Powered by Deep Web Technologies
Note: This page contains sample records for the topic "oil consumption growth" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Railroad fuel-oil consumption in 1928  

SciTech Connect

Data are presented, by districts, covering the consumption of fuel oil for various uses by railroads.

Redfield, A.H.

1930-01-01T23:59:59.000Z

2

Fact Sheet: Gas Prices and Oil Consumption Would Increase Without...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fact Sheet: Gas Prices and Oil Consumption Would Increase Without Biofuels Fact Sheet: Gas Prices and Oil Consumption Would Increase Without Biofuels Secretary of Energy Samuel W....

3

Consumption  

E-Print Network (OSTI)

www.eia.gov Annual Energy Outlook 2013 projections to 2040 • Growth in energy production outstrips consumption growth • Crude oil production rises sharply over the next decade • Motor gasoline consumption reflects more stringent fuel economy standards • The U.S. becomes a net exporter of natural gas in the early 2020s • U.S. energy-related carbon dioxide emissions remain below their 2005 level through 2040

Adam Sieminski Administrator; Adam Sieminski; Adam Sieminski; Adam Sieminski; Adam Sieminski

2013-01-01T23:59:59.000Z

4

Oil consumption, pollutant emission, oil proce volatility and economic activities in selected Asian Developing Economies.  

E-Print Network (OSTI)

??It is now well established in the literature that oil consumption, oil price shocks, and oil price volatility may impact the economic activities negatively. Studies… (more)

Rafiq, Shuddhasattwa

2009-01-01T23:59:59.000Z

5

Oil Dependencies and Peak Oil's Effects on Oil Consumption.  

E-Print Network (OSTI)

?? During the year of 2007, the world has experienced historically high oil prices both in nominal and in real terms, which has reopened discussions… (more)

Tekin, Josef

2007-01-01T23:59:59.000Z

6

Impact of 1980 scheduled capacity additions on electric-utility oil consumption  

SciTech Connect

The electric-utility sector currently consumes approximately 8% of the total oil used in the Nation. This oil represented about 15% of total fuel consumed by electric utilities in 1979. Two important factors that affect the level of utility oil consumption in 1980 are the substantial increase in coal-fired generating capacity and the uncertainty surrounding nuclear-plant licensing. With particular emphasis on these considerations, this report analyzes the potential for changes in electric-utility oil consumption in 1980 relative to the 1979 level. Plant conversions, oil to coal, for example, that may occur in 1980 are not considered in this analysis. Only the potential reduction in oil consumption resulting from new generating-capacity additions is analyzed. Changes in electric-utility oil consumption depend on, among other factors, regional-electricity-demand growth and generating-plant mix. Five cases are presented using various electricity-demand-growth rate assumptions, fuel-displacement strategies, and nuclear-plant-licensing assumptions. In general, it is likely that there will be a reduction in electric-utility oil consumption in 1980. Using the two reference cases of the report, this reduction is projected to amount to a 2 to 5% decrease from the 1979 oil-consumption level; 7% reduction is the largest reduction projected.

Gielecki, M.; Clark, G.; Roberts, B.

1980-08-01T23:59:59.000Z

7

Experimental study of lube oil characteristics in the PCV system and effects on engine oil consumption  

E-Print Network (OSTI)

Engine oil consumption is an important source of hydrocarbon and particulate emissions in modem automobile engines. Great efforts have been made by automotive manufacturers to minimize the impact of oil consumption on ...

Lopez, Oscar, 1980-

2004-01-01T23:59:59.000Z

8

Exploiting Domain Knowledge to Forecast Heating Oil Consumption  

Science Conference Proceedings (OSTI)

The GasDay laboratory at Marquette University provides forecasts of energy consumption. One such service is the Heating Oil Forecaster

George F. Corliss; Tsuginosuke Sakauchi; Steven R. Vitullo; Ronald H. Brown

2011-01-01T23:59:59.000Z

9

New Zealand Energy Data: Oil Consumption by Fuel and Sector ...  

Open Energy Info (EERE)

Oil Consumption by Fuel and Sector The New Zealand Ministry of Economic Development publishes energy data including many datasets related to oil and other...

10

Just oil? The distribution of environmental and social impacts of oil production and consumption  

E-Print Network (OSTI)

of bene?ts and costs of oil and to deeper global, economic,distribution of bene?ts and costs from oil. It is virtuallyboth the bene?ts and costs of oil production and consumption

O'Rourke, D; Connolly, S

2003-01-01T23:59:59.000Z

11

Annual World Oil Demand Growth  

Gasoline and Diesel Fuel Update (EIA)

6 6 Notes: Following relatively small increases of 1.3 million barrels per day in 1999 and 0.9 million barrels per day in 2000, EIA is estimating world demand may grow by 1.6 million barrels per day in 2001. Of this increase, about 3/5 comes from non-OECD countries, while U.S. oil demand growth represents more than half of the growth projected in OECD countries. Demand in Asia grew steadily during most of the 1990s, with 1991-1997 average growth per year at just above 0.8 million barrels per day. However, in 1998, demand dropped by 0.3 million barrels per day as a result of the Asian economic crisis that year. Since 1998, annual growth in oil demand has rebounded, but has not yet reached the average growth seen during 1991-1997. In the Former Soviet Union, oil demand plummeted during most of the

12

Heavy Oil Consumption Reduction Program (Quebec, Canada) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heavy Oil Consumption Reduction Program (Quebec, Canada) Heavy Oil Consumption Reduction Program (Quebec, Canada) Heavy Oil Consumption Reduction Program (Quebec, Canada) < Back Eligibility Commercial Agricultural Industrial Construction Savings Category Solar Buying & Making Electricity Maximum Rebate $5 million per site Program Info Funding Source Government of Quebec State Quebec Program Type Rebate Program Provider Agence de l'efficacité énergétique This program helps heavy oil consumers move toward sustainable development while improving their competitive position by reducing their consumption. Financial assistance is offered to carry out various analyses as well as implement energy efficient measures relating to heavy fuel oil or to switch to other forms of energy containing fewer pollutants, such as natural gas,

13

Major Corporate Fleets Align to Reduce Oil Consumption | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Major Corporate Fleets Align to Reduce Oil Consumption Major Corporate Fleets Align to Reduce Oil Consumption Major Corporate Fleets Align to Reduce Oil Consumption April 1, 2011 - 1:07pm Addthis President Obama announces the National Clean Fleets Partnership to help companies reduce fuel usage by incorporating electric vehicles, alternative fuels, and conservation techniques. Dennis A. Smith Director, National Clean Cities What does this project do? Cuts oil imports and consumption Helps businesses save money Increases the efficiency of large-scale fleets Reduces emissions Surrounded by cutting-edge vehicles, from all-electric trucks to hydraulic hybrids, President Obama today announced the National Clean Fleets Partnership, an initiative of the Department's Clean Cities program, at a UPS fleet facility in Landover, Maryland. This public-private partnership

14

Major Corporate Fleets Align to Reduce Oil Consumption | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Major Corporate Fleets Align to Reduce Oil Consumption Major Corporate Fleets Align to Reduce Oil Consumption Major Corporate Fleets Align to Reduce Oil Consumption April 1, 2011 - 1:07pm Addthis President Obama announces the National Clean Fleets Partnership to help companies reduce fuel usage by incorporating electric vehicles, alternative fuels, and conservation techniques. Dennis A. Smith Director, National Clean Cities What does this project do? Cuts oil imports and consumption Helps businesses save money Increases the efficiency of large-scale fleets Reduces emissions Surrounded by cutting-edge vehicles, from all-electric trucks to hydraulic hybrids, President Obama today announced the National Clean Fleets Partnership, an initiative of the Department's Clean Cities program, at a UPS fleet facility in Landover, Maryland. This public-private partnership

15

Increment in World Oil Consumption by Region, 1997-2020  

U.S. Energy Information Administration (EIA)

World oil production is projected to increase by a total of 39.8 million barrels per day ... Substantial growth is also expected in Central and South America, ...

16

Air toxics from heavy oil production and consumption  

SciTech Connect

This report assesses the potential impact of recent Federal and state regulations for airborne toxic substances on the production and consumption of heavy fuel oils. Emissions of nickel from heavy oil production in California are considered in some detail, in conjunction with California state regulations for toxic emissions. Although the use of thermal energy from heavy crude oils could in theory be impacted by toxic air pollution regulations, recent trends towards the use of natural gas for the required extraction energy appear to provide substantial relief, in addition to reducing emissions of criteria air pollutants. However, the consumption of residual fuel oils containing toxic metals could result in higher population exposures to these substances and their attendant risks may be worthy of more detailed analysis.

Lipfert, F.W.; DePhillips, M.P.; Moskowitz, P.D.

1992-12-22T23:59:59.000Z

17

Table 2. Fuel Oil Consumption and Expeditures in U.S. Households ...  

U.S. Energy Information Administration (EIA)

Fuel Oil Consumption and Expeditures in U.S. Households ... Space Heating - Main or Secondary ... Forms EIA-457 A-G of the 2001 Residential Energy Consumption

18

Income Growth, Energy Consumption and Carbon Emissions in China  

Science Conference Proceedings (OSTI)

The paper examines the long-run relationship between per capita income growth, energy consumption, and pollutant emissions in China during the period 1953–2004. We find that energy consumption, pollutant emissions and income are cointegrated in ... Keywords: Energy consumption, Pollutant emissions, Causality, Multivariate cointegration, China

Zhi Zhao; Jiahai Yuan

2008-11-01T23:59:59.000Z

19

Application of Grey Correlation Method in Energy Consumption Analysis of Crude Oil Gathering System  

Science Conference Proceedings (OSTI)

In order to take quantitative analysis on impact factors of energy consumption in crude oil gathering system, gray system theory analysis was adopted to evaluate energy consumption impact factors sequence of crude oil gathering system through the establishment ... Keywords: Gathering and Transporting of Crude Oil, Influence factor, Grey Correlation

Zhou Yingming; Wang Shuwei; Li Dong; Wu Guozhong

2010-12-01T23:59:59.000Z

20

Vehicle Technologies Office: Fact #376: June 13, 2005 U.S. Oil Consumption  

NLE Websites -- All DOE Office Websites (Extended Search)

6: June 13, 2005 6: June 13, 2005 U.S. Oil Consumption Over 20 Million Barrels per Day in 2004 to someone by E-mail Share Vehicle Technologies Office: Fact #376: June 13, 2005 U.S. Oil Consumption Over 20 Million Barrels per Day in 2004 on Facebook Tweet about Vehicle Technologies Office: Fact #376: June 13, 2005 U.S. Oil Consumption Over 20 Million Barrels per Day in 2004 on Twitter Bookmark Vehicle Technologies Office: Fact #376: June 13, 2005 U.S. Oil Consumption Over 20 Million Barrels per Day in 2004 on Google Bookmark Vehicle Technologies Office: Fact #376: June 13, 2005 U.S. Oil Consumption Over 20 Million Barrels per Day in 2004 on Delicious Rank Vehicle Technologies Office: Fact #376: June 13, 2005 U.S. Oil Consumption Over 20 Million Barrels per Day in 2004 on Digg

Note: This page contains sample records for the topic "oil consumption growth" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Sources and characteristics of oil consumption in a spark-ignition engine  

E-Print Network (OSTI)

(cont.) At low load, oil flowing past by the piston was found to be the major consumption source, while the contributions of oil evaporation and of blowby entrainment became more significant with increasing engine load. ...

Yilmaz, Ertan, 1970-

2003-01-01T23:59:59.000Z

22

New Zealand Energy Data: Oil Consumption by Fuel and Sector | OpenEI  

Open Energy Info (EERE)

Oil Consumption by Fuel and Sector Oil Consumption by Fuel and Sector Dataset Summary Description The New Zealand Ministry of Economic Development publishes energy data including many datasets related to oil and other petroleum products. Included here are two oil consumption datasets: quarterly petrol consumption by sector (agriculture, forestry and fishing; industrial; commercial; residential; transport industry; and international transport), from 1974 to 2010; and oil consumption by fuel type (petrol, diesel, fuel oil, aviation fuels, LPG, and other), also for the years 1974 through 2010. The full 2010 Energy Data File is available: http://www.med.govt.nz/upload/73585/EDF%202010.pdf. Source New Zealand Ministry of Economic Development Date Released Unknown Date Updated July 02nd, 2010 (4 years ago)

23

Nonresidential buildings energy consumption survey: 1979 consumption and expenditures. Part 2. Steam, fuel oil, LPG, and all fuels  

Science Conference Proceedings (OSTI)

This report presents data on square footage and on total energy consumption and expenditures for commercial buildings in the contiguous United States. Also included are detailed consumption and expenditures tables for fuel oil or kerosene, liquid petroleum gas (LPG), and purchased steam. Commercial buildings include all nonresidential buildings with the exception of those where industrial activities occupy more of the total square footage than any other type of activity. 7 figures, 23 tables.

Patinkin, L.

1983-12-01T23:59:59.000Z

24

Piston ring pack design effects on production spark ignition engine oil consumption : a simulation analysis  

E-Print Network (OSTI)

One of the most significant contributors to an engine's total oil consumption is the piston ring-pack. As a result, optimization of the ring pack is becoming more important for engine manufacturers and lubricant suppliers. ...

Senzer, Eric B

2007-01-01T23:59:59.000Z

25

"Table A10. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel"  

U.S. Energy Information Administration (EIA) Indexed Site

0. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel" 0. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel" " Oil for Selected Purposes by Census Region and Economic Characteristics of the" " Establishment, 1991" " (Estimates in Barrels per Day)" ,,,," Inputs for Heat",,," Primary Consumption" " "," Primary Consumption for all Purposes",,," Power, and Generation of Electricity",,," for Nonfuel Purposes",,,"RSE" ," ------------------------------------",,," ------------------------------------",,," -------------------------------",,,"Row" "Economic Characteristics(a)","LPG","Distillate(b)","Residual","LPG","Distillate(b)","Residual","LPG","Distillate(b)","Residual","Factors"

26

Just oil? The distribution of environmental and social impacts of oil production and consumption  

E-Print Network (OSTI)

that the greatest quantity of oil from marine transport isunderrepresents the quantity of oil products that escapes

O'Rourke, D; Connolly, S

2003-01-01T23:59:59.000Z

27

The Intricate Puzzle of Oil and Gas “Reserves Growth  

U.S. Energy Information Administration (EIA)

Energy Information Administration / Natural Gas Monthly July 1997 vii The Intricate Puzzle of Oil and Gas “Reserves Growth” by David F. Morehouse

28

Just oil? The distribution of environmental and social impacts of oil production and consumption  

E-Print Network (OSTI)

term threat from new oil and gas exploration” (42). In theyear comes from oil and gas exploration and production.within oil and gas concessions that are under exploration or

O'Rourke, D; Connolly, S

2003-01-01T23:59:59.000Z

29

Just oil? The distribution of environmental and social impacts of oil production and consumption  

E-Print Network (OSTI)

fact, emissions of TABLE 6 Sources of oil spills from marineoil spills are a major source of oil emissions and thaternments. Taxes from oil are a major source of income for

O'Rourke, D; Connolly, S

2003-01-01T23:59:59.000Z

30

Just oil? The distribution of environmental and social impacts of oil production and consumption  

E-Print Network (OSTI)

77% of the world’s proven oil reserves and 40% of world oilbarrels of proven oil reserves, which represents approxi-66% of the total world oil reserves (21). The Persian Gulf

O'Rourke, D; Connolly, S

2003-01-01T23:59:59.000Z

31

Fact Sheet: Gas Prices and Oil Consumption Would Increase Without Biofuels  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fact Sheet: Gas Prices and Oil Consumption Would Increase Without Fact Sheet: Gas Prices and Oil Consumption Would Increase Without Biofuels Fact Sheet: Gas Prices and Oil Consumption Would Increase Without Biofuels June 11, 2008 - 1:30pm Addthis Secretary of Energy Samuel W. Bodman and Secretary of Agriculture Edward T. Schafer sent a letter on June 11, 2008 to Senator Jeff Bingaman addressing a number of questions related to biofuels, food, and gasoline and diesel prices. Read the letter. Without Biofuels, Gas Prices Would Increase $.20 to $.35 per Gallon. The U.S. Department of Energy (DOE) estimates that gasoline prices would be between 20 cents to 35 cents per gallon higher without ethanol1, a first-generation biofuel. For a typical household, that means saving about $150 to $300 per year. For the U.S. overall, this saves gas expenditures of $28 billion to

32

Fact Sheet: Gas Prices and Oil Consumption Would Increase Without Biofuels  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas Prices and Oil Consumption Would Increase Without Gas Prices and Oil Consumption Would Increase Without Biofuels Fact Sheet: Gas Prices and Oil Consumption Would Increase Without Biofuels June 11, 2008 - 1:30pm Addthis Secretary of Energy Samuel W. Bodman and Secretary of Agriculture Edward T. Schafer sent a letter on June 11, 2008 to Senator Jeff Bingaman addressing a number of questions related to biofuels, food, and gasoline and diesel prices. Read the letter. Without Biofuels, Gas Prices Would Increase $.20 to $.35 per Gallon. The U.S. Department of Energy (DOE) estimates that gasoline prices would be between 20 cents to 35 cents per gallon higher without ethanol1, a first-generation biofuel. For a typical household, that means saving about $150 to $300 per year. For the U.S. overall, this saves gas expenditures of $28 billion to

33

U.S. crude oil production growth contributes to global oil ...  

U.S. Energy Information Administration (EIA)

China accounted for almost one-third of growth in global demand and surpassed the United States to become the world's largest importer of crude oil.

34

The Impact of Oil Consumption Mechanisms on Diesel Exhaust Particle Size Distributions and Detailed Exhaust Chemical Composition  

DOE Green Energy (OSTI)

Detailed exhaust emission data have been taken from a Cummins N-14 single cylinder research engine in which the oil consumption was varied by different engine modifications. Low sulfur fuel was used, and oil consumption was varied by modifying the intake valve stem seals, the exhaust valve stem seals, the oil control ring and combinations of these modifications. Detailed measurements of exhaust gas particle size distributions and chemical composition were made for the various oil consumption configurations for a range of engine loads and speeds. The particulate mass was measured with TEOM and traditional gravimetric filter methods. Filter data for EC/OC, sulfates and trace metals have been taken and analyzed. The trace metals in the particulate mass serve as the basis for assessing oil consumption at the different operating conditions. The data indicate that the oil consumption for the steady state testing done here was approximately an order of magnitude below oil consumption values cited in the literature. We did measure changes in the details of the chemical composition of the particulate for the different engine operating conditions, but it did not correlate with changes in the oil consumption. Furthermore, the data indicate that the particle size distribution is not strongly impacted by low level oil consumption variations observed in this work.

Stetter, J; Forster, N; Ghandhi, J; Foster, D

2003-08-24T23:59:59.000Z

35

Questions cloud outlook for oil production capacity growth in the Middle East  

SciTech Connect

Future expansion of crude oil production capacity in the Middle East is anything but certain-at least with crude prices at recent levels. There is little doubt that the world will need more production capacity than now exists unless petroleum consumption sags. And there is even less doubt about where prospects are best for production capacity growth. The paper discusses the normal surplus, growing demand, financial conditions, and political stability.

Tippee, B.

1994-07-11T23:59:59.000Z

36

Table 4b. Relative Standard Errors for Total Fuel Oil Consumption per  

U.S. Energy Information Administration (EIA) Indexed Site

4b. Relative Standard Errors for Total Fuel Oil Consumption per 4b. Relative Standard Errors for Total Fuel Oil Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using Fuel Oil (thousand) Total Fuel Oil Consumption (trillion Btu) Fuel Oil Intensities (thousand Btu) Per Square Foot Per Effective Occupied Square Foot All Buildings 10 14 13 13 Building Floorspace (Square Feet) 1,001 to 5,000 10 16 11 11 5,001 to 10,000 15 22 18 18 10,001 to 25,000 15 24 19 19 25,001 to 50,000 13 25 29 29 50,001 to 100,000 14 27 21 22 100,001 to 200,000 13 36 34 34 200,001 to 500,000 13 37 33 33 Over 500,000 17 51 50 50 Principal Building Activity Education 17 17 16 17 Food Sales and Service 25 36 16 16 Health Care 29 48 47 47 Lodging 27 37 32 32 Mercantile and Service 14 25 26 26 Office 14 19 21 21 Public Assembly 23 46 35 34 Public Order and Safety 28 48 46 46 Religious Worship

37

Trade-Off Between Consumption Growth and Inequality: Theory and Evidence for Germany  

E-Print Network (OSTI)

This paper examines the structure and evolution of consumption inequality. Once heterogeneous agents relate their neighbors ’ consumption to their own, consumption volatility and inequality are affected. The model predicts a positive relationship between the group specific average consumption growth and within-group inequality, which is empirically confirmed using survey data from the German Socio-Economic Panel (GSOEP) covering the period 1984-2005. Age and household size are crucial for within-group inequality, as young and/or small households are more sensitive to income and consumption shocks. The data also shows increases of within-group inequality directly after the reunification and the introduction of the euro. Preliminary! Keywords: consumption inequality, consumption growth, German Socio-Economic Panel,

Runli Xie; Jel Codes E

2009-01-01T23:59:59.000Z

38

Regional overview of Latin American and Caribbean energy production, consumption, and future growth. Report series No. 1  

SciTech Connect

The Latin American and Caribbean region - comprising Mexico, Central and South America, and the Caribbean - is relatively well endowed with energy resources, although the distribution of these resources is uneven across countries. The region produces more energy than it consumes, and the surplus energy, which amounts to 3.6 million barrels of oil equivalent per day (boe/d), is mostly oil. While the region`s total oil (crude and products) exports decreased from 4.4 million barrels per day (b/d) in 1981 to 3.8 million b/d in 1992, its net oil exports increased from about 1.6 million b/d in 1981 to 2.8 million b/d in 1992. In 1993, the surplus oil in Latin America and the Caribbean remained at 2.8 million b/d. This report analyzes the key issues of the Latin American and Caribbean energy industry and presents the future outlook for oil, gas, coal, hydroelectricity, and nuclear power developments in the region. In addition, the status of biomass energy, geothermal, and other noncommercial energy in the region will be briefly discussed in the context of overall energy development. The rest of the report is organized as follows: Section II assesses the current situation of Latin American and Caribbean energy production and consumption, covering primary energy supply, primary energy consumption, downstream petroleum sector development, and natural gas utilization. Section III presents the results of our study of future energy growth in Latin America. Important hydrocarbons policy issues in the region are discussed in Section IV, and a summary and concluding remarks are provided in Section V.

Wu, K.

1994-07-01T23:59:59.000Z

39

OIL PRICES AND LONG-RUN RISK  

E-Print Network (OSTI)

I show that relative levels of aggregate consumption and personal oil consumption provide an excellent proxy for oil prices, and that high oil prices predict low future aggregate consumption growth. Motivated by these facts, I add an oil consumption good to the long-run risk model of Bansal and Yaron [2004] to study the asset pricing implications of observed changes in the dynamic interaction of consumption and oil prices. Empirically I observe that, compared to the first half of my 1987- 2010 sample, oil consumption growth in the last 10 years is unresponsive to levels of oil prices, creating an decrease in the mean-reversion of oil prices, and an increase in the persistence of oil price shocks. The model implies that the change in the dynamics of oil consumption generates increased systematic risk from oil price shocks due to their increased persistence. However, persistent oil prices also act as a counterweight for shocks to expected consumption growth, with high expected growth creating high expectations of future oil prices which in turn slow down growth. The combined effect is to reduce overall consumption risk and lower the equity premium. The model also predicts that these changes affect the riskiness of of oil futures contracts, and combine to create a hump shaped

Robert Ready; Robert Clayton Ready; Robert Clayton Ready; Amir Yaron

2011-01-01T23:59:59.000Z

40

Growth, CO2 Consumption, and H2 Production of Anabaena variabilis ATCC 29413-U under Different Irradiances and CO2 Concentrations  

E-Print Network (OSTI)

34 (a) Normalized CO 2 consumption data versus time, (b)speci?c growth, CO 2 consumption and H 2 production ratesGrowth, CO 2 Consumption, and H 2 Production of Anabaena

Berberoglu, Halil; Barra, Natasha; Pilon, Laurent; Jay, Jenny

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil consumption growth" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Oil Prices, External Income, and Growth: Lessons from Jordan  

E-Print Network (OSTI)

This paper extends the long-run growth model of Esfahani et al. (2012a) to a labour exporting country that receives large in‡ows of external income – the sum of remittances, FDI and general government transfers – from major oil exporting economies. The theoretical model predicts real oil prices to be one of the main long-run drivers of real output. Using quarterly data between 1979 and 2009 on core macroeconomic variables for Jordan and a number of key foreign variables, we identify two long-run relationships: an output equation as predicted by theory and an equation linking foreign and domestic in‡ation rates. It is shown that real output in the long run is shaped by (i) oil prices through their impact on external income and in turn on capital accumulation, and (ii) technological transfers through foreign output. The empirical analysis of the paper con…rms the hypothesis that a large share of Jordan’s output volatility can be associated with ‡uctuations in net income received from abroad (arising from oil price shocks). External factors, however, cannot be relied upon to provide similar growth stimuli in the future, and therefore it will be important to diversify the sources of growth in order to achieve a high and sustained level of income.

Kamiar Mohaddes A; Mehdi Raissi B

2013-01-01T23:59:59.000Z

42

The Intricate Puzzle of Oil and Gas Reserves Growth  

Gasoline and Diesel Fuel Update (EIA)

Energy Information Administration / Natural Gas Monthly July 1997 Energy Information Administration / Natural Gas Monthly July 1997 The Intricate Puzzle of Oil and Gas "Reserves Growth" by David F. Morehouse Developing the Nation's discovered oil and gas resources This article begins with a background discussion of the for production is a complex process that is often methods used to estimate proved oil and gas reserves characterized by initial uncertainty as regards the and ultimate recovery, which is followed by a discussion ultimate size or productive potential of the involved of the factors that affect the ultimate recovery estimates reservoirs and fields. Because the geological and of a field or reservoir. Efforts starting in 1960 to analyze hydrological characteristics of the subsurface cannot - and project ultimate resource appreciation are then

43

THE NEXUS BETWEEN ENERGY CONSUMPTION AND ECONOMIC GROWTH IN OECD COUNTRIES: A DECOMPOSITION ANALYSIS  

E-Print Network (OSTI)

. In the case of China for the period 1978 to 2008, Fang (2011) finds that a 1% increase in renewable energy the impacts of renewable and non-renewable energy consumption on economic activities to find out whether economic growth benefits from substituting renewable energy for non-renewable energy sources. Empirical

44

Microsoft Word - Gas Prices and Oil Consumption Would Increase Without Biofuels  

NLE Websites -- All DOE Office Websites (Extended Search)

For Immediate Release For Immediate Release June 11, 2008 202-586-4940 Fact Sheet: Gas Prices and Oil Consumption Would Increase Without Biofuels Secretary of Energy Samuel W. Bodman and Secretary of Agriculture Edward T. Schafer sent a letter on June 11, 2008 to Senator Jeff Bingaman addressing a number of questions related to biofuels, food, and gasoline and diesel prices. The letter is available at http://www.energy.gov Without Biofuels, Gas Prices Would Increase $.20 to $.35 per Gallon. * The U.S. Department of Energy (DOE) estimates that gasoline prices would be between 20 cents to 35 cents per gallon higher without ethanol 1 , a first-generation biofuel. * For a typical household, that means saving about $150 to $300 per year. * For the U.S. overall, this saves gas expenditures of $28 billion to $49 billion based on annual

45

The effect of palm oil supplementation on growth and carcass composition of growing lambs  

E-Print Network (OSTI)

The effect of palm oil supplementation on growth and carcass composition of growing lambs M Hilmi Selangor, Malaysia Palm oil is considered as a cheap source of energy supplementation in a commercial feed for sheep. However there is a scarcity of report on the effect of oil supplementation on the growth

Recanati, Catherine

46

Table 2. Fuel Oil Consumption and Expenditures in U.S. Households ...  

U.S. Energy Information Administration (EIA)

1 A small amount of fuel oil used for appliances is included in "Fuel Oil" under "All Uses." NF = No applicable RSE row factor.

47

Available online at www.sciencedirect.com Future world oil production: growth, plateau, or peak?  

E-Print Network (OSTI)

Available online at www.sciencedirect.com Future world oil production: growth, plateau, or peak considers how long world oil production can continue to grow or if it will eventually plateau or peak and then decline. The paper concludes with the observation that whether peak oil has already occurred

Ito, Garrett

48

Diacylglycerol Oil, 2nd EditionChapter 11 Long-Term Clinical Studies of Ad Libitum Diacylglycerol Consumption in Subjects in a Free-Living Environment  

Science Conference Proceedings (OSTI)

Diacylglycerol Oil, 2nd Edition Chapter 11 Long-Term Clinical Studies of Ad Libitum Diacylglycerol Consumption in Subjects in a Free-Living Environment Food Science Health Nutrition Biochemistry eChapters Food Science & Technology Heal

49

Diacylglycerol Oil, 2nd Edition Chapter 9 besity Effect and Prevention of Insulin Resistance by a Long-Term Consumption of Dietary Diacylglycerol in Experimental Animal Models  

Science Conference Proceedings (OSTI)

Diacylglycerol Oil, 2nd Edition Chapter 9 besity Effect and Prevention of Insulin Resistance by a Long-Term Consumption of Dietary Diacylglycerol in Experimental Animal Models Food Science Health Nutrition Biochemistry eChapters Food S

50

Projection of Chinese motor vehicle growth, oil demand, and CO{sub 2}emissions through 2050.  

SciTech Connect

As the vehicle population in China increases, oil consumption and carbon dioxide (CO{sub 2}) emissions associated with on-road transportation are rising dramatically. During this study, we developed a methodology to project trends in the growth of the vehicle population, oil demand, and CO{sub 2} emissions associated with on-road transportation in China. By using this methodology, we projected--separately--the number of highway vehicles, motorcycles, and rural vehicles in China through 2050. We used three scenarios of highway vehicle growth (high-, mid-, and low-growth) to reflect patterns of motor vehicle growth that have occurred in different parts of the world (i.e., Europe and Asia). All are essentially business-as-usual scenarios in that almost none of the countries we examined has made concerted efforts to manage vehicle growth or to offer serious alternative transportation means to satisfy people's mobility needs. With this caveat, our projections showed that by 2030, China could have more highway vehicles than the United States has today, and by 2035, it could have the largest number of highway vehicles in the world. By 2050, China could have 486-662 million highway vehicles, 44 million motorcycles, and 28 million rural vehicles. These numbers, which assume essentially unmanaged vehicle growth, would result in potentially disastrous effects on the urban infrastructure, resources, and other social and ecological aspects of life in China. We designed three fuel economy scenarios, from conservative to aggressive, on the basis of current policy efforts and expectations of near-future policies in China and in developed countries. It should be noted that these current and near-future policies have not taken into consideration the significant potential for further fuel economy improvements offered by advanced technologies such as electric drive technologies (e.g., hybrid electric vehicles and fuel-cell vehicles). By using vehicle growth projections and potential vehicle fuel economy, we projected that China's on-road vehicles could consume approximately 614-1016 million metric tons of oil per year (12.4-20.6 million barrels per day) and could emit 1.9-3.2 billion metric tons of CO{sub 2} per year in 2050, which will put tremendous pressure on the balance of the Chinese and world oil supply and demand and could have significant implications on climate change. Our analysis shows that, while improvements in vehicle fuel economy are crucial for reducing transportation energy use, containing the growth of the vehicle population could have an even more profound effect on oil use and CO{sub 2} emissions. This benefit is in addition to other societal and environmental benefits--such as reduced congestion, land use, and urban air pollution--that will result from containing vehicle population growth. Developing public transportation systems for personal travel and rail and other modes for freight transportation will be important for containing the growth of motor vehicles in China. Although the population of passenger cars will far exceed that of all truck types in China in the future, our analysis shows that oil use by and CO{sub 2} emissions from the Chinese truck fleet will be far larger than those related to Chinese passenger cars because trucks are very use intensive (more vehicle miles traveled per year) and energy intensive (lower fuel economy). Unfortunately, the potential for improving fuel economy and reducing air pollutant emissions for trucks has not been fully explored; such efforts are needed. Considering the rapid depletion of the world's oil reserve, the heightened global interest in addressing greenhouse gas emissions, and the geopolitical complications of global oil supply and demand, the study results suggest that unmanaged vehicle growth and limited improvements in vehicle fuel efficiency will lead to an unsustainable and unstable transportation system in China. In other words, while our projections do not definitively indicate what will happen in the Chinese transportation sector by 2050, they do demonstrate

Wang, M.; Huo, H.; Johnson, L.; He, D.

2006-12-20T23:59:59.000Z

51

Projection of Chinese motor vehicle growth, oil demand, and CO{sub 2}emissions through 2050.  

Science Conference Proceedings (OSTI)

As the vehicle population in China increases, oil consumption and carbon dioxide (CO{sub 2}) emissions associated with on-road transportation are rising dramatically. During this study, we developed a methodology to project trends in the growth of the vehicle population, oil demand, and CO{sub 2} emissions associated with on-road transportation in China. By using this methodology, we projected--separately--the number of highway vehicles, motorcycles, and rural vehicles in China through 2050. We used three scenarios of highway vehicle growth (high-, mid-, and low-growth) to reflect patterns of motor vehicle growth that have occurred in different parts of the world (i.e., Europe and Asia). All are essentially business-as-usual scenarios in that almost none of the countries we examined has made concerted efforts to manage vehicle growth or to offer serious alternative transportation means to satisfy people's mobility needs. With this caveat, our projections showed that by 2030, China could have more highway vehicles than the United States has today, and by 2035, it could have the largest number of highway vehicles in the world. By 2050, China could have 486-662 million highway vehicles, 44 million motorcycles, and 28 million rural vehicles. These numbers, which assume essentially unmanaged vehicle growth, would result in potentially disastrous effects on the urban infrastructure, resources, and other social and ecological aspects of life in China. We designed three fuel economy scenarios, from conservative to aggressive, on the basis of current policy efforts and expectations of near-future policies in China and in developed countries. It should be noted that these current and near-future policies have not taken into consideration the significant potential for further fuel economy improvements offered by advanced technologies such as electric drive technologies (e.g., hybrid electric vehicles and fuel-cell vehicles). By using vehicle growth projections and potential vehicle fuel economy, we projected that China's on-road vehicles could consume approximately 614-1016 million metric tons of oil per year (12.4-20.6 million barrels per day) and could emit 1.9-3.2 billion metric tons of CO{sub 2} per year in 2050, which will put tremendous pressure on the balance of the Chinese and world oil supply and demand and could have significant implications on climate change. Our analysis shows that, while improvements in vehicle fuel economy are crucial for reducing transportation energy use, containing the growth of the vehicle population could have an even more profound effect on oil use and CO{sub 2} emissions. This benefit is in addition to other societal and environmental benefits--such as reduced congestion, land use, and urban air pollution--that will result from containing vehicle population growth. Developing public transportation systems for personal travel and rail and other modes for freight transportation will be important for containing the growth of motor vehicles in China. Although the population of passenger cars will far exceed that of all truck types in China in the future, our analysis shows that oil use by and CO{sub 2} emissions from the Chinese truck fleet will be far larger than those related to Chinese passenger cars because trucks are very use intensive (more vehicle miles traveled per year) and energy intensive (lower fuel economy). Unfortunately, the potential for improving fuel economy and reducing air pollutant emissions for trucks has not been fully explored; such efforts are needed. Considering the rapid depletion of the world's oil reserve, the heightened global interest in addressing greenhouse gas emissions, and the geopolitical complications of global oil supply and demand, the study results suggest that unmanaged vehicle growth and limited improvements in vehicle fuel efficiency will lead to an unsustainable and unstable transportation system in China. In other words, while our projections do not definitively indicate what will happen in the Chinese transportation sector by 2050, they do demonstrate

Wang, M.; Huo, H.; Johnson, L.; He, D.

2006-12-20T23:59:59.000Z

52

U.S. crude oil production growth contributes to global oil ...  

U.S. Energy Information Administration (EIA)

Rising crude oil production in the United States contributed to relatively stable global crude oil prices in 2013, at around the same annual average ...

53

Growth slows in U.S. ethanol production and consumption - Today in ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

54

Effects of dietary canola oil level on growth performance, fatty acid composition and ionoregulatory development of spring chinook salmon parr,  

E-Print Network (OSTI)

Effects of dietary canola oil level on growth performance, fatty acid composition assessed the potential of refined canola oil (CO) as a source of supplemental dietary lipid for pre that there is excellent potential for long-term replacement of fish oil with canola oil in the diet of pre-smolt spring

Vellend, Mark

55

Table 4a. U.S. Crude Oil and Liquid Fuels Supply, Consumption, and ...  

U.S. Energy Information Administration (EIA)

Total Commercial Inventory ..... 1,082 1,112 1,123 1,111 1,097 1,122 1,126 1,085 1,092 1,127 1,138 1,097 1,111 1,085 1,097 Crude Oil in SPR ...

56

An Empirical Growth Model for Major Oil Exporters  

E-Print Network (OSTI)

119.7 124.7 1.9 23.3 5 Source: GDP data is from the IMF International Financial Statistics, oil export data is from OPEC Annual Statistical Bulletin, and oil reserve and production data is from the British Petroleum Statistical Review of World Energy... ) argue that it is the volatility of commodity prices rather than abundance per se, that drives the "resource curse" paradox. 3See, for example, Amuzegar (2008) and the British Petroleum Statistical Review of World Energy. 3 Figure 1: Oil Export Revenues...

Esfahani, Hadi Salehi; Mohaddes, Kamiar; Pesaran, M. Hashem

2012-03-21T23:59:59.000Z

57

Oil Prices, External Income, and Growth: Lessons from Jordan  

E-Print Network (OSTI)

. The theoretical model predicts real oil prices to be one of the main long-run drivers of real output. Using quarterly data between 1979 and 2009 on core macroeconomic variables for Jordan and a number of key foreign variables, we identify two long...

Mohaddes, Kamiar; Raissi, Mehdi

2011-12-08T23:59:59.000Z

58

Rising U.S. oil output leads world oil supply growth  

U.S. Energy Information Administration (EIA) Indexed Site

is well on its way to topping 8 million barrels per day by 2014. In its new monthly forecast, the U.S. Energy Information Administration expects daily oil output will average 7.3...

59

Oil Prices and Long-Run Risk.  

E-Print Network (OSTI)

??I show that relative levels of aggregate consumption and personal oil consumption provide anexcellent proxy for oil prices, and that high oil prices predict low… (more)

READY, ROBERT

2011-01-01T23:59:59.000Z

60

Futures oil market outlook  

Science Conference Proceedings (OSTI)

We expect the broader expansion of global economic activity in 1995 to more than offset the anticipated slowdown in the US economic growth. This should result in worldwide oil demand growth in excess of 1 million barrels per day and firmer oil prices. This comes on the heels of nearly identical growth in 1994 and should be followed by an even larger increase in 1996. This year`s demand growth comes against a backdrop of flat OPEC production and an increase in non-OPEC supplies that will fall short of the expected increase in consumption. Some degree of political upheaval in at least a half dozen important oil exporting nations could also have implication for crude supplies. One major wildcard that remains for global oil markets is the status of the United Nations` sanctions on Iraqi exports and the timing of when these sanctions are to be eased or lifted completely.

Saucer, J. [Smith Barney, Houston, TX (United States)

1995-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil consumption growth" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Table 2.9 Commercial Buildings Consumption by Energy Source ...  

U.S. Energy Information Administration (EIA)

parking garages. Web Page: For related information, ... "Commercial Buildings Energy Consumption Survey." 6 Distillate fuel oil, residual fuel oil, ...

62

Outlook for Non-OPEC Oil Supply Growth in 2008-2009 (Released in the STEO February 2008)  

Reports and Publications (EIA)

In 2008-2009, EIA expects that non-OPEC petroleum supply growth will surpass that inrecent years because of the large number of new oil projects scheduled to come onlineduring the forecast period.

Information Center

2008-02-01T23:59:59.000Z

63

Don't Supersize Me! Toward a Policy of Consumption-Based Energy Efficiency  

E-Print Network (OSTI)

Don't Supersize Me! Toward a Policy of Consumption-Based Energy Efficiency Jeffrey Harris, Rick ultimately reverse) the growth in total energy consumption and carbon emissions. Instead, policy makers need for effective policy in a carbon- and oil-constrained world with increasingly brittle energy markets. To start

Diamond, Richard

64

Commercial Buildings Energy Consumption and Expenditures 1992...  

U.S. Energy Information Administration (EIA) Indexed Site

1992 Consumption and Expenditures 1992 Consumption & Expenditures Overview Full Report Tables National estimates of electricity, natural gas, fuel oil, and district heat...

65

International Energy Outlook 2006 - World Oil Markets  

Gasoline and Diesel Fuel Update (EIA)

Oil Markets Oil Markets International Energy Outlook 2006 Chapter 3: World Oil Markets In the IEO2006 reference case, world oil demand increases by 47 percent from 2003 to 2030. Non-OECD Asia, including China and India, accounts for 43 percent of the increase. In the IEO2006 reference case, world oil demand grows from 80 million barrels per day in 2003 to 98 million barrels per day in 2015 and 118 million barrels per day in 2030. Demand increases strongly despite world oil prices that are 35 percent higher in 2025 than in last yearÂ’s outlook. Much of the growth in oil consumption is projected for the nations of non-OECD Asia, where strong economic growth is expected. Non-OECD Asia (including China and India) accounts for 43 percent of the total increase in world oil use over the projection period.

66

Lubricant oil consumption effects on diesel exhaust ash emissions using a sulfur dioxide trace technique and thermogravimetry  

E-Print Network (OSTI)

A detailed experimental study was conducted targeting lubricant consumption effects on ,diesel exhaust ash levels using a model year 2002 5.9L diesel engine, high and low Sulfur commercial lubricants, and clean diesel ...

Plumley, Michael J

2005-01-01T23:59:59.000Z

67

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

Next CBECS will be conducted in 2007 Table C35A. Fuel Oil Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 Total Fuel Oil Consumption...

68

Middle East and Central Asia Department Oil Prices, External Income, and Growth: Lessons from Jordan 1  

E-Print Network (OSTI)

This Working Paper should not be reported as representing the views of the IMF. The views expressed in this Working Paper are those of the author(s) and do not necessarily represent those of the IMF or IMF policy. Working Papers describe research in progress by the author(s) and are published to elicit comments and to further debate. This paper extends the long-run growth model of Esfahani et al. (2009) to a labor exporting country that receives large inflows of external income—the sum of remittances, FDI and general government transfers—from major oil-exporting economies. The theoretical model predicts real oil prices to be one of the main long-run drivers of real output. Using quarterly data between 1979 and 2009 on core macroeconomic variables for Jordan and a number of key foreign variables, we identify two long-run relationships: an output equation as predicted by theory and an equation linking foreign and domestic inflation rates. It is shown that real output in the long run is shaped by: (i) oil prices through their impact on external income and in turn on capital accumulation, and (ii) technological transfers through foreign output. The empirical analysis of the paper confirms the hypothesis that a large share of Jordan's output volatility can be associated with fluctuations in net income received from abroad. External factors, however, cannot be relied upon to provide similar growth stimuli in the future, and therefore it will be important to diversify the sources of growth in order to achieve a high and sustained level of income.

Prepared Kamiar Mohaddes; Mehdi Raissi

2011-01-01T23:59:59.000Z

69

Effects of dietary canola oil level on growth, fatty acid composition and osmoregulatory ability of juvenile fall chinook salmon (Oncorhynchus tshawytscha)  

E-Print Network (OSTI)

Effects of dietary canola oil level on growth, fatty acid composition and osmoregulatory ability 2008 This study assessed refined canola oil (CO) as a supplemental dietarylipid source for juvenile.V. All rights reserved. Keywords: Canola oil Lipids Fatty acids Osmoregulatory ability Chinook salmon 1

Vellend, Mark

70

New data show record growth in U.S. crude oil reserves and strong ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

71

Unconventional Oil and Gas Resources  

Science Conference Proceedings (OSTI)

World oil use is projected to grow to 98 million b/d in 2015 and 118 million b/d in 2030. Total world natural gas consumption is projected to rise to 134 Tcf in 2015 and 182 Tcf in 2030. In an era of declining production and increasing demand, economically producing oil and gas from unconventional sources is a key challenge to maintaining global economic growth. Some unconventional hydrocarbon sources are already being developed, including gas shales, tight gas sands, heavy oil, oil sands, and coal bed methane. Roughly 20 years ago, gas production from tight sands, shales, and coals was considered uneconomic. Today, these resources provide 25% of the U.S. gas supply and that number is likely to increase. Venezuela has over 300 billion barrels of unproven extra-heavy oil reserves which would give it the largest reserves of any country in the world. It is currently producing over 550,000 b/d of heavy oil. Unconventional oil is also being produced in Canada from the Athabasca oil sands. 1.6 trillion barrels of oil are locked in the sands of which 175 billion barrels are proven reserves that can be recovered using current technology. Production from 29 companies now operating there exceeds 1 million barrels per day. The report provides an overview of continuous petroleum sources and gives a concise overview of the current status of varying types of unconventional oil and gas resources. Topics covered in the report include: an overview of the history of Oil and Natural Gas; an analysis of the Oil and Natural Gas industries, including current and future production, consumption, and reserves; a detailed description of the different types of unconventional oil and gas resources; an analysis of the key business factors that are driving the increased interest in unconventional resources; an analysis of the barriers that are hindering the development of unconventional resources; profiles of key producing regions; and, profiles of key unconventional oil and gas producers.

none

2006-09-15T23:59:59.000Z

72

Import Demand of Crude Oil and Economic Growth in China: Evidence from the ARDL Model  

Science Conference Proceedings (OSTI)

In order to quantify the demand elasticity of China's imported crude oil, a long-run stable relationship is estimated among the crude oil import, income and crude oil prices by the autoregressive distributed lag (ARDL) bound testing approach over the ... Keywords: ARDL bound test, price elasticity, income elasticity, crude oil demand

Wei Sun; Zhongying Qi; Niannian Jia

2010-08-01T23:59:59.000Z

73

Future world oil production: Growth, plateau, or peak?1 Larry Hughes and Jacinda Rudolph  

E-Print Network (OSTI)

" and "Unconventional." Conventional oil is typically the highest quality, lightest oil, which flows from underground reservoirs with comparative ease, and it is the least expensive to produce. Unconventional oils are heavy the problem will be pervasive and long lasting. Oil peaking repre- sents a liquid fuels prob- lem

Hughes, Larry

74

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

How can we compare or add up our energy consumption? To compare or aggregate energy consumption across different energy sources like oil, natural gas, ...

75

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

How can we compare or add up our energy consumption? To compare or aggregate energy consumption across different energy sources like oil, natural gas, and electricity ...

76

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

The major energy sources in the United States are petroleum (oil), natural ... To compare or aggregate energy consumption across different energy sources like oil, ...

77

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Crude oil, gasoline ... Manufacturing Energy Consumption Survey (MECS ... transportation, manufacturing, and a variety of consumer products. It is the ...

78

& CONSUMPTION US HYDROPOWER PRODUCTION  

E-Print Network (OSTI)

12% of the nation's electricity. Hydropower produces more than 90,000 megawatts of electricity, which is enough to meet the needs of 28.3 million consumers. Hydropower accounts for over 90% of all electricity the NAO. ENERGY CONSUMPTION AND PRODUCTION IN NORWAY AND THE NAO The demand for heating oil in Norway

79

Modelling Energy Consumption in China  

E-Print Network (OSTI)

Energy consumption in China has attracted considerable research interest since the middle 1990s. This is largely prompted by the environmental ramifications of the extensive use of fossil fuels in the country to propel two decades of high economic growth. Since the late 1980s, there has been an increasing awareness on the part of the Chinese government of the imperative for the balance of economic growth and environmental protection. The government has since taken various measures ranging from encouraging energy-saving practice, controlling waste discharges to financing R & D programs on improving energy efficiency. Against this backdrop has seen a constant decline of the energy intensity of the economy, measured as the ratio of total energy consumed in standard coal equivalent to the real GDP since 1989. Using the 1987 and 1997 input-output tables for China, the present study examines the impact of technical and structural changes in the economy on industry fuel consumption over the 10-year period. Technical changes are reflected in changes in direct input-output coefficients, which capture the technical evolvement of intermediate production processes. Structural changes refer to shifts in the pattern of final demand for energy, including the import and export composition of various fuels. Six fuels are included in the study, namely, coal, oil, natural gas, electricity, petroleum and coke and gas, which cover all of the energy types available in the input-output tables. It is found that the predominant force of falling energy intensity was changes in direct energy input requirements in various industries. Such changes were responsible for a reduction in the consumption of four of the six fuels per unit of total output. Structural changes were not conducive for improv...

Baiding Hu Department; Baiding Hu

2004-01-01T23:59:59.000Z

80

Strong demand growth seen for oil and gas in 1997--99  

Science Conference Proceedings (OSTI)

This paper provides historical information on worldwide crude oil productions from 1984 to present and makes predictions on future demand and refinery capacities. It provides information on oil reserves on a world scale and the pricing of these commodities. It breaks reserves, production and capacities down into OPEC and non-OPEC countries. It then provides general energy demand for both developed and developing countries in all energy forms.

Beck, R.J.

1996-04-22T23:59:59.000Z

Note: This page contains sample records for the topic "oil consumption growth" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Table 3.3 Fuel Consumption, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

3 Fuel Consumption, 2002;" 3 Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," ","RSE" "Economic",,"Net","Residual","Distillate","Natural ","LPG and",,"Coke and"," ","Row" "Characteristic(a)","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","Coal","Breeze","Other(f)","Factors"

82

Oil market in international and Norwegian perspectives.  

E-Print Network (OSTI)

??Crude oil is the most important energy source in global perspective. About 35 percent of the world’s primary energy consumption is supplied by oil, followed… (more)

Singsaas, Julia Nazyrova

2009-01-01T23:59:59.000Z

83

Margins up; consumption down  

SciTech Connect

The results of a survey of dealers in the domestic fuel oil industry are reported. Wholesale prices, reacting to oversupply, decreased as did retail prices; retail prices decreased at a slower rate so profit margins were larger. This trend produced competitive markets as price-cutting became the method for increasing a dealer's share of the profits. Losses to other fuels decreased, when the figures were compared to earlier y; and cash flow was very good for most dealers. In summary, profits per gallon of oil delivered increased, while the consumption of gasoline per customer decreased. 22 tables.

Mantho, M.

1983-09-01T23:59:59.000Z

84

Office Buildings - Energy Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Consumption Energy Consumption Office buildings consumed more than 17 percent of the total energy used by the commercial buildings sector (Table 4). At least half of total energy, electricity, and natural gas consumed by office buildings was consumed by administrative or professional office buildings (Figure 2). Table 4. Energy Consumed by Office Buildings for Major Fuels, 2003 All Buildings Total Energy Consumption (trillion Btu) Number of Buildings (thousand) Total Floorspace (million sq. ft.) Sum of Major Fuels Electricity Natural Gas Fuel Oil District Heat All Buildings 4,859 71,658 6,523 3,559 2,100 228 636 All Non-Mall Buildings 4,645 64,783 5,820 3,037 1,928 222 634 All Office Buildings 824 12,208 1,134 719 269 18 128 Type of Office Building

85

EIA - International Energy Outlook 2007-High Economic Growth Case  

Gasoline and Diesel Fuel Update (EIA)

7 > High Economic Growth Case Projection Tables (1990-2030) 7 > High Economic Growth Case Projection Tables (1990-2030) International Energy Outlook 2007 High Economic Growth Case Projection Tables (1990-2030) Formats Data Table Titles (1 to 12 complete) High Economic Growth Case Projection Tables. Need help, contact the National Energy Information Center at 202-586-8800. High World Oil Price Case Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table B1 World Total Primary Energy Consumption by Region Table B1. World Total Primary energy consumption by Region. Need help, contact the National Energy Information Center at 202-586-8800. Table B2 World Total Energy Consumption by Region and Fuel Table B2. World Total Energy Consumption by Region and Fuel. Need help, contact the National Energy Information Center at 202-586-8800.

86

Survey Consumption  

Gasoline and Diesel Fuel Update (EIA)

fsidentoi fsidentoi Survey Consumption and 'Expenditures, April 1981 March 1982 Energy Information Administration Wasningtoa D '" N """"*"""*"Nlwr. . *'.;***** -. Mik>. I This publication is available from ihe your COr : 20585 Residential Energy Consumption Survey: Consum ption and Expendi tures, April 1981 Through March 1982 Part 2: Regional Data Prepared by: Bruce Egan This report was prepared by the Energy Information Administra tion, the independent statistical

87

Is there oil after OPEC : Ecuador's Pasaje  

Science Conference Proceedings (OSTI)

Since 1973 when Ecuador joined the Organization of Petroleum Exporting Countries, crude oil production increased by nearly half and domestic petroleum consumption has more than tripled. Oil's percent of Gross Domestic Product was just 3% in 1972, peaked at 17.3% in 1974, and has since declined to 11.71% in 1991. In 1992 the national perspective changed and found that OPEC membership was working against, not in favor of, economic growth. This issue addresses Ecuador's status change and its plans for its petroleum and economic future.

Not Available

1992-12-14T23:59:59.000Z

88

Modeling energy consumption of residential furnaces and boilers in U.S. homes  

E-Print Network (OSTI)

CONSUMPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Lutz, James; Dunham-Whitehead, Camilla; Lekov, Alex; McMahon, James

2004-01-01T23:59:59.000Z

89

Indexes of Consumption and Production  

U.S. Energy Information Administration (EIA) Indexed Site

Figure on manufacturing production indexes and purchased energy consumption Figure on manufacturing production indexes and purchased energy consumption Source: Energy Information Administration and Federal Reserve Board. History of Shipments This chart presents indices of 14 years (1980-1994) of historical data of manufacturing production indexes and Purchased (Offsite-Produced) Energy consumption, using 1992 as the base year (1992 = 100). Indexing both energy consumption and production best illustrates the trends in output and consumption. Taken separately, these two indices track the relative growth rates within the specified industry. Taken together, they reveal trends in energy efficiency. For example, a steady increase in output, coupled with a decline in energy consumption, represents energy efficiency gains. Likewise, steadily rising energy consumption with a corresponding decline in output illustrates energy efficiency losses.

90

Compare All CBECS Activities: Fuel Oil Use  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Oil Use Compare Activities by ... Fuel Oil Use Total Fuel Oil Consumption by Building Type Commercial buildings in the U.S. used a total of approximately 1.3 billion gallons...

91

The individual contribution of automotive components to vehicle fuel consumption  

E-Print Network (OSTI)

Fuel consumption has grown to become a major point of interest as oil reserves are depleted. The purpose of this study is to determine the key components that cause variation in the instantaneous fuel consumption of vehicles ...

Napier, Parhys L

2011-01-01T23:59:59.000Z

92

Resource Consumption of Additive Manufacturing Technology.  

E-Print Network (OSTI)

??The degradation of natural resources as a result of consumption to support the economic growth of humans society represents one of the greatest sustainability challenges.… (more)

Nopparat, Nanond

2012-01-01T23:59:59.000Z

93

Trends in U.S. Residential Natural Gas Consumption  

Annual Energy Outlook 2012 (EIA)

the Residential Energy Consumption Survey. Energy Information Administration, Office of Oil and Gas, June 2010 1 Natural gas prices may have also contributed to the decrease...

94

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

3A. Total Fuel Oil Consumption and Expenditures for All Buildings, 2003 3A. Total Fuel Oil Consumption and Expenditures for All Buildings, 2003 All Buildings Using Fuel Oil Fuel Oil Consumption Fuel Oil Expenditures Number of Buildings (thousand) Floorspace (million square feet) Floorspace per Building (thousand square feet) Total (trillion Btu) Total (million gallons) Total (million dollars) All Buildings ................................ 465 16,265 35 228 1,644 1,826 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 211 606 3 34 249 292 5,001 to 10,000 .............................. 102 736 7 36 262 307 10,001 to 25,000 ............................ 66 1,043 16 28 201 238 25,001 to 50,000 ............................ 24 895 38 17 124 134 50,001 to 100,000 .......................... 25 1,852 76 29 209 229

95

Prod. of Oil, Gas & Coal - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Production of oil, gas, and coal. Projected supply and disposition of crude oil. The model now uses the EIA’s projections of production, imports, and consumption of ...

96

Running Out of and Into Oil: Analyzing Global Oil Depletion and Transition Through 2050  

DOE Green Energy (OSTI)

This report presents a risk analysis of world conventional oil resource production, depletion, expansion, and a possible transition to unconventional oil resources such as oil sands, heavy oil and shale oil over the period 2000 to 2050. Risk analysis uses Monte Carlo simulation methods to produce a probability distribution of outcomes rather than a single value. Probability distributions are produced for the year in which conventional oil production peaks for the world as a whole and the year of peak production from regions outside the Middle East. Recent estimates of world oil resources by the United States Geological Survey (USGS), the International Institute of Applied Systems Analysis (IIASA), the World Energy Council (WEC) and Dr. C. Campbell provide alternative views of the extent of ultimate world oil resources. A model of oil resource depletion and expansion for twelve world regions is combined with a market equilibrium model of conventional and unconventional oil supply and demand to create a World Energy Scenarios Model (WESM). The model does not make use of Hubbert curves but instead relies on target reserve-to-production ratios to determine when regional output will begin to decline. The authors believe that their analysis has a bias toward optimism about oil resource availability because it does not attempt to incorporate political or environmental constraints on production, nor does it explicitly include geologic constraints on production rates. Global energy scenarios created by IIASA and WEC provide the context for the risk analysis. Key variables such as the quantity of undiscovered oil and rates of technological progress are treated as probability distributions, rather than constants. Analyses based on the USGS and IIASA resource assessments indicate that conventional oil production outside the Middle East is likely to peak sometime between 2010 and 2030. The most important determinants of the date are the quantity of undiscovered oil, the rate at which unconventional oil production can be expanded, and the rate of growth of reserves and enhanced recovery. Analysis based on data produced by Campbell indicates that the peak of non-Middle East production will occur before 2010. For total world conventional oil production, the results indicate a peak somewhere between 2020 and 2050. Key determinants of the peak in world oil production are the rate at which the Middle East region expands its output and the minimum reserves-to-production ratios producers will tolerate. Once world conventional oil production peaks, first oil sands and heavy oil from Canada, Venezuela and Russia, and later some other source such as shale oil from the United States must expand if total world oil consumption is to continue to increase. Alternative sources of liquid hydrocarbon fuels, such as coal or natural gas are also possible resources but not considered in this analysis nor is the possibility of transition to a hydrogen economy. These limitations were adopted to simplify the transition analysis. Inspection of the paths of conventional oil production indicates that even if world oil production does not peak before 2020, output of conventional oil is likely to increase at a substantially slower rate after that date. The implication is that there will have to be increased production of unconventional oil after that date if world petroleum consumption is to grow.

Greene, D.L.

2003-11-14T23:59:59.000Z

97

Table 4. Crude oil production and resources (million barrels)  

U.S. Energy Information Administration (EIA)

2013 EIA/ARI unproved shale oil technically recoverable resources (TRR) 2012 USGS conventional unproved oil TRR, including reserve growth

98

Oil transport inside the oil control ring grove and its interaction with surrounding areas in internal combustion engines  

E-Print Network (OSTI)

In piston ring pack design, there is a tradeoff between reducing friction and increasing oil consumption. While friction reduces engine efficiency, oil consumption can poison exhaust aftertreatment systems. The primary ...

Senzer, Eric B

2012-01-01T23:59:59.000Z

99

EIA - Appendix B - High Economic Growth Case Projection Tables (1990-2030)  

Gasoline and Diesel Fuel Update (EIA)

8 > High Economic Growth Case Projection Tables (1990-2030) 8 > High Economic Growth Case Projection Tables (1990-2030) International Energy Outlook 2008 High Economic Growth Case Projection Tables (1990-2030) Formats Data Table Titles (1 to 12 complete) High Economic Growth Case Projection Tables. Need help, contact the National Energy Information Center at 202-586-8800. High World Oil Price Case Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table B1 World Total Primary Energy Consumption by Region Table B1. World Total Primary energy consumption by Region. Need help, contact the National Energy Information Center at 202-586-8800. Table B2 World Total Energy Consumption by Region and Fuel Table B2. World Total Energy Consumption by Region and Fuel. Need help, contact the National Energy Information Center at 202-586-8800.

100

Residential Energy Consumption Survey (RECS) - Energy Information  

NLE Websites -- All DOE Office Websites (Extended Search)

Consumption Survey (RECS) - U.S. Energy Information Consumption Survey (RECS) - U.S. Energy Information Administration (EIA) U.S. Energy Information Administration - EIA - Independent Statistics and Analysis Sources & Uses Petroleum & Other Liquids Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas Exploration and reserves, storage, imports and exports, production, prices, sales. Electricity Sales, revenue and prices, power plants, fuel use, stocks, generation, trade, demand & emissions. Consumption & Efficiency Energy use in homes, commercial buildings, manufacturing, and transportation. Coal Reserves, production, prices, employ- ment and productivity, distribution, stocks, imports and exports. Renewable & Alternative Fuels

Note: This page contains sample records for the topic "oil consumption growth" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Biochemically enhanced oil recovery and oil treatment  

DOE Patents (OSTI)

This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil.

Premuzic, Eugene T. (East Moriches, NY); Lin, Mow (Rocky Point, NY)

1994-01-01T23:59:59.000Z

102

Biochemically enhanced oil recovery and oil treatment  

DOE Patents (OSTI)

This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil. 62 figures.

Premuzic, E.T.; Lin, M.

1994-03-29T23:59:59.000Z

103

Chapter 4. Fuel Economy, Consumption and Expenditures  

U.S. Energy Information Administration (EIA) Indexed Site

4. Fuel Economy, Consumption, and Expenditures 4. Fuel Economy, Consumption, and Expenditures Chapter 4. Fuel Economy, Consumption, and Expenditures This chapter analyzes trends in fuel economy, fuel consumption, and fuel expenditures, using data unique to the Residential Transportation Energy Consumption Survey, as well as selected data from other sources. Analysis topics include the following: Following the oil supply and price disruptions caused by the Arab oil embargo of 1973-1974, motor gasoline price increases, the introduction of corporate average fuel economy standards, and environmental quality initiatives helped to spur major changes in vehicle technology. But have the many advances in vehicle technology resulted in measurable gains in the fuel economy of the residential vehicle fleet?

104

Analysis of federal incentives used to stimulate energy consumption  

SciTech Connect

Conclusions of an analysis which identifies and quantifies Federal incentives that have increased the consumption of coal, oil, natural gas, and electricity are summarized. Data on estimated cost of incentives used to stimulate energy consumption by incentive type and energy source are tabulated for coal, oil, gas, and electricity. It is suggested that the examination of past incentives can be useful in developing guidelines and limits for the use of incentives to stimulate consumption of solar energy. (MCW)

Cole, R.J.; Cone, B.W.; Emery, J.C.; Huelshoff, M.; Lenerz, D.E.; Marcus, A.; Morris, F.A.; Sheppard, W.J.; Sommers, P.

1981-04-01T23:59:59.000Z

105

RESIDENTIAL ENERGY CONSUMPTION SURVEY 1997 CONSUMPTION AND ...  

U.S. Energy Information Administration (EIA)

Residential Sector energy Intensities for 1978-1997 using data from EIA Residential Energy Consumption Survey.

106

Biochemical upgrading of oils  

DOE Patents (OSTI)

A process for biochemical conversion of heavy crude oils is provided. The process includes contacting heavy crude oils with adapted biocatalysts. The resulting upgraded oil shows, a relative increase in saturated hydrocarbons, emulsions and oxygenates and a decrease in compounds containing in organic sulfur, organic nitrogen and trace metals. Adapted microorganisms which have been modified under challenged growth processes are also disclosed.

Premuzic, Eugene T. (East Moriches, NY); Lin, Mow S. (Rocky Point, NY)

1999-01-12T23:59:59.000Z

107

Biochemical upgrading of oils  

DOE Patents (OSTI)

A process for biochemical conversion of heavy crude oils is provided. The process includes contacting heavy crude oils with adapted biocatalysts. The resulting upgraded oil shows, a relative increase in saturated hydrocarbons, emulsions and oxygenates and a decrease in compounds containing organic sulfur, organic nitrogen and trace metals. Adapted microorganisms which have been modified under challenged growth processes are also disclosed. 121 figs.

Premuzic, E.T.; Lin, M.S.

1999-01-12T23:59:59.000Z

108

Household energy and consumption and expenditures, 1990. Supplement, Regional  

Science Conference Proceedings (OSTI)

The purpose of this supplement to the Household Energy Consumption and Expenditures 1990 report is to provide information on the use of energy in residential housing units, specifically at the four Census regions and nine Census division levels. This report includes household energy consumption, expenditures, and prices for natural gas, electricity, fuel oil, liquefied petroleum gas (LPG), and kerosene as well as household wood consumption. For national-level data, see the main report, Household Energy Consumption and Expenditures 1990.

Not Available

1993-03-02T23:59:59.000Z

109

DEVELOPMENT OF IMPROVED ANAEROBIC GROWTH OF BACILLUS MOJAVENSIS STRAIN JF-2 FOR THE PURPOSE OF IMPROVED ANAEROBIC BIOSURFACTANT PRODUCTION FOR ENHANCED OIL RECOVERY  

SciTech Connect

Our work focuses on the use of microorganisms to recover petroleum hydrocarbons that remain entrapped after current recovery technologies reach their economic limit. Capillary forces between the hydrocarbon and aqueous phases are largely responsible for trapping the hydrocarbons in the pores of the rock and large reductions in the interfacial tension between the hydrocarbon and aqueous phases are needed for hydrocarbon mobilization (1-3, 10, 11). Microorganisms produce a variety of biosurfactants (4), several of which generate the ultra low interfacial tensions needed for hydrocarbon mobilization (4, 5, 8). In particular, the lipopeptide biosurfactant produced by Bacillus mojavensis strain JF-2 reduces the interfacial tension between hydrocarbon and aqueous phases to very low levels (<0.016 mN/m) (8) (9). B. mojavensis JF-2 grows under the environmental conditions found in many oil reservoirs, i. e., anaerobic, NaCl concentrations up to 80 g l{sup -1}, and temperatures up to 45 C (6, 7), making it ideally suited for in situ applications. However, anaerobic growth of B. mojavensis JF-2 was inconsistent and difficult to replicate, which limited its use for in situ applications. Our initial studies revealed that enzymatic digests, such as Proteose Peptone, were required for anaerobic growth of Bacillus mojavensis JF-2. Subsequent purification of the growth-enhancing factor in Proteose Peptone resulted in the identification of the growth-enhancing factor as DNA or deoxyribonucleosides. The addition of salmon sperm DNA, herring sperm DNA, E. coli DNA or synthetic DNA (single or double stranded) to Medium E all supported anaerobic growth of JF-2. Further, we found that JF-2 required all four deoxyribonucleosides (deoxyadeonosine, deoxyguanosine, deoxycytidine and thymidine) for growth under strict anaerobic conditions. The requirement for the deoxyribonucleosides did not occur under aerobic growth conditions. DNA was not used as a sole energy source; sucrose was required for anaerobic growth and biosurfactant production in DNA-supplemented Medium E. In addition to DNA or deoxyribonucleosides, nitrate, amino acids and vitamins were all required for anaerobic growth of JF-2. Bacillus mojavensisT (ABO21191), Bacillus mojavensis, strain ROB2 also required DNA or deoxyribonucleosides for anaerobic growth. The improved anaerobic growth of Bacillus mojavensis JF-2 was a prerequisite for studies that will lead to improved anaerobic biosurfactant production.

M.J. McInerney; M. Folmsbee; D. Nagle

2004-05-31T23:59:59.000Z

110

Consumption risk and the cross section of expected returns  

E-Print Network (OSTI)

This paper evaluates the central insight of the consumption capital asset pricing model that an asset’s expected return is determined by its equilibrium risk to consumption. Rather than measure risk by the contemporaneous covariance of an asset’s return and consumption growth, we measure risk by the covariance of an asset’s return and consumption growth cumulated over many quarters following the return. While contemporaneous consumption risk explains little of the variation in average returns across the 25 Fama-French portfolios, our measure of ultimate consumption risk at a horizon of three years explains a large fraction of this variation. I.

Jonathan A. Parker; Christian Julliard; John Cochrane; Kent Daniel; Albina Danilova; Pierre-olivier Gourinchas; Sydney Ludvigson

2005-01-01T23:59:59.000Z

111

Oil Price Shocks and Inflation  

E-Print Network (OSTI)

Oil prices have risen sharply over the last year, leading to concerns that we could see a repeat of the 1970s, when rising oil prices were accompanied by severe recessions and surging inflation. This Economic Letter examines the historical relationship between oil price shocks and inflation in light of some recent research and goes on to discuss what the recent jump in oil prices might mean for inflation in the future. Figure 1 Inflation and the relative price of oil The historical record Figure 1 plots the price of oil relative to the core personal consumption expenditures price index (PCEPI) together with the core PCEPI inflation

unknown authors

2005-01-01T23:59:59.000Z

112

Factors of material consumption  

E-Print Network (OSTI)

Historic consumption trends for materials have been studied by many researchers, and, in order to identify the main drivers of consumption, special attention has been given to material intensity, which is the consumption ...

Silva Díaz, Pamela Cristina

2012-01-01T23:59:59.000Z

113

Consumptive water use in the production of ethanonl and petroleum gasoline.  

DOE Green Energy (OSTI)

The production of energy feedstocks and fuels requires substantial water input. Not only do biofuel feedstocks like corn, switchgrass, and agricultural residues need water for growth and conversion to ethanol, but petroleum feedstocks like crude oil and oil sands also require large volumes of water for drilling, extraction, and conversion into petroleum products. Moreover, in many cases, crude oil production is increasingly water dependent. Competing uses strain available water resources and raise the specter of resource depletion and environmental degradation. Water management has become a key feature of existing projects and a potential issue in new ones. This report examines the growing issue of water use in energy production by characterizing current consumptive water use in liquid fuel production. As used throughout this report, 'consumptive water use' is the sum total of water input less water output that is recycled and reused for the process. The estimate applies to surface and groundwater sources for irrigation but does not include precipitation. Water requirements are evaluated for five fuel pathways: bioethanol from corn, ethanol from cellulosic feedstocks, gasoline from Canadian oil sands, Saudi Arabian crude, and U.S. conventional crude from onshore wells. Regional variations and historic trends are noted, as are opportunities to reduce water use.

Wu, M.; Mintz, M.; Wang, M.; Arora, S.; Energy Systems

2009-01-30T23:59:59.000Z

114

Consumptive water use in the production of ethanonl and petroleum gasoline.  

SciTech Connect

The production of energy feedstocks and fuels requires substantial water input. Not only do biofuel feedstocks like corn, switchgrass, and agricultural residues need water for growth and conversion to ethanol, but petroleum feedstocks like crude oil and oil sands also require large volumes of water for drilling, extraction, and conversion into petroleum products. Moreover, in many cases, crude oil production is increasingly water dependent. Competing uses strain available water resources and raise the specter of resource depletion and environmental degradation. Water management has become a key feature of existing projects and a potential issue in new ones. This report examines the growing issue of water use in energy production by characterizing current consumptive water use in liquid fuel production. As used throughout this report, 'consumptive water use' is the sum total of water input less water output that is recycled and reused for the process. The estimate applies to surface and groundwater sources for irrigation but does not include precipitation. Water requirements are evaluated for five fuel pathways: bioethanol from corn, ethanol from cellulosic feedstocks, gasoline from Canadian oil sands, Saudi Arabian crude, and U.S. conventional crude from onshore wells. Regional variations and historic trends are noted, as are opportunities to reduce water use.

Wu, M.; Mintz, M.; Wang, M.; Arora, S.; Energy Systems

2009-01-30T23:59:59.000Z

115

All Consumption Tables  

U.S. Energy Information Administration (EIA)

2010 Consumption Summary Tables. Table C1. Energy Consumption Overview: Estimates by Energy Source and End-Use Sector, 2010 (Trillion Btu) ... Ranked by State, 2010

116

Vehicle Technologies Office: Fact #334: August 23, 2004 China Is #2 in Oil  

NLE Websites -- All DOE Office Websites (Extended Search)

4: August 23, 4: August 23, 2004 China Is #2 in Oil Consumption to someone by E-mail Share Vehicle Technologies Office: Fact #334: August 23, 2004 China Is #2 in Oil Consumption on Facebook Tweet about Vehicle Technologies Office: Fact #334: August 23, 2004 China Is #2 in Oil Consumption on Twitter Bookmark Vehicle Technologies Office: Fact #334: August 23, 2004 China Is #2 in Oil Consumption on Google Bookmark Vehicle Technologies Office: Fact #334: August 23, 2004 China Is #2 in Oil Consumption on Delicious Rank Vehicle Technologies Office: Fact #334: August 23, 2004 China Is #2 in Oil Consumption on Digg Find More places to share Vehicle Technologies Office: Fact #334: August 23, 2004 China Is #2 in Oil Consumption on AddThis.com... Fact #334: August 23, 2004 China Is #2 in Oil Consumption

117

Modelling road and rail freight energy consumption: A comparative study.  

E-Print Network (OSTI)

??After reviewing land based freight growth trends nationally and internationally, this thesis discusses the main parameters governing fuel consumption, as well as past approaches in… (more)

Parajuli, Ashis

2005-01-01T23:59:59.000Z

118

Table WH3. Total Consumption for Water Heating by Major Fuels Used ...  

U.S. Energy Information Administration (EIA)

Table WH3. Total Consumption for Water Heating by Major Fuels Used, 2005 Physical Units Electricity (billion kWh) Natural Gas (billion cf) Fuel Oil

119

Table SH7. Average Consumption for Space Heating by Main Space ...  

U.S. Energy Information Administration (EIA)

Fuel Oil (gallons) Main Space Heating Fuel Used (physical units of consumption per household using the fuel as a main heating source) Table SH7.

120

Table SH8. Average Consumption for Space Heating by Main Space ...  

U.S. Energy Information Administration (EIA)

Fuel Oil Main Space Heating Fuel Used (million Btu of consumption per household using the fuel as a main heating source) Any Major Fuel 4 Table SH8.

Note: This page contains sample records for the topic "oil consumption growth" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Heating Degree Day Data Applied to Residential Heating Energy Consumption  

Science Conference Proceedings (OSTI)

Site-specific total electric energy and heating oil consumption for individual residences show a very high correlation with National Weather Service airport temperature data when transformed to heating degree days. Correlations of regional total ...

Robert G. Quayle; Henry F. Diaz

1980-03-01T23:59:59.000Z

122

BP Oil Spill Footage (High Def) - Leak at 4850' - June 3 2010...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

--Solar --Wind --Geothermal --Bioenergy -Fossil --Oil --Natural Gas -Nuclear Energy Usage -Storage --Hydrogen & Fuel Cells -Transmission -Consumption -Smart Grid Science...

123

BP Oil Spill Footage (High Def) - Top Hat Procedure at 4850'...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

--Solar --Wind --Geothermal --Bioenergy -Fossil --Oil --Natural Gas -Nuclear Energy Usage -Storage --Hydrogen & Fuel Cells -Transmission -Consumption -Smart Grid Science...

124

Crude Oil, Heating Oil, and Propane Market Outlook  

U.S. Energy Information Administration (EIA)

... March 2003 Price Spike August 2003 Price Spike Quarterly World Oil Demand Growth from Previous Year Overview of Market Fundamentals Tight balance in global ...

125

Electricity Consumption Electricity Consumption EIA Electricity Consumption Estimates  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Consumption Consumption Electricity Consumption EIA Electricity Consumption Estimates (million kWh) National Petroleum Council Assumption: The definition of electricity con- sumption and sales used in the NPC 1999 study is the equivalent ofwhat EIA calls "sales by utilities" plus "retail wheeling by power marketers." This A nn u al Gro wth total could also be called "sales through the distribution grid," 2o 99 99 to Sales by Utilities -012% #N/A Two other categories of electricity consumption tracked by EIA cover on site Retail Wheeling Sales by generation for host use. The first, "nonutility onsite direct use," covers the Power Marketen 212.25% #N/A traditional generation/cogeneration facilities owned by industrial or large All Sales Through Distribution

126

Table E3.1. Fuel Consumption, 1998  

U.S. Energy Information Administration (EIA) Indexed Site

E3.1. Fuel Consumption, 1998;" E3.1. Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," ","RSE" "Economic",,"Net","Residual","Distillate",,"LPG and",,"Coke and"," ","Row" "Characteristic(a)","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","Breeze","Other(f)","Factors"

127

Table 4.3 Offsite-Produced Fuel Consumption, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

3 Offsite-Produced Fuel Consumption, 2002;" 3 Offsite-Produced Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," ","RSE" "Economic",,,"Residual","Distillate","Natural ","LPG and",,"Coke and"," ","Row" "Characteristic(a)","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","Coal","Breeze","Other(f)","Factors"

128

Consumption Technical Notes  

U.S. Energy Information Administration (EIA)

as street lighting and public services; and the Manufacturing Energy Consumption Survey covers only manufacturing establishments,

129

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

A9. A9. Total Inputs of Energy for Heat, Power, and Electricity Generation by Fuel Type, Census Region, and End Use, 1994: Part 1 (Estimates in Btu or Physical Units) See footnotes at end of table. Energy Information Administration/Manufacturing Consumption of Energy 1994 166 End-Use Categories (trillion Btu) kWh) (1000 bbl) (1000 bbl) cu ft) (1000 bbl) tons) (trillion Btu) Total (million Fuel Oil Diesel Fuel (billion LPG (1000 short Other Net Distillate Natural and Electricity Residual Fuel Oil and Gas Breeze) a b c Coal (excluding Coal Coke d RSE Row Factors Total United States RSE Column Factors: NF 0.5 1.3 1.4 0.8 1.2 1.2 NF TOTAL INPUTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16,515 778,335 70,111 26,107 5,962 25,949 54,143 5,828 2.7 Indirect Uses-Boiler Fuel . . . . . . . . . . . . . . . . . . . . . . . --

130

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

0. 0. Number of Establishments that Actually Switched Fuels from Natural Gas to Residual Fuel Oil, by Industry Group and Selected Industries, 1994 369 Energy Information Administration/Manufacturing Consumption of Energy 1994 SIC Residual Fuel Oil Total Code Industry Group and Industry (billion cu ft) Factors (counts) (counts) (percents) (counts) (percents) a Natural Gas Switchable to Establishments RSE Row Able to Switch Actually Switched RSE Column Factors: 1.3 0.1 1.4 1.7 1.6 1.8 20 Food and Kindred Products . . . . . . . . . . . . . . . . . . . . . . . . . 81 14,698 702 4.8 262 1.8 5.6 2011 Meat Packing Plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 759 23 3.0 10 1.3 9.0 2033 Canned Fruits and Vegetables . . . . . . . . . . . . . . . . . . . . . 9 531 112 21.2 33 6.2 11.6 2037 Frozen Fruits and Vegetables . . . . . . . . . . . . . . . . . . . . . . 5 232 Q 5.3

131

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

5A. Fuel Oil Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 5A. Fuel Oil Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 Total Fuel Oil Consumption (million gallons) Total Floorspace of Buildings Using Fuel Oil (million square feet) Fuel Oil Energy Intensity (gallons/square foot) North- east Mid- west South West North- east Mid- west South West North- east Mid- west South West All Buildings .............................. 1,302 172 107 64 6,464 2,909 4,663 2,230 0.20 0.06 0.02 Q Building Floorspace (Square Feet) 1,001 to 10,000 ............................ 381 Q Q Q 763 Q 274 Q 0.50 Q 0.10 Q 10,001 to 100,000 ........................ 404 63 Q Q 1,806 648 985 351 0.22 0.10 Q Q Over 100,000 ............................... 517 21 45 Q 3,894 2,055 3,404 1,780 0.13 0.01 0.01 Q

132

World energy consumption  

Science Conference Proceedings (OSTI)

Historical and projected world energy consumption information is displayed. The information is presented by region and fuel type, and includes a world total. Measurements are in quadrillion Btu. Sources of the information contained in the table are: (1) history--Energy Information Administration (EIA), International Energy Annual 1992, DOE/EIA-0219(92); (2) projections--EIA, World Energy Projections System, 1994. Country amounts include an adjustment to account for electricity trade. Regions or country groups are shown as follows: (1) Organization for Economic Cooperation and Development (OECD), US (not including US territories), which are included in other (ECD), Canada, Japan, OECD Europe, United Kingdom, France, Germany, Italy, Netherlands, other Europe, and other OECD; (2) Eurasia--China, former Soviet Union, eastern Europe; (3) rest of world--Organization of Petroleum Exporting Countries (OPEC) and other countries not included in any other group. Fuel types include oil, natural gas, coal, nuclear, and other. Other includes hydroelectricity, geothermal, solar, biomass, wind, and other renewable sources.

NONE

1995-12-01T23:59:59.000Z

133

Status and outlook for shale gas and tight oil development in the U.S.  

Gasoline and Diesel Fuel Update (EIA)

IFRI IFRI March 14, 2013 | Paris, France by Adam Sieminski, Administrator Annual Energy Outlook 2013 projections to 2040 2 * Growth in energy production outstrips consumption growth * Crude oil production rises sharply over the next decade * Motor gasoline consumption reflects more stringent fuel economy standards * The U.S. becomes a net exporter of natural gas in the early 2020s * U.S. energy-related carbon dioxide emissions remain below their 2005 level through 2040 Adam Sieminski , IFRI March 14, 2013 U.S. energy use grows slowly over the projection reflecting improving energy efficiency and slow, extended economic recovery 3 U.S. primary energy consumption quadrillion Btu Adam Sieminski , IFRI March 14, 2013 History Projections 2011 36% 20%

134

Status and outlook for shale gas and tight oil development in the U.S.  

Gasoline and Diesel Fuel Update (EIA)

Platts - North American Crude Marketing Conference Platts - North American Crude Marketing Conference March 01, 2013 | Houston, TX by Adam Sieminski, Administrator Annual Energy Outlook 2013 projections to 2040 Adam Sieminski , Platts, March 01, 2013 2 * Growth in energy production outstrips consumption growth * Crude oil production rises sharply over the next decade * Motor gasoline consumption reflects more stringent fuel economy standards * The U.S. becomes a net exporter of natural gas in the early 2020s * U.S. energy-related carbon dioxide emissions remain below their 2005 level through 2040 U.S. energy use grows slowly over the projection reflecting improving energy efficiency and slow, extended economic recovery 3 U.S. primary energy consumption quadrillion Btu

135

Table 3.5 Selected Byproducts in Fuel Consumption, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

5 Selected Byproducts in Fuel Consumption, 2002;" 5 Selected Byproducts in Fuel Consumption, 2002;" " Level: National Data and Regional Totals; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," ","Waste"," ",," " " "," "," ","Blast"," "," ","Pulping Liquor"," ","Oils/Tars","RSE" "NAICS"," "," ","Furnace/Coke","Waste","Petroleum","or","Wood Chips,","and Waste","Row"

136

Comparison of Life Cycle Emissions and Energy Consumption for  

E-Print Network (OSTI)

Comparison of Life Cycle Emissions and Energy Consumption for Environmentally Adapted Metalworking to significantly influence the environmental burdens of all fluids, energy consumption was relatively constant and consumed without long-distance transportation. MWF Production Each MWF is composed of lubricant oil

Clarens, Andres

137

Consumer Winter Heating Oil Costs  

Gasoline and Diesel Fuel Update (EIA)

5 5 Notes: Using the Northeast as a regional focus for heating oil, the typical oil-heated household consumes about 680 gallons of oil during the winter, assuming that weather is "normal." The previous three winters were warmer than average and generated below normal consumption rates. Last winter, consumers saw large increases over the very low heating oil prices seen during the winter of 1998-1999 but, outside of the cold period in late January/early February they saw relatively low consumption rates due to generally warm weather. Even without particularly sharp cold weather events this winter, we think consumers are likely to see higher average heating oil prices than were seen last winter. If weather is normal, our projections imply New England heating oil

138

Fuel Consumption - Energy Information Administration  

U.S. Energy Information Administration (EIA)

The Energy Information Administration, Residential Energy Consumption Survey(RTECS), 1994 Fuel Consumption

139

Vehicle Technologies Office: Fact #487: September 17, 2007 World Oil  

NLE Websites -- All DOE Office Websites (Extended Search)

7: September 17, 7: September 17, 2007 World Oil Reserves, Production, and Consumption, 2006 to someone by E-mail Share Vehicle Technologies Office: Fact #487: September 17, 2007 World Oil Reserves, Production, and Consumption, 2006 on Facebook Tweet about Vehicle Technologies Office: Fact #487: September 17, 2007 World Oil Reserves, Production, and Consumption, 2006 on Twitter Bookmark Vehicle Technologies Office: Fact #487: September 17, 2007 World Oil Reserves, Production, and Consumption, 2006 on Google Bookmark Vehicle Technologies Office: Fact #487: September 17, 2007 World Oil Reserves, Production, and Consumption, 2006 on Delicious Rank Vehicle Technologies Office: Fact #487: September 17, 2007 World Oil Reserves, Production, and Consumption, 2006 on Digg Find More places to share Vehicle Technologies Office: Fact #487:

140

Vehicle Technologies Office: Fact #336: September 6, 2004 World Oil  

NLE Websites -- All DOE Office Websites (Extended Search)

6: September 6, 6: September 6, 2004 World Oil Reserves, Production, and Consumption, 2003 to someone by E-mail Share Vehicle Technologies Office: Fact #336: September 6, 2004 World Oil Reserves, Production, and Consumption, 2003 on Facebook Tweet about Vehicle Technologies Office: Fact #336: September 6, 2004 World Oil Reserves, Production, and Consumption, 2003 on Twitter Bookmark Vehicle Technologies Office: Fact #336: September 6, 2004 World Oil Reserves, Production, and Consumption, 2003 on Google Bookmark Vehicle Technologies Office: Fact #336: September 6, 2004 World Oil Reserves, Production, and Consumption, 2003 on Delicious Rank Vehicle Technologies Office: Fact #336: September 6, 2004 World Oil Reserves, Production, and Consumption, 2003 on Digg Find More places to share Vehicle Technologies Office: Fact #336:

Note: This page contains sample records for the topic "oil consumption growth" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Oil Exports and the Iranian Economy  

E-Print Network (OSTI)

This paper presents an error-correcting macroeconometric model for the Iranian economy estimated using a new quarterly data set over the period 1979Q1-2006Q4. It builds on a recent paper by the authors, Esfahani et al. (2012), which develops a theoretical long-run growth model for major oil exporting economies. The core variables included in this paper are real output, real money balances, in‡ation, exchange rate, oil exports, and foreign real output, although the role of investment and consumption are also analyzed in a sub-model. The paper …nds clear evidence for the existence of two long-run relations: an output equation as predicted by the theory and a standard real money demand equation with in‡ation acting as a proxy for the (missing) market interest rate. The results show that real output in the long run is in‡uenced by oil exports and foreign output. However, it is also found that in‡ation has a signi…cant negative long-run e¤ect on real GDP, which is suggestive of economic ine ¢ ciencies and is matched by a negative association between in‡ation and the investment-output ratio. Finally, the results of impulse responses show that the Iranian economy adjusts quite quickly to the shocks in foreign output and oil exports, which could be partly due to the relatively underdeveloped nature of Iran’s …nancial markets.

Hadi Salehi Esfahani A; Kamiar Mohaddes; M. Hashem Pesaran Bc

2012-01-01T23:59:59.000Z

142

OIL & GAS HISTORY 1 History in California  

E-Print Network (OSTI)

to reduce consumption of imported oil, developing renewable diesel plays a vital role industry is the availablilty of affordable vegetable oil feedstocks and the competition of current feedstocks (primarily soybean) with food and feed markets. The price of October 2009 Chicago soybean oil

143

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

C3. Primary Energy Consumption Estimates, 2011 C3. Primary Energy Consumption Estimates, 2011 (Trillion Btu) State Fossil Fuels Fossil Fuels (as commingled) Coal Natural Gas excluding Supplemental Gaseous Fuels a Petroleum Total Natural Gas including Supplemental Gaseous Fuels a Motor Gasoline including Fuel Ethanol a Distillate Fuel Oil Jet Fuel b LPG c Motor Gasoline excluding Fuel Ethanol a Residual Fuel Oil Other d Total Alabama ........... 651.0 614.8 156.5 13.4 12.8 304.5 13.4 49.1 549.5 1,815.4 614.8 319.8 Alaska ............... 15.5 337.0 85.1 118.2 1.3 31.9 1.9 28.6 267.1 619.6 337.0 34.6 Arizona ............. 459.9 293.7 151.8 21.5 9.1 297.3 (s) 21.1 500.9 1,254.5 293.7 323.4 Arkansas ........... 306.1 288.6 134.9 5.9 9.4 165.4 0.2 19.8 335.7 930.5 288.6 175.6 California .......... 55.3 2,196.6 567.0 549.7 67.2 1,695.4 186.9 339.6 3,405.8 5,657.6 2,196.6

144

MECS Fuel Oil Figures  

U.S. Energy Information Administration (EIA) Indexed Site

: Percentage of Total Purchased Fuels by Type of Fuel : Percentage of Total Purchased Fuels by Type of Fuel Figure 1. Percent of Total Purchased Fuel Sources: Energy Information Administration. Office of Energy Markets and End Use, Manufacturing Energy Consumption Survey (MECS): Consumption of Energy; U.S. Department of Commerce, Bureau of the Census, Annual Survey of Manufactures (ASM): Statistics for Industry Groups and Industries: Statistical Abstract of the United States. Note: The years below the line on the "X" Axis are interpolated data--not directly from the Manufacturing Energy Consumption Survey or the Annual Survey of Manufactures. Figure 2: Changes in the Ratios of Distillate Fuel Oil to Natural Gas Figure 2. Changes in the Ratios of Distillate Fuel Oil to Natural Gas Sources: Energy Information Administration. Office of

145

Short-Term Energy Outlook Model Documentation: Other Petroleum Products Consumption Model  

Reports and Publications (EIA)

The other petroleum product consumption module of the Short-Term Energy Outlook (STEO) model is designed to provide U.S. consumption forecasts for 6 petroleum product categories: asphalt and road oil, petrochemical feedstocks, petroleum coke, refinery still gas, unfinished oils, and other miscvellaneous products

Tancred Lidderdale

2011-11-30T23:59:59.000Z

146

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

4A. Fuel Oil Consumption and Expenditure Intensities for All Buildings, 2003 4A. Fuel Oil Consumption and Expenditure Intensities for All Buildings, 2003 Fuel Oil Consumption Fuel Oil Expenditures per Building (gallons) per Square Foot (gallons) per Building (thousand dollars) per Square Foot (dollars) per Gallon (dollars) All Buildings ................................ 3,533 0.10 3.9 0.11 1.11 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 1,177 0.41 1.4 0.48 1.18 5,001 to 10,000 .............................. 2,573 0.36 3.0 0.42 1.17 10,001 to 25,000 ............................ 3,045 0.19 3.6 0.23 1.18 25,001 to 50,000 ............................ 5,184 0.14 5.6 0.15 1.09 50,001 to 100,000 .......................... 8,508 0.11 9.3 0.12 1.10 100,001 to 200,000 ........................ 12,639 0.09 13.1 0.09 1.03

147

Vehicle Technologies Office: Fact #578: July 6, 2009 World Oil...  

NLE Websites -- All DOE Office Websites (Extended Search)

was responsible for 8% of the world's petroleum production, held 2% of the world's crude oil reserves, and consumed 24% of the world's petroleum consumption in 2007. The...

148

Vehicle Technologies Office: Fact #432: July 10, 2006 World Oil...  

NLE Websites -- All DOE Office Websites (Extended Search)

was responsible for 8% of the world's petroleum production, held 2% of the world's crude oil reserves, and consumed 25% of the world's petroleum consumption in 2005. The...

149

UK Energy Consumption by Sector The energy consumption data consists...  

Open Energy Info (EERE)

Consumption by Sector The energy consumption data consists of five spreadsheets: "overall data tables" plus energy consumption data for each of the following...

150

Crude Oil  

U.S. Energy Information Administration (EIA) Indexed Site

Barrels) Product: Crude Oil Liquefied Petroleum Gases Distillate Fuel Oil Residual Fuel Oil Still Gas Petroleum Coke Marketable Petroleum Coke Catalyst Petroleum Coke Other...

151

OIL PRODUCTION  

NLE Websites -- All DOE Office Websites (Extended Search)

OIL PRODUCTION Enhanced Oil Recovery (EOR) is a term applied to methods used for recovering oil from a petroleum reservoir beyond that recoverable by primary and secondary methods....

152

Commercial Buildings Energy Consumption and Expenditures 1992 - Executive  

U.S. Energy Information Administration (EIA) Indexed Site

& Expenditures > Executive Summary & Expenditures > Executive Summary 1992 Consumption & Expenditures Executive Summary Commercial Buildings Energy Consumption and Expenditures 1992 presents statistics about the amount of energy consumed in commercial buildings and the corresponding expenditures for that energy. These data are based on the 1992 Commercial Buildings Energy Consumption Survey (CBECS), a national energy survey of buildings in the commercial sector, conducted by the Energy Information Administration (EIA) of the U.S. Department of Energy. Figure ES1. Energy Consumption is Commercial Buidings by Energy Source, 1992 Energy Consumption: In 1992, the 4.8 million commercial buildings in the United States consumed 5.5 quadrillion Btu of electricity, natural gas, fuel oil, and district heat. Of those 5.5 quadrillion Btu, consumption of site electricity accounted for 2.6 quadrillion Btu, or 48.0 percent, and consumption of natural gas accounted for 2.2 quadrillion Btu, or 39.6 percent. Fuel oil consumption made up 0.3 quadrillion Btu, or 4.0 percent of the total, while consumption of district heat made up 0.4 quadrillion Btu, or 7.9 percent of energy consumption in that sector. When the energy losses that occur at the electricity generating plants are included, the overall energy consumed by commercial buildings increases to about 10.8 quadrillion Btu (Figure ES1).

153

Connected Consumption: The hidden networks of consumption  

E-Print Network (OSTI)

In this paper, we present the Connected Consumption Network (CCN) that allows a community of consumers to collaboratively sense the market from a mobile device, enabling more informed financial decisions in geo-local ...

Reed, David P.

154

Manufacturing Energy Consumption Survey (MECS) - Data - U.S. Energy  

U.S. Energy Information Administration (EIA) Indexed Site

1 MECS Survey Data 2010 | 2006 | 2002 | 1998 | 1994 | 1991 | Archive 1 MECS Survey Data 2010 | 2006 | 2002 | 1998 | 1994 | 1991 | Archive Data Methodology & Forms + EXPAND ALL Consumption of Energy for All Purposes (First Use) Total Primary Consumption of Energy for All Purposes by Census Region, Industry Group, and Selected Industries, 1991: Part 1 (Estimates in Btu or Physical Units) XLS Total Primary Consumption of Energy for All Purposes by Census Region, Industry Group, and Selected Industries, 1991: Part 2 (Estimates in Trillion Btu) XLS Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel Oil for Selected Purposes by Census Region, Industry Group, and Selected Industries, 1991 (Estimates in Barrels per Day) XLS Total Primary Consumption of Energy for All Purposes by Census Region and Economic Characteristics of the Establishment, 1991 (Estimates in Btu or Physical Units) XLS

155

Consumer Winter Heating Oil Costs  

Gasoline and Diesel Fuel Update (EIA)

6 6 Notes: The outlook for heating oil costs this winter, due to high crude oil costs and tight heating oil supplies, breaks down to an expected increase in heating expenditures for a typical oil-heated household of more than $200 this winter, the result of an 18% increase in the average price and an 11% increase in consumption. The consumption increase is due to the colder than normal temperatures experienced so far this winter and our expectations of normal winter weather for the rest of this heating season. Last winter, Northeast heating oil (and diesel fuel) markets experienced an extremely sharp spike in prices when a severe weather situation developed in late January. It is virtually impossible to gauge the probability of a similar (or worse) price shock recurring this winter,

156

CSV File Documentation: Consumption  

Gasoline and Diesel Fuel Update (EIA)

Consumption Consumption The State Energy Data System (SEDS) comma-separated value (CSV) files contain consumption estimates shown in the tables located on the SEDS website. There are four files that contain estimates for all states and years. Consumption in Physical Units contains the consumption estimates in physical units for all states; Consumption in Btu contains the consumption estimates in billion British thermal units (Btu) for all states. There are two data files for thermal conversion factors: the CSV file contains all of the conversion factors used to convert data between physical units and Btu for all states and the United States, and the Excel file shows the state-level conversion factors for coal and natural gas in six Excel spreadsheets. Zip files are also available for the large data files. In addition, there is a CSV file for each state, named

157

Summary World Oil Data (from World on the Edge) | OpenEI  

Open Energy Info (EERE)

Oil Data (from World on the Edge) Oil Data (from World on the Edge) Dataset Summary Description This dataset presents summary information related to world oil. It is part of a supporting dataset for the book World On the Edge: How to Prevent Environmental and Economic Collapse by Lester R. Brown, available from the Earth Policy Institute. This world oil dataset includes the following data: World oil production (1950 - 2009): Top 20 producing countries (2009); Oil production in U.S. (1900 - 2009); Oil consumption in U.S. (950 - 2010); Oil consumption in China (1965 - 2009); Oil consumption in E.U. (1965 - 2009); Top 20 oil importing countries (2009); World's 20 largest oil discoveries; Real price of gasoline (2007); Retail gas prices by country (2008); and fossil fuel consumption subsidies (2009).

158

"Table A52. Nonswitchable Minimum Requirements and Maximum Consumption"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Nonswitchable Minimum Requirements and Maximum Consumption" 2. Nonswitchable Minimum Requirements and Maximum Consumption" " Potential by Census Region, 1991" " (Estimates in Physical Units)" ,,,,"RSE" ,"Actual","Minimum","Maximum","Row" "Type of Energy","Consumption","Consumption(a)","Consumption(b)","Factors" "RSE Column Factors:",1,1.2,0.8 ," Total United States" ,"-","-","-" "Electricity Receipts(c) (million kilowatthours)",718480,701478,766887,2 "Natural Gas (billion cubic feet)",5345,3485,5887,2 "Distillate Fuel Oil (thousand barrels)",23885,19113,201081,3.7 "Residual Fuel Oil (thousand barrels)",65837,36488,201921,2.6

159

Table 3.1 Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

1 Fuel Consumption, 2010; 1 Fuel Consumption, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Net Residual Distillate Natural Gas(d) LPG and Coal and Breeze NAICS Total Electricity(b) Fuel Oil Fuel Oil(c) (billion NGL(e) (million (million Other(f) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 1,158 75,407 2 4 563 1 8 * 99 3112 Grain and Oilseed Milling 350 16,479 * * 118 * 6 0 45 311221 Wet Corn Milling 214 7,467 * * 51 * 5 0 25 31131 Sugar Manufacturing 107 1,218 * * 15 * 2 * 36 3114 Fruit and Vegetable Preserving and Specialty Foods 143 9,203

160

consumption | OpenEI  

Open Energy Info (EERE)

consumption consumption Dataset Summary Description This dataset is from the report Operational water consumption and withdrawal factors for electricity generating technologies: a review of existing literature (J. Macknick, R. Newmark, G. Heath and K.C. Hallett) and provides estimates of operational water withdrawal and water consumption factors for electricity generating technologies in the United States. Estimates of water factors were collected from published primary literature and were not modified except for unit conversions. Source National Renewable Energy Laboratory Date Released August 28th, 2012 (2 years ago) Date Updated Unknown Keywords coal consumption csp factors geothermal PV renewable energy technologies Water wind withdrawal Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon Operational water consumption and withdrawal factors for electricity generating technologies (xlsx, 32.3 KiB)

Note: This page contains sample records for the topic "oil consumption growth" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

EIA - International Energy Outlook 2007-Low World Oil Price Projections  

Gasoline and Diesel Fuel Update (EIA)

Low World Oil Price Case Projections (1990-2030) Low World Oil Price Case Projections (1990-2030) International Energy Outlook 2007 Low World Oil Price Projections Tables (1990-2030) Formats Table Data Titles (1 to 12 complete) Low World Oil Price Projections Tables. Need help, contact the National Energy Information Center at 202-586-8800. Low World Oil Price Projections Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table E1 World Total Energy Consumption by Region, Low World Oil Price Case Table E1. World Total Energy Consumption by Region. Need help, contact the National Energy Information Center at 202-586-8800. Table E2 World Total Energy Consumption by Region and Fuel, Low World Oil Price Case Table E2. World Total Energy Consumption by Region and Fuel. Need help, contact the National Energy Information Center at 202-586-8800.

162

Energy consumption in the pipeline industry  

SciTech Connect

Estimates are developed of the energy consumption and energy intensity (EI) of five categories of U.S. pipeline industries: natural gas, crude oil, petroleum products, coal slurry, and water. For comparability with other transportation modes, it is desirable to calculate EI in Btu/Ton-Mile, and this is done, although the necessary unit conversions introduce additional uncertainties. Since water and sewer lines operate by lift and gravity, a comparable EI is not definable.

Banks, W. F.

1977-12-31T23:59:59.000Z

163

Sustainable alternatives to fish meal and fish oil in fish nutrition: Effects on growth, tissue fatty acid composition and lipid metabolism.  

E-Print Network (OSTI)

??Traditionally, fish meal (FM) and fish oil (FO) have been used extensively in aquafeeds, mainly due to their excellent nutritional properties. However, various reasons dictate… (more)

Karalazos, Vasileios

2007-01-01T23:59:59.000Z

164

RECENT TRENDS IN EMERGING TRANSPORTATION FUELS AND ENERGY CONSUMPTION  

Science Conference Proceedings (OSTI)

Abundance of energy can be improved both by developing new sources of fuel and by improving efficiency of energy utilization, although we really need to pursue both paths to improve energy accessibility in the future. Currently, 2.7 billion people or 38% of the world s population do not have access to modern cooking fuel and depend on wood or dung and 1.4 billion people or 20% do not have access to electricity. It is estimated that correcting these deficiencies will require an investment of $36 billion dollars annually through 2030. In growing economies, energy use and economic growth are strongly linked, but energy use generally grows at a lower rate due to increased access to modern fuels and adaptation of modern, more efficient technology. Reducing environmental impacts of increased energy consumption such as global warming or regional emissions will require improved technology, renewable fuels, and CO2 reuse or sequestration. The increase in energy utilization will probably result in increased transportation fuel diversity as fuels are shaped by availability of local resources, world trade, and governmental, environmental, and economic policies. The purpose of this paper is to outline some of the recently emerging trends, but not to suggest winners. This paper will focus on liquid transportation fuels, which provide the highest energy density and best match with existing vehicles and infrastructure. Data is taken from a variety of US, European, and other sources without an attempt to normalize or combine the various data sources. Liquid transportation fuels can be derived from conventional hydrocarbon resources (crude oil), unconventional hydrocarbon resources (oil sands or oil shale), and biological feedstocks through a variety of biochemical or thermo chemical processes, or by converting natural gas or coal to liquids.

Bunting, Bruce G [ORNL

2012-01-01T23:59:59.000Z

165

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

2 2 State Energy Data 2011: Consumption Table C9. Electric Power Sector Consumption Estimates, 2011 (Trillion Btu) State Coal Natural Gas a Petroleum Nuclear Electric Power Hydroelectric Power b Biomass Geothermal Solar/PV d Wind Net Electricity Imports e Total f Distillate Fuel Oil Petroleum Coke Residual Fuel Oil Total Wood and Waste c Alabama ............. 586.1 349.4 1.1 0.0 0.0 1.1 411.8 86.3 4.6 0.0 0.0 0.0 0.0 1,439.3 Alaska ................. 6.0 42.3 3.3 0.0 1.5 4.8 0.0 13.1 0.0 0.0 0.0 0.1 (s) 66.3 Arizona ............... 449.9 183.9 0.6 0.0 0.0 0.6 327.3 89.1 2.4 0.0 0.8 2.5 1.5 1,057.9 Arkansas ............. 300.5 109.2 0.5 0.0 0.1 0.6 148.5 28.7 1.3 0.0 0.0 0.0 0.0 588.9 California ............ 19.7 630.1 0.4 11.1 (s) 11.5 383.6 413.4 69.0 122.0 8.4 75.3 20.1 1,753.1 Colorado ............. 362.4 88.1 0.3 0.0 0.0 0.3 0.0 20.2 0.9

166

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

C4. Total End-Use Energy Consumption Estimates, 2011 C4. Total End-Use Energy Consumption Estimates, 2011 (Trillion Btu) State Coal Natural Gas a Petroleum Hydro- electric power f Biomass Geo- thermal Solar/PV i Retail Electricity Sales Net Energy j,k Electrical System Energy Losses l Total j,k Distillate Fuel Oil Jet Fuel b LPG c Motor Gasoline d Residual Fuel Oil Other e Total Wood and Waste g Losses and Co- products h Alabama ........... 65.0 265.4 155.4 13.4 12.8 319.8 13.4 49.1 563.8 0.0 154.1 0.0 0.1 0.2 303.7 1,352.2 579.1 1,931.3 Alaska ............... 9.5 294.7 81.8 118.2 1.3 34.6 0.4 28.6 265.0 0.0 2.3 0.0 0.2 (s) 21.6 593.2 44.7 637.9 Arizona ............. 10.0 109.8 151.3 21.5 9.1 323.4 (s) 21.1 526.5 0.0 4.4 3.1 0.3 7.9 255.7 917.8 513.7 1,431.5 Arkansas ........... 5.6 179.4 134.5 5.9 9.4 175.6 0.1 19.8 345.4 0.0 82.6 0.0 0.7 0.2 163.5 777.4 339.8 1,117.1 California ..........

167

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

State State Energy Data 2011: Consumption 11 Table C8. Transportation Sector Energy Consumption Estimates, 2011 (Trillion Btu) State Coal Natural Gas a Petroleum Retail Electricity Sales Net Energy Electrical System Energy Losses e Total Aviation Gasoline Distillate Fuel Oil Jet Fuel b LPG c Lubricants Motor Gasoline d Residual Fuel Oil Total Alabama ............. 0.0 23.5 0.4 124.4 13.4 0.3 2.3 316.3 6.7 463.7 0.0 487.2 0.0 487.2 Alaska ................. 0.0 3.5 0.8 44.4 118.2 (s) 0.4 32.9 0.4 197.2 0.0 200.7 0.0 200.7 Arizona ............... 0.0 15.6 1.0 111.3 21.5 0.8 1.6 318.2 0.0 454.5 0.0 470.1 0.0 470.1 Arkansas ............. 0.0 11.5 0.4 99.7 5.9 0.4 2.0 171.3 0.0 279.8 (s) 291.2 (s) 291.2 California ............ 0.0 25.7 1.9 440.9 549.7 3.8 13.3 1,770.1 186.9 2,966.5 2.8 2,995.1 5.5 3,000.5 Colorado ............. 0.0 14.7 0.6 83.2 58.3 0.3

168

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

0 0 State Energy Data 2011: Consumption Table C7. Industrial Sector Energy Consumption Estimates, 2011 (Trillion Btu) State Coal Natural Gas a Petroleum Hydro- electric power e Biomass Geo- thermal Retail Electricity Sales Net Energy h,i Electrical System Energy Losses j Total h,i Distillate Fuel Oil LPG b Motor Gasoline c Residual Fuel Oil Other d Total Wood and Waste f Losses and Co- products g Alabama ............. 65.0 179.1 23.9 3.7 3.3 6.7 46.3 83.9 0.0 147.2 0.0 (s) 115.1 590.4 219.5 810.0 Alaska ................. 0.1 253.8 19.2 0.1 1.0 0.0 27.1 47.4 0.0 0.1 0.0 0.0 4.5 306.0 9.4 315.4 Arizona ............... 10.0 22.0 33.2 1.4 4.6 (s) 18.4 57.6 0.0 1.4 3.1 0.2 42.1 136.5 84.7 221.2 Arkansas ............. 5.6 93.1 31.1 2.6 4.0 0.1 17.4 55.1 0.0 72.7 0.0 (s) 58.0 284.5 120.5 405.0 California ............ 35.6 767.4 77.2 23.9 29.6 (s) 312.5

169

Vehicle Technologies Office: Fact #579: July 13, 2009 Oil Price...  

NLE Websites -- All DOE Office Websites (Extended Search)

9: July 13, 2009 Oil Price and Economic Growth, 1970-2008 to someone by E-mail Share Vehicle Technologies Office: Fact 579: July 13, 2009 Oil Price and Economic Growth, 1970-2008...

170

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

Manufacturing Manufacturing Sector Overview 1991-1994 Energy Information Administration/Manufacturing Consumption of Energy 1994 xiii Why Do We Investigate Energy Use in the Manufacturing Sector? What Data Do EIA Use To Investigate Energy Use in the Manufacturing Sector? In 1991, output in the manufactur- ing sector fell as the country went into a recession. After 1991, however, output increased as the country slowly came out of the recession. Between 1991 and 1994, manufacturers, especially manu- facturers of durable goods such as steel and glass, experienced strong growth. The industrial production index for durable goods during the period increased by 21 percent. Real gross domestic product for durable goods increased a corre- sponding 16 percent. The growth of nondurables was not as strong-- the production index increased by only 9 percent during this time period.

171

Household energy and consumption and expenditures, 1990. [Contains Division, Census Region, and Climate Zone maps  

Science Conference Proceedings (OSTI)

The purpose of this supplement to the Household Energy Consumption and Expenditures 1990 report is to provide information on the use of energy in residential housing units, specifically at the four Census regions and nine Census division levels. This report includes household energy consumption, expenditures, and prices for natural gas, electricity, fuel oil, liquefied petroleum gas (LPG), and kerosene as well as household wood consumption. For national-level data, see the main report, Household Energy Consumption and Expenditures 1990.

Not Available

1993-03-02T23:59:59.000Z

172

Bakken formation oil and gas drilling activity mirrors development ...  

U.S. Energy Information Administration (EIA)

Data Tools & Models ... Oil production growth in the Bakken shale play mirrors somewhat the growth in natural gas production ... U.S. Department of Energy USA.gov

173

Energy and Financial Markets Overview: Crude Oil Price Formation  

U.S. Energy Information Administration (EIA)

1970 1975 1980 1985 1990 1995 2000 2005 2010 ... oil demand growth, slow supply growth and tight spare capacity 22 Richard Newell, May 5, 2011

174

Consumption | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NREL. National Clean Fleets partners are investing in hybrid vehicles to reduce their oil use, vehicle emissions and fuel costs. Detecting Air Leaks For a thorough and accurate...

175

"Table A15. Selected Energy Operating Ratios for Total Energy Consumption for"  

U.S. Energy Information Administration (EIA) Indexed Site

Selected Energy Operating Ratios for Total Energy Consumption for" Selected Energy Operating Ratios for Total Energy Consumption for" " Heat, Power, and Electricity Generation by Census Region and Economic" " Characteristics of the Establishment, 1991" ,,,"Consumption","Major" " "," ","Consumption","per Dollar","Byproducts(b)","Fuel Oil(c)"," " " ","Consumption","per Dollar","of Value","as a Percent","as a Percent","RSE" " ","per Employee","of Value Added","of Shipments","of Consumption","of Natural Gas","Row" "Economic Characteristics(a)","(million Btu)","(thousand Btu)","(thousand Btu)","(percent)","(percent)","Factors"

176

"Table A45. Selected Energy Operating Ratios for Total Energy Consumption"  

U.S. Energy Information Administration (EIA) Indexed Site

5. Selected Energy Operating Ratios for Total Energy Consumption" 5. Selected Energy Operating Ratios for Total Energy Consumption" " for Heat, Power, and Electricity Generation by Industry Group," " Selected Industries, and Value of Shipment Categories, 1994" ,,,,,"Major" ,,,"Consumption","Consumption per","Byproducts(c)","Fuel Oil(d)" ,,"Consumption","per Dollar","Dollar of Value","as a Percent","as a Percent","RSE" "SIC",,"per Employee","of Value Added","of Shipments","of Consumption","of Natural Gas","Row" "Code(a)","Economic Characteristics(b)","(million Btu)","(thousand Btu)","(thousand Btu)","(percents)","(percents)","Factors"

177

"Table A46. Selected Energy Operating Ratios for Total Energy Consumption"  

U.S. Energy Information Administration (EIA) Indexed Site

Selected Energy Operating Ratios for Total Energy Consumption" Selected Energy Operating Ratios for Total Energy Consumption" " for Heat, Power, and Electricity Generation by Industry Group," " Selected Industries, and Employment Size Categories, 1994" ,,,,,"Major" ,,,"Consumption","Consumption per","Byproducts(c)","Fuel Oil(d)" ,,"Consumption","per Dollar","Dollar of Value","as a Percent","as a Percent","RSE" "SIC",,"per Employee","of Value Added","of Shipments","of Consumption","of Natural Gas","Row" "Code(a)","Economic Characteristics(b)","(million Btu)","(thousand Btu)","(thousand Btu)","(percents)","(percents)","Factors"

178

"Table A48. Selected Energy Operating Ratios for Total Energy Consumption for"  

U.S. Energy Information Administration (EIA) Indexed Site

8. Selected Energy Operating Ratios for Total Energy Consumption for" 8. Selected Energy Operating Ratios for Total Energy Consumption for" " Heat, Power, and Electricity Generation by Census Region, Census Division, and Economic" " Characteristics of the Establishment, 1994" ,,,"Consumption","Major" " "," ","Consumption","per Dollar","Byproducts(b)","Fuel Oil(c)"," " " ","Consumption","per Dollar","of Value","as a Percent","as a Percent","RSE" " ","per Employee","of Value Added","of Shipments","of Consumption","of Natural Gas","Row"

179

"Table A51. Selected Energy Operating Ratios for Total Energy Consumption for"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Selected Energy Operating Ratios for Total Energy Consumption for" 1. Selected Energy Operating Ratios for Total Energy Consumption for" " Heat, Power, and Electricity Generation by Census Region and Economic" " Characteristics of the Establishment, 1991 " ,,,,,"Major" ,,,"Consumption","Consumption per","Byproducts(c)","Fuel Oil(d)" ,,"Consumption","per Dollar","Dollar of Value","as a Percent","as a Percent","RSE" "SIC",,"per Employee","of Value Added","of Shipments","of Consumption","of Natural Gas","Row" "Code(a)","Economic Characteristics(b)","(million Btu)","(thousand Btu)","(thousand Btu)","(percent)","(percent)","Factors"

180

"Table A50. Selected Energy Operating Ratios for Total Energy Consumption for"  

U.S. Energy Information Administration (EIA) Indexed Site

0. Selected Energy Operating Ratios for Total Energy Consumption for" 0. Selected Energy Operating Ratios for Total Energy Consumption for" " Heat, Power, and Electricity Generation by Industry Group," " Selected Industries, and Economic Characteristics of the" " Establishment, 1991 (Continued)" ,,,,,"Major" ,,,"Consumption","Consumption per","Byproducts(c)","Fuel Oil(d)" ,,"Consumption","per Dollar","Dollar of Value","as a Percent of","as a Percent","RSE" "SIC",,"per Employee","of Value Added","of Shipments","of Consumption","of Natural Gas","Row" "Code(a)","Economic Characteristics(b)","(million Btu)","(thousand Btu)","(thousand Btu)","(Percent)","(percent)","Factors"

Note: This page contains sample records for the topic "oil consumption growth" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

"Table A47. Selected Energy Operating Ratios for Total Energy Consumption for"  

U.S. Energy Information Administration (EIA) Indexed Site

7. Selected Energy Operating Ratios for Total Energy Consumption for" 7. Selected Energy Operating Ratios for Total Energy Consumption for" " Heat, Power, and Electricity Generation by Census Region, Census Division, Industry Group, and" " Selected Industries, 1994" ,,,,,"Major" ,,,,"Consumption","Byproducts(b)" ,,,"Consumption","per Dollar","as a","Fuel Oil(c) as" ,,"Consumption","per Dollar","of Value","Percent of","a Percent of","RSE" "SIC"," ","per Employee","of Value Added","of Shipments","Consumption","Natural Gas","Row" "Code(a)","Industry Group and Industry","(million Btu)","(thousand Btu)","(thousand Btu)","(percents)","(percents)","Factors"

182

Status and outlook for shale gas and tight oil development in the U.S.  

Gasoline and Diesel Fuel Update (EIA)

for for IEA Bilateral Meetings March 14, 2013 | Paris, France by Adam Sieminski, Administrator Annual Energy Outlook 2013 projections to 2040 2 * Growth in energy production outstrips consumption growth * Crude oil production rises sharply over the next decade * Motor gasoline consumption reflects more stringent fuel economy standards * The U.S. becomes a net exporter of natural gas in the early 2020s * U.S. energy-related carbon dioxide emissions remain below their 2005 level through 2040 Adam Sieminski, IEA Bilateral Meetings, March 14, 2013 U.S. energy use grows slowly over the projection reflecting improving energy efficiency and slow, extended economic recovery 3 0 20 40 60 80 100 120 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040

183

Analytical questions for shale gas and tight oil development in the U.S.  

Gasoline and Diesel Fuel Update (EIA)

For For Consumer Energy Alliance February 21, 2013 | Washington, D.C. By Adam Sieminski, Administrator Annual Energy Outlook 2013 projections to 2040 2 * Growth in energy production outstrips consumption growth * Crude oil production rises sharply over the next decade * Motor gasoline consumption reflects more stringent fuel economy standards * The U.S. becomes a net exporter of natural gas in the early 2020s * U.S. energy-related carbon dioxide emissions remain below their 2005 level through 2040 Adam Sieminski February 21, 2013 U.S. energy use grows slowly over the projection reflecting improving energy efficiency and slow, extended economic recovery 3 0 20 40 60 80 100 120 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040

184

Status and outlook for shale gas and tight oil development in the U.S.  

Gasoline and Diesel Fuel Update (EIA)

FLAME Natural Gas & LNG Conference FLAME Natural Gas & LNG Conference March 13, 2013 | Amsterdam, Netherlands by Adam Sieminski, Administrator Annual Energy Outlook 2013 projections to 2040 2 * Growth in energy production outstrips consumption growth * Crude oil production rises sharply over the next decade * Motor gasoline consumption reflects more stringent fuel economy standards * The U.S. becomes a net exporter of natural gas in the early 2020s * U.S. energy-related carbon dioxide emissions remain below their 2005 level through 2040 Adam Sieminski , FLAME March 13, 2013 U.S. energy use grows slowly over the projection reflecting improving energy efficiency and slow, extended economic recovery 3 0 20 40 60 80 100 120 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040

185

Status and outlook for shale gas and tight oil development in the U.S.  

Gasoline and Diesel Fuel Update (EIA)

Baltimore Chartered Financial Analyst Society Baltimore Chartered Financial Analyst Society April 08, 2013 | Baltimore, MD By Adam Sieminski, Administrator Annual Energy Outlook 2013 projections to 2040 2 * Growth in energy production outstrips consumption growth * Crude oil production rises sharply over the next decade * Motor gasoline consumption reflects more stringent fuel economy standards * The U.S. becomes a net exporter of natural gas in the early 2020s * U.S. energy-related carbon dioxide emissions remain below their 2005 level through 2040 Adam Sieminski, Baltimore CFA Society April 08, 2013 U.S. energy use grows slowly over the projection reflecting improving energy efficiency and slow, extended economic recovery 3 0 20 40 60 80 100 120 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040

186

Will lecture on: OIL AND WAR: A GRIM EARTH SCIENCES POINT OF VIEW  

E-Print Network (OSTI)

of fluids in crustal processes and in energy resources. Worldwide, per-capita oil consumption is closely therefore requires increased per-capita oil consumption. However, oil is a finite resource whose production correlated with standard of living. In developing nations like China and India, increasing prosperity

Schuster, Assaf

187

Optimization of Electric Energy Consumption in Marginal California Oilfields  

Science Conference Proceedings (OSTI)

This report documents a pilot study of electricity consumption in California oilfields that found significant potential for reducing costs through energy efficiency improvements. It offers suggestions for reducing electricity consumption that, if implemented, could result in a system-wide demand reduction and reduce the need for additional generation and power infrastructure capacity. Moreover, reducing oilfield energy costs would reduce the overall cost of oil production, helping marginal wells remain a...

2003-01-17T23:59:59.000Z

188

Household energy consumption and expenditures 1987  

SciTech Connect

This report is the third in the series of reports presenting data from the 1987 Residential Energy Consumption Survey (RECS). The 1987 RECS, seventh in a series of national surveys of households and their energy suppliers, provides baseline information on household energy use in the United States. Data from the seven RECS and its companion survey, the Residential Transportation Energy Consumption Survey (RTECS), are made available to the public in published reports such as this one, and on public use data files. This report presents data for the four Census regions and nine Census divisions on the consumption of and expenditures for electricity, natural gas, fuel oil and kerosene (as a single category), and liquefied petroleum gas (LPG). Data are also presented on consumption of wood at the Census region level. The emphasis in this report is on graphic depiction of the data. Data from previous RECS surveys are provided in the graphics, which indicate the regional trends in consumption, expenditures, and uses of energy. These graphs present data for the United States and each Census division. 12 figs., 71 tabs.

Not Available

1990-01-22T23:59:59.000Z

189

OpenEI - consumption  

Open Energy Info (EERE)

91/0 en Operational water 91/0 en Operational water consumption and withdrawal factors for electricity generating technologies http://en.openei.org/datasets/node/969 This dataset is from the report Operational water consumption and withdrawal factors for electricity generating technologies: a review of existing literature (J. Macknick, R. Newmark, G. Heath and K.C. Hallett) and provides estimates of operational water withdrawal and water consumption factors for electricity generating technologies in the United States. Estimates of water factors were collected from published primary literature and were not modified except for unit conversions.

License

190

Energy-consumption modelling  

SciTech Connect

A highly sophisticated and accurate approach is described to compute on an hourly or daily basis the energy consumption for space heating by individual buildings, urban sectors, and whole cities. The need for models and specifically weather-sensitive models, composite models, and space-heating models are discussed. Development of the Colorado State University Model, based on heat-transfer equations and on a heuristic, adaptive, self-organizing computation learning approach, is described. Results of modeling energy consumption by the city of Minneapolis and Cheyenne are given. Some data on energy consumption in individual buildings are included.

Reiter, E.R.

1980-01-01T23:59:59.000Z

191

The projected impact of lower oil prices on US energy conservation  

Science Conference Proceedings (OSTI)

In view of conservation savings during a period of rising world oil prices (1972 to 1982), the dramatic drop in world oil prices in 1986 elicits the question: Do low world oil prices threaten the conservation savings that occurred during the previous decade. In order to test the potential loss in conservation from the drop in world oil prices in the target year 1995, two oil price scenarios were constructed: a case testing what would have occurred if oil prices remained at their 1984 level ($30/barrel in 1985 dollars), and one in which prices drop to and are maintained at $14/barrel (in 1985 dollars). This approach represents a boundary analysis, illustrating what could happen to conservation rather than predicting what will happen. By comparing projections of energy consumption under the two scenarios, the potential conservation loss from the drop in oil prices can be estimated: (1) potential conservation losses from lower world oil prices might be in the range of 9% in 1995; (2) only about one quarter of this conservation loss represents potential losses in energy efficiency; and (3) the remaining three quarters of the conservation losses result from behavioral changes and increased economic growth under lower prices. The answer to the question posed above is therefore yes; low oil prices do pose a threat to the conservation savings amassed during the past decade. But the threat is not as great as it could be 1-10% loss versus a 25% previous gain). This is because only a small part of the efficiency gains (about 2.5% out of 17%) would be lost. Most of the projected losses in conservation from low oil prices would be behavioral losses (almost all of the 8% past behavioral gain could be lost). 14 figs., 9 tabs.

Not Available

1988-01-01T23:59:59.000Z

192

Maximum of oil output of a treadle-powered peanut oil press  

E-Print Network (OSTI)

The manual processing of food products has become a substantial part of the daily routine of a typical household in the developing world. Consumption of oil is an essential part of an individual's diet and thus, the ...

Patel, Ravi M. (Ravi Mahendra)

2007-01-01T23:59:59.000Z

193

Quantitation of microbial products and their effectiveness in enhanced oil recovery. Final report  

Science Conference Proceedings (OSTI)

A three-dimensional, three-phase, multiple-component numerical simulator was developed to investigate transport and growth of microorganisms in porous media and the impacts of microbial activities on oil recovery. The microbial activities modeled in this study included: (1) growth, retention, chemotaxis, and end product inhibition of growth, (2) the formation of metabolic products, and (3) the consumption of nutrients. Major mechanisms for microbial enhanced oil recovery (MEOR) processes were modeled as follows: (1) improvement in sweep efficiency of a displacement process due to in situ plugging of highly-permeable production zones by cell mass or due to improved mobility control achieved by increasing the viscosity of the displacing fluid with a biopolymer, and (2) solubilization and mobilization of residual oil in porous media due to the reduction of the interfacial tension between oleic and aqueous phases by the production of a biosurfactant. The numerical solutions for mathematical models involved two steps. The distributions of pressure and phase saturations were solved from continuity equations and Darcy flow velocities for the aqueous phase were computed. This was followed by the solution of convection-dispersion equations for individual components. Numerical solutions from the proposed model were compared to results obtained from analytical equations, commercial simulators, and laboratory experiments. The comparison indicated that the model accurately quantified microbial transport and metabolism in porous media, and predicted additional crude oil recovery due to microbial processes. 50 refs., 41 figs., 26 tabs.

Zhang, X.; Knapp, R.M.; McInerney, M.J.

1995-02-01T23:59:59.000Z

194

EIA Average Energy Consumption 2005  

U.S. Energy Information Administration (EIA)

Table US8. Average Consumption by Fuels Used, 2005 Physical Units per Household Fuels Used (physical units of consumption per household using the fuel)

195

Manufacturing Consumption of Energy 1991  

U.S. Energy Information Administration (EIA) Indexed Site

J Related EIA Publications on Energy Consumption Energy Information AdministrationManufacturing Consumption of Energy 1991 526 Appendix J Related EIA Publications on Energy...

196

Manufacturing Consumption of Energy 1991  

U.S. Energy Information Administration (EIA) Indexed Site

3. Energy Consumption in the Manufacturing Sector, 1991 In 1991, the amount of energy consumed in the manufacturing sector was as follows: * Primary Consumption of Energy for All...

197

Household Energy Consumption and Expenditures  

Reports and Publications (EIA)

Presents information about household end use consumption of energy and expenditures for that energy. These data were collected in the 2005 Residential Energy Consumption Survey (RECS)

Information Center

2008-09-01T23:59:59.000Z

198

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

methodology used to estimate these statistics relied on data from the 1990 Residential Energy Consumption Survey (RECS), the 1991 Residential Transportation Energy Consumption...

199

1997 Consumption and Expenditures Tables  

U.S. Energy Information Administration (EIA)

5HVLGHQWLDO (QHUJ\\ &RQVXPSWLRQ 6XUYH\\V 1997 Consumption and Expenditures Tables Appliances Consumption Tables (17 pages, 60 kb) Contents Pages CE5-1c.

200

Vehicle Technologies Office: Fact #220: June 10, 2002 World Oil Reserves,  

NLE Websites -- All DOE Office Websites (Extended Search)

0: June 10, 2002 0: June 10, 2002 World Oil Reserves, Production, and Consumption, 2001 to someone by E-mail Share Vehicle Technologies Office: Fact #220: June 10, 2002 World Oil Reserves, Production, and Consumption, 2001 on Facebook Tweet about Vehicle Technologies Office: Fact #220: June 10, 2002 World Oil Reserves, Production, and Consumption, 2001 on Twitter Bookmark Vehicle Technologies Office: Fact #220: June 10, 2002 World Oil Reserves, Production, and Consumption, 2001 on Google Bookmark Vehicle Technologies Office: Fact #220: June 10, 2002 World Oil Reserves, Production, and Consumption, 2001 on Delicious Rank Vehicle Technologies Office: Fact #220: June 10, 2002 World Oil Reserves, Production, and Consumption, 2001 on Digg Find More places to share Vehicle Technologies Office: Fact #220:

Note: This page contains sample records for the topic "oil consumption growth" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Vehicle Technologies Office: Fact #88: May 11, 1999 World Oil Reserves,  

NLE Websites -- All DOE Office Websites (Extended Search)

8: May 11, 1999 8: May 11, 1999 World Oil Reserves, Production, and Consumption, 1998 to someone by E-mail Share Vehicle Technologies Office: Fact #88: May 11, 1999 World Oil Reserves, Production, and Consumption, 1998 on Facebook Tweet about Vehicle Technologies Office: Fact #88: May 11, 1999 World Oil Reserves, Production, and Consumption, 1998 on Twitter Bookmark Vehicle Technologies Office: Fact #88: May 11, 1999 World Oil Reserves, Production, and Consumption, 1998 on Google Bookmark Vehicle Technologies Office: Fact #88: May 11, 1999 World Oil Reserves, Production, and Consumption, 1998 on Delicious Rank Vehicle Technologies Office: Fact #88: May 11, 1999 World Oil Reserves, Production, and Consumption, 1998 on Digg Find More places to share Vehicle Technologies Office: Fact #88: May

202

Vehicle Technologies Office: Fact #380: July 11, 2005 World Oil Reserves,  

NLE Websites -- All DOE Office Websites (Extended Search)

80: July 11, 2005 80: July 11, 2005 World Oil Reserves, Production, and Consumption, 2004 to someone by E-mail Share Vehicle Technologies Office: Fact #380: July 11, 2005 World Oil Reserves, Production, and Consumption, 2004 on Facebook Tweet about Vehicle Technologies Office: Fact #380: July 11, 2005 World Oil Reserves, Production, and Consumption, 2004 on Twitter Bookmark Vehicle Technologies Office: Fact #380: July 11, 2005 World Oil Reserves, Production, and Consumption, 2004 on Google Bookmark Vehicle Technologies Office: Fact #380: July 11, 2005 World Oil Reserves, Production, and Consumption, 2004 on Delicious Rank Vehicle Technologies Office: Fact #380: July 11, 2005 World Oil Reserves, Production, and Consumption, 2004 on Digg Find More places to share Vehicle Technologies Office: Fact #380:

203

Vehicle Technologies Office: Fact #191: November 19, 2001 U.S. Oil  

NLE Websites -- All DOE Office Websites (Extended Search)

1: November 19, 1: November 19, 2001 U.S. Oil Consumption Nearly 20 Million Barrels per Day in 2000 to someone by E-mail Share Vehicle Technologies Office: Fact #191: November 19, 2001 U.S. Oil Consumption Nearly 20 Million Barrels per Day in 2000 on Facebook Tweet about Vehicle Technologies Office: Fact #191: November 19, 2001 U.S. Oil Consumption Nearly 20 Million Barrels per Day in 2000 on Twitter Bookmark Vehicle Technologies Office: Fact #191: November 19, 2001 U.S. Oil Consumption Nearly 20 Million Barrels per Day in 2000 on Google Bookmark Vehicle Technologies Office: Fact #191: November 19, 2001 U.S. Oil Consumption Nearly 20 Million Barrels per Day in 2000 on Delicious Rank Vehicle Technologies Office: Fact #191: November 19, 2001 U.S. Oil Consumption Nearly 20 Million Barrels per Day in 2000 on Digg

204

Vehicle Technologies Office: Fact #266: May 5, 2003 World Oil Reserves,  

NLE Websites -- All DOE Office Websites (Extended Search)

6: May 5, 2003 6: May 5, 2003 World Oil Reserves, Production, and Consumption, 2002 to someone by E-mail Share Vehicle Technologies Office: Fact #266: May 5, 2003 World Oil Reserves, Production, and Consumption, 2002 on Facebook Tweet about Vehicle Technologies Office: Fact #266: May 5, 2003 World Oil Reserves, Production, and Consumption, 2002 on Twitter Bookmark Vehicle Technologies Office: Fact #266: May 5, 2003 World Oil Reserves, Production, and Consumption, 2002 on Google Bookmark Vehicle Technologies Office: Fact #266: May 5, 2003 World Oil Reserves, Production, and Consumption, 2002 on Delicious Rank Vehicle Technologies Office: Fact #266: May 5, 2003 World Oil Reserves, Production, and Consumption, 2002 on Digg Find More places to share Vehicle Technologies Office: Fact #266:

205

America's Oil Imports: A Self-Inflicted Burden Vaclav Smil  

E-Print Network (OSTI)

America's Oil Imports: A Self-Inflicted Burden Vaclav Smil Faculty of Environment, University of Manitoba Burdensome dependence on crude oil imports is a key challenge for America's energy policy; its principal cause is excessive consumption of refined oil products, which is mainly the result

Smil, Vaclav

206

Oil, Climate Change & Sustainable Energy PASEF-20 October 2011  

E-Print Network (OSTI)

Oil, Climate Change & Sustainable Energy PASEF- 20 October 2011 1) How much longer can we rely should it contain? Ken Lande ­ Physics Department #12;Remaining Crude Oil Supplies Present World consumption = 30 billion barrels/year 1) Conventional Oil- Originally ~ 2 trillion barrels ­ ½ used ~ 1

Zywina, David

207

The effect of biofuel on the international oil market  

E-Print Network (OSTI)

barrel of crude oil in the Middle East was 14.85 US$ between5,000 US$ mark). Although consumption of crude oil in theUS$ for o?shore drilling; in other words, the marginal cost of a barrel of crude oil

Hochman, Gal; Rajagopal, Deepak; Zilberman, David D.

2010-01-01T23:59:59.000Z

208

Consumption Externalities: A Representative Consumer Model when Agents are Heterogeneous *  

E-Print Network (OSTI)

Abstract: We examine a growth model with consumption externalities where agents differ in their initial capital endowment and their reference group. We show under which conditions the aggregate equilibrium with heterogeneous agents replicates that obtained with a representative consumer, despite the fact that different individuals have different consumption levels. Next we consider the implications of the presence of consumption externalities for the long-run distributions of income and wealth. We find that, in a growing economy, “keeping up with the Joneses ” results in less inequality than would prevail in an economy with no consumption externalities.

Cecilia García-peñalosa; Stephen J. Turnovsky

2007-01-01T23:59:59.000Z

209

EIA Report Estimates Growth of U.S. Energy Economy Through 2040 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EIA Report Estimates Growth of U.S. Energy Economy Through 2040 EIA Report Estimates Growth of U.S. Energy Economy Through 2040 EIA Report Estimates Growth of U.S. Energy Economy Through 2040 December 5, 2012 - 3:43pm Addthis EIA Report Estimates Growth of U.S. Energy Economy Through 2040 Matthew Loveless Matthew Loveless Data Integration Specialist, Office of Public Affairs What are the key facts? Crude oil, natural gas and renewable energy production are expected to grow rapidly. Net energy imports are expected to decline, as production grows faster than consumption. Editor's Note: This article was originally posted as part of the Energy Information Administration's (EIA) Today in Energy series. EIA has just issued its Annual Energy Outlook 2013 (AEO2013) Reference case, which highlights a growth in total U.S. energy production that

210

Elements of consumption: an abstract visualization of household consumption  

Science Conference Proceedings (OSTI)

To promote sustainability consumers must be informed about their consumption behaviours. Ambient displays can be used as an eco-feedback technology to convey household consumption information. Elements of Consumption (EoC) demonstrates this by visualizing ... Keywords: a-life, eco-feedback, household consumption, sustainability

Stephen Makonin; Philippe Pasquier; Lyn Bartram

2011-07-01T23:59:59.000Z

211

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

8 8 State Energy Data 2011: Consumption Table C5. Residential Sector Energy Consumption Estimates, 2011 (Trillion Btu) State Coal a Natural Gas b Petroleum Biomass Geothermal Solar/PV e Retail Electricity Sales Net Energy f Electrical System Energy Losses g Total f Distillate Fuel Oil Kerosene LPG c Total Wood d Alabama ............. 0.0 37.2 0.1 0.1 6.0 6.2 6.0 0.1 0.2 112.6 162.2 214.7 376.9 Alaska ................. 0.0 20.5 8.1 0.1 0.5 8.8 1.9 0.1 (s) 7.3 38.6 15.1 53.7 Arizona ............... 0.0 39.1 (s) (s) 5.5 5.5 2.6 (s) 7.9 112.9 168.0 226.8 394.7 Arkansas ............. 0.0 34.2 0.1 (s) 5.2 5.3 8.6 0.7 0.2 64.1 113.1 133.2 246.3 California ............ 0.0 522.4 0.6 0.6 30.9 32.2 33.3 0.2 43.2 301.6 932.9 583.1 1,516.1 Colorado ............. 0.0 134.2 0.1 (s) 12.3 12.4 8.3 0.2 0.7 62.4 216.5 136.5 353.0 Connecticut ......... 0.0 46.0 59.6

212

Supply and demand of lube oils  

Science Conference Proceedings (OSTI)

Lube oil consumption in the world has reached about 40 million tonnes per year, of which 24 million tonnes is used outside the communist areas. There are large regional differences in annual consumption per head from one kilogramme (kg) in India to 35 kg in North America. A statistical analysis of historical data over twenty years in about ninety countries has lead to the conclusion that national income, measured as GDP per head, is the key determinant of total lube oil consumption per head. The functional relationship, however, is different in different countries. Starting from GDP projections until the year 2000, regional forecasts of lube oil demand have been made which show that the share of developing nations outside the communist area in world demand will grow. This will increase the regional imbalance between base oil capacity and demand.

Vlemmings, J.M.L.M.

1988-01-01T23:59:59.000Z

213

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

9 9 Table C6. Commercial Sector Energy Consumption Estimates, 2011 (Trillion Btu) State Coal Natural Gas a Petroleum Hydro- electric Power e Biomass Geothermal Retail Electricity Sales Net Energy g Electrical System Energy Losses h Total g Distillate Fuel Oil Kerosene LPG b Motor Gasoline c Residual Fuel Oil Total d Wood and Waste f Alabama ............. 0.0 25.5 7.0 (s) 2.7 0.2 0.0 10.0 0.0 0.9 0.0 75.9 112.4 144.8 257.2 Alaska ................. 9.4 16.9 10.1 0.1 0.6 0.7 0.0 11.5 0.0 0.3 0.1 9.7 48.0 20.2 68.2 Arizona ............... 0.0 33.1 6.8 (s) 1.5 0.7 0.0 8.9 0.0 0.5 (s) 100.7 143.2 202.3 345.5 Arkansas ............. 0.0 40.6 3.6 (s) 1.2 0.4 0.0 5.2 0.0 1.3 0.0 41.4 88.6 86.1 174.7 California ............ 0.0 250.9 47.9 0.1 8.7 1.4 0.0 58.1 (s) 17.4 0.7 418.9 746.2 809.9 1,556.1 Colorado ............. 3.2 57.6 5.9 (s) 2.9 0.2 0.0 9.1 0.0 1.2 0.2

214

International Energy Outlook 2001 - World Energy Consumption  

Gasoline and Diesel Fuel Update (EIA)

World Energy Consumption World Energy Consumption picture of a printer Printer Friendly Version (PDF) This report presents international energy projections through 2020, prepared by the Energy Information Administration, including outlooks for major energy fuels and issues related to electricity, transportation, and the environment. The International Energy Outlook 2001 (IEO2001) presents the Energy Information Administration (EIA) outlook for world energy markets to 2020. Current trends in world energy markets are discussed in this chapter, followed by a presentation of the IEO2001 projections for energy consumption by primary energy source and for carbon emissions by fossil fuel. Uncertainty in the forecast is highlighted by an examination of alternative assumptions about economic growth and their impacts on the

215

International Energy Outlook 1999 - World Oil Markets  

Gasoline and Diesel Fuel Update (EIA)

oil.gif (4669 bytes) oil.gif (4669 bytes) A moderate view of future oil market developments is reflected in IEO99. Sustained high levels of oil prices are not expected, whereas continued expansion of the oil resource base is anticipated. The crude oil market was wracked with turbulence during 1998, as prices fell by one-third on average from 1997 levels. Even without adjusting for inflation, the world oil price in 1998 was the lowest since 1973. The declining oil prices were influenced by an unexpected slowdown in the growth of energy demand worldwide—less than any year since 1990—and by increases in oil supply, particularly in 1997. Although the increase in world oil production in 1998 was smaller than in any year since 1993, efforts to bolster prices by imposing further limits on production were

216

Oil and Oil Derivatives Compliance Requirements  

Science Conference Proceedings (OSTI)

... for international connection of oiled residues discharge ... C to + 163°C, fuels, lubricating oils and hydraulic ... fuel of gas turbine, crude oil, lubricating oil ...

2012-10-26T23:59:59.000Z

217

Recent world fossil-fuel and primary energy production and consumption trends  

SciTech Connect

Worldwide fossil fuel and primary electric power production figures since 1973 show a recent drop in oil production similar to the 1975 decline after recession. Crude oil consumption has declined since 1978, while production has increased. Natural gas production and consumption continue to increase as does power generation from all energy sources. Differences are noted between data sources and comparisons made of the validity of the data. 13 references, 7 figures, 12 tables. (DCK)

Parent, J.D.

1982-08-02T23:59:59.000Z

218

"Table A11. Total Primary Consumption of Combustible Energy for Nonfuel"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Total Primary Consumption of Combustible Energy for Nonfuel" 1. Total Primary Consumption of Combustible Energy for Nonfuel" " Purposes by Census Region and Economic Characteristics of the Establishment," 1991 " (Estimates in Btu or Physical Units)" " "," "," "," ","Natural"," "," ","Coke"," "," " " ","Total","Residual","Distillate","Gas(c)"," ","Coal","and Breeze","Other(d)","RSE" " ","(trillion","Fuel Oil","Fuel Oil(b)","(billion","LPG","(1000","(1000","(trillion","Row"

219

Steel Plate Processing for Line Pipes in Oil and Gas Transport  

Science Conference Proceedings (OSTI)

This has further helped in reducing the specific steel consumption in oil and gas transportation. The current focus on less wall thickness at increased strength ...

220

Amtrak fuel consumption study  

Science Conference Proceedings (OSTI)

This report documents a study of fuel consumption on National Railroad Passenger Corporation (Amtrak) trains and is part of an effort to determine effective ways of conserving fuel on the Amtrak system. The study was performed by the Transportation Systems Center (TSC). A series of 26 test runs were conducted on Amtrak trains operating between Boston, Massachusetts, and New Haven, Connecticut, to measure fuel consumption, trip time and other fuel-use-related parameters. The test data were analyzed and compared with results of the TSC Train Performance Simulator replicating the same operations.

Hitz, J.

1981-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil consumption growth" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Energy Information Administration (EIA) - High World Oil Price Case  

Gasoline and Diesel Fuel Update (EIA)

High World Oil Price Case Projections Tables (1990-2030) High World Oil Price Case Projections Tables (1990-2030) International Energy Outlook 2007 High World Oil Price Case Projections Tables (1990-2030) Formats Data Table Titles (1 to 12 complete) High World Oil Price Case Projections Tables. Need help, contact the National Energy Information Center at 202-586-8800. High World Oil Price Case Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table D1 World Total Primary Energy Consumption by Region Table D1. World Total Primary Energy Consumption by Region. Need help, contact the National Energy Information Center at 202-586-8800. Table D2 World Total Energy Consumption by Region and Fuel Table D2. World total Energy Consumption by Region and Fuel. Need help, contact the National Energy Information Center at 202-586-8800.

222

"Table A8. Selected Energy Operating Ratios for Total Energy Consumption for"  

U.S. Energy Information Administration (EIA) Indexed Site

A8. Selected Energy Operating Ratios for Total Energy Consumption for" A8. Selected Energy Operating Ratios for Total Energy Consumption for" " Heat, Power, and Electricity Generation by Census Region, Industry Group, and" " Selected Industries, 1991" ,,,,,"Major" ,,,,"Consumption","Byproducts(b)" ,,,"Consumption","per Dollar","as a","Fuel Oil(c) as" ,,"Consumption","per Dollar","of Value","Percent of","a Percent of","RSE" "SIC"," ","per Employee","of Value Added","of Shipments","Consumsption","Natural Gas","Row" "Code(a)","Industry Groups and Industry","(million Btu)","(thousand Btu)","(thousand Btu)","(PERCENT)","(percent)","Factors"

223

MECS Fuel Oil Tables  

U.S. Energy Information Administration (EIA) Indexed Site

: Actual, Minimum and Maximum Use Values for Fuel Oils and Natural Gas : Actual, Minimum and Maximum Use Values for Fuel Oils and Natural Gas Year Distillate Fuel Oil (TBtu) Actual Minimum Maximum Discretionary Rate 1985 185 148 1224 3.4% 1994 152 125 1020 3.1% Residual Fuel Oil (TBtu) Actual Minimum Maximum Discretionary Rate 1985 505 290 1577 16.7% 1994 441 241 1249 19.8% Natural Gas (TBtu) Actual Minimum Maximum Discretionary Rate 1985 4656 2702 5233 77.2% 1994 6141 4435 6758 73.4% Source: Energy Information Administration, Office of Energy Markets and End Use, 1985 and 1994 Manufacturing Energy Consumption Surveys. Table 2: Establishments That Actually Switched Between Natural Gas and Residual Fuel Oil Type of Switch Number of Establishments in Population Number That Use Original Fuel Percentage That Use Original Fuel Number That Can Switch to Another Fuel Percentage That Can Switch to Another Fuel Number That Actually Made a Switch Percentage That Actually Made a Switch

224

Table 5.2 End Uses of Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

2 End Uses of Fuel Consumption, 2010; 2 End Uses of Fuel Consumption, 2010; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal NAICS Net Residual and LPG and (excluding Coal Code(a) End Use Total Electricity(b) Fuel Oil Diesel Fuel(c) Natural Gas(d) NGL(e) Coke and Breeze) Other(f) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 14,228 2,437 79 130 5,211 69 868 5,435 Indirect Uses-Boiler Fuel -- 27 46 19 2,134 10 572 -- Conventional Boiler Use -- 27 20 4 733 3 72 -- CHP and/or Cogeneration Process -- 0 26 15 1,401 7 500 -- Direct Uses-Total Process -- 1,912 26 54 2,623 29 289 -- Process Heating -- 297 25 14 2,362 24 280

225

Table 5.1 End Uses of Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

5.1 End Uses of Fuel Consumption, 2010; 5.1 End Uses of Fuel Consumption, 2010; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Residual and Natural Gas(d) LPG and Coke and Breeze) NAICS Total Electricity(b) Fuel Oil Diesel Fuel(c) (billion NGL(e) (million Other(f) Code(a) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) (trillion Btu) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 14,228 714,166 13 22 5,064 18 39 5,435 Indirect Uses-Boiler Fuel -- 7,788 7 3 2,074 3 26 -- Conventional Boiler Use -- 7,788 3 1 712 1 3 -- CHP and/or Cogeneration Process

226

World Energy Consumption by Fuel Type, 1970-2020  

Gasoline and Diesel Fuel Update (EIA)

0 0 Notes: Natural gas is projected to be the fastest-growing component of primary world energy consumption, more than doubling between 1997 and 2020. Gas accounts for the largest increment in electricity generation (41 percent of the total increment of energy used for electricity generation). Combined-cycle gas turbine power plants offer some of the highest commercially available plant efficiencies, and natural gas is environmentally attractive because it emits less sulfur dioxide, carbon dioxide, and particulate matter than does oil or coal. In the IEO2000 projection, world natural gas consumption reaches the level of coal by 2005, and by 2020 gas use exceeds coal by 29 percent. Oil currently provides a larger share of world energy consumption than any other energy source and is expected to remain in that position

227

Table 5.7 End Uses of Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

7 End Uses of Fuel Consumption, 2010; 7 End Uses of Fuel Consumption, 2010; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Demand Residual and Natural Gas(c) LPG and Coke and Breeze) for Electricity(a) Fuel Oil Diesel Fuel(b) (billion NGL(d) (million End Use (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) Total United States TOTAL FUEL CONSUMPTION 845,727 13 22 5,064 18 39 Indirect Uses-Boiler Fuel 12,979 7 3 2,074 3 26 Conventional Boiler Use 12,979 3 1 712 1 3 CHP and/or Cogeneration Process -- 4 3 1,362 2 23 Direct Uses-Total Process 675,152 4 9 2,549 7 13 Process Heating

228

Table 5.5 End Uses of Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

5 End Uses of Fuel Consumption, 2010; 5 End Uses of Fuel Consumption, 2010; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Residual and Natural Gas(c) LPG and Coke and Breeze) Total Electricity(a) Fuel Oil Diesel Fuel(b) (billion NGL(d) (million Other(e) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) (trillion Btu) Total United States TOTAL FUEL CONSUMPTION 14,228 714,166 13 22 5,064 18 39 5,435 Indirect Uses-Boiler Fuel -- 7,788 7 3 2,074 3 26 -- Conventional Boiler Use -- 7,788 3 1 712 1 3 -- CHP and/or Cogeneration Process -- 0 4 3 1,362 2 23 -- Direct Uses-Total Process

229

Table 5.6 End Uses of Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

6 End Uses of Fuel Consumption, 2010; 6 End Uses of Fuel Consumption, 2010; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal Net Residual and LPG and (excluding Coal End Use Total Electricity(a) Fuel Oil Diesel Fuel(b) Natural Gas(c) NGL(d) Coke and Breeze) Other(e) Total United States TOTAL FUEL CONSUMPTION 14,228 2,437 79 130 5,211 69 868 5,435 Indirect Uses-Boiler Fuel -- 27 46 19 2,134 10 572 -- Conventional Boiler Use -- 27 20 4 733 3 72 -- CHP and/or Cogeneration Process -- 0 26 15 1,401 7 500 -- Direct Uses-Total Process -- 1,912 26 54 2,623 29 289 -- Process Heating -- 297 25 14 2,362 24 280 -- Process Cooling and Refrigeration -- 182 * Q 25

230

Table 5.4 End Uses of Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

4 End Uses of Fuel Consumption, 2010; 4 End Uses of Fuel Consumption, 2010; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal NAICS Net Demand Residual and LPG and (excluding Coal Code(a) End Use for Electricity(b) Fuel Oil Diesel Fuel(c) Natural Gas(d) NGL(e) Coke and Breeze) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 2,886 79 130 5,211 69 868 Indirect Uses-Boiler Fuel 44 46 19 2,134 10 572 Conventional Boiler Use 44 20 4 733 3 72 CHP and/or Cogeneration Process -- 26 15 1,401 7 500 Direct Uses-Total Process 2,304 26 54 2,623 29 289 Process Heating 318 25 14 2,362 24 280 Process Cooling and Refrigeration

231

Credit Constraints, Learning and Aggregate Consumption Volatility  

E-Print Network (OSTI)

This paper documents three empirical facts. First, consumption volatility relative to income volatility rose from 1947-1960 and then fell dramatically by 75 percent from the 1960s to the 1990s. Second, the correlation between consumption growth and personal income growth fell by about 75 percent over the same time period. Finally, absolute deviations of consumption changes from their mean exhibit two breaks in U.S. data, and the mean size of the absolute deviations has again fallen by about 75 percent. First, I find that a standard benchmark permanent income hypothesis model is unable to explain these facts. Then, I examine the ability of two hypotheses: a fall in credit constraints and changing beliefs about the permanence of income shocks to explain these facts. I find evidence for both explanations and find that these facts can be almost completely explained by a model with learning about the nature of income shocks and a reduction in credit constraints. Importantly, I find that estimated changes in beliefs about the permanence of income shocks have substantial explanatory power for consumption changes.

Daniel L. Tortorice

2009-01-01T23:59:59.000Z

232

Microbiology for enhanced oil recovery  

Science Conference Proceedings (OSTI)

The U. S. Department of Energy has sponsored several projects to investigate the feasibility of using microorganisms to enhance oil recovery. Microbes from the Wilmington oilfield, California, were found to be stimulated in growth by polyacrylamide mobility-control polymers and the microbes also can reduce the viscosity of the polyacrylamide solutions. Microbes have been discovered that produce surface active molecules, and several mixed cultures have been developed that make low viscosity, non-wetting, emulsions of heavy oils (/sup 0/API oil deposits, in China for enhanced recovery of light oils and successful field tests have been conducted in Romania and Arkansas.

Donaldson, E.C.

1983-06-01T23:59:59.000Z

233

International Energy Outlook 2000 - World Energy Consumption  

Gasoline and Diesel Fuel Update (EIA)

The IEO2000 projections indicate continued growth in world energy use, including large increases for the developing economies of Asia and South America. Energy resources are thought to be adequate to support the growth expected through 2020. The IEO2000 projections indicate continued growth in world energy use, including large increases for the developing economies of Asia and South America. Energy resources are thought to be adequate to support the growth expected through 2020. Current Trends Influencing World Energy Demand Changing world events and their effects on world energy markets shape the long-term view of trends in energy demand. Several developments in 1999—shifting short-term world oil markets, the recovery of developing Asian markets, and a faster than expected recovery in the economies of the former Soviet Union— are reflected in the projections presented in this year’s International Energy Outlook 2000 (IEO2000). In 1998, oil prices reached 20-year lows as a result of oil surpluses

234

Reduced power consumption in  

E-Print Network (OSTI)

and a potential energy savings of over $30 Billion/year. This new approach is demanded by the exponentiallyBenefits Reduced power consumption in IC devices; hence potential energy savings of 300 Billion KWh://www.sia- online.org) CuRIE Interconnect Technology for Improved Energy Efficiency in IC Chips ARPA-E Technology

235

Reduction of Water Consumption  

E-Print Network (OSTI)

Cooling systems using water evaporation to dissipate waste heat, will require one pound of water per 1,000 Btu. To reduce water consumption, a combination of "DRY" and "WET" cooling elements is the only practical answer. This paper reviews the various options available: WET-DRY towers, or DRY-WET, or combination WET and DRY towers!

Adler, J.

1985-05-01T23:59:59.000Z

236

Crisis and Consumption Smoothing  

Science Conference Proceedings (OSTI)

The dramatic impact of the current crisis on performance of businesses across sectors and economies has been headlining the business press for the past several months. Extant reconciliations of these patterns in the popular press rely on ad hoc reasoning. ... Keywords: consumer behavior, consumption smoothing, crisis, econometrics, marketing strategy

Pushan Dutt; V. Padmanabhan

2011-05-01T23:59:59.000Z

237

Natural Gas Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

Lease Fuel Consumption Plant Fuel Consumption Pipeline & Distribution Use Volumes Delivered to Consumers Volumes Delivered to Residential Volumes Delivered to Commercial Consumers Volumes Delivered to Industrial Consumers Volumes Delivered to Vehicle Fuel Consumers Volumes Delivered to Electric Power Consumers Period: Monthly Annual Lease Fuel Consumption Plant Fuel Consumption Pipeline & Distribution Use Volumes Delivered to Consumers Volumes Delivered to Residential Volumes Delivered to Commercial Consumers Volumes Delivered to Industrial Consumers Volumes Delivered to Vehicle Fuel Consumers Volumes Delivered to Electric Power Consumers Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History U.S. 23,103,793 23,277,008 22,910,078 24,086,797 24,477,425 25,533,448 1949-2012 Alabama 418,512 404,157 454,456 534,779 598,514 666,738 1997-2012 Alaska 369,967 341,888 342,261 333,312 335,458 343,110 1997-2012

238

Contact angle measurements and wetting behavior of inner surfaces of pipelines exposed to heavy crude oil and water  

E-Print Network (OSTI)

to deliver these oils at low energy consumption. However, the possible accumulation of oil on the pipe walls alternative for the transportation of heavy crude oils. The lubricating effect of the aqueous film leads to reduced equivalent viscosities and, hence, low energy consumption. One of the possible problems associated

Loh, Watson

239

Trends in Commercial Buildings--Trends in Energy Consumption and Energy  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Consumption and Energy Sources - Part 1 Energy Consumption and Energy Sources - Part 1 Part 2. Energy Intensity Data Tables Total Energy Consumption Consumption by Energy Source Background: Site and Primary Energy Trends in Energy Consumption and Energy Sources Part 1. Energy Consumption The CBECS collects energy consumption statistics from energy suppliers for four major energy sources—electricity, natural gas, fuel oil, and district heat—and collects information from the sampled buildings on the use of the four major sources and other energy sources (e.g., district chilled water, solar, wood). Energy consumed in commercial buildings is a significant fraction of that consumed in all end-use sectors. In 2000, about 17 percent of total energy was consumed in the commercial sector. Total Energy Consumption

240

Table N5.1. Selected Byproducts in Fuel Consumption, 1998  

U.S. Energy Information Administration (EIA) Indexed Site

1. Selected Byproducts in Fuel Consumption, 1998;" 1. Selected Byproducts in Fuel Consumption, 1998;" " Level: National Data and Regional Totals; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," ","Waste"," ",," " " "," "," ","Blast"," "," ","Pulping Liquor"," ","Oils/Tars","RSE" "NAICS"," "," ","Furnace/Coke"," ","Petroleum","or","Wood Chips,","and Waste","Row"

Note: This page contains sample records for the topic "oil consumption growth" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Fuel consumption: Industrial, residential, and general studies. (Latest citations from the NTIS Bibliographic database). Published Search  

SciTech Connect

The bibliography contains citations concerning fuel consumption in industrial and residential sectors. General studies of fuel supply, demand, policy, forecasts, and consumption models are presented. Citations examine fuel information and forecasting systems, fuel production, international economic and energy activities, heating oils, and pollution control. Fuel consumption in the transportation sector is covered in a separate bibliography. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1994-08-01T23:59:59.000Z

242

TAX EXPENDITURES RELATED TO THE PRODUCTION AND CONSUMPTION OF MOTOR FUELS AND MOTOR VEHICLES  

E-Print Network (OSTI)

-miles of travel RECS = Residential Energy Consumption Survey SIC = standard industrial classification SOx = sulfur industries, or oil over other energy industries: virtually all major energy sources require large investments.......................24 18.5.1 Corporate income-tax expenditures for the oil industry

Delucchi, Mark

243

Energy consumption forecasting in process industry using support vector machines and particle swarm optimization  

Science Conference Proceedings (OSTI)

In this paper, Support Vector Machines (SVMs) are applied in predicting energy consumption in the first phase of oil refining at a particular oil refinery. During cross-validation process of the SVM training Particle Swarm Optimization (PSO) algorithm ... Keywords: energy prediction, particle swarm optimization (PSO), support vector machines (SVM)

Milena R. Petkovi?; Milan R. Rapai?; Boris B. Jakovljevi?

2009-09-01T23:59:59.000Z

244

Annual Energy Outlook with Projections to 2025-Market Trends - Oil and  

Gasoline and Diesel Fuel Update (EIA)

Oil and Natural Gas Oil and Natural Gas Index (click to jump links) Natural Gas Consumption and Prices Natural Gas Production Natural Gas Imports and Wellhead Prices Natural Gas Alternative Cases Oil Prices and Reserve Additions Oil Production Alaskan Oil Production and Oil Imports Petroleum Refining Refined Petroleum Products Natural Gas Consumption and Prices Projected Increases in Natural Gas Use Are Led by Electricity Generators Figure 85. Natural gas consumption by end-use sector, 1990-2025 (trillion cubic feet). Having problems, call our National Energy Information Center at 202-586-8800 for help. Figure data Total natural gas consumption is projected to increase from 2002 to 2025 in all the AEO2004 cases. The projections for domestic natural gas consumption in 2025 range from 29.1 trillion cubic feet per year in the low economic

245

DEVELOPMENT OF IMPROVED ANAEROBIC GROWTH OF BACILLUS MOJAVENSIS STRAIN JF-2 FOR THE PURPOSE OF IMPROVED ANAEROBIC BIOSURFACTANT PRODUCTION FOR ENHANCED OIL RECOVERY  

Science Conference Proceedings (OSTI)

Our work focuses on the use of microorganisms to recover petroleum hydrocarbons that remain entrapped after current recovery technologies reach their economic limit. Capillary forces between the hydrocarbon and aqueous phases are largely responsible for trapping the hydrocarbons in the pores of the rock and large reductions in the interfacial tension between the hydrocarbon and aqueous phases are needed for hydrocarbon mobilization (1-3, 10, 11). Microorganisms produce a variety of biosurfactants (4), several of which generate the ultra low interfacial tensions needed for hydrocarbon mobilization (4, 5, 8). In particular, the lipopeptide biosurfactant produced by Bacillus mojavensis strain JF-2 reduces the interfacial tension between hydrocarbon and aqueous phases to very low levels (herring sperm DNA, E. coli DNA or synthetic DNA (single or double stranded) to Medium E all supported anaerobic growth of JF-2. Further, we found that JF-2 required all four deoxyribonucleosides (deoxyadeonosine, deoxyguanosine, deoxycytidine and thymidine) for growth under strict anaerobic conditions. The requirement for the deoxyribonucleosides did not occur under aerobic growth conditions. DNA was not used as a sole energy source; sucrose was required for anaerobic growth and biosurfactant production in DNA-supplemented Medium E. In addition to DNA or deoxyribonucleosides, nitrate, amino acids and vitamins were all required for anaerobic growth of JF-2. Bacillus mojavensisT (ABO21191), Bacillus mojavensis, strain ROB2 also required DNA or deoxyribonucleosides for anaerobic growth. The improved anaerobic growth of Bacillus mojavensis JF-2 was a prerequisite for studies that will lead to improved anaerobic biosurfactant production.

M.J. McInerney; M. Folmsbee; D. Nagle

2004-05-31T23:59:59.000Z

246

World Energy Consumption by Fuel Type, 1970-2020  

Gasoline and Diesel Fuel Update (EIA)

Energy Consumption by Fuel Type, 1970-2020 Energy Consumption by Fuel Type, 1970-2020 Source: EIA, International Energy Outlook 2000 Previous slide Next slide Back to first slide View graphic version Notes: Natural gas is projected to be the fastest-growing component of primary world energy consumption, more than doubling between 1997 and 2020. Gas accounts for the largest increment in electricity generation (41 percent of the total increment of energy used for electricity generation). Combined-cycle gas turbine power plants offer some of the highest commercially available plant efficiencies, and natural gas is environmentally attractive because it emits less sulfur dioxide, carbon dioxide, and particulate matter than does oil or coal. In the IEO2000 projection, world natural gas consumption reaches the level of coal by

247

Commercial Buildings Energy Consumption Survey (CBECS) - U.S. Energy  

Gasoline and Diesel Fuel Update (EIA)

Estimation of Energy End-use Consumption Estimation of Energy End-use Consumption 2003 CBECS The energy end-use consumption tables for 2003 (Detailed Tables E1-E11 and E1A-E11A) provide estimates of the amount of electricity, natural gas, fuel oil, and district heat used for ten end uses: space heating, cooling, ventilation, water heating, lighting, cooking, refrigeration, personal computers, office equipment (including servers), and other uses. Although details vary by energy source (Table 1), there are four basic steps in the end-use estimation process: Regressions of monthly consumption on degree-days to establish reference temperatures for the engineering models, Engineering modeling by end use, Cross-sectional regressions to calibrate the engineering estimates and account for additional energy uses, and

248

Data Center Power Consumption  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Center Power Consumption Center Power Consumption A new look at a growing problem Fact - Data center power density up 10x in the last 10 years 2.1 kW/rack (1992); 14 kW/rack (2007) Racks are not fully populated due to power/cooling constraints Fact - Increasing processor power Moore's law Fact - Energy cost going up 3 yr. energy cost equivalent to acquisition cost Fact - Iterative power life cycle Takes as much energy to cool computers as it takes to power them. Fact - Over-provisioning Most data centers are over-provisioned with cooling and still have hot spots November 2007 SubZero Engineering An Industry at the Crossroads Conflict between scaling IT demands and energy efficiency Server Efficiency is improving year after year Performance/Watt doubles every 2 years Power Density is Going Up

249

Table 3.2 Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

2 Fuel Consumption, 2010; 2 Fuel Consumption, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Trillion Btu. NAICS Net Residual Distillate LPG and Coke Code(a) Subsector and Industry Total Electricity(b) Fuel Oil Fuel Oil(c) Natural Gas(d) NGL(e) Coal and Breeze Other(f) Total United States 311 Food 1,158 257 12 22 579 6 182 2 99 3112 Grain and Oilseed Milling 350 56 * 1 121 * 126 0 45 311221 Wet Corn Milling 214 25 * * 53 * 110 0 25 31131 Sugar Manufacturing 107 4 1 1 15 * 49 2 36 3114 Fruit and Vegetable Preserving and Specialty Foods 143 31 1 Q 100 1 2 0 4 3115 Dairy Products 105 33 2 2 66 1 * 0 2 3116 Animal Slaughtering and Processing 212 69 5 3 125 2 Q 0 8 312 Beverage and Tobacco Products 86 29 1 1 38 1 10 0 7 3121 Beverages

250

Table 3.3 Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

3 Fuel Consumption, 2010; 3 Fuel Consumption, 2010; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes; Column: Energy Sources; Unit: Trillion Btu. Economic Net Residual Distillate LPG and Coke and Characteristic(a) Total Electricity(b) Fuel Oil Fuel Oil(c) Natural Gas(d) NGL(e) Coal Breeze Other(f) Total United States Value of Shipments and Receipts (million dollars) Under 20 1,148 314 6 53 446 14 25 Q 291 20-49 1,018 297 13 22 381 18 97 5 185 50-99 1,095 305 7 13 440 6 130 9 186 100-249 1,728 411 16 11 793 7 131 7 353 250-499 1,916 391 16 11 583 3 185 5 722 500 and Over 7,323 720 21 21 2,569 21 300 348 3,323 Total 14,228 2,437 79 130 5,211 69 868 376 5,059 Employment Size Under 50 1,149 305 12 45 565 21 31

251

101. Natural Gas Consumption  

Gasoline and Diesel Fuel Update (EIA)

1. Natural Gas Consumption 1. Natural Gas Consumption in the United States, 1930-1996 (Million Cubic Feet) Table Year Lease and Plant Fuel Pipeline Fuel Delivered to Consumers Total Consumption Residential Commercial Industrial Vehicle Fuel Electric Utilities Total 1930 ....................... 648,025 NA 295,700 80,707 721,782 NA 120,290 1,218,479 1,866,504 1931 ....................... 509,077 NA 294,406 86,491 593,644 NA 138,343 1,112,884 1,621,961 1932 ....................... 477,562 NA 298,520 87,367 531,831 NA 107,239 1,024,957 1,502,519 1933 ....................... 442,879 NA 283,197 85,577 590,865 NA 102,601 1,062,240 1,505,119 1934 ....................... 502,352 NA 288,236 91,261 703,053 NA 127,896 1,210,446 1,712,798 1935 ....................... 524,926 NA 313,498 100,187 790,563 NA 125,239 1,329,487 1,854,413 1936 ....................... 557,404 NA 343,346

252

Residential Energy Consumption Survey:  

Gasoline and Diesel Fuel Update (EIA)

E/EIA-0262/2 E/EIA-0262/2 Residential Energy Consumption Survey: 1978-1980 Consumption and Expenditures Part II: Regional Data May 1981 U.S. Department of Energy Energy Information Administration Assistant Administrator for Program Development Office of the Consumption Data System Residential and Commercial Data Systems Division -T8-aa * N uojssaooy 'SOS^-m (£03) ao£ 5925 'uofSfAfQ s^onpojj aa^ndmoo - aojAaag T BU T3gN am rcoj? aig^IT^^ '(adBx Q-naugBH) TOO/T8-JQ/30Q 30^703 OQ ' d jo :moaj ajqBfT^A^ 3J^ sjaodaa aAoqe aqa jo 's-TZTOO-eoo-Tgo 'ON ^ois odo 'g^zo-via/aoQ 'TBST Sujpjjng rXaAang uojidmnsuoo XSaaug sSu-ppjprig ON ^oo^s OdO '^/ZOZO-Via/aOQ *086T aunr '6L6I ?sn§ny og aunf ' jo suja^Bd uoj^dmnsuoo :XaAjng uo^^dmnsuoQ XSaaug OS '9$ '6-ieTOO- 00-T90 OdD 'S/ZOZO-Via/aOa C

253

fuel_oil.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Oil Usage Form Fuel Oil Usage Form 1999 Commercial Buildings Energy Consumption Survey (CBECS) 1. Timely submission of this report is mandatory under Public Law 93-275, as amended. 2. This completed report is due by 3. Data reported on this questionnaire are for the entire building identified in the label to the right. 4. Data may be submitted directly on this questionnaire or in any other format, such as a computer-generated listing, which provides the same i nformation and is conve nient for y our company. a. You may submit a single report for the entire building, or if it i s easier, a separate report for each of several accounts in the building. These will then be aggregated by the survey contractor. b. If you are concerned about your individual account information, you may c

254

Oil reserves  

SciTech Connect

As of March 1988, the Strategic Petroleum Reserve inventory totaled 544.9 million barrels of oil. During the past 6 months the Department of Energy added 11.0 million barrels of crude oil to the SPR. During this period, DOE distributed $208 million from the SPR Petroleum Account. All of the oil was purchased from PEMEX--the Mexican national oil company. In FY 1988, $164 million was appropriated for facilities development and management and $439 million for oil purchases. For FY 1989, DOE proposes to obligate $173 million for facilities development and management and $236 million for oil purchases. DOE plans to postpone all further drawdown exercises involving crude oil movements until their effects on cavern integrity are evaluated. DOE and the Military Sealift Command have made progress in resolving the questions surrounding nearly $500,000 in payments for demurrage charges.

Not Available

1988-01-01T23:59:59.000Z

255

2009 Energy Consumption Per Person  

Energy.gov (U.S. Department of Energy (DOE))

Per capita energy consumption across all sectors of the economy. Click on a state for more information.

256

Oil price shocks: Testing a macroeconomic model  

SciTech Connect

The main research objective was to answer the following question: Will Consumer Price Index forecast models utilizing computer oil-consumption ratios have better predictive capability as indicated by lower numerical differences from actual results than a model utilizing oil prices as the energy-related variable Multiple linear regressions were run on the components of the United States CPI to reduce them to a kernel set with meaningful predictive capability. New linear regressions were run with this kernel set and crude oil prices during the 1973 to 1984 time period. Crude oil prices were rationalized with a 1972 = 100 based index of GNP base petroleum consumption, the index of net energy imports, and the index of petroleum imports to create new oil substitute constructs to be used in multiple regressions with the CPI. Predictions obtained from the model were compared with actual results in the 1985-1987 time period to determine which model version showed the greatest predictive power. Results of the model tests show that oil prices are strongly related to the CPI, but neither the use of oil prices or the index of GNP-based petroleum consumption produced results that closely predict future prices.

Williams, D.D.

1988-01-01T23:59:59.000Z

257

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

A. Total Energy Consumption by Major Fuel for All Buildings, 2003 A. Total Energy Consumption by Major Fuel for All Buildings, 2003 All Buildings Total Energy Consumption (trillion Btu) Number of Buildings (thousand) Floorspace (million square feet) Sum of Major Fuels Electricity Natural Gas Fuel Oil District Heat Primary Site All Buildings ................................ 4,859 71,658 6,523 10,746 3,559 2,100 228 636 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 2,586 6,922 685 1,185 392 257 34 Q 5,001 to 10,000 .............................. 948 7,033 563 883 293 224 36 Q 10,001 to 25,000 ............................ 810 12,659 899 1,464 485 353 28 Q 25,001 to 50,000 ............................ 261 9,382 742 1,199 397 278 17 Q 50,001 to 100,000 .......................... 147 10,291 913 1,579 523 277 29 Q

258

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

. Total Energy Consumption by Major Fuel for Non-Mall Buildings, 2003 . Total Energy Consumption by Major Fuel for Non-Mall Buildings, 2003 All Buildings* Total Energy Consumption (trillion Btu) Number of Buildings (thousand) Floorspace (million square feet) Sum of Major Fuels Electricity Natural Gas Fuel Oil District Heat Primary Site All Buildings* ............................... 4,645 64,783 5,820 9,168 3,037 1,928 222 634 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 2,552 6,789 672 1,164 386 250 34 Q 5,001 to 10,000 .............................. 889 6,585 516 790 262 209 36 Q 10,001 to 25,000 ............................ 738 11,535 776 1,229 407 309 27 Q 25,001 to 50,000 ............................ 241 8,668 673 1,058 350 258 16 Q 50,001 to 100,000 .......................... 129 9,057 759 1,223 405 244 26 Q

259

An experimental study of the oil evolution in critical piston ring pack regions and the effects of piston and ring designs in an internal combustion engine utilizing two-dimensional laser induced fluorescence and the impact on maritime economics  

E-Print Network (OSTI)

Faced with increasing concern for lubricating, oil consumption and engine friction, it is critical to understand the oil transport mechanisms in the power cylinder system. Lubricating oil travels through distinct regions ...

Vokac, Adam, 1978-

2004-01-01T23:59:59.000Z

260

World Oil Price, 1970-2020  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

World Oil Price, 1970-2020 World Oil Price, 1970-2020 (1999 dollars per barrel) 17.09 50- 45 - 40 - I Nominal dollars 35- 1995 _2020 15 - J 9, AE02000 5- 10 - HHistory Projections 0 1970 1980 1990 2000 2010 2020 35AS0570 ^a .i^ Petroleum Supply, Consumption, and Imports, 1970-2020 (million barrels per day) 30- History Projections 25 - 20 - 20~ Consumption _ Net imports 15 - Domestic supply . _ 5- 0 0 1970 1980 1990 2000 2010 2020 '-'e^~~~ u,~~ ~35AS0570 ., te Petroleum Consumption by Sector, 1970-2020 (million barrels per day) 20- History Projections 15- XTransportation 10 Industrial Eect i city gener - 5- 1970 1980 1990 2000 2010 2020 .n 35AS0570 r-N Crude Oil Production by Source, 1970-2020 (million barrels per day) 8 History Projections 6- Lower 48 conventional 4- Lower 48 offshore 2- lasa k r 0 § ^.^^^r"_ "^^"' ^Lower 48 EOR

Note: This page contains sample records for the topic "oil consumption growth" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Residential energy-consumption survey: consumption and expenditures, April 1978-March 1979  

SciTech Connect

Tables present data on energy consumption and expenditures for US households during a 12-month period. The total amount of energy consumed by the residential sector from April 1978 through March 1979 is estimated to have been 10,563 trillion Btu with an average household consumption of 138 million Btu. Table 1 summarizes residential energy consumption for all fuels (totals and averages) as wells as total amounts consumed and expenditures for each of the major fuel types (natural gas, electricity, fuel oil, and liquid petroleum gas). Tables 2 and 3 give the number of households and the average energy prices, respectively, for each of the major fuel types. In Tables 4 to 9, totals and averages for both consumption and expenditures are given for each of the major fuels. The consumption of each fuel is given first for all households using the fuel. Then, households are divided into those that use the fuel as their main source of heat and those using the fuel for other purposes. Electricity data (Tables 5 to 7) are further broken down into households that use electricity for air conditioning and those not using it for this purpose. Limited data are also presented on households that use each of the major fuels for heating water. Each of the consumption tables is given for a variety of general household features, including: geographical, structural and physical, and demographic characteristics. Tables 10 to 18 present the same information for the subgroup of households living in single-family owner-occupied detached houses. The third set of tables (19 to 27) is limited to households that paid directly for all of the energy they used. Tables 28 to 36 provide variance estimates for the data.

Not Available

1980-07-01T23:59:59.000Z

262

Vehicle Technologies Office: Fact #742: August 27, 2012 Oil Price and  

NLE Websites -- All DOE Office Websites (Extended Search)

2: August 27, 2: August 27, 2012 Oil Price and Economic Growth to someone by E-mail Share Vehicle Technologies Office: Fact #742: August 27, 2012 Oil Price and Economic Growth on Facebook Tweet about Vehicle Technologies Office: Fact #742: August 27, 2012 Oil Price and Economic Growth on Twitter Bookmark Vehicle Technologies Office: Fact #742: August 27, 2012 Oil Price and Economic Growth on Google Bookmark Vehicle Technologies Office: Fact #742: August 27, 2012 Oil Price and Economic Growth on Delicious Rank Vehicle Technologies Office: Fact #742: August 27, 2012 Oil Price and Economic Growth on Digg Find More places to share Vehicle Technologies Office: Fact #742: August 27, 2012 Oil Price and Economic Growth on AddThis.com... Fact #742: August 27, 2012 Oil Price and Economic Growth

263

PIA - Northeast Home Heating Oil Reserve System (Heating Oil...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil)...

264

Business Growth with Energy Reduction Made Possible Through Technology  

E-Print Network (OSTI)

For nine consecutive years since 1973, the Bell System has met its objective of zero energy growth. During this period the volume of business has grown by 97 percent and the cumulative savings in energy are equivalent to 45 million barrels of oil. Most of the savings to date have been made by improving buildings operations; however, substantial and growing savings have accrued from the introduction of energy-lean technologies in new network electronic systems. The energy consumption of power, switching, transmission, and equipment building systems is reviewed and an estimate is made of the future trends of energy for these systems as well as the impact of alternative energy. It is concluded that continuing zero energy growth will be based on the use of more environmentally tolerant systems and the continuing trend to lower power technologies that have steadily increased system capacity and performance without increasing energy requirements.

Osifchin, N.

1983-01-01T23:59:59.000Z

265

Idiosyncratic Consumption Risk and the Cross Section of Asset Returns  

E-Print Network (OSTI)

This paper investigates the importance of idiosyncratic consumption risk for the cross-sectional variation in average returns on stocks and bonds. If idiosyncratic consumption risk is not priced, the only pricing factor in a multiperiod economy is the rate of aggregate consumption growth. We o®er evidence that the cross-sectional variance of consumption growth is also a priced factor. This demonstrates that consumers are not fully insured against idiosyncratic consumption risk, and that asset returns re°ect their attempts to reduce their exposure to this risk. We ¯nd that over the sample period the resulting two-factor pricing model has lower Hansen-Jagannathan distances than the CAPM and the Fama-French three-factor model. Moreover, in the presence of the market factor and the size and book-to-market factors, the two consumption based factors retain explanatory power. Together with the results of Lettau and Ludvigson (2000), these ¯ndings indicate that consumption-based asset pricing is relevant for explaining the cross-section of asset returns.

Kris Jacobs; Kevin Q. Wang

2004-01-01T23:59:59.000Z

266

ENERGY CONSUMPTION SURVEY  

U.S. Energy Information Administration (EIA) Indexed Site

5 RESIDENTIAL TRANSPORTATION 5 RESIDENTIAL TRANSPORTATION ENERGY CONSUMPTION SURVEY Prepared for: UNITED STATES DEPARTMENT OF ENERGY ENERGY INFORMATION ADMINISTRATION OFFICE OF ENERGY MARKETS AND END USE ENERGY END USE DIVISION RESIDENTIAL AND COMMERCIAL BRANCH WASHINGTON, DC 20585 Prepared by: THE ORKAND CORPORATION 8484 GEORGIA AVENUE SILVER SPRING, MD 20910 October 1986 Contract Number DE-AC01-84EI19658 TABLE OF CONTENTS FRONT MATTER Index to Program Descriptions........................................... vi List of Exhibits ....................................................... viii Acronyms and Abbreviations ............................................. ix SECTION 1: GENERAL INFORMATION ........................................ 1-1 1.1. Summary ....................................................... 1-1

267

Reducing Greenhouse Emissions and Fuel Consumption  

E-Print Network (OSTI)

the Emissions and Fuel Consumption Impacts of IntelligentTravel Time, Fuel Consumption and Weigh Station Efficiency.EMISSIONS AND FUEL CONSUMPTION - Sustainable Approaches for

Shaheen, Susan; Lipman, Timothy

2007-01-01T23:59:59.000Z

268

Essays on consumption cycles and corporate finance  

E-Print Network (OSTI)

and the consumption cycle . . . . . . . . . . . . .3.1.6 Optimal consumption, expenditures and1.3.2 Optimal nondurable consumption and durable

Issler, Paulo Floriano

2013-01-01T23:59:59.000Z

269

Milk consumption and acne in adolescent girls  

E-Print Network (OSTI)

Milk consumption and acne in adolescent girls Clement Aassociation between milk consumption and occurrence of acneand 'don't drink milk'. Consumption of the specific types of

2006-01-01T23:59:59.000Z

270

A Note on the Consumption Function  

E-Print Network (OSTI)

Zeldes, S. (1989) ‘ Consumption and Liquidity Constraints:A Note on the Consumption Function Douglas G.Steigerwald Consumption Function The international

Steigerwald, Douglas G

2009-01-01T23:59:59.000Z

271

Stock Market and Consumption: Evidence from China  

E-Print Network (OSTI)

A. 1992. Understanding Consumption. Cambridge, UK: CambridgeStock market wealth and consumption. The Journal of Economic139–146. Stock Market and Consumption: Evidence from China

Hau, Leslie C

2011-01-01T23:59:59.000Z

272

Characterization of oil transport in the power cylinder of internal combustion engines during steady state and transient operation  

E-Print Network (OSTI)

Engine friction, wear, and oil consumption are some of the primary interests for the automotive industry. However, there is currently a lack of understanding of the fundamentals involving oil transport inside the power ...

Przesmitzki, Steve (Steve Victor)

2008-01-01T23:59:59.000Z

273

Burning desires An obsession with oil distorts an account of the  

E-Print Network (OSTI)

Energy Systems Figure 3 100 mb/d Crude oil: currently producing fields Unconventional oil Natural gasAvailable online at www.sciencedirect.com Future world oil production: growth, plateau, or peak? Larry Hughes and Jacinda Rudolph With the exception of two oil shocks in the 1970s, world oil production

Smil, Vaclav

274

EIA-Annual Energy Outlook 2010 - Low Oil PriceTables  

Gasoline and Diesel Fuel Update (EIA)

Oil Price Tables (2007-2035) Oil Price Tables (2007-2035) Annual Energy Outlook 2010 Main Low Oil Price Tables (2007- 2035) Table Title Formats Summary Low Oil Price Case Tables PDF Gif Year-by-Year Low Oil Price Case Tables Excel Gif Table 1. Total Energy Supply and Disposition Summary Excel Gif Table 2. Energy Consumption by Sector and Source Excel Gif Table 3. Energy Prices by Sector and Source Excel Gif Table 4. Residential Sector Key Indicators and Consumption Excel Gif Table 5. Commercial Sector Indicators and Consumption Excel Gif Table 6. Industrial Sector Key Indicators and Consumption Excel Gif Table 7. Transportation Sector Key Indicators and Delivered Energy Consumption Excel Gif Table 8. Electricity Supply, Disposition, Prices, and Emissions Excel Gif Table 9. Electricity Generating Capacity

275

Manufacturing Consumption of Energy 1991--Combined Consumption and Fuel  

U.S. Energy Information Administration (EIA) Indexed Site

< < Welcome to the U.S. Energy Information Administration's Manufacturing Web Site. If you are having trouble, call 202-586-8800 for help. Return to Energy Information Administration Home Page. Home > Energy Users > Manufacturing > Consumption and Fuel Switching Manufacturing Consumption of Energy 1991 (Combined Consumption and Fuel Switching) Overview Full Report Tables & Spreadsheets This report presents national-level estimates about energy use and consumption in the manufacturing sector as well as manufacturers' fuel-switching capability. Contact: Stephanie.battle@eia.doe.gov Stephanie Battle Director, Energy Consumption Division Phone: (202) 586-7237 Fax: (202) 586-0018 URL: http://www.eia.gov/emeu/mecs/mecs91/consumption/mecs1a.html File Last Modified: May 25, 1996

276

Residential Energy Consumption Survey Results: Total Energy Consumption,  

Open Energy Info (EERE)

Survey Results: Total Energy Consumption, Survey Results: Total Energy Consumption, Expenditures, and Intensities (2005) Dataset Summary Description The Residential Energy Consumption Survey (RECS) is a national survey that collects residential energy-related data. The 2005 survey collected data from 4,381 households in housing units statistically selected to represent the 111.1 million housing units in the U.S. Data were obtained from residential energy suppliers for each unit in the sample to produce the Consumption & Expenditures data. The Consumption & Expenditures and Intensities data is divided into two parts: Part 1 provides energy consumption and expenditures by census region, population density, climate zone, type of housing unit, year of construction and ownership status; Part 2 provides the same data according to household size, income category, race and age. The next update to the RECS survey (2009 data) will be available in 2011.

277

International Energy Outlook 1999 - World Energy Consumption  

Gasoline and Diesel Fuel Update (EIA)

world.gif (5615 bytes) world.gif (5615 bytes) The IEO99 projections indicate substantial growth in world energy use,including substantial increases for the developing economies of Asia and South America. Resource availability is not expected to limit the growth of energy markets. In 1998, expectations for economic growth and energy market performance in many areas of the world were dashed. The Asian economic crisis proved to be deeper and more persistent than originally anticipated, and the threat and reality of spillover effects grew through the year. Oil prices crashed. RussiaÂ’s economy collapsed. Economic and social problems intensified in energy- exporting countries and in emerging economies of Asia and South America. Deepening recession in Japan made recovery more difficult in Asia

278

Table 4.1 Offsite-Produced Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

1 Offsite-Produced Fuel Consumption, 2010; 1 Offsite-Produced Fuel Consumption, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Residual Distillate Natural Gas(d) LPG and Coal and Breeze NAICS Total Electricity(b) Fuel Oil Fuel Oil(c) (billion NGL(e) (million (million Other(f) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 1,113 75,673 2 4 563 1 8 * 54 3112 Grain and Oilseed Milling 346 16,620 * * 118 * 6 0 41 311221 Wet Corn Milling 214 7,481 * * 51 * 5 0 25 31131 Sugar Manufacturing 72 1,264 * * 15 * 2 * * 3114 Fruit and Vegetable Preserving and Specialty Foods 142 9,258 * Q 97

279

Electrical appliance energy consumption control methods and ...  

Electrical appliance energy consumption control methods and electrical energy consumption systems are described. In one aspect, an electrical appliance energy ...

280

Map Data: State Consumption | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Consumption Map Data: State Consumption stateconsumptionpc2009.csv More Documents & Publications Map Data: Renewable Production Map Data: State Spending...

Note: This page contains sample records for the topic "oil consumption growth" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Consumption & Efficiency - Analysis & Projections - U.S ...  

U.S. Energy Information Administration (EIA)

Today in Energy - Commercial Consumption & Efficiency. Short, timely articles with graphs about recent commercial consumption and efficiency ...

282

Middle East leads global crude oil and condensate production ...  

U.S. Energy Information Administration (EIA)

Growth in North American crude oil production (including lease condensate) contributed to record global production of 75.6 million barrels per day (bbl/d) in 2012 ...

283

Vietnam Energy Data, Statistics and Analysis - Oil, Gas ...  

U.S. Energy Information Administration (EIA)

to support the energy industry. These measures have helped to increase oil and gas production, but the country's rapid economic growth, industrialization, ...

284

Store Deals Available: Discount Alter Ego Impact Ego Hot Oil ...  

U.S. Energy Information Administration (EIA)

Discount Alter Ego Impact Ego Hot Oil Treatment with Garlic 1000 ml, Alter EGO Energizing / Prevention Shampoo for Hair Loss & Growth 1000 ml, ...

285

Residential Energy Consumption Survey: Consumption and expenditures, April 1984 through March 1985: Part 1, National data  

Science Conference Proceedings (OSTI)

This report presents data collected in the 1984 Residential Energy Consumption Survey (RECS) conducted by the Energy Information Administration (EIA). The 1984 RECS was the sixth national survey of US households and their energy suppliers. The purpose of these surveys is to provide baseline information on how households use energy. Households in all types of housing units - single family homes (including townhouses), apartments, and mobile homes - were chosen to participate. Data from the surveys are available to the public in published reports such as this one and on public-use data tapes. The report presents data on the US consumption and expenditures for residential use of these ''major fuels'' - natural gas, electricity, fuel oil, kerosene, and liquefied petroleum gas (LPG) - from April 1984 through March 1985. These data are presented in tables in the Detailed Statistics section of this report. Except for kerosene and wood fuel, the consumption and expenditures data are based on actual household bills obtained, with the permission of the household, from the companies supplying energy to the household. Purchases of kerosene are based on respondent reports because records of ''cash and carry'' purchases of kerosene for individual households are usually unavailable. Data on the consumption of wood fuel (Table 27) covers the 12-month period ending November 1984 and are based on respondent recall of the amount of wood burned during the 12-month period. Both the kerosene and wood consumption data are subject to memory errors and other reporting errors. This report does not cover household use of motor fuel, which is reported separately.

Not Available

1987-03-04T23:59:59.000Z

286

Purification of Vegetable Oils Post-Consumption Residential and ...  

Science Conference Proceedings (OSTI)

The viscosity residential treated with clay Tonsil was lower compared to the crude ... Designing a Collaborative System for Socio-Environmental Management of ...

287

Oil Consumption for Transportation and Other Uses in ...  

U.S. Energy Information Administration (EIA)

... the developing countries is caused in part by the substitution of petroleum products for noncommercial fuels (such as wood burning for home heating and cooking) ...

288

"Table A2. Total Consumption of LPG, Distillate Fuel Oil,...  

U.S. Energy Information Administration (EIA) Indexed Site

,32,1688,378,0,58,0,15.7 3274," Lime","Q",657,"W","Q",657,"W",0,0,0,33.9 3296," Mineral Wool","W","W","W",113,34,"W","W","W",0,2 33,"Primary Metal Industries","W",5117,"W",2433,494...

289

Oil Consumption for Transportation and Other Uses in ...  

U.S. Energy Information Administration (EIA)

... products for noncommercial fuels (such as wood burning for home heating and cooking) as incomes rise and the energy infrastructure matures. ...

290

Residential Electricity Demand in China -- Can Efficiency Reverse the Growth?  

E-Print Network (OSTI)

electricity consumption of 12kWh assuming 2.5 kg per load and 250 cycles per yearelectricity consumption annual growth rates for the three scenarios for every decade, since standards levels are applied every 10 years.

Letschert, Virginie

2010-01-01T23:59:59.000Z

291

Energy Consumption | OpenEI  

Open Energy Info (EERE)

Consumption Consumption Dataset Summary Description This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols). This dataset also includes the Residential Energy Consumption Survey (RECS) for statistical references of building types by location. Source Commercial and Residential Reference Building Models Date Released April 18th, 2013 (9 months ago) Date Updated July 02nd, 2013 (7 months ago) Keywords building building demand building load Commercial data demand Energy Consumption energy data hourly kWh load profiles Residential Data Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage

292

2001 Residential Energy Consumption Survey  

U.S. Energy Information Administration (EIA)

Residential Energy Consumption Survey ... Office of Management and Budget, Washington, DC 20503. Form EIA-457A (2001) Form Approval: OMB No. 1905-0092 ...

293

Manufacturing Consumption of Energy 1991  

U.S. Energy Information Administration (EIA) Indexed Site

includes descriptions of the 30 groups that comprise the strata of the Manufacturing Energy Consumption Survey. These are the 20 major industrial groups (two-digit SIC) and...

294

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

DOEEIA-0464(91) Distribution Category UC-950 Household Vehicles Energy Consumption 1991 December 1993 Energy Information Administration Office of Energy Markets and End Use U.S....

295

RESIDENTIAL ENERGY CONSUMPTION SURVEY 1997  

U.S. Energy Information Administration (EIA)

RESIDENTIAL ENERGY CONSUMPTION SURVEY 1997. OVERVIEW: MOST POPULOUS STATES ... Homes with air-conditioning: 95%... with a central air-conditioning system: 83%

296

Manufacturing Consumption of Energy 1991  

U.S. Energy Information Administration (EIA) Indexed Site

B Survey Design, Implementation, and Estimates Introduction The 1991 Manufacturing Energy Consumption Survey (MECS) has been designed by the Energy Information Administration...

297

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

a regular basis at the time of the 1990 RECS personal interviews. Electricity: See Main Heating Fuel. Energy Information AdministrationHousehold Vehicles Energy Consumption 1991...

298

Household Vehicles Energy Consumption 1994  

U.S. Energy Information Administration (EIA) Indexed Site

AdministrationHousehold Vehicles Energy Consumption 1994 110 Electricity: See Main Heating Fuel. Energy Used in the Home: For electricity or natural gas, the quantity is the...

299

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Information AdministrationManufacturing Consumption of Energy 1994 Introduction The market for natural gas has been changing for quite some time. As part of natural gas...

300

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

Detailed Tables 28 Energy Information AdministrationManufacturing Consumption of Energy 1994 1. In previous MECS, the term "primary energy" was used to denote the "first use" of...

Note: This page contains sample records for the topic "oil consumption growth" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

Appendix A How the Survey Was Conducted Introduction The Residential Transportation Energy Consumption Survey (RTECS) was designed by the Energy Information Administration (EIA)...

302

Energy Information Administration (EIA)- Manufacturing Energy Consumption  

Gasoline and Diesel Fuel Update (EIA)

Chemical Industry Analysis Brief Change Topic: Steel | Chemical Chemical Industry Analysis Brief Change Topic: Steel | Chemical JUMP TO: Introduction | Energy Consumption | Energy Expenditures | Producer Prices and Production | Energy Intensity | Energy Management Activities | Fuel Switching Capacity Introduction The chemical industries are a cornerstone of the U.S. economy, converting raw materials such as oil, natural gas, air, water, metals, and minerals into thousands of various products. Chemicals are key materials for producing an extensive assortment of consumer goods. They are also crucial materials in creating many resources that are essential inputs to the numerous industries and sectors of the U.S. economy.1 The manufacturing sector is classified by the North American Industry Classification System (NAICS) of which the chemicals sub-sector is NAICS

303

Modeling energy consumption of residential furnaces and boilers in U.S. homes  

E-Print Network (OSTI)

ENERGY CONSUMPTION . . . . . . . . . . . . . . . . . . . . . . . . . .28 ENERGY CONSUMPTIONENERGY CONSUMPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Lutz, James; Dunham-Whitehead, Camilla; Lekov, Alex; McMahon, James

2004-01-01T23:59:59.000Z

304

Characteristics of North Sea oil reserve appreciation  

E-Print Network (OSTI)

In many petroleum basins, and especially in more mature areas, most reserve additions consist of the growth over time of prior discoveries, a phenomenon termed reserve appreciation. This paper concerns crude oil reserve ...

Watkins, G. C.

2000-01-01T23:59:59.000Z

305

Residential Energy Consumption Survey: Consumption and expenditures, April 1984 through March 1985: Part 2, Regional data. [Contains glossary  

SciTech Connect

Included here are data at the Census region and division level on consumption of and expenditures for the major fuels used in residential households - electricity, natural gas, fuel oil/kerosene, and liquefied petroleum gas (LPG). Data are also presented on wood consumption. Section 1 of this report contains data on the average amount of energy consumed per household for space heating in 1984 and the corresponding expenditures. Sections 2 through 7 summarize the energy consumption and expenditure patterns. Appendices A through D contain information on how the survey was conducted, estimates of the size of the housing unit in square feet and the quality of the data. Procedures for calculating relative standard errors (RSE) are located in Appendix C, Quality of the Data. Procedures for estimating the end-use statistics are located in Appendix D. Census and weather maps, and related publications are located in Appendices E through G.

Not Available

1987-05-13T23:59:59.000Z

306

CBECS 1992 - Consumption & Expenditures, Detailed Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Detailed Tables Detailed Tables Detailed Tables Figure on Energy Consumption in Commercial Buildings by Energy Source, 1992 Divider Line The 49 tables present detailed energy consumption and expenditure data for buildings in the commercial sector. This section provides assistance in reading the tables by explaining some of the headings for the data categories. It will also explain the use of row and column factors to compute both the confidence levels of the estimates given in the tables and the statistical significance of differences between the data in two or more categories. The section concludes with a "Quick-Reference Guide" to the statistics in the different tables. Categories of Data in the Tables After Table 3.1, which is a summary table, the tables are grouped into the major fuel tables (Tables 3.2 through 3.13) and the specific fuel tables (Tables 3.14 through 3.29 for electricity, Tables 3.30 through 3.40 for natural gas, Tables 3.41 through 3.45 for fuel oil, and Tables 3.46 through 3.47 for district heat). Table 3.48 presents energy management and DSM data as reported by the building respondent. Table 3.49 presents data on participation in electric utility-sponsored DSM programs as reported by both the building respondent and the electricity supplier.

307

STEO January 2013 - oil production increase  

U.S. Energy Information Administration (EIA) Indexed Site

oil production to increase in 2013 and 2014 oil production to increase in 2013 and 2014 U.S. crude oil production is expected to keep rising over the next two years. America's oil output will jump nearly 900,000 barrels per day in 2013 to an average 7.3 million barrels a day, according to the latest monthly forecast from the U.S. Energy Information Administration. This would mark the biggest one-year increase in output since U.S. commercial crude oil production began in 1859. U.S. daily oil production is expected to rise by another 600,000 barrels in 2014 to nearly 8 million barrels a day, the highest level since 1988. Most of America's oil production growth over the next two years will come from more drilling activity in tight shale rock formations located in North Dakota and Texas

308

Groundwater and Wastewater Remediation Using Agricultural Oils  

agricultural oils to stimulate endogenous microbes which accelerates the cleanup.  The oils tested include canola oil, grapeseed oil, coconut oil, corn oil, cottonseed oil, olive oil, palm oil, palm kernel oil, peanut oil, ...

309

Greece poised for oil and gas development  

SciTech Connect

The first indigenous crude oil in Greece will be produced by late 1980, and commercial operations are expected to start in early 1981 from the offshore oil and gas field in the North Aegean Sea. The discovery of oil in Greek waters started a new era in the economic development of Greece and could be considered a milestone in the development of the country. The discovery also had international political implications. Many analysts consider it as the main cause of the dispute between Greece and Turkey over the delineation of the continental shelf of the Aegean Sea. The Greek Government, after the collapse of the dictatorial regime in 1974, has enacted new legislation regarding oil exploration and exploitation activities in Greece. Oil found so far amounts to 12% of present domestic consumption, and there is hope of more as the Public Petroleum Corporation turns its attention westward.

Vougaris, C.

1979-11-01T23:59:59.000Z

310

Optimal consumption and investment in incomplete markets with general constraints  

E-Print Network (OSTI)

We study an optimal consumption and investment problem in a possibly incomplete market with general, not necessarily convex, stochastic constraints. We give explicit solutions for investors with exponential, logarithmic and power utility. Our approach is based on martingale methods which rely on recent results on the existence and uniqueness of solutions to BSDEs with drivers of quadratic growth.

Cheridito, Patrick

2010-01-01T23:59:59.000Z

311

2009 Residential Energy Consumption Survey  

U.S. Energy Information Administration (EIA)

6 Built-in room heater burning gas, oil, or kerosene? 7 Heating stove burning wood, coal, or coke (IF VOLUNTEERED) 8 Portable electric heaters (IF VOLUNTEERED)

312

Electricity Consumption | OpenEI  

Open Energy Info (EERE)

Consumption Consumption Dataset Summary Description Total annual electricity consumption by country, 1980 to 2009 (billion kilowatthours). Compiled by Energy Information Administration (EIA). Source EIA Date Released Unknown Date Updated Unknown Keywords EIA Electricity Electricity Consumption world Data text/csv icon total_electricity_net_consumption_1980_2009billion_kwh.csv (csv, 50.7 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Time Period 1980 - 2009 License License Other or unspecified, see optional comment below Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote Overall rating Average vote Your vote Comments Login or register to post comments

313

Biofuels Consumption | OpenEI  

Open Energy Info (EERE)

Biofuels Consumption Biofuels Consumption Dataset Summary Description Total annual biofuels consumption and production data by country was compiled by the Energy Information Administration (EIA). Data is presented as thousand barrels per day. Source EIA Date Released Unknown Date Updated Unknown Keywords Biofuels Biofuels Consumption EIA world Data text/csv icon total_biofuels_production_2000_2010thousand_barrels_per_day.csv (csv, 9.3 KiB) text/csv icon total_biofuels_consumption_2000_2010thousand_barrels_per_day.csv (csv, 9.3 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Time Period 2000 - 2010 License License Other or unspecified, see optional comment below Comment Rate this dataset Usefulness of the metadata Average vote Your vote

314

Coal consumption | OpenEI  

Open Energy Info (EERE)

consumption consumption Dataset Summary Description Total annual coal consumption by country, 1980 to 2009 (available as Quadrillion Btu). Compiled by Energy Information Administration (EIA). Source EIA Date Released Unknown Date Updated Unknown Keywords coal Coal consumption EIA world Data text/csv icon total_coal_consumption_1980_2009quadrillion_btu.csv (csv, 38.3 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Time Period 1980 - 2009 License License Other or unspecified, see optional comment below Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote Overall rating Average vote Your vote Comments Login or register to post comments

315

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

(MECS) > MECS 1994 Combined Consumption and Fuel Switching (MECS) > MECS 1994 Combined Consumption and Fuel Switching Manufacturing Energy Consumption Survey 1994 (Combined Consumption and Fuel Switching) Manufacturing Energy Consumption Logo Full Report - (file size 5.4 MB) pages:531 Selected Sections (PDF format) Contents (file size 56 kilobytes, 10 pages). Overview (file size 597 kilobytes, 11 pages). Chapters 1-3 (file size 265 kilobytes, 9 pages). Chapter 4 (file size 1,070 kilobytes, 15 pages). Appendix A - Detailed Tables Tables A1 - A8 (file size 1,031 kilobytes, 139 pages). Tables A9 - A23 (file size 746 kilobytes, 119 pages). Tables A24 - A29 (file size 485 kilobytes, 84 pages). Tables A30 - A44 (file size 338 kilobytes, 39 pages). Appendix B (file size 194 kilobytes, 24 pages). Appendix C (file size 116 kilobytes, 16 pages).

316

OIl Speculation  

Gasoline and Diesel Fuel Update (EIA)

Investor Flows and the 2008 BoomBust in Oil Prices Kenneth J. Singleton 1 August 10, 2011 1 Graduate School of Business, Stanford University, kenneths@stanford.edu. This research...

317

PIA - Northeast Home Heating Oil Reserve System (Heating Oil...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating...

318

EIA - Annual Energy Outlook 2008 (Early Release)-Energy-Energy Consumption  

Gasoline and Diesel Fuel Update (EIA)

Consumption Consumption Annual Energy Outlook 2008 (Early Release) Energy Consumption Total primary energy consumption in the AEO2008 reference case increases at an average rate of 0.9 percent per year, from 100.0 quadrillion Btu in 2006 to 123.8 quadrillion Btu in 2030—7.4 quadrillion Btu less than in the AEO2007 reference case. In 2030, the levels of consumption projected for liquid fuels, natural gas, and coal are all lower in the AEO2008 reference case than in the AEO2007 reference case. Among the most important factors resulting in lower total energy demand in the AEO2008 reference case are lower economic growth, higher energy prices, greater use of more efficient appliances, and slower growth in energy-intensive industries. Figure 2. Delivered energy consumption by sector, 1980-2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800.

319

Vehicle Technologies Office: Fact #495: November 12, 2007 Oil Price and  

NLE Websites -- All DOE Office Websites (Extended Search)

5: November 12, 5: November 12, 2007 Oil Price and Economic Growth, 1971-2006 to someone by E-mail Share Vehicle Technologies Office: Fact #495: November 12, 2007 Oil Price and Economic Growth, 1971-2006 on Facebook Tweet about Vehicle Technologies Office: Fact #495: November 12, 2007 Oil Price and Economic Growth, 1971-2006 on Twitter Bookmark Vehicle Technologies Office: Fact #495: November 12, 2007 Oil Price and Economic Growth, 1971-2006 on Google Bookmark Vehicle Technologies Office: Fact #495: November 12, 2007 Oil Price and Economic Growth, 1971-2006 on Delicious Rank Vehicle Technologies Office: Fact #495: November 12, 2007 Oil Price and Economic Growth, 1971-2006 on Digg Find More places to share Vehicle Technologies Office: Fact #495: November 12, 2007 Oil Price and Economic Growth, 1971-2006 on

320

Table A9. Total Primary Consumption of Energy for All Purposes by Census  

U.S. Energy Information Administration (EIA) Indexed Site

A9. Total Primary Consumption of Energy for All Purposes by Census" A9. Total Primary Consumption of Energy for All Purposes by Census" " Region and Economic Characteristics of the Establishment, 1991" " (Estimates in Btu or Physical Units)" ,,,,,,,,"Coke" " "," ","Net","Residual","Distillate","Natural Gas(d)"," ","Coal","and Breeze"," ","RSE" " ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","LPG","(1000","(1000","Other(e)","Row" "Economic Characteristics(a)","(trillion Btu)","(million kWh)","(1000 bbls)","(1000 bbls)","(cu ft)","(1000 bbls)","short tons)","short tons)","(trillion Btu)","Factors"

Note: This page contains sample records for the topic "oil consumption growth" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Table A20. Total First Use (formerly Primary Consumption) of Energy for All P  

U.S. Energy Information Administration (EIA) Indexed Site

Total First Use (formerly Primary Consumption) of Energy for All Purposes by Census" Total First Use (formerly Primary Consumption) of Energy for All Purposes by Census" " Region, Census Division, and Economic Characteristics of the Establishment, 1994" " (Estimates in Btu or Physical Units)" ,,,,,,,,"Coke",,"Shipments" " "," ","Net","Residual","Distillate","Natural Gas(e)"," ","Coal","and Breeze"," ","of Energy Sources","RSE" " ","Total(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","(billion","LPG","(1000","(1000","Other(f)","Produced Onsite(g)","Row"

322

Heavy Oil Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Select Reports from Heavy Oil Projects Project Number Performer Title Heavy Oil Recovery US (NIPERBDM-0225) BDM-Oklahoma, Inc. Feasibility Study of Heavy Oil Recovery in the...

323

Crude Oil Exports  

U.S. Energy Information Administration (EIA)

Notes: Crude oil exports are restricted to: (1) crude oil derived from fields under the State waters of Alaska's Cook Inlet; (2) Alaskan North Slope crude oil; (3) ...

324

3. Crude Oil Statistics  

U.S. Energy Information Administration (EIA)

3. Crude Oil Statistics The United States had 21,371 million barrels of crude oil proved reserves as of December 31, 2004. Crude oil proved reserves ...

325

5 World Oil Trends WORLD OIL TRENDS  

E-Print Network (OSTI)

5 World Oil Trends Chapter 1 WORLD OIL TRENDS INTRODUCTION In considering the outlook for California's petroleum supplies, it is important to give attention to expecta- tions of what the world oil market. Will world oil demand increase and, if so, by how much? How will world oil prices be affected

326

Precipitation Trends and Water Consumption Related to Population in the Southwestern United States, 1930–83  

Science Conference Proceedings (OSTI)

The possible effects of climatic fluctuations on renewable water supplies in the western United States was examined, especially as it is impacted by the growth of population and water consumption in recent decades.

Henry F. Diaz; Ronald L. Holle; Joe W. Thorn Jr.

1985-02-01T23:59:59.000Z

327

Household operational energy consumption in urban China : a multilevel analysis on Jinan  

E-Print Network (OSTI)

With decades of economic growth and socio-economic transformation, China's residential sector has seen rapid expansion in energy consumption, and is now the second largest energy consuming sector in the country. Faced with ...

Wang, Dong, M.C.P. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

328

Higher U.S. oil production in 2013 and 2014 means lower oil imports  

U.S. Energy Information Administration (EIA) Indexed Site

Higher U.S. oil production in 2013 and 2014 means lower oil Higher U.S. oil production in 2013 and 2014 means lower oil imports U.S. crude oil production topped 7 million barrels per day in November and December for the first time in 20 years, and production is expected to keep rising over the next two years. The U.S. Energy Information Administration's new monthly forecast sees domestic crude oil output averaging 7.3 million barrels per day this year and climbing to 7.9 million barrels next year. Higher crude oil production means America will need less imported oil. U.S. net imports of crude oil and liquid fuels are forecast to drop to 6.0 million barrels per day in 2014, less than half the 12.5 million barrels per day level in 2005. That will push U.S. imports down to just 32 percent of domestic oil consumption, the lowest

329

U.S. crude oil production expected to exceed oil imports later this year  

U.S. Energy Information Administration (EIA) Indexed Site

crude oil production expected to exceed oil imports later crude oil production expected to exceed oil imports later this year U.S. crude oil production is expected to surpass U.S. crude oil imports by the fourth quarter of this year. That would mark the first time since February 1995 that domestic crude oil output exceeds imports, according to the latest monthly energy outlook from the U.S. Energy Information Administration. The United States will still need to import crude oil to help meet domestic demand. However, total crude oil imports this year are on track to fall to their lowest level since 1997. U.S. oil production is expected to continue to rise over the next two years as imports fall. As a result, the share of total U.S. petroleum consumption met by net imports is forecast to fall to 32 percent next year, the lowest level since 1985 and nearly half the peak level of 60 percent seen in

330

US ENC IL Site Consumption  

Gasoline and Diesel Fuel Update (EIA)

IL IL Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US ENC IL Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US ENC IL Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US ENC IL Expenditures dollars ELECTRICITY ONLY average per household * Illinois households use 129 million Btu of energy per home, 44% more than the U.S. average. * High consumption, combined with low costs for heating fuels compared to states with a similar climate, result in Illinois households spending 2% more for energy than the U.S. average. * Less reliance on electricity for heating, as well as cool summers keeps average site electricity consumption in the state low relative to other parts of the U.S.

331

US ENC IL Site Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

IL IL Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US ENC IL Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US ENC IL Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US ENC IL Expenditures dollars ELECTRICITY ONLY average per household * Illinois households use 129 million Btu of energy per home, 44% more than the U.S. average. * High consumption, combined with low costs for heating fuels compared to states with a similar climate, result in Illinois households spending 2% more for energy than the U.S. average. * Less reliance on electricity for heating, as well as cool summers keeps average site electricity consumption in the state low relative to other parts of the U.S.

332

US ENC MI Site Consumption  

Gasoline and Diesel Fuel Update (EIA)

MI MI Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US ENC MI Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US ENC MI Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US ENC MI Expenditures dollars ELECTRICITY ONLY average per household * Michigan households use 123 million Btu of energy per home, 38% more than the U.S. average. * High consumption, combined with low costs for heating fuels compared to states with a similar climate, result in Michigan households spending 6% more for energy than the U.S. average. * Less reliance on electricity for heating, as well as cool summers keeps average site electricity consumption in the state low relative to other parts of the U.S.

333

US ENC MI Site Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

MI MI Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US ENC MI Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US ENC MI Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US ENC MI Expenditures dollars ELECTRICITY ONLY average per household * Michigan households use 123 million Btu of energy per home, 38% more than the U.S. average. * High consumption, combined with low costs for heating fuels compared to states with a similar climate, result in Michigan households spending 6% more for energy than the U.S. average. * Less reliance on electricity for heating, as well as cool summers keeps average site electricity consumption in the state low relative to other parts of the U.S.

334

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

energy data used in this report do not reflect adjustments for losses in electricity generation or transmission. energy data used in this report do not reflect adjustments for losses in electricity generation or transmission. 1 The manufacturing sector is composed of establishments classified in Standard Industrial Classification 20 through 39 of the U.S. economy as defined 2 by the Office of Management and Budget. The manufacturing sector is a part of the industrial sector, which also includes mining; construction; and agriculture, forestry, and fishing. The EIA also conducts energy consumption surveys in the residential, commercial buildings, and residential transportation sectors: the Residential Energy 3 Consumption Survey (RECS); the Commercial Buildings Energy Consumption Survey (CBECS); and, until recently, the Residential Transportation Energy Consumption Survey (RTECS).

335

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

17 17 Table C12. Total Energy Consumption, Gross Domestic Product (GDP), Energy Consumption per Real Dollar of GDP, Ranked by State, 2011 Rank Total Energy Consumption Gross Domestic Product (GDP) Energy Consumption per Real Dollar of GDP State Trillion Btu State Billion Chained (2005) Dollars State Thousand Btu per Chained (2005) Dollar 1 Texas 12,206.6 California 1,735.4 Louisiana 19.7 2 California 7,858.4 Texas 1,149.9 Wyoming 17.5 3 Florida 4,217.1 New York 1,016.4 North Dakota 15.4 4 Louisiana 4,055.3 Florida 661.1 Alaska 14.3 5 Illinois 3,977.8 Illinois 582.1 Mississippi 13.8 6 Ohio 3,827.6 Pennsylvania 500.4 Kentucky 13.5

336

Financing retirement consumption and bequests  

E-Print Network (OSTI)

This dissertation consists of three essays that evaluate possible vehicles for financing either retirement consumption or bequests. Chapter 1 compares the use of Roth and tax-deferred retirement accounts for retirement ...

Bishop, Tonja Bowen

2009-01-01T23:59:59.000Z

337

Progressive consumption : strategic sustainable excess  

E-Print Network (OSTI)

Trends in the marketplace show that urban dwellers are increasingly supporting locally produced foods. This thesis argues for an architecture that responds to our cultures consumptive behaviors. Addressing the effects of ...

Bonham, Daniel J. (Daniel Joseph MacLeod)

2007-01-01T23:59:59.000Z

338

Energy consumption of building 39  

E-Print Network (OSTI)

The MIT community has embarked on an initiative to the reduce energy consumption and in accordance with the Kyoto Protocol. This thesis seeks to further expand our understanding of how the MIT campus consumes energy and ...

Hopeman, Lisa Maria

2007-01-01T23:59:59.000Z

339

Household Vehicles Energy Consumption 1994  

U.S. Energy Information Administration (EIA) Indexed Site

W as hi ng to n, DC DOEEIA-0464(94) Distribution Category UC-950 Household Vehicles Energy Consumption 1994 August 1997 Energy Information Administration Office of Energy Markets...

340

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

S Y M n i 1 y 2 i (W i ) (W i 1) , Energy Information Administration, Manufacturing Energy Consumption Survey: Methodological Report 1985. Although this report describes 44...

Note: This page contains sample records for the topic "oil consumption growth" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Fuel Consumption | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Consumption, CO2 Emissions, And A Simple Connection To the Vehicle Fuel Consumption, CO2 Emissions, And A Simple Connection To the Vehicle Road Load Equation Jan 15 2014 11:30 AM - 12:30 PM Glen E. Johnson Tennessee Tech University, Cookeville Energy and Transportation Science Division Seminar National Transportation Research Center, Room C-04 CONTACT : Email: Andreas Malikopoulos Phone:865.382.7827 Add to Calendar SHARE Ambitious goals have been set to reduce fuel consumption and CO2 emissions over the next generation. Starting from first principles, we will derive relations to connect fuel consumption and carbon dioxide emissions to a vehicle's road load equation. The model suggests approaches to facilitate achievement of future fuel and emissions targets. About the speaker: Dr. Johnson is a 1973 Mechanical Engineering graduate of Worcester

342

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

. . Vehicle Fuel Efficiency and Consumption Fuel consumption is estimated from RTECS data on the vehicle stock (Chapter 2) and miles traveled (Chapter 3), in combination with vehicle fuel efficiency ratings, adjusted to account for individual driving circumstances. The first two sections of this chapter present estimates of household vehicle fuel efficiency and household fuel consumption calculated from these fuel efficiency estimates. These sections also discuss variations in fuel efficiency and consumption based on differences in household and vehicle characteristics. The third section presents EIA estimates of the potential savings from replacing the oldest (and least fuel-efficient) household vehicles with new (and more fuel-efficient) vehicles. The final section of this chapter focuses on households receiving (or eligible to receive) supplemental income under

343

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

C2. Energy Consumption Estimates for Major Energy Sources in Physical Units, 2011 State Coal Natural Gas a Petroleum Nuclear Electric Power Hydro- electric Power f Fuel Ethanol g...

344

Have We Run Out of Oil Yet? Oil Peaking Analysis from an Optimist's Perspective  

Science Conference Proceedings (OSTI)

This study addresses several questions concerning the peaking of conventional oil production from an optimist's perspective. Is the oil peak imminent? What is the range of uncertainty? What are the key determining factors? Will a transition to unconventional oil undermine or strengthen OPEC's influence over world oil markets? These issues are explored using a model combining alternative world energy scenarios with an accounting of resource depletion and a market-based simulation of transition to unconventional oil resources. No political or environmental constraints are allowed to hinder oil production, geological constraints on the rates at which oil can be produced are not represented, and when USGS resource estimates are used, more than the mean estimate of ultimately recoverable resources is assumed to exist. The issue is framed not as a question of "running out" of conventional oil, but in terms of the timing and rate of transition from conventional to unconventional oil resources. Unconventional oil is chosen because production from Venezuela's heavy-oil fields and Canada's Athabascan oil sands is already underway on a significant scale and unconventional oil is most consistent with the existing infrastructure for producing, refining, distributing and consuming petroleum. However, natural gas or even coal might also prove to be economical sources of liquid hydrocarbon fuels. These results indicate a high probability that production of conventional oil from outside of the Middle East region will peak, or that the rate of increase of production will become highly constrained before 2025. If world consumption of hydrocarbon fuels is to continue growing, massive development of unconventional resources will be required. While there are grounds for pessimism and optimism, it is certainly not too soon for extensive, detailed analysis of transitions to alternative energy sources.

Greene, David L [ORNL; Hopson, Dr Janet L [University of Tennessee, Knoxville (UTK); Li, Jia [University of Tennessee, Knoxville (UTK)

2005-01-01T23:59:59.000Z

345

OpenEI - Electricity Consumption  

Open Energy Info (EERE)

Annual Electricity Annual Electricity Consumption (1980 - 2009) http://en.openei.org/datasets/node/877 Total annual electricity consumption by country, 1980 to 2009 (billion kilowatthours). Compiled by Energy Information Administration (EIA). License

Type of License:  Other (please specify below)
Source of data

346

Manufacturing consumption of energy 1991  

SciTech Connect

This report provides estimates on energy consumption in the manufacturing sector of the US economy. These estimates are based on data from the 1991 Manufacturing Energy Consumption Survey (MECS). This survey--administered by the Energy End Use and Integrated Statistics Division, Office of Energy Markets and End Use, Energy Information Administration (EIA)--is the most comprehensive source of national-level data on energy-related information for the manufacturing industries.

1994-12-01T23:59:59.000Z

347

Specialty Oils Laboratory Proficiency Testing Program  

Science Conference Proceedings (OSTI)

Lab Proficiency Testing provider for Specialty Oils. Samples tested include Walnut Oil, Pecan Oil, Pistachio Oil, Sesame Seed Oil, Flax Seed Oil, Neem Oil, Safflower Oil, Sunflower Oil. Specialty Oils Laboratory Proficiency Testing Program Laboratory Pro

348

Explaining cross-country variation in cigarette consumption  

E-Print Network (OSTI)

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. This short paper uses cross-country data on per capita cigarette consumption and selected socioeconomic variables to explain inter-country differentials in consumption. It is found that the proportion of the aged in the total population and higher literacy among women have relatively greater and positive impact on cigarette consumption. Even after controlling for the effect of the two variables, a country's industrialized status has a positive impact on consumption. It would thus seem that aging and economic, and social developments are pro-cigarette consumption. Background The US Surgeon General's initial report on smoking was nearly 40 years old. All these years, health warnings on cigarette packs have been in place. Despite the "warnings" and concerted efforts to dissuade potential smokers, cigarettes are here to stay. Global cigarette production and consumption have been rising steadily since cigarettes were introduced at the beginning of the 20 th century (see Table 1 for evidence on growth during 1960–2000). It is estimated that at present about 1.1 billion people – close to a fifth of the global population – are smokers and the number is expected to rise to more than 1.6 billion by

Kolluru Srinivas; Bhanoji Rao; Open Access

2009-01-01T23:59:59.000Z

349

Oil | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Oil Oil Oil Prices, 2000-2008 For the first time since 1995, U.S. oil production has surpassed imports. Explore the trend with our interactive chart. |...

350

of oil yields from enhanced oil recovery  

NLE Websites -- All DOE Office Websites (Extended Search)

oil yields from enhanced oil recovery (EOR) and CO oil yields from enhanced oil recovery (EOR) and CO 2 storage capacity in depleted oil reservoirs. The primary goal of the project is to demonstrate that remaining oil can be economically produced using CO 2 -EOR technology in untested areas of the United States. The Citronelle Field appears to be an ideal site for concurrent CO 2 storage and EOR because the field is composed of sandstone reservoirs

351

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

8A. District Heat Consumption and Expenditure Intensities for All Buildings, 2003 District Heat Consumption District Heat Expenditures per Building (million Btu) per Square Foot...

352

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

7A. Total District Heat Consumption and Expenditures for All Buildings, 2003 All Buildings Using District Heat District Heat Consumption District Heat Expenditures Number of...

353

Natural gas consumption reflects shifting sectoral patterns ...  

U.S. Energy Information Administration (EIA)

U.S. natural gas consumption since 1997 reflects shifting patterns. Total U.S. natural gas consumption rose 7% between 1997 and 2011, but this modest ...

354

Residential Energy Consumption Survey (RECS) - Analysis ...  

U.S. Energy Information Administration (EIA)

RECS data show decreased energy consumption per household. RECS 2009 — Release date: June 6, 2012. Total United States energy consumption in homes has remained ...

355

EIA Oil price timeline  

U.S. Energy Information Administration (EIA)

Crude oil, gasoline, heating oil, diesel, propane, ... Sales, revenue and prices, power plants, fuel use, stocks, generation, trade, demand & emissions.

356

version 11apr11a Geopolitics of the Global Oil System  

E-Print Network (OSTI)

-alternatives; the world growth in oil-fueled vehicles, and critique "Peak Oil" theories. Part 2, Political EconomySYLLABUS version 11apr11a Geopolitics of the Global Oil System The New School University Graduate-group blogs: 1. China Oil Affairs http://chinaoilaffairs.blogspot.com/ 2. Rentismo & Dutch Disease http

O'Donnell, Tom

357

Energy consumption of personal computer workstations  

SciTech Connect

The explosive growth of the information age has had a profound effect on the appearance of today`s office. Although the telephone still remains an important part of the information exchange and processing system within an office, other electronic devices are now considered required equipment within this environment. This office automation equipment includes facsimile machines, photocopiers, personal computers, printers, modems, and other peripherals. A recent estimate of the installed base indicated that 42 million personal computers and 7.3 million printers are in place, consuming 18.2 billion kWh/yr-and this installed base is growing (Luhn 1992). From a productivity standpoint, it can be argued that this equipment greatly improves the efficiency of those working in the office. But of primary concern to energy system designers, building managers, and electric utilities is the fact that this equipment requires electric energy. Although the impact of each incremental piece of equipment is small, installation of thousands of devices per building has resulted in office automation equipment becoming the major contributor to electric consumption and demand growth in commercial buildings. Personal computers and associated equipment are the dominant part of office automation equipment. In some cases, this electric demand growth has caused office buildings electric and cooling systems to overload.

Szydlowski, R.F.; Chvala, W.D. Jr.

1994-02-01T23:59:59.000Z

358

Residential energy consumption survey: housing characteristics 1984  

SciTech Connect

Data collected in the 1984 Residential Energy Consumption Survey (RECS), the sixth national survey of households and their fuel suppliers, provides baseline information on how households use energy. Households living in all types of housing units - single-family homes (including townhouses), apartments, and mobile homes - were chosen to participate. Data from the surveys are available to the public. The housing characteristics this report describes include fuels and the uses they are put to in the home; appliances; square footage of floorspace; heating (and cooling) equipment; thermal characteristics of housing structures; conservation features and measures taken; the consumption of wood; temperatures indoors; and regional weather. These data are tabulated in sets, first showing counts of households and then showing percentages. Results showed: Fewer households are changing their main heating fuel. More households are air conditioned than before. Some 50% of air-conditioned homes now use central systems. The three appliances considered essential are the refrigerator, the range, and the television set. At least 98% of US homes have at least one television set; but automatic dishwashers are still not prevalent. Few households use the budget plans tht are available from their utility companies to ease the payment burden of seasonal surges in fuel bills. The most common type of heating equipment in the United States is the natural-gas forced-air furnace. About 40% ofthose furnaces are at least 15 years old. The oldest water heaters are those that use fuel oil. The most common conservation feature in 1984 is ceiling or attic insulation - 80% of homes report having this item. Relatively few households claimed tax credits in 1984 for energy-conservation improvements.

Not Available

1986-10-08T23:59:59.000Z

359

Outlook for US lube oil supply and demand  

Science Conference Proceedings (OSTI)

This paper examines the domestic demand for automotive and industrial lubricants to the year 2000 and evaluates the ability of U.S. refiners to meet the associated demand for base stocks. Changes in the supply/demand picture over the past several years are also reviewed. In the late 1970's, lube base stocks had been in short supply as healthy increases in demand pushed U.S. refiners to near maximum operating levels. Imports were increased to what were then record high levels and exports were reduced. This situation began to reverse itself in mid-1980 as marketers began to feel the impact of recession here and abroad. U.S. base stock consumption has since declined dramatically, to a level in 1982 estimated to be 17.5% below that of 1979's peak. In the meantime, refiners had added another 7.0 MB/CD to manufacturing capacity. 1982 lube plant operations are estimated to have dropped as low as 62% of nameplate capacity. The outlook for recovery is conservative. Due to continued depressed demand in certain market segments, 1983's increase in base oil demand is projected to be held to only 2%. Gains in 1984 and 1985 will be more robust, in the area of 6% per year. Thereafter, the overall rate of growth will drop to under 1% per year. The outlooks for automotive and industrial lubricants demand are summarized. Due to a forecast of greater relative growth in synthetic and water-based lubricants, base stock consumption is forecast to increase at a slower pace than that of the total finished lubricants volume.

Brecht, F.

1983-03-01T23:59:59.000Z

360

Geological model for oil gravity variations in Oriente Basin, Ecuador  

Science Conference Proceedings (OSTI)

The Oriente basin is one of the major productive Subandean basins. Most of the fields produce 29/sup 0/-33/sup 0/ API paraffinic oils, but oils have been discovered with gravities ranging from 10/sup 0/to 35/sup 0/ API. All the oils have been recovered from multiple middle to Late Cretaceous sandstone reservoirs (Hollin and Napo Formations). Wells display a variety of oil gravities by reservoir. The origin of the Oriente oils is problematical and controversial, but structural, geochemical, and well evidence suggest a vast oil kitchen west of the present Andean foothills that was mature for oil generation by at least early Tertiary. Oil analyses indicate a single family of oils is present. Oil gravity variations can be explained systematically in terms of the various alteration processes suffered by the oil in each reservoir. Intermittent early Andean uplift (latest Cretaceous to Mid-Eocene) resulted in biodegradation and water-washing of oils, particularly in the uppermost Napo reservoirs. The main Andean orogeny (Pliocene) uplifted the Hollin reservoir to outcrop in the west, and tilted the basin down to the south. This movement resulted in water washing or flushing of the Hollin aquifer and a phase of northward remigration of oil. Late Andean structures postdated primary oil migration. Almost all structures displaying growth during the Late Cretaceous to early Eocene have been oil bearing, but some, particularly those located on the present-day basin flanks, were later severely biodegraded or breached.

Dashwood, M.F.; Abbotts, I.L.

1988-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil consumption growth" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Table A4. Residential sector key indicators and consumption  

Gasoline and Diesel Fuel Update (EIA)

3 3 U.S. Energy Information Administration | Annual Energy Outlook 2013 Reference case Table A4. Residential sector key indicators and consumption (quadrillion Btu per year, unless otherwise noted) Energy Information Administration / Annual Energy Outlook 2013 Table A4. Residential sector key indicators and consumption (quadrillion Btu per year, unless otherwise noted) Key indicators and consumption Reference case Annual growth 2011-2040 (percent) 2010 2011 2020 2025 2030 2035 2040 Key indicators Households (millions) Single-family ....................................................... 82.85 83.56 91.25 95.37 99.34 103.03 106.77 0.8% Multifamily ........................................................... 25.78 26.07 29.82 32.05 34.54 37.05 39.53 1.4%

362

US ENC WI Site Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

120 120 US ENC WI Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US ENC WI Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US ENC WI Site Consumption kilowatthours $0 $300 $600 $900 $1,200 $1,500 US ENC WI Expenditures dollars ELECTRICITY ONLY average per household * Wisconsin households use 103 million Btu of energy per home, 15% more than the U.S. average. * Lower electricity and natural gas rates compared to states with a similar climate, such as New York, result in households spending 5% less for energy than the U.S. average. * Less reliance on electricity for heating, as well as cool summers, keeps average site electricity consumption in the state low relative to other parts of the U.S.

363

US ENC WI Site Consumption  

Gasoline and Diesel Fuel Update (EIA)

120 120 US ENC WI Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US ENC WI Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US ENC WI Site Consumption kilowatthours $0 $300 $600 $900 $1,200 $1,500 US ENC WI Expenditures dollars ELECTRICITY ONLY average per household * Wisconsin households use 103 million Btu of energy per home, 15% more than the U.S. average. * Lower electricity and natural gas rates compared to states with a similar climate, such as New York, result in households spending 5% less for energy than the U.S. average. * Less reliance on electricity for heating, as well as cool summers, keeps average site electricity consumption in the state low relative to other parts of the U.S.

364

US WSC TX Site Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

WSC TX WSC TX Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US WSC TX Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 4,000 8,000 12,000 16,000 US WSC TX Site Consumption kilowatthours $0 $500 $1,000 $1,500 $2,000 US WSC TX Expenditures dollars ELECTRICITY ONLY average per household * Texas households consume an average of 77 million Btu per year, about 14% less than the U.S. average. * Average electricity consumption per Texas home is 26% higher than the national average, but similar to the amount used in neighboring states. * The average annual electricity cost per Texas household is $1,801, among the highest in the nation, although similar to other warm weather states like Florida. * Texas homes are typically newer, yet smaller in size, than homes in other parts of

365

US WSC TX Site Consumption  

Gasoline and Diesel Fuel Update (EIA)

WSC TX WSC TX Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US WSC TX Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 4,000 8,000 12,000 16,000 US WSC TX Site Consumption kilowatthours $0 $500 $1,000 $1,500 $2,000 US WSC TX Expenditures dollars ELECTRICITY ONLY average per household * Texas households consume an average of 77 million Btu per year, about 14% less than the U.S. average. * Average electricity consumption per Texas home is 26% higher than the national average, but similar to the amount used in neighboring states. * The average annual electricity cost per Texas household is $1,801, among the highest in the nation, although similar to other warm weather states like Florida. * Texas homes are typically newer, yet smaller in size, than homes in other parts of

366

US ESC TN Site Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

ESC TN ESC TN Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US ESC TN Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 4,000 8,000 12,000 16,000 US ESC TN Site Consumption kilowatthours $0 $400 $800 $1,200 $1,600 US ESC TN Expenditures dollars ELECTRICITY ONLY average per household * Tennessee households consume an average of 79 million Btu per year, about 12% less than the U.S. average. * Average electricity consumption for Tennessee households is 33% higher than the national average and among the highest in the nation, but spending for electricity is closer to average due to relatively low electricity prices. * Tennessee homes are typically newer, yet smaller in size, than homes in other parts of the country.

367

Manufacturing Energy Consumption Survey (MECS) - Analysis & Projections -  

Gasoline and Diesel Fuel Update (EIA)

Manufacturing Energy Consumption Survey (MECS) Manufacturing Energy Consumption Survey (MECS) Glossary › FAQS › Overview Data 2010 2006 2002 1998 1994 1991 Archive Analysis & Projections MECS Industry Analysis Briefs Steel Industry Analysis The steel industry is critical to the U.S. economy. Steel is the material of choice for many elements of construction, transportation, manufacturing, and a variety of consumer products. It is the backbone of bridges, skyscrapers, railroads, automobiles, and appliances. Most grades of steel used today - particularly high-strength steels that are lighter and more versatile - were not available a decade ago. Chemical Industry Analysis The chemical industries are a cornerstone of the U.S. economy, converting raw materials such as oil, natural gas, air, water, metals, and minerals

368

Annual Production with 2 Percent Annual Growth & Decline  

U.S. Energy Information Administration (EIA)

It is unlikely that any single constant growth or decline rate would persist before or after the year of peak production. World oil production has sometimes ...

369

Today in Energy - Residential Consumption & Efficiency  

Reports and Publications (EIA)

Short, timely articles with graphs about recent residential consumption and efficiency issues and trends

370

Residential Energy Consumption Survey (RECS) - Energy ...  

U.S. Energy Information Administration (EIA)

State Energy Data System ... An Assessment of EIA's Building Consumption Data. ... Commercial Buildings - CBECS. Manufacturing - MECS.

371

Today in Energy - Commercial Consumption & Efficiency  

Reports and Publications (EIA)

Short, timely articles with graphs about recent commercial consumption and efficiency issues and trends

372

EIA - International Energy Outlook 2007-Energy Consumption by End-Use  

Gasoline and Diesel Fuel Update (EIA)

Energy Consumption by End Use Sector Energy Consumption by End Use Sector International Energy Outlook 2007 Figure 25. OECD and Non-OECD Transportation Sector Delivered Energy Consumption, 2004-2030 Figure 25 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 26. OECD and Non-OECD Residential Sector Delivered Energy Consumption, 2004-2030 Figure 26 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 27. Growth in OECD and Non-OECD Residential Sector Delivered Energy Consumption by Fuel, 2004 and 2030 Figure 27 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 28. OECD and Non-OECD Commercial Sector Delivered Energy Consumption, 2004-2030 Figure 28 Data. Need help, contact the National Energy Information Center at 202-586-8800.

373

Oil demand continues to grow in the U.S. and worldwide  

SciTech Connect

Rising oil consumption is challenging the Organization of Petroleum Exporting Countries production quota--but not the group`s ability to meet demand. In the second half of 1995, the oil market will continue to need more oil from OPEC members than the group claims to be willing to produce with its quota at 24.52 million b/d. If the quota really limited supply, ingredients would be in place for a significant price hike. Growth in a non-OPEC production intensities temptations on OPEC members to cheat on quotas and has become a key factor in the market. OPEC producers have seen that if they don`t meet incremental demand at the current price, other producers will. OPEC eventually will have to raise its quota or acknowledge that the artificial production limit lacks meaning. At present, the only real limit to supply is production capacity, which remains in excess relative to demand and which has demonstrated its ability to grow both within and outside of OPEC when prices rise. The paper discusses worldwide trends, pressures on OPEC, world crude prices, US prices, natural gas prices, US energy demand, natural gas use, gas supply, US demand for petroleum products, imports, and inventories.

Tippee, B.; Beck, R.J.

1995-07-31T23:59:59.000Z

374

OpenEI - Energy Consumption  

Open Energy Info (EERE)

Commercial and Commercial and Residential Hourly Load Profiles for all TMY3 Locations in the United States http://en.openei.org/datasets/node/961 This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols).  This dataset also includes the consumption/residential/">Residential Energy Consumption Survey (RECS) for statistical references of building types

375

Monitoring Energy Consumption of Smartphones  

E-Print Network (OSTI)

With the rapid development of new and innovative applications for mobile devices like smartphones, advances in battery technology have not kept pace with rapidly growing energy demands. Thus energy consumption has become a more and more important issue of mobile devices. To meet the requirements of saving energy, it is critical to monitor and analyze the energy consumption of applications on smartphones. For this purpose, we develop a smart energy monitoring system called SEMO for smartphones using Android operating system. It can profile mobile applications with battery usage information, which is vital for both developers and users.

Ding, Fangwei; Zhang, Wei; Zhao, Xuhai; Ma, Chengchuan

2012-01-01T23:59:59.000Z

376

Northeast Home Heating Oil Reserve System Heating Oil, PIA Office...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Northeast Home Heating Oil Reserve System Heating Oil, PIA Office of Fossil Energy Headquaters Northeast Home Heating Oil Reserve System Heating Oil, PIA Office of Fossil Energy...

377

Vsd Oil Free Compressor, Vsd Oil Free Compressor Products, Vsd ...  

U.S. Energy Information Administration (EIA)

Vsd Oil Free Compressor, You Can Buy Various High Quality Vsd Oil Free Compressor Products from Global Vsd Oil Free Compressor Suppliers and Vsd Oil ...

378

OIl Speculation  

Gasoline and Diesel Fuel Update (EIA)

Investor Investor Flows and the 2008 Boom/Bust in Oil Prices Kenneth J. Singleton 1 August 10, 2011 1 Graduate School of Business, Stanford University, kenneths@stanford.edu. This research is the outgrowth of a survey paper I prepared for the Air Transport Association of America. I am grateful to Kristoffer Laursen for research assistance and to Kristoffer and Stefan Nagel for their comments. Abstract This paper explores the impact of investor flows and financial market conditions on returns in crude-oil futures markets. I begin by arguing that informational frictions and the associated speculative activity may induce prices to drift away from "fundamental" values and show increased volatility. This is followed by a discussion of the interplay between imperfect infor- mation about real economic activity, including supply, demand, and inventory accumulation, and speculative

379

Energy Information Administration - Energy Efficiency-Table 5b. Consumption  

Gasoline and Diesel Fuel Update (EIA)

b b Page Last Modified: June 2010 Table 5b. Consumption of Energy for All Purposes (First Use) per Ton of Steel, 1998, 2002, and 2006 (Million Btu per ton) MECS Survey Years Iron and Steel Mills (NAICS1 331111) 19982 20022 20062 Total 3 17 16 13 Net Electricity 4 2 2 2 Natural Gas 5 5 4 Coal 7 6 4 Notes: 1. The North American Industry Classification System (NAICS) has replaced the Standard Industrial Classification (SIC) system. NAICS 331111 includes steel works, blast furnaces (including coke ovens), and rolling mills. 2. Denominators represent the entire steel industry, not those based mainly on electric, natural gas, residual fuel oil or coal.

380

Rising Asian demand drives global coal consumption growth ...  

U.S. Energy Information Administration (EIA)

Global coal demand has almost doubled since 1980, driven by increases in Asia, where demand is up over 400% from 1980-2010. In turn, Asian demand is ...

Note: This page contains sample records for the topic "oil consumption growth" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Just oil? The distribution of environmental and social impacts of oil production and consumption  

E-Print Network (OSTI)

YPF Westdeutsche Landesbank Exxon Shell Nigerian Nationalsome perspective, the Exxon-Valdez spill, which released 12to approximately ?ve Exxon-Valdez spills per year. For many

O'Rourke, D; Connolly, S

2003-01-01T23:59:59.000Z

382

Just oil? The distribution of environmental and social impacts of oil production and consumption  

E-Print Network (OSTI)

The four super majors—ExxonMobil, Royal Dutch/Shell, BP-2001, ?ve corporations (ExxonMobil, BP-Amoco- Arco, Chevron-involved BP Amoco ExxonMobil Chevron Phillips Petroleum

O'Rourke, D; Connolly, S

2003-01-01T23:59:59.000Z

383

Gulf Shale Oil Upgrading Process technology  

SciTech Connect

A description of the Gulf Shale Oil Hydrotreating Process, which is designed for upgrading full range shale oil to premium quality synthetic crude, is presented. The process consists of two sections: a low severity pretreating section which stabilizes the raw oil, removes iron, arsenic, trace metals and particulates, and sulfur; and a twostage, high severity hydrotreating section which completes the upgrading. The second section hydrotreats the bulk oil to a specified nitrogen content, allowing for a quality FCC feedstock in the 650F+ (343C+) residue. The main reactor effluent is flashed with subsequent hydrotreating of the flash vapor oil to achieve a low nitrogen level in the naphtha and middle distillate. The benefit of this flash configuration is hydrogen addition selectivity which maximizes syncrude quality while minimizing overall hydrogen consumption; this selectivity relationship is detailed. Finally, the product quality of the syncrudes produced with the Gulf Shale Oil Hydrotreating Process using shale oils derived from three different retort technologies and for Western and Eastern shales are discussed.

Jones, W.; Antezana, F.J.; Cugini, A.V.; Lyzinski, D.; Miller, J.B.

1984-04-01T23:59:59.000Z

384

2005 Residential Energy Consumption Survey  

U.S. Energy Information Administration (EIA) Indexed Site

G (2005) - Household Fuel Oil or Kerosene Usage Form G (2005) - Household Fuel Oil or Kerosene Usage Form OMB No. 1905-0092, Expiring May 31, 2008 Household Fuel Oil or Kerosene Usage Form Service Address: If the customer account number is not shown on the label, please enter it here. STEP 1 Customer Account: __/__/__/__/__/__/__/__/__/__/__/__/__/__/__/ STEP 2 Now, please turn the page and answer the seven questions for the household identified above. Completed forms are due by March 4, 2006. If you have any questions, please call (toll-free) 1-NNN-NNN-NNNN. Ask for the Supplier Survey Specialist. This report is mandatory under Public Law 93-275, as amended. See the enclosed Answers to Frequently Asked Questions for more details concerning confidentiality and sanctions.

385

Nonlinear structural crack growth monitoring  

DOE Patents (OSTI)

A method and apparatus are provided for the detection, through nonlinear manipulation of data, of an indicator of imminent failure due to crack growth in structural elements. The method is a process of determining energy consumption due to crack growth and correlating the energy consumption with physical phenomena indicative of a failure event. The apparatus includes sensors for sensing physical data factors, processors or the like for computing a relationship between the physical data factors and phenomena indicative of the failure event, and apparatus for providing notification of the characteristics and extent of such phenomena.

Welch, Donald E. (Oak Ridge, TN); Hively, Lee M. (Philadelphia, TN); Holdaway, Ray F. (Clinton, TN)

2002-01-01T23:59:59.000Z

386

US NE MA Site Consumption  

Gasoline and Diesel Fuel Update (EIA)

NE MA NE MA Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 $3,000 US NE MA Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US NE MA Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US NE MA Expenditures dollars ELECTRICITY ONLY average per household * Massachusetts households use 109 million Btu of energy per home, 22% more than the U.S. average. * The higher than average site consumption results in households spending 22% more for energy than the U.S. average. * Less reliance on electricity for heating, as well as cool summers, keeps average site electricity consumption in the state low relative to other parts of the U.S. However, spending on electricity is closer to the national average due to higher

387

US NE MA Site Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

NE MA NE MA Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 $3,000 US NE MA Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US NE MA Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US NE MA Expenditures dollars ELECTRICITY ONLY average per household * Massachusetts households use 109 million Btu of energy per home, 22% more than the U.S. average. * The higher than average site consumption results in households spending 22% more for energy than the U.S. average. * Less reliance on electricity for heating, as well as cool summers, keeps average site electricity consumption in the state low relative to other parts of the U.S. However, spending on electricity is closer to the national average due to higher

388

Conspicuous Consumption and Dynamic Pricing  

Science Conference Proceedings (OSTI)

How do firms develop marketing strategy when consumers seek to satisfy both quality and status-related considerations? We develop an analytical model to study this issue, examining both pricing and product management decisions in markets for conspicuous ... Keywords: conspicuous consumption, durable goods, dynamic pricing, game theory, status

Raghunath Singh Rao, Richard Schaefer

2013-09-01T23:59:59.000Z

389

Reduces a processor's energy consumption  

E-Print Network (OSTI)

). Clearly, this is energy inefficient and wasteful of energy. 2 More precisely, the faster that a processor decide that energy is being wasted and will decrease the frequency/voltage level. Translation: LowerReduces a processor's energy consumption by up to 70% Diminishes greenhouse gas emissions Improves

390

Experimental Studies Focused on the Pore-Scale Aspects of Heavy Oil and Bitumen Recovery Using the Steam Assisted Gravity Drainage (SAGD) and Solvent-Aided SAGD (SA-SAGD) Recovery Processes.  

E-Print Network (OSTI)

??Increasing energy consumption and continuous depletion of hydrocarbon reservoirs will result in a conventional oil production peak in the near future. Thus, the gap between… (more)

Mohammadzadeh Shanehsaz, Omidreza

2012-01-01T23:59:59.000Z

391

Beginning of an oil shale industry in Australia  

Science Conference Proceedings (OSTI)

This paper discusses how preparations are being made for the construction and operation of a semi commercial plant to process Australian oil shale. This plant is primarily designed to demonstrate the technical feasibility of processing these shales at low cost. Nevertheless it is expected to generate modest profits even at this demonstration level. This will be the first step in a three staged development of one of the major Australian oil shale deposits which may ultimately provide nearly 10% of Australia's anticipated oil requirements by the end of the century. In turn this development should provide the basis for a full scale oil shale industry in Australia based upon the advantageously disposed oil shale deposits there. New sources of oil are becoming critical since Australian production is declining rapidly while consumption is accelerating.

Wright, B. (Southern Pacific Petroleum NL, 143 Macquarie Street, Sydney (AU))

1989-01-01T23:59:59.000Z

392

Oilgopoly: a general equilibrium model of the oil-macroeconomy nexus  

E-Print Network (OSTI)

Saudi Arabia is the largest player in the world oil market. It maintains ample spare capacity, restricts investment in developing reserves, and its output is negatively correlated with other OPEC producers. While this behavior does not …t into the perfect competition paradigm, we show that it can be rationalized as that of a dominant producer with competitive fringe. We build a quantitative general equilibrium model along these lines which is capable of matching the historical volatility of the oil price, competitive and non-competitive oil output, and of generating the observed comovement among the oil price, oil quantities, and U.S. GDP. We use our framework to answer questions on which available models are silent: (1) What are the proximate determinants of the oil price and how do they vary over the cycle? (2) How large are oil pro…ts and what losses do they imply for oil-importers? (3) What do di¤erent fundamental shocks imply for the comovement of oil prices and GDP? (4) What are the general equilibrium e¤ects of taxes on oil consumption or oil production? We …nd, in particular, that the existence of an oil production distortion does not necessarily justify an oil consumption tax di¤erent from zero. 1

Anton Nakov Y; Banco De España; Galo Nuño; Banco De España

2009-01-01T23:59:59.000Z

393

The 1997 Residential Energy Consumption Survey -- Two Decades  

U.S. Energy Information Administration (EIA)

1997 Residential Energy Consumption Survey presents two decades of changes in energy consumption related Household Characteristics

394

Oil price; oil demand shocks; oil supply shocks; dynamic effects.  

E-Print Network (OSTI)

Abstract: Using a newly developed measure of global real economic activity, a structural decomposition of the real price of crude oil in four components is proposed: oil supply shocks driven by political events in OPEC countries; other oil supply shocks; aggregate shocks to the demand for industrial commodities; and demand shocks that are specific to the crude oil market. The latter shock is designed to capture shifts in the price of oil driven by higher precautionary demand associated with fears about future oil supplies. The paper quantifies the magnitude and timing of these shocks, their dynamic effects on the real price of oil and their relative importance in determining the real price of oil during 1975-2005. The analysis sheds light on the origin of the observed fluctuations in oil prices, in particular during oil price shocks. For example, it helps gauge the relative importance of these shocks in the build-up of the real price of crude oil since the late 1990s. Distinguishing between the sources of higher oil prices is shown to be crucial in assessing the effect of higher oil prices on U.S. real GDP and CPI inflation, suggesting that policies aimed at dealing with higher oil prices must take careful account of the origins of higher oil prices. The paper also quantifies the extent to which the macroeconomic performance of the U.S. since the mid-1970s has been driven by the external economic shocks driving the real price of oil as opposed to domestic economic factors and policies. Key words: JEL:

Lutz Kilian

2006-01-01T23:59:59.000Z

395

Recent trends in oil shale. I. History, nature, and reserves  

SciTech Connect

To understand the current level of oil shale development and to anticipate some of the problems that will govern the growth rate of the domestic shale oil industry, this bulletin will discuss these issues in three parts. In this MIB, the nature of oil shale is discussed and a brief history of oil shale development is presented. The worldwide and domestic oil shale resources are described, with emphasis on recent geologic exploration of the Green River formation. Part II will cover oil shale mining and fuel extraction while Part III will discuss technical problems of shale oil refining and some economic and social problems of oil shale development. An extensive bibliography is provided. (MCW)

Sladek, T.A.

1974-11-01T23:59:59.000Z

396

EIA-Annual Energy Outlook 2010 - Low Economic Growth Tables  

Gasoline and Diesel Fuel Update (EIA)

Economic Growth Tables (2007- 2035) Economic Growth Tables (2007- 2035) Annual Energy Outlook 2010 Main Low Economic Growth Tables (2007- 2035) Table Title Formats Summary Low Economic Growth Case Tables PDF Gif Year-by-Year Low Economic Growth Case Tables Excel Gif Table 1. Total Energy Supply, Disposition, and Price Summary Excel Gif Table 2. Energy Consumption by Sector and Source Excel Gif Table 3. Energy Prices by Sector and Source Excel Gif Table 4. Residential Sector Key Indicators and Consumption Excel Gif Table 5. Commercial Sector Indicators and Consumption Excel Gif Table 6. Industrial Sector Key Indicators and Consumption Excel Gif Table 7. Transportation Sector Key Indicators and Delivered Energy Consumption Excel Gif Table 8. Electricity Supply, Disposition, Prices, and Emissions

397

EIA-Annual Energy Outlook 2010 - High Economic Growth Tables  

Gasoline and Diesel Fuel Update (EIA)

Economic Growth Tables (2007-2035) Economic Growth Tables (2007-2035) Annual Energy Outlook 2010 Main High Economic Growth Tables (2007- 2035) Table Title Formats Summary High Economic Growth Case Tables PDF Gif Year-by-Year High Economic Growth Case Tables Excel Gif Table 1. Total Energy Supply and Disposition Summary Excel Gif Table 2. Energy Consumption by Sector and Source Excel Gif Table 3. Energy Prices by Sector and Source Excel Gif Table 4. Residential Sector Key Indicators and Consumption Excel Gif Table 5. Commercial Sector Indicators and Consumption Excel Gif Table 6. Industrial Sector Key Indicators and Consumption Excel Gif Table 7. Transportation Sector Key Indicators and Delivered Energy Consumption Excel Gif Table 8. Electricity Supply, Disposition, Prices, and Emissions Excel Gif

398

Annual Energy Outlook 2007 - Low Economic Growth Case Tables  

Gasoline and Diesel Fuel Update (EIA)

Low Macroeconomic Growth Case Tables (2004-2030) Low Macroeconomic Growth Case Tables (2004-2030) Annual Energy Outlook 2007 with Projections to 2030 MS Excel Viewer Spreadsheets are provided in Excel Low Economic Growth Case Tables (2004-2030) Table Title Formats Summary Low Economic Growth Case Tables Low Economic Growth Case Tables Table 1. Total Energy Supply and Disposition Summary Table 2. Energy Consumption by Sector and Source Table 3. Energy Prices by Sector and Source Table 4. Residential Sector Key Indicators and Consumption Table 5. Commercial Sector Indicators and Consumption Table 6. Industrial Sector Key Indicators and Consumption Table 7. Transportation Sector Key Indicators and Delivered Energy Consumption Table 8. Electricity Supply, Disposition, Prices, and Emissions Table 9. Electricity Generating Capacity

399

Understanding Crude Oil Prices  

E-Print Network (OSTI)

World Production of Crude Oil, NGPL, and Other Liquids, andWorld Production of Crude Oil, NGPL, and Other Liquids, andProduction of Crude Oil, NGPL, and Other Liquids, and Re?

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

400

Reduce Oil Dependence Costs  

NLE Websites -- All DOE Office Websites (Extended Search)

Reduce Oil Dependence Costs U.S. Petroleum Use, 1970-2010 Nearly 40% of the oil we use is imported, costing us roughly 300 billion annually. Increased domestic oil production from...

Note: This page contains sample records for the topic "oil consumption growth" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

China's Global Oil Strategy  

E-Print Network (OSTI)

interpretations of China’s foreign oil strategy. Argumentsof aspects of China’s foreign oil activities, they do notits largest directly-run foreign oil project. Supplying 10

Thomas, Bryan G

2009-01-01T23:59:59.000Z

402

Understanding Crude Oil Prices  

E-Print Network (OSTI)

Natural Gas, Heating Oil and Gasoline,” NBER Working Paper.2006. “China’s Growing Demand for Oil and Its Impact on U.S.and Income on Energy and Oil Demand,” Energy Journal 23(1),

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

403

Oil Spills and Wildlife  

NLE Websites -- All DOE Office Websites (Extended Search)

Oil Spills and Wildlife Name: jess Location: NA Country: NA Date: NA Question: what are some effects of oil spills on plants? Replies: The effects of oil spills over the last...

404

China's Global Oil Strategy  

E-Print Network (OSTI)

Michael T. Klare, Blood and Oil: The Dangers of America’sDowns and Jeffrey A. Bader, “Oil-Hungry China Belongs at BigChina, Africa, and Oil,” (Council on Foreign Relations,

Thomas, Bryan G

2009-01-01T23:59:59.000Z

405

Understanding Crude Oil Prices  

E-Print Network (OSTI)

by the residual quantity of oil that never gets produced.order to purchase a quantity Q barrels of oil at a price P tD t Q t Q t+1 Quantity Figure 5. Monthly oil production for

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

406

China's Global Oil Strategy  

E-Print Network (OSTI)

is an important oil source for China, yet unlike itsthe United States as a major oil source outside the volatileto be a critical source of oil, and one that is almost

Thomas, Bryan G

2009-01-01T23:59:59.000Z

407

Understanding Crude Oil Prices  

E-Print Network (OSTI)

2004. “OPEC’s Optimal Crude Oil Price,” Energy Policy 32(2),Figure 3. Price of crude oil contract maturing December ofbarrels per day. Monthly crude oil production Iran Iraq

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

408

Understanding Crude Oil Prices  

E-Print Network (OSTI)

2004. “OPEC’s Optimal Crude Oil Price,” Energy Policy 32(2),percent change in real oil price. Figure 3. Price of crude023 Understanding Crude Oil Prices James D. Hamilton June

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

409

China's Global Oil Strategy  

E-Print Network (OSTI)

nations began to seek out oil reserves around the world. 3on the limited global oil reserves and spiking prices. Manyto the largest proven oil reserves, making up 61 percent of

Thomas, Bryan G

2009-01-01T23:59:59.000Z

410

Manufacturing Consumption of Energy 1994  

Gasoline and Diesel Fuel Update (EIA)

Energy Information Administration/Manufacturing Consumption of Energy 1994 Energy Information Administration/Manufacturing Consumption of Energy 1994 Introduction The market for natural gas has been changing for quite some time. As part of natural gas restructuring, gas pipelines were opened to multiple users. Manufacturers or their representatives could go directly to the wellhead to purchase their natural gas, arrange the transportation, and have the natural gas delivered either by the local distribution company or directly through a connecting pipeline. More recently, the electricity markets have been undergoing change. When Congress passed the Energy Policy Act of 1992, requirements were included not only to open access to the ownership of electricity generation, but also to open access to the transmission lines so that wholesale trade in electricity would be possible. Now several States, including California and

411

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

6 6 State Energy Data 2011: Consumption Table C11. Energy Consumption by Source, Ranked by State, 2011 Rank Coal Natural Gas a Petroleum b Retail Electricity Sales State Trillion Btu State Trillion Btu State Trillion Btu State Trillion Btu 1 Texas 1,695.2 Texas 3,756.9 Texas 5,934.3 Texas 1,283.1 2 Indiana 1,333.4 California 2,196.6 California 3,511.4 California 893.7 3 Ohio 1,222.6 Louisiana 1,502.9 Louisiana 1,925.7 Florida 768.0 4 Pennsylvania 1,213.0 New York 1,246.9 Florida 1,680.3 Ohio 528.0 5 Illinois 1,052.2 Florida 1,236.6 New York 1,304.0 Pennsylvania 507.6 6 Kentucky 1,010.6 Pennsylvania 998.6 Pennsylvania 1,255.6 New York 491.5

412

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

Manufacturing Manufacturing Energy Consumption Survey Forms Form EIA-846A (4-6-95) U.S. Department of Commerce Bureau of the Census Acting as Collecting and Compiling Agent For 1994 MANUFACTURING ENERGY CONSUMPTION SURVEY Public reporting burden for this collection of information is estimated to average 9 hours per response, including the time of reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to the Energy Information Administration, Office of Statistical Standards, EI-73, 1707 H-Street, NW, Washington, DC 20585; and to the Office of Information and Regulatory Affairs, Office of

413

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

Detailed Detailed Tables The following tables present detailed characteristics of vehicles in the residential sector. Data are from the 1991 Residential Transportation Energy Consumption Survey. The "Glossary" contains the definitions of terms used in the tables. Table Organization The "Detailed Tables" section consists of three types of tables: (1) Tables of totals such as number of vehicle miles traveled (VMT) or gallons consumed; (2) Tables of per household statistics such as VMT per household; and (3) Tables of per vehicle statistics such as vehicle fuel consumption per vehicle. The tables have been grouped together by specific topics such as model year data, or family income data to facilitate finding related information. The Quick-Reference Guide to the detailed tables indicates major topics of each table. Row and Column Factors These tables present estimates

414

US WNC MO Site Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

WNC MO WNC MO Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US WNC MO Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 3,000 6,000 9,000 12,000 15,000 US WNC MO Site Consumption kilowatthours $0 $300 $600 $900 $1,200 $1,500 US WNC MO Expenditures dollars ELECTRICITY ONLY average per household * Missouri households consume an average of 100 million Btu per year, 12% more than the U.S. average. * Average household energy costs in Missouri are slightly less than the national average, primarily due to historically lower residential electricity prices in the state. * Missouri homes are typically larger than homes in other states and are more likely to be attached or detached single-family housing units.

415

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

2(94) 2(94) Distribution Category UC-950 Manufacturing Consumption of Energy 1994 December 1997 Energy Information Administration Office of Energy Markets and End Use U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. ii Energy Information Administration/Manufacturing Consumption of Energy 1994 Contacts This publication was prepared by the Energy Information Administration (EIA) under the general direction of W. Calvin

416

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

E E U.S. Census Regions and Divisions 489 Energy Information Administration/Manufacturing Consumption of Energy 1994 Source: U.S. Department of Commerce, Bureau of the Census, Statistical Abstract of the United States,1996 (Washington, DC, October 1996), Figure 1. Appendix E U.S. Census Regions and Divisions Appendix F Descriptions of Major Industrial Groups and Selected Industries Executive Office of the President, Office of Management and Budget, Standard Industrial Classification Manual, 1987, pp. 67-263. 54 493 Energy Information Administration/Manufacturing Consumption of Energy 1994 Appendix F Descriptions of Major Industrial Groups and Selected Industries This appendix contains descriptions of industrial groups and selected industries taken from the Standard Industrial

417

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

3. 3. Vehicle Miles Traveled This chapter presents information on household vehicle usage, as measured by the number of vehicle miles traveled (VMT). VMT is one of the two most important components used in estimating household vehicle fuel consumption. (The other, fuel efficiency, is discussed in Chapter 4). In addition, this chapter examines differences in driving behavior based on the characteristics of the household and the type of vehicle driven. Trends in household driving patterns are also examined using additional information from the Department of Transportation's Nationwide Personal Transportation Survey (NPTS). Household VMT is a measure of the demand for personal transportation. Demand for transportation may be viewed from either an economic or a social perspective. From the economic point-of-view, the use of a household vehicle represents the consumption of one

418

Fuel Consumption for Electricity Generation, All Sectors United States  

Gasoline and Diesel Fuel Update (EIA)

Fuel Consumption for Electricity Generation, All Sectors Fuel Consumption for Electricity Generation, All Sectors United States Coal (thousand st/d) .................... 2,361 2,207 2,586 2,287 2,421 2,237 2,720 2,365 2,391 2,174 2,622 2,286 2,361 2,437 2,369 Natural Gas (million cf/d) ............. 20,952 21,902 28,751 21,535 20,291 22,193 28,174 20,227 20,829 22,857 29,506 21,248 23,302 22,736 23,627 Petroleum (thousand b/d) ........... 128 127 144 127 135 128 135 119 131 124 134 117 131 129 127 Residual Fuel Oil ...................... 38 28 36 29 30 31 33 29 31 30 34 27 33 31 30 Distillate Fuel Oil ....................... 26 24 27 28 35 30 30 26 31 26 28 25 26 30 28 Petroleum Coke (a) .................. 59 72 78 66 63 63 66 59 62 63 67 60 69 63 63 Other Petroleum Liquids (b) ..... 5 3 4 4 7 5 5 5 7 5 5 5 4 6 6 Northeast Census Region Coal (thousand st/d) ....................

419

Impact of Oil Prices Fluctuations on Economies in the Age of Globalization.  

E-Print Network (OSTI)

??Early in the past century, oil has powered economic growth in industrialized economies. Towards the end of the 20th century, as emerging and underdeveloped economies… (more)

Soh feussi, Ancel Raynaud

2013-01-01T23:59:59.000Z

420

Save on shop cheap: Discount Alter Ego Impact Ego Hot Oil ...  

U.S. Energy Information Administration (EIA)

Discount Alter Ego Impact Ego Hot Oil Treatment with Garlic 1000 ml, Alter EGO Energizing / Prevention Shampoo for Hair Loss & Growth 1000 ml, ...

Note: This page contains sample records for the topic "oil consumption growth" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Alter Ego Impact Ego Hot Oil Treatment with Garlic 1000 ml ...  

U.S. Energy Information Administration (EIA)

Alter Ego Impact Ego Hot Oil Treatment with Garlic 1000 ml, Alter EGO Energizing / Prevention Shampoo for Hair Loss & Growth 1000 ml, Alter Ego ...

422

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

4) 4) June 2007 State Energy Consumption Estimates 1960 Through 2004 2004 Consumption Summary Tables Table S1. Energy Consumption Estimates by Source and End-Use Sector, 2004 (Trillion Btu) State Total Energy b Sources End-Use Sectors a Coal Natural Gas c Petroleum Nuclear Electric Power Hydro- electric Power d Biomass e Other f Net Interstate Flow of Electricity/Losses g Residential Commercial Industrial b Transportation Alabama 2,159.7 853.9 404.0 638.5 329.9 106.5 185.0 0.1 -358.2 393.7 270.2 1,001.1 494.7 Alaska 779.1 14.1 411.8 334.8 0.0 15.0 3.3 0.1 0.0 56.4 63.4 393.4 266.0 Arizona 1,436.6 425.4 354.9 562.8 293.1 69.9 8.7 3.6 -281.7 368.5 326.0 231.2 511.0 Arkansas 1,135.9 270.2 228.9 388.3 161.1 36.5 76.0 0.6 -25.7 218.3 154.7 473.9 288.9 California 8,364.6 68.9 2,474.2 3,787.8 315.6 342.2

423

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

9) 9) June 2011 State Energy Consumption Estimates 1960 Through 2009 2009 Consumption Summary Tables Table C1. Energy Consumption Overview: Estimates by Energy Source and End-Use Sector, 2009 (Trillion Btu) State Total Energy b Sources End-Use Sectors a Fossil Fuels Nuclear Electric Power Renewable Energy e Net Interstate Flow of Electricity/ Losses f Net Electricity Imports Residential Commercial Industrial b Transportation Coal Natural Gas c Petroleum d Total Alabama 1,906.8 631.0 473.9 583.9 1,688.8 415.4 272.9 -470.3 0.0 383.2 266.0 788.5 469.2 Alaska 630.4 14.5 344.0 255.7 614.1 0.0 16.3 0.0 (s) 53.4 61.0 325.4 190.6 Arizona 1,454.3 413.3 376.7 520.8 1,310.8 320.7 103.5 -279.9 -0.8 400.8 352.1 207.8 493.6 Arkansas 1,054.8 264.1 248.1 343.1 855.3 158.7 126.5 -85.7 0.0 226.3 167.0 372.5

424

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

3. Energy Consumption per Capita by End-Use Sector, Ranked by State, 2011 3. Energy Consumption per Capita by End-Use Sector, Ranked by State, 2011 Rank Residential Sector Commercial Sector Industrial Sector Transportation Sector Total Consumption State Million Btu State Million Btu State Million Btu State Million Btu State Million Btu 1 North Dakota 99.8 District of Columbia 193.1 Louisiana 585.8 Alaska 277.3 Wyoming 974.7 2 West Virginia 90.9 Wyoming 119.2 Wyoming 568.2 Wyoming 200.7 Louisiana 886.5 3 Missouri 89.4 North Dakota 106.9 Alaska 435.7 North Dakota 172.8 Alaska 881.3 4 Tennessee 87.8 Alaska 94.1 North Dakota 388.9 Louisiana 158.0 North Dakota 768.4 5 Kentucky 87.4 Montana 78.4 Iowa 243.4 Oklahoma 122.3 Iowa 493.6

425

Household vehicles energy consumption 1994  

SciTech Connect

Household Vehicles Energy Consumption 1994 reports on the results of the 1994 Residential Transportation Energy Consumption Survey (RTECS). The RTECS is a national sample survey that has been conducted every 3 years since 1985. For the 1994 survey, more than 3,000 households that own or use some 6,000 vehicles provided information to describe vehicle stock, vehicle-miles traveled, energy end-use consumption, and energy expenditures for personal vehicles. The survey results represent the characteristics of the 84.9 million households that used or had access to vehicles in 1994 nationwide. (An additional 12 million households neither owned or had access to vehicles during the survey year.) To be included in then RTECS survey, vehicles must be either owned or used by household members on a regular basis for personal transportation, or owned by a company rather than a household, but kept at home, regularly available for the use of household members. Most vehicles included in the RTECS are classified as {open_quotes}light-duty vehicles{close_quotes} (weighing less than 8,500 pounds). However, the RTECS also includes a very small number of {open_quotes}other{close_quotes} vehicles, such as motor homes and larger trucks that are available for personal use.

NONE

1997-08-01T23:59:59.000Z

426

Understanding Crude Oil Prices  

E-Print Network (OSTI)

5. Monthly oil production for Iran, Iraq, and Kuwait, inday. Monthly crude oil production Iran Iraq Kuwait Figure 6.Arabia PRODUCTION QUOTA Iran PRODUCTION QUOTA Venezuela

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

427

China's Global Oil Strategy  

E-Print Network (OSTI)

China’s domestic oil supply will peak, and demand Robertpeak will come around 2020, 24 and that by this point, China’s demand Oil

Thomas, Bryan G

2009-01-01T23:59:59.000Z

428

Entanglement consumption of instantaneous nonlocal quantum measurements  

E-Print Network (OSTI)

Relativistic causality has dramatic consequences on the measurability of nonlocal variables and poses the fundamental question of whether it is physically meaningful to speak about the value of nonlocal variables at a particular time. Recent work has shown that by weakening the role of the measurement in preparing eigenstates of the variable it is in fact possible to measure all nonlocal observables instantaneously by exploiting entanglement. However, for these measurement schemes to succeed with certainty an infinite amount of entanglement must be distributed initially and all this entanglement is necessarily consumed. In this work we sharpen the characterisation of instantaneous nonlocal measurements by explicitly devising schemes in which only a finite amount of the initially distributed entanglement is ever utilised. This enables us to determine an upper bound to the average consumption for the most general cases of nonlocal measurements. This includes the tasks of state verification, where the measurement verifies if the system is in a given state, and verification measurements of a general set of eigenstates of an observable. Despite its finiteness the growth of entanglement consumption is found to display an extremely unfavourable exponential of an exponential scaling with either the number of qubits needed to contain the Schmidt rank of the target state or total number of qubits in the system for an operator measurement. This scaling is seen to be a consequence of the combination of the generic exponential scaling of unitary decompositions combined with the highly recursive structure of our scheme required to overcome the no-signalling constraint of relativistic causality.

S. R. Clark; A. J. Connor; D. Jaksch; S. Popescu

2010-04-06T23:59:59.000Z

429

Crude Oil Affects Gasoline Prices  

U.S. Energy Information Administration (EIA)

Crude Oil Affects Gasoline Prices. WTI Crude Oil Price. Retail Gasoline Price. Source: Energy Information Administration

430

Use of waste oils to improve densified refuse derived fuels. Final report  

DOE Green Energy (OSTI)

The preparation and properties of densified refuse-derived fuel (d-RDF) had previously been studied. The objectives of this study were the reduction of the power consumption and increase in the throughput of the densifier, increase in the calorific value and of the resistance of the d-RDF to weathering during outdoor storage. It was believed that these objectives might be achieved by adding waste oils to RDF just before densification. The majority of such oil from local sources includes spent crankcase oils with a high content of lead. In the work reported here, office wastes were shredded, air classified, and reshredded prior to feeding to an animal feed densifier. Water was added to the densifier feed in order to investigate a range of moisture contents. Waste oil (from a local dealer) was pumped through spray nozzles onto the densifier feed at controlled flows so as to investigate a range of oil contents. It is observed that over the practical range of waste oil contents, the savings in power consumption with increasing oil content are small. The addition of waste oil (up to 15 wt %) to the feed did not cause noticeable improvements in throughput rates. As expected, the calorific value of the fuel increases in proportion to the amount of waste oil. Pellets containing 13 wt % oil resulted in having a 20% higher calorific content. Increased waste oil levels in RDF led to reduction in pellet lengths and densities. The addition of waste oil to RDF did not improve pellet water repellency.

None

1980-10-01T23:59:59.000Z

431

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

Next CBECS will be conducted in 2007 Table C31A. Natural Gas Consumption and Conditional Energy Intensity by Building Size for All Buildings, 2003 Total Natural Gas Consumption...

432

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

Next CBECS will be conducted in 2007 Table C25A. Natural Gas Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 Total Natural Gas Consumption...

433

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

Next CBECS will be conducted in 2007 Table C32A. Natural Gas Consumption and Conditional Energy Intensity by Year Constructed for All Buildings, 2003 Total Natural Gas Consumption...

434

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

Released: Dec 2006 Next CBECS will be conducted in 2007 Table C10A. Consumption and Gross Energy Intensity by Climate Zonea for All Buildings, 2003 Sum of Major Fuel Consumption...

435

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

Next CBECS will be conducted in 2007 Table C30A. Natural Gas Consumption and Conditional Energy Intensity by Climate Zonea for All Buildings, 2003 Total Natural Gas Consumption...

436

Benefits vs. risks of fish consumption  

Science Conference Proceedings (OSTI)

The benefits of fish consumption outweigh the risks, according to a joint expert consultation released in October 2011 by two United Nations agencies. Benefits vs. risks of fish consumption News Inform Magazine Inform Archives Health Nutrition Omega

437

Residential Energy Consumption Survey (RECS) - Energy ...  

U.S. Energy Information Administration (EIA)

A B C D E F G H I J K L M N O P Q R S T U V W XYZ ‹ Consumption & Efficiency Residential Energy Consumption Survey (RECS) Glossary ...

438

Outlook for U.S. shale oil and gas  

Gasoline and Diesel Fuel Update (EIA)

shale oil and gas shale oil and gas IAEE/AEA Meeting January 4, 2014 | Philadelphia, PA By Adam Sieminski, EIA Administrator Key insights on drilling productivity and production trends Adam Sieminski, IAEE/AEA January 4, 2014 2 * The U.S. has experienced a rapid increase in natural gas and oil production from shale and other tight resources * Six tight oil and shale gas plays taken together account for nearly 90% of domestic oil production growth and virtually all domestic natural gas production growth over the last 2 years * Higher drilling efficiency and new well productivity, rather than an increase in the rig count, have been the main drivers of recent production growth * Steep legacy production decline rates are being offset by growing

439

Residential Energy Consumption Survey Data Tables  

U.S. Energy Information Administration (EIA)

Below are historical data tables from the Residential Energy Consumption Survey (RECS). These tables cover the total number of households ...

440

Energy Consumption and Expenditures RECS 2001  

U.S. Energy Information Administration (EIA)

Water Heating. Space Heating. Appliances. Air-Conditioning. About the Data. Tables: Total Energy Consumption in U.S ...

Note: This page contains sample records for the topic "oil consumption growth" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Consumption & Efficiency - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Consumption & Efficiency. Energy use in homes, commercial buildings, ... State Energy Data System: Noncombustible Renewable Energy for 2011 ...

442

State energy data report 1992: Consumption estimates  

SciTech Connect

This is a report of energy consumption by state for the years 1960 to 1992. The report contains summaries of energy consumption for the US and by state, consumption by source, comparisons to other energy use reports, consumption by energy use sector, and describes the estimation methodologies used in the preparation of the report. Some years are not listed specifically although they are included in the summary of data.

Not Available

1994-05-01T23:59:59.000Z

443

Foreign Oil Dependence  

E-Print Network (OSTI)

Public transportation provides greater freedom, access, opportunity and choice for Americans from all walks of life and from all across the country. Ridership is up 25.1 percent since 1995, and the millions of Americans who use public transportation each weekday know it saves money and gasoline. This independent analysis looks for the first time at what public transportation saves – both for individual households and for the nation as a whole. In addition, it explores a possible future where many more Americans would have the choice to take public transportation. It was commissioned from ICF International by the American Public Transportation Association. Public Transportation Reduces U.S. Foreign Oil Dependence Using conservative assumptions, the study found that current public transportation usage reduces U.S. gasoline consumption by 1.4 billion gallons each year. In concrete terms, that means: 108 million fewer cars filling up – almost 300,000 every day. 34 fewer supertankers leaving the Middle East – one every 11 days.

Linda Bailey

2007-01-01T23:59:59.000Z

444

Growth and opportunities in the lubricants business in Asia  

Science Conference Proceedings (OSTI)

The demand for lubricants is increasing faster in Asia than any other part of the world. This development is being propelled largely by the expansion of the transportation and manufacturing sectors. By the year 2000, lubricant consumption in Asia will exceed that of Western Europe, Africa and the Middle East combined. Aside from this growth, most of the region is shifting from very low quality to higher quality value-added products. In view of these factors, there has been an explosion of activity over the past few years as lubricant blenders and additive suppliers attempt to position themselves within the market. Over the past year, Chem Systems has undertaken an extensive study of the lubricants business in East Asia, focusing on the evolution of this complex market structure and the identification of attractive opportunities. The overview presented in this paper is a product of these efforts. Whether you are a multinational oil company, independent blender, national oil company or multinational additive suppler, the questions are the same when developing a strategy for the region: regional overview of lubricant business structure; outlook for Asian demand; profile of lube/additives businesses; and successful competition--what is required?

Burke, B.F. [Chem Systems, Inc., Tarrytown, NY (United States)

1995-09-01T23:59:59.000Z

445

Vehicle emissions and energy consumption impacts of modal shifts  

E-Print Network (OSTI)

Growing concern over air quality has prompted the development of strategies to reduce vehicle emissions in these areas. Concern has also been expressed regarding the current dependency of the U,S, on foreign oil. An option for addressing these concerns is to reduce vehicle-miles travelled (VMT), High- occupancy vehicle (HOV) lanes have been cited as one alternative for achieving this goal. However, latent travel demand frequently negates some or all of the VMT savings brought about by HOV lanes, The net effects of modal shifts to HOV lanes and the subsequent latent travel demand were studied in the thesis, A methodology was developed for estimating vehicle emissions and energy consumption impacts of modal shifts from private vehicles in the freeway mainlanes to buses in an HOV lane when latent travel demand is considered. The methodology was evaluated and determined to yield reasonable results, Finally, the methodology was applied to a freeway corridor in Houston, Texas. The results of the application indicate that reductions in VMT do not necessarily cause reductions in vehicle emissions of interest even when considered, all three of the pollutants of latent travel demand is not consumption was decreased at considered. Energy consumption was decreased a virtually all levels of latent travel demand except where latent travel demand was equivalent to the mode shift.

Mallett, Vickie Lynn

1993-01-01T23:59:59.000Z

446

EIA - Analysis of Natural Gas Consumption  

Gasoline and Diesel Fuel Update (EIA)

Consumption Consumption 2010 Natural Gas Year-In-Review 2009 This is a special report that provides an overview of the natural gas industry and markets in 2009 with special focus on the first complete set of supply and disposition data for 2009 from the Energy Information Administration. Topics discussed include natural gas end-use consumption trends, offshore and onshore production, imports and exports of pipeline and liquefied natural gas, and above-average storage inventories. Categories: Prices, Production, Consumption, Imports/Exports & Pipelines, Storage (Released, 7/9/2010, Html format) Trends in U.S. Residential Natural Gas Consumption This report presents an analysis of residential natural gas consumption trends in the United States through 2009 and analyzes consumption trends for the United States as a whole (1990 through 2009) and for each Census Division (1998 through 2009). It examines a long-term downward per-customer consumption trend and analyzes whether this trend persists across Census Divisions. The report also examines some of the factors that have contributed to the decline in per-customer consumption. To provide a more meaningful measure of per-customer consumption, EIA adjusted consumption data presented in the report for weather. Categories: Consumption (Released, 6/23/2010, pdf format)

447

Mathematical models of natural gas consumption  

E-Print Network (OSTI)

Mathematical models of natural gas consumption Kristian Sabo, Rudolf Scitovski, Ivan of natural gas consumption Kristian Sabo, Rudolf Scitovski, Ivan Vazler , Marijana Zeki-Susac ksabo of natural gas consumption hourly fore- cast on the basis of hourly movement of temperature and natural gas

Scitovski, Rudolf

448

Vehicle Technologies Office: Fact #267: May 12, 2003 Oil Price Relationship  

NLE Websites -- All DOE Office Websites (Extended Search)

7: May 12, 2003 7: May 12, 2003 Oil Price Relationship to Economic Growth in the United States, 1970-2002 to someone by E-mail Share Vehicle Technologies Office: Fact #267: May 12, 2003 Oil Price Relationship to Economic Growth in the United States, 1970-2002 on Facebook Tweet about Vehicle Technologies Office: Fact #267: May 12, 2003 Oil Price Relationship to Economic Growth in the United States, 1970-2002 on Twitter Bookmark Vehicle Technologies Office: Fact #267: May 12, 2003 Oil Price Relationship to Economic Growth in the United States, 1970-2002 on Google Bookmark Vehicle Technologies Office: Fact #267: May 12, 2003 Oil Price Relationship to Economic Growth in the United States, 1970-2002 on Delicious Rank Vehicle Technologies Office: Fact #267: May 12, 2003 Oil Price

449

EIA - International Energy Outlook 2007 - Energy Consumption by End-Use  

Gasoline and Diesel Fuel Update (EIA)

Energy Consumption by End-Use Sector Energy Consumption by End-Use Sector International Energy Outlook 2007 Chapter 2 - Energy Consumption by End-Use Sector In the IEO2007 projections, end-use energy consumption depends on resource endowment, economic growth, and other political, social, and demographic factors.. One way of looking at the future of world energy markets is to consider trends in energy consumption at the end-use sector level. With the exception of the transportation sector, which is dominated by petroleum-based liquids products at present, the mix of energy use in the residential, commercial, and industrial sectors varies widely by region, depending on a combination of regional factors, such as the availability of energy resources, the level of economic development, and political, social,

450

Verifying a Simplified Fuel Oil Flow Field Measurement Protocol  

Science Conference Proceedings (OSTI)

The Better Buildings program is a U.S. Department of Energy program funding energy efficiency retrofits in buildings nationwide. The program is in need of an inexpensive method for measuring fuel oil consumption that can be used in evaluating the impact that retrofits have in existing properties with oil heat. This project developed and verified a fuel oil flow field measurement protocol that is cost effective and can be performed with little training for use by the Better Buildings program as well as other programs and researchers.

Henderson, H.; Dentz, J.; Doty, C.

2013-07-01T23:59:59.000Z

451

DOE/EIA-0321/HRIf Residential Energy Consumption Survey. Consumption  

Gasoline and Diesel Fuel Update (EIA)

/HRIf /HRIf Residential Energy Consumption Survey. Consumption and Expenditures, April 1981 Through March 1982 an Part I: National Data Energy Information Administration Washington, D.C. (202) 20fr02 'O'Q 'uoifkjjUSBM ujiuud juaoiujeAog 'S'n siuawnooQ jo luapuaiuuadns - 0088-292 (202) 98S02 '0'Q 8f 0-d I 6ujp|ing uoiieflSjUjiup v UOIIBUJJOJU | ABjau 3 02-13 'jaiuao UOIJBUJJOJUI XBjaug IBUO!;BN noA pasopua s; uujoi japjo uy 'MO|aq jeadde sjaqoinu auoydajaj PUB sassajppv 'OI3N 9>4i oi papajip aq pinoqs X6jaue uo suotjsenQ '(OIBN) J9»ueo aqjeiMJO^ui ASjaug (BUOIJEN s,vi3 QMi JO OdO 941 UUGJJ peuiBiqo eq ABOI suoijBonqnd (vi3) UO!JBJ;S!UILUPV UOIIBUUJO|U| XBjeug jaiflo PUB SJMJ p ssBiiojnd PUB UOIIBLUJO^JI 6uuepjQ (Od9) 90IWO Bujjuud luetuujaAOQ -g'n 'sjuaiunooa p juapuaiuuedng aqt LUOJI aiqB||BAB si uoHBOjiqnd sjt|i

452

Outlook for U.S. shale oil and gas  

U.S. Energy Information Administration (EIA) Indexed Site

Argus Americas Crude Summit January 22, 2014 | Houston, TX By Adam Sieminski, EIA Administrator Six key plays account for nearly all recent growth in oil and natural gas production...

453

Economic Effects of High Oil Prices (released in AEO2006)  

Reports and Publications (EIA)

The AEO2006 projections of future energy market conditions reflect the effects of oil prices on the macroeconomic variables that affect oil demand, in particular, and energy demand in general. The variables include real GDP growth, inflation, employment, exports and imports, and interest rates.

Information Center

2006-02-01T23:59:59.000Z

454

Eco Oil 4  

DOE Green Energy (OSTI)

This article describes the processes, challenges, and achievements of researching and developing a biobased motor oil.

Brett Earl; Brenda Clark

2009-10-26T23:59:59.000Z

455

Subject is oil shale  

SciTech Connect

The article reviews the current financial, legislative and regulatory problems of oil shale development. 2 refs.

Due, M.J.C.

1982-02-01T23:59:59.000Z

456

Demonstrated Petroleum Reduction Using Oil Bypass Filter Technology on Heavy and Light Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Demonstrated Petroleum Demonstrated Petroleum Reduction Using Oil Bypass Filter Technology on Heavy and Light Vehicles James Francfort (PI) Timothy Murphy Larry Zirker Oil Bypass Filter Technology Evaluation * Funded by the U.S. Department of Energy's FreedomCAR & Vehicle Technologies Program * Performed by Idaho National Engineering and Environmental Laboratory (INEEL) Fleet Operations * Goal - Support DOE's efforts to reduce petroleum consumption & ensure the energy security of the United States Oil Bypass Filter Technology Evaluation * Objectives - Test the concept of using oil bypass filters to minimize engine oil changes & the generation of waste oils - Demonstration the economics of oil bypass filter systems - Estimate potential engine oil saving from bypass filter technologies that can be achieved by INEEL,

457

TV Energy Consumption Trends and Energy-Efficiency Improvement Options  

E-Print Network (OSTI)

2008 Standby Power Consumption Report”, March. http://of measurement for the power consumption of audio, video andand Low Power Mode Energy Consumption”, Energy Efficiency in

Park, Won Young

2011-01-01T23:59:59.000Z

458

Addressing Water Consumption of Evaporative Coolers with Greywater  

E-Print Network (OSTI)

5 3. Water Consumption of Evaporative7 3.1.2. Water Consumption Due to9 3.1.4. Water Consumption due to

Sahai, Rashmi

2013-01-01T23:59:59.000Z

459

Alcohol consumption, medical conditions and health behavior in older adults  

E-Print Network (OSTI)

Alcohol consumption In press, American JournalHealth Behavior Alcohol Consumption, Medical Conditions andin the association of alcohol consumption with health and

Satre, Derek; Gordon, Nancy P.; Weisner, Constance

2007-01-01T23:59:59.000Z

460

Modelling the impact of user behaviour on heat energy consumption  

E-Print Network (OSTI)

strategies impact on energy consumption in residentialBEHAVIOUR ON HEAT ENERGY CONSUMPTION Nicola Combe 1 ,2 ,nearly 60% of domestic energy consumption and 27% of total

Combe, Nicola Miss; Harrison, David Professor; Way, Celia Miss

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil consumption growth" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

TV Energy Consumption Trends and Energy-Efficiency Improvement Options  

E-Print Network (OSTI)

and Low Power Mode Energy Consumption”, Energy Efficiency inEnergy Consumption ..26 3.1.3. 3D TV Energy Consumption and Efficiency

Park, Won Young

2011-01-01T23:59:59.000Z

462

Whole-house measurements of standby power consumption  

E-Print Network (OSTI)

Whole-House Measurements of Standby Power Consumption" InStudy on Miscellaneous Standby Consumption of HouseholdA. , Murakoshi, C. 1997. Standby Electricity Consumption in

Ross, J.P.; Meier, Alan

2000-01-01T23:59:59.000Z

463

2009 Energy Consumption Per Person | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Field Sites Power Marketing Administration Other Agencies You are here Home 2009 Energy Consumption Per Person 2009 Energy Consumption Per Person 2009 Energy Consumption...

464

Electrical appliance energy consumption control methods and electrical energy consumption systems  

DOE Patents (OSTI)

Electrical appliance energy consumption control methods and electrical energy consumption systems are described. In one aspect, an electrical appliance energy consumption control method includes providing an electrical appliance coupled with a power distribution system, receiving electrical energy within the appliance from the power distribution system, consuming the received electrical energy using a plurality of loads of the appliance, monitoring electrical energy of the power distribution system, and adjusting an amount of consumption of the received electrical energy via one of the loads of the appliance from an initial level of consumption to an other level of consumption different than the initial level of consumption responsive to the monitoring.

Donnelly, Matthew K. (Kennewick, WA); Chassin, David P. (Pasco, WA); Dagle, Jeffery E. (Richland, WA); Kintner-Meyer, Michael (Richland, WA); Winiarski, David W. (Kennewick, WA); Pratt, Robert G. (Kennewick, WA); Boberly-Bartis, Anne Marie (Alexandria, VA)

2008-09-02T23:59:59.000Z

465

Electrical appliance energy consumption control methods and electrical energy consumption systems  

DOE Patents (OSTI)

Electrical appliance energy consumption control methods and electrical energy consumption systems are described. In one aspect, an electrical appliance energy consumption control method includes providing an electrical appliance coupled with a power distribution system, receiving electrical energy within the appliance from the power distribution system, consuming the received electrical energy using a plurality of loads of the appliance, monitoring electrical energy of the power distribution system, and adjusting an amount of consumption of the received electrical energy via one of the loads of the appliance from an initial level of consumption to an other level of consumption different than the initial level of consumption responsive to the monitoring.

Donnelly, Matthew K. (Kennewick, WA); Chassin, David P. (Pasco, WA); Dagle, Jeffery E. (Richland, WA); Kintner-Meyer, Michael (Richland, WA); Winiarski, David W. (Kennewick, WA); Pratt, Robert G. (Kennewick, WA); Boberly-Bartis, Anne Marie (Alexandria, VA)

2006-03-07T23:59:59.000Z

466

Microbial desulfurization of Eastern oil shale: Bioreactor studies  

SciTech Connect

The removal of sulfur from Eastern oil shale (40 microns particle size) slurries in bioreactors by mixed microbial cultures was examined. A mixed culture that is able to remove the organic sulfur from model sulfur compounds presenting coal as well as a mixed culture isolated from oil shale enrichments were evaluated. The cultures were grown in aerobic fed-batch bioreactors where the oil shale served as the source of all nutrients except organic carbon. Glucose was added as an auxiliary carbon source. Microbial growth was monitored by plate counts, the pH was checked periodically, and oil shale samples were analyzed for sulfur content. Results show a 24% reduction in the sulfur content of the oil shale after 14 days. The settling characteristics of the oil shale in the bioreactors were examined in the presence of the microbes. Also, the mixing characteristics of the oil shale in the bioreactors were examined. 10 refs., 6 figs., 5 tabs.

Maka, A.; Akin, C.; Punwani, D.V.; Lau, F.S.; Srivastava, V.J.

1989-01-01T23:59:59.000Z

467

Microsoft PowerPoint - GlobalOilEcon.ppt  

U.S. Energy Information Administration (EIA) Indexed Site

Globalization, Oil Prices and Globalization, Oil Prices and U.S. Economic Activity Stephen Brown Federal Reserve Bank of Dallas 2008 Energy Conference U.S. Energy Information Administration Globalization, Oil Price Shocks and U.S. Economic Activity Nathan Balke, Stephen Brown, Mine Yücel March 31, 2008 I. Introduction. What are the economic consequences to the United States of an increase in the oil price? Conventional thinking: oil supply shock * Higher oil price * Slower GDP growth * Increased price level Real oil price and recessions (shaded) Index, 1982 = 100 0 30 60 90 120 150 48 51 54 57 60 63 66 69 72 75 78 81 84 87 90 93 96 99 02 05 Empirical evidence of a negative relationship is mixed: For: Mork and Hall (1980), Hamilton (1983, 2003), Balke, Brown, and Yücel (2002), Hamilton and Herrera (2004),

468

Oil | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oil Oil Oil Oil Prices, 2000-2008 For the first time since 1995, U.S. oil production has surpassed imports. Explore the trend with our interactive chart. | Graphic by Daniel Wood, Energy Department. For the first time since 1995, U.S. oil production has surpassed imports. Explore the trend with our interactive chart. | Graphic by Daniel Wood, Energy Department. Oil is used for heating and transportation -- most notably, as fuel for gas-powered vehicles. America's dependence on foreign oil has declined in recent years, but oil prices have increased. The Energy Department supports research and policy options to increase our domestic supply of oil while ensuring environmentally sustainable supplies domestically and abroad, and is investing in research, technology and

469

Fuel efficient lubricants and the effect of special base oils  

Science Conference Proceedings (OSTI)

The demand for improved fuel economy is placing increasing pressure upon engine manufacturers world-wide. Lubricants that can provide additional fuel efficiency benefits are being vigorously sought. Such lubricants must achieve the current performance specifications that are also increasing in severity. To meet all of these requirements, passenger car lubricant formulations will need special base oils. This paper presents data on comparable 5W-30 formulations based on either hydrogenated mineral oil, or hydrocracked or poly alpha olefin basestocks. These blends clearly demonstrate the effect of improved volatility on oil consumption and oxidation stability in a range of bench engine tests. Equivalent engine test performance is observed for the hydrocracked and polyalphaolefin blends. Both exhibit performance superior to that attained by the hydrogenated mineral oil-based blend. Predicted Sequence VI fuel savings for these blends show additional fuel efficiency benefits for hydrocracked vs. hydrogenated mineral oil-based blends. 18 refs., 7 figs., 4 tabs.

Kiovsky, T.E. [BP Oil Company, Cleveland, OH (United States); Yates, N.C.; Bales, J.R. [BP Oil International Limited, Middlesex (United Kingdom)

1994-04-01T23:59:59.000Z

470

Canada's Fuel Consumption Guide | Open Energy Information  

Open Energy Info (EERE)

Canada's Fuel Consumption Guide Canada's Fuel Consumption Guide Jump to: navigation, search Tool Summary Name: Canada's Fuel Consumption Guide Agency/Company /Organization: Natural Resources Canada Focus Area: Fuels & Efficiency Topics: Analysis Tools Website: oee.nrcan.gc.ca/transportation/tools/fuel-consumption-guide/fuel-consu Natural Resources Canada has compiled fuel consumption ratings for passenger cars and light-duty pickup trucks, vans, and special purpose vehicles sold in Canada. The website links to the Fuel Consumption Guide and allows users to search for vehicles from current and past model years. It also provides information about vehicle maintenance and other practices to reduce fuel consumption. How to Use This Tool This tool is most helpful when using these strategies:

471

WORLD OIL SUPPLY – PRODUCTION, RESERVES, AND EOR  

E-Print Network (OSTI)

“The weakness of intelligence is in discerning the turning points” (J. Schlesinger: former CIA Director and Ex-Secretary of Defense and of Energy) World Oil Consumption: Since 1980, the world has consumed far more oil than has been discovered. We are now finding only one barrel of new oil for every four barrels that we consume. As Donald Hodel, Ex-U.S. Secretary of Energy said: “We are sleepwalking into a disaster.” Global R/P: (Figure 1-A). Economists and laymen routinely view the future of global oil production as being directly related to a simple global Reserves/Production (R/P) ratio. This implies that oil produced in all of the world’s fields will abruptly stop when the R/P date (40 years in the future) is reached. This is as unrealistic as to expect all humans to die off suddenly, instead of gradually. Global R/Ps should NOT be used to estimate timing of future oil supplies. National R/P: (Figure 1-B). Instead of posting one average Global R/P of 40 years for the entire world, Figure 1-B shows (“National R/P”) for individual nations. This results in a very different, but a much more realistic semi-quantitative picture of the distribution of the world’s claimed oil reserves and future global oil supply than does Figure 1-A. Scale: All of these graphs are drawn to scale, which puts tight limits on their construction and analysis. A 40,000-million-barrels (4 BBO/year x 10 years) rectangle in the upper left corner of each figure shows the graphic scale for the area under the World Production Curve (WPC). (BBO =

M. King; Hubbert Center; M. King; Hubbert Center; L. F. Ivanhoe

2000-01-01T23:59:59.000Z

472

Figure 1.6 State-Level Energy Consumption Estimates and Estimated ...  

U.S. Energy Information Administration (EIA)

Figure 1.6 State-Level Energy Consumption Estimates and Estimated Consumption per Capita, 2010 Consumption Consumption per Capita

473

The Perils of Consumption and the Gift Economy as the Solution Daniel Miller’s Consumption and Its Consequences  

E-Print Network (OSTI)

Press. Miller, D. (2012). Consumption and its consequences.The Perils of Consumption and the Gift Economy asSolution Daniel Miller’s ‘Consumption and Its Consequences’

Leahy, Terry

2013-01-01T23:59:59.000Z

474

Crude Oil, Heating Oil, and Propane Market Outlook  

U.S. Energy Information Administration (EIA)

Crude Oil, Heating Oil, and Propane Outlook Briefing for the State Heating Oil and Propane Program Conference Asheville, NC Mike Burdette Petroleum Division, Energy ...

475

Crude Oil, Heating Oil, and Propane Market Outlook  

U.S. Energy Information Administration (EIA)

Table of Contents. Crude Oil, Heating Oil, and Propane Market Outlook. Short-Term World Oil Price Forecast . Price Movements Related to Supply/Demand Balance

476

Crude Oil, Heating Oil, and Propane Market Outlook  

U.S. Energy Information Administration (EIA)

Crude Oil, Heating Oil, and Propane Market Outlook Briefing for the State Heating Oil and Propane Program Conference Wilmington, DE by Douglas MacIntyre

477

Vsd Oil Free Air Compressor, Vsd Oil Free Air Compressor ...  

U.S. Energy Information Administration (EIA)

Vsd Oil Free Air Compressor, You Can Buy Various High Quality Vsd Oil Free Air Compressor Products from Global Vsd Oil Free Air Compressor Suppliers ...

478

Oil Free Vsd Air Compressor, Oil Free Vsd Air Compressor ...  

U.S. Energy Information Administration (EIA)

Oil Free Vsd Air Compressor, You Can Buy Various High Quality Oil Free Vsd Air Compressor Products from Global Oil Free Vsd Air Compressor Suppliers ...

479

Oil Dependence: The Value of R{ampersand}D  

SciTech Connect

Over the past quarter century the United States` dependence on oil has cost its economy on the order of $5 trillion. Oil dependence is defined as economically significant consumption of oil, given price inelastic demand in the short and long run and given the ability of the OPEC cartel to use market power to influence oil prices. Although oil prices have been lower and more stable over the past decade, OPEC still holds the majority of the world`s conventional oil resources according to the best available estimates. OPEC`s share of the world oil market is likely to grow significantly in the future,restoring much if not all of their former market power. Other than market share, the key determinants of OPEC`s market power are the long and short run price elasticities of world oil demand and supply. These elasticities depend critically on the technologies of oil supply and demand, especially the technology of energy use in transportation. Research and development can change these elasticities in fundamental ways, and given the nature of the problem,the government has an important role to play in supporting such research.

Greene, D.L.

1997-07-01T23:59:59.000Z

480

Investment policies of national oil companies  

SciTech Connect

The political developments in Iran, the spectacular oil spills in Compeche off the coast of Mexico, and the unexpected death of the president of Algeria are indicative of radical changes that are taking place in these countries. This book focuses on the investment policies of the national oil companies - SONATRACH in Algeria, NIOC in Iran, and PEMEX in Mexico - but it also reviews the overall economic goals and policies of these three countries. State oil companies experienced accelerated growth in spite of a lack of planning, but each continues to encounter various limitations in its dependence on strong government interference, conflicting institutional relationships, and conflicting investment theories. Several implications are developed for national oil companies and their respective governments from this study. Strong leadership that is in tune with political realities and national leadership is needed before a natural resource can become a source of prosperity for developing countries. 320 references, 27 figures, 77 tables.

Megateli, A.

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil consumption growth" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Microsoft Word - high-oil-price.doc  

Gasoline and Diesel Fuel Update (EIA)

Short Term Energy Outlook Short Term Energy Outlook 1 STEO Supplement: Why are oil prices so high? During most of the 1990s, the West Texas Intermediate (WTI) crude oil price averaged close to $20 per barrel, before plunging to almost $10 per barrel in late 1998 as a result of the Asian financial crisis slowing demand growth while extra supply from Iraq was entering the market for the first time since the Gulf War. Subsequently, as Organization of Petroleum Exporting Countries (OPEC) producers more closely adhered to a coordinated production quota and reduced output, crude oil prices not only recovered, but increased to about $30 per barrel as demand grew as Asian economies recovered. The most recent increase in crude oil prices began in 2004, when they almost doubled from 2003 levels, rising from about $30 per barrel at the end

482

EIA - International Energy Outlook 2007-Low Economic Growth Case Projection  

Gasoline and Diesel Fuel Update (EIA)

Economic Growth Case Projection Tables (1990-2030) Economic Growth Case Projection Tables (1990-2030) International Energy Outlook 2007 Low Economic Growth Case Projection Tables (1990-2030) Formats Data Table Titles (1 to 12 complete) Low Economic Growth Case Projection Tables. Need help, contact the National Energy Information Center at 202-586-8800. Low Economic Growth Case Projection Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table C1 World Total Energy Consumption by Region Table C1. World Total Energy Consumption by Region. Need help, contact the National Energy Information Center at 202-586-8800. Table C2 World Total Energy Consumption by Region and Fuel Table C2. World Total Energy Consumption by Region and Fuel. Need help, contact the National Energy Information Center at 202-586-8800.

483

China's Industrial Energy Consumption Trends and Impacts of the Top-1000  

NLE Websites -- All DOE Office Websites (Extended Search)

China's Industrial Energy Consumption Trends and Impacts of the Top-1000 China's Industrial Energy Consumption Trends and Impacts of the Top-1000 Enterprises Energy-Saving Program and the Ten Key Energy-Saving Projects Title China's Industrial Energy Consumption Trends and Impacts of the Top-1000 Enterprises Energy-Saving Program and the Ten Key Energy-Saving Projects Publication Type Journal Year of Publication 2012 Authors Ke, Jing, Lynn K. Price, Stephanie Ohshita, David Fridley, Nina Zheng Khanna, Nan Zhou, and Mark D. Levine Keywords energy saving, energy trends, industrial energy efficiency, top-1000 Abstract This study analyzes China's industrial energy consumption trends from 1996 to 2010 with a focus on the impact of the Top-1000 Enterprises Energy-Saving Program and the Ten Key Energy-Saving Projects. From 1996 to 2010, China's industrial energy consumption increased by 134%, even as the industrial economic energy intensity decreased by 46%. Decomposition analysis shows that the production effect was the dominant cause of the rapid growth in industrial energy consumption, while the efficiency effect was the major factor slowing the growth of industrial energy consumption. The structural effect had a relatively small and fluctuating influence. Analysis shows the strong association of industrial energy consumption with the growth of China's economy and changing energy policies. An assessment of the Top-1000 Enterprises Energy-Saving Program and the Ten Key Energy-Saving Projects indicates that the economic energy intensity of major energy-intensive industrial sub-sectors, as well as the physical energy intensity of major energy-intensive industrial products, decreased significantly during China's 11th Five Year Plan (FYP) period (2006-2010). This study also shows the importance and challenge of realizing structural change toward less energy-intensive activities in China during the 12th FYP period (2011-2015).

484

The Short-Term Oil Market Outlook - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Forecasts of 2011 growth in world consumption vary, but agree growth will be led by non-OECD countries-0.01 1.46. 1.45-0.16. 1.57. 1.41. 0.18. 1.04. 1.23-0.5

485

Oil-Well Fire Fighting  

Science Conference Proceedings (OSTI)

... Oil Well Fire Fighting. NIST fire Research NIST Fire Research 2 Oil Well Fire Fighting RoboCrane Model Oil Well Fire Fighting Working Model.

2011-08-25T23:59:59.000Z

486

AN ENGINE OIL LIFE ALGORITHM.  

E-Print Network (OSTI)

??An oil-life algorithm to calculate the remaining percentage of oil life is presented as a means to determine the right time to change the oil… (more)

Bommareddi, Anveshan

2009-01-01T23:59:59.000Z

487

Fuel Oil Use in Manufacturing  

Gasoline and Diesel Fuel Update (EIA)

and residual fuel oils. Distillate fuel oil, the lighter product, is also used for heating of homes and commercial buildings. Residual oil is a much denser, heavier product...

488

Consumption & Efficiency - Data - U.S. Energy Information Administration  

Gasoline and Diesel Fuel Update (EIA)

Consumption & Efficiency Consumption & Efficiency Glossary › FAQS › Overview Data Residential Energy Consumption Survey Data Commercial Energy Consumption Survey Data Manufacturing Energy Consumption Survey Data Vehicle Energy Consumption Survey Data Energy Intensity Consumption Summaries Average cost of fossil-fuels for electricity generation All Consumption & Efficiency Data Reports Analysis & Projections All Sectors Commercial Buildings Efficiency Manufacturing Projections Residential Transportation All Reports Find statistics on energy consumption and efficiency across all fuel sources. + EXPAND ALL Residential Energy Consumption Survey Data Household characteristics Release Date: March 28, 2011 Survey data for occupied primary housing units. Residential Energy Consumption Survey (RECS)

489

Oil and Gas Air Heaters  

E-Print Network (OSTI)

Most conventional air heaters adopt indirect heat transfer, which uses combustion gases to indirectly heat fresh air by heating surfaces to generate hot air used for material drying and dehumidification. We call them indirect air heaters. However, they have a higher manufacturing cost and lower thermal efficiency, especially when high temperature air is needed. For this reason, a direct air heater applicable for or feed and industrial raw products is put forward, which has advantages such as less production cost, smaller dimensions and higher thermal efficiency. Their design, working principles, characteristics, structure and applications are presented in this article, and brief comparisons are made between the indirect and direct air heater. Finally, the relation of hot-air temperature, oil or gas consumption and fresh airflow is determined based on energy equilibrium.

Kou, G.; Wang, H.; Zhou, J.

2006-01-01T23:59:59.000Z

490

Reducing US vulnerability to oil supply shocks  

Science Conference Proceedings (OSTI)

The 1990 crisis in the Middle East has raised concern about the United States`s vulnerability to oil supply disruptions. In addition, a number of trends point to increased US dependence on imported oil. Oil imports have increased and production has declined in the United States for the last eight years. Imports now comprise 42 percent of total oil consumption and US dependence on oil imports is projected to increase over the next 20 years. The Energy Modeling Forum forecasts imports to be more than twice domestic production by the year 2010. There are many studies examining the effects of various policies to protect US energy security. Not many consider the Strategic Petroleum Reserve (SPR), which can be a powerful tool in combating energy supply shocks. The SPR can dramatically increase the domestic short run supply elasticity, which has been found to be a key element in the welfare cost of protectionist policies. Upon examining 5 policies the author finds that the SPR together with a protectionist policy works best against a supply disruption. 27 refs., 3 tabs.

Yuecel, M.K. [Federal Reserve Bank of Dallas, TX (United States)

1994-10-01T23:59:59.000Z

491

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

C C Quality of the Data Appendix C Quality of the Data Introduction This appendix discusses several issues relating to the quality of the Residential Transportation Energy Consumption Survey (RTECS) data and to the interpretation of conclusions based on these data. The first section discusses under- coverage of the vehicle stock in the residential sector. The second section discusses the effects of using July 1991 as a time reference for the survey. The remainder of this appendix discusses the treatment of sampling and nonsampling errors in the RTECS, the quality of specific data items such as the Vehicle Identification Number (VIN) and fuel prices, and poststratification procedures used in the 1991 RTECS. The quality of the data collection and the processing of the data affects the accuracy of estimates based on survey data. All the statistics published in this report such as total

492

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

3 3 Energy Information Administration/Manufacturing Consumption of Energy 1994 Glossary Anthracite: A hard, black, lustrous coal containing a high percentage of fixed carbon and a low percentage of volatile matter. Often referred to as hard coal. Barrel: A volumetric unit of measure equivalent to 42 U.S. gallons. Biomass: Organic nonfossil material of biological origin constituting a renewable energy source. Bituminous Coal: A dense, black coal, often with well-defined bands of bright and dull material, with a moisture content usually less than 20 percent. Often referred to as soft coal. It is the most common coal. Blast Furnace: A shaft furnace in which solid fuel (coke) is burned with an air blast to smelt ore in a continuous operation. Blast Furnace Gas: The waste combustible gas generated in a blast furnace when iron ore is being reduced with coke to

493

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

1. 1. Introduction The purpose of this report is to provide information on the use of energy in residential vehicles in the 50 States and the District of Columbia. Included are data about: the number and type of vehicles in the residential sector, the characteristics of those vehicles, the total annual Vehicle Miles Traveled (VMT), the per household and per vehicle VMT, the vehicle fuel consumption and expenditures, and vehicle fuel efficiencies. The Energy Information Administration (EIA) is mandated by Congress to collect, analyze, and disseminate impartial, comprehensive data about energy--how much is produced, who uses it, and the purposes for which it is used. To comply with this mandate, EIA collects energy data from a variety of sources covering a range of topics 1 . Background The data for this report are based on the household telephone interviews from the 1991 RTECS, conducted

494

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

Survey Design, Survey Design, Implementation, and Estimates 411 Energy Information Administration/Manufacturing Consumption of Energy 1994 Overview of Changes from Previous Surveys Sample Design. The MECS has increased its sample size by roughly 40 percent since the 1991 survey, increasing the designed sample size from 16,054 establishments to 22,922. This increase in size and change in sampling criteria required a departure from using the Annual Survey of Manufactures (ASM) as the MECS sampling frame. For 1994, establishments were selected directly from the 1992 Census of Manufactures (CM) mail file, updated by 1993 ASM. Sample Frame Coverage. The coverage in the 1994 MECS is 98 percent of the manufacturing population as measured in total payroll. The sampling process itself provided that level of coverage, and no special adjustments were

495

Household vehicles energy consumption 1991  

Science Conference Proceedings (OSTI)

The purpose of this report is to provide information on the use of energy in residential vehicles in the 50 States and the District of Columbia. Included are data about: the number and type of vehicles in the residential sector, the characteristics of those vehicles, the total annual Vehicle Miles Traveled (VMT), the per household and per vehicle VMT, the vehicle fuel consumption and expenditures, and vehicle fuel efficiencies. The data for this report are based on the household telephone interviews from the 1991 RTECS, conducted during 1991 and early 1992. The 1991 RTECS represents 94.6 million households, of which 84.6 million own or have access to 151.2 million household motor vehicles in the 50 States and the District of Columbia.

Not Available

1993-12-09T23:59:59.000Z

496

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

A24. A24. Total Inputs of Energy for Heat, Power, and Electricity Generation by Program Sponsorship, Industry Group, Selected Industries, and Type of Energy- Management Program, 1994: Part 1 (Estimates in Trillion Btu) See footnotes at end of table. Energy Information Administration/Manufacturing Consumption of Energy 1994 285 SIC Management Any Type of Sponsored Self-Sponsored Sponsored Sponsored Code Industry Group and Industry Program Sponsorship Involvement Involvement Involvement Involvement a No Energy Electric Utility Government Third Party Type of Sponsorship of Management Programs (1992 through 1994) RSE Row Factors Federal, State, or Local RSE Column Factors: 0.7 1.1 1.0 0.7 1.9 0.9 20-39 ALL INDUSTRY GROUPS Participation in One or More of the Following Types of Programs . .

497

Residential Energy Consumption Survey (RECS) - Data - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Housing Characteristics; Consumption & Expenditures; Microdata; Consumption & Expenditures Tables + EXPAND ALL. Summary Statistics (revised January 2009) PDF (all tables)

498

Table 6a. Total Electricity Consumption per Effective Occupied...  

U.S. Energy Information Administration (EIA) Indexed Site

a. Total Electricity Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using Electricity (thousand) Total Electricity Consumption...

499

1997 Consumption and Expenditures-Detailed Data Tables  

U.S. Energy Information Administration (EIA)

1997 Resdiential Energy Consumption Survey(RECS)-1997 Consumption and Expenditures-1997 Detailed Tables, Energy Information Administration

500

Table US8. Average Consumption by Fuels Used, 2005 Physical ...  

U.S. Energy Information Administration (EIA)

Wood (cords) Energy Information Administration 2005 Residential Energy Consumption Survey: Energy Consumption and Expenditures Tables. Table US8.