Powered by Deep Web Technologies
Note: This page contains sample records for the topic "oil coal rse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Low-rank coal oil agglomeration  

DOE Patents (OSTI)

A low-rank coal oil agglomeration process. High mineral content, a high ash content subbituminous coals are effectively agglomerated with a bridging oil which is partially water soluble and capable of entering the pore structure, and usually coal derived.

Knudson, Curtis L. (Grand Forks, ND); Timpe, Ronald C. (Grand Forks, ND)

1991-01-01T23:59:59.000Z

2

Coal-oil slurry preparation  

DOE Patents (OSTI)

A pumpable slurry of pulverized coal in a coal-derived hydrocarbon oil carrier which slurry is useful as a low-ash, low-sulfur clean fuel, is produced from a high sulfur-containing coal. The initial pulverized coal is separated by gravity differentiation into (1) a high density refuse fraction containing the major portion of non-coal mineral products and sulfur, (2) a lowest density fraction of low sulfur content and (3) a middlings fraction of intermediate sulfur and ash content. The refuse fraction (1) is gasified by partial combustion producing a crude gas product from which a hydrogen stream is separated for use in hydrogenative liquefaction of the middlings fraction (3). The lowest density fraction (2) is mixed with the liquefied coal product to provide the desired fuel slurry. Preferably there is also separately recovered from the coal liquefaction LPG and pipeline gas.

Tao, John C. (Perkiomenville, PA)

1983-01-01T23:59:59.000Z

3

Fuel Oil Prepared by Blending Heavy Oil and Coal Tar  

Science Conference Proceedings (OSTI)

The effect of temperature, harmonic ration, surfactant and shearing to fuel oil prepared by blending heavy oil and coal tar were detailedly studied. The results show that the viscosity of the blended oil increases gradually with the increase of harmonic ... Keywords: coal tar, heavy oil, blending, surfactant

Guojie Zhang; Xiaojie Guo; Bo Tian; Yaling Sun; Yongfa Zhang

2009-10-01T23:59:59.000Z

4

Low-rank coal oil agglomeration  

DOE Patents (OSTI)

A low-rank coal oil agglomeration process is described. High mineral content, a high ash content subbituminous coals are effectively agglomerated with a bridging oil which is partially water soluble and capable of entering the pore structure, and is usually coal-derived.

Knudson, C.L.; Timpe, R.C.

1991-07-16T23:59:59.000Z

5

2003 CBECS RSE Tables  

Gasoline and Diesel Fuel Update (EIA)

cbecs/cbecs2003/detailed_tables_2003/2003rsetables_files/plainlink.css" cbecs/cbecs2003/detailed_tables_2003/2003rsetables_files/plainlink.css" type=text/css rel=stylesheet> Home > Households, Buildings & Industry > Commercial Buildings Energy Consumption Survey (CBECS) > 2003 Detailed Tables > RSE Tables 2003 CBECS Relative Standard Error (RSE) Tables Released: Dec 2006 Next CBECS will be conducted in 2007 Standard error is a measure of the reliability or precision of the survey statistic. The value for the standard error can be used to construct confidence intervals and to perform hypothesis tests by standard statistical methods. Relative Standard Error (RSE) is defined as the standard error (square root of the variance) of a survey estimate, divided by the survey estimate and multiplied by 100. (More information on RSEs)

6

The Spatial Scales, Distribution, and Intensity of Natural Marine Hydrocarbon Seeps near Coal Oil Point, California  

E-Print Network (OSTI)

marine hydrocarbon seeps (Coal Oil Point, Santa Barbara,marine hydrocarbon seepage near Coal Oil Point, California,source areas such as near Coal Oil Point. Furthermore,

Washburn, Libe; Clark, Jordan F.; Kyriakidis, Phaedon

2004-01-01T23:59:59.000Z

7

Process for heating coal-oil slurries  

DOE Patents (OSTI)

Controlling gas to slurry volume ratio to achieve a gas holdup of about 0.4 when heating a flowing coal-oil slurry and a hydrogen containing gas stream allows operation with virtually any coal to solvent ratio and permits operation with efficient heat transfer and satisfactory pressure drops. The critical minimum gas flow rate for any given coal-oil slurry will depend on numerous factors such as coal concentration, coal particle size distribution, composition of the solvent (including recycle slurries), and type of coal. Further system efficiency can be achieved by operating with multiple heating zones to provide a high heat flux when the apparent viscosity of the gas saturated slurry is highest. Operation with gas flow rates below the critical minimum results in system instability indicated by temperature excursions in the fluid and at the tube wall, by a rapid increase and then decrease in overall pressure drop with decreasing gas flow rate, and by increased temperature differences between the temperature of the bulk fluid and the tube wall. At the temperatures and pressures used in coal liquefaction preheaters the coal-oil slurry and hydrogen containing gas stream behaves essentially as a Newtonian fluid at shear rates in excess of 150 sec[sup [minus]1]. The gas to slurry volume ratio should also be controlled to assure that the flow regime does not shift from homogeneous flow to non-homogeneous flow. Stable operations have been observed with a maximum gas holdup as high as 0.72. 29 figs.

Braunlin, W.A.; Gorski, A.; Jaehnig, L.J.; Moskal, C.J.; Naylor, J.D.; Parimi, K.; Ward, J.V.

1984-01-03T23:59:59.000Z

8

Process for heating coal-oil slurries  

DOE Patents (OSTI)

Controlling gas to slurry volume ratio to achieve a gas holdup of about 0.4 when heating a flowing coal-oil slurry and a hydrogen containing gas stream allows operation with virtually any coal to solvent ratio and permits operation with efficient heat transfer and satisfactory pressure drops. The critical minimum gas flow rate for any given coal-oil slurry will depend on numerous factors such as coal concentration, coal particle size distribution, composition of the solvent (including recycle slurries), and type of coal. Further system efficiency can be achieved by operating with multiple heating zones to provide a high heat flux when the apparent viscosity of the gas saturated slurry is highest. Operation with gas flow rates below the critical minimum results in system instability indicated by temperature excursions in the fluid and at the tube wall, by a rapid increase and then decrease in overall pressure drop with decreasing gas flow rate, and by increased temperature differences between the temperature of the bulk fluid and the tube wall. At the temperatures and pressures used in coal liquefaction preheaters the coal-oil slurry and hydrogen containing gas stream behaves essentially as a Newtonian fluid at shear rates in excess of 150 sec.sup. -1. The gas to slurry volume ratio should also be controlled to assure that the flow regime does not shift from homogeneous flow to non-homogeneous flow. Stable operations have been observed with a maximum gas holdup as high as 0.72.

Braunlin, Walter A. (Spring, TX); Gorski, Alan (Lovington, NM); Jaehnig, Leo J. (New Orleans, LA); Moskal, Clifford J. (Oklahoma City, OK); Naylor, Joseph D. (Houston, TX); Parimi, Krishnia (Allison Park, PA); Ward, John V. (Arvada, CO)

1984-01-03T23:59:59.000Z

9

Prod. of Oil, Gas & Coal - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Production of oil, gas, and coal. Projected supply and disposition of crude oil. The model now uses the EIA’s projections of production, imports, and consumption of ...

10

The Spatial Scales, Distribution, and Intensity of Natural Marine Hydrocarbon Seeps near Coal Oil Point, California  

E-Print Network (OSTI)

marine hydrocarbon seeps (Coal Oil Point, Santa Barbara,marine hydrocarbon seepage near Coal Oil Point, California,associated with offshore oil production", Geology, 27(11),

Washburn, Libe; Clark, Jordan F.; Kyriakidis, Phaedon

2004-01-01T23:59:59.000Z

11

Development of coker feeds from aromatic oil and bituminous coal digests.  

E-Print Network (OSTI)

??Kingwood coal has been digested with two coal derived (anthracene oil and carbon black base) and two petroleum derived (slurry oil and Maraflex oil) aromatic… (more)

Clendenin, L. Mitchell.

2004-01-01T23:59:59.000Z

12

Table A57. Capability to Switch from Coal to Alternative Energy Sources by  

U.S. Energy Information Administration (EIA) Indexed Site

7. Capability to Switch from Coal to Alternative Energy Sources by" 7. Capability to Switch from Coal to Alternative Energy Sources by" " Industry Group, Selected Industries, and Selected Characteristics, 1991 " " (Estimates in Thousand Short Tons)" " "," "," ", " "," "," Coal",,," Alternative Types of Energy(b)" " "," ","-","-","-------------","-","-","-","-","-","-","RSE" ,,"Total"," ","Not","Electricity","Natural","Distillate","Residual",,,"Row" ,,"Consumed(c)","Switchable","Switchable","Receipts(d)","Gas","Fuel Oil","Fuel Oil","LPG","Other","Factors"

13

Industrial Utilization of Coal-Oil Mixtures  

E-Print Network (OSTI)

Coal-oil mixtures (COM) are receiving increasing interest as economical alternatives to residual fuel oil and natural gas used in heavy industrial and utility applications. Four basic approaches are currently employed in the manufacture of COM:. Economics and details of industrial conversion to COM are discussed. CoaLiquid, Inc. of Louisville, KY, which uses ultrasonic emulsification to stabilize the cm:, has been a leader in commercial demonstration in industrial equipment. Some of these demonstrations are discussed, along with implications for the future use of COM.

Dunn, J. E.; Hawkins, G. T.

1982-01-01T23:59:59.000Z

14

Gas, oil, and coal biotechnology I  

SciTech Connect

This papers presented at the First International IGT Symposium on Gas, Oil, and Coal Biotechnology, New Orleans, Louisiana, December 5-7, 1988, are reproduced in this book. This symposium was designed to provide a forum for the exchange of ideas among leading scientists, engineers, managers, and administrators in this rapidly advancing branch of biotechnology. The presentations and discussions by scientists and engineers from the academic, industrial, and government research laboratories, along with technical program managers and administrators, emphasized the biotechnological approaches to interrelated issues of energy utilization, supply, and environment. The symposium papers are organized in this book under topics that reflect the following program sessions. These topics are: (1) An Emerging Industry, and Programs to Encourage its Development; (2) Coal Biotechnology; (3) Gas Biotechnology; (4) Oil Biotechnology; and (5) Environmental Biotechnology. Twenty-three papers have been indexed separately for inclusion on the data base.

Akin, C.; Smith, J. (eds.)

1990-01-01T23:59:59.000Z

15

Application of Multivariable Control to Oil and Coal Fired Boilers  

E-Print Network (OSTI)

Increased visibility provided by advanced measurement and control techniques has shown that control of oil and coal fired boilers is a complex problem involving simultaneous determination of flue gas carbon monoxide, hydrocarbon, opacity and temperature levels. A microcomputer-based control system which recognizes the inter-relationship of these variables has produced fuel savings averaging about 3% on coal and oil fired boilers. The system is described and case study data is presented for both coal and oil fired boilers.

Swanson, K.

1981-01-01T23:59:59.000Z

16

2012 Brief: Coal and mid-continent crude oil prices ...  

U.S. Energy Information Administration (EIA)

Coal and mid-continent crude oil (WTI) led energy commodity price declines in 2012. Natural gas was the only key energy commodity with a significant ...

17

Rail traffic reflects more oil production, less coal-fired ...  

U.S. Energy Information Administration (EIA)

The record increase in U.S. crude oil production during 2012 and the significant decline in coal use for domestic electricity generation were reflected in the ...

18

Formation of seep bubble plumes in the Coal Oil Point seep field  

E-Print Network (OSTI)

hydrocarbon seeps near Coal Oil Point, California. Marof seep bubble plumes in the Coal Oil Point seep field Irameasurement system in the Coal Oil Point seep field in the

Leifer, Ira; Culling, Daniel

2010-01-01T23:59:59.000Z

19

Geologic control of natural marine hydrocarbon seep emissions, Coal Oil Point seep field, California  

E-Print Network (OSTI)

Mar Lett (2010) 30:331–338 Fig. 3 Coal Oil Point seep field,hydrocarbon seeps near Coal Oil Point, California. Marhydrocarbon seep emissions, Coal Oil Point seep field,

Leifer, Ira; Kamerling, Marc J.; Luyendyk, Bruce P.; Wilson, Douglas S.

2010-01-01T23:59:59.000Z

20

VEE-0081 - In the Matter of North Side Coal & Oil Co., Inc. ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

VEE-0081 - In the Matter of North Side Coal & Oil Co., Inc. VEE-0081 - In the Matter of North Side Coal & Oil Co., Inc. On February 25, 2002, North Side Coal & Oil Co., Inc. (North...

Note: This page contains sample records for the topic "oil coal rse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Testing for market integration crude oil, coal, and natural gas  

SciTech Connect

Prompted by the contemporaneous spike in coal, oil, and natural gas prices, this paper evaluates the degree of market integration both within and between crude oil, coal, and natural gas markets. Our approach yields parameters that can be readily tested against a priori conjectures. Using daily price data for five very different crude oils, we conclude that the world oil market is a single, highly integrated economic market. On the other hand, coal prices at five trading locations across the United States are cointegrated, but the degree of market integration is much weaker, particularly between Western and Eastern coals. Finally, we show that crude oil, coal, and natural gas markets are only very weakly integrated. Our results indicate that there is not a primary energy market. Despite current price peaks, it is not useful to think of a primary energy market, except in a very long run context.

Bachmeier, L.J.; Griffin, J.M. [Texas A& amp; M Univ, College Station, TX (United States)

2006-07-01T23:59:59.000Z

22

Process for converting heavy oil deposited on coal to distillable oil in a low severity process  

DOE Patents (OSTI)

A process for removing oil from coal fines that have been agglomerated or blended with heavy oil comprises the steps of heating the coal fines to temperatures over 350.degree. C. up to 450.degree. C. in an inert atmosphere, such as steam or nitrogen, to convert some of the heavy oil to lighter, and distilling and collecting the lighter oils. The pressure at which the process is carried out can be from atmospheric to 100 atmospheres. A hydrogen donor can be added to the oil prior to deposition on the coal surface to increase the yield of distillable oil.

Ignasiak, Teresa (417 Heffernan Drive, Edmonton, Alberta, CA); Strausz, Otto (13119 Grand View Drive, Edmonton, Alberta, CA); Ignasiak, Boleslaw (417 heffernan Drive, Edmonton, Alberta, CA); Janiak, Jerzy (17820 - 76 Ave., Edmonton, Alberta, CA); Pawlak, Wanda (3046 - 11465 - 41 Avenue, Edmonton, Alberta, CA); Szymocha, Kazimierz (3125 - 109 Street, Edmonton, Alberta, CA); Turak, Ali A. (Edmonton, CA)

1994-01-01T23:59:59.000Z

23

Coal cleaning effects during H-Coal catalytic liquefaction of a western Kentucky coal. [Effect of coal cleaning on oil yield  

SciTech Connect

Two H-Coal bench-scale liquefaction tests were performed to compare the hydroliquefaction behavior of two Kentucky No. 11 coals from the same mine: a run-of-mine coal with 17.49 W % ash and a deep-cleaned coal with 6.21 W % ash. The tests were conducted using a syncrude mode of operation. The deep-cleaned coal exhibited greater coal conversion and greater residual oil yield than the run-of-mine coal. On a dry coal basis, the deep-cleansed coal yielded approximately 19% more C/sub 4/ to 975/sup 0/F distillate than the run-of-mine coal. The process requirement of a pumpable vacuum still bottoms product would result in a 10% higher C/sub 4/ to 975/sup 0/F yield from the deep-cleaned coal than from the run-of-mine coal in a commercial H-Coal plant.

Bernard, R.F.

1978-12-01T23:59:59.000Z

24

2003 Commercial Buildings Energy Consumption - What is an RSE  

U.S. Energy Information Administration (EIA) Indexed Site

Home > Households, Buildings & Industry > Commercial Buildings Energy Consumption Survey (CBECS) > 2003 Detailed Tables > What is an RSE? What is an RSE? The estimates in the...

25

Combustion Characteristics and Kinetic Analysis of Biomass Coal Oil Water Slurry  

Science Conference Proceedings (OSTI)

The combustion characteristics of biomass coal oil water slurry (biomass-COWS), containing Fujian anthracite, water hyacinth, heavy oil and dispersant were studied by thermal analysis with TG-DTG method. The results showed that the ignition temperature ... Keywords: biomass coal oil water slurry, coal oil water slurry, water hyacinth, thermal analysis, combustion kinetics

Luo Zuyun; Lin Rongying

2011-02-01T23:59:59.000Z

26

Energy Landscapes: Coal Canals, Oil Pipelines, Electricity Transmission Wires in the Mid-Atlantic, 1820-1930.  

E-Print Network (OSTI)

??Coal canals, oil pipelines, and electricity transmission wires transformed the built environment of the American mid-Atlantic region between 1820 and 1930. By transporting coal, oil,… (more)

Jones, Christopher F.

2009-01-01T23:59:59.000Z

27

Low-rank coal oil agglomeration product and process  

DOE Patents (OSTI)

A selectively-sized, raw, low-rank coal is processed to produce a low ash and relative water-free agglomerate with an enhanced heating value and a hardness sufficient to produce a non-degradable, shippable fuel. The low-rank coal is treated, under high shear conditions, in the first stage to cause ash reduction and subsequent surface modification which is necessary to facilitate agglomerate formation. In the second stage the treated low-rank coal is contacted with bridging and binding oils under low shear conditions to produce agglomerates of selected size. The bridging and binding oils may be coal or petroleum derived. The process incorporates a thermal deoiling step whereby the bridging oil may be completely or partially recovered from the agglomerate; whereas, partial recovery of the bridging oil functions to leave as an agglomerate binder, the heavy constituents of the bridging oil. The recovered oil is suitable for recycling to the agglomeration step or can serve as a value-added product.

Knudson, C.L.; Timpe, R.C.; Potas, T.A.; DeWall, R.A.; Musich, M.A.

1992-11-10T23:59:59.000Z

28

Low-rank coal oil agglomeration product and process  

DOE Patents (OSTI)

A selectively-sized, raw, low-rank coal is processed to produce a low ash and relative water-free agglomerate with an enhanced heating value and a hardness sufficient to produce a non-decrepitating, shippable fuel. The low-rank coal is treated, under high shear conditions, in the first stage to cause ash reduction and subsequent surface modification which is necessary to facilitate agglomerate formation. In the second stage the treated low-rank coal is contacted with bridging and binding oils under low shear conditions to produce agglomerates of selected size. The bridging and binding oils may be coal or petroleum derived. The process incorporates a thermal deoiling step whereby the bridging oil may be completely or partially recovered from the agglomerate; whereas, partial recovery of the bridging oil functions to leave as an agglomerate binder, the heavy constituents of the bridging oil. The recovered oil is suitable for recycling to the agglomeration step or can serve as a value-added product.

Knudson, Curtis L. (Grand Forks, ND); Timpe, Ronald C. (Grand Forks, ND); Potas, Todd A. (Plymouth, MN); DeWall, Raymond A. (Grand Forks, ND); Musich, Mark A. (Grand Forks, ND)

1992-01-01T23:59:59.000Z

29

The spatial scales, distribution, and intensity of natural marine hydrocarbon seeps near Coal Oil Point, California  

E-Print Network (OSTI)

The spatial scales, distribution, and intensity of natural marine hydrocarbon seeps near Coal Oil pollution sources. A field of strong hydrocarbon seepage offshore of Coal Oil Point near Santa Barbara in the Coal Oil Point field to measure directly the atmospheric gas flux from three seeps of varying size

California at Santa Barbara, University of

30

Int. J. Oil, Gas and Coal Technology, Vol. 5, No. 1, 2012 1 Copyright 2012 Inderscience Enterprises Ltd.  

E-Print Network (OSTI)

Int. J. Oil, Gas and Coal Technology, Vol. 5, No. 1, 2012 1 Copyright © 2012 Inderscience Reservoir Modelling of Oil and Gas Producing Shale Reservoirs; Case Studies, Int. J. Oil, Gas, and Coal

Mohaghegh, Shahab

31

APPENDIX E: METHANE EMISSIONS FROM NATURAL GAS PRODUCTION, OIL PRODUCTION, COAL MINING, AND  

E-Print Network (OSTI)

APPENDIX E: METHANE EMISSIONS FROM NATURAL GAS PRODUCTION, OIL PRODUCTION, COAL MINING, AND OTHER PRODUCTION, COAL MINING, AND OTHER SOURCES An Appendix to the Report "A Lifecycle Emissions Model (LEM of natural gas, which is mostly CH4, occurs through natural gas production, oil production, and coal mining

Delucchi, Mark

32

Toxicity of shale oil to freshwater algae: comparisons with petroleum and coal-derived oils  

DOE Green Energy (OSTI)

The toxicities of various water-soluble fractions of Paraho/SOHIO shale oils and coal liquefaction products to the algae Selenastrum capricornutum and Microcystis aeruginosa are investigated. Photosynthetic inhibition is the criterion of toxicity. A secondary objective of the algal bioassay is determination of the range of toxic concentrations. (ACR)

Giddings, J.M.

1980-01-01T23:59:59.000Z

33

Rock, Mineral, Coal, Oil, and Gas Resources on State Lands (Montana)  

Energy.gov (U.S. Department of Energy (DOE))

This chapter authorizes and regulates prospecting permits and mining leases for the exploration and development of rock, mineral, oil, coal, and gas resources on state lands.

34

TEE-0067 - In the Matter of North Side Coal & Oil Co., Inc. | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 - In the Matter of North Side Coal & Oil Co., Inc. 7 - In the Matter of North Side Coal & Oil Co., Inc. TEE-0067 - In the Matter of North Side Coal & Oil Co., Inc. On December 2, 2009, North Side Coal & Oil Co., Inc. (North Side) filed an Application for Exception with the Office of Hearings and Appeals (OHA) of the Department of Energy (DOE). The firm requests that it be permanently relieved of the requirement to prepare and file the Energy Information Administration (EIA) Form EIA-782B, entitled "Resellers'/Retailers' Monthly Petroleum Product Sales Report." As explained below, we have determined that the request should be denied. tee0067.pdf More Documents & Publications VEE-0081 - In the Matter of North Side Coal & Oil Co., Inc. TEE-0071 - In the Matter of Monroe Oil Company

35

RSE Pulp & Chemical, LLC (Subsidiary of Red Shield Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

facility in an existing pulp mill to demonstrate the production of cellulosic ethanol from lignocellulosic (wood) extract. RSE Pulp & Chemical, LLC (Subsidiary of Red...

36

Int. J. Oil, Gas and Coal Technology, Vol. 1, Nos. 1/2, 2008 65 Copyright 2008 Inderscience Enterprises Ltd.  

E-Print Network (OSTI)

Int. J. Oil, Gas and Coal Technology, Vol. 1, Nos. 1/2, 2008 65 Copyright © 2008 Inderscience using neural networks', Int. J. Oil, Gas and Coal Technology, Vol. 1, Nos. 1/2, pp.65­80. Biographical

Mohaghegh, Shahab

37

RSE Table 7.5 Relative Standard Errors for Table 7.5  

U.S. Energy Information Administration (EIA) Indexed Site

" Unit: Percents." " ",," "," ",," "," " "Economic",,"Residual","Distillate","Natural ","LPG and" "Characteristic(a)","Electricity","Fuel Oil","Fuel Oil(b)","Gas(c)","NGL(d)","Coal...

38

Dissolved methane distributions and air-sea flux in the plume of a massive seep field, Coal Oil Point, California  

E-Print Network (OSTI)

Dissolved methane distributions and air-sea flux in the plume of a massive seep field, Coal Oil coastal ocean near Coal Oil Point, Santa Barbara Channel, California. Methane was quantified in the down originating from Coal Oil Point enters the atmosphere within the study area. Most of it appears

California at Santa Barbara, University of

39

Oil to Coal Conversion of Power and Industrial Facilities in the Dominican Republic  

E-Print Network (OSTI)

Realizing that the use of coal has the potential to offset the effects of world oil prices on the Dominican Republic's economy, the Commission Nacional de Politica Energetica (CNPE) requested Bechtel Power Corporation to study the technical and economic feasibility of converting the nation's largest oil-fired facilities to coal and to develop preliminary designs for the conversions. This paper addresses the methodology used in the study, with special emphasis on the determination of the technical and economic feasibility of converting power plants and cement plants from oil to coal. The summary results and conclusions are presented and include coal conversion capital costs, cost savings, and program overall schedule. The intent of the authors is to provide a reference for the study of converting other islands' oil burning facilities to coal.

Causilla, H.; Acosta, J. R.

1982-01-01T23:59:59.000Z

40

Table 2. Fuel Oil Consumption and Expenditures in U.S. Households ...  

U.S. Energy Information Administration (EIA)

1 A small amount of fuel oil used for appliances is included in "Fuel Oil" under "All Uses." NF = No applicable RSE row factor.

Note: This page contains sample records for the topic "oil coal rse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Decaking of coal or oil shale during pyrolysis in the presence of iron oxides  

DOE Patents (OSTI)

A method for producing a fuel from the pyrolysis of coal or oil shale in the presence of iron oxide in an inert gas atmosphere. The method includes the steps of pulverizing feed coal or oil shale, pulverizing iron oxide, mixing the pulverized feed and iron oxide, and heating the mixture in a gas atmosphere which is substantially inert to the mixture so as to form a product fuel, which may be gaseous, liquid and/or solid. The method of the invention reduces the swelling of coals, such as bituminous coal and the like, which are otherwise known to swell during pyrolysis.

Khan, M. Rashid (Morgantown, WV)

1989-01-01T23:59:59.000Z

42

Decaking of coal or oil shale during pyrolysis in the presence of iron oxides  

DOE Patents (OSTI)

A method for producing a fuel from the pyrolysis of coal or oil shale in the presence of iron oxide in an inert gas atmosphere is described. The method includes the steps of pulverizing feed coal or oil shale, pulverizing iron oxide, mixing the pulverized feed and iron oxide, and heating the mixture in a gas atmosphere which is substantially inert to the mixture so as to form a product fuel, which may be gaseous, liquid and/or solid. The method of the invention reduces the swelling of coals, such as bituminous coal and the like, which are otherwise known to swell during pyrolysis. 4 figs., 8 tabs.

Rashid Khan, M.

1988-05-05T23:59:59.000Z

43

168 Int. J. Oil, Gas and Coal Technology, Vol. 2, No. 2, 2009 Copyright 2009 Inderscience Enterprises Ltd.  

E-Print Network (OSTI)

168 Int. J. Oil, Gas and Coal Technology, Vol. 2, No. 2, 2009 Copyright © 2009 Inderscience.Y. (2009) `Geology and coal potential of Somaliland', Int. J. Oil, Gas and Coal Technology, Vol. 2, No. 2, pp.168­185. Biographical notes: Mohammed Y. Ali has a degree in Exploration Geology, MSc

Ali, Mohammed

44

VEE-0081 - In the Matter of North Side Coal & Oil Co., Inc. | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 - In the Matter of North Side Coal & Oil Co., Inc. 1 - In the Matter of North Side Coal & Oil Co., Inc. VEE-0081 - In the Matter of North Side Coal & Oil Co., Inc. On February 25, 2002, North Side Coal & Oil Co., Inc. (North Side) of Milwaukee, Wisconsin filed an Application for Exception with the Office of Hearings and Appeals (OHA) of the Department of Energy (DOE). In its application, North Side requests that it be excused from filing the Energy Information Administration's (EIA) form entitled "Resellers'/ Retailers' Monthly Petroleum Product Sales Report" (Form EIA-782B). As explained below, we conclude that it is appropriate to excuse North Side from filing the Form EIA-782B from September 2002 until March 2003 because the firm is a "noncertainty firm" and has demonstrated that it will

45

Re: NBP RFI: CommunicationRse quirements | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

RFI: CommunicationRse quirements Pepco Holdings, Inc. (PHI) is pleased to respond to the U.S Department of Energy request for comments regarding the communications requirements of...

46

Comparative assessment of the trace-element composition of coals, crude oils, and oil shales  

Science Conference Proceedings (OSTI)

A comparative analysis of the amounts of 42 trace elements in coals, crude oils, and oil and black shales was performed. The degree of concentration of trace elements by caustobioliths and their ashes relative to their abundance in argillaceous rocks and the Earth's crust was calculated. Typomorphic trace elements were distinguished, of which many turned out to be common for the different kinds of caustobioliths in question. The trace elements were classified according to their concentration factors in different caustobioliths. The ash of crude oils is enriched in trace elements (Cs, V, Mo, Cu, Ag, Au, Zn, Hg, Se, Cr, Co, Ni, U) to the greatest extent (concentration factor above 3.5) and that of oil shales is enriched to the least extent (Re, Cs, Hg, Se). The ratios between typomorphic trace elements in general strongly differ from those in the Earth's crust and argillaceous rocks and are not identical in different caustobioliths. Quantitative parameters that make it possible to calculate a change in these ratios on passing from one caustobiolith type to another were proposed and the relative trace-element affinity of different caustobioliths was estimated.

M.Y. Shpirt; S.A. Punanova [Institute for Fossil Fuels, Moscow (Russian Federation)

2007-10-15T23:59:59.000Z

47

The role of recycle oil in direct coal liquefaction process development  

Science Conference Proceedings (OSTI)

It has long been recognized that use of a recycle oil is a convenient and perhaps necessary feature of a practical direct coal liquefaction process. The recycle oil performs a number of important functions. It serves as a vehicle to convey coal into the liquefaction reactor and products from the reactor. It is a medium for mass and heat transfer among the solid, liquid, and gaseous components of the reactor inventory. It can act as a reactant or intermediate in the liquefaction process. Therefore, the nature of the recycle oil can have a determining effect on process configuration and performance, and the characterization of recycle oil composition and chemistry has been the subject of considerable interest. This paper discusses recycle oil characterization and its influence on the industrial development of coal liquefaction technology,

Burke, F.P.

1995-08-01T23:59:59.000Z

48

2 Int. J. Oil, Gas and Coal Technology, Vol. 2, No. 1, 2009 Copyright 2009 Inderscience Enterprises Ltd.  

E-Print Network (OSTI)

2 Int. J. Oil, Gas and Coal Technology, Vol. 2, No. 1, 2009 Copyright © 2009 Inderscience, Gas, and Coal Technology, Vol. 2, No. 1, pp.2­23. Biographical notes: Shahab D. Mohaghegh is currently

Mohaghegh, Shahab

49

Oil shale, tar sand, coal research advanced exploratory process technology, jointly sponsored research  

SciTech Connect

Accomplishments for the past quarter are presented for the following five tasks: oil shale; tar sand; coal; advanced exploratory process technology; and jointly sponsored research. Oil shale research covers oil shale process studies. Tar sand research is on process development of Recycle Oil Pyrolysis and Extraction (ROPE) Process. Coal research covers: coal combustion; integrated coal processing concepts; and solid waste management. Advanced exploratory process technology includes: advanced process concepts;advanced mitigation concepts; and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO[sub 2] HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde Group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced oil recovery techniques; surface process study for oil recovery using a thermal extraction process; NMR analysis of samples from the ocean drilling program; in situ treatment of manufactured gas plant contaminated soils demonstration program; and solid state NMR analysis of naturally and artificially matured kerogens.

Speight, J.G.

1992-01-01T23:59:59.000Z

50

Oil shale, tar sand, coal research, advanced exploratory process technology jointly sponsored research  

SciTech Connect

Accomplishments for the quarter are presented for the following areas of research: oil shale, tar sand, coal, advanced exploratory process technology, and jointly sponsored research. Oil shale research includes; oil shale process studies, environmental base studies for oil shale, and miscellaneous basic concept studies. Tar sand research covers process development. Coal research includes; underground coal gasification, coal combustion, integrated coal processing concepts, and solid waste management. Advanced exploratory process technology includes; advanced process concepts, advanced mitigation concepts, and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; development and validation of a standard test method for sequential batch extraction fluid; operation and evaluation of the CO[sub 2] HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesa Verde Group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced recovery techniques; and menu driven access to the WDEQ Hydrologic Data Management Systems.

1992-01-01T23:59:59.000Z

51

Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research  

SciTech Connect

Progress made in five research programs is described. The subtasks in oil shale study include oil shale process studies and unconventional applications and markets for western oil shale.The tar sand study is on recycle oil pyrolysis and extraction (ROPE) process. Four tasks are described in coal research: underground coal gasification; coal combustion; integrated coal processing concepts; and sold waste management. Advanced exploratory process technology includes: advanced process concepts; advanced mitigation concepts; and oil and gas technology. Jointly sponsored research covers: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO[sub 2] HUFF-N-PUFF process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; shallow oil production using horizontal wells with enhanced oil recovery techniques; NMR analysis of sample from the ocean drilling program; and menu driven access to the WDEQ hydrologic data management system.

Not Available

1992-01-01T23:59:59.000Z

52

Rail traffic reflects more oil production, less coal-fired ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

53

Repowering oil-fired boilers with combustion turbines fired with gas from coal. Final report  

Science Conference Proceedings (OSTI)

The results of a study on repowering of oil fired reheat steam plants using combustion turbines and coal gas from the Texaco oxygen blown gasifier are presented. The steam plant utilizes combustion turbine exhaust gas as its combustion air supply. In some examples coal gas is fired in both the combustion turbines and the main boiler, while, in other cases, oil firing is retained in the boiler. Plant configurations, equipment changes, and performance are determined for three basic forms: (1) repowering based on coal gas supplied by pipeline (remote source); (2) repowering based on complete integration of the gasification system with the power plant; and (3) repowering based on partial integration of the gasification system wherein the boiler retains oil firing.

Garland, R.V.

1981-07-01T23:59:59.000Z

54

DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS  

E-Print Network (OSTI)

commercial (point sources) Coal Oil Other Area sourcesSource Stationary fuel combugtion Electric utilities Coal Oil

Wrathall, James Anthony

2011-01-01T23:59:59.000Z

55

NETL: Clean Coal Demonstrations - Coal 101  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean Coal 101 Lesson 1: Cleaning Up Coal Clean Coal COAL is our most abundant fossil fuel. The United States has more coal than the rest of the world has oil. There is still...

56

Coal....  

U.S. Energy Information Administration (EIA)

DOE EIA WEEKLY COAL ... Coal Prices and Earnings (updated April 28, 2004) Spot coal prices in the East rose steadily since Labor Day 2003, with rapid escalations ...

57

Coal....  

U.S. Energy Information Administration (EIA)

DOE EIA WEEKLY COAL ... Coal Prices and Earnings (updated September 26) The average spot prices for reported coal purchases rose once again ...

58

Superclean coal-water slurry combustion testing in an oil-fired boiler  

SciTech Connect

The Pennsylvania State University is conducting a superclean coal-water slurry (SCCWS) program for the United States Department of Energy (DOE) and the Commonwealth of Pennsylvania with the objective of determining the capability of effectively firing SCCWS in an industrial boiler designed for heavy fuel oil. Penn State has entered into a cooperative agreement with DOE to determine if SCCWS (a fuel containing coal with 3.0 wt.% ash and 0.9 wt.% sulfur) can effectively be burned in a heavy fuel oil-designed industrial boiler without adverse impact on boiler rating, maintainability, reliability, and availability. The project will provide information on the design of new systems specifically configured to fire these clean coal-based fuels. The project consists of four phases: (1) design, permitting, and test planning, (2) construction and start up, (3) demonstration and evaluation (1,000-hour demonstration), and (4) program expansion (additional 1,000 hours of testing). The boiler testing wig determine if the SCCWS combustion characteristics, heat release rate, fouling and slagging behavior, corrosion and erosion limits, and fuel transport, storage, and handling characteristics can be accommodated in an oil-designed boiler system. In addition, the proof-of-concept demonstration will generate data to determine how the properties of SCCWS and its parent coal affect boiler performance. Economic factors associated with retrofitting boilers will be identified

Miller, B.G.; Pisupati, S.V.; Poe, R.L.; Morrison, J.L.; Xie, J.; Walsh, P.M.; Wincek, R.T.; Clark, D.A.; Scaroni, A.W.

1993-04-21T23:59:59.000Z

59

High precision trace element and organic constituent analysis of oil shale and solvent-refined coal materials  

DOE Green Energy (OSTI)

The application of a number of sensitive and precise methods for the determination of trace elements, heavy element species and organic compounds in materials from an oil shale research retort process and from a solvent-refined coal pilot plant operation are discussed. The methods were chosen both for their sensitivity, and also for their relative freedom from interference effects. Coal liquids contain much higher concentrations of aromatic compounds, including polynuclear aromatic hydrocarbons (PNA's). A larger relative fraction of the pna's in shale oil are alkyl substituted. Coal liquids are also considerably higher in phenols (28 percent) than is shale oil (2 percent). N-heterocyclics are present in higher concentration (greater than 8 percent) in shale oil due to the high nitrogen content of the raw shale. Hydroaromatics are common in coal liquids but negligible in shale oil. Inorganic elements and speciation measurements indicate significant amounts of the toxic heavy elements Hg, As, Zn, and Se in effluent oil water and gas streams. In addition, the process water contains significant Co, Br, Sb, and U. Raw oil shale is highly enriched in Se, As and Sb and somewhat enriched in U, Pb, Cs, Hg and Zn. Solvent-refined coal liquids were found to be relatively low in most trace elements. The majority of trace elements are concentrated by the process into the mineral residue. Only Br and Hg are not depleted in solvent-refined coal. Other trace elements still remaining in significant amounts are U, Ta, Cr, and Zn.

Fruchter, J.S.; Petersen, M.R.; Laul, J.C.; Ryan, P.W.

1976-11-01T23:59:59.000Z

60

2003 Commercial Buildings Energy Consumption - What is an RSE  

U.S. Energy Information Administration (EIA) Indexed Site

Home > Households, Buildings & Industry > Commercial Buildings Energy Consumption Survey (CBECS) > 2003 Detailed Tables > What is an RSE? What is an RSE? The estimates in the Commercial Buildings Energy Consumption Survey (CBECS) are based on data reported by representatives of a statistically-designed subset of the entire commercial building population in the United States, or a "sample". Consequently, the estimates differ from the true population values. However, the sample design permits us to estimate the sampling error in each value. It is important to understand: CBECS estimates should not be considered as finite point estimates, but as estimates with some associated error in each direction. The standard error is a measure of the reliability or precision of the survey statistic. The value for the standard error can be used to construct confidence intervals and to perform hypothesis tests by standard statistical methods. Relative Standard Error (RSE) is defined as the standard error (square root of the variance) of a survey estimate, divided by the survey estimate and multiplied by 100.

Note: This page contains sample records for the topic "oil coal rse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Coal....  

U.S. Energy Information Administration (EIA)

Coal Prices and Earnings (updated August 12) According to Platts Coal Outlook’s Weekly Price Survey (August 11), the ...

62

Coal....  

U.S. Energy Information Administration (EIA)

Coal Prices and Earnings (updated September 2) The average spot prices for coal traded last week were relatively ...

63

Method for controlling boiling point distribution of coal liquefaction oil product  

DOE Patents (OSTI)

The relative ratio of heavy distillate to light distillate produced in a coal liquefaction process is continuously controlled by automatically and continuously controlling the ratio of heavy distillate to light distillate in a liquid solvent used to form the feed slurry to the coal liquefaction zone, and varying the weight ratio of heavy distillate to light distillate in the liquid solvent inversely with respect to the desired weight ratio of heavy distillate to light distillate in the distillate fuel oil product. The concentration of light distillate and heavy distillate in the liquid solvent is controlled by recycling predetermined amounts of light distillate and heavy distillate for admixture with feed coal to the process in accordance with the foregoing relationships. 3 figs.

Anderson, R.P.; Schmalzer, D.K.; Wright, C.H.

1982-12-21T23:59:59.000Z

64

Method for controlling boiling point distribution of coal liquefaction oil product  

SciTech Connect

The relative ratio of heavy distillate to light distillate produced in a coal liquefaction process is continuously controlled by automatically and continuously controlling the ratio of heavy distillate to light distillate in a liquid solvent used to form the feed slurry to the coal liquefaction zone, and varying the weight ratio of heavy distillate to light distillate in the liquid solvent inversely with respect to the desired weight ratio of heavy distillate to light distillate in the distillate fuel oil product. The concentration of light distillate and heavy distillate in the liquid solvent is controlled by recycling predetermined amounts of light distillate and heavy distillate for admixture with feed coal to the process in accordance with the foregoing relationships.

Anderson, Raymond P. (Overland Park, KS); Schmalzer, David K. (Englewood, CO); Wright, Charles H. (Overland Park, KS)

1982-12-21T23:59:59.000Z

65

High precision trace element and organic constituent analysis of oil shale and solvent-refined coal materials  

DOE Green Energy (OSTI)

Broad spectrum inorganic and organic analytical techniques provide the best approach for the initial characterization of the complex samples encountered in working with new energy technologies such as oil shale retorting and solvent refining of coal. In complex samples, analyses are facilitated by techniques, such as neutron activation and x-ray fluorescence, that are relatively insensitive to matrix effects. A comparative organic constituent analysis of the crude shale oil and coal liquid samples analyzed in this study showed that the coal liquids contained higher concentrations of aromatic compounds including polynuclear aromatic hydrocarbons. The coal liquids were considerably richer in phenols than was the shale oil. N-heterocyclics were present in higher concentration in shale oil due to the high nitrogen content of the raw shale. Hydroaromatics were found to be common in coal liquids but negligible in this shale oil. Measurable amounts of the heavy elements Hg, As, Zn, and Se were found in effluent streams from oil shale retorting. The process water also contained significant Co, Br, Sb, and U. The raw oil shale was enriched in Se, As and Sb and somewhat enriched in U, Pb, Cs, Hg, and Zn. Solvent-refined coal liquids were found to be relatively low in most trace elements. Most were concentrated in the mineral residue. Only Br was not depleted in solvent-refined coal. Other trace elements remaining in significant amounts were U, Ta, Cr and Zn. We have not yet measured the trace elements and gaseous and particulate samples from the solvent-refined coal plant. 10 tables.

Fruchter, J.S.; Laul, J.C.; Petersen, M.R.; Ryan, P.W.

1977-03-01T23:59:59.000Z

66

RSE Table N6.3 and N6.4. Relative Standard Errors for Tables...  

U.S. Energy Information Administration (EIA) Indexed Site

Heating, Ventilation, and Air Conditioning '(Facility HVAC)' excludes" "steam and hot water." " NFNo applicable RSE rowcolumn factor." " * Estimate less than 0.5." "...

67

RSE Table 5.4 Relative Standard Errors for Table 5.4  

U.S. Energy Information Administration (EIA) Indexed Site

4 Relative Standard Errors for Table 5.4;" 4 Relative Standard Errors for Table 5.4;" " Unit: Percents." " "," ",," ","Distillate"," "," " " "," ","Net Demand",,"Fuel Oil",,,"Coal" "NAICS"," ","for ","Residual","and","Natural ","LPG and","(excluding Coal" "Code(a)","End Use","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Gas(d)","NGL(e)","Coke and Breeze)" ,,"Total United States" " 311 - 339","ALL MANUFACTURING INDUSTRIES" ,"TOTAL FUEL CONSUMPTION",2,3,6,2,3,9

68

RSE Table 5.2 Relative Standard Errors for Table 5.2  

U.S. Energy Information Administration (EIA) Indexed Site

2 Relative Standard Errors for Table 5.2;" 2 Relative Standard Errors for Table 5.2;" " Unit: Percents." " "," "," ",," ","Distillate"," "," ",," " " "," ",,,,"Fuel Oil",,,"Coal" "NAICS"," "," ","Net","Residual","and","Natural ","LPG and","(excluding Coal"," " "Code(a)","End Use","Total","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Gas(d)","NGL(e)","Coke and Breeze)","Other(f)" ,,"Total United States" " 311 - 339","ALL MANUFACTURING INDUSTRIES"

69

104 Int. J. Oil, Gas and Coal Technology, Vol. 4, No. 2, 2011 Copyright 2011 Inderscience Enterprises Ltd.  

E-Print Network (OSTI)

approach in modelling and simulation of shale gas reservoirs: application to New Albany Shale', Int. J. Oil104 Int. J. Oil, Gas and Coal Technology, Vol. 4, No. 2, 2011 Copyright © 2011 Inderscience Enterprises Ltd. A new practical approach in modelling and simulation of shale gas reservoirs: application

Mohaghegh, Shahab

70

Coal....  

U.S. Energy Information Administration (EIA)

DOE EIA WEEKLY COAL ... Coal Prices and Earnings (updated July 7, 2004) In the trading week ended July 2, the average spot coal prices tracked by EIA were mixed.

71

Filtering coal-derived oil through a filter media precoated with particles partially solubilized by said oil  

DOE Patents (OSTI)

Solids such as char, ash, and refractory organic compounds are removed from coal-derived liquids from coal liquefaction processes by the pressure precoat filtration method using particles of 85-350 mesh material selected from the group of bituminous coal, anthracite coal, lignite, and devolatilized coals as precoat materials and as body feed to the unfiltered coal-derived liquid.

Rodgers, Billy R. (Concord, TN); Edwards, Michael S. (Knoxville, TN)

1977-01-01T23:59:59.000Z

72

Refining and upgrading of synfuels from coal and oil shales by advanced catalytic processes. Monthly report, April 1977  

DOE Green Energy (OSTI)

Activities are reported in a program to determine the feasibility and to estimate the economics of hydroprocessing synthetic crude feedstocks to distillate fuels using presented available technology. The first feedstock is shale oil. The oil used in this evaluation is Paraho crude shale oil, produced in the indirectly heated mode. Pilot plant studies evaluating hydroprocessing of the whole shale oil have been in progress for about six months. Shale oil makes an excellent catalytic cracking feedstock provided its nitrogen content is reduced to at least 0.1 percent by appropriate hydrofining. Gasolines and cycle oils derived from the cracking of hydrofined shale oils are similar to those obtained from the cracking of hydrofined petroleum gas oils. The second feedstock is solvent refined coal (SRC). In SRC processing, an analysis of hydrofining feedstock was conducted and hydrofining tests were planned. (JRD)

Sullivan, R.F.; Rudy, C.E.; Chen, H.C.

1977-05-01T23:59:59.000Z

73

Cracking of simulated oil refinery off-gas over a coal char, petroleum coke, and quartz  

Science Conference Proceedings (OSTI)

The cracking of oil refinery off-gas, simulated with a gas mixture containing methane (51%), ethylene (21.4%), ethane (21.1%), and propane (6.5%), over a coal char, petroleum coke, and quartz, respectively, has been studied in a fixed bed reactor. The experiments were performed at temperatures between 850 and 1000{sup o}C and at atmospheric pressure. The results show that the conversions of all species considered increased with increasing temperature. Ethane and propane completely decomposed over all three bed materials in the temperature range investigated. However, the higher initial conversion rates of methane and ethylene cracking at all temperatures were observed only over the coal char and not on the petroleum coke and quartz, indicating a significant catalytic effect of the coal char on methane and ethylene cracking. Methane and ethylene conversions decreased with reaction time due to deactivation of the coal char by carbon deposition on the char surface and, in the later stage of a cracking experiment, became negative, suggesting that methane and ethylene had been formed during the cracking of ethane and propane. 16 refs., 13 figs., 2 tabs.

Yuan Zhang; Jin-hu Wu; Dong-ke Zhang [Chinese Academy of Sciences, Taiyuan (China). Institute of Coal Chemistry

2008-03-15T23:59:59.000Z

74

Characterization of a Middle Distillate Oil from a Coal hydroliquefaction Plant  

Science Conference Proceedings (OSTI)

In this article, a middle distillate oil obtained from a coal hydroliquefaction pilot plant was characterized by modern analytical instruments. First, using {sup 1}H and {sup 13}C nuclear magnetic resonance, the distribution of hydrogen and carbon atoms were obtained, and the presence of configurations such as long aliphatic carbon chains, alkyl-substituted aromatic ring, and partially hydrogenated aromatics in the middle distillate oil was found. Then the oil was separated into three fractions: saturates, aromatics, and polars by neutral silica gel liquid chromatography, and the detailed compositions of saturates and aromatics were respectively analyzed by gas chromatography-mass spectrometry. The results show that the aromatics fraction is the most abundant one in this oil, but they are not normal aromatics and mainly consist of dicyclic-, tricyclic-, and tetracyclic-partially hydrogenated aromatics with carbon atom numbers from C10-C21, such as tetralin, alkyl-substituted tetralin, hydrophenanthrene, hydroanthracene, hydropyrene, and so on. Saturates mainly comprise n-C12-C27 alkanes. These results are of significance for the further processing and marketing of this oil.

Lin, H.; Zhang, D.; Yang, L.; Pan, T.; Gao, J. [East China University of Science and Technology, Shanghai (China)

2009-07-01T23:59:59.000Z

75

Characterization of liquids derived from laboratory coking of decant oil and co-coking of Pittsburgh seam bituminous coal with decant oil  

Science Conference Proceedings (OSTI)

In this study, decant oil and a blend of Pittsburgh seam bituminous coal with decant oil were subjected to coking and co-coking in a laboratory-scale delayed coker. Higher yields of coke and gas were obtained from co-coking than from coking. Coal addition into the feedstock resulted in lighter overhead liquid. GC/MS analyses of gasoline, jet fuel, and diesel show that co-coking of coal/decant oil gave higher quantity aromatic components than that of coking of decant oil alone. Simulated distillation gas chromatography analyses of overhead liquids and GC/MS analyses of vacuum fractions show that when coal was reacted with a decant oil, the coal constituents contributed to the distillable liquids. To address the reproducibility of the liquid products, overhead liquid samples collected at the first, third, and fifth hours of experiments of 6 h duration were evaluated using simulated distillation gas chromatography and {sup 1}H and {sup 13}C NMR. NMR analyses of the liquid products showed that, even though there were slight changes in the {sup 1}H and {sup 13}C spectra, the standard deviation was low for the time-dependent samples. Simulated distillation gas chromatography showed that the yields of refinery boiling range materials (i.e., gasoline, jet fuel, diesel, and fuel oil cuts) were reproducible between runs. Fractionation of the overhead liquids into refinery boiling range materials (gasoline, jet fuel, diesel, fuel oil fractions) showed that the boiling range materials and chemical compositions of fractions were found to be reproducible. 54 refs., 17 tabs.

Omer Gul; Caroline Clifford; Leslie R. Rudnick; Harold H. Schobert [Pennsylvania State University, University Park, PA (United States)

2009-05-15T23:59:59.000Z

76

POC-Scale Testing of Oil Agglomeration Techniques and Equipment for Fine Coal Processing  

Science Conference Proceedings (OSTI)

The objective of this project is to develop and demonstrate a Proof-of-Concept (POC) scale oil agglomeration technology capable of increasing the recovery and improving the quality of fine coal strearrts. Two distinct agglomeration devices will be tested, namely, a conventional high shear mixer and a jet processor. To meet the overall objective an eleven task work plan has been designed. The work ranges from batch and continuous bench-scale testing through the design, commissioning and field testing of POC-scale agglomeration equipment.

None

1998-11-12T23:59:59.000Z

77

Conventional Energy (Oil, Gas, and Coal) Forum & Associated Vertical Business Development Best Practices in Indian Country  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CONVENTIONAL ENERGY (OIL, GAS & COAL) FORUM & CONVENTIONAL ENERGY (OIL, GAS & COAL) FORUM & ASSOCIATED VERTICAL BUSINESS DEVELOPMENT BEST PRACTICES IN INDIAN COUNTRY March 1, 2012 MANDALAY BAY RESORT AND CASINO NORTH CONVENTION CENTER 3950 Las Vegas Blvd. South, Las Vegas, NV 89119 The dynamic world of conventional energy (focusing on oil, gas and coal energy) is a critical piece of the American energy portfolio. This strategic energy forum will focus on recent trends, existing successful partnerships, and perspectives on the future of conventional energy and how tribal business interests are evolving to meet the interests and needs of new tribal energy economies. The third of a series of planned DOE Office of Indian Energy-sponsored strategic energy development & investment forums, this forum will provide an opportunity for Tribal leaders, federal

78

Refining and upgrading of synfuels from coal and oil shales by advanced catalytic processes. Monthly report, May 1977  

DOE Green Energy (OSTI)

Activities are reported of a program to determine the feasibility and to estimate the economics of hydroprocessing synthetic crude feedstocks to distillate fuels using presently available technology. The first feedstock is shale oil. The oil used in this evaluation is Paraho crude shale oil, produced in the indirectly heated mode. Pilot plant studies evaluating hydroprocessing of the whole shale oil have been in progress for about seven months. The second feedstock is solvent refined coal (SRC). In SRC processing, hydrofining feedstock analyses were conducted and results of pilot plant hydrofining test runs are reported. (JRD)

Sullivan, R.F.; Rudy, C.E.; Chen, H.C.

1977-06-01T23:59:59.000Z

79

RSE Table 5.8 Relative Standard Errors for Table 5.8  

U.S. Energy Information Administration (EIA) Indexed Site

8 Relative Standard Errors for Table 5.8;" 8 Relative Standard Errors for Table 5.8;" " Unit: Percents." " ",," ","Distillate"," "," " " ","Net Demand",,"Fuel Oil",,,"Coal" " ","for ","Residual","and","Natural ","LPG and","(excluding Coal" "End Use","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Gas(c)","NGL(d)","Coke and Breeze)" ,"Total United States" "TOTAL FUEL CONSUMPTION",2,3,6,2,3,9 "Indirect Uses-Boiler Fuel",6,4,14,2,9,13 " Conventional Boiler Use",12,5,14,2,10,8 " CHP and/or Cogeneration Process",4,2,6,3,2,18

80

RSE Table 5.6 Relative Standard Errors for Table 5.6  

U.S. Energy Information Administration (EIA) Indexed Site

6 Relative Standard Errors for Table 5.6;" 6 Relative Standard Errors for Table 5.6;" " Unit: Percents." " "," ",," ","Distillate"," "," ",," " " ",,,,"Fuel Oil",,,"Coal" " "," ","Net","Residual","and","Natural","LPG and","(excluding Coal"," " "End Use","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Gas(c)","NGL(d)","Coke and Breeze)","Other(e)" ,"Total United States" "TOTAL FUEL CONSUMPTION",2,2,3,6,2,3,9,2 "Indirect Uses-Boiler Fuel",0,11,4,14,2,9,13,0

Note: This page contains sample records for the topic "oil coal rse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

RSE Table 10.13 Relative Standard Errors for Table 10.13  

U.S. Energy Information Administration (EIA) Indexed Site

3 Relative Standard Errors for Table 10.13;" 3 Relative Standard Errors for Table 10.13;" " Unit: Percents." ,,"LPG(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate","Residual",,"and" "Code(a)","Subsector and Industry","Consumed(d)","Switchable","Switchable","Receipts(e)","Gas","Fuel Oil","Fuel Oil","Coal","Breeze","Other(f)" ,,"Total United States" 311,"Food",8,17,8,20,21,43,34,35,37,29 311221," Wet Corn Milling",0,0,0,0,0,0,0,0,0,0

82

RSE Table 5.7 Relative Standard Errors for Table 5.7  

U.S. Energy Information Administration (EIA) Indexed Site

7 Relative Standard Errors for Table 5.7;" 7 Relative Standard Errors for Table 5.7;" " Unit: Percents." " ",,,"Distillate" " ","Net Demand",,"Fuel Oil",,,"Coal" " ","for ","Residual","and","Natural ","LPG and","(excluding Coal" "End Use","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Gas(c)","NGL(d)","Coke and Breeze)" ,"Total United States" "TOTAL FUEL CONSUMPTION",2,3,6,2,4,9 "Indirect Uses-Boiler Fuel",6,4,10,2,10,13 " Conventional Boiler Use",12,5,14,2,10,8 " CHP and/or Cogeneration Process",4,2,6,3,2,19

83

Co-Firing Oil Shale with Coal and Other Fuels for Improved Efficiency and Multi-Pollutant Control  

Science Conference Proceedings (OSTI)

Oil shale is an abundant, undeveloped natural resource which has natural sorbent properties, and its ash has natural cementitious properties. Oil shale may be blended with coal, biomass, municipal wastes, waste tires, or other waste feedstock materials to provide the joint benefit of adding energy content while adsorbing and removing sulfur, halides, and volatile metal pollutants, and while also reducing nitrogen oxide pollutants. Oil shale depolymerization-pyrolysis-devolatilization and sorption scoping studies indicate oil shale particle sorption rates and sorption capacity can be comparable to limestone sorbents for capture of SO2 and SO3. Additionally, kerogen released from the shale was shown to have the potential to reduce NOx emissions through the well established “reburning” chemistry similar to natural gas, fuel oil, and micronized coal. Productive mercury adsorption is also possible by the oil shale particles as a result of residual fixed-carbon and other observed mercury capture sorbent properties. Sorption properties were found to be a function particle heating rate, peak particle temperature, residence time, and gas-phase stoichmetry. High surface area sorbents with high calcium reactivity and with some adsorbent fixed/activated carbon can be produced in the corresponding reaction zones that exist in a standard pulverized-coal or in a fluidized-bed combustor.

Robert A. Carrington; William C. Hecker; Reed Clayson

2008-06-01T23:59:59.000Z

84

Refining and upgrading of synfuels from coal and oil shales by advanced catalytic processes. Quarterly report, July--September 1976  

DOE Green Energy (OSTI)

The objective of this program is to determine the feasibility and estimate the economics of hydroprocessing four synthetic fuels to distillate fuels, including high octane gasoline, using presently available technology. The feedstocks include three coal-derived synthetic crudes and shale oil. The first feedstock is Paraho crude shale oil, produced in the indirect-heated mode. The feed was received less than three weeks before the end of the quarter. The work to date consists of analyses of the shale oil. Results are incomplete. However, there is no reason to believe that this shale oil is atypical of Paraho shale oil prepared by the indirect-heated mode of retorting. Currently available technology is being studied to determine the appropriate methods for removal of fines and water to prepare the whole shale oil feed for hydrofining.

Sullivan, R.F.

1976-10-01T23:59:59.000Z

85

Effects of energy development on air quality in the Rocky Mountain West. [Environmental effects of coal and oil shale development  

SciTech Connect

Future need for fossil fuels may lead to an exploitation of Western coal and oil shale at the expense of the traditional clean air and clear skies of the West. This report evaluates the prospects for future changes in western air quality, the constraints imposed on western energy development by air quality regulations, and the impacts of that development.

Hinman, G.W.; Leonard, E.M.

1977-01-01T23:59:59.000Z

86

RSE Table 7.9 Relative Standard Errors for Table 7.9  

U.S. Energy Information Administration (EIA) Indexed Site

9 Relative Standard Errors for Table 7.9;" 9 Relative Standard Errors for Table 7.9;" " Unit: Percents." " "," "," ",," "," "," "," "," "," "," ",," " " "," " "NAICS"," "," ",,"Residual","Distillate","Natural ","LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Total","Electricity","Fuel Oil","Fuel Oil(b)","Gas(c)","NGL(d)","Coal","and Breeze","Other(e)" ,,"Total United States" 311,"Food",4,4,24,21,5,23,7,0,20

87

RSE Table 3.2 Relative Standard Errors for Table 3.2  

U.S. Energy Information Administration (EIA) Indexed Site

2 Relative Standard Errors for Table 3.2;" 2 Relative Standard Errors for Table 3.2;" " Unit: Percents." " "," "," ",," "," "," "," "," "," "," ",," " " "," " "NAICS"," "," ","Net","Residual","Distillate","Natural","LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","Coal","and Breeze","Other(f)" ,,"Total United States" 311,"Food",4,5,25,20,5,27,6,0,10

88

RSE Table 1.2 Relative Standard Errors for Table 1.2  

U.S. Energy Information Administration (EIA) Indexed Site

2 Relative Standard Errors for Table 1.2;" 2 Relative Standard Errors for Table 1.2;" " Unit: Percents." " "," "," "," "," "," "," "," "," "," "," " " "," "," ",," "," ",," "," ",," ","Shipments" "NAICS"," ",,"Net","Residual","Distillate","Natural","LPG and",,"Coke and"," ","of Energy Sources" "Code(a)","Subsector and Industry","Total(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Gas(e)","NGL(f)","Coal","Breeze","Other(g)","Produced Onsite(h)"

89

Hydrocarbon-oil encapsulate bubble flotation of fine coal. Technical progress report for the twelfth quarter, July 1--September 30, 1993  

Science Conference Proceedings (OSTI)

Two modes of collector addition techniques including gasified collector transported in gas phase and direct collector addition techniques were applied in the column flotation to demonstrate the selectivity of utilizing the hydrocarbon-oil encapsulated air bubbles in the fine coal flotation process. A 3-in. flotation column was used to evaluate two modes of collector dispersion and addition techniques on the recovery and grade of fine coals using various ranks of coal. Five different coal samples were used in the column flotation test program. They are Mammoth, Lower Kittanning, Upper Freeport, Pittsburgh No. 8, and Illinois No. 6 seam coals, which correspond to anthracite-, low volatile-, medium volatile-, and high volatile-seam coals, respectively. In this quarterly report, the test results for the Upper Freeport seam coal and Pittsburgh No. 8 seam coal are reported.

Peng, F.F. [West Virginia Univ., Morgantown, WV (United States). Dept. of Mineral Processing Engineering

1993-12-31T23:59:59.000Z

90

Buildings and Energy in the 1980's  

U.S. Energy Information Administration (EIA) Indexed Site

and Industry Total Net Electricity b Residual Fuel Oil Distillate Fuel Oil c Natural Gas d LPG Coal Coke and Breeze Other e RSE Row Factors Total United States RSE Column...

91

Buildings and Energy in the 1980's  

U.S. Energy Information Administration (EIA) Indexed Site

Code a Industry Groups and Industry Total Residual Fuel Oil Distillate Fuel Oil b Natural Gas c LPG Coal Coke and Breeze Other d RSE Row Factors Total United States RSE Column...

92

Refining and upgrading of synfuels from coal and oil shales by advanced catalytic processes. Quarterly report, July--September 1977  

DOE Green Energy (OSTI)

The objective of this program is to determine the feasibility and estimate the economics of hydropreocessing four synthetic fuels to distillate fuels, including high octane gasoline, using presently available technology. The feedstocks include shale oil and three coal-derived synthetic crudes. The first feedstock is Paraho crude shale oil, produced in the indirectly heated mode. Pilot plant studies of hydrofining of whole shale oil with ICR 106 catalyst have been completed. The product resembles the fraction of a waxy petroleum crude boiling below 1000/sup 0/F. There is no 1100/sup 0/F+ residuum. A 3500-hour pilot plant run showed that the catalyst fouling rate is low and demonstrated that a commercial length run is feasible. However, a guard bed is necessary ahead of the catalyst bed to remove arsenic and iron which can cause plugging. Hydrofined shale oil is an excellent feed for a catalytic cracker. Pilot plant studies show that the 650/sup 0/F+ fraction of hydrofined shale oil is very similar to hydrofined Middle Eastern vacuum gas oils in its performance in a catalytic cracker. Process design studies based on pilot plant results indicate that it is desirable to hydrofine the whole shale oil to a nitrogen content of about 500 ppM and then to fractionate the product before conventional downstream processing to produce transportation fuels. An alternate scheme for shale oil processing is the coking of the shale oil followed by hydrofinishing of the coker distillate. Preliminary results appear promising. The second feedstock is solvent refined coal. Studies of the hydrofining of a 50/50 blend of SRC and creosote were continued. A run of 1100 hours was achieved with ICR 106 catalyst without the plugging problem that had plagued an earlier test. The catalyst deactivated at a relatively rapid rate.

Sullivan, R.F.; Rudy, C.E.; Green, D.C.; Chen, H.C.

1977-10-01T23:59:59.000Z

93

Unlike PAHs from Exxon Valdez crude oil, PAHs from Gulf of Alaska coals are not readily bioavailable  

Science Conference Proceedings (OSTI)

In the wake of the 1989 Exxon Valdez oil spill, spatially and temporally spill-correlated biological effects consistent with polycyclic aromatic hydrocarbon (PAH) exposure were observed. Some works have proposed that confounding sources from local source rocks, prominently coals, are the provenance of the PAHs. Representative coal deposits along the southeast Alaskan coast (Kulthieth Formation) were sampled and fully characterized chemically and geologically. The coals have variable but high total organic carbon content, technically classifying as coals and coaly shale, and highly varying PAH contents. Even for coals with high PAH content (4000 ppm total PAHs), a PAH-sensitive bacterial biosensor demonstrates nondetectable bioavailability as quantified, based on naphthalene as a test calibrant. These results are consistent with studies indicating that materials such as coals strongly diminish the bioavailability of hydrophobic organic compounds and support previous work suggesting that hydrocarbons associated with the regional background in northern Gulf of Alaska marine sediments are not appreciably bioavailable. 44 refs., 4 figs., 2 tabs.

Halambage Upul Deepthike; Robin Tecon; Gerry van Kooten; Jan Roelof van der Meer; Hauke Harms; Mona Wells; Jeffrey Short [Tennessee Technological University, Cookeville, TN (United States). Department of Chemistry

2009-08-15T23:59:59.000Z

94

Direct determination of polynuclear aromatic hydrocarbons in coal liquids and shale oil by laser excited Shpol'skii spectrometry  

DOE Green Energy (OSTI)

This article reports that tunable, dye laser excitation of Shpol'skii effect spectra provides a potentially useful means of determining PAH compounds directly in coal liquids and shale oil without prior isolation of the PAH fraction by chromatographic or other techniques. The data reported were obtained by selecting excitation wavelengths within the response curve of a single dye, 2-(4-biphenylyl)-5-phenyl-1,3,4 oxadiazole (PBD). The characteristic low temperature excitation spectra of PAH compounds in appropriate Shpol'skii matrices are known to be sharp (FWHM approx. 10cm/sup -1/). The luminescence of four individual PAHs is included. The analytical results obtained for a typical solvent refined coal and shale oil sample are summarized. 2 figures, 1 table. (DP)

Yen, Y.; D'Silva, A.P.; Fassel, V.A.; Iles, M.

1980-07-01T23:59:59.000Z

95

RSE Table 4.1 Relative Standard Errors for Table 4.1  

U.S. Energy Information Administration (EIA) Indexed Site

1 Relative Standard Errors for Table 4.1;" 1 Relative Standard Errors for Table 4.1;" " Unit: Percents." " "," " " "," " "NAICS"," "," ",,"Residual","Distillate","Natural","LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","Coal","and Breeze","Other(f)" ,,"Total United States" 311,"Food",4,5,25,20,5,27,6,0,17 311221," Wet Corn Milling",1,0,0,1,3,0,0,0,0 31131," Sugar ",0,0,0,0,0,0,0,0,0 311421," Fruit and Vegetable Canning",8,11,46,45,8,57,0,0,3

96

RSE Table 7.6 Relative Standard Errors for Table 7.6  

U.S. Energy Information Administration (EIA) Indexed Site

6 Relative Standard Errors for Table 7.6;" 6 Relative Standard Errors for Table 7.6;" " Unit: Percents." " "," " " "," ",,,,,,,,," " "NAICS"," "," ",,"Residual","Distillate","Natural ","LPG and",,"Coke" "Code(a)","Subsector and Industry","Total","Electricity","Fuel Oil","Fuel Oil(b)","Gas(c)","NGL(d)","Coal","and Breeze","Other(e)" ,,"Total United States" 311,"Food",4,5,25,20,5,27,6,0,20 311221," Wet Corn Milling",1,0,0,1,3,0,0,0,0 31131," Sugar ",0,0,0,0,0,0,0,0,0 311421," Fruit and Vegetable Canning",8,11,42,45,8,57,0,0,4

97

RSE Table 10.11 Relative Standard Errors for Table 10.11  

U.S. Energy Information Administration (EIA) Indexed Site

1 Relative Standard Errors for Table 10.11;" 1 Relative Standard Errors for Table 10.11;" " Unit: Percents." ,,"Coal(b)",,,"Alternative Energy Sources(c)" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate","Residual" "Code(a)","Subsector and Industry","Consumed(d)","Switchable","Switchable","Receipts(e)","Gas","Fuel Oil","Fuel Oil","LPG","Other(f)" ,,"Total United States" 311,"Food",20,32,21,0,16,68,65,73,0 311221," Wet Corn Milling",0,0,0,0,0,0,0,0,0 31131," Sugar ",0,0,0,0,0,0,0,0,0

98

RSE Table 2.1 Relative Standard Errors for Table 2.1  

U.S. Energy Information Administration (EIA) Indexed Site

2.1 Relative Standard Errors for Table 2.1;" 2.1 Relative Standard Errors for Table 2.1;" " Unit: Percents." " "," " " "," " "NAICS"," "," ","Residual","Distillate","Natural ","LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Total","Fuel Oil","Fuel Oil(b)","Gas(c)","NGL(d)","Coal","and Breeze","Other(e)" ,,"Total United States" 311,"Food",31,0,91,35,0,0,0,47 311221," Wet Corn Milling",0,0,0,0,0,0,0,0 31131," Sugar ",0,0,0,0,0,0,0,0 311421," Fruit and Vegetable Canning",1,0,0,0,0,0,0,8

99

RSE Table 10.10 Relative Standard Errors for Table 10.10  

U.S. Energy Information Administration (EIA) Indexed Site

0 Relative Standard Errors for Table 10.10;" 0 Relative Standard Errors for Table 10.10;" " Unit: Percents." ,,"Coal",,,"Alternative Energy Sources(b)" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate","Residual" "Code(a)","Subsector and Industry","Consumed(c)","Switchable","Switchable","Receipts(d)","Gas","Fuel Oil","Fuel Oil","LPG","Other(e)" ,,"Total United States" 311,"Food",6,18,5,0,20,85,29,20,0 311221," Wet Corn Milling",0,0,0,0,0,0,0,0,0 31131," Sugar ",0,0,0,0,0,0,0,0,0

100

Oil shale, tar sand, coal research advanced exploratory process technology, jointly sponsored research. Quarterly technical progress report, October--December 1992  

SciTech Connect

Accomplishments for the past quarter are presented for the following five tasks: oil shale; tar sand; coal; advanced exploratory process technology; and jointly sponsored research. Oil shale research covers oil shale process studies. Tar sand research is on process development of Recycle Oil Pyrolysis and Extraction (ROPE) Process. Coal research covers: coal combustion; integrated coal processing concepts; and solid waste management. Advanced exploratory process technology includes: advanced process concepts;advanced mitigation concepts; and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO{sub 2} HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde Group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced oil recovery techniques; surface process study for oil recovery using a thermal extraction process; NMR analysis of samples from the ocean drilling program; in situ treatment of manufactured gas plant contaminated soils demonstration program; and solid state NMR analysis of naturally and artificially matured kerogens.

Speight, J.G.

1992-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "oil coal rse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Oil shale, tar sand, coal research, advanced exploratory process technology jointly sponsored research. Quarterly technical progress report, April--June 1992  

SciTech Connect

Accomplishments for the quarter are presented for the following areas of research: oil shale, tar sand, coal, advanced exploratory process technology, and jointly sponsored research. Oil shale research includes; oil shale process studies, environmental base studies for oil shale, and miscellaneous basic concept studies. Tar sand research covers process development. Coal research includes; underground coal gasification, coal combustion, integrated coal processing concepts, and solid waste management. Advanced exploratory process technology includes; advanced process concepts, advanced mitigation concepts, and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; development and validation of a standard test method for sequential batch extraction fluid; operation and evaluation of the CO{sub 2} HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesa Verde Group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced recovery techniques; and menu driven access to the WDEQ Hydrologic Data Management Systems.

1992-12-01T23:59:59.000Z

102

Reuse of Produced Water from CO2 Enhanced Oil Recovery, Coal-Bed Methane, and Mine Pool Water by Coal-Based Power Plants  

Science Conference Proceedings (OSTI)

Power generation in the Illinois Basin is expected to increase by as much as 30% by the year 2030, and this would increase the cooling water consumption in the region by approximately 40%. This project investigated the potential use of produced water from CO{sub 2} enhanced oil recovery (CO{sub 2}-EOR) operations; coal-bed methane (CBM) recovery; and active and abandoned underground coal mines for power plant cooling in the Illinois Basin. Specific objectives of this project were: (1) to characterize the quantity, quality, and geographic distribution of produced water in the Illinois Basin; (2) to evaluate treatment options so that produced water may be used beneficially at power plants; and (3) to perform a techno-economic analysis of the treatment and transportation of produced water to thermoelectric power plants in the Illinois Basin. Current produced water availability within the basin is not large, but potential flow rates up to 257 million liters per day (68 million gallons per day (MGD)) are possible if CO{sub 2}-enhanced oil recovery and coal bed methane recovery are implemented on a large scale. Produced water samples taken during the project tend to have dissolved solids concentrations between 10 and 100 g/L, and water from coal beds tends to have lower TDS values than water from oil fields. Current pretreatment and desalination technologies including filtration, adsorption, reverse osmosis (RO), and distillation can be used to treat produced water to a high quality level, with estimated costs ranging from $2.6 to $10.5 per cubic meter ($10 to $40 per 1000 gallons). Because of the distances between produced water sources and power plants, transportation costs tend to be greater than treatment costs. An optimization algorithm was developed to determine the lowest cost pipe network connecting sources and sinks. Total water costs increased with flow rate up to 26 million liters per day (7 MGD), and the range was from $4 to $16 per cubic meter ($15 to $60 per 1000 gallons), with treatment costs accounting for 13 â?? 23% of the overall cost. Results from this project suggest that produced water is a potential large source of cooling water, but treatment and transportation costs for this water are large.

Chad Knutson; Seyed Dastgheib; Yaning Yang; Ali Ashraf; Cole Duckworth; Priscilla Sinata; Ivan Sugiyono; Mark Shannon; Charles Werth

2012-04-30T23:59:59.000Z

103

Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research. Quarterly technical progress report, January--March 1993  

SciTech Connect

Accomplishments for the past quarter are briefly described for the following areas of research: oil shale; tar sand; coal; advanced exploratory process technology; and jointly sponsored research. Oil shale and tar sand researches cover processing studies. Coal research includes: coal combustion; integrated coal processing concepts; and solid waste management. Advanced exploratory process technology covers: advanced process concepts; advanced mitigation concepts; and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; CROW{sup TM} field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; operation and evaluation of the CO{sub 2} HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid-state NMR analysis of Mesaverde Group, Greater Green River Basin tight gas sands; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced oil recovery techniques; surface process study for oil recovery using a thermal extraction process; oil field waste cleanup using tank bottom recovery process; remote chemical sensor development; in situ treatment of manufactured gas plant contaminated soils demonstration program; solid-state NMR analysis of naturally and artificially matured kerogens; and development of an effective method for the clean-up of natural gas.

1993-09-01T23:59:59.000Z

104

Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research. Quarterly technical progress report, July--September 1992  

SciTech Connect

Progress made in five research programs is described. The subtasks in oil shale study include oil shale process studies and unconventional applications and markets for western oil shale.The tar sand study is on recycle oil pyrolysis and extraction (ROPE) process. Four tasks are described in coal research: underground coal gasification; coal combustion; integrated coal processing concepts; and sold waste management. Advanced exploratory process technology includes: advanced process concepts; advanced mitigation concepts; and oil and gas technology. Jointly sponsored research covers: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO{sub 2} HUFF-N-PUFF process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; shallow oil production using horizontal wells with enhanced oil recovery techniques; NMR analysis of sample from the ocean drilling program; and menu driven access to the WDEQ hydrologic data management system.

Not Available

1992-12-31T23:59:59.000Z

105

DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS  

E-Print Network (OSTI)

Credit Extra Fuel Oil Coal to gasifier Na cost· Na processoiL Replace res. with coal as gasifier feed. 543 ton/day @$

Wrathall, James Anthony

2011-01-01T23:59:59.000Z

106

JV Task 5 - Evaluation of Residual Oil Fly Ash As A Mercury Sorbent For Coal Combustion Flue Gas  

SciTech Connect

The mercury adsorption capacity of a residual oil fly ash (ROFA) sample collected form Florida Power and Light Company's Port Everglades Power Plant was evaluated using a bituminous coal combustion flue gas simulator and fixed-bed testing protocol. A size-segregated (>38 {micro}g) fraction of ROFA was ground to a fine powder and brominated to potentially enhance mercury capture. The ROFA and brominated-ROFA were ineffective in capturing or oxidizing the Hg{sup 0} present in a simulated bituminous coal combustion flue gas. In contrast, a commercially available DARCO{reg_sign} FGD initially adsorbed Hg{sup 0} for about an hour and then catalyzed Hg{sup 0} oxidation to produce Hg{sup 2+}. Apparently, the unburned carbon in ROFA needs to be more rigorously activated in order for it to effectively capture and/or oxidize Hg{sup 0}.

Robert Patton

2006-12-31T23:59:59.000Z

107

JV Task 5 - Evaluation of Residual Oil Fly Ash As A Mercury Sorbent For Coal Combustion Flue Gas  

SciTech Connect

The mercury adsorption capacity of a residual oil fly ash (ROFA) sample collected form Florida Power and Light Company's Port Everglades Power Plant was evaluated using a bituminous coal combustion flue gas simulator and fixed-bed testing protocol. A size-segregated (>38 {micro}g) fraction of ROFA was ground to a fine powder and brominated to potentially enhance mercury capture. The ROFA and brominated-ROFA were ineffective in capturing or oxidizing the Hg{sup 0} present in a simulated bituminous coal combustion flue gas. In contrast, a commercially available DARCO{reg_sign} FGD initially adsorbed Hg{sup 0} for about an hour and then catalyzed Hg{sup 0} oxidation to produce Hg{sup 2+}. Apparently, the unburned carbon in ROFA needs to be more rigorously activated in order for it to effectively capture and/or oxidize Hg{sup 0}.

Robert Patton

2006-12-31T23:59:59.000Z

108

Refining and upgrading of synfuels from coal and oil shales by advanced catalytic processes. Quarterly report, January--March 1977  

DOE Green Energy (OSTI)

The objective of this program is to determine the feasibility and estimate the economics of hydroprocessing four synthetic fuels to distillate fuels, including high octane gasoline, using presently available technology. The feedstocks include three coal-derived synthetic crudes and shale oil. The first feedstock is Paraho crude shale oil, produced in the indirectly heated mode. Whole shale oil was hydrofined in a 2000-hour pilot plant test using ICR 106 catalyst. The results show that shale oil containing 2.2 percent nitrogen can be hydrofined to residuum-free product containing 1 to 2 ppM nitrogen in a single stage. Process design studies indicate that it is preferable to hydrofine the whole shale oil to about 500 ppM nitrogen and then to fractionate the product before conventional downstream processing to produce transportation fuels. The product resembles the fraction of a waxy petroleum crude boiling below 1000/sup 0/F. This report includes yields and product properties determined from the small-scale pilot plant test. A larger-scale pilot plant demonstration run is now in progress.

Sullivan, R.F.

1977-10-01T23:59:59.000Z

109

Co-gasification of biomass with coal and oil sands coke in a drop tube furnace.  

E-Print Network (OSTI)

??Chars were obtained from individual fuels and blends with different blend ratios of coal, coke and biomass in Drop Tube Furnace at different temperatures. Based… (more)

Gao, Chen

2010-01-01T23:59:59.000Z

110

International perspectives on coal preparation  

SciTech Connect

The report consists of the vugraphs from the presentations which covered the following topics: Summaries of the US Department of Energy`s coal preparation research programs; Preparation trends in Russia; South African coal preparation developments; Trends in hard coal preparation in Germany; Application of coal preparation technology to oil sands extraction; Developments in coal preparation in China; and Coal preparation in Australia.

1997-12-31T23:59:59.000Z

111

Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research. Quarterly technical progress report, April--June 1993  

SciTech Connect

Progress made in five areas of research is described briefly. The subtask in oil shale research is on oil shale process studies. For tar sand the subtask reported is on process development. Coal research includes the following subtasks: Coal combustion; integrated coal processing concepts; and solid waste management. Advanced exploratory process technology includes the following: Advanced process concepts; advanced mitigation concepts; oil and gas technology. Jointly sponsored research includes: Organic and inorganic hazardous waste stabilization; CROW{sup TM} field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; operation and evaluation of the CO{sup 2} HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid-state NMR analysis of Mesaverde Group, Greater Green River Basin, tight gas sands; characterization of petroleum residua; shallow oil production using horizontal wells with enhanced oil recovery techniques; surface process study for oil recovery using a thermal extraction process;NMR analysis of samples from the ocean drilling program; oil field waste cleanup using tank bottom recovery process; remote chemical sensor development; in situ treatment of manufactured gas plant contaminated soils demonstration program; solid-state NMR analysis of Mowry formation shale from different sedimentary basins; solid-state NMR analysis of naturally and artificially matured kerogens; and development of effective method for the clean-up of natural gas.

1993-09-01T23:59:59.000Z

112

"RSE Table C2.1. Relative Standard Errors for Table C2.1;"  

U.S. Energy Information Administration (EIA) Indexed Site

C2.1. Relative Standard Errors for Table C2.1;" C2.1. Relative Standard Errors for Table C2.1;" " Unit: Percents." " "," "," "," "," "," "," "," "," "," ",," " " "," ","Any Combustible" "NAICS"," ","Energy","Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Source(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)" ,,"Total United States" , 311,"Food",4,0,3,0,1,0,2,6

113

"RSE Table C3.1. Relative Standard Errors for Table C3.1;"  

U.S. Energy Information Administration (EIA) Indexed Site

C3.1. Relative Standard Errors for Table C3.1;" C3.1. Relative Standard Errors for Table C3.1;" " Unit: Percents." " "," "," ",," "," "," "," "," "," "," ",," " " "," ","Any" "NAICS"," ","Energy","Net","Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","and Breeze","Other(g)" ,,"Total United States"

114

"RSE Table E1.1. Relative Standard Errors for Table E1.1;"  

U.S. Energy Information Administration (EIA) Indexed Site

.1. Relative Standard Errors for Table E1.1;" .1. Relative Standard Errors for Table E1.1;" " Unit: Percents." " "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," ","Shipments" "Economic",,"Net","Residual","Distillate",,"LPG and",,"Coke and"," ","of Energy Sources" "Characteristic(a)","Total(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","Breeze","Other(g)","Produced Onsite(h)"

115

"RSE Table C4.1. Relative Standard Errors for Table C4.1;"  

U.S. Energy Information Administration (EIA) Indexed Site

C4.1. Relative Standard Errors for Table C4.1;" C4.1. Relative Standard Errors for Table C4.1;" " Unit: Percents." " "," "," ",," "," "," "," "," "," "," ",," " " "," ","Any" "NAICS"," ","Energy",,"Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","and Breeze","Other(g)" ,,"Total United States" ,

116

"RSE Table C1.1. Relative Standard Errors for Table C1.1;"  

U.S. Energy Information Administration (EIA) Indexed Site

.1. Relative Standard Errors for Table C1.1;" .1. Relative Standard Errors for Table C1.1;" " Unit: Percents." " "," "," "," "," "," "," "," "," "," "," " " "," ","Any",," "," ",," "," ",," ","Shipments" "NAICS"," ","Energy","Net","Residual","Distillate",,"LPG and",,"Coke and"," ","of Energy Sources" "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","Breeze","Other(g)","Produced Onsite(h)"

117

RSE Table 7.4 Relative Standard Errors for Table 7.4  

U.S. Energy Information Administration (EIA) Indexed Site

4 Relative Standard Errors for Table 7.4;" 4 Relative Standard Errors for Table 7.4;" " Unit: Percents." " ",," "," ",," "," " "Economic",,"Residual","Distillate","Natural ","LPG and" "Characteristic(a)","Electricity","Fuel Oil","Fuel Oil(b)","Gas(c)","NGL(d)","Coal" ,"Total United States" "Value of Shipments and Receipts" "(million dollars)" " Under 20",8,21,14,7,9,13 " 20-49",4,6,15,4,13,4 " 50-99",3,6,4,3,6,8 " 100-249",3,8,17,2,5,7 " 250-499",4,1,9,7,1,37 " 500 and Over",1,7,4,1,1,1 "Total",2,3,7,2,1,11

118

Combustion kinetics of coal chars in oxygen-enriched ...  

Science Conference Proceedings (OSTI)

... oil re- covery or coal-bed methane applications [1 ... eastern United States bituminous coal blend provided ... These coals were ground and sieved into a ...

2007-03-13T23:59:59.000Z

119

"RSE Table N1.3. Relative Standard Errors for Table N1.3;"  

U.S. Energy Information Administration (EIA) Indexed Site

.3. Relative Standard Errors for Table N1.3;" .3. Relative Standard Errors for Table N1.3;" " Unit: Percents." " "," " ,"Total" "Energy Source","First Use" ,"Total United States" "Coal ",3 "Natural Gas",1 "Net Electricity",1 " Purchases",1 " Transfers In",9 " Onsite Generation from Noncombustible Renewable Energy",15 " Sales and Transfers Offsite",3 "Coke and Breeze",2 "Residual Fuel Oil",4 "Distillate Fuel Oil",5 "Liquefied Petroleum Gases and Natural Gas Liquids",1 "Other",2 " Asphalt and Road Oil (a)",0 " Lubricants (a)",0 " Naphtha < 401 Degrees (a)",0

120

SRC burn test in 700-hp oil-designed boiler. Volume 2. Engineering evaluation report. Final technical report. [Oil-fired boiler to solvent-refined coal  

Science Conference Proceedings (OSTI)

Volume 2 of this report gives the results of an engineering evaluation study and economic analysis of converting an existing 560-MW residual (No. 6) oil-fired unit to burn solvent refined coal (SRC) fuel forms. Volume 1 represents an integrated overview of the test program conducted at the Pittsburgh Energy Technology Center. Three SRC forms (pulverized SRC, a solution of SRC dissolved in process-derived distillates, and a slurry of SRC and water) were examined. The scope of modifications necessary to convert the unit to each of the three SRC fuel forms was identified and a capital cost of the necessary modifications estimated. A fuel conversion feasibility study of the boiler was performed wherein boiler modifications and performance effects of each fuel on the boiler were identified. An economic analysis of the capital and operating fuel expenses of conversion of the unit was performed. It was determined that conversion of the unit to any one of the three SRC fuel forms was feasible where appropriate modifications were made. It also was determined that the conversion of the unit can be economically attractive if SRC fuel forms can be manufactured and sold at prices discounted somewhat from the price of No. 16 Fuel Oil. As expected, greater discounts are required for the pulverized SRC and the slurry than for the solution of SRC dissolved in process-derived distillates.

Not Available

1983-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil coal rse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Quarterly Coal Report  

Gasoline and Diesel Fuel Update (EIA)

March 2011 DOEEIA-0121 (201004Q) Revised: July 2012 Quarterly Coal Report October - December 2010 March 2011 U.S. Energy Information Administration Office of Oil, Gas, and Coal...

122

Low temperature pyrolysis of coal or oil shale in the presence of calcium compounds  

DOE Patents (OSTI)

A coal pyrolysis technique or process is described in which particulate coal is pyrolyzed in the presence of about 5 to 21 wt % of a calcium compound selected from calcium oxide, calcined (hydrate) dolomite, or calcined calcium hydrate to produce a high quality hydrocarbon liquid and a combustible product gas which are characterized by low sulfur content. The pyrolysis is achieved by heating the coal-calcium compound mixture at a relatively slow rate at a temperature of about 450 to 700/sup 0/C over a duration of about 10 to 60 minutes in a fixed or moving bed reactor. The gas exhibits an increased yield in hydrogen and C/sub 1/ to C/sub 8/ hydrocarbons and a reduction in H/sub 2/S over gas obtainable by pyrolyzing coal without the calcium compound. The liquid product obtained is of a sufficient quality to permit its use directly as a fuel and has a reduced sulfur and oxygen content which inhibits polymerization during storage.

Khan, M.R.

1986-04-17T23:59:59.000Z

123

Desulfurization and de-ashing of a mixture of subbituminous coal and gangue minerals by selective oil agglomeration  

SciTech Connect

The aim of this study was to investigate desulfurization and de-ashing of a mixture of subbituminous coal and gangue minerals by the agglomeration method. For this purpose, experimental studies were conducted on a mixture containing subbituminous coal, pyrite, quartz and calcite. The effects of some parameters that markedly influence the effectiveness of selective oil agglomeration, such as solid concentration, pH, bridging liquid type and concentration, and depressant type and amount, were investigated. Agglomeration results showed that the usage of various depressants (Na{sub 2}SiO{sub 3}, FeCl3, corn starch, wheat starch) in the agglomeration medium has a positive effect on the reduction of ash and total sulfur content of agglomerates. It was found that an agglomerate product containing 3.03% total sulfur and 25.01% ash with a total sulfur reduction of 56.71% was obtained from a feed that contained 7% total sulfur and 43.58% ash when FeCl{sub 3} was used in the agglomeration medium.

Ayhan, F.D. [Dicle University, Diyarbakir (Turkey). Dept. of Mining Engineering

2009-11-15T23:59:59.000Z

124

Superclean coal-water slurry combustion testing in an oil-fired boiler. Semiannual technical progress report, August 15, 1992--February 15, 1993  

Science Conference Proceedings (OSTI)

The Pennsylvania State University is conducting a superclean coal-water slurry (SCCWS) program for the United States Department of Energy (DOE) and the Commonwealth of Pennsylvania with the objective of determining the capability of effectively firing SCCWS in an industrial boiler designed for heavy fuel oil. Penn State has entered into a cooperative agreement with DOE to determine if SCCWS (a fuel containing coal with 3.0 wt.% ash and 0.9 wt.% sulfur) can effectively be burned in a heavy fuel oil-designed industrial boiler without adverse impact on boiler rating, maintainability, reliability, and availability. The project will provide information on the design of new systems specifically configured to fire these clean coal-based fuels. The project consists of four phases: (1) design, permitting, and test planning, (2) construction and start up, (3) demonstration and evaluation (1,000-hour demonstration), and (4) program expansion (additional 1,000 hours of testing). The boiler testing wig determine if the SCCWS combustion characteristics, heat release rate, fouling and slagging behavior, corrosion and erosion limits, and fuel transport, storage, and handling characteristics can be accommodated in an oil-designed boiler system. In addition, the proof-of-concept demonstration will generate data to determine how the properties of SCCWS and its parent coal affect boiler performance. Economic factors associated with retrofitting boilers will be identified

Miller, B.G.; Pisupati, S.V.; Poe, R.L.; Morrison, J.L.; Xie, J.; Walsh, P.M.; Wincek, R.T.; Clark, D.A.; Scaroni, A.W.

1993-04-21T23:59:59.000Z

125

Quarterly Coal Report  

Annual Energy Outlook 2012 (EIA)

December 2010 DOEEIA-0121 (201003Q) Revised: July 2012 Quarterly Coal Report July - September 2010 December 2010 U.S. Energy Information Administration Office of Oil, Gas, and...

126

Direct Coal Liquefaction  

NLE Websites -- All DOE Office Websites (Extended Search)

solvent. * The coal fragments are further hydrocracked to produce a synthetic crude oil. * This synthetic crude must then undergo refinery upgrading and hydrotreating to...

127

Reuse of Produced Water from CO2 Enhanced Oil Recovery, Coal-Bed Methane, and Mine Pool Water by Coal-Based Power Plants: ProMIS/Project No.: DE-NT0005343  

NLE Websites -- All DOE Office Websites (Extended Search)

seyed Dastgheib seyed Dastgheib Principal Investigator Illinois State Geological Survey 615 E. Peabody Drive Champaign, Illinois 61820-6235 217-265-6274 dastgheib@isgs.uius.edu Reuse of PRoduced WateR fRom co 2 enhanced oil RecoveRy, coal-Bed methane, and mine Pool WateR By coal-Based PoWeR Plants: PRomis /PRoject no. : de-nt0005343 Background Coal-fired power plants are the second largest users of freshwater in the United States. In Illinois, the thermoelectric power sector accounts for approximately 84 percent of the estimated 14 billion gallons per day of freshwater withdrawals and one-third of the state's 1 billion gallons per day of freshwater consumption. Illinois electric power generation capacity is projected to expand 30 percent by 2030, increasing water consumption by

128

Low temperature pyrolysis of coal or oil shale in the presence of calcium compounds  

DOE Green Energy (OSTI)

A coal pyrolysis technique or process is described in which particulate coal is pyrolyzed in the presence of about 5 to 21 wt. % of a calcium compound selected from calcium oxide, calcined (hydrate) dolomite, or calcined calcium hydrate to produce a high quality hydrocarbon liquid and a combustible product gas which are characterized by low sulfur content. The pyrolysis is achieved by heating the coal-calcium compound mixture at a relatively slow rate at a temperature of about 450.degree. to 700.degree. C. over a duration of about 10 to 60 minutes in a fixed or moving bed reactor. The gas exhibits an increased yield in hydrogen and C.sub.1 -C.sub.8 hydrocarbons and a reduction in H.sub.2 S over gas obtainable by pyrolyzing cola without the calcium compound. The liquid product obtained is of a sufficient quality to permit its use directly as a fuel and has a reduced sulfur and oxygen content which inhibits polymerization during storage.

Khan, M. Rashid (Morgantown, WV)

1988-01-01T23:59:59.000Z

129

"RSE Table E2.1. Relative Standard Errors for Table E2.1;"  

U.S. Energy Information Administration (EIA) Indexed Site

E2.1. Relative Standard Errors for Table E2.1;" E2.1. Relative Standard Errors for Table E2.1;" " Unit: Percents." " "," "," "," ",," "," ",," " "Economic",,"Residual","Distillate",,"LPG and",,"Coke and"," " "Characteristic(a)","Total","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal","Breeze","Other(e)" ,"Total United States" "Value of Shipments and Receipts" "(million dollars)" " Under 20",9,87,48,26,1,85,16,25 " 20-49",11,32,28,5,63,20,3,21 " 50-99",8,23,38,2,22,49,42,4

130

Characteristics of process oils from HTI coal/plastics co-liquefaction runs  

DOE Green Energy (OSTI)

The objective of this project is to provide timely analytical support to DOE`s liquefaction development effort. Specific objectives of the work reported here are: (1) to determine the fate of the plastics feedstocks, relative to coal-only operation; (2) to determine the conversion of the feedstocks; (3) to determine the product streams to which the feedstocks are converted (bottoms vs. distillate); (4) to determine interactions of feedstocks; (5) to determine how use of plastics feedstocks affect product quality; and (6) to determine to what degree property differences reflect feedstock differences vs. other (process) condition changes, such as unit operations, space velocity, and catalyst age.

Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

1995-12-31T23:59:59.000Z

131

INTERACTION OF A SUB-BITUMINOUS COAL WITH A STRONG ACID AND A STRONG BASE  

E-Print Network (OSTI)

production coal-derived hydrocarbons. Coal is more easily recovered and more widely available than oil shale and

Seth, M.

2010-01-01T23:59:59.000Z

132

POC-scale testing of oil agglomeration techniques and equipment for fine coal processing  

SciTech Connect

The information presented in this manual is solely for the purpose of operating the POC-scale equipment for fine coal processing as described herein. This manual provides a general description of the process technology and guidelines for plant operating procedures. It is intended for use by the operators and maintenance personnel who will be responsible for the operations of the plant. No attempt should be made to operate the plant until the principles of the process and operating instructions contained in this manual are fully understood. Operating personnel should thoroughly familiarize themselves with all processing equipment prior to commencing plant operation. All equipment is skid mounted to provide a self-contained unit. The dimensions of the unit are comply with standard guidelines. A minimum distance of 2 feet is provided between equipment for walkway and maintenance.

W. Pawlak; K. Szymocha

1999-07-01T23:59:59.000Z

133

Formulation and evaluation of highway transportation fuels from shale and coal oils: project identification and evaluation of optimized alternative fuels. Second annual report, March 20, 1980-March 19, 1981. [Broadcut fuel mixtures of petroleum, shale, and coal products  

DOE Green Energy (OSTI)

Project work is reported for the formulation and testing of diesel and broadcut fuels containing components from petroleum, shale oil, and coal liquids. Formulation of most of the fuels was based on refinery modeling studies in the first year of the project. Product blends were prepared with a variety of compositions for use in this project and to distribute to other, similar research programs. Engine testing was conducted in a single-cylinder CLR engine over a range of loads and speeds. Relative performance and emissions were determined in comparison with typical petroleum diesel fuel. With the eight diesel fuels tested, it was found that well refined shale oil products show only minor differences in engine performance and emissions which are related to differences in boiling range. A less refined coal distillate can be used at low concentrations with normal engine performance and increased emissions of particulates and hydrocarbons. Higher concentrations of coal distillate degrade both performance and emissions. Broadcut fuels were tested in the same engine with variable results. All fuels showed increased fuel consumption and hydrocarbon emissions. The increase was greater with higher naphtha content or lower cetane number of the blends. Particulates and nitrogen oxides were high for blends with high 90% distillation temperatures. Operation may have been improved by modifying fuel injection. Cetane and distillation specifications may be advisable for future blends. Additional multi-cylinder and durability testing is planned using diesel fuels and broadcut fuels. Nine gasolines are scheduled for testing in the next phase of the project.

Sefer, N.R.; Russell, J.A.

1981-12-01T23:59:59.000Z

134

Measurement of Oil and Gas Emissions from a Marine Seep  

E-Print Network (OSTI)

hydrocarbon seeps near Coal Oil Point, California, Marineet al. , 2007, Measurement of Oil and Gas Emissions from aand P.G. Mikolaj, Natural oil seepage at Coal Oil Point,

Leifer, Ira; Boles, J R; Luyendyk, B P

2007-01-01T23:59:59.000Z

135

RSE Table 10.12 Relative Standard Errors for Table 10.12  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Sources(b)" ,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate","Residual",,"and" "Code(a)","Subsector and...

136

Research investigations in oil shale, tar sand, coal research, advanced exploratory process technology, and advanced fuels research: Volume 1 -- Base program. Final report, October 1986--September 1993  

SciTech Connect

Numerous studies have been conducted in five principal areas: oil shale, tar sand, underground coal gasification, advanced process technology, and advanced fuels research. In subsequent years, underground coal gasification was broadened to be coal research, under which several research activities were conducted that related to coal processing. The most significant change occurred in 1989 when the agreement was redefined as a Base Program and a Jointly Sponsored Research Program (JSRP). Investigations were conducted under the Base Program to determine the physical and chemical properties of materials suitable for conversion to liquid and gaseous fuels, to test and evaluate processes and innovative concepts for such conversions, to monitor and determine environmental impacts related to development of commercial-sized operations, and to evaluate methods for mitigation of potential environmental impacts. This report is divided into two volumes: Volume 1 consists of 28 summaries that describe the principal research efforts conducted under the Base Program in five topic areas. Volume 2 describes tasks performed within the JSRP. Research conducted under this agreement has resulted in technology transfer of a variety of energy-related research information. A listing of related publications and presentations is given at the end of each research topic summary. More specific and detailed information is provided in the topical reports referenced in the related publications listings.

Smith, V.E.

1994-05-01T23:59:59.000Z

137

RSE Table N6.1 and N6.2. Relative Standard Errors for Tables N6.1 and N6.2  

U.S. Energy Information Administration (EIA) Indexed Site

1 and N6.2. Relative Standard Errors for Tables N6.1 and N6.2;" 1 and N6.2. Relative Standard Errors for Tables N6.1 and N6.2;" " Unit: Percents." " "," "," ",," ","Distillate"," "," ",," " " "," ",,,,"Fuel Oil",,,"Coal" "NAICS"," "," ","Net","Residual","and",,"LPG and","(excluding Coal"," " "Code(a)","End Use","Total","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Natural Gas(d)","NGL(e)","Coke and Breeze)","Other(f)" ,,"Total United States"

138

NETL: Coal & Coal Biomass to Liquids - Alternate Hydrogen Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Deepwater Technology Enhanced Oil Recovery Gas Hydrates Natural Gas Resources Contacts Coal & Power Systems Major Demonstrations Innovations for Existing Plants Gasification...

139

NETL: Coal & Coal Biomass to Liquids - Hydrogen and Clean Fuels...  

NLE Websites -- All DOE Office Websites (Extended Search)

Deepwater Technology Enhanced Oil Recovery Gas Hydrates Natural Gas Resources Contacts Coal & Power Systems Major Demonstrations Innovations for Existing Plants Gasification...

140

NETL: Coal & Coal Biomass to Liquids - Systems Studies  

NLE Websites -- All DOE Office Websites (Extended Search)

Deepwater Technology Enhanced Oil Recovery Gas Hydrates Natural Gas Resources Contacts Coal & Power Systems Major Demonstrations Innovations for Existing Plants Gasification...

Note: This page contains sample records for the topic "oil coal rse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

NETL: Coal & Coal Biomass to Liquids - Reference Shelf  

NLE Websites -- All DOE Office Websites (Extended Search)

Deepwater Technology Enhanced Oil Recovery Gas Hydrates Natural Gas Resources Contacts Coal & Power Systems Major Demonstrations Innovations for Existing Plants Gasification...

142

Coal: the new black  

SciTech Connect

Long eclipsed by oil and natural gas as a raw material for high-volume chemicals, coal is making a comeback, with oil priced at more than $100 per barrel. It is relatively cheap feedstock for chemicals such as methanol and China is building plants to convert coal to polyolefins on a large scale and interest is spreading worldwide. Over the years several companies in the US and China have made fertilizers via the gasification of coal. Eastman in Tennessee gasifies coal to make methanol which is then converted to acetic acid, acetic anhydride and acetate fiber. The future vision is to convert methanol to olefins. UOP and Lurgi are the major vendors of this technology. These companies are the respective chemical engineering arms of Honeywell and Air Liquide. The article reports developments in China, USA and India on coal-to-chemicals via coal gasification or coal liquefaction. 2 figs., 2 photo.

Tullo, A.H.; Tremblay, J.-F.

2008-03-15T23:59:59.000Z

143

NETL: Clean Coal Power Initiative  

NLE Websites -- All DOE Office Websites (Extended Search)

Deepwater Technology Enhanced Oil Recovery Gas Hydrates Natural Gas Resources Contacts Coal & Power Systems Major Demonstrations Innovations for Existing Plants Gasification...

144

"RSE Table N11.2. Relative Standard Errors for Table N11.2;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Relative Standard Errors for Table N11.2;" 2. Relative Standard Errors for Table N11.2;" " Unit: Percents." " "," " "NAICS"," "," ",,"Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Total","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal","and Breeze","Other(e)" ,,"Total United States" , 311,"Food",1,1,3,3,1,1,0,0,1 311221," Wet Corn Milling",0,0,0,0,0,0,0,0,0 312,"Beverage and Tobacco Products",4,4,16,41,4,22,3,0,15 313,"Textile Mills",2,2,5,14,3,5,1,0,5

145

Investigations into coal coprocessing and coal liquefaction  

DOE Green Energy (OSTI)

The conversion of coal to liquid suitable as feedstock to a petroleum refinery is dependent upon several process variables. These variables include temperature, pressure, coal rank, catalyst type, nature of the feed to the reactor, type of process, etc. Western Research Institute (WRI) has initiated a research program in the area of coal liquefaction to address the impact of some of these variables upon the yield and quality of the coal-derived liquid. The principal goal of this research is to improve the efficiency of the coal liquefaction process. Two different approaches are currently being investigated. These include the coprocessing of a heavy liquid, such as crude oil, and coal using a dispersed catalyst and the direct liquefaction of coal using a supported catalyst. Another important consideration in coal liquefaction is the utilization of hydrogen, including both externally- and internally-supplied hydrogen. Because the incorporation of externally-supplied hydrogen during conversion of this very aromatic fossil fuel to, for example, transportation fuels is very expensive, improved utilization of internally-supplied hydrogen can lead to reducing processing costs. The objectives of this investigation, which is Task 3.3.4, Coal Coprocessing, of the 1991--1992 Annual Research Plan, are: (1) to evaluate coal/oil pretreatment conditions that are expected to improve the liquid yield through more efficient dispersion of an oil-soluble, iron-based catalyst, (2) to characterize the coke deposits on novel, supported catalysts after coal liquefaction experiments and to correlate the carbon skeletal structure parameters of the coke deposit with catalyst performance as measured by coal liquefaction product yield, and (3) to determine the modes of hydrogen utilization during coal liquefaction and coprocessing. Experimental results are discussed in this report.

Guffey, F.D.; Netzel, D.A.; Miknis, F.P.; Thomas, K.P. [Western Research Inst., Laramie, WY (United States); Zhang, Tiejun; Haynes, H.W. Jr. [Wyoming Univ., Laramie, WY (United States). Dept. of Chemical Engineering

1994-06-01T23:59:59.000Z

146

Hydrocarbon-oil encapsulated bubble flotation of fine coal using 3-in. ID flotation column. Technical progress report for the eleventh quarter, April 1--June 30, 1993  

Science Conference Proceedings (OSTI)

There are four modes of the collector dispersion techniques. They are (1) direct liquid additions and stirring, (2) ultrasonic energy collector dispersion, (3) atomized collector dispersion, and (4) gasified collector transported in air stream. Among those collector dispersion techniques, the technique using the gasified collector transported in air phase can be used to enhance the flotation performance with substantial reduction in collector usage and selectivity, compared to the flotation using direct liquid addition (and mechanical agitation) technique. In this phase of study, two modes of collector addition techniques including gasified collector transported in gas phase and direct collector addition techniques were applied in the column flotation to demonstrate the selectivity of utilizing the hydrocarbon-oil encapsulated air bubbles in the fine coal flotation process. The 1-in. ID flotation column was used to scale-up to 3-in. ID flotation column. The initial starting point to operate the 3-in ID flotation column were determined using both 1-in. and 3-in. flotation columns based on the three phases of work plans and experiment design. A 3-in. flotation column was used to evaluate two modes of collector dispersion and addition techniques on the recovery and grade of fine coals using various ranks of coal.

Peng, F.F.

1996-05-01T23:59:59.000Z

147

Hydrocarbon-oil encapsulated bubble flotation of fine coal. Technical progress report for the ninth quarter, October 1, 1992--December 31, 1992  

SciTech Connect

A main portion of this reporting period has been consumed in the following tasks to establish the base line for hydrocarbon oil encapsulated bubble flotation: (1) to measure the residence time distribution and formulate the axial dispersion model of 1-in. I.D. flotation column, (2) to obtain the optimum operating conditions using three phase experiment design approach followed the fractional factorial design, (3) to develop the column scale-up procedure and formulate recovery predicting model for flotation column, (4) to apply the models developed to design a 3-in. ID flotation column and predicting the cleaning results, (5) to test the collector gasification system installed on the 3-in. I.D. flotation column for hydrocarbon-oil capsulated bubble flotation of fine coal. Column flotation of minus 47 {mu}m (-400 US sieve) Pittsburgh No. 8 seam coal was carried out to study the column scale-up procedure using one-inch column. The dispersion model of nonideal flow was applied to describe the hydrodynamic state within the column. This model may be used to predict the collection zone recovery of column flotation in scale-up procedure if the column flotation is a first-order rate process. Residence Time Distribution (RTD) data of the column flotation were measured to determine the parameters of the model. It was found that an empirical distribution, logarithmic normal distribution can describe the RTD curve well. The effects of operating variables and column geometry on the Peclet number, Pe, which measure the extent of axial dispersion were studied and an empirical expression of Pe was obtained. Using the dispersion model, the column flotation of fine coal recovery can be predicted.

Peng, F.F.

1995-01-01T23:59:59.000Z

148

HS_Coal_Studyguide.indd  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coal Coal Fossil Energy Study Guide: Coal Coal is the most plentiful fuel in the fossil family. The United States has more coal reserves than any other country in the world. In fact, one-fourth of all known coal in the world is in the United States, with large deposits located in 38 states. The United States has almost as much energ y in coal that can be mined as the rest of the world has in oil that can be pumped from the ground. TYPES OF COAL Coal is a black rock made up of large amounts of carbon. Like all fossil fuels, coal can be burned to release energy. Coal contains elements such as hydrogen, oxygen, and nitrogen; has various amounts of minerals; and is itself considered to be a mineral of organic origin. Due to the variety of materials buried over time in the

149

Coal liquefaction process  

DOE Patents (OSTI)

An improved coal liquefaction process is provided which enables conversion of a coal-oil slurry to a synthetic crude refinable to produce larger yields of gasoline and diesel oil. The process is characterized by a two-step operation applied to the slurry prior to catalytic desulfurization and hydrogenation in which the slurry undergoes partial hydrogenation to crack and hydrogenate asphaltenes and the partially hydrogenated slurry is filtered to remove minerals prior to subsequent catalytic hydrogenation.

Karr, Jr., Clarence (Morgantown, WV)

1977-04-19T23:59:59.000Z

150

Integrated coal liquefaction process  

DOE Patents (OSTI)

In a process for the liquefaction of coal in which coal liquids containing phenols and other oxygenated compounds are produced during the liquefaction step and later hydrogenated, oxygenated compounds are removed from at least part of the coal liquids in the naphtha and gas oil boiling range prior to the hydrogenation step and employed as a feed stream for the manufacture of a synthesis gas or for other purposes.

Effron, Edward (Springfield, NJ)

1978-01-01T23:59:59.000Z

151

Synthetic fuel production by indirect coal liquefaction  

E-Print Network (OSTI)

, the production of a synthetic crude oil product by direct contact of coal with an appropriate catalyst, with abundant domestic coal resources but lim- ited oil and gas resources, the conversion of coal into liquid in South Africa (for Fischer- Tropsch fuels). Also, the US Department of Energy an- nounced its financial

152

Coal sector profile  

SciTech Connect

Coal is our largest domestic energy resource with recoverable reserves estimated at 268 billion short tons or 5.896 quads Btu equivalent. This is approximately 95 percent of US fossil energy resources. It is relatively inexpensive to mine, and on a per Btu basis it is generally much less costly to produce than other energy sources. Its chief drawbacks are the environmental, health and safety concerns that must be addressed in its production and consumption. Historically, coal has played a major role in US energy markets. Coal fueled the railroads, heated the homes, powered the factories. and provided the raw materials for steel-making. In 1920, coal supplied over three times the amount of energy of oil, gas, and hydro combined. From 1920 until the mid 1970s, coal production remained fairly constant at 400 to 600 million short tons a year. Rapid increases in overall energy demands, which began during and after World War II were mostly met by oil and gas. By the mid 1940s, coal represented only half of total energy consumption in the US. In fact, post-war coal production, which had risen in support of the war effort and the postwar Marshall plan, decreased approximately 25 percent between 1945 and 1960. Coal demand in the post-war era up until the 1970s was characterized by increasing coal use by the electric utilities but decreasing coal use in many other markets (e.g., rail transportation). The oil price shocks of the 1970s, combined with natural gas shortages and problems with nuclear power, returned coal to a position of prominence. The greatly expanded use of coal was seen as a key building block in US energy strategies of the 1970s. Coal production increased from 613 million short tons per year in 1970 to 950 million short tons in 1988, up over 50 percent.

1990-06-05T23:59:59.000Z

153

Division of Oil, Gas, and Mining Permitting  

E-Print Network (OSTI)

" or "Gas" does not include any gaseous or liquid substance processed from coal, oil shale, or tar sands

Utah, University of

154

Early Days of Coal Research | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Days of Coal Research Early Days of Coal Research Wartime Needs Spur Interest in Coal-to-Oil Processes In 1944 General George S. Patton's Third Army was racing across southern...

155

COAL LIQUEFACTION USING ZINC CHLORIDE CATALYST IN AN EXTRACTING SOLVENT MEDIUM  

E-Print Network (OSTI)

1978) Richardson, F.W. Oil from Coal, Chemical TechnologyStatus of Coal and Oil Shale Conversion, University of Utah,of increasing the yield of oil like products. In contrast,

Gandhi, Shamim Ahmed

2013-01-01T23:59:59.000Z

156

MS_Coal_Studyguide.indd  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

COAL-OUR MOST ABUNDANT FUEL COAL-OUR MOST ABUNDANT FUEL America has more coal than any other fossil fuel resource. Th e United States also has more coal reserves than any other single country in the world. In fact, 1/4 of all the known coal in the world is in the United States. Th e United States has more energy in coal that can be mined than the rest of the world has in oil that can be pumped from the ground. Currently, coal is mined in 25 of the 50 states. Coal is used primarily in the United States to generate electricity. In fact, it is burned in power plants to produce nearly half of the electricity we use. A stove uses about half a ton of coal a year. A water heater uses about two tons of coal a year. And a refrigerator, that's another half-ton a year. Even though you

157

Buildings and Energy in the 1980's  

U.S. Energy Information Administration (EIA) Indexed Site

2 (Estimates in Trillion Btu) SIC Code a Industry Groups and Industry Total Electricity b Residual Fuel Oil Distillate Fuel Oil c Natural Gas d LPG Coal Coke and Breeze Other e RSE...

158

" Row: NAICS Codes; Column: Energy Sources...  

U.S. Energy Information Administration (EIA) Indexed Site

","Row" "Code(a)","Subsector and Industry","Source(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)","Factors" ,,"Total United States" ,"RSE...

159

"Table A10. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel"  

U.S. Energy Information Administration (EIA) Indexed Site

0. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel" 0. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel" " Oil for Selected Purposes by Census Region and Economic Characteristics of the" " Establishment, 1991" " (Estimates in Barrels per Day)" ,,,," Inputs for Heat",,," Primary Consumption" " "," Primary Consumption for all Purposes",,," Power, and Generation of Electricity",,," for Nonfuel Purposes",,,"RSE" ," ------------------------------------",,," ------------------------------------",,," -------------------------------",,,"Row" "Economic Characteristics(a)","LPG","Distillate(b)","Residual","LPG","Distillate(b)","Residual","LPG","Distillate(b)","Residual","Factors"

160

Will lecture on: Unconventional Oil and Gas  

E-Print Network (OSTI)

are not yet resolved. Ten years ago this category comprised heavy oil, oil shale, coal bed methane, tight gas, and economic aspects of gas shale and tight oil development. The role of oil shale in the emerging energy applied research on heavy oil, gas hydrate, gas shale, tight oil, and oil shale reservoirs. He advises

Schuster, Assaf

Note: This page contains sample records for the topic "oil coal rse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

"Code(a)","Subsector and Industry","Source(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)"  

U.S. Energy Information Administration (EIA) Indexed Site

2.4 Relative Standard Errors for Table 2.4;" 2.4 Relative Standard Errors for Table 2.4;" " Unit: Percents." " "," "," "," "," "," "," "," "," "," ",," " " "," ","Any Combustible" "NAICS"," ","Energy","Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Source(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)" ,,"Total United States" 311,"Food",27.5,"X",42,39.5,62,"X",0,9.8

162

"Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","and Breeze","Other(g)"  

U.S. Energy Information Administration (EIA) Indexed Site

3.4 Relative Standard Errors for Table 3.4;" 3.4 Relative Standard Errors for Table 3.4;" " Unit: Percents." " "," "," ",," "," "," "," "," "," "," ",," " " "," ","Any" "NAICS"," ","Energy","Net","Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","and Breeze","Other(g)" ,,"Total United States"

163

"Characteristic(a)","Total(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","Breeze","Other(g)","Produced Onsite(h)"  

U.S. Energy Information Administration (EIA) Indexed Site

1.3 Relative Standard Errors for Table 1.3;" 1.3 Relative Standard Errors for Table 1.3;" " Unit: Percents." " "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," ","Shipments" "Economic",,"Net","Residual","Distillate",,"LPG and",,"Coke and"," ","of Energy Sources" "Characteristic(a)","Total(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","Breeze","Other(g)","Produced Onsite(h)"

164

China's Coal: Demand, Constraints, and Externalities  

E-Print Network (OSTI)

face of oil and natural gas price rises, coal’s share may becoal consumption declined from 1996 to 2006, but rebounded in 2006; unless residential natural gas prices

Aden, Nathaniel

2010-01-01T23:59:59.000Z

165

Refining and upgrading of synfuels from coal and oil shales by advanced catalytic processes. Quarterly report, October--December 1977  

DOE Green Energy (OSTI)

Pilot plant studies have now been completed for the processing of Paraho shale oil. Three processing routes are being evaluated: (1) whole shale oil hydrotreating followed by fluid catalytic cracking (FCC) as the major downstream processing step, (2) whole shale oil hydrotreating followed by hydrocracking as the major processing step, (3) coking of the shale oil followed by hydrotreating of the coker distillate as the major downstream processing step. Pilot plant studies show that all three routes are technically feasible. Analyses of the results and process design studies are being completed. The relative merits and economics of each route will be discussed in the final report. SRC is difficult to process compared to most petroleum feeds and to shale oil. Because of its high melting point, it is necessary to dissolve it in an appropriate solvent before it can be hydrotreated in existing fixed bed pilot plant equipment. The first solvent for SRC in these tests was creosote oil; a 50/50 blend was tested. In the first test, ICR 106 catalyst showed little fouling in 330 hours. About half of the 850/sup 0/F + SRC was converted to 850/sup 0/F - distillate; and the nitrogen content was reduced from 1.5% in the SRC/creosote oil blend to 0.2--0.3% in the product. However, after 330 hours on stream, plugging occurred in the catalyst bed. In a second run, 100 hours of operation were achieved without plugging. However, the catalyst deactivation rate was relatively high. Another solvent being tested is the 350--850/sup 0/F product from the SRC/creosote oil hydroprocessing runs. Plugging problems were again encountered using this solvent.

Sullivan, R.F.; Green, D.C.; Chen, H.C.

1978-01-01T23:59:59.000Z

166

RSE Table N3.1 and N3.2. Relative Standard Errors for Tables N3.1 and N3.2  

U.S. Energy Information Administration (EIA) Indexed Site

N3.1 and N3.2. Relative Standard Errors for Tables N3.1 and N3.2;" N3.1 and N3.2. Relative Standard Errors for Tables N3.1 and N3.2;" " Unit: Percents." " "," "," ",," "," "," "," "," "," "," ",," " "NAICS"," "," ","Net","Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)" ,,"Total United States" , 311,"Food",1,1,2,3,1,1,0,0,1

167

RSE Table S1.1 and S1.2. Relative Standard Errors for Tables S1.1 and S1.2  

U.S. Energy Information Administration (EIA) Indexed Site

S1.1 and S1.2. Relative Standard Errors for Tables S1.1 and S1.2;" S1.1 and S1.2. Relative Standard Errors for Tables S1.1 and S1.2;" " Unit: Percents." " "," "," "," "," "," "," "," "," "," "," " " "," "," ",," "," ",," "," ",," ","Shipments" "SIC"," ",,"Net","Residual","Distillate",,"LPG and",,"Coke and"," ","of Energy Sources" "Code(a)","Major Group and Industry","Total(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","Breeze","Other(g)","Produced Onsite(h)"

168

RSE Table N4.1 and N4.2. Relative Standard Errors for Tables N4.1 and N4.2  

U.S. Energy Information Administration (EIA) Indexed Site

N4.1 and N4.2. Relative Standard Errors for Tables N4.1 and N4.2;" N4.1 and N4.2. Relative Standard Errors for Tables N4.1 and N4.2;" " Unit: Percents." " "," "," ",," "," "," "," "," "," "," ",," " "NAICS"," "," ",,"Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)" ,,"Total United States" , 311,"Food",1,1,2,3,1,1,0,0,1

169

RSE Table N1.1 and N1.2. Relative Standard Errors for Tables N1.1 and N1.2  

U.S. Energy Information Administration (EIA) Indexed Site

1 and N1.2. Relative Standard Errors for Tables N1.1 and N1.2;" 1 and N1.2. Relative Standard Errors for Tables N1.1 and N1.2;" " Unit: Percents." " "," "," "," "," "," "," "," "," "," "," " " "," "," ",," "," ",," "," ",," ","Shipments" "NAICS"," ",,"Net","Residual","Distillate",,"LPG and",,"Coke and"," ","of Energy Sources" "Code(a)","Subsector and Industry","Total(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","Breeze","Other(g)","Produced Onsite(h)"

170

RSE Table E6.1 and E6.2. Relative Standard Errors for Tables E6.1 and E6.2  

U.S. Energy Information Administration (EIA) Indexed Site

E6.1 and E6.2. Relative Standard Errors for Tables E6.1 and E6.2;" E6.1 and E6.2. Relative Standard Errors for Tables E6.1 and E6.2;" " Unit: Percents." " "," ",," ","Distillate"," "," ",," " " ",,,,"Fuel Oil",,,"Coal" " "," ","Net","Residual","and",,"LPG and","(excluding Coal"," " "End Use","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural Gas(c)","NGL(d)","Coke and Breeze)","Other(e)" ,"Total United States" "TOTAL FUEL CONSUMPTION",1,1,4,4,1,3,4,2 "Indirect Uses-Boiler Fuel",0,3,4,5,1,2,5,0

171

The demonstration of an advanced cyclone coal combustor, with internal sulfur, nitrogen, and ash control for the conversion of a 23 MMBTU/hour oil fired boiler to pulverized coal  

SciTech Connect

This work contains to the final report of the demonstration of an advanced cyclone coal combustor. Titles include: Chronological Description of the Clean Coal Project Tests,'' Statistical Analysis of Operating Data for the Coal Tech Combustor,'' Photographic History of the Project,'' Results of Slag Analysis by PA DER Module 1 Procedure,'' Properties of the Coals Limestone Used in the Test Effort,'' Results of the Solid Waste Sampling Performed on the Coal Tech Combustor by an Independent Contractor During the February 1990 Tests.'' (VC)

Zauderer, B.; Fleming, E.S.

1991-08-30T23:59:59.000Z

172

Catagenesis of organic matter of oil source rocks in Upper Paleozoic coal formation of the Bohai Gulf basin (eastern China)  

Science Conference Proceedings (OSTI)

The Bohai Gulf basin is the largest petroliferous basin in China. Its Carboniferous-Permian deposits are thick (on the average, ca. 600 m) and occur as deeply as 5000 m. Coal and carbonaceous shale of the Carboniferous Taiyuan Formation formed in inshore plain swamps. Their main hydrocarbon-generating macerals are fluorescent vitrinite, exinite, alginite, etc. Coal and carbonaceous shale of the Permian Shanxi Formation were deposited in delta-alluvial plain. Their main hydrocarbon-generating macerals are vitrinite, exinite, etc. The carbonaceous rocks of these formations are characterized by a high thermal maturity, with the vitrinite reflectance R{sub 0} > 2.0%. The Bohai Gulf basin has been poorly explored so far, but it is highly promising for natural gas.

Li, R.X.; Li, Y.Z.; Gao, Y.W. [Changan University, Xian (China)

2007-05-15T23:59:59.000Z

173

Mild coal pretreatment to improve liquefaction reactivity  

SciTech Connect

This report describes work completed during the fourth quarter of a three year project to study the effects of mild chemical pretreatment on coal dissolution reactivity during low severity liquefaction or coal/oil coprocessing. The overall objective of this research is to elucidate changes in the chemical and physical structure of coal by pretreating with methanol or other simple organic solvent and a trace amount of hydrochloric acid and measure the influence of these changes on coal dissolution reactivity. This work is part of a larger effort to develop a new coal liquefaction or coal/oil coprocessing scheme consisting of three main process steps: (1) mile pretreatment of the feed coal to enhance dissolution reactivity and dry the coal, (2) low severity thermal dissolution of the pretreated coal to obtain a very reactive coal-derived residual material amenable to upgrading, and (3) catalytic upgrading of the residual products to distillate liquids.

Miller, R.L.

1991-01-01T23:59:59.000Z

174

NETL: Clean Coal Demonstrations - Project Performance Summaries  

NLE Websites -- All DOE Office Websites (Extended Search)

Deepwater Technology Enhanced Oil Recovery Gas Hydrates Natural Gas Resources Contacts Coal & Power Systems Major Demonstrations Innovations for Existing Plants Gasification...

175

Evaluation of coal minerals and metal residues as coal-liquefaction catalysts. Final report  

DOE Green Energy (OSTI)

The catalytic activity of various minerals, metallic wastes, and transition metals was investigated in the liquefaction of various coals. The effects of coal type, process variables, coal cleaning, catalyst addition mode, solvent quality, and solvent modification on coal conversion and oil production were also studied. Coal conversion and oil production improved significantly by the addition of pyrite, reduced pyrite, speculite, red mud, flue dust, zinc sulfide, and various transition metal compounds. Impregnation and molecular dispersion of iron gave higher oil production than particulate incorporation of iron. However, the mode of molybdenum addition was inconsequential. Oil production increased considerably both by adding a stoichiometric mixture of iron oxide and pyrite and by simultaneous impregnation of coal with iron and molybdenum. Hydrogenation activity of disposable catalysts decreased sharply in the presence of nitrogen compounds. The removal of heteroatoms from process solvent improved thermal as well as catalytic coal liquefaction. The improvement in oil production was very dramatic with a catalyst.

Garg, D.; Givens, E. N.; Schweighardt, F. K.; Tarrer, A. R.; Guin, J. A.; Curtis, C. W.; Huang, W. J.; Shridharani, K.; Clinton, J. H.

1982-02-01T23:59:59.000Z

176

World coal outlook to the year 2000  

SciTech Connect

The 1983 edition of the World Coal Outlook to the Year 2000 examines the worldwide impact of lower oil prices and lower economic activity on the demand, production, and international trade in coal. The report includes detailed regional forecasts of coal demand by end-use application. Regions include the US, Canada, Western Europe, Japan, Other Asia, Latin America, Africa, Australia/New Zealand, Communist Europe, and Communist Asia. In addition, regional coal production forecasts are provided with a detailed analysis of regional coal trade patterns. In all instances, the changes relative to Chase's previous forecasts are shown. Because of the current situation in the oil market, the report includes an analysis of the competitive position of coal relative to oil in the generation of electricity, and in industrial steam applications. The report concludes with an examination of the impact of an oil price collapse on the international markets for coal.

1983-01-01T23:59:59.000Z

177

The end of the age of oil David Goodstein  

E-Print Network (OSTI)

(99 Quads) #12;Fossil Fuels Oil Natural gas Shale oil Methane hydrate Coal #12;Coal Hundreds, maybeOut of Gas The end of the age of oil David Goodstein Portland State University November 14, 2008 #12;Energy Myths $4.00 a gallon is too much to pay for gasoline Oil companies produce oil. We must

Bertini, Robert L.

178

Oil Study Guide - Middle School | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Study Guide - Middle School Oil Study Guide - Middle School More Documents & Publications Oil Study Guide - High School How is shale gas produced? Coal Study Guide - Middle School...

179

RSE Table 3.5 Relative Standard Errors for Table 3.5  

U.S. Energy Information Administration (EIA) Indexed Site

5 Relative Standard Errors for Table 3.5;" 5 Relative Standard Errors for Table 3.5;" " Unit: Percents." " "," "," "," "," "," "," "," ","Waste",," " " "," "," ","Blast"," "," ","Pulping Liquor"," ","Oils/Tars" "NAICS"," "," ","Furnace/Coke","Waste","Petroleum","or","Wood Chips,","and Waste" "Code(a)","Subsector and Industry","Total","Oven Gases","Gas","Coke","Black Liquor","Bark","Materials"

180

Coal liquefaction process wherein jet fuel, diesel fuel and/or ASTM No. 2 fuel oil is recovered  

DOE Patents (OSTI)

An improved process for the liquefaction of coal and similar solid carbonaceous materials wherein a hydrogen donor solvent or diluent derived from the solid carbonaceous material is used to form a slurry of the solid carbonaceous material and wherein the naphthenic components from the solvent or diluent fraction are separated and used as jet fuel components. The extraction increases the relative concentration of hydroaromatic (hydrogen donor) components and as a result reduces the gas yield during liquefaction and decreases hydrogen consumption during said liquefaction. The hydrogenation severity can be controlled to increase the yield of naphthenic components and hence the yield of jet fuel and in a preferred embodiment jet fuel yield is maximized while at the same time maintaining solvent balance.

Bauman, Richard F. (Houston, TX); Ryan, Daniel F. (Friendswood, TX)

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil coal rse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Investigation of the filtration processes of coal hydrogenation slurries and suspensions obtained after the extraction of oils  

Science Conference Proceedings (OSTI)

As a result of an investigation of the filtration of slurries and their suspensions in hydrogenates under a pressure difference ..delta..P = 0.03 MPa at t = 25 to 120/sup 8/C on various filtration barriers (the ash content of the filtrates did not exceed 0.1%) it was established that the filtration rate of the slurries and their suspensions in hydrogenates is strongly dependent on the type of coal and the hydrogenation conditions and decreases as the content of solid substances and asphaltenes increases. The rate of filtration of the suspensions of the slurries in the hydrogenates is approximately an order of magnitude greater than that of the original slurries; this is due to the sharp drop in the viscosity of the liquid and the aggregation of the small solid particles when the slurry is mixed with the hydrogenate. The rate of filtration for the slurries can be increased by adding auxiliary substances.

Gel'perin, N.I.; Pebalk, V.L.; Shashkova, M.N.; Gorlov, E.G.; Zotova, O.V.

1987-10-10T23:59:59.000Z

182

Quarterly Coal Report  

Gasoline and Diesel Fuel Update (EIA)

June 2010 DOE/EIA-0121 (2010/01Q) June 2010 DOE/EIA-0121 (2010/01Q) Revised: July 2012 Quarterly Coal Report January - March 2010 June 2010 U.S. Energy Information Administration Office of Oil, Gas, and Coal Supply Statistics U.S. Department of Energy Washington, DC 20585 _____________________________________________________________________________ This report is available on the Web at: http://www.eia.gov/coal/production/quarterly/ _____________________________________________ This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of

183

Processing needs and methodology for wastewaters from the conversion of coal, oil shale, and biomass to synfuels  

DOE Green Energy (OSTI)

The workshop identifies needs to be met by processing technology for wastewaters, and evaluates the suitability, approximate costs, and problems associated with current technology. Participation was confined to DOE Environmental Control Technology contractors to pull together and integrate past wastewater-related activities, to assess the status of synfuel wastewater treatability and process options, and to abet technology transfer. Particular attention was paid to probable or possible environmental restrictions which cannot be economically met by present technology. Primary emphasis was focussed upon process-condensate waters from coal-conversion and shale-retorting processes. Due to limited data base and time, the workshop did not deal with transients, upsets, trade-offs and system optimization, or with solids disposal. The report is divided into sections that, respectively, survey the water usage and effluent situation (II); identify the probable and possible water-treatment goals anticipated at the time when large-scale plants will be constructed (III); assess the capabilities, costs and shortcomings of present technology (IV); explore particularly severe environmental-control problems (V); give overall conclusions from the Workshop and recommendations for future research and study (VI); and, finally, present Status Reports of current work from participants in the Workshop (VII).

Not Available

1980-05-01T23:59:59.000Z

184

SRC Residual fuel oils  

DOE Patents (OSTI)

Coal solids (SRC) and distillate oils are combined to afford single-phase blends of residual oils which have utility as fuel oils substitutes. The components are combined on the basis of their respective polarities, that is, on the basis of their heteroatom content, to assure complete solubilization of SRC. The resulting composition is a fuel oil blend which retains its stability and homogeneity over the long term.

Tewari, Krishna C. (Whitehall, PA); Foster, Edward P. (Macungie, PA)

1985-01-01T23:59:59.000Z

185

"Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","and Breeze","Other(g)"  

U.S. Energy Information Administration (EIA) Indexed Site

4.4 Relative Standard Errors for Table 4.4;" 4.4 Relative Standard Errors for Table 4.4;" " Unit: Percents." " "," "," ",," "," "," "," "," "," "," ",," " " "," ","Any" "NAICS"," ","Energy",,"Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","and Breeze","Other(g)" ,,"Total United States" , 311,"Food",0.4,0.4,19.4,9,2,6.9,5.4,0,10.3

186

RSE Table S3.1 and S3.2. Relative Standard Errors for Tables S3.1 and S3.2  

U.S. Energy Information Administration (EIA) Indexed Site

S3.1 and S3.2. Relative Standard Errors for Tables S3.1 and S3.2;" S3.1 and S3.2. Relative Standard Errors for Tables S3.1 and S3.2;" " Unit: Percents." " "," " "SIC"," "," ","Net","Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Major Group and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)" ,,"Total United States" , 20,"Food and Kindred Products",1,1,3,5,1,6,1,0,1 21,"Tobacco Products",4,5,23,53,10,24,1,0,32 22,"Textile Mill Products",2,2,4,16,3,7,1,0,4

187

RSE Table S2.1 and S2.2. Relative Standard Errors for Tables S2.1 and S2.2  

U.S. Energy Information Administration (EIA) Indexed Site

S2.1 and S2.2. Relative Standard Errors for Tables S2.1 and S2.2;" S2.1 and S2.2. Relative Standard Errors for Tables S2.1 and S2.2;" " Unit: Percents." " "," "," ",," "," "," "," "," "," ",," " "SIC"," "," ","Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Major Group and Industry","Total","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal","and Breeze","Other(e)" ,,"Total United States" , 20,"Food and Kindred Products",5,0,8,0,0,0,0,7 21,"Tobacco Products",0,0,0,0,0,0,0,0

188

RSE Table E8.1 and E8.2. Relative Standard Errors for Tables E8.1 and E8.2  

U.S. Energy Information Administration (EIA) Indexed Site

E8.1 and E8.2. Relative Standard Errors for Tables E8.1 and E8.2;" E8.1 and E8.2. Relative Standard Errors for Tables E8.1 and E8.2;" " Unit: Percents." " ",," "," ",," "," " "Economic",,"Residual","Distillate",,"LPG and" "Characteristic(a)","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal" ,"Total United States" "Value of Shipments and Receipts" "(million dollars)" " Under 20",4,18,10,7,3,8 " 20-49",2,19,5,3,11,8 " 50-99",2,14,6,2,17,10 " 100-249",1,11,4,2,1,12 " 250-499",2,1,10,2,0,1 " 500 and Over",1,1,1,1,0,1

189

RSE Table N2.1 and N2.2. Relative Standard Errors for Tables N2.1 and N2.2  

U.S. Energy Information Administration (EIA) Indexed Site

N2.1 and N2.2. Relative Standard Errors for Tables N2.1 and N2.2;" N2.1 and N2.2. Relative Standard Errors for Tables N2.1 and N2.2;" " Unit: Percents." " "," " "NAICS"," "," ","Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Total","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal","and Breeze","Other(e)" ,,"Total United States" , 311,"Food",6,0,8,0,0,0,0,7 312,"Beverage and Tobacco Products",10,0,82,0,0,0,0,9 313,"Textile Mills",19,0,77,3,20,0,0,48 314,"Textile Product Mills",38,0,0,38,27,0,0,42

190

Research investigations in oil shale, tar sand, coal research, advanced exploratory process technology, and advanced fuels research: Volume 2 -- Jointly sponsored research program. Final report, October 1986--September 1993  

DOE Green Energy (OSTI)

Numerous studies have been conducted in five principal areas: oil shale, tar sand, underground coal gasification, advanced process technology, and advanced fuels research. In subsequent years, underground coal gasification was broadened to be coal research, under which several research activities were conducted that related to coal processing. The most significant change occurred in 1989 when the agreement was redefined as a Base Program and a Jointly Sponsored Research Program (JSRP). Investigations were conducted under the Base Program to determine the physical and chemical properties of materials suitable for conversion to liquid and gaseous fuels, to test and evaluate processes and innovative concepts for such conversions, to monitor and determine environmental impacts related to development of commercial-sized operations, and to evaluate methods for mitigation of potential environmental impacts. This report is divided into two volumes: Volume 1 consists of 28 summaries that describe the principal research efforts conducted under the Base Program in five topic areas. Volume 2 describes tasks performed within the JSRP. Research conducted under this agreement has resulted in technology transfer of a variety of energy-related research information. A listing of related publications and presentations is given at the end of each research topic summary. More specific and detailed information is provided in the topical reports referenced in the related publications listings.

Smith, V.E.

1994-09-01T23:59:59.000Z

191

Upgrading of coal liquefaction feedstock by selective agglomeration  

SciTech Connect

The technical feasibility study of using selective agglomeration (with coal-derived oil) to upgrade Illinois No. 6 coal for a liquefaction feedstock was completed. Effects of coal particle size, slurry pH, oil-to-coal ratio, and operating temperature on mineral matter reduction, clean coal weight recovery, and clean coal moisture content were studied. The addition of coal-derived naphtha or kerosene as conditioners to increase hydrophobicity and recovery of coal was also investigated. Results showed that approximately 70% of the mineral matter could be removed from this coal at a clean coal weight recovery of over 85% by grinding the coal to a mean volume diameter of about 10 microns and properly selecting of the operation variables.

Lai, R.; Sinha, K.; Richardson, A.; Killmeyer, R.; Utz, B.; Hickey, R.; Cillo, D.

1994-03-01T23:59:59.000Z

192

Capacity modelling of the coal value chain at Sasol coal supply  

Science Conference Proceedings (OSTI)

Sasol, a petrochemical company in the Republic of South Africa, uses coal to produce oil and chemical products. The coal is mined in the area surrounding the Sasol plants and is transported with conveyor belts to the stockpiles at the gas production ... Keywords: coal conveyor simulation, modelling

Marthi Harmse; Johan Janse v Rensburg

2007-05-01T23:59:59.000Z

193

Balancing oil and environment... responsibly.  

Science Conference Proceedings (OSTI)

Balancing Oil and Environment…Responsibly As the price of oil continues to skyrocket and global oil production nears the brink, pursuing unconventional oil supplies, such as oil shale, oil sands, heavy oils, and oils from biomass and coal has become increasingly attractive. Of particular significance to the American way is that our continent has significant quantities of these resources. Tapping into these new resources, however, requires cutting-edge technologies for identification, production, processing and environmental management. This job needs a super hero or two for a job of this size and proportion…

Weimer, Walter C.; Teske, Lisa

2007-01-25T23:59:59.000Z

194

,,,"Residual Fuel Oil(b)",,,," Alternative...  

U.S. Energy Information Administration (EIA) Indexed Site

5 Relative Standard Errors for Table 10.5;" " Unit: Percents." ,,,"Residual Fuel Oil(b)",,,," Alternative Energy Sources(c)" ,,,"Coal Coke" "NAICS"," ","Total","...

195

Coalbed methane producibility from the Mannville coals in Alberta, Canada: A comparison of two areas  

E-Print Network (OSTI)

recently completed coal bed methane (CBM) and oil and gas wells; · Develop more-comprehensive in-place coal is to conduct regional-scale, coal resource and reserve assessments of the significant coal beds in all major U the coal beds are thick, shallow, and gently dipping along the eastern margin of the Wyoming part

Paris-Sud XI, Université de

196

USE OF ZEEMAN ATOMIC ABSORPTION SPECTROSCOPY FOR THE MEASUREMENT OF MERCURY IN OIL SHALE GASES  

E-Print Network (OSTI)

Minor Elements in Oil Shale and Oil-Shale Products. LERC RIChemistry of Tar Sands and Oil Shale, ACS, New Orleans.Constituent Analysis of Oil Shale and Solvent-Refined Coal

Girvin, D.G.

2011-01-01T23:59:59.000Z

197

Iron catalyzed coal liquefaction process  

DOE Patents (OSTI)

A process is described for the solvent refining of coal into a gas product, a liquid product and a normally solid dissolved product. Particulate coal and a unique co-catalyst system are suspended in a coal solvent and processed in a coal liquefaction reactor, preferably an ebullated bed reactor. The co-catalyst system comprises a combination of a stoichiometric excess of iron oxide and pyrite which reduce predominantly to active iron sulfide catalysts in the reaction zone. This catalyst system results in increased catalytic activity with attendant improved coal conversion and enhanced oil product distribution as well as reduced sulfide effluent. Iron oxide is used in a stoichiometric excess of that required to react with sulfur indigenous to the feed coal and that produced during reduction of the pyrite catalyst to iron sulfide.

Garg, Diwakar (Macungie, PA); Givens, Edwin N. (Bethlehem, PA)

1983-01-01T23:59:59.000Z

198

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round...  

NLE Websites -- All DOE Office Websites (Extended Search)

Deepwater Technology Enhanced Oil Recovery Gas Hydrates Natural Gas Resources Contacts Coal & Power Systems Major Demonstrations Innovations for Existing Plants Gasification...

199

Coal & Power Systems Strategic Plan & Multi-Year Program  

NLE Websites -- All DOE Office Websites (Extended Search)

produce transportation fuels, chemicals, and feedstocks from coal, natural gas, oil shale, biomass, and other carbonaceous resources. Technologies to produce hydrogen will...

200

"End Use","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b...  

U.S. Energy Information Administration (EIA) Indexed Site

Oil",,,"Coal" " "," ","Net","Residual","and",,"LPG and","(excluding Coal"," " "End Use","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural Gas(c)","NGL(d)","Coke...

Note: This page contains sample records for the topic "oil coal rse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

"End Use","for Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural...  

U.S. Energy Information Administration (EIA) Indexed Site

Oil",,,"Coal" ,"Net Demand","Residual","and",,"LPG and","(excluding Coal" "End Use","for Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural Gas(c)","NGL(d)","Coke and Breeze...

202

A study of the interfacial chemistry of pyrite and coal in fine coal cleaning using flotation  

SciTech Connect

Surface oxidation, surface charge, and flotation properties have been systematically studied for coal, coal-pyrite and ore-pyrite. Electrochemical studies show that coal-pyrite exhibits much higher and more complex surface oxidation than ore-pyrite and its oxidation rate depends strongly on the carbon/coal content. Flotation studies indicate that pyrites have no self-induced floatability. Fuel oil significantly improves the floatability of coal and induces considerable flotation for coal-pyrite due to the hydrophobic interaction of fuel oil with the carbon/coal inclusions on the pyrite surface. Xanthate is a good collector for ore-pyrite but a poor collector for coal and coal-pyrite. The results from thermodynamic calculations, flotation and zeta potential measurements show that iron ions greatly affect the flotation of pyrite with xanthate and fuel oil. Various organic and inorganic chemicals have been examined for depressing coal-pyrite. It was found, for the first time, that sodium pyrophosphate is an effective depressant for coal-pyrite. Solution chemistry shows that pyrophosphate reacts with iron ions to form stable iron pyrophosphate complexes. Using pyrophosphate, the complete separation of pyrite from coal can be realized over a wide pH range at relatively low dosage.

Jiang, C.

1993-12-31T23:59:59.000Z

203

Oil from rock  

SciTech Connect

The article discusses first the Green River Formation oil shale projects in the western United States from which conservative estimates have suggested an output of 400,000 to 600,000 bbl/day of crude shale oil by 1990. The western reserves recoverable with present technology are said to exceed 600 billion (10/sup 9/) bbl. Three major considerations could limit the large-scale development of shale oil: availability of water, environmental factors, and socio-economic considerations. Water is used to obtain and process the crude shale oil, and additional water is needed to cool the spent shale and to establish new vegetation on top of it. Nitrogenous compounds and arsenic in crude shale oil are among potential pollutants. Spent shale contains salts that are potentially leachable, as well as organic pyrolytic products. Retorting oil shales may release more CO/sub 2/ through decomposition of carbonate minerals that will subsequently be generated by burning the oil produced. Topographic effects of oil shale mining may raise socio-economic problems. Next the article discusses the conversion of coal to liquid by pyrolysis or hydrogenation, including the Gulf solvent refined coal (SRC) and the Exxon (EDS) liquefaction processes. Also described in the South African SASOL process for producing synthetic fuel from coal. A parallel account is included on the estimated complete cycle of United States and of worldwide crude oil production, forecasting depletion within less than a century. 11 refs.

Walters, S.

1982-02-01T23:59:59.000Z

204

Extending gear life in a coal pulverizer gearbox  

Science Conference Proceedings (OSTI)

A coal-fired power plant in the Western United States experienced short gearbox life in the 13 coal pulverizers operating at the plant. Wear on the bronze bull gear faces was suspected to have been caused by high particulate loading of coal dust and dirt in the gear oil, catalytic reaction between gear oil additives and some of the particulates generated, and high levels of copper in the gear oil. By addressing particulate ingress, adding filtration and switching to a synthetic gear oil, significant benefits were made to the power plant and gear oil life was extended. 2 photos., 1 tab.

Hansen, T.

2007-08-15T23:59:59.000Z

205

Correlation of stability/rheology relationship with coal: Properties and chemical additives  

SciTech Connect

Coal-water slurries have the potential of a near term replacement for fuel oil. In order to gain the fundamental understanding of the preparation and handling of coal-water slurries, experiments were performed to identify the relationship between the coal content of a given coal-water slurry and its physical and chemical properties. The objectives of this program were: Investigate the relationship between the chemical and physical properties of coal and the rheology of coal-water slurry Define procedures for evaluating and preparing coal water slurries for a particular coal candidate, based on the characteristic coal properties Develop improved methods of screening surfactants used in coal-water slurry preparation Perform experiments designed to investigate the effect of characteristic coal properties on slurry quality, by examining the effect of the individual coal properties on slurry quality Develop a statistical formulation to predict the coal content of a given coal water slurry content based on the coal characteristic properties.

Ohene, F.

1992-02-19T23:59:59.000Z

206

Controlling Energy Costs with Coal Conversion  

E-Print Network (OSTI)

Even with a decade of substantial energy reduction in America's manufacturing plants and a temporary 'oil glut', energy often represents the largest plant expense, higher than labor or raw materials. Energy is not only a major plant expense; it is usually regarded as the most controllable. Fluidized bed combustion technology allows industrial steam users to use low-grade coals that are outside of mainstream coal markets, are abundant, and are very inexpensive, being one-quarter to one-third the price of oil or gas. This paper discusses the economics of low-grade coal, what is fluidized bed technology and its comparison to conventional coal and gas/oil fired systems, and one coal-fired FBC installation in Texas.

Sadowski, R. S.; von Hippel, C. S.

1984-01-01T23:59:59.000Z

207

"Characteristic(a)","Total","Fuel Oil","Fuel Oil(b)","Natural...  

U.S. Energy Information Administration (EIA) Indexed Site

ual","Distillate",,"LPG and",,"Coke and"," " "Characteristic(a)","Total","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal","Breeze","Other(e)" ,"Total United States" "Value...

208

"Economic","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas...  

U.S. Energy Information Administration (EIA) Indexed Site

and" "Economic","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal" "Characteristic(a)","(kWh)","(gallons)","(gallons)","(1000 cu ft)","(gallons)","(short tons)...

209

"Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","Breeze","Other(g)","Produced Onsite(h)"  

U.S. Energy Information Administration (EIA) Indexed Site

1.4 Relative Standard Errors for Table 1.4;" 1.4 Relative Standard Errors for Table 1.4;" " Unit: Percents." ,,"Any",,,,,,,,,"Shipments" "NAICS",,"Energy","Net","Residual","Distillate",,"LPG and",,"Coke and",,"of Energy Sources" "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","Breeze","Other(g)","Produced Onsite(h)" ,,"Total United States" 311,"Food",0.4,0.4,19.4,8.9,2,6.9,5.4,0,10.1,9.1 3112," Grain and Oilseed Milling",0,0,21.1,14.7,8.4,13.3,7.9,"X",17.9,9.1

210

COAL & POWER SYSTEMS  

NLE Websites -- All DOE Office Websites (Extended Search)

COAL & POWER SYSTEMS COAL & POWER SYSTEMS STRATEGIC & MULTI-YEAR PROGRAM PLANS U.S. DEPARTMENT OF ENERGY * OFFICE OF FOSSIL ENERGY GREENER, SOONER... THROUGH TECHNOLOGY INTRODUCTION .......... i-1 STRATEGIC PLAN ........ 1-1 PROGRAM PLANS Vision 21 .......................... 2-1 Central Power Systems ...... 3-1 Distributed Generation ..... 4-1 Fuels ................................ 5-1 Carbon Sequestration ....... 6-1 Advanced Research ........... 7-1 TABLE OF CONTENTS STRATEGIC & MULTI-YEAR PROGRAM PLANS STRENGTH THROUGH SCIENCE... A "GREENER, SOONER" PHILOSOPHY Coal, natural gas, and oil fuel about 70 percent of the electricity generated in the United States. As promising as renewable and other alternative fuels are, it will be several decades before they can make significant energy contributions to the Nation's

211

Process for treating moisture laden coal fines  

SciTech Connect

A process is provided for making a free flowing granular product from moisture laden caked coal fines, such as wet cake, by mixing a water immiscible substance, such as oil, with the caked coal, preferably under low shear forces for a period of time sufficient to produce a plurality of free flowing granules. Each granule is preferably comprised of a dry appearing admixture of one or more coal particle, 2-50% by weight water and the water immiscible substance.

Davis, Burl E. (New Kensington, PA); Henry, Raymond M. (Gibsonia, PA); Trivett, Gordon S. (South Surrey, CA); Albaugh, Edgar W. (Birmingham, AL)

1993-01-01T23:59:59.000Z

212

Co-processing of carbonaceous solids and petroleum oil  

DOE Patents (OSTI)

In a process for producing distillates from coal by a first stage thermal liquefaction followed by a catalytic hydrogenation, liquefaction solvent is added at points spaced over the length of the thermal liquefaction heater. Coal may be co-processed with petroleum oil by adding pre-hydrogenated oil to the first stage or unhydrogenated oil to the second stage.

Gupta, Avinash (Bloomfield, NJ); Greene, Marvin I. (Oradell, NJ)

1992-01-01T23:59:59.000Z

213

2003 CBECS RSE Tables  

Gasoline and Diesel Fuel Update (EIA)

detailedtables20032003rsetablesfilesplainlink.css" typetextcss relstylesheet> Home > Households, Buildings & Industry > Commercial Buildings Energy Consumption Survey...

214

Catalytic coal liquefaction with treated solvent and SRC recycle  

DOE Patents (OSTI)

A process for the solvent refining of coal to distillable, pentane soluble products using a dephenolated and denitrogenated recycle solvent and a recycled, pentane-insoluble, solvent-refined coal material, which process provides enhanced oil-make in the conversion of coal.

Garg, Diwakar (Macungie, PA); Givens, Edwin N. (Bethlehem, PA); Schweighardt, Frank K. (Allentown, PA)

1986-01-01T23:59:59.000Z

215

Coal liquefaction process using pretreatment with a binary solvent mixture  

DOE Patents (OSTI)

An improved process for thermal solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a hydrogen donor solvent comprises pretreating the coal with a binary mixture of an aromatic hydrocarbon and an aliphatic alcohol at a temperature below 300.degree. C. before the hydroliquefaction step. This treatment generally increases both conversion of coal and yields of oil.

Miller, Robert N. (Allentown, PA)

1986-01-01T23:59:59.000Z

216

Process for removing pyritic sulfur from bituminous coals  

DOE Patents (OSTI)

A process is provided for removing pyritic sulfur and lowering ash content of bituminous coals by grinding the feed coal, subjecting it to micro-agglomeration with a bridging liquid containing heavy oil, separating the microagglomerates and separating them to a water wash to remove suspended pyritic sulfur. In one embodiment the coal is subjected to a second micro-agglomeration step.

Pawlak, Wanda (Edmonton, CA); Janiak, Jerzy S. (Edmonton, CA); Turak, Ali A. (Edmonton, CA); Ignasiak, Boleslaw L. (Edmonton, CA)

1990-01-01T23:59:59.000Z

217

Catalytic coal liquefaction with treated solvent and SRC recycle  

DOE Patents (OSTI)

A process is described for the solvent refining of coal to distillable, pentane soluble products using a dephenolated and denitrogenated recycle solvent and a recycled, pentane-insoluble, solvent-refined coal material, which process provides enhanced oil-make in the conversion of coal. 2 figs.

Garg, D.; Givens, E.N.; Schweighardt, F.K.

1986-12-09T23:59:59.000Z

218

Coal pump  

DOE Patents (OSTI)

A device for pressurizing pulverized coal and circulating a carrier gas is disclosed. This device has utility in a coal gasification process and eliminates the need for a separate collection hopper and eliminates the separate compressor.

Bonin, John H. (Sunnyvale, CA); Meyer, John W. (Palo Alto, CA); Daniel, Jr., Arnold D. (Alameda County, CA)

1983-01-01T23:59:59.000Z

219

EIA - Coal Distribution  

U.S. Energy Information Administration (EIA) Indexed Site

Annual Coal Distribution Report > Annual Coal Distribution Archives Annual Coal Distribution Archive Release Date: February 17, 2011 Next Release Date: December 2011 Domestic coal...

220

Effect of modifying host oil on coprocessing  

Science Conference Proceedings (OSTI)

The world`s supply of petroleum crudes is becoming heavier in nature so that the amount of vacuum bottoms has been steadily increasing. Coprocessing of coal with these resids (1,000 F+) is an attractive way of obtaining useful distillates from these readily available cheap materials. The objective of this work is to pretreat the host oil in ways that would improve its performance in coprocessing with coal. The following are examples of some ways in which heavy oil could be made into a better host oil: converting aromatic structures to hydroaromatics capable of donating hydrogen to coal, cracking the heavy oil to lower molecular weight material that would be a better solvent, and removing metals, sulfur, and nitrogen. The work reported here used a Venezuelan oil obtained from the Corpus Christi refinery of Citgo. Two coals, Illinois No. 6 and Wyodak subbituminous, were coprocessed with host oils. The authors have found that mild pretreatment of a Citgo resid (1,000 F) using either Mo naphthenate or Mo/Fe{sub 2}O{sub 3}/SO{sub 4}, as well as a pretreatment using the homogeneous catalyst Co{sub 2}(CO){sub 8} under synthesis gas can increase the available (donatable) hydrogen content of the resid. When these pretreated oils were thermally (no added catalyst) coprocessed with an Illinois No. 6 coal, about 90 wt% of the coal (maf) was converted to soluble products. This high coal conversion was realized even at a high coal loading of 50 wt%. The products from coprocessing coal and oil were equally split between high boiling material, mostly asphaltenes, and distillate. Distillate yields appeared to be affected by the concentration of coal in the feed, with maximum yields at coal loadings below 50 wt%.

Hajdu, P.E.; Tierney, J.W.; Wender, I.

1995-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil coal rse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

China's Coal: Demand, Constraints, and Externalities  

Science Conference Proceedings (OSTI)

This study analyzes China's coal industry by focusing on four related areas. First, data are reviewed to identify the major drivers of historical and future coal demand. Second, resource constraints and transport bottlenecks are analyzed to evaluate demand and growth scenarios. The third area assesses the physical requirements of substituting coal demand growth with other primary energy forms. Finally, the study examines the carbon- and environmental implications of China's past and future coal consumption. There are three sections that address these areas by identifying particular characteristics of China's coal industry, quantifying factors driving demand, and analyzing supply scenarios: (1) reviews the range of Chinese and international estimates of remaining coal reserves and resources as well as key characteristics of China's coal industry including historical production, resource requirements, and prices; (2) quantifies the largest drivers of coal usage to produce a bottom-up reference projection of 2025 coal demand; and (3) analyzes coal supply constraints, substitution options, and environmental externalities. Finally, the last section presents conclusions on the role of coal in China's ongoing energy and economic development. China has been, is, and will continue to be a coal-powered economy. In 2007 Chinese coal production contained more energy than total Middle Eastern oil production. The rapid growth of coal demand after 2001 created supply strains and bottlenecks that raise questions about sustainability. Urbanization, heavy industrial growth, and increasing per-capita income are the primary interrelated drivers of rising coal usage. In 2007, the power sector, iron and steel, and cement production accounted for 66% of coal consumption. Power generation is becoming more efficient, but even extensive roll-out of the highest efficiency units would save only 14% of projected 2025 coal demand for the power sector. A new wedge of future coal consumption is likely to come from the burgeoning coal-liquefaction and chemicals industries. If coal to chemicals capacity reaches 70 million tonnes and coal-to-liquids capacity reaches 60 million tonnes, coal feedstock requirements would add an additional 450 million tonnes by 2025. Even with more efficient growth among these drivers, China's annual coal demand is expected to reach 3.9 to 4.3 billion tonnes by 2025. Central government support for nuclear and renewable energy has not reversed China's growing dependence on coal for primary energy. Substitution is a matter of scale: offsetting one year of recent coal demand growth of 200 million tonnes would require 107 billion cubic meters of natural gas (compared to 2007 growth of 13 BCM), 48 GW of nuclear (compared to 2007 growth of 2 GW), or 86 GW of hydropower capacity (compared to 2007 growth of 16 GW). Ongoing dependence on coal reduces China's ability to mitigate carbon dioxide emissions growth. If coal demand remains on a high growth path, carbon dioxide emissions from coal combustion alone would exceed total US energy-related carbon emissions by 2010. Within China's coal-dominated energy system, domestic transportation has emerged as the largest bottleneck for coal industry growth and is likely to remain a constraint to further expansion. China has a low proportion of high-quality reserves, but is producing its best coal first. Declining quality will further strain production and transport capacity. Furthermore, transporting coal to users has overloaded the train system and dramatically increased truck use, raising transportation oil demand. Growing international imports have helped to offset domestic transport bottlenecks. In the long term, import demand is likely to exceed 200 million tonnes by 2025, significantly impacting regional markets.

Aden, Nathaniel; Fridley, David; Zheng, Nina

2009-07-01T23:59:59.000Z

222

Materials science aspects of coal  

Science Conference Proceedings (OSTI)

Natural organic materials are arrangements of linear aliphatic units and ring-like aromatic units arranged in a polymeric pattern. We show that fossilized organic materials such as coals and oil shale retain this polymeric character. We also show the polymeric nature of jet and amber

Charles Wert; Manfred Weller

2001-01-01T23:59:59.000Z

223

,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)"  

U.S. Energy Information Administration (EIA) Indexed Site

9 Relative Standard Errors for Table 10.9;" " Unit: Percents." ,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)" ,,,"Coal Coke" "NAICS"," ","Total","...

224

,,"Distillate Fuel Oil",,,"Alternative Energy Sources(b)"  

U.S. Energy Information Administration (EIA) Indexed Site

8 Relative Standard Errors for Table 10.8;" " Unit: Percents." ,,"Distillate Fuel Oil",,,"Alternative Energy Sources(b)" ,,,"Coal Coke" "NAICS"," ","Total","...

225

Working crude oil storage capacity at Cushing, Oklahoma ...  

U.S. Energy Information Administration (EIA)

... coal in the United States? ... 2012 working crude oil storage capacity at the Cushing, Oklahoma storage and trading hub was 61.9 million barrels, ...

226

Rail delivery of crude oil and petroleum products rising ...  

U.S. Energy Information Administration (EIA)

What is the role of coal in the United States? ... where oil production has soared from about 343,000 barrels per day ... 2012. December; November; ...

227

Enhancement of surface properties for coal beneficiation  

SciTech Connect

The main objective of this research project is to study ways to modify surface properties of coal, pyrite and ash-forming mineral matter for beneficiation of fine coal. Since the differences in surface properties of coal and mineral matter are utilized in several oil based preparation technologies, such as: froth flotation, emulsion flotation, spherical agglomeration and liquid-liquid separation, another objective is to delineate the role of oil. The following studies are behind carried out to achieve the objectives: Investigation of the natural hydrophobicity of coal and pyrite; development and evaluation of enhanced coal hydrophobicity; development and evaluation of reagents xanthates which modulate the hydrophobicity of pyrite; and development and evaluation of emulsion processes and their underlying principles.

Chander, S.; Aplan, F.F.

1990-01-01T23:59:59.000Z

228

Clean Coal Diesel Demonstration Project  

DOE Green Energy (OSTI)

A Clean Coal Diesel project was undertaken to demonstrate a new Clean Coal Technology that offers technical, economic and environmental advantages over conventional power generating methods. This innovative technology (developed to the prototype stage in an earlier DOE project completed in 1992) enables utilization of pre-processed clean coal fuel in large-bore, medium-speed, diesel engines. The diesel engines are conventional modern engines in many respects, except they are specially fitted with hardened parts to be compatible with the traces of abrasive ash in the coal-slurry fuel. Industrial and Municipal power generating applications in the 10 to 100 megawatt size range are the target applications. There are hundreds of such reciprocating engine power-plants operating throughout the world today on natural gas and/or heavy fuel oil.

Robert Wilson

2006-10-31T23:59:59.000Z

229

NETL: Clean Coal Demonstrations - Coal 101  

NLE Websites -- All DOE Office Websites (Extended Search)

Cleanest Coal Technology Clean Coal 101 Lesson 5: The Cleanest Coal Technology-A Real Gas Don't think of coal as a solid black rock. Think of it as a mass of atoms. Most of the...

230

"RSE Table N5.1. Relative Standard Errors for Table N5.1;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Relative Standard Errors for Table N5.1;" 1. Relative Standard Errors for Table N5.1;" " Unit: Percents." " "," "," "," "," "," "," "," ","Waste",," " " "," "," ","Blast"," "," ","Pulping Liquor"," ","Oils/Tars" "NAICS"," "," ","Furnace/Coke"," ","Petroleum","or","Wood Chips,","and Waste" "Code(a)","Subsector and Industry","Total","Oven Gases","Waste Gas","Coke","Black Liquor","Bark","Materials"

231

version 11apr11a Geopolitics of the Global Oil System  

E-Print Network (OSTI)

Alternatives: Oil sands, shale oil, Gas and/or Coal to Liquid o "Americas Oil Shale Resource," Office of Deputy: "Oil Shale Resources Technology and Economics." http://www.umich.edu/~twod/oil- ns [Optional] Section 3, "Environmental and Regulatory Issues," pp. 22 ­ 28. [Optional] Appendix B: "Oil Shale

O'Donnell, Tom

232

"Characteristic(a)","Total","Electricity(b)","Fuel Oil","Fuel...  

U.S. Energy Information Administration (EIA) Indexed Site

Net","Residual","Distillate",,"LPG and",,"Coke and"," " "Characteristic(a)","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","Breeze","Other(f)"...

233

Powering the World: Offshore Oil & Gas Production  

E-Print Network (OSTI)

rate of production of oil is peaking now, coal will peak in 2-5 years, and natural gas in 20-30 yearsPowering the World: Offshore Oil & Gas Production Macondo post-blowout operations Tad Patzek Gulf of Mexico's oil and gas production Conclusions ­ p.5/59 #12;Summary of Conclusions. . . The global

Patzek, Tadeusz W.

234

Coal_Studyguide.indd  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Study Guide: WHAT IS COAL? Coal looks like a shiny black rock. Coal has lots of energy in it. When it is burned, coal makes heat and light energy. Th e cave men used coal for...

235

Coal: America's energy future. Volume I  

SciTech Connect

Secretary of Energy Samuel W. Bodman requested the National Coal Council in April 2005 a report identifying the challenges and opportunities of more fully exploring the USA's domestic coal resources to meet the nations' future energy needs. This resultant report addresses the Secretary's request in the context of the President's focus, with eight findings and recommendations that would use technology to leverage the USA's extensive coal assets and reduce dependence on imported energy. Volume I outlines these findings and recommendations. Volume II provides technical data and case histories to support the findings and recommendations. Chapter headings of Volume I are: Coal-to-Liquids to Produce 2.6 MMbbl/d; Coal-to-Natural Gas to Produce 4.0 Tcf Per Year; Coal-to-Clean Electricity; Coal to Produce Ethanol; Coal-to-Hydrogen; Enhanced Oil and Gas (Coalbed Methane); Recovery as Carbon Management Strategies; Delineate U.S. Coal Reserves and Transportation Constraints as Part of an Effort to Maximize U.S. Coal Production; and Penn State Study, 'Economic Benefits of Coal Conversion Investments'.

NONE

2006-03-15T23:59:59.000Z

236

Evaluation of coal pretreatment prior to co-processing  

SciTech Connect

The Western Research Institute is currently developing a mild gasification process for the recovery of a stabilized char product for use as a fuel. A liquid product of limited value is produced during the mild gasification process that may be suited as a co-processing vehicle for coal-oil co-processing. Research was conducted to evaluate co-processing of this mild gasification liquid with coal. The two major areas of research discussed in this report are: (1) coal pretreatment with a coal-derived liquid to induce coal swelling and promote catalyst dispersion and (2) co-processing coal that has been thermally pretreated in the presence of the mild gasification liquid. The results of the investigation to evaluate co-processing of coal that has been thermally pretreated in the presence of the mild gasification liquid indicate that the thermal pretreatment adversely affected the coal-oil co-processing under hydrogen pressure. Thermally pretreated coals co-processed under a hydrogen atmosphere and without benefit of catalyst exhibited about 86 wt % conversion as compared to 96 wt % for coal that was only thermally dried. The addition of the iron pentacarbonyl catalyst precursor to the thermally pretreated coals did improve the conversion to near that of the dried coal. Results from analysis of the product obtained from co-processing the Illinois No. 6 coal showed it was upgraded in terms of oxygen content and hydrogen to carbon atomic ratio when compared to the mild gasification liquid.

Guffey, F.D.; Barbour, F.A.; Blake, R.F.

1991-12-01T23:59:59.000Z

237

Clean Coal Technology and the Clean Coal Power Initiative | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean Coal Technology and the Clean Coal Power Initiative Clean Coal Technology and the Clean Coal Power Initiative "Clean coal technology" describes a new generation of energy...

238

A fresh look at coal-derived liquid fuels  

Science Conference Proceedings (OSTI)

35% of the world's energy comes from oil, and 96% of that oil is used for transportation. The current number of vehicles globally is estimated to be 700 million; that number is expected to double overall by 2030, and to triple in developing countries. Now consider that the US has 27% of the world's supply of coal yet only 2% of the oil. Coal-to-liquids technologies could bridge the gap between US fuel supply and demand. The advantages of coal-derived liquid fuels are discussed in this article compared to the challenges of alternative feedstocks of oil sands, oil shale and renewable sources. It is argued that pollutant emissions from coal-to-liquid facilities could be minimal because sulfur compounds will be removed, contaminants need to be removed for the FT process, and technologies are available for removing solid wastes and nitrogen oxides. If CO{sub 2} emissions for coal-derived liquid plants are captured and sequestered, overall emissions of CO{sub 2} would be equal or less than those from petroleum. Although coal liquefaction requires large volumes of water, most water used can be recycled. Converting coal to liquid fuels could, at least in the near term, bring a higher level of stability to world oil prices and the global economy and could serve as insurance for the US against price hikes from oil-producing countries. 7 figs.

Paul, A.D. [Benham Companies LLC (USA)

2009-01-15T23:59:59.000Z

239

Mild coal pretreatment to improve liquefaction reactivity. Quarterly technical progress report, June--August 1991  

SciTech Connect

This report describes work completed during the fourth quarter of a three year project to study the effects of mild chemical pretreatment on coal dissolution reactivity during low severity liquefaction or coal/oil coprocessing. The overall objective of this research is to elucidate changes in the chemical and physical structure of coal by pretreating with methanol or other simple organic solvent and a trace amount of hydrochloric acid and measure the influence of these changes on coal dissolution reactivity. This work is part of a larger effort to develop a new coal liquefaction or coal/oil coprocessing scheme consisting of three main process steps: (1) mile pretreatment of the feed coal to enhance dissolution reactivity and dry the coal, (2) low severity thermal dissolution of the pretreated coal to obtain a very reactive coal-derived residual material amenable to upgrading, and (3) catalytic upgrading of the residual products to distillate liquids.

Miller, R.L.

1991-12-31T23:59:59.000Z

240

Major, minor and trace elements in direct coal liquefaction: effect on conversion and partitioning behavior.  

E-Print Network (OSTI)

??With current concerns of depleting oil sources and the environmental impacts of off-shore drilling, the interest in liquid transportation fuels derived from coal is increasing.… (more)

Luchner, Sarah

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil coal rse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Outlook and Challenges for Chinese Coal  

Science Conference Proceedings (OSTI)

China has been, is, and will continue to be a coal-powered economy. The rapid growth of coal demand since 2001 has created deepening strains and bottlenecks that raise questions about supply security. Although China's coal is 'plentiful,' published academic and policy analyses indicate that peak production will likely occur between 2016 and 2029. Given the current economic growth trajectory, domestic production constraints will lead to a coal gap that is not likely to be filled with imports. Urbanization, heavy industry growth, and increasing per-capita consumption are the primary drivers of rising coal usage. In 2006, the power sector, iron and steel, and cement accounted for 71% of coal consumption. Power generation is becoming more efficient, but even extensive roll-out of the highest efficiency units could save only 14% of projected 2025 coal demand. If China follows Japan, steel production would peak by 2015; cement is likely to follow a similar trajectory. A fourth wedge of future coal consumption is likely to come from the burgeoning coal-liquefaction and chemicals industries. New demand from coal-to-liquids and coal-to-chemicals may add 450 million tonnes of coal demand by 2025. Efficient growth among these drivers indicates that China's annual coal demand will reach 4.2 to 4.7 billion tonnes by 2025. Central government support for nuclear and renewable energy has not been able to reduce China's growing dependence on coal for primary energy. Few substitution options exist: offsetting one year of recent coal demand growth would require over 107 billion cubic meters of natural gas, 48 GW of nuclear, or 86 GW of hydropower capacity. While these alternatives will continue to grow, the scale of development using existing technologies will be insufficient to substitute significant coal demand before 2025. The central role of heavy industry in GDP growth and the difficulty of substituting other fuels suggest that coal consumption is inextricably entwined with China's economy in its current mode of growth. Ongoing dependence on coal reduces China's ability to mitigate carbon dioxide emissions growth. If coal demand remains on its current growth path, carbon dioxide emissions from coal combustion alone would exceed total US energy-related carbon emissions by 2010. Broadening awareness of the environmental costs of coal mining, transport, and combustion is raising the pressure on Chinese policy makers to find alternative energy sources. Within China's coal-dominated energy system, domestic transportation has emerged as the largest bottleneck for coal industry growth and is likely to remain a constraint to further expansion. China is short of high-quality reserves, but is producing its best coal first. Declining quality will further strain production and transport. Transporting coal to users has overloaded the train system and dramatically increased truck use, raising transport oil demand. Growing international imports have helped to offset domestic transport bottlenecks. In the long term, import demand is likely to exceed 200 mt by 2025, significantly impacting regional markets. The looming coal gap threatens to derail China's growth path, possibly undermining political, economic, and social stability. High coal prices and domestic shortages will have regional and global effects. Regarding China's role as a global manufacturing center, a domestic coal gap will increase prices and constrain growth. Within the Asia-Pacific region, China's coal gap is likely to bring about increased competition with other coal-importing countries including Japan, South Korea, Taiwan, and India. As with petroleum, China may respond with a government-supported 'going-out' strategy of resource acquisition and vertical integration. Given its population and growing resource constraints, China may favor energy security, competitiveness, and local environmental protection over global climate change mitigation. The possibility of a large coal gap suggests that Chinese and international policy makers should maximize institutional and financial support

Aden, Nathaniel T.; Fridley, David G.; Zheng, Nina

2008-06-20T23:59:59.000Z

242

Energy Policy and Economics 021 "Dynamics of the Oil Transition  

E-Print Network (OSTI)

are produced, primarily from coal [16]. Oil shale is only produced in minor quantities around the world rejected) and often cleaned of impurities such as heavy metals and sulfur before use. Oil shale from which oil is naturally created [13]. Oil shale must be heated in the absence of oxygen to 300

Kammen, Daniel M.

243

Electricity from coal and utilization of coal combustion by-products  

Science Conference Proceedings (OSTI)

Most electricity in the world is conventionally generated using coal, oil, natural gas, nuclear energy, or hydropower. Due to environmental concerns, there is a growing interest in alternative energy sources for heat and electricity production. The major by-products obtained from coal combustion are fly ash, bottom ash, boiler slag, and flue gas desulfurization (FGD) materials. The solid wastes produced in coal-fired power plants create problems for both power-generating industries and environmentalists. The coal fly ash and bottom ash samples may be used as cementitious materials.

Demirbas, A. [Sila Science, Trabzon (Turkey)

2008-07-01T23:59:59.000Z

244

Coal liquefaction with preasphaltene recycle  

SciTech Connect

A coal liquefaction system is disclosed with a novel preasphaltene recycle from a supercritical extraction unit to the slurry mix tank wherein the recycle stream contains at least 90% preasphaltenes (benzene insoluble, pyridine soluble organics) with other residual materials such as unconverted coal and ash. This subject process results in the production of asphaltene materials which can be subjected to hydrotreating to acquire a substitute for No. 6 fuel oil. The preasphaltene-predominant recycle reduces the hydrogen consumption for a process where asphaltene material is being sought.

Weimer, Robert F. (Allentown, PA); Miller, Robert N. (Allentown, PA)

1986-01-01T23:59:59.000Z

245

Synthetic crude oils carcinogenicity screening tests. Quarterly report, October 16, 1978--February 15, 1979  

DOE Green Energy (OSTI)

Four crude oils (Southern Louisiana Crude Petroleum, H. Coal Syncrude, Paraho Crude Shale Oil, and Geokinetics in situ Shale Oil) have been distilled into four fractions (naphtha, mid-distillate, gas oil, and residue) for analysis and biological (mutagenicity and carcinogenicity) screening testing. Results of selected analytical tests have been obtained on the original crude oils and the fractions. Ames tests and initiation/promotion tests have been started on the original crude oils and the fractions. Four additional synthetic crude oils (Exxon EDS, SRC II, H Coal Fuel Oil, and Occidental In Situ Shale Oil) are being obtained for a second similar series of tests to be started in approximately four months.

Calkins, W.H.; Deye, J.F.; King, C.F.; Hartgrove, R.W.; Krahn, D.F.

1979-01-01T23:59:59.000Z

246

EIA Energy Kids - Coal  

U.S. Energy Information Administration (EIA)

Sometimes, coal-fired electric power plants are built near coal mines to lower ... industries and businesses with their own power plants use coal to generate ...

247

Coal industry annual 1994  

SciTech Connect

This report presents data on coal consumption, distribution, coal stocks, quality, prices, coal production information, and emissions for a wide audience.

NONE

1995-10-01T23:59:59.000Z

248

Deashing of coal liquids by sonically assisted filtration  

Science Conference Proceedings (OSTI)

This project seeks to improve the effectiveness and reduce the cost of coal liquefaction by novel applications of sonic and ultrasonic energy. The specific purpose of this project is to develop and improve means for the economical removal of dispersed solid particles of ash, unreacted coal, and spent catalyst from direct and indirect coal liquefaction resids by using sonic or ultrasonic waves. Product streams containing solids are generated in both direct and indirect coal liquefaction processes. Direct coal liquefaction processes generate liquid products which contain solids including coal-originated mineral matter, unreacted coal, and spent dispersed catalyst. The removal of these solids from a product stream is one of the most difficult problems in direct coal liquefaction processes. On this report, results are discussed for sonically assisted crossflow filtration of V-1067 resid, diluted with No. 2 fuel oil, and sonically assisted batch filtrations of solids concentrates from continuous cross-flow filtration experiments.

Slomka, B.J.

1994-10-01T23:59:59.000Z

249

Stabilizers for oil slurries of carbonaceous material  

SciTech Connect

Slurries of carbonaceous material in oil, particularly coal, are stabilized with particular tertiary amines. An example is tallow amine first condensed with two moles of propylene oxide and then condensed with thirteen moles of ethylene oxide.

Schick, M. J.

1985-01-08T23:59:59.000Z

250

" Energy Sources by Industry Group, Selected Industries, and Selected"  

U.S. Energy Information Administration (EIA) Indexed Site

5. Capability to Switch from Distillate Fuel Oil to Alternative" 5. Capability to Switch from Distillate Fuel Oil to Alternative" " Energy Sources by Industry Group, Selected Industries, and Selected" " Characteristics, 1991" " (Estimates in Thousand Barrels)" ,," Distillate Fuel Oil ",,," Alternative Types of Energy(b)" ,,"-","-","-------------","-","-","-","-","-","-","-","RSE" ,,"Total"," ","Not","Electricity","Natural","Residual",,,"Coal Coke",,"Row" ,,"Consumed(c)","Switchable","Switchable","Receipts(d)","Gas","Fuel Oil","Coal","LPG","and Breeze","Other(e)","Factors"

251

" Sources by Industry Group, Selected Industries, and Selected Characteristics,"  

U.S. Energy Information Administration (EIA) Indexed Site

6. Capability to Switch from Residual Fuel Oil to Alternative Energy" 6. Capability to Switch from Residual Fuel Oil to Alternative Energy" " Sources by Industry Group, Selected Industries, and Selected Characteristics," 1991 " (Estimates in Thousand Barrels)" ,," Residual Fuel Oil",,," Alternative Types of Energy(b)" ," ","-","-","-------------","-","-","-","-","-","-","-","RSE" ,,"Total",,"Not","Electricity","Natural","Distillate",,,"Coal Coke",,"Row" ,,"Consumed(c)","Switchable","Switchable","Receipts(d)","Gas","Fuel Oil","Coal","LPG","and Breeze","Other(e)","Factors"

252

Effect of pretreating of host oil on coprocessing. Final report  

SciTech Connect

A petroleum vacuum resid (1,000 F+) was pretreated by catalytic hydrogenation and hydrocracking reactions and the pretreated resids (host oils) were then coprocessed with coal. The fraction of coal converted to soluble products and the yield of pentane-soluble oils were determined after coprocessing. The phenolic oxygen concentration of the oil product provided a means for estimating the fraction of coal liquids in the products; oils originating from coal had much higher concentrations of phenolic oxygen than those originating from petroleum. Resids that were pretreated by mild temperature hydrogenation reactions, where cracking was suppressed, became better host oils; when these pretreated resids were coprocessed with coal, more of the mixture was converted to tetrahydrofuran-soluble products. Depending on the pretreatment, the pentane-soluble oil yields following thermal coprocessing were either significantly lower or slightly higher than the oil yields obtained with untreated resid. The yield of oils was strongly affected by the concentration of coal in the feed. The presence of small amounts, less than 33% of coal, enhanced the conversion of petroleum resid to oils during coprocessing, although the increases were small. 91 refs.

Wender, I.; Tierney, J.W.

1995-10-01T23:59:59.000Z

253

Preconversion processing of bituminous coals: New directions to improved direct catalytic coal liquefaction  

SciTech Connect

Improved coal liquefaction was reinvestigated for the current two-stage process on the basis of the associated molecular nature of coal. Since a significant portion of coal molecules are physically associated as pointed in our recent paper, physical dissolution should be considered. The step-wise, high-temperature soaking is a simple and effective method for coal dissolution. Larger dissolution makes liquefaction severity lower. Broad molecular mass distribution in the associated coal was another important factor. The selective reaction of fractions with high molecular weight isolated after the high-temperature soaking makes gas yield lower. Tests using an autoclave by the concept shown in Figure 5 enabled to more oil and 15-20% less gas yields. It is expected that the procedure will result in great cost reduction in coal liquefaction.

1993-01-01T23:59:59.000Z

254

U.S. Coal Reserves  

U.S. Energy Information Administration (EIA) Indexed Site

Data - U.S. Energy Information Administration (EIA) Data - U.S. Energy Information Administration (EIA) U.S. Energy Information Administration - EIA - Independent Statistics and Analysis Sources & Uses Petroleum & Other Liquids Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas Exploration and reserves, storage, imports and exports, production, prices, sales. Electricity Sales, revenue and prices, power plants, fuel use, stocks, generation, trade, demand & emissions. Consumption & Efficiency Energy use in homes, commercial buildings, manufacturing, and transportation. Coal Reserves, production, prices, employ- ment and productivity, distribution, stocks, imports and exports. Renewable & Alternative Fuels Includes hydropower, solar, wind, geothermal, biomass and ethanol.

255

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. End Uses of Fuel Consumption, 1998;" 1. End Uses of Fuel Consumption, 1998;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." " "," "," ",," ","Distillate"," "," ","Coal"," "," " " "," ",,,,"Fuel Oil",,,"(excluding Coal" " "," "," ","Net","Residual","and","Natural Gas(d)","LPG and","Coke and Breeze)"," ","RSE"

256

Combining Nuclear Power With Coal-to-Gasoline Conversion  

Science Conference Proceedings (OSTI)

With coal representing 95% and oil only 2.5% of the US fossil fuel reserves and with the abundant nuclear fuel reserves in the US, such combined plants should be built in the near future. (authors)

Hamel, H.J.; Jaeger, Walter; Termuehlen, Heinz

2006-07-01T23:59:59.000Z

257

SustainableCoal_FC.indd  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

is a vital energy resource, is a vital energy resource, not only for the United States, but also for many developed and developing economies around the world. Finding ways to use coal cleanly and more efficiently at lower costs is a major research and development (R&D) challenge, and an ongoing focus of activities by the U.S. Department of Energy's (DOE) Office of Fossil Energy (FE). According to a Congressional Research Service analysis, coal represents 93 percent of total U.S. - and over half of world - fossil fuel reserves (expressed in barrels of oil equivalent). Based on recent rates of domestic consumption (averaging 1 billion tons annually, 2000-2010), estimated U.S. recoverable coal reserves of nearly 261 billion short tons are sufficient to last more than 2½ centuries.

258

NETL: Clean Coal Demonstrations - Coal 101  

NLE Websites -- All DOE Office Websites (Extended Search)

Knocking the NOx Out of Coal Clean Coal 101 Lesson 3: Knocking the NOx Out of Coal How NOx Forms NOx Formation Air is mostly nitrogen molecules (green in the above diagram) and...

259

Coal and bituminous reserves  

SciTech Connect

Chapter 5 of this book contains sections entitled: other coal processes; underground processing of coal; and other important energy sources.

NONE

2008-02-15T23:59:59.000Z

260

Health effects of coal technologies: research needs  

Science Conference Proceedings (OSTI)

In this 1977 Environmental Message, President Carter directed the establishment of a joint program to identify the health and environmental problems associated with advanced energy technologies and to review the adequacy of present research programs. In response to the President's directive, representatives of three agencies formed the Federal Interagency Committee on the Health and Environmental Effects of Energy Technologies. This report was prepared by the Health Effects Working Group on Coal Technologies for the Committee. In this report, the major health-related problems associated with conventional coal mining, storage, transportation, and combustion, and with chemical coal cleaning, in situ gasification, fluidized bed combustion, magnetohydrodynamic combustion, cocombustion of coal-oil mixtures, and cocombustion of coal with municipal solid waste are identified. The report also contains recommended research required to address the identified problems.

Not Available

1980-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil coal rse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Underground Coal Thermal Treatment  

Science Conference Proceedings (OSTI)

The long-term objective of this work is to develop a transformational energy production technology by insitu thermal treatment of a coal seam for the production of substitute natural gas (SNG) while leaving much of the coalâ??s carbon in the ground. This process converts coal to a high-efficiency, low-GHG emitting gas fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This topical report discusses the development of experimental capabilities, the collection of available data, and the development of simulation tools to obtain process thermo-chemical and geo-thermal parameters in preparation for the eventual demonstration in a coal seam. It also includes experimental and modeling studies of CO{sub 2} sequestration. Efforts focused on: â?¢ Constructing a suite of three different coal pyrolysis reactors. These reactors offer the ability to gather heat transfer, mass transfer and kinetic data during coal pyrolysis under conditions that mimic in situ conditions (Subtask 6.1). â?¢ Studying the operational parameters for various underground thermal treatment processes for oil shale and coal and completing a design matrix analysis for the underground coal thermal treatment (UCTT). This analysis yielded recommendations for terms of targeted coal rank, well orientation, rubblization, presence of oxygen, temperature, pressure, and heating sources (Subtask 6.2). â?¢ Developing capabilities for simulating UCTT, including modifying the geometry as well as the solution algorithm to achieve long simulation times in a rubblized coal bed by resolving the convective channels occurring in the representative domain (Subtask 6.3). â?¢ Studying the reactive behavior of carbon dioxide (CO{sub 2}) with limestone, sandstone, arkose (a more complex sandstone) and peridotite, including mineralogical changes and brine chemistry for the different initial rock compositions (Subtask 6.4). Arkose exhibited the highest tendency of participating in mineral reactions, which can be attributed to the geochemical complexity of its initial mineral assemblage. In experiments with limestone, continuous dissolution was observed with the release of CO{sub 2} gas, indicated by the increasing pressure in the reactor (formation of a gas chamber). This occurred due to the lack of any source of alkali to buffer the solution. Arkose has the geochemical complexity for permanent sequestration of CO{sub 2} as carbonates and is also relatively abundant. The effect of including NH{sub 3} in the injected gas stream was also investigated in this study. Precipitation of calcite and trace amounts of ammonium zeolites was observed. A batch geochemical model was developed using Geochemists Workbench (GWB). Degassing effect in the experiments was corrected using the sliding fugacity model in GWB. Experimental and simulation results were compared and a reasonable agreement between the two was observed.

P. Smith; M. Deo; E. Eddings; A. Sarofim; K. Gueishen; M. Hradisky; K. Kelly; P. Mandalaparty; H. Zhang

2011-10-30T23:59:59.000Z

262

Lummus clean fuels from coal  

DOE Green Energy (OSTI)

This report compares two direct, catalytic, hydroliquefaction processes - H-Coal and Lummus Clean Fuels From Coal (LCFFC). These processes are compared for two sets of operating conditions. In the first, the reactors are operated to produce a product suitable for use as fuel oil (fuel oil mode). In the second, the operating conditions are more severe, so the resulting product slates more closely resemble crude oil (syncrude mode). The comparisons are performed using conceptual designs based on single point run data, with a design basis of 25,000 tpd (moisture-free basis) of Illinois No. 6 coal. Although all cost comparisons are well within the estimated 25% accuracy of the estimates, LCFFC shows generally lower costs. Three types of economic evaluation are performed: computation of internal rate of return (IRR) with product values set to estimated market value, computation of overall average product cost ($/MM Btu) with the discount rate set at 20%, and calculation of average product cost with naphtha credited at estimated market value and the discount rate set at 20%. H-Coal has a lower cost only in the fuel oil mode analysis with naphtha valued at market price. The processes are also compared with respect to the potential for commercialization and anticipated operability differences. It is concluded that the lower hydrogen content of LCFFC product may offset its advantage of lower cost if it is used as refinery feed, and that the design of the LCFFC reactor may make it harder to control. Suggestions for future research are presented.

Gantt, J.E.; Hefferan, J.K.; Chorba, W.F.; Schachtschneider, A.B.; Schulze, J.R.

1980-12-01T23:59:59.000Z

263

Economics of gas from coal  

SciTech Connect

This study deals with three questions: What does gas from coal cost and what affects this cost; How do different approaches and processes compare; and How near to competitive cost-levels is present-day technology. Discussion covers production of both substitute natural gas (SNG) and medium calorific gas (MCG: 10-16 MJ/Nm3 or 250-400 Btu/SCF). Conclusions are that SNG from low-cost U.S. coal and West German brown coal are, on the basis of mature technology and Government rates-of-return, roughly competitive with gas imports into the U.S. and Europe respectively. Similarly MCG from second-generation gasifiers is competitive with gas-oil or No. 2 heating oil in Europe, North America and Japan. However, capital costs form about half total gas costs at 10 percent rate-of-return, so that the competitiveness of gas from coal is sensitive to capital costs: this is the area of greatest uncertainty.

Teper, M.; Hemming, D.F.; Ulrich, W.C.

1983-01-01T23:59:59.000Z

264

Coal liquefaction process using pretreatment with a binary solvent mixture  

DOE Patents (OSTI)

An improved process for thermal solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a hydrogen donor solvent comprises pretreating the coal with a binary mixture of an aromatic hydrocarbon and an aliphatic alcohol at a temperature below 300 C before the hydroliquefaction step. This treatment generally increases both conversion of coal and yields of oil. 1 fig.

Miller, R.N.

1986-10-14T23:59:59.000Z

265

Identification of Arsenic Species in Coal Ash Particles  

Science Conference Proceedings (OSTI)

Identification of the chemical species and compounds of arsenic in individual coal fly ash particles will help provide a scientifically sound basis for assessing health risks from inhalation of these particles. This report presents the results of an analytical chemistry study of coal-combustion ash, with some work also completed on oil-combustion ash and copper smelter dust collected from several sources in the United States and Europe. Results showed that most arsenic is present on the surface of coal a...

1998-08-13T23:59:59.000Z

266

Unconventional Oil and Gas Resources  

Science Conference Proceedings (OSTI)

World oil use is projected to grow to 98 million b/d in 2015 and 118 million b/d in 2030. Total world natural gas consumption is projected to rise to 134 Tcf in 2015 and 182 Tcf in 2030. In an era of declining production and increasing demand, economically producing oil and gas from unconventional sources is a key challenge to maintaining global economic growth. Some unconventional hydrocarbon sources are already being developed, including gas shales, tight gas sands, heavy oil, oil sands, and coal bed methane. Roughly 20 years ago, gas production from tight sands, shales, and coals was considered uneconomic. Today, these resources provide 25% of the U.S. gas supply and that number is likely to increase. Venezuela has over 300 billion barrels of unproven extra-heavy oil reserves which would give it the largest reserves of any country in the world. It is currently producing over 550,000 b/d of heavy oil. Unconventional oil is also being produced in Canada from the Athabasca oil sands. 1.6 trillion barrels of oil are locked in the sands of which 175 billion barrels are proven reserves that can be recovered using current technology. Production from 29 companies now operating there exceeds 1 million barrels per day. The report provides an overview of continuous petroleum sources and gives a concise overview of the current status of varying types of unconventional oil and gas resources. Topics covered in the report include: an overview of the history of Oil and Natural Gas; an analysis of the Oil and Natural Gas industries, including current and future production, consumption, and reserves; a detailed description of the different types of unconventional oil and gas resources; an analysis of the key business factors that are driving the increased interest in unconventional resources; an analysis of the barriers that are hindering the development of unconventional resources; profiles of key producing regions; and, profiles of key unconventional oil and gas producers.

none

2006-09-15T23:59:59.000Z

267

Chemical and physical aspects of refining coal liquids  

Science Conference Proceedings (OSTI)

Increasing costs and declining reserves of petroleum are forcing oil importing countries to develop alternate energy sources. The direct liquefaction of coal is currently being investigated as a viable means of producing substitute liquid fuels. The coal liquids derived from such processes are typically high in nitrogen

Y. T. Shah; G. J. Stiegel; S. Krishnamurthy

1981-01-01T23:59:59.000Z

268

Cheap coal said top enemy in fighting global warming By Alister Doyle, Environment Correspondent  

E-Print Network (OSTI)

Cheap coal said top enemy in fighting global warming By Alister Doyle, Environment Correspondent OSLO, Sept 28 (Reuters) - Cheap coal will be the main enemy in a fight against global warming in the 21st century because high oil prices are likely to encourage a shift to coal before wind or solar power

Calov, Reinhard

269

DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS  

E-Print Network (OSTI)

Pollutants Associated With Coal Combustion. • E.P.A.Control Guidelines for Coal-Derived Pollutants .Forms of Sulfur in Coal • . . . . Coal Desulfurization

Wrathall, James Anthony

2011-01-01T23:59:59.000Z

270

Coal in transition 1980--2000 demand considerations  

DOE Green Energy (OSTI)

The usefulness of the Brookhaven model, TESOM, lies in its exploration of the demand side of the energy system. Sectors where coal may be substituted for other energy forms are identified, and attractive technologies are highlighted. The results of the runs accord well with intuitive expectations. The increasing prices of oil and natural gas usually imply that (a) coal synthetics become increasingly attractive technologies, except in the High Demand and CRUNCH Cases (b) nuclear and hydro-electric generation are preferred technologies, (c) coal steam electric, even with expensive scrubbers, becomes more attractive than oil or gas steam electric by year 1990, (d) fluidized bed combustion for electricity generation is cost effective (with relatively small environmental impacts) when compared to oil, gas and coal steam electric. FBC process steam exhibits similar behavior. In the High Demand and CRUNCH scenarios, technologies such as solar electric, which are usually not chosen on the basis of cost, enter the solution because meeting demands has become extremely difficult. As the allowed coal expansion rate becomes a limiting factor, coal synthetics manufacturing becomes an unattractive alternative. This is due both to the need for coal electric generation to meet high electricity demand levels, and to the inefficiencies in the manufacturing process. Due to preferred allocation of coal to electricity generation or synthetics, direct coal use is reduced, although this is normally a preferred option.

Kydes, A S; Cherniavsky, E A

1977-12-01T23:59:59.000Z

271

Refinery Integration of By-Products from Coal-Derived Jet Fuels  

Science Conference Proceedings (OSTI)

This report summarizes the accomplishments toward project goals during the first twelve months of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; John Andresen

2004-09-17T23:59:59.000Z

272

REFINERY INTEGRATION OF BY-PRODUCTS FROM COAL-DERIVED JET FUELS  

Science Conference Proceedings (OSTI)

This report summarizes the accomplishments toward project goals during the first six months of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; John Andresen

2004-04-23T23:59:59.000Z

273

REFINERY INTEGRATION OF BY-PRODUCTS FROM COAL-DERIVED JET FUELS  

SciTech Connect

This report summarizes the accomplishments toward project goals during the first six months of the second year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

2005-05-18T23:59:59.000Z

274

ADVANCED SOLIDS NMR STUDIES OF COAL STRUCTURE AND CHEMISTRY  

DOE Green Energy (OSTI)

This report covers the progress made on the title project for the project period. The study of coal chemical structure is a vital component of research efforts to develop better chemical utilization of coals, and for furthering our basic understanding of coal geochemistry. In this grant we are addressing several structural questions pertaining to coals with advances in state of the art solids NMR methods. Our goals are twofold. First, we are interested in developing new methods that will enable us to measure important structural parameters in whole coals not directly accessible by other techniques. In parallel with these efforts we will apply these NMR methods in a study of the chemical differences between gas-sourcing and oil-sourcing coals. The NMR methods work will specifically focus on determination of the number and types of methylene groups, determination of the number and types of methane groups, identification of carbons adjacent to nitrogen and sites with exchangeable protons, and methods to more finely characterize the distribution of hydrogen in coals. The motivation for investigating these specific structural features of coals arises from their relevance to the chemical reactivity of coals, and their suitability for possible correlations with the oil sourcing potential of some types of coals. The coals to be studied and contrasted include oil-prone coals from Australia and Indonesia, those comprising the Argonne Premium Coal Sample bank, and other relevant samples. In this report period we have focused our work on 1 segment of the program. Our last report outlined progress in using our NMR editing methods with higher field operation where higher magic angle spinning rates are required. Significant difficulties were identified, and these have been the main subject of study during the most recent granting period.

NONE

1997-03-01T23:59:59.000Z

275

University Coal Research | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science & Innovation Clean Coal Crosscutting Research University Coal Research University Coal Research Clean Coal Turbines Gasification Fuel Cells Hydrogen from Coal Coal...

276

O A L Section 2. Coal  

U.S. Energy Information Administration (EIA)

Section 2. Coal Coal prices are developed for the following three categories: coking coal; steam coal (all noncoking coal); and coal coke imports and exports.

277

Table A36. Total Inputs of Energy for Heat, Power, and Electricity  

U.S. Energy Information Administration (EIA) Indexed Site

,,,,,,,,"Coal" ,,,,,,,,"Coal" " Part 1",,,,,,,,"(excluding" " (Estimates in Btu or Physical Units)",,,,,"Distillate",,,"Coal Coke" ,,,,,"Fuel Oil",,,"and" ,,,"Net","Residual","and Diesel","Natural Gas",,"Breeze)",,"RSE" "SIC",,"Total","Electricity(b)","Fuel Oil","Fuel","(billion","LPG","(1000 Short","Other","Row" "Code(a)","End-Use Categories","(trillion Btu)","(million kWh)","(1000 bbls)","(1000 bbls)","cu ft)","(1000 bbls)","tons)","(trillion Btu)","Factors",

278

" Level: National Data;" " Row: NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Number of Establishments with Capability to Switch Coal to Alternative Energy Sources, 2002;" 1 Number of Establishments with Capability to Switch Coal to Alternative Energy Sources, 2002;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"Coal(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,,"RSE" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate","Residual",,,"Row" "Code(a)","Subsector and Industry","Consumed(d)","Switchable","Switchable","Receipts(e)","Gas","Fuel Oil","Fuel Oil","LPG","Other(f)","Factors"

279

Table A37. Total Inputs of Energy for Heat, Power, and Electricity  

U.S. Energy Information Administration (EIA) Indexed Site

1",,,,,,,"Coal" 1",,,,,,,"Coal" " (Estimates in Btu or Physical Units)",,,,,,,"(excluding" ,,,,"Distillate",,,"Coal Coke" ,,"Net",,"Fuel Oil",,,"and" ,,"Electricity(a)","Residual","and Diesel","Natural Gas",,"Breeze)",,"RSE" ,"Total","(million","Fuel Oil","Fuel","(billion","LPG","(1000 short","Other","Row" "End-Use Categories","(trillion Btu)","kWh)","(1000 bbls)","(1000 bbls)","cu ft)","(1000 bbls)","tons)","(trillion Btu)","Factors"

280

Table 3.3 Fuel Consumption, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

3 Fuel Consumption, 2002;" 3 Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," ","RSE" "Economic",,"Net","Residual","Distillate","Natural ","LPG and",,"Coke and"," ","Row" "Characteristic(a)","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","Coal","Breeze","Other(f)","Factors"

Note: This page contains sample records for the topic "oil coal rse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

" Row: Selected SIC Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Fuel Consumption, 1998;" 1. Fuel Consumption, 1998;" " Level: National Data; " " Row: Selected SIC Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,"Coke" " "," "," ","Net","Residual","Distillate","Natural Gas(d)","LPG and","Coal","and Breeze"," ","RSE" "SIC"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","NGL(e)","(million","(million","Other(f)","Row"

282

Table A1. Total Primary Consumption of Energy for All Purposes by Census  

U.S. Energy Information Administration (EIA) Indexed Site

1 " 1 " " (Estimates in Btu or Physical Units)" " "," "," "," "," "," "," "," "," "," "," "," " " "," "," ",," "," ",," "," ","Coke and"," "," " " "," ",,"Net","Residual","Distillate","Natural Gas(d)"," ","Coal","Breeze"," ","RSE" "SIC"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","LPG","(1000","(1000","Other(e)","Row"

283

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Fuel Consumption, 1998;" 2. Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,,"RSE" "NAICS"," "," ","Net","Residual","Distillate",,"LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)","Factors"

284

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Offsite-Produced Fuel Consumption, 2002;" 1 Offsite-Produced Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,"Coke" " "," "," ",,"Residual","Distillate","Natural","LPG and","Coal","and Breeze"," ","RSE" "NAICS"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","(million","(million","Other(f)","Row"

285

" Row: Selected SIC Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Fuel Consumption, 1998;" 2. Fuel Consumption, 1998;" " Level: National Data; " " Row: Selected SIC Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,,"RSE" "SIC"," "," ","Net","Residual","Distillate",,"LPG and",,"Coke"," ","Row" "Code(a)","Major Group and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)","Factors"

286

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Fuel Consumption, 2002;" 2 Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,,"RSE" "NAICS"," "," ","Net","Residual","Distillate","Natural","LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","Coal","and Breeze","Other(f)","Factors"

287

Table A4. Total Inputs of Energy for Heat, Power, and Electricity Generation  

U.S. Energy Information Administration (EIA) Indexed Site

2" 2" " (Estimates in Trillion Btu)" " "," "," "," "," "," "," "," "," "," "," "," " " "," "," "," "," "," "," "," "," "," "," ","RSE" "SIC"," "," ","Net","Residual","Distillate"," "," "," ","Coke"," ","Row" "Code(a)","Industry Groups and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","LPG","Coal","and Breeze","Other(e)","Factors"

288

Table A1. Total First Use (formerly Primary Consumption) of Energy for All Pu  

U.S. Energy Information Administration (EIA) Indexed Site

2" 2" " (Estimates in Trillion Btu)" " "," "," "," "," "," "," "," "," "," "," ",," " " "," "," ",," "," ",," "," ",," ","Shipments","RSE" "SIC"," ",,"Net","Residual","Distillate",," ",,"Coke and"," ","of Energy Sources","Row" "Code(a)","Industry Group and Industry","Total(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","LPG","Coal","Breeze","Other(f)","Produced Onsite(g)","Factors"

289

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Fuel Consumption, 2002;" 1 Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,"Coke" " "," "," ","Net","Residual","Distillate","Natural","LPG and","Coal","and Breeze"," ","RSE" "NAICS"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","(million","(million","Other(f)","Row"

290

" Electricity Generation by Census Region, Industry Group, and Selected"  

U.S. Energy Information Administration (EIA) Indexed Site

2" 2" " (Estimates in Trillion Btu)" " "," "," "," "," "," "," "," "," "," "," "," " " "," "," "," "," "," "," "," "," "," "," ","RSE" "SIC"," "," "," ","Residual","Distillate"," "," "," ","Coke"," ","Row" "Code(a)","Industry Groups and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","LPG","Coal","and Breeze","Other(e)","Factors"

291

Table A3. Total First Use (formerly Primary Consumption) of Combustible Energ  

U.S. Energy Information Administration (EIA) Indexed Site

Nonfuel Purposes by" Nonfuel Purposes by" " Census Region, Industry Group, and Selected Industries, 1994: Part 1 " " (Estimates in Btu or Physical Units)" " "," "," "," "," "," "," "," ","Coke"," "," " " "," "," ","Residual","Distillate","Natural Gas(c)"," ","Coal","and Breeze"," ","RSE" "SIC"," ","Total","Fuel Oil","Fuel Oil(b)","(billion","LPG","(1000","(1000 ","Other(d)","Row"

292

"Table A28. Total Expenditures for Purchased Energy Sources by Census Region"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Expenditures for Purchased Energy Sources by Census Region" Total Expenditures for Purchased Energy Sources by Census Region" " and Economic Characteristics of the Establishment, 1991" " (Estimates in Million Dollars)" " "," "," "," ",," "," "," "," "," ","RSE" " "," "," ","Residual","Distillate","Natural"," "," ","Coke"," ","Row" "Economic Characteristics(a)","Total","Electricity","Fuel Oil","Fuel Oil(b)","Gas(c)","LPG","Coal","and Breeze","Other(d)","Factors"

293

Table A3. Total First Use (formerly Primary Consumption) of Combustible Energ  

U.S. Energy Information Administration (EIA) Indexed Site

Nonfuel" Nonfuel" " Purposes by Census Region, Industry Group, and Selected Industries, 1994: Part 2" " (Estimates in Trillion Btu) " " "," "," "," "," "," "," "," "," "," "," " " "," "," "," "," "," "," "," "," "," ","RSE" "SIC"," "," ","Residual","Distillate "," "," "," ","Coke "," ","Row" "Code(a)","Industry Group and Industry","Total","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","LPG","Coal","and Breeze","Other(d)","Factors"

294

Table A1. Total First Use (formerly Primary Consumption) of Energy for All Pu  

U.S. Energy Information Administration (EIA) Indexed Site

1 " 1 " " (Estimates in Btu or Physical Units)" " "," "," "," "," "," "," "," "," "," "," ",," " " "," "," ",," "," ",," "," ","Coke and"," ","Shipments"," " " "," ",,"Net","Residual","Distillate","Natural Gas(e)"," ","Coal","Breeze"," ","of Energy Sources","RSE" "SIC"," ","Total(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","(billion","LPG","(1000","(1000","Other(f)","Produced Onsite(g)","Row"

295

Table A1. Total Primary Consumption of Energy for All Purposes by Census  

U.S. Energy Information Administration (EIA) Indexed Site

2" 2" " (Estimates in Trillion Btu)" " "," "," "," "," "," "," "," "," "," "," "," " " "," ",," "," "," "," "," "," "," "," ","RSE" "SIC"," ",,"Net","Residual","Distillate "," "," "," ","Coke"," ","Row" "Code(a)","Industry Groups and Industry"," Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","LPG","Coal","and Breeze","Other(e)","Factors"

296

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Fuel Consumption, 1998;" 1. Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,"Coke" " "," "," ","Net","Residual","Distillate","Natural Gas(d)","LPG and","Coal","and Breeze"," ","RSE" "NAICS"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","NGL(e)","(million","(million","Other(f)","Row"

297

Crude Oil  

U.S. Energy Information Administration (EIA) Indexed Site

Barrels) Product: Crude Oil Liquefied Petroleum Gases Distillate Fuel Oil Residual Fuel Oil Still Gas Petroleum Coke Marketable Petroleum Coke Catalyst Petroleum Coke Other...

298

OIL PRODUCTION  

NLE Websites -- All DOE Office Websites (Extended Search)

OIL PRODUCTION Enhanced Oil Recovery (EOR) is a term applied to methods used for recovering oil from a petroleum reservoir beyond that recoverable by primary and secondary methods....

299

Coal gasification  

Science Conference Proceedings (OSTI)

A standard series of two staged gas generators (GG) has been developed in the United States for producing gas with a combustion heat from 4,700 to 7,600 kilojoules per cubic meter from coal (U). The diameter of the gas generators is from 1.4 to 3.65 meters and the thermal capacity based on purified cold gas is from 12.5 to 89 million kilojoules per hour. Certain standard sized gas generators have undergone experimental industrial tests which showed that it is most expedient to feed the coal into the gas generators pneumatically. This reduces the dimensions of the charging device, makes it possible to use more common grades of structural steels and reduces the cost of the gas. A double valve reliably prevents ejections of the gasification product and promotes the best distribution of the coal in the gas generator. The gas generators may successfully operate on high moisture (up to 36 percent) brown coal. Blasting with oxygen enriched to 38 percent made it possible to produce a gas with a combustion heat of 9,350 kilojoules per cubic meter. This supports a combustion temperature of 1,700C.

Rainey, D.L.

1983-01-01T23:59:59.000Z

300

Table A12. Selected Combustible Inputs of Energy for Heat, Power, and  

U.S. Energy Information Administration (EIA) Indexed Site

Type" Type" " and End Use, 1994: Part 2" " (Estimates in Trillion Btu)" ,,,,,,,"Coal" ,,,"Residual","Distillate",,,"(excluding","RSE" "SIC",,"Net Demand","Fuel","Fuel Oil and","Natural",,"Coal Coke","Row" "Code(a)","End-Use Categories","for Electricity(b)","Oil","Diesel Fuel(c)","Gas(d)","LPG","and Breeze)","Factors" "20-39","ALL INDUSTRY GROUPS" ,"RSE Column Factors:",0.5,1.4,1.4,0.8,1.2,1.2 ,"TOTAL INPUTS",3132,441,152,6141,99,1198,2.4

Note: This page contains sample records for the topic "oil coal rse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Table A39. Selected Combustible Inputs of Energy for Heat, Power, and  

U.S. Energy Information Administration (EIA) Indexed Site

9. Selected Combustible Inputs of Energy for Heat, Power, and" 9. Selected Combustible Inputs of Energy for Heat, Power, and" " Electricity Generation and Net Demand for Electricity by Fuel Type, Census" " Region, and End Use, 1991: Part 2" " (Estimates in Trillion Btu)" ,,,"Distillate",,,"Coal" ,"Net Demand",,"Fuel Oil",,,"(excluding","RSE" ,"for","Residual","and",,,"Coal Coke","Row" "End-Use Categories","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural Gas(c)","LPG","and Breeze)","Factors" "Total United States" "RSE Column Factors:",0.4,1.7,1.5,0.7,1,1.6

302

Table A38. Selected Combustible Inputs of Energy for Heat, Power, and  

U.S. Energy Information Administration (EIA) Indexed Site

2" 2" " (Estimates in Trillion Btu)" ,,,,,,,"Coal" ,,"Net Demand","Residual","Distillate",,,"(excluding","RSE" "SIC",,"for Electri-","Fuel","Fuel Oil and","Natural",,"Coal Coke","Row" "Code","End-Use Categories","city(b)","Oil","Diesel Fuel(c)","Gas(d)","LPG","and Breeze)","Factors" "20-39","ALL INDUSTRY GROUPS" ,"RSE Column Factors:",0.4,1.7,1.5,0.7,1,1.6 ,"TOTAL INPUTS",2799,414,139,5506,105,1184,3 ,"Boiler Fuel",32,296,40,2098,18,859,3.6 ,"Total Process Uses",2244,109,34,2578,64,314,4.1

303

Table A37. Total Inputs of Energy for Heat, Power, and Electricity  

U.S. Energy Information Administration (EIA) Indexed Site

2" 2" " (Estimates in Trillion Btu)" ,,,,,,,"Coal" ,,,,"Distillate",,,"(excluding" ,,,,"Fuel Oil",,,"Coal Coke",,"RSE" ,,"Net","Residual","and Diesel",,,"and",,"Row" "End-Use Categories","Total","Electricity(a)","Fuel Oil","Fuel(b)","Natural Gas(c)","LPG","Breeze)","Other(d)","Factors" "Total United States" "RSE Column Factors:","NF",0.4,1.6,1.5,0.7,1,1.6,"NF" "TOTAL INPUTS",15027,2370,414,139,5506,105,1184,5309,3 "Boiler Fuel","--","W",296,40,2098,18,859,"--",3.6

304

Table A11. Total Inputs of Energy for Heat, Power, and Electricity Generatio  

U.S. Energy Information Administration (EIA) Indexed Site

2" 2" " (Estimates in Trillion Btu)" ,,,,,,,"Coal" ,,,,"Distillate",,,"(excluding" ,,,,"Fuel Oil",,,"Coal Coke",,"RSE" ,,"Net","Residual","and Diesel",,,"and",,"Row" "End-Use Categories","Total","Electricity(a)","Fuel Oil","Fuel(b)","Natural Gas(c)","LPG","Breeze)","Other(d)","Factors" ,"Total United States" "RSE Column Factors:"," NF",0.5,1.3,1.4,0.8,1.2,1.2," NF" "TOTAL INPUTS",16515,2656,441,152,6141,99,1198,5828,2.7 "Indirect Uses-Boiler Fuel"," --",28,313,42,2396,15,875," --",4

305

Pyrite surface characterization and control for advanced fine coal desulfurization technologies  

SciTech Connect

The objective of this project is to conduct extensive studies on the surface reactivity and surface hydrophobicity of coal-pyrites using various surface characterization techniques and to correlate the alteration of the coal-pyrite surface with the efficiency of pyrite rejection in coal flotation. The flotation characteristics of coal-pyrites under various conditions was studied and compared with ore-pyrite and coal to determine the causes of pyrite rejection difficulties in coal flotation. Both the native and induced floatabilities of pyrites were investigated. It was found that both coal- and ore-pyrites, ff prepared by dry-grinding, show little or no floatability in the absence of any chemical reagents. After ultrasonic pretreatment, ore-pyrite floats effectively in the acidic to neutral pH range. Kentucky No. 9 coal-pyrite (KYPY) shows significant flotation in the pH range 7--10. With ethyl xanthate as collector, ore-pyrite floats well up to pH = 10; while coal-pyrite reveals no flotation above pH = 6. For the first time, the effect of coal collector on the floatability of coal-pyrite has been studied. It was shown that in the presence of fuel oil--a widely used collector for promoting coal flotation, coal-pyrite, particularly for the fine sizes, shows good flotation below pH = 11, whereas ore-pyrite has no or little floatability. These studies demonstrate that one of the main causes of the coal-pyrite flotation in coal separation is the oil-induced floatability due to adsorption/attachment of oil droplets on the coal-pyrite surfaces, the native'' or self-induced'' floatability of pyrite is no as profound as the oil-induced flotation.

Wang, Xiang-Huai; Leonard, J.W.; Parekh, B.K.; Jiang, Chengliang; Raichur, A.M.

1992-07-14T23:59:59.000Z

306

Coal industry annual 1997  

Science Conference Proceedings (OSTI)

Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs.

NONE

1998-12-01T23:59:59.000Z

307

AEO2012 considers three cases for the future of world oil prices ...  

U.S. Energy Information Administration (EIA)

... coal-to-liquids, biomass-to-liquids, gas-to-liquids, extra-heavy oils, and oil shale. Download CSV Data. The Annual Energy Outlook 2012 (AEO2012) ...

308

Coal industry annual 1996  

Science Conference Proceedings (OSTI)

This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States.This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 24 million short tons for 1996. 14 figs., 145 tabs.

NONE

1997-11-01T23:59:59.000Z

309

Coal Industry Annual 1995  

SciTech Connect

This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995.

1996-10-01T23:59:59.000Z

310

U.S. Energy Demand, Offshore Oil Production and  

E-Print Network (OSTI)

;Summary of Conclusions. . . The global rate of production of oil is peaking now, coal will peak in 2U.S. Energy Demand, Offshore Oil Production and BP's Macondo Well Spill Tad Patzek, Petroleum that run the U.S. Complexity, models, risks Gulf of Mexico's oil and gas production Conclusions ­ p.3/4 #12

Patzek, Tadeusz W.

311

Statements on Oil by the Energy Committee at  

E-Print Network (OSTI)

) Offshore and unconventional fields will be producing an increasing portion of global oil supply Solar. . . The global rate of production of oil is peaking now, coal will peak in 2-5 years, and natural gas in 20) Few understand the ever more stringent daily withdrawal limits imposed by nature on our ATM cards (oil

Keeling, Stephen L.

312

Microbial solubilization of coal  

DOE Patents (OSTI)

The present invention relates to a cell-free preparation and process for the microbial solubilization of coal into solubilized coal products. More specifically, the present invention relates to bacterial solubilization of coal into solubilized coal products and a cell-free bacterial byproduct useful for solubilizing coal. 5 tabs.

Strandberg, G.W.; Lewis, S.N.

1988-01-21T23:59:59.000Z

313

Process and apparatus for coal hydrogenation  

SciTech Connect

In a coal liquefaction process an aqueous slurry of coal is prepared containing a dissolved liquefaction catalyst. A small quantity of oil is added to the slurry and then coal-oil agglomerates are prepared by agitation of the slurry at atmospheric pressure. The resulting mixture is drained of excess water and dried at atmospheric pressure leaving catalyst deposited on the agglomerates. The agglomerates then are fed to an extrusion device where they are formed into a continuous ribbon of extrudate and fed into a hydrogenation reactor at elevated pressure and temperature. The catalytic hydrogenation converts the extrudate primarily to liquid hydrocarbons in the reactor. The liquid drained in recovering the agglomerates is recycled.

Ruether, John A. (McMurray, PA); Simpson, Theodore B. (McLean, VA)

1991-01-01T23:59:59.000Z

314

Process and apparatus for coal hydrogenation  

DOE Patents (OSTI)

In a coal liquefaction process an aqueous slurry of coal is prepared containing a dissolved liquefaction catalyst. A small quantity of oil is added to the slurry and then coal-oil agglomerates are prepared by agitation of the slurry at atmospheric pressure. The resulting mixture of agglomerates, excess water, dissolved catalyst, and unagglomerated solids is pumped to reaction pressure and then passed through a drainage device where all but a small amount of surface water is removed from the agglomerates. Sufficient catalyst for the reaction is contained in surface water remaining on the agglomerates. The agglomerates fall into the liquefaction reactor countercurrently to a stream of hot gas which is utilized to dry and preheat the agglomerates as well as deposit catalyst on the agglomerates before they enter the reactor where they are converted to primarily liquid products under hydrogen pressure.

Ruether, John A. (McMurray, PA)

1988-01-01T23:59:59.000Z

315

Direct use of methane in coal liquefaction  

DOE Patents (OSTI)

This invention relates to a process for converting solid carbonaceous material, such as coal, to liquid and gaseous hydrocarbons utilizing methane, generally at a residence time of about 20-120 minutes at a temperature of 250.degree.-750.degree. C., preferably 350.degree.-450.degree. C., pressurized up to 6000 psi, and preferably in the 1000-2500 psi range, preferably directly utilizing methane 50-100% by volume in a mix of methane and hydrogen. A hydrogen donor solvent or liquid vehicle such as tetralin, tetrahydroquinoline, piperidine, and pyrolidine may be used in a slurry mix where the solvent feed is 0-100% by weight of the coal or carbonaceous feed. Carbonaceous feed material can either be natural, such as coal, wood, oil shale, petroleum, tar sands, etc., or man-made residual oils, tars, and heavy hydrocarbon residues from other processing systems.

Sundaram, Muthu S. (Shoreham, NY); Steinberg, Meyer (Melville, NY)

1987-01-01T23:59:59.000Z

316

Direct use of methane in coal liquefaction  

DOE Patents (OSTI)

This invention relates to a process for converting solid carbonaceous material, such as coal, to liquid and gaseous hydrocarbons utilizing methane, generally at a residence time of about 20 to 120 minutes at a temperature of 250 to 750/sup 0/C, preferably 350 to 450/sup 0/C, pressurized up to 6000 psi, and preferably in the 1000 to 2500 psi range, preferably directly utilizing methane 50 to 100% by volume in a mix of methane and hydrogen. A hydrogen donor solvent or liquid vehicle such as tetralin, tetrahydroquinoline, piperidine, and pyrolidine may be used in a slurry mix where the solvent feed is 0 to 100% by weight of the coal or carbonaceous feed. Carbonaceous feed material can either be natural, such as coal, wood, oil shale, petroleum, tar sands, etc., or man-made residual oils, tars, and heavy hydrocarbon residues from other processing systems. 1 fig.

Sundaram, M.S.; Steinberg, M.

1985-06-19T23:59:59.000Z

317

Analysis for sulfur forms in coal and on coal surfaces  

SciTech Connect

A review and critical evaluation of all available literature on the determination of sulfur and sulfur forms in coal and on coal and pyrite surfaces is being performed. Approximately 200 citations through 1984 have been catalogued and reviewed, and approximately 100 additional citations since 1984 have been identified. Work is nearing completion on the collection and critical evaluation of the more recent literature. A few articles requested through the interlibrary loan system still need to be received and analyzed, and several articles in unusual foreign languages need to be evaluated. Methods used for sampling, sample preparation, and analysis of sulfur and sulfur forms in samples arising from the spherical oil agglomeration process have been reviewed. Recommendations are being made for assessing the quality of analyses provided by commercial laboratories, for assuring that preparation procedures do not alter sulfur forms in samples, and for determining the ability of sampling procedures to obtain representative samples. Several concerns about the applicability of the ASTM procedure for the determination of pyrite sulfur in micronized coal and oil-agglomerated samples have been raised. 5 refs., 1 tab.

Markuszewski, R.; Chriswell, C.D.; Norton, G.A.

1988-12-01T23:59:59.000Z

318

Coal technology program progress report, February 1976  

DOE Green Energy (OSTI)

Final testing of the 20-atm bench-scale system is underway in preparation for experiments with hydrogen. Laboratory-scale testing of a number of inexpensive pure compounds to improve the settling rate of solids in Solvent Refined Coal (SRC) unfiltered oil (UFO), bench-scale testing of the effect of the Tretolite additive on settling, and characterization tests on a new sample of UFO from the PAMCO-SRC process are reported. Experimental engineering support of an in situ gasification process include low-temperature pyrolyses at exceptionally low heating rates (0.3/sup 0/C/min). Highly pyrophoric chars were consistently produced. Aqueous by-products from coal conversion technologies and oil shale retorting have been analyzed directly to determine major organic components. A report is being prepared discussing various aspects of the engineering evaluations of nuclear process heat for coal. A bench-scale test program on thermochemical water splitting for hydrogen production is under consideration. In the coal-fueled MIUS program, preparations for procurement of tubing for the matrix in the fluidized-bed furnace and for fabrication of the furnace continued. Analyses of the AiResearch gas turbine and recuperator under coal-fueled MIUS operating conditions are near completion. Process flow diagrams and heat and material balances were completed for most of the units in the synthoil process. Overall utilities requirements were calculated and the coal preparation flowsheets were finalized. For hydrocarbonization, the flowsheet was revised to include additional coal data. Flowsheets were finalized for the acid gas separation and recycle, and the oil-solids separation. (LTN)

None

1976-04-01T23:59:59.000Z

319

Coal liquefaction and hydrogenation  

DOE Patents (OSTI)

Disclosed is a coal liquefaction process using two stages. The first stage liquefies the coal and maximizes the product while the second stage hydrocracks the remainder of the coal liquid to produce solvent.

Schindler, Harvey D. (Fair Lawn, NJ); Chen, James M. (Edison, NJ)

1985-01-01T23:59:59.000Z

320

Coal industry annual 1993  

Science Conference Proceedings (OSTI)

Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993.

Not Available

1994-12-06T23:59:59.000Z

Note: This page contains sample records for the topic "oil coal rse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Assessment of coal liquids as refinery feedstocks  

Science Conference Proceedings (OSTI)

The R D of direct coal liquefaction has reached such a stage that current two-stage processes can produce coal liquids with high yields and improved quality at a reasonable cost. To fully realize the potential value, these coal liquids should be refined into high-value liquid transportation fuels. The purpose of this study is to assess coal liquids as feedstocks to be processed by modern petroleum refining technologies. After the introduction, Section 2.0 summarizes ASTM specifications for major transportation fuels: gasoline, jet fuel, and diesel fuel, which serve as a target for coal-liquid refining. A concise description of modern refining processes follows with an emphasis on the requirements for the raw materials. These provide criteria to judge the quality of coal liquids as a refinery feedstock for the production of marketable liquid fuels. Section 3.0 surveys the properties of coal liquids produced by various liquefaction processes. Compared with typical petroleum oils, the current two-stage coal liquids are: Light in boiling range and free of resids and metals; very low in sulfur but relatively high in oxygen; relatively low in hydrogen and high in cyclics content; and essentially toxicologically inactive when end point is lower than 650[degrees]F, particularly after hydroprocessing. Despite these characteristics, the coal liquids are basically similar to petroleum. The modern refining technology is capable of processing coal liquids into transportation fuels meeting all specifications, and hydroprocessinq is obviously the major tool. The important point is the determination of a reasonable product slate and an appropriate refining scheme.

Zhou, P.

1992-02-01T23:59:59.000Z

322

Assessment of coal liquids as refinery feedstocks  

Science Conference Proceedings (OSTI)

The R&D of direct coal liquefaction has reached such a stage that current two-stage processes can produce coal liquids with high yields and improved quality at a reasonable cost. To fully realize the potential value, these coal liquids should be refined into high-value liquid transportation fuels. The purpose of this study is to assess coal liquids as feedstocks to be processed by modern petroleum refining technologies. After the introduction, Section 2.0 summarizes ASTM specifications for major transportation fuels: gasoline, jet fuel, and diesel fuel, which serve as a target for coal-liquid refining. A concise description of modern refining processes follows with an emphasis on the requirements for the raw materials. These provide criteria to judge the quality of coal liquids as a refinery feedstock for the production of marketable liquid fuels. Section 3.0 surveys the properties of coal liquids produced by various liquefaction processes. Compared with typical petroleum oils, the current two-stage coal liquids are: Light in boiling range and free of resids and metals; very low in sulfur but relatively high in oxygen; relatively low in hydrogen and high in cyclics content; and essentially toxicologically inactive when end point is lower than 650{degrees}F, particularly after hydroprocessing. Despite these characteristics, the coal liquids are basically similar to petroleum. The modern refining technology is capable of processing coal liquids into transportation fuels meeting all specifications, and hydroprocessinq is obviously the major tool. The important point is the determination of a reasonable product slate and an appropriate refining scheme.

Zhou, P.

1992-02-01T23:59:59.000Z

323

Coal-fired diesel generator  

SciTech Connect

The objective of the proposed project is to test the technical, environmental, and economic viability of a coal-fired diesel generator for producing electric power in small power generating markets. Coal for the diesel generator would be provided from existing supplies transported for use in the University`s power plant. A cleanup system would be installed for limiting gaseous and particulate emissions. Electricity and steam produced by the diesel generator would be used to supply the needs of the University. The proposed diesel generator and supporting facilities would occupy approximately 2 acres of land adjacent to existing coal- and oil-fired power plant and research laboratory buildings at the University of Alaska, Fairbanks. The environmental analysis identified that the most notable changes to result from the proposed project would occur in the following areas: power plant configuration at the University of Alaska, Fairbanks; air emissions, water use and discharge, and the quantity of solid waste for disposal; noise levels at the power plant site; and transportation of coal to the power plant. No substantive adverse impacts or environmental concerns were identified in analyzing the effects of these changes.

1997-05-01T23:59:59.000Z

324

Mild coal pretreatment to improve liquefaction reactivity  

SciTech Connect

This report describes work completed during the fifth quarter of a three year project to study the effects of mild chemical pretreatment on coal dissolution reactivity during low severity liquefaction or coal/oil coprocessing. The overall objective of this research is to elucidate changes in the chemical and physical structure of coal by pretreating with methanol or other simple organic solvent and a trace amount of hydrochloric acid and measure the influence of these changes on coal dissolution reactivity. Work this quarter focused on analytical characterization of untreated and treated Wyodak subbituminous coal and Illinois {number sign}6 bituminous coal. Mossbauer spectroscopy and x-ray diffraction techniques were used to study the effect of methanol/HCl pretreatment on the composition of each coal's inorganic phase. Results from these studies indicated that calcite is largely removed during pretreatment, but that other mineral species such as pyrite are unaffected. This finding is significant, since calcite removal appears to directly correlate with low severity liquefaction enhancement. Further work will be performed to study this phenomenon in more detail.

Miller, R.L.

1991-01-01T23:59:59.000Z

325

Coal Distribution Database, 2006  

U.S. Energy Information Administration (EIA) Indexed Site

2009 Final February 2011 2 Overview of 2009 Coal Distribution Tables Introduction The Coal Distribution Report - Annual provides detailed information on domestic coal distribution by origin state, destination state, consumer category, and method of transportation. Also provided is a summary of foreign coal distribution by coal-producing State. This Final 2009 Coal Distribution Report - Annual, supersedes the data contained in the four Quarterly Coal Distribution Reports previously issued for 2009. This report relies on the most current data available from EIA's various monthly, quarterly and annual surveys of the coal industry and electric power generation industry. In addition, the report

326

2014 Coal Form Proposals  

U.S. Energy Information Administration (EIA)

Coal Survey Form Changes Proposed for 2014. The U.S. Energy Information Administration (EIA) has begun the process of re-clearing the coal survey ...

327

Coal Mining (Iowa)  

Energy.gov (U.S. Department of Energy (DOE))

These sections describe procedures for coal exploration and extraction, as well as permitting requirements relating to surface and underground coal mining. These sections also address land...

328

Coal News and Markets  

U.S. Energy Information Administration (EIA)

Coal Prices (updated December 27, 2006) This report summarizes spot coal prices for the business weeks ended December 1, 8, and 15.

329

Annual Coal Report 2001  

U.S. Energy Information Administration (EIA)

DOE/EIA-0584 (2001) Annual Coal Report 2001 Energy Information Administration Office of Coal, Nuclear, Electric, and Alternate Fuels U.S. Department of Energy

330

Coal News and Markets  

U.S. Energy Information Administration (EIA)

Metallurgical coal markets became volatile when the thriving Chinese steel industry in late 2003 and 2004 made outsized demands for coking coal and met coke, ...

331

Annual Coal Distribution Report  

Gasoline and Diesel Fuel Update (EIA)

Annual Coal Distribution Report Release Date: December 19, 2013 | Next Release Date: November 2014 | full report | RevisionCorrection Revision to the Annual Coal Distribution...

332

In situ noncombustive microwave processing of oil shale. Final report  

SciTech Connect

A unified analytical examination of the products of microwave oil shale has been completed. A sample of subituminous Colorado coal was also included. Analysis systems have been planned, constructed and placed into operation so as to provide a definitive profile of the composition of gases, oil, and water released by the microwave heated oil shale and coal samples. In a previous NSF study, it was reported that microwave retorted oil shale produced large quantities of high BTU content gas. In the data presented in this report, using a modular microcoulometric analysis system, a definitive profile of the composition of the gases, oil, and water, released by the microwave retorted oil shale and coal show that the previous results are confirmed.

Wall, E.T.

1979-08-31T23:59:59.000Z

333

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 1  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 Industrial Applications Advanced Cyclone Combustor with Internal Sulfur, Nitrogen, and Ash Control - Project Brief [PDF-302KB] Coal Tech Corp., Williamsport, PA PROGRAM PUBLICATIONS Final Reports Demonstration of an Advanced Cyclone Coal Combustor with Internal Sulfur Nitrogen, and Ash Control for the Conversion of a 23-MMBtu/Hour Oil Fired Boiler to Pulverized Coal (Aug 1991) Volume 1: Final Technical Report [PDF-5.9MB] Appendixes I through VI [PDF-8.9MB] CCT Reports: Project Performance Summaries, Post-Project Assessments, & Topical Reports The Coal Tech Advanced Cyclone Combustor Demonstration Project -- A DOE Assessment [PDF-234KB] (May 1993) Environmental Reports Annual Environmental Report for The Demonstration of an Advanced Cyclone Coal Combustor, with Internal Sulfur, Nitrogen, and Ash Control for the Conversion of a 23 MMBtu/Hour Boiler to Coal [PDF-812KB] (Sept 1987)

334

Coal liquefaction. Quarterly report, October-December 1978  

SciTech Connect

DOE's program for the conversion of coal to liquid fuels was begun by two of DOE's predecessor agencies: Office of Coal Research (OCR) in 1962, and ERDA. The Bureau of Mines, US Department of the Interior, had started work in the 1930's. Current work is aimed at improved process configurations for both catalytic and noncatalytic processes to provide more attractive processing economics and lower capital investment. The advantage of coal liquefaction is that the entire range of liquid products, especially boiler fuel, distillate fuel oil, and gasoline, can be produced from coal by varying the type of process and operating conditions used in the process. Furthermore, coal-derived liquids have the potential for use as chemical feedstocks. To provide efficient and practical means of utilizing coal resources, DOE is supporting the development of several conversion processes that are currently in the pilot plant stage. Each of these processes are described briefly.

1979-09-01T23:59:59.000Z

335

American Coal Council 2004 Spring Coal Forum  

NLE Websites -- All DOE Office Websites (Extended Search)

American Coal Council American Coal Council 2004 Spring Coal Forum Dallas, Texas May 17-19, 2004 Thomas J. Feeley, III Technology Manager National Energy Technology Laboratory ACC Spring Coal Forum, 2004 Presentation Outline * Background * Power plant-water issues * DOE/NETL R&D program * Conclusion/future plans ACC Spring Coal Forum, 2004 Global Water Availability Ocean 97% Fresh Water 2.5% 0 20 40 60 80 100 Ice Groundwater Lakes and Rivers ACC Spring Coal Forum, 2004 Three Things Power Plants Require 1) Access to transmission lines 2) Available fuel, e.g., coal or natural gas 3) Water ACC Spring Coal Forum, 2004 Freshwater Withdrawals and Consumption Mgal / Day Irrigation 81,300 Irrigation 81,300 Thermoelectric 3,310 Consumption Sources: "Estimated Use of Water in the United States in 1995," USGS Circular 1200, 1998

336

NETL: Coal & Coal Biomass to Liquids  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Biomass to Liquids Hydrogen-from-Coal RD&D ENERGY ANALYSIS About Us Search Products Contacts SMART GRID ANALYSIS BASELINE STUDIES QUALITY GUIDELINES NETL-RUA About NETL-RUA...

337

NETL: Clean Coal Demonstrations - Coal 101  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean Coal Technology Program Clean Coal Technology Program Clean Coal 101 Lesson 2: The Clean Coal Technology Program The Clean Coal Technology Program began in 1985 when the United States and Canada decided that something had to be done about the "acid rain" that was believed to be damaging rivers, lakes, forests, and buildings in both countries. Since many of the pollutants that formed "acid rain" were coming from big coal-burning power plants in the United States, the U.S. Government took the lead in finding a solution. One of the steps taken by the U.S. Department of Energy was to create a partnership program between the Government, several States, and private companies to test new methods developed by scientists to make coal burning much cleaner. This became the "Clean Coal Technology Program."

338

Refinery Integration of By-Products from Coal-Derived Jet Fuels  

Science Conference Proceedings (OSTI)

This report summarizes the accomplishments toward project goals during the first six months of the second year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Evaluations to assess the quality of coal based fuel oil are reported. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

2005-11-17T23:59:59.000Z

339

Published on Aspen Daily News Online (http://www.aspendailynews.com) Report finds oil shale could impact Colorado's water  

E-Print Network (OSTI)

and Development (116.4) (30.6) Naval Petroleum and Oil Shale Reserve (2.1) (2.1) Clean Coal Technology (18.0) (18

Neff, Jason

340

Coal Combustion Products | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coal Combustion Products Coal Combustion Products Coal combustion products (CCPs) are solid materials produced when coal is burned to generate electricity. Since coal provides the...

Note: This page contains sample records for the topic "oil coal rse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Clean Coal Research | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean Coal Research Clean Coal Research Clean Coal Turbines Gasification Fuel Cells Hydrogen from Coal Coal to Liquids Major Demonstrations Crosscutting Research Carbon Capture and...

342

A kinetic model for co-processing of coal and waste tire  

Science Conference Proceedings (OSTI)

Liquefaction of waste (recycled) tire and coal was studied both separately and using mixtures with different tire-to-coal ratios. Temperatures from 350-425{degrees}C were used. The data were analyzed using a model with a second-order consecutive reaction scheme (liquefaction to asphaltenes to oil and gas) for coal; a second-order conversion of tire to oil and gas; and an additional synergism reaction forming asphaltenes, first order in both coal and tire, when both are present. The agreement between the model and experiment was good.

Dadyburjor, D.B.; Sharma, R.K.; Yang, J.; Zondlo, J.W. [West Virginia Univ., Morgantown, WV (United States)

1996-12-31T23:59:59.000Z

343

Coal liquefaction  

DOE Patents (OSTI)

In a two-stage liquefaction wherein coal, hydrogen and liquefaction solvent are contacted in a first thermal liquefaction zone, followed by recovery of an essentially ash free liquid and a pumpable stream of insoluble material, which includes 850.degree. F.+ liquid, with the essentially ash free liquid then being further upgraded in a second liquefaction zone, the liquefaction solvent for the first stage includes the pumpable stream of insoluble material from the first liquefaction stage, and 850.degree. F.+ liquid from the second liquefaction stage.

Schindler, Harvey D. (Fairlawn, NJ)

1985-01-01T23:59:59.000Z

344

Coal Tar and Bedrock  

Science Conference Proceedings (OSTI)

The characterization of bedrock groundwater and coal tar impacts is one of the most complicated tasks associated with managing manufactured gas plant (MGP) sites. This report provides an overview of the fate and transport of coal tar in bedrock and the methods available to investigate coal tar at particular sites and discusses how to develop a decision-making framework for coal tar investigations.

2007-02-22T23:59:59.000Z

345

Subbituminous and bituminous coal dominate U.S. coal ...  

U.S. Energy Information Administration (EIA)

While almost all coal consumed in the United States is used to generate electricity (90% in 2010), coal is not entirely homogeneous. Coal is ...

346

NETL: Coal & Coal Biomass to Liquids - Alternate Hydrogen Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal and CoalBiomass to Liquids Alternate Hydrogen Production In the Alternate Production technology pathway, clean syngas from coal is converted to high-hydrogen-content liquid...

347

The Effect of Circulating Coal Slurry Water Hardness on Coal ...  

Science Conference Proceedings (OSTI)

In order to investigate the effect of gypsum on flotation and coal slurry settling during coal slurry recirculation, the water hardness and proton conductivity of coal ...

348

Coal Market Module  

Gasoline and Diesel Fuel Update (EIA)

page intentionally left blank page intentionally left blank 153 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Coal Market Module The NEMS Coal Market Module (CMM) provides projections of U.S. coal production, consumption, exports, imports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2011, DOE/EIA-M060(2011) (Washington, DC, 2011). Key assumptions Coal production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the projection. Forty-one separate supply curves are developed for each of 14 supply regions, nine coal types (unique combinations

349

Coal Market Module This  

Gasoline and Diesel Fuel Update (EIA)

51 51 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2012 Coal Market Module The NEMS Coal Market Module (CMM) provides projections of U.S. coal production, consumption, exports, imports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2012, DOE/EIA-M060(2012) (Washington, DC, 2012). Key assumptions Coal production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the projection. Forty-one separate supply curves are developed for each of 14 supply regions, nine coal types (unique combinations

350

EIA -Quarterly Coal Distribution  

U.S. Energy Information Administration (EIA) Indexed Site

Coal Distribution Coal Distribution Home > Coal> Quarterly Coal Distribution Back Issues Quarterly Coal Distribution Archives Release Date: June 27, 2013 Next Release Date: September 2013 The Quarterly Coal Distribution Report (QCDR) provides detailed quarterly data on U.S. domestic coal distribution by coal origin, coal destination, mode of transportation and consuming sector. All data are preliminary and superseded by the final Coal Distribution - Annual Report. Year/Quarters By origin State By destination State Report Data File Report Data File 2009 January-March pdf xls pdf xls April-June pdf xls pdf xls July-September pdf xls pdf October-December pdf xls pdf 2010 January-March pdf xls pdf xls April-June pdf xls pdf xls July-September pdf xls pdf xls

351

Advances in pulverized coal combustion  

Science Conference Proceedings (OSTI)

A combustion system has been developed to operate cost effectively in the difficult regulatory and economic climate of the 1980's. The system is designed to reduce auxiliary fuel oil comsumption by at least 30% while meeting all relevant emissions limits. This is achieved with the fewest components consistent with practical reliable design criteria. The Controlled Flow Split/Flame low NO/sub x/ burner, MBF pulverizer and Two-Stage ignition system are integrated into a mutually supporting system which is applicable to both new steam generators and, on a retrofit basis, to existing units. In the future, a pulverized coal ignition system will be available to eliminate fuel oil use within the boiler.

Vatsky, J.

1981-01-01T23:59:59.000Z

352

NETL: Clean Coal Demonstrations - Coal 101  

NLE Websites -- All DOE Office Websites (Extended Search)

A "Bed" for Burning Coal A "Bed" for Burning Coal Clean Coal 101 Lesson 4: A "Bed" for Burning Coal? It was a wet, chilly day in Washington DC in 1979 when a few scientists and engineers joined with government and college officials on the campus of Georgetown University to celebrate the completion of one of the world's most advanced coal combustors. It was a small coal burner by today's standards, but large enough to provide heat and steam for much of the university campus. But the new boiler built beside the campus tennis courts was unlike most other boilers in the world. A Fluidized Bed Boiler A Fluidized Bed Boiler In a fluidized bed boiler, upward blowing jets of air suspend burning coal, allowing it to mix with limestone that absorbs sulfur pollutants.

353

Prebaked Anode from Coal Extract  

Science Conference Proceedings (OSTI)

We previously reported that the coal extract prepared from non-hydrogenative extraction of thermal coals using two-ring-aromatic solvent (Hyper-coal) is suitable ...

354

Coal desulfurization with sodium hypochlorite.  

E-Print Network (OSTI)

??Wet desulfurization of Pittsburgh No. 8 coal and Illinois No. 6 coal were conducted with sodium hypochlorite in the laboratory. Pittsburgh No. 8 coal was… (more)

Li, Wei, M.S.

2004-01-01T23:59:59.000Z

355

Table A38. Selected Combustible Inputs of Energy for Heat, Power, and  

U.S. Energy Information Administration (EIA) Indexed Site

1" 1" " (Estimates in Btu or Physical Units)",,,,,,,"Coal" ,,,,"Distillate",,,"(excluding" ,,"Net Demand",,"Fuel Oil",,,"Coal Coke" ,,"for","Residual","and","Natural Gas(d)",,"and Breeze)","RSE" "SIC",,"Electricity(b)","Fuel Oil","Diesel Fuel(c)","(billion","LPG","(1000 short","Row" "Code(a)","End-Use Categories","(million kWh)","(1000 bbls)","(1000 bbls)","cu ft)","(1000 bbls)","tons)","Factors" "20-39","ALL INDUSTRY GROUPS"

356

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

5 End Uses of Fuel Consumption, 2002;" 5 End Uses of Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ",," "," " " ",,,,"Fuel Oil",,,"Coal" " "," ","Net","Residual","and","Natural ","LPG and","(excluding Coal"," ","RSE" " ","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Gas(c)","NGL(d)","Coke and Breeze)","Other(e)","Row"

357

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

6 End Uses of Fuel Consumption, 2002;" 6 End Uses of Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," ",," "," " " ",,,,"Fuel Oil",,,"Coal",,"RSE" " "," ","Net","Residual","and","Natural ","LPG and","(excluding Coal"," ","Row" "End Use","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Gas(c)","NGL(d)","Coke and Breeze)","Other(e)","Factors"

358

" Row: End Uses;"  

U.S. Energy Information Administration (EIA) Indexed Site

3. End Uses of Fuel Consumption, 1998;" 3. End Uses of Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Physical Units or Btu." " ",," ","Distillate"," "," ","Coal"," " " ",,,"Fuel Oil",,,"(excluding Coal" " ","Net Demand","Residual","and","Natural Gas(c)","LPG and","Coke and Breeze)","RSE" " ","for Electricity(a)","Fuel Oil","Diesel Fuel(b)","(billion","NGL(d)","(million","Row"

359

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 End Uses of Fuel Consumption, 2002;" 2 End Uses of Fuel Consumption, 2002;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," "," ",," ","Distillate"," "," ",," "," " " "," ",,,,"Fuel Oil",,,"Coal",,"RSE" "NAICS"," "," ","Net","Residual","and","Natural ","LPG and","(excluding Coal"," ","Row" "Code(a)","End Use","Total","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Gas(d)","NGL(e)","Coke and Breeze)","Other(f)","Factors"

360

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. End Uses of Fuel Consumption, 1998;" 1. End Uses of Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ","Coal"," "," " " ",,,,"Fuel Oil",,,"(excluding Coal" " "," ","Net","Residual","and","Natural Gas(c)","LPG and","Coke and Breeze)"," ","RSE" " ","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","(billion","NGL(d)","(million","Other(e)","Row"

Note: This page contains sample records for the topic "oil coal rse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. End Uses of Fuel Consumption, 1998;" 2. End Uses of Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," ",," "," " " ",,,,"Fuel Oil",,,"Coal",,"RSE" " "," ","Net","Residual","and",,"LPG and","(excluding Coal"," ","Row" "End Use","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural Gas(c)","NGL(d)","Coke and Breeze)","Other(e)","Factors"

362

Table A11. Total Inputs of Energy for Heat, Power, and Electricity Generatio  

U.S. Energy Information Administration (EIA) Indexed Site

1" 1" " (Estimates in Btu or Physical Units)" ,,,,"Distillate",,,"Coal" ,,,,"Fuel Oil",,,"(excluding" ,,"Net","Residual","and Diesel",,,"Coal Coke",,"RSE" ,"Total","Electricity(a)","Fuel Oil","Fuel(b)","Natural Gas(c)","LPG","and Breeze)","Other(d)","Row" "End-Use Categories","(trillion Btu)","(million kWh)","(1000 bbls)","(1000 bbls)","(billion cu ft)","(1000 bbls)","(1000 short tons)","(trillion Btu)","Factors" ,,,,,,,,,,, ,"Total United States"

363

" Row: End Uses;"  

U.S. Energy Information Administration (EIA) Indexed Site

8 End Uses of Fuel Consumption, 2002;" 8 End Uses of Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Trillion Btu." " ",," ","Distillate"," "," ",," " " ","Net Demand",,"Fuel Oil",,,"Coal","RSE" " ","for ","Residual","and","Natural ","LPG and","(excluding Coal","Row" "End Use","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Gas(c)","NGL(d)","Coke and Breeze)","Factors"

364

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 End Uses of Fuel Consumption, 2002;" 1 End Uses of Fuel Consumption, 2002;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." " "," "," ",," ","Distillate"," "," ",," "," " " "," ",,,,"Fuel Oil",,,"Coal" " "," "," ","Net","Residual","and","Natural ","LPG and","(excluding Coal"," ","RSE" "NAICS"," ","Total","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Gas(d)","NGL(e)","Coke and Breeze)","Other(f)","Row"

365

" Sources by Industry Group, Selected Industries, and Selected Characteristics,"  

U.S. Energy Information Administration (EIA) Indexed Site

3. Capability to Switch from Electricity to Alternative Energy" 3. Capability to Switch from Electricity to Alternative Energy" " Sources by Industry Group, Selected Industries, and Selected Characteristics," 1991 " (Estimates in Million Kilowatthours)" ,," Electricity Receipts",,," Alternative Types of Energy(b)" ,,"-","-","-----------","-","-","-","-","-","-","-" ,,,,,,,,,,"Coal",,"RSE" ,,"Total"," ","Not","Natural","Distillate","Residual",,,"Coke and",,"Row" ,,"Receipts(c)","Switchable","Switchable","Gas","Fuel Oil","Fuel Oil","Coal","LPG","Breeze","Other(d)","Factors"," "

366

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

3. End Uses of Fuel Consumption, 1998;" 3. End Uses of Fuel Consumption, 1998;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ","Coal"," " " "," ",,,"Fuel Oil",,,"(excluding Coal" " "," ","Net Demand","Residual","and","Natural Gas(d)","LPG and","Coke and Breeze)","RSE" "NAICS"," ","for Electricity(b)","Fuel Oil","Diesel Fuel(c)","(billion","NGL(e)","(million","Row"

367

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. End Uses of Fuel Consumption, 1998;" 2. End Uses of Fuel Consumption, 1998;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," "," ",," ","Distillate"," "," ",," "," " " "," ",,,,"Fuel Oil",,,"Coal",,"RSE" "NAICS"," "," ","Net","Residual","and",,"LPG and","(excluding Coal"," ","Row" "Code(a)","End Use","Total","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Natural Gas(d)","NGL(e)","Coke and Breeze)","Other(f)","Factors"

368

Table A12. Selected Combustible Inputs of Energy for Heat, Power, and  

U.S. Energy Information Administration (EIA) Indexed Site

Type and End Use," Type and End Use," " 1994: Part 1" " (Estimates in Btu or Physical Units)" ,,,,,,,"Coal" ,,,,"Distillate",,,"(excluding" ,,"Net Demand",,"Fuel Oil",,,"Coal Coke" ,,"for","Residual","and","Natural Gas(d)",,"and Breeze)","RSE" "SIC",,"Electricity(b)","Fuel Oil","Diesel Fuel(c)","(billion","LPG","(1000 short","Row" "Code(a)","End-Use Categories","(million kWh)","(1000 bbls)","(1000 bbls)","cu ft)","(1000 bbls)","tons)","Factors"

369

Table A67. Capability to Switch from Electricity to Alternative Energy Source  

U.S. Energy Information Administration (EIA) Indexed Site

7. Capability to Switch from Electricity to Alternative Energy Sources" 7. Capability to Switch from Electricity to Alternative Energy Sources" " by Industry Group, Selected Industries, and Selected Characteristics," " 1994: Part 1" " (Estimates in Million Kilowatthours)" ,,,"Electricity Receipts",,,," Alternative Types of Energy(b)" ,,,,,,,,,,"Coal Coke",,"RSE" "SIC"," ","Total"," ","Not","Natural","Distillate","Residual",,,"and",,"Row" "Code(a)","Industry Group and Industry","Receipts(c)","Switchable","Switchable","Gas","Fuel Oil","Fuel Oil","Coal","LPG","Breeze","Other(d)","Factors"," "

370

" Sources by Industry Group, Selected Industries, and Selected Characteristics,"  

U.S. Energy Information Administration (EIA) Indexed Site

4. Capability to Switch from Natural Gas to Alternative Energy" 4. Capability to Switch from Natural Gas to Alternative Energy" " Sources by Industry Group, Selected Industries, and Selected Characteristics," 1991 " (Estimates in Billion Cubic Feet)" ,," Natural Gas",,," Alternative Types of Energy(b)" ,,"-","-","-------------","-","-","-","-","-","-","-","RSE" ,,"Total"," ","Not","Electricity","Distillate","Residual",,,"Coal Coke",,"Row" ,,"Consumed(c)","Switchable","Switchable","Receipts(d)","Fuel Oil","Fuel Oil","Coal","LPG","and Breeze","Other(e)","Factors"

371

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

3 End Uses of Fuel Consumption, 2002;" 3 End Uses of Fuel Consumption, 2002;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ",," " " "," ","Net Demand",,"Fuel Oil",,,"Coal" " "," ","for ","Residual","and","Natural ","LPG and","(excluding Coal","RSE" "NAICS"," ","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Gas(d)","NGL(e)","Coke and Breeze)","Row"

372

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

4 End Uses of Fuel Consumption, 2002;" 4 End Uses of Fuel Consumption, 2002;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," ",," " " "," ","Net Demand",,"Fuel Oil",,,"Coal","RSE" "NAICS"," ","for ","Residual","and","Natural ","LPG and","(excluding Coal","Row" "Code(a)","End Use","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Gas(d)","NGL(e)","Coke and Breeze)","Factors"

373

Coal-to-Liquids in the U S Status and Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

to-Liquids in the United States to-Liquids in the United States Status and Roadmap CTLtec Americas 2008 June 23 - 24, 2008 Daniel C. Cicero, Technology Manager, Hydrogen and Syngas National Energy Technology Laboratory CTL Tec Americas 2008 / Daniel Cicero / U.S. DOE-NETL / June 2008 * 35% of world energy consumption is from oil 2 * 96% of all world oil used for transportation * World vehicle population at 700 million; - double by 2030 to 1.5 billion; - developing countries to triple * World oil consumption is 84 MMBPD - 20% higher than 1995 - expect 120 MMBPD by 2030 * World oil supplies could peak between 2016 and 2037 3 * Increasing competition with China, India, and other growing nations for oil resources * Oil resources not equitably distributed globally; coal more wide spread 2 Ref: World Coal Institute Report "Coal-to-Liquids"

374

Preconversion processing of bituminous coals: New directions to improved direct catalytic coal liquefaction. Quarterly report, April 1, 1993--June 30, 1993  

DOE Green Energy (OSTI)

This project is focussed on the effective preconversion and liquefaction of coal. One of the main goals of this project was to reduce hydrogen consumption by decreasing the gas yield and increasing the oil yield based on a new structural model of coal. Two factors were critically evaluated during these tasks: (1) maximizing dissolution of associated coal and (2) different reactivity of fractions with different molecular weight. High-temperature soaking at{approximately} 350{degree}C in a coal liquid (recycle oil) was one method for effective dissolution not requiring additional chemicals and/or hydrogen. Two-step soaking at 350{degree}C and 400{degree}C was more effective for maximum dissolution. The addition of a relatively small amount of hydrogen peroxide during soaking slightly enhanced preconversion. Separation of dissolved coal into light and heavy fractions, followed by liquefaction of the heavy fraction, was effective as a means to improve product selectivity. Vacuum distillation was projected for the simple separation method. Cyclohexane extraction was used instead of vacuum distillation since cyclohexane solubles closely resemble the distillable oil fraction. Tests of the suggested procedure inferred a 30% increase in the oil yield and a 15--20% decrease in the gas yield. The effectiveness of the suggested procedure was confirmed from coal/oil ratios (g/ml) of 1/10--{1/2}. Batchwise vacuum distillation was tested, but was not successful due to an inherent problem in resolubilizing pitch samples in coal liquid. Progress this quarter is described.

Not Available

1993-07-01T23:59:59.000Z

375

Coal data: A reference  

SciTech Connect

This report, Coal Data: A Reference, summarizes basic information on the mining and use of coal, an important source of energy in the US. This report is written for a general audience. The goal is to cover basic material and strike a reasonable compromise between overly generalized statements and detailed analyses. The section ``Supplemental Figures and Tables`` contains statistics, graphs, maps, and other illustrations that show trends, patterns, geographic locations, and similar coal-related information. The section ``Coal Terminology and Related Information`` provides additional information about terms mentioned in the text and introduces some new terms. The last edition of Coal Data: A Reference was published in 1991. The present edition contains updated data as well as expanded reviews and additional information. Added to the text are discussions of coal quality, coal prices, unions, and strikes. The appendix has been expanded to provide statistics on a variety of additional topics, such as: trends in coal production and royalties from Federal and Indian coal leases, hours worked and earnings for coal mine employment, railroad coal shipments and revenues, waterborne coal traffic, coal export loading terminals, utility coal combustion byproducts, and trace elements in coal. The information in this report has been gleaned mainly from the sources in the bibliography. The reader interested in going beyond the scope of this report should consult these sources. The statistics are largely from reports published by the Energy Information Administration.

Not Available

1995-02-01T23:59:59.000Z

376

Pressure coal gasification experience in Czechoslovakia  

SciTech Connect

Czechoslovakia's large deposits of brown coal supply the country's three operating pressure gasification plants. The gas produced is suitable for further treatment to provide fuel for household and industrial consumers. Coal gasification is not new to the energy planners in Czechoslovakia. Since 1948, 56 gasifiers have been installed in the three pressure gasification plants currently in operation. The newest and biggest of these plants is at Vresova. The plant processes 5,000 tons of brown coal per day. The locally mined coal used for feed at the Vresova plant has a calorific value of 12 to 14 megajoules per kilogram (52 to 60 Btu's per pound). The gasifiers produce up to 13,000 cubic meters (459,000 cubic feet) per hour of crude gas per gasifier. Gasification technology has been under development in Czechoslovakia since 1945. The country has virtually no oil or natural gas reserves, a fact that emphasizes the importance of coal-based energy. Production of gas from coal in Czechoslovak gasifiers is based on gasification in the fixed bed of a gasifier.

Not Available

1981-03-01T23:59:59.000Z

377

METC research on coal-fired diesels  

DOE Green Energy (OSTI)

The METC in-house Coal-Fueled Diesel Research project is part of the overall DOE effort to develop a technology base for diesel engines capable of operating on coal, shale oil or low-cost coal-derived fuels. The in-house effort started in 1985 as a test-bed for coal-derived liquid fuels and will end this fiscal year with the successful completion of METC`s diesel R&D program. Currently METC in-house research and development efforts focus on pilot chamber combustion in METC`s coal-water slurry (CWS) fueled diesel engine. A novel pilot chamber for a direct-injected, coal-fueled diesel engine has been designed and is being tested in METC`s single cylinder research diesel engine. The pilot chamber configuration allows for operation at extended load and speed conditions using 100 percent CWS and no other pilot fuel. The concept involves the use of a small volume chamber exterior to the main cylinder in which approximately 5 percent of the total fuel energy at full load conditions is injected. Lower NO{sub X} levels may be obtained due to leaner burning as well as broader stable performance using only CWS fuel.

McMillian, M.H. [USDOE Morgantown Energy Technology Center, WV (United States); Robey, E.H.; Addis, R.E. [EG and G Washington Analytical Services Center, Inc., Morgantown, WV (United States)

1993-11-01T23:59:59.000Z

378

Synthetic crude oils carcinogenicity screening tests. Progress report, February 15-September 15, 1979  

DOE Green Energy (OSTI)

Four crude oils (Southern Louisiana Crude Petroleum, H Coal Syncrude, Paraho Crude Shale Oil and Geokinetics in situ Shale Oil) which were distilled into four fractions (naphtha, mid-distillate, gas oil and residue) for analysis and biological screening testing during the first report period were tested for mutagenicity by the Ames test and for tumor initiating activity by an initiation/promotion (skin painting) test. Substantial agreement exists between Ames and skin painting results. Low boiling fractions of the 4 crude oils showed little or no mutagenicity or tumor activity by the two tests used. The higher boiling fractions (mid gas oils and residues) and the crude oils themselves showed positive mutagenicity and tumor initiation activity. The coal derived fractions were more potent by both tests while the shale oil fractions showed greater activity than the petroleum fractions but considerably less than the coal syncrude.

Calkins, W.H.; Deye, J.F.; King, C.F.; Hartgrove, R.W.; Krahn, D.F.

1979-01-01T23:59:59.000Z

379

NETL: Coal & Power Systems - Brief History of Coal Use  

NLE Websites -- All DOE Office Websites (Extended Search)

History of Coal Coal & Power Systems Brief History of Coal Use Steam Locomotive In the 1800s, one of the primary uses of coal was to fuel steam engines used to power locomotives....

380

NETL: Coal & Coal Biomass to Liquids - Closely Aligned Programs  

NLE Websites -- All DOE Office Websites (Extended Search)

Home > Technologies > C&CBTL > Closely Aligned Programs Coal and CoalBiomass to Liquids Closely Aligned Programs The Department of Energy's (DOE) Coal & CoalBiomass to Liquids...

Note: This page contains sample records for the topic "oil coal rse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

RSE Table N8.1 and N8.2. Relative Standard Errors for Tables N8.1 and N8.2  

U.S. Energy Information Administration (EIA) Indexed Site

1 and N8.2. Relative Standard Errors for Tables N8.1 and N8.2;" 1 and N8.2. Relative Standard Errors for Tables N8.1 and N8.2;" " Unit: Percents." ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,"Selected","Wood and Other","Biomass","Components" ,,,,,,,"Coal Components",,,"Coke",,"Electricity","Components",,,,,,,,,,,,,"Natural Gas","Components",,"Steam","Components" ,,,,,,,,,,,,,,"Total",,,,,,,,,,,,,,,,,,,,,,,"Wood Residues" " "," "," ",,,,,"Bituminous",,,,,,"Electricity","Diesel Fuel",,,,,,"Motor",,,,,,,"Natural Gas",,,"Steam",,,," ",,,"and","Wood-Related",,," "

382

Economics of producing substitute natural gas from coal. Occasional pub  

Science Conference Proceedings (OSTI)

Using the cost levelization approach, the economics of producing substitute natural gas (SNG) are examined under different assumptions regarding conversion technologies, coal types and plant financing. A comparison of levelized constant dollar cost-of-service price estimated for Westinghouse and dry bottom Lurgi processes for 1990-2019 shows that SNG from coal produced at western sites is competitive with natural gas and fuel oils.

Rosenberg, J.I.; Ashby, A.B.

1983-07-01T23:59:59.000Z

383

International Energy Outlook - Coal  

Gasoline and Diesel Fuel Update (EIA)

Coal Coal International Energy Outlook 2004 Coal Although coal use is expected to be displaced by natural gas in some parts of the world, only a slight drop in its share of total energy consumption is projected by 2025. Coal continues to dominate fuel markets in developing Asia. Figure 52. World Coal Consumption, 1970-2025. Need help, call the National Energy Information Center at 202-586-8800. Figure Data Figure 53. Coal Share of World Energy Consumption by Sector, 2001 and 2025. Need help, call the National Energy Information Center at 202-586-8800. Figure Data Figure 54. Coal Share of Regional Energy Consumption, 1970-2025. Need help, call the National Energy Information Center at 202-586-8800. Figure Data World coal consumption has been in a period of generally slow growth since

384

Coal Distribution Database, 2006  

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Distribution of U.S. Coal by Origin State, Domestic Distribution of U.S. Coal by Origin State, Consumer, Destination and Method of Transportation, 2009 Final February 2011 2 Overview of 2009 Coal Distribution Tables Introduction The Coal Distribution Report - Annual provides detailed information on domestic coal distribution by origin state, destination state, consumer category, and method of transportation. Also provided is a summary of foreign coal distribution by coal-producing State. This Final 2009 Coal Distribution Report - Annual, supersedes the data contained in the four Quarterly Coal Distribution Reports previously issued for 2009. This report relies on the most current data available from EIA's various monthly, quarterly and annual surveys

385

Hydrogen from Coal  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Coal Edward Schmetz Office of Sequestration, Hydrogen and Clean Coal Fuels U.S. Department of Energy DOE Workshop on Hydrogen Separations and Purification Technologies September 8, 2004 Presentation Outline ƒ Hydrogen Initiatives ƒ Hydrogen from Coal Central Production Goal ƒ Why Coal ƒ Why Hydrogen Separation Membranes ƒ Coal-based Synthesis Gas Characteristics ƒ Technical Barriers ƒ Targets ƒ Future Plans 2 3 Hydrogen from Coal Program Hydrogen from Coal Program FutureGen FutureGen Hydrogen Fuel Initiative Hydrogen Fuel Initiative Gasification Fuel Cells Turbines Gasification Fuel Cells Turbines Carbon Capture & Sequestration Carbon Capture & Sequestration The Hydrogen from Coal Program Supports the Hydrogen Fuel Initiative and FutureGen * The Hydrogen Fuel Initiative is a $1.2 billion RD&D program to develop hydrogen

386

Current and future use of coal in the Northeast. [60 refs  

DOE Green Energy (OSTI)

Some of the problems of and potential for coal utilization in the Northeast region (defined as New England, New York, Pennsylvania, New Jersey, Delaware, Maryland, and the District of Columbia are discussed. Coal utilization in the Northeast now occurs mainly in Pennsylvania, where coal is used extensively for steel manufacturing and electricity generation. Elsewhere in the region, coal use is limited for the most part to electric power generation, and increased future reliance on coal is likely to be associated principally with this use. At present, oil supplies most of the energy used to generate electricity in the Northeast. Recent trends in national and regional coal use are reviewed, and an overview of potential options for and constraints on future coal use are presented. The outlook for future coal supplies in the region for the reference years 1985 and 2000 is discussed. Supply estimates are shown tabularly. Regional availability of low-sulfur coal will depend on interregional economic factors as well as on technical constraints and public policy. The transportation system of the Northeast coals also constrain coal use. The potential demand for coal by electric utilities in the region is considered. Three coal demand scenarios are developed for 1985. The role of coal-derived synthetic fuels in the energy future of the Northeast is discussed. For the most part, processes producing low-Btu gas, high-Btu gas, and synthetic liquids from coal will contribute to the energy supply of the Northeast indirectly by augmenting national supplies of gas, oil, and electricity. In 1985, synthetic fuels production is likely to be small; by 2000, more substantial contributions could be available if a national policy for rapid coal synthetics development was pursued.

Edelston, B.S.; Rubin, E.S.

1976-05-01T23:59:59.000Z

387

Coal Severance Tax (North Dakota)  

Energy.gov (U.S. Department of Energy (DOE))

The Coal Severance Tax is imposed on all coal severed for sale or industrial purposes, except coal used for heating buildings in the state, coal used by the state or any political subdivision of...

388

Coal char fragmentation during pulverized coal combustion  

Science Conference Proceedings (OSTI)

A series of investigations of coal and char fragmentation during pulverized coal combustion is reported for a suite of coals ranging in rank from lignite to low-volatile (lv) bituminous coal under combustion conditions similar to those found in commercial-scale boilers. Experimental measurements are described that utilize identical particle sizing characteristics to determine initial and final size distributions. Mechanistic interpretation of the data suggest that coal fragmentation is an insignificant event and that char fragmentation is controlled by char structure. Chars forming cenospheres fragment more extensively than solid chars. Among the chars that fragment, large particles produce more fine material than small particles. In all cases, coal and char fragmentation are seen to be sufficiently minor as to be relatively insignificant factors influencing fly ash size distribution, particle loading, and char burnout.

Baxter, L.L.

1995-07-01T23:59:59.000Z

389

Upgraded Coal Interest Group  

Science Conference Proceedings (OSTI)

The Upgraded Coal Interest Group (UCIG) is an EPRI 'users group' that focuses on clean, low-cost options for coal-based power generation. The UCIG covers topics that involve (1) pre-combustion processes, (2) co-firing systems and fuels, and (3) reburn using coal-derived or biomass-derived fuels. The UCIG mission is to preserve and expand the economic use of coal for energy. By reducing the fuel costs and environmental impacts of coal-fired power generation, existing units become more cost effective and thus new units utilizing advanced combustion technologies are more likely to be coal-fired.

Evan Hughes

2009-01-08T23:59:59.000Z

390

Coal feed lock  

DOE Patents (OSTI)

A coal feed lock is provided for dispensing coal to a high pressure gas producer with nominal loss of high pressure gas. The coal feed lock comprises a rotor member with a diametral bore therethrough. A hydraulically activated piston is slidably mounted in the bore. With the feed lock in a charging position, coal is delivered to the bore and then the rotor member is rotated to a discharging position so as to communicate with the gas producer. The piston pushes the coal into the gas producer. The rotor member is then rotated to the charging position to receive the next load of coal.

Pinkel, I. Irving (Fairview Park, OH)

1978-01-01T23:59:59.000Z

391

Process for coal liquefaction in staged dissolvers  

SciTech Connect

There is described an improved liquefaction process by which coal is converted to a low ash and low sulfur carbonaceous material that can be used as a fuel in an environmentally acceptable manner without costly gas scrubbing equipment. In the process, coal is slurried with a pasting oil, passed through a preheater and at least two dissolvers in series in the presence of hydrogen-rich gases at elevated temperatures and pressures. Solids, including mineral ash and unconverted coal macerals, are separated from the condensed reactor effluent. In accordance with the improved process, the first dissolver is operated at a higher temperature than the second dissolver. This temperature sequence produces improved product selectivity and permits the incorporation of sufficient hydrogen in the solvent for adequate recycle operations.

Roberts, George W. (Emmaus, PA); Givens, Edwin N. (Bethlehem, PA); Skinner, Ronald W. (Allentown, PA)

1983-01-01T23:59:59.000Z

392

"Table A41. Average Prices of Selected Purchased Energy Sources by Census Region,"  

U.S. Energy Information Administration (EIA) Indexed Site

1" 1" " (Estimates in Dollars per Physical Units)" " "," ","Residual","Distillate ","Natural"," "," ","RSE" " ","Electricity","Fuel Oil","Fuel Oil(b)","Gas(c)","LPG","Coal","Row" "Economic Characteristics(a)","(kWh)","(gallons)","(gallons)","(1000 cu ft)","(gallons)","(short tons)","Factors" ,"Total United States" "RSE Column Factors:",0.6,0.8,1.2,0.7,2.5,0.9 "Value of Shipments and Receipts" "(million dollars)" " Under 20",0.065,0.43,0.77,3.71,0.76,39.15, 2.4

393

"Table A25 Average Prices of Selected Purchased Energy Sources by Census"  

U.S. Energy Information Administration (EIA) Indexed Site

Average Prices of Selected Purchased Energy Sources by Census" Average Prices of Selected Purchased Energy Sources by Census" " Region, Industry Group, and Selected Industries, 1991: Part 2" " (Estimates in Dollars per Million Btu)" ,,,,,,,,"RSE" "SIC"," "," ","Residual","Distillate"," "," "," ","Row" "Code(a)","Industry Groups and Industry","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","LPG","Coal","Factors" ,,"Total United States" ,"RSE Column Factors:",0.7,0.8,1,2.8,1,0.7 20,"Food and Kindred Products",15.789,2.854,6.064,2.697,7.596,1.433,4.5

394

"Table A24. Total Expenditures for Purchased Energy Sources by Census Region,"  

U.S. Energy Information Administration (EIA) Indexed Site

4. Total Expenditures for Purchased Energy Sources by Census Region," 4. Total Expenditures for Purchased Energy Sources by Census Region," " Industry Group, and Selected Industries, 1991" " (Estimates in Million Dollars)" ,,,,,,,,,,,"RSE" "SIC"," "," "," ","Residual","Distillate ","Natural"," "," ","Coke"," ","Row" "Code(a)","Industry Groupsc and Industry","Total","Electricity","Fuel Oil","Fuel Oil(b)","Gas(c)","LPG","Coal","and Breeze","Other(d)","Factors" ,,"Total United States" ,"RSE Column Factors:","0.6 ",0.6,1.3,1.3,0.7,1.2,1.2,1.5,1.1

395

"Table A40. Average Prices of Selected Purchased Energy Sources by Census"  

U.S. Energy Information Administration (EIA) Indexed Site

Region, Census Division, Industry Group, and Selected Industries, 1994: Part 1" Region, Census Division, Industry Group, and Selected Industries, 1994: Part 1" " (Estimates in Dollars per Physical Units)" ,,,,," " " "," "," ","Residual","Distillate","Natural Gas(c)"," "," ","RSE" "SIC"," ","Electricity","Fuel Oil","Fuel Oil(b)","(1000","LPG","Coal","Row" "Code(a)","Industry Group and Industry","(kWh)","(gallons)","(gallons)","cu ft)","(gallons)","(short tons)","Factors" ,,"Total United States" ,"RSE Column Factors:",0.8,1,1.3,0.8,1.6,0.8

396

"Table A29. Average Prices of Selected Purchased Energy Sources by Census"  

U.S. Energy Information Administration (EIA) Indexed Site

1" 1" " (Estimates in Dollars per Physical Unit)" " "," ","Residual","Distillate ","Natural"," "," ","RSE" " ","Electricity","Fuel Oil","Fuel Oil(b)","Gas(c)","LPG","Coal","Row" "Economic Characteristics(a)","(kWh)","(gallon)","(gallon)","(1000 cu ft)","(gallon)","(short ton)","Factors" ,"Total United States" "RSE Column Factors:",0.7,1.2,1.1,0.8,1.2,1 "Value of Shipments and Receipts " "(million dollars)" " Under 20",0.066,0.404,0.813,3.422,0.705,37.024,3.4

397

"Table A41. Average Prices of Selected Purchased Energy Sources by Census Region,"  

U.S. Energy Information Administration (EIA) Indexed Site

2" 2" " (Estimates in Dollars per Million Btu)" " "," "," "," "," "," "," ","RSE" " "," ","Residual","Distillate","Natural"," "," ","Row" "Economic Characteristics(a)","Electricity","Fuel Oil","Fuel Oil(b)","Gas(c)","LPG","Coal","Factors" ,"Total United States" "RSE Column Factors:",0.6,0.8,1.2,0.7,2.5,0.9 "Value of Shipments and Receipts" "(million dollars)" " Under 20",18.96,2.9,5.56,3.6,8.66,1.74, 2.4 " 20-49",15.07,2.53,4.9,2.8,5.87,1.81, 2.7

398

Westinghouse to launch coal gasifier with combined cycle unit  

Science Conference Proceedings (OSTI)

Westinghouse has designed a prototype coal gasifier which can be intergrated with a combined cycle unit and enable power plants to use coal in an efficient and environmentally acceptable way. Coal Gasification Combined Cycle (CGCC) technology burns gas made from coal in a gas turbine to generate power and then collects the hot exhaust gases to produce steam for further power generation. The commercialization of this process would meet the public's need for an economical and clean way to use coal, the utitities' need to meet electric power demands, and the nation's need to reduce dependence on imported oil. The Westinghouse process is described along with the company's plans for a demonstration plant and the option of a phased introduction to allow utilities to continue the use of existing equipment and generate revenue while adding to capacity. (DCK)

Stavsky, R.M.; Margaritis, P.J.

1980-03-01T23:59:59.000Z

399

Coal combined cycle system study. Volume I. Summary  

Science Conference Proceedings (OSTI)

The potential advantages for proceeding with demonstration of coal-fueled combined cycle power plants through retrofit of a few existing utility steam plants have been evaluated. Two combined cycle concepts were considered: Pressurized Fluidized Bed (PFB) combined cycle and gasification combined cycle. These concepts were compared with AFB steam plants, conventional steam plants with Flue Gas Desulfurization (FGD), and refueling such as with coal-oil mixtures. The ultimate targets are both new plants and conversion of existing plants. Combined cycle plants were found to be most competitive with conventional coal plants and offered lower air emissions and less adverse environmental impact. A demonstration is a necessary step toward commercialization.

Not Available

1980-04-01T23:59:59.000Z

400

Crude-oil market report  

SciTech Connect

The crude oil market has been both quieter and thinner during the past few months. Various factors, including OPEC restraints, settlement of the British coal strike, and dollar exchange rates, have been stabilizing, although erratic output by Iran and the Soviet Union have caused fluctuations in prices. Higher gasoline prices have triggered a preference for sweet crudes and a possible shortage during the summer motoring season. Oil stocks appear to be at the bottom now, but restocking activities will probably not cause shortages. The author forecasts a continued weak market. 2 tables.

1985-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil coal rse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Power recovery system for coal liquefaction process  

SciTech Connect

Method and apparatus for minimizing energy required to inject reactant such as coal-oil slurry into a reaction vessel, using high pressure effluent from the latter to displace the reactant from a containment vessel into the reaction vessel with assistance of low pressure pump. Effluent is degassed in the containment vessel, and a heel of the degassed effluent is maintained between incoming effluent and reactant in the containment vessel.

Horton, Joel R. (Maryville, TN)

1985-01-01T23:59:59.000Z

402

Coal within a revised energy perspective  

SciTech Connect

The author considers the use of coal within a revised energy perspective, focusing on the factors that will drive which fuels are used to generate electricity going forward. He looks at the world markets for fossil fuels and the difficulties of predicting oil and natural gas supply and prices, as demonstrated by the variability in projections from one year to another in the EIA's Annual Energy Outlook. 4 refs., 1 tab.

Darmstadter, J. [Resources for the Future (RFF), Washington, DC (United States)

2006-07-15T23:59:59.000Z

403

Oil and Oil Derivatives Compliance Requirements  

Science Conference Proceedings (OSTI)

... for international connection of oiled residues discharge ... C to + 163°C, fuels, lubricating oils and hydraulic ... fuel of gas turbine, crude oil, lubricating oil ...

2012-10-26T23:59:59.000Z

404

Pelletization of fine coals  

SciTech Connect

The present research project attempts to provide a basis to determine the pelletizability of fine coals, to ascertain the role of additives and binders and to establish a basis for binder selection. Currently, there are no established techniques for determining the quality of coal pellets. Our research is intended to develop a series of tests on coal pellets to measure their storage characteristics, transportability, ease of gasification and rate of combustion. Information developed from this research should be valuable for making knowledgeable decisions for on-time plant design, occasional binder selection and frequent process control during the pelletization of coal fines. During the last quarter, we continued the batch pelletization studies on Upper Freeport coal. The results as presented in that last quarterly report (April 1991) indicated that the surface conditions on the coal particle influenced the pelletizing growth rates. For example, a fresh (run of mine) sample of coal will display different pelletizing growth kinetics than a weathered sample of the same coal. Since coal is a heterogeneous material, the oxidized product of coal is equally variable. We found it to be logistically difficult to consistently produce large quantities of artificially oxidized coal for experimental purposes and as such we have used a naturally weathered coal. We have plans to oxidize coals under controlled oxidizing conditions and be able to establish their pelletizing behavior. The next phase of experiments were directed to study the effect of surface modification, introduced during the coal cleaning steps, on pelletizing kinetics. Accordingly, we initiated studies with two additives commonly used during the flotation of coal: dextrin (coal depressant) and dodecane (coal collector).

Sastry, K.V.S.

1991-09-01T23:59:59.000Z

405

Coal Combustion Science  

SciTech Connect

The objective of this activity is to support the Office of Fossil Energy in executing research on coal combustion science. This activity consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency Coal Combustion Science Project. Specific tasks for this activity include: (1) coal devolatilization - the objective of this risk is to characterize the physical and chemical processes that constitute the early devolatilization phase of coal combustion as a function of coal type, heating rate, particle size and temperature, and gas phase temperature and oxidizer concentration; (2) coal char combustion -the objective of this task is to characterize the physical and chemical processes involved during coal char combustion as a function of coal type, particle size and temperature, and gas phase temperature and oxygen concentration; (3) fate of mineral matter during coal combustion - the objective of this task is to establish a quantitative understanding of the mechanisms and rates of transformation, fragmentation, and deposition of mineral matter in coal combustion environments as a function of coal type, particle size and temperature, the initial forms and distribution of mineral species in the unreacted coal, and the local gas temperature and composition.

Hardesty, D.R. (ed.); Fletcher, T.H.; Hurt, R.H.; Baxter, L.L. (Sandia National Labs., Livermore, CA (United States))

1991-08-01T23:59:59.000Z

406

Modelling the costs of non-conventional oil: A case study of Canadian bitumen  

E-Print Network (OSTI)

in conventional deposits. The longer- term problem of climate change arises from the fuller and longer-term use of coal, and of unconventional deposits such as heavy oils, tar sands and oil shales.” (Grubb, 2001) As conventional oil becomes scarcer, the transport... , it is not mobile at reservoir conditions, (Cupcic, 2003): density Oil shale is a fine-grained sedimentary rock rich in organic matter, (USGS, 2005): oil shales contain kerogen, which is a solid, insoluble organic material...

Méjean, A; Hope, Chris

407

World Oil Prices and Production Trends in AEO2010 (released in AEO2010)  

Reports and Publications (EIA)

In AEO2010, the price of light, low-sulfur (or sweet) crude oil delivered at Cushing, Oklahoma, is tracked to represent movements in world oil prices. EIA makes projections of future supply and demand for total liquids, which includes conventional petroleum liquidssuch as conventional crude oil, natural gas plant liquids, and refinery gainin addition to unconventional liquids, which include biofuels, bitumen, coal-to-liquids (CTL), gas-to-liquids (GTL), extra-heavy oils, and shale oil.

Information Center

2010-05-11T23:59:59.000Z

408

Residential coal use: 1982 international solid fuel trade show and conference Atlantic City, New Jersey. [USA; 1974; By state  

Science Conference Proceedings (OSTI)

The US Department of Energy's anthracite and residential coal programs are described. The residential coal effort is an outgrowth and extension of the anthracite program, which has been, and continues to be, involved in promoting increased production and use of anthracite and the restoration of anthracite as a viable economic alternative to soft coals and to imported oil and gas now supplying the Northeast. Since anthracite is a preferred fuel for residential heating, residential coal issues comprise an important part of our anthracite activities. We have commenced a study of residential coal utilization including: overview of the residential coal market; market potential for residential coal use; analysis of the state of technology, economics, constraints to increased use of coal and coal-based fuels in residential markets, and identification of research and development activities which would serve to increase the market potential for coal-fired residential systems. A considerable amount of information is given in this report on residential coal furnaces and coal usage in 1974, prices of heating oils and coal, methods of comparing these fuels (economics), air pollution, safety, wood and wood furnaces, regulations, etc.

Pell, J.

1982-06-01T23:59:59.000Z

409

Virginia Center for Coal+Energy Research VirginiaPolytechnicInstituteandStateUniversity  

E-Print Network (OSTI)

established a reliable set of benchmarks for Virginia's coal, gas and oil, and electricity industries. Future. Assessment of Virginia Coalfield Region Capability to Support an Electric Power Generation Industry. Carl E- sponded well to the changing chal- lenges faced by Virginia's coal and en- ergy industries. The center

410

Catalyst for coal liquefaction process  

SciTech Connect

An improved catalyst for a coal liquefaction process; e.g., the H-Coal Process, for converting coal into liquid fuels, and where the conversion is carried out in an ebullated-catalyst-bed reactor wherein the coal contacts catalyst particles and is converted, in addition to liquid fuels, to gas and residual oil which includes preasphaltenes and asphaltenes. The improvement comprises a catalyst selected from the group consisting of the oxides of nickel molybdenum, cobalt molybdenum, cobalt tungsten, and nickel tungsten on a carrier of alumina, silica, or a combination of alumina and silica. The catalyst has a total pore volume of about 0.500 to about 0.900 cc/g and the pore volume comprises micropores, intermediate pores and macropores, the surface of the intermediate pores being sufficiently large to convert the preasphaltenes to asphaltenes and lighter molecules. The conversion of the asphaltenes takes place on the surface of micropores. The macropores are for metal deposition and to prevent catalyst agglomeration. The micropores have diameters between about 50 and about 200 angstroms (.ANG.) and comprise from about 50 to about 80% of the pore volume, whereas the intermediate pores have diameters between about 200 and 2000 angstroms (.ANG.) and comprise from about 10 to about 25% of the pore volume, and the macropores have diameters between about 2000 and about 10,000 angstroms (.ANG.) and comprise from about 10 to about 25% of the pore volume. The catalysts are further improved where they contain promoters. Such promoters include the oxides of vanadium, tungsten, copper, iron and barium, tin chloride, tin fluoride and rare earth metals.

Huibers, Derk T. A. (Pennington, NJ); Kang, Chia-Chen C. (Princeton, NJ)

1984-01-01T23:59:59.000Z

411

The First Coal Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Plants Coal Plants Nature Bulletin No. 329-A January 25, 1969 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation THE FIRST COAL PLANTS Coal has been called "the mainspring" of our civilization. You are probably familiar, in a general way, with the story of how it originated ages ago from beds of peat which were very slowly changed to coal; and how it became lignite or brown coal, sub-bituminous, bituminous, or anthracite coal, depending on bacterial and chemical changes in the peat, how much it was compressed under terrific pressure, and the amount of heat involved in the process. You also know that peat is formed by decaying vegetation in shallow clear fresh-water swamps or bogs, but it is difficult to find a simple description of the kinds of plants that, living and dying during different periods of the earth's history, created beds of peat which eventually became coal.

412

Indonesian coal mining  

Science Conference Proceedings (OSTI)

The article examines the opportunities and challenges facing the Indonesian coal mining industry and how the coal producers, government and wider Indonesian society are working to overcome them. 2 figs., 1 tab.

NONE

2008-11-15T23:59:59.000Z

413

Stacker speeds coal recovery  

SciTech Connect

The Spring Creek Coal Co., near Decker, Montana, features the only stacker/reclaimer in the U.S. to stockpile and reclaim coal produced by a dragline/truck-shovel operation.

Jackson, D.

1981-08-01T23:59:59.000Z

414

Coal Market Module  

Annual Energy Outlook 2012 (EIA)

6, DOEEIA-M060(2006) (Washington, DC, 2006). Key Assumptions Coal Production The coal production submodule of the CMM generates a different set of supply curves for the CMM for...

415

Microbial solubilization of coal  

DOE Patents (OSTI)

This invention deals with the solubilization of coal using species of Streptomyces. Also disclosed is an extracellular component from a species of Streptomyces, said component being able to solubilize coal.

Strandberg, Gerald W. (Farragut, TN); Lewis, Susan N. (Knoxville, TN)

1990-01-01T23:59:59.000Z

416

Overview of coal conversion  

SciTech Connect

The structure of coal and the processes of coal gasification and coal liquefaction are reviewed. While coal conversion technology is not likely to provide a significant amount of synthetic fuel within the next several years, there is a clear interest both in government and private sectors in the development of this technology to hedge against ever-diminishing petroleum supplies, especially from foreign sources. It is evident from this rather cursory survey that there is some old technology that is highly reliable; new technology is being developed but is not ready for commercialization at the present state of development. The area of coal conversion is ripe for exploration both on the applied and basic research levels. A great deal more must be understood about the reactions of coal, the reactions of coal products, and the physics and chemistry involved in the various stages of coal conversion processes in order to make this technology economically viable.

Clark, B.R.

1981-03-27T23:59:59.000Z

417

Coal Production 1992  

SciTech Connect

Coal Production 1992 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, productive capacity, and recoverable reserves to a wide audience including Congress, Federal and State agencies, the coal industry, and the general public. In 1992, there were 3,439 active coal mining operations made up of all mines, preparation plants, and refuse operations. The data in Table 1 cover the 2,746 mines that produced coal, regardless of the amount of production, except for bituminous refuse mines. Tables 2 through 33 include data from the 2,852 mining operations that produced, processed, or prepared 10 thousand or more short tons of coal during the period, except for bituminous refuse, and includes preparation plants with 5 thousand or more employee hours. These mining operations accounted for over 99 percent of total US coal production and represented 83 percent of all US coal mining operations in 1992.

1993-10-29T23:59:59.000Z

418

Chemicals from coal  

Science Conference Proceedings (OSTI)

This chapter contains sections titled: Chemicals from Coke Oven Distillate; The Fischer-Tropsch Reaction; Coal Hydrogenation; Substitute Natural Gas (SNG); Synthesis Gas Technology; Calcium Carbide; Coal and the Environment; and Notes and References

Harold A. Wittcoff; Bryan G. Reuben; Jeffrey S. Plotkin

2004-12-01T23:59:59.000Z

419

Coal News and Markets  

U.S. Energy Information Administration (EIA)

Over the past month and a half, NAP spot coal prices have been flat or declining (graph above). ... (the walls of coal left in place to support the roof), ...

420

NETL: Coal-Fired Power Plants (CFPPs)  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Sources Coal-Fired Power Plants (CFPPs) Where is the coal in the United States? Coal Across the U.S. The U.S. contains coal resources in various places. The coal occurs...

Note: This page contains sample records for the topic "oil coal rse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

RDI forecasts oil price increase impact on electric consumers  

SciTech Connect

According to a publication by Resource Data International, Inc. (RDI), Boulder, Colorado, the current oil price increases will effect electricity consumers nationwide. While the direct use of fuel oil and natural gas as boiler fuels is expected to decline with rising prices, the cost of alternative energy sources including coal, nuclear, and hydro are also expected to rise, RDI said.

Not Available

1990-10-25T23:59:59.000Z

422

Coal gasification apparatus  

DOE Patents (OSTI)

Coal hydrogenation vessel has hydrogen heating passages extending vertically through its wall and opening into its interior.

Nagy, Charles K. (Monaca, PA)

1982-01-01T23:59:59.000Z

423

Method for fluorinating coal  

DOE Patents (OSTI)

Coal is fluorinated by contact with fluorine gas at low pressure. After pial fluorination, when the reaction rate has slowed, the pressure is slowly increased until fluorination is complete, forming a solid fluorinated coal of approximate composition CF.sub.1.55 H.sub.0.15. The fluorinated coal and a solid distillate resulting from vacuum pyrolysis of the fluorinated coal are useful as an internal standard for mass spectrometric unit mass assignments from about 100 to over 1500.

Huston, John L. (Skokie, IL); Scott, Robert G. (Westmont, IL); Studier, Martin H. (Downers Grove, IL)

1978-01-01T23:59:59.000Z

424

Ore components in coal  

Science Conference Proceedings (OSTI)

The dependence of the mineral content in coal and concentrates on the degree of metamorphism is analyzed.

Kh.A. Ishhakov [Russian Academy of Sciences, Kemerovo (Russian Federation). Institute of Coal and Coal Chemistry, Siberian Branch

2009-05-15T23:59:59.000Z

425

Coal Industry Annual, 1996  

Reports and Publications (EIA)

Provides comprehensive information about U.S. coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves.

Fred Freme

1998-04-01T23:59:59.000Z

426

Coal Industry Annual, 1997  

Reports and Publications (EIA)

Provides comprehensive information about U.S. coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves.

Fred Freme

1998-11-23T23:59:59.000Z

427

Coal Industry Annual, 1995  

Reports and Publications (EIA)

Provides comprehensive information about U.S. coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves.

Fred Freme

1996-11-17T23:59:59.000Z

428

Coal Industry Annual, 1998  

Reports and Publications (EIA)

Provides comprehensive information about U.S. coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves.

Fred Freme

2000-07-07T23:59:59.000Z

429

Coal Industry Annual, 1994  

Reports and Publications (EIA)

Provides comprehensive information about U.S. coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves.

Fred Freme

1996-04-18T23:59:59.000Z

430

Coal Industry Annual, 1999  

Reports and Publications (EIA)

Provides comprehensive information about U.S. coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves.

Information Center

431

Coal Industry Annual, 2000  

Reports and Publications (EIA)

Provides comprehensive information about U.S. coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves.

Information Center

432

Coal News and Markets  

U.S. Energy Information Administration (EIA)

... (Energy Publishing, Coal & Energy Price Report, Bulletin, ... Although, the soaring demands of the Chinese steel industry are still with us, ...

433

NETL: Coal Utilization By-Products (CUB)  

NLE Websites -- All DOE Office Websites (Extended Search)

Home > Technologies > Coal & Power Systems > Innovations for Existing Plants > Coal Utilization Byproducts Innovations for Existing Plants Solid Waste (Coal Utilization...

434

Flash hydrogenation of coal  

DOE Patents (OSTI)

A process for the hydrogenation of coal comprising the contacting of powdered coal with hydrogen in a rotating fluidized bed reactor. A rotating fluidized bed reactor suitable for use in this process is also disclosed. The coal residence time in the reactor is limited to less than 5 seconds while the hydrogen contact time is not in excess of 0.2 seconds.

Manowitz, Bernard (Brightwaters, NY); Steinberg, Meyer (Huntington Station, NY); Sheehan, Thomas V. (Hampton Bays, NY); Winsche, Warren E. (Bellport, NY); Raseman, Chad J. (Setauket, NY)

1976-01-01T23:59:59.000Z

435

Proceedings: Coal Combustion Workshop  

Science Conference Proceedings (OSTI)

The primary objective of the 2007 Coal Combustion workshop was to present a holistic view of the various combustion processes required for minimal emissions, peak performance, and maximum reliability in a coal-fired power plant. The workshop also defined needs for future RD in coal combustion technology.

2008-01-09T23:59:59.000Z

436

Coal production 1989  

SciTech Connect

Coal Production 1989 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, reserves, and stocks to a wide audience including Congress, federal and state agencies, the coal industry, and the general public. 7 figs., 43 tabs.

1990-11-29T23:59:59.000Z

437

Coal Market Module  

Reports and Publications (EIA)

Documents the objectives and the conceptual and methodological approach used in the development of the National Energy Modeling System's (NEMS) Coal Market Module (CMM) used to develop the Annual Energy Outlook 2013 (AEO2013). This report catalogues and describes the assumptions, methodology, estimation techniques, and source code of CMM's two submodules. These are the Coal Production Submodule (CPS) and the Coal Distribution Submodule (CDS).

Michael Mellish

2013-07-17T23:59:59.000Z

438

Solar retorting of oil shale  

DOE Green Energy (OSTI)

First, in an overview, we outline and discuss the potential applications of solar energy to the production of fuels. We show that, starting from a fossil feedstock, there are four areas in which solar energy can have a major impact in the production of fuels: in solar retorting of oil shale, in solar coal gasification, in solar steam flooding of oil fields, and in solar steam-reforming of methane. We performed a detailed technical and economic analysis of solar retorting of oil shale. The analysis shows that this solar process not only should be technically feasible but also should improve the fuel yield from the oil-shale feedstock by 10 to 40%, depending on the grade of the shale, compared to the most efficient competing (nonsolar) process. The improved oil yield should more than pay for the incremental cost associated with adding the solar collection system (field of focusing heliostats). The results from an experiment in which solar energy was used to retort oil shale show that yields of better than 110% Fischer Assay are achievable. An advanced design for a solar oil-shale retort is also presented.

Gregg, D.W.; Taylor, R.W.; Grens, J.Z.; Aiman, W.R.; Marsh, L.E.

1980-05-15T23:59:59.000Z

439

Coal Combustion Products | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Combustion Products Coal Combustion Products Coal combustion products (CCPs) are solid materials produced when coal is burned to generate electricity. Since coal provides the...

440

Quarterly Coal Distribution Report - Energy Information Administration  

U.S. Energy Information Administration (EIA)

The Quarterly Coal Distribution Report (QCDR) provides detailed U.S. domestic coal distribution data by coal origin state, coal destination state, mode of ...

Note: This page contains sample records for the topic "oil coal rse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network (OSTI)

Prices in 2007 real $ Coal Prices Coal prices have been farprices. Factors like coal prices and EOR revenues affect theCoal Prices..

Phadke, Amol

2008-01-01T23:59:59.000Z

442

Quarterly Coal Distribution Report - Energy Information ...  

U.S. Energy Information Administration (EIA)

The Quarterly Coal Distribution Report (QCDR) provides detailed U.S. domestic coal distribution data by coal origin state, coal destination state, mode of ...

443

Synthetic crude oils carcinogenicity screening tests. Final report, October 16, 1978-August 30, 1980  

DOE Green Energy (OSTI)

Eight crude oils (Southern Louisiana Petroleum, H Coal Syncrude, H Coal Fuel Oil, SRC II, Exxon Donor Solvent Liquid, Occidental in situ Shale Oil, Paraho Shale Oil and Geokinetics in situ Shale Oil) were distilled into, or have been received, as four fractions for analysis and screening for biological (mutagenicity and tumor initiating) activity. Results of selected analytical tests have been obtained on the undistilled crude oils and the fractions. Salmonella typhimurium mutation assay and an accelerated tumor initiation-promotion test have been run on the undistilled crude oils and the fractions. Low boiling (naphtha) fractions of all eight materials showed little or no mutagenicity or skin tumor initiating activity by the two tests used. The higher boiling fractions (gas oils and residues) and the crude oils themselves were mutagenic and exhibited tumor initiation activity. The coal derived fractions were more active by both tests than the shale oil samples, the latter were similar to the petroleum controls. Few differences were apparent in biological activity between coal derived samples of equivalent boiling range among the various coal liquefaction processes, except that the SRC II naphtha sample showed a degree of acute toxicity through skin absorption not exhibited by the other samples. Generally the results agreed closely for the various samples between the salmonella mutation assay with activation and the skin tumor initiation test.

Calkins, W.H.; Deye, J.F.; Hartgrove, R.W.; King, C.F.; Krahn, D.F.

1980-01-01T23:59:59.000Z

444

Weathering and the Fallout Plume of Heavy Oil from Strong Petroleum  

E-Print Network (OSTI)

Weathering and the Fallout Plume of Heavy Oil from Strong Petroleum Seeps Near Coal Oil Point, CA C distribution of oil forms a plume along the continental shelf that we suggest represents a chronic fallout the distribution of the fallout over a period of 0.4-5 days. The extent of hydrocarbon loss is consistent for all

Fabrikant, Sara Irina

445

Industrial oil crops-when will they finally deliver on their promise ?  

Science Conference Proceedings (OSTI)

In 2008, worldwide-traded oil production from crop plants was almost 130 million metric tons (MMT), mostly used as edible vegetable oil. The proportion of plant oils used for nonedible or industrial purposes has fluctuated as petroleum and coal feedstocks

446

Heading off the permanent oil crisis  

SciTech Connect

The 1996 spike in gasoline prices was not a signal of any fundamental worldwide shortage of crude oil. But based on a review of many studies of recoverable crude oil that have been published since the 1950s, it looks as though such a shortfall is now within sight. With world demand for oil growing at 2 percent per year, global production is likely to peak between the years 2007 and 2014. As this time approaches, we can expect prices to rise markedly and, most likely, permanently. Policy changes are needed now to ease the transition to high-priced oil. Oil production will continue, though at a declining rate, for many decades after its peak, and there are enormous amounts of coal, oil sands, heavy oil, and oil shales worldwide that could be used to produce liquid or gaseous substitutes for crude oil, albeit at higher prices. But the facilities for making such synthetic fuels are costly to build and environmentally damaging to operate, and their use would substantially increase carbon dioxide emissions (compared to emissions from products made from conventional crude oil). This paper examines ways of heading of the impending oil crisis. 8 refs., 3 figs.

MacKenzie, J.J. [World Resources Inst., Washington, DC (United States)

1996-11-01T23:59:59.000Z

447

Coal recovery process  

DOE Patents (OSTI)

A method for the beneficiation of coal by selective agglomeration and the beneficiated coal product thereof is disclosed wherein coal, comprising impurities, is comminuted to a particle size sufficient to allow impurities contained therein to disperse in water, an aqueous slurry is formed with the comminuted coal particles, treated with a compound, such as a polysaccharide and/or disaccharide, to increase the relative hydrophilicity of hydrophilic components, and thereafter the slurry is treated with sufficient liquid agglomerant to form a coagulum comprising reduced impurity coal.

Good, Robert J. (Grand Island, NY); Badgujar, Mohan (Williamsville, NY)

1992-01-01T23:59:59.000Z

448

Ukraine hobbled by oil, gas shortfall  

SciTech Connect

This paper reports that oil and gas shortages have dealt a severe economic blow to Ukraine. The former Soviet republic ranks second behind Russia in population and gross domestic product among members of the Commonwealth of Independent States. Ukraine's hydrocarbon output has fallen sharply since the 1970s, and the republic's fuel problems have been exacerbated by declining coal extraction.

Not Available

1992-10-26T23:59:59.000Z

449

Short-term microbial testing of shale oil materials  

DOE Green Energy (OSTI)

Paraho/Sohio Shale Oil was found to be mutagenic in the Ames assay when assayed with the frameshift strain TA98 and incorporating metabolic activation with rat liver homogenates (Aroclor induced S-9). The mutagenic activity was contributed by the organic constituents of the basic and the neutral fractions. Hydrotreatment of the shale oil abolished the mutagenic activity. Results obtained in the yeast assay supported these observations. Refined oil samples from Paraho/Sohio refinery were not mutagenic. The samples rank for their mutagenic activity as coal oils > shale oil > natural petroleum crudes.

Rao, T.K.; Epler, J.L.; Guerin, M.R.; Clark, B.R.

1980-01-01T23:59:59.000Z

450

Coal | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coal Coal Coal Coal Coal is the largest domestically produced source of energy in America and is used to generate a significant chunk of our nation's electricity. The Energy Department is working to develop technologies that make coal cleaner, so we can ensure it plays a part in our clean energy future. The Department is also investing in development of carbon capture, utilization and storage (CCUS) technologies, also referred to as carbon capture, utilization and sequestration. Featured Energy Secretary Moniz Visits Clean Coal Facility in Mississippi On Friday, Nov. 8, 2013, Secretary Moniz and international energy officials toured Kemper, the nation's largest carbon capture and storage facility, in Liberty, Mississippi. A small Mississippi town is making history with the largest carbon capture

451

Rail Coal Transportation Rates  

Gasoline and Diesel Fuel Update (EIA)

Trends, 2001 - 2010 Trends, 2001 - 2010 Transportation infrastructure overview In 2010, railroads transported over 70 percent of coal delivered to electric power plants which are generally concentrated east of the Mississippi River and in Texas. The U.S. railroad market is dominated by four major rail companies that account for 99 percent of U.S. coal rail shipments by volume. Deliveries from major coal basins to power plants by mode Rail Barge Truck Figure 2. Deliveries from major coal basins to power plants by rail, 2010 figure data Figure 3. Deliveries from major coal basins to power plants by barge, 2010 figure data Figure 4. Deliveries from major coal basins to power plants by truck, 2010 figure data The Powder River Basin of Wyoming and Montana, where coal is extracted in

452

Coal production: 1980  

Science Conference Proceedings (OSTI)

US coal production and related data are reported for the year 1980, with similar data for 1979 given for comparison. The data here collected on Form EIA-7A, coal production report, from 3969 US mines that produced, processed, or prepared 10,000 or more short tons of coal in 1980. Among the items covered are production, prices, employment, productivity, stocks, and recoverable reserves. Data are reported by state, county, coal producing district, type of mining, and by type of coal (anthracite, bituminous, subbituminous, and lignite). Also included are a glossary of coal terms used, a map of the coal producing disricts, and form EIA-7A with instructions. 14 figures, 63 tables.

Not Available

1982-05-01T23:59:59.000Z

453

The development of coal-based technologies for Department of Defense facilities: Phase 1 final report. Volume 1: Technical report  

SciTech Connect

The first phase of a three-phase project investigating the development of coal-based technologies for Department of Defense facilities has been completed. The objectives of the project are to: decrease DOD`s dependence on foreign oil and increase its use of coal; promote public and private sector deployment of technologies for utilizing coal-based fuels in oil-designed combustion equipment; and provide a continuing environment for research and development of coal-based fuel technologies for small-scale applications at a time when market conditions in the US are not favorable for the introduction of coal-fired equipment in the commercial and industrial capacity ranges. The Phase 1 activities were focused on developing clean, coal-based combustion technologies for the utilization of both micronized coal-water mixtures (MCWMs) and dry, micronized coal (DMC) in fuel oil-designed industrial boilers. The specific objective in Phase 1 was to deliver fully engineered retrofit options for a fuel oil-designed watertube boiler located on a DOD installation to fire either MCWM or DMC. This was achieved through a project consisting of fundamental, pilot-sale, and demonstration-scale activities investigating coal beneficiation and preparation, and MCWM and DMC combustion performance. In addition, detailed engineering designs and an economic analysis were conducted for a boiler located at the Naval Surface Warfare Center, near Crane, Indiana. Results are reported on MCWM and DMC combustion performance evaluation; engineering design; and cost/economic analysis.

Miller, B.G.; Morrison, J.L.; Pisupati, S.V. [Pennsylvania State Univ., University Park, PA (United States). Energy and Fuels Research Center] [and others

1997-01-31T23:59:59.000Z

454

Process for hydrogenating coal and coal solvents  

SciTech Connect

A novel process is described for the hydrogenation of coal by the hydrogenation of a solvent for the coal in which the hydrogenation of the coal solvent is conducted in the presence of a solvent hydrogenation catalyst of increased activity, wherein the hydrogenation catalyst is produced by reacting ferric oxide with hydrogen sulfide at a temperature range of 260.degree. C. to 315.degree. C. in an inert atmosphere to produce an iron sulfide hydrogenation catalyst for the solvent. Optimally, the reaction temperature is 275.degree. C. Alternately, the reaction can be conducted in a hydrogen atmosphere at 350.degree. C.

Tarrer, Arthur R. (Auburn, AL); Shridharani, Ketan G. (Auburn, AL)

1983-01-01T23:59:59.000Z

455

SHALE OIL--THE ELUSIVE ENERGY  

E-Print Network (OSTI)

An early settler in the valley of Parachute Creek in western Colorado built a log cabin, and made the fireplace and chimney out of the easily cut, locally abundant black rock. The pioneer invited a few neighbors to a house warming. As the celebration began, he lit a fire. The fireplace, chimney, and ultimately the whole cabin caught fire, and burned to the ground. The rock was oil shale. It was a sensational house warming! Oil shales are reported to have been set afire by lightning strikes. The Ute Indians of northwestern Colorado told stories of "mountains that burned. " Cowboys and ranchers of the region burned the dark rock in their fires, like coal. The flammable nature of the richer oil shales is basis for the title of a fascinating book by H. K. Savage (1967), The Rock That Burns. During oil shale enthusiasms in the early part of this century, stock promoters brought pieces of oil shale to Chicago street corners and set them afire. Clouds of smoke attracted crowds, and the promoters sold stock in oil shale companies. Nature of oil shale. Shale oil comes from oil shale, but oil shale is a misnomer. It is neither a true shale nor does it generally have any oil in it. It is better identified as organic marlstone, marl being a mixture of clay and calcium carbonate. The organic material is kerogen, derived from myriad organisms, chiefly plants. Savage (1967) notes the term "oil shale " is a promotional term: "The magic word 'oil ' would raise large sums of promotion money while organic marlstone wouldn't raise a dime." The U. S. Geological Survey (USGS) defines oil shale as "organic-rich shale that yields substantial quantities of oil by conventional methods of destructive distillation of the contained organic matter, which employ low confining pressures in a closed retort system. " (Duncan and HC#98/4-1-1

M. King; Hubbert Center; Walter Youngquist

1998-01-01T23:59:59.000Z

456

Pyrite surface characterization and control for advanced fine coal desulfurization technologies. Seventh quarterly technical progress report, March 1, 1992--May 31, 1992  

SciTech Connect

The objective of this project is to conduct extensive studies on the surface reactivity and surface hydrophobicity of coal-pyrites using various surface characterization techniques and to correlate the alteration of the coal-pyrite surface with the efficiency of pyrite rejection in coal flotation. The flotation characteristics of coal-pyrites under various conditions was studied and compared with ore-pyrite and coal to determine the causes of pyrite rejection difficulties in coal flotation. Both the native and induced floatabilities of pyrites were investigated. It was found that both coal- and ore-pyrites, ff prepared by dry-grinding, show little or no floatability in the absence of any chemical reagents. After ultrasonic pretreatment, ore-pyrite floats effectively in the acidic to neutral pH range. Kentucky No. 9 coal-pyrite (KYPY) shows significant flotation in the pH range 7--10. With ethyl xanthate as collector, ore-pyrite floats well up to pH = 10; while coal-pyrite reveals no flotation above pH = 6. For the first time, the effect of coal collector on the floatability of coal-pyrite has been studied. It was shown that in the presence of fuel oil--a widely used collector for promoting coal flotation, coal-pyrite, particularly for the fine sizes, shows good flotation below pH = 11, whereas ore-pyrite has no or little floatability. These studies demonstrate that one of the main causes of the coal-pyrite flotation in coal separation is the oil-induced floatability due to adsorption/attachment of oil droplets on the coal-pyrite surfaces, the ``native`` or ``self-induced`` floatability of pyrite is no as profound as the oil-induced flotation.

Wang, Xiang-Huai; Leonard, J.W.; Parekh, B.K.; Jiang, Chengliang; Raichur, A.M.

1992-07-14T23:59:59.000Z

457

Preconversion processing of bituminous coals: New directions to improved direct catalytic coal liquefaction. [Effect of preconversion heat soak with coal liquids  

SciTech Connect

A study of the high-temperature soaking started in this quarter, following the installation of reactors in the previous quarter. Two high-volatile bituminous coals and three coal liquids, which were identified in the previous report, were used. A cross-linked, three-dimensional macromolecular model has been widely accepted f or the structure of coal, but there is no direct evidence to prove this model. The conventional coal structure model has been recently re-examined by this investigator because of the importance of relatively strong intra- and intermolecular interactions in bituminous coals. It was reasonable to deduce that significant portions were physically associated after a study of multistep extractions, associative equilibria, the irreversibility and the dependence of coal concentration on solvent swelling, and consideration of the monophase concept. Physical dissociation which may be significant above 300{degree}C should be utilized for the treatment before liquefaction. The high-temperature soaking in a recycle oil was proposed to dissociate coal complexes.

1992-07-01T23:59:59.000Z

458

New petrochemical compositions for use in the coal industry  

Science Conference Proceedings (OSTI)

Various aspects of the use of antifreezing agents in the coal industry are considered. It has been found that, unlike previously proposed compositions, these agents can be prepared based on the products of a single process, the vacuum distillation of fuel oil.

D.O. Safieva; E.V. Surov; O.G. Safiev [Institute for Fossil Fuels, Moscow (Russian Federation)

2008-12-15T23:59:59.000Z

459

Oil reserves  

SciTech Connect

As of March 1988, the Strategic Petroleum Reserve inventory totaled 544.9 million barrels of oil. During the past 6 months the Department of Energy added 11.0 million barrels of crude oil to the SPR. During this period, DOE distributed $208 million from the SPR Petroleum Account. All of the oil was purchased from PEMEX--the Mexican national oil company. In FY 1988, $164 million was appropriated for facilities development and management and $439 million for oil purchases. For FY 1989, DOE proposes to obligate $173 million for facilities development and management and $236 million for oil purchases. DOE plans to postpone all further drawdown exercises involving crude oil movements until their effects on cavern integrity are evaluated. DOE and the Military Sealift Command have made progress in resolving the questions surrounding nearly $500,000 in payments for demurrage charges.

Not Available

1988-01-01T23:59:59.000Z

460

Coal pyrolysis for utility use: Final report  

SciTech Connect

EPRI undertook an extensive research effort to evaluate the viability of coal pyrolysis products for utility use. The objectives of the studies were to evaluate the combustion and storage characteristics of pyrolysis char and to evaluate the upgrading potential of pyrolysis liquid products (tar). To achieve these objectives, it was necessary to produce sufficient quantities of the char and tar in a process unit large enough to produce commercially representative products. For both technical and availability reasons, EPRI selected the Lurgi-Ruhrgas (L-R) process for the production run (under subcontract to Bechtel Group, Inc. RP2505-2). Several contractors were to do the liquid upgrading. Two contractors were selected to use alternative processes for upgrading the L-R heavy tar: Lummus-Crest, Inc. (RP2505-5), using its LC-fining technology, and Veba Oel (RP2505-6), using its Combi-Cracking process. (The Combi-Cracking process also simultaneously hydrotreats the coal-tar-derived distillates.) Universal Oil Products, Inc. (UOP) was selected to hydrotreat the light and middle oils from the L-R process (RP2505-7), as well as the distillable material produced by Lummus. Unfortunately, none of these contractors received the anticipated products. The light oil was in the form of a light oil-water emulsion and the middle oil had been blended with the solids-laden heavy oil during L-R operation. Combustion Engineering, Inc. carried out a two-phase program to evaluate the combustion characteristics of pyrolysis char (RP2505-4).

McKinsey, R.; Luebke, C.P.; Thelen, H.J.; ya Nsakala, N.; Riegel, H.

1987-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil coal rse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Coal liquefaction process streams characterization and evaluation: Analysis of coal-derived synthetic crude from HRI CTSL Run CC-15 and HRI Run CMSL-2  

SciTech Connect

Under subcontract from CONSOL Inc. (US DOE Contract No. DE-AC22-89PC89883), IIT Research Institute, National Institute for Petroleum and Energy Research applied a suite of petroleum inspection tests to two direct coal liquefactions net product oils produced in two direct coal liquefaction processing runs. Two technical reports, authored by NIPER, are presented here. The following assessment briefly describes the two coal liquefaction runs and highlights the major findings of the project. It generally is concluded that the methods used in these studies can help define the value of liquefaction products and the requirements for further processing. The application of these methods adds substantially to our understanding of the coal liquefaction process and the chemistry of coal-derived materials. These results will be incorporated by CONSOL into a general overview of the application of novel analytical techniques to coal-derived materials at the conclusion of this contract.

Sturm, G.P. Jr.; Kim, J.; Shay, J. [National Inst. for Petroleum and Energy Research, Bartlesville, OK (United States)

1994-01-01T23:59:59.000Z

462

Vulnerability reduction study. Coal and synthetics (Section III a). Technical Appendix  

DOE Green Energy (OSTI)

This Appendix supports and explains key statements made in the chapter on Coal and Synthetics. The reader will find information and documentation on points that lend themselves to quantification. Evidence is presented that coal supply will not be constrained by production or transportation factors through the 1980s. Any program to increase the direct use of coal in the industrial sector must take into account a number of identifiable difficulties. A deployment schedule for 10 oil shale projects has been developed by the Office of Technology Assessment. This schedule, if adhered to, would result in an initial deployment of an oil shale industry of 400,000 bpd oil equivalent by 1990. In addition, the Appendix provides descriptions of those major elements of Federal legislation that bear directly on coal, notably portions of the Powerplant and Industrial Fuel Use Act of 1978, the Energy Tax Act of 1978, the Energy Security Act of 1980, and the Clean Air Act.

Not Available

1980-08-01T23:59:59.000Z

463

CE to do 150-MW coal-gas-retrofit design study  

Science Conference Proceedings (OSTI)

Combustion Engineering (CE) has a $5 million DOE contract to design a coal gasifier that will convert eastern coal into a fuel gas and replace the oil and gas now burned in a Gulf States Utility unit. A pilot unit which has been converting Pittsburgh No. 8 seam coal into 110-Btu fuel gas will be scaled up. The company will also begin testing four other coal types. CE finds that retrofitting an air-blown atmospheric pressure system is cost-effective, but warns that the costs of a large-scale intergrated plant are still speculative. (DCK)

Not Available

1980-11-01T23:59:59.000Z

464

Asia`s energy future: The case of coal -- opportunities and constraints  

SciTech Connect

In this paper the author presents his views about the changing energy mix in Asia to the year 2020, and why the importance of coal will continue. The topics of the paper include Asia`s energy mix compared with the rest of the world including nuclear power, hydropower, solar and wind energy, oil, coal, and natural gas; the economics of coal and natural gas; coal production and consumption; new energy sources; Asia`s energy mix in the year 2020; resource depletion and conclusions. 4 figs., 1 tab.

Johnson, C.J.

1997-12-31T23:59:59.000Z

465

Future Impacts of Coal Distribution Constraints on Coal Cost  

E-Print Network (OSTI)

a particular type of coal, each of which is inherentlyThere are four classes of coal: bituminous, sub-bituminous,minerals Metallic ores Coal Crude petroleum Gasoline Fuel

McCollum, David L

2007-01-01T23:59:59.000Z

466

Coal Direct Chemical Looping Retrofit for Pulverized Coal-Fired...  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Direct Chemical Looping Retrofit for Pulverized Coal-Fired Power Plants with In-Situ CO 2 Capture Background Pulverized coal (PC)-fired power plants provide nearly 50% of...

467

Future Impacts of Coal Distribution Constraints on Coal Cost  

E-Print Network (OSTI)

the costs have on the price of coal delivered by railroadsindicate that the price of coal delivered by railroads ismake up the delivered price of coal that electric plants are

McCollum, David L

2007-01-01T23:59:59.000Z

468

Coal rank trends in western Kentucky coal field and relationship to hydrocarbon occurrence  

SciTech Connect

Extensive oil and gas development has occurred in the high volatile C bituminous region north of the Rough Creek fault zone, but few pools are known within the Webster syncline south of the fault zone. The rank of the Middle Pennsylvanian coals can be used to estimate the level of maturation of the Devonian New Albany Shale, a likely source rock for much of the oil and gas in the coal field. Based on relatively few data points, previous studies on the maturation of the New Albany Shale, which lies about 1 km below the Springfield coal, indicate an equivalent medium volatile bituminous (1.0-1.2% R{sub max}) rank in the Fluorspar district. New Albany rank decreases to an equivalent high volatile B/C (0.6% R{sub max}) north of the Rough Creek fault zone. Whereas the shale in the latter region is situated within the oil generation window, the higher rank region is past the peak of the level of maturation of the New Albany Shale. The significance of the New Albany reflectancy is dependent on the suppression of vitrinite reflectance in organic-rich shales. The possibility of reflectance suppression would imply that the shales could be more mature than studies have indicated.

Hower, J.C.; Rimmer, S.M.; Williams, D.A.; Beard, J.G. (Univ. of Kentucky, Lexington (USA))

1989-09-01T23:59:59.000Z

469

Alaska coal gasification feasibility studies - Healy coal-to-liquids plant  

SciTech Connect

The Alaska Coal Gasification Feasibility Study entailed a two-phase analysis of the prospects for greater use of Alaska's abundant coal resources in industrial applications. Phase 1, Beluga Coal Gasification Feasibility Study (Report DOE/NETL 2006/1248) assessed the feasibility of using gasification technology to convert the Agrium fertilizer plant in Nikiski, Alaska, from natural gas to coal feedstock. The Phase 1 analysis evaluated coals from the Beluga field near Anchorage and from the Usibelli Coal Mine near Healy, both of which are low in sulfur and high in moisture. This study expands the results of Phase 1 by evaluating a similar sized gasification facility at the Usibelli Coal mine to supply Fischer-Tropsch (F-T) liquids to central Alaska. The plant considered in this study is small (14,640 barrels per day, bbl/d) compared to the recommended commercial size of 50,000 bbl/d for coal-to-liquid plants. The coal supply requirements for the Phase 1 analysis, four million tons per year, were assumed for the Phase 2 analysis to match the probable capacity of the Usibelli mining operations. Alaska refineries are of sufficient size to use all of the product, eliminating the need for F-T exports out of the state. The plant could produce marketable by-products such as sulfur as well as electric power. Slag would be used as backfill at the mine site and CO{sub 2} could be vented, captured or used for enhanced coalbed methane recovery. The unexpected curtailment of oil production from Prudhoe Bay in August 2006 highlighted the dependency of Alaskan refineries (with the exception of the Tesoro facility in Nikiski) on Alaska North Slope (ANS) crude. If the flow of oil from the North Slope declines, these refineries may not be able to meet the in-state needs for diesel, gasoline, and jet fuel. Additional reliable sources of essential fuel products would be beneficial. 36 refs., 14 figs., 29 tabs., 3 apps.

Lawrence Van Bibber; Charles Thomas; Robert Chaney [Research & Development Solutions, LLC (United States)

2007-07-15T23:59:59.000Z

470

PIA - Northeast Home Heating Oil Reserve System (Heating Oil...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil)...

471

Contaminants in coals and coal residues. [10 refs  

SciTech Connect

Most of the major enviromental pollutants from coals originate as impurities in the coal structure. These include various organic compounds, minerals, and trace elements that are released into the air and water when coal is mined, processed and utilized. The use of coal preparation to produce cleaner burning fuels involves an environmental compromise, wherein reduced emissions and solid wastes from coal burning sources are achieved at the expense of greater environmental degradation from coal cleaning wastes.

Wewerka, E.M.; Williams, J.M.; Vanderborgh, N.E.

1976-01-01T23:59:59.000Z

472

Refinery Integration of By-Products from Coal-Derived Jet Fuels  

Science Conference Proceedings (OSTI)

This report summarizes the accomplishments toward project goals during the first six months of the third year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. Characterization of the gasoline fuel indicates a dominance of single ring alkylcycloalkanes that have a low octane rating; however, blends containing these compounds do not have a negative effect upon gasoline when blended in refinery gasoline streams. Characterization of the diesel fuel indicates a dominance of 3-ring aromatics that have a low cetane value; however, these compounds do not have a negative effect upon diesel when blended in refinery diesel streams. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Combustion and characterization of fuel oil indicates that the fuel is somewhere in between a No. 4 and a No. 6 fuel oil. Emission testing indicates the fuel burns similarly to these two fuels, but trace metals for the coal-based material are different than petroleum-based fuel oils. Co-coking studies using cleaned coal are highly reproducible in the pilot-scale delayed coker. Evaluation of the coke by Alcoa, Inc. indicated that while the coke produced is of very good quality, the metals content of the carbon is still high in iron and silica. Coke is being evaluated for other possible uses. Methods to reduce metal content are being evaluated.

Caroline E. Burgess Clifford; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

2006-05-17T23:59:59.000Z

473

table10.1_021.xls  

U.S. Energy Information Administration (EIA) Indexed Site

Nonswitchable Minimum and Maximum Consumption, 2002; Nonswitchable Minimum and Maximum Consumption, 2002; Level: National and Regional Data; Row: Energy Sources; Column: Consumption Potential; Unit: Physical Units. RSE Actual Minimum Maximum Row Energy Sources Consumption Consumption(a) Consumption(b) Factors Total United States RSE Column Factors: 1 1 1 Electricity Receipts(c) (million kilowatthours) 855,160 668,467 894,613 2 Natural Gas (billion cubic feet) 5,641 3,536 6,108 2 Distillate Fuel Oil (thousand barrels) 24,446 13,621 118,299 5 Residual Fuel Oil (thousand barrels) 33,132 14,781 84,800 3 Coal (thousand short tons) 60,310 34,999 62,947 8.3 LPG (thousand barrels) 26,547 8,661 142,736 4.8 Northeast Census Region RSE Column Factors:

474

PressurePressure Indiana Coal Characteristics  

E-Print Network (OSTI)

TimeTime PressurePressure · Indiana Coal Characteristics · Indiana Coals for Coke · CoalTransportation in Indiana · Coal Slurry Ponds Evaluation · Site Selection for Coal Gasification · Coal-To-Liquids Study, CTL · Indiana Coal Forecasting · Under-Ground Coal Gasification · Benefits of Oxyfuel Combustion · Economic

Fernández-Juricic, Esteban

475

Coal Distribution Database, 2008  

U.S. Energy Information Administration (EIA) Indexed Site

4Q 2009 4Q 2009 April 2010 Quarterly Coal Distribution Table Format and Data Sources 4Q 2009 In keeping with EIA's efforts to increase the timeliness of its reports, this Quarterly Coal Distribution Report is a preliminary report, based on the most current data available from EIA's various monthly, quarterly and annual surveys of the coal industry and electric power generation industry. The final report will rely on the receipt of annual data to replace the imputed monthly data for smaller electric generation plants that are excluded from the monthly filing requirement, and final data for all other respondents. The Coal Distribution Report traces coal from the origin State to the destination State by transportation mode. The data sources beginning with the 2008 Coal Distribution Report

476

WCI Case for Coal  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Coal The role of as an energy source The role of coal as an energy source Key Messages * Energy demand has grown strongly and will continue to increase, particularly in developing countries where energy is needed for economic growth and poverty alleviation. * All energy sources will be needed to satisfy that demand by providing a diverse and balanced supply mix. * Coal is vital for global energy security. It is abundantly available, affordable, reliable and easy and safe to transport. * In an energy hungry world the challenge for coal, as for other fossil fuels, is to further substantially reduce its greenhouse gas and other emissions, while continuing to make a major contribution to economic and social development and energy security. * Coal is part way down a technology pathway that has already delivered major

477

Coal combustion products: trash or treasure?  

Science Conference Proceedings (OSTI)

Coal combustion by-products can be a valuable resource to various industries. The American Coal Ash Association (ACAA) collects data on production and uses of coal combustion products (CCPs). 122.5 million tons of CCPs were produced in 2004. The article discusses the results of the ACCA's 2004 survey. Fly ash is predominantly used as a substitute for Portland cement; bottom ash for structural fill, embankments and paved road cases. Synthetic gypsum from the FGD process is commonly used in wallboard. Plant owners are only likely to have a buyer for a portion of their CCPs. Although sale of hot water (from Antelope Valley Station) from condensers for use in a fish farm to raise tilapia proved unviable, the Great Plains Synfuels Plant which manufactures natural gas from lignite produces a wide range of products including anhydrous ammonia, phenol, krypton, carbon dioxide (for enhanced oil recovery), tar oils and liquid nitrogen. ACCA's goal is to educate people about CCPs and how to make them into useful products, and market them, in order to reduce waste disposal and enhance revenue. The article lists members of the ACCA. 2 photos., 1 tab.

Hansen, T.

2006-07-15T23:59:59.000Z

478

Controlled short residence time coal liquefaction process  

DOE Patents (OSTI)

Normally solid dissolved coal product and a distillate liquid product are produced by continuously passing a feed slurry comprising raw feed coal and a recycle solvent oil and/or slurry together with hydrogen to a preheating-reaction zone (26, alone, or 26 together with 42), the hydrogen pressure in the preheating-reaction zone being at least 1500 psig (105 kg/cm.sup.2), reacting the slurry in the preheating-reaction zone (26, or 26 with 42) at a temperature in the range of between about 455.degree. and about 500.degree. C. to dissolve the coal to form normally liquid coal and normally solid dissolved coal. A total slurry residence time is maintained in the reaction zone ranging from a finite value from about 0 to about 0.2 hour, and reaction effluent is continuously and directly contacted with a quenching fluid (40, 68) to substantially immediately reduce the temperature of the reaction effluent to below 425.degree. C. to substantially inhibit polymerization so that the yield of insoluble organic matter comprises less than 9 weight percent of said feed coal on a moisture-free basis. The reaction is performed under conditions of temperature, hydrogen pressure and residence time such that the quantity of distillate liquid boiling within the range C.sub.5 -455.degree. C. is an amount at least equal to that obtainable by performing the process under the same conditions except for a longer total slurry residence time, e.g., 0.3 hour. Solvent boiling range liquid is separated from the reaction effluent and recycled as process solvent.

Anderson, Raymond P. (Overland Park, KS); Schmalzer, David K. (Englewood, CO); Wright, Charles H. (Overland Park, KS)

1982-05-04T23:59:59.000Z

479

Coal reserves in the United States and around the world  

SciTech Connect

There is an urgent need to examine the role that coal might play in meeting world energy needs during the next 20 years. Oil from the Organization of Petroleum Exporting Countries (OPEC) can no longer be relied upon to provide expanding supplies of energy, even with rapidly rising prices. Neither can nuclear energy be planned on for rapid expansion worldwide until present uncertainties about it are resolved. Yet, the world`s energy needs will continue to grow, even with vigorous energy conservation programs and with optimistic rates of expansion in the use of solar energy. Coal already supplies 25% of the world`s energy, its reserves are vast, and it is relatively inexpensive. This study, with the aid of reports from the World Coal Study (WOCOL) examines the needs for coal on a global scale, its availability past and present, and its future prospects.

Jubert, K.; Masudi, H.

1995-03-01T23:59:59.000Z

480

Coal hydrogenation and deashing in ebullated bed catalytic reactor  

SciTech Connect

An improved process for hydrogenation of coal containing ash with agglomeration and removal of ash from an ebullated bed catalytic reactor to produce deashed hydrocarbon liquid and gas products. In the process, a flowable coal-oil slurry is reacted with hydrogen in an ebullated catalyst bed reaction zone at elevated temperature and pressure conditions. The upward velocity and viscosity of the reactor liquid are controlled so that a substantial portion of the ash released from the coal is agglomerated to form larger particles in the upper portion of the reactor above the catalyst bed, from which the agglomerated ash is separately withdrawn along with adhering reaction zone liquid. The resulting hydrogenated hydrocarbon effluent material product is phase separated to remove vapor fractions, after which any ash remaining in the liquid fraction can be removed to produce substantially ash-free coal-derived liquid products.

Huibers, Derk T. A. (Pennington, NJ); Johanson, Edwin S. (Princeton, NJ)

1983-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil coal rse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Encoal mild coal gasification project: Final design modifications report  

Science Conference Proceedings (OSTI)

The design, construction and operation Phases of the Encoal Mild Coal Gasification Project have been completed. The plant, designed to process 1,000 ton/day of subbituminous Power River Basin (PRB) low-sulfur coal feed and to produce two environmentally friendly products, a solid fuel and a liquid fuel, has been operational for nearly five years. The solid product, Process Derived Fuel (PDF), is a stable, low-sulfur, high-Btu fuel similar in composition and handling properties to bituminous coal. The liquid product, Coal Derived Liquid (CDL), is a heavy, low-sulfur, liquid fuel similar in properties to heavy industrial fuel oil. Opportunities for upgrading the CDL to higher value chemicals and fuels have been identified. Significant quantities of both PDF and CDL have been delivered and successfully burned in utility and industrial boilers. A summary of the Project is given.

NONE

1997-07-01T23:59:59.000Z

482

NETL: Coal & Coal Biomass to Liquids - Reference Shelf  

NLE Websites -- All DOE Office Websites (Extended Search)

Reference Shelf Coal and CoalBiomass to Liquids Reference Shelf Documents Papers Presentations DOCUMENTS 2012 Technology Readiness Assessment-Analysis of Active Research Portfolio...

483

Future Impacts of Coal Distribution Constraints on Coal Cost  

E-Print Network (OSTI)

coal (PC) or integrated gasification combined cycle ( IGCC)coal (PC) or integrated gasification combined cycle (IGCC)will be integrated gasification combined cycle (IGCC) (Same

McCollum, David L

2007-01-01T23:59:59.000Z

484

Annul Coal Consumption by Country (1980 -2009) Total annual coal  

Open Energy Info (EERE)

Annul Coal Consumption by Country (1980 -2009) Total annual coal consumption by country, 1980 to 2009 (available as Quadrillion Btu). Compiled by Energy In