Sample records for oil demand begins

  1. International Oil Supplies and Demands

    SciTech Connect (OSTI)

    Not Available

    1991-09-01T23:59:59.000Z

    The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--90 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world's dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group's thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

  2. International Oil Supplies and Demands

    SciTech Connect (OSTI)

    Not Available

    1992-04-01T23:59:59.000Z

    The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--1990 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world's dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group's thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

  3. International Oil Supplies and Demands. Volume 1

    SciTech Connect (OSTI)

    Not Available

    1991-09-01T23:59:59.000Z

    The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--90 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world`s dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group`s thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

  4. International Oil Supplies and Demands. Volume 2

    SciTech Connect (OSTI)

    Not Available

    1992-04-01T23:59:59.000Z

    The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--1990 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world`s dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group`s thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

  5. New Demand for Old Food: the U.S. Demand for Olive Oil

    E-Print Network [OSTI]

    Bo Xiong; William Matthews; Daniel Sumner

    U.S. consumption of olive oil has tripled over the past twenty years, but nearly all olive oil continues to be imported. Estimation of demand parameters using monthly import data reveals that demand for non-virgin oil is income inelastic, but virgin oils have income elasticities above one. Moreover, demand for oils differentiated by origin and quality is price-elastic. These olive oils are highly substitutable with each other but not with other vegetable oils. News about the health and culinary benefits of olive oil and the spread of Mediterranean diet contribute significantly to the rising demand in the United States.

  6. Patterns of crude demand: Future patterns of demand for crude oil as a func-

    E-Print Network [OSTI]

    Langendoen, Koen

    from the perspective of `peak oil', that is from the pers- pective of the supply of crude, and price#12;2 #12;Patterns of crude demand: Future patterns of demand for crude oil as a func- tion is given on the problems within the value chain, with an explanation of the reasons why the price of oil

  7. Applying Bayesian Forecasting to Predict New Customers' Heating Oil Demand.

    E-Print Network [OSTI]

    Sakauchi, Tsuginosuke

    2011-01-01T23:59:59.000Z

    ??This thesis presents a new forecasting technique that estimates energy demand by applying a Bayesian approach to forecasting. We introduce our Bayesian Heating Oil Forecaster… (more)

  8. New Demand for Old Food: the U.S. Demand for Olive Oil Bo Xiong, William Matthews, Daniel Sumner

    E-Print Network [OSTI]

    Schladow, S. Geoffrey

    New Demand for Old Food: the U.S. Demand for Olive Oil Bo Xiong, William Matthews, Daniel Sumner, demand for oils differentiated by origin and quality is price-elastic. These olive oils are highly of olive oil and the spread of Mediterranean diet contribute significantly to the rising demand

  9. Supply, Demand, and Export Outlook for North American Oil and...

    Gasoline and Diesel Fuel Update (EIA)

    Supply, Demand, and Export Outlook for North American Oil and Gas For Energy Infrastructure Summit September 15, 2014 | Houston, TX By Adam Sieminski, EIA Administrator 0 20 40 60...

  10. Beginning of an oil shale industry in Australia

    SciTech Connect (OSTI)

    Wright, B. (Southern Pacific Petroleum NL, 143 Macquarie Street, Sydney (AU))

    1989-01-01T23:59:59.000Z

    This paper discusses how preparations are being made for the construction and operation of a semi commercial plant to process Australian oil shale. This plant is primarily designed to demonstrate the technical feasibility of processing these shales at low cost. Nevertheless it is expected to generate modest profits even at this demonstration level. This will be the first step in a three staged development of one of the major Australian oil shale deposits which may ultimately provide nearly 10% of Australia's anticipated oil requirements by the end of the century. In turn this development should provide the basis for a full scale oil shale industry in Australia based upon the advantageously disposed oil shale deposits there. New sources of oil are becoming critical since Australian production is declining rapidly while consumption is accelerating.

  11. Chinese Oil Demand: Steep Incline Ahead

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:shortOil andMCKEESPORTfor the 2012 CBECS4X I

  12. Economy key to 1992 U. S. oil, gas demand

    SciTech Connect (OSTI)

    Beck, R.J.

    1992-01-27T23:59:59.000Z

    This paper provides a forecast US oil and gas markets and industry in 1992. An end to economic recession in the U.S. will boost petroleum demand modestly in 1992 after 2 years of decline. U.S. production will resume its slide after a fractional increase in 1991. Drilling in the U.S. will set a record low. Worldwide, the key questions are economic growth and export volumes from Iraq, Kuwait, and former Soviet republics.

  13. Using Booms in Response to Oil Spills -Oil spilled at sea begins to move and spread into very thin layers. The main purpose of

    E-Print Network [OSTI]

    Hard Boom. Fire Boom. Using Booms in Response to Oil Spills - Oil spilled at sea begins to move boom is used to contain, deflect or exclude oil from shorelines. Hard boom is typically made of "Exclusion Boom." NOAA: Using Booms in Response to Oil Spills, May 2010 #12;Example of a boom in high

  14. Exchange Rate Effects on Excess Demand in the United States for Canadian Oil .

    E-Print Network [OSTI]

    Dickey, James

    2011-01-01T23:59:59.000Z

    ??This paper examines a model of excess supply and excess demand for Canadian oil in the United States utilizing an error correction model and time… (more)

  15. Demand growth to continue for oil, resume for gas this year in the U.S.

    SciTech Connect (OSTI)

    Beck, R.J.

    1998-01-26T23:59:59.000Z

    Demand for petroleum products and natural gas in the US will move up again this year, stimulated by economic growth and falling prices. Economic growth, although slower than it was last year, will nevertheless remain strong. Worldwide petroleum supply will rise, suppressing oil prices. Natural gas prices are also expected to fall in response to the decline in oil prices and competitive pressure from other fuels. The paper discusses the economy, total energy consumption, energy sources, oil supply (including imports, stocks, refining, refining margins and prices), oil demand (motor gasoline, jet fuel, distillate fuel, residual fuel oil, and other petroleum products), natural gas demand, and natural gas supply.

  16. A New Market for an Old Food: the U.S. Demand for Olive Oil , Daniel Sumner

    E-Print Network [OSTI]

    Schladow, S. Geoffrey

    A New Market for an Old Food: the U.S. Demand for Olive Oil Bo Xiong , Daniel Sumner , William olive oil continues to be imported. Estimation of a demand system using monthly import data reveals that the income elasticity for virgin oils sourced from EU is above one, but demand for non-virgin oils is income

  17. The Effect of CO2 Pricing on Conventional and Non- Conventional Oil Supply and Demand

    E-Print Network [OSTI]

    Méjean, Aurélie; Hope, Chris

    if conventional oil production was no longer able to satisfy demand? Fuels from non-conventional oil resources would then become the backstop fuel. These resources involve higher CO2 emissions per unit of energy produced than conventional oil as they require... ?EMUC ? GDPgrowth ?POPgrowth? ? (13) r is the consumption discount rate (% per year) EMUC is the elasticity of marginal utility of consumption (no unit) ptp is the pure time preference rate (% per year) GDPgrowth is the growth of GDP (% per year...

  18. Supply and demand planning for crude oil procurement in refineries

    E-Print Network [OSTI]

    Nnadili, Beatrice N. (Beatrice Nne)

    2006-01-01T23:59:59.000Z

    The upstream petroleum supply chain is inefficient and uneconomical because of the independence of the four complex and fragmented functions which comprise it. Crude oil exploration, trading, transportation, and refining ...

  19. The Differential Effects of Oil Demand and Supply Shocks on the Global Economy

    E-Print Network [OSTI]

    Cashin, Paul; Mohaddes, Kamiar; Raissi, Maziar; Raissi, Mehdi

    2012-11-01T23:59:59.000Z

    We employ a set of sign restrictions on the generalized impulse responses of a Global VAR model, estimated for 38 countries/regions over the period 1979Q2.2011Q2, to discriminate between supply-driven and demand-driven oil-price shocks and to study...

  20. Factors that will influence oil and gas supply and demand in the 21st century

    SciTech Connect (OSTI)

    Holditch, S.A.; Chianelli, R.R. [Texas A& amp; M University, College Station, TX (United States)

    2008-04-15T23:59:59.000Z

    A recent report published by the National Petroleum Council (NPC) in the United States predicted a 50-60% growth in total global demand for energy by 2030. Because oil, gas, and coal will continue to be the primary energy sources during this time, the energy industry will have to continue increasing the supply of these fuels to meet this increasing demand. Achieving this goal will require the exploitation of both conventional and unconventional reservoirs of oil and gas in (including coalbed methane) an environmentally acceptable manner. Such efforts will, in turn, require advancements in materials science, particularly in the development of materials that can withstand high-pressure, high-temperature, and high-stress conditions.

  1. China's Coal: Demand, Constraints, and Externalities

    E-Print Network [OSTI]

    Aden, Nathaniel

    2010-01-01T23:59:59.000Z

    raising transportation oil demand. Growing internationalcoal by wire could reduce oil demand by stemming coal roadEastern oil production. The rapid growth of coal demand

  2. Projection of Chinese motor vehicle growth, oil demand, and CO{sub 2}emissions through 2050.

    SciTech Connect (OSTI)

    Wang, M.; Huo, H.; Johnson, L.; He, D.

    2006-12-20T23:59:59.000Z

    As the vehicle population in China increases, oil consumption and carbon dioxide (CO{sub 2}) emissions associated with on-road transportation are rising dramatically. During this study, we developed a methodology to project trends in the growth of the vehicle population, oil demand, and CO{sub 2} emissions associated with on-road transportation in China. By using this methodology, we projected--separately--the number of highway vehicles, motorcycles, and rural vehicles in China through 2050. We used three scenarios of highway vehicle growth (high-, mid-, and low-growth) to reflect patterns of motor vehicle growth that have occurred in different parts of the world (i.e., Europe and Asia). All are essentially business-as-usual scenarios in that almost none of the countries we examined has made concerted efforts to manage vehicle growth or to offer serious alternative transportation means to satisfy people's mobility needs. With this caveat, our projections showed that by 2030, China could have more highway vehicles than the United States has today, and by 2035, it could have the largest number of highway vehicles in the world. By 2050, China could have 486-662 million highway vehicles, 44 million motorcycles, and 28 million rural vehicles. These numbers, which assume essentially unmanaged vehicle growth, would result in potentially disastrous effects on the urban infrastructure, resources, and other social and ecological aspects of life in China. We designed three fuel economy scenarios, from conservative to aggressive, on the basis of current policy efforts and expectations of near-future policies in China and in developed countries. It should be noted that these current and near-future policies have not taken into consideration the significant potential for further fuel economy improvements offered by advanced technologies such as electric drive technologies (e.g., hybrid electric vehicles and fuel-cell vehicles). By using vehicle growth projections and potential vehicle fuel economy, we projected that China's on-road vehicles could consume approximately 614-1016 million metric tons of oil per year (12.4-20.6 million barrels per day) and could emit 1.9-3.2 billion metric tons of CO{sub 2} per year in 2050, which will put tremendous pressure on the balance of the Chinese and world oil supply and demand and could have significant implications on climate change. Our analysis shows that, while improvements in vehicle fuel economy are crucial for reducing transportation energy use, containing the growth of the vehicle population could have an even more profound effect on oil use and CO{sub 2} emissions. This benefit is in addition to other societal and environmental benefits--such as reduced congestion, land use, and urban air pollution--that will result from containing vehicle population growth. Developing public transportation systems for personal travel and rail and other modes for freight transportation will be important for containing the growth of motor vehicles in China. Although the population of passenger cars will far exceed that of all truck types in China in the future, our analysis shows that oil use by and CO{sub 2} emissions from the Chinese truck fleet will be far larger than those related to Chinese passenger cars because trucks are very use intensive (more vehicle miles traveled per year) and energy intensive (lower fuel economy). Unfortunately, the potential for improving fuel economy and reducing air pollutant emissions for trucks has not been fully explored; such efforts are needed. Considering the rapid depletion of the world's oil reserve, the heightened global interest in addressing greenhouse gas emissions, and the geopolitical complications of global oil supply and demand, the study results suggest that unmanaged vehicle growth and limited improvements in vehicle fuel efficiency will lead to an unsustainable and unstable transportation system in China. In other words, while our projections do not definitively indicate what will happen in the Chinese transportation sector by 2050, they do demonstrate

  3. Projection of Chinese motor vehicle growth, oil demand, and Co{sub 2} emissions through 2050.

    SciTech Connect (OSTI)

    Huo, H.; Wang, M.; Johnson, L.; He, D.; Energy Systems; Energy Foundation

    2007-01-01T23:59:59.000Z

    As the vehicle population in China increases, oil consumption and carbon dioxide (CO{sub 2}) emissions associated with on-road transportation are rising dramatically. During this study, we developed a methodology to project trends in the growth of the vehicle population, oil demand, and CO{sub 2} emissions associated with on-road transportation in China. By using this methodology, we projected separately the number of highway vehicles, motorcycles, and rural vehicles in China through 2050. We used three scenarios of highway vehicle growth (high-, mid-, and low-growth) to reflect patterns of motor vehicle growth that have occurred in different parts of the world (i.e., Europe and Asia). All are essentially business-as-usual scenarios in that almost none of the countries we examined has made concerted efforts to manage vehicle growth or to offer serious alternative transportation means to satisfy people's mobility needs. With this caveat, our projections showed that by 2030, China could have more highway vehicles than the United States has today, and by 2035, it could have the largest number of highway vehicles in the world. By 2050, China could have 486-662 million highway vehicles, 44 million motorcycles, and 28 million rural vehicles. These numbers, which assume essentially unmanaged vehicle growth, would result in potentially disastrous effects on the urban infrastructure, resources, and other social and ecological aspects of life in China. We designed three fuel economy scenarios, from conservative to aggressive, on the basis of current policy efforts and expectations of near-future policies in China and in developed countries. It should be noted that these current and near-future policies have not taken into consideration the significant potential for further fuel economy improvements offered by advanced technologies such as electric drive technologies (e.g., hybrid electric vehicles and fuel-cell vehicles). By using vehicle growth projections and potential vehicle fuel economy, we projected that China's on-road vehicles could consume approximately 614-1016 million metric tons of oil per year (12.4-20.6 million barrels per day) and could emit 1.9-3.2 billion metric tons of CO{sub 2} per year in 2050, which will put tremendous pressure on the balance of the Chinese and world oil supply and demand and could have significant implications on climate change. Our analysis shows that, while improvements in vehicle fuel economy are crucial for reducing transportation energy use, containing the growth of the vehicle population could have an even more profound effect on oil use and CO{sub 2} emissions. This benefit is in addition to other societal and environmental benefits--such as reduced congestion, land use, and urban air pollution--that will result from containing vehicle population growth. Developing public transportation systems for personal travel and rail and other modes for freight transportation will be important for containing the growth of motor vehicles in China. Although the population of passenger cars will far exceed that of all truck types in China in the future, our analysis shows that oil use by and CO{sub 2} emissions from the Chinese truck fleet will be far larger than those related to Chinese passenger cars because trucks are very use intensive (more vehicle miles traveled per year) and energy intensive (lower fuel economy). Unfortunately, the potential for improving fuel economy and reducing air pollutant emissions for trucks has not been fully explored; such efforts are needed. Considering the rapid depletion of the world's oil reserve, the heightened global interest in addressing greenhouse gas emissions, and the geopolitical complications of global oil supply and demand, the study results suggest that unmanaged vehicle growth and limited improvements in vehicle fuel efficiency will lead to an unsustainable and unstable transportation system in China. In other words, while our projections do not definitively indicate what will happen in the Chinese transportation sector by 2050, they do demonstrate th

  4. How Increased Crude Oil Demand by China and India Affects the International Market

    E-Print Network [OSTI]

    the world crude oil market. More specifically, we study the implications for pricing, OPEC production of the Crude Oil Market The global crude oil market can be analysed by considering how quantity and price crude oil prices in the world move together (the price differences are due to different oil quality

  5. Demand and Price Volatility: Rational Habits in International Gasoline Demand

    E-Print Network [OSTI]

    Scott, K. Rebecca

    2011-01-01T23:59:59.000Z

    analysis of the demand for oil in the Middle East. EnergyEstimates elasticity of demand for crude oil, not gasoline.World crude oil and natural gas: a demand and supply model.

  6. Demand and Price Uncertainty: Rational Habits in International Gasoline Demand

    E-Print Network [OSTI]

    Scott, K. Rebecca

    2013-01-01T23:59:59.000Z

    analysis of the demand for oil in the Middle East. EnergyEstimates elasticity of demand for crude oil, not gasoline.World crude oil and natural gas: a demand and supply model.

  7. An Investigation into the Derived Demand for Land in Palm Oil Production.

    E-Print Network [OSTI]

    Lau, Jia Li

    2009-01-01T23:59:59.000Z

    ??Over the years, the world industry of oil palm has been rapidly increasing in the tropical areas of Asia, Africa and America. One of the… (more)

  8. China's Global Oil Strategy

    E-Print Network [OSTI]

    Thomas, Bryan G

    2009-01-01T23:59:59.000Z

    by this point, China’s demand Oil Demand vs. Domestic Supplycurrent pace of growth in oil demand as staying consistentand predictions of oil supply and demand affected foreign

  9. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    and Income on Energy and Oil Demand,” Energy Journal 23(1),2006. “China’s Growing Demand for Oil and Its Impact on U.S.in the supply or demand for oil itself could be regarded as

  10. Demand for gasoline is more price-inelastic than commonly thought

    E-Print Network [OSTI]

    Havranek, Tomas; Irsova, Zuzana; Janda, Karel

    2011-01-01T23:59:59.000Z

    demand and distillate fuel oil demand. ” Energy Economics 7(demand and consumer price expectations: An empirical investigation of the consequences from the recent oil

  11. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    Natural Gas, Heating Oil and Gasoline,” NBER Working Paper.2006. “China’s Growing Demand for Oil and Its Impact on U.S.and Income on Energy and Oil Demand,” Energy Journal 23(1),

  12. Oil

    E-Print Network [OSTI]

    unknown authors

    Waste oils offer a tremendous recycling potential. An important, dwindling natural resource of great economic and industrial value, oil products are a cornerstone of our modern industrial society. Petroleum is processed into a wide variety of products: gasoline, fuel oil, diesel oil, synthetic rubber, solvents, pesticides, synthetic fibres, lubricating oil, drugs and many more ' (see Figure 1 1. The boilers of Amercian industries presently consume about 40 % of the used lubricating oils collected. In Ontario, the percentage varies from 20 to 30%. Road oiling is the other major use of collected waste oils. Five to seven million gallons (50-70 % of the waste oil col1ected)is spread on dusty Ontario roads each summer. The practice is both a wasteful use of a dwindling resource and an environmental hazard. The waste oil, with its load of heavy metals, particularly lead, additives including dangerous polynuclear aromatics and PCBs, is carried into the natural environment by runoff and dust to contaminate soils and water courses.2 The largest portion of used oils is never collected, but disappears into sewers, landfill sites and backyards. In Ontario alone, approximately 22 million gallons of potentially recyclable lube oil simply vanish each year. While oil recycling has ad-114 Oil

  13. The effect of biofuel on the international oil market

    E-Print Network [OSTI]

    Hochman, Gal; Rajagopal, Deepak; Zilberman, David D.

    2010-01-01T23:59:59.000Z

    Fig. 1, where aggregate demand for oil is denoted D + D ? ,oil-exporting and oil-importing countries’ demand functionsinelastic global demand for crude oil, the elasticity of the

  14. Japan's Residential Energy Demand Outlook to 2030 Considering Energy Efficiency Standards "Top-Runner Approach"

    E-Print Network [OSTI]

    Komiyama, Ryoichi

    2008-01-01T23:59:59.000Z

    Total Energy Source Demand Coal, Oil, Gas, Heat, ElectricityEnergy Source Demand per Household Coal, Oil, Gas, Heat,ton of oil equivalent Considerable increases in demand for

  15. The oil crisis of the 1970's brought home to Professor M. Nafi Toksz the impor-tance of growing global energy demand and the energy security of the United

    E-Print Network [OSTI]

    Entekhabi, Dara

    The oil crisis of the 1970's brought home to Professor M. Nafi Toksöz the impor- tance of growing global energy demand and the energy security of the United States."I felt that MIT should and could play, water, geothermal energy and waste repositories. Since its founding, it has become MIT's center

  16. 5 World Oil Trends WORLD OIL TRENDS

    E-Print Network [OSTI]

    5 World Oil Trends Chapter 1 WORLD OIL TRENDS INTRODUCTION In considering the outlook for California's petroleum supplies, it is important to give attention to expecta- tions of what the world oil market. Will world oil demand increase and, if so, by how much? How will world oil prices be affected

  17. Demand Reduction

    Broader source: Energy.gov [DOE]

    Grantees may use funds to coordinate with electricity supply companies and utilities to reduce energy demands on their power systems. These demand reduction programs are usually coordinated through...

  18. Energy and Security in Northeast Asia: Supply and Demand, Conflict and

    E-Print Network [OSTI]

    Fesharaki, Fereidun; Banaszak, Sarah; WU, Kang; Valencia, Mark J.; Dorian, James P.

    1998-01-01T23:59:59.000Z

    favorable economically, energy demand, and particularly oil3 Energy Policies and Energy Demand in Northeastissue of whether rising energy demand generates new security

  19. Japan's Long-term Energy Demand and Supply Scenario to 2050 - Estimation for the Potential of Massive CO2 Mitigation

    E-Print Network [OSTI]

    Komiyama, Ryoichi

    2010-01-01T23:59:59.000Z

    Factors behind declining demand for oil include a shift fromfuel. In the industrial sector, oil demand will decrease dueto a falling demand for oil for chemical materials. In the

  20. Modeling of Energy Production Decisions: An Alaska Oil Case Study

    E-Print Network [OSTI]

    Leighty, Wayne

    2008-01-01T23:59:59.000Z

    that controls demand for oil. ” 6.6 Hedging behavior inauthors model demand and all three phases in oil supply –future supply and demand for US crude oil resources. A

  1. Dynamics of the Oil Transition: Modeling Capacity, Costs, and Emissions

    E-Print Network [OSTI]

    Brandt, Adam R.; Farrell, Alexander E.

    2008-01-01T23:59:59.000Z

    and income on energy and oil demand. Energy Journal, 23(1):scenario, with demand and conventional oil endowment set toPrice elasticity of demand for crude oil: estimates for 23

  2. Evidence of a Shift in the Short-Run Price Elasticity of Gasoline Demand

    E-Print Network [OSTI]

    Hughes, Jonathan; Knittel, Christopher R; Sperling, Dan

    2007-01-01T23:59:59.000Z

    demand shocks. Since gasoline demand and oil price areto gasoline demand shocks. In Venezuela, a strike by oildemand is likely correlated with the prices of other refinery outputs via the price of oil.

  3. Factors affecting the supply and demand for limes and lime oil in the U.S.: development implications for Veracruz state, Mexico.

    E-Print Network [OSTI]

    Abarca Orozco, Saul Julian

    2007-01-01T23:59:59.000Z

    ??The fresh lime industry is an important economic activity in Veracruz, Mexico. In this thesis, the economic potential of the fresh lime and lime oil… (more)

  4. Cost, Conflict and Climate: U.S. Challenges in the World Oil Market

    E-Print Network [OSTI]

    Borenstein, Severin

    2008-01-01T23:59:59.000Z

    industry means that all oil demand pushes up the price ofearly 1980s drove down oil demand by 7% worldwide betweento suggest that the demand side of the world oil market or

  5. BEGIN VCALENDAR METHOD PUBLISH

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone byDearTechnicalAwardssupports local ...BASE4-3 CURRENT23BEGIN

  6. Turkey's energy demand and supply

    SciTech Connect (OSTI)

    Balat, M. [Sila Science, Trabzon (Turkey)

    2009-07-01T23:59:59.000Z

    The aim of the present article is to investigate Turkey's energy demand and the contribution of domestic energy sources to energy consumption. Turkey, the 17th largest economy in the world, is an emerging country with a buoyant economy challenged by a growing demand for energy. Turkey's energy consumption has grown and will continue to grow along with its economy. Turkey's energy consumption is high, but its domestic primary energy sources are oil and natural gas reserves and their production is low. Total primary energy production met about 27% of the total primary energy demand in 2005. Oil has the biggest share in total primary energy consumption. Lignite has the biggest share in Turkey's primary energy production at 45%. Domestic production should be to be nearly doubled by 2010, mainly in coal (lignite), which, at present, accounts for almost half of the total energy production. The hydropower should also increase two-fold over the same period.

  7. Experimental studies in a bottom-burning oil shale combustion retort.

    E-Print Network [OSTI]

    Udell, Kent S.

    1905-01-01T23:59:59.000Z

    ??As the domestic demand for oil continues to increase, it is expected that the enormous worldwide oil shale reserves will eventually be tapped. Oil from… (more)

  8. Evaluation of EOR Potential by Gas and Water Flooding in Shale Oil Reservoirs.

    E-Print Network [OSTI]

    Chen, Ke

    2013-01-01T23:59:59.000Z

    ??The demand for oil and natural gas will continue to increase for the foreseeable future; unconventional resources such as tight oil, shale gas, shale oil… (more)

  9. Demand Response and Open Automated Demand Response

    E-Print Network [OSTI]

    LBNL-3047E Demand Response and Open Automated Demand Response Opportunities for Data Centers G described in this report was coordinated by the Demand Response Research Center and funded by the California. Demand Response and Open Automated Demand Response Opportunities for Data Centers. California Energy

  10. Let the show begin

    SciTech Connect (OSTI)

    Alperowicz, N.

    1993-01-27T23:59:59.000Z

    Major changes should occur in the European polyolefins industry this year. BASF's (Ludwigshafen) polypropylene (PP) deal with ICI is expected to be followed by that of Hoechst (Frankfurt) and Petrofina (Brussels). The two are engaged in feasibility studies for a possible joint venture in PP and are expected to make a decision in the second quarter of this year. Shell and Himont are on track to complete their feasibility study in the first quarter for a polyolefins joint venture. And Huels and PCD are still in talks. But two new possible deals, a polyolefins merger between Nests (Helsinki) and Statoil (Stavanger) and an alliance in PP involving Appryl, the Elf Atochem (51%)/BP Chemicals (49%) joint venture, and Solvay have been denied. The Hoechst/Fina venture would initially encompass only the two companies European plants - Hoechst's 550,000-m.t./year and Fina's 180,000 m.t./year. In addition, Fina would either build or acquire another PP plant. In the second stage, the partners could bring in their overseas plants. Fina has plants in the US, and Hoechst has a combined 100,000 m.t./year in south Africa and Australia. Neste's board member Jukka Viinanen says the only talks between Nests and Statoil center on renegotiations of ethylene supply contract at Stenungsund, Sweden. Nests wants a more flexible deal on quantity and price. It needs 400,000 m.t./year of ethylene for its downstream plants. Viinanen adds that he is worried about the European petrochemical industry and producers need to do everything to improve margins through pricing policies and obtaining a balance between supply and demand. On the possibility of a future link with Statoil he comments, One can never say never. It would take time. We don't feel in a very vulnerable position right now.

  11. Libyan oil industry

    SciTech Connect (OSTI)

    Waddams, F.C.

    1980-01-01T23:59:59.000Z

    Three aspects of the growth and progress of Libya's oil industry since the first crude oil discovery in 1961 are: (1) relations between the Libyan government and the concessionary oil companies; (2) the impact of Libyan oil and events in Libya on the petroleum markets of Europe and the world; and (3) the response of the Libyan economy to the development of its oil industry. The historical review begins with Libya's becoming a sovereign nation in 1951 and traces its subsequent development into a position as a leading world oil producer. 54 references, 10 figures, 55 tables.

  12. High Temperatures & Electricity Demand

    E-Print Network [OSTI]

    High Temperatures & Electricity Demand An Assessment of Supply Adequacy in California Trends.......................................................................................................1 HIGH TEMPERATURES AND ELECTRICITY DEMAND.....................................................................................................................7 SECTION I: HIGH TEMPERATURES AND ELECTRICITY DEMAND ..........................9 BACKGROUND

  13. Running Out of and Into Oil: Analyzing Global Oil Depletion and Transition Through 2050

    SciTech Connect (OSTI)

    Greene, D.L.

    2003-11-14T23:59:59.000Z

    This report presents a risk analysis of world conventional oil resource production, depletion, expansion, and a possible transition to unconventional oil resources such as oil sands, heavy oil and shale oil over the period 2000 to 2050. Risk analysis uses Monte Carlo simulation methods to produce a probability distribution of outcomes rather than a single value. Probability distributions are produced for the year in which conventional oil production peaks for the world as a whole and the year of peak production from regions outside the Middle East. Recent estimates of world oil resources by the United States Geological Survey (USGS), the International Institute of Applied Systems Analysis (IIASA), the World Energy Council (WEC) and Dr. C. Campbell provide alternative views of the extent of ultimate world oil resources. A model of oil resource depletion and expansion for twelve world regions is combined with a market equilibrium model of conventional and unconventional oil supply and demand to create a World Energy Scenarios Model (WESM). The model does not make use of Hubbert curves but instead relies on target reserve-to-production ratios to determine when regional output will begin to decline. The authors believe that their analysis has a bias toward optimism about oil resource availability because it does not attempt to incorporate political or environmental constraints on production, nor does it explicitly include geologic constraints on production rates. Global energy scenarios created by IIASA and WEC provide the context for the risk analysis. Key variables such as the quantity of undiscovered oil and rates of technological progress are treated as probability distributions, rather than constants. Analyses based on the USGS and IIASA resource assessments indicate that conventional oil production outside the Middle East is likely to peak sometime between 2010 and 2030. The most important determinants of the date are the quantity of undiscovered oil, the rate at which unconventional oil production can be expanded, and the rate of growth of reserves and enhanced recovery. Analysis based on data produced by Campbell indicates that the peak of non-Middle East production will occur before 2010. For total world conventional oil production, the results indicate a peak somewhere between 2020 and 2050. Key determinants of the peak in world oil production are the rate at which the Middle East region expands its output and the minimum reserves-to-production ratios producers will tolerate. Once world conventional oil production peaks, first oil sands and heavy oil from Canada, Venezuela and Russia, and later some other source such as shale oil from the United States must expand if total world oil consumption is to continue to increase. Alternative sources of liquid hydrocarbon fuels, such as coal or natural gas are also possible resources but not considered in this analysis nor is the possibility of transition to a hydrogen economy. These limitations were adopted to simplify the transition analysis. Inspection of the paths of conventional oil production indicates that even if world oil production does not peak before 2020, output of conventional oil is likely to increase at a substantially slower rate after that date. The implication is that there will have to be increased production of unconventional oil after that date if world petroleum consumption is to grow.

  14. e n e r g y Unconventional Oil Production

    E-Print Network [OSTI]

    Stuck In A Rock; A Hard Place; M. Engemann; Michael T. Owyang

    Highly variable oil prices and increasing world demand for oil have led producers to look for alternative sources of transportation fuel. Two popular alternatives are oil sands (aka tar sands) and oil shale. However, obtaining usable oil from oil sands or oil shale is more capital-intensive and more expensive than obtaining oil from conventional reserves. At what price of oil do these alternatives become cost-effective? Oil Sands Oil sands are a mixture of sand, water, clay and heavy, viscous oil called bitumen. The largest known deposits of oil sands are in Alberta, Canada, and the Orinoco Oil

  15. Energy Policy 34 (2006) 515531 Have we run out of oil yet? Oil peaking analysis from

    E-Print Network [OSTI]

    price shocks and economic downturns. Over the next 30 years oil demand is expected to grow by 60Energy Policy 34 (2006) 515­531 Have we run out of oil yet? Oil peaking analysis from an optimist of conventional oil production from an optimist's perspective. Is the oil peak imminent? What is the range

  16. U. S. Military Expenditures to Protect the Use of Persian Gulf Oil for Motor Vehicles: Report #15 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data

    E-Print Network [OSTI]

    Delucchi, Mark; Murphy, James

    2006-01-01T23:59:59.000Z

    there to protect world oil demand” (in Plesch et al. , 2005,instability related to U.S. demand for oil. Although to ourassociated with U.S. demand for Persian Gulf oil. If this is

  17. Decline Curve Analysis of Shale Oil Production.

    E-Print Network [OSTI]

    Lund, Linnea

    2014-01-01T23:59:59.000Z

    ?? Production of oil and gas from shale is often described as a revolution to energyproduction in North America. Since the beginning of this century… (more)

  18. Modeling of Energy Production Decisions: An Alaska Oil Case Study

    E-Print Network [OSTI]

    Leighty, Wayne

    2008-01-01T23:59:59.000Z

    In a review of oil market models, Salehi-Isfahani (1995)J. Cremer (1991) “Models of the Oil Market,” in Fundamentalsmarket models predicated on no-cholesterol-knowledge demand structure could not have predicted. In oil

  19. Available online at www.sciencedirect.com Future world oil production: growth, plateau, or peak?

    E-Print Network [OSTI]

    Ito, Garrett

    are dominant: oil (33.2% of world's total energy demand), coal (27.0%), and natural gas (21.1%) [1]. Refined as a feedstock for the petrochemical industry (T Ren, Petrochemicals from oil, natural gas, coal and biomass. Increasing demand for oil from China and other emerging market economies pushed world oil demand higher

  20. Addressing Energy Demand through Demand Response: International Experiences and Practices

    E-Print Network [OSTI]

    Shen, Bo

    2013-01-01T23:59:59.000Z

    of integrating demand response and energy efficiencyand D. Kathan (2009), Demand Response in U.S. ElectricityFRAMEWORKS THAT PROMOTE DEMAND RESPONSE 3.1. Demand Response

  1. Addressing Energy Demand through Demand Response: International Experiences and Practices

    E-Print Network [OSTI]

    Shen, Bo

    2013-01-01T23:59:59.000Z

    Addressing Energy Demand through Demand Response:both the avoided energy costs (and demand charges) as wellCoordination of Energy Efficiency and Demand Response,

  2. Big Things from Small Beginnings

    Broader source: Energy.gov [DOE]

    Slide Presentation given by D. Bullen on behalf of Peter S. Winokur, Ph.D., Chairman Defense Nuclear Facilities Safety Board; prepared by D. Bullen, D. Owen, J. MacSleyne, and D. Minnema. Big Things from Small Beginnings. How seemingly unimportant situations can lead to significant, undesirable events.

  3. Muddy River Restoration Project Begins

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Muddy River Restoration Project Begins Page 5 #12;2 YANKEE ENGINEER February 2013 Yankee Voices of the Muddy River Restoration project. Inset photo: Flooding at the Muddy River. Materials provided by Mike Project Manager, on the passing of his father in law, Francis James (Jim) Murray, Jan. 9. ... to Laura

  4. THE RIMINI PROTOCOL Oil Depletion Protocol

    E-Print Network [OSTI]

    Keeling, Stephen L.

    Soaring oil prices have drawn attention to the issue of the relative supply and demand for crude oil1 THE RIMINI PROTOCOL an Oil Depletion Protocol ~ Heading Off Economic Chaos and Political Conflict During the Second Half of the Age of Oil As proposed at the 2003 Pio Manzu Conference

  5. Canadian Oil Sands: Canada's Energy Advantage

    E-Print Network [OSTI]

    Boisvert, Jeff

    crude oil production, global energy demand, the estimated reserves and resources at Syncrude, views that the world will need oil for decades to come, the expectations regarding oil sands productive capacityCanadian Oil Sands: Canada's Energy Advantage 0 #12;Forward looking information 1 In the interest

  6. Advanced Demand Responsive Lighting

    E-Print Network [OSTI]

    Advanced Demand Responsive Lighting Host: Francis Rubinstein Demand Response Research Center demand responsive lighting systems ­ Importance of dimming ­ New wireless controls technologies · Advanced Demand Responsive Lighting (commenced March 2007) #12;Objectives · Provide up-to-date information

  7. Demand Response Valuation Frameworks Paper

    E-Print Network [OSTI]

    Heffner, Grayson

    2010-01-01T23:59:59.000Z

    benefits of Demand Side Management (DSM) are insufficient toefficiency, demand side management (DSM) cost effectivenessResearch Center Demand Side Management Demand Side Resources

  8. Analysis of the influence of residential location on light passenger vehicle energy demand.

    E-Print Network [OSTI]

    Williamson, Mark

    2013-01-01T23:59:59.000Z

    ??New Zealand???s current urban environment assumes a constant availability and affordability of energy (oil) and as such the energy demand of private vehicles is rarely… (more)

  9. The Development and Challenge of the Chinese Oil Companiesâ Oversea Investments.

    E-Print Network [OSTI]

    Su, Yu-Chun

    2006-01-01T23:59:59.000Z

    ??Since China became a net oil importer in 1993, Chinaâs remarkable economic growth has fueled a demand for oil that has outstripped domestic sources of… (more)

  10. Ethanol Demand in United States Gasoline Production

    SciTech Connect (OSTI)

    Hadder, G.R.

    1998-11-24T23:59:59.000Z

    The Oak Ridge National Laboratory (OWL) Refinery Yield Model (RYM) has been used to estimate the demand for ethanol in U.S. gasoline production in year 2010. Study cases examine ethanol demand with variations in world oil price, cost of competing oxygenate, ethanol value, and gasoline specifications. For combined-regions outside California summer ethanol demand is dominated by conventional gasoline (CG) because the premised share of reformulated gasoline (RFG) production is relatively low and because CG offers greater flexibility for blending high vapor pressure components like ethanol. Vapor pressure advantages disappear for winter CG, but total ethanol used in winter RFG remains low because of the low RFG production share. In California, relatively less ethanol is used in CG because the RFG production share is very high. During the winter in California, there is a significant increase in use of ethanol in RFG, as ethanol displaces lower-vapor-pressure ethers. Estimated U.S. ethanol demand is a function of the refiner value of ethanol. For example, ethanol demand for reference conditions in year 2010 is 2 billion gallons per year (BGY) at a refiner value of $1.00 per gallon (1996 dollars), and 9 BGY at a refiner value of $0.60 per gallon. Ethanol demand could be increased with higher oil prices, or by changes in gasoline specifications for oxygen content, sulfur content, emissions of volatile organic compounds (VOCS), and octane numbers.

  11. Los Alamos National Laboratory begins

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6,LocalNuclearand LANSdescribesMay 14, 2009begins

  12. Canadian oil market review shows growing influence of heavy oil and bitumen

    SciTech Connect (OSTI)

    Not Available

    1986-09-01T23:59:59.000Z

    Canadian oil demand and consumption, crude oil received at refineries, oil well productivity including shut-in production, and exports and imports are discussed. Both light and heavy oil, natural gas, and bitumen are included in the seasonally-adjusted data presented.

  13. (D. Merriam, U of Kansas, ed) Predicting the Peak in World Oil Production

    E-Print Network [OSTI]

    Alfred J. Cavallo

    recently predicted that world oil production could continue to increase for more than three decades, based on the recent US Geological Survey (USGS) evaluation of world oil resources and a simple, transparent model. However, it can be shown that this model is not consistent with actual oil production records in many different regions, particularly that of the US, from which it was derived. A more careful application of the EIA model, using the same resource estimates, indicates that at best non-OPEC oil production can increase for less than two decades, and should begin to decline at the latest sometime between 2015 and 2020. OPEC will at this point completely control the world oil market and will need to meet increased demand as well as compensate for declining production of non-OPEC producers. OPEC could control the market even sooner than this, given its much larger share of proven oil reserves, probable difficulties in transforming non-OPEC undiscovered reserves into proven reserves, and the converging interests of all oil producers as reserves are depleted. This has significant implications for the world economy and for US national security.

  14. Addressing Energy Demand through Demand Response: International Experiences and Practices

    E-Print Network [OSTI]

    Shen, Bo

    2013-01-01T23:59:59.000Z

    Data for Automated Demand Response in Commercial Buildings,Demand Response Infrastructure for Commercial Buildings",demand response and energy efficiency functions into the design of buildings,

  15. Demand Response Spinning Reserve Demonstration

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    F) Enhanced ACP Date RAA ACP Demand Response – SpinningReserve Demonstration Demand Response – Spinning Reservesupply spinning reserve. Demand Response – Spinning Reserve

  16. Automated Demand Response and Commissioning

    E-Print Network [OSTI]

    Piette, Mary Ann; Watson, David S.; Motegi, Naoya; Bourassa, Norman

    2005-01-01T23:59:59.000Z

    Fully-Automated Demand Response Test in Large Facilities14in DR systems. Demand Response using HVAC in Commercialof Fully Automated Demand Response in Large Facilities”

  17. Automated Demand Response and Commissioning

    E-Print Network [OSTI]

    Piette, Mary Ann; Watson, David S.; Motegi, Naoya; Bourassa, Norman

    2005-01-01T23:59:59.000Z

    and Demand Response in Commercial Buildings”, Lawrencesystems. Demand Response using HVAC in Commercial BuildingsDemand Response Test in Large Facilities13 National Conference on Building

  18. CALIFORNIA ENERGY DEMAND 2006-2016 STAFF ENERGY DEMAND FORECAST

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION CALIFORNIA ENERGY DEMAND 2006-2016 STAFF ENERGY DEMAND FORECAST Demand Forecast report is the product of the efforts of many current and former California Energy-2 Demand Forecast Disaggregation......................................................1-4 Statewide

  19. Demand and Price Uncertainty: Rational Habits in International Gasoline Demand

    E-Print Network [OSTI]

    Scott, K. Rebecca

    2013-01-01T23:59:59.000Z

    capita terms. When crude oil prices are used, these are theprices are driven by oil prices, moreover, and oil isby ‡uctuations in the crude oil price. The overall mean real

  20. Industrial Demand Module

    Gasoline and Diesel Fuel Update (EIA)

    Boiler, Steam, and Cogeneration (BSC) Component. The BSC Component satisfies the steam demand from the PA and BLD Components. In some industries, the PA Component produces...

  1. Demand Response In California

    Broader source: Energy.gov [DOE]

    Presentation covers the demand response in California and is given at the FUPWG 2006 Fall meeting, held on November 1-2, 2006 in San Francisco, California.

  2. CONSULTANT REPORT DEMAND FORECAST EXPERT

    E-Print Network [OSTI]

    CONSULTANT REPORT DEMAND FORECAST EXPERT PANEL INITIAL forecast, end-use demand modeling, econometric modeling, hybrid demand modeling, energyMahon, Carl Linvill 2012. Demand Forecast Expert Panel Initial Assessment. California Energy

  3. Combined cycle meets Thailand's growing power demands

    SciTech Connect (OSTI)

    Sheets, B.A. (Black and Veatch, Kansas City, MO (United States)); Takabut, K. (Electricity Generating Authority of Thailand, Nonthaburi (Thailand))

    1993-08-01T23:59:59.000Z

    This article describes how an ample supply of natural gas led the Electricity Generating Authority of Thailand (EGAT) to choose gas-fired combustion turbines. Thailand's rapid industrialization, which began in the late 1980's, placed a great strain on the country's electricity supply system. The demand for electricity grew at an astonishing 14% annually. To deal with diminishing reserve capacity margins, the EGAT announced, in 1988, a power development program emphasizing gas-fired combined cycle power plants. Plans included six 320-MW combined cycle blocks at three sites, and an additional 600-MW gas- and oil-fired thermal plant at Bang Pakong. As electricity demand continued to increase, EGAT expanded its plans to include two additional 320-MW combined cycle blocks, a 600-MW combined cycle block, and a 650-MW gas- and oil-fired thermal plant. All are currently in various stages of design and construction.

  4. Tactile robotic mapping of unknown surfaces: An application to oil well exploration

    E-Print Network [OSTI]

    Mazzini, Francesco

    World oil demand and advanced oil recovery techniques have made it economically attractive to rehabilitate previously abandoned oil wells. This requires relatively fast mapping of the shape and location of the down-hole ...

  5. Risk analysis in oil and gas projects : a case study in the Middle East

    E-Print Network [OSTI]

    Zand, Emad Dolatshahi

    2009-01-01T23:59:59.000Z

    Global demand for energy is rising around the world. Middle East is a major supplier of oil and gas and remains an important region for any future oil and gas developments. Meanwhile, managing oil and gas projects are ...

  6. Evaluation of residual shale oils as feedstocks for valuable carbon materials

    SciTech Connect (OSTI)

    Fei, You Qing; Derbyshire, F. [Univ. of Kentucky, Lexington, KY (United States)

    1995-12-31T23:59:59.000Z

    Oil shale represents one of the largest fossil fuel resources in the US and in other pans of the world. Beginning in the 1970s until recently, there was considerable research and development activity directed primarily to technologies for the production of transportation fuels from oil shale. Due to the low cost of petroleum, as with other alternate fuel strategies, oil shale processing is not economically viable at present. However, future scenarios can be envisaged in which non-petroleum resources may be expected to contribute to the demand for hydrocarbon fuels and chemicals, with the expectation that process technologies can be rendered economically attractive. There is potential to improve the economics of oil shale utilization through broadening the spectrum of products that can be derived from this resource, and producing added-value materials that are either unavailable or more difficult to produce from other sources. This concept is by no means original. The history of oil shale development shows that most attempts to commercialize oil shale technology have relied upon the marketing of by-products. Results are presented on carbonization and the potential for generating a pitch that could serve as a precursur material.

  7. OIL SHALE

    E-Print Network [OSTI]

    Fields (in-situ Combustion Approach; M. V. Kök; G. Guner; S. Bagci?

    Seyitömer, Himmeto?lu and Hat?lda? oil shale deposits. The results demonstrate that these oil shales are

  8. 61. Nelson, D. C. Oil Shale: New Technologies Defining New Opportunities. Presented at the Platts Rockies Gas & Oil Conference, Denver, CO, April

    E-Print Network [OSTI]

    Kulp, Mark

    61. Nelson, D. C. Oil Shale: New Technologies Defining New Opportunities. Presented at the Platts I, II Modeling of the In-Situ Production of Oil from .',1 l ',".1" Oil Shale ilil 'I' 'I~ :' l of conventional oil reserves amidst increasing liquid fuel demand in the world have renewed interest in oil shale

  9. Demand and Price Volatility: Rational Habits in International Gasoline Demand

    E-Print Network [OSTI]

    Scott, K. Rebecca

    2011-01-01T23:59:59.000Z

    shift in the short-run price elasticity of gasoline demand.A meta-analysis of the price elasticity of gasoline demand.2007. Consumer demand un- der price uncertainty: Empirical

  10. Demand and Price Volatility: Rational Habits in International Gasoline Demand

    E-Print Network [OSTI]

    Scott, K. Rebecca

    2011-01-01T23:59:59.000Z

    H. , and James M. Gri¢ n. 1983. Gasoline demand in the OECDof dynamic demand for gasoline. Journal of Econometrics 77(An empirical analysis of gasoline demand in Denmark using

  11. Demand and Price Volatility: Rational Habits in International Gasoline Demand

    E-Print Network [OSTI]

    Scott, K. Rebecca

    2011-01-01T23:59:59.000Z

    per capita terms. When crude oil prices are used, these aredriven by the world crude oil price rather than by exchange-uctuations in the crude oil price. The overall mean real

  12. Demand and Price Uncertainty: Rational Habits in International Gasoline Demand

    E-Print Network [OSTI]

    Scott, K. Rebecca

    2013-01-01T23:59:59.000Z

    per capita terms. When crude oil prices are used, these areby ‡uctuations in the crude oil price. The overall mean realcandidates are the crude oil price and the tax level. Both

  13. Demand and Price Volatility: Rational Habits in International Gasoline Demand

    E-Print Network [OSTI]

    Scott, K. Rebecca

    2011-01-01T23:59:59.000Z

    capita terms. When crude oil prices are used, these are thedriven by the world crude oil price rather than by exchange-how consumers think about oil prices and price expectations,

  14. Demand and Price Uncertainty: Rational Habits in International Gasoline Demand

    E-Print Network [OSTI]

    Scott, K. Rebecca

    2013-01-01T23:59:59.000Z

    Sterner. 1991. Analysing gasoline demand elasticities: A2011. Measuring global gasoline and diesel price and incomeMutairi. 1995. Demand for gasoline in Kuwait: An empirical

  15. Demand Response Valuation Frameworks Paper

    E-Print Network [OSTI]

    Heffner, Grayson

    2010-01-01T23:59:59.000Z

    No. ER06-615-000 CAISO Demand Response Resource User Guide -8 2.1. Demand Response Provides a Range of Benefits to8 2.2. Demand Response Benefits can be Quantified in Several

  16. On Demand Guarantees in Iran.

    E-Print Network [OSTI]

    Ahvenainen, Laura

    2009-01-01T23:59:59.000Z

    ??On Demand Guarantees in Iran This thesis examines on demand guarantees in Iran concentrating on bid bonds and performance guarantees. The main guarantee types and… (more)

  17. A new era for oil prices

    E-Print Network [OSTI]

    Mitchell, John V.

    2006-01-01T23:59:59.000Z

    Since 2003 the international oil market has been moving away from the previous 20-year equilibrium in which prices fluctuated around $25/bbl (in today's dollars). The single most important reason is that growing demand has ...

  18. Oil Price Shocks: Causes and Consequences

    E-Print Network [OSTI]

    Lutz Kilian; Key Words

    Research on oil markets conducted during the last decade has challenged long-held beliefs about the causes and consequences of oil price shocks. As the empirical and theoretical models used by economists have evolved, so has our understanding of the determinants of oil price shocks and of the interaction between oil markets and the global economy. Some of the key insights are that the real price of oil is endogenous with respect to economic fundamentals, and that oil price shocks do not occur ceteris paribus. This makes it necessary to explicitly account for the demand and supply shocks underlying oil price shocks when studying their transmission to the domestic economy. Disentangling cause and effect in the relationship between oil prices and the economy requires structural models of the global economy including oil and other commodity markets.

  19. Energy Demand Staff Scientist

    E-Print Network [OSTI]

    Eisen, Michael

    Energy Demand in China Lynn Price Staff Scientist February 2, 2010 #12;Founded in 1988 Focused on End-Use Energy Efficiency ~ 40 Current Projects in China Collaborations with ~50 Institutions in China Researcher #12;Talk OutlineTalk Outline · Overview · China's energy use and CO2 emission trends · Energy

  20. China's Coal: Demand, Constraints, and Externalities

    SciTech Connect (OSTI)

    Aden, Nathaniel; Fridley, David; Zheng, Nina

    2009-07-01T23:59:59.000Z

    This study analyzes China's coal industry by focusing on four related areas. First, data are reviewed to identify the major drivers of historical and future coal demand. Second, resource constraints and transport bottlenecks are analyzed to evaluate demand and growth scenarios. The third area assesses the physical requirements of substituting coal demand growth with other primary energy forms. Finally, the study examines the carbon- and environmental implications of China's past and future coal consumption. There are three sections that address these areas by identifying particular characteristics of China's coal industry, quantifying factors driving demand, and analyzing supply scenarios: (1) reviews the range of Chinese and international estimates of remaining coal reserves and resources as well as key characteristics of China's coal industry including historical production, resource requirements, and prices; (2) quantifies the largest drivers of coal usage to produce a bottom-up reference projection of 2025 coal demand; and (3) analyzes coal supply constraints, substitution options, and environmental externalities. Finally, the last section presents conclusions on the role of coal in China's ongoing energy and economic development. China has been, is, and will continue to be a coal-powered economy. In 2007 Chinese coal production contained more energy than total Middle Eastern oil production. The rapid growth of coal demand after 2001 created supply strains and bottlenecks that raise questions about sustainability. Urbanization, heavy industrial growth, and increasing per-capita income are the primary interrelated drivers of rising coal usage. In 2007, the power sector, iron and steel, and cement production accounted for 66% of coal consumption. Power generation is becoming more efficient, but even extensive roll-out of the highest efficiency units would save only 14% of projected 2025 coal demand for the power sector. A new wedge of future coal consumption is likely to come from the burgeoning coal-liquefaction and chemicals industries. If coal to chemicals capacity reaches 70 million tonnes and coal-to-liquids capacity reaches 60 million tonnes, coal feedstock requirements would add an additional 450 million tonnes by 2025. Even with more efficient growth among these drivers, China's annual coal demand is expected to reach 3.9 to 4.3 billion tonnes by 2025. Central government support for nuclear and renewable energy has not reversed China's growing dependence on coal for primary energy. Substitution is a matter of scale: offsetting one year of recent coal demand growth of 200 million tonnes would require 107 billion cubic meters of natural gas (compared to 2007 growth of 13 BCM), 48 GW of nuclear (compared to 2007 growth of 2 GW), or 86 GW of hydropower capacity (compared to 2007 growth of 16 GW). Ongoing dependence on coal reduces China's ability to mitigate carbon dioxide emissions growth. If coal demand remains on a high growth path, carbon dioxide emissions from coal combustion alone would exceed total US energy-related carbon emissions by 2010. Within China's coal-dominated energy system, domestic transportation has emerged as the largest bottleneck for coal industry growth and is likely to remain a constraint to further expansion. China has a low proportion of high-quality reserves, but is producing its best coal first. Declining quality will further strain production and transport capacity. Furthermore, transporting coal to users has overloaded the train system and dramatically increased truck use, raising transportation oil demand. Growing international imports have helped to offset domestic transport bottlenecks. In the long term, import demand is likely to exceed 200 million tonnes by 2025, significantly impacting regional markets.

  1. Water issues associated with heavy oil production.

    SciTech Connect (OSTI)

    Veil, J. A.; Quinn, J. J.; Environmental Science Division

    2008-11-28T23:59:59.000Z

    Crude oil occurs in many different forms throughout the world. An important characteristic of crude oil that affects the ease with which it can be produced is its density and viscosity. Lighter crude oil typically can be produced more easily and at lower cost than heavier crude oil. Historically, much of the nation's oil supply came from domestic or international light or medium crude oil sources. California's extensive heavy oil production for more than a century is a notable exception. Oil and gas companies are actively looking toward heavier crude oil sources to help meet demands and to take advantage of large heavy oil reserves located in North and South America. Heavy oil includes very viscous oil resources like those found in some fields in California and Venezuela, oil shale, and tar sands (called oil sands in Canada). These are described in more detail in the next chapter. Water is integrally associated with conventional oil production. Produced water is the largest byproduct associated with oil production. The cost of managing large volumes of produced water is an important component of the overall cost of producing oil. Most mature oil fields rely on injected water to maintain formation pressure during production. The processes involved with heavy oil production often require external water supplies for steam generation, washing, and other steps. While some heavy oil processes generate produced water, others generate different types of industrial wastewater. Management and disposition of the wastewater presents challenges and costs for the operators. This report describes water requirements relating to heavy oil production and potential sources for that water. The report also describes how water is used and the resulting water quality impacts associated with heavy oil production.

  2. ENERGY DEMAND FORECAST METHODS REPORT

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION ENERGY DEMAND FORECAST METHODS REPORT Companion Report to the California Energy Demand 2006-2016 Staff Energy Demand Forecast Report STAFFREPORT June 2005 CEC-400 .......................................................................................................................................1-1 ENERGY DEMAND FORECASTING AT THE CALIFORNIA ENERGY COMMISSION: AN OVERVIEW

  3. Demand Forecast INTRODUCTION AND SUMMARY

    E-Print Network [OSTI]

    Demand Forecast INTRODUCTION AND SUMMARY A 20-year forecast of electricity demand is a required of any forecast of electricity demand and developing ways to reduce the risk of planning errors that could arise from this and other uncertainties in the planning process. Electricity demand is forecast

  4. Economic Effects of High Oil Prices (released in AEO2006)

    Reports and Publications (EIA)

    2006-01-01T23:59:59.000Z

    The Annual Energy Outlook 2006 projections of future energy market conditions reflect the effects of oil prices on the macroeconomic variables that affect oil demand, in particular, and energy demand in general. The variables include real gross domestic product (GDP) growth, inflation, employment, exports and imports, and interest rates.

  5. Office of Naval Petroleum and Oil Shale Reserves

    E-Print Network [OSTI]

    unknown authors

    Worldwide supplies of conventional oil will soon reach a peak production rate and begin an irreversible long-term decline. Options to augment liquid fuel supplies in the United States have once again begun to focus on oil shale as long-term source of reliable, affordable, and secure oil. The United

  6. Unconventional Oil and Gas Resources

    SciTech Connect (OSTI)

    none

    2006-09-15T23:59:59.000Z

    World oil use is projected to grow to 98 million b/d in 2015 and 118 million b/d in 2030. Total world natural gas consumption is projected to rise to 134 Tcf in 2015 and 182 Tcf in 2030. In an era of declining production and increasing demand, economically producing oil and gas from unconventional sources is a key challenge to maintaining global economic growth. Some unconventional hydrocarbon sources are already being developed, including gas shales, tight gas sands, heavy oil, oil sands, and coal bed methane. Roughly 20 years ago, gas production from tight sands, shales, and coals was considered uneconomic. Today, these resources provide 25% of the U.S. gas supply and that number is likely to increase. Venezuela has over 300 billion barrels of unproven extra-heavy oil reserves which would give it the largest reserves of any country in the world. It is currently producing over 550,000 b/d of heavy oil. Unconventional oil is also being produced in Canada from the Athabasca oil sands. 1.6 trillion barrels of oil are locked in the sands of which 175 billion barrels are proven reserves that can be recovered using current technology. Production from 29 companies now operating there exceeds 1 million barrels per day. The report provides an overview of continuous petroleum sources and gives a concise overview of the current status of varying types of unconventional oil and gas resources. Topics covered in the report include: an overview of the history of Oil and Natural Gas; an analysis of the Oil and Natural Gas industries, including current and future production, consumption, and reserves; a detailed description of the different types of unconventional oil and gas resources; an analysis of the key business factors that are driving the increased interest in unconventional resources; an analysis of the barriers that are hindering the development of unconventional resources; profiles of key producing regions; and, profiles of key unconventional oil and gas producers.

  7. Addressing Energy Demand through Demand Response: International Experiences and Practices

    E-Print Network [OSTI]

    Shen, Bo

    2013-01-01T23:59:59.000Z

    BEST PRACTICES AND RESULTS OF DR IMPLEMENTATION . 31 Encouraging End-User Participation: The Role of Incentives 16 Demand Response

  8. Effects of futures market manipulation on crude oil prices: An empirical examination.

    E-Print Network [OSTI]

    Elhelou, Rami

    2011-01-01T23:59:59.000Z

    ??Crude oil prices moved irregularly in the period leading to the financial meltdown in the beginning of 2008. This research paper deals with the explaining… (more)

  9. Demand Dispatch-Intelligent

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesData Files Data FilesFeFe-HydrogenaseDemand

  10. Customer focused collaborative demand planning

    E-Print Network [OSTI]

    Jha, Ratan (Ratan Mohan)

    2008-01-01T23:59:59.000Z

    Many firms worldwide have adopted the process of Sales & Operations Planning (S&OP) process where internal departments within a firm collaborate with each other to generate a demand forecast. In a collaborative demand ...

  11. Beginning Matlab Exercises R. J. Braun

    E-Print Network [OSTI]

    Bacuta, Constantin

    Beginning Matlab Exercises R. J. Braun Department of Mathematical Sciences University of Delaware 1 Introduction This collection of exercises is intended to help you start learning Matlab. Matlab is a huge will be Matlab commands that you can input to the Matlab prompt. text will indicate quantities that you need

  12. Demand Response: Load Management Programs

    E-Print Network [OSTI]

    Simon, J.

    2012-01-01T23:59:59.000Z

    CenterPoint Load Management Programs CATEE Conference October, 2012 Agenda Outline I. General Demand Response Definition II. General Demand Response Program Rules III. CenterPoint Commercial Program IV. CenterPoint Residential Programs... V. Residential Discussion Points Demand Response Definition of load management per energy efficiency rule 25.181: ? Load control activities that result in a reduction in peak demand, or a shifting of energy usage from a peak to an off...

  13. FISHERY WASTE EFFLUENTS: A METHOD TO DETERMINE RELATIONSHIPS BETWEEN CHEMICAL OXYGEN DEMAND AND RESIDUE

    E-Print Network [OSTI]

    FISHERY WASTE EFFLUENTS: A METHOD TO DETERMINE RELATIONSHIPS BETWEEN CHEMICAL OXYGEN DEMAND effluents, especially for total suspended and settleable solids, and oil and grease. The relationship between chemical oxygen demand and residue was determined on a limited number of samples from four types

  14. Accurate dispensing of volatile reagents on demand for chemical reactions in EWOD chips{

    E-Print Network [OSTI]

    Accurate dispensing of volatile reagents on demand for chemical reactions in EWOD chips{ Huijiang the use of a filler liquid (e.g., oil). These properties pose challenges for delivering controlled volumes are introduced to the chip, independent of time delays between dispensing operations. On-demand dispensing

  15. TRAVEL DEMAND AND RELIABLE FORECASTS

    E-Print Network [OSTI]

    Minnesota, University of

    TRAVEL DEMAND AND RELIABLE FORECASTS FOR TRANSIT MARK FILIPI, AICP PTP 23rd Annual Transportation transportation projects § Develop and maintain Regional Travel Demand Model § Develop forecast socio in cooperative review during all phases of travel demand forecasting 4 #12;Cooperative Review Should Include

  16. ELECTRICITY DEMAND FORECAST COMPARISON REPORT

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION ELECTRICITY DEMAND FORECAST COMPARISON REPORT STAFFREPORT June 2005 Gorin Principal Authors Lynn Marshall Project Manager Kae C. Lewis Acting Manager Demand Analysis Office Valerie T. Hall Deputy Director Energy Efficiency and Demand Analysis Division Scott W. Matthews Acting

  17. Demand Forecasting of New Products

    E-Print Network [OSTI]

    Sun, Yu

    Demand Forecasting of New Products Using Attribute Analysis Marina Kang A thesis submitted Abstract This thesis is a study into the demand forecasting of new products (also referred to as Stock upon currently employed new-SKU demand forecasting methods which involve the processing of large

  18. Assessment of Demand Response Resource

    E-Print Network [OSTI]

    Assessment of Demand Response Resource Potentials for PGE and Pacific Power Prepared for: Portland January 15, 2004 K:\\Projects\\2003-53 (PGE,PC) Assess Demand Response\\Report\\Revised Report_011504.doc #12;#12;quantec Assessment of Demand Response Resource Potentials for I-1 PGE and Pacific Power I. Introduction

  19. Crude oil prices: Are our oil markets too tight?

    SciTech Connect (OSTI)

    Simmons, M.R. [Simmons and Co. International, Houston, TX (United States)

    1997-02-01T23:59:59.000Z

    The answer to the question posed in the title is that tightness in the market will surely prevail through 1997. And as discussed herein, with worldwide demand expected to continue to grow, there will be a strong call on extra oil supply. Meeting those demands, however, will not be straightforward--as many observers wrongly believe--considering the industry`s practice of maintaining crude stocks at ``Just in time`` inventory levels. Further, impact will be felt from the growing rig shortage, particularly for deepwater units, and down-stream capacity limits. While these factors indicate 1997 should be another good year for the service industry, it is difficult to get any kind of consensus view from the oil price market. With most observers` information dominated by the rarely optimistic futures price of crude, as reflected by the NYMEX, the important fact is that oil prices have remained stable for three years and increased steadily through 1996.

  20. Re-refining of Waste Oil Solvent Is Used in Treatment/Distillation Process

    E-Print Network [OSTI]

    unknown authors

    INDUSTRIAL APPLICATION. A combination solvent treatment/distillation process has been designed for re-refining industrial waste oil (such as equipment lubricants, metal-working oil, and process oil) and used automotive lubricants (engine oil, hydraulic oil, and gear oil) for reuse. WASTE ENERGY RECOVERY. Recycling of waste oil in the United States has the potential to save the energy equivalent of 7-12 million bbl of crude oil annually.1 WASTE OIL RECOVERY. Prior to 1960, a significant portion of the demand for automotive lubricating oil was met by re-relined used oil. At the time, 150 re-refineries produced 300 million gal of motor oil annually. Since 1960, however, the production of re-refined oil has steadily declined. In 1981, for example, out of about 1.2 billion gal of automobile lubricating oil and 1.6 billion gal of industrial lubricating oils purchased, 25 U.S. rerefineries

  1. University Residence Hall Move-Out Begins

    E-Print Network [OSTI]

    California at Santa Barbara, University of

    services and the University Center compost all food-prep waste and recycle their used cooking oil the daylight hours. Dining services continues to increase organic and local farms in food supply contracts. Currently, 10% of the produce served is certified organic or local/sustainable, and the seafood served

  2. Analysis of Residential Demand Response and Double-Auction Markets

    SciTech Connect (OSTI)

    Fuller, Jason C.; Schneider, Kevin P.; Chassin, David P.

    2011-10-10T23:59:59.000Z

    Demand response and dynamic pricing programs are expected to play increasing roles in the modern Smart Grid environment. While direct load control of end-use loads has existed for decades, price driven response programs are only beginning to be explored at the distribution level. These programs utilize a price signal as a means to control demand. Active markets allow customers to respond to fluctuations in wholesale electrical costs, but may not allow the utility to control demand. Transactive markets, utilizing distributed controllers and a centralized auction can be used to create an interactive system which can limit demand at key times on a distribution system, decreasing congestion. With the current proliferation of computing and communication resources, the ability now exists to create transactive demand response programs at the residential level. With the combination of automated bidding and response strategies coupled with education programs and customer response, emerging demand response programs have the ability to reduce utility demand and congestion in a more controlled manner. This paper will explore the effects of a residential double-auction market, utilizing transactive controllers, on the operation of an electric power distribution system.

  3. World's Largest Post-Combustion Carbon Capture Project Begins...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    World's Largest Post-Combustion Carbon Capture Project Begins Construction World's Largest Post-Combustion Carbon Capture Project Begins Construction July 15, 2014 - 9:55am Addthis...

  4. Nevada's Beowawe Geothermal Plant Begins Generating Clean Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nevada's Beowawe Geothermal Plant Begins Generating Clean Energy Nevada's Beowawe Geothermal Plant Begins Generating Clean Energy April 20, 2011 - 1:45pm Addthis U.S. Energy...

  5. Demand Response Programs, 6. edition

    SciTech Connect (OSTI)

    NONE

    2007-10-15T23:59:59.000Z

    The report provides a look at the past, present, and future state of the market for demand/load response based upon market price signals. It is intended to provide significant value to individuals and companies who are considering participating in demand response programs, energy providers and ISOs interested in offering demand response programs, and consultants and analysts looking for detailed information on demand response technology, applications, and participants. The report offers a look at the current Demand Response environment in the energy industry by: defining what demand response programs are; detailing the evolution of program types over the last 30 years; discussing the key drivers of current initiatives; identifying barriers and keys to success for the programs; discussing the argument against subsidization of demand response; describing the different types of programs that exist including:direct load control, interruptible load, curtailable load, time-of-use, real time pricing, and demand bidding/buyback; providing examples of the different types of programs; examining the enablers of demand response programs; and, providing a look at major demand response programs.

  6. Experimental investigation of caustic steam injection for heavy oils

    E-Print Network [OSTI]

    Madhavan, Rajiv

    2010-01-16T23:59:59.000Z

    CHAPTER I INTRODUCTION 1.1 Overview Heavy oil is a part of the unconventional petroleum reserve. Heavy oil does not flow very easily and is classified as heavy because of its high specific gravity. With increasing demand for oil and with depleting... and success of the sodium carbonate and sodium silicate floods respectively. (5) Attainment of very low interfacial tension does not ensure improved oil recovery but a minimum value is necessary for a successful steam alkaline flood. Tiab, Okoye...

  7. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01T23:59:59.000Z

    and D. Kathan (2009). Demand Response in U.S. ElectricityEnergy Financial Group. Demand Response Research Center [2008). Assessment of Demand Response and Advanced Metering.

  8. Hawaiian Electric Company Demand Response Roadmap Project

    E-Print Network [OSTI]

    Levy, Roger

    2014-01-01T23:59:59.000Z

    Like HECO actual utility demand response implementations canindustry-wide utility demand response applications tend toobjective. Figure 4. Demand Response Objectives 17  

  9. Retail Demand Response in Southwest Power Pool

    E-Print Network [OSTI]

    Bharvirkar, Ranjit

    2009-01-01T23:59:59.000Z

    23 ii Retail Demand Response in SPP List of Figures and10 Figure 3. Demand Response Resources by11 Figure 4. Existing Demand Response Resources by Type of

  10. Coupling Renewable Energy Supply with Deferrable Demand

    E-Print Network [OSTI]

    Papavasiliou, Anthony

    2011-01-01T23:59:59.000Z

    for each day type for the demand response study - moderate8.4 Demand Response Integration . . . . . . . . . . .for each day type for the demand response study - moderate

  11. Installation and Commissioning Automated Demand Response Systems

    E-Print Network [OSTI]

    Kiliccote, Sila; Global Energy Partners; Pacific Gas and Electric Company

    2008-01-01T23:59:59.000Z

    their partnership in demand response automation research andand Techniques for Demand Response. LBNL Report 59975. Mayof Fully Automated Demand Response in Large Facilities.

  12. Strategies for Demand Response in Commercial Buildings

    E-Print Network [OSTI]

    Watson, David S.; Kiliccote, Sila; Motegi, Naoya; Piette, Mary Ann

    2006-01-01T23:59:59.000Z

    Fully Automated Demand Response Tests in Large Facilities”of Fully Automated Demand Response in Large Facilities”,was coordinated by the Demand Response Research Center and

  13. Demand Responsive Lighting: A Scoping Study

    E-Print Network [OSTI]

    Rubinstein, Francis; Kiliccote, Sila

    2007-01-01T23:59:59.000Z

    2 2.0 Demand ResponseFully Automated Demand Response Tests in Large Facilities,was coordinated by the Demand Response Research Center and

  14. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01T23:59:59.000Z

    of Energy demand-side management energy information systemdemand response. Demand-side management (DSM) program goalsa goal for demand-side management (DSM) coordination and

  15. Demand Responsive Lighting: A Scoping Study

    E-Print Network [OSTI]

    Rubinstein, Francis; Kiliccote, Sila

    2007-01-01T23:59:59.000Z

    3 2.1 Demand-Side Managementbuildings. The demand side management framework is discussedIssues 2.1 Demand-Side Management Framework Forecasting

  16. Hawaiian Electric Company Demand Response Roadmap Project

    E-Print Network [OSTI]

    Levy, Roger

    2014-01-01T23:59:59.000Z

    and best practices to guide HECO demand response developmentbest practices for DR renewable integration – Technically demand responseof best practices. This is partially because demand response

  17. Hawaiian Electric Company Demand Response Roadmap Project

    E-Print Network [OSTI]

    Levy, Roger

    2014-01-01T23:59:59.000Z

    of control. Water heater demand response options are notcurrent water heater and air conditioning demand responsecustomer response Demand response water heater participation

  18. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01T23:59:59.000Z

    District Small Business Summer Solutions: Energy and DemandSummer Solutions: Energy and Demand Impacts Monthly Energy> B-2 Coordination of Energy Efficiency and Demand Response

  19. Coupling Renewable Energy Supply with Deferrable Demand

    E-Print Network [OSTI]

    Papavasiliou, Anthony

    2011-01-01T23:59:59.000Z

    World: Renewable Energy and Demand Response Proliferation intogether the renewable energy and demand response communityimpacts of renewable energy and demand response integration

  20. Strategies for Demand Response in Commercial Buildings

    E-Print Network [OSTI]

    Watson, David S.; Kiliccote, Sila; Motegi, Naoya; Piette, Mary Ann

    2006-01-01T23:59:59.000Z

    Strategies for Demand Response in Commercial Buildings DavidStrategies for Demand Response in Commercial Buildings Davidadjusted for demand response in commercial buildings. The

  1. Installation and Commissioning Automated Demand Response Systems

    E-Print Network [OSTI]

    Kiliccote, Sila; Global Energy Partners; Pacific Gas and Electric Company

    2008-01-01T23:59:59.000Z

    Demand Response Systems National Conference on BuildingDemand Response Systems National Conference on BuildingDemand Response Systems National Conference on Building

  2. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01T23:59:59.000Z

    In terms of demand response capability, building operatorsautomated demand response and improve building energy andand demand response features directly into building design

  3. Addressing Energy Demand through Demand Response: International Experiences and Practices

    E-Print Network [OSTI]

    Shen, Bo

    2013-01-01T23:59:59.000Z

    DEMAND RESPONSE .7 Wholesale Marketuse at times of high wholesale market prices or when systemenergy expenditure. In wholesale markets, spot energy prices

  4. Demand Response For Power System Reliability: FAQ

    SciTech Connect (OSTI)

    Kirby, Brendan J [ORNL

    2006-12-01T23:59:59.000Z

    Demand response is the most underutilized power system reliability resource in North America. Technological advances now make it possible to tap this resource to both reduce costs and improve. Misconceptions concerning response capabilities tend to force loads to provide responses that they are less able to provide and often prohibit them from providing the most valuable reliability services. Fortunately this is beginning to change with some ISOs making more extensive use of load response. This report is structured as a series of short questions and answers that address load response capabilities and power system reliability needs. Its objective is to further the use of responsive load as a bulk power system reliability resource in providing the fastest and most valuable ancillary services.

  5. Review Article Replacing fossil oil with fresh oil – with what and for what?

    E-Print Network [OSTI]

    Anders S. Carlsson; Jenny Lindberg Yilmaz; Allan G. Green; Sten Stymne; Per Hofv

    Industrial chemicals and materials are currently derived mainly from fossil-based raw materials, which are declining in availability, increasing in price and are a major source of undesirable greenhouse gas emissions. Plant oils have the potential to provide functionally equivalent, renewable and environmentally friendly replacements for these finite fossil-based raw materials, provided that their composition can be matched to end-use requirements, and that they can be produced on sufficient scale to meet current and growing industrial demands. Replacement of 40 % of the fossil oil used in the chemical industry with renewable plant oils, whilst ensuring that growing demand for food oils is also met, will require a trebling of global plant oil production from current levels of around 139 MT to over 400 MT annually. Realisation of this potential will rely on application of plant biotechnology to (i) tailor plant oils to have high purity (preferably>90%) of single desirable fatty acids, (ii) introduce unusual fatty acids that have specialty end-use functionalities and (iii) increase plant oil production capacity by increased oil content in current oil crops, and conversion of other high biomass crops into oil accumulating crops. This review outlines recent progress and future challenges in each of these areas. Practical applications: The research reviewed in this paper aims to develop metabolic engineering technologies to radically increase the yield and alter the fatty acid composition of plant oils and enable the

  6. Demand Response and Energy Efficiency

    E-Print Network [OSTI]

    Demand Response & Energy Efficiency International Conference for Enhanced Building Operations ESL-IC-09-11-05 Proceedings of the Ninth International Conference for Enhanced Building Operations, Austin, Texas, November 17 - 19, 2009 2 ?Less than 5... for Enhanced Building Operations, Austin, Texas, November 17 - 19, 2009 5 What is Demand Response? ?The temporary reduction of electricity demanded from the grid by an end-user in response to capacity shortages, system reliability events, or high wholesale...

  7. Driving Demand | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    strategies, results achieved to date, and advice for other programs. Driving Demand for Home Energy Improvements. This guide, developed by the Lawrence Berkeley National...

  8. Demand Response Technology Roadmap A

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    workshop agendas, presentation materials, and transcripts. For the background to the Demand Response Technology Roadmap and to make use of individual roadmaps, the reader is...

  9. Demand Response Technology Roadmap M

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    between May 2014 and February 2015. The Bonneville Power Administration (BPA) Demand Response Executive Sponsor Team decided upon the scope of the project in May. Two subsequent...

  10. Construction Begins | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity2Workshops 2008 To reportConsortiumConstruction Begins

  11. CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST

    E-Print Network [OSTI]

    CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST Volume 2: Electricity Demand.Oglesby Executive Director #12;i ACKNOWLEDGEMENTS The demand forecast is the combined product estimates. Margaret Sheridan provided the residential forecast. Mitch Tian prepared the peak demand

  12. CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST

    E-Print Network [OSTI]

    CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST Volume 2: Electricity Demand Robert P. Oglesby Executive Director #12;i ACKNOWLEDGEMENTS The demand forecast is the combined provided estimates for demand response program impacts and contributed to the residential forecast. Mitch

  13. U.S. Energy Demand, Offshore Oil Production and

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    that is outside of us. Instead, we are a part of a bigger system that comprises us and technology PE departments the Earth The resource size (current balance of a banking account) is mistakenly equated with the speed supply Energy flow-based solutions (wind turbines, photovoltaics, and biofuels) will require most radical

  14. Retail Demand Response in Southwest Power Pool

    E-Print Network [OSTI]

    Bharvirkar, Ranjit

    2009-01-01T23:59:59.000Z

    Data Collection for Demand-side Management for QualifyingPrepared by Demand-side Management Task Force of the

  15. Honeywell Demonstrates Automated Demand Response Benefits for...

    Office of Environmental Management (EM)

    Honeywell Demonstrates Automated Demand Response Benefits for Utility, Commercial, and Industrial Customers Honeywell Demonstrates Automated Demand Response Benefits for Utility,...

  16. China, India demand cushions prices

    SciTech Connect (OSTI)

    Boyle, M.

    2006-11-15T23:59:59.000Z

    Despite the hopes of coal consumers, coal prices did not plummet in 2006 as demand stayed firm. China and India's growing economies, coupled with solid supply-demand fundamentals in North America and Europe, and highly volatile prices for alternatives are likely to keep physical coal prices from wide swings in the coming year.

  17. Harnessing the power of demand

    SciTech Connect (OSTI)

    Sheffrin, Anjali; Yoshimura, Henry; LaPlante, David; Neenan, Bernard

    2008-03-15T23:59:59.000Z

    Demand response can provide a series of economic services to the market and also provide ''insurance value'' under low-likelihood, but high-impact circumstances in which grid reliablity is enhanced. Here is how ISOs and RTOs are fostering demand response within wholesale electricity markets. (author)

  18. Demand Response for Ancillary Services

    SciTech Connect (OSTI)

    Alkadi, Nasr E [ORNL; Starke, Michael R [ORNL

    2013-01-01T23:59:59.000Z

    Many demand response resources are technically capable of providing ancillary services. In some cases, they can provide superior response to generators, as the curtailment of load is typically much faster than ramping thermal and hydropower plants. Analysis and quantification of demand response resources providing ancillary services is necessary to understand the resources economic value and impact on the power system. Methodologies used to study grid integration of variable generation can be adapted to the study of demand response. In the present work, we describe and illustrate a methodology to construct detailed temporal and spatial representations of the demand response resource and to examine how to incorporate those resources into power system models. In addition, the paper outlines ways to evaluate barriers to implementation. We demonstrate how the combination of these three analyses can be used to translate the technical potential for demand response providing ancillary services into a realizable potential.

  19. Automated Demand Response and Commissioning

    SciTech Connect (OSTI)

    Piette, Mary Ann; Watson, David S.; Motegi, Naoya; Bourassa, Norman

    2005-04-01T23:59:59.000Z

    This paper describes the results from the second season of research to develop and evaluate the performance of new Automated Demand Response (Auto-DR) hardware and software technology in large facilities. Demand Response (DR) is a set of activities to reduce or shift electricity use to improve the electric grid reliability and manage electricity costs. Fully-Automated Demand Response does not involve human intervention, but is initiated at a home, building, or facility through receipt of an external communications signal. We refer to this as Auto-DR. The evaluation of the control and communications must be properly configured and pass through a set of test stages: Readiness, Approval, Price Client/Price Server Communication, Internet Gateway/Internet Relay Communication, Control of Equipment, and DR Shed Effectiveness. New commissioning tests are needed for such systems to improve connecting demand responsive building systems to the electric grid demand response systems.

  20. Papua New Guinea: World Oil Report 1991

    SciTech Connect (OSTI)

    Not Available

    1991-08-01T23:59:59.000Z

    This paper reports on oil exploration which is booming in Papua New Guinea (PNG) following a rash of license applications and farm-ins. Most activity is onshore, but success is beginning to drift offshore. Currently, 40 petroleum prospecting licenses (PPL) and one producing license are active, and eight more PPL applications are being considered. PNG is expected to become an oil exporter by September 1992 when initial production is expected from Iagifu, Hedina and Agogo fields.

  1. Michigan utilities begin implementation of cogeneration programs

    SciTech Connect (OSTI)

    Not Available

    1987-02-01T23:59:59.000Z

    Michigan's two major utilities, Consumers Power Corporation and Detroit Edison, are beginning to implement cogeneration and small power programs, although their approaches differ. Consumers Power is entering agreements to purchase cogenerated power at reasonable buyback rates to meet near-future capacity needs, while Detroit Edison is offering rate breaks to keep customers on the grid with an on-site cogeneration alternative rider because of excess capacity. Once its excess capacity is absorbed, Detroit Edison will encourage pursue the approach of Consumers Power. The latter recently filed to convert a Midland cancelled nuclear plant into a gas-fired cogeneration facility. The author reviews complications in this and other contracts and utility commission decisions. 2 tables.

  2. Outsourcing Logistics in the Oil and Gas Industry

    E-Print Network [OSTI]

    Herrera, Cristina 1988-

    2012-04-30T23:59:59.000Z

    The supply chain challenges that the Oil and Gas industry faces in material logistics have enlarged in the last few decades owing to an increased hydro-carbon demand. Many reasons justify the challenges, such as exploration activities which have...

  3. Used oil generation and management in the automotive industries

    E-Print Network [OSTI]

    Jhanani S; Kurian Joseph

    Used oil has been classified as hazardous wastes by the Ministry of Environment and Forests, Government of India which demands its proper management to avoid serious threat to the environment and for economic gains. Used oil could be recovered or reprocessed and reused as base oil thus saving the use of virgin oil. This paper presents an assessment of the used oil generation and management practices by the automotive industries located in Chennai and Kancheepuram in Tamilnadu. Used oil generation and management in eight automotive industries in this area were studied by means of questionnaires, direct observations and interviews. Studies were also undertaken for specific used oil generation from the most common process – reaming and rolling. The specific used oil generation rate varies from 93-336 L/cubic metre of metal cut depending on whether the industries use online centrifuging system for re-refining. Suggestions for the improvement of the used oil management practices are included in this paper.

  4. Demand and Price Uncertainty: Rational Habits in International Gasoline Demand

    E-Print Network [OSTI]

    Scott, K. Rebecca

    2013-01-01T23:59:59.000Z

    global gasoline and diesel price and income elasticities.shift in the short-run price elasticity of gasoline demand.Habits and Uncertain Relative Prices: Simulating Petrol Con-

  5. The Role of Inventories and Speculative Trading in the Global Market for Crude Oil

    E-Print Network [OSTI]

    Lutz Kilian; Dan Murphy

    2010-01-01T23:59:59.000Z

    We develop a structural model of the global market for crude oil that for the first time explicitly allows for shocks to the speculative demand for oil as well as shocks to the flow demand and flow supply. The forward-looking element of the real price of oil is identified with the help of data on oil inventories. The model estimates rule out explanations of the 2003-08 oil price surge based on unexpectedly diminishing oil supplies and based on speculative trading. Instead, we find that this surge was caused by fluctuations in the flow demand for oil driven by the global business cycle. There is evidence, however, that speculative demand shifts played an important role during earlier oil price shock episodes including 1979, 1986, and 1990. We also show that, even after accounting for the role of inventories in smoothing oil consumption, our estimate of the short-run price elasticity of oil demand is much higher than traditional estimates from dynamic models that do not account for price endogeneity. We conclude that additional regulation of oil markets would not have prevented the 2003-08 oil price surge.

  6. Development of artificial neural networks for steam assisted gravity drainage (SAGD) recovery method in heavy oil reservoirs.

    E-Print Network [OSTI]

    Sengel, Ayhan

    2013-01-01T23:59:59.000Z

    ??As no alternative energy source has been introduced to efficiently replace fossil fuels yet, the demand for oil and gas is still increasing in the… (more)

  7. High-Temperature Nuclear Reactors for In-Situ Recovery of Oil from Oil Shale

    SciTech Connect (OSTI)

    Forsberg, Charles W. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6165 (United States)

    2006-07-01T23:59:59.000Z

    The world is exhausting its supply of crude oil for the production of liquid fuels (gasoline, jet fuel, and diesel). However, the United States has sufficient oil shale deposits to meet our current oil demands for {approx}100 years. Shell Oil Corporation is developing a new potentially cost-effective in-situ process for oil recovery that involves drilling wells into oil shale, using electric heaters to raise the bulk temperature of the oil shale deposit to {approx}370 deg C to initiate chemical reactions that produce light crude oil, and then pumping the oil to the surface. The primary production cost is the cost of high-temperature electrical heating. Because of the low thermal conductivity of oil shale, high-temperature heat is required at the heater wells to obtain the required medium temperatures in the bulk oil shale within an economically practical two to three years. It is proposed to use high-temperature nuclear reactors to provide high-temperature heat to replace the electricity and avoid the factor-of-2 loss in converting high-temperature heat to electricity that is then used to heat oil shale. Nuclear heat is potentially viable because many oil shale deposits are thick (200 to 700 m) and can yield up to 2.5 million barrels of oil per acre, or about 125 million dollars/acre of oil at $50/barrel. The concentrated characteristics of oil-shale deposits make it practical to transfer high-temperature heat over limited distances from a reactor to the oil shale deposits. (author)

  8. Solar Decathlon 2013: Let the Building Begin | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Solar Decathlon 2013: Let the Building Begin Solar Decathlon 2013: Let the Building Begin September 30, 2013 - 10:45am Addthis Day 7 Construction 1 of 22 Day 7 Construction During...

  9. Lab begins demolition of Cold War-era buildings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Demolition begins of cold War-Era buildings Lab begins demolition of Cold War-era buildings More than 165,000 square feet of former research, production, and office buildings will...

  10. Enhanced oil recovery in Rumania

    SciTech Connect (OSTI)

    Carcoana, A.N.

    1982-01-01T23:59:59.000Z

    The wide oil field experience of the Romanian oil men in producing hydrocarbon reservoirs is based on an old tradition, but only after 1945 reservoir engineering studies were started in Romania. Beginning with 1950 conventional recovery methods expanded continually. During the last 10 years, however, the crude oil, as energy resource, has become of tremendous importance. The need for increasing the ultimate oil recovery has been felt in Romania as everywhere else. To attain this goal EOR methods were and are tested and expanded on a commercial scale. The paper describes the application of the fire-floods to a broad range of Romanian oil reservoirs and crude properties and reviews the field tests of polymer flooding, surfactant flooding and alkaline flooding. A commercial scale project with cyclic steam injection is presented and also the use of the domestic CO/sub 2/ sources to enhance oil recovery. The results and the diffuculties encountered are briefly discussed and also the potential of EOR methods in Romania are presented.

  11. Full Rank Rational Demand Systems

    E-Print Network [OSTI]

    LaFrance, Jeffrey T; Pope, Rulon D.

    2006-01-01T23:59:59.000Z

    as a nominal income full rank QES. R EFERENCES (A.84)S. G. Donald. “Inferring the Rank of a Matrix. ” Journal of97-102. . “A Demand System Rank Theorem. ” Econometrica 57 (

  12. Marketing Demand-Side Management

    E-Print Network [OSTI]

    O'Neill, M. L.

    1988-01-01T23:59:59.000Z

    Demand-Side Management is an organizational tool that has proven successful in various realms of the ever changing business world in the past few years. It combines the multi-faceted desires of the customers with the increasingly important...

  13. Community Water Demand in Texas

    E-Print Network [OSTI]

    Griffin, Ronald C.; Chang, Chan

    Solutions to Texas water policy and planning problems will be easier to identify once the impact of price upon community water demand is better understood. Several important questions cannot be addressed in the absence of such information...

  14. Demand Response Spinning Reserve Demonstration

    SciTech Connect (OSTI)

    Eto, Joseph H.; Nelson-Hoffman, Janine; Torres, Carlos; Hirth,Scott; Yinger, Bob; Kueck, John; Kirby, Brendan; Bernier, Clark; Wright,Roger; Barat, A.; Watson, David S.

    2007-05-01T23:59:59.000Z

    The Demand Response Spinning Reserve project is a pioneeringdemonstration of how existing utility load-management assets can providean important electricity system reliability resource known as spinningreserve. Using aggregated demand-side resources to provide spinningreserve will give grid operators at the California Independent SystemOperator (CAISO) and Southern California Edison (SCE) a powerful, newtool to improve system reliability, prevent rolling blackouts, and lowersystem operating costs.

  15. LINEAR AND NON-LINEAR TECHNIQUES FOR ESTIMATING THE MONEY DEMAND FUNCTION: THE CASE OF SAUDI ARABIA

    E-Print Network [OSTI]

    Alsahafi, Mamdooh

    2009-07-31T23:59:59.000Z

    aggregates). The first approach is the conventional way, which is based on empirical literature where non-oil GDP is used as a measure for income. The second approach is the consumer demand approach to money demand. This approach emphasizes the use...

  16. Demand Response and Open Automated Demand Response Opportunities for Data Centers

    E-Print Network [OSTI]

    Mares, K.C.

    2010-01-01T23:59:59.000Z

    Standardized Automated Demand Response Signals. Presented atand Automated Demand Response in Industrial RefrigeratedActions for Industrial Demand Response in California. LBNL-

  17. Open Automated Demand Response Communications in Demand Response for Wholesale Ancillary Services

    E-Print Network [OSTI]

    Kiliccote, Sila

    2010-01-01T23:59:59.000Z

    A. Barat, D. Watson. 2006 Demand Response Spinning ReserveKueck, and B. Kirby 2008. Demand Response Spinning ReserveReport 2009. Open Automated Demand Response Communications

  18. Essays on Macroeconomics and Oil

    E-Print Network [OSTI]

    CAKIR, NIDA

    2013-01-01T23:59:59.000Z

    the Oil Industry . . . . . . . . . . . . . . . . . . . . . .in the Venezuelan Oil Industry . . . . . . . . . . . . .and Productivity: Evidence from the Oil Industry . .

  19. Essays on Macroeconomics and Oil

    E-Print Network [OSTI]

    CAKIR, NIDA

    2013-01-01T23:59:59.000Z

    Oil Production . . . . . . . . . . . . . . . . . . . . . . . . . . .Oil Production in Venezuela and Mexico . . . . . . . . . .Oil Production and Productivity in Venezuela and

  20. Demand Response as a System Reliability Resource

    E-Print Network [OSTI]

    Joseph, Eto

    2014-01-01T23:59:59.000Z

    Barat, and D. Watson. 2007. Demand Response Spinning ReserveKueck, and B. Kirby. 2009. Demand Response Spinning ReserveFormat of 2009-2011 Demand Response Activity Applications.

  1. CALIFORNIA ENERGY DEMAND 2014-2024 PRELIMINARY

    E-Print Network [OSTI]

    CALIFORNIA ENERGY DEMAND 2014-2024 PRELIMINARY FORECAST Volume 1 in this report. #12;i ACKNOWLEDGEMENTS The demand forecast is the combined product of the hard. Margaret Sheridan contributed to the residential forecast. Mitch Tian prepared the peak demand

  2. CALIFORNIA ENERGY DEMAND 2014-2024 PRELIMINARY

    E-Print Network [OSTI]

    CALIFORNIA ENERGY DEMAND 2014-2024 PRELIMINARY FORECAST Volume 2 Director #12; i ACKNOWLEDGEMENTS The demand forecast is the combined product prepared the peak demand forecast. Ravinderpal Vaid provided the projections of commercial

  3. California Energy Demand Scenario Projections to 2050

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2008-01-01T23:59:59.000Z

    California Energy Demand Scenario Projections to 2050 RyanCEC (2003a) California energy demand 2003-2013 forecast.CEC (2005a) California energy demand 2006-2016: Staff energy

  4. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01T23:59:59.000Z

    and Demand Response A pilot program from NSTAR in Massachusetts,Massachusetts, aiming to test whether an intensive program of energy efficiency and demand response

  5. Supply chain planning decisions under demand uncertainty

    E-Print Network [OSTI]

    Huang, Yanfeng Anna

    2008-01-01T23:59:59.000Z

    Sales and operational planning that incorporates unconstrained demand forecasts has been expected to improve long term corporate profitability. Companies are considering such unconstrained demand forecasts in their decisions ...

  6. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01T23:59:59.000Z

    California Long-term Energy Efficiency Strategic Plan. B-2 Coordination of Energy Efficiency and Demand Response> B-4 Coordination of Energy Efficiency and Demand Response

  7. California Energy Demand Scenario Projections to 2050

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2008-01-01T23:59:59.000Z

    annual per-capita electricity consumption by demand15 California electricity consumption projections by demandannual per-capita electricity consumption by demand

  8. California Energy Demand Scenario Projections to 2050

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2008-01-01T23:59:59.000Z

    Vehicle Conventional and Alternative Fuel Response Simulatormodified to include alternative fuel demand scenarios (whichvehicle adoption and alternative fuel demand) later in the

  9. Demand Response as a System Reliability Resource

    E-Print Network [OSTI]

    Joseph, Eto

    2014-01-01T23:59:59.000Z

    for Demand Response Technology Development The objective ofin planning demand response technology RD&D by conductingNew and Emerging Technologies into the California Smart Grid

  10. Demand Responsive Lighting: A Scoping Study

    E-Print Network [OSTI]

    Rubinstein, Francis; Kiliccote, Sila

    2007-01-01T23:59:59.000Z

    sector, the demand response potential of California buildinga demand response event prohibit a building’s participationdemand response strategies in California buildings are

  11. Optimal Industrial Load Control in Smart Grid: A Case Study for Oil Refineries

    E-Print Network [OSTI]

    Mohsenian-Rad, Hamed

    Optimal Industrial Load Control in Smart Grid: A Case Study for Oil Refineries Armen Gholian, Hamed units finish their operations. Considering an oil refinery industry as an example, we not only identify Terms­Demand response, load management, manufactur- ing industries, oil refineries, optimal scheduling

  12. Integrated Reservoir Characterization and Simulation Studies in Stripper Oil and Gas Fields

    E-Print Network [OSTI]

    Wang, Jianwei

    2010-01-14T23:59:59.000Z

    The demand for oil and gas is increasing yearly, whereas proven oil and gas reserves are being depleted. The potential of stripper oil and gas fields to supplement the national energy supply is large. In 2006, stripper wells accounted for 15% and 8...

  13. Is There Evidence of Super Cycles in Oil Prices?* Abdel M. Zellou and John T. Cuddington**

    E-Print Network [OSTI]

    Is There Evidence of Super Cycles in Oil Prices?* Abdel M. Zellou and John T. Cuddington** March 22: is there evidence of super cycles in crude oil prices? On one hand, one might expect the strong demand associated analysis suggests that there is strong evidence of super cycles in oil prices in the post-WWII period

  14. Oil Dependence: The Value of R{ampersand}D

    SciTech Connect (OSTI)

    Greene, D.L.

    1997-07-01T23:59:59.000Z

    Over the past quarter century the United States` dependence on oil has cost its economy on the order of $5 trillion. Oil dependence is defined as economically significant consumption of oil, given price inelastic demand in the short and long run and given the ability of the OPEC cartel to use market power to influence oil prices. Although oil prices have been lower and more stable over the past decade, OPEC still holds the majority of the world`s conventional oil resources according to the best available estimates. OPEC`s share of the world oil market is likely to grow significantly in the future,restoring much if not all of their former market power. Other than market share, the key determinants of OPEC`s market power are the long and short run price elasticities of world oil demand and supply. These elasticities depend critically on the technologies of oil supply and demand, especially the technology of energy use in transportation. Research and development can change these elasticities in fundamental ways, and given the nature of the problem,the government has an important role to play in supporting such research.

  15. Demand Response | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005Department ofDOE AccidentWasteZone Modeling |Demand Response Demand

  16. Bioconversion of Heavy oil.

    E-Print Network [OSTI]

    Steinbakk, Sandra

    2011-01-01T23:59:59.000Z

    ??70 % of world?s oil reservoirs consist of heavy oil, and as the supply of conventional oil decreases, researchers are searching for new technologies to… (more)

  17. Linkages between the markets for crude oil and the markets for refined products

    SciTech Connect (OSTI)

    Didziulis, V.S.

    1990-01-01T23:59:59.000Z

    To understand the crude oil price determination process it is necessary to extend the analysis beyond the markets for petroleum. Crude oil prices are determined in two closely related markets: the markets for crude oil and the markets for refined products. An econometric-linear programming model was developed to capture the linkages between the markets for crude oil and refined products. In the LP refiners maximize profits given crude oil supplies, refining capacities, and prices of refined products. The objective function is profit maximization net of crude oil prices. The shadow price on crude oil gives the netback price. Refined product prices are obtained from the econometric models. The model covers the free world divided in five regions. The model is used to analyze the impacts on the markets of policies that affect crude oil supplies, the demands for refined products, and the refining industry. For each scenario analyzed the demand for crude oil is derived from the equilibrium conditions in the markets for products. The demand curve is confronted with a supply curve which maximizes revenues providing an equilibrium solution for both crude oil and product markets. The model also captures crude oil price differentials by quality. The results show that the demands for crude oil are different across regions due to the structure of the refining industries and the characteristics of the demands for refined products. Changes in the demands for products have a larger impact on the markets than changes in the refining industry. Since markets for refined products and crude oil are interrelated they can't be analyzed individually if an accurate and complete assessment of a policy is to be made. Changes in only one product market in one region affect the other product markets and the prices of crude oil.

  18. Trends in heavy oil production and refining in California

    SciTech Connect (OSTI)

    Olsen, D.K.; Ramzel, E.B.; Pendergrass, R.A. II

    1992-07-01T23:59:59.000Z

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production and is part of a study being conducted for the US Department of Energy. This report summarizes trends in oil production and refining in Canada. Heavy oil (10{degrees} to 20{degrees} API gravity) production in California has increased from 20% of the state`s total oil production in the early 1940s to 70% in the late 1980s. In each of the three principal petroleum producing districts (Los Angeles Basin, Coastal Basin, and San Joaquin Valley) oil production has peaked then declined at different times throughout the past 30 years. Thermal production of heavy oil has contributed to making California the largest producer of oil by enhanced oil recovery processes in spite of low oil prices for heavy oil and stringent environmental regulation. Opening of Naval Petroleum Reserve No. 1, Elk Hills (CA) field in 1976, brought about a major new source of light oil at a time when light oil production had greatly declined. Although California is a major petroleum-consuming state, in 1989 the state used 13.3 billion gallons of gasoline or 11.5% of US demand but it contributed substantially to the Nation`s energy production and refining capability. California is the recipient and refines most of Alaska`s 1.7 million barrel per day oil production. With California production, Alaskan oil, and imports brought into California for refining, California has an excess of oil and refined products and is a net exporter to other states. The local surplus of oil inhibits exploitation of California heavy oil resources even though the heavy oil resources exist. Transportation, refining, and competition in the market limit full development of California heavy oil resources.

  19. Trends in heavy oil production and refining in California

    SciTech Connect (OSTI)

    Olsen, D.K.; Ramzel, E.B.; Pendergrass, R.A. II.

    1992-07-01T23:59:59.000Z

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production and is part of a study being conducted for the US Department of Energy. This report summarizes trends in oil production and refining in Canada. Heavy oil (10{degrees} to 20{degrees} API gravity) production in California has increased from 20% of the state's total oil production in the early 1940s to 70% in the late 1980s. In each of the three principal petroleum producing districts (Los Angeles Basin, Coastal Basin, and San Joaquin Valley) oil production has peaked then declined at different times throughout the past 30 years. Thermal production of heavy oil has contributed to making California the largest producer of oil by enhanced oil recovery processes in spite of low oil prices for heavy oil and stringent environmental regulation. Opening of Naval Petroleum Reserve No. 1, Elk Hills (CA) field in 1976, brought about a major new source of light oil at a time when light oil production had greatly declined. Although California is a major petroleum-consuming state, in 1989 the state used 13.3 billion gallons of gasoline or 11.5% of US demand but it contributed substantially to the Nation's energy production and refining capability. California is the recipient and refines most of Alaska's 1.7 million barrel per day oil production. With California production, Alaskan oil, and imports brought into California for refining, California has an excess of oil and refined products and is a net exporter to other states. The local surplus of oil inhibits exploitation of California heavy oil resources even though the heavy oil resources exist. Transportation, refining, and competition in the market limit full development of California heavy oil resources.

  20. Demand Response Programs for Oregon

    E-Print Network [OSTI]

    wholesale prices and looming shortages in Western power markets in 2000-01, Portland General Electric programs for large customers remain, though they are not active at current wholesale prices. Other programs demand response for the wholesale market -- by passing through real-time prices for usage above a set

  1. Projecting Electricity Demand in 2050

    SciTech Connect (OSTI)

    Hostick, Donna J.; Belzer, David B.; Hadley, Stanton W.; Markel, Tony; Marnay, Chris; Kintner-Meyer, Michael CW

    2014-07-01T23:59:59.000Z

    This paper describes the development of end-use electricity projections and load curves that were developed for the Renewable Electricity (RE) Futures Study (hereafter RE Futures), which explored the prospect of higher percentages (30% ? 90%) of total electricity generation that could be supplied by renewable sources in the United States. As input to RE Futures, two projections of electricity demand were produced representing reasonable upper and lower bounds of electricity demand out to 2050. The electric sector models used in RE Futures required underlying load profiles, so RE Futures also produced load profile data in two formats: 8760 hourly data for the year 2050 for the GridView model, and in 2-year increments for 17 time slices as input to the Regional Energy Deployment System (ReEDS) model. The process for developing demand projections and load profiles involved three steps: discussion regarding the scenario approach and general assumptions, literature reviews to determine readily available data, and development of the demand curves and load profiles.

  2. Water demand management in Kuwait

    E-Print Network [OSTI]

    Milutinovic, Milan, M. Eng. Massachusetts Institute of Technology

    2006-01-01T23:59:59.000Z

    Kuwait is an arid country located in the Middle East, with limited access to water resources. Yet water demand per capita is much higher than in other countries in the world, estimated to be around 450 L/capita/day. There ...

  3. Northwest Open Automated Demand Response Technology Demonstration Project

    E-Print Network [OSTI]

    Kiliccote, Sila

    2010-01-01T23:59:59.000Z

    Report 2009. Open Automated Demand Response Communicationsand Techniques for Demand Response. California Energyand S. Kiliccote. Estimating Demand Response Load Impacts:

  4. Opportunities, Barriers and Actions for Industrial Demand Response in California

    E-Print Network [OSTI]

    McKane, Aimee T.

    2009-01-01T23:59:59.000Z

    and Techniques for Demand Response, report for theand Reliability Demand Response Programs: Final Report.Demand Response

  5. Automated Demand Response Opportunities in Wastewater Treatment Facilities

    E-Print Network [OSTI]

    Thompson, Lisa

    2008-01-01T23:59:59.000Z

    Interoperable Automated Demand Response Infrastructure,study of automated demand response in wastewater treatmentopportunities for demand response control strategies in

  6. Lab obtains approval to begin design on new radioactive waste...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New radioactive waste staging facility Lab obtains approval to begin design on new radioactive waste staging facility The 4-acre complex will include multiple staging buildings...

  7. 15-Minute Scheduling Begins October 21st - October 16, 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CommitteesTeams Customer Training Interconnection Notices Rates Standards of Conduct Tariff TF Web Based Training Notice: 15-Minute Scheduling Begins October 21st Posted Date:...

  8. PE06 -Beginning & Intermediate Core Training Class Syllabus

    E-Print Network [OSTI]

    PE06 - Beginning & Intermediate Core Training Class Syllabus Instructor: Sandra Marbut Office attendance requirements as outlined on this syllabus 3. Pass midterm examination 4. Submit their final

  9. Jefferson Lab Begins Awarding Contracts For Construction of ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Begins Awarding Contracts For Construction of 310 Million Upgrade NEWPORT NEWS, Va., Jan. 6, 2009 - The U.S. Department of Energy's (DOE) Thomas Jefferson National Accelerator...

  10. Reshaping Its Skyline: Y-12 Recieves Approval to Begin Multi...

    National Nuclear Security Administration (NNSA)

    Reshaping Its Skyline: Y-12 Recieves Approval to Begin Multi-Building Biology Complex Demolition Project | National Nuclear Security Administration Facebook Twitter Youtube Flickr...

  11. INTEGRATION OF PV IN DEMAND RESPONSE

    E-Print Network [OSTI]

    Perez, Richard R.

    INTEGRATION OF PV IN DEMAND RESPONSE PROGRAMS Prepared by Richard Perez et al. NREL subcontract response programs. This is because PV generation acts as a catalyst to demand response, markedly enhancing by solid evidence from three utility case studies. BACKGROUND Demand Response: demand response (DR

  12. CALIFORNIA ENERGY DEMAND 20142024 FINAL FORECAST

    E-Print Network [OSTI]

    CALIFORNIA ENERGY DEMAND 2014­2024 FINAL FORECAST Volume 1: Statewide Electricity Demand in this report. #12;i ACKNOWLEDGEMENTS The demand forecast is the combined product of the hard work to the residential forecast. Mitch Tian prepared the peak demand forecast. Ravinderpal Vaid provided the projections

  13. REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022

    E-Print Network [OSTI]

    REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022 Volume 2: Electricity Demand by Utility ACKNOWLEDGEMENTS The staff demand forecast is the combined product of the hard work and expertise of numerous the residential forecast. Mitch Tian prepared the peak demand forecast. Ravinderpal Vaid provided the projections

  14. REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022

    E-Print Network [OSTI]

    REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022 Volume 1: Statewide Electricity Demand in this report. #12;i ACKNOWLEDGEMENTS The staff demand forecast is the combined product of the hard work Sheridan provided the residential forecast. Mitch Tian prepared the peak demand forecast. Ravinderpal Vaid

  15. CALIFORNIA ENERGY DEMAND 20142024 FINAL FORECAST

    E-Print Network [OSTI]

    CALIFORNIA ENERGY DEMAND 20142024 FINAL FORECAST Volume 2: Electricity Demand The demand forecast is the combined product of the hard work and expertise of numerous California Energy for demand response program impacts and contributed to the residential forecast. Mitch Tian prepared

  16. CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST

    E-Print Network [OSTI]

    CALIFORNIA ENERGY DEMAND 2014­2024 REVISED FORECAST Volume 1: Statewide Electricity Demand in this report. #12;i ACKNOWLEDGEMENTS The demand forecast is the combined product of the hard work provided estimates for demand response program impacts and contributed to the residential forecast. Mitch

  17. Assessment of Demand Response and Advanced Metering

    E-Print Network [OSTI]

    Tesfatsion, Leigh

    #12;#12;2008 Assessment of Demand Response and Advanced Metering Staff Report Federal Energy metering penetration and potential peak load reduction from demand response have increased since 2006. Significant activity to promote demand response or to remove barriers to demand response occurred at the state

  18. The alchemy of demand response: turning demand into supply

    SciTech Connect (OSTI)

    Rochlin, Cliff

    2009-11-15T23:59:59.000Z

    Paying customers to refrain from purchasing products they want seems to run counter to the normal operation of markets. Demand response should be interpreted not as a supply-side resource but as a secondary market that attempts to correct the misallocation of electricity among electric users caused by regulated average rate tariffs. In a world with costless metering, the DR solution results in inefficiency as measured by deadweight losses. (author)

  19. Assumption to the Annual Energy Outlook 2014 - Residential Demand Module

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:shortOil and Natural8U.S.NA NAOil and GasDemand

  20. SOVENT BASED ENHANCED OIL RECOVERY FOR IN-SITU UPGRADING OF HEAVY OIL SANDS

    SciTech Connect (OSTI)

    Munroe, Norman

    2009-01-30T23:59:59.000Z

    With the depletion of conventional crude oil reserves in the world, heavy oil and bitumen resources have great potential to meet the future demand for petroleum products. However, oil recovery from heavy oil and bitumen reservoirs is much more difficult than that from conventional oil reservoirs. This is mainly because heavy oil or bitumen is partially or completely immobile under reservoir conditions due to its extremely high viscosity, which creates special production challenges. In order to overcome these challenges significant efforts were devoted by Applied Research Center (ARC) at Florida International University and The Center for Energy Economics (CEE) at the University of Texas. A simplified model was developed to assess the density of the upgraded crude depending on the ratio of solvent mass to crude oil mass, temperature, pressure and the properties of the crude oil. The simplified model incorporated the interaction dynamics into a homogeneous, porous heavy oil reservoir to simulate the dispersion and concentration of injected CO2. The model also incorporated the characteristic of a highly varying CO2 density near the critical point. Since the major challenge in heavy oil recovery is its high viscosity, most researchers have focused their investigations on this parameter in the laboratory as well as in the field resulting in disparaging results. This was attributed to oil being a complex poly-disperse blend of light and heavy paraffins, aromatics, resins and asphaltenes, which have diverse behaviors at reservoir temperature and pressures. The situation is exacerbated by a dearth of experimental data on gas diffusion coefficients in heavy oils due to the tedious nature of diffusivity measurements. Ultimately, the viscosity and thus oil recovery is regulated by pressure and its effect on the diffusion coefficient and oil swelling factors. The generation of a new phase within the crude and the differences in mobility between the new crude matrix and the precipitate readily enables removal of asphaltenes. Thus, an upgraded crude low in heavy metal, sulfur and nitrogen is more conducive for further purification.

  1. Potential of vegetable oils as a domestic heating fuel

    SciTech Connect (OSTI)

    Hayden, A.C.S.; Begin, E.; Palmer, C.E.

    1982-06-01T23:59:59.000Z

    The dependence on imported oil for domestic heating has led to the examination of other potential fuel substitutes. One potential fuel is some form of vegetable oil, which could be a yearly-renewable fuel. In Western Canada, canola has become a major oilseed crop; in Eastern Canada, sunflowers increasingly are becoming a source for a similar oil; for this reason, the Canadian Combustion Research Laboratory (CCRL) has chosen these oils for experimentation. Trials have been conducted in a conventional warm air oil furnace, fitted with a flame retention head burner. Performance has been measured with pure vegetable oils as well as a series of blends with conventional No. 2 oil. The effects of increased fuel pressure and fuel preheating are established. Emissions of carbon monoxide, nitrogen oxides, unburned hydrocarbons and particulates are given for both steady state and cyclic operation. Canola oil cannot be fired in cyclic operation above 50:50 blends with No. 2 oil. At any level above a 10% blend, canola is difficult to burn, even with significant increased pressure and temperature. Sunflower oil is much easier to burn and can be fired as a pure fuel, but with high emissions of incomplete combustion products. An optimum blend of 50:50 sunflower in No. 2 oil yields emissions and performance similar to No. 2 oil. This blend offers potential as a means of reducing demand of imported crude oil for domestic heating systems.

  2. Remote control of off-shore oil field production equipment

    E-Print Network [OSTI]

    Sissom, Alton Wayne

    2012-06-07T23:59:59.000Z

    REMOTE CONTROL OF OFF-SHORE OIL FIELD PRODUCTION EQUIPMENT A Thesis Alton W. Sissom 1949 Approve as to style and on n by Cha1rman of omm1ttee REMOTE CONTROL OF OFFSHORE OIL FIELD PRODUCTION EQUIPMENT A Thesis Alton W. Oissom 1949 REMOTE...-Carrier Channel 26 PZNOTE CONTROL OF OFF-SHORE OIL FIELD PRODUCTION K, 'UIPMENT I GENERAL IiPOPPUi TION Since the beginning of the exploitation of the under-sea oil deposits in the Gulf' of qexico, most, of the territory off the shores of Texas and Louisiana...

  3. Hydrotreating of oil from eastern oil shale

    SciTech Connect (OSTI)

    Scinta, J.; Garner, J.W.

    1984-01-01T23:59:59.000Z

    Oil shale provides one of the major fossil energy reserves for the United States. The quantity of reserves in oil shale is less than the quantity in coal, but is much greater (by at least an order of magnitude) than the quantity of crude oil reserves. With so much oil potentially available from oil shale, efforts have been made to develop techniques for its utilization. In these efforts, hydrotreating has proved to be an acceptable technique for upgrading raw shale oil to make usuable products. The present work demonstrated the use of the hydrotreating technique for upgrading an oil from Indiana New Albany oil shale.

  4. Enhanced Oil Recovery to Fuel Future Oil Demands | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing Zirconia NanoparticlesSmartAffects the Future Energy Mix Click to email this

  5. Soviet Union oil sector outlook grows bleaker still

    SciTech Connect (OSTI)

    Not Available

    1991-08-12T23:59:59.000Z

    This paper reports on the outlook for the U.S.S.R's oil sector which grows increasingly bleak and with it prospects for the Soviet economy. Plunging Soviet oil production and exports have analysts revising near term oil price outlooks, referring to the Soviet oil sector's self-destructing and Soviet oil production in a freefall. County NatWest, Washington, citing likely drops in Soviet oil production and exports (OGJ, Aug. 5, p. 16), has jumped its projected second half spot price for West Texas intermediate crude by about $2 to $22-23/bbl. Smith Barney, New York, forecasts WTI postings at $24-25/bbl this winter, largely because of seasonally strong world oil demand and the continued collapse in Soviet oil production. It estimates the call on oil from the Organization of Petroleum Exporting Countries at more than 25 million b/d in first quarter 1992. That would be the highest level of demand for OPEC oil since 1980, Smith Barney noted.

  6. Global energy demand to 2060

    SciTech Connect (OSTI)

    Starr, C. (Electric Power Research Institute, Palo Alto, CA (USA))

    1989-01-01T23:59:59.000Z

    The projection of global energy demand to the year 2060 is of particular interest because of its relevance to the current greenhouse concerns. The long-term growth of global energy demand in the time scale of climatic change has received relatively little attention in the public discussion of national policy alternatives. The sociological, political, and economic issues have rarely been mentioned in this context. This study emphasizes that the two major driving forces are global population growth and economic growth (gross national product per capita), as would be expected. The modest annual increases assumed in this study result in a year 2060 annual energy use of >4 times the total global current use (year 1986) if present trends continue, and >2 times with extreme efficiency improvements in energy use. Even assuming a zero per capita growth for energy and economics, the population increase by the year 2060 results in a 1.5 times increase in total annual energy use.

  7. Estimation and projection of the demand for refined petroleum products in Iran

    SciTech Connect (OSTI)

    Kianian, S.A.; Amin, M.

    1983-01-01T23:59:59.000Z

    The main purpose of this study is to construct an econometric model for estimation and projection of oil-refined products in Iran based on the situation of the Iranian energy market. Part 1 reviews the existing literature and contains the salient socio-economic futures of OPEC countries in general and of Iran in particular. Explanation of the structure of Iran's domestic energy market (demand, supply, and price) is the main purpose of this part. In Part 2, the demand function for each refined petroleum product is analyzed, formulated, and estimated. The price and income elasticities of the demands for gasoline, kerosene, gas oil and fuel oil are analyzed and compared with those of other countries. In Part 3, after analyzing and estimating the demand functions for total refined products, first, the full model, including all the estimated demand functions is dynamically simulated over the sample periods (1955-1978) in order to evaluate the performance power of the model, then the amount of consumption of each refined product for the next decade (1979-1988), under three scenarios of the rate of growth of real GNP, 9%, 7% and 5% is projected.

  8. Near Optimal Demand-Side Energy Management Under Real-time Demand-Response Pricing

    E-Print Network [OSTI]

    Boutaba, Raouf

    Near Optimal Demand-Side Energy Management Under Real-time Demand-Response Pricing Jin Xiao, Jae--In this paper, we present demand-side energy manage- ment under real-time demand-response pricing as a task, demand-response, energy management I. INTRODUCTION The growing awareness of global climate change has

  9. Evaluation of Wax Deposition and Its Control During Production of Alaska North Slope Oils

    SciTech Connect (OSTI)

    Tao Zhu; Jack A. Walker; J. Liang

    2008-12-31T23:59:59.000Z

    Due to increasing oil demand, oil companies are moving into arctic environments and deep-water areas for oil production. In these regions of lower temperatures, wax deposits begin to form when the temperature in the wellbore falls below wax appearance temperature (WAT). This condition leads to reduced production rates and larger pressure drops. Wax problems in production wells are very costly due to production down time for removal of wax. Therefore, it is necessary to develop a solution to wax deposition. In order to develop a solution to wax deposition, it is essential to characterize the crude oil and study phase behavior properties. The main objective of this project was to characterize Alaskan North Slope crude oil and study the phase behavior, which was further used to develop a dynamic wax deposition model. This report summarizes the results of the various experimental studies. The subtasks completed during this study include measurement of density, molecular weight, viscosity, pour point, wax appearance temperature, wax content, rate of wax deposition using cold finger, compositional characterization of crude oil and wax obtained from wax content, gas-oil ratio, and phase behavior experiments including constant composition expansion and differential liberation. Also, included in this report is the development of a thermodynamic model to predict wax precipitation. From the experimental study of wax appearance temperature, it was found that wax can start to precipitate at temperatures as high as 40.6 C. The WAT obtained from cross-polar microscopy and viscometry was compared, and it was discovered that WAT from viscometry is overestimated. From the pour point experiment it was found that crude oil can cease to flow at a temperature of 12 C. From the experimental results of wax content, it is evident that the wax content in Alaskan North Slope crude oil can be as high as 28.57%. The highest gas-oil ratio for a live oil sample was observed to be 619.26 SCF/STB. The bubblepoint pressure for live oil samples varied between 1600 psi and 2100 psi. Wax precipitation is one of the most important phenomena in wax deposition and, hence, needs to be modeled. There are various models present in the literature. Won's model, which considers the wax phase as a non-ideal solution, and Pedersen's model, which considers the wax phase as an ideal solution, were compared. Comparison indicated that Pedersen's model gives better results, but the assumption of wax phase as an ideal solution is not realistic. Hence, Won's model was modified to consider different precipitation characteristics of the various constituents in the hydrocarbon fraction. The results obtained from the modified Won's model were compared with existing models, and it was found that predictions from the modified model are encouraging.

  10. Near Shore Submerged Oil Assessment

    E-Print Network [OSTI]

    ) oil spill in the Gulf of Mexico, submerged oil refers to near shore oil which has picked up sediments You Should Know About Submerged Oil 1. Submerged oil is relatively uncommon: DWH oil is a light crude

  11. Fuse Control for Demand Side Management: A Stochastic Pricing Analysis

    E-Print Network [OSTI]

    Oren, Shmuel S.

    a service contract for load curtailment. Index Terms--Demand side management, aggregated demand response

  12. Oil spill response resources

    E-Print Network [OSTI]

    Muthukrishnan, Shankar

    1996-01-01T23:59:59.000Z

    . ACKNOWLEDGMENTS. TABLE OF CONTENTS . . Vn INTRODUCTION. . Oil Pollution Act. Oil Spill Response Equipment . . OB JECTIVES . 12 LITERATURE REVIEW. United States Contingency Plan. . Response Resources Definition of Clean in Context to an Oil Spill. Oil... this fitle. Title IV expands federal authority in managing oil spill clean up operations and amends the provisions for oil spill clean up under the Federal Water Pollution Control Act. It also called for Oil spill plans for vessels and facilities starting...

  13. Open Automated Demand Response Communications in Demand Response for Wholesale Ancillary Services

    E-Print Network [OSTI]

    Kiliccote, Sila

    2010-01-01T23:59:59.000Z

    in Demand Response for Wholesale Ancillary Services Silain Demand Response for Wholesale Ancillary Services Silasuccessfully in the wholesale non- spinning ancillary

  14. Propylene feedstock: supply and demand

    SciTech Connect (OSTI)

    Steinbaum, C.A.; Pickover, B.H.

    1983-04-01T23:59:59.000Z

    The reasons for the global shortage in propylene in 1981-82 are discussed. The low running rates of ethylene production and refinery operation of which propylene is a byproduct accounts for the reduced propylene supplies. Low prices of the NCL have also shifted incentive from propylene to gas liquids. This situation will continue, with naptha/gas oil becoming the prefered feedstock for ethylene production. The speculative economics for propylene dehydrogenation are not sufficiently attractive for commercialization. But if a country has an internal market for propylene derivatives, production could have a positive influence on the economy. Thailand, Indonesia, Malaysia, and Mexico are suggested as examples.

  15. Industrial Equipment Demand and Duty Factors

    E-Print Network [OSTI]

    Dooley, E. S.; Heffington, W. M.

    Demand and duty factors have been measured for selected equipment (air compressors, electric furnaces, injection molding machines, centrifugal loads, and others) in industrial plants. Demand factors for heavily loaded air compressors were near 100...

  16. China's Coal: Demand, Constraints, and Externalities

    E-Print Network [OSTI]

    Aden, Nathaniel

    2010-01-01T23:59:59.000Z

    of natural gas, along with the coal reserve base of 326s Fossil Fuel Reserve Base, 2007 Oil Natural Gas Coal 233ensured reserves”) of coal, oil and natural gas published in

  17. Marketing & Driving Demand Collaborative - Social Media Tools...

    Energy Savers [EERE]

    drivingdemandsocialmedia010611.pdf More Documents & Publications Marketing & Driving Demand: Social Media Tools & Strategies - January 16, 2011 Social Media for Natural...

  18. Wireless Demand Response Controls for HVAC Systems

    E-Print Network [OSTI]

    Federspiel, Clifford

    2010-01-01T23:59:59.000Z

    temperature-based demand response in buildings that havedemand response advantages of global zone temperature setup in buildings

  19. Demand Responsive Lighting: A Scoping Study

    E-Print Network [OSTI]

    Rubinstein, Francis; Kiliccote, Sila

    2007-01-01T23:59:59.000Z

    demand-side management (DSM) framework presented in Table x provides three major areas for changing electric loads in buildings:

  20. Policy Choice:Forest or Fuel? The demand for biofuels, driven by the desire to reduce fossil fuel use and CO2 emissions, has resulted in

    E-Print Network [OSTI]

    Policy Choice:Forest or Fuel? The demand for biofuels, driven by the desire to reduce fossil fuel, combined with the expanded demand for biofuels, will result in higher food prices, since less land by using biofuels (vegetable oils). But the use of biofuels may not reduce CO2 emissions, even when

  1. Response to changes in demand/supply

    E-Print Network [OSTI]

    Response to changes in demand/supply through improved marketing 21.2 #12;#12;111 Impacts of changes log demand in 1995. The composites board mills operating in Korea took advantage of flexibility environment changes on the production mix, some economic indications, statistics of demand and supply of wood

  2. Response to changes in demand/supply

    E-Print Network [OSTI]

    Response to changes in demand/supply through improved marketing 21.2 http with the mill consuming 450 000 m3 , amounting to 30% of total plywood log demand in 1995. The composites board, statistics of demand and supply of wood, costs and competitiveness were analysed. The reactions

  3. CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST

    E-Print Network [OSTI]

    CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST Volume 1: Statewide Electricity forecast is the combined product of the hard work and expertise of numerous staff members in the Demand prepared the peak demand forecast. Ravinderpal Vaid provided the projections of commercial floor space

  4. FINAL STAFF FORECAST OF 2008 PEAK DEMAND

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION FINAL STAFF FORECAST OF 2008 PEAK DEMAND STAFFREPORT June 2007 CEC-200 of the information in this paper. #12;Abstract This document describes staff's final forecast of 2008 peak demand demand forecasts for the respective territories of the state's three investor-owned utilities (IOUs

  5. THE STATE OF DEMAND RESPONSE IN CALIFORNIA

    E-Print Network [OSTI]

    THE STATE OF DEMAND RESPONSE IN CALIFORNIA Prepared For: California Energy in this report. #12; ABSTRACT By reducing system loads during criticalpeak times, demand response (DR) can.S. and internationally and lay out ideas that could help move California forward. KEY WORDS demand response, peak

  6. THE STATE OF DEMAND RESPONSE IN CALIFORNIA

    E-Print Network [OSTI]

    THE STATE OF DEMAND RESPONSE IN CALIFORNIA Prepared For: California Energy in this report. #12; ABSTRACT By reducing system loads during criticalpeak times, demand response can help reduce the threat of planned rotational outages. Demand response is also widely regarded as having

  7. Demand Response Resources in Pacific Northwest

    E-Print Network [OSTI]

    Demand Response Resources in Pacific Northwest Chuck Goldman Lawrence Berkeley National Laboratory cagoldman@lbl.gov Pacific Northwest Demand Response Project Portland OR May 2, 2007 #12;Overview · Typology Annual Reports ­ Journal articles/Technical reports #12;Demand Response Resources · Incentive

  8. Barrier Immune Radio Communications for Demand Response

    E-Print Network [OSTI]

    LBNL-2294E Barrier Immune Radio Communications for Demand Response F. Rubinstein, G. Ghatikar, J Ann Piette of Lawrence Berkeley National Laboratory's (LBNL) Demand Response Research Center (DRRC and Environment's (CIEE) Demand Response Emerging Technologies Development (DRETD) Program, under Work for Others

  9. Demand Response and Ancillary Services September 2008

    E-Print Network [OSTI]

    Demand Response and Ancillary Services September 2008 #12;© 2008 EnerNOC, Inc. All Rights Reserved programs The purpose of this presentation is to offer insight into the mechanics of demand response and industrial demand response resources across North America in both regulated and restructured markets As of 6

  10. Demand Responsive Lighting: A Scoping Study

    E-Print Network [OSTI]

    LBNL-62226 Demand Responsive Lighting: A Scoping Study F. Rubinstein, S. Kiliccote Energy Environmental Technologies Division January 2007 #12;LBNL-62226 Demand Responsive Lighting: A Scoping Study in this report was coordinated by the Demand Response Research Center and funded by the California Energy

  11. Modeling Energy Demand Aggregators for Residential Consumers

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Modeling Energy Demand Aggregators for Residential Consumers G. Di Bella, L. Giarr`e, M. Ippolito, A. Jean-Marie, G. Neglia and I. Tinnirello § January 2, 2014 Abstract Energy demand aggregators are new actors in the energy scenario: they gather a group of energy consumers and implement a demand

  12. Transportation Energy: Supply, Demand and the Future

    E-Print Network [OSTI]

    Saldin, Dilano

    Transportation Energy: Supply, Demand and the Future http://www.uwm.edu/Dept/CUTS//2050/energy05 as a source of energy. Global supply and demand trends will have a profound impact on the ability to use our) Transportation energy demand in the U.S. has increased because of the greater use of less fuel efficient vehicles

  13. Demand Side Bidding. Final Report

    SciTech Connect (OSTI)

    Spahn, Andrew

    2003-12-31T23:59:59.000Z

    This document sets forth the final report for a financial assistance award for the National Association of Regulatory Utility Commissioners (NARUC) to enhance coordination between the building operators and power system operators in terms of demand-side responses to Location Based Marginal Pricing (LBMP). Potential benefits of this project include improved power system reliability, enhanced environmental quality, mitigation of high locational prices within congested areas, and the reduction of market barriers for demand-side market participants. NARUC, led by its Committee on Energy Resources and the Environment (ERE), actively works to promote the development and use of energy efficiency and clean distributive energy policies within the framework of a dynamic regulatory environment. Electric industry restructuring, energy shortages in California, and energy market transformation intensifies the need for reliable information and strategies regarding electric reliability policy and practice. NARUC promotes clean distributive generation and increased energy efficiency in the context of the energy sector restructuring process. NARUC, through ERE's Subcommittee on Energy Efficiency, strives to improve energy efficiency by creating working markets. Market transformation seeks opportunities where small amounts of investment can create sustainable markets for more efficient products, services, and design practices.

  14. Demand Response Valuation Frameworks Paper

    SciTech Connect (OSTI)

    Heffner, Grayson

    2009-02-01T23:59:59.000Z

    While there is general agreement that demand response (DR) is a valued component in a utility resource plan, there is a lack of consensus regarding how to value DR. Establishing the value of DR is a prerequisite to determining how much and what types of DR should be implemented, to which customers DR should be targeted, and a key determinant that drives the development of economically viable DR consumer technology. Most approaches for quantifying the value of DR focus on changes in utility system revenue requirements based on resource plans with and without DR. This ''utility centric'' approach does not assign any value to DR impacts that lower energy and capacity prices, improve reliability, lower system and network operating costs, produce better air quality, and provide improved customer choice and control. Proper valuation of these benefits requires a different basis for monetization. The review concludes that no single methodology today adequately captures the wide range of benefits and value potentially attributed to DR. To provide a more comprehensive valuation approach, current methods such as the Standard Practice Method (SPM) will most likely have to be supplemented with one or more alternative benefit-valuation approaches. This report provides an updated perspective on the DR valuation framework. It includes an introduction and four chapters that address the key elements of demand response valuation, a comprehensive literature review, and specific research recommendations.

  15. Office of Naval Petroleum and Oil Shale Reserves

    E-Print Network [OSTI]

    unknown authors

    Worldwide supplies of conventional oil will soon reach a peak production rate and begin an irreversible long-term decline. Options to augment liquid fuel supplies in the United States have once again begun to focus on oil shale as long-term source of reliable, affordable, and secure oil. The United States government has long recognized the strategic potential of the nation’s vast oil shale resources to support national security. President Taft in 1912 established an Office of Naval Petroleum and Oil Shale Reserves and charged that office with ensuring oil for naval military operations. This office continues to oversee the United States strategic interest in oil shale. America’s 2 trillion barrel oil shale resource is recognized as having the same production potential as Canada’s tar sands. Tar sand production, initiated in the 1960s, has increased steadily to more than 1 million per barrels/day and is moving toward a near-term goal of 2.5 million barrels per day by 2017. This amount of oil is equivalent to the volume of oil currently imported by the United States from Middle East countries. Tar sands production has enabled Canada to add 174 billion barrels to its recoverable oil reserves, making Canada’s proved reserves second only to those of Saudi Arabia.

  16. Changes in worldwide demand for metals (final). Open File report

    SciTech Connect (OSTI)

    Faucett, J.G.; Chmelynski, H.J.

    1986-08-01T23:59:59.000Z

    Worldwide demand for metals was analyzed to identify the important factors that explain differences in the level of demand among world countries. The per capita demand for steel, aluminum, copper, and total nonferrous metals was investigated for 40 to 50 countries over a 22-year period. These countries have been further grouped into four world regions for purposes of making generalizations about the importance of these factors for countries in different stages of development and with dissimilar levels of per capita gross domestic product (GDP). Intercountry and intertemporal differences are explained largely by differences in per capita GDP and changes over time in per capita GDP, oil real prices, and to a lesser extent, metal real prices. The trend in world consumption is dramatically different in the last decade than the previous one. In 1962-73, per capita consumption increased in all areas and consumption intensity (consumption divided by (GDP) increased in most areas). In 1973-84, per capita consumption fell in most areas and intensity fell dramatically, except in developing nations.

  17. Characterization and Combustion Performance of Corn Oil-Based Biofuel Blends

    E-Print Network [OSTI]

    Savant, Gautam Sandesh

    2012-07-16T23:59:59.000Z

    In recent years, the development and use of biofuels have received considerable attention due to the high demand for environmentally acceptable (green) fuels. Most of the recent studies have looked at the processes of converting vegetable oils...

  18. E-Print Network 3.0 - automotive oil filters Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dermitt et al, Automotive Demand Projections to 2030 (Link from... Blogs: 1. Global Fracking http:menaoilresearch2.blogspot.com 2. Middle East and North African Oil... http:...

  19. Summary: U.S. Crude Oil, Natural Gas, and Natural Gas Liquids...

    Gasoline and Diesel Fuel Update (EIA)

    demonstrate the possibility of an expanding role for domestic natural gas and crude oil in meeting both current and projected U.S. energy demands. Shale gas development in...

  20. Energy demand and population changes

    SciTech Connect (OSTI)

    Allen, E.L.; Edmonds, J.A.

    1980-12-01T23:59:59.000Z

    Since World War II, US energy demand has grown more rapidly than population, so that per capita consumption of energy was about 60% higher in 1978 than in 1947. Population growth and the expansion of per capita real incomes have led to a greater use of energy. The aging of the US population is expected to increase per capita energy consumption, despite the increase in the proportion of persons over 65, who consume less energy than employed persons. The sharp decline in the population under 18 has led to an expansion in the relative proportion of population in the prime-labor-force age groups. Employed persons are heavy users of energy. The growth of the work force and GNP is largely attributable to the growing participation of females. Another important consequence of female employment is the growth in ownership of personal automobiles. A third factor pushing up labor-force growth is the steady influx of illegal aliens.

  1. Demand Forecast and Performance Prediction in Peer-Assisted On-Demand Streaming Systems

    E-Print Network [OSTI]

    Li, Baochun

    Demand Forecast and Performance Prediction in Peer-Assisted On-Demand Streaming Systems Di Niu on the Internet. Automated demand forecast and performance prediction, if implemented, can help with capacity an accurate user demand forecast. In this paper, we analyze the operational traces collected from UUSee Inc

  2. Risk Management for Video-on-Demand Servers leveraging Demand Forecast

    E-Print Network [OSTI]

    Li, Baochun

    Risk Management for Video-on-Demand Servers leveraging Demand Forecast Di Niu, Hong Xu, Baochun Li on demand history using time se- ries forecasting techniques. The prediction enables dynamic and efficient}@eecg.toronto.edu Shuqiao Zhao Multimedia Development Group UUSee, Inc. shuqiao.zhao@gmail.com ABSTRACT Video-on-demand (Vo

  3. Secure Demand Shaping for Smart Grid On constructing probabilistic demand response schemes

    E-Print Network [OSTI]

    Sastry, S. Shankar

    Secure Demand Shaping for Smart Grid On constructing probabilistic demand response schemes. Developing novel schemes for demand response in smart electric gird is an increasingly active research area/SCADA for demand response in smart infrastructures face the following dilemma: On one hand, in order to increase

  4. US Residential Energy Demand and Energy Efficiency: A Stochastic Demand Frontier

    E-Print Network [OSTI]

    that energy intensity is not necessarily a good indicator of energy efficiency, whereas by controllingUS Residential Energy Demand and Energy Efficiency: A Stochastic Demand Frontier Approach Massimo www.cepe.ethz.ch #12;US Residential Energy Demand and Energy Efficiency: A Stochastic Demand Frontier

  5. Transporting US oil imports: The impact of oil spill legislation on the tanker market

    SciTech Connect (OSTI)

    Rowland, P.J. (Rowland (P.) Associates (United States))

    1992-05-01T23:59:59.000Z

    The Oil Pollution Act of 1990 ( OPA'') and an even more problematic array of State pollution laws have raised the cost, and risk, of carrying oil into and out of the US. This report, prepared under contract to the US Department of energy's Office of Domestic and International Policy, examines the impact of Federal and State oil spill legislation on the tanker market. It reviews the role of marine transportation in US oil supply, explores the OPA and State oil spill laws, studies reactions to OPA in the tanker and tank barge industries and in related industries such as insurance and ship finance, and finally, discusses the likely developments in the years ahead. US waterborne oil imports amounted to 6.5 million B/D in 1991, three-quarters of which was crude oil. Imports will rise by almost 3 million B/D by 2000 according to US Department of energy forecasts, with most of the crude oil growth after 1995. Tanker demand will grow even faster: most of the US imports and the increased traffic to other world consuming regions will be on long-haul trades. Both the number of US port calls by tankers and the volume of offshore lightering will grow. Every aspect of the tanker industry's behavior is affected by OPA and a variety of State pollution laws.

  6. Crude Oil

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:shortOilCompanyexcluding taxes)Countries0 0 0 0 0

  7. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    business of having some oil in inventory, which is referredKnowledge of all the oil going into inventory today for salebe empty, because inventories of oil are essential for the

  8. China's Global Oil Strategy

    E-Print Network [OSTI]

    Thomas, Bryan G

    2009-01-01T23:59:59.000Z

    nations began to seek out oil reserves around the world. 3on the limited global oil reserves and spiking prices. Manyto the largest proven oil reserves, making up 61 percent of

  9. China's Global Oil Strategy

    E-Print Network [OSTI]

    Thomas, Bryan G

    2009-01-01T23:59:59.000Z

    Michael T. Klare, Blood and Oil: The Dangers of America’sDowns and Jeffrey A. Bader, “Oil-Hungry China Belongs at BigChina, Africa, and Oil,” (Council on Foreign Relations,

  10. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    Figure 5. Monthly oil production for Iran, Iraq, and Kuwait,day. Monthly crude oil production Iran Iraq Kuwait Figure 6.and the peak in U.S. oil production account for the broad

  11. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    2004. “OPEC’s Optimal Crude Oil Price,” Energy Policy 32(2),023 Understanding Crude Oil Prices James D. Hamilton Junedirectly. Understanding Crude Oil Prices* James D. Hamilton

  12. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    2004. “OPEC’s Optimal Crude Oil Price,” Energy Policy 32(2),percent change in real oil price. Figure 3. Price of crudein predicting quarterly real oil price change. variable real

  13. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    per day. Monthly crude oil production Iran Iraq KuwaitEIA Table 1.2, “OPEC Crude Oil Production (Excluding Lease2008, from EIA, “Crude Oil Production. ” Figure 16. U.S.

  14. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    2004. “OPEC’s Optimal Crude Oil Price,” Energy Policy 32(2),percent change in real oil price. Figure 3. Price of crude023 Understanding Crude Oil Prices James D. Hamilton June

  15. China's Global Oil Strategy

    E-Print Network [OSTI]

    Thomas, Bryan G

    2009-01-01T23:59:59.000Z

    capability to secure oil transport security. Additionally,international oil agreements: 1) ensuring energy security;security, and many argue that as the second-largest consumer of oil

  16. China's Global Oil Strategy

    E-Print Network [OSTI]

    Thomas, Bryan G

    2009-01-01T23:59:59.000Z

    China made an Iranian oil investment valued at $70 billion.across Iran, China’s oil investment may exceed $100 billionthese involving investment in oil and gas, really undermine

  17. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    2007”. comparison, Mexico used 6.6— Chinese oil consumption17. Oil production from the North Sea, Mexico’s Cantarell,Mexico, Italy, France, Canada, US, and UK. Figure 10. Historical Chinese oil

  18. European Economic Review 18 11982)243-248. Norfh-Holle,nd Publishing Company THE OIL SHOCKS AND MACROECONOMIC ADJUSTMEN'F IN

    E-Print Network [OSTI]

    the oil price increases a~d pre-ta~: profitability remained strong throughout the 1970s. Demand factorsEuropean Economic Review 18 11982)243-248. Norfh-Holle,nd Publishing Company THE OIL SHOCKS importance of supply versus demand factors in r,x:ent U.S. macroeconomic history remains in strong dispute

  19. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    2007”. comparison, Mexico used 6.6— Chinese oil consumption17. Oil production from the North Sea, Mexico’s Cantarell,

  20. Rates and technologies for mass-market demand response

    E-Print Network [OSTI]

    Herter, Karen; Levy, Roger; Wilson, John; Rosenfeld, Arthur

    2002-01-01T23:59:59.000Z

    Roger. 2002. Using Demand Response to Link Wholesale andfor advanced metering, demand response, and dynamic pricing.EPRI. 2001. Managing Demand-Response To Achieve Multiple

  1. Open Automated Demand Response Dynamic Pricing Technologies and Demonstration

    E-Print Network [OSTI]

    Ghatikar, Girish

    2010-01-01T23:59:59.000Z

    Goodin. 2009. “Open Automated Demand Response Communicationsin Demand Response for Wholesale Ancillary Services. ” InOpen Automated Demand Response Demonstration Project. LBNL-

  2. Coordination of Retail Demand Response with Midwest ISO Markets

    E-Print Network [OSTI]

    Bharvirkar, Ranjit

    2008-01-01T23:59:59.000Z

    Robinson, Michael, 2008, "Demand Response in Midwest ISOPresentation at MISO Demand Response Working Group Meeting,Coordination of Retail Demand Response with Midwest ISO

  3. Results and commissioning issues from an automated demand response pilot

    E-Print Network [OSTI]

    Piette, Mary Ann; Watson, Dave; Sezgen, Osman; Motegi, Naoya

    2004-01-01T23:59:59.000Z

    of Fully Automated Demand Response in Large Facilities"Management and Demand Response in Commercial Buildings", L Band Commissioning Issues from an Automated Demand Response.

  4. Demand Response Opportunities in Industrial Refrigerated Warehouses in California

    E-Print Network [OSTI]

    Goli, Sasank

    2012-01-01T23:59:59.000Z

    and Open Automated Demand Response. In Grid Interop Forum.work was sponsored by the Demand Response Research Center (load-management.php. Demand Response Research Center (2009).

  5. Demand Response in U.S. Electricity Markets: Empirical Evidence

    E-Print Network [OSTI]

    Cappers, Peter

    2009-01-01T23:59:59.000Z

    Reliability Corporation. Demand response data task force:Energy. Benefits of demand response in electricity marketsAssessment of demand response & advanced metering, staff

  6. Linking Continuous Energy Management and Open Automated Demand Response

    E-Print Network [OSTI]

    Piette, Mary Ann

    2009-01-01T23:59:59.000Z

    A. Barat, D. Watson. Demand Response Spinning ReserveOpen Automated Demand Response Communication Standards:Dynamic Controls for Demand Response in a New Commercial

  7. Direct versus Facility Centric Load Control for Automated Demand Response

    E-Print Network [OSTI]

    Piette, Mary Ann

    2010-01-01T23:59:59.000Z

    Interoperable Automated Demand Response Infrastructure.and Techniques for Demand Response. LBNL Report 59975. Mayand Communications for Demand Response and Energy Efficiency

  8. Open Automated Demand Response Communications Specification (Version 1.0)

    E-Print Network [OSTI]

    Piette, Mary Ann

    2009-01-01T23:59:59.000Z

    and Techniques for Demand Response. May 2007. LBNL-59975.to facilitate automating  demand response actions at the Interoperable Automated Demand Response Infrastructure,

  9. Open Automated Demand Response for Small Commerical Buildings

    E-Print Network [OSTI]

    Dudley, June Han

    2009-01-01T23:59:59.000Z

    of Fully Automated Demand  Response in Large Facilities.  Fully Automated Demand Response Tests in Large Facilities.  Open Automated  Demand Response Communication Standards: 

  10. LEED Demand Response Credit: A Plan for Research towards Implementation

    E-Print Network [OSTI]

    Kiliccote, Sila

    2014-01-01T23:59:59.000Z

    C. McParland, Open Automated Demand Response Communicationsand Open Automated Demand Response", Grid Interop Forum,Testing of Automated Demand Response for Integration of

  11. Opportunities, Barriers and Actions for Industrial Demand Response in California

    E-Print Network [OSTI]

    McKane, Aimee T.

    2009-01-01T23:59:59.000Z

    13 Table 2. Demand Side Management Framework for IndustrialDR Strategies The demand-side management (DSM) frameworkpresented in Table 2. Demand Side Management Framework for

  12. FINAL DEMAND FORECAST FORMS AND INSTRUCTIONS FOR THE 2007

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION FINAL DEMAND FORECAST FORMS AND INSTRUCTIONS FOR THE 2007 INTEGRATED Table of Contents General Instructions for Demand Forecast Submittals.............................................................................. 4 Protocols for Submitted Demand Forecasts

  13. Linking Continuous Energy Management and Open Automated Demand Response

    E-Print Network [OSTI]

    Piette, Mary Ann

    2009-01-01T23:59:59.000Z

    description of six energy and demand management concepts.how quickly it can modify energy demand. This is not a newimprovements in both energy efficiency and demand response (

  14. India Energy Outlook: End Use Demand in India to 2020

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2009-01-01T23:59:59.000Z

    Institute, “Curbing Global Energy Demand Growth: The Energyup Assessment of Energy Demand in India Transportationa profound effect on energy demand. Policy analysts wishing

  15. Northwest Open Automated Demand Response Technology Demonstration Project

    E-Print Network [OSTI]

    Kiliccote, Sila

    2010-01-01T23:59:59.000Z

    Building Control Strategies and Techniques for Demand Response.Building Systems and DR Strategies 16 Demand ResponseDemand Response Systems. ” Proceedings, 16 th National Conference on Building

  16. LEED Demand Response Credit: A Plan for Research towards Implementation

    E-Print Network [OSTI]

    Kiliccote, Sila

    2014-01-01T23:59:59.000Z

    in California. DEMAND RESPONSE AND COMMERCIAL BUILDINGSload and demand response against other buildings and alsoDemand Response and Energy Efficiency in Commercial Buildings",

  17. Open Automated Demand Response Communications Specification (Version 1.0)

    E-Print Network [OSTI]

    Piette, Mary Ann

    2009-01-01T23:59:59.000Z

    Keywords: demand response, buildings, electricity use, Interface  Automated Demand Response  Building Automation of demand response in  commercial buildings.   One key 

  18. Results and commissioning issues from an automated demand response pilot

    E-Print Network [OSTI]

    Piette, Mary Ann; Watson, Dave; Sezgen, Osman; Motegi, Naoya

    2004-01-01T23:59:59.000Z

    Management and Demand Response in Commercial Buildings", L BAutomated Demand Response National Conference on BuildingAutomated Demand Response National Conference on Building

  19. Scenarios for Consuming Standardized Automated Demand Response Signals

    E-Print Network [OSTI]

    Koch, Ed

    2009-01-01T23:59:59.000Z

    Keywords: Demand response, automation, commercial buildings,Demand Response and Energy Efficiency in Commercial Buildings,Building Control Strategies and Techniques for Demand Response.

  20. Open Automated Demand Response for Small Commerical Buildings

    E-Print Network [OSTI]

    Dudley, June Han

    2009-01-01T23:59:59.000Z

    Demand  Response for Small Commercial Buildings.   CEC?500?automated demand response  For small commercial buildings, AUTOMATED DEMAND RESPONSE FOR SMALL COMMERCIAL BUILDINGS

  1. Automated Demand Response Strategies and Commissioning Commercial Building Controls

    E-Print Network [OSTI]

    Piette, Mary Ann; Watson, David; Motegi, Naoya; Kiliccote, Sila; Linkugel, Eric

    2006-01-01T23:59:59.000Z

    for Demand Response in New and Existing Commercial BuildingsDemand Response Strategies and National Conference on BuildingDemand Response Strategies and Commissioning Commercial Building

  2. Open Automated Demand Response Dynamic Pricing Technologies and Demonstration

    E-Print Network [OSTI]

    Ghatikar, Girish

    2010-01-01T23:59:59.000Z

    for Automated Demand Response in Commercial Buildings. Inbased demand response information to building controlDemand Response Standard for the Residential Sector. California Energy Commission, PIER Buildings

  3. Northwest Open Automated Demand Response Technology Demonstration Project

    E-Print Network [OSTI]

    Kiliccote, Sila

    2010-01-01T23:59:59.000Z

    is manual demand response where building staff receive acommercial buildings’ demand response technologies andBuilding Control Strategies and Techniques for Demand Response.

  4. Direct versus Facility Centric Load Control for Automated Demand Response

    E-Print Network [OSTI]

    Piette, Mary Ann

    2010-01-01T23:59:59.000Z

    Keywords: Demand response, automation, commercial buildings,Demand Response and Energy Efficiency in Commercial Buildings,Building Control Strategies and Techniques for Demand Response.

  5. Biochemically enhanced oil recovery and oil treatment

    SciTech Connect (OSTI)

    Premuzic, Eugene T. (East Moriches, NY); Lin, Mow (Rocky Point, NY)

    1994-01-01T23:59:59.000Z

    This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil.

  6. Biochemically enhanced oil recovery and oil treatment

    DOE Patents [OSTI]

    Premuzic, E.T.; Lin, M.

    1994-03-29T23:59:59.000Z

    This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil. 62 figures.

  7. No. 2 heating oil/propane program

    SciTech Connect (OSTI)

    McBrien, J.

    1991-06-01T23:59:59.000Z

    During the 1990/91 heating season, the Massachusetts Division of Energy Resources (DOER) participated in a joint data collection program between several state energy offices and the federal Department of Energy's (DOE) Energy Information Administration (EIA). The purpose of the program was to collect and monitor retail and wholesale heating oil and propane prices and inventories from October 1990 through March 1991. This final report begins with an overview of the unique events which had an impact on the reporting period. Next, the report summarizes the results from the residential heating oil and propane price surveys conducted by DOER over the 1990/91 heating season. The report also incorporates the wholesale heating oil and propane prices and inventories collected by the EIA and distributed to the states.

  8. CO2 Injection Begins in Illinois | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste andAccessCO2 Injection Begins in Illinois CO2 Injection Begins in

  9. Electricity Demand and Energy Consumption Management System

    E-Print Network [OSTI]

    Sarmiento, Juan Ojeda

    2008-01-01T23:59:59.000Z

    This project describes the electricity demand and energy consumption management system and its application to the Smelter Plant of Southern Peru. It is composted of an hourly demand-forecasting module and of a simulation component for a plant electrical system. The first module was done using dynamic neural networks, with backpropagation training algorithm; it is used to predict the electric power demanded every hour, with an error percentage below of 1%. This information allows management the peak demand before this happen, distributing the raise of electric load to other hours or improving those equipments that increase the demand. The simulation module is based in advanced estimation techniques, such as: parametric estimation, neural network modeling, statistic regression and previously developed models, which simulates the electric behavior of the smelter plant. These modules allow the proper planning because it allows knowing the behavior of the hourly demand and the consumption patterns of the plant, in...

  10. Industrial Demand-Side Management in Texas

    E-Print Network [OSTI]

    Jaussaud, D.

    of programs result in lower consumption and/or lower peak demand, and ultimately reduce the need to build new capacity. Hence demand-side management can be used as a resource option to be considered alongside more traditional supply-side resources in a...INDUSTRIAL DEMAND-SIDE MANAGEMENT IN TEXAS Danielle Jaussaud Economic Analysis Section Public Utility Commission of Texas Austin, Texas ABSTRACT The industrial sector in Texas is highly energy intensive and represents a large share...

  11. World Oil Prices and Production Trends in AEO2009 (released in AEO2009)

    Reports and Publications (EIA)

    2009-01-01T23:59:59.000Z

    The oil prices reported in Annual Energy Outlook 2009 (AEO) represent the price of light, low-sulfur crude oil in 2007 dollars. Projections of future supply and demand are made for "liquids," a term used to refer to those liquids that after processing and refining can be used interchangeably with petroleum products. In AEO2009, liquids include conventional petroleum liquids -- such as conventional crude oil and natural gas plant liquids -- in addition to unconventional liquids, such as biofuels, bitumen, coal-to-liquids (CTL), gas-to-liquids (GTL), extra-heavy oils, and shale oil.

  12. World Oil Prices and Production Trends in AEO2010 (released in AEO2010)

    Reports and Publications (EIA)

    2010-01-01T23:59:59.000Z

    In Annual Energy Outlook 2010, the price of light, low-sulfur (or "sweet") crude oil delivered at Cushing, Oklahoma, is tracked to represent movements in world oil prices. The Energy Information Administration makes projections of future supply and demand for "total liquids,"" which includes conventional petroleum liquids -- such as conventional crude oil, natural gas plant liquids, and refinery gain -- in addition to unconventional liquids, which include biofuels, bitumen, coal-to-liquids (CTL), gas-to-liquids (GTL), extra-heavy oils, and shale oil.

  13. Maximum-Demand Rectangular Location Problem

    E-Print Network [OSTI]

    Manish Bansal

    2014-10-01T23:59:59.000Z

    Oct 1, 2014 ... Demand and service can be defined in the most general sense. ... Industrial and Systems Engineering, Texas A&M University, September 2014.

  14. Coupling Renewable Energy Supply with Deferrable Demand

    E-Print Network [OSTI]

    Papavasiliou, Anthony

    2011-01-01T23:59:59.000Z

    in the presence of renewable resources and on the amount ofprimarily from renewable resources, and to a limited extentintegration of renewable resources and deferrable demand. We

  15. Demand Responsive Lighting: A Scoping Study

    E-Print Network [OSTI]

    Rubinstein, Francis; Kiliccote, Sila

    2007-01-01T23:59:59.000Z

    3 3.0 Previous Experience with Demand Responsive Lighting11 4.3. Prevalence of Lighting13 4.4. Impact of Title 24 on Lighting

  16. Wastewater plant takes plunge into demand response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Commission and the Bonneville Power Administration, the Eugene-Springfield Water Pollution Control Facility in Eugene, Ore., was put through a series of demand response tests....

  17. Demand Responsive Lighting: A Scoping Study

    E-Print Network [OSTI]

    Rubinstein, Francis; Kiliccote, Sila

    2007-01-01T23:59:59.000Z

    peak demand management. Photo sensors for daylight drivenare done by local photo-sensors and control hardwaresensing device in a photo sensor is typically a photodiode,

  18. Wireless Demand Response Controls for HVAC Systems

    E-Print Network [OSTI]

    Federspiel, Clifford

    2010-01-01T23:59:59.000Z

    Response Controls for HVAC Systems Clifford Federspiel,tests. Figure 5: Specific HVAC electric power consumptioncontrol, demand response, HVAC, wireless Executive Summary

  19. Retail Demand Response in Southwest Power Pool

    E-Print Network [OSTI]

    Bharvirkar, Ranjit

    2009-01-01T23:59:59.000Z

    Commission (FERC) 2008a. “Wholesale Competition in RegionsDemand Response into Wholesale Electricity Markets,” (URL:1 2. Wholesale and Retails Electricity Markets in

  20. Demand Response - Policy | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    prices or when grid reliability is jeopardized. In regions with centrally organized wholesale electricity markets, demand response can help stabilize volatile electricity prices...

  1. Robust newsvendor problem with autoregressive demand

    E-Print Network [OSTI]

    2014-05-19T23:59:59.000Z

    May 19, 2014 ... bust distribution-free autoregressive forecasting method, which copes .... (Bandi and Bertsimas, 2012) to estimate the demand forecast. As.

  2. Optimization of Demand Response Through Peak Shaving

    E-Print Network [OSTI]

    2013-06-19T23:59:59.000Z

    Jun 19, 2013 ... efficient linear programming formulation for the demand response of such a consumer who could be a price taker, industrial or commercial user ...

  3. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01T23:59:59.000Z

    water heaters with embedded demand responsive controls can be designed to automatically provide day-ahead and real-time response

  4. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01T23:59:59.000Z

    in peak demand. This definition of energy efficiency makesthe following definitions are used: Energy efficiency refersThis definition implicitly distinguishes energy efficiency

  5. Geographically Based Hydrogen Demand and Infrastructure Rollout...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rollout Scenario Analysis Geographically Based Hydrogen Demand and Infrastructure Rollout Scenario Analysis Presentation by Margo Melendez at the 2010-2025 Scenario Analysis for...

  6. Geographically Based Hydrogen Demand and Infrastructure Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis Geographically Based Hydrogen Demand and Infrastructure Analysis Presentation by NREL's Margo Melendez at the 2010 - 2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles...

  7. China's Coal: Demand, Constraints, and Externalities

    E-Print Network [OSTI]

    Aden, Nathaniel

    2010-01-01T23:59:59.000Z

    generation systems. Coal energy density could be increasedfuel reserves were coal by energy content; 19% were oil, andConsumption, 2007 coal/primary energy consumption Source: BP

  8. OIL & GAS INSTITUTE Introduction

    E-Print Network [OSTI]

    Mottram, Nigel

    OIL & GAS INSTITUTE CONTENTS Introduction Asset Integrity Underpinning Capabilities 2 4 4 6 8 9 10 COMPETITIVENESS UNIVERSITY of STRATHCLYDE OIL & GAS INSTITUTE OIL & GAS EXPERTISE AND PARTNERSHIPS #12;1 The launch of the Strathclyde Oil & Gas Institute represents an important step forward for the University

  9. Eco Oil 4

    SciTech Connect (OSTI)

    Brett Earl; Brenda Clark

    2009-10-26T23:59:59.000Z

    This article describes the processes, challenges, and achievements of researching and developing a biobased motor oil.

  10. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    consumption would be reduced and incentives for production increased whenever the price of crude oil

  11. FRUIT & VEGETABLE GROWERS MANUAL FOR THE BEGINNING GROWER

    E-Print Network [OSTI]

    Amin, S. Massoud

    MINNESOTA FRUIT & VEGETABLE GROWERS MANUAL FOR THE BEGINNING GROWER Developed by the University & Outreach Assistance Partnership Program through a partnership agreement with the Minnesota Fruit before I harvest my produce? 135 3. When should I harvest my fruits and vegetables? 136 4. How should I

  12. Atmosphere and Ocean: Water (drought topic begins at slide 26)

    E-Print Network [OSTI]

    Atmosphere and Ocean: Water (drought topic begins at slide 26) UW Hon220c Energy & Environment in the atmosphere: 50-70% of the greenhouse effect; ½ the flow of thermal energy from laEtude (like SeaXle and its sister city, Bergen Norway. Meehl et al. Geophysical

  13. Westover ARB Fuel Hydrant System Upgrade set to begin

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Westover ARB Fuel Hydrant System Upgrade set to begin Story on page 4 #12;2 YANKEE ENGINEER August, many along the East Coast felt the impact of Hurricane Sandy, one of the largest hurricanes in history's way. · Make sure to fully charge your cell phone or other mobile devices so you can communicate after

  14. The Rise of Egypt: New Beginnings or Same Old Story

    E-Print Network [OSTI]

    Thompson, Michael

    The Rise of Egypt: New Beginnings or Same Old Story Monday March 28th - 2011 Course # 846A, Tuition dramatic than the change in government in Egypt. What does this mean for the workers of Egypt in this transition? Will the revolution in Egypt take the path of the failed revolutions in Iran or are we witnessing

  15. NASA Launches ATREX Space Network to Begin New Design Phase

    E-Print Network [OSTI]

    Christian, Eric

    Design Phase - 8 Dual Frequency Radar Arrives at Goddard - 9 Goddard Community Visitor Center Hosts TitanNASA Launches ATREX Pg 3 Space Network to Begin New Design Phase Pg 8 Visitor Center Hosts Titan://www.nasa.gov/centers/goddard/news/goddard-view.html Managing Editor: Trusilla Steele Editor: John M. Putman News items for publication in Goddard View must

  16. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01T23:59:59.000Z

    fuel electricity demands, and generation from these plantplants .. 47 Additional generation .. 48 Electricityelectricity demand increases generation from NGCC power plants.

  17. Strategies for Aligning Program Demand with Contractor's Seasonal...

    Energy Savers [EERE]

    Aligning Program Demand with Contractor's Seasonal Fluctuations Strategies for Aligning Program Demand with Contractor's Seasonal Fluctuations Better Buildings Neighborhood Program...

  18. Feasibility study of heavy oil recovery in the Appalachian, Black Warrior, Illinois, and Michigan basins

    SciTech Connect (OSTI)

    Olsen, D.K.; Rawn-Schatzinger, V.; Ramzel, E.B.

    1992-07-01T23:59:59.000Z

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Appalachian, Black Warrior, Illinois, and Michigan basins cover most of the depositional basins in the Midwest and Eastern United States. These basins produce sweet, paraffinic light oil and are considered minor heavy oil (10{degrees} to 20{degrees} API gravity or 100 to 100,000 cP viscosity) producers. Heavy oil occurs in both carbonate and sandstone reservoirs of Paleozoic Age along the perimeters of the basins in the same sediments where light oil occurs. The oil is heavy because escape of light ends, water washing of the oil, and biodegradation of the oil have occurred over million of years. The Appalachian, Black Warrior, Illinois, and Michigan basins` heavy oil fields have produced some 450,000 bbl of heavy oil of an estimated 14,000,000 bbl originally in place. The basins have been long-term, major light-oil-producing areas and are served by an extensive pipeline network connected to refineries designed to process light sweet and with few exceptions limited volumes of sour or heavy crude oils. Since the light oil is principally paraffinic, it commands a higher price than the asphaltic heavy crude oils of California. The heavy oil that is refined in the Midwest and Eastern US is imported and refined at select refineries. Imports of crude of all grades accounts for 37 to >95% of the oil refined in these areas. Because of the nature of the resource, the Appalachian, Black Warrior, Illinois and Michigan basins are not expected to become major heavy oil producing areas. The crude oil collection system will continue to degrade as light oil production declines. The demand for crude oil will increase pipeline and tanker transport of imported crude to select large refineries to meet the areas` liquid fuels needs.

  19. Feasibility study of heavy oil recovery in the Appalachian, Black Warrior, Illinois, and Michigan basins

    SciTech Connect (OSTI)

    Olsen, D.K.; Rawn-Schatzinger, V.; Ramzel, E.B.

    1992-07-01T23:59:59.000Z

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Appalachian, Black Warrior, Illinois, and Michigan basins cover most of the depositional basins in the Midwest and Eastern United States. These basins produce sweet, paraffinic light oil and are considered minor heavy oil (10{degrees} to 20{degrees} API gravity or 100 to 100,000 cP viscosity) producers. Heavy oil occurs in both carbonate and sandstone reservoirs of Paleozoic Age along the perimeters of the basins in the same sediments where light oil occurs. The oil is heavy because escape of light ends, water washing of the oil, and biodegradation of the oil have occurred over million of years. The Appalachian, Black Warrior, Illinois, and Michigan basins' heavy oil fields have produced some 450,000 bbl of heavy oil of an estimated 14,000,000 bbl originally in place. The basins have been long-term, major light-oil-producing areas and are served by an extensive pipeline network connected to refineries designed to process light sweet and with few exceptions limited volumes of sour or heavy crude oils. Since the light oil is principally paraffinic, it commands a higher price than the asphaltic heavy crude oils of California. The heavy oil that is refined in the Midwest and Eastern US is imported and refined at select refineries. Imports of crude of all grades accounts for 37 to >95% of the oil refined in these areas. Because of the nature of the resource, the Appalachian, Black Warrior, Illinois and Michigan basins are not expected to become major heavy oil producing areas. The crude oil collection system will continue to degrade as light oil production declines. The demand for crude oil will increase pipeline and tanker transport of imported crude to select large refineries to meet the areas' liquid fuels needs.

  20. Value of Demand Response -Introduction Klaus Skytte

    E-Print Network [OSTI]

    Pool Spot Time of use tariffs Load management Consumers active at the spot market Fast decrease in demand to prices. Similar to Least-cost planning and demand-side management. DR differs by using prices side. Investors want more stable prices ­ less fluctuations. Higher short-term security of supply

  1. DEMAND SIMULATION FOR DYNAMIC TRAFFIC ASSIGNMENT

    E-Print Network [OSTI]

    Bierlaire, Michel

    of the response of travelers to real-time pre- trip information. The demand simulator is an extension of dynamicDEMAND SIMULATION FOR DYNAMIC TRAFFIC ASSIGNMENT Constantinos Antoniou, Moshe Ben-Akiva, Michel Bierlaire, and Rabi Mishalani Massachusetts Institute of Technology, Cambridge, MA 02139 Abstract

  2. Demand Response and Electric Grid Reliability

    E-Print Network [OSTI]

    Wattles, P.

    2012-01-01T23:59:59.000Z

    Demand Response and Electric Grid Reliability Paul Wattles Senior Analyst, Market Design & Development, ERCOT CATEE Conference, Galveston October 10, 2012 2 North American Bulk Power Grids CATEE Conference October 10, 2012 ? The ERCOT... adequacy ? ?Achieving more DR participation would . . . displace some generation investments, but would achieve the same level of reliability... ? ?Achieving this ideal requires widespread demand response and market structures that enable loads...

  3. A Vision of Demand Response - 2016

    SciTech Connect (OSTI)

    Levy, Roger

    2006-10-15T23:59:59.000Z

    Envision a journey about 10 years into a future where demand response is actually integrated into the policies, standards, and operating practices of electric utilities. Here's a bottom-up view of how demand response actually works, as seen through the eyes of typical customers, system operators, utilities, and regulators. (author)

  4. SUMMER 2007 ELECTRICITY SUPPLY AND DEMAND OUTLOOK

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION SUMMER 2007 ELECTRICITY SUPPLY AND DEMAND OUTLOOK DRAFTSTAFFREPORT May ELECTRICITY ANALYSIS OFFICE Sylvia Bender Acting Deputy Director ELECTRICITY SUPPLY ANALYSIS DIVISION B. B assessment of the capability of the physical electricity system to provide power to meet electricity demand

  5. Demand for NGL as olefin plant feedstock

    SciTech Connect (OSTI)

    Dodds, A.R. [Quantum Chemical Corp., Houston, TX (United States)

    1997-12-31T23:59:59.000Z

    Olefin plant demand for natural gas liquids as feedstock constitutes a key market for the NGL industry. Feedstock flexibility and the price sensitive nature of petrochemical demand are described. Future trends are presented. The formation and objectives of the Petrochemical Feedstock Association of the Americas are discussed.

  6. Demand Response Programs Oregon Public Utility Commission

    E-Print Network [OSTI]

    , Demand Side Management #12;Current Programs/Tariffs ­ Load Control Programs Cool Keeper, Utah (currentlyDemand Response Programs Oregon Public Utility Commission January 6, 2005 Mike Koszalka Director 33 MW, building to 90 MW) Irrigation load control, Idaho (35 MW summer, 2004) Lighting load control

  7. Commercial use of natural bitumen begins in Tatar ASSR

    SciTech Connect (OSTI)

    Shabad, T.

    1986-04-01T23:59:59.000Z

    The Soviet Union has announced the start of development of natural bitumen beds in the Tatar oil-bearing province of the Volga-Urals. A special extraction agency, Tatneftebitum, has been established as part of Tatneft', the Tatar Oil Administration, and the first dozen tons of molten bitumen were said to have been extracted by in-situ heating. Geologically, the Mordovsko-Karmalka deposit is situated on the eastern margin of the Melekess depression and the western margin of the South Tatar arch, with the bitumen occurring in lenticular accumulations within sandstones of the Ufa stage of the Upper Permian. The bitumen is of the maltha type, between conventional petroleum and asphalt, and the deposit has a shallow location, at a depth of 80 meters. Soviet interest in natural bitumens is evidently associated with the problem of developing additional resources of conventional oil. Natural bitumens are being viewed in the Soviet Union not only as a possible substitute for conventional oil, but as a raw material in its own right, with specific applications in the present economy (road construction, insulation and anticorrosion applications, the derivation of certain chemicals). 3 figures.

  8. Uranium 2009 resources, production and demand

    E-Print Network [OSTI]

    Organisation for Economic Cooperation and Development. Paris

    2010-01-01T23:59:59.000Z

    With several countries currently building nuclear power plants and planning the construction of more to meet long-term increases in electricity demand, uranium resources, production and demand remain topics of notable interest. In response to the projected growth in demand for uranium and declining inventories, the uranium industry – the first critical link in the fuel supply chain for nuclear reactors – is boosting production and developing plans for further increases in the near future. Strong market conditions will, however, be necessary to trigger the investments required to meet projected demand. The "Red Book", jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency, is a recognised world reference on uranium. It is based on information compiled in 40 countries, including those that are major producers and consumers of uranium. This 23rd edition provides a comprehensive review of world uranium supply and demand as of 1 January 2009, as well as data on global ur...

  9. Coordination of Energy Efficiency and Demand Response

    SciTech Connect (OSTI)

    Goldman, Charles; Reid, Michael; Levy, Roger; Silverstein, Alison

    2010-01-29T23:59:59.000Z

    This paper reviews the relationship between energy efficiency and demand response and discusses approaches and barriers to coordinating energy efficiency and demand response. The paper is intended to support the 10 implementation goals of the National Action Plan for Energy Efficiency's Vision to achieve all cost-effective energy efficiency by 2025. Improving energy efficiency in our homes, businesses, schools, governments, and industries - which consume more than 70 percent of the nation's natural gas and electricity - is one of the most constructive, cost-effective ways to address the challenges of high energy prices, energy security and independence, air pollution, and global climate change. While energy efficiency is an increasingly prominent component of efforts to supply affordable, reliable, secure, and clean electric power, demand response is becoming a valuable tool in utility and regional resource plans. The Federal Energy Regulatory Commission (FERC) estimated the contribution from existing U.S. demand response resources at about 41,000 megawatts (MW), about 5.8 percent of 2008 summer peak demand (FERC, 2008). Moreover, FERC recently estimated nationwide achievable demand response potential at 138,000 MW (14 percent of peak demand) by 2019 (FERC, 2009).2 A recent Electric Power Research Institute study estimates that 'the combination of demand response and energy efficiency programs has the potential to reduce non-coincident summer peak demand by 157 GW' by 2030, or 14-20 percent below projected levels (EPRI, 2009a). This paper supports the Action Plan's effort to coordinate energy efficiency and demand response programs to maximize value to customers. For information on the full suite of policy and programmatic options for removing barriers to energy efficiency, see the Vision for 2025 and the various other Action Plan papers and guides available at www.epa.gov/eeactionplan.

  10. Strategies for Demand Response in Commercial Buildings

    SciTech Connect (OSTI)

    Watson, David S.; Kiliccote, Sila; Motegi, Naoya; Piette, Mary Ann

    2006-06-20T23:59:59.000Z

    This paper describes strategies that can be used in commercial buildings to temporarily reduce electric load in response to electric grid emergencies in which supplies are limited or in response to high prices that would be incurred if these strategies were not employed. The demand response strategies discussed herein are based on the results of three years of automated demand response field tests in which 28 commercial facilities with an occupied area totaling over 11 million ft{sup 2} were tested. Although the demand response events in the field tests were initiated remotely and performed automatically, the strategies used could also be initiated by on-site building operators and performed manually, if desired. While energy efficiency measures can be used during normal building operations, demand response measures are transient; they are employed to produce a temporary reduction in demand. Demand response strategies achieve reductions in electric demand by temporarily reducing the level of service in facilities. Heating ventilating and air conditioning (HVAC) and lighting are the systems most commonly adjusted for demand response in commercial buildings. The goal of demand response strategies is to meet the electric shed savings targets while minimizing any negative impacts on the occupants of the buildings or the processes that they perform. Occupant complaints were minimal in the field tests. In some cases, ''reductions'' in service level actually improved occupant comfort or productivity. In other cases, permanent improvements in efficiency were discovered through the planning and implementation of ''temporary'' demand response strategies. The DR strategies that are available to a given facility are based on factors such as the type of HVAC, lighting and energy management and control systems (EMCS) installed at the site.

  11. Storing hydroelectricity to meet peak-hour demand

    SciTech Connect (OSTI)

    Valenti, M.

    1992-04-01T23:59:59.000Z

    This paper reports on pumped storage plants which have become an effective way for some utility companies that derive power from hydroelectric facilities to economically store baseload energy during off-peak hours for use during peak hourly demands. According to the Electric Power Research Institute (EPRI) in Palo Alto, Calif., 36 of these plants provide approximately 20 gigawatts, or about 3 percent of U.S. generating capacity. During peak-demand periods, utilities are often stretched beyond their capacity to provide power and must therefore purchase it from neighboring utilities. Building new baseload power plants, typically nuclear or coal-fired facilities that run 24 hours per day seven days a week, is expensive, about $1500 per kilowatt, according to Robert Schainker, program manager for energy storage at the EPRI. Schainker the that building peaking plants at $400 per kilowatt, which run a few hours a day on gas or oil fuel, is less costly than building baseload plants. Operating them, however, is more expensive because peaking plants are less efficient that baseload plants.

  12. Revised Economic andRevised Economic and Demand ForecastsDemand Forecasts

    E-Print Network [OSTI]

    Revised Economic andRevised Economic and Demand ForecastsDemand Forecasts April 14, 2009 Massoud,000 MW #12;6 Demand Forecasts Price Effect (prior to conservation) - 5,000 10,000 15,000 20,000 25,000 30 Jourabchi #12;2 Changes since the Last Draft ForecastChanges since the Last Draft Forecast Improved

  13. Demand Response This is the first of the Council's power plans to treat demand response as a resource.1

    E-Print Network [OSTI]

    Demand Response This is the first of the Council's power plans to treat demand response the resource and describes some of the potential advantages and problems of the development of demand response. WHAT IS DEMAND RESPONSE? Demand response is a change in customers' demand for electricity corresponding

  14. AN ENGINE OIL LIFE ALGORITHM.

    E-Print Network [OSTI]

    Bommareddi, Anveshan

    2009-01-01T23:59:59.000Z

    ??An oil-life algorithm to calculate the remaining percentage of oil life is presented as a means to determine the right time to change the oil… (more)

  15. Essays on Macroeconomics and Oil

    E-Print Network [OSTI]

    CAKIR, NIDA

    2013-01-01T23:59:59.000Z

    is described below. Data Crude oil production data is fromproductivity measure is crude oil production per worker, andwhich is measured as crude oil production per worker, is

  16. Essays on Macroeconomics and Oil

    E-Print Network [OSTI]

    CAKIR, NIDA

    2013-01-01T23:59:59.000Z

    Venezuelan Oil Industry Total Wells Drilled and InvestmentWells Drilled and Investment in the Venezuelan Oil Industryopenness of the oil sector to foreign investment contributes

  17. Essays on Macroeconomics and Oil

    E-Print Network [OSTI]

    CAKIR, NIDA

    2013-01-01T23:59:59.000Z

    Oil Production in Venezuela and Mexico . . . . . . . . . .Venezuela with Mexico, another major oil pro- ducing countryOil Production and Productivity in Venezuela and Mexico . . . . . . . .

  18. Essays on Macroeconomics and Oil

    E-Print Network [OSTI]

    CAKIR, NIDA

    2013-01-01T23:59:59.000Z

    Oil Production in Venezuela and Mexico . . . . . . . . . .Oil Production and Productivity in Venezuela and Mexico . . . . . . . .2.6: Oil Production in Venezuela and Mexico 350 Productivity

  19. Construction Begins on First-of-its-Kind Advanced Clean Coal...

    Office of Environmental Management (EM)

    Construction Begins on First-of-its-Kind Advanced Clean Coal Electric Generating Facility Construction Begins on First-of-its-Kind Advanced Clean Coal Electric Generating Facility...

  20. Sun Mon Tue Wed Thu Fri Sat Ramadan begins

    E-Print Network [OSTI]

    Illinois at Chicago, University of

    Sun Mon Tue Wed Thu Fri Sat 1 Ramadan begins 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Placement Exam 9 before. Ramadan ends 31 Eid al Fitr Excused absence 2011 August #12;Sun Mon Tue Wed Thu Fri Sat WEEK 2 1 distributed 29 30 2011 September #12;Sun Mon Tue Wed Thu Fri Sat WEEK 6 1 2 WEEK 7 2011 October Walk

  1. #EnergyFaceoff Rounds Begin! | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataCombinedDepartment ofCareersWind Vision:#EnergyFaceoff Rounds Begin!

  2. Begin execution of implementation plans | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre Biomass Facility JumpBedford Rural Elec Coop,Begin

  3. Policy Analysis of Water Availability and Use Issues for Domestic Oil Shale and Oil Sands Development

    SciTech Connect (OSTI)

    Ruple, John; Keiter, Robert

    2010-12-31T23:59:59.000Z

    Oil shale and oil sands resources located within the intermountain west represent a vast, and as of yet, commercially untapped source of energy. Development will require water, and demand for scarce water resources stands at the front of a long list of barriers to commercialization. Water requirements and the consequences of commercial development will depend on the number, size, and location of facilities, as well as the technologies employed to develop these unconventional fuels. While the details remain unclear, the implication is not – unconventional fuel development will increase demand for water in an arid region where demand for water often exceeds supply. Water demands in excess of supplies have long been the norm in the west, and for more than a century water has been apportioned on a first-come, first-served basis. Unconventional fuel developers who have not already secured water rights stand at the back of a long line and will need to obtain water from willing water purveyors. However, uncertainty regarding the nature and extent of some senior water claims combine with indeterminate interstate river management to cast a cloud over water resource allocation and management. Quantitative and qualitative water requirements associated with Endangered Species protection also stand as barriers to significant water development, and complex water quality regulations will apply to unconventional fuel development. Legal and political decisions can give shape to an indeterminate landscape. Settlement of Northern Ute reserved rights claims would help clarify the worth of existing water rights and viability of alternative sources of supply. Interstate apportionment of the White River would go a long way towards resolving water availability in downstream Utah. And energy policy clarification will help determine the role oil shale and oil sands will play in our nation’s future.

  4. Apparatus for distilling shale oil from oil shale

    SciTech Connect (OSTI)

    Shishido, T.; Sato, Y.

    1984-02-14T23:59:59.000Z

    An apparatus for distilling shale oil from oil shale comprises: a vertical type distilling furnace which is divided by two vertical partitions each provided with a plurality of vent apertures into an oil shale treating chamber and two gas chambers, said oil shale treating chamber being located between said two gas chambers in said vertical type distilling furnace, said vertical type distilling furnace being further divided by at least one horizontal partition into an oil shale distilling chamber in the lower part thereof and at least one oil shale preheating chamber in the upper part thereof, said oil shale distilling chamber and said oil shale preheating chamber communication with each other through a gap provided at an end of said horizontal partition, an oil shale supplied continuously from an oil shale supply port provided in said oil shale treating chamber at the top thereof into said oil shale treating chamber continuously moving from the oil shale preheating chamber to the oil shale distilling chamber, a high-temperature gas blown into an oil shale distilling chamber passing horizontally through said oil shale in said oil shale treating chamber, thereby said oil shale is preheated in said oil shale preheating chamber, and a gaseous shale oil is distilled from said preheated oil shale in said oil shale distilling chamber; and a separator for separating by liquefaction a gaseous shale oil from a gas containing the gaseous shale oil discharged from the oil shale preheating chamber.

  5. Technical Feasibility Study on Biofuels Production from Pyrolysis of Nannochloropsis oculata and Algal Bio-oil Upgrading

    E-Print Network [OSTI]

    Maguyon, Monet

    2013-12-02T23:59:59.000Z

    ]. However, studies on suitability of various biomass feedstocks and development of efficient and carbon-neutral technologies for biomass-to- biofuel conversion may be required to meet this demand. Biomass for fuel production ranges from food and oil crops...

  6. FERC sees huge potential for demand response

    SciTech Connect (OSTI)

    NONE

    2010-04-15T23:59:59.000Z

    The FERC study concludes that U.S. peak demand can be reduced by as much as 188 GW -- roughly 20 percent -- under the most aggressive scenario. More moderate -- and realistic -- scenarios produce smaller but still significant reductions in peak demand. The FERC report is quick to point out that these are estimates of the potential, not projections of what could actually be achieved. The main varieties of demand response programs include interruptible tariffs, direct load control (DLC), and a number of pricing schemes.

  7. Autonomous Demand Response for Primary Frequency Regulation

    SciTech Connect (OSTI)

    Donnelly, Matt; Trudnowski, Daniel J.; Mattix, S.; Dagle, Jeffery E.

    2012-02-28T23:59:59.000Z

    The research documented within this report examines the use of autonomous demand response to provide primary frequency response in an interconnected power grid. The work builds on previous studies in several key areas: it uses a large realistic model (i.e., the interconnection of the western United States and Canada); it establishes a set of metrics that can be used to assess the effectiveness of autonomous demand response; and it independently adjusts various parameters associated with using autonomous demand response to assess effectiveness and to examine possible threats or vulnerabilities associated with the technology.

  8. Oil and Gas Supply Module

    Gasoline and Diesel Fuel Update (EIA)

    Onshore Lower 48 Oil and Gas Supply Submodule, Offshore Oil and Gas Supply Submodule, Oil Shale Supply Submodule1, and Alaska Oil and Gas Supply Submodule. A detailed description...

  9. Oil and Gas Supply Module

    Gasoline and Diesel Fuel Update (EIA)

    Onshore Lower 48 Oil and Gas Supply Submodule, Offshore Oil and Gas Supply Submodule, Oil Shale Supply Submodule, and Alaska Oil and Gas Supply Submodule. A detailed description of...

  10. REVIEW PAPER Biodeterioration of crude oil and oil derived

    E-Print Network [OSTI]

    Appanna, Vasu

    , the majority of applied microbiologi- cal methods of enhanced oil recovery also dete- riorates oil and appearsREVIEW PAPER Biodeterioration of crude oil and oil derived products: a review Natalia A. Yemashova January 2007 Ó Springer Science+Business Media B.V. 2007 Abstract Biodeterioration of crude oil and oil

  11. Volatile coal prices reflect supply, demand uncertainties

    SciTech Connect (OSTI)

    Ryan, M.

    2004-12-15T23:59:59.000Z

    Coal mine owners and investors say that supply and demand are now finally in balance. But coal consumers find that both spot tonnage and new contract coal come at a much higher price.

  12. Micro economics for demand-side management

    E-Print Network [OSTI]

    Kibune, Hisao

    1991-01-01T23:59:59.000Z

    This paper aims to interpret Demand-Side Management (DSM) activity and to point out its problems, adopting microeconomics as an analytical tool. Two major findings follow. first, the cost-benefit analysis currently in use ...

  13. Capitalize on Existing Assets with Demand Response

    E-Print Network [OSTI]

    Collins, J.

    2008-01-01T23:59:59.000Z

    Industrial facilities universally struggle with escalating energy costs. EnerNOC will demonstrate how commercial, industrial, and institutional end-users can capitalize on their existing assets—at no cost and no risk. Demand response, the voluntary...

  14. Global Energy: Supply, Demand, Consequences, Opportunities

    ScienceCinema (OSTI)

    Arun Majumdar

    2010-01-08T23:59:59.000Z

    July 29, 2008 Berkeley Lab lecture: Arun Majumdar, Director of the Environmental Energy Technologies Division, discusses current and future projections of economic growth, population, and global energy demand and supply, and explores the implications of these trends for the environment.

  15. A residential energy demand system for Spain

    E-Print Network [OSTI]

    Labandeira Villot, Xavier

    2005-01-01T23:59:59.000Z

    Sharp price fluctuations and increasing environmental and distributional concerns, among other issues, have led to a renewed academic interest in energy demand. In this paper we estimate, for the first time in Spain, an ...

  16. Climate policy implications for agricultural water demand

    SciTech Connect (OSTI)

    Chaturvedi, Vaibhav; Hejazi, Mohamad I.; Edmonds, James A.; Clarke, Leon E.; Kyle, G. Page; Davies, Evan; Wise, Marshall A.; Calvin, Katherine V.

    2013-03-28T23:59:59.000Z

    Energy, water and land are scarce resources, critical to humans. Developments in each affect the availability and cost of the others, and consequently human prosperity. Measures to limit greenhouse gas concentrations will inevitably exact dramatic changes on energy and land systems and in turn alter the character, magnitude and geographic distribution of human claims on water resources. We employ the Global Change Assessment Model (GCAM), an integrated assessment model to explore the interactions of energy, land and water systems in the context of alternative policies to limit climate change to three alternative levels: 2.5 Wm-2 (445 ppm CO2-e), 3.5 Wm-2 (535 ppm CO2-e) and 4.5 Wm-2 (645 ppm CO2-e). We explore the effects of two alternative land-use emissions mitigation policy options—one which taxes terrestrial carbon emissions equally with fossil fuel and industrial emissions, and an alternative which only taxes fossil fuel and industrial emissions but places no penalty on land-use change emissions. We find that increasing populations and economic growth could be anticipated to almost triple demand for water for agricultural systems across the century even in the absence of climate policy. In general policies to mitigate climate change increase agricultural demands for water still further, though the largest changes occur in the second half of the century, under both policy regimes. The two policies examined profoundly affected both the sources and magnitudes of the increase in irrigation water demands. The largest increases in agricultural irrigation water demand occurred in scenarios where only fossil fuel emissions were priced (but not land-use change emission) and were primarily driven by rapid expansion in bioenergy production. In these scenarios water demands were large relative to present-day total available water, calling into question whether it would be physically possible to produce the associated biomass energy. We explored the potential of improved water delivery and irrigation system efficiencies. These could potentially reduce demands substantially. However, overall demands remained high under our fossil-fuel-only tax policy. In contrast, when all carbon was priced, increases in agricultural water demands were smaller than under the fossil-fuel-only policy and were driven primarily by increased demands for water by non-biomass crops such as rice. Finally we estimate the geospatial pattern of water demands and find that regions such as China, India and other countries in south and east Asia might be expected to experience greatest increases in water demands.?

  17. Using Oils As Pesticides

    E-Print Network [OSTI]

    Bogran, Carlos E.; Ludwig, Scott; Metz, Bradley

    2006-10-30T23:59:59.000Z

    Petroleum and plant-derived spray oils show increasing potential for use as part of Integrated Pest Management systems for control of soft-bodied pests on fruit trees, shade trees, woody ornamentals and household plants. Sources of oils, preparing...

  18. Oil and Gas Exploration

    E-Print Network [OSTI]

    Tingley, Joseph V.

    Metals Industrial Minerals Oil and Gas Geothermal Exploration Development Mining Processing Nevada, oil and gas, and geothermal activities and accomplishments in Nevada: production statistics, exploration and development including drilling for petroleum and geothermal resources, discoveries of ore

  19. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    an alternative investment strategy to buying oil today andinvestments necessary to catch up. This was the view o?ered by oilinvestment strategy. date t) in order to purchase a quantity Q barrels of oil

  20. Gas and Oil (Maryland)

    Broader source: Energy.gov [DOE]

    The Department of the Environment has the authority to enact regulations pertaining to oil and gas production, but it cannot prorate or limit the output of any gas or oil well. A permit from the...

  1. China's Global Oil Strategy

    E-Print Network [OSTI]

    Thomas, Bryan G

    2009-01-01T23:59:59.000Z

    21, 2008. Ying, Wang. “ China, Venezuela firms to co-developApril 21, “China and Venezuela sign oil agreements. ” Chinaaccessed April 21, “Venezuela and China sign oil deal. ” BBC

  2. Oil Sands Feedstocks

    Broader source: Energy.gov (indexed) [DOE]

    NCUT National Centre for Upgrading Technology 'a Canada-Alberta alliance for bitumen and heavy oil research' Oil Sands Feedstocks C Fairbridge, Z Ring, Y Briker, D Hager National...

  3. Measuring the capacity impacts of demand response

    SciTech Connect (OSTI)

    Earle, Robert; Kahn, Edward P.; Macan, Edo

    2009-07-15T23:59:59.000Z

    Critical peak pricing and peak time rebate programs offer benefits by increasing system reliability, and therefore, reducing capacity needs of the electric power system. These benefits, however, decrease substantially as the size of the programs grows relative to the system size. More flexible schemes for deployment of demand response can help address the decreasing returns to scale in capacity value, but more flexible demand response has decreasing returns to scale as well. (author)

  4. The Economics of Energy (and Electricity) Demand

    E-Print Network [OSTI]

    Platchkov, Laura M.; Pollitt, Michael G.

    home to charge up at night. 12 The Tesla Roadster is an electric sport car prototype manufactured by Tesla Motors (http://www.teslamotors.com/). 13 This is based on there being around 25 million homes... 25 3.3.2 Electrification of personal transport New sources of electricity demand may emerge which substantially change the total demand for electricity and the way electricity is consumed by the household. The Tesla Roadster12 stores 53 k...

  5. Real-Time Demand Side Energy Management

    E-Print Network [OSTI]

    Victor, A.; Brodkorb, M.

    2006-01-01T23:59:59.000Z

    Real-Time Demand Side Energy Management Annelize Victor Michael Brodkorb Sr. Business Consultant Business Development Manager Aspen Technology, Inc. Aspen Technology España, S.A. Houston, TX Barcelona, Spain ABSTRACT To remain... competitive, manufacturers must capture opportunities to increase bottom-line profitability. The goal of this paper is to present a new methodology for reducing energy costs – “Demand-Side Energy Management.” Learn how process manufacturers assess energy...

  6. Seasonal demand and supply analysis of turkeys

    E-Print Network [OSTI]

    Blomo, Vito James

    1972-01-01T23:59:59.000Z

    SEASONAL DEMAND AND SUPPLY ANALYSIS OF TURKEYS A Thesis by VITO JAMES BLOMO Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE May 1972 Ma)or Sub...)ect: Agricultural Economics SEASONAL DEMAND AND SUPPLY ANALYSIS OF TURKEYS A Thesis by VITO JAMES BLOMO Approved as to style and content by: (Chairman of C mmittee) (Head of Department) (Member) (Member) ( ber) (Memb er) May 1972 ABSTRACT Seasonal...

  7. Decentralized demand management for water distribution

    E-Print Network [OSTI]

    Zabolio, Dow Joseph

    2012-06-07T23:59:59.000Z

    DECENTRALIZED DEMAND MANAGEMENT FOR WATER DISTRIBUTION A Thesis by DOW JOSEPH ZABOLIO, III Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May... OF THE DEMAND CURVE 30 31 35 39 Model Development Results 39 45 VI CONTROLLER DESIGN AND COSTS 49 Description of Controller Production and Installation Costs 49 50 VII SYSTEM EVALUATION AND ECONOMICS 53 System Response and Degree of Control...

  8. SRC Residual fuel oils

    DOE Patents [OSTI]

    Tewari, Krishna C. (Whitehall, PA); Foster, Edward P. (Macungie, PA)

    1985-01-01T23:59:59.000Z

    Coal solids (SRC) and distillate oils are combined to afford single-phase blends of residual oils which have utility as fuel oils substitutes. The components are combined on the basis of their respective polarities, that is, on the basis of their heteroatom content, to assure complete solubilization of SRC. The resulting composition is a fuel oil blend which retains its stability and homogeneity over the long term.

  9. Peaking of world oil production: Impacts, mitigation, & risk management

    SciTech Connect (OSTI)

    Hirsch, R.L. (SAIC); Bezdek, Roger (MISI); Wendling, Robert (MISI)

    2005-02-01T23:59:59.000Z

    The peaking of world oil production presents the U.S. and the world with an unprecedented risk management problem. As peaking is approached, liquid fuel prices and price volatility will increase dramatically, and, without timely mitigation, the economic, social, and political costs will be unprecedented. Viable mitigation options exist on both the supply and demand sides, but to have substantial impact, they must be initiated more than a decade in advance of peaking.... The purpose of this analysis was to identify the critical issues surrounding the occurrence and mitigation of world oil production peaking. We simplified many of the complexities in an effort to provide a transparent analysis. Nevertheless, our study is neither simple nor brief. We recognize that when oil prices escalate dramatically, there will be demand and economic impacts that will alter our simplified assumptions. Consideration of those feedbacks will be a daunting task but one that should be undertaken. Our aim in this study is to-- • Summarize the difficulties of oil production forecasting; • Identify the fundamentals that show why world oil production peaking is such a unique challenge; • Show why mitigation will take a decade or more of intense effort; • Examine the potential economic effects of oil peaking; • Describe what might be accomplished under three example mitigation scenarios. • Stimulate serious discussion of the problem, suggest more definitive studies, and engender interest in timely action to mitigate its impacts.

  10. Experimental Investigation of Biodiesel Production from Waste Mustard Oil

    E-Print Network [OSTI]

    Rajat Subhra Samanta; Mukunda Kumar Das

    The demand for petroleum is increasing with each passing day. This may be attributed to the limited resources of petroleum crude. Hence there is an urgent need of developing alternative energy sources to meet the ever increasing energy demand. Biofuels are currently being considered from multidimensional perspectives, i.e. depleting fossil fuels, resources, environmental health, energy security and agricultural economy. The two most common types of biofuels are ethanol and biodiesel [1]. Biodiesel is a promising alternative fuel to replace petroleum-based diesel that is produced primarily from vegetable oil, animal fat and waste mustard oil. The vegetable oils which are rich in oxygen can be used as future alternate fuels for the operation of diesel engine [2]. Biodiesel is produced from wasted mustard oil through alkali catalyzed transesterification process. Biodiesel is simple to use, biodegradable, non-toxic and essentially free of sulfur and aromatics. Physical properties like density, flash point, kinematic viscosity, cloud point and pour point were found out for biodiesel produced from waste mustard oil. The same characteristic study was also carried out for conventional diesel fuel and used as a baseline for comparison. The values obtained from waste mustard oil ethyl ester (biodiesel) is closely matched with the conventional diesel fuel and it can be used in diesel engine without any modification. Biodiesel can be used in pure form (B100) or may be blended with petroleum diesel at any concentration in most injection pump diesel engines.

  11. Biochemical upgrading of oils

    DOE Patents [OSTI]

    Premuzic, E.T.; Lin, M.S.

    1999-01-12T23:59:59.000Z

    A process for biochemical conversion of heavy crude oils is provided. The process includes contacting heavy crude oils with adapted biocatalysts. The resulting upgraded oil shows, a relative increase in saturated hydrocarbons, emulsions and oxygenates and a decrease in compounds containing organic sulfur, organic nitrogen and trace metals. Adapted microorganisms which have been modified under challenged growth processes are also disclosed. 121 figs.

  12. Secretary Bodman Begins Australia Visit | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September2-SCORECARD-01-24-13 Page 1 ofIBRFComplex" atBegins Australia

  13. JLab Begins Implementation of REAL ID Act | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfrared LandResponsesIon/SurfacePump-TestingJEDI: Jobs andJGI dataPolarBegins

  14. Utah Heavy Oil Program

    SciTech Connect (OSTI)

    J. Bauman; S. Burian; M. Deo; E. Eddings; R. Gani; R. Goel; C.K. Huang; M. Hogue; R. Keiter; L. Li; J. Ruple; T. Ring; P. Rose; M. Skliar; P.J. Smith; J.P. Spinti; P. Tiwari; J. Wilkey; K. Uchitel

    2009-10-20T23:59:59.000Z

    The Utah Heavy Oil Program (UHOP) was established in June 2006 to provide multidisciplinary research support to federal and state constituents for addressing the wide-ranging issues surrounding the creation of an industry for unconventional oil production in the United States. Additionally, UHOP was to serve as an on-going source of unbiased information to the nation surrounding technical, economic, legal and environmental aspects of developing heavy oil, oil sands, and oil shale resources. UHOP fulGilled its role by completing three tasks. First, in response to the Energy Policy Act of 2005 Section 369(p), UHOP published an update report to the 1987 technical and economic assessment of domestic heavy oil resources that was prepared by the Interstate Oil and Gas Compact Commission. The UHOP report, entitled 'A Technical, Economic, and Legal Assessment of North American Heavy Oil, Oil Sands, and Oil Shale Resources' was published in electronic and hard copy form in October 2007. Second, UHOP developed of a comprehensive, publicly accessible online repository of unconventional oil resources in North America based on the DSpace software platform. An interactive map was also developed as a source of geospatial information and as a means to interact with the repository from a geospatial setting. All documents uploaded to the repository are fully searchable by author, title, and keywords. Third, UHOP sponsored Give research projects related to unconventional fuels development. Two projects looked at issues associated with oil shale production, including oil shale pyrolysis kinetics, resource heterogeneity, and reservoir simulation. One project evaluated in situ production from Utah oil sands. Another project focused on water availability and produced water treatments. The last project considered commercial oil shale leasing from a policy, environmental, and economic perspective.

  15. Manufacture of refrigeration oils

    SciTech Connect (OSTI)

    Chesluk, R.P.; Platte, H.J.; Sequeira, A.J.

    1981-12-08T23:59:59.000Z

    Lubricating oils suitable for use in refrigeration equipment in admixture with fluorinated hydrocarbon refrigerants are produced by solvent extraction of naphthenic lubricating oil base stocks, cooling the resulting extract mixture, optionally with the addition of a solvent modifier, to form a secondary raffinate and a secondary extract, and recovering a dewaxed oil fraction of lowered pour point from the secondary raffinate as a refrigeration oil product. The process of the invention obviates the need for a separate dewaxing operation, such as dewaxing with urea, as conventionally employed for the production of refrigeration oils.

  16. Recent hydrocarbon developments in Latin America: Key issues in the downstream oil sector

    SciTech Connect (OSTI)

    Wu, K.; Pezeshki, S.

    1995-03-01T23:59:59.000Z

    This report discusses the following: (1) An overview of major issues in the downstream oil sector, including oil demand and product export availability, the changing product consumption pattern, and refineries being due for major investment; (2) Recent upstream developments in the oil and gas sector in Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Mexico, Peru, Trinidad and Tobago, and Venezuela; (3) Recent downstream developments in the oil and gas sector in Argentina, Chile, Colombia, Ecuador, Mexico, Peru, Cuba, and Venezuela; (4) Pipelines in Argentina, Bolivia, Brazil, Chile, and Mexico; and (5) Regional energy balance. 4 figs., 5 tabs.

  17. Transporting US oil imports: The impact of oil spill legislation on the tanker market. Draft final report

    SciTech Connect (OSTI)

    Rowland, P.J. [Rowland (P.) Associates (United States)

    1992-05-01T23:59:59.000Z

    The Oil Pollution Act of 1990 (``OPA``) and an even more problematic array of State pollution laws have raised the cost, and risk, of carrying oil into and out of the US. This report, prepared under contract to the US Department of energy`s Office of Domestic and International Policy, examines the impact of Federal and State oil spill legislation on the tanker market. It reviews the role of marine transportation in US oil supply, explores the OPA and State oil spill laws, studies reactions to OPA in the tanker and tank barge industries and in related industries such as insurance and ship finance, and finally, discusses the likely developments in the years ahead. US waterborne oil imports amounted to 6.5 million B/D in 1991, three-quarters of which was crude oil. Imports will rise by almost 3 million B/D by 2000 according to US Department of energy forecasts, with most of the crude oil growth after 1995. Tanker demand will grow even faster: most of the US imports and the increased traffic to other world consuming regions will be on long-haul trades. Both the number of US port calls by tankers and the volume of offshore lightering will grow. Every aspect of the tanker industry`s behavior is affected by OPA and a variety of State pollution laws.

  18. Automated Demand Response Strategies and Commissioning Commercial Building Controls

    E-Print Network [OSTI]

    Piette, Mary Ann; Watson, David; Motegi, Naoya; Kiliccote, Sila; Linkugel, Eric

    2006-01-01T23:59:59.000Z

    4 9 . Piette et at Automated Demand Response Strategies andDynamic Controls for Demand Response in New and ExistingFully Automated Demand Response Tests in Large Facilities"

  19. Demand-Side Management and Energy Efficiency Revisited

    E-Print Network [OSTI]

    Auffhammer, Maximilian; Blumstein, Carl; Fowlie, Meredith

    2007-01-01T23:59:59.000Z

    EPRI). 1984. ”Demand Side Management. Vol. 1:Overview of Key1993. ”Industrial Demand-Side Management Programs: What’sJ. Kulick. 2004. ”Demand side management and energy e?ciency

  20. Coordination of Retail Demand Response with Midwest ISO Markets

    E-Print Network [OSTI]

    Bharvirkar, Ranjit

    2008-01-01T23:59:59.000Z

    Data Collection for Demand-side Management for QualifyingPrepared by Demand-side Management Task Force of the4. Status of Demand Side Management in Midwest ISO 5.

  1. CALIFORNIA ENERGY CALIFORNIA ENERGY DEMAND 2010-2020

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION CALIFORNIA ENERGY DEMAND 2010-2020 ADOPTED FORECAST for this report: Kavalec, Chris and Tom Gorin, 2009. California Energy Demand 20102020, Adopted Forecast. California Energy Commission. CEC2002009012CMF #12; i Acknowledgments The demand forecast

  2. Coordinating production quantities and demand forecasts through penalty schemes

    E-Print Network [OSTI]

    Swaminathan, Jayashankar M.

    Coordinating production quantities and demand forecasts through penalty schemes MURUVVET CELIKBAS1 departments which enable organizations to match demand forecasts with production quantities. This research problem where demand is uncertain and the marketing de- partment provides a forecast to manufacturing

  3. Forecasting Market Demand for New Telecommunications Services: An Introduction

    E-Print Network [OSTI]

    Parsons, Simon

    Forecasting Market Demand for New Telecommunications Services: An Introduction Peter Mc in demand forecasting for new communication services. Acknowledgments: The writing of this paper commenced employers or consultancy clients. KEYWORDS: Demand Forecasting, New Product Marketing, Telecommunica- tions

  4. Analysis of Open Automated Demand Response Deployments in California

    E-Print Network [OSTI]

    LBNL-6560E Analysis of Open Automated Demand Response Deployments in California and Guidelines The work described in this report was coordinated by the Demand Response Research. #12; #12;Abstract This report reviews the Open Automated Demand Response

  5. PIER: Demand Response Research Center Director, Mary Ann Piette

    E-Print Network [OSTI]

    1 PIER: Demand Response Research Center Director, Mary Ann Piette Program Development and Outreach Response Research Plan #12;2 Demand Response Research Center Objective Scope Stakeholders Develop, prioritize, conduct and disseminate multi- institutional research to facilitate Demand Response. Technologies

  6. Commercial Fleet Demand for Alternative-Fuel Vehicles in California

    E-Print Network [OSTI]

    Golob, Thomas F; Torous, Jane; Bradley, Mark; Brownstone, David; Crane, Soheila Soltani; Bunch, David S

    1996-01-01T23:59:59.000Z

    Precursors of demand for alternative-fuel vehicles: resultsFLEET DEMAND FOR ALTERNATIVE-FUEL VEHICLES IN CALIFORNIA*Abstract—Fleet demand for alternative-fuel vehicles (‘AFVs’

  7. California Baseline Energy Demands to 2050 for Advanced Energy Pathways

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2008-01-01T23:59:59.000Z

    ED2, September. CEC (2005b) Energy demand forecast methodsCalifornia Baseline Energy Demands to 2050 for Advancedof a baseline scenario for energy demand in California for a

  8. Demand Control Utilizing Energy Management Systems - Report of Field Tests

    E-Print Network [OSTI]

    Russell, B. D.; Heller, R. P.; Perry, L. W.

    1984-01-01T23:59:59.000Z

    Energy Management systems and particularly demand controllers are becoming more popular as commercial and light industrial operations attempt to reduce their electrical usage and demand. Numerous techniques are used to control energy use and demand...

  9. Behavioral Aspects in Simulating the Future US Building Energy Demand

    E-Print Network [OSTI]

    Stadler, Michael

    2011-01-01T23:59:59.000Z

    Importance Total off- site energy demand (2030) 20% decreaseImportance Total off-site energy demand (2030) 20% decreaseImportance Total off-site energy demand (2030) 20% decrease

  10. Learning Energy Demand Domain Knowledge via Feature Transformation

    E-Print Network [OSTI]

    Povinelli, Richard J.

    Learning Energy Demand Domain Knowledge via Feature Transformation Sanzad Siddique Department -- Domain knowledge is an essential factor for forecasting energy demand. This paper introduces a method knowledge substantially improves energy demand forecasting accuracy. However, domain knowledge may differ

  11. Energy Demands and Efficiency Strategies in Data Center Buildings

    E-Print Network [OSTI]

    Shehabi, Arman

    2010-01-01T23:59:59.000Z

    iv Chapter 5: National energy demand and potential energyEnergy Demands and Efficiency Strategies   in Data Center AC02?05CH11231.   Energy Demands and Efficiency Strategies

  12. Linking Continuous Energy Management and Open Automated Demand Response

    E-Print Network [OSTI]

    Piette, Mary Ann

    2009-01-01T23:59:59.000Z

    for Demand Response in a New Commercial Building in NewDemand Response and Energy Efficiency in Commercial Buildings.Demand Response Mary Ann Piette, Sila Kiliccote, and Girish Ghatikar Lawrence Berkeley National Laboratory Building

  13. Smart Buildings Using Demand Response March 6, 2011

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Smart Buildings Using Demand Response March 6, 2011 Sila Kiliccote Deputy, Demand Response Research Center Program Manager, Building Technologies Department Environmental Energy Technologies only as needed) · Energy Efficiency strategies are permanent (occur daily) 4 #12;Demand-Side

  14. Savings from new oil furnaces: A study conducted as part of Washington State's Oil Help Program

    SciTech Connect (OSTI)

    Davis, R.

    1989-12-01T23:59:59.000Z

    The Washington State Energy Office (WSEO) has been running the Oil Help program for three years. Originally operated as a loan program, Oil Help switched to rebates during the 1987 and 1988. Rebates for oil furnace replacements made up over 70 percent of rebate funds, which totaled about $1.3 million. WSEO Evaluation started research in summer of 1988, with the goal of including 100 new furnace households (with a control group of similar size) in the study. Our intention was to look at long-term oil consumption comparing each household with itself over the two periods. The final study group consists of 43 households and a control group of 87 households. The report begins with a review of related research. A discussion of research methodology, weather normalization procedure, data attrition, and important descriptive details follows. Changes in consumption for the new furnace and control groups are reported and are tested for significance. Finally, we discuss the implications of the results for the cost effectiveness of an oil furnace replacement.

  15. rom the beginning of time, the power of water has captured the human imagination and influenced

    E-Print Network [OSTI]

    is an essential water-supply reservoir for irrigation, hydroelectric power generation,81 and municipal demands

  16. Response to several FOIA requests - Renewable Energy. Demand...

    Office of Environmental Management (EM)

    Response to several FOIA requests - Renewable Energy. Demand for Fossil Fuels Response to several FOIA requests - Renewable Energy. Demand for Fossil Fuels Response to several FOIA...

  17. The business value of demand response for balance responsible parties.

    E-Print Network [OSTI]

    Jonsson, Mattias

    2014-01-01T23:59:59.000Z

    ?? By using IT-solutions, the flexibility on the demand side in the electrical systems could be increased. This is called demand response and is part… (more)

  18. Implementation Proposal for the National Action Plan on Demand...

    Broader source: Energy.gov (indexed) [DOE]

    and the Department of Energy. Implementation Proposal for the National Action Plan on Demand Response - July 2011 More Documents & Publications National Action Plan on Demand...

  19. FERC Presendation: Demand Response as Power System Resources...

    Broader source: Energy.gov (indexed) [DOE]

    Federal Energy Regulatory Commission (FERC) presentation on demand response as power system resources before the Electicity Advisory Committee, October 29, 2010 Demand Response as...

  20. ASSESSMENT OF VARIABLE EFFECTS OF SYSTEMS WITH DEMAND RESPONSE RESOURCES

    E-Print Network [OSTI]

    Gross, George

    ASSESSMENT OF VARIABLE EFFECTS OF SYSTEMS WITH DEMAND RESPONSE RESOURCES BY ANUPAMA SUNIL KOWLI B of consumers - called demand response resources (DRRs) - whose role has become increasingly important

  1. Tool Improves Electricity Demand Predictions to Make More Room...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tool Improves Electricity Demand Predictions to Make More Room for Renewables Tool Improves Electricity Demand Predictions to Make More Room for Renewables October 3, 2011 -...

  2. Energy Upgrade California Drives Demand From Behind the Wheel...

    Energy Savers [EERE]

    Upgrade California Drives Demand From Behind the Wheel Energy Upgrade California Drives Demand From Behind the Wheel Photo of a trailer with the Energy Upgrade California logo and...

  3. Reducing Energy Demand in Buildings Through State Energy Codes...

    Energy Savers [EERE]

    Reducing Energy Demand in Buildings Through State Energy Codes Reducing Energy Demand in Buildings Through State Energy Codes Building Codes Project for the 2013 Building...

  4. BUILDINGS SECTOR DEMAND-SIDE EFFICIENCY TECHNOLOGY SUMMARIES

    E-Print Network [OSTI]

    LBL-33887 UC-000 BUILDINGS SECTOR DEMAND-SIDE EFFICIENCY TECHNOLOGY SUMMARIES Jonathan G. Koomey ............................................................................................... 2 Demand-Side Efficiency Technologies I. Energy Management Systems (EMSs

  5. assessing workforce demand: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Utilization Websites Summary: LBNL-5319E Assessing the Control Systems Capacity for Demand Response in California Industries in this report was coordinated by the Demand...

  6. air cargo demand: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Websites Summary: 1 Aggregated Modeling and Control of Air Conditioning Loads for Demand Response Wei Zhang, Member, IEEE Abstract--Demand response is playing an...

  7. Carcinogenicity Studies of Estonian Oil Shale Soots

    E-Print Network [OSTI]

    A. Vosamae

    determine the carcinogenicity of Estonian oil shale soot as well as the soot from oil shale fuel oil. All

  8. Centralized and Decentralized Control for Demand Response

    SciTech Connect (OSTI)

    Lu, Shuai; Samaan, Nader A.; Diao, Ruisheng; Elizondo, Marcelo A.; Jin, Chunlian; Mayhorn, Ebony T.; Zhang, Yu; Kirkham, Harold

    2011-04-29T23:59:59.000Z

    Demand response has been recognized as an essential element of the smart grid. Frequency response, regulation and contingency reserve functions performed traditionally by generation resources are now starting to involve demand side resources. Additional benefits from demand response include peak reduction and load shifting, which will defer new infrastructure investment and improve generator operation efficiency. Technical approaches designed to realize these functionalities can be categorized into centralized control and decentralized control, depending on where the response decision is made. This paper discusses these two control philosophies and compares their relative advantages and disadvantages in terms of delay time, predictability, complexity, and reliability. A distribution system model with detailed household loads and controls is built to demonstrate the characteristics of the two approaches. The conclusion is that the promptness and reliability of decentralized control should be combined with the predictability and simplicity of centralized control to achieve the best performance of the smart grid.

  9. Wireless Demand Response Controls for HVAC Systems

    SciTech Connect (OSTI)

    Federspiel, Clifford

    2009-06-30T23:59:59.000Z

    The objectives of this scoping study were to develop and test control software and wireless hardware that could enable closed-loop, zone-temperature-based demand response in buildings that have either pneumatic controls or legacy digital controls that cannot be used as part of a demand response automation system. We designed a SOAP client that is compatible with the Demand Response Automation Server (DRAS) being used by the IOUs in California for their CPP program, design the DR control software, investigated the use of cellular routers for connecting to the DRAS, and tested the wireless DR system with an emulator running a calibrated model of a working building. The results show that the wireless DR system can shed approximately 1.5 Watts per design CFM on the design day in a hot, inland climate in California while keeping temperatures within the limits of ASHRAE Standard 55: Thermal Environmental Conditions for Human Occupancy.

  10. Utility Sector Impacts of Reduced Electricity Demand

    SciTech Connect (OSTI)

    Coughlin, Katie

    2014-12-01T23:59:59.000Z

    This report presents a new approach to estimating the marginal utility sector impacts associated with electricity demand reductions. The method uses publicly available data and provides results in the form of time series of impact factors. The input data are taken from the Energy Information Agency's Annual Energy Outlook (AEO) projections of how the electric system might evolve in the reference case, and in a number of side cases that incorporate different effciency and other policy assumptions. The data published with the AEO are used to define quantitative relationships between demand-side electricity reductions by end use and supply-side changes to capacity by plant type, generation by fuel type and emissions of CO2, Hg, NOx and SO2. The impact factors define the change in each of these quantities per unit reduction in site electricity demand. We find that the relative variation in these impacts by end use is small, but the time variation can be significant.

  11. Uranium 2014 resources, production and demand

    E-Print Network [OSTI]

    Organisation for Economic Cooperation and Development. Paris

    2014-01-01T23:59:59.000Z

    Published every other year, Uranium Resources, Production, and Demand, or the "Red Book" as it is commonly known, is jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency. It is the recognised world reference on uranium and is based on official information received from 43 countries. It presents the results of a thorough review of world uranium supplies and demand and provides a statistical profile of the world uranium industry in the areas of exploration, resource estimates, production and reactor-related requirements. It provides substantial new information from all major uranium production centres in Africa, Australia, Central Asia, Eastern Europe and North America. Long-term projections of nuclear generating capacity and reactor-related uranium requirements are provided as well as a discussion of long-term uranium supply and demand issues. This edition focuses on recent price and production increases that could signal major changes in the industry.

  12. Uranium 2005 resources, production and demand

    E-Print Network [OSTI]

    Organisation for Economic Cooperation and Development. Paris

    2006-01-01T23:59:59.000Z

    Published every other year, Uranium Resources, Production, and Demand, or the "Red Book" as it is commonly known, is jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency. It is the recognised world reference on uranium and is based on official information received from 43 countries. This 21st edition presents the results of a thorough review of world uranium supplies and demand as of 1st January 2005 and provides a statistical profile of the world uranium industry in the areas of exploration, resource estimates, production and reactor-related requirements. It provides substantial new information from all major uranium production centres in Africa, Australia, Central Asia, Eastern Europe and North America. Projections of nuclear generating capacity and reactor-related uranium requirements through 2025 are provided as well as a discussion of long-term uranium supply and demand issues. This edition focuses on recent price and production increases that could signal major c...

  13. DEMAND CONTROLLED VENTILATION AND CLASSROOM VENTILATION

    SciTech Connect (OSTI)

    Fisk, William J.; Mendell, Mark J.; Davies, Molly; Eliseeva, Ekaterina; Faulkner, David; Hong, Tienzen; Sullivan, Douglas P.

    2014-01-06T23:59:59.000Z

    This document summarizes a research effort on demand controlled ventilation and classroom ventilation. The research on demand controlled ventilation included field studies and building energy modeling. Major findings included: ? The single-location carbon dioxide sensors widely used for demand controlled ventilation frequently have large errors and will fail to effectively control ventilation rates (VRs).? Multi-location carbon dioxide measurement systems with more expensive sensors connected to multi-location sampling systems may measure carbon dioxide more accurately.? Currently-available optical people counting systems work well much of the time but have large counting errors in some situations. ? In meeting rooms, measurements of carbon dioxide at return-air grilles appear to be a better choice than wall-mounted sensors.? In California, demand controlled ventilation in general office spaces is projected to save significant energy and be cost effective only if typical VRs without demand controlled ventilation are very high relative to VRs in codes. Based on the research, several recommendations were developed for demand controlled ventilation specifications in the California Title 24 Building Energy Efficiency Standards.The research on classroom ventilation collected data over two years on California elementary school classrooms to investigate associations between VRs and student illness absence (IA). Major findings included: ? Median classroom VRs in all studied climate zones were below the California guideline, and 40percent lower in portable than permanent buildings.? Overall, one additional L/s per person of VR was associated with 1.6percent less IA. ? Increasing average VRs in California K-12 classrooms from the current average to the required level is estimated to decrease IA by 3.4percent, increasing State attendance-based funding to school districts by $33M, with $6.2 M in increased energy costs. Further VR increases would provide additional benefits.? Confirming these findings in intervention studies is recommended. ? Energy costs of heating/cooling unoccupied classrooms statewide are modest, but a large portion occurs in relatively few classrooms.

  14. Future oil and gas: Can Iran deliver?

    SciTech Connect (OSTI)

    Takin, M. [Centre for Global Energy Studies, London (United Kingdom)

    1996-11-01T23:59:59.000Z

    Iran`s oil and gas production and exports constitute the country`s main source of foreign exchange earnings. The future level of these earnings will depend on oil prices, global demand for Iranian exports, the country`s productive capability and domestic consumption. The size of Iranian oil reserves suggests that, in principle, present productive capacity could be maintained and expanded. However, the greatest share of production in coming years still will come from fields that already have produced for several decades. In spite of significant remaining reserves, these fields are not nearly as prolific as they were in their early years. The operations required for further development are now more complicated and, in particular, more costly. These fields` size also implies that improving production, and instituting secondary and tertiary recovery methods (such as gas injection), will require mega-scale operations. This article discusses future oil and gas export revenues from the Islamic Republic of Iran, emphasizing the country`s future production and commenting on the effects of proposed US sanctions.

  15. Market Response ModelsMarket Response Models Demand CreationDemand Creation

    E-Print Network [OSTI]

    Brock, David

    Market Response ModelsMarket Response Models andand Demand CreationDemand Creation Dominique MImportance of Marketing Investments Need for a Market Response focusNeed for a Market Response focus Digital data enriched acquisition and retention costsasymmetry between acquisition and retention costs In both cases, longIn both

  16. Ecotourism demand in North-East Italy.fig Ecotourism demand in North-East Italy

    E-Print Network [OSTI]

    Tempesta, Tiziano

    Ecotourism demand in North-East Italy.fig 1 Ecotourism demand in North-East Italy Tempesta T.1 and analyse ecotourism in North-East Italy. The main objectives were to: a) define a methodology that would quantify the recreational flow from the results of phone and in-person interviews, b) analyse ecotourism

  17. ERCOT's Weather Sensitive Demand Response Pilot

    E-Print Network [OSTI]

    Carter, T.

    2013-01-01T23:59:59.000Z

    ERCOT’s Weather Sensitive Demand Response Pilot CATEE 12-17-13 ESL-KT-13-12-21 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 Disclaimer The information contained in this report has been obtained from... services along with other information about our business is available online at constellation.com. ESL-KT-13-12-21 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 Demand Response in ERCOT CATEE 121313 - Tim Carter...

  18. Demand Response Initiatives at CPS Energy

    E-Print Network [OSTI]

    Luna, R.

    2013-01-01T23:59:59.000Z

    Demand Response Initiatives at CPS Energy Clean Air Through Energy Efficiency (CATEE) Conference December 17, 2013 ESL-KT-13-12-53 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 CPSE’s DR Program • DR... than the military bases and Toyota combined. • Schools & Universities contributed 6 MW’s of Demand Response in 2013. 2013 DR Participants Trinity University - $5,654 Fort Sam ISD - $18,860 Judson ISD - $45,540 Alamo Colleges - $98,222 UTSA - $168...

  19. Demand Responsive Lighting: A Scoping Study

    SciTech Connect (OSTI)

    Rubinstein, Francis; Kiliccote, Sila

    2007-01-03T23:59:59.000Z

    The objective of this scoping study is: (1) to identify current market drivers and technology trends that can improve the demand responsiveness of commercial building lighting systems and (2) to quantify the energy, demand and environmental benefits of implementing lighting demand response and energy-saving controls strategies Statewide. Lighting systems in California commercial buildings consume 30 GWh. Lighting systems in commercial buildings often waste energy and unnecessarily stress the electrical grid because lighting controls, especially dimming, are not widely used. But dimmable lighting equipment, especially the dimming ballast, costs more than non-dimming lighting and is expensive to retrofit into existing buildings because of the cost of adding control wiring. Advances in lighting industry capabilities coupled with the pervasiveness of the Internet and wireless technologies have led to new opportunities to realize significant energy saving and reliable demand reduction using intelligent lighting controls. Manufacturers are starting to produce electronic equipment--lighting-application specific controllers (LAS controllers)--that are wirelessly accessible and can control dimmable or multilevel lighting systems obeying different industry-accepted protocols. Some companies make controllers that are inexpensive to install in existing buildings and allow the power consumed by bi-level lighting circuits to be selectively reduced during demand response curtailments. By intelligently limiting the demand from bi-level lighting in California commercial buildings, the utilities would now have an enormous 1 GW demand shed capability at hand. By adding occupancy and light sensors to the remotely controllable lighting circuits, automatic controls could harvest an additional 1 BkWh/yr savings above and beyond the savings that have already been achieved. The lighting industry's adoption of DALI as the principal wired digital control protocol for dimming ballasts and increased awareness of the need to standardize on emerging wireless technologies are evidence of this transformation. In addition to increased standardization of digital control protocols controller capabilities, the lighting industry has improved the performance of dimming lighting systems over the last two years. The system efficacy of today's current dimming ballasts is approaching that of non-dimming program start ballasts. The study finds that the benefits of applying digital controls technologies to California's unique commercial buildings market are enormous. If California were to embark on an concerted 20 year program to improve the demand responsiveness and energy efficiency of commercial building lighting systems, the State could avoid adding generation capacity, improve the elasticity of the grid, save Californians billion of dollars in avoided energy charges and significantly reduce greenhouse gas emissions.

  20. Crude Oil Analysis Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Shay, Johanna Y.

    The composition and physical properties of crude oil vary widely from one reservoir to another within an oil field, as well as from one field or region to another. Although all oils consist of hydrocarbons and their derivatives, the proportions of various types of compounds differ greatly. This makes some oils more suitable than others for specific refining processes and uses. To take advantage of this diversity, one needs access to information in a large database of crude oil analyses. The Crude Oil Analysis Database (COADB) currently satisfies this need by offering 9,056 crude oil analyses. Of these, 8,500 are United States domestic oils. The database contains results of analysis of the general properties and chemical composition, as well as the field, formation, and geographic location of the crude oil sample. [Taken from the Introduction to COAMDATA_DESC.pdf, part of the zipped software and database file at http://www.netl.doe.gov/technologies/oil-gas/Software/database.html] Save the zipped file to your PC. When opened, it will contain PDF documents and a large Excel spreadsheet. It will also contain the database in Microsoft Access 2002.

  1. Final report to the National Science Foundation for the period July 1, 1978 to June 30, 1980 of project on cartel behavior and exhaustible resource supply : a case study of the world oil market.

    E-Print Network [OSTI]

    M.I.T. World Oil Project.

    1981-01-01T23:59:59.000Z

    The M.I.T. World Oil Project has been developing improved methods and data for analysis of the future course of the world oil market. Any forecast of this market depends on analysis of the likely demand for oil imports by ...

  2. An Analysis of the Price Elasticity of Demand for Household Appliances

    SciTech Connect (OSTI)

    Fujita, Kimberly; Dale, Larry; Fujita, K. Sydny

    2008-01-25T23:59:59.000Z

    This report summarizes our study of the price elasticity of demand for home appliances, including refrigerators, clothes washers, and dishwashers. In the context of increasingly stringent appliance standards, we are interested in what kind of impact the increased manufacturing costs caused by higher efficiency requirements will have on appliance sales. We begin with a review of existing economics literature describing the impact of economic variables on the sale of durable goods.We then describe the market for home appliances and changes in this market over the past 20 years, performing regression analysis on the shipments of home appliances and relevant economic variables including changes to operating cost and household income. Based on our analysis, we conclude that the demand for home appliances is price inelastic.

  3. Installation and Commissioning Automated Demand Response Systems

    SciTech Connect (OSTI)

    Global Energy Partners; Pacific Gas and Electric Company; Kiliccote, Sila; Kiliccote, Sila; Piette, Mary Ann; Wikler, Greg; Prijyanonda, Joe; Chiu, Albert

    2008-04-21T23:59:59.000Z

    Demand Response (DR) can be defined as actions taken to reduce electric loads when contingencies, such as emergencies and congestion, occur that threaten supply-demand balance, or market conditions raise supply costs. California utilities have offered price and reliability DR based programs to customers to help reduce electric peak demand. The lack of knowledge about the DR programs and how to develop and implement DR control strategies is a barrier to participation in DR programs, as is the lack of automation of DR systems. Most DR activities are manual and require people to first receive notifications, and then act on the information to execute DR strategies. Levels of automation in DR can be defined as follows. Manual Demand Response involves a labor-intensive approach such as manually turning off or changing comfort set points at each equipment switch or controller. Semi-Automated Demand Response involves a pre-programmed demand response strategy initiated by a person via centralized control system. Fully-Automated Demand Response does not involve human intervention, but is initiated at a home, building, or facility through receipt of an external communications signal. The receipt of the external signal initiates pre-programmed demand response strategies. We refer to this as Auto-DR (Piette et. al. 2005). Auto-DR for commercial and industrial facilities can be defined as fully automated DR initiated by a signal from a utility or other appropriate entity and that provides fully-automated connectivity to customer end-use control strategies. One important concept in Auto-DR is that a homeowner or facility manager should be able to 'opt out' or 'override' a DR event if the event comes at time when the reduction in end-use services is not desirable. Therefore, Auto-DR is not handing over total control of the equipment or the facility to the utility but simply allowing the utility to pass on grid related information which then triggers facility defined and programmed strategies if convenient to the facility. From 2003 through 2006 Lawrence Berkeley National Laboratory (LBNL) and the Demand Response Research Center (DRRC) developed and tested a series of demand response automation communications technologies known as Automated Demand Response (Auto-DR). In 2007, LBNL worked with three investor-owned utilities to commercialize and implement Auto-DR programs in their territories. This paper summarizes the history of technology development for Auto-DR, and describes the DR technologies and control strategies utilized at many of the facilities. It outlines early experience in commercializing Auto-DR systems within PG&E DR programs, including the steps to configure the automation technology. The paper also describes the DR sheds derived using three different baseline methodologies. Emphasis is given to the lessons learned from installation and commissioning of Auto-DR systems, with a detailed description of the technical coordination roles and responsibilities, and costs.

  4. World Oil: Market or Mayhem?

    E-Print Network [OSTI]

    Smith, James L.

    2008-01-01T23:59:59.000Z

    The world oil market is regarded by many as a puzzle. Why are oil prices so volatile? What is OPEC and what does OPEC do? Where are oil prices headed in the long run? Is “peak oil” a genuine concern? Why did oil prices ...

  5. Oil products distribution in Iran: a planning approach

    SciTech Connect (OSTI)

    Abrishami, H.

    1986-01-01T23:59:59.000Z

    The significance of this study is that it examines the functions of the most important element in the public sector of the economy of Iran - the Ministry of Oil. Oil is the main source of Iran's foreign earnings and the commodity most crucial to the country's economy as its prime export. Furthermore, it plays a vital role in meeting domestic energy demands. The distribution of oil products affects, on the one hand, households, small businesses, and larger industries while, on the other, it affects the allocation, in general of other national resources. Accordingly, the effects of the Ministry of Oil's policies with regard to its production-distribution system cannot be overemphasized. The research entailed has elicited certain factors: The Ministry of Oil's present system suffers from a number of weaknesses in its production-distribution design. These deficiencies involved, among others, terminal location, number of terminals, assignment of terminals to customers, substitution of other major sources of energy for major oil products, the middle distillates problem, and an outmoded distribution method and techniques. This dissertation addresses alternatives that will eliminate faults in the present system. The approach and conclusions of this research have the potential of application to any type of industry in Iran - oil or otherwise, whether in the private or public sector - that has a similar intricate distribution-system design subject to similar variables.

  6. Senior Center Network Redesign Under Demand Uncertainty

    E-Print Network [OSTI]

    Schaefer, Andrew

    Senior Center Network Redesign Under Demand Uncertainty Osman Y. ¨Ozaltin Department of Industrial of Massachusetts Boston, Boston, MA 02125-3393, USA, michael.johnson@umb.edu Andrew J. Schaefer Department. In response, we propose a two-echelon network of senior centers. We for- mulate a two-stage stochastic

  7. PUBLISH ON DEMAND Recasting the Textbook

    E-Print Network [OSTI]

    Das, Rhiju

    of history helped students evaluate the sources of information and better understand the perspectives from which history is written? WHAT WE SET OUT TO DO We recast the history textbook as an edited on- demand- source documents and interactive technology. WHAT WE FOUND High school students accessed our database

  8. Energy Demand (released in AEO2010)

    Reports and Publications (EIA)

    2010-01-01T23:59:59.000Z

    Growth in U.S. energy use is linked to population growth through increases in demand for housing, commercial floorspace, transportation, manufacturing, and services. This affects not only the level of energy use, but also the mix of fuels and consumption by sector.

  9. MTBE demand as a oxygenated fuel additive

    SciTech Connect (OSTI)

    NONE

    1996-10-01T23:59:59.000Z

    The MTBE markets are in the state of flux. In the U.S. the demand has reached a plateau while in other parts of the world, it is increasing. The various factors why MTBE is experiencing a global shift will be examined and future volumes projected.

  10. INVENTORY MANAGEMENT WITH PARTIALLY OBSERVED NONSTATIONARY DEMAND

    E-Print Network [OSTI]

    Ludkovski, Mike

    INVENTORY MANAGEMENT WITH PARTIALLY OBSERVED NONSTATIONARY DEMAND ERHAN BAYRAKTAR AND MICHAEL LUDKOVSKI Abstract. We consider a continuous-time model for inventory management with Markov mod- ulated non inventory level. We then solve this equivalent formulation and directly characterize an optimal inventory

  11. Global Climate Change and Demand for Energy

    E-Print Network [OSTI]

    Subramanian, Venkat

    -CARES) Washington University in St. Louis #12;9 Jun ­ Jul ­ Aug Temperature Anomaly Distribution Frequency of air and water temperatures Losses of ice from Greenland and Antarctica Sea-level rise Energy demands 169 390 327 90 16 H2O, CO2, O3 Earth receives visible light from hot Sun and Earth radiates to space

  12. SHORT-RUN MONEY DEMAND Laurence Ball

    E-Print Network [OSTI]

    Niebur, Ernst

    SHORT-RUN MONEY DEMAND Laurence Ball Johns Hopkins University August 2002 I am grateful with Goldfeld's partial adjustment model. A key innovation is the choice of the interest rate in the money on "near monies" -- close substitutes for M1 such as savings accounts and money market mutual funds

  13. Energy technologies and their impact on demand

    SciTech Connect (OSTI)

    Drucker, H.

    1995-06-01T23:59:59.000Z

    Despite the uncertainties, energy demand forecasts must be made to guide government policies and public and private-sector capital investment programs. Three principles can be identified in considering long-term energy prospects. First energy demand will continue to grow, driven by population growth, economic development, and the current low per capita energy consumption in developing countries. Second, energy technology advancements alone will not solve the problem. Energy-efficient technologies, renewable resource technologies, and advanced electric power technologies will all play a major role but will not be able to keep up with the growth in world energy demand. Third, environmental concerns will limit the energy technology choices. Increasing concern for environmental protection around the world will restrict primarily large, centralized energy supply facilities. The conclusion is that energy system diversity is the only solution. The energy system must be planned with consideration of both supply and demand technologies, must not rely on a single source of energy, must take advantage of all available technologies that are specially suited to unique local conditions, must be built with long-term perspectives, and must be able to adapt to change.

  14. Market and Policy Barriers for Demand Response Providing Ancillary Services in U.S. Markets

    E-Print Network [OSTI]

    Cappers, Peter

    2014-01-01T23:59:59.000Z

    Wholesale Electricity Demand Response Program Comparison,J. (2009) Open Automated Demand Response Communicationsin Demand Response for Wholesale Ancillary Services.

  15. Oil-field equipment in Romania. Export trade information

    SciTech Connect (OSTI)

    Tinis, R.

    1991-09-01T23:59:59.000Z

    The Industry Sector Analyses (I.S.A.) for oil field equipment contains statistical and narrative information on projected market demand, end-users, receptivity of Romanian consumers to U.S. products, the competitive situation - Romanian production, total import market, U.S. market position, foreign competition, and competitive factors, and market access - Romanian tariffs, non-tariff barriers, standards, taxes and distribution channels. The I.S.A. provides the United States industry with meaningful information regarding the Romanian market for oil field equipment.

  16. Oil and Gas (Indiana)

    Broader source: Energy.gov [DOE]

    This division of the Indiana Department of Natural Resources provides information on the regulation of oil and gas exploration, wells and well spacings, drilling, plugging and abandonment, and...

  17. Solar in the Real World: Tour of Solar Homes Begins in October...

    Broader source: Energy.gov (indexed) [DOE]

    Solar in the Real World: Tour of Solar Homes Begins in October Solar in the Real World: Tour of Solar Homes Begins in October September 28, 2009 - 12:26pm Addthis John Lippert The...

  18. Memo to Skip Laitner of EPA: initial comments on "The internet begins with coal"

    E-Print Network [OSTI]

    Koomey, Jonathan G.

    2008-01-01T23:59:59.000Z

    The Internet Begins with Coal: A Preliminary Exploration ofMark P. Mills. 1999. "Dig more coal—the PCs are coming." Inon "The Internet Begins with Coal" cc: Mark P. Mills, Rob

  19. Climate, extreme heat, and electricity demand in California

    E-Print Network [OSTI]

    Miller, N.L.

    2008-01-01T23:59:59.000Z

    demand responses to climate change: Methodology and application to the Commonwealth of Massachusetts.

  20. Price-responsive demand management for a smart grid world

    SciTech Connect (OSTI)

    Chao, Hung-po

    2010-01-15T23:59:59.000Z

    Price-responsive demand is essential for the success of a smart grid. However, existing demand-response programs run the risk of causing inefficient price formation. This problem can be solved if each retail customer could establish a contract-based baseline through demand subscription before joining a demand-response program. (author)

  1. AUTOMATION OF ENERGY DEMAND FORECASTING Sanzad Siddique, B.S.

    E-Print Network [OSTI]

    Povinelli, Richard J.

    AUTOMATION OF ENERGY DEMAND FORECASTING by Sanzad Siddique, B.S. A Thesis submitted to the Faculty OF ENERGY DEMAND FORECASTING Sanzad Siddique, B.S. Marquette University, 2013 Automation of energy demand of the energy demand forecasting are achieved by integrating nonlinear transformations within the models

  2. Univariate Modeling and Forecasting of Monthly Energy Demand Time Series

    E-Print Network [OSTI]

    Abdel-Aal, Radwan E.

    Univariate Modeling and Forecasting of Monthly Energy Demand Time Series Using Abductive and Neural demand time series based only on data for six years to forecast the demand for the seventh year. Both networks, Neural networks, Modeling, Forecasting, Energy demand, Time series forecasting, Power system

  3. California's Summer 2004 Electricity Supply and Demand Outlook

    E-Print Network [OSTI]

    forecast for 2004 is higher to reflect increased demand from more robust economic growth. In this newCALIFORNIA ENERGY COMMISSION California's Summer 2004 Electricity Supply and Demand Outlook Supply and Demand Outlook The California Energy Commission staff's electricity supply and demand outlook

  4. CE 469 / 569 TRAVEL DEMAND MODELING Spring 2006 Course Syllabus

    E-Print Network [OSTI]

    Hickman, Mark

    of travel demand data, and should apply these methods to estimating and to forecasting travel demand these to practical modeling scenarios. The student should also use existing computer tools to forecast travel demand1 CE 469 / 569 TRAVEL DEMAND MODELING Spring 2006 Course Syllabus Catalog Detailed investigation

  5. A Simulation Study of Demand Responsive Transit System Design

    E-Print Network [OSTI]

    Dessouky, Maged

    A Simulation Study of Demand Responsive Transit System Design Luca Quadrifoglio, Maged M. Dessouky changed the landscape for demand responsive transit systems. First, the demand for this type of transit experiencing increased usage for demand responsive transit systems. The National Transit Summaries and Trends

  6. The Role of Demand Response Policy Forum Series

    E-Print Network [OSTI]

    California at Davis, University of

    The Role of Demand Response Policy Forum Series Beyond 33 Percent: California's Renewable Future and Demand Response #12;Historic focus on Seasonal Grid Stress PG&E Demand Bid Test Day 0 2000 4000 6000 8000 Communication Latency #12;Bottom Up Review of End-Use Loads for Demand Response 5 Commercial Residential

  7. Opportunities, Barriers and Actions for Industrial Demand Response in California

    E-Print Network [OSTI]

    McKane, Aimee T.

    2009-01-01T23:59:59.000Z

    industrial demand response (DR) with energy efficiency (EE) to most effectively use electricity and natural gas

  8. Flexible Demand Management under Time-Varying Prices

    E-Print Network [OSTI]

    Liang, Yong

    2012-01-01T23:59:59.000Z

    planning, multi-periods procurement, optimal stopping problem, the demand management for the Smart Grid

  9. Proceedings of the Chinese-American symposium on energy markets and the future of energy demand

    SciTech Connect (OSTI)

    Meyers, S. (ed.)

    1988-11-01T23:59:59.000Z

    The Symposium was organized by the Energy Research Institute of the State Economic Commission of China, and the Lawrence Berkeley Laboratory and Johns Hopkins University from the United States. It was held at the Johns Hopkins University Nanjing Center in late June 1988. It was attended by about 15 Chinese and an equal number of US experts on various topics related to energy demand and supply. Each presenter is one of the best observers of the energy situation in their field. A Chinese and US speaker presented papers on each topic. In all, about 30 papers were presented over a period of two and one half days. Each paper was translated into English and Chinese. The Chinese papers provide an excellent overview of the emerging energy demand and supply situation in China and the obstacles the Chinese planners face in managing the expected increase in demand for energy. These are matched by papers that discuss the energy situation in the US and worldwide, and the implications of the changes in the world energy situation on both countries. The papers in Part 1 provide historical background and discuss future directions. The papers in Part 2 focus on the historical development of energy planning and policy in each country and the methodologies and tools used for projecting energy demand and supply. The papers in Part 3 examine the pattern of energy demand, the forces driving demand, and opportunities for energy conservation in each of the major sectors in China and the US. The papers in Part 4 deal with the outlook for global and Pacific region energy markets and the development of the oil and natural gas sector in China.

  10. Sixth Northwest Conservation and Electric Power Plan Appendix C: Demand Forecast

    E-Print Network [OSTI]

    Sixth Northwest Conservation and Electric Power Plan Appendix C: Demand Forecast Energy Demand................................................................................................................................. 1 Demand Forecast Methodology.................................................................................................. 3 New Demand Forecasting Model for the Sixth Plan

  11. Opportunities for Energy Efficiency and Automated Demand Response in Industrial Refrigerated Warehouses in California

    E-Print Network [OSTI]

    Lekov, Alex

    2009-01-01T23:59:59.000Z

    in significant energy and demand savings for refrigeratedbe modified to reduce energy demand during demand responsein refrigerated warehouse energy demand if they are not

  12. Model documentation report: Commercial Sector Demand Module of the National Energy Modeling System

    SciTech Connect (OSTI)

    NONE

    1998-01-01T23:59:59.000Z

    This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components. The NEMS Commercial Sector Demand Module is a simulation tool based upon economic and engineering relationships that models commercial sector energy demands at the nine Census Division level of detail for eleven distinct categories of commercial buildings. Commercial equipment selections are performed for the major fuels of electricity, natural gas, and distillate fuel, for the major services of space heating, space cooling, water heating, ventilation, cooking, refrigeration, and lighting. The algorithm also models demand for the minor fuels of residual oil, liquefied petroleum gas, steam coal, motor gasoline, and kerosene, the renewable fuel sources of wood and municipal solid waste, and the minor services of office equipment. Section 2 of this report discusses the purpose of the model, detailing its objectives, primary input and output quantities, and the relationship of the Commercial Module to the other modules of the NEMS system. Section 3 of the report describes the rationale behind the model design, providing insights into further assumptions utilized in the model development process to this point. Section 3 also reviews alternative commercial sector modeling methodologies drawn from existing literature, providing a comparison to the chosen approach. Section 4 details the model structure, using graphics and text to illustrate model flows and key computations.

  13. Essays on Macroeconomics and Oil

    E-Print Network [OSTI]

    CAKIR, NIDA

    2013-01-01T23:59:59.000Z

    reserves. In the data, crude oil reserve addi- tions consistForce and Proven Reserves in the Venezuelan Oil Industry .such as crude oil production, proved reserves, new reserves,

  14. Oil and Gas Production (Missouri)

    Broader source: Energy.gov [DOE]

    A State Oil and Gas Council regulates and oversees oil and gas production in Missouri, and conducts a biennial review of relevant rules and regulations. The waste of oil and gas is prohibited. This...

  15. Evidence of a Shift in the Short-Run Price Elasticity of Gasoline Demand

    E-Print Network [OSTI]

    Hughes, Jonathan; Knittel, Christopher R; Sperling, Dan

    2007-01-01T23:59:59.000Z

    Monthly, World Crude Oil Production. U.S. Department of2006). The monthly crude oil production for Venezuela, Iraqcrude oil quality and crude oil production disruptions. Here

  16. Rice Supply, Demand and Related Government Programs.

    E-Print Network [OSTI]

    Kincannon, John A.

    1957-01-01T23:59:59.000Z

    2 percent of the world's rice, but is the third largest exporter of rice. The United States depends on export markets to absorb roughly half of the domestic production of rice: domestic disappearance accounts for only about half of total production.... The ratio of total disappearance to total supply indicates that rice stocks were disposed of through domestic and export channels in proper relation to total production until the 1954-55 crops. Surplus rice stocks beginning with the 1954 crop resulted from...

  17. Oil shale technology

    SciTech Connect (OSTI)

    Lee, S. (Akron Univ., OH (United States). Dept. of Chemical Engineering)

    1991-01-01T23:59:59.000Z

    Oil shale is undoubtedly an excellent energy source that has great abundance and world-wide distribution. Oil shale industries have seen ups and downs over more than 100 years, depending on the availability and price of conventional petroleum crudes. Market forces as well as environmental factors will greatly affect the interest in development of oil shale. Besides competing with conventional crude oil and natural gas, shale oil will have to compete favorably with coal-derived fuels for similar markets. Crude shale oil is obtained from oil shale by a relatively simple process called retorting. However, the process economics are greatly affected by the thermal efficiencies, the richness of shale, the mass transfer effectiveness, the conversion efficiency, the design of retort, the environmental post-treatment, etc. A great many process ideas and patents related to the oil shale pyrolysis have been developed; however, relatively few field and engineering data have been published. Due to the vast heterogeneity of oil shale and to the complexities of physicochemical process mechanisms, scientific or technological generalization of oil shale retorting is difficult to achieve. Dwindling supplied of worldwide petroleum reserves, as well as the unprecedented appetite of mankind for clean liquid fuel, has made the public concern for future energy market grow rapidly. the clean coal technology and the alternate fuel technology are currently of great significance not only to policy makers, but also to process and chemical researchers. In this book, efforts have been made to make a comprehensive text for the science and technology of oil shale utilization. Therefore, subjects dealing with the terminological definitions, geology and petrology, chemistry, characterization, process engineering, mathematical modeling, chemical reaction engineering, experimental methods, and statistical experimental design, etc. are covered in detail.

  18. IMPACT Vol. 5 No. 1 | Spring 2010 CLeAn eneRGy DeMAnDS

    E-Print Network [OSTI]

    Hill, Wendell T.

    IMPACT Vol. 5 No. 1 | Spring 2010 CLeAn eneRGy DeMAnDS: SCienCe, innovATion, PUBLiC PoLiCy Maryland on foreign oil and become the world leader in tomorrow's clean-energy economy," says Steve Fetter, a former researchers shape the new energy economy #12;impact overview impact overview EnErgy rEsEarcH EnErgy r

  19. Oil, power, and principle: Iran`s oil nationalizaation and its aftermath

    SciTech Connect (OSTI)

    Elm, M.

    1992-12-31T23:59:59.000Z

    This book provides a concise and well documented analysis of events leading to Iran`s oil nationalization and its aftermath. It also helps to understand Iran`s 1979 revolution and its current situation. The book, at 413 pages, is divided into twenty-two chapters, beginning with a review of the historical background of Iran`s oil industry from the late 19th century throught the mid-1900s. The book interlaces energy, economic, and political factors of not only Iran, but other important players such as the United States and Great Britian. Also included is a well-documented analysis of the Anglo-American coup to overthrow the Mossadeq government, which helps the reader understand why there is so much anti-U.S. sentiment in Iran.

  20. Demand management : a cross-industry analysis of supply-demand planning

    E-Print Network [OSTI]

    Tan, Peng Kuan

    2006-01-01T23:59:59.000Z

    Globalization increases product variety and shortens product life cycles. These lead to an increase in demand uncertainty and variability. Outsourcing to low-cost countries increases supply lead-time and supply uncertainty ...

  1. Marathon Oil Company

    E-Print Network [OSTI]

    unknown authors

    Marine oil shale from the Shenglihe oil shale section in the Qiangtang basin, northern Tibet, China, was dated by the Re-Os technique using Carius Tube digestion, Os distillation, Re extraction by acetone and ICP-MS measure-ment. An isochron was obtained giving an age of 101±24 Ma with an initial

  2. Synthetic aircraft turbine oil

    SciTech Connect (OSTI)

    Yaffe, R.

    1982-03-16T23:59:59.000Z

    Synthetic lubricating oil composition having improved oxidation stability comprising a major portion of an aliphatic ester base oil having lubricating properties, formed by the reaction of pentaerythritol and an organic monocarboxylic acid and containing a phenylnaphthylamine, a dialkyldiphenylamine, a polyhydroxy anthraquinone, a hydrocarbyl phosphate ester and a dialkyldisulfide.

  3. RCRA, superfund and EPCRA hotline training module. Introduction to: Used oil (40 cfr part 266, subparts e, and part 279) updated July 1996

    SciTech Connect (OSTI)

    NONE

    1996-07-01T23:59:59.000Z

    The module reviews the various regulatory requirements associated with used oil management. The goal of the training module is to provide an overview of the used oil management program and to explain the different regulatory scenarios that can apply to used oil. The module begins by briefly tracing the developmental history of the regulations concerning used oil. A summary of the present used oil management program, as well as a brief summary of the former program, provides a basic comparison and introduction to both programs.

  4. Chinaâs Oil Diplomacy with Russia.

    E-Print Network [OSTI]

    Chao, Jiun-chuan

    2011-01-01T23:59:59.000Z

    ??In Chinaâs view, it is necessary to get crude oil and oil pipeline. Under Russia and China strategic partnership, China tries to obtain âlong term… (more)

  5. OIL SHALE DEVELOPMENT IN CHINA

    E-Print Network [OSTI]

    J. Qian; J. Wang; S. Li

    In this paper history, current status and forecast of Chinese oil shale indus-try, as well as the characteristics of some typical Chinese oil shales are given.

  6. Peak oil: diverging discursive pipelines.

    E-Print Network [OSTI]

    Doctor, Jeff

    2012-01-01T23:59:59.000Z

    ??Peak oil is the claimed moment in time when global oil production reaches its maximum rate and henceforth forever declines. It is highly controversial as… (more)

  7. Petroleum Oil | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Petroleum Oil Petroleum Oil The production of energy feedstock and fuels requires substantial water input. Not only do biofuel feedstocks like corn, switchgrass and agricultural...

  8. Balancing oil and environment... responsibly.

    SciTech Connect (OSTI)

    Weimer, Walter C.; Teske, Lisa

    2007-01-25T23:59:59.000Z

    Balancing Oil and Environment…Responsibly As the price of oil continues to skyrocket and global oil production nears the brink, pursuing unconventional oil supplies, such as oil shale, oil sands, heavy oils, and oils from biomass and coal has become increasingly attractive. Of particular significance to the American way is that our continent has significant quantities of these resources. Tapping into these new resources, however, requires cutting-edge technologies for identification, production, processing and environmental management. This job needs a super hero or two for a job of this size and proportion…

  9. Essays on Macroeconomics and Oil

    E-Print Network [OSTI]

    CAKIR, NIDA

    2013-01-01T23:59:59.000Z

    Oil Production in Venezuela and Mexico . . . . . . . . . .and Productivity in Venezuela and Mexico . . . . . . . . OilEllner, ”Organized Labor in Venezuela 1958-1991: Behavior

  10. System Demand-Side Management: Regional results

    SciTech Connect (OSTI)

    Englin, J.E.; Sands, R.D.; De Steese, J.G.; Marsh, S.J.

    1990-05-01T23:59:59.000Z

    To improve the Bonneville Power Administration's (Bonneville's) ability to analyze the value and impacts of demand-side programs, Pacific Northwest Laboratory (PNL) developed and implemented the System Demand-Side Management (SDSM) model, a microcomputer-based model of the Pacific Northwest Public Power system. This document outlines the development and application of the SDSM model, which is an hourly model. Hourly analysis makes it possible to examine the change in marginal revenues and marginal costs that accrue from the movement of energy consumption from daytime to nighttime. It also allows a more insightful analysis of programs such as water heater control in the context of hydroelectric-based generation system. 7 refs., 10 figs., 10 tabs.

  11. Autoregressive Time Series Forecasting of Computational Demand

    E-Print Network [OSTI]

    Sandholm, Thomas

    2007-01-01T23:59:59.000Z

    We study the predictive power of autoregressive moving average models when forecasting demand in two shared computational networks, PlanetLab and Tycoon. Demand in these networks is very volatile, and predictive techniques to plan usage in advance can improve the performance obtained drastically. Our key finding is that a random walk predictor performs best for one-step-ahead forecasts, whereas ARIMA(1,1,0) and adaptive exponential smoothing models perform better for two and three-step-ahead forecasts. A Monte Carlo bootstrap test is proposed to evaluate the continuous prediction performance of different models with arbitrary confidence and statistical significance levels. Although the prediction results differ between the Tycoon and PlanetLab networks, we observe very similar overall statistical properties, such as volatility dynamics.

  12. Home Network Technologies and Automating Demand Response

    SciTech Connect (OSTI)

    McParland, Charles

    2009-12-01T23:59:59.000Z

    Over the past several years, interest in large-scale control of peak energy demand and total consumption has increased. While motivated by a number of factors, this interest has primarily been spurred on the demand side by the increasing cost of energy and, on the supply side by the limited ability of utilities to build sufficient electricity generation capacity to meet unrestrained future demand. To address peak electricity use Demand Response (DR) systems are being proposed to motivate reductions in electricity use through the use of price incentives. DR systems are also be design to shift or curtail energy demand at critical times when the generation, transmission, and distribution systems (i.e. the 'grid') are threatened with instabilities. To be effectively deployed on a large-scale, these proposed DR systems need to be automated. Automation will require robust and efficient data communications infrastructures across geographically dispersed markets. The present availability of widespread Internet connectivity and inexpensive, reliable computing hardware combined with the growing confidence in the capabilities of distributed, application-level communications protocols suggests that now is the time for designing and deploying practical systems. Centralized computer systems that are capable of providing continuous signals to automate customers reduction of power demand, are known as Demand Response Automation Servers (DRAS). The deployment of prototype DRAS systems has already begun - with most initial deployments targeting large commercial and industrial (C & I) customers. An examination of the current overall energy consumption by economic sector shows that the C & I market is responsible for roughly half of all energy consumption in the US. On a per customer basis, large C & I customers clearly have the most to offer - and to gain - by participating in DR programs to reduce peak demand. And, by concentrating on a small number of relatively sophisticated energy consumers, it has been possible to improve the DR 'state of the art' with a manageable commitment of technical resources on both the utility and consumer side. Although numerous C & I DR applications of a DRAS infrastructure are still in either prototype or early production phases, these early attempts at automating DR have been notably successful for both utilities and C & I customers. Several factors have strongly contributed to this success and will be discussed below. These successes have motivated utilities and regulators to look closely at how DR programs can be expanded to encompass the remaining (roughly) half of the state's energy load - the light commercial and, in numerical terms, the more important residential customer market. This survey examines technical issues facing the implementation of automated DR in the residential environment. In particular, we will look at the potential role of home automation networks in implementing wide-scale DR systems that communicate directly to individual residences.

  13. What is a High Electric Demand Day?

    Broader source: Energy.gov [DOE]

    This presentation by T. McNevin of the New Jersey Bureau of Air Quality Planning was part of the July 2008 Webcast sponsored by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Weatherization and Intergovernmental Program Clean Energy and Air Quality Integration Initiative that was titled Role of Energy Efficiency and Renewable Energy in Improving Air Quality and Addressing Greenhouse Gas Reduction Goals on High Electric Demand Days.

  14. A hybrid inventory management system respondingto regular demand and surge demand

    SciTech Connect (OSTI)

    Mohammad S. Roni; Mingzhou Jin; Sandra D. Eksioglu

    2014-06-01T23:59:59.000Z

    This paper proposes a hybrid policy for a stochastic inventory system facing regular demand and surge demand. The combination of two different demand patterns can be observed in many areas, such as healthcare inventory and humanitarian supply chain management. The surge demand has a lower arrival rate but higher demand volume per arrival. The solution approach proposed in this paper incorporates the level crossing method and mixed integer programming technique to optimize the hybrid inventory policy with both regular orders and emergency orders. The level crossing method is applied to obtain the equilibrium distributions of inventory levels under a given policy. The model is further transformed into a mixed integer program to identify an optimal hybrid policy. A sensitivity analysis is conducted to investigate the impact of parameters on the optimal inventory policy and minimum cost. Numerical results clearly show the benefit of using the proposed hybrid inventory model. The model and solution approach could help healthcare providers or humanitarian logistics providers in managing their emergency supplies in responding to surge demands.

  15. Oil shale ash-layer thickness and char combustion kinetics

    SciTech Connect (OSTI)

    Aldis, D.F.; Singleton, M.F.; Watkins, B.E.; Thorsness, C.B.; Cena, R.J.

    1992-04-15T23:59:59.000Z

    A Hot-Recycled-Solids (HRS) oil shale retort is being studied at Lawrence Livermore National Laboratory. In the HRS process, raw shale is heated by mixing it with burnt retorted shale. Retorted shale is oil shale which has been heated in an oxygen deficient atmosphere to pyrolyze organic carbon, as kerogen into oil, gas, and a nonvolatile carbon rich residue, char. In the HRS retort process, the char in the spent shale is subsequently exposed to an oxygen environment. Some of the char, starting on the outer surface of the shale particle, is burned, liberating heat. In the HRS retort, the endothermic pyrolysis step is supported by heat from the exothermic char combustion step. The rate of char combustion is controlled by three resistances; the resistance of oxygen mass transfer through the gas film surrounding the solid particle, resistance to mass transfer through a ash layer which forms on the outside of the solid particles as the char is oxidized and the resistance due to the intrinsic chemical reaction rate of char and oxygen. In order to estimate the rate of combustion of the char in a typical oil shale particle, each of these resistances must be accurately estimated. We begin by modeling the influence of ash layer thickness on the over all combustion rate of oil shale char. We then present our experimental measurements of the ash layer thickness of oil shale which has been processed in the HRS retort.

  16. Automated Demand Response: The Missing Link in the Electricity Value Chain

    SciTech Connect (OSTI)

    McKane, Aimee; Rhyne, Ivin; Lekov, Alex; Thompson, Lisa; Piette, MaryAnn

    2009-08-01T23:59:59.000Z

    In 2006, the Public Interest Energy Research Program (PIER) Demand Response Research Center (DRRC) at Lawrence Berkeley National Laboratory initiated research into Automated Demand Response (OpenADR) applications in California industry. The goal is to improve electric grid reliability and lower electricity use during periods of peak demand. The purpose of this research is to begin to define the relationship among a portfolio of actions that industrial facilities can undertake relative to their electricity use. This ?electricity value chain? defines energy management and demand response (DR) at six levels of service, distinguished by the magnitude, type, and rapidity of response. One element in the electricity supply chain is OpenADR, an open-standards based communications system to send signals to customers to allow them to manage their electric demand in response to supply conditions, such as prices or reliability, through a set of standard, open communications. Initial DRRC research suggests that industrial facilities that have undertaken energy efficiency measures are probably more, not less, likely to initiate other actions within this value chain such as daily load management and demand response. Moreover, OpenADR appears to afford some facilities the opportunity to develop the supporting control structure and to"demo" potential reductions in energy use that can later be applied to either more effective load management or a permanent reduction in use via energy efficiency. Under the right conditions, some types of industrial facilities can shift or shed loads, without any, or minimal disruption to operations, to protect their energy supply reliability and to take advantage of financial incentives.1 In 2007 and 2008, 35 industrial facilities agreed to implement OpenADR, representing a total capacity of nearly 40 MW. This paper describes how integrated or centralized demand management and system-level network controls are linked to OpenADR systems. Case studies of refrigerated warehouses and wastewater treatment facilities are used to illustrate OpenADR load reduction potential. Typical shed and shift strategies include: turning off or operating compressors, aerator blowers and pumps at reduced capacity, increasing temperature set-points or pre-cooling cold storage areas and over-oxygenating stored wastewater prior to a DR event. This study concludes that understanding industrial end-use processes and control capabilities is a key to support reduced service during DR events and these capabilities, if DR enabled, hold significant promise in reducing the electricity demand of the industrial sector during utility peak periods.

  17. Automated Demand Response: The Missing Link in the Electricity Value Chain

    SciTech Connect (OSTI)

    McKane, Aimee; Rhyne, Ivin; Piette, Mary Ann; Thompson, Lisa; Lekov, Alex

    2008-08-01T23:59:59.000Z

    In 2006, the Public Interest Energy Research Program (PIER) Demand Response Research Center (DRRC) at Lawrence Berkeley National Laboratory initiated research into Automated Demand Response (OpenADR) applications in California industry. The goal is to improve electric grid reliability and lower electricity use during periods of peak demand. The purpose of this research is to begin to define the relationship among a portfolio of actions that industrial facilities can undertake relative to their electricity use. This 'electricity value chain' defines energy management and demand response (DR) at six levels of service, distinguished by the magnitude, type, and rapidity of response. One element in the electricity supply chain is OpenADR, an open-standards based communications system to send signals to customers to allow them to manage their electric demand in response to supply conditions, such as prices or reliability, through a set of standard, open communications. Initial DRRC research suggests that industrial facilities that have undertaken energy efficiency measures are probably more, not less, likely to initiate other actions within this value chain such as daily load management and demand response. Moreover, OpenADR appears to afford some facilities the opportunity to develop the supporting control structure and to 'demo' potential reductions in energy use that can later be applied to either more effective load management or a permanent reduction in use via energy efficiency. Under the right conditions, some types of industrial facilities can shift or shed loads, without any, or minimal disruption to operations, to protect their energy supply reliability and to take advantage of financial incentives. In 2007 and 2008, 35 industrial facilities agreed to implement OpenADR, representing a total capacity of nearly 40 MW. This paper describes how integrated or centralized demand management and system-level network controls are linked to OpenADR systems. Case studies of refrigerated warehouses and wastewater treatment facilities are used to illustrate OpenADR load reduction potential. Typical shed and shift strategies include: turning off or operating compressors, aerator blowers and pumps at reduced capacity, increasing temperature set-points or pre-cooling cold storage areas and over-oxygenating stored wastewater prior to a DR event. This study concludes that understanding industrial end-use processes and control capabilities is a key to support reduced service during DR events and these capabilities, if DR enabled, hold significant promise in reducing the electricity demand of the industrial sector during utility peak periods.

  18. Impacts of Climate Change on Energy Consumption and Peak Demand in Buildings: A Detailed Regional Approach

    SciTech Connect (OSTI)

    Dirks, James A.; Gorrissen, Willy J.; Hathaway, John E.; Skorski, Daniel C.; Scott, Michael J.; Pulsipher, Trenton C.; Huang, Maoyi; Liu, Ying; Rice, Jennie S.

    2015-01-01T23:59:59.000Z

    This paper presents the results of numerous commercial and residential building simulations, with the purpose of examining the impact of climate change on peak and annual building energy consumption over the portion of the Eastern Interconnection (EIC) located in the United States. The climate change scenario considered (IPCC A2 scenario as downscaled from the CASCaDE data set) has changes in mean climate characteristics as well as changes in the frequency and duration of intense weather events. This investigation examines building energy demand for three annual periods representative of climate trends in the CASCaDE data set at the beginning, middle, and end of the century--2004, 2052, and 2089. Simulations were performed using the Building ENergy Demand (BEND) model which is a detailed simulation platform built around EnergyPlus. BEND was developed in collaboration with the Platform for Regional Integrated Modeling and Analysis (PRIMA), a modeling framework designed to simulate the complex interactions among climate, energy, water, and land at decision-relevant spatial scales. Over 26,000 building configurations of different types, sizes, vintages, and, characteristics which represent the population of buildings within the EIC, are modeled across the 3 EIC time zones using the future climate from 100 locations within the target region, resulting in nearly 180,000 spatially relevant simulated demand profiles for each of the 3 years. In this study, the building stock characteristics are held constant based on the 2005 building stock in order to isolate and present results that highlight the impact of the climate signal on commercial and residential energy demand. Results of this analysis compare well with other analyses at their finest level of specificity. This approach, however, provides a heretofore unprecedented level of specificity across multiple spectrums including spatial, temporal, and building characteristics. This capability enables the ability to perform detailed hourly impact studies of building adaptation and mitigation strategies on energy use and electricity peak demand within the context of the entire grid and economy.

  19. Selected Abstracts & Bibliography of International Oil Spill Research, through 1998

    E-Print Network [OSTI]

    Louisiana Applied Oil Spill Research & Development Program Electronic Bibliography

    1998-01-01T23:59:59.000Z

    Kuwait, Middle East, oil and gas fields, oil refinery, oil waste, oil well,Equipment Kuwait Oil Co. 1991. Mideast well fire, oil spillKuwait, Persian Gulf, Saudia Arabia, Oil spill, cleanup, oil spills, crude, oil spill incidents, oil spills-pipeline, warfare, oil skimmers, oil wells,

  20. A nuclear wind/solar oil-shale system for variable electricity and liquid fuels production

    SciTech Connect (OSTI)

    Forsberg, C. [Massachusetts Inst. of Technology, 77 Massachusetts Ave., Cambridge, MA 012139 (United States)

    2012-07-01T23:59:59.000Z

    The recoverable reserves of oil shale in the United States exceed the total quantity of oil produced to date worldwide. Oil shale contains no oil, rather it contains kerogen which when heated decomposes into oil, gases, and a carbon char. The energy required to heat the kerogen-containing rock to produce the oil is about a quarter of the energy value of the recovered products. If fossil fuels are burned to supply this energy, the greenhouse gas releases are large relative to producing gasoline and diesel from crude oil. The oil shale can be heated underground with steam from nuclear reactors leaving the carbon char underground - a form of carbon sequestration. Because the thermal conductivity of the oil shale is low, the heating process takes months to years. This process characteristic in a system where the reactor dominates the capital costs creates the option to operate the nuclear reactor at base load while providing variable electricity to meet peak electricity demand and heat for the shale oil at times of low electricity demand. This, in turn, may enable the large scale use of renewables such as wind and solar for electricity production because the base-load nuclear plants can provide lower-cost variable backup electricity. Nuclear shale oil may reduce the greenhouse gas releases from using gasoline and diesel in half relative to gasoline and diesel produced from conventional oil. The variable electricity replaces electricity that would have been produced by fossil plants. The carbon credits from replacing fossil fuels for variable electricity production, if assigned to shale oil production, results in a carbon footprint from burning gasoline or diesel from shale oil that may half that of conventional crude oil. The U.S. imports about 10 million barrels of oil per day at a cost of a billion dollars per day. It would require about 200 GW of high-temperature nuclear heat to recover this quantity of shale oil - about two-thirds the thermal output of existing nuclear reactors in the United States. With the added variable electricity production to enable renewables, additional nuclear capacity would be required. (authors)