National Library of Energy BETA

Sample records for oil coal naics

  1. Table 35. U.S. Coal Consumption at Manufacturing Plants by North American Industry Classification System (NAICS) Code

    Gasoline and Diesel Fuel Update (EIA)

    1 Fuel Consumption, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Net Residual Distillate Natural Gas(d) LPG and Coal and Breeze NAICS Total Electricity(b) Fuel Oil Fuel Oil(c) (billion NGL(e) (million (million Other(f) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 1,158 75,407 2 4 563 1 8 * 99

  2. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    U.S. Energy Information Administration (EIA) Indexed Site

    0.5 Number of Establishments with Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Residual Fuel Oil(b) Alternative Energy Sources(c) Coal Coke NAICS Total Establishments Not Electricity Natural Distillate and Code(a) Selected Subsectors and Industry Consuming Residual Fuel Oil(d Switchable Switchable Receipts(e) Gas Fuel Oil Coal LPG Breeze Other(f) Total United States 311 Food

  3. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 End Uses of Fuel Consumption, 2006;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." ,,,,,"Distillate" ,,,,,"Fuel Oil",,,"Coal" "NAICS",,,"Net","Residual","and",,"LPG and","(excluding Coal" "Code(a)","End

  4. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 End Uses of Fuel Consumption, 2010;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." ,,,,,"Distillate" ,,,,,"Fuel Oil",,,"Coal" "NAICS",,,"Net","Residual","and",,"LPG and","(excluding Coal" "Code(a)","End

  5. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 End Uses of Fuel Consumption, 2006;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," " " "," ",,,"Fuel Oil",,,"Coal" "NAICS"," ","Net

  6. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 End Uses of Fuel Consumption, 2010;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," " " "," ",,,"Fuel Oil",,,"Coal" "NAICS"," ","Net

  7. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Offsite-Produced Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." ,,,,,,,,,"Coke" ,,,,"Residual","Distillate","Natural Gas(d)","LPG and","Coal","and Breeze" "NAICS",,"Total","Electricity(b)","Fuel Oil","Fuel

  8. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Number of Establishments with Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Coal Coke NAICS Total Establishments Not Electricity Natural Residual and Code(a) Selected Subsectors and Industry Consuming Distillate Fuel Oil(d Switchable Switchable Receipts(e) Gas Fuel Oil Coal LPG Breeze Other(f) Total United States 311 Food 2,416 221 2,115 82 160 Q 0 Q 0 30 3112 Grain and

  9. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Number of Establishments with Capability to Switch LPG to Alternative Energy Sources, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Coal Coke NAICS Total Establishments Not Electricity Natural Distillate Residual and Code(a) Selected Subsectors and Industry Consuming LPG(d) Switchable Switchable Receipts(e) Gas Fuel Oil Fuel Oil Coal Breeze Other(f) Total United States 311 Food 4,039 600 2,860 356 221 Q W 0 0 16 3112 Grain and Oilseed Milling

  10. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Number of Establishments with Capability to Switch Natural Gas to Alternative Energy Sources, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Natural Gas(b) Alternative Energy Sources(c) Coal Coke NAICS Total Establishments Not Electricity Distillate Residual and Code(a) Selected Subsectors and Industry Consuming Natural Gas(d Switchable Switchable Receipts(e) Fuel Oil Fuel Oil Coal LPG Breeze Other(f) Total United States 311 Food 10,373 1,667

  11. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Number of Establishments with Capability to Switch Electricity to Alternative Energy Sources, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Coal Coke NAICS Total Establishments Not Natural Distillate Residual and Code(a) Selected Subsectors and Industry with Electricity Receipts(d Switchable Switchable Gas Fuel Oil Fuel Oil Coal LPG Breeze Other(e) Total United States 311 Food 13,265 765 11,829 482 292 Q Q 51 Q Q 3112 Grain and Oilseed

  12. " Level: National Data;" " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Number of Establishments with Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2002;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"Residual Fuel Oil(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total","

  13. " Level: National Data;" " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Number of Establishments with Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2002;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total","

  14. " Level: National Data;" " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Number of Establishments with Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2006;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,,"Residual Fuel Oil(b)",,,," Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total","

  15. " Level: National Data;" " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Number of Establishments with Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2006;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total","

  16. " Level: National Data;" " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    0.5 Number of Establishments with Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2010;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,,"Residual Fuel Oil(b)",,,," Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total Establishments","

  17. " Level: National Data;" " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Number of Establishments with Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2010;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total Establishments","

  18. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2. End Uses of Fuel Consumption, 1998;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," "," ",," ","Distillate"," "," ",," "," " " "," ",,,,"Fuel Oil",,,"Coal",,"RSE" "NAICS"," ","

  19. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    4. End Uses of Fuel Consumption, 1998;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," ",," " " "," ",,,"Fuel Oil",,,"Coal","RSE" "NAICS"," ","Net

  20. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 End Uses of Fuel Consumption, 2002;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," "," ",," ","Distillate"," "," ",," "," " " "," ",,,,"Fuel Oil",,,"Coal",,"RSE" "NAICS"," ","

  1. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 End Uses of Fuel Consumption, 2002;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," ",," " " "," ","Net Demand",,"Fuel Oil",,,"Coal","RSE" "NAICS"," ","for

  2. Level: National and Regional Data; Row: NAICS Codes, Value of Shipments and Employment Sizes;

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Capability to Switch Electricity to Alternative Energy Sources, 2010; Level: National and Regional Data; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column: Energy Sources; Unit: Million Kilowatthours. Coal Coke NAICS Total Not Natural Distillate Residual and Code(a) Selected Subsectors and Industry Receipts(c) Switchable Switchable Gas Fuel Oil Fuel Oil Coal LPG Breeze Other(d) Total United States 311 Food 75,673 2,403 70,987 666 1,658 Q 406 Q Q 141 3112 Grain and Oilseed

  3. Low-rank coal oil agglomeration

    DOE Patents [OSTI]

    Knudson, Curtis L.; Timpe, Ronald C.

    1991-01-01

    A low-rank coal oil agglomeration process. High mineral content, a high ash content subbituminous coals are effectively agglomerated with a bridging oil which is partially water soluble and capable of entering the pore structure, and usually coal derived.

  4. Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes;

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Capability to Switch Coal to Alternative Energy Sources, 2006; Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column: Energy Sources; Unit: Thousand Short Tons. NAICS Total Not Electricity Natural Distillate Residual Code(a) Subsector and Industry Consumed(c) Switchable Switchable Receipts(d) Gas Fuel Oil Fuel Oil LPG Other(e) Total United States 311 Food 6,603 1,013 5,373 27 981 303 93 271 86 3112 Grain and Oilseed Milling 5,099 658 4,323

  5. Coal-oil slurry preparation

    DOE Patents [OSTI]

    Tao, John C.

    1983-01-01

    A pumpable slurry of pulverized coal in a coal-derived hydrocarbon oil carrier which slurry is useful as a low-ash, low-sulfur clean fuel, is produced from a high sulfur-containing coal. The initial pulverized coal is separated by gravity differentiation into (1) a high density refuse fraction containing the major portion of non-coal mineral products and sulfur, (2) a lowest density fraction of low sulfur content and (3) a middlings fraction of intermediate sulfur and ash content. The refuse fraction (1) is gasified by partial combustion producing a crude gas product from which a hydrogen stream is separated for use in hydrogenative liquefaction of the middlings fraction (3). The lowest density fraction (2) is mixed with the liquefied coal product to provide the desired fuel slurry. Preferably there is also separately recovered from the coal liquefaction LPG and pipeline gas.

  6. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    1. End Uses of Fuel Consumption, 1998;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." " "," "," ",," ","Distillate"," "," ","Coal"," "," " " "," ",,,,"Fuel Oil",,,"(excluding Coal" " ","

  7. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    3. End Uses of Fuel Consumption, 1998;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ","Coal"," " " "," ",,,"Fuel Oil",,,"(excluding Coal" " "," ","Net

  8. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    1 End Uses of Fuel Consumption, 2006;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." ,,,,,"Distillate",,,"Coal" ,,,,,"Fuel Oil",,,"(excluding Coal" ,,,"Net","Residual","and","Natural Gas(d)","LPG and","Coke and Breeze)"

  9. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 End Uses of Fuel Consumption, 2006;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ","Coal" " "," ",,,"Fuel Oil",,,"(excluding Coal" " "," ","Net

  10. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    1 End Uses of Fuel Consumption, 2010;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." ,,,,,"Distillate",,,"Coal" ,,,,,"Fuel Oil",,,"(excluding Coal" ,,,"Net","Residual","and","Natural Gas(d)","LPG and","Coke and Breeze)"

  11. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 End Uses of Fuel Consumption, 2010;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ","Coal" " "," ",,,"Fuel Oil",,,"(excluding Coal" " "," ","Net

  12. Low-rank coal oil agglomeration

    DOE Patents [OSTI]

    Knudson, C.L.; Timpe, R.C.

    1991-07-16

    A low-rank coal oil agglomeration process is described. High mineral content, a high ash content subbituminous coals are effectively agglomerated with a bridging oil which is partially water soluble and capable of entering the pore structure, and is usually coal-derived.

  13. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    1 End Uses of Fuel Consumption, 2002;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." " "," "," ",," ","Distillate"," "," ",," "," " " "," ",,,,"Fuel Oil",,,"Coal" " "," ","

  14. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 End Uses of Fuel Consumption, 2002;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ",," " " "," ","Net Demand",,"Fuel Oil",,,"Coal" " "," ","for

  15. Top NAICS Codes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Related Products Manufacturing for Measuring, Displaying, Top Ten NAICS Codes Dollar Value 511210 Software Publishers 334516 Analytical Laboratory Instrument Manufacturing...

  16. Process for heating coal-oil slurries

    DOE Patents [OSTI]

    Braunlin, W.A.; Gorski, A.; Jaehnig, L.J.; Moskal, C.J.; Naylor, J.D.; Parimi, K.; Ward, J.V.

    1984-01-03

    Controlling gas to slurry volume ratio to achieve a gas holdup of about 0.4 when heating a flowing coal-oil slurry and a hydrogen containing gas stream allows operation with virtually any coal to solvent ratio and permits operation with efficient heat transfer and satisfactory pressure drops. The critical minimum gas flow rate for any given coal-oil slurry will depend on numerous factors such as coal concentration, coal particle size distribution, composition of the solvent (including recycle slurries), and type of coal. Further system efficiency can be achieved by operating with multiple heating zones to provide a high heat flux when the apparent viscosity of the gas saturated slurry is highest. Operation with gas flow rates below the critical minimum results in system instability indicated by temperature excursions in the fluid and at the tube wall, by a rapid increase and then decrease in overall pressure drop with decreasing gas flow rate, and by increased temperature differences between the temperature of the bulk fluid and the tube wall. At the temperatures and pressures used in coal liquefaction preheaters the coal-oil slurry and hydrogen containing gas stream behaves essentially as a Newtonian fluid at shear rates in excess of 150 sec[sup [minus]1]. The gas to slurry volume ratio should also be controlled to assure that the flow regime does not shift from homogeneous flow to non-homogeneous flow. Stable operations have been observed with a maximum gas holdup as high as 0.72. 29 figs.

  17. Process for heating coal-oil slurries

    DOE Patents [OSTI]

    Braunlin, Walter A.; Gorski, Alan; Jaehnig, Leo J.; Moskal, Clifford J.; Naylor, Joseph D.; Parimi, Krishnia; Ward, John V.

    1984-01-03

    Controlling gas to slurry volume ratio to achieve a gas holdup of about 0.4 when heating a flowing coal-oil slurry and a hydrogen containing gas stream allows operation with virtually any coal to solvent ratio and permits operation with efficient heat transfer and satisfactory pressure drops. The critical minimum gas flow rate for any given coal-oil slurry will depend on numerous factors such as coal concentration, coal particle size distribution, composition of the solvent (including recycle slurries), and type of coal. Further system efficiency can be achieved by operating with multiple heating zones to provide a high heat flux when the apparent viscosity of the gas saturated slurry is highest. Operation with gas flow rates below the critical minimum results in system instability indicated by temperature excursions in the fluid and at the tube wall, by a rapid increase and then decrease in overall pressure drop with decreasing gas flow rate, and by increased temperature differences between the temperature of the bulk fluid and the tube wall. At the temperatures and pressures used in coal liquefaction preheaters the coal-oil slurry and hydrogen containing gas stream behaves essentially as a Newtonian fluid at shear rates in excess of 150 sec.sup. -1. The gas to slurry volume ratio should also be controlled to assure that the flow regime does not shift from homogeneous flow to non-homogeneous flow. Stable operations have been observed with a maximum gas holdup as high as 0.72.

  18. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Offsite-Produced Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." "NAICS",,,,,,"Residual","Distillate",,,"LPG and",,,"Coke" "Code(a)","Subsector and Industry","Total",,"Electricity(b)",,"Fuel Oil","Fuel Oil(c)","Natural

  19. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Offsite-Produced Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." "NAICS",,,,"Residual","Distillate",,"LPG and",,"Coke" "Code(a)","Subsector and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural

  20. Use of coal liquefaction catalysts for coal/oil coprocessing and heavy oil upgrading

    SciTech Connect (OSTI)

    Cugini, A.V.; Krastman, D.; Thompson, R.L.; Gardner, T.J.; Ciocco, M.V.

    1997-04-01

    The catalytic hydrogenation of coal and model solvents using dispersed or supported catalysts at different pressures has been the focus of several recent studies at PETC. The effectiveness of these catalysts has been studied in coal liquefaction and coal-oil coprocessing. Coal-oil coprocessing involves the co-reaction of coal and petroleum-derived oil or resid. The results of these studies have indicated that both dispersed and supported catalysts are effective in these systems at elevated H{sub 2} pressures ({approximately}2,500 psig). Attempts to reduce pressure indicated that a combination of catalyst concentration and solvent quality could be used to compensate for reductions in H{sub 2} pressure. Comparison of the coal and coprocessing systems reveals many similarities in the catalytic requirements for both systems. Both hydrogenation and hydrogenolysis activities are required and the reactive environments are similar. Also, the use of catalysts in the two systems shares problems with similar types of inhibitors and poisons. The logical extension of this is that it may be reasonable to expect similar trends in catalyst activity for both systems. In fact, many of the catalysts selected for coal liquefaction were selected based on their effectiveness in petroleum systems. This study investigates the use of supported and dispersed coal liquefaction catalysts in coal-oil coprocessing and petroleum-only systems. The focus of the study was delineating the effects of coal concentration, pressure, and catalyst type.

  1. Kinetics of heavy oil/coal coprocessing

    SciTech Connect (OSTI)

    Szladow, A.J.; Chan, R.K. ); Foudu, S.; Kelly, J.F. )

    1988-06-01

    A number of studies have been reported on coprocessing of coal and oil sand bitumen, petroleum residues and distillate fractions in catalytic and non-catalytic processes. The studies described the effects of feedstock characteristics, process chemistry and operating variables on the product yield and distribution; however, very few kinetic data were reported in these investigations. This paper presents the kinetic data and modelling of the CANMET coal/heavy oil coprocessing process. CANMET has been conducting research and process development work on coprocessing of Canadian heavy oil/bitumen and coal since 1979 including studies of the kinetics and mechanisms of coprocessing. As a continuation of the program, CANMET and Lobbe Technologies undertook a project on mathematical modelling of coprocessing kinetics with emphasis on the development of reaction engineering models for improved process performance and operation.

  2. Conventional Energy (Oil, Gas, and Coal) Forum & Associated Vertical...

    Office of Environmental Management (EM)

    CONVENTIONAL ENERGY (OIL, GAS & COAL) FORUM & ASSOCIATED VERTICAL BUSINESS DEVELOPMENT ... South, Las Vegas, NV 89119 The dynamic world of conventional energy (focusing on oil, gas ...

  3. Kinetics of heavy oil/coal coprocessing

    SciTech Connect (OSTI)

    Szladow, A.J.; Chan, R.K.; Fouda, S.; Kelly, J.F. )

    1988-01-01

    A number of studies have been reported on coprocessing of coal and oil sand bitumen, petroleum residues and distillate fractions in catalytic and non-catalytic processes. The studies described the effects of feedstock characteristics, process chemistry and operating variables on the product yield and distribution; however, very few kinetic data were reported in these investigations. This paper presents the kinetic data and modeling of the CANMET coal/heavy oil coprocessing process. A number of reaction networks were evaluated for CANMET coprocessing. The final choice of model was a parallel model with some sequential characteristics. The model explained 90.0 percent of the total variance, which was considered satisfactory in view of the difficulties of modeling preasphaltenes. The models which were evaluated showed that the kinetic approach successfully applied to coal liquefaction and heavy oil upgrading can be also applied to coprocessing. The coal conversion networks and heavy oil upgrading networks are interrelated via the forward reaction paths of preasphaltenes, asphaltenes, and THFI and via the reverse kinetic paths of an adduct formation between preasphaltenes and heavy oil.

  4. Vacuum pyrolyzed tire oil as a coal solvent

    SciTech Connect (OSTI)

    Orr, E.C.; Shi, Y.; Ji, Q.

    1995-12-31

    Coal liquefaction is highly dependent upon the type of coal liquefaction solvent used. The solvent must readily solubilize the coal and must act as an effective hydrogen donor or shuttler. Oil derived from the vacuum pyrolysis of used rubber tires has recently been used as a coal solvent with good conversion of coal to liquids in a hydrogen atmosphere. All experiments were completed in shaken tubing reactors at 450{degrees}C utilizing a bituminous coal. Results show the effectiveness of the pyrolyzed tire oil as a coal liquefaction solvent depends upon hydrogen pressure. Electron probe microanalysis data reveal good dispersion of the molybdenum catalyst in coal particles taken from liquefaction experiments.

  5. Coal liquefaction and hydroprocessing of petroleum oils

    SciTech Connect (OSTI)

    Rosenthal, J.W.; Dahlberg, A.J.

    1983-12-27

    This invention comprises a process for hydroprocessing a petroleum oil containing soluble metals compounds while suppressing the accumulation of coke within the hydroprocessing zone, comprising the steps of forming a mixture comprising particulate coal and a petroleum oil containing soluble metal compounds to form a feed slurry; and contacting said feed slurry with added hydrogen in said hydroprocessing zone under hydroprocessing conditions to produce an effluent comprising a normally liquid portion having a reduced soluble metals concentration and undissolved solids containing metal from said soluble metals compounds in said petroleum oil.

  6. Table 40. U.S. Coal Stocks at Manufacturing Plants by North American Industry Classification System (NAICS) Code

    Gasoline and Diesel Fuel Update (EIA)

    Imported Refiner Acquisition Cost of Crude Oil, Projected vs. Actual Projected Price in Constant Dollars (constant dollars per barrel in "dollar year" specific to each AEO) AEO $ Year 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 1992 16.69 16.43 16.99 17.66 18.28 19.06 19.89 20.72 21.65 22.61 23.51 24.29 24.90 25.60 26.30 27.00 27.64 28.16 AEO 1995 1993 14.90 16.41 16.90 17.45 18.00 18.53 19.13 19.65 20.16 20.63 21.08

  7. Hydroprocessing catalysts for heavy oil and coal

    SciTech Connect (OSTI)

    Satriana, M.J.

    1982-01-01

    Hydroprocessing catalysts, as described in over 230 processes covered in this book, are hydrogenation catalysts used in the upgrading of heavy crudes and coal to products expected to be in great demand as the world's primary oil supplies gradually dwindle. The techniques employed in hydroprocessing result in the removal of contaminants, the transformation of lower grade materials such as heavy crudes to valuable fuels, or the conversion of hydrocarbonaceous solids into gaseous or liquid fuel products. All of these techniques are, of course, carried out in the presence of hydrogen. Some of the brightest energy prospects for the future lie in heavy oil reservoirs and coal reserves. Heavy oils, defined in this book as having gravities of < 20/sup 0/API, are crudes so thick that they are not readily extracted from their reservoirs. However, processing of these crudes is of great importance, because the US resource alone is enormous. The main types of processing catalysts covered in the book are hydrorefining catalysts plus some combinations of the two. Catalysts for the conversion of hydrocarbonaceous materials to gaseous or liquid fuels are also covered. The primary starting material for these conversions is coal, but wood, lignin, oil shale, tar sands, and peat are other possibilities. The final chapter describes the preparation of various catalyst support systems.

  8. Magnetic pipeline for coal and oil

    SciTech Connect (OSTI)

    Knolle, E.

    1998-07-01

    A 1994 analysis of the recorded costs of the Alaska oil pipeline, in a paper entitled Maglev Crude Oil Pipeline, (NASA CP-3247 pp. 671--684) concluded that, had the Knolle Magnetrans pipeline technology been available and used, some $10 million per day in transportation costs could have been saved over the 20 years of the Alaska oil pipeline's existence. This over 800 mile long pipeline requires about 500 horsepower per mile in pumping power, which together with the cost of the pipeline's capital investment consumes about one-third of the energy value of the pumped oil. This does not include the cost of getting the oil out of the ground. The reason maglev technology performs superior to conventional pipelines is because by magnetically levitating the oil into contact-free suspense, there is no drag-causing adhesion. In addition, by using permanent magnets in repulsion, suspension is achieved without using energy. Also, the pumped oil's adhesion to the inside of pipes limits its speed. In the case of the Alaska pipeline the speed is limited to about 7 miles per hour, which, with its 48-inch pipe diameter and 1200 psi pressure, pumps about 2 million barrels per day. The maglev system, as developed by Knolle Magnetrans, would transport oil in magnetically suspended sealed containers and, thus free of adhesion, at speeds 10 to 20 times faster. Furthermore, the diameter of the levitated containers can be made smaller with the same capacity, which makes the construction of the maglev system light and inexpensive. There are similar advantages when using maglev technology to transport coal. Also, a maglev system has advantages over railroads in mountainous regions where coal is primarily mined. A maglev pipeline can travel, all-year and all weather, in a straight line to the end-user, whereas railroads have difficult circuitous routes. In contrast, a maglev pipeline can climb over steep hills without much difficulty.

  9. TEE-0067 - In the Matter of North Side Coal & Oil Co., Inc. ...

    Energy Savers [EERE]

    7 - In the Matter of North Side Coal & Oil Co., Inc. TEE-0067 - In the Matter of North Side Coal & Oil Co., Inc. On December 2, 2009, North Side Coal & Oil Co., Inc. (North Side) ...

  10. " Level: National Data;" " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Number of Establishments with Capability to Switch Coal to Alternative Energy Sources, 2002;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"Coal(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,,"RSE" "NAICS"," ","Total","

  11. " Level: National Data;" " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    11 Number of Establishments with Capability to Switch Coal to Alternative Energy Sources, 2006;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"Coal(b)",,,"Alternative Energy Sources(c)" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate","Residual"

  12. Testing for market integration crude oil, coal, and natural gas

    SciTech Connect (OSTI)

    Bachmeier, L.J.; Griffin, J.M.

    2006-07-01

    Prompted by the contemporaneous spike in coal, oil, and natural gas prices, this paper evaluates the degree of market integration both within and between crude oil, coal, and natural gas markets. Our approach yields parameters that can be readily tested against a priori conjectures. Using daily price data for five very different crude oils, we conclude that the world oil market is a single, highly integrated economic market. On the other hand, coal prices at five trading locations across the United States are cointegrated, but the degree of market integration is much weaker, particularly between Western and Eastern coals. Finally, we show that crude oil, coal, and natural gas markets are only very weakly integrated. Our results indicate that there is not a primary energy market. Despite current price peaks, it is not useful to think of a primary energy market, except in a very long run context.

  13. NAICS Codes @ Headquarters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NAICS Codes @ Headquarters NAICS Codes @ Headquarters A listing of NAICS codes used at Headquarters Procurement Services NAICS Codes @ Headquarters.pdf (37.93 KB) More Documents & Publications Product Service Codes @ Headquarters Management & Operating Subcontract Reporting Capability (MOSRC) Downloads Historical Procurement Information

  14. Process for converting heavy oil deposited on coal to distillable oil in a low severity process

    DOE Patents [OSTI]

    Ignasiak, Teresa; Strausz, Otto; Ignasiak, Boleslaw; Janiak, Jerzy; Pawlak, Wanda; Szymocha, Kazimierz; Turak, Ali A.

    1994-01-01

    A process for removing oil from coal fines that have been agglomerated or blended with heavy oil comprises the steps of heating the coal fines to temperatures over 350.degree. C. up to 450.degree. C. in an inert atmosphere, such as steam or nitrogen, to convert some of the heavy oil to lighter, and distilling and collecting the lighter oils. The pressure at which the process is carried out can be from atmospheric to 100 atmospheres. A hydrogen donor can be added to the oil prior to deposition on the coal surface to increase the yield of distillable oil.

  15. Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;

    U.S. Energy Information Administration (EIA) Indexed Site

    Coke and Shipments Net Residual Distillate Natural LPG and Coal Breeze of Energy Sources NAICS Total(b) Electricity(c) Fuel Oil Fuel Oil(d) Gas(e) NGL(f) (million (million Other(g) Produced Onsite(h) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) (billion cu ft) (million bbl) short tons) short tons) (trillion Btu) (trillion Btu) Total United States RSE Column Factors: 0.9 1 1.2 1.8 1 1.6 0.8 0.9 1.2 0.4 311 Food 1,123 67,521 2 3 567 1 8 * 89 0 311221 Wet

  16. State of Illinois 1982 annual coal, oil and gas report

    SciTech Connect (OSTI)

    Not Available

    1983-01-01

    This data compilation contains statistics from the coal industry and petroleum industry of Illinois. Data are given on the production, accidents, explosives, and mechanization of coal mines. Metal mines are only briefly described. The report from the Division of Oil and Gas contains data on oil well completions, oil wells plugged, water input wells, and salt water and waste disposal wells. The results of hearings in the division are included. The Land Reclamation Division reports data on permits and acreage affected by surface mining of coal, limestone, shale, clay, sand, and gravel. 2 figures, 76 tables.

  17. Vacuum pyrolyzed tire oil as a coal solvent

    SciTech Connect (OSTI)

    Orr, E.C.; Shi, Yanlong; Ji, Qin; Anderson, L.L.; Eyring, E.M.

    1995-12-31

    Recent interest in coprocessing coal with hydrogen rich waste materials in order to produce liquid transportation fuels has given rise to interesting twists on standard coal liquefaction. In general, coprocessing coal with a waste material has been approached with the idea that the waste material would be mixed with the coal under liquefaction conditions with little or no preliminary processing of the waste material other than shredding into smaller size particles. Mixing the waste material with the coal would occur in the primary stage of liquefaction. The primary stage would accomplish the dissolution of the coal and breakdown of the waste material. The products would then be introduced into the secondary stage where upgrading of product would occur. This paper describes the usefulness of oil derived from pyrolysis of waste rubber tires as a reactant in coal coprocessing or coal liquefaction.

  18. " Level: National Data;" " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Number of Establishments with Capability to Switch LPG to Alternative Energy Sources, 2002;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"LPG(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total","

  19. " Level: National Data;" " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Number of Establishments with Capability to Switch Natural Gas to Alternative Energy Sources, 2002;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"Natural Gas(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total","

  20. " Level: National Data;" " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Number of Establishments with Capability to Switch Electricity to Alternative Energy Sources, 2002; " " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"Electricity Receipts(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total","

  1. " Level: National Data;" " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Number of Establishments with Capability to Switch LPG to Alternative Energy Sources, 2006;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"LPG(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total","

  2. " Level: National Data;" " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Number of Establishments with Capability to Switch Natural Gas to Alternative Energy Sources, 2006;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,,"Natural Gas(b)",,,," Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total","

  3. " Level: National Data;" " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Number of Establishments with Capability to Switch Electricity to Alternative Energy Sources, 2006; " " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"Electricity Receipts(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total","

  4. " Level: National Data;" " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Number of Establishments with Capability to Switch LPG to Alternative Energy Sources, 2010;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,"LPG(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total Establishments","

  5. " Level: National Data;" " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Number of Establishments with Capability to Switch Natural Gas to Alternative Energy Sources, 2010;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: Establishment Counts." ,,,"Natural Gas(b)",,,," Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total Establishments","

  6. " Row: NAICS Codes, Value of Shipments and Employment Sizes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Capability to Switch Natural Gas to Alternative Energy Sources, 2010;" " Level: National and Regional Data;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Billion Cubic Feet." ,,"Natural Gas",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total","

  7. " Row: NAICS Codes, Value of Shipments and Employment Sizes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Capability to Switch Electricity to Alternative Energy Sources, 2010; " " Level: National and Regional Data;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Million Kilowatthours." ,,"Electricity Receipts",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total","

  8. Level: National Data; Row: NAICS Codes; Column: Levels of Price Difference;

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Percent of Establishments by Levels of Price Difference that Would Cause Fuel Switching from Coal to a Less Expensive Substitute, 2010; Level: National Data; Row: NAICS Codes; Column: Levels of Price Difference; Unit: Establishment Counts. Would Switch Would Not Estimate to More NAICS Establishments Switch Due 1 to 10 11 to 25 26 to 50 Over 50 Cannot Expensive Code(a) Subsector and Industry Able to Switch(b) to Price Percent Percent Percent Percent Be Provided Substitute Total United States

  9. Good-Bye, SIC - Hello, NAICS

    U.S. Energy Information Administration (EIA) Indexed Site

    you are having trouble, call 202-586-8800 for help. Home > Industrial > Manufacturing > Good-Bye, SIC - Hello, NAICS Good-Bye, SIC - Hello, NAICS The North American Industry...

  10. Waste oils utilized as coal liquefaction solvents on differing ranks of coal

    SciTech Connect (OSTI)

    Orr, E.C.; Shi, Y.; Liang, J.

    1995-12-31

    To determine the feasibility of using different waste oils as solvent media for coals of differing rank, oil from automobile crankcases, oil derived from the vacuum pyrolysis of waste rubber tires, and oil derived from the vacuum pyrolysis of waste plastics, have been heated to 430{degrees}C with coal in tubing reactors a hydrotreated for 1 hour. Analysis of the solvents indicates the presence of heavy metals in the waste automobile oil. Analysis of the plastic oil shows the presence of iron and calcium. The analysis of the tire oil shows the presence of zinc. Conversion yields are compared and results of analysis for the presence of metals in the liquid products are reported.

  11. Low-rank coal oil agglomeration product and process

    DOE Patents [OSTI]

    Knudson, Curtis L.; Timpe, Ronald C.; Potas, Todd A.; DeWall, Raymond A.; Musich, Mark A.

    1992-01-01

    A selectively-sized, raw, low-rank coal is processed to produce a low ash and relative water-free agglomerate with an enhanced heating value and a hardness sufficient to produce a non-decrepitating, shippable fuel. The low-rank coal is treated, under high shear conditions, in the first stage to cause ash reduction and subsequent surface modification which is necessary to facilitate agglomerate formation. In the second stage the treated low-rank coal is contacted with bridging and binding oils under low shear conditions to produce agglomerates of selected size. The bridging and binding oils may be coal or petroleum derived. The process incorporates a thermal deoiling step whereby the bridging oil may be completely or partially recovered from the agglomerate; whereas, partial recovery of the bridging oil functions to leave as an agglomerate binder, the heavy constituents of the bridging oil. The recovered oil is suitable for recycling to the agglomeration step or can serve as a value-added product.

  12. Low-rank coal oil agglomeration product and process

    DOE Patents [OSTI]

    Knudson, C.L.; Timpe, R.C.; Potas, T.A.; DeWall, R.A.; Musich, M.A.

    1992-11-10

    A selectively-sized, raw, low-rank coal is processed to produce a low ash and relative water-free agglomerate with an enhanced heating value and a hardness sufficient to produce a non-degradable, shippable fuel. The low-rank coal is treated, under high shear conditions, in the first stage to cause ash reduction and subsequent surface modification which is necessary to facilitate agglomerate formation. In the second stage the treated low-rank coal is contacted with bridging and binding oils under low shear conditions to produce agglomerates of selected size. The bridging and binding oils may be coal or petroleum derived. The process incorporates a thermal deoiling step whereby the bridging oil may be completely or partially recovered from the agglomerate; whereas, partial recovery of the bridging oil functions to leave as an agglomerate binder, the heavy constituents of the bridging oil. The recovered oil is suitable for recycling to the agglomeration step or can serve as a value-added product.

  13. RCW 79.14 Mineral, Coal, Oil and Gas Leases | Open Energy Information

    Open Energy Info (EERE)

    79.14 Mineral, Coal, Oil and Gas Leases Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: RCW 79.14 Mineral, Coal, Oil and Gas...

  14. Desulfurization of coal with hydroperoxides of vegetable oils. [Quarterly] report, September 1--November 30, 1994

    SciTech Connect (OSTI)

    Smith, G.V.; Gaston, R.D.; Song, Ruozhi; Cheng, Jianjun

    1994-12-31

    This project proposes a new method for removing organic sulfur from Illinois coals using readily available farm products. It proposes to use air and vegetable oils to disrupt the coal matrix, oxidize sulfur forms, increase volatiles, and desulfurize coal. This will be accomplished by impregnating coals with polyunsaturated oils, converting the oils to their hydroperoxides, and heating. Since these oils are relatively inexpensive and easily applied, this project could lead to a cost effective method for removing organic sulfur from coals. Moreover, the oils are environmentally safe; they will produce no noxious products and will improve burning qualities of the solid products. Preliminary experiments showed that EBC 104 coal catalyzes the formation of hydroperoxides in safflower oil and that more sulfur is extracted from the treated than untreated coal. During this first quarter the requirement of an added photosensitizer has been eliminated, the catalytic effect of coal has been confirmed, and the existence of a complex set of reactions revealed. These reactions between the oxygen, oil, hydroperoxides, and coal are hydroperoxide formation, which is catalyzed by the coal surface and by heat, an unknown coal-hydroperoxide reaction, and oil polymerization. Additionally, diffusion phenomena must be playing a role because oil polymerization occurs, but the importance of diffusion is difficult to assess because less polymerization occurs when coal is present. The first task has been completed and we are now ready to determine the ability of linseed oil hydroperoxides to oxidize organic sulfur in EBC 108 coal.

  15. Displacing oil and gas with coal: Constraints and opportunities

    SciTech Connect (OSTI)

    Langley, V.E.

    1982-01-01

    It is obvious that a major result of the oil supply interruptions of the 1970s was to dramatically increase the competitiveness of coal as an industrial and utility fuel. In fact, between 1973 and 1981, coal's share of the energy feed to the electric utility industry did increase from 43 to 52 percent. However, given the actual market place incentives, this increase is not a remarkable improvement, and reflects the fact that disappointingly few existing units have been converted from oil to coal. In the wake of the 1973 embargo, the passage of the Energy Supply and Coordination Act of 1974 (''ENSECA'') and the Power Plant and Industrial Fuel Use Act (''FUA'') provided the Executive Branch with the power to mandate the conversion of oil and gas units to coal. However, ENSECA lacked strong enforcement provisions and there resulted few conversions other than those which were made voluntarily on purely economic grounds. As a result, in 1978, Congress enacted the Fuel Use Act which placed the burden of proof upon owners to demonstrate that a specified coal convertible unit could not be converted.

  16. Coal-oil-mixture technology: a status report

    SciTech Connect (OSTI)

    Lecky, J.A.

    1980-10-01

    Papers and discussions presented at the Second International Symposium on Coal-Oil-Mixture Combustion (November 27 to 29, 1979) are reviewed to assess the state of technology in this field. Environmental problems receive little attention; most appear soluble by current methods used to control emissions from coal burning. Economic studies indicate that converting oil-burning plants to COM burning would be profitable, even with retrofit costs. Experience with coal-oil mixtures (COM) has been encouraging in bench-scale tests, small boilers, and short-term plant tests, but extended, large-scale tests are needed prior to commercialization of COM. Major problems needing more investigation or plant experience are: lack of a definition of COM stability and a quick way to measure it; uncertainties as to COM structure and the mechanisms of how additives promote stability; heterogeneity of coals and oils; inadequate experience in COM storage and transportation; uncertainty about long-term effects of corrosion and erosion of components by COM, and existence of other possible operating problems. The US Department of Energy announced an expanded program for COM demonstration plants, and industrial firms are selling COM and offering to build plants to prepare it.

  17. Liquid fuels from co-processing coal with bitumen or heavy oil: A review

    SciTech Connect (OSTI)

    Moschopedis, S.E.; Hepler, L.G.

    1987-01-01

    Coal, bitumen and heavy oil (and various pitches, resids, etc.) are similar in that they require more substantial treatment than does conventional light oil to yield useful liquid fuels. The authors provide a brief and selective review of technologies for liquefying coal, followed by consideration of co-processing coal with bitumen/heavy oil. Such co-processing may be considered as use of bitumen/heavy oil as a solvent and/or hydrogen donor in liquefaction of coal, or as the use of coal to aid upgrading bitumen/heavy oil.

  18. NAICS Codes @ Headquarters Description: NAICS Codes used at Headquarters Procurement Services

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NAICS Codes @ Headquarters Description: NAICS Codes used at Headquarters Procurement Services Filters: Signed Date only show values between , Contracting Agency ID show only ('8900'), Contracting Office ID show only ('00001'), Date Signed only show values between '05/01/2011' and '04/30/2012', Last Modified Date only show values between Contracting Agency ID: 8900, Contracting Office ID: 00001 NAICS Code NAICS Description Action Obligation 541519 OTHER COMPUTER RELATED SERVICES 341

  19. A technical and economic assessment of petroleum, heavy oil, shale oil and coal liquid refining

    SciTech Connect (OSTI)

    Sikonia, J.G.; Shah, B.R.; Ulowetz, M.A.

    1983-11-01

    Decreasing availability of conventional crude oil will result in the utilization of alternative raw materials for the production of transportation fuels. Based on currently available processes and as a result of detailed pilot plant studies, the differences in the technical and economic aspects of refining alternative feedstocks of heavy oil, coal liquids and shale oil have indicated that heavy, hydrogen-deficient materials require more complex and costly upgrading techniques. Compared to the base case of Arabian Light crude oil, the Mexican Maya heavy oil is worth about $4.35/B less, the coal liquid about $2.38/B less and the shale oil about $5.98/B less. All of these alternative fuels can be upgraded into high quality transportation fuels.

  20. Level: National Data; Row: NAICS Codes; Column: Levels of Price...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Substitute, 2010; Level: National Data; Row: NAICS Codes; Column: Levels of Price ... Substitute, 2010; Level: National Data; Row: NAICS Codes; Column: Levels of Price ...

  1. Level: National Data; Row: NAICS Codes; Column: Energy Sources...

    U.S. Energy Information Administration (EIA) Indexed Site

    National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. ... National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. ...

  2. Level: National Data; Row: NAICS Codes; Column: Energy Sources...

    Gasoline and Diesel Fuel Update (EIA)

    Combustible Energy, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; ... Combustible Energy, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; ...

  3. Level: National and Regional Data; Row: NAICS Codes, Value of...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2010; Level: National and Regional Data; Row: NAICS Codes, Value of Shipments and ... 2010; Level: National and Regional Data; Row: NAICS Codes, Value of Shipments and ...

  4. Level: National Data; Row: NAICS Codes; Column: Usage within...

    Gasoline and Diesel Fuel Update (EIA)

    Technologies, 2010; Level: National Data; Row: NAICS Codes; Column: Usage within ... Technologies, 2010; Level: National Data; Row: NAICS Codes; Column: Usage within ...

  5. Level: National Data; Row: NAICS Codes; Column: Energy Sources...

    Gasoline and Diesel Fuel Update (EIA)

    (Fuel and Nonfuel), 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources ... (Fuel and Nonfuel), 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources ...

  6. Level: National Data; Row: NAICS Codes; Column: Floorspace and...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Buildings, 2010; Level: National Data; Row: NAICS Codes; Column: Floorspace and ... Buildings, 2010; Level: National Data; Row: NAICS Codes; Column: Floorspace and ...

  7. Level: National Data; Row: NAICS Codes; Column: Energy Sources...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Fuel Consumption, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; ... Fuel Consumption, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; ...

  8. " Level: National Data;" " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Reasons that Made Coal Unswitchable, 2006;" " Level: National Data;" " Row: NAICS Codes;" " Column: Reasons that Made Quantity Unswitchable;" " Unit: Million short tons." ,,,,"Reasons that Made Coal Unswitchable" " "," ",,,,,,,,,,,,," " ,,"Total Amount of ","Total Amount of","Equipment is Not","Switching","Unavailable

  9. Office of Oil, Gas, and Coal Supply Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Office of Oil, Gas, and Coal Supply Statistics www.eia.gov Natural Gas Monthly August 2016 U.S. Department of Energy Washington, DC 20585 August 2016 U.S. Energy Information Administration | Natural Gas Monthly ii This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States

  10. Desulfurization of coal with hydroperoxides of vegetable oils. Technical progress report, March 1--May 31, 1995

    SciTech Connect (OSTI)

    Smith, G.V.; Gaston, R.D.; Song, R.; Cheng, J.; Shi, Feng; Gholson, K.L.

    1995-12-31

    This project proposes a new method for removing organic sulfur from Illinois coals using readily available farm products. It proposes to use air and vegetable oils to disrupt the coal matrix, oxidize sulfur forms, increase volatiles, and desulfurize coal. This will be accomplished by impregnating coals with polyunsaturated oils, converting the oils to their hydroperoxides, and heating. Since these oils are relatively inexpensive and easily applied, this project could lead to a cost effective method for removing organic sulfur from coals. Moreover, the oils are environmentally safe; they will produce no noxious products and will improve burning qualities of solid products. Preliminary experiments showed that IBC 104 coal catalyzes the formation of hydroperoxides in safflower oil and that more sulfur is extracted from the treated than untreated coal. During the first quarter the requirement of an added photosensitizer was eliminated, the catalytic effect of coal was confirmed, and the existence of a complex set of reactions was revealed. During the second quarter, working with IBC-108 coal (2.3% organic S, 0.4% pyrite S), the effects of different extraction solvents were examined. A new pretreatment which combines alkali with linseed oil was discovered. Best organic sulfur removal is approximately 26% using alkali pretreatment combined with linseed oil at 100[degrees]C. BTU loses can be kept to a minimum of 3% with proper use of solvents. During this third quarter the effects of different ratios of oil:coal, different temperatures, and different reaction times were completely examined. The effects of alkali on sulfur removal were further investigated. Best organic sulfur removal reaches 34% using ammonia pretreatment, then oil and finally aqNA2CO3 extraction.

  11. Solvent extraction of bituminous coals using light cycle oil: characterization of diaromatic products in liquids

    SciTech Connect (OSTI)

    Josefa M. Griffith; Caroline E. Burgess Clifford; Leslie R. Rudnick; Harold H. Schobert

    2009-09-15

    Many studies of the pyrolytic degradation of coal-derived and petroleum-derived aviation fuels have demonstrated that the coal-derived fuels show better thermal stability, both with respect to deposition of carbonaceous solids and cracking to gases. Much previous work at our institute has focused on the use of refined chemical oil (RCO), a distillate from the refining of coal tar, blended with light cycle oil (LCO) from catalytic cracking of vacuum gas oil. Hydroprocessing of this blend forms high concentrations of tetralin and decalin derivatives that confer particularly good thermal stability on the fuel. However, possible supply constraints for RCO make it important to consider alternative ways to produce an 'RCO-like' product from coal in an inexpensive process. This study shows the results of coal extraction using LCO as a solvent. At 350{sup o}C at a solvent-to-coal ratio of 10:1, the conversions were 30-50 wt % and extract yields 28-40 wt % when testing five different coals. When using lower LCO/coal ratios, conversions and extract yields were much smaller; lower LCO/coal ratios also caused mechanical issues. LCO is thought to behave similarly to a nonpolar, non-hydrogen donor solvent, which would facilitate heat-induced structural relaxation of the coal followed by solubilization. The main components contributed from the coal to the extract when using Pittsburgh coal are di- and triaromatic compounds. 41 refs., 3 figs., 12 tabs.

  12. " Level: National Data;" " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Reasons that Made Distillate Fuel Oil Unswitchable, 2006;" " Level: National Data;" " Row: NAICS Codes;" " Column: Reasons that Made Quantity Unswitchable;" " Unit: Million barrels." ,,,,"Reasons that Made Distillate Fuel Oil Unswitchable" " "," ",,,,,,,,,,,,," " ,,"Total Amount of ","Total Amount of","Equipment is Not","Switching","Unavailable

  13. Level: National and Regional Data; Row: NAICS Codes; Column: All Energy Sources Collected;

    U.S. Energy Information Administration (EIA) Indexed Site

    Table 7.1 Average Prices of Purchased Energy Sources, 2006; Level: National and Regional Data; Row: NAICS Codes; Column: All Energy Sources Collected; Unit: U.S. Dollars per Physical Units. Selected Wood and Other Biomass Components Coal Components Coke Electricity Components Natural Gas Components Steam Components Total Wood Residues Bituminous Electricity Diesel Fuel Motor Natural Gas Steam and Wood-Related and Electricity from Sources and Gasoline Pulping Liquor Natural Gas from Sources

  14. Decaking of coal or oil shale during pyrolysis in the presence of iron oxides

    DOE Patents [OSTI]

    Rashid Khan, M.

    1988-05-05

    A method for producing a fuel from the pyrolysis of coal or oil shale in the presence of iron oxide in an inert gas atmosphere is described. The method includes the steps of pulverizing feed coal or oil shale, pulverizing iron oxide, mixing the pulverized feed and iron oxide, and heating the mixture in a gas atmosphere which is substantially inert to the mixture so as to form a product fuel, which may be gaseous, liquid and/or solid. The method of the invention reduces the swelling of coals, such as bituminous coal and the like, which are otherwise known to swell during pyrolysis. 4 figs., 8 tabs.

  15. Decaking of coal or oil shale during pyrolysis in the presence of iron oxides

    DOE Patents [OSTI]

    Khan, M. Rashid

    1989-01-01

    A method for producing a fuel from the pyrolysis of coal or oil shale in the presence of iron oxide in an inert gas atmosphere. The method includes the steps of pulverizing feed coal or oil shale, pulverizing iron oxide, mixing the pulverized feed and iron oxide, and heating the mixture in a gas atmosphere which is substantially inert to the mixture so as to form a product fuel, which may be gaseous, liquid and/or solid. The method of the invention reduces the swelling of coals, such as bituminous coal and the like, which are otherwise known to swell during pyrolysis.

  16. Level: National Data and Regional Totals; Row: NAICS Codes, Value...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... Receipts(c) Switchable Switchable Gas Fuel Oil Fuel Oil Coal LPG Breeze Other(d) ... Notes: To obtain the RSE percentage for any table cell, multiply the cell's corresponding ...

  17. Level: National Data and Regional Totals; Row: NAICS Codes, Value...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... Switchable Switchable Receipts(d) Gas Fuel Oil Fuel Oil Coal Breeze Other(e) LPG ... Notes: To obtain the RSE percentage for any table cell, multiply the cell's corresponding ...

  18. Level: National Data; Row: NAICS Codes; Column: Energy Sources...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... Notes: To obtain the RSE percentage for any table cell, multiply the cell's corresponding ... Switchable Switchable Receipts(e) Gas Fuel Oil Fuel Oil LPG Other(f) Coal(b) ...

  19. " Row: NAICS Codes; Column: Electricity...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"Total United States" 311,"Food",73242,309,4563,11... 324,"Petroleum and Coal Products",43853,131,20015,3849,60149 324110," Petroleum Refineries",40434,94,1...

  20. " Row: NAICS Codes; Column: Electricity...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"Total United States" 311,"Food",75652,21,5666,347... 324,"Petroleum and Coal Products",48788,3722,18989,5496,66002 324110," Petroleum Refineries",46111,3685...

  1. " Row: NAICS Codes; Column: Electricity...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"Total United States" ,"RSE Column ... 324,"Petroleum and Coal Products",41280,"Q",17503,4123,54688,1.9 324110," Petroleum Refineries",38603,"Q...

  2. Comparative assessment of the trace-element composition of coals, crude oils, and oil shales

    SciTech Connect (OSTI)

    M.Y. Shpirt; S.A. Punanova

    2007-10-15

    A comparative analysis of the amounts of 42 trace elements in coals, crude oils, and oil and black shales was performed. The degree of concentration of trace elements by caustobioliths and their ashes relative to their abundance in argillaceous rocks and the Earth's crust was calculated. Typomorphic trace elements were distinguished, of which many turned out to be common for the different kinds of caustobioliths in question. The trace elements were classified according to their concentration factors in different caustobioliths. The ash of crude oils is enriched in trace elements (Cs, V, Mo, Cu, Ag, Au, Zn, Hg, Se, Cr, Co, Ni, U) to the greatest extent (concentration factor above 3.5) and that of oil shales is enriched to the least extent (Re, Cs, Hg, Se). The ratios between typomorphic trace elements in general strongly differ from those in the Earth's crust and argillaceous rocks and are not identical in different caustobioliths. Quantitative parameters that make it possible to calculate a change in these ratios on passing from one caustobiolith type to another were proposed and the relative trace-element affinity of different caustobioliths was estimated.

  3. Desulfurization of coal with hydroperoxides of vegetable oils. [Quarterly progress report], December 1, 1994--February 28, 1995

    SciTech Connect (OSTI)

    Smith, G.V.; Gaston, R.D.; Song, Ruozhi; Cheng, Jianjun; Shi, Feng; Gholson, K.L.; Ho, K.K.

    1995-12-31

    This project proposes a new method for removing organic sulfur from Illinois coals using readily available farm products. It proposes to use air and vegetable oils to disrupt the coal matrix, oxidize sulfur forms, increase volatiles, and desulfurize coal. This will be accomplished by impregnating coals with polyunsaturated oils, converting the oils to their hydroperoxides, and heating. Since these oils are relatively inexpensive and easily applied, this project could lead to a cost effective method for removing organic sulfur from coals. Moreover, the oils are environmentally safe; they will produce no noxious products and will improve burning qualities of the solid products. Preliminary experiments showed that IBC 104 coal catalyzes the formation of hydroperoxides in safflower oil and that more sulfur is extracted from the treated than untreated coal. During the first quarter the requirement of an added photosensitizer was eliminated, the catalytic effect of coal was confirmed, and the existence of a complex set of reactions was revealed. During this second quarter working with IBC-108 coal (2.3% organic S. 0.4% pyrite S), the effects of different ratios of oil:coal, different extraction solvents, and different temperatures were examined. A new pretreatment which combines alkali with linseed oil was discovered. Best organic sulfur removal is approximately 26% using alkali pretreatment combined with linseed oil at 1OO{degree}C. BTU loses can be kept to a minimum of 3% with proper use of solvents.

  4. Superclean coal-water slurry combustion testing in an oil-fired boiler

    SciTech Connect (OSTI)

    Miller, B.G.; Morrison, J.L.; Xie, Jiangyang; Walsh, P.M.; Schobert, H.H.; Scaroni, A.W.

    1991-10-01

    Pennsylvania State University is conducting a superclean coal-water slurry (SCCWS) program with the objective of determining the capability of effectively firing SCCWS in an industrial boiler designed for oil. Penn State has entered into a cooperative agreement with DOE to determine if SCCWS (a fuel containing coal with less that 3.0% ash and 0.9% sulfur) can effectively be burned in an oil-designed industrial boiler without adverse impact on boiler rating maintainability, reliability, and availability. The project will provide information on the design of new systems specifically configured to fire these clean coal-based fuels.

  5. Oil shale, tar sand, coal research advanced exploratory process technology, jointly sponsored research

    SciTech Connect (OSTI)

    Speight, J.G.

    1992-01-01

    Accomplishments for the past quarter are presented for the following five tasks: oil shale; tar sand; coal; advanced exploratory process technology; and jointly sponsored research. Oil shale research covers oil shale process studies. Tar sand research is on process development of Recycle Oil Pyrolysis and Extraction (ROPE) Process. Coal research covers: coal combustion; integrated coal processing concepts; and solid waste management. Advanced exploratory process technology includes: advanced process concepts;advanced mitigation concepts; and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO[sub 2] HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde Group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced oil recovery techniques; surface process study for oil recovery using a thermal extraction process; NMR analysis of samples from the ocean drilling program; in situ treatment of manufactured gas plant contaminated soils demonstration program; and solid state NMR analysis of naturally and artificially matured kerogens.

  6. Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    Progress made in five research programs is described. The subtasks in oil shale study include oil shale process studies and unconventional applications and markets for western oil shale.The tar sand study is on recycle oil pyrolysis and extraction (ROPE) process. Four tasks are described in coal research: underground coal gasification; coal combustion; integrated coal processing concepts; and sold waste management. Advanced exploratory process technology includes: advanced process concepts; advanced mitigation concepts; and oil and gas technology. Jointly sponsored research covers: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO[sub 2] HUFF-N-PUFF process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; shallow oil production using horizontal wells with enhanced oil recovery techniques; NMR analysis of sample from the ocean drilling program; and menu driven access to the WDEQ hydrologic data management system.

  7. Reactivity of North Bohemian coals in coprocessing of coal/oil mixtures

    SciTech Connect (OSTI)

    Sebor, G.; Cerny, J.; Maxa, D.; Blazek, J.; Sykorova, I.

    1995-12-01

    Autoclave experiments with North Bohemian coal were done in order to evaluate their reactivity in coprocessing with petroleum vacuum residue, Selected coals were comprehensively characterized by using a number of analytical methods. While the coals were of similar geological origin, some of their characteristics differed largely from one coal to another. Despite the differences in physical and chemical structure, the coals provided very similar yields of desired reaction products. The yields of a heavy non- distillable fraction and/or an insoluble solid residue were, under experimental conditions, largely affected by retrogressive reactions (coking). The insoluble solid fractions were examined microscopically under polarized light.

  8. Level: National Data; Row: End Uses within NAICS Codes; Column...

    U.S. Energy Information Administration (EIA) Indexed Site

    End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: Trillion Btu. ...

  9. Level: National Data; Row: End Uses within NAICS Codes; Column...

    Gasoline and Diesel Fuel Update (EIA)

    2 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Trillion Btu. Distillate Fuel ...

  10. Level: National Data; Row: End Uses within NAICS Codes; Column...

    Gasoline and Diesel Fuel Update (EIA)

    1 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. ...

  11. North American Industry Classification System (NAICS) Search Tool

    Broader source: Energy.gov [DOE]

    The North American Industry Classification System (NAICS) is the standard used by Federal statistical agencies in classifying business establishments for the purpose of collecting, analyzing, and...

  12. Level: National Data; Row: Employment Sizes within NAICS Codes...

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Consumption Ratios of Fuel, 2006; Level: National Data; Row: Employment Sizes within NAICS Codes; Column: Energy-Consumption Ratios; Unit: Varies. Consumption Consumption per ...

  13. Level: National Data; Row: Employment Sizes within NAICS Codes...

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Consumption Ratios of Fuel, 2010; Level: National Data; Row: Employment Sizes within NAICS Codes; Column: Energy-Consumption Ratios; Unit: Varies. Consumption Consumption per ...

  14. Level: National Data; Row: Values of Shipments within NAICS Codes...

    Gasoline and Diesel Fuel Update (EIA)

    3 Consumption Ratios of Fuel, 2006; Level: National Data; Row: Values of Shipments within NAICS Codes; Column: Energy-Consumption Ratios; Unit: Varies. Consumption Consumption per ...

  15. Level: National Data; Row: Values of Shipments within NAICS Codes...

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Consumption Ratios of Fuel, 2010; Level: National Data; Row: Values of Shipments within NAICS Codes; Column: Energy-Consumption Ratios; Unit: Varies. Consumption Consumption per ...

  16. Level: National Data; Row: NAICS Codes; Column: Usage within...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Technologies, 2010; Level: National Data; Row: NAICS Codes; Column: Usage within ... Estimate less than 0.5. WWithheld to avoid disclosing data for individual establishments. ...

  17. " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Number of Establishments by Usage of Cogeneration Technologies, 1998;" " Level: National Data; " " Row: NAICS Codes;" " Column: Usage within Cogeneration Technologies;" " Unit: Establishment Counts." ,,,"Establishments" " "," ",,"with Any"," Steam Turbines","Supplied","by Either","Conventional","Combustion","Turbines"," ","

  18. " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Number of Establishments by Usage of Cogeneration Technologies, 2002; " " Level: National Data; " " Row: NAICS Codes;" " Column: Usage within Cogeneration Technologies;" " Unit: Establishment Counts." " "," ",,," Steam Turbines Supplied by Either Conventional or Fluidized Bed Boilers",,,"Conventional Combusion Turbines with Heat Recovery",,,"Combined-Cycle Combusion Turbines",,,"Internal

  19. " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Number of Establishments by Usage of Cogeneration Technologies, 2006;" " Level: National Data; " " Row: NAICS Codes;" " Column: Usage within Cogeneration Technologies;" " Unit: Establishment Counts." ,,,"Establishments" ,,,"with Any"," Steam Turbines Supplied by Either Conventional or Fluidized Bed Boilers",,,"Conventional Combusion Turbines with Heat Recovery",,,"Combined-Cycle Combusion

  20. " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    9.1 Enclosed Floorspace and Number of Establishment Buildings, 2006;" " Level: National Data; " " Row: NAICS Codes;" " Column: Floorspace and Buildings;" " Unit: Floorspace Square Footage and Building Counts." ,,"Approximate",,,"Approximate","Average" ,,"Enclosed Floorspace",,"Average","Number","Number" ,,"of All Buildings",,"Enclosed Floorspace","of All

  1. " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    9.1 Enclosed Floorspace and Number of Establishment Buildings, 2010;" " Level: National Data; " " Row: NAICS Codes;" " Column: Floorspace and Buildings;" " Unit: Floorspace Square Footage and Building Counts." ,,"Approximate",,,"Approximate","Average" ,,"Enclosed Floorspace",,"Average","Number","Number" ,,"of All Buildings",,"Enclosed Floorspace","of All

  2. " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Number of Establishments by Usage of Cogeneration Technologies, 2010;" " Level: National Data; " " Row: NAICS Codes;" " Column: Usage within Cogeneration Technologies;" " Unit: Establishment Counts." ,,,"Establishments" ,,,"with Any"," Steam Turbines Supplied by Either Conventional or Fluidized Bed Boilers",,,"Conventional Combusion Turbines with Heat Recovery",,,"Combined-Cycle Combusion

  3. "Code(a)","End Use","Total","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Natural Gas(d)","NGL(e)","Coke and Breeze)","Other(f)"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Relative Standard Errors for Table 5.2;" " Unit: Percents." ,,,,,"Distillate" ,,,,,"Fuel Oil",,,"Coal" "NAICS",,,"Net","Residual","and",,"LPG and","(excluding Coal" "Code(a)","End Use","Total","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Natural Gas(d)","NGL(e)","Coke and Breeze)&

  4. "Code(a)","End Use","for Electricity(b)","Fuel Oil","Diesel Fuel(c)","Natural Gas(d)","NGL(e)","Coke and Breeze)"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Relative Standard Errors for Table 5.4;" " Unit: Percents." " "," ",," ","Distillate"," "," " " "," ",,,"Fuel Oil",,,"Coal" "NAICS"," ","Net Demand","Residual","and",,"LPG and","(excluding Coal" "Code(a)","End Use","for Electricity(b)","Fuel Oil","Diesel

  5. Superclean coal-water slurry combustion testing in an oil-fired boiler

    SciTech Connect (OSTI)

    Miller, B.G.; Pisupati, S.V.; Poe, R.L.; Morrison, J.L.; Xie, J.; Walsh, P.M.; Shamanna, S.; Schobert, H.H.; Scaroni, A.W.

    1992-10-13

    The Pennsylvania State University is conducting a superclean coal-water slurry (SCCWS) program for the United States Department of Energy (DOE) and the Commonwealth of Pennsylvania with the objective of determining the capability of effectively firing SCCWS in an industrial boiler designed for oil. Penn State has entered into a cooperative agreement with DOE to determine if SCCWS (a fuel containing coal with 3.0 wt.% ash and 0.9 wt.% sulfur) can effectively be burned in an oil-designed industrial boiler without adverse impact on boiler rating, maintainability, reliability, and availability. The project will provide information on the design of new systems specifically configured to fire these clean coal-based fuels. The project consists of four phases: (1) design, permitting, and test planning, (2) construction and start up, (3) demonstration and evaluation (1,000-hour demonstration), and (4) program expansion (additional 1,000 hours of testing). The boiler testing will determine if the SCCWS combustion characteristics, heat release rate, fouling and slagging behavior, corrosion and erosion limits, and fuel transport, storage, and handling characteristics can be accommodated in an oil-designed boiler system. In addition, the proof-of-concept demonstration will generate data to determine how the properties of SCCWS and its parent coal affect boiler performance. Economic factors associated with retrofitting and operating boilers will be identified to assess the viability of future oil-to-coal retrofits.

  6. Superclean coal-water slurry combustion testing in an oil-fired boiler

    SciTech Connect (OSTI)

    Miller, B.G.; Schobert, H.H.

    1990-09-28

    The Pennsylvania State University is conducting a superclean coal-water slurry (SCCWS) program with the objective of demonstrating the capability of effectively firing SCCWS in industrial boilers designed for oil. Penn State has entered into a cooperative agreement with DOE to determine if SCCWS (a fuel containing coal with less than 3.0% ash and 0.9% sulfur) can effectively be burned in oil-designed industrial boilers without adverse impact on boiler rating, maintainability, reliability and availability. The project will provide information on the design of new systems specifically configured to fire these clean coal-based fuels. The project consists of three phases: (1) design, permitting, and test planning, (2) construction and start up, and (3) demonstration and evaluation. The boiler testing will determine if the SCCWS combustion characteristics, heat release rate, fouling and slagging behavior, corrosion and erosion limits, and fuel transport, storage, and handling characteristics can be accommodated in an oil-designed boiler system. In addition, the proof-of-concept demonstration will generate data to determine how the properties of SCCWS and its parent coal affect boiler performance. Economic factors associated with retrofitting and operating boilers will be identified to assess the viability of future oil-to-coal retrofits. Progress is reported. 7 refs., 7 figs., 1 tab.

  7. Desulfurization of Illinois coals with hydroperoxides of vegetable oils and alkali. Technical report, September 1--November 30, 1995

    SciTech Connect (OSTI)

    Smith, G.V.; Gaston, R.D.; Song, R.; Cheng, J.; Shi, F.; Wang, Y.

    1995-12-31

    Organic sulfur is removed from coals by treatment with aqueous base, air, and vegetable oils with minimal loss of BTU. Such results were revealed during exploratory experiments on an ICCI funded project to remove organic sulfur from Illinois coals with hydroperoxides of vegetable oils. In fact, prewashing IBC-108 coal with dilute alkali prior to treating with linseed oil and air results in 26% removal of sulfur. This new method will be investigated by treating coals with alkali, impregnating coals with polyunsaturated oils, converting the oils to their hydroperoxides, and heating. Since these oils are relatively inexpensive and easily applied, this project could lead to a cost effective method for removing organic sulfur from coals. Moreover the oils are environmentally safe; they will produce no noxious products and will improve burning qualities of the solid products. During this first quarter the selection of base for pretreatment and extraction (Task 1) has been completed. NaOH is better than NH{sub 4}OH for the pretreatment and Na{sub 2}CO{sub 3} is better than NaOH for the oil extraction. About 40% of sulfur is removed from IBC-108 coal using 5% NaOH for pretreatment followed by linseed oil oxidation in air and Na{sub 2}CO{sub 3} extraction.

  8. POC-scale testing of oil agglomeration techniques and equipment for fine coal processing

    SciTech Connect (OSTI)

    W. Pawlak; K. Szymocha

    1998-04-01

    This report covers the technical progress achieved from January 1, 1998 to April 31, 1998 on the POC-Scale Testing of Oil Agglomeration Techniques and Equipment for Fine Coal Processing. Experimental work was carried out with two coal fines. One sample originated from pond (Drummond Pond Fines) while the second was pulverized Luscar Mine coal. Both samples were tested at the laboratory batch-scale while only Luscar Mine Coal was processed on the 250 kg/h continuous system. Significant progress was made on optimization of process conditions for Pond Fines. The test results showed that ash could be reduced by about 42% at combustible recovery exiting 94%. It was also found that pond fines required significantly longer conditioning time than freshly pulverized run of mine coal. Continuous bench-scale testing carried out with Luscar Mine coal included rod mill calibration, plant equipment and instrumentation check-up, and parametric studies. Compared with batch-scale tests, the continuous bench-scale process required more bridging oil to achieve similar process performance. During the current reporting period work has been commenced on the final engineering and preparation of design package of 3t/h POC-scale unit.

  9. Desulfurization of Illinois coals with hydroperoxides of vegetable oils and alkali, Quarterly report, March 1 - May 31, 1996

    SciTech Connect (OSTI)

    Smith, G.V.; Gaston, R.D.; Song, R.; Cheng, J.; Shi, F.; Wang, Y.

    1996-12-31

    Organic sulfur is removed from coals by treatment with aqueous base, air, and vegetable oils with minimal loss of BTU. Such results were revealed during exploratory experiments on an ICCI funded project to remove organic sulfur from Illinois coals with hydroperoxides of vegetable oils. In fact, prewashing IBC-108 coal with dilute alkali prior to treating with linseed oil and air results in 26% removal of sulfur. This new method is being investigated by treating coals with alkali, impregnating coals with polyunsaturated oils, converting the oils to their hydroperoxides, and heating. Since these oils are relatively inexpensive and easily applied, this project could lead to a cost effective method for removing organic sulfur from coals. During the first quarter the selection of base fro pretreatment and extraction was completed. NaOH is better than NH{sub 4}OH for the pretreatment and Na{sub 2}CO{sub 3} is better than NaOH for the oil extraction. During the second quarter the effectiveness of linseed oil and NaOH for sulfur removal from IBC-108 coal was further tested by pretreating the coal with two base concentrations at four different times followed by treatment with linseed oil at 125{degrees}C for three different times and finally washing with 5% Na{sub 2}CO{sub 3} and methanol. During this third quarter more experimental parameters were systematically varied in order to study the effectiveness of linseed oil and NaOH for sulfur removal from IBC- 108 coal.

  10. Superclean coal-water slurry combustion testing in an oil-fired boiler

    SciTech Connect (OSTI)

    Miller, B.G.; Poe, R.L.; Morrison, J.L.; Xie, Jianyang; Walsh, P.M.; Schobert, H.H.; Scaroni, A.W.

    1992-05-29

    The Pennsylvania State University is conducting a superclean coal-water slurry (SCCWS) program for the United States Department of Energy (DOE) and the Commonwealth of Pennsylvania with the objective of determining the capability of effectively firing SCCWS in an industrial boiler designed for oil. Penn State has entered into a cooperative agreement with DOE to determine if SCCWS (a fuel containing coal with less than 3.0 wt.% ash and 0.9 wt.% sulfur) can effectively be burned in an oil-designed industrial boiler without adverse impact on boiler rating, maintainability, reliability, and availability. The project will provide information on the design of new systems specifically configured to fire these clean coal-based fuels.

  11. "Code(a)","End Use","Electricity(b)","Fuel Oil","Diesel Fuel(c)"," Gas(d)","NGL(e)","Coke and Breeze)"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Relative Standard Errors for Table 5.3;" " Unit: Percents." " "," " " "," ",," ","Distillate"," "," " " "," ","Net Demand",,"Fuel Oil",,,"Coal" "NAICS"," ","for ","Residual","and","Natural","LPG and","(excluding Coal" "Code(a)","End

  12. Superclean coal-water slurry combustion testing in an oil-fired boiler

    SciTech Connect (OSTI)

    Miller, B.G.; Pisupati, S.V.; Poe, R.L.; Morrison, J.L.; Xie, J.; Walsh, P.M.; Wincek, R.T.; Clark, D.A.; Scaroni, A.W.

    1993-04-21

    The Pennsylvania State University is conducting a superclean coal-water slurry (SCCWS) program for the United States Department of Energy (DOE) and the Commonwealth of Pennsylvania with the objective of determining the capability of effectively firing SCCWS in an industrial boiler designed for heavy fuel oil. Penn State has entered into a cooperative agreement with DOE to determine if SCCWS (a fuel containing coal with 3.0 wt.% ash and 0.9 wt.% sulfur) can effectively be burned in a heavy fuel oil-designed industrial boiler without adverse impact on boiler rating, maintainability, reliability, and availability. The project will provide information on the design of new systems specifically configured to fire these clean coal-based fuels. The project consists of four phases: (1) design, permitting, and test planning, (2) construction and start up, (3) demonstration and evaluation (1,000-hour demonstration), and (4) program expansion (additional 1,000 hours of testing). The boiler testing wig determine if the SCCWS combustion characteristics, heat release rate, fouling and slagging behavior, corrosion and erosion limits, and fuel transport, storage, and handling characteristics can be accommodated in an oil-designed boiler system. In addition, the proof-of-concept demonstration will generate data to determine how the properties of SCCWS and its parent coal affect boiler performance. Economic factors associated with retrofitting boilers will be identified

  13. " Row: NAICS Codes; Column: Energy Sources...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"Total United States" ,"RSE Column ... 324,"Petroleum and Coal Products ... "produced at refineries or natural gas ...

  14. " Row: NAICS Codes (3-Digit Only); Column...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"Total United States" ,"RSE Column ... 324,"Petroleum and Coal Products ... "produced at refineries or natural gas ...

  15. POC-SCALE TESTING OF OIL AGGLOMERATION TECHNIQUES AND EQUIPMENT FOR FINE COAL PROCESSING

    SciTech Connect (OSTI)

    1998-01-01

    This report covers the technical progress achieved from October 1, 1997 to December 31, 1997 on the POC-Scale Testing of Oil Agglomeration Techniques and Equipment for Fine Coal Processing project. Experimental test procedures and the results related to the processing of coal fines originating from process streams generated at the Shoal Creek Mine preparation plant, owned and operated by the Drummond Company Inc. of Alabama, are described. Two samples of coal fines, namely Cyclone Overflow and Pond Fines were investigated. The batch test results showed that by applying the Aglofloat technology a significant ash removal might be achieved at a very high combustible matter recovery: · for the Cyclone Overflow sample the ash reduction was in the range 50 to 55% at combustible matter recovery about 98% · for the Pond Fines sample the ash reduction was up to 48% at combustible matter recovery up to 85%. Additional tests were carried out with the Alberta origin Luscar Mine coal, which will be used for the parametric studies of agglomeration equipment at the 250 kg/h pilot plant. The Luscar coal is very similar to the Mary Lee Coal Group (processed at Shoal Creek Mine preparation plant) in terms of rank and chemical composition.

  16. Evaluation of dense-phase ultrafine coal (DUC) as a fuel alternative for oil- and gas-designed boilers and heaters. Final report

    SciTech Connect (OSTI)

    Not Available

    1986-12-01

    Utility and industrial firms currently using oil- and gas-fired boilers have an interest in substitution of coal for oil and gas as the primary boiler fuel. This interest stems from coal`s two main advantages over oil and gas-lower cost and security of supply. Recent efforts in the area of coal conversion have been directed to converting oil- and gas- fired boilers which were originally designed for coal-firing or were designed with some coal-firing capability. Boilers designed exclusively for oil- or gas-firing have not been considered viable candidates for coal conversion because they generally require a significant capacity derating and extensive and costly modifications. As a result, conversion of boilers in this class to coal-firing has generally been considered unattractive. Renewed interest in the prospects for converting boilers designed exclusively for oil- and gas-firing to coal firing has centered around the concept of using ``ultra fine`` coal as opposed to ``conventional grind`` pulverized coal. The main distinction being the finer particle size to which the former is ground. This fuel type may have characteristics which ameliorate many of the boiler problems normally associated with pulverized coal-firing. The overall concept for ultrafine coal utilization is based on a regional large preparation plant with distribution of a ready to fire fuel directly to many small users. This differs from normal practice in which final coal sizing is performed in pulverizers at the user`s site.

  17. Level: National Data; Row: End Uses within NAICS Codes; Column...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2010 Table 5.3 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: ...

  18. Level: National and Regional Data; Row: NAICS Codes; Column...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Next MECS will be fielded in 2015 Table 6.1 Consumption Ratios of Fuel, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy-Consumption Ratios; Unit: Varies. ...

  19. Level: National and Regional Data; Row: NAICS Codes; Column...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Next MECS will be conducted in 2010 Table 6.1 Consumption Ratios of Fuel, 2006 Level: National and Regional Data; Row: NAICS Codes; Column: Energy-Consumption Ratios Unit: Varies. ...

  20. Heavy oil and coal conversion via the Aurabon process

    SciTech Connect (OSTI)

    Luebke, C.P.; Humbach, M.J.; Thompson, G.J.; Gatsis, J.G.

    1986-01-01

    Although time estimates vary, all forecasts point to a reduction in the availability of light crude oils. As the light crude supplies diminish, the role of resid upgrading in the refinery flow scheme must increase to allow the refinery the ability to convert heavier crudes into transportation fuels.

  1. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2.4 Number of Establishments by Nonfuel (Feedstock) Use of Combustible Energy, 2006;" " Level: National Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Establishment Counts." " "," "," "," "," "," "," "," "," "," ",," " " "," ","Any Combustible" "NAICS","

  2. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2.4 Number of Establishments by Nonfuel (Feedstock) Use of Combustible Energy, 2010;" " Level: National Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Establishment Counts." " "," "," "," "," "," "," "," "," "," ",," " " "," ","Any Combustible" "NAICS","

  3. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    3.4 Number of Establishments by Fuel Consumption, 2010;" " Level: National Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Establishment Counts." " "," "," ",," "," "," "," "," "," "," ",," " " "," ","Any" "NAICS","

  4. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    4.4 Number of Establishments by Offsite-Produced Fuel Consumption, 2010;" " Level: National Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Establishment Counts." " "," "," ",," "," "," "," "," "," "," ",," " " "," ","Any" "NAICS","

  5. Method for controlling boiling point distribution of coal liquefaction oil product

    DOE Patents [OSTI]

    Anderson, Raymond P.; Schmalzer, David K.; Wright, Charles H.

    1982-12-21

    The relative ratio of heavy distillate to light distillate produced in a coal liquefaction process is continuously controlled by automatically and continuously controlling the ratio of heavy distillate to light distillate in a liquid solvent used to form the feed slurry to the coal liquefaction zone, and varying the weight ratio of heavy distillate to light distillate in the liquid solvent inversely with respect to the desired weight ratio of heavy distillate to light distillate in the distillate fuel oil product. The concentration of light distillate and heavy distillate in the liquid solvent is controlled by recycling predetermined amounts of light distillate and heavy distillate for admixture with feed coal to the process in accordance with the foregoing relationships.

  6. Method for controlling boiling point distribution of coal liquefaction oil product

    DOE Patents [OSTI]

    Anderson, R.P.; Schmalzer, D.K.; Wright, C.H.

    1982-12-21

    The relative ratio of heavy distillate to light distillate produced in a coal liquefaction process is continuously controlled by automatically and continuously controlling the ratio of heavy distillate to light distillate in a liquid solvent used to form the feed slurry to the coal liquefaction zone, and varying the weight ratio of heavy distillate to light distillate in the liquid solvent inversely with respect to the desired weight ratio of heavy distillate to light distillate in the distillate fuel oil product. The concentration of light distillate and heavy distillate in the liquid solvent is controlled by recycling predetermined amounts of light distillate and heavy distillate for admixture with feed coal to the process in accordance with the foregoing relationships. 3 figs.

  7. Oil-fired cycling station converted to base-loaded, coal-burning operation

    SciTech Connect (OSTI)

    Hunt, J.; Steinbach, P.

    1982-04-01

    The Baltimore Gas and Electric Company has been able to modify its oil-fired Brandon Shores plant while under construction to a base-loaded plant able to burn either oil or coal. Utility planners had the foresight prior to the 1973 embargo to see advantages in a dual-fuel capability. Brandon Shores has experienced the same financing and fluctuating load problems as other projects, but it has evolved into a facility suited for the 1980s and 90s. The original plan included space to handle coal and wastes as well as specifying dual-fuel equipment throughout to minimize future modifications. During one construction delay, the utility initiated a preventative-maintenance program comparable to that of a nuclear plant that has been continued. Extensive environmental planning and interaction with the public have avoided other costly delays. (DCK)

  8. Desulfurization of Illinois coals with hydroperoxides of vegetable oils and alkali. Final technical report, September 1, 1995--August 31, 1996

    SciTech Connect (OSTI)

    Smith, G.V.; Gaston, R.D.; Song, Ruozhi

    1997-05-01

    The goal of this project is to develop an inexpensive method to remove organic sulfur from pyrite-free and mineral-free coal using base, air, and readily available farm products. This is accomplished by treating coals with impregnating coals with polyunsaturated offs, converting the oils to their hydroperoxides, and heating. Since these oils are relatively inexpensive and easily applied, this project could lead to a cost effective method for removing organic sulfur from coals. Moreover, the oils are environmentally safe; they produce no noxious products and improve burning qualities of the solid products. IBC-108 coal, (contains only 0.4% pyrite and 2.7% organic sulfur) was first treated with Na{sub 4}OH at two different concentrations and four different times, and with NH{sub 4}OH at two different concentrations and two different temperatures. Pretreating IBC-108 coal with bases removes 13% to 23% of the sulfur, and NaOH is a better treatment than NH{sub 4}OH in most of the experiments. Higher temperatures, higher base concentrations, and longer treatment times remove more sulfur. Na{sub 2}CO{sub 3} is more effective than NaOH for oil extraction after the oil treatment. To test for effectiveness of sulfur removal, eight coal samples were treated with NaOH (two concentrations at four different times) were further treated with linseed oil at three temperatures, four different times, and two oil to coal ratios. The combination of NaOH pretreatment, then oil treatment, followed by Na{sub 2}CO{sub 3} extraction, removes 23% to 50% of the sulfur. The best result is achieved by pretreating with 5% NaOH for 20 hr (23% sulfur removal) followed by oil treatment at 100{degrees}C for 5 hr with a 1:1 oil to coal ratio (50% sulfur removal in total). More sulfur is removed with a 1:1 oil to coal ratio than a 1:10 ratio under most conditions.

  9. " Row: NAICS Codes (3-Digit Only); Column...

    U.S. Energy Information Administration (EIA) Indexed Site

    Btu)","Factors" ,,"Total United States" ,"RSE Column ... 324,"Petroleum and Coal ... "produced at refineries or natural gas ...

  10. " Row: NAICS Codes (3-Digit Only); Column...

    U.S. Energy Information Administration (EIA) Indexed Site

    Btu)","Factors" ,,"Total United States" ,"RSE Column ... 324,"Petroleum and Coal Products ... "produced at refineries or natural gas ...

  11. Manufacturing Energy and Carbon Footprint- Sector: Iron and Steel (NAICS 3311, 3312), October 2012 (MECS 2006)

    Office of Energy Efficiency and Renewable Energy (EERE)

    Manufacturing Energy and Carbon Footprint for Iron and Steel Sector (NAICS 3311, 3312) with Total Energy Input

  12. Filtering coal-derived oil through a filter media precoated with particles partially solubilized by said oil

    DOE Patents [OSTI]

    Rodgers, Billy R.; Edwards, Michael S.

    1977-01-01

    Solids such as char, ash, and refractory organic compounds are removed from coal-derived liquids from coal liquefaction processes by the pressure precoat filtration method using particles of 85-350 mesh material selected from the group of bituminous coal, anthracite coal, lignite, and devolatilized coals as precoat materials and as body feed to the unfiltered coal-derived liquid.

  13. Cracking of simulated oil refinery off-gas over a coal char, petroleum coke, and quartz

    SciTech Connect (OSTI)

    Yuan Zhang; Jin-hu Wu; Dong-ke Zhang

    2008-03-15

    The cracking of oil refinery off-gas, simulated with a gas mixture containing methane (51%), ethylene (21.4%), ethane (21.1%), and propane (6.5%), over a coal char, petroleum coke, and quartz, respectively, has been studied in a fixed bed reactor. The experiments were performed at temperatures between 850 and 1000{sup o}C and at atmospheric pressure. The results show that the conversions of all species considered increased with increasing temperature. Ethane and propane completely decomposed over all three bed materials in the temperature range investigated. However, the higher initial conversion rates of methane and ethylene cracking at all temperatures were observed only over the coal char and not on the petroleum coke and quartz, indicating a significant catalytic effect of the coal char on methane and ethylene cracking. Methane and ethylene conversions decreased with reaction time due to deactivation of the coal char by carbon deposition on the char surface and, in the later stage of a cracking experiment, became negative, suggesting that methane and ethylene had been formed during the cracking of ethane and propane. 16 refs., 13 figs., 2 tabs.

  14. " Row: NAICS Codes; Column: Energy Sources...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"Total United States" ,"RSE Column ... 324,"Petroleum and Coal Products",3622,126,72,23,1006,39,"*",0,2355,5.9 324110," Petroleum Refineries",3477,11...

  15. " Row: NAICS Codes, Value of Shipments...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"Total United States" 311,"Food",4,"*",3,"*","*","... 324,"Petroleum and Coal Products",4,1,3,"*",1,"*",0,"*",0,"*" 324110," Petroleum Refineries",2,"*",2,"*...

  16. " Row: NAICS Codes; Column: Energy Sources...

    U.S. Energy Information Administration (EIA) Indexed Site

    and",,"Coke"," ","Row" "Code(a)","Subsector and ... 324,"Petroleum and Coal ... Division, Form EIA-810, 'Monthly Refinery Report' for 2002.

  17. " Row: NAICS Codes; Column: Energy Sources...

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Sources","Row" "Code(a)","Subsector and ... 324,"Petroleum and Coal ... Division, Form EIA-810, 'Monthly Refinery Report' for 2002.

  18. Coal

    Broader source: Energy.gov [DOE]

    Coal is the largest domestically produced source of energy in America and is used to generate a significant amount of our nation’s electricity.

  19. " Row: Employment Sizes within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Consumption Ratios of Fuel, 1998;" " Level: National Data; " " Row: Employment Sizes within NAICS Codes;" " Column: Energy-Consumption Ratios;" " Unit: Varies." " "," ",,,"Consumption"," " " "," ",,"Consumption","per Dollar" " "," ","Consumption","per Dollar","of Value","RSE" "NAICS",,"per

  20. " Row: Employment Sizes within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Consumption Ratios of Fuel, 2002;" " Level: National Data; " " Row: Employment Sizes within NAICS Codes;" " Column: Energy-Consumption Ratios;" " Unit: Varies." " "," ",,,"Consumption"," " " "," ",,"Consumption","per Dollar" " "," ","Consumption","per Dollar","of Value","RSE" "NAICS",,"per

  1. " Row: Employment Sizes within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Consumption Ratios of Fuel, 2006;" " Level: National Data; " " Row: Employment Sizes within NAICS Codes;" " Column: Energy-Consumption Ratios;" " Unit: Varies." ,,,,"Consumption" ,,,"Consumption","per Dollar" ,,"Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic

  2. " Row: Employment Sizes within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Consumption Ratios of Fuel, 2010;" " Level: National Data; " " Row: Employment Sizes within NAICS Codes;" " Column: Energy-Consumption Ratios;" " Unit: Varies." ,,,,"Consumption" ,,,"Consumption","per Dollar" ,,"Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic

  3. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    C3.1. Number of Establishments by Fuel Consumption, 1998;" " Level: National Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Establishment Counts." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ","Any",,,,,,,,,"RSE" "NAICS","

  4. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," "," "," "," "," " " "," " "NAICS"," "," ","Net","Residual","Distillate",,"LPG and",,"Coke"," "

  5. Development of a gas-promoted oil agglomeration process: Air-promoted oil agglomeration of moderately hydrophobic coals. 2: Effect of air dosage in a model mixing system

    SciTech Connect (OSTI)

    Drzymala, J.; Wheelock, T.D.

    1996-07-01

    In a selective oil agglomeration process for cleaning coal, fine-size particles are suspended in water and treated with a water-immiscible hydrocarbon which can range from pentane to heavy fuel oil. Vigorous agitation is applied to disperse the oil and to produce frequent contacts between oil-coated particles. In Part 1 of this series of papers, it was shown that a definite amount of air had to be present in a laboratory mixing unit which produced a moderate shear rate in order to form compact, spherical agglomerates in an aqueous suspension of moderately hydrophobic coal using heptane or hexadecane as an agglomerate. In this paper, the effects of different amounts of air including dissolved air are discussed. The results indicate that a small amount of air will trigger the process of agglomeration, and even the air dissolved in water under equilibrium conditions at room temperature and pressure is sufficient to promote agglomeration provided it is released from solution.

  6. " Row: NAICS Codes; Column: Energy-Consumption...

    U.S. Energy Information Administration (EIA) Indexed Site

    Btu)" ,,"Total United States" 311,"Food",871.7,4.3,1.8 ... 324,"Petroleum and Coal Products",34542.7,35.1,5.3 324110," Petroleum Refineries",50778.2,39.5,5....

  7. " Row: NAICS Codes; Column: Energy-Consumption...

    U.S. Energy Information Administration (EIA) Indexed Site

    Btu)","Factors" ,,"Total United States" ,"RSE Column ... 324,"Petroleum and Coal Products",34347.3,116.3,26.7,3.3 324110," Petroleum Refineries",55014,151.2,...

  8. " Row: NAICS Codes; Column: Energy Sources...

    U.S. Energy Information Administration (EIA) Indexed Site

    Btu)","Factors" ,,"Total United States" ,"RSE Column ... 324,"Petroleum and Coal Products",3622,37059,11,4,980,10,"*",0,2355,5.9 324110," Petroleum Refineries",3477,34...

  9. " Row: NAICS Codes; Column: Energy Sources...

    U.S. Energy Information Administration (EIA) Indexed Site

    Btu)" ,,"Total United States" 311,"Food",1108,75652,2,4,56... 324,"Petroleum and Coal Products",1766,48788,1,2,956,"*",6,2,416 324110," Petroleum Refineries",1374,461...

  10. " Row: NAICS Codes; Column: Energy Sources...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Mills",21,"R",1161,"R","*","*",10,,"*",0,0,4 323,"Printing and Related Support",13,,1947,,"*","*",5,,"*",0,0,"*" 324,"Petroleum and Coal Products",249,,3868,"R",2,1,45,,2,"*","...

  11. " Row: NAICS Codes; Column: Energy Sources...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Mills",21,"R",1159,"R","*","*",10,,"*",0,0,4 323,"Printing and Related Support",13,,1947,,"*","*",5,,"*",0,0,"*" 324,"Petroleum and Coal Products",89,,4095,"R",1,1,45,,"*","*",...

  12. Co-Firing Oil Shale with Coal and Other Fuels for Improved Efficiency and Multi-Pollutant Control

    SciTech Connect (OSTI)

    Robert A. Carrington; William C. Hecker; Reed Clayson

    2008-06-01

    Oil shale is an abundant, undeveloped natural resource which has natural sorbent properties, and its ash has natural cementitious properties. Oil shale may be blended with coal, biomass, municipal wastes, waste tires, or other waste feedstock materials to provide the joint benefit of adding energy content while adsorbing and removing sulfur, halides, and volatile metal pollutants, and while also reducing nitrogen oxide pollutants. Oil shale depolymerization-pyrolysis-devolatilization and sorption scoping studies indicate oil shale particle sorption rates and sorption capacity can be comparable to limestone sorbents for capture of SO2 and SO3. Additionally, kerogen released from the shale was shown to have the potential to reduce NOx emissions through the well established “reburning” chemistry similar to natural gas, fuel oil, and micronized coal. Productive mercury adsorption is also possible by the oil shale particles as a result of residual fixed-carbon and other observed mercury capture sorbent properties. Sorption properties were found to be a function particle heating rate, peak particle temperature, residence time, and gas-phase stoichmetry. High surface area sorbents with high calcium reactivity and with some adsorbent fixed/activated carbon can be produced in the corresponding reaction zones that exist in a standard pulverized-coal or in a fluidized-bed combustor.

  13. Table 10.24 Reasons that Made Distillate Fuel Oil Unswitchable, 2006;

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Reasons that Made Distillate Fuel Oil Unswitchable, 2006; Level: National Data; Row: NAICS Codes; Column: Reasons that Made Quantity Unswitchable; Unit: Million barrels. Total Amount of Total Amount of Equipment is Not Switching Unavailable Long-Term Unavailable Combinations of NAICS Distillate Fuel Oil Unswitchable Distillate Capable of Using Adversely Affects Alternative Environmenta Contract Storage for Another Columns F, G, Code(a) Subsector and Industry Consumed as a Fue Fuel Oil Fuel Use

  14. Table 10.25 Reasons that Made Residual Fuel Oil Unswitchable, 2006;

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Reasons that Made Residual Fuel Oil Unswitchable, 2006; Level: National Data; Row: NAICS Codes; Column: Reasons that Made Quantity Unswitchable; Unit: Million barrels. Total Amount of Total Amount of Equipment is Not Switching Unavailable Long-Term Unavailable Combinations of NAICS Residual Fuel Oil Unswitchable ResiduaCapable of Using Adversely Affects Alternative Environmental Contract Storage for Another Columns F, G, Code(a) Subsector and Industry Consumed as a Fue Fuel Oil Fuel Use

  15. "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","Breeze","Other(g)","Produced Onsite(h)"

    U.S. Energy Information Administration (EIA) Indexed Site

    1.4 Relative Standard Errors for Table 1.4;" " Unit: Percents." ,,"Any",,,,,,,,,"Shipments" "NAICS",,"Energy","Net","Residual","Distillate",,"LPG and",,"Coke and",,"of Energy Sources" "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural

  16. Superclean coal-water slurry combustion testing in an oil-fired boiler. Semiannual technical progress report, February 15, 1991--August 15, 1991

    SciTech Connect (OSTI)

    Miller, B.G.; Morrison, J.L.; Xie, Jiangyang; Walsh, P.M.; Schobert, H.H.; Scaroni, A.W.

    1991-10-01

    Pennsylvania State University is conducting a superclean coal-water slurry (SCCWS) program with the objective of determining the capability of effectively firing SCCWS in an industrial boiler designed for oil. Penn State has entered into a cooperative agreement with DOE to determine if SCCWS (a fuel containing coal with less that 3.0% ash and 0.9% sulfur) can effectively be burned in an oil-designed industrial boiler without adverse impact on boiler rating maintainability, reliability, and availability. The project will provide information on the design of new systems specifically configured to fire these clean coal-based fuels.

  17. Reuse of Produced Water from CO2 Enhanced Oil Recovery, Coal-Bed Methane, and Mine Pool Water by Coal-Based Power Plants

    SciTech Connect (OSTI)

    Knutson, Chad; Dastgheib, Seyed A.; Yang, Yaning; Ashraf, Ali; Duckworth, Cole; Sinata, Priscilla; Sugiyono, Ivan; Shannon, Mark A.; Werth, Charles J.

    2012-07-01

    Power generation in the Illinois Basin is expected to increase by as much as 30% by the year 2030, and this would increase the cooling water consumption in the region by approximately 40%. This project investigated the potential use of produced water from CO2 enhanced oil recovery (CO2-EOR) operations; coal-bed methane (CBM) recovery; and active and abandoned underground coal mines for power plant cooling in the Illinois Basin. Specific objectives of this project were: (1) to characterize the quantity, quality, and geographic distribution of produced water in the Illinois Basin; (2) to evaluate treatment options so that produced water may be used beneficially at power plants; and (3) to perform a techno-economic analysis of the treatment and transportation of produced water to thermoelectric power plants in the Illinois Basin. Current produced water availability within the basin is not large, but potential flow rates up to 257 million liters per day (68 million gallons per day (MGD)) are possible if CO2-enhanced oil recovery and coal bed methane recovery are implemented on a large scale. Produced water samples taken during the project tend to have dissolved solids concentrations between 10 and 100 g/L, and water from coal beds tends to have lower TDS values than water from oil fields. Current pretreatment and desalination technologies including filtration, adsorption, reverse osmosis (RO), and distillation can be used to treat produced water to a high quality level, with estimated costs ranging from $2.6 to $10.5 per cubic meter ($10 to $40 per 1000 gallons). Because of the distances between produced water sources and power plants, transportation costs tend to be greater than treatment costs. An optimization algorithm was developed to determine the lowest cost pipe network connecting sources and sinks. Total water costs increased with flow rate up to 26 million liters per day (7 MGD), and the range was from $4 to $16 per cubic meter

  18. Oil shale, tar sand, coal research advanced exploratory process technology, jointly sponsored research. Quarterly technical progress report, October--December 1992

    SciTech Connect (OSTI)

    Speight, J.G.

    1992-12-31

    Accomplishments for the past quarter are presented for the following five tasks: oil shale; tar sand; coal; advanced exploratory process technology; and jointly sponsored research. Oil shale research covers oil shale process studies. Tar sand research is on process development of Recycle Oil Pyrolysis and Extraction (ROPE) Process. Coal research covers: coal combustion; integrated coal processing concepts; and solid waste management. Advanced exploratory process technology includes: advanced process concepts;advanced mitigation concepts; and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO{sub 2} HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde Group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced oil recovery techniques; surface process study for oil recovery using a thermal extraction process; NMR analysis of samples from the ocean drilling program; in situ treatment of manufactured gas plant contaminated soils demonstration program; and solid state NMR analysis of naturally and artificially matured kerogens.

  19. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Quantity of Purchased Energy Sources, 2006;" " Level: National and Regional Data;" " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," " " "," ",,,,,,,,"Coke" " "," "," ",,"Residual","Distillate","Natural

  20. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," " " "," ",,,,,,,,"Coke" " "," "," ","Net","Residual","Distillate","Natural

  1. Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research. Quarterly technical progress report, July--September 1992

    SciTech Connect (OSTI)

    Not Available

    1992-12-31

    Progress made in five research programs is described. The subtasks in oil shale study include oil shale process studies and unconventional applications and markets for western oil shale.The tar sand study is on recycle oil pyrolysis and extraction (ROPE) process. Four tasks are described in coal research: underground coal gasification; coal combustion; integrated coal processing concepts; and sold waste management. Advanced exploratory process technology includes: advanced process concepts; advanced mitigation concepts; and oil and gas technology. Jointly sponsored research covers: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO{sub 2} HUFF-N-PUFF process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; shallow oil production using horizontal wells with enhanced oil recovery techniques; NMR analysis of sample from the ocean drilling program; and menu driven access to the WDEQ hydrologic data management system.

  2. nemsoverview_928.vp

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (NAICS 2121) Glass and Glass Products (NAICS 3272) Oil and Gas Extraction (NAICS 211) Hydraulic Cement (NAICS 32731) Metal and Other Nonmetallic Mining (NAICS 2122-2123) Blast...

  3. International perspectives on coal preparation

    SciTech Connect (OSTI)

    1997-12-31

    The report consists of the vugraphs from the presentations which covered the following topics: Summaries of the US Department of Energy`s coal preparation research programs; Preparation trends in Russia; South African coal preparation developments; Trends in hard coal preparation in Germany; Application of coal preparation technology to oil sands extraction; Developments in coal preparation in China; and Coal preparation in Australia.

  4. JV Task 5 - Evaluation of Residual Oil Fly Ash As A Mercury Sorbent For Coal Combustion Flue Gas

    SciTech Connect (OSTI)

    Robert Patton

    2006-12-31

    The mercury adsorption capacity of a residual oil fly ash (ROFA) sample collected form Florida Power and Light Company's Port Everglades Power Plant was evaluated using a bituminous coal combustion flue gas simulator and fixed-bed testing protocol. A size-segregated (>38 {micro}g) fraction of ROFA was ground to a fine powder and brominated to potentially enhance mercury capture. The ROFA and brominated-ROFA were ineffective in capturing or oxidizing the Hg{sup 0} present in a simulated bituminous coal combustion flue gas. In contrast, a commercially available DARCO{reg_sign} FGD initially adsorbed Hg{sup 0} for about an hour and then catalyzed Hg{sup 0} oxidation to produce Hg{sup 2+}. Apparently, the unburned carbon in ROFA needs to be more rigorously activated in order for it to effectively capture and/or oxidize Hg{sup 0}.

  5. Low-Btu coal-gasification-process design report for Combustion Engineering/Gulf States Utilities coal-gasification demonstration plant. [Natural gas or No. 2 fuel oil to natural gas or No. 2 fuel oil or low Btu gas

    SciTech Connect (OSTI)

    Andrus, H E; Rebula, E; Thibeault, P R; Koucky, R W

    1982-06-01

    This report describes a coal gasification demonstration plant that was designed to retrofit an existing steam boiler. The design uses Combustion Engineering's air blown, atmospheric pressure, entrained flow coal gasification process to produce low-Btu gas and steam for Gulf States Utilities Nelson No. 3 boiler which is rated at a nominal 150 MW of electrical power. Following the retrofit, the boiler, originally designed to fire natural gas or No. 2 oil, will be able to achieve full load power output on natural gas, No. 2 oil, or low-Btu gas. The gasifier and the boiler are integrated, in that the steam generated in the gasifier is combined with steam from the boiler to produce full load. The original contract called for a complete process and mechanical design of the gasification plant. However, the contract was curtailed after the process design was completed, but before the mechanical design was started. Based on the well defined process, but limited mechanical design, a preliminary cost estimate for the installation was completed.

  6. Superclean coal-water slurry combustion testing in an oil-fired boiler. Semiannual technical progress report, February 15, 1992--August 15, 1992

    SciTech Connect (OSTI)

    Miller, B.G.; Pisupati, S.V.; Poe, R.L.; Morrison, J.L.; Xie, J.; Walsh, P.M.; Shamanna, S.; Schobert, H.H.; Scaroni, A.W.

    1992-10-13

    The Pennsylvania State University is conducting a superclean coal-water slurry (SCCWS) program for the United States Department of Energy (DOE) and the Commonwealth of Pennsylvania with the objective of determining the capability of effectively firing SCCWS in an industrial boiler designed for oil. Penn State has entered into a cooperative agreement with DOE to determine if SCCWS (a fuel containing coal with 3.0 wt.% ash and 0.9 wt.% sulfur) can effectively be burned in an oil-designed industrial boiler without adverse impact on boiler rating, maintainability, reliability, and availability. The project will provide information on the design of new systems specifically configured to fire these clean coal-based fuels. The project consists of four phases: (1) design, permitting, and test planning, (2) construction and start up, (3) demonstration and evaluation (1,000-hour demonstration), and (4) program expansion (additional 1,000 hours of testing). The boiler testing will determine if the SCCWS combustion characteristics, heat release rate, fouling and slagging behavior, corrosion and erosion limits, and fuel transport, storage, and handling characteristics can be accommodated in an oil-designed boiler system. In addition, the proof-of-concept demonstration will generate data to determine how the properties of SCCWS and its parent coal affect boiler performance. Economic factors associated with retrofitting and operating boilers will be identified to assess the viability of future oil-to-coal retrofits.

  7. DOE - Fossil Energy: Introduction to Coal Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Introduction An Energy Lesson Cleaning Up Coal COAL is our most abundant fossil fuel. The United States has more coal than the rest of the world has oil. There is still enough coal ...

  8. " Row: Energy-Management Activities within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Number of Establishments by Participation in Energy-Management Activity, 2002;" " Level: National Data; " " Row: Energy-Management Activities within NAICS Codes;" " Column: Participation and Source of Financial Support for Activity;" " Unit: Establishment Counts." " "," "," ",,,,," " " "," ",,," Source of Financial Support for Activity",,,"RSE" "NAICS","

  9. " Row: General Energy-Management Activities within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Number of Establishments by Participation in General Energy-Management Activities, 2006;" " Level: National Data; " " Row: General Energy-Management Activities within NAICS Codes;" " Column: Participation and Source of Assistance;" " Unit: Establishment Counts." ,,,," Source of Assistance" "NAICS Code(a)","Energy-Management Activity","No

  10. " Row: NAICS Codes; Column: Energy Sources and Shipments;"

    U.S. Energy Information Administration (EIA) Indexed Site

    1.4 Number of Establishments by First Use of Energy for All Purposes (Fuel and Nonfuel), 2006;" " Level: National Data; " " Row: NAICS Codes; Column: Energy Sources and Shipments;" " Unit: Establishment Counts." ,,"Any",,,,,,,,,"Shipments" "NAICS",,"Energy","Net","Residual","Distillate",,"LPG and",,"Coke and",,"of Energy Sources"

  11. " Row: NAICS Codes; Column: Energy Sources and Shipments;"

    U.S. Energy Information Administration (EIA) Indexed Site

    .4 Number of Establishments by First Use of Energy for All Purposes (Fuel and Nonfuel), 2010;" " Level: National Data; " " Row: NAICS Codes; Column: Energy Sources and Shipments;" " Unit: Establishment Counts." ,,"Any",,,,,,,,,"Shipments" "NAICS",,"Energy","Net","Residual","Distillate",,"LPG and",,"Coke and",,"of Energy Sources"

  12. " Row: Specific Energy-Management Activities within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Number of Establishments by Participation in Specific Energy-Management Activities, 2006;" " Level: National Data; " " Row: Specific Energy-Management Activities within NAICS Codes;" " Column: Participation;" " Unit: Establishment Counts." "NAICS Code(a)","Energy-Management Activity","No Participation","Participation(b)","Don't Know","Not Applicable" ,,"Total United States" "

  13. " Row: General Energy-Management Activities within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Number of Establishments by Participation in General Energy-Management Activities, 2010;" " Level: National Data; " " Row: General Energy-Management Activities within NAICS Codes;" " Column: Participation and Source of Assistance;" " Unit: Establishment Counts." ,,,," Source of Assistance" "NAICS Code(a)","Energy-Management Activity","No

  14. Level: National Data; Row: General Energy-Management Activities within NAICS Codes;

    U.S. Energy Information Administration (EIA) Indexed Site

    Next MECS will be fielded in 2015 Table 8.1 Number of Establishments by Participation in General Energy-Management Activities, 2010; Level: National Data; Row: General Energy-Management Activities within NAICS Codes; Column: Participation and Source of Assistance; Unit: Establishment Counts. NAICS Code(a) Energy-Management Activity No Participation Participation(b) In-house Utility/Energy Suppler Product/Service Provider Federal Program State/Local Program Don't Know Total United States 311 -

  15. Level: National Data; Row: NAICS Codes; Column: Reasons that Made Quantity Unswitchable;

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Reasons that Made Natural Gas Unswitchable, 2006; Level: National Data; Row: NAICS Codes; Column: Reasons that Made Quantity Unswitchable; Unit: Billion cubic feet. Total Amount of Total Amount of Equipment is Not Switching Unavailable Long-Term Unavailable Combinations of NAICS Natural Gas Unswitchable Capable of Using Adversely Affects Alternative Environmenta Contract Storage for Another Columns F, G, Code(a) Subsector and Industry Consumed as a FueNatural Gas Fuel Use Another Fuel the

  16. EIS-0083: Final Northeast Regional Environmental Impact Statement; The Potential Conversion of Forty-Two Powerplants From Oil to Coal or Alternate Fuels

    Office of Energy Efficiency and Renewable Energy (EERE)

    This Economic Regulatory Administration statement assesses the potential for cumulative and interactive environmental impacts resulting from conversion of up to 42 northeastern power plants from oil to coal and from an alternative “Voluntary Conversion” scenario for 27 power plants.

  17. Superclean coal-water slurry combustion testing in an oil-fired boiler. Semiannual technical progress report, August 15, 1991--February 15, 1992

    SciTech Connect (OSTI)

    Miller, B.G.; Poe, R.L.; Morrison, J.L.; Xie, Jianyang; Walsh, P.M.; Schobert, H.H.; Scaroni, A.W.

    1992-05-29

    The Pennsylvania State University is conducting a superclean coal-water slurry (SCCWS) program for the United States Department of Energy (DOE) and the Commonwealth of Pennsylvania with the objective of determining the capability of effectively firing SCCWS in an industrial boiler designed for oil. Penn State has entered into a cooperative agreement with DOE to determine if SCCWS (a fuel containing coal with less than 3.0 wt.% ash and 0.9 wt.% sulfur) can effectively be burned in an oil-designed industrial boiler without adverse impact on boiler rating, maintainability, reliability, and availability. The project will provide information on the design of new systems specifically configured to fire these clean coal-based fuels.

  18. The demonstration of an advanced cyclone coal combustor, with internal sulfur, nitrogen, and ash control for the conversion of a 23 MMBtu/hour oil fired boiler to pulverized coal

    SciTech Connect (OSTI)

    Zauderer, B.; Fleming, E.S.

    1991-08-30

    The project objective was to demonstrate a technology which can be used to retrofit oil/gas designed boilers, and conventional pulverized coal fired boilers to direct coal firing, by using a patented sir cooled coal combustor that is attached in place of oil/gas/coal burners. A significant part of the test effort was devoted to resolving operational issues related to uniform coal feeding, efficient combustion under very fuel rich conditions, maintenance of continuous slag flow and removal from the combustor, development of proper air cooling operating procedures, and determining component materials durability. The second major focus of the test effort was on environmental control, especially control of SO{sub 2} emissions. By using staged combustion, the NO{sub x} emissions were reduced by around 3/4 to 184 ppmv, with further reductions to 160 ppmv in the stack particulate scrubber. By injection of calcium based sorbents into the combustor, stack SO{sub 2} emissions were reduced by a maximum of of 58%. (VC)

  19. The examination of pretreatment and end use technologies for dirty fuels produced from coal gasification, coal pyrolysis, oil shale processing, and heavy oil recovery: Final technology status report

    SciTech Connect (OSTI)

    Raden, D.P.; Page, G.C.

    1987-01-01

    The objective of this study was to identify pretreatment (upgrading) and end use technologies which: (1) reduce environmental, health and safety impacts, (2) reduce pollution control costs, or (3) reduce upgrading costs of ''dirty fuels'' while producing higher value energy products. A comprehensive list of technologies was developed for upgrading the various dirty fuels to higher value and products. Fifty-two process flow concepts were examined and from these four process flow concepts were chosen for further development. These are: heavy oil recovery and in situ hydrotreating; wet air oxidation in a downhole reactor; total raw gas shift; and high density fuels via vacuum devolatilization. Each of these four process flow concepts described exhibit the potential for reducing environmental, health and safety impacts and/or pollution control costs. In addition these concepts utilize dirty fuels to produce an upgraded or higher value energy product. These concepts should be developed and evaluated in greater detail to assess their technical and economical viability. Therefore, it is recommended that a program plan be formulated and a proof-of-concept research program be performed for each process concept. 3 refs., 5 figs., 11 tabs.

  20. Level: National Data; Row: NAICS Codes; Column: Energy Sources

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... has already been included as generating fuel (for example, coal). (d) 'Distillate Fuel ... Notes: To obtain the RSE percentage for any table cell, multiply the cell's corresponding ...

  1. Superclean coal-water slurry combustion testing in an oil-fired boiler. Semiannual technical progress report, August 15, 1992--February 15, 1993

    SciTech Connect (OSTI)

    Miller, B.G.; Pisupati, S.V.; Poe, R.L.; Morrison, J.L.; Xie, J.; Walsh, P.M.; Wincek, R.T.; Clark, D.A.; Scaroni, A.W.

    1993-04-21

    The Pennsylvania State University is conducting a superclean coal-water slurry (SCCWS) program for the United States Department of Energy (DOE) and the Commonwealth of Pennsylvania with the objective of determining the capability of effectively firing SCCWS in an industrial boiler designed for heavy fuel oil. Penn State has entered into a cooperative agreement with DOE to determine if SCCWS (a fuel containing coal with 3.0 wt.% ash and 0.9 wt.% sulfur) can effectively be burned in a heavy fuel oil-designed industrial boiler without adverse impact on boiler rating, maintainability, reliability, and availability. The project will provide information on the design of new systems specifically configured to fire these clean coal-based fuels. The project consists of four phases: (1) design, permitting, and test planning, (2) construction and start up, (3) demonstration and evaluation (1,000-hour demonstration), and (4) program expansion (additional 1,000 hours of testing). The boiler testing wig determine if the SCCWS combustion characteristics, heat release rate, fouling and slagging behavior, corrosion and erosion limits, and fuel transport, storage, and handling characteristics can be accommodated in an oil-designed boiler system. In addition, the proof-of-concept demonstration will generate data to determine how the properties of SCCWS and its parent coal affect boiler performance. Economic factors associated with retrofitting boilers will be identified

  2. Low temperature pyrolysis of coal or oil shale in the presence of calcium compounds

    DOE Patents [OSTI]

    Khan, M. Rashid

    1988-01-01

    A coal pyrolysis technique or process is described in which particulate coal is pyrolyzed in the presence of about 5 to 21 wt. % of a calcium compound selected from calcium oxide, calcined (hydrate) dolomite, or calcined calcium hydrate to produce a high quality hydrocarbon liquid and a combustible product gas which are characterized by low sulfur content. The pyrolysis is achieved by heating the coal-calcium compound mixture at a relatively slow rate at a temperature of about 450.degree. to 700.degree. C. over a duration of about 10 to 60 minutes in a fixed or moving bed reactor. The gas exhibits an increased yield in hydrogen and C.sub.1 -C.sub.8 hydrocarbons and a reduction in H.sub.2 S over gas obtainable by pyrolyzing cola without the calcium compound. The liquid product obtained is of a sufficient quality to permit its use directly as a fuel and has a reduced sulfur and oxygen content which inhibits polymerization during storage.

  3. Level: National and Regional Data; Row: NAICS Codes; Column...

    U.S. Energy Information Administration (EIA) Indexed Site

    Coal Subbituminous Coal Petroleum Electricity from Local ... Total United States 311 Food 9.22 161.2 0 1.93 1.82 1.95 0 10.4 ... 5.49 324110 Petroleum Refineries 8.15 0 0 3.11 0 3.11 0 ...

  4. " Row: NAICS Codes; Column: Energy-Consumption Ratios;"

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Consumption Ratios of Fuel, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy-Consumption Ratios;" " Unit: Varies." " "," ",,,"Consumption"," " " "," ",,"Consumption","per Dollar"," " " "," ","Consumption","per Dollar","of Value","RSE" "NAICS"," ","per

  5. " Row: NAICS Codes; Column: Energy-Consumption Ratios;"

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Consumption Ratios of Fuel, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy-Consumption Ratios;" " Unit: Varies." ,,,,"Consumption" ,,,"Consumption","per Dollar" ,,"Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Subsector and Industry","(million

  6. " Row: Specific Energy-Management Activities within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Number of Establishments by Participation in Specific Energy-Management Activities, 2010;" " Level: National Data; " " Row: Specific Energy-Management Activities within NAICS Codes;" " Column: Participation;" " Unit: Establishment Counts." "NAICS Code(a)","Energy-Management Activity","No Participation","Participation(b)","Don't Know","No Steam Used" ,,"Total United States" "

  7. Level: National Data; Row: Specific Energy-Management Activities within NAICS Codes;

    U.S. Energy Information Administration (EIA) Indexed Site

    Next MECS will be conducted in 2010 Table 8.4 Number of Establishments by Participation in Specific Energy-Management Activities, 2006; Level: National Data; Row: Specific Energy-Management Activities within NAICS Codes; Column: Participation; Unit: Establishment Counts. NAICS Code(a) Energy-Management Activity No Participation Participation(b) Don't Know Not Applicable Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES Full-Time Energy Manager (c) 159,258 9,922 25,553 -- Set Goals for

  8. Level: National Data; Row: Specific Energy-Management Activities within NAICS Codes;

    U.S. Energy Information Administration (EIA) Indexed Site

    Next MECS will be fielded in 2015 Table 8.4 Number of Establishments by Participation in Specific Energy-Management Activities, 2010; Level: National Data; Row: Specific Energy-Management Activities within NAICS Codes; Column: Participation; Unit: Establishment Counts. NAICS Code(a) Energy-Management Activity No Participation Participation(b) Don't Know No Steam Used Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES Full-Time Energy Manager (c) 142,267 12,536 15,365 -- Set Goals for

  9. Level: National Data; Row: NAICS Codes; Column: Energy Sources...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... products (e.g., crude oil converted to residual and distillate fuel oils) are excluded. ... Notes: To obtain the RSE percentage for any table cell, multiply the cell's corresponding ...

  10. Level: National Data; Row: NAICS Codes (3-Digit Only); Column...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... Survey of Manufactures.' (d) 'Distillate Fuel Oil' includes Nos. 1, 2, and 4 fuel oils ... Notes: To obtain the RSE percentage for any table cell, multiply the cell's corresponding ...

  11. Level: National Data; Row: NAICS Codes; Column: Energy Sources

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... products (e.g., crude oil converted to residual and distillate fuel oils) are excluded. ... Notes: To obtain the RSE percentage for any table cell, multiply the cell's corresponding ...

  12. Level: National Data; Row: NAICS Codes; Column: Reasons that...

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuels(d Reason H, I, J, and K Don't Know Total United States 311 Food 6,603 ... Fuels(d Reason H, I, J, and K Don't Know Reasons that Made Coal Unswitchable ...

  13. Level: National and Regional Data; Row: NAICS Codes, Value of...

    U.S. Energy Information Administration (EIA) Indexed Site

    Total United States 311 Food 1 * 1 * * * * 0 0 * 3112 Grain and Oilseed ... * 0 0 0 0 0 324 Petroleum and Coal Products 7 1 5 * 2 * * 0 0 * 324110 Petroleum Refineries 7 1 4 * 2 * * 0 ...

  14. Level: National and Regional Data; Row: NAICS Codes; Column:...

    U.S. Energy Information Administration (EIA) Indexed Site

    Total United States 311 Food 111 86 25 3112 Grain and Oilseed Milling ... Support 0 0 0 324 Petroleum and Coal Products 3,849 757 3,092 324110 Petroleum Refineries 3,373 567 2,806 ...

  15. Level: National and Regional Data; Row: NAICS Codes, Value of...

    U.S. Energy Information Administration (EIA) Indexed Site

    Total United States 311 Food 4 * 3 * * * 0 * 0 * 3112 Grain and Oilseed ... 0 0 0 0 0 0 324 Petroleum and Coal Products 4 1 3 * 1 * 0 * 0 * 324110 Petroleum Refineries 2 * 2 * * 0 0 * ...

  16. Level: National and Regional Data; Row: NAICS Codes, Value of...

    U.S. Energy Information Administration (EIA) Indexed Site

    Total United States 311 Food 8 2 7 * 1 * * * * 3112 Grain and Oilseed ... 0 0 0 0 0 0 0 324 Petroleum and Coal Products 1 * * 0 * 0 0 0 0 324110 Petroleum Refineries * * * 0 * 0 0 0 0 ...

  17. Level: National Data; Row: NAICS Codes; Column: Energy Sources...

    Gasoline and Diesel Fuel Update (EIA)

    ... that respondents indicated could have been consumed in place of residual fuel oil. ... Notes: To obtain the RSE percentage for any table cell, multiply the cell's corresponding ...

  18. Level: National Data; Row: NAICS Codes; Column: Energy Sources...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... that respondents indicated could have been consumed in place of distillate fuel oil. ... Notes: To obtain the RSE percentage for any table cell, multiply the cell's corresponding ...

  19. Oil

    Broader source: Energy.gov [DOE]

    The Energy Department works to ensure domestic and global oil supplies are environmentally sustainable and invests in research and technology to make oil drilling cleaner and more efficient.

  20. Level: National and Regional Data; Row: NAICS Codes; Column...

    U.S. Energy Information Administration (EIA) Indexed Site

    Total United States 311 Food 4,563 4,249 * 313 3112 Grain and Oilseed ... Q Q 0 * 324 Petroleum and Coal Products 20,015 19,665 0 349 324110 Petroleum Refineries 19,389 19,074 0 ...

  1. Research investigations in oil shale, tar sand, coal research, advanced exploratory process technology, and advanced fuels research: Volume 1 -- Base program. Final report, October 1986--September 1993

    SciTech Connect (OSTI)

    Smith, V.E.

    1994-05-01

    Numerous studies have been conducted in five principal areas: oil shale, tar sand, underground coal gasification, advanced process technology, and advanced fuels research. In subsequent years, underground coal gasification was broadened to be coal research, under which several research activities were conducted that related to coal processing. The most significant change occurred in 1989 when the agreement was redefined as a Base Program and a Jointly Sponsored Research Program (JSRP). Investigations were conducted under the Base Program to determine the physical and chemical properties of materials suitable for conversion to liquid and gaseous fuels, to test and evaluate processes and innovative concepts for such conversions, to monitor and determine environmental impacts related to development of commercial-sized operations, and to evaluate methods for mitigation of potential environmental impacts. This report is divided into two volumes: Volume 1 consists of 28 summaries that describe the principal research efforts conducted under the Base Program in five topic areas. Volume 2 describes tasks performed within the JSRP. Research conducted under this agreement has resulted in technology transfer of a variety of energy-related research information. A listing of related publications and presentations is given at the end of each research topic summary. More specific and detailed information is provided in the topical reports referenced in the related publications listings.

  2. Level: National Data and Regional Totals; Row: NAICS Codes, Value...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... have been consumed in place of residual fuel oil. (f) Value of Shipments and Receipts ... Notes: To obtain the RSE percentage for any table cell, multiply the cell's corresponding ...

  3. " Level: National Data;" " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Reasons that Made LPG Unswitchable, 2006;" " Level: National Data;" " Row: NAICS Codes;" " Column: Reasons that Made Quantity Unswitchable;" " Unit: Million barrels." ,,,,"Reasons that Made LPG Unswitchable" " "," ",,,,,,,,,,,,," " ,,"Total Amount of ","Total Amount of","Equipment is Not","Switching","Unavailable

  4. " Row: Energy-Management Activities within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    C9.1. Number of Establishments by Participation in Energy-Management Activity, 1998;" " Level: National Data; " " Row: Energy-Management Activities within NAICS Codes;" " Column: Participation and General Amounts of Establishment-Paid Activity Cost;" " Unit: Establishment Counts." " "," "," ",,,,,," " " "," ",,,"General","Amount of

  5. Petroleum Refining Sector (NAICS 324110) Energy and GHG Combustion Emissions Profile, November 2012

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    69 2.4 PETROLEUM REFINING SECTOR (NAICS 324110) 2.4.1. Overview of the Petroleum Refining Manufacturing Sector Petroleum refining is a complex industry that generates a diverse slate of fuel products and petrochemicals, from gasoline to asphalt. Refining requires a range of processing steps, including distillation, cracking, reforming, and treating. Most of these processes are highly reliant on process heating and steam energy. Petroleum refineries are an essential part of the U.S. economy.

  6. Integrated coal liquefaction process

    DOE Patents [OSTI]

    Effron, Edward

    1978-01-01

    In a process for the liquefaction of coal in which coal liquids containing phenols and other oxygenated compounds are produced during the liquefaction step and later hydrogenated, oxygenated compounds are removed from at least part of the coal liquids in the naphtha and gas oil boiling range prior to the hydrogenation step and employed as a feed stream for the manufacture of a synthesis gas or for other purposes.

  7. Coal liquefaction process

    DOE Patents [OSTI]

    Karr, Jr., Clarence

    1977-04-19

    An improved coal liquefaction process is provided which enables conversion of a coal-oil slurry to a synthetic crude refinable to produce larger yields of gasoline and diesel oil. The process is characterized by a two-step operation applied to the slurry prior to catalytic desulfurization and hydrogenation in which the slurry undergoes partial hydrogenation to crack and hydrogenate asphaltenes and the partially hydrogenated slurry is filtered to remove minerals prior to subsequent catalytic hydrogenation.

  8. Kinetics and mechanisms of hydroliquefaction and hydrogasification of lignite. [Cellulose, wood, manure, municipal waste, coal of various ranks, fuel oil and natural gas

    SciTech Connect (OSTI)

    Weiss, A.H.; Kranich, W.L.; Geureuz, K.

    1981-01-01

    A high pressure, continuous, stirred-tank reactor system has been constructed for the study of the catalytic liquefaction of North Dakota lignite slurried in anthracene oil. The conversion of lignite using a cobalt-molybdenum on alumina catalyst and the distribution of products as preasphaltenes, asphaltenes, oils and gases has been studied at the following conditions: temperature, 375 to 440/sup 0/C; pressure, 1000 to 1600 psig; agitator speed, 800 to 1500 rpm; catalyst concentration, 0 to 10% (based on lignite); initial lignite concentration, 5 to 30%; and space time, 16 to 52 minutes. At reactor pressures above 1500 psig and agitator speeds above 1000 rpm, reaction rate was essentially independent of pressure. At catalyst concentrations above 1% (based on lignite), the conversion of lignite was essentially independent of catalyst concentration. Experiments were conducted above these limits to find the effect on lignite conversion rate, of initial lignite concentration, and space time, or degree of conversion. The results at constant temperature were correlated by an equation which is given in the report. The relationship between the rate constant, K, and temperature, and between the maximum conversion and temperature was established. The effect of reaction conditions on the distribution of products was studied. In the presence of catalyst, the oil yield was increased, even under conditions where the catalyst did not affect overall lignite conversion. Under the most favorable conditions the oil yield was a little better than that obtained by Cronauer in the uncatalyzed hydroliquefaction of subbituminous coal at similar temperature and pressure.

  9. Coal sector profile

    SciTech Connect (OSTI)

    Not Available

    1990-06-05

    Coal is our largest domestic energy resource with recoverable reserves estimated at 268 billion short tons or 5.896 quads Btu equivalent. This is approximately 95 percent of US fossil energy resources. It is relatively inexpensive to mine, and on a per Btu basis it is generally much less costly to produce than other energy sources. Its chief drawbacks are the environmental, health and safety concerns that must be addressed in its production and consumption. Historically, coal has played a major role in US energy markets. Coal fueled the railroads, heated the homes, powered the factories. and provided the raw materials for steel-making. In 1920, coal supplied over three times the amount of energy of oil, gas, and hydro combined. From 1920 until the mid 1970s, coal production remained fairly constant at 400 to 600 million short tons a year. Rapid increases in overall energy demands, which began during and after World War II were mostly met by oil and gas. By the mid 1940s, coal represented only half of total energy consumption in the US. In fact, post-war coal production, which had risen in support of the war effort and the postwar Marshall plan, decreased approximately 25 percent between 1945 and 1960. Coal demand in the post-war era up until the 1970s was characterized by increasing coal use by the electric utilities but decreasing coal use in many other markets (e.g., rail transportation). The oil price shocks of the 1970s, combined with natural gas shortages and problems with nuclear power, returned coal to a position of prominence. The greatly expanded use of coal was seen as a key building block in US energy strategies of the 1970s. Coal production increased from 613 million short tons per year in 1970 to 950 million short tons in 1988, up over 50 percent.

  10. Early Days of Coal Research | Department of Energy

    Energy Savers [EERE]

    Early Days of Coal Research Wartime Needs Spur Interest in Coal-to-Oil Processes In 1944 ... Oil was in tight supply in the United States during the war years. As demand for petroleum ...

  11. Annual Energy Outlook 2016 2nd Coal Working Group

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... Pulverized Coal * CoalBiomass Co-Fire (15%Biomass) Adv GasOil Comb. Cycle Conv GasOil Comb Cycle Conventional Comb. Turbine Advanced Comb. Turbine PV (fixed tilt) PV (tracker) ...

  12. " Row: NAICS Codes (3-Digit Only); Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Number of Establishments by Nonfuel (Feedstock) Use of Combustible Energy, 2002;" " Level: National Data; " " Row: NAICS Codes (3-Digit Only); Column: Energy Sources;" " Unit: Establishment Counts." " "," ","Any "," "," "," "," "," "," "," "," ",," " " "," ","Combustible",,,,,,,,"RSE"

  13. " Row: NAICS Codes; Column: Energy Sources and Shipments;"

    U.S. Energy Information Administration (EIA) Indexed Site

    .1. Number of Establishments by First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" " Level: National Data; " " Row: NAICS Codes; Column: Energy Sources and Shipments;" " Unit: Establishment Counts." " "," "," "," "," "," "," "," "," "," "," ",," " " "," ","Any",," "," ",,"

  14. Manufacturing Energy and Carbon Footprint - Sector: Transportation Equipment (NAICS 336), January 2014 (MECS 2010)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Equipment (NAICS 336) Process Energy Electricity and Steam Generation Losses Process Losses 10 Nonprocess Losses 541 68 Steam Distribution Losses 6 48 Nonprocess Energy 143 Electricity Generation Steam Generation 541 0 Prepared for the U.S. Department of Energy, Advanced Manufacturing Office by Energetics Incorporated 115 145 132 Generation and Transmission Losses Generation and Transmission Losses 0 266 259 234 41 275 398 0 32 0.0 23.1 23.1 3.0 16.6 11.9 31 7.9 31.0 2.6 Fuel

  15. Manufacturing Energy and Carbon Footprint - Sector: Glass (NAICS 3272, 327993), October 2012 (MECS 2006)

    Broader source: Energy.gov (indexed) [DOE]

    (NAICS 3272, 327993) Process Energy Electricity and Steam Generation Losses Process Losses 5 Nonprocess Losses 466 162 Steam Distribution Losses 4 12 Nonprocess Energy 267 Electricity Generation Steam Generation 466 0 Prepared for the Advanced Manufacturing Office (AMO) by Energetics Incorporated 30 292 63 Generation and Transmission Losses Generation and Transmission Losses 0 136 Onsite Generation 321 306 24 330 199 0 19 0.0 12.0 12.0 1.5 1.5 12.1 22.8 2.0 26 14.3 26.3 0.6 Fuel Total Energy

  16. Manufacturing Energy and Carbon Footprint - Sector: Plastics (NAICS 326), October 2012 (MECS 2006)

    Broader source: Energy.gov (indexed) [DOE]

    (NAICS 326) Process Energy Electricity and Steam Generation Losses Process Losses 16 Nonprocess Losses 729 89 Steam Distribution Losses 13 36 Nonprocess Energy 154 Electricity Generation Steam Generation 729 0 Prepared for the Advanced Manufacturing Office (AMO) by Energetics Incorporated 84 223 182 Generation and Transmission Losses Generation and Transmission Losses 0 393 Onsite Generation 307 255 81 336 575 0 65 0.0 34.8 34.8 5.1 4.9 2.3 28.9 9.7 44 8.9 43.7 1.7 Fuel Total Energy Total

  17. Iron and Steel Sector (NAICS 3311 and 3312) Energy and GHG Combustion Emissions Profile, November 2012

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    99 2.6 IRON AND STEEL SECTOR (NAICS 3311, 3312) 2.6.1. Overview of the Iron and Steel Manufacturing Sector The iron and steel sector is an essential part of the U.S. manufacturing sector, providing the necessary raw material for the extensive industrial supply chain. U.S. infrastructure is heavily reliant on the U.S. iron and steel sector, as it provides the foundation for construction (bridges, buildings), transportation systems (railroads, cars, trucks), utility systems (municipal water

  18. Mild coal pretreatment to improve liquefaction reactivity

    SciTech Connect (OSTI)

    Miller, R.L.

    1991-01-01

    This report describes work completed during the fourth quarter of a three year project to study the effects of mild chemical pretreatment on coal dissolution reactivity during low severity liquefaction or coal/oil coprocessing. The overall objective of this research is to elucidate changes in the chemical and physical structure of coal by pretreating with methanol or other simple organic solvent and a trace amount of hydrochloric acid and measure the influence of these changes on coal dissolution reactivity. This work is part of a larger effort to develop a new coal liquefaction or coal/oil coprocessing scheme consisting of three main process steps: (1) mile pretreatment of the feed coal to enhance dissolution reactivity and dry the coal, (2) low severity thermal dissolution of the pretreated coal to obtain a very reactive coal-derived residual material amenable to upgrading, and (3) catalytic upgrading of the residual products to distillate liquids.

  19. Crude Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    Barrels) Product: Crude Oil Liquefied Petroleum Gases Distillate Fuel Oil Residual Fuel Oil Still Gas Petroleum Coke Marketable Petroleum Coke Catalyst Petroleum Coke Other Petroleum Products Natural Gas Coal Purchased Electricity Purchased Steam Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area 2010 2011 2012 2013 2014 2015 View History U.S. 0 0 0 0 0 0 1986-2015 East Coast (PADD 1) 0 0 0 0

  20. Catagenesis of organic matter of oil source rocks in Upper Paleozoic coal formation of the Bohai Gulf basin (eastern China)

    SciTech Connect (OSTI)

    Li, R.X.; Li, Y.Z.; Gao, Y.W.

    2007-05-15

    The Bohai Gulf basin is the largest petroliferous basin in China. Its Carboniferous-Permian deposits are thick (on the average, ca. 600 m) and occur as deeply as 5000 m. Coal and carbonaceous shale of the Carboniferous Taiyuan Formation formed in inshore plain swamps. Their main hydrocarbon-generating macerals are fluorescent vitrinite, exinite, alginite, etc. Coal and carbonaceous shale of the Permian Shanxi Formation were deposited in delta-alluvial plain. Their main hydrocarbon-generating macerals are vitrinite, exinite, etc. The carbonaceous rocks of these formations are characterized by a high thermal maturity, with the vitrinite reflectance R{sub 0} > 2.0%. The Bohai Gulf basin has been poorly explored so far, but it is highly promising for natural gas.

  1. Coal Technology '80. Volume 5. Synthetic fuels from coal. Volume 6. Industrial/utility applications for coal

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    The 3rd international coal utilization exhibition and conference Coal Technology '80 was held at the Astrohall, Houston, Texas, November 18-20, 1980. Volume 5 deals with coal gasification and coal liquefaction. Volume 6 deals with fluidized-bed combustion of coal, cogeneration and combined-cycle power plants, coal-fuel oil mixtures (COM), chemical feedstocks via coal gasification and Fischer-Tropsch synthesis. Thirty-six papers have been entered individually into EDB and seven also into ERA; three had been entered previously from other sources. (LTN)

  2. "Characteristic(a)","Electricity","Fuel Oil","Fuel Oil(b)","Natural...

    U.S. Energy Information Administration (EIA) Indexed Site

    " Unit: Percents." " ",," "," ",," "," " "Economic",,"Residual","Distillate",,"LPG and" "Characteristic(a)","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal

  3. "Economic","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas...

    U.S. Energy Information Administration (EIA) Indexed Site

    "," ",," "," " ,,"Residual","Distillate",,"LPG and" "Economic","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal" "Characteristic(a)","(kWh)","(gallons)","...

  4. Economics of coal fines utilization

    SciTech Connect (OSTI)

    Hathi, V.; McHale, E.; Ramezan, M.; Winslow, J.

    1995-12-31

    In the twentieth century, coal has become the major fuel for electric power generation in the U.S. and most of the nonpetroleum-producing countries of the world. In 1998, the world coal-fired capacity for electric power generation was about 815 GW, consuming large quantities of coals of all ranks. Today, coal provides a third of the world`s energy requirements. In fact, coal use for power generation has grown steadily since the oil embargo in 1973 and has seen an even faster rate of growth in recent years. It has been reported that the global demand for new coal will increase by more than 1500 million tons by the year 2000. However, this increased production of coal has its drawbacks, including the concomitant production of coal waste. Reported estimates indicate that billions of tons of coal waste have already been disposed of in waste impoundments throughout the U.S. Further, in the U.S. today, about 20-25 % of each ton of mined coal is discarded by preparation plants as gob and plant tailings. It appears that the most economical near-term approach to coal waste recovery is to utilize the waste coal fines currently discarded with the refuse stream, rather than attempt to recover coal from waste impoundments that require careful prior evaluation and site preparation. A hypothetical circuit was designed to examine the economics of recovery and utilization of waste coal fines. The circuit recovers products from 100 tons per hour (tph) of coal waste feed recovering 70 tph of fine coal that can be used in coal-fired boilers. The present analysis indicates that the coal waste recovery is feasible and economical. In addition, significant environmental benefits can be expected.

  5. Justice Department review of federal coal and oil leasing: serving the consistent goals of competition and energy independence

    SciTech Connect (OSTI)

    Kaplan, D.A.

    1981-01-01

    As the nation moves into the 1980s, development of our domestic energy resources must surely be the number one priority of energy policy. Important natural resources are owned by the Federal government and must be dedicated to development in the public interest. This includes a government leasing program which fosters competitive and efficient development of these resources by private companies. Through its antitrust review of individual leases and its general advocacy of competition in the leasing program, the Department of Justice seeks to bring the prospect of a sound national energy policy closer to reality. Examples of how this review functions are drawn from the Outer Continental Shelf Land Acts Amendments of 1978 and the Federal Coal Leasing Amendments Act of 1975. 32 references.

  6. Coal liquefaction process wherein jet fuel, diesel fuel and/or ASTM No. 2 fuel oil is recovered

    DOE Patents [OSTI]

    Bauman, Richard F.; Ryan, Daniel F.

    1982-01-01

    An improved process for the liquefaction of coal and similar solid carbonaceous materials wherein a hydrogen donor solvent or diluent derived from the solid carbonaceous material is used to form a slurry of the solid carbonaceous material and wherein the naphthenic components from the solvent or diluent fraction are separated and used as jet fuel components. The extraction increases the relative concentration of hydroaromatic (hydrogen donor) components and as a result reduces the gas yield during liquefaction and decreases hydrogen consumption during said liquefaction. The hydrogenation severity can be controlled to increase the yield of naphthenic components and hence the yield of jet fuel and in a preferred embodiment jet fuel yield is maximized while at the same time maintaining solvent balance.

  7. Hydrodeoxygenation of heavy oils derived from low-temperature coal gasification over NiW catalysts-effect of pore structure

    SciTech Connect (OSTI)

    Dieter Leckel

    2008-01-15

    The effect of the pore structure on the hydroprocessing of heavy distillate oils derived from low-temperature coal gasification residues was studied using four NiW catalysts with different pore size distributions. The hydroprocessing was conducted at a pressure of 17.5 MPa, a temperature range of 370-410{sup o}C, and a 0.50 h{sup -1} space velocity. The degree of hydrodeoxygenation (HDO) in terms of phenolics removal was influenced by the catalyst pore structure, with the most preferable peak pore diameter for HDO ranging between 6.8 and 16 nm. The catalyst with the highest volume of pores in the 3.5-6 nm range showed the lowest HDO activity. The apparent activation energies for the HDO reaction varied between 59 and 87 kJ/mol, whereby the lowest values are obtained for the catalysts with a peak pore diameter of 11 and 16 nm. 30 refs., 5 figs., 6 tabs.

  8. " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;"

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Number of Establishments by Quantity of Purchased Electricity, Natural Gas, and Steam, 2006;" " Level: National Data; " " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;" " Unit: Establishment Counts." ,,,"Electricity","Components",,,"Natural","Gas","Components",,"Steam","Components"

  9. " Row: NAICS Codes;" " Column: Usage within General Energy-Saving Technologies;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Number of Establishments by Usage of General Energy-Saving Technologies, 2002;" " Level: National Data; " " Row: NAICS Codes;" " Column: Usage within General Energy-Saving Technologies;" " Unit: Establishment Counts." " "," ",,"Computer Control of Building Wide Evironment(c)",,,"Computer Control of Processes or Major Energy-Using Equipment(d)",,,"Waste Heat Recovery",,,"Adjustable - Speed

  10. " Row: NAICS Codes;" " Column: Usage within General Energy-Saving Technologies;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Number of Establishments by Usage of General Energy-Saving Technologies, 2006;" " Level: National Data; " " Row: NAICS Codes;" " Column: Usage within General Energy-Saving Technologies;" " Unit: Establishment Counts." ,,,"Computer Control of Building Wide Evironment(c)",,,"Computer Control of Processes or Major Energy-Using Equipment(d)",,,"Waste Heat Recovery",,,"Adjustable - Speed Motors",,,"Oxy - Fuel

  11. " Row: NAICS Codes;" " Column: Usage within General Energy-Saving Technologies;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Number of Establishments by Usage of General Energy-Saving Technologies, 2010;" " Level: National Data; " " Row: NAICS Codes;" " Column: Usage within General Energy-Saving Technologies;" " Unit: Establishment Counts." ,,,"Computer Control of Building Wide Evironment(c)",,,"Computer Control of Processes or Major Energy-Using Equipment(d)",,,"Waste Heat Recovery",,,"Adjustable - Speed Motors",,,"Oxy - Fuel

  12. Enhancement of surface properties for coal beneficiation

    SciTech Connect (OSTI)

    Chander, S.; Aplan, F.F.

    1992-01-30

    This report will focus on means of pyrite removal from coal using surface-based coal cleaning technologies. The major subjects being addressed in this study are the natural and modulated surface properties of coal and pyrite and how they may best be utilized to facilitate their separation using advanced surface-based coal cleaning technology. Emphasis is based on modified flotation and oil agglomerative processes and the basic principles involved. The four areas being addressed are: (1) Collectorless flotation of pyrite; (2) Modulation of pyrite and coal hydrophobicity; (3) Emulsion processes and principles; (4) Evaluation of coal hydrophobicity.

  13. Coal Markets

    U.S. Energy Information Administration (EIA) Indexed Site

    Coal Glossary FAQS Overview Data Coal Data Browser (interactive query tool with charting and mapping) Summary Prices Reserves Consumption Production Stocks Imports, exports ...

  14. Delineating coal market regions

    SciTech Connect (OSTI)

    Solomon, B.D.; Pyrdol, J.J.

    1986-04-01

    This study addresses the delineation of US coal market regions and their evolution since the 1973 Arab oil embargo. Dichotomizing into compliance (low sulfur) and high sulfur coal deliveries, market regions are generated for 1973, 1977, and 1983. Focus is restricted to steam coal shipments to electric utilities, which currently account for over 80% of the total domestic market. A two-stage method is used. First, cluster analyses are performed on the origin-destination shipments data to generate baseline regions. This is followed by multiple regression analyses on CIF delivered price data for 1983. Sensitivity analysis on the configuration of the regions is also conducted, and some thoughts on the behavior of coal markets conclude the paper. 37 references, 6 figures, 2 tables.

  15. Natural gas from coal, courtesy of microbes | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to view larger. Natural gas from coal, courtesy of microbes November 20, 2015 Tweet EmailPrint The key to extracting usable energy from deep coal seams and depleted oil reservoirs ...

  16. Research investigations in oil shale, tar sand, coal research, advanced exploratory process technology, and advanced fuels research: Volume 2 -- Jointly sponsored research program. Final report, October 1986--September 1993

    SciTech Connect (OSTI)

    Smith, V.E.

    1994-09-01

    Numerous studies have been conducted in five principal areas: oil shale, tar sand, underground coal gasification, advanced process technology, and advanced fuels research. In subsequent years, underground coal gasification was broadened to be coal research, under which several research activities were conducted that related to coal processing. The most significant change occurred in 1989 when the agreement was redefined as a Base Program and a Jointly Sponsored Research Program (JSRP). Investigations were conducted under the Base Program to determine the physical and chemical properties of materials suitable for conversion to liquid and gaseous fuels, to test and evaluate processes and innovative concepts for such conversions, to monitor and determine environmental impacts related to development of commercial-sized operations, and to evaluate methods for mitigation of potential environmental impacts. This report is divided into two volumes: Volume 1 consists of 28 summaries that describe the principal research efforts conducted under the Base Program in five topic areas. Volume 2 describes tasks performed within the JSRP. Research conducted under this agreement has resulted in technology transfer of a variety of energy-related research information. A listing of related publications and presentations is given at the end of each research topic summary. More specific and detailed information is provided in the topical reports referenced in the related publications listings.

  17. Iron catalyzed coal liquefaction process

    DOE Patents [OSTI]

    Garg, Diwakar; Givens, Edwin N.

    1983-01-01

    A process is described for the solvent refining of coal into a gas product, a liquid product and a normally solid dissolved product. Particulate coal and a unique co-catalyst system are suspended in a coal solvent and processed in a coal liquefaction reactor, preferably an ebullated bed reactor. The co-catalyst system comprises a combination of a stoichiometric excess of iron oxide and pyrite which reduce predominantly to active iron sulfide catalysts in the reaction zone. This catalyst system results in increased catalytic activity with attendant improved coal conversion and enhanced oil product distribution as well as reduced sulfide effluent. Iron oxide is used in a stoichiometric excess of that required to react with sulfur indigenous to the feed coal and that produced during reduction of the pyrite catalyst to iron sulfide.

  18. SRC residual fuel oils

    SciTech Connect (OSTI)

    Tewari, K.C.; Foster, E.P.

    1985-10-15

    Coal solids (SRC) and distillate oils are combined to afford single-phase blends of residual oils which have utility as fuel oils substitutes. The components are combined on the basis of their respective polarities, that is, on the basis of their heteroatom content, to assure complete solubilization of SRC. The resulting composition is a fuel oil blend which retains its stability and homogeneity over the long term.

  19. SRC Residual fuel oils

    DOE Patents [OSTI]

    Tewari, Krishna C.; Foster, Edward P.

    1985-01-01

    Coal solids (SRC) and distillate oils are combined to afford single-phase blends of residual oils which have utility as fuel oils substitutes. The components are combined on the basis of their respective polarities, that is, on the basis of their heteroatom content, to assure complete solubilization of SRC. The resulting composition is a fuel oil blend which retains its stability and homogeneity over the long term.

  20. Manufacturing Energy and Carbon Footprint - Sector: Computer, Electronics and Appliances (NAICS 334, 335), January 2014 (MECS 2010)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Computers, Electronics and Electrical Equipment (NAICS 334, 335) Process Energy Electricity and Steam Generation Losses Process Losses 5 Nonprocess Losses 493 46 Steam Distribution Losses 4 41 Nonprocess Energy 80 Electricity Generation Steam Generation 493 0 Prepared for the U.S. Department of Energy, Advanced Manufacturing Office by Energetics Incorporated 103 105 137 Generation and Transmission Losses Generation and Transmission Losses 0 276 208 193 24 217 413 0 19 0.0 23.9 23.9 1.4 14.4 12.4

  1. 1983 annual outlook for US coal

    SciTech Connect (OSTI)

    Paull, M.K.

    1983-11-01

    This report highlights projections and discusses them in relation to coal's future domestic uses; the report also examines factors affecting coal's future growth. Coal was the primary source of energy in the United States from the mid-1800's until after World War II. After that war, coal lost most of its markets to oil and natural gas. In the 1960's, coal development was also hampered by environmental and mine safety concerns, and by the emergence of nuclear power. The 1973-74 oil embargo, however, demonstrated that the United States could no longer depend on imported oil to fuel its energy growth. Through 1990, coal is projected to meet an increasing share of total US energy demand. The projections for the 1985 to 1990 time period show an increased growth in coal consumption, particularly in the electric utility sector where new coal-fired power plants are coming on line. The projected growth in coal production, however, is subject to a series of potential constraints and/or obstacles that must be overcome. These potential constraints and obstacles are described after the history of coal supply and demand is reviewed and future projections are discussed.

  2. Coal pump

    DOE Patents [OSTI]

    Bonin, John H.; Meyer, John W.; Daniel, Jr., Arnold D.

    1983-01-01

    A device for pressurizing pulverized coal and circulating a carrier gas is disclosed. This device has utility in a coal gasification process and eliminates the need for a separate collection hopper and eliminates the separate compressor.

  3. Extending gear life in a coal pulverizer gearbox

    SciTech Connect (OSTI)

    Hansen, T.

    2007-08-15

    A coal-fired power plant in the Western United States experienced short gearbox life in the 13 coal pulverizers operating at the plant. Wear on the bronze bull gear faces was suspected to have been caused by high particulate loading of coal dust and dirt in the gear oil, catalytic reaction between gear oil additives and some of the particulates generated, and high levels of copper in the gear oil. By addressing particulate ingress, adding filtration and switching to a synthetic gear oil, significant benefits were made to the power plant and gear oil life was extended. 2 photos., 1 tab.

  4. "NAICS",,"per Employee","of Value Added","of Shipments"

    U.S. Energy Information Administration (EIA) Indexed Site

    Btu)" ,,"Total United States" 311,"Food",3.8,4.3,4.1 ... 324,"Petroleum and Coal Products",5.2,1.6,0.9 324110," Petroleum Refineries",0,0,0 324199," ...

  5. Coal Markets

    U.S. Energy Information Administration (EIA) Indexed Site

    Coal Markets | Archive Coal Markets Weekly production Dollars per short ton Dollars per mmbtu Average weekly coal commodity spot prices dollars per short ton Week ending Week ago change Central Appalachia 12,500 Btu, 1.2 SO2 Northern Appalachia 13,000 Btu, < 3.0 SO2 Illinois Basin 11,800 Btu, 5.0 SO2 Powder River Basin 8,800 Btu, 0.8 SO2 Uinta Basin 11,700 Btu, 0.8 SO2 Source: With permission, SNL Energy Note: Coal prices shown reflect those of relatively high-Btu coal selected in each region

  6. EIA - Coal Distribution

    Gasoline and Diesel Fuel Update (EIA)

    Annual Coal Distribution Report > Annual Coal Distribution Archives Annual Coal Distribution Archive Release Date: February 17, 2011 Next Release Date: December 2011 Domestic coal ...

  7. Process for treating moisture laden coal fines

    DOE Patents [OSTI]

    Davis, Burl E.; Henry, Raymond M.; Trivett, Gordon S.; Albaugh, Edgar W.

    1993-01-01

    A process is provided for making a free flowing granular product from moisture laden caked coal fines, such as wet cake, by mixing a water immiscible substance, such as oil, with the caked coal, preferably under low shear forces for a period of time sufficient to produce a plurality of free flowing granules. Each granule is preferably comprised of a dry appearing admixture of one or more coal particle, 2-50% by weight water and the water immiscible substance.

  8. Balancing oil and environment... responsibly.

    SciTech Connect (OSTI)

    Weimer, Walter C.; Teske, Lisa

    2007-01-25

    Balancing Oil and Environment…Responsibly As the price of oil continues to skyrocket and global oil production nears the brink, pursuing unconventional oil supplies, such as oil shale, oil sands, heavy oils, and oils from biomass and coal has become increasingly attractive. Of particular significance to the American way is that our continent has significant quantities of these resources. Tapping into these new resources, however, requires cutting-edge technologies for identification, production, processing and environmental management. This job needs a super hero or two for a job of this size and proportion…

  9. Catalytic coal liquefaction with treated solvent and SRC recycle

    DOE Patents [OSTI]

    Garg, D.; Givens, E.N.; Schweighardt, F.K.

    1986-12-09

    A process is described for the solvent refining of coal to distillable, pentane soluble products using a dephenolated and denitrogenated recycle solvent and a recycled, pentane-insoluble, solvent-refined coal material, which process provides enhanced oil-make in the conversion of coal. 2 figs.

  10. Process for removing pyritic sulfur from bituminous coals

    DOE Patents [OSTI]

    Pawlak, Wanda; Janiak, Jerzy S.; Turak, Ali A.; Ignasiak, Boleslaw L.

    1990-01-01

    A process is provided for removing pyritic sulfur and lowering ash content of bituminous coals by grinding the feed coal, subjecting it to micro-agglomeration with a bridging liquid containing heavy oil, separating the microagglomerates and separating them to a water wash to remove suspended pyritic sulfur. In one embodiment the coal is subjected to a second micro-agglomeration step.

  11. Coal liquefaction process using pretreatment with a binary solvent mixture

    DOE Patents [OSTI]

    Miller, Robert N.

    1986-01-01

    An improved process for thermal solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a hydrogen donor solvent comprises pretreating the coal with a binary mixture of an aromatic hydrocarbon and an aliphatic alcohol at a temperature below 300.degree. C. before the hydroliquefaction step. This treatment generally increases both conversion of coal and yields of oil.

  12. Catalytic coal liquefaction with treated solvent and SRC recycle

    DOE Patents [OSTI]

    Garg, Diwakar; Givens, Edwin N.; Schweighardt, Frank K.

    1986-01-01

    A process for the solvent refining of coal to distillable, pentane soluble products using a dephenolated and denitrogenated recycle solvent and a recycled, pentane-insoluble, solvent-refined coal material, which process provides enhanced oil-make in the conversion of coal.

  13. Drying low rank coal and retarding spontaneous ignition

    SciTech Connect (OSTI)

    Bixel, J.C.; Bellow, E.J.; Heaney, W.F.; Facinelli, S.H.

    1989-05-09

    A method is described of producing a dried particulate coal fuel having a reduced tendency to ignite spontaneously comprising spraying and intimately mixing the dried coal with an aqueous emulsion of a material selected from the group consisting of foots oils, petrolatum filtrate, and hydrocracker recycle oil.

  14. " Level: National Data and Regional Totals;"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2002;" " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Thousand Barrels." ,,"Residual Fuel Oil",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total","

  15. " Level: National Data and Regional Totals;"

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2002; " " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Thousand Barrels." ,,"Distillate Fuel Oil",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total","

  16. " Level: National Data and Regional Totals;"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2006;" " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Thousand Barrels." ,,"Residual Fuel Oil",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total","

  17. " Level: National Data and Regional Totals;"

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2006; " " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Thousand Barrels." ,,"Distillate Fuel Oil",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total","

  18. Pelletization of fine coals. Final report

    SciTech Connect (OSTI)

    Sastry, K.V.S.

    1995-12-31

    Coal is one of the most abundant energy resources in the US with nearly 800 million tons of it being mined annually. Process and environmental demands for low-ash, low-sulfur coals and economic constraints for high productivity are leading the coal industry to use such modern mining methods as longwall mining and such newer coal processing techniques as froth flotation, oil agglomeration, chemical cleaning and synthetic fuel production. All these processes are faced with one common problem area--fine coals. Dealing effectively with these fine coals during handling, storage, transportation, and/or processing continues to be a challenge facing the industry. Agglomeration by the unit operation of pelletization consists of tumbling moist fines in drums or discs. Past experimental work and limited commercial practice have shown that pelletization can alleviate the problems associated with fine coals. However, it was recognized that there exists a serious need for delineating the fundamental principles of fine coal pelletization. Accordingly, a research program has been carried involving four specific topics: (i) experimental investigation of coal pelletization kinetics, (ii) understanding the surface principles of coal pelletization, (iii) modeling of coal pelletization processes, and (iv) simulation of fine coal pelletization circuits. This report summarizes the major findings and provides relevant details of the research effort.

  19. Coal reserves are plentiful but unevenly distributed

    SciTech Connect (OSTI)

    Jeremic, M.L.

    1981-07-01

    There is plenty of coal in Canada. The estimated coal resources are more than 360,000,000,000 tons with most of this coal located in the western provinces. The estimated minable coal reserves are more than 16,000,000,000 tons and the recoverable coal is more than 6,000,000,000 tons. The latter figure reflects the lack of current development in many coalfields. Very recent and current exploration for coal as well as for oil and gas has indicated coal resources in addition to those already estimated. Incremental additions to coal resources can be expected in northern and eastern Canada. In the latter region, more than 85 percent of the total coal resources are beneath the ocean. The main coal deposits in western Canada are very far from the large industrial markets of Ontario and Quebec. They are closer, yet still quite distant, from export ports on the Pacific Ocean. Current efforts to improve coal transportation are expected to decrease the disadvantages of the unfavorable location of the western coalfields. This will increase the coal reserves in the region as further exploration will surely follow.

  20. China's Coal: Demand, Constraints, and Externalities

    SciTech Connect (OSTI)

    Aden, Nathaniel; Fridley, David; Zheng, Nina

    2009-07-01

    This study analyzes China's coal industry by focusing on four related areas. First, data are reviewed to identify the major drivers of historical and future coal demand. Second, resource constraints and transport bottlenecks are analyzed to evaluate demand and growth scenarios. The third area assesses the physical requirements of substituting coal demand growth with other primary energy forms. Finally, the study examines the carbon- and environmental implications of China's past and future coal consumption. There are three sections that address these areas by identifying particular characteristics of China's coal industry, quantifying factors driving demand, and analyzing supply scenarios: (1) reviews the range of Chinese and international estimates of remaining coal reserves and resources as well as key characteristics of China's coal industry including historical production, resource requirements, and prices; (2) quantifies the largest drivers of coal usage to produce a bottom-up reference projection of 2025 coal demand; and (3) analyzes coal supply constraints, substitution options, and environmental externalities. Finally, the last section presents conclusions on the role of coal in China's ongoing energy and economic development. China has been, is, and will continue to be a coal-powered economy. In 2007 Chinese coal production contained more energy than total Middle Eastern oil production. The rapid growth of coal demand after 2001 created supply strains and bottlenecks that raise questions about sustainability. Urbanization, heavy industrial growth, and increasing per-capita income are the primary interrelated drivers of rising coal usage. In 2007, the power sector, iron and steel, and cement production accounted for 66% of coal consumption. Power generation is becoming more efficient, but even extensive roll-out of the highest efficiency units would save only 14% of projected 2025 coal demand for the power sector. A new wedge of future coal consumption is

  1. Converting coal to liquid fuels. [US DOE

    SciTech Connect (OSTI)

    Not Available

    1983-07-01

    Liquid fuels play a vital role in the US economy. Oil represents about 40 percent of the energy consumed each year in this country. In many cases, it fills needs for which other energy forms cannot substitute efficiently or economically - in transportation, for example. Despite a current world-wide surplus of oil, conventional petroleum is a depletable resource. It inevitably will become harder and more expensive to extract. Already in the US, most of the cheap, easily reached oil has been found and extracted. Even under optimistic projections of new discoveries, domestic oil production, particularly in the lower 48 states, will most likely continue to drop. A future alternative to conventional petroleum could be liquid fuels made from coal. The technique is called coal liquefaction. From 1 to 3 barrels of oil can be made from each ton of coal. The basic technology is known; the major obstacles in the US have been the high costs of the synthetic oil and the risks of building large, multi-billion dollar first-of-a-kind plants. Yet, as natural petroleum becomes less plentiful and more expensive, oil made from abundant coal could someday become an increasingly important energy option. To prepare for that day, the US government is working with private industries and universities to establish a sound base of technical knowledge in coal liquefaction.

  2. NETL: Coal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coal In response to concerns of climate change, the United States is contemplating a complete and rapid transformation of the way it both produces and consumes energy to significantly reduce its carbon emissions. The integrated Coal Program focuses on retaining the benefits of continuing to use coal to produce electric power. This strategy can help us depend less on foreign sources of energy, respond to the world's growing climate concerns, and compete economically. It also will ensure that our

  3. Coal conversion. 1979 technical report

    SciTech Connect (OSTI)

    1980-09-01

    Individual reports are made on research programs which are being conducted by various organizations and institutions for the commercial development of processes for converting coal into products that substitute for these derived from oil and natural gas. Gasification, liquefaction, and demonstration processes and plants are covered. (DLC)

  4. ,,,,"Reasons that Made Distillate Fuel Oil Unswitchable"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Relative Standard Errors for Table 10.24;" " Unit: Percents." ,,,,"Reasons that Made Distillate Fuel Oil Unswitchable" " "," ",,,,,,,,,,,,," " ,,"Total Amount of ","Total Amount of","Equipment is Not","Switching","Unavailable ",,"Long-Term","Unavailable",,"Combinations of " "NAICS"," ","Distillate Fuel Oil","Unswitchable

  5. ,,,,"Reasons that Made Residual Fuel Oil Unswitchable"

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Relative Standard Errors for Table 10.25;" " Unit: Percents." ,,,,"Reasons that Made Residual Fuel Oil Unswitchable" " "," ",,,,,,,,,,,,," " ,,"Total Amount of ","Total Amount of","Equipment is Not","Switching","Unavailable ",,"Long-Term","Unavailable",,"Combinations of " "NAICS"," ","Residual Fuel Oil ","Unswitchable

  6. Enhancement of surface properties for coal beneficiation. Final report

    SciTech Connect (OSTI)

    Chander, S.; Aplan, F.F.

    1992-01-30

    This report will focus on means of pyrite removal from coal using surface-based coal cleaning technologies. The major subjects being addressed in this study are the natural and modulated surface properties of coal and pyrite and how they may best be utilized to facilitate their separation using advanced surface-based coal cleaning technology. Emphasis is based on modified flotation and oil agglomerative processes and the basic principles involved. The four areas being addressed are: (1) Collectorless flotation of pyrite; (2) Modulation of pyrite and coal hydrophobicity; (3) Emulsion processes and principles; (4) Evaluation of coal hydrophobicity.

  7. Coal-fired boiler for petroleum refinery

    SciTech Connect (OSTI)

    Ketterman, W.R.; Heinzmann, D.A.

    1982-01-01

    There has been a significant amount of interest in conversion from oil/gas fired boilers to coal-fired equipment since the Arab oil embargo of 1973. The CRA Incorporated Coffeyville Refinery decided in 1977 to proceed with the installation of a 86.183 Kg/h coal fired boiler to generate process steam at 650 psig (4,482 k Pa) 596/sup 0/F (313/sup 0/C). A significant portion of this steam is passed through steam turbines to obtain mechanical power. Building and operating a coal-fired steam plant is a ''Different Kettle of Fish'' from building and operating an oil/gas-fired steam plant. The intention of this paper is to deal with some of the ''Why's and Wherefores'' of the conversion to coal-fired equipment.

  8. Clean Coal Diesel Demonstration Project

    SciTech Connect (OSTI)

    Robert Wilson

    2006-10-31

    A Clean Coal Diesel project was undertaken to demonstrate a new Clean Coal Technology that offers technical, economic and environmental advantages over conventional power generating methods. This innovative technology (developed to the prototype stage in an earlier DOE project completed in 1992) enables utilization of pre-processed clean coal fuel in large-bore, medium-speed, diesel engines. The diesel engines are conventional modern engines in many respects, except they are specially fitted with hardened parts to be compatible with the traces of abrasive ash in the coal-slurry fuel. Industrial and Municipal power generating applications in the 10 to 100 megawatt size range are the target applications. There are hundreds of such reciprocating engine power-plants operating throughout the world today on natural gas and/or heavy fuel oil.

  9. Two-stage, close coupled catalytic liquefaction of coal

    SciTech Connect (OSTI)

    Comolli, A.G.; Johanson, E.S.; Panvelker, S.V.; Popper, G.A.; Smith, T.O.

    1990-09-01

    During the first quarter of 1990, work was carried out in the microautoclave, microreactor, and Bench-Scale units. An economics analysis on sub-bituminous coal processing at two space velocities was also completed. Several supported catalysts and a sample of iron oxide were screened in the microautoclave unsulfided and sulfided with DMDS and TNPS. A second shipment of Black Thunder coal from Wilsonville, oil agglomerated cleaned Illinois {number sign}6 coal from Homer City, OTISCA cleaned coal a New Mexico coal were evaluated for relative conversions with and without catalyst. Results of Bench-Scale developments with cleaned, oil agglomerated, Illinois {number sign}6 coal from Homer City(CC-6), Dispersed Catalyst/Supported Catalyst Two-Stage and reversed sequential operation (CC-7), on Black Thunder Coal (CC-7), and preliminary observations on OTISCA cleaned coal are presented. The oil agglomerated cleaned coal gave higher conversion and distillate production than the OTISCA cleaned coal. The Dispersed/Supported Two-Stage operation yielded higher gas production than the reverse sequence but also showed the higher coal conversion. Economic analysis of sub-bituminous coal processing at two space velocities showed a 3% higher return on investment with a 50% increase in space velocity. 13 tabs.

  10. Coal: America's energy future. Volume I

    SciTech Connect (OSTI)

    2006-03-15

    Secretary of Energy Samuel W. Bodman requested the National Coal Council in April 2005 a report identifying the challenges and opportunities of more fully exploring the USA's domestic coal resources to meet the nations' future energy needs. This resultant report addresses the Secretary's request in the context of the President's focus, with eight findings and recommendations that would use technology to leverage the USA's extensive coal assets and reduce dependence on imported energy. Volume I outlines these findings and recommendations. Volume II provides technical data and case histories to support the findings and recommendations. Chapter headings of Volume I are: Coal-to-Liquids to Produce 2.6 MMbbl/d; Coal-to-Natural Gas to Produce 4.0 Tcf Per Year; Coal-to-Clean Electricity; Coal to Produce Ethanol; Coal-to-Hydrogen; Enhanced Oil and Gas (Coalbed Methane); Recovery as Carbon Management Strategies; Delineate U.S. Coal Reserves and Transportation Constraints as Part of an Effort to Maximize U.S. Coal Production; and Penn State Study, 'Economic Benefits of Coal Conversion Investments'.

  11. Radionuclides in Western coal. Final report

    SciTech Connect (OSTI)

    Abbott, D.T.; Styron, C.E.; Casella, V.R.

    1983-09-23

    The increase in domestic energy production coupled with the switch from oil and natural gas to coal as a boiler-fuel source have prompted various federal agencies to assess the potential environmental and health risks associated with coal-fired power plants. Because it has been suggested that Western coals contain more uranium than Eastern coals, particular concern has been expressed about radioactive emissions from the increasing number of power plants that burn low-sulfur Western coal. As a result, the radionuclides in coal program was established to analyze low-sulfur coal reserves in Western coal fields for radioactivity. Samples from seams of obvious commercial value were taken from 19 operating mines that represented 65% of Western coal production. Although the present study did not delve deeply into underlying causative factors, the following general conclusions were reached. Commercially exploited Western coals do not show any alarming pattern of radionuclide content and probably have lower radioactivity levels than Eastern coals. The materials that were present appeared to be in secular equilibrium in coal, and a detailed dose assessment failed to show a significant hazard associated with the combustion of Western coal. Flue gas desulfurization technology apparently has no significant impact on radionuclide availability, nor does it pose any significant radiologic health risks. This study has also shown that Western coals are not more radioactive than most soils and that most solid combustion products have emanation powers <1%, which greatly reduce dose estimates from this pathway. In summary, the current use of mined, Western coals in fossil-fueled power plants does not present any significant radiological hazard.

  12. Co-processing of carbonaceous solids and petroleum oil

    DOE Patents [OSTI]

    Gupta, Avinash; Greene, Marvin I.

    1992-01-01

    In a process for producing distillates from coal by a first stage thermal liquefaction followed by a catalytic hydrogenation, liquefaction solvent is added at points spaced over the length of the thermal liquefaction heater. Coal may be co-processed with petroleum oil by adding pre-hydrogenated oil to the first stage or unhydrogenated oil to the second stage.

  13. Influence of additives on the increase of the heating value of Bayah’s coal with upgrading brown coal (UBC) method

    SciTech Connect (OSTI)

    Heriyanto, Heri; Widya Ernayati, K.; Umam, Chairul; Margareta, Nita

    2015-12-29

    UBC (upgrading brown coal) is a method of improving the quality of coal by using oil as an additive. Through processing in the oil media, not just the calories that increase, but there is also water repellent properties and a decrease in the tendency of spontaneous combustion of coal products produced. The results showed a decrease in the water levels of natural coal bayah reached 69%, increase in calorific value reached 21.2%. Increased caloric value and reduced water content caused by the water molecules on replacing seal the pores of coal by oil and atoms C on the oil that is bound to increase the percentage of coal carbon. As a result of this experiment is, the produced coal has better calorific value, the increasing of this new calorific value up to 23.8% with the additive waste lubricant, and the moisture content reduced up to 69.45%.

  14. Outlook and Challenges for Chinese Coal

    SciTech Connect (OSTI)

    Aden, Nathaniel T.; Fridley, David G.; Zheng, Nina

    2008-06-20

    China's economy in its current mode of growth. Ongoing dependence on coal reduces China's ability to mitigate carbon dioxide emissions growth. If coal demand remains on its current growth path, carbon dioxide emissions from coal combustion alone would exceed total US energy-related carbon emissions by 2010. Broadening awareness of the environmental costs of coal mining, transport, and combustion is raising the pressure on Chinese policy makers to find alternative energy sources. Within China's coal-dominated energy system, domestic transportation has emerged as the largest bottleneck for coal industry growth and is likely to remain a constraint to further expansion. China is short of high-quality reserves, but is producing its best coal first. Declining quality will further strain production and transport. Transporting coal to users has overloaded the train system and dramatically increased truck use, raising transport oil demand. Growing international imports have helped to offset domestic transport bottlenecks. In the long term, import demand is likely to exceed 200 mt by 2025, significantly impacting regional markets. The looming coal gap threatens to derail China's growth path, possibly undermining political, economic, and social stability. High coal prices and domestic shortages will have regional and global effects. Regarding China's role as a global manufacturing center, a domestic coal gap will increase prices and constrain growth. Within the Asia-Pacific region, China's coal gap is likely to bring about increased competition with other coal-importing countries including Japan, South Korea, Taiwan, and India. As with petroleum, China may respond with a government-supported 'going-out' strategy of resource acquisition and vertical integration. Given its population and growing resource constraints, China may favor energy security, competitiveness, and local environmental protection over global climate change mitigation. The possibility of a large coal gap suggests

  15. Mild coal pretreatment to improve liquefaction reactivity. Quarterly technical progress report, June--August 1991

    SciTech Connect (OSTI)

    Miller, R.L.

    1991-12-31

    This report describes work completed during the fourth quarter of a three year project to study the effects of mild chemical pretreatment on coal dissolution reactivity during low severity liquefaction or coal/oil coprocessing. The overall objective of this research is to elucidate changes in the chemical and physical structure of coal by pretreating with methanol or other simple organic solvent and a trace amount of hydrochloric acid and measure the influence of these changes on coal dissolution reactivity. This work is part of a larger effort to develop a new coal liquefaction or coal/oil coprocessing scheme consisting of three main process steps: (1) mile pretreatment of the feed coal to enhance dissolution reactivity and dry the coal, (2) low severity thermal dissolution of the pretreated coal to obtain a very reactive coal-derived residual material amenable to upgrading, and (3) catalytic upgrading of the residual products to distillate liquids.

  16. Coal Distribution Database, 2008

    U.S. Energy Information Administration (EIA) Indexed Site

    Processing Coal Plants and Commercial and Institutional Coal Users" and Form EIA-7A, "Coal Production and Preparation Report." Appendix A Assigning Missing Data to EIA-923...

  17. Coal industry annual 1994

    SciTech Connect (OSTI)

    1995-10-01

    This report presents data on coal consumption, distribution, coal stocks, quality, prices, coal production information, and emissions for a wide audience.

  18. Coal Market Module

    Gasoline and Diesel Fuel Update (EIA)

    power generation, industrial steam generation, coal-to-liquids production, coal coke manufacturing, residentialcommercial consumption, and coal exports) within the CMM. By...

  19. A fresh look at coal-derived liquid fuels

    SciTech Connect (OSTI)

    Paul, A.D.

    2009-01-15

    35% of the world's energy comes from oil, and 96% of that oil is used for transportation. The current number of vehicles globally is estimated to be 700 million; that number is expected to double overall by 2030, and to triple in developing countries. Now consider that the US has 27% of the world's supply of coal yet only 2% of the oil. Coal-to-liquids technologies could bridge the gap between US fuel supply and demand. The advantages of coal-derived liquid fuels are discussed in this article compared to the challenges of alternative feedstocks of oil sands, oil shale and renewable sources. It is argued that pollutant emissions from coal-to-liquid facilities could be minimal because sulfur compounds will be removed, contaminants need to be removed for the FT process, and technologies are available for removing solid wastes and nitrogen oxides. If CO{sub 2} emissions for coal-derived liquid plants are captured and sequestered, overall emissions of CO{sub 2} would be equal or less than those from petroleum. Although coal liquefaction requires large volumes of water, most water used can be recycled. Converting coal to liquid fuels could, at least in the near term, bring a higher level of stability to world oil prices and the global economy and could serve as insurance for the US against price hikes from oil-producing countries. 7 figs.

  20. Coal liquefaction with preasphaltene recycle

    DOE Patents [OSTI]

    Weimer, Robert F.; Miller, Robert N.

    1986-01-01

    A coal liquefaction system is disclosed with a novel preasphaltene recycle from a supercritical extraction unit to the slurry mix tank wherein the recycle stream contains at least 90% preasphaltenes (benzene insoluble, pyridine soluble organics) with other residual materials such as unconverted coal and ash. This subject process results in the production of asphaltene materials which can be subjected to hydrotreating to acquire a substitute for No. 6 fuel oil. The preasphaltene-predominant recycle reduces the hydrogen consumption for a process where asphaltene material is being sought.

  1. Electricity from coal and utilization of coal combustion by-products

    SciTech Connect (OSTI)

    Demirbas, A.

    2008-07-01

    Most electricity in the world is conventionally generated using coal, oil, natural gas, nuclear energy, or hydropower. Due to environmental concerns, there is a growing interest in alternative energy sources for heat and electricity production. The major by-products obtained from coal combustion are fly ash, bottom ash, boiler slag, and flue gas desulfurization (FGD) materials. The solid wastes produced in coal-fired power plants create problems for both power-generating industries and environmentalists. The coal fly ash and bottom ash samples may be used as cementitious materials.

  2. "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","and Breeze","Other(g)"

    U.S. Energy Information Administration (EIA) Indexed Site

    3.4 Relative Standard Errors for Table 3.4;" " Unit: Percents." " "," "," ",," "," "," "," "," "," "," ",," " " "," ","Any" "NAICS"," ","Energy","Net","Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and

  3. "Code(a)","Subsector and Industry","Source(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)"

    U.S. Energy Information Administration (EIA) Indexed Site

    2.4 Relative Standard Errors for Table 2.4;" " Unit: Percents." " "," "," "," "," "," "," "," "," "," ",," " " "," ","Any Combustible" "NAICS"," ","Energy","Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and

  4. "Code(a)","Subsector and Industry","Total","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal","and Breeze","Other(e)"

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Relative Standard Errors for Table 7.9;" " Unit: Percents." " "," "," ",," "," "," "," "," "," "," "," " " "," " "NAICS"," "," ",,"Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and

  5. United States: coal's renaissance may be at hand. [Coal; 1970 to 1979

    SciTech Connect (OSTI)

    Quenon, R.H.

    1980-11-01

    During the first half of 1980 steam coal exports from the United States to overseas customers increased nearly eight-fold to more than 5,100,000 tons. Total coal exports for the same period increased by 37 percent to 38,400,000 tons. Despite the recent growth in demand, the United States coal industry still finds itself a seriously demand-constrained industry. As a result, mines have been closed, miners put out of work, and expansion plans shelved. At present, the industry has the capacity to produce about 100,000,000 tons more coal each year than the market is absorbing. This situation exists largely because of capacity expansions begun in the early and mid-1970's following the oil embargo and the expectation of a much more rapid growth in coal use than actually occurred. This excess capacity can be brought on line quickly and additional capacity can be added if there is a greater demand for coal. Since the 1973 oil embargo, United States government policies designed to increase the use of coal have been largely offset by government actions increasing the costs of mining and using coal. In fact, while price and security of supply advantages lead to increased coal use, the rate of increase has been and will continue to be held down by government policies and requirements. The coal industry is continuing to work to bring about greater governmental and political awareness of actions which hold down the rate of increase in coal use. The National Coal Association identified 44 specific problem areas where government policies or requirements are impeding coal production and use. (LTN)

  6. Strategic Significance of Americas Oil Shale Resource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... When the petroleum production peak occurs, the consequences will be severe if import-depen... unconventional fossil energy sources, namely liquids from oil shale, coal, and tar sand. ...

  7. Keystone coal industry manual

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    The 1994 Keystone Coal Industry Manual is presented. Keystone has served as the one industry reference authority for the many diverse organizations concerned with the supply and utilization of coal in the USA and Canada. Through the continuing efforts of coal producers, buyers, users, sellers, and equipment designers and manufacturers, the coal industry supplies an abundant and economical fuel that is indispensable in meeting the expanding energy needs of North America. The manual is divided into the following sections: coal sales companies, coal export, transportation of coal, consumer directories, coal associations and groups, consulting and financial firms, buyers guide, industry statistics and ownership, coal preparation, coal mine directory, and coal seams.

  8. Coal and Coal-Biomass to Liquids

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Coal-Biomass to Liquids Turning coal into liquid fuels like gasoline, diesel and jet fuel, with biomass to reduce carbon dioxide emissions, is the main goal of the Coal and ...

  9. Originally Released: July 2009

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Nonfuel (Feedstock) Use of Combustible Energy, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." ,,,,,,,,,,,"Coke" ,,,,"Residual","Distillate","Natural Gas(c)",,"LPG and",,"Coal","and Breeze" "NAICS",,"Total",,"Fuel Oil","Fuel

  10. Released: March 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Nonfuel (Feedstock) Use of Combustible Energy, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." ,,,,,,,,"Coke" ,,,"Residual","Distillate","Natural Gas(c)","LPG and","Coal","and Breeze" "NAICS",,"Total","Fuel Oil","Fuel

  11. By Coal Origin State

    Gasoline and Diesel Fuel Update (EIA)

    Annual Coal Distribution Report 2010 U.S. Energy Information Administration | Annual Coal Distribution Report 2010 Alabama ...

  12. Regional population and employment adjustments to rising coal production. [USA

    SciTech Connect (OSTI)

    Myers, P.R.

    1983-11-01

    Annual U.S. coal production rose by nearly 17 percent in the years following the oil crisis of 1973. This increase induced slight gains in population in the Nation's 289 coal counties but greater gains in employment--both in coal mining and in other industries. Coal counties in the West increased production and employment more than those in the Interior and East. Increased coal mining caused employment to expand in secondary industries (contract construction, transportation, finance), but had little effect on agriculture (employment down) and manufacturing (employment up slightly).

  13. ,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)"

    U.S. Energy Information Administration (EIA) Indexed Site

    10.9;" " Unit: Percents." ,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)" ...tchable","Switchable","Receipts(e)","Gas","Fuel Oil","Coal","LPG","Breeze","Other(f)" ...

  14. An Industrial Membrane System Suitable for Distributed Used Oil...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    such as thermal and chemical stability, including waste oil re-refining, coal tar oil clean-up, and FCC slurry upgrading. * In parallel, use these applications and know-how ...

  15. Pennsylvania Bureau of Oil and Gas Management | Open Energy Informatio...

    Open Energy Info (EERE)

    and the environment. The bureau develops policy and programs for the regulation of oil and gas development and production pursuant to the Oil and Gas Act, the Coal and Gas...

  16. Health effects of coal technologies: research needs

    SciTech Connect (OSTI)

    Not Available

    1980-09-01

    In this 1977 Environmental Message, President Carter directed the establishment of a joint program to identify the health and environmental problems associated with advanced energy technologies and to review the adequacy of present research programs. In response to the President's directive, representatives of three agencies formed the Federal Interagency Committee on the Health and Environmental Effects of Energy Technologies. This report was prepared by the Health Effects Working Group on Coal Technologies for the Committee. In this report, the major health-related problems associated with conventional coal mining, storage, transportation, and combustion, and with chemical coal cleaning, in situ gasification, fluidized bed combustion, magnetohydrodynamic combustion, cocombustion of coal-oil mixtures, and cocombustion of coal with municipal solid waste are identified. The report also contains recommended research required to address the identified problems.

  17. Coal liquefaction process using pretreatment with a binary solvent mixture

    DOE Patents [OSTI]

    Miller, R.N.

    1986-10-14

    An improved process for thermal solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a hydrogen donor solvent comprises pretreating the coal with a binary mixture of an aromatic hydrocarbon and an aliphatic alcohol at a temperature below 300 C before the hydroliquefaction step. This treatment generally increases both conversion of coal and yields of oil. 1 fig.

  18. EIA -Quarterly Coal Distribution

    U.S. Energy Information Administration (EIA) Indexed Site

    - Coal Distribution Quarterly Coal Distribution Archives Release Date: August 17, 2016 Next Release Date: December 22, 2016 The Quarterly Coal Distribution Report (QCDR) provides detailed quarterly data on U.S. domestic coal distribution by coal origin, coal destination, mode of transportation and consuming sector. All data are preliminary and superseded by the final Coal Distribution - Annual Report. Year/Quarters By origin State By destination State Report Data File Report Data File 2009

  19. Coal industry annual 1997

    SciTech Connect (OSTI)

    1998-12-01

    Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs.

  20. Coal Industry Annual 1995

    SciTech Connect (OSTI)

    1996-10-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995.

  1. Coal industry annual 1996

    SciTech Connect (OSTI)

    1997-11-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States.This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 24 million short tons for 1996. 14 figs., 145 tabs.

  2. REFINERY INTEGRATION OF BY-PRODUCTS FROM COAL-DERIVED JET FUELS

    SciTech Connect (OSTI)

    Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2005-05-18

    This report summarizes the accomplishments toward project goals during the first six months of the second year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

  3. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    SciTech Connect (OSTI)

    Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; John Andresen

    2004-09-17

    This report summarizes the accomplishments toward project goals during the first twelve months of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

  4. REFINERY INTEGRATION OF BY-PRODUCTS FROM COAL-DERIVED JET FUELS

    SciTech Connect (OSTI)

    Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; John Andresen

    2004-04-23

    This report summarizes the accomplishments toward project goals during the first six months of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

  5. Oil shale technology

    SciTech Connect (OSTI)

    Lee, S. (Akron Univ., OH (United States). Dept. of Chemical Engineering)

    1991-01-01

    Oil shale is undoubtedly an excellent energy source that has great abundance and world-wide distribution. Oil shale industries have seen ups and downs over more than 100 years, depending on the availability and price of conventional petroleum crudes. Market forces as well as environmental factors will greatly affect the interest in development of oil shale. Besides competing with conventional crude oil and natural gas, shale oil will have to compete favorably with coal-derived fuels for similar markets. Crude shale oil is obtained from oil shale by a relatively simple process called retorting. However, the process economics are greatly affected by the thermal efficiencies, the richness of shale, the mass transfer effectiveness, the conversion efficiency, the design of retort, the environmental post-treatment, etc. A great many process ideas and patents related to the oil shale pyrolysis have been developed; however, relatively few field and engineering data have been published. Due to the vast heterogeneity of oil shale and to the complexities of physicochemical process mechanisms, scientific or technological generalization of oil shale retorting is difficult to achieve. Dwindling supplied of worldwide petroleum reserves, as well as the unprecedented appetite of mankind for clean liquid fuel, has made the public concern for future energy market grow rapidly. the clean coal technology and the alternate fuel technology are currently of great significance not only to policy makers, but also to process and chemical researchers. In this book, efforts have been made to make a comprehensive text for the science and technology of oil shale utilization. Therefore, subjects dealing with the terminological definitions, geology and petrology, chemistry, characterization, process engineering, mathematical modeling, chemical reaction engineering, experimental methods, and statistical experimental design, etc. are covered in detail.

  6. Microbial solubilization of coal

    DOE Patents [OSTI]

    Strandberg, G.W.; Lewis, S.N.

    1988-01-21

    The present invention relates to a cell-free preparation and process for the microbial solubilization of coal into solubilized coal products. More specifically, the present invention relates to bacterial solubilization of coal into solubilized coal products and a cell-free bacterial byproduct useful for solubilizing coal. 5 tabs.

  7. Coal bed methane potential in Venezuela-The forgotten resource

    SciTech Connect (OSTI)

    Vasquez-Herrera, A.R.; Bereskin, S.R.; McLennan, J.D.

    1996-08-01

    In nations already possessing riches of hydrocarbons situated in conventional reservoirs, evaluation of coal-bearing sequences for potential gas is logically delayed or ignored. Nonetheless, Venezuelan coals have long been recognized as stratigraphically associated with oil accumulations, but because coalbed methane (CBM) is a relatively new worldwide phenomenon, CBM potential has not been widely assessed in the country. Two general areas contain vast accumulations of coal for potential CBM activity: (1) the Maracaibo basin, containing the Guasare (northwest), Lobatera-Santo Domingo (southwest) and Urumaco (northeast) districts; and (2) the Oficina basin in eastern Venezuela possessing abundant accumulations related to the Faja Petrolifera de Orinoco (Orinoco Oil Belt). In both basins, high volatile bituminous and lignitic coals of mostly Oligo-Miocene age are abundantly found. Older coals are also present especially in the Maracaibo area. Two factors represent powerful incentives for CBM exploitation: addition of known reserves for economic considerations, and aid in bringing heavy crude oil to the surface by additional gas lift and oil viscosity reduction. Other favorable factors important for CBM methodology include: (1) abundant coals lying above known conventional reservoir targets; (2).6 - 1% vitrinite reflectance measurements in the Orinoco Oil Belt; (3) many coals occurring above 1500 m; (4) documented mine explosions especially in the 1920s and 1930s; (5) a strong tectonic overprint to perhaps add shear fractures to already cleated coals; (6) individual coal thickness up to 12 m with averages in the .8 m range; and (7) gas shows while drilling coal-rich intervals.

  8. Clean coal

    SciTech Connect (OSTI)

    Liang-Shih Fan; Fanxing Li

    2006-07-15

    The article describes the physics-based techniques that are helping in clean coal conversion processes. The major challenge is to find a cost- effective way to remove carbon dioxide from the flue gas of power plants. One industrially proven method is to dissolve CO{sub 2} in the solvent monoethanolamine (MEA) at a temperature of 38{sup o}C and then release it from the solvent in another unit when heated to 150{sup o}C. This produces CO{sub 2} ready for sequestration. Research is in progress with alternative solvents that require less energy. Another technique is to use enriched oxygen in place of air in the combustion process which produces CO{sub 2} ready for sequestration. A process that is more attractive from an energy management viewpoint is to gasify coal so that it is partially oxidized, producing a fuel while consuming significantly less oxygen. Several IGCC schemes are in operation which produce syngas for use as a feedstock, in addition to electricity and hydrogen. These schemes are costly as they require an air separation unit. Novel approaches to coal gasification based on 'membrane separation' or chemical looping could reduce the costs significantly while effectively capturing carbon dioxide. 1 ref., 2 figs., 1 photo.

  9. Mechanisms and kinetics of coal hydrogenation. Quarterly progress report, October-December 1979

    SciTech Connect (OSTI)

    Gary, J. H.; Baldwin, R. M.; Bain, R. L.

    1980-02-01

    Colorado School of Mines is conducting coal hydrogenation research with the following objectives and scope of work: (1) Comparison of the rates of coal hydrogenation in continuous flow stirred tank and tube flow reactors using pure hydrogen, catalyzed CO-STEAM, and syngas processing conditions; (2) Investigation of the influence of coal rank on the rate of hydrogenation of coal to preasphaltene, asphaltenes, and oil in batch reactors; (3) Batch evaluation of the effect of operating conditions (temperature and pressure) on the rate of hydrogenation of coal-derived preasphaltanes and asphaltenes; (4) Determination of the effect of selected disposable catalysts on the rate of batch hydrogenation of preasphaltenes and asphaltenes and selected bituminous coals. Testing and evaluation of promising catalyst systems in the contunuous processing unit; (5) Formulation of a unified kinetic/mechanistic model for coal liquefaction taking into account petrography of the feed coal and hydrocarbon lumps in the product oil.

  10. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Destination State ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2012 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2012 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal

  11. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Origin State ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2012 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2012 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic coal

  12. Coal industry annual 1993

    SciTech Connect (OSTI)

    Not Available

    1994-12-06

    Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993.

  13. Coal liquefaction and hydrogenation

    DOE Patents [OSTI]

    Schindler, Harvey D.; Chen, James M.

    1985-01-01

    Disclosed is a coal liquefaction process using two stages. The first stage liquefies the coal and maximizes the product while the second stage hydrocracks the remainder of the coal liquid to produce solvent.

  14. ,"for Electricity(a)","Fuel Oil","Diesel Fuel(b)","(billion"...

    U.S. Energy Information Administration (EIA) Indexed Site

    Unit: Percents." ,,,"Distillate",,,"Coal" ,,,"Fuel Oil",,,"(excluding Coal" ,"Net Demand","Residual","and","Natural Gas(c)","LPG and","Coke and Breeze)" ,"for Electricity(a)","Fuel ...

  15. Process and apparatus for coal hydrogenation

    DOE Patents [OSTI]

    Ruether, John A. (McMurray, PA); Simpson, Theodore B. (McLean, VA)

    1991-01-01

    In a coal liquefaction process an aqueous slurry of coal is prepared containing a dissolved liquefaction catalyst. A small quantity of oil is added to the slurry and then coal-oil agglomerates are prepared by agitation of the slurry at atmospheric pressure. The resulting mixture is drained of excess water and dried at atmospheric pressure leaving catalyst deposited on the agglomerates. The agglomerates then are fed to an extrusion device where they are formed into a continuous ribbon of extrudate and fed into a hydrogenation reactor at elevated pressure and temperature. The catalytic hydrogenation converts the extrudate primarily to liquid hydrocarbons in the reactor. The liquid drained in recovering the agglomerates is recycled.

  16. Process and apparatus for coal hydrogenation

    DOE Patents [OSTI]

    Ruether, John A.

    1988-01-01

    In a coal liquefaction process an aqueous slurry of coal is prepared containing a dissolved liquefaction catalyst. A small quantity of oil is added to the slurry and then coal-oil agglomerates are prepared by agitation of the slurry at atmospheric pressure. The resulting mixture of agglomerates, excess water, dissolved catalyst, and unagglomerated solids is pumped to reaction pressure and then passed through a drainage device where all but a small amount of surface water is removed from the agglomerates. Sufficient catalyst for the reaction is contained in surface water remaining on the agglomerates. The agglomerates fall into the liquefaction reactor countercurrently to a stream of hot gas which is utilized to dry and preheat the agglomerates as well as deposit catalyst on the agglomerates before they enter the reactor where they are converted to primarily liquid products under hydrogen pressure.

  17. Direct use of methane in coal liquefaction

    DOE Patents [OSTI]

    Sundaram, M.S.; Steinberg, M.

    1985-06-19

    This invention relates to a process for converting solid carbonaceous material, such as coal, to liquid and gaseous hydrocarbons utilizing methane, generally at a residence time of about 20 to 120 minutes at a temperature of 250 to 750/sup 0/C, preferably 350 to 450/sup 0/C, pressurized up to 6000 psi, and preferably in the 1000 to 2500 psi range, preferably directly utilizing methane 50 to 100% by volume in a mix of methane and hydrogen. A hydrogen donor solvent or liquid vehicle such as tetralin, tetrahydroquinoline, piperidine, and pyrolidine may be used in a slurry mix where the solvent feed is 0 to 100% by weight of the coal or carbonaceous feed. Carbonaceous feed material can either be natural, such as coal, wood, oil shale, petroleum, tar sands, etc., or man-made residual oils, tars, and heavy hydrocarbon residues from other processing systems. 1 fig.

  18. Direct use of methane in coal liquefaction

    DOE Patents [OSTI]

    Sundaram, Muthu S.; Steinberg, Meyer

    1987-01-01

    This invention relates to a process for converting solid carbonaceous material, such as coal, to liquid and gaseous hydrocarbons utilizing methane, generally at a residence time of about 20-120 minutes at a temperature of 250.degree.-750.degree. C., preferably 350.degree.-450.degree. C., pressurized up to 6000 psi, and preferably in the 1000-2500 psi range, preferably directly utilizing methane 50-100% by volume in a mix of methane and hydrogen. A hydrogen donor solvent or liquid vehicle such as tetralin, tetrahydroquinoline, piperidine, and pyrolidine may be used in a slurry mix where the solvent feed is 0-100% by weight of the coal or carbonaceous feed. Carbonaceous feed material can either be natural, such as coal, wood, oil shale, petroleum, tar sands, etc., or man-made residual oils, tars, and heavy hydrocarbon residues from other processing systems.

  19. Annual Coal Distribution Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Annual Coal Distribution Report Release Date: April 16, 2015 | Next Release Date: March 2016 | full report | RevisionCorrection Revision to the Annual Coal Distribution Report ...

  20. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 1st Quarter 2010 Origin: Alabama (thousand short tons) Coal Destination State...

  1. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 4th Quarter 2011 Origin: Alabama (thousand short tons) Coal Destination State...

  2. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 3rd Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State...

  3. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 3rd Quarter 2011 Origin: Alabama (thousand short tons) Coal Destination State...

  4. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 4th Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State...

  5. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 3rd Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State...

  6. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 4th Quarter 2010 Origin: Alabama (thousand short tons) Coal Destination State...

  7. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 2nd Quarter 2011 Origin: Alabama (thousand short tons) Coal Destination State...

  8. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 3rd Quarter 2010 Origin: Alabama (thousand short tons) Coal Destination State...

  9. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 4th Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State...

  10. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 1st Quarter 2011 Origin: Alabama (thousand short tons) Coal Destination State...

  11. Coal Distribution Database, 2006

    U.S. Energy Information Administration (EIA) Indexed Site

    Domestic Distribution of U.S. Coal by Origin State, Consumer, Destination and Method of Transportation, 2009 Final February 2011 2 Overview of 2009 Coal Distribution Tables...

  12. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 1st Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State...

  13. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 2nd Quarter 2010 Origin: Alabama (thousand short tons) Coal Destination State...

  14. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 1st Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State...

  15. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 2nd Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State...

  16. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 2nd Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State...

  17. NETL: Coal Gasification Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gasification Systems Coal Gasification is a process that can turn coal into clean power, chemicals, hydrogen and transportation fuels, and can be used to capture the carbon from ...

  18. Assessment of coal liquids as refinery feedstocks

    SciTech Connect (OSTI)

    Zhou, P.

    1992-02-01

    The R D of direct coal liquefaction has reached such a stage that current two-stage processes can produce coal liquids with high yields and improved quality at a reasonable cost. To fully realize the potential value, these coal liquids should be refined into high-value liquid transportation fuels. The purpose of this study is to assess coal liquids as feedstocks to be processed by modern petroleum refining technologies. After the introduction, Section 2.0 summarizes ASTM specifications for major transportation fuels: gasoline, jet fuel, and diesel fuel, which serve as a target for coal-liquid refining. A concise description of modern refining processes follows with an emphasis on the requirements for the raw materials. These provide criteria to judge the quality of coal liquids as a refinery feedstock for the production of marketable liquid fuels. Section 3.0 surveys the properties of coal liquids produced by various liquefaction processes. Compared with typical petroleum oils, the current two-stage coal liquids are: Light in boiling range and free of resids and metals; very low in sulfur but relatively high in oxygen; relatively low in hydrogen and high in cyclics content; and essentially toxicologically inactive when end point is lower than 650[degrees]F, particularly after hydroprocessing. Despite these characteristics, the coal liquids are basically similar to petroleum. The modern refining technology is capable of processing coal liquids into transportation fuels meeting all specifications, and hydroprocessinq is obviously the major tool. The important point is the determination of a reasonable product slate and an appropriate refining scheme.

  19. Assessment of coal liquids as refinery feedstocks

    SciTech Connect (OSTI)

    Zhou, P.

    1992-02-01

    The R&D of direct coal liquefaction has reached such a stage that current two-stage processes can produce coal liquids with high yields and improved quality at a reasonable cost. To fully realize the potential value, these coal liquids should be refined into high-value liquid transportation fuels. The purpose of this study is to assess coal liquids as feedstocks to be processed by modern petroleum refining technologies. After the introduction, Section 2.0 summarizes ASTM specifications for major transportation fuels: gasoline, jet fuel, and diesel fuel, which serve as a target for coal-liquid refining. A concise description of modern refining processes follows with an emphasis on the requirements for the raw materials. These provide criteria to judge the quality of coal liquids as a refinery feedstock for the production of marketable liquid fuels. Section 3.0 surveys the properties of coal liquids produced by various liquefaction processes. Compared with typical petroleum oils, the current two-stage coal liquids are: Light in boiling range and free of resids and metals; very low in sulfur but relatively high in oxygen; relatively low in hydrogen and high in cyclics content; and essentially toxicologically inactive when end point is lower than 650{degrees}F, particularly after hydroprocessing. Despite these characteristics, the coal liquids are basically similar to petroleum. The modern refining technology is capable of processing coal liquids into transportation fuels meeting all specifications, and hydroprocessinq is obviously the major tool. The important point is the determination of a reasonable product slate and an appropriate refining scheme.

  20. Coal liquefaction

    DOE Patents [OSTI]

    Schindler, Harvey D.

    1985-01-01

    In a two-stage liquefaction wherein coal, hydrogen and liquefaction solvent are contacted in a first thermal liquefaction zone, followed by recovery of an essentially ash free liquid and a pumpable stream of insoluble material, which includes 850.degree. F.+ liquid, with the essentially ash free liquid then being further upgraded in a second liquefaction zone, the liquefaction solvent for the first stage includes the pumpable stream of insoluble material from the first liquefaction stage, and 850.degree. F.+ liquid from the second liquefaction stage.

  1. Annual Coal Distribution

    Reports and Publications (EIA)

    2016-01-01

    The Annual Coal Distribution Report (ACDR) provides detailed information on domestic coal distribution by origin state, destination state, consumer category, and method of transportation. Also provided is a summary of foreign coal distribution by coal-producing state. All data for the report year are final and this report supersedes all data in the quarterly distribution reports.

  2. Coal production 1988

    SciTech Connect (OSTI)

    Not Available

    1989-11-22

    Coal Production 1988 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, reserves, and stocks to a wide audience including Congress, Federal and State agencies, the coal industry, and the general public. This report also includes data for the demonstrated reserve base of coal in the United States on January 1, 1989. 5 figs., 45 tabs.

  3. Annual Coal Distribution

    Reports and Publications (EIA)

    2015-01-01

    The Annual Coal Distribution Report (ACDR) provides detailed information on domestic coal distribution by origin state, destination state, consumer category, and method of transportation. Also provided is a summary of foreign coal distribution by coal-producing state. All data for the report year are final and this report supersedes all data in the quarterly distribution reports.

  4. Coal transportation: a comparative spatial analysis between unit train and slurry pipeline

    SciTech Connect (OSTI)

    Soltanmohammadi-Sarab, M.

    1986-01-01

    After the 1973 Arab oil embargo and a drastic price rise in crude oil, the demand for coal and, subsequently, the price of coal rose to a new high, thus encouraging further production of coal. The increase in production occurred in most of the coal fields except those in some specific areas, such as West Virginia. Preliminary studies indicate that the high transportation cost of coal contributes to this slacking coal-production pattern. Three related objectives are studied in this dissertation: (a) finding the least-cost mode of coal transportation; (b) determining the new pattern of trade under the chosen mode of coal transportation; and (c) conducting a comparative static analysis of the coal market in the US. Engineering models are used to calculate the average costs of transportation. These models are adjusted for the appropriate economic applications. The mainland US is divided into five regions and the demand and supply of coal in each region is estimated. The estimated cost of coal transportation for both the slurry pipeline and the unit train reveals that the slurry is the lower cost mode of coal transportation for any given distance or amount of coal handled by the system.

  5. Unconventional Oil and Gas Resources

    SciTech Connect (OSTI)

    2006-09-15

    World oil use is projected to grow to 98 million b/d in 2015 and 118 million b/d in 2030. Total world natural gas consumption is projected to rise to 134 Tcf in 2015 and 182 Tcf in 2030. In an era of declining production and increasing demand, economically producing oil and gas from unconventional sources is a key challenge to maintaining global economic growth. Some unconventional hydrocarbon sources are already being developed, including gas shales, tight gas sands, heavy oil, oil sands, and coal bed methane. Roughly 20 years ago, gas production from tight sands, shales, and coals was considered uneconomic. Today, these resources provide 25% of the U.S. gas supply and that number is likely to increase. Venezuela has over 300 billion barrels of unproven extra-heavy oil reserves which would give it the largest reserves of any country in the world. It is currently producing over 550,000 b/d of heavy oil. Unconventional oil is also being produced in Canada from the Athabasca oil sands. 1.6 trillion barrels of oil are locked in the sands of which 175 billion barrels are proven reserves that can be recovered using current technology. Production from 29 companies now operating there exceeds 1 million barrels per day. The report provides an overview of continuous petroleum sources and gives a concise overview of the current status of varying types of unconventional oil and gas resources. Topics covered in the report include: an overview of the history of Oil and Natural Gas; an analysis of the Oil and Natural Gas industries, including current and future production, consumption, and reserves; a detailed description of the different types of unconventional oil and gas resources; an analysis of the key business factors that are driving the increased interest in unconventional resources; an analysis of the barriers that are hindering the development of unconventional resources; profiles of key producing regions; and, profiles of key unconventional oil and gas producers.

  6. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    SciTech Connect (OSTI)

    Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2005-11-17

    This report summarizes the accomplishments toward project goals during the first six months of the second year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Evaluations to assess the quality of coal based fuel oil are reported. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

  7. Combined processing of coal and heavy resids. Progress report, July 16-October 15, 1984

    SciTech Connect (OSTI)

    Curtis, C.W.; Guin, J.A.; Tarrer, A.R.

    1984-01-01

    This quarter's work dealt primarily with the effect of the petroleum solvent on coprocessing and the effect on the solvent of processing at coprocessing conditions. Catalytic upgrading of the petroleum residuum at coprocessing conditions resulted in upgrading by decreasing the heteroatom content, upgrading asphaltenes, and decreasing the viscosity and Conradson Carbon residue percent of the solvents to produce more fluid and less likely to coke materials. Pretreatment of the different petroleum residua by catalytic hydrotreatment followed by extraction improves the amount of coal conversion achieved during coprocessing. For some residua, the hydrotreatment results in an improved solvent yielding high levels, approx. 50%, oil production. As would be expected higher catalyst loading produces higher oil yields for both the original and pretreated residua. Coal conversion is affected by catalyst loading and by the condition of the solvent. In coprocessing, the solvent to coal ratio influences the upgrading of the petroleum material and the conversion of coal. An optimal range of coal concentration between 30 and 50% is observed for both coal conversion and oil production. In catalytic coprocessing, coal has been shown to be upgraded to oil. In some instances, as much as 40% of the coal is converted to oil and 80 to 90% of the oil produced in the coprocessing reaction is made from coal. The composition of the solvent has definite effects on coal conversion and oil yields. When tetralin is added at a 1.5% donable hydrogen level, substantive coal conversion is obtained even in a nitrogen atmosphere. In summary, the petroleum crude or residuum used in the coprocessing reaction is an important factor in the final product obtained. Selection of the proper processing conditions is crucial in achieving product selectivity. 6 references, 17 figures, 17 tables.

  8. Coal data: A reference

    SciTech Connect (OSTI)

    Not Available

    1995-02-01

    This report, Coal Data: A Reference, summarizes basic information on the mining and use of coal, an important source of energy in the US. This report is written for a general audience. The goal is to cover basic material and strike a reasonable compromise between overly generalized statements and detailed analyses. The section ``Supplemental Figures and Tables`` contains statistics, graphs, maps, and other illustrations that show trends, patterns, geographic locations, and similar coal-related information. The section ``Coal Terminology and Related Information`` provides additional information about terms mentioned in the text and introduces some new terms. The last edition of Coal Data: A Reference was published in 1991. The present edition contains updated data as well as expanded reviews and additional information. Added to the text are discussions of coal quality, coal prices, unions, and strikes. The appendix has been expanded to provide statistics on a variety of additional topics, such as: trends in coal production and royalties from Federal and Indian coal leases, hours worked and earnings for coal mine employment, railroad coal shipments and revenues, waterborne coal traffic, coal export loading terminals, utility coal combustion byproducts, and trace elements in coal. The information in this report has been gleaned mainly from the sources in the bibliography. The reader interested in going beyond the scope of this report should consult these sources. The statistics are largely from reports published by the Energy Information Administration.

  9. Plasma-supported coal combustion in boiler furnace

    SciTech Connect (OSTI)

    Askarova, A.S.; Karpenko, E.I.; Lavrishcheva, Y.I.; Messerle, V.E.; Ustimenko, A.B.

    2007-12-15

    Plasma activation promotes more effective and environmentally friendly low-rank coal combustion. This paper presents Plasma Fuel Systems that increase the burning efficiency of coal. The systems were tested for fuel oil-free start-up of coal-fired boilers and stabilization of a pulverized-coal flame in power-generating boilers equipped with different types of burners, and burning all types of power-generating coal. Also, numerical modeling results of a plasma thermochemical preparation of pulverized coal for ignition and combustion in the furnace of a utility boiler are discussed in this paper. Two kinetic mathematical models were used in the investigation of the processes of air/fuel mixture plasma activation: ignition and combustion. A I-D kinetic code PLASMA-COAL calculates the concentrations of species, temperatures, and velocities of the treated coal/air mixture in a burner incorporating a plasma source. The I-D simulation results are initial data for the 3-D-modeling of power boiler furnaces by the code FLOREAN. A comprehensive image of plasma-activated coal combustion processes in a furnace of a pulverized-coal-fired boiler was obtained. The advantages of the plasma technology are clearly demonstrated.

  10. Summary: U.S. Crude Oil, Natural Gas, and Natural Gas Liquids...

    Gasoline and Diesel Fuel Update (EIA)

    Summary: U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Proved Reserves 2009 November 2010 U.S. Energy Information Administration Office of Oil, Gas, and Coal Supply...

  11. Coal production 1985

    SciTech Connect (OSTI)

    Not Available

    1986-11-07

    Coal Production 1985 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, productive capacity, reserves, and stocks to a wide audience including Congress, Federal and State agencies, the coal industry, and the general public. All data presented in this report, except the total production table presented in the Highlights section, and the demonstrated reserve base data presented in Appendix A, were obtained from form EIA-7A, ''Coal Production Report,'' from companies owning mining operations that produced, processed, or prepared 10,000 or more short tons of coal in 1985. The data cover 4105 of the 5477 US coal mining operations active in 1985. These mining operations accounted for 99.4% of total US coal production and represented 74.9% of all US coal mining operations in 1985. This report also includes data for the demonstrated reserve vase of coal in the US on January 1, 1985.

  12. Catalytic hydrogenation of HyperCoal (ashless coal) and reusability of catalyst

    SciTech Connect (OSTI)

    Koji Koyano; Toshimasa Takanohashi; Ikuo Saito

    2009-07-15

    HyperCoal (HPC) is ashless coal obtained by a mild thermal extraction of coal to remove unextractable, heavy compounds, and minerals. The temperature and duration of HPC hydrogenation was systematically varied with and without solvent in an autoclave under hydrogen pressure. Unlike raw coal, hydrogenation of HPC in the absence of solvent proceeded without coke formation when the reaction was performed for 60 min at 450{sup o}C in 10 MPa hydrogen (initial pressure). The hydrogenation catalyst was recycled five times with no detection of deactivation. Longer reactions at slightly higher temperatures (120 min at 460{sup o}C), with replenishing the hydrogen, afforded a 90 wt % oil (hexane-soluble fraction) yield. 27 refs., 8 figs., 2 tabs.

  13. Coal liquefaction process streams characterization and evaluation

    SciTech Connect (OSTI)

    Robbins, G.A.; Winshel, R.A.; Burke, F.P.

    1990-10-01

    Consol R D is conducting a three-year program to characterize process and product streams from direct coal liquefaction process development projects. The program objectives are two-fold: (1) to obtain and provide appropriate samples of coal liquids for the evaluation of analytical methodology, and (2) to support ongoing DOE-sponsored coal liquefaction process development efforts. The first objective will utilize analytical techniques which have not been fully demonstrated; the second objective involves more previously proven methods. This quarter, two feed coals and 39 process oils from Wilsonville Run 258 were analyzed to provide information on process performance. Run 258 was operated in the thermal/catalytic Close-Coupled Integrated Two-Stage Liquefaction (CC-ITSL) mode with ash recycle. The subbituminous feed coals were from the Spring Creek Mine (Anderson and Dietz seams) and from the Black Thunder Mine (Wyodak and Anderson seams). Shell 324 catalyst was used in the second stage. Various coal samples related to Wilsonville Run 259 were analyzed for chemical and petrographic composition. These results will be given in a future report, which covers all of Run 259. 18 figs., 24 tabs.

  14. Coal feed lock

    DOE Patents [OSTI]

    Pinkel, I. Irving

    1978-01-01

    A coal feed lock is provided for dispensing coal to a high pressure gas producer with nominal loss of high pressure gas. The coal feed lock comprises a rotor member with a diametral bore therethrough. A hydraulically activated piston is slidably mounted in the bore. With the feed lock in a charging position, coal is delivered to the bore and then the rotor member is rotated to a discharging position so as to communicate with the gas producer. The piston pushes the coal into the gas producer. The rotor member is then rotated to the charging position to receive the next load of coal.

  15. Upgraded Coal Interest Group

    SciTech Connect (OSTI)

    Evan Hughes

    2009-01-08

    The Upgraded Coal Interest Group (UCIG) is an EPRI 'users group' that focuses on clean, low-cost options for coal-based power generation. The UCIG covers topics that involve (1) pre-combustion processes, (2) co-firing systems and fuels, and (3) reburn using coal-derived or biomass-derived fuels. The UCIG mission is to preserve and expand the economic use of coal for energy. By reducing the fuel costs and environmental impacts of coal-fired power generation, existing units become more cost effective and thus new units utilizing advanced combustion technologies are more likely to be coal-fired.

  16. Extraction of weakly reductive and reductive coals with sub- and supercritical water

    SciTech Connect (OSTI)

    Bo Wu; Haoquan Hu; Shiping Huang; Yunming Fang; Xian Li; Meng Meng

    2008-11-15

    On a semi-continuous apparatus, a weakly reductive Shenfu-Dongsheng (SD) coal and a reductive Pingshuo (PS) coal were non-isothermally extracted with sub- and supercritical water to explore the differences between the two coals. The effect of the temperature on the extract formation rate, conversion, and product composition under different pressures was investigated. The extraction results of two coal samples indicate that the extract formation rate has a maximum in the studied temperature range between room temperature and 500{degree}C. The temperature corresponding to the maximum extract formation rate, changing with the pressure, is between 390 and 410{degree}C. The gas yield, extract yield, and conversion of two coals increase with the increasing pressure. In comparison to PS coal, SD coal has a low temperature corresponding to the maximum extract formation rate under the same pressure. Both coals have a main fraction of asphaltene, but SD coal has a higher fraction of oil than PS coal. The main gas components are CO{sub 2}, CH{sub 4}, and H{sub 2}. The gas from PS coal has a higher CH{sub 4} content and lower CO{sub 2} content than that from SD coal. The analysis results of the extraction residue indicated that SD coal has a low residue yield and the residue shows a large surface area and small average pore diameter compared to PS coal. 17 refs., 4 figs., 8 tabs.

  17. " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"Total United States" ,"RSE Column ... 324110," Petroleum Refineries",44,240,337696.4,4578,2... ,,"Total United States" ,"RSE Column ...

  18. " Row: NAICS Codes;" " ...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"Total United States" ,"RSE Column ... 324110," Petroleum Refineries",46,152,42,126,78,35,14... ,,"Total United States" ,"RSE Column ...

  19. " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Flat Glass",17,38,640478.2448,116,4.296030565,0 327213," Glass Containers",22,61,498895.1947,367,7.867559779,0 327310," Cements",11,195,114618.0932,1846,7.413041741,0 327410," ...

  20. " Row: NAICS Codes;" " ...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... for which" "payment was not made, quantities purchased centrally within the company but separate" "from the reporting establishment, and quantities for which payment was made ...

  1. " Row: NAICS Codes;" " ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas, and Steam;" " Unit: Establishment Counts." ,,,"Electricity","Components",,,"Natural","Gas","Components",,"Steam","Components" ,,,,"Electricity","Electricity",,,"Natural ...

  2. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    47 Table 2.2 Manufacturing Energy Consumption for All Purposes, 2006 (Trillion Btu ) NAICS 1 Code Manufacturing Group Coal Coal Coke and Breeze 2 Natural Gas Distillate Fuel Oil LPG 3 and NGL 4 Residual Fuel Oil Net Electricity 5 Other 6 Shipments of Energy Sources 7 Total 8 311 Food ................................................................................. 147 1 638 16 3 26 251 105 (s) 1,186 312 Beverage and Tobacco Products ..................................... 20 0 41 1 1 3 30 11 -0

  3. Released: February 2010

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Relative Standard Errors for Table 5.1;" " Unit: Percents." ,,,,,"Distillate",,,"Coal" ,,,,,"Fuel Oil",,,"(excluding Coal" ,,,"Net","Residual","and","Natural Gas(d)","LPG and","Coke and Breeze)" "NAICS",,"Total","Electricity(b)","Fuel Oil","Diesel

  4. Pelletization of fine coals

    SciTech Connect (OSTI)

    Sastry, K.V.S.

    1991-09-01

    The present research project attempts to provide a basis to determine the pelletizability of fine coals, to ascertain the role of additives and binders and to establish a basis for binder selection. Currently, there are no established techniques for determining the quality of coal pellets. Our research is intended to develop a series of tests on coal pellets to measure their storage characteristics, transportability, ease of gasification and rate of combustion. Information developed from this research should be valuable for making knowledgeable decisions for on-time plant design, occasional binder selection and frequent process control during the pelletization of coal fines. During the last quarter, we continued the batch pelletization studies on Upper Freeport coal. The results as presented in that last quarterly report (April 1991) indicated that the surface conditions on the coal particle influenced the pelletizing growth rates. For example, a fresh (run of mine) sample of coal will display different pelletizing growth kinetics than a weathered sample of the same coal. Since coal is a heterogeneous material, the oxidized product of coal is equally variable. We found it to be logistically difficult to consistently produce large quantities of artificially oxidized coal for experimental purposes and as such we have used a naturally weathered coal. We have plans to oxidize coals under controlled oxidizing conditions and be able to establish their pelletizing behavior. The next phase of experiments were directed to study the effect of surface modification, introduced during the coal cleaning steps, on pelletizing kinetics. Accordingly, we initiated studies with two additives commonly used during the flotation of coal: dextrin (coal depressant) and dodecane (coal collector).

  5. Indonesian coal mining

    SciTech Connect (OSTI)

    2008-11-15

    The article examines the opportunities and challenges facing the Indonesian coal mining industry and how the coal producers, government and wider Indonesian society are working to overcome them. 2 figs., 1 tab.

  6. Chemicals from coal

    SciTech Connect (OSTI)

    Harold A. Wittcoff; Bryan G. Reuben; Jeffrey S. Plotkin

    2004-12-01

    This chapter contains sections titled: Chemicals from Coke Oven Distillate; The Fischer-Tropsch Reaction; Coal Hydrogenation; Substitute Natural Gas (SNG); Synthesis Gas Technology; Calcium Carbide; Coal and the Environment; and Notes and References

  7. Coal Production 1992

    SciTech Connect (OSTI)

    Not Available

    1993-10-29

    Coal Production 1992 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, productive capacity, and recoverable reserves to a wide audience including Congress, Federal and State agencies, the coal industry, and the general public. In 1992, there were 3,439 active coal mining operations made up of all mines, preparation plants, and refuse operations. The data in Table 1 cover the 2,746 mines that produced coal, regardless of the amount of production, except for bituminous refuse mines. Tables 2 through 33 include data from the 2,852 mining operations that produced, processed, or prepared 10 thousand or more short tons of coal during the period, except for bituminous refuse, and includes preparation plants with 5 thousand or more employee hours. These mining operations accounted for over 99 percent of total US coal production and represented 83 percent of all US coal mining operations in 1992.

  8. Microbial solubilization of coal

    DOE Patents [OSTI]

    Strandberg, Gerald W.; Lewis, Susan N.

    1990-01-01

    This invention deals with the solubilization of coal using species of Streptomyces. Also disclosed is an extracellular component from a species of Streptomyces, said component being able to solubilize coal.

  9. Coal Distribution Database, 2008

    U.S. Energy Information Administration (EIA) Indexed Site

    4Q 2009 April 2010 Quarterly Coal Distribution Table Format and Data Sources 4Q 2009 In keeping with EIA's efforts to increase the timeliness of its reports, this Quarterly Coal...

  10. Coal Distribution Database, 2008

    U.S. Energy Information Administration (EIA) Indexed Site

    3Q 2009 February 2010 Quarterly Coal Distribution Table Format and Data Sources 3Q 2009 In keeping with EIA's efforts to increase the timeliness of its reports, this Quarterly Coal...

  11. "Annual Coal Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual Coal Report Data Released: January 20, 2015 Data for: 2013 Re-Release Date: April 23, 2015 (CORRECTION) Annual Coal Report 2013 CorrectionUpdate April 23, 2015 The Annual ...

  12. Process for coal liquefaction in staged dissolvers

    DOE Patents [OSTI]

    Roberts, George W.; Givens, Edwin N.; Skinner, Ronald W.

    1983-01-01

    There is described an improved liquefaction process by which coal is converted to a low ash and low sulfur carbonaceous material that can be used as a fuel in an environmentally acceptable manner without costly gas scrubbing equipment. In the process, coal is slurried with a pasting oil, passed through a preheater and at least two dissolvers in series in the presence of hydrogen-rich gases at elevated temperatures and pressures. Solids, including mineral ash and unconverted coal macerals, are separated from the condensed reactor effluent. In accordance with the improved process, the first dissolver is operated at a higher temperature than the second dissolver. This temperature sequence produces improved product selectivity and permits the incorporation of sufficient hydrogen in the solvent for adequate recycle operations.

  13. Coal gasification apparatus

    DOE Patents [OSTI]

    Nagy, Charles K.

    1982-01-01

    Coal hydrogenation vessel has hydrogen heating passages extending vertically through its wall and opening into its interior.

  14. Coal Fleet Aging Meeting

    U.S. Energy Information Administration (EIA) Indexed Site

    7, 2016 MEMORANDUM TO: Dr. Ian Mead Assistant Administrator for Energy Analysis Jim Diefenderfer Director, Office of Electricity, Coal, Nuclear, and Renewables Analysis FROM: Coal and Uranium Analysis Team SUBJECT: Notes from the Coal Fleet Aging Meeting held on June 14, 2016 Attendees (36) *Indicates attendance via WebEx. 2 Framing the question This adjunct meeting of the AEO Coal Working Group (CWG) was held as a follow up to the previous Future Operating and Maintenance Considerations for the

  15. Method for fluorinating coal

    DOE Patents [OSTI]

    Huston, John L.; Scott, Robert G.; Studier, Martin H.

    1978-01-01

    Coal is fluorinated by contact with fluorine gas at low pressure. After pial fluorination, when the reaction rate has slowed, the pressure is slowly increased until fluorination is complete, forming a solid fluorinated coal of approximate composition CF.sub.1.55 H.sub.0.15. The fluorinated coal and a solid distillate resulting from vacuum pyrolysis of the fluorinated coal are useful as an internal standard for mass spectrometric unit mass assignments from about 100 to over 1500.

  16. A Characterization and Evaluation of Coal Liquefaction Process Streams

    SciTech Connect (OSTI)

    G. A. Robbins; R. A. Winschel; S. D. Brandes

    1998-06-09

    CONSOL characterized 38 process strea m samples from HTI Run PB- 04, in which Black Thunder Mine Coal, Hondo vacuum resid, autom obile shredder residue (ASR), and virgin plastics were used as liquefaction feedstocks with dispersed catalyst. A paper on kinetic modeling of resid reactivity was presented at the DOE Coal Lique -faction and Solid Fuels Contractors Review Conference, September 3- 4, 1997, i n Pittsburgh, PA. The paper, "The Reactivity of Direct Coal Liquefaction Resids", i s appended (Appendix 1). Three papers on characterization of samples from coal/ resid/ waste p lastics co- liquefaction were presented or submitted for presen tation at conferences. Because of their similarity, only one of the papers is appended to this report. The paper, "Characterization o f Process Samples From Co- Liquefaction of Coal and Waste Polymers", (Appendix 2) was presented at the DOE Coal Liquefaction and Solid Fuels C ontractors Review Conference, September 3- 4, 1997, in Pittsburgh, PA. The paper, "Characterization of Process Stream Samples From Bench- Scale Co -Liquefaction Runs That Utilized Waste Polymers as Feedstocks" was presented at the 214th National Meeting of the Ameri can Chemical Society, September 7- 11, 1997, in Las Vegas, NV. The paper, "Characterization of Process Oils from Coal/ Waste Co- Liquefaction" wa s submitted for presentation at the 14th Japan/ U. S. Joint Technical Meeting on Coa l Liquefaction and Materials for Coal Liquefaction on October 28, 1997, in Tokyo, Japan. A joint Burns and Roe Services Corp. and CONSOL pap er on crude oil assays of product oils from HTI Run PB- 03 was presented at the DOE Coal Liquefaction and Solid Fuel s Contractors Review Conference, September 3- 4, 1997, in Pittsburgh, PA. The paper , "Characterization of Liquid Products from All- Slurry Mode Liquefaction", is appende d (Appendix 3).

  17. Advanced solids NMR studies of coal structure and chemistry. Progress report, March 1 - September 1, 1996

    SciTech Connect (OSTI)

    Zilm, K.W.

    1996-12-31

    This report covers the progress made on the title project for the project period. The study of coal chemical structure is a vital component of research efforts to develop better chemical utili- zation of coals, and for furthering our basic understanding of coal geochemistry. In this grant we are addressing several structural questions pertaining to coals with advances in state of the art solids NMR methods. Our goals are twofold. First, we are interested in developing new methods that will enable us to measure important structural parameters in whole coals not directly accessible by other techniques. In parallel with these efforts we will apply these NNM methods in a study of the chemical differences between gas-sourcing and oil-sourcing coals. The NMR methods work will specifically focus on determination of the number and types of methylene groups, determination of the number and types of methine groups, identification of carbons adjacent to nitrogen and sites with exchangeable protons, and methods to more finely characterize the distribution of hydrogen in coals. We will also develop NMR methods for probing coal macropore structure using hyperpolarized {sup 29}Xe as a probe, and study the molecular dynamics of what appear to be mobile, CH{sub 2} rich, long chain hydrocarbons. The motivation for investigating these specific structural features of coals arises from their relevance to the chemical reactivity of coals, and their suitability for possible correlations with the oil sourcing potential of some types of coals. The coals to be studied and contrasted include oil-prone coals from Australia and Indonesia, those comprising the Argonne Premium Coal Sample bank, and other relevant samples.

  18. Coal production 1989

    SciTech Connect (OSTI)

    Not Available

    1990-11-29

    Coal Production 1989 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, reserves, and stocks to a wide audience including Congress, federal and state agencies, the coal industry, and the general public. 7 figs., 43 tabs.

  19. Flash hydrogenation of coal

    DOE Patents [OSTI]

    Manowitz, Bernard; Steinberg, Meyer; Sheehan, Thomas V.; Winsche, Warren E.; Raseman, Chad J.

    1976-01-01

    A process for the hydrogenation of coal comprising the contacting of powdered coal with hydrogen in a rotating fluidized bed reactor. A rotating fluidized bed reactor suitable for use in this process is also disclosed. The coal residence time in the reactor is limited to less than 5 seconds while the hydrogen contact time is not in excess of 0.2 seconds.

  20. Coal Combustion Products

    Office of Energy Efficiency and Renewable Energy (EERE)

    Coal combustion products (CCPs) are solid materials produced when coal is burned to generate electricity. Since coal provides the largest segment of U.S. electricity generation (45 percent in 2010), finding a sustainable solution for CCPs is an important environmental challenge.

  1. Catalyst for coal liquefaction process

    DOE Patents [OSTI]

    Huibers, Derk T. A.; Kang, Chia-Chen C.

    1984-01-01

    An improved catalyst for a coal liquefaction process; e.g., the H-Coal Process, for converting coal into liquid fuels, and where the conversion is carried out in an ebullated-catalyst-bed reactor wherein the coal contacts catalyst particles and is converted, in addition to liquid fuels, to gas and residual oil which includes preasphaltenes and asphaltenes. The improvement comprises a catalyst selected from the group consisting of the oxides of nickel molybdenum, cobalt molybdenum, cobalt tungsten, and nickel tungsten on a carrier of alumina, silica, or a combination of alumina and silica. The catalyst has a total pore volume of about 0.500 to about 0.900 cc/g and the pore volume comprises micropores, intermediate pores and macropores, the surface of the intermediate pores being sufficiently large to convert the preasphaltenes to asphaltenes and lighter molecules. The conversion of the asphaltenes takes place on the surface of micropores. The macropores are for metal deposition and to prevent catalyst agglomeration. The micropores have diameters between about 50 and about 200 angstroms (.ANG.) and comprise from about 50 to about 80% of the pore volume, whereas the intermediate pores have diameters between about 200 and 2000 angstroms (.ANG.) and comprise from about 10 to about 25% of the pore volume, and the macropores have diameters between about 2000 and about 10,000 angstroms (.ANG.) and comprise from about 10 to about 25% of the pore volume. The catalysts are further improved where they contain promoters. Such promoters include the oxides of vanadium, tungsten, copper, iron and barium, tin chloride, tin fluoride and rare earth metals.

  2. Case studies on direct liquefaction of low rank Wyoming coal

    SciTech Connect (OSTI)

    Adler, P.; Kramer, S.J.; Poddar, S.K.

    1995-12-31

    Previous Studies have developed process designs, costs, and economics for the direct liquefaction of Illinois No. 6 and Wyoming Black Thunder coals at mine-mouth plants. This investigation concerns two case studies related to the liquefaction of Wyoming Black Thunder coal. The first study showed that reducing the coal liquefaction reactor design pressure from 3300 to 1000 psig could reduce the crude oil equivalent price by 2.1 $/bbl provided equivalent performing catalysts can be developed. The second one showed that incentives may exist for locating a facility that liquifies Wyoming coal on the Gulf Coast because of lower construction costs and higher labor productivity. These incentives are dependent upon the relative values of the cost of shipping the coal to the Gulf Coast and the increased product revenues that may be obtained by distributing the liquid products among several nearby refineries.

  3. Table 2.1 Nonfuel (Feedstock) Use of Combustible Energy, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Nonfuel (Feedstock) Use of Combustible Energy, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Residual Distillate Natural Gas(c) LPG and Coal and Breeze NAICS Total Fuel Oil Fuel Oil(b) (billion NGL(d) (million (million Other(e) Code(a) Subsector and Industry (trillion Btu) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 10 * * 4 Q 0 0 2 3112 Grain and

  4. Table 7.6 Quantity of Purchased Energy Sources, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Quantity of Purchased Energy Sources, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Residual Distillate Natural Gas(c) LPG and Coal and Breeze NAICS Total Electricity Fuel Oil Fuel Oil(b) (billion NGL(d) (million (million Other(e) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 1,108 75,652 2 4

  5. Table 7.9 Expenditures for Purchased Energy Sources, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Expenditures for Purchased Energy Sources, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Million U.S. Dollars. NAICS Residual Distillate LPG and Coke Code(a) Subsector and Industry Total Electricity Fuel Oil Fuel Oil(b) Natural Gas(c) NGL(d) Coal and Breeze Other(e) Total United States 311 Food 10,111 5,328 130 431 3,391 150 442 29 210 3112 Grain and Oilseed Milling 2,130 932 2 12 673 Q 294 0 158 311221 Wet Corn Milling 1,002 352 1 5 296 1 239 0 107

  6. Table B-1: Analytical Results Statistical Mean Upper Confidence

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    .1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu. Coke and Shipments Net Residual Distillate Natural Gas(e) LPG and Coal Breeze of Energy Sources NAICS Total(b) Electricity(c) Fuel Oil Fuel Oil(d) (billion NGL(f) (million (million Other(g) Produced Onsite(h) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million

  7. Table 3. Annual commercial spent fuel discharges and burnup

    Gasoline and Diesel Fuel Update (EIA)

    1 Nonfuel (Feedstock) Use of Combustible Energy, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Residual Distillate Natural Gas(c) LPG and Coal and Breeze NAICS Total Fuel Oil Fuel Oil(b) (billion NGL(d) (million (million Other(e) Code(a) Subsector and Industry (trillion Btu) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 10 * * 4 Q 0 0 2 3112 Grain and

  8. Originally Released: July 2009

    U.S. Energy Information Administration (EIA) Indexed Site

    1.2 First Use of Energy for All Purposes (Fuel and Nonfuel), 2006; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Trillion Btu. Shipments NAICS Net Residual Distillate LPG and Coke and of Energy Sources Code(a) Subsector and Industry Total(b) Electricity(c) Fuel Oil Fuel Oil(d) Natural Gas(e) NGL(f) Coal Breeze Other(g) Produced Onsite(h) Total United States 311 Food 1,186 251 26 16 638 3 147 1 105 * 3112 Grain and Oilseed Milling 318 53 2 1 120

  9. Originally Released: July 2009

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Nonfuel (Feedstock) Use of Combustible Energy, 2006 Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources Unit: Physical Units or Btu. Coke Residual Distillate Natural Gas(c) LPG and Coal and Breeze NAICS Total Fuel Oil Fuel Oil(b) (billion NGL(d) (million (million Other(e) Code(a) Subsector and Industry (trillion Btu) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 3 0 * 2 * 0 * * 3112 Grain and Oilseed

  10. Originally Released: July 2009

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Nonfuel (Feedstock) Use of Combustible Energy, 2006 Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources Unit: Trillion Btu. NAICS Residual Distillate LPG and Coke Code(a) Subsector and Industry Total Fuel Oil Fuel Oil(b) Natural Gas(c) NGL(d) Coal and Breeze Other(e) Total United States 311 Food 3 0 * 2 * 0 * * 3112 Grain and Oilseed Milling 3 0 * 2 * 0 0 * 311221 Wet Corn Milling * 0 0 0 0 0 0 * 31131 Sugar Manufacturing * 0 * 0 * 0 * 0 3114 Fruit and Vegetable

  11. Originally Released: July 2009

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Fuel Consumption, 2006; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources Unit: Physical Units or Btu Coke Net Residual Distillate Natural Gas(d) LPG and Coal and Breeze NAICS Total Electricity(b) Fuel Oil Fuel Oil(c) (billion NGL(e) (million (million Other(f) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 1,186 73,440 4 3 618 1 7 * 107

  12. Originally Released: July 2009

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Fuel Consumption, 2006; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources Unit: Trillion Btu. NAICS Net Residual Distillate LPG and Coke Code(a) Subsector and Industry Total Electricity(b) Fuel Oil Fuel Oil(c) Natural Gas(d) NGL(e) Coal and Breeze Other(f) Total United States 311 Food 1,186 251 26 16 635 3 147 1 107 3112 Grain and Oilseed Milling 317 53 2 1 118 * 114 0 30 311221 Wet Corn Milling 179 23 * * 52 * 95 0 9 31131 Sugar Manufacturing 82 3 9 1 18 * 31 1 20

  13. Originally Released: July 2009

    U.S. Energy Information Administration (EIA) Indexed Site

    4.1 Offsite-Produced Fuel Consumption, 2006; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Residual Distillate Natural Gas(d) LPG and Coal and Breeze NAICS Total Electricity(b) Fuel Oil Fuel Oil(c) (billion NGL(e) (million (million Other(f) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 1,124 73,551 4 3

  14. Originally Released: July 2009

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Offsite-Produced Fuel Consumption, 2006 Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources Unit: Trillion Btu. NAICS Residual Distillate LPG and Coke Code(a) Subsector and Industry Total Electricity(b) Fuel Oil Fuel Oil(c) Natural Gas(d) NGL(e) Coal and Breeze Total United States 311 Food 1,124 251 26 16 635 3 147 1 3112 Grain and Oilseed Milling 316 53 2 1 118 * 114 0 311221 Wet Corn Milling 179 23 * * 52 * 95 0 31131 Sugar Manufacturing 67 3 9 1 18 * 31 1 3114 Fruit

  15. Table 1.1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu. Coke and Shipments Net Residual Distillate Natural Gas(e) LPG and Coal Breeze of Energy Sources NAICS Total(b) Electricity(c) Fuel Oil Fuel Oil(d) (billion NGL(f) (million (million Other(g) Produced Onsite(h) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million

  16. Table 1.2 First Use of Energy for All Purposes (Fuel and Nonfuel), 2010

    U.S. Energy Information Administration (EIA) Indexed Site

    2 First Use of Energy for All Purposes (Fuel and Nonfuel), 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Trillion Btu. Shipments NAICS Net Residual Distillate LPG and Coke and of Energy Sources Code(a) Subsector and Industry Total(b) Electricity(c) Fuel Oil Fuel Oil(d) Natural Gas(e) NGL(f) Coal Breeze Other(g) Produced Onsite(h) Total United States 311 Food 1,162 257 12 23 583 8 182 2 96 * 3112 Grain and Oilseed Milling 355 56 * 1 123 Q

  17. Power recovery system for coal liquefaction process

    DOE Patents [OSTI]

    Horton, Joel R. (Maryville, TN)

    1985-01-01

    Method and apparatus for minimizing energy required to inject reactant such as coal-oil slurry into a reaction vessel, using high pressure effluent from the latter to displace the reactant from a containment vessel into the reaction vessel with assistance of low pressure pump. Effluent is degassed in the containment vessel, and a heel of the degassed effluent is maintained between incoming effluent and reactant in the containment vessel.

  18. Coal within a revised energy perspective

    SciTech Connect (OSTI)

    Darmstadter, J.

    2006-07-15

    The author considers the use of coal within a revised energy perspective, focusing on the factors that will drive which fuels are used to generate electricity going forward. He looks at the world markets for fossil fuels and the difficulties of predicting oil and natural gas supply and prices, as demonstrated by the variability in projections from one year to another in the EIA's Annual Energy Outlook. 4 refs., 1 tab.

  19. Coal Study Guide for Elementary School

    Office of Energy Efficiency and Renewable Energy (EERE)

    Focuses on the basics of coal, history of coal use, conversion of coal into electricity, and climate change concerns.

  20. Cooperative research in coal liquefaction infratechnology and generic technology development: Final report, October 1, 1985 to December 31, 1986

    SciTech Connect (OSTI)

    Sendlein, L.V.A.

    1987-06-29

    During the first year of its research program, the Consortium for Fossil Fuel Liquefaction Science has made significant progress in many areas of coal liquefaction and coal structure research. Research topics for which substantial progress has been made include integrated coal structure and liquefaction studies, investigation of differential liquefaction processes, development and application of sophisticated techniques for structural analysis, computer analysis of multivariate data, biodesulfurization of coal, catalysis studies, co-processing of coal and crude oil, coal dissolution and extraction processes, coal depolymerization, determination of the liquefaction characteristics of many US coals for use in a liquefaction database, and completion of a retrospective technology assessment for direct coal liquefaction. These and related topics are discussed in considerably more detail in the remainder of this report. Individual projects are processed separately for the data base.

  1. Cooperative research in coal liquefaction. Final report, May 1, 1992--April 30, 1993

    SciTech Connect (OSTI)

    Huffman, G.P.

    1996-03-01

    Research on sulfate and metal (Mo, Sn) promoted Fe{sub 2}O{sub 3} catalysts in the current year focused on optimization of conditions. Parameters varied included temperature, solvent, solvent-to-coal ratio, and the effect of presulfiding versus in situ sulfiding. Oil yields were found to increase approximately proportionately with both temperature and solvent-to-coal ratio. The donor solvent, tetralin, proved to give better total conversion and oil yields than either 1-methylnaphthalene or Wilsonville recycle oil. A significant enhancement of both total liquefaction yields and oil yields from lignites and subbituminous coals has been achieved by incorporating iron into the coal matrix by cation exchange. A study has been conducted on the synthesis of iron, molybdenum, and tungsten catalysts using a laser pyrolysis technique.

  2. Coal Data: A reference

    SciTech Connect (OSTI)

    Not Available

    1991-11-26

    The purpose of Coal Data: A Reference is to provide basic information on the mining and use of coal, an important source of energy in the United States. The report is written for a general audience. The goal is to cover basic material and strike a reasonable compromise between overly generalized statements and detailed analyses. The section ``Coal Terminology and Related Information`` provides additional information about terms mentioned in the text and introduces new terms. Topics covered are US coal deposits, resources and reserves, mining, production, employment and productivity, health and safety, preparation, transportation, supply and stocks, use, coal, the environment, and more. (VC)

  3. Coal recovery process

    DOE Patents [OSTI]

    Good, Robert J.; Badgujar, Mohan

    1992-01-01

    A method for the beneficiation of coal by selective agglomeration and the beneficiated coal product thereof is disclosed wherein coal, comprising impurities, is comminuted to a particle size sufficient to allow impurities contained therein to disperse in water, an aqueous slurry is formed with the comminuted coal particles, treated with a compound, such as a polysaccharide and/or disaccharide, to increase the relative hydrophilicity of hydrophilic components, and thereafter the slurry is treated with sufficient liquid agglomerant to form a coagulum comprising reduced impurity coal.

  4. Desulfurization of coal and petroleum. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    1995-02-01

    The bibliography contains citations concerning the desulfurization of coal, coal liquids, and crude oil. Flotation heap leaching, oxydesulfurization, metal oxide, microwave process, and chlorination are among the pre-combustion processes discussed. Coal liquefaction and gasification are only included if sulfur removal is stressed. Flue gas desulfurization and other post-combustion sulfur control processes are excluded. (Contains 250 citations and includes a subject term index and title list.)

  5. Desulfurization of coal and petroleum. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    1997-02-01

    The bibliography contains citations concerning the desulfurization of coal, coal liquids, and crude oil. Flotation heap leaching, oxydesulfurization, metal oxide, microwave process, and chlorination are among the pre-combustion processes discussed. Coal liquefaction and gasification are only included if sulfur removal is stressed. Flue gas desulfurization and other post-combustion sulfur control processes are excluded. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  6. Desulfurization of coal and petroleum. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    1996-04-01

    The bibliography contains citations concerning the desulfurization of coal, coal liquids, and crude oil. Flotation heap leaching, oxydesulfurization, metal oxide, microwave process, and chlorination are among the pre-combustion processes discussed. Coal liquefaction and gasification are only included if sulfur removal is stressed. Flue gas desulfurization and other post-combustion sulfur control processes are excluded. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  7. Desulfurization of coal and petroleum. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    The bibliography contains citations concerning the desulfurization of coal, coal liquids, and crude oil. Flotation heap leaching, oxydesulfurization, metal oxide, microwave process, and chlorination are among the pre-combustion processes discussed. Coal liquefaction and gasification are only included if sulfur removal is stressed. Flue gas desulfurization and other post-combustion sulfur control processes are excluded. (Contains 250 citations and includes a subject term index and title list.)

  8. Geologic map and coal resources of the Easton Gulch Quadrangle, Moffat County, Colorado

    SciTech Connect (OSTI)

    Reheis, M.C.

    1981-01-01

    This map of the Easton Gulch Quadrangle, Moffat County, Colorado is color coded to show the location of different age geologic formations. Various thickness coal bed are indicated as are abandoned coal mines or prospects, US Geologic Survey (USGS) test holes, abandoned oil and gas test holes, and USGS Mesozoic fossil localities. Various depth coal beds and other types of geologic structures are indicated on the cross-section geologic map. (BLM)

  9. Fact #863 March 9, 2015 Crude Oil Accounts for the Majority of Primary Energy Imports while Exports are Mostly Petroleum Products

    Office of Energy Efficiency and Renewable Energy (EERE)

    In 2014, seventy percent of the primary energy imports were crude oil, followed by petroleum products (16%) and natural gas (12%). The remaining sources of primary energy imports: coal, coal coke,...

  10. Process for hydrogenating coal and coal solvents

    DOE Patents [OSTI]

    Tarrer, Arthur R.; Shridharani, Ketan G.

    1983-01-01

    A novel process is described for the hydrogenation of coal by the hydrogenation of a solvent for the coal in which the hydrogenation of the coal solvent is conducted in the presence of a solvent hydrogenation catalyst of increased activity, wherein the hydrogenation catalyst is produced by reacting ferric oxide with hydrogen sulfide at a temperature range of 260.degree. C. to 315.degree. C. in an inert atmosphere to produce an iron sulfide hydrogenation catalyst for the solvent. Optimally, the reaction temperature is 275.degree. C. Alternately, the reaction can be conducted in a hydrogen atmosphere at 350.degree. C.

  11. Microbial solubilization of coals

    SciTech Connect (OSTI)

    Campbell, J.A.; Fredrickson, J.K.; Stewart, D.L.; Thomas, B.L.; McCulloch, M.; Wilson, B.W.; Bean, R.M.

    1988-11-01

    Microbial solubilization of coal may serve as a first step in a process to convert low-rank coals or coal-derived products to other fuels or products. For solubilization of coal to be an economically viable technology, a mechanistic understanding of the process is essential. Leonardite, a highly oxidized, low-rank coal, has been solubilized by the intact microorganism, cell-free filtrate, and cell-free enzyme of /ital Coriolus versicolor/. A spectrophotometric conversion assay was developed to quantify the amount of biosolubilized coal. In addition, a bituminous coal, Illinois No. 6, was solubilized by a species of /ital Penicillium/, but only after the coal had been preoxidized in air. Model compounds containing coal-related functionalities have been incubated with the leonardite-degrading fungus, its cell-free filtrate, and purified enzyme. The amount of degradation was determined by gas chromatography and the degradation products were identified by gas chromatography/mass spectrometry. We have also separated the cell-free filtrate of /ital C. versicolor/ into a <10,000 MW and >10,000 MW fraction by ultrafiltration techniques. Most of the coal biosolubilization activity is contained in the <10,000 MW fraction while the model compound degradation occurs in the >10,000 MW fraction. The >10,000 MW fraction appears to contain an enzyme with laccase-like activity. 10 refs., 8 figs., 5 tabs.

  12. H. R. 1078: This Act may be cited as the National Coal and Extractive Energy Strategy Act of 1991, introduced in the House of Representatives, One Hundred Second Congress, First Session, February 21, 1991

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    This bill would amend the Surface Mining Control and Reclamation Act of 1977 and the Mineral Leasing Act to promote the production of coal and other extractive energy sources. Sections of the bill describe the following: coal remining; metallurgical coal development; coal bed methane developments; Federal coal leasing amendments; Federal mineral receipts management; coalfield assistance, restoration and enhancement; and Federal onshore oil and gas leasing amendments.

  13. Coal combustion products (CCPs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Coal combustion products (CCPs) are solid materials produced when coal is burned to generate electricity. Since coal provides the largest segment of U.S. electricity generation (45 percent in 2010), finding a sustainable solution for CCPs is an important environmental challenge. When properly managed, CCPs offer society environmental and economic benefits without harm to public health and safety. Research supported by the U.S. Department of Energy's (DOE) Office of Fossil Energy (FE) has made an

  14. Pulverized coal fuel injector

    DOE Patents [OSTI]

    Rini, Michael J.; Towle, David P.

    1992-01-01

    A pulverized coal fuel injector contains an acceleration section to improve the uniformity of a coal-air mixture to be burned. An integral splitter is provided which divides the coal-air mixture into a number separate streams or jets, and a center body directs the streams at a controlled angle into the primary zone of a burner. The injector provides for flame shaping and the control of NO/NO.sub.2 formation.

  15. Weekly Coal Production Estimation Methodology

    Gasoline and Diesel Fuel Update (EIA)

    Weekly Coal Production Estimation Methodology Step 1 (Estimate total amount of weekly U.S. coal production) U.S. coal production for the current week is estimated using a ratio ...

  16. Rail Coal Transportation Rates

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Recurring Reserves Stocks All reports Browse by Tag Alphabetical Frequency Tag Cloud Data For: 2001 Next Release Date: October 2003 U. S. Coal-Producing Districts...

  17. Coal | Open Energy Information

    Open Energy Info (EERE)

    Assuming no additional constraints on CO2 emissions, coal remains the largest source of electricity generation in the AEO2011 Reference case because of continued reliance on...

  18. Coal Distribution Database, 2006

    U.S. Energy Information Administration (EIA) Indexed Site

    TF RailroadVesselShip Fuel It is also noted that Destination State code of "X Export" indicates movements to foreign destinations. 1 68 Domestic Coal Distribution...

  19. Coal Market Module

    Gasoline and Diesel Fuel Update (EIA)

    The use of coals with sub- optimal characteristics carries with it penalties in operating efficiency, maintenance cost, and system reliability. Such penalties range from the...

  20. By Coal Destination State

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    California (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total...

  1. Balancing coal pipes

    SciTech Connect (OSTI)

    Earley, D.; Kirkenir, B.

    2009-11-15

    Balancing coal flow to the burners to optimise combustion by using real-time measurement systems (such as microwave mass measurement) is discussed. 3 figs.

  2. British coal privatization procedures

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    The form in which British Coal is to be privatized has finally been announced. Offers are to be invited for the operating underground and opencast mines which will be grouped into five regionally based companies. Additionally, offers will be invited for a number of collieries which are currently under care and maintenance. The five Regional Coal Companies to be formed are Central North, which will comprise the assets in the Yorkshire and Durham coalfields, including the five collieries in the Selby Complex; Central South, which will contain the assets located in the Nottinghamshire, Leicestershire, Derbyshire, and Warwickshire coalfields; North East, which has four opencast sites, Scotland, which has nine operating open-cast sites and a single underground mine, Longannet; and South Wales with its nine operating opencast sites. Tower colliery, the last underground mine in South Wales, was finally put on care and maintenance on April 20, 1994. Details of the five Regional Coal Companies are given. A new public sector body, the Coal Authority will be set up to which all British Coal's title to unworked coal and coal mines will be transferred. All the relevant property rights and liabilities of British Coal will be transferred into the Regional Coal Companies prior to their sun.

  3. Annual Coal Distribution Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    Domestic Distribution of U.S. Coal by Destination State, Consumer, Destination and Method of Transportation, 2001 (Thousand Short Tons) DESTINATION: Alabama State of Origin by...

  4. Coal Distribution Database, 2006

    U.S. Energy Information Administration (EIA) Indexed Site

    Report - Annual provides detailed information on domestic coal distribution by origin state, destination state, consumer category, and method of transportation. Also provided is...

  5. Coal liquefaction quenching process

    DOE Patents [OSTI]

    Thorogood, Robert M.; Yeh, Chung-Liang; Donath, Ernest E.

    1983-01-01

    There is described an improved coal liquefaction quenching process which prevents the formation of coke with a minimum reduction of thermal efficiency of the coal liquefaction process. In the process, the rapid cooling of the liquid/solid products of the coal liquefaction reaction is performed without the cooling of the associated vapor stream to thereby prevent formation of coke and the occurrence of retrograde reactions. The rapid cooling is achieved by recycling a subcooled portion of the liquid/solid mixture to the lower section of a phase separator that separates the vapor from the liquid/solid products leaving the coal reactor.

  6. COAL & POWER SYSTEMS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... stitutions * InternationalCoal Technology Export C&PS ... * Systems Integration * Plant Designs Central Power ... Boiler System - Indirect Fired Cycles - Pressurized ...

  7. WCI Case for Coal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... technology: It has been calculated that if the thermal efficiency of existing coal-fired power plant worldwide were brought up to current German levels of efficiency, the ...

  8. The development of coal-based technologies for Department of Defense facilities: Phase 1 final report. Volume 1: Technical report

    SciTech Connect (OSTI)

    Miller, B.G.; Morrison, J.L.; Pisupati, S.V.

    1997-01-31

    The first phase of a three-phase project investigating the development of coal-based technologies for Department of Defense facilities has been completed. The objectives of the project are to: decrease DOD`s dependence on foreign oil and increase its use of coal; promote public and private sector deployment of technologies for utilizing coal-based fuels in oil-designed combustion equipment; and provide a continuing environment for research and development of coal-based fuel technologies for small-scale applications at a time when market conditions in the US are not favorable for the introduction of coal-fired equipment in the commercial and industrial capacity ranges. The Phase 1 activities were focused on developing clean, coal-based combustion technologies for the utilization of both micronized coal-water mixtures (MCWMs) and dry, micronized coal (DMC) in fuel oil-designed industrial boilers. The specific objective in Phase 1 was to deliver fully engineered retrofit options for a fuel oil-designed watertube boiler located on a DOD installation to fire either MCWM or DMC. This was achieved through a project consisting of fundamental, pilot-sale, and demonstration-scale activities investigating coal beneficiation and preparation, and MCWM and DMC combustion performance. In addition, detailed engineering designs and an economic analysis were conducted for a boiler located at the Naval Surface Warfare Center, near Crane, Indiana. Results are reported on MCWM and DMC combustion performance evaluation; engineering design; and cost/economic analysis.

  9. Alaska coal gasification feasibility studies - Healy coal-to-liquids plant

    SciTech Connect (OSTI)

    Lawrence Van Bibber; Charles Thomas; Robert Chaney

    2007-07-15

    The Alaska Coal Gasification Feasibility Study entailed a two-phase analysis of the prospects for greater use of Alaska's abundant coal resources in industrial applications. Phase 1, Beluga Coal Gasification Feasibility Study (Report DOE/NETL 2006/1248) assessed the feasibility of using gasification technology to convert the Agrium fertilizer plant in Nikiski, Alaska, from natural gas to coal feedstock. The Phase 1 analysis evaluated coals from the Beluga field near Anchorage and from the Usibelli Coal Mine near Healy, both of which are low in sulfur and high in moisture. This study expands the results of Phase 1 by evaluating a similar sized gasification facility at the Usibelli Coal mine to supply Fischer-Tropsch (F-T) liquids to central Alaska. The plant considered in this study is small (14,640 barrels per day, bbl/d) compared to the recommended commercial size of 50,000 bbl/d for coal-to-liquid plants. The coal supply requirements for the Phase 1 analysis, four million tons per year, were assumed for the Phase 2 analysis to match the probable capacity of the Usibelli mining operations. Alaska refineries are of sufficient size to use all of the product, eliminating the need for F-T exports out of the state. The plant could produce marketable by-products such as sulfur as well as electric power. Slag would be used as backfill at the mine site and CO{sub 2} could be vented, captured or used for enhanced coalbed methane recovery. The unexpected curtailment of oil production from Prudhoe Bay in August 2006 highlighted the dependency of Alaskan refineries (with the exception of the Tesoro facility in Nikiski) on Alaska North Slope (ANS) crude. If the flow of oil from the North Slope declines, these refineries may not be able to meet the in-state needs for diesel, gasoline, and jet fuel. Additional reliable sources of essential fuel products would be beneficial. 36 refs., 14 figs., 29 tabs., 3 apps.

  10. Cooperative research program in coal liquefaction

    SciTech Connect (OSTI)

    Huffman, G.P.

    1991-01-01

    This Quarterly Report on coal liquefaction research includes discussion in the areas of (1) Iron Based Catalysts for Coal Liquefaction; (2) Exploratory Research on Coal Conversion; (3) Novel Coal Liquefaction Concepts; (4) Novel Catalysts for Coal Liquefaction. (VC)

  11. Advanced progress concepts for direct coal liquefaction

    SciTech Connect (OSTI)

    Anderson, R.; Derbyshire, F.; Givens, E.

    1995-09-01

    Given the low cost of petroleum crude, direct coal liquefaction is still not an economically viable process. The DOE objectives are to further reduce the cost of coal liquefaction to a more competitive level. In this project the primary focus is on the use of low-rank coal feedstocks. A particular strength is the use of process-derived liquids rather than model compound solvents. The original concepts are illustrated in Figure 1, where they are shown on a schematic of the Wilsonville pilot plant operation. Wilsonville operating data have been used to define a base case scenario using run {number_sign}263J, and Wilsonville process materials have been used in experimental work. The CAER has investigated: low severity CO pretreatment of coal for oxygen rejection, increasing coal reactivity and mg inhibiting the propensity for regressive reactions; the application of more active. Low-cost Fe and Mo dispersed catalysts; and the possible use of fluid coking for solids rejection and to generate an overhead product for recycle. CONSOL has investigated: oil agglomeration for coal ash rejection, for the possible rejection of ash in the recycled resid, and for catalyst addition and recovery; and distillate dewaxing to remove naphthenes and paraffins, and to generate an improved quality feed for recycle distillate hydrogenation. At Sandia, research has been concerned with the production of active hydrogen donor distillate solvent fractions produced by the hydrogenation of dewaxed distillates and by fluid coking via low severity reaction with H{sub 2}/CO/H{sub 2}O mixtures using hydrous metal oxide and other catalysts.

  12. Controlled short residence time coal liquefaction process

    DOE Patents [OSTI]

    Anderson, Raymond P.; Schmalzer, David K.; Wright, Charles H.

    1982-05-04

    Normally solid dissolved coal product and a distillate liquid product are produced by continuously passing a feed slurry comprising raw feed coal and a recycle solvent oil and/or slurry together with hydrogen to a preheating-reaction zone (26, alone, or 26 together with 42), the hydrogen pressure in the preheating-reaction zone being at least 1500 psig (105 kg/cm.sup.2), reacting the slurry in the preheating-reaction zone (26, or 26 with 42) at a temperature in the range of between about 455.degree. and about 500.degree. C. to dissolve the coal to form normally liquid coal and normally solid dissolved coal. A total slurry residence time is maintained in the reaction zone ranging from a finite value from about 0 to about 0.2 hour, and reaction effluent is continuously and directly contacted with a quenching fluid (40, 68) to substantially immediately reduce the temperature of the reaction effluent to below 425.degree. C. to substantially inhibit polymerization so that the yield of insoluble organic matter comprises less than 9 weight percent of said feed coal on a moisture-free basis. The reaction is performed under conditions of temperature, hydrogen pressure and residence time such that the quantity of distillate liquid boiling within the range C.sub.5 -455.degree. C. is an amount at least equal to that obtainable by performing the process under the same conditions except for a longer total slurry residence time, e.g., 0.3 hour. Solvent boiling range liquid is separated from the reaction effluent and recycled as process solvent.

  13. Clean coal technologies market potential

    SciTech Connect (OSTI)

    Drazga, B.

    2007-01-30

    Looking at the growing popularity of these technologies and of this industry, the report presents an in-depth analysis of all the various technologies involved in cleaning coal and protecting the environment. It analyzes upcoming and present day technologies such as gasification, combustion, and others. It looks at the various technological aspects, economic aspects, and the various programs involved in promoting these emerging green technologies. Contents: Industry background; What is coal?; Historical background of coal; Composition of coal; Types of coal; Environmental effects of coal; Managing wastes from coal; Introduction to clean coal; What is clean coal?; Byproducts of clean coal; Uses of clean coal; Support and opposition; Price of clean coal; Examining clean coal technologies; Coal washing; Advanced pollution control systems; Advanced power generating systems; Pulverized coal combustion (PCC); Carbon capture and storage; Capture and separation of carbon dioxide; Storage and sequestration of carbon dioxide; Economics and research and development; Industry initiatives; Clean Coal Power Initiative; Clean Coal Technology Program; Coal21; Outlook; Case Studies.

  14. Coal production, 1987

    SciTech Connect (OSTI)

    Not Available

    1988-12-05

    Coal Production 1987 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, reserves, and stocks to a wide audience including Congress, federal and state agencies, the coal industry, and the general public. The data presented in this report were collected and published by the Energy Information Administration (EIA), to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (P.L. 93-275) as amended. The 1987 coal production and related data presented in this report were obtained from Form EIA-7A, ''Coal Production Report,'' from companies owning mining operations that produced, processed, or prepared 10,000 or more short tons of coal in 1987. This survey originated at the Bureau of Mines, US Department of the Interior. In 1977, the responsibility for taking the survey was transferred to the EIA under the Department of Energy Organization Act (P.L. 95-91). The data cover 3667 of the 4770 US coal mining operations active in 1987. These mining operations accounted for over 99 percent of total US coal production and represented 77 percent of all US coal mining operations in 1987. This issue is the 12th annual report published by EIA and continues the series formerly included as a chapter in the Minerals Yearbook published by the Bureau of Mines. This report also includes data for the demonstrated reserve base of coal in the United States on January 1, 1988. This is the eighth annual summary on minable coal, pursuant to Section 801 of Public Law 95-620. 18 figs., 105 tabs.

  15. Coal resources of Kyrgyzstan

    SciTech Connect (OSTI)

    Landis, E.R.; Bostick, N.H.; Gluskoter, H.J.; Johnson, E.A.; Harrison, C.D.; Huber, D.W.

    1995-12-31

    The rugged, mountainous country of Kyrgyzstan contains about one-half of the known coal resources of central Asia (a geographic and economic region that also includes Uzbekistan, Tadjikistan and Turkmenistan). Coal of Jurassic age is present in eight regions in Kyrgyzstan in at least 64 different named localities. Significant coal occurrences of about the same age are present in the central Asian countries of Kazakhstan, China, and Russia. Separation of the coal-bearing rocks into individual deposits results more than earth movements before and during formation of the present-day mountains and basins of the country than from deposition in separate basins.Separation was further abetted by deep erosion and removal of the coal-bearing rocks from many areas, followed by covering of the remaining coal-bearing rocks by sands and gravels of Cenozoic age. The total resources of coal in Kyrgyzstan have been reported as about 30 billion tons. In some of the reported localities, the coal resources are known and adequately explored. In other parts of the republic, the coal resources are inadequately understood or largely unexplored. The resource and reserve inventory of Kyrgyzstan is at best incomplete; for some purposes, such as short-term local and long-range national planning, it may be inadequate. Less than 8% of the total estimated resources are categorized as recoverable reserves, and the amount that is economically recoverable is unknown. The coal is largely of subbituminous and high-volatile C bituminous rank, most has low and medium ash and sulfur contents, and coals of higher rank (some with coking qualities) are present in one region. It is recommended that appropriate analyses and tests be made during planning for utilization.

  16. Development of clean coal and clean soil technologies using advanced agglomeration techniques

    SciTech Connect (OSTI)

    Ignasiak, B.; Ignasiak, T.; Szymocha, K.

    1990-01-01

    Three major topics are discussed in this report: (1) Upgrading of Low Rank Coals by the Agflotherm Process. Test data, procedures, equipment, etc., are described for co-upgrading of subbituminous coals and heavy oil; (2) Upgrading of Bituminous Coals by the Agflotherm Process. Experimental procedures and data, bench and pilot scale equipments, etc., for beneficiating bituminous coals are described; (3) Soil Clean-up and Hydrocarbon Waste Treatment Process. Batch and pilot plant tests are described for soil contaminated by tar refuse from manufactured gas plant sites. (VC)

  17. Heterofunctionality interaction with donor solvent coal liquefaction. Final progress report, August 1982-April 1984

    SciTech Connect (OSTI)

    Cronauer, D.C.

    1984-05-01

    This project was undertaken to understand the role of the coal liquefaction solvent through a study of the interaction between the hydrogen donor solvent characteristics and the heterofunctionality of the solvent. Specifically, hydroxyl- and nitrogen-containing solvents were studied and characterized. A series of coal liquefaction experiments were carried out at 450/sup 0/C in a continuous feed stirred-tank reactor (CSTR) to observe the effect of adding phenolics to anthracene oil (AO) and SRC-II recycle solvents. The addition of phenol to AO at a ratio of 5/65 resulted in a nominal increase in coal conversion to THF solubles, but the amount of asphaltenes more than doubled resulting in a sizable net loss of solvent. The addition of m-cresol to both AO and SRC-II solvents had a positive effect on coal conversion to both THF and pentane solubles (oils). The partial removal of an OH-concentrate from SRC-II solvent was carried out using Amberlyst IRA-904 ion exchange resin. The resin-treated oil was only marginally better than raw SRC-II recycle solvent for coal liquefaction. Hydroaromatics having nitrogen functionality should be good solvents for coal liquefaction considering their effective solvent power, ability to penetrate and swell coal, and their ability to readily transfer hydrogen, particularly in the presence of oxygen functionality. However, these benefits are overshadowed by the strong tendency of the nitrogen-containing species to adduct with themselves and coal-derived materials.

  18. Coal combustion products: trash or treasure?

    SciTech Connect (OSTI)

    Hansen, T.

    2006-07-15

    Coal combustion by-products can be a valuable resource to various industries. The American Coal Ash Association (ACAA) collects data on production and uses of coal combustion products (CCPs). 122.5 million tons of CCPs were produced in 2004. The article discusses the results of the ACCA's 2004 survey. Fly ash is predominantly used as a substitute for Portland cement; bottom ash for structural fill, embankments and paved road cases. Synthetic gypsum from the FGD process is commonly used in wallboard. Plant owners are only likely to have a buyer for a portion of their CCPs. Although sale of hot water (from Antelope Valley Station) from condensers for use in a fish farm to raise tilapia proved unviable, the Great Plains Synfuels Plant which manufactures natural gas from lignite produces a wide range of products including anhydrous ammonia, phenol, krypton, carbon dioxide (for enhanced oil recovery), tar oils and liquid nitrogen. ACCA's goal is to educate people about CCPs and how to make them into useful products, and market them, in order to reduce waste disposal and enhance revenue. The article lists members of the ACCA. 2 photos., 1 tab.

  19. Vulnerability reduction study. Coal and synthetics (Section III a). Technical Appendix

    SciTech Connect (OSTI)

    Not Available

    1980-08-01

    This Appendix supports and explains key statements made in the chapter on Coal and Synthetics. The reader will find information and documentation on points that lend themselves to quantification. Evidence is presented that coal supply will not be constrained by production or transportation factors through the 1980s. Any program to increase the direct use of coal in the industrial sector must take into account a number of identifiable difficulties. A deployment schedule for 10 oil shale projects has been developed by the Office of Technology Assessment. This schedule, if adhered to, would result in an initial deployment of an oil shale industry of 400,000 bpd oil equivalent by 1990. In addition, the Appendix provides descriptions of those major elements of Federal legislation that bear directly on coal, notably portions of the Powerplant and Industrial Fuel Use Act of 1978, the Energy Tax Act of 1978, the Energy Security Act of 1980, and the Clean Air Act.

  20. Evaluation of synergy in tire rubber-coal coprocessing

    SciTech Connect (OSTI)

    Mastral, A.M.; Mayoral, M.C.; Murillo, R.; Callen, M.; Garcia, T.; Tejero, M.P.; Torres, N.

    1998-09-01

    The tire rubber-coal synergy is evaluated through the different roles that rubber can have in coprocessing systems. For that, two different experimental designs were used: a swept fixed-bed reactor and tubing bomb minireactors. In this way, coal was coprocessed with rubber liquids from rubber pyrolysis and rubber hydrogenation, in a hydrogen atmosphere at 400 C. Coal was mixed as well with rubber in different proportions and hydrogenated at 375, 400, and 425 C, and oils obtained were characterized by thin-layer chromatography to obtain hydrocarbon type composition. Rubber behavior was compared to each of the main components of tires, and all the results indicated that the slight synergy found can be due to the small free radicals from vulcanized rubber decomposition, which are able to stabilize coal radicals to light products.

  1. Coal hydrogenation and deashing in ebullated bed catalytic reactor

    DOE Patents [OSTI]

    Huibers, Derk T. A.; Johanson, Edwin S.

    1983-01-01

    An improved process for hydrogenation of coal containing ash with agglomeration and removal of ash from an ebullated bed catalytic reactor to produce deashed hydrocarbon liquid and gas products. In the process, a flowable coal-oil slurry is reacted with hydrogen in an ebullated catalyst bed reaction zone at elevated temperature and pressure conditions. The upward velocity and viscosity of the reactor liquid are controlled so that a substantial portion of the ash released from the coal is agglomerated to form larger particles in the upper portion of the reactor above the catalyst bed, from which the agglomerated ash is separately withdrawn along with adhering reaction zone liquid. The resulting hydrogenated hydrocarbon effluent material product is phase separated to remove vapor fractions, after which any ash remaining in the liquid fraction can be removed to produce substantially ash-free coal-derived liquid products.

  2. Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Total Fuel Oil Consumption and Expenditures, 1999" ,"All Buildings Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings (thousand)","Floorspac...

  3. Mechanochemical hydrogenation of coal

    DOE Patents [OSTI]

    Yang, Ralph T.; Smol, Robert; Farber, Gerald; Naphtali, Leonard M.

    1981-01-01

    Hydrogenation of coal is improved through the use of a mechanical force to reduce the size of the particulate coal simultaneously with the introduction of gaseous hydrogen, or other hydrogen donor composition. Such hydrogen in the presence of elemental tin during this one-step size reduction-hydrogenation further improves the yield of the liquid hydrocarbon product.

  4. Coal. [Great Plains Project

    SciTech Connect (OSTI)

    Not Available

    1981-03-01

    The status of various research projects related to coal is considered: gasification (approximately 30 processes) and in-situ gasification. Methanol production, retrofitting internal combustion engines to stratified charge engines, methanation (Conoco), direct reduction of iron ores, water resources, etc. Approximately 200 specific projects related to coal are considered with respect to present status. (LTN)

  5. Dry piston coal feeder

    DOE Patents [OSTI]

    Hathaway, Thomas J.; Bell, Jr., Harold S.

    1979-01-01

    This invention provides a solids feeder for feeding dry coal to a pressurized gasifier at elevated temperatures substantially without losing gas from the gasifier by providing a lock having a double-acting piston that feeds the coals into the gasifier, traps the gas from escaping, and expels the trapped gas back into the gasifier.

  6. Method for coal liquefaction

    DOE Patents [OSTI]

    Wiser, Wendell H.; Oblad, Alex G.; Shabtai, Joseph S.

    1994-01-01

    A process is disclosed for coal liquefaction in which minute particles of coal in intimate contact with a hydrogenation catalyst and hydrogen arc reacted for a very short time at a temperature in excess of 400.degree. C. at a pressure of at least 1500 psi to yield over 50% liquids with a liquid to gaseous hydrocarbon ratio in excess of 8:1.

  7. Coal liquefaction process

    DOE Patents [OSTI]

    Carr, Norman L.; Moon, William G.; Prudich, Michael E.

    1983-01-01

    A C.sub.5 -900.degree. F. (C.sub.5 -482.degree. C.) liquid yield greater than 50 weight percent MAF feed coal is obtained in a coal liquefaction process wherein a selected combination of higher hydrogen partial pressure, longer slurry residence time and increased recycle ash content of the feed slurry are controlled within defined ranges.

  8. Sustainable Coal Use

    Office of Energy Efficiency and Renewable Energy (EERE)

    Coal is a vital energy resource, not only for the United States, but also for many developed and developing economies around the world. Finding ways to use coal cleanly and more efficiently at lower costs is a major R&D challenge, and an ongoing focus of activities by the DOE's Office of Fossil Energy.

  9. Coal based electric generation comparative technologies report

    SciTech Connect (OSTI)

    Not Available

    1989-10-26

    Ohio Clean Fuels, Inc., (OCF) has licensed technology that involves Co-Processing (Co-Pro) poor grade (high sulfur) coal and residual oil feedstocks to produce clean liquid fuels on a commercial scale. Stone Webster is requested to perform a comparative technologies report for grassroot plants utilizing coal as a base fuel. In the case of Co-Processing technology the plant considered is the nth plant in a series of applications. This report presents the results of an economic comparison of this technology with other power generation technologies that use coal. Technologies evaluated were:Co-Processing integrated with simple cycle combustion turbine generators, (CSC); Co-Processing integrated with combined cycle combustion turbine generators, (CCC); pulverized coal-fired boiler with flue gas desulfurization and steam turbine generator, (PC) and Circulating fluidized bed boiler and steam turbine generator, (CFB). Conceptual designs were developed. Designs were based on approximately equivalent net electrical output for each technology. A base case of 310 MWe net for each technology was established. Sensitivity analyses at other net electrical output sizes varying from 220 MWe's to 1770 MWe's were also performed. 4 figs., 9 tabs.

  10. Eastman, AP start on coal unit

    SciTech Connect (OSTI)

    1995-10-25

    Eastman Chemical and Air Products and Chemicals (AP) have started construction of a $214-million, coal-to-methanol demonstration unit at Eastmans site in Kingsport, TN. The project is part of the Department of Energy`s clean coal technology program and is receiving $93 million in federal support. The demonstration unit-which will have a methanol capacity of 260 tons/day-will use novel catalyst technology for converting coal-derived synthesis gas (syngas) to methanol. Unlike conventional technology that processes syngas through a fixed bed of dry catalyst particles, the liquid-phase methanol process converts the syngas in a single vessel containing catalysts suspended in mineral oil. The companies say the innovation allows the process to better able handle the gases from coal gasifiers and is more stable and reliable than existing processes. Eastman says it will use the methanol produced by the plant as a chemical feedstock. It currently uses methanol as an intermediate in making acetic anhydride and dimethyl terephthalate. In addition, the companies say the methanol will be evaluated as a feedstock in making methyl tert-butyl ether for reformulated fuels. Eastman also says it will evaluate coproducing dimethyl ether (DME) with the methanol. DME can be used as a fuel additive or blended with methanol for a chemical feedstock, according to Eastman.

  11. Coal liquefaction process streams characterization and evaluation

    SciTech Connect (OSTI)

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1991-07-01

    This is the third Quarterly Technical Progress Report under DOE Contract DE-AC22-89PC89883. Three major topics are reported: (1) Feed coals and process oils form Wilsonville Run 259 were analyzed to provide information on process performance. Run 259 was operated in the catalytic/catalytic Close-Coupled Integrated Two-Stage Liquefaction (CC-ITSL) mode with ash recycle. Feed coals were conventionally cleaned and deep cleaned coal from the Ireland Mine (Pittsburgh seam). The catalyst used in both reactors was Shell 324 for most of the run; Amocat IC was used for start-up and (unstable) period A. (2) A special set of samples from Wilsonville Runs 258 and 259 was analyzed to provide clues for the cause of interstage deposition problems during Run 258, which was operated with subbituminous coal. (3) Eight technical sites were visited to provide input to the Analytical Needs Assessment and to refine ideas for proposed research under the Participants Program. The site visits are summarized. 11 refs., 18 figs., 27 tabs.

  12. EIS-0068: Development Policy Options for the Naval Oil Shale Reserves in Colorado

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy Office of Naval Petroleum and Oil Shale Reserves prepared this programmatic statement to examine the environmental and socioeconomic impacts of development projects on the Naval Oil Shale Reserve 1, and examine select alternatives, such as encouraging production from other liquid fuel resources (coal liquefaction, biomass, offshore oil and enhanced oil recovery) or conserving petroleum in lieu of shale oil production.

  13. State coal profiles, January 1994

    SciTech Connect (OSTI)

    Not Available

    1994-02-02

    The purpose of State Coal Profiles is to provide basic information about the deposits, production, and use of coal in each of the 27 States with coal production in 1992. Although considerable information on coal has been published on a national level, there is a lack of a uniform overview for the individual States. This report is intended to help fill that gap and also to serve as a framework for more detailed studies. While focusing on coal output, State Coal Profiles shows that the coal-producing States are major users of coal, together accounting for about three-fourths of total US coal consumption in 1992. Each coal-producing State is profiled with a description of its coal deposits and a discussion of the development of its coal industry. Estimates of coal reserves in 1992 are categorized by mining method and sulfur content. Trends, patterns, and other information concerning production, number of mines, miners, productivity, mine price of coal, disposition, and consumption of coal are detailed in statistical tables for selected years from 1980 through 1992. In addition, coal`s contribution to the State`s estimated total energy consumption is given for 1991, the latest year for which data are available. A US summary of all data is provided for comparing individual States with the Nation as a whole. Sources of information are given at the end of the tables.

  14. Underground Coal Thermal Treatment

    SciTech Connect (OSTI)

    Smith, P.; Deo, M.; Eddings, E.; Sarofim, A.; Gueishen, K.; Hradisky, M.; Kelly, K.; Mandalaparty, P.; Zhang, H.

    2012-01-11

    The long-term objective of this work is to develop a transformational energy production technology by insitu thermal treatment of a coal seam for the production of substitute natural gas (SNG) while leaving much of the coal's carbon in the ground. This process converts coal to a high-efficiency, low-GHG emitting gas fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This topical report discusses the development of experimental capabilities, the collection of available data, and the development of simulation tools to obtain process thermo-chemical and geo-thermal parameters in preparation for the eventual demonstration in a coal seam. It also includes experimental and modeling studies of CO2 sequestration.

  15. Coal in China

    SciTech Connect (OSTI)

    Minchener, A.J.

    2005-07-01

    The article gives an overview of the production and use of coal in China, for power generation and in other sectors. Coal use for power generation was 850 million tonnes in 2003 and 800 million tonnes in the non-power sector. The majority of power will continue to be produced from coal, with a trend towards new larger pulverised coal fired units and introduction of circulating fluidised bed combustors. Stricter regulations are forcing introduction of improved pollution control technologies. It seems likely that China will need international finance to supplement private and state investment to carry out a programme to develop and apply clean coal technologies. The author concludes that there is evidence of a market economy being established but there is a need to resolve inconsistencies with the planned aspects of the economy and that additional policies are needed in certain sectors to achieve sustainable development. 1 ref., 2 figs., 2 tabs.

  16. Enzymatic desulfurization of coal

    SciTech Connect (OSTI)

    Boyer, Y.N.; Crooker, S.C.; Kitchell, J.P.; Nochur, S.V.

    1991-05-16

    The overall objective of this program was to investigate the feasibility of an enzymatic desulfurization process specifically intended for organic sulfur removal from coal. Toward that end, a series of specific objectives were defined: (1) establish the feasibility of (bio)oxidative pretreatment followed by biochemical sulfate cleavage for representative sulfur-containing model compounds and coals using commercially-available enzymes; (2) investigate the potential for the isolation and selective use of enzyme preparations from coal-utilizing microbial systems for desulfurization of sulfur-containing model compounds and coals; and (3) develop a conceptual design and economic analysis of a process for enzymatic removal of organic sulfur from coal. Within the scope of this program, it was proposed to carry out a portion of each of these efforts concurrently. (VC)

  17. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    SciTech Connect (OSTI)

    Caroline E. Burgess Clifford; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2006-05-17

    This report summarizes the accomplishments toward project goals during the first six months of the third year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. Characterization of the gasoline fuel indicates a dominance of single ring alkylcycloalkanes that have a low octane rating; however, blends containing these compounds do not have a negative effect upon gasoline when blended in refinery gasoline streams. Characterization of the diesel fuel indicates a dominance of 3-ring aromatics that have a low cetane value; however, these compounds do not have a negative effect upon diesel when blended in refinery diesel streams. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Combustion and characterization of fuel oil indicates that the fuel is somewhere in between a No. 4 and a No. 6 fuel oil. Emission testing indicates the fuel burns similarly to these two fuels, but trace metals for the coal-based material are different than petroleum-based fuel oils. Co-coking studies using cleaned coal are highly reproducible in the pilot-scale delayed coker. Evaluation of the coke by Alcoa, Inc. indicated that while the coke produced is of very good quality, the metals content of the carbon is still high in iron and silica. Coke is being evaluated for other possible uses

  18. Coal-fueled diesels for modular power generation

    SciTech Connect (OSTI)

    Wilson, R.P.; Rao, A.K.; Smith, W.C.

    1993-11-01

    Interest in coal-fueled heat engines revived after the sharp increase in the prices of natural gas and petroleum in the 1970`s. Based on the success of micronized coal water slurry combustion tests in an engine in the 1980`s, Morgantown Energy Technology Center (METC) of the US Department of Energy. initiated several programs for the development of advanced coal-fueled diesel and gas turbine engines for use in cogeneration, small utilities, industrial applications and transportation. Cooper-Bessemer and Arthur D. Little have been developing technology since 1985, under the sponsor of METC, to enable coal water slurry (CWS) to be utilized in large bore, medium-speed diesel engines. Modular power generation applications in the 10--100 MW size (each plant typically using from two to eight engines) are the target applications for the late 1990`s and beyond when, according to the US DOE and other projections, oil and natural gas prices are expected to escalate much more rapidly compared to the price of coal. As part of this program over 7.50 hours of prototype engine operation has been achieved on coal water slurry (CWS), including over 100 hours operation of a six-cylinder full scale engine with Integrated Emissions Control System in 1993. In this paper, the authors described the project cost of the CWS fuel used, the heat rate of the engine operating on CWS, the projected maintenance cost for various engine components, and the demonstrated low emissions characteristics of the coal diesel system.

  19. THE DEVELOPMENT OF COAL-BASED TECHNOLOGIES FOR DEPARTMENT OF DEFENSE FACILITIES

    SciTech Connect (OSTI)

    Bruce G. Miller; Sharon Falcone Miller; Sarma V. Pisupati; Chunshan Song; Ronald S. Wasco; Ronald T. Wincek; Xiaochun Xu; Alan W. Scaroni; Richard Hogg; Subhash Chander; M. Thaddeus Ityokumbul; Mark S. Klima; Peter T. Luckie; Adam Rose; Richard L. Gordon; Jeffrey Lazo; A. Michael Schaal

    2004-01-30

    The third phase of a three-phase project investigating the development of coal-based technologies for US Department of Defense (DOD) facilities was completed. The objectives of the project were to: decrease DOD's dependence on foreign oil and increase its use of coal; promote public and private sector deployment of technologies for utilizing coal-based fuels in oil-designed combustion equipment; and provide a continuing environment for research and development of coal-based fuel technologies for small-scale applications at a time when market conditions in the US are not favorable for the introduction of coal-fired equipment in the commercial and industrial capacity ranges. The Phase III activities were focused on evaluating deeply-cleaned coals as fuels for industrial boilers and investigating emissions control strategies for providing ultra-low emissions when firing coal-based fuels. This was addressed by performing coal beneficiation and preparation studies, and bench- to demonstration-scale emissions reduction studies. In addition, economic studies were conducted focused on determining cost and market penetration, selection of incentives, and regional economic impacts of coal-based technologies.

  20. Apparatus and method for feeding coal into a coal gasifier

    DOE Patents [OSTI]

    Bissett, Larry A.; Friggens, Gary R.; McGee, James P.

    1979-01-01

    This invention is directed to a system for feeding coal into a gasifier operating at high pressures. A coal-water slurry is pumped to the desired pressure and then the coal is "dried" prior to feeding the coal into the gasifier by contacting the slurry with superheated steam in an entrained bed dryer for vaporizing the water in the slurry.

  1. Geologic map and coal sections of the Pine Ridge quadrangle, Moffat County, Colorado

    SciTech Connect (OSTI)

    Prost, G.L.; Brownfield, M.E.

    1983-01-01

    The Pine Ridge quadrangle was mapped as part of the US Geological Survey's program of classifying and evaluating mineral lands in the public domain. Coal is the primary resource of econmic interest within the quadrangle and occurs in the Lance and Fort Union Formations. Several unsuccessful oil-and-gas wells have been drilled within the quadrangle. Possible uranium deposits may be found in the Browns Park Formation. Sand and gravel are also present in the quadrangle. The main coal zone in the Lance Formation is found near the middle and contains coal beds ranging in thickness from 0.17 to 0.94 m. These coal beds are discontinuous, grading laterally and vertically into carbonaceous shales. The middle coal zone in the Lance Formation appears to be continuous from east to west across the quadrangle. Coal beds approximately 0.1 m thick occur locally just above the base of the Lance. There are no coal mines or prospects within the formation. Coal beds in the Fort Union Formation, although generally thicker than the Lance coals, are extremely lenticular and irregular in distribution. The Fort Union coal zone is 22 to 51 m thick and the lowermost coal bed is 36 to 177 m above the basal Fort Union contact. Coal beds pinch and swell, are split by shale and sandstone partings, are cut out by river-channel sandstones, and grade laterally and vertically into carbonaceous shales. Inferred coal resources were calculated for the Fort Union Formation coals. An estimated 3278 ha are underlain by approximately 195 million metric tons. Resources were not calculated for coal beds in the Lance Formation.

  2. Workshop on the utilization of coal as an alternative to petroleum fuels in the Andean region. Volume 2. Contributed papers

    SciTech Connect (OSTI)

    Not Available

    1985-06-28

    Since the advent of the petroleum crisis in the mid-seventies, with its escalating fuel-oil prices, coal production has shown a substantial increase. Worldwide coal reserves are large, and the technology exists to exploit these reserves. Andean countries, especially Peru, are known to have significant underutilized coal reserves, which could prove socially and economically attractive for energy policy and planning and for long-term self-sufficiency. At present, many industrial operations and electric-generating facilities in Bolivia, Ecuador, and Peru are dependent on fuel-oil from diminishing domestic reserves or from imports. With current prices of coal generally about half those for residual petroleum fuels (based on energy content), the potential exists for exploitation of Andean coal as an alternative to petroleum fuels. Greater use of coal resources would help meet the demand for increased energy needed to improve living standards and for increased industrialization in the area.

  3. "NAICS Code(a)","Energy-Management Activity","No Participation","Participation(b)","Don't Know","Not Applicable"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Relative Standard Errors for Table 8.4;" " Unit: Percents." "NAICS Code(a)","Energy-Management Activity","No Participation","Participation(b)","Don't Know","Not Applicable" ,,"Total United States" " 311 - 339","ALL MANUFACTURING INDUSTRIES" ,"Full-Time Energy Manager (c)",0.7,4.8,3.9,"--" ,"Set Goals for Improving Energy Efficiency",1.2,2.8,3,"--"

  4. Coal in a changing climate

    SciTech Connect (OSTI)

    Lashof, D.A.; Delano, D.; Devine, J.

    2007-02-15

    The NRDC analysis examines the changing climate for coal production and use in the United States and China, the world's two largest producers and consumers of coal. The authors say that the current coal fuel cycle is among the most destructive activities on earth, placing an unacceptable burden on public health and the environment. There is no such thing as 'clean coal.' Our highest priorities must be to avoid increased reliance on coal and to accelerate the transition to an energy future based on efficient use of renewable resources. Energy efficiency and renewable energy resources are technically capable of meeting the demands for energy services in countries that rely on coal. However, more than 500 conventional coal-fired power plants are expected in China in the next eight years alone, and more than 100 are under development in the United States. Because it is very likely that significant coal use will continue during the transition to renewables, it is important that we also take the necessary steps to minimize the destructive effects of coal use. That requires the U.S. and China to take steps now to end destructive mining practices and to apply state of the art pollution controls, including CO{sub 2} control systems, to sources that use coal. Contents of the report are: Introduction; Background (Coal Production; Coal Use); The Toll from Coal (Environmental Effects of Coal Production; Environmental Effects of Coal Transportation); Environmental Effects of Coal Use (Air Pollutants; Other Pollutants; Environmental Effects of Coal Use in China); What Is the Future for Coal? (Reducing Fossil Fuel Dependence; Reducing the Impacts of Coal Production; Reducing Damage From Coal Use; Global Warming and Coal); and Conclusion. 2 tabs.

  5. Coal market momentum converts skeptics

    SciTech Connect (OSTI)

    Fiscor, S.

    2006-01-15

    Tight supplies, soaring natural gas prices and an improving economy bode well for coal. Coal Age presents it 'Forecast 2006' a survey of 200 US coal industry executives. Questions asked included predicted production levels, attitudes, expenditure on coal mining, and rating of factors of importance. 7 figs.

  6. The US coal industry, 1970--1990: Two decades of change

    SciTech Connect (OSTI)

    Not Available

    1992-11-04

    The purpose of this report, is to provide a comprehensive overview of the US coal industry over the past two decades, with emphasis on the major changes that occurred, their causes, and their effects. The report presents and analyzes data compiled by the Energy Information Administration (EIA) on the US coal industry, as well as EIA data on other energy sources and information from non-EIA sources where relevant. These data are used to reveal trends in coal production, consumption, distribution, and prices. Trends in coal mining productivity and employment are also examined, and the profitability of major energy companies' coal operations is tracked over the 1977 through 1990 period. Analysis of the data indicates the impacts on the coal industry of major events such as the oil embargo, technological breakthroughs, and Federal and State laws and regulations affecting the industry.

  7. The US coal industry, 1970--1990: Two decades of change

    SciTech Connect (OSTI)

    Not Available

    1992-11-04

    The purpose of this report, is to provide a comprehensive overview of the US coal industry over the past two decades, with emphasis on the major changes that occurred, their causes, and their effects. The report presents and analyzes data compiled by the Energy Information Administration (EIA) on the US coal industry, as well as EIA data on other energy sources and information from non-EIA sources where relevant. These data are used to reveal trends in coal production, consumption, distribution, and prices. Trends in coal mining productivity and employment are also examined, and the profitability of major energy companies` coal operations is tracked over the 1977 through 1990 period. Analysis of the data indicates the impacts on the coal industry of major events such as the oil embargo, technological breakthroughs, and Federal and State laws and regulations affecting the industry.

  8. Environmentally conscious coal combustion

    SciTech Connect (OSTI)

    Hickmott, D.D.; Brown, L.F.; Currier, R.P.

    1997-08-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of this project was to evaluate the environmental impacts of home-scale coal combustion on the Navajo Reservation and develop strategies to reduce adverse health effects associated with home-scale coal combustion. Principal accomplishments of this project were: (1) determination of the metal and gaseous emissions of a representative stove on the Navajo Reservation; (2) recognition of cyclic gaseous emissions in combustion in home-scale combustors; (3) `back of the envelope` calculation that home-scale coal combustion may impact Navajo health; and (4) identification that improved coal stoves require the ability to burn diverse feedstocks (coal, wood, biomass). Ultimately the results of Navajo home-scale coal combustion studies will be extended to the Developing World, particularly China, where a significant number (> 150 million) of households continue to heat their homes with low-grade coal.

  9. World oil trends

    SciTech Connect (OSTI)

    Anderson, A. )

    1991-01-01

    This book provides data on many facets of the world oil industry topics include; oil consumption; oils share of energy consumption; crude oil production; natural gas production; oil reserves; prices of oil; world refining capacity; and oil tankers.

  10. Aqueous coal slurry

    SciTech Connect (OSTI)

    Berggren, M.H.; Smit, F.J.; Swanson, W.W.

    1989-10-30

    A principal object of the invention is the provision of an aqueous coal slurry containing a dispersant, which is of low-cost and which contains very low or no levels of sodium, potassium, sulfur and other contaminants. In connection with the foregoing object, it is an object of the invention to provide an aqueous slurry containing coal and dextrin as a dispersant and to provide a method of preparing an aqueous coal slurry which includes the step of adding an effective amount of dextrin as a dispersant. The invention consists of certain novel features and a combination of parts hereinafter fully described, and particularly pointed out in the appended claims. 6 tabs.

  11. Coal liquefaction process

    DOE Patents [OSTI]

    Wright, C.H.

    1986-02-11

    A process is described for the liquefaction of coal wherein raw feed coal is dissolved in recycle solvent with a slurry containing recycle coal minerals in the presence of added hydrogen at elevated temperature and pressure. The highest boiling distillable dissolved liquid fraction is obtained from a vacuum distillation zone and is entirely recycled to extinction. Lower boiling distillable dissolved liquid is removed in vapor phase from the dissolver zone and passed without purification and essentially without reduction in pressure to a catalytic hydrogenation zone where it is converted to an essentially colorless liquid product boiling in the transportation fuel range. 1 fig.

  12. Chapter 4 - Coal

    Gasoline and Diesel Fuel Update (EIA)

    1 U.S. Energy Information Administration | International Energy Outlook 2016 Chapter 4 Coal Overview In the International Energy Outlook 2016 (IEO2016) Reference case, coal remains the second-largest energy source worldwide- behind petroleum and other liquids-until 2030. From 2030 through 2040, it is the third-largest energy source, behind both liquid fuels and natural gas. World coal consumption increases from 2012 to 2040 at an average rate of 0.6%/year, from 153 quadrillion Btu in 2012 to 169

  13. Coal liquefaction process

    DOE Patents [OSTI]

    Wright, Charles H.

    1986-01-01

    A process for the liquefaction of coal wherein raw feed coal is dissolved in recycle solvent with a slurry containing recycle coal minerals in the presence of added hydrogen at elevated temperature and pressure. The highest boiling distillable dissolved liquid fraction is obtained from a vacuum distillation zone and is entirely recycled to extinction. Lower boiling distillable dissolved liquid is removed in vapor phase from the dissolver zone and passed without purification and essentially without reduction in pressure to a catalytic hydrogenation zone where it is converted to an essentially colorless liquid product boiling in the transportation fuel range.

  14. Underground gasification of coal

    DOE Patents [OSTI]

    Pasini, III, Joseph; Overbey, Jr., William K.; Komar, Charles A.

    1976-01-20

    There is disclosed a method for the gasification of coal in situ which comprises drilling at least one well or borehole from the earth's surface so that the well or borehole enters the coalbed or seam horizontally and intersects the coalbed in a direction normal to its major natural fracture system, initiating burning of the coal with the introduction of a combustion-supporting gas such as air to convert the coal in situ to a heating gas of relatively high calorific value and recovering the gas. In a further embodiment the recovered gas may be used to drive one or more generators for the production of electricity.

  15. Producing liquid fuels from coal: prospects and policy issues

    SciTech Connect (OSTI)

    James T. Bartis; Frank Camm; David S. Ortiz

    2008-07-01

    The increase in world oil prices since 2003 has prompted renewed interest in producing and using liquid fuels from unconventional resources, such as biomass, oil shale, and coal. This book focuses on issues and options associated with establishing a commercial coal-to-liquids (CTL) industry within the United States. It describes the technical status, costs, and performance of methods that are available for producing liquids from coal; the key energy and environmental policy issues associated with CTL development; the impediments to early commercial experience; and the efficacy of alternative federal incentives in promoting early commercial experience. Because coal is not the only near-term option for meeting liquid-fuel needs, this book also briefly reviews the benefits and limitations of other approaches, including the development of oil shale resources, the further development of biomass resources, and increasing dependence on imported petroleum. A companion document provides a detailed description of incentive packages that the federal government could offer to encourage private-sector investors to pursue early CTL production experience while reducing the probability of bad outcomes and limiting the costs that might be required to motivate those investors. (See Rand Technical Report TR586, Camm, Bartis, and Bushman, 2008.) 114 refs., 2 figs., 16 tabs., 3 apps.

  16. DOE - Fossil Energy: Coal Mining and Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mining Fossil Energy Study Guides Coal Mining and Transportation Coal Miners - One type of mining, called "longwall mining", uses a rotating blade to shear coal away from the ...

  17. Puda Coal Inc | Open Energy Information

    Open Energy Info (EERE)

    Puda Coal Inc Jump to: navigation, search Name: Puda Coal, Inc Place: Taiyuan, Shaanxi Province, China Product: Specializes in coal preparation by applying a water jig washing...

  18. Coal Gasification and Transportation Fuels Magazine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coal Gasification and Transportation Fuels Magazine Current Edition: Coal Gasification and Transportation Fuels Quarterly News, Vol. 2, Issue 3 (April 2016) Archived Editions: Coal ...

  19. SO2 REMOVAL WITH COAL SCRUBBING

    SciTech Connect (OSTI)

    Eung Ha Cho; Hari Prashanth Sundaram; Aubrey L. Miller

    2001-07-01

    This project is based on an effective removal of sulfur dioxide from flue gas with coal as the scrubbing medium instead of lime, which is used in the conventional FGD processes. A laboratory study proves that coal scrubbing is an innovative technology that can be implemented into a commercial process in place of the conventional lime scrubbing flue gas desulfurization process. SO{sub 2} was removed from a gas stream using an apparatus, which consisted of a 1-liter stirred reactor immersed in a thermostated oil bath. The reactor contained 60 g of 35-65 mesh coal in 600 ml of water. The apparatus also had 2 bubblers connected to the outlet of the reactor, each containing 1500 ml of 1 molar NaOH solution. The flow rate of the gas was 30 ml/sec, temperature was varied from 21 C to 73 C. Oxygen concentration ranged from 3 to 20% while SO{sub 2} concentration, from 500 to 2000 ppm. SO{sub 2} recovery was determined by analyzing SO{sub 2} concentration in the liquid samples taken from the bubblers. The samples taken from the reactor were analyzed for iron concentrations, which were then used to calculate fractions of coal pyrite leached. It was found that SO{sub 2} removal was highly temperature sensitive, giving 13.1% recovery at 21 C and 99.2% recovery at 73 C after 4 hours. The removal of SO{sub 2} was accomplished by the catalysis of iron that was produced by leaching of coal pyrite with combination of SO{sub 2} and O{sub 2}. This leaching reaction was found to be controlled by chemical reaction with apparent activation energy of 11.6 kcal/mole. SO{sub 2} removal increased with increasing O{sub 2} concentration up to 10% and leveled off upon further increase. The effect of SO{sub 2} concentration on its removal was minimal.

  20. Commercialization strategies for coal-derived transportation fuels

    SciTech Connect (OSTI)

    Tomlinson, G.; Gray, D.

    1992-12-31

    The objective of this paper is to analyze a program that can stimulate the development of a synthetic liquid transportation fuels from coal industry, by requiring that the products be bought at their true cost of production. These coal-derived liquids will then be assimulated into the nation`s fuel supply system. The cost of this program will be borne by increased cost of all fuels in the marketplace. The justification of the program is the assumption that, because of increasing demand, the world oil price (WOP) will increase to a level that will make coal-derived fuels economical in the relatively near future. However, as noted in the International Energy Outlook of 1990: ``Given current costs and Technologies, it is estimated the cost of crude oil would have to exceed $35 per barrel in 1989 dollars for at least four consecutive years for commercial production, in the range of 100,000 barrels per day, of synthetic liquids to occur. This delayed response of production to price increases reflects the planning and construction time required to complete a coal liquefaction plant``. This program is designed to reduce this time lag so that coal-derived fuels will be available when they are needed. This timely production capability of coal liquids may be able to limit future world oil prices to the actual cost of synthetic alternatives. In addition, the program is structured so that it will provide synthetic fuel producers with a cushion in the event that the WOP continues to remain low.