems, the Chinese will only try to remedy those problems with the greatest negative effects on its developing economy. They will be looking for foreign assistance, financial and informational, to help implement solutions. With the Chinese government seeking assistance, the United States has an opportunity to export basic technical information, especially in the areas of pollution control and monitoring, oil exploration methods, oil drilling technology, water and sewage treatment procedures, hazardous waste and nuclear waste handling techniques, and nuclear power plant safety procedures. In those areas the US has expertise and extensive technical experience, and by exporting the technologies the US would benefit both economically and politically. 59 refs., 3 figs.

  16. EIA projections of coal supply and demand

    SciTech Connect (OSTI)

    Klein, D.E.

    1989-10-23

    Contents of this report include: EIA projections of coal supply and demand which covers forecasted coal supply and transportation, forecasted coal demand by consuming sector, and forecasted coal demand by the electric utility sector; and policy discussion.

  17. Heading off the permanent oil crisis

    SciTech Connect (OSTI)

    MacKenzie, J.J.

    1996-11-01

    The 1996 spike in gasoline prices was not a signal of any fundamental worldwide shortage of crude oil. But based on a review of many studies of recoverable crude oil that have been published since the 1950s, it looks as though such a shortfall is now within sight. With world demand for oil growing at 2 percent per year, global production is likely to peak between the years 2007 and 2014. As this time approaches, we can expect prices to rise markedly and, most likely, permanently. Policy changes are needed now to ease the transition to high-priced oil. Oil production will continue, though at a declining rate, for many decades after its peak, and there are enormous amounts of coal, oil sands, heavy oil, and oil shales worldwide that could be used to produce liquid or gaseous substitutes for crude oil, albeit at higher prices. But the facilities for making such synthetic fuels are costly to build and environmentally damaging to operate, and their use would substantially increase carbon dioxide emissions (compared to emissions from products made from conventional crude oil). This paper examines ways of heading of the impending oil crisis. 8 refs., 3 figs.

  18. Marketing & Driving Demand: Social Media Tools & Strategies ...

    Office of Environmental Management (EM)

    Marketing & Driving Demand: Social Media Tools & Strategies - January 16, 2011 (Text Version) Marketing & Driving Demand: Social Media Tools & Strategies - January 16, 2011 (Text...

  19. Generating Demand for Multifamily Building Upgrades | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Generating Demand for Multifamily Building Upgrades Generating Demand for Multifamily Building Upgrades Better Buildings Residential Network Peer Exchange Call Series: Generating...

  20. Demand Management Institute (DMI) | Open Energy Information

    Open Energy Info (EERE)

    Demand Management Institute (DMI) Jump to: navigation, search Name: Demand Management Institute (DMI) Address: 35 Walnut Street Place: Wellesley, Massachusetts Zip: 02481 Region:...

  1. Generating Demand for Multifamily Building Upgrades | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Generating Demand for Multifamily Building Upgrades Generating Demand for Multifamily Building Upgrades Better Buildings Residential Network Peer Exchange Call Series: Generating ...

  2. Projecting Electricity Demand in 2050

    SciTech Connect (OSTI)

    Hostick, Donna J.; Belzer, David B.; Hadley, Stanton W.; Markel, Tony; Marnay, Chris; Kintner-Meyer, Michael C. W.

    2014-07-01

    This paper describes the development of end-use electricity projections and load curves that were developed for the Renewable Electricity (RE) Futures Study (hereafter RE Futures), which explored the prospect of higher percentages (30% - 90%) of total electricity generation that could be supplied by renewable sources in the United States. As input to RE Futures, two projections of electricity demand were produced representing reasonable upper and lower bounds of electricity demand out to 2050. The electric sector models used in RE Futures required underlying load profiles, so RE Futures also produced load profile data in two formats: 8760 hourly data for the year 2050 for the GridView model, and in 2-year increments for 17 time slices as input to the Regional Energy Deployment System (ReEDS) model. The process for developing demand projections and load profiles involved three steps: discussion regarding the scenario approach and general assumptions, literature reviews to determine readily available data, and development of the demand curves and load profiles.

  3. Promising Technology: Demand Control Ventilation

    Broader source: Energy.gov [DOE]

    Demand control ventilation (DCV) measures carbon dioxide concentrations in return air or other strategies to measure occupancy, and accurately matches the ventilation requirement. This system reduces ventilation when spaces are vacant or at lower than peak occupancy. When ventilation is reduced, energy savings are accrued because it is not necessary to heat, cool, or dehumidify as much outside air.

  4. Commercial Demand Module - NEMS Documentation

    Reports and Publications (EIA)

    2014-01-01

    Documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components.

  5. The commanding heights of oil: Control over the International oil market

    SciTech Connect (OSTI)

    Krapels, E.N.

    1992-01-01

    The Commanding Heights of Oil is an analysis of oil's role in the international environment. It identifies the degree of control over oil in terms of what is asserted as the most important processes and factors that determine the condition of international affairs: (1) The state of oil demand in relation to the capacity to supply, with special emphasis on the amount of spare production capacity; (2) The nature of the business, and how the structure of the industry changes over time as companies cope with the risks peculiar to an extremely capital intensive enterprise; (3) The financial strength of the parties contending for control, including their ability to outlast their opponents in contests for influence over oil affairs; and (4) The nature of the mechanisms whereby the governments and companies strive to create a situation in which they do not have to rely on price to balance supply and demand. Each of the four central factors was prominent at every major turn of the international oil market over the decades. The dissertation argues that the international oil market was controlled in the past by first a group of companies, and, later, a group of countries, for a combination of reasons that is unlikely to be repeated. That does not mean that the 1990s will be spared oil price shocks such as occurred in the 1970s and 1980s. It does suggest that those shocks are unlikely to last long, that OPEC members are unlikely to be able to leverage their position in oil into larger positions in world affairs. It means that oil is unlikely to play as prominent a role in world affairs in the 1990s as it has in the past, even if oil demand, and along with it dependence on OPEC oil, rises.

  6. Alcorn wells bolster Philippines oil production

    SciTech Connect (OSTI)

    Not Available

    1992-09-21

    This paper reports that Alcorn International Inc., Houston, is producing about 16,500 b/d of oil from West Linapacan A field in the South China Sea off the Philippines. The field's current production alone is more than fivefold the Philippines' total average oil flow of 3,000 b/d in 1991. It's part of a string of oil and gas strikes off Palawan Island that has made the region one of the hottest exploration/development plays in the Asia-Pacific theater.

  7. The alchemy of demand response: turning demand into supply

    SciTech Connect (OSTI)

    Rochlin, Cliff

    2009-11-15

    Paying customers to refrain from purchasing products they want seems to run counter to the normal operation of markets. Demand response should be interpreted not as a supply-side resource but as a secondary market that attempts to correct the misallocation of electricity among electric users caused by regulated average rate tariffs. In a world with costless metering, the DR solution results in inefficiency as measured by deadweight losses. (author)

  8. Addressing Energy Demand through Demand Response. International Experiences and Practices

    SciTech Connect (OSTI)

    Shen, Bo; Ghatikar, Girish; Ni, Chun Chun; Dudley, Junqiao; Martin, Phil; Wikler, Greg

    2012-06-01

    Demand response (DR) is a load management tool which provides a cost-effective alternative to traditional supply-side solutions to address the growing demand during times of peak electrical load. According to the US Department of Energy (DOE), demand response reflects “changes in electric usage by end-use customers from their normal consumption patterns in response to changes in the price of electricity over time, or to incentive payments designed to induce lower electricity use at times of high wholesale market prices or when system reliability is jeopardized.” 1 The California Energy Commission (CEC) defines DR as “a reduction in customers’ electricity consumption over a given time interval relative to what would otherwise occur in response to a price signal, other financial incentives, or a reliability signal.” 2 This latter definition is perhaps most reflective of how DR is understood and implemented today in countries such as the US, Canada, and Australia where DR is primarily a dispatchable resource responding to signals from utilities, grid operators, and/or load aggregators (or DR providers).

  9. High-Temperature Nuclear Reactors for In-Situ Recovery of Oil from Oil Shale

    SciTech Connect (OSTI)

    Forsberg, Charles W.

    2006-07-01

    The world is exhausting its supply of crude oil for the production of liquid fuels (gasoline, jet fuel, and diesel). However, the United States has sufficient oil shale deposits to meet our current oil demands for {approx}100 years. Shell Oil Corporation is developing a new potentially cost-effective in-situ process for oil recovery that involves drilling wells into oil shale, using electric heaters to raise the bulk temperature of the oil shale deposit to {approx}370 deg C to initiate chemical reactions that produce light crude oil, and then pumping the oil to the surface. The primary production cost is the cost of high-temperature electrical heating. Because of the low thermal conductivity of oil shale, high-temperature heat is required at the heater wells to obtain the required medium temperatures in the bulk oil shale within an economically practical two to three years. It is proposed to use high-temperature nuclear reactors to provide high-temperature heat to replace the electricity and avoid the factor-of-2 loss in converting high-temperature heat to electricity that is then used to heat oil shale. Nuclear heat is potentially viable because many oil shale deposits are thick (200 to 700 m) and can yield up to 2.5 million barrels of oil per acre, or about 125 million dollars/acre of oil at $50/barrel. The concentrated characteristics of oil-shale deposits make it practical to transfer high-temperature heat over limited distances from a reactor to the oil shale deposits. (author)

  10. China's sustainable energy future: Scenarios of energy and carbonemissions (Summary)

    SciTech Connect (OSTI)

    Zhou, Dadi; Levine, Mark; Dai, Yande; Yu, Cong; Guo, Yuan; Sinton, Jonathan E.; Lewis, Joanna I.; Zhu, Yuezhong

    2004-03-10

    :Depending on how demand for energy services is met, China could quadrupleits gross domestic product between 1998 and 2020 with energy use risingby 70 percent to 130 percent (Figure 1). Continual progress in improvingthe efficiency and structure of industry is crucial to maintainingeconomic growth with minimal growth in energy use. In some industries,output may grow with no rise in energy use at all. Swelling ranks ofmotor vehicles will deepen China's dependence on imported oil up to 320Mt per year by 2020 an amount that global markets can easily supply. Tomoderate growth in transportation energy use, the strong promotion ofconvenient public transport will be needed in addition to tighter fuelefficiency standards and advanced vehicles. Fuel switching, efficientappliances, better heating and cooling systems, and improved buildingenvelope technologies will be needed in the fast-growing buildingssector. By 2020, China will still b

  11. China’s rare earth supply chain: Illegal production, and response to new cerium demand

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Nguyen, Ruby Thuy; Imholte, D. Devin

    2016-03-29

    As the demand for personal electronic devices, wind turbines, and electric vehicles increases, the world becomes more dependent on rare earth elements. Given the volatile, Chinese-concentrated supply chain, global attempts have been made to diversify supply of these materials. However, the overall effect of supply diversification on the entire supply chain, including increasing low-value rare earth demand, is not fully understood. This paper is the first attempt to shed some light on China’s supply chain from both demand and supply perspectives, taking into account different Chinese policies such as mining quotas, separation quotas, export quotas, and resource taxes. We constructedmore » a simulation model using Powersim Studio that analyzes production (both legal and illegal), production costs, Chinese and rest-of-world demand, and market dynamics. We also simulated new demand of an automotive aluminum-cerium alloy in the U.S. market starting from 2018. Results showed that market share of the illegal sector has grown since 2007 to 2015, ranging between 22% and 25% of China’s rare earth supply, translating into 59–65% illegal heavy rare earths and 14–16% illegal light rare earths. There would be a shortage in certain light and heavy rare earths given three production quota scenarios and constant demand growth rate from 2015 to 2030. The new simulated Ce demand would require supply beyond that produced in China. Lastly, we illustrated revenue streams for different ore compositions in China in 2015.« less

  12. Climate Mitigation Policy Implications for Global Irrigation Water Demand

    SciTech Connect (OSTI)

    Chaturvedi, Vaibhav; Hejazi, Mohamad I.; Edmonds, James A.; Clarke, Leon E.; Kyle, G. Page; Davies, Evan; Wise, Marshall A.

    2013-08-22

    emissions go un-priced. Finally we estimates that the geospatial pattern of water demands could stress some parts of the world, e.g. China, India and other countries in south and east Asia, earlier and more intensely than in other parts of the world, e.g. North America.

  13. China has 6,000-mile pipeline system

    SciTech Connect (OSTI)

    Ming, S.

    1983-08-01

    A dramatic change has taken place in China's oil transport system, with pipelines replacing tank-cars as the most important means of transport for crude oil and petroleum products. According to Petroleum Ministry officials, the volume of crude oil carried by China's pipeline system increased from 23.2 percent in 1971 to 65.6 percent in 1981, while the volume delivered by tank-cars declined from 61.11 percent to 8.4 percent. The remainder was transported by tankers. China's 9,700 km (6,000-mile) pipeline network includes 5,600 km (3,500 miles) designed to carry crude oil and more than 600 km (375 miles) for petroleum products, plus 3,400 km (2,100 miles), mostly in Sichuan province, for natural gas.

  14. Note on the structural stability of gasoline demand and the welfare economics of gasoline taxation

    SciTech Connect (OSTI)

    Kwast, M.L.

    1980-04-01

    A partial adjustment model is used to investigate how the 1973 to 1974 oil embargo affected the structural stability of gasoline demand and to compute the welfare effects of higher gasoline taxes. A variety of statistical tests are used to demonstrate the structural stability of gasoline demand in spite of higher prices. A case study demonstrates only modest price elasticity in response to increased taxes. Higher excise taxes are felt to be justified, however, as an efficient source of revenue even though their effect on demand is limited. 17 references, 4 tables. (DCK)

  15. STEO December 2012 - coal demand

    U.S. Energy Information Administration (EIA) Indexed Site

    coal demand seen below 1 billion tons in 2012 for fourth year in a row Coal consumption by U.S. power plants to generate electricity is expected to fall below 1 billion tons in 2012 for the fourth year in a row. Domestic coal consumption is on track to total 829 million tons this year. That's the lowest level since 1992, according to the U.S. Energy Information Administration's new monthly energy forecast. Utilities and power plant operators are choosing to burn more lower-priced natural gas

  16. Prospects for the medium- and long-term development of China`s electric power industry and analysis of the potential market for superconductivity technology

    SciTech Connect (OSTI)

    Li, Z.

    1998-05-01

    First of all, overall economic growth objectives in China are concisely and succinctly specified in this report. Secondly, this report presents a forecast of energy supply and demand for China`s economic growth for 2000--2050. In comparison with the capability of energy construction in China in the future, a gap between supply and demand is one of the important factors hindering the sustainable development of Chain`s economy. The electric power industry is one of China`s most important industries. To adopt energy efficiency through high technology and utilizing energy adequately is an important technological policy for the development of China`s electric power industry in the future. After briefly describing the achievements of China`s electric power industry, this report defines the target areas and policies for the development of hydroelectricity and nuclear electricity in the 2000s in China, presents the strategic position of China`s electric power industry as well as objectives and relevant plans of development for 2000--2050. This report finds that with the discovery of superconducting electricity, the discovery of new high-temperature superconducting (HTS) materials, and progress in materials techniques, the 21st century will be an era of superconductivity. Applications of superconductivity in the energy field, such as superconducting storage, superconducting transmission, superconducting transformers, superconducting motors, its application in Magneto-Hydro-Dynamics (MHD), as well as in nuclear fusion, has unique advantages. Its market prospects are quite promising. 12 figs.

  17. Flexibility in heavy oil upgrading with unicracking/HDS technology

    SciTech Connect (OSTI)

    Hennig, H.; Baron, K.; Moorhead, E.L.; Smith, M.

    1984-03-01

    With petroleum reserves becoming heavier and the demand for bottom of the barrel products greatly reduced, refiners are increasing their capabilities to upgrade heavy oil. Many heavy oil upgrading options are available and the best strategy for each refiner is not obvious. The best approach will depend on the specific circumstances and goals of the refiner. This presentation discusses the relative merits of several heavy oil upgrading options utilizing the Unicracking/HDS process.

  18. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Expenditures by Census Region for All Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per...

  19. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  20. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    . Fuel Oil Expenditures by Census Region for Non-Mall Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per...

  1. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for Non-Mall Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  2. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Fuel Oil Expenditures by Census Region, 1999" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per Square Foot"...

  3. Hythane project by Hydrogen China Ltd and China Railway Construction...

    Open Energy Info (EERE)

    project by Hydrogen China Ltd and China Railway Construction Corporation Jump to: navigation, search Name: Hythane project by Hydrogen China Ltd and China Railway Construction...

  4. Demand Response Valuation Frameworks Paper

    SciTech Connect (OSTI)

    Heffner, Grayson

    2009-02-01

    While there is general agreement that demand response (DR) is a valued component in a utility resource plan, there is a lack of consensus regarding how to value DR. Establishing the value of DR is a prerequisite to determining how much and what types of DR should be implemented, to which customers DR should be targeted, and a key determinant that drives the development of economically viable DR consumer technology. Most approaches for quantifying the value of DR focus on changes in utility system revenue requirements based on resource plans with and without DR. This ''utility centric'' approach does not assign any value to DR impacts that lower energy and capacity prices, improve reliability, lower system and network operating costs, produce better air quality, and provide improved customer choice and control. Proper valuation of these benefits requires a different basis for monetization. The review concludes that no single methodology today adequately captures the wide range of benefits and value potentially attributed to DR. To provide a more comprehensive valuation approach, current methods such as the Standard Practice Method (SPM) will most likely have to be supplemented with one or more alternative benefit-valuation approaches. This report provides an updated perspective on the DR valuation framework. It includes an introduction and four chapters that address the key elements of demand response valuation, a comprehensive literature review, and specific research recommendations.

  5. Trends in heavy oil production and refining in California

    SciTech Connect (OSTI)

    Olsen, D.K.; Ramzel, E.B.; Pendergrass, R.A. II

    1992-07-01

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production and is part of a study being conducted for the US Department of Energy. This report summarizes trends in oil production and refining in Canada. Heavy oil (10{degrees} to 20{degrees} API gravity) production in California has increased from 20% of the state`s total oil production in the early 1940s to 70% in the late 1980s. In each of the three principal petroleum producing districts (Los Angeles Basin, Coastal Basin, and San Joaquin Valley) oil production has peaked then declined at different times throughout the past 30 years. Thermal production of heavy oil has contributed to making California the largest producer of oil by enhanced oil recovery processes in spite of low oil prices for heavy oil and stringent environmental regulation. Opening of Naval Petroleum Reserve No. 1, Elk Hills (CA) field in 1976, brought about a major new source of light oil at a time when light oil production had greatly declined. Although California is a major petroleum-consuming state, in 1989 the state used 13.3 billion gallons of gasoline or 11.5% of US demand but it contributed substantially to the Nation`s energy production and refining capability. California is the recipient and refines most of Alaska`s 1.7 million barrel per day oil production. With California production, Alaskan oil, and imports brought into California for refining, California has an excess of oil and refined products and is a net exporter to other states. The local surplus of oil inhibits exploitation of California heavy oil resources even though the heavy oil resources exist. Transportation, refining, and competition in the market limit full development of California heavy oil resources.

  6. Trends in heavy oil production and refining in California

    SciTech Connect (OSTI)

    Olsen, D.K.; Ramzel, E.B.; Pendergrass, R.A. II.

    1992-07-01

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production and is part of a study being conducted for the US Department of Energy. This report summarizes trends in oil production and refining in Canada. Heavy oil (10{degrees} to 20{degrees} API gravity) production in California has increased from 20% of the state's total oil production in the early 1940s to 70% in the late 1980s. In each of the three principal petroleum producing districts (Los Angeles Basin, Coastal Basin, and San Joaquin Valley) oil production has peaked then declined at different times throughout the past 30 years. Thermal production of heavy oil has contributed to making California the largest producer of oil by enhanced oil recovery processes in spite of low oil prices for heavy oil and stringent environmental regulation. Opening of Naval Petroleum Reserve No. 1, Elk Hills (CA) field in 1976, brought about a major new source of light oil at a time when light oil production had greatly declined. Although California is a major petroleum-consuming state, in 1989 the state used 13.3 billion gallons of gasoline or 11.5% of US demand but it contributed substantially to the Nation's energy production and refining capability. California is the recipient and refines most of Alaska's 1.7 million barrel per day oil production. With California production, Alaskan oil, and imports brought into California for refining, California has an excess of oil and refined products and is a net exporter to other states. The local surplus of oil inhibits exploitation of California heavy oil resources even though the heavy oil resources exist. Transportation, refining, and competition in the market limit full development of California heavy oil resources.

  7. Modeling the infrastructure dynamics of China -- Water, agriculture, energy, and greenhouse gases

    SciTech Connect (OSTI)

    Conrad, S.H.; Drennen, T.E.; Engi, D.; Harris, D.L.; Jeppesen, D.M.; Thomas, R.P.

    1998-08-01

    A comprehensive critical infrastructure analysis of the People`s Republic of China was performed to address questions about China`s ability to meet its long-term grain requirements and energy needs and to estimate greenhouse gas emissions in China likely to result from increased agricultural production and energy use. Four dynamic computer simulation models of China`s infrastructures--water, agriculture, energy and greenhouse gas--were developed to simulate, respectively, the hydrologic budgetary processes, grain production and consumption, energy demand, and greenhouse gas emissions in China through 2025. The four models were integrated into a state-of-the-art comprehensive critical infrastructure model for all of China. This integrated model simulates diverse flows of commodities, such as water and greenhouse gas, between the separate models to capture the overall dynamics of the integrated system. The model was used to generate projections of China`s available water resources and expected water use for 10 river drainage regions representing 100% of China`s mean annual runoff and comprising 37 major river basins. These projections were used to develop estimates of the water surpluses and/or deficits in the three end-use sectors--urban, industrial, and agricultural--through the year 2025. Projections of the all-China demand for the three major grains (corn, wheat, and rice), meat, and other (other grains and fruits and vegetables) were also generated. Each geographic region`s share of the all-China grain demand (allocated on the basis of each region`s share of historic grain production) was calculated in order to assess the land and water resources in each region required to meet that demand. Growth in energy use in six historically significant sectors and growth in greenhouse gas loading were projected for all of China.

  8. ECOtality China | Open Energy Information

    Open Energy Info (EERE)

    ECOtality China Jump to: navigation, search Name: ECOtality China Place: China Product: China-based manufacturer of electric vehicle charging systems. References: ECOtality...

  9. Coordination of Energy Efficiency and Demand Response

    SciTech Connect (OSTI)

    none,

    2010-01-01

    Summarizes existing research and discusses current practices, opportunities, and barriers to coordinating energy efficiency and demand response programs.

  10. Isotope Production in Light of Increasing Demand

    SciTech Connect (OSTI)

    Patton, B.

    2004-10-05

    This presentation is a part of the panel discussion on isotope production in light of increasing demand.

  11. Fact #669: April 4, 2011 GM Sells More Vehicles in China than in the U.S. |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 9: April 4, 2011 GM Sells More Vehicles in China than in the U.S. Fact #669: April 4, 2011 GM Sells More Vehicles in China than in the U.S. For the first time ever, General Motors (GM) sold more cars and trucks in China than in the United States. The demand in China grew by 29% from 2009 to 2010, while demand in the U.S. grew 6%. These data include cars, light trucks, and heavy trucks. General Motors Vehicle Deliveries to China and the U.S., 2009-10 Bar graph showing the

  12. Energy demand and population changes

    SciTech Connect (OSTI)

    Allen, E.L.; Edmonds, J.A.

    1980-12-01

    Since World War II, US energy demand has grown more rapidly than population, so that per capita consumption of energy was about 60% higher in 1978 than in 1947. Population growth and the expansion of per capita real incomes have led to a greater use of energy. The aging of the US population is expected to increase per capita energy consumption, despite the increase in the proportion of persons over 65, who consume less energy than employed persons. The sharp decline in the population under 18 has led to an expansion in the relative proportion of population in the prime-labor-force age groups. Employed persons are heavy users of energy. The growth of the work force and GNP is largely attributable to the growing participation of females. Another important consequence of female employment is the growth in ownership of personal automobiles. A third factor pushing up labor-force growth is the steady influx of illegal aliens.

  13. SOVENT BASED ENHANCED OIL RECOVERY FOR IN-SITU UPGRADING OF HEAVY OIL SANDS

    SciTech Connect (OSTI)

    Munroe, Norman

    2009-01-30

    With the depletion of conventional crude oil reserves in the world, heavy oil and bitumen resources have great potential to meet the future demand for petroleum products. However, oil recovery from heavy oil and bitumen reservoirs is much more difficult than that from conventional oil reservoirs. This is mainly because heavy oil or bitumen is partially or completely immobile under reservoir conditions due to its extremely high viscosity, which creates special production challenges. In order to overcome these challenges significant efforts were devoted by Applied Research Center (ARC) at Florida International University and The Center for Energy Economics (CEE) at the University of Texas. A simplified model was developed to assess the density of the upgraded crude depending on the ratio of solvent mass to crude oil mass, temperature, pressure and the properties of the crude oil. The simplified model incorporated the interaction dynamics into a homogeneous, porous heavy oil reservoir to simulate the dispersion and concentration of injected CO2. The model also incorporated the characteristic of a highly varying CO2 density near the critical point. Since the major challenge in heavy oil recovery is its high viscosity, most researchers have focused their investigations on this parameter in the laboratory as well as in the field resulting in disparaging results. This was attributed to oil being a complex poly-disperse blend of light and heavy paraffins, aromatics, resins and asphaltenes, which have diverse behaviors at reservoir temperature and pressures. The situation is exacerbated by a dearth of experimental data on gas diffusion coefficients in heavy oils due to the tedious nature of diffusivity measurements. Ultimately, the viscosity and thus oil recovery is regulated by pressure and its effect on the diffusion coefficient and oil swelling factors. The generation of a new phase within the crude and the differences in mobility between the new crude matrix and the

  14. LNG markets: Implications of a low energy price environment for demand and U.S. exports

    U.S. Energy Information Administration (EIA) Indexed Site

    Breakout session: LNG markets: Implications of a low energy price environment for demand and U.S. exports LNG: Long-Term Competitiveness in Asian Markets Keo Lukefahr PetroChina International (America), Inc. July 11, 2016 2 Disclaimer No representation or warranty, express or implied, is or will be made in relation to the accuracy or completeness of the information in this presentation and no responsibility or liability is or will be accepted by PetroChina or any of its respective subsidiaries,

  15. Soviet Union oil sector outlook grows bleaker still

    SciTech Connect (OSTI)

    Not Available

    1991-08-12

    This paper reports on the outlook for the U.S.S.R's oil sector which grows increasingly bleak and with it prospects for the Soviet economy. Plunging Soviet oil production and exports have analysts revising near term oil price outlooks, referring to the Soviet oil sector's self-destructing and Soviet oil production in a freefall. County NatWest, Washington, citing likely drops in Soviet oil production and exports (OGJ, Aug. 5, p. 16), has jumped its projected second half spot price for West Texas intermediate crude by about $2 to $22-23/bbl. Smith Barney, New York, forecasts WTI postings at $24-25/bbl this winter, largely because of seasonally strong world oil demand and the continued collapse in Soviet oil production. It estimates the call on oil from the Organization of Petroleum Exporting Countries at more than 25 million b/d in first quarter 1992. That would be the highest level of demand for OPEC oil since 1980, Smith Barney noted.

  16. Green lights program in China

    SciTech Connect (OSTI)

    Dadi, Zhuo; Hong, Liu

    1996-12-31

    In China`s 9th 5-year plan (1996-2000), the Chinese government has placed high priority on energy conservation. The China Green Lights Program (CGLP) is listed as one of the key projects of energy conservation. The basic strategy of the CGLP is to mobilise all of the potential contributors to participate in the program, and to use market signals and supplementary non-market instruments to facilitate its implementation. Governmental funds and loans will be used as seed money to attract private participation in the program. The program contains the following elements: (1) Information dissemination to educate the public on the economic and other values of the program and to provide CGLP information to increase consumer awareness and, as a result, increase the demand for energy-efficient lighting systems. (2) Development of standards and codes for lighting systems, establishment of product specifications, and enforcement of product standards. (3) Development of quality certification and labelling system to provide assurances to consumers that the products they are purchasing will meet their performance and cost saving expectations. (4) Highlighted support and financing for production technology development and production capacity expansion. (5) Demonstration and pilot projects to boost consumer confidence in green lighting systems and to demonstrate new production technologies and processes. (6) International co-operation to expand the international exchange and absorb advanced technology and experience for implementation of the China Green Lights Program.

  17. China energy databook. Revision 2, 1992 edition

    SciTech Connect (OSTI)

    Sinton, J.E.; Levine, M.D.; Liu, Feng; Davis, W.B.; Jiang Zhenping; Zhuang Xing; Jiang Kejun; Zhou Dadi

    1993-06-01

    The Energy Analysis Program at the Lawrence Berkeley Laboratory (LBL) first became involved in Chinese energy issues through a joint China-US symposium on markets and demand for energy held in Nanjing in November of 1988. Discovering common interests, EAP began to collaborate on projects with the Energy Research Institute of China`s State Planning Commission. In the course of this work it became clear that a major issue in the furtherance of our research was the acquisition of reliable data. In addition to other, more focused activities-evaluating programs of energy conservation undertaken in China and the prospects for making Chinese industries more energy-efficient, preparing historical reviews of energy supply and demand in the People`s Republic of China, sponsoring researchers from China to work with experts at LBL on such topics as energy efficiency standards for buildings, adaptation of US energy analysis software to Chinese conditions, and transportation issues, we decided to compile, assess, and organize Chinese energy data. We are hopeful that this volume will not only help us in our work, but help build a broader community of Chinese energy policy studies within the US. In order to select appropriate data from what was available we established several criteria. Our primary interest was to use the data to help understand the historical evolution and likely future of the Chinese energy system. A primary criterion was thus that the data relate to the structure of energy supply and demand in the past and indicate probable developments (e.g., as indicated by patterns of investment). Other standards were accuracy, consistency with other information, and completeness of coverage. This is not to say that all the data presented herein are accurate, consistent, and complete, but where discrepancies and omissions do occur we have tried to note them.

  18. PIA - Northeast Home Heating Oil Reserve System (Heating Oil...

    Broader source: Energy.gov (indexed) [DOE]

    Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) (3.31 MB) More Documents & Publications PIA - WEB Physical ...

  19. FCC Pilot Plant Results with Vegetable Oil and Pyrolysis Oil...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FCC Pilot Plant Results with Vegetable Oil and Pyrolysis Oil Feeds FCC Pilot Plant Results with Vegetable Oil and Pyrolysis Oil Feeds Breakout Session 2: Frontiers and Horizons ...

  20. Energy trump for Morocco: the oil shales

    SciTech Connect (OSTI)

    Rosa, S.D.

    1981-10-01

    The mainstays of the economy in Morocco are still agriculture and phosphates; the latter represent 34% of world exports. Energy demand in 1985 will be probably 3 times that in 1975. Most of the oil, which covers 82% of its energy needs, must be imported. Other possible sources are the rich oil shale deposits and nuclear energy. Four nuclear plants with a total of 600 MW are projected, but shale oil still will play an important role. A contract for building a pilot plant has been met recently. The plant is to be located at Timahdit and cost $13 million, for which a loan from the World Bank has been requested. If successful in the pilot plant, the process will be used in full scale plants scheduled to produce 400,000 tons/yr of oil. Tosco also has a contract for a feasibility study.

  1. AMF Deployment, Shouxian, China

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    China Shouxian Deployment AMF Home Shouxian Home Data Plots and Baseline Instruments ... AMF Poster, Mandarin Version News Campaign Images AMF Deployment, Shouxian, China In its ...

  2. BPA, Energy Northwest launch demand response pilot

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BPA-Energy-Northwest-launch-demand-response-pilot Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects & Initiatives Expand...

  3. Reducing Logistics Footprints and Replenishment Demands: Nano...

    Office of Scientific and Technical Information (OSTI)

    Logistics Footprints and Replenishment Demands: Nano-engineered Silica Aerogels a Proven Method for Water Treatment Citation Details In-Document Search Title: Reducing Logistics ...

  4. Reducing Logistics Footprints and Replenishment Demands: Nano...

    Office of Scientific and Technical Information (OSTI)

    Water Treatment Citation Details In-Document Search Title: Reducing Logistics Footprints and Replenishment Demands: Nano-engineered Silica Aerogels a Proven Method for Water ...

  5. Demand Response and Energy Storage Integration Study

    Broader source: Energy.gov [DOE]

    Demand response and energy storage resources present potentially important sources of bulk power system services that can aid in integrating variable renewable generation. While renewable...

  6. Geographically Based Hydrogen Demand and Infrastructure Rollout...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rollout Scenario Analysis Geographically Based Hydrogen Demand and Infrastructure Rollout Scenario Analysis Presentation by Margo Melendez at the 2010-2025 Scenario Analysis for ...

  7. Demand Response Performance and Communication Strategy: AHRI...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 Demand Response Performance and Communication Strategy: AHRI and CEE DOE Building Technologies Office Conference NREL, Golden, Colorado, May 1, 2014 | 2 A Growing Crisis: Peak ...

  8. Demand Response - Policy | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    OE's mission includes assisting states and regions in developing policies that decrease demand on existing energy infrastructure. Appropriate cost-effective demandresponse ...

  9. Energy Efficiency, Demand Response, and Volttron

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ENERGY EFFICIENCY, DEMAND RESPONSE, AND VOLTTRON Presented by Justin Sipe SEEMINGLY SIMPLE STATEMENTS Utilities need more capacity to handle growth on the grid ...

  10. Demand Response (transactional control) - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Analysis Energy Analysis Electricity Transmission Electricity Transmission Find More Like This Return to Search Demand Response (transactional control) Pacific Northwest ...

  11. Retail Demand Response in Southwest Power Pool

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LBNL-1470E Retail Demand Response in Southwest Power Pool Ranjit Bharvirkar, Grayson Heffner and Charles Goldman Lawrence Berkeley National Laboratory Environmental Energy ...

  12. Distributed Automated Demand Response - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Analysis Energy Analysis Electricity Transmission Electricity Transmission Find More Like This Return to Search Distributed Automated Demand Response Lawrence Livermore ...

  13. Integration of Demand Side Management, Distributed Generation...

    Open Energy Info (EERE)

    various aspects of demand response, distributed generation, smart grid and energy storage. Annex 9 is a list of pilot programs and case studies, with links to those...

  14. Demand Response in the ERCOT Markets

    SciTech Connect (OSTI)

    Patterson, Mark

    2011-10-25

    ERCOT grid serves 85% of Texas load over 40K+ miles transmission line. Demand response: voluntary load response, load resources, controllable load resources, and emergency interruptible load service.

  15. Marketing & Driving Demand Collaborative - Social Media Tools...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Using Social Media for Long-Term Branding Marketing & Driving Demand: Social Media Tools & Strategies - January 16, 2011 (Text Version) Generating ...

  16. Geographically Based Hydrogen Consumer Demand and Infrastructure...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geographically Based Hydrogen Consumer Demand and Infrastructure Analysis Final Report M. Melendez and A. Milbrandt Technical Report NRELTP-540-40373 October 2006 NREL is operated...

  17. Fabricate-on-Demand Vacuum Insulating Glazings

    Broader source: Energy.gov [DOE]

    PPG is working to design a fabricate-on-demand process to overcome the cost and supply chain issues preventing widespread adoption of vacuum insulating glazings (VIGs).

  18. Robust Unit Commitment Considering Uncertain Demand Response

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, Guodong; Tomsovic, Kevin

    2014-09-28

    Although price responsive demand response has been widely accepted as playing an important role in the reliable and economic operation of power system, the real response from demand side can be highly uncertain due to limited understanding of consumers' response to pricing signals. To model the behavior of consumers, the price elasticity of demand has been explored and utilized in both research and real practice. However, the price elasticity of demand is not precisely known and may vary greatly with operating conditions and types of customers. To accommodate the uncertainty of demand response, alternative unit commitment methods robust to themore » uncertainty of the demand response require investigation. In this paper, a robust unit commitment model to minimize the generalized social cost is proposed for the optimal unit commitment decision taking into account uncertainty of the price elasticity of demand. By optimizing the worst case under proper robust level, the unit commitment solution of the proposed model is robust against all possible realizations of the modeled uncertain demand response. Numerical simulations on the IEEE Reliability Test System show the e ectiveness of the method. Finally, compared to unit commitment with deterministic price elasticity of demand, the proposed robust model can reduce the average Locational Marginal Prices (LMPs) as well as the price volatility.« less

  19. Robust Unit Commitment Considering Uncertain Demand Response

    SciTech Connect (OSTI)

    Liu, Guodong; Tomsovic, Kevin

    2014-09-28

    Although price responsive demand response has been widely accepted as playing an important role in the reliable and economic operation of power system, the real response from demand side can be highly uncertain due to limited understanding of consumers' response to pricing signals. To model the behavior of consumers, the price elasticity of demand has been explored and utilized in both research and real practice. However, the price elasticity of demand is not precisely known and may vary greatly with operating conditions and types of customers. To accommodate the uncertainty of demand response, alternative unit commitment methods robust to the uncertainty of the demand response require investigation. In this paper, a robust unit commitment model to minimize the generalized social cost is proposed for the optimal unit commitment decision taking into account uncertainty of the price elasticity of demand. By optimizing the worst case under proper robust level, the unit commitment solution of the proposed model is robust against all possible realizations of the modeled uncertain demand response. Numerical simulations on the IEEE Reliability Test System show the e ectiveness of the method. Finally, compared to unit commitment with deterministic price elasticity of demand, the proposed robust model can reduce the average Locational Marginal Prices (LMPs) as well as the price volatility.

  20. Characteristics and upgrading technologies of Chinese heavy oil

    SciTech Connect (OSTI)

    Ghuang Yang; Jinsen Gao

    1995-12-31

    The characteristics of typical Chinese heavy oils produced in the eastern, northwestern, and northeastern parts of China are presented to show the uniqueness of heavy oils on the Chinese mainland. Henceforth, upgrading technologies of Chinese domestic heavy crudes are discussed along this line. Two main categories of upgrading technologies, decarbonization and hydrogenation, as realized or being developed in this country are presented. It is concluded that most Chinese heavy crudes are adaptable to conventional upgrading processes.

  1. Development and utilization of new and renewable energy with Stirling engine system for electricity in China

    SciTech Connect (OSTI)

    Dong, W.; Abenavoli, R.I.; Carlini, M.

    1996-12-31

    China is the largest developing country in the world. Self-supporting and self-sustaining energy supply is the only solution for development. Recently, fast economic development exposed gradually increasing pressure of energy demand and environment concern. In order to increase the production of electricity of China, the Stirling engine system should be developed. This paper provides an investigation of energy production and consumption in China. The main features of the energy consumption and the development objectives of China`s electric power industry are also described. The necessity and possibility of development of Stirling engine system is discussed.

  2. Impacts of Demand-Side Resources on Electric Transmission Planning...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Impacts of Demand-Side Resources on Electric Transmission Planning Will demand resources such as energy efficiency (EE), demand response (DR), and distributed generation (DG) have ...

  3. Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures...

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Total Fuel Oil Consumption and Expenditures for All Buildings, 2003" ,"All Buildings Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings...

  4. Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures...

    U.S. Energy Information Administration (EIA) Indexed Site

    . Total Fuel Oil Consumption and Expenditures for Non-Mall Buildings, 2003" ,"All Buildings* Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings...

  5. Sino/American cooperation for PV development in the People`s Republic of China

    SciTech Connect (OSTI)

    Wallace, W.L.; Tsuo, Y.S.

    1996-05-01

    Rapid growth in economic development, coupled with the absence of an electric grid in large areas of the rural countryside, have created a need for new energy sources both in urban centers and rural areas in China. Environmental pollution from the increased use of coal-fired steam turbines to meet this capacity expansion is a concern. There is a growing interest in China to develop renewable-energy resources and technologies to meet energy demands and help mitigate pollution problems. In February 1995, Secretary Hazel O`Leary of the U.S. Department of Energy signed an Energy Efficiency and Renewable Energy Protocol Agreement with the Chinese State Science and Technology Commission in Beijing, China. Under this agreement, projects using photovoltaics for rural electrification are being conducted in Gansu Province in western China and Inner Mongolia in northern China, providing the basis for much wider deployment and use of photovoltaics for meeting the growing rural energy demands of China.

  6. Microsoft Word - high-oil-price.doc

    Gasoline and Diesel Fuel Update (EIA)

    Short Term Energy Outlook 1 STEO Supplement: Why are oil prices so high? During most of the 1990s, the West Texas Intermediate (WTI) crude oil price averaged close to $20 per barrel, before plunging to almost $10 per barrel in late 1998 as a result of the Asian financial crisis slowing demand growth while extra supply from Iraq was entering the market for the first time since the Gulf War. Subsequently, as Organization of Petroleum Exporting Countries (OPEC) producers more closely adhered to a

  7. Coordination of Energy Efficiency and Demand Response

    SciTech Connect (OSTI)

    Goldman, Charles; Reid, Michael; Levy, Roger; Silverstein, Alison

    2010-01-29

    This paper reviews the relationship between energy efficiency and demand response and discusses approaches and barriers to coordinating energy efficiency and demand response. The paper is intended to support the 10 implementation goals of the National Action Plan for Energy Efficiency's Vision to achieve all cost-effective energy efficiency by 2025. Improving energy efficiency in our homes, businesses, schools, governments, and industries - which consume more than 70 percent of the nation's natural gas and electricity - is one of the most constructive, cost-effective ways to address the challenges of high energy prices, energy security and independence, air pollution, and global climate change. While energy efficiency is an increasingly prominent component of efforts to supply affordable, reliable, secure, and clean electric power, demand response is becoming a valuable tool in utility and regional resource plans. The Federal Energy Regulatory Commission (FERC) estimated the contribution from existing U.S. demand response resources at about 41,000 megawatts (MW), about 5.8 percent of 2008 summer peak demand (FERC, 2008). Moreover, FERC recently estimated nationwide achievable demand response potential at 138,000 MW (14 percent of peak demand) by 2019 (FERC, 2009).2 A recent Electric Power Research Institute study estimates that 'the combination of demand response and energy efficiency programs has the potential to reduce non-coincident summer peak demand by 157 GW' by 2030, or 14-20 percent below projected levels (EPRI, 2009a). This paper supports the Action Plan's effort to coordinate energy efficiency and demand response programs to maximize value to customers. For information on the full suite of policy and programmatic options for removing barriers to energy efficiency, see the Vision for 2025 and the various other Action Plan papers and guides available at www.epa.gov/eeactionplan.

  8. Strategies for Demand Response in Commercial Buildings

    SciTech Connect (OSTI)

    Watson, David S.; Kiliccote, Sila; Motegi, Naoya; Piette, Mary Ann

    2006-06-20

    This paper describes strategies that can be used in commercial buildings to temporarily reduce electric load in response to electric grid emergencies in which supplies are limited or in response to high prices that would be incurred if these strategies were not employed. The demand response strategies discussed herein are based on the results of three years of automated demand response field tests in which 28 commercial facilities with an occupied area totaling over 11 million ft{sup 2} were tested. Although the demand response events in the field tests were initiated remotely and performed automatically, the strategies used could also be initiated by on-site building operators and performed manually, if desired. While energy efficiency measures can be used during normal building operations, demand response measures are transient; they are employed to produce a temporary reduction in demand. Demand response strategies achieve reductions in electric demand by temporarily reducing the level of service in facilities. Heating ventilating and air conditioning (HVAC) and lighting are the systems most commonly adjusted for demand response in commercial buildings. The goal of demand response strategies is to meet the electric shed savings targets while minimizing any negative impacts on the occupants of the buildings or the processes that they perform. Occupant complaints were minimal in the field tests. In some cases, ''reductions'' in service level actually improved occupant comfort or productivity. In other cases, permanent improvements in efficiency were discovered through the planning and implementation of ''temporary'' demand response strategies. The DR strategies that are available to a given facility are based on factors such as the type of HVAC, lighting and energy management and control systems (EMCS) installed at the site.

  9. Transporting US oil imports: The impact of oil spill legislation on the tanker market

    SciTech Connect (OSTI)

    Rowland, P.J. Associates )

    1992-05-01

    The Oil Pollution Act of 1990 ( OPA'') and an even more problematic array of State pollution laws have raised the cost, and risk, of carrying oil into and out of the US. This report, prepared under contract to the US Department of energy's Office of Domestic and International Policy, examines the impact of Federal and State oil spill legislation on the tanker market. It reviews the role of marine transportation in US oil supply, explores the OPA and State oil spill laws, studies reactions to OPA in the tanker and tank barge industries and in related industries such as insurance and ship finance, and finally, discusses the likely developments in the years ahead. US waterborne oil imports amounted to 6.5 million B/D in 1991, three-quarters of which was crude oil. Imports will rise by almost 3 million B/D by 2000 according to US Department of energy forecasts, with most of the crude oil growth after 1995. Tanker demand will grow even faster: most of the US imports and the increased traffic to other world consuming regions will be on long-haul trades. Both the number of US port calls by tankers and the volume of offshore lightering will grow. Every aspect of the tanker industry's behavior is affected by OPA and a variety of State pollution laws.

  10. ESCO Industry in China

    Office of Energy Efficiency and Renewable Energy (EERE)

    Information about the development, achievements, and functions of the China Energy Conservation project and ESCO.

  11. China`s Clean Coal Technology Program (translation abstract)

    SciTech Connect (OSTI)

    1994-06-01

    China is the largest producer and consumer of coal in the world. This paper describes China`s program for the development and use of clean coal.

  12. Running Out of and Into Oil: Analyzing Global Oil Depletion and Transition Through 2050

    SciTech Connect (OSTI)

    Greene, D.L.

    2003-11-14

    This report presents a risk analysis of world conventional oil resource production, depletion, expansion, and a possible transition to unconventional oil resources such as oil sands, heavy oil and shale oil over the period 2000 to 2050. Risk analysis uses Monte Carlo simulation methods to produce a probability distribution of outcomes rather than a single value. Probability distributions are produced for the year in which conventional oil production peaks for the world as a whole and the year of peak production from regions outside the Middle East. Recent estimates of world oil resources by the United States Geological Survey (USGS), the International Institute of Applied Systems Analysis (IIASA), the World Energy Council (WEC) and Dr. C. Campbell provide alternative views of the extent of ultimate world oil resources. A model of oil resource depletion and expansion for twelve world regions is combined with a market equilibrium model of conventional and unconventional oil supply and demand to create a World Energy Scenarios Model (WESM). The model does not make use of Hubbert curves but instead relies on target reserve-to-production ratios to determine when regional output will begin to decline. The authors believe that their analysis has a bias toward optimism about oil resource availability because it does not attempt to incorporate political or environmental constraints on production, nor does it explicitly include geologic constraints on production rates. Global energy scenarios created by IIASA and WEC provide the context for the risk analysis. Key variables such as the quantity of undiscovered oil and rates of technological progress are treated as probability distributions, rather than constants. Analyses based on the USGS and IIASA resource assessments indicate that conventional oil production outside the Middle East is likely to peak sometime between 2010 and 2030. The most important determinants of the date are the quantity of undiscovered oil, the rate at

  13. Oil & Gas Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oil & Gas Research Unconventional Resources NETL's onsite research in unconventional ... quantify potential risks associated with oil and gas resources in shale reservoirs that ...

  14. Oil and Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oil and Gas Oil and Gas R&D focus on the use of conventional and unconventional fossil fuels, including associated environmental challenges Contact thumbnail of Business ...

  15. Oil Security Metrics Model

    SciTech Connect (OSTI)

    Greene, David L.; Leiby, Paul N.

    2005-03-06

    A presentation to the IWG GPRA USDOE, March 6, 2005, Washington, DC. OSMM estimates oil security benefits of changes in the U.S. oil market.

  16. Biochemically enhanced oil recovery and oil treatment

    DOE Patents [OSTI]

    Premuzic, E.T.; Lin, M.

    1994-03-29

    This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil. 62 figures.

  17. Biochemically enhanced oil recovery and oil treatment

    DOE Patents [OSTI]

    Premuzic, Eugene T.; Lin, Mow

    1994-01-01

    This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil.

  18. Power Plays: Geothermal Energy In Oil and Gas Fields

    Office of Energy Efficiency and Renewable Energy (EERE)

    The SMU Geothermal Lab is hosting their 7th international energy conference and workshop Power Plays: Geothermal Energy in Oil and Gas Fields May 18-20, 2015 on the SMU Campus in Dallas, Texas. The two-day conference brings together leaders from the geothermal, oil and gas communities along with experts in finance, law, technology, and government agencies to discuss generating electricity from oil and gas well fluids, using the flare gas for waste heat applications, and desalinization of the water for project development in Europe, China, Indonesia, Mexico, Peru and the US. Other relevant topics include seismicity, thermal maturation, and improved drilling operations.

  19. U.S. net oil and petroleum product imports expected to fall to...

    U.S. Energy Information Administration (EIA) Indexed Site

    and petroleum product imports expected to fall to just 29 percent of demand in 2014 With ... oil and petroleum products is forecast to fall from 40 percent in 2012 to just 29 percent ...

  20. ,"for Electricity(a)","Fuel Oil","Diesel Fuel(b)","(billion"...

    U.S. Energy Information Administration (EIA) Indexed Site

    Unit: Percents." ,,,"Distillate",,,"Coal" ,,,"Fuel Oil",,,"(excluding Coal" ,"Net Demand","Residual","and","Natural Gas(c)","LPG and","Coke and Breeze)" ,"for Electricity(a)","Fuel ...

  1. Palcan China | Open Energy Information

    Open Energy Info (EERE)

    Palcan China Place: Shanghai, Shanghai Municipality, China Zip: 200000 Product: Joint venture to produce PEMFC stacks in China at low cost. Coordinates: 31.247709, 121.472618...

  2. Taggart China | Open Energy Information

    Open Energy Info (EERE)

    Taggart China Jump to: navigation, search Name: Taggart China Place: Beijing, Beijing Municipality, China Zip: 100022 Sector: Solar, Wind energy Product: US based Taggart Global...

  3. Electricity demand in a developing country. [Paraguay

    SciTech Connect (OSTI)

    Westley, G.D.

    1984-08-01

    This study analyzes the residential and commercial demand for electricity in ten regions in Paraguay for 1970-1977. Models that are both linear and nonlinear in the parameters are estimated. The nonlinear model takes advantage of prior information on the nature of the appliances being utilized and simultaneously deals with the demand discontinuities caused by appliance indivisibility. Three dynamic equations, including a novel cumulative adjustment model, all indicate rapid adjustment to desired appliance stock levels. Finally, the multiproduct surplus loss obtained from an estimated demand equation is used to measure the welfare cost of power outages. 15 references.

  4. FERC sees huge potential for demand response

    SciTech Connect (OSTI)

    2010-04-15

    The FERC study concludes that U.S. peak demand can be reduced by as much as 188 GW -- roughly 20 percent -- under the most aggressive scenario. More moderate -- and realistic -- scenarios produce smaller but still significant reductions in peak demand. The FERC report is quick to point out that these are estimates of the potential, not projections of what could actually be achieved. The main varieties of demand response programs include interruptible tariffs, direct load control (DLC), and a number of pricing schemes.

  5. Autonomous Demand Response for Primary Frequency Regulation

    SciTech Connect (OSTI)

    Donnelly, Matt; Trudnowski, Daniel J.; Mattix, S.; Dagle, Jeffery E.

    2012-02-28

    The research documented within this report examines the use of autonomous demand response to provide primary frequency response in an interconnected power grid. The work builds on previous studies in several key areas: it uses a large realistic model (i.e., the interconnection of the western United States and Canada); it establishes a set of metrics that can be used to assess the effectiveness of autonomous demand response; and it independently adjusts various parameters associated with using autonomous demand response to assess effectiveness and to examine possible threats or vulnerabilities associated with the technology.

  6. Oil Production

    Energy Science and Technology Software Center (OSTI)

    1989-07-01

    A horizontal and slanted well model was developed and incorporated into BOAST, a black oil simulator, to predict the potential production rates for such wells. The HORIZONTAL/SLANTED WELL MODEL can be used to calculate the productivity index, based on the length and location of the wellbore within the block, for each reservoir grid block penetrated by the horizontal/slanted wellbore. The well model can be run under either pressure or rate constraints in which wellbore pressuresmore » can be calculated as an option of infinite-conductivity. The model can simulate the performance of multiple horizontal/slanted wells in any geometric combination within reservoirs.« less

  7. Diagnostics on Demand | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The "Diagnostics on Demand" Infectious Disease Test Kit Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new ...

  8. SAN ANTONIO SPURS DEMAND FOR ENERGY EFFICIENCY

    Broader source: Energy.gov [DOE]

    As a city that experiences seasonal spikes in energy demand and accompanying energy bills, San Antonio, Texas, wanted to help homeowners and businesses reduce their energy use and save on energy...

  9. Volatile coal prices reflect supply, demand uncertainties

    SciTech Connect (OSTI)

    Ryan, M.

    2004-12-15

    Coal mine owners and investors say that supply and demand are now finally in balance. But coal consumers find that both spot tonnage and new contract coal come at a much higher price.

  10. Demand Response and Energy Storage Integration Study

    Office of Energy Efficiency and Renewable Energy (EERE)

    This study is a multi-national laboratory effort to assess the potential value of demand response and energy storage to electricity systems with different penetration levels of variable renewable...

  11. Global Energy: Supply, Demand, Consequences, Opportunities

    ScienceCinema (OSTI)

    Majumdar, Arun

    2010-01-08

    July 29, 2008 Berkeley Lab lecture: Arun Majumdar, Director of the Environmental Energy Technologies Division, discusses current and future projections of economic growth, population, and global energy demand and supply, and explores the implications of these trends for the environment.

  12. China's Energy and Carbon Emissions Outlook to 2050

    SciTech Connect (OSTI)

    Zhou, Nan; Fridley, David; McNeil, Michael; Zheng, Nina; Ke, Jing; Levine, Mark

    2011-02-15

    As a result of soaring energy demand from a staggering pace of economic expansion and the related growth of energy-intensive industry, China overtook the United States to become the world's largest contributor to CO{sub 2} emissions in 2007. At the same time, China has taken serious actions to reduce its energy and carbon intensity by setting both a short-term energy intensity reduction goal for 2006 to 2010 as well as a long-term carbon intensity reduction goal for 2020. This study presents a China Energy Outlook through 2050 that assesses the role of energy efficiency policies in transitioning China to a lower emission trajectory and meeting its intensity reduction goals. Over the past few years, LBNL has established and significantly enhanced its China End-Use Energy Model which is based on the diffusion of end-use technologies and other physical drivers of energy demand. This model presents an important new approach for helping understand China's complex and dynamic drivers of energy consumption and implications of energy efficiency policies through scenario analysis. A baseline ('Continued Improvement Scenario') and an alternative energy efficiency scenario ('Accelerated Improvement Scenario') have been developed to assess the impact of actions already taken by the Chinese government as well as planned and potential actions, and to evaluate the potential for China to control energy demand growth and mitigate emissions. In addition, this analysis also evaluated China's long-term domestic energy supply in order to gauge the potential challenge China may face in meeting long-term demand for energy. It is a common belief that China's CO{sub 2} emissions will continue to grow throughout this century and will dominate global emissions. The findings from this research suggest that this will not necessarily be the case because saturation in ownership of appliances, construction of residential and commercial floor area, roadways, railways, fertilizer use, and

  13. Eco Oil 4

    SciTech Connect (OSTI)

    Brett Earl; Brenda Clark

    2009-10-26

    This article describes the processes, challenges, and achievements of researching and developing a biobased motor oil.

  14. World Crude Oil Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    World Crude Oil Prices (Dollars per Barrel) The data on this page are no longer available.

  15. Solar in Demand | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Demand Solar in Demand June 15, 2012 - 10:23am Addthis Kyle Travis, left and Jon Jackson, with Lighthouse Solar, install microcrystalline PV modules on top of Kevin Donovan's town home. | Credit: Dennis Schroeder. Kyle Travis, left and Jon Jackson, with Lighthouse Solar, install microcrystalline PV modules on top of Kevin Donovan's town home. | Credit: Dennis Schroeder. April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs What does this mean for me? A new

  16. Measuring the capacity impacts of demand response

    SciTech Connect (OSTI)

    Earle, Robert; Kahn, Edward P.; Macan, Edo

    2009-07-15

    Critical peak pricing and peak time rebate programs offer benefits by increasing system reliability, and therefore, reducing capacity needs of the electric power system. These benefits, however, decrease substantially as the size of the programs grows relative to the system size. More flexible schemes for deployment of demand response can help address the decreasing returns to scale in capacity value, but more flexible demand response has decreasing returns to scale as well. (author)

  17. Natcore China | Open Energy Information

    Open Energy Info (EERE)

    Natcore China Place: China Product: China-based JV formed to develop and manufacture PV cell coating equipment and materials. References: Natcore China1 This article is a stub....

  18. Rising tide of U.S. oil imports sparks debate on energy security

    SciTech Connect (OSTI)

    Crow, P.

    1996-06-17

    This paper reviews the historical trends in domestic oil production and the oil imports. The paper exposes government policies related to developing more strategic plans for curtailing such increases in imports while showing the continued increase in demand. It provides information from the Energy Information Administration on net oil imports as a share of US oil consumption. It also provides information showing the sources of current US imports. Discussion is made on the potential threat to national security as a result of political instability in numerous of these oil exporting countries.

  19. World Oil Prices and Production Trends in AEO2010 (released in AEO2010)

    Reports and Publications (EIA)

    2010-01-01

    In Annual Energy Outlook 2010, the price of light, low-sulfur (or "sweet") crude oil delivered at Cushing, Oklahoma, is tracked to represent movements in world oil prices. The Energy Information Administration makes projections of future supply and demand for "total liquids,"" which includes conventional petroleum liquids -- such as conventional crude oil, natural gas plant liquids, and refinery gain -- in addition to unconventional liquids, which include biofuels, bitumen, coal-to-liquids (CTL), gas-to-liquids (GTL), extra-heavy oils, and shale oil.

  20. World Oil Prices and Production Trends in AEO2009 (released in AEO2009)

    Reports and Publications (EIA)

    2009-01-01

    The oil prices reported in Annual Energy Outlook 2009 (AEO) represent the price of light, low-sulfur crude oil in 2007 dollars. Projections of future supply and demand are made for "liquids," a term used to refer to those liquids that after processing and refining can be used interchangeably with petroleum products. In AEO2009, liquids include conventional petroleum liquids -- such as conventional crude oil and natural gas plant liquids -- in addition to unconventional liquids, such as biofuels, bitumen, coal-to-liquids (CTL), gas-to-liquids (GTL), extra-heavy oils, and shale oil.

  1. Oil and economic performance in industrial countries

    SciTech Connect (OSTI)

    Nordhaus, W.D.

    1980-01-01

    The Organization for Economic Co-operation and Development (OECD) countries have experienced slower economic growth and periods of discontinuity in the energy market since the 1973-74 oil embargo. A review of this phenomenon examines changes in the market during the 1960s and 70s, linkages between oil prices and economic performance, and appropriate policy responses. When price elasticities are calculated over time, recent US economic behavior appears to have both historical and cross-sountry consistency. Little flexibility is seen in the available energy-using technologies for producing goods and services, while energy-using capital has been sluggish. Dr. Nordhaus advocates high oil price and high tax policies as the best way to limit demand without slowing economic growth. (DCK)

  2. The outlook for US oil dependence

    SciTech Connect (OSTI)

    Greene, D.L.; Jones, D.W.; Leiby, P.N.

    1995-05-11

    Market share OPEC lost in defending higher prices from 1979-1985 is being steadily regained and is projected to exceed 50% by 2000. World oil markets are likely to be as vulnerable to monopoly influence as they were 20 years ago, as OPEC regains lost market share. The U.S. economy appears to be as exposed as it was in the early 1970s to losses from monopoly oil pricing. A simulated 2-year supply reduction in 2005-6 boosts OPEC revenues by roughly half a trillion dollars and costs the U.S. economy an approximately equal amount. The Strategic Petroleum Reserve appears to be of little benefit against such a determined, multi-year supply curtailment either in reducing OPEC revenues or protecting the U.S. economy. Increasing the price elasticity of oil demand and supply in the U.S. and the rest of the world, however, would be an effective strategy.

  3. Innovative filter polishes oil refinery wastewater

    SciTech Connect (OSTI)

    Irwin, J.; Finkler, M.

    1982-07-01

    Describes how, after extensive testing of 4 different treatment techniques, a Hydro Clear rapid sand filter was installed at the Sohio oil refinery in Toledo, Ohio. This filtration system has proven to be more cost-effective than conventional approaches. The system handles the refinery's wastewater flow of 10.3 mgd. With the aid of the polishing filter, readily meets the NPDES permit limitations. The Toledo refinery is a highly integrated petroleum processing complex. It processes 127,000 barrels per day of crude oil, including 40,000 barrels per day of sour crude. Tables give dissolved air flotation performance data; biological system performance data; filter performance data; and refinery waste treatment unit compared with NPDES-BPT limitations. Diagram shows the Sohio refinery wastewater treatment facility. Through a separate backwash treatment system complete control is brought to the suspended solids in the effluent which also tends to control chemical oxygen demand and oil/grease levels.

  4. ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Consumption (Btu) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy Intensity (thousand Btu...

  5. OPEC: 10 years after the Arab oil boycott

    SciTech Connect (OSTI)

    Cooper, M.H.

    1983-09-23

    OPEC's dominance over world oil markets is waning 10 years after precipitating world-wide energy and economic crises. The 1979 revolution in Iran and the start of the Iranian-Iraqi war in 1980 introduced a second shock that caused oil importers to seek non-OPEC supplies and emphasize conservation. No breakup of the cartel is anticipated, however, despite internal disagreements over production and price levels. Forecasters see OPEC as the major price setter as an improved economy increases world demand for oil. Long-term forecasts are even more optimistic. 24 references, 2 figures, 2 tables. (DCK)

  6. Refrigerated Warehouse Demand Response Strategy Guide

    SciTech Connect (OSTI)

    Scott, Doug; Castillo, Rafael; Larson, Kyle; Dobbs, Brian; Olsen, Daniel

    2015-11-01

    This guide summarizes demand response measures that can be implemented in refrigerated warehouses. In an appendix, it also addresses related energy efficiency opportunities. Reducing overall grid demand during peak periods and energy consumption has benefits for facility operators, grid operators, utility companies, and society. State wide demand response potential for the refrigerated warehouse sector in California is estimated to be over 22.1 Megawatts. Two categories of demand response strategies are described in this guide: load shifting and load shedding. Load shifting can be accomplished via pre-cooling, capacity limiting, and battery charger load management. Load shedding can be achieved by lighting reduction, demand defrost and defrost termination, infiltration reduction, and shutting down miscellaneous equipment. Estimation of the costs and benefits of demand response participation yields simple payback periods of 2-4 years. To improve demand response performance, it’s suggested to install air curtains and another form of infiltration barrier, such as a rollup door, for the passageways. Further modifications to increase efficiency of the refrigeration unit are also analyzed. A larger condenser can maintain the minimum saturated condensing temperature (SCT) for more hours of the day. Lowering the SCT reduces the compressor lift, which results in an overall increase in refrigeration system capacity and energy efficiency. Another way of saving energy in refrigerated warehouses is eliminating the use of under-floor resistance heaters. A more energy efficient alternative to resistance heaters is to utilize the heat that is being rejected from the condenser through a heat exchanger. These energy efficiency measures improve efficiency either by reducing the required electric energy input for the refrigeration system, by helping to curtail the refrigeration load on the system, or by reducing both the load and required energy input.

  7. Petroleum geology of principal sedimentary basins in eastern China

    SciTech Connect (OSTI)

    Lee, K.Y.

    1986-05-01

    The principal petroliferous basins in eastern China are the Songliao, Ordos, and Sichuan basins of Mesozoic age, and the North China, Jianghan, Nanxiang, and Subei basins of Cenozoic age. These basins contain mostly continental fluvial and lacustrine detrital sediments. Four different geologic ages are responsible for the oil and gas in this region: (1) Mesozoic in the Songliao, Ordos, and Sichuan basins; (2) Tertiary in the North China, Jianghan, Nanxiang, and Subei basins; (3) Permian-Carboniferous in the southern North China basin and the northwestern Ordos basin; and (4) Sinian in the southern Sichuan basin. The most prolific oil and gas sources are the Mesozoic of the Songliao basin and the Tertiary of the North China basin. Although the major source rocks in these basins are lacustrine mudstone and shale, their tectonic settings and the resultant temperature gradients differ. For example, in the Songliao, North China, and associated basins, trapping conditions commonly are associated with block faulting of an extensional tectonic regime; the extensional tectonics in turn contribute to a high geothermal gradient (40/sup 0/-60/sup 0/C/km), which results in early maturation and migration for relatively shallow deposits. However, the Ordos and Sichuan basins formed under compressional conditions and are cooler. Hence, maturation and migration occurred late, relative to reservoir deposition and burial, the result being a poorer quality reservoir.

  8. Feasibility study of heavy oil recovery in the Appalachian, Black Warrior, Illinois, and Michigan basins

    SciTech Connect (OSTI)

    Olsen, D.K.; Rawn-Schatzinger, V.; Ramzel, E.B.

    1992-07-01

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Appalachian, Black Warrior, Illinois, and Michigan basins cover most of the depositional basins in the Midwest and Eastern United States. These basins produce sweet, paraffinic light oil and are considered minor heavy oil (10{degrees} to 20{degrees} API gravity or 100 to 100,000 cP viscosity) producers. Heavy oil occurs in both carbonate and sandstone reservoirs of Paleozoic Age along the perimeters of the basins in the same sediments where light oil occurs. The oil is heavy because escape of light ends, water washing of the oil, and biodegradation of the oil have occurred over million of years. The Appalachian, Black Warrior, Illinois, and Michigan basins` heavy oil fields have produced some 450,000 bbl of heavy oil of an estimated 14,000,000 bbl originally in place. The basins have been long-term, major light-oil-producing areas and are served by an extensive pipeline network connected to refineries designed to process light sweet and with few exceptions limited volumes of sour or heavy crude oils. Since the light oil is principally paraffinic, it commands a higher price than the asphaltic heavy crude oils of California. The heavy oil that is refined in the Midwest and Eastern US is imported and refined at select refineries. Imports of crude of all grades accounts for 37 to >95% of the oil refined in these areas. Because of the nature of the resource, the Appalachian, Black Warrior, Illinois and Michigan basins are not expected to become major heavy oil producing areas. The crude oil collection system will continue to degrade as light oil production declines. The demand for crude oil will increase pipeline and tanker transport of imported crude to select large refineries to meet the areas` liquid fuels needs.

  9. Feasibility study of heavy oil recovery in the Appalachian, Black Warrior, Illinois, and Michigan basins

    SciTech Connect (OSTI)

    Olsen, D.K.; Rawn-Schatzinger, V.; Ramzel, E.B.

    1992-07-01

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Appalachian, Black Warrior, Illinois, and Michigan basins cover most of the depositional basins in the Midwest and Eastern United States. These basins produce sweet, paraffinic light oil and are considered minor heavy oil (10{degrees} to 20{degrees} API gravity or 100 to 100,000 cP viscosity) producers. Heavy oil occurs in both carbonate and sandstone reservoirs of Paleozoic Age along the perimeters of the basins in the same sediments where light oil occurs. The oil is heavy because escape of light ends, water washing of the oil, and biodegradation of the oil have occurred over million of years. The Appalachian, Black Warrior, Illinois, and Michigan basins' heavy oil fields have produced some 450,000 bbl of heavy oil of an estimated 14,000,000 bbl originally in place. The basins have been long-term, major light-oil-producing areas and are served by an extensive pipeline network connected to refineries designed to process light sweet and with few exceptions limited volumes of sour or heavy crude oils. Since the light oil is principally paraffinic, it commands a higher price than the asphaltic heavy crude oils of California. The heavy oil that is refined in the Midwest and Eastern US is imported and refined at select refineries. Imports of crude of all grades accounts for 37 to >95% of the oil refined in these areas. Because of the nature of the resource, the Appalachian, Black Warrior, Illinois and Michigan basins are not expected to become major heavy oil producing areas. The crude oil collection system will continue to degrade as light oil production declines. The demand for crude oil will increase pipeline and tanker transport of imported crude to select large refineries to meet the areas' liquid fuels needs.

  10. Going Global: Tight Oil Production

    Gasoline and Diesel Fuel Update (EIA)

    GOING GLOBAL: TIGHT OIL PRODUCTION Leaping out of North America and onto the World Stage JULY 2014 GOING GLOBAL: TIGHT OIL PRODUCTION Jamie Webster, Senior Director Global Oil ...