Powered by Deep Web Technologies
Note: This page contains sample records for the topic "ogilby mesa ca" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Ogilby, CA Natural Gas Pipeline Exports to Mexico (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Monthly Annual Download Data (XLS File) Ogilby, CA Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Ogilby, CA Natural Gas Pipeline Exports to Mexico...

2

Ogilby, CA Natural Gas Pipeline Exports to Mexico (Dollars per...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Ogilby, CA Natural Gas Pipeline Exports to Mexico (Dollars per Thousand Cubic Feet) Ogilby, CA Natural Gas Pipeline Exports...

3

Ogilby Mesa, CA Natural Gas Exports to Mexico  

Gasoline and Diesel Fuel Update (EIA)

GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba...

4

Otay Mesa, CA Natural Gas Pipeline Exports to Mexico (Million...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Otay Mesa, CA Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Otay Mesa, CA Natural Gas Pipeline Exports to Mexico...

5

Otay Mesa, CA Liquefied Natural Gas Exports to Mexico (Dollars...  

U.S. Energy Information Administration (EIA) Indexed Site

data. Release Date: 7312013 Next Release Date: 8302013 Referring Pages: U.S. Price of Liquefied Natural Gas Exports by Point of Exit Otay Mesa, CA Natural Gas Exports to...

6

Otay Mesa, CA Liquefied Natural Gas Exports to Mexico (Dollars...  

U.S. Energy Information Administration (EIA) Indexed Site

Date: 7312013 Next Release Date: 8302013 Referring Pages: U.S. Price of Liquefied Natural Gas Exports by Point of Exit Otay Mesa, CA Natural Gas Imports by Pipeline from...

7

Ogilby, CA Natural Gas Pipeline Exports to Mexico (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 2,249 5,761 5,912 5,065 6,188 7,456 9,816 9,758 9,137 9,369 8,233 8,315 2012 5,922 8,096 8,035 7,614 7,659 10,286 9,253...

8

The I{sub C}R{sub N} value in intrinsic Josephson tunnel junctions in Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} (Bi2212) mesas.  

Science Conference Proceedings (OSTI)

The c-axis current-voltage I(V) characteristics have been obtained on a set of mesas of varying height sculpted on Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} (Bi2212) crystals intercalated with HgB{sub 2}. The intercalation, along with the small number of junctions in the mesa, N = 6-30, minimizes the degree of self-heating, leading to a consistent Josephson critical current, I{sub C}, among junctions in the mesa. The Bi2212 crystals with a bulk T{sub C} = 74 K are overdoped and display negligible pseudogap effects allowing an accurate measure of the normal state resistance, R{sub N}. These properties make the mesas nearly ideal for the determination of the Josephson I{sub C}R{sub N} product. We find I{sub C}R{sub N} values consistently {approx}30% of the quasiparticle gap parameter, {Delta}/e, which was measured independently using a mechanical contact, break junction technique. The latter was necessitated by higher bias heating effects in the mesas which prevented direct measurements of the superconducting gap. These values are among the highest reported and may represent the maximum intrinsic value for I{sub C}R{sub N}. The results indicate that the c-axis transport is a mixture of coherent and incoherent tunneling.

Kurter, C.; Ozyuzer, L.; Zasadzinski, J. F.; Hinks, D. G.; Gray, K. E. (Materials Science Division); (Illinois Inst. of Tech.); (Izmir Inst. of Tech.); (Univ. of Maryland)

2010-11-01T23:59:59.000Z

9

Mesa Energy formerly called Mesa Environmental Sciences | Open Energy  

Open Energy Info (EERE)

called Mesa Environmental Sciences called Mesa Environmental Sciences Jump to: navigation, search Name Mesa Energy (formerly called Mesa Environmental Sciences) Place Pennsylvania Zip 19355 Sector Services, Solar Product Environmental and energy services company focused on solar PV design and installation. References Mesa Energy (formerly called Mesa Environmental Sciences)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Mesa Energy (formerly called Mesa Environmental Sciences) is a company located in Pennsylvania . References ↑ "Mesa Energy (formerly called Mesa Environmental Sciences)" Retrieved from "http://en.openei.org/w/index.php?title=Mesa_Energy_formerly_called_Mesa_Environmental_Sciences&oldid=34874

10

Reply to 'Comment by V. M. Krasnov on 'Connterintuitve consequence of heating in strongly-driven intrinsic junctions of Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} Mesas.' '  

Science Conference Proceedings (OSTI)

The main criticism raised in the preceding Comment concerns our suggestion that sharp conduction peaks in Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} mesas, along with absent dip-hump features, may, in general, be a result of self-heating. The author points to the variety of experimental configurations, matrix-element effects, and doping dependencies that might allow a diversity of conductance spectra. We argue that numerous mesa studies (with fixed matrix elements) firmly establish the systematic development of sharp conductance peaks with increased self-heating, and thus, the issue of nonuniversality of tunneling characteristics is not relevant. The author mentions a number of studies that show that the mesa is superconducting near the conductance peak voltage. This is not in dispute and indicates a misinterpretation of our analysis that is clarified here. To address further comments on the technical details of our heating model, we reiterate that our conclusions are independent of our model but rather are based solely on experimental data that are not in dispute.

Kurter, C.; Ozyuzer, L.; Prolier, T.; Zasadzinski, J. F.; Hinks, D. G.; Gray, K. E. (Materials Science Division); (Illinois Inst. of Tech.); (Izmir Inst. of Tech.)

2011-01-01T23:59:59.000Z

11

U.S. LNG Imports from Trinidad/Tobago  

Gasoline and Diesel Fuel Update (EIA)

Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports...

12

U.S. LNG Imports from Peru  

Gasoline and Diesel Fuel Update (EIA)

Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports...

13

U.S. LNG Imports from Indonesia  

Annual Energy Outlook 2012 (EIA)

Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports...

14

U.S. LNG Imports from Oman  

Gasoline and Diesel Fuel Update (EIA)

Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports...

15

U.S. LNG Imports from Qatar  

Annual Energy Outlook 2012 (EIA)

Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports...

16

U.S. LNG Imports from Equatorial Guinea  

Annual Energy Outlook 2012 (EIA)

Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports...

17

U.S. LNG Imports from Nigeria  

Gasoline and Diesel Fuel Update (EIA)

Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports...

18

U.S. LNG Imports from Norway  

Gasoline and Diesel Fuel Update (EIA)

Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports...

19

U.S. Total Exports  

Annual Energy Outlook 2012 (EIA)

Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports...

20

U.S. Natural Gas Exports to Mexico  

Annual Energy Outlook 2012 (EIA)

Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports...

Note: This page contains sample records for the topic "ogilby mesa ca" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

U.S. LNG Imports from Malaysia  

Gasoline and Diesel Fuel Update (EIA)

Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports...

22

U.S. LNG Imports from Australia  

Annual Energy Outlook 2012 (EIA)

Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports...

23

U.S. LNG Imports from Brunei  

Gasoline and Diesel Fuel Update (EIA)

Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports...

24

U.S. LNG Imports from Algeria  

Annual Energy Outlook 2012 (EIA)

Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports...

25

U.S. Natural Gas Exports to Canada  

Annual Energy Outlook 2012 (EIA)

Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports...

26

Alta Mesa I Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Mesa I Wind Farm Mesa I Wind Farm Jump to: navigation, search Name Alta Mesa I Wind Farm Facility Alta Mesa I Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner SeaWest Developer SeaWest Energy Purchaser Southern California Edison Co Location San Gorgonio CA Coordinates 33.9095°, -116.734° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.9095,"lon":-116.734,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

27

MESA Makes It Real The  

NLE Websites -- All DOE Office Websites (Extended Search)

Microsystems & Engineering Microsystems & Engineering Sciences Applications (MESA) MESA Makes It Real The Microsystems & Engineering Sciences Applications (MESA) Complex represents the essential facilities and equipment to design, develop, manufacture, integrate, and qualify microsystems for national security needs that cannot or should not be made in industry- either because the low volumes required for these applications are not profitable for the private sector, or because of stringent security requirements for high-consequence systems. Microsystems extend the information processing capabilities of silicon integrated circuits to add functions such as sensing, actuation, and communication-all integrated within a single package. The MESA Complex integrates the scientific,

28

Alta Mesa II Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Alta Mesa II Wind Farm Alta Mesa II Wind Farm Facility Alta Mesa II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner SeaWest Developer SeaWest Energy Purchaser Southern California Edison Co Location San Gorgonio CA Coordinates 33.9095°, -116.734° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.9095,"lon":-116.734,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

29

High Mesa | Open Energy Information  

Open Energy Info (EERE)

Mesa Mesa Jump to: navigation, search Name High Mesa Facility High Mesa Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Exelon Wind Developer Exelon Wind Energy Purchaser Idaho Power Location Bliss ID Coordinates 42.88797667°, -115.0169849° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.88797667,"lon":-115.0169849,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

30

Red Mesa | Open Energy Information  

Open Energy Info (EERE)

Mesa Mesa Facility Red Mesa Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer Wanzek Construction Location Cibola County near Seboyeta NM Coordinates 35.197003°, -107.372611° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.197003,"lon":-107.372611,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

31

MSTC - Microsystems Science, Technology, and Components - MESA  

NLE Websites -- All DOE Office Websites (Extended Search)

Microsystems > MESA Microsystems > MESA Microsystems Home Custom Microsystems Solutions Microsystems R&D Services Capabilities and Technologies Facilities Trusted Microsystems General Info About Us Awards Contacts Doing Business with Us Fact Sheets MESA News MESA MESA Logo Microsystems and Engineering Sciences Applications (MESA) Sandia's primary mission is ensuring the U.S. nuclear arsenal is safe, secure, reliable, and can fully support the Nation's deterrence policy. Employing only the most advanced and failsafe technologies to fulfill our responsibilities as stewards of the nuclear stockpile, Sandia is responsible for the development, design and maintenance of approximately 90 percent of the several thousand parts found in any given weapon system, including radiation-hardened microelectronics. In support of this mission,

32

Mesa Top Photovoltaic Array (Fact Sheet)  

DOE Green Energy (OSTI)

Fact sheet overview of the Mesa Top Photovoltaic Array project implemented by the Department of Energy Golden Office and National Renewable Energy Laboratory.

Not Available

2009-07-01T23:59:59.000Z

33

Aragonne Mesa Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Aragonne Mesa Wind Farm Aragonne Mesa Wind Farm Jump to: navigation, search Name Aragonne Mesa Wind Farm Facility Aragonne Mesa Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner GE Energy Developer Babcock & Brown Energy Purchaser Arizona Public Service Location Guadalupe County NM Coordinates 34.796889°, -105.054188° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.796889,"lon":-105.054188,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

34

Trent Mesa Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Trent Mesa Wind Farm Trent Mesa Wind Farm Facility Trent Mesa Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner American Electric Power Developer American Electric Power Energy Purchaser TXU Electric & Gas Location Nolan and Taylor Counties TX Coordinates 32.295161°, -100.150645° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.295161,"lon":-100.150645,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

35

Thermal management in large Bi2212 mesas used for terahertz sources.  

SciTech Connect

We present a thermal analysis of a patterned mesa on a Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} (Bi2212) single crystal that is based on tunneling characteristics of the c-axis stack of {approx}800 intrinsic Josephson junctions in the mesa. Despite the large mesa volume (e.g., 40 times 300 times 1.2 mum{sup 3}) and power dissipation that result in self-heating and backbending of the current-voltage curve (I-V), there are accessible bias conditions for which significant polarized THz-wave emission can be observed. We estimate the mesa temperature by equating the quasiparticle resistance, R{sub qp}(T), to the ratio V/I over the entire I-V including the backbending region. These temperatures are used to predict the unpolarized black-body radiation reaching our bolometer and there is substantial agreement over the entire I-V. As such, backbending results from the particular R{sub qp}(T) for Bi2212, as first discussed by Fenton, rather than a significant suppression of the energy gap. This model also correctly predicts the observed disappearance of backbending above {approx}60 K.

Kurter, C.; Gray, K. E.; Zasadzinski, J. F.; Ozyuzer, L.; Koshelev, A. E.; Li, Q.; Yamamoto, T.; Kadowaki, K.; Kwok, W.-K.; Tachiki, M.; Welp, U.; Materials Science Division; Izmir Inst. of Tech.; Illinois Inst. of Tech.; Univ. Tsukuba; Univ. Tokyo

2009-06-01T23:59:59.000Z

36

East Brawley East MesaHeber  

E-Print Network (OSTI)

East Brawley Glamis Dunes East MesaHeber Salton Sea South Brawley Randsburg Sespe Hot Springs Coso Randsburg Sespe Hot Springs Coso Hot Springs Mono - Long Valley Bodie Saline Valley Calistoga The Geysers Hot Springs Mono - Long Valley Bodie Saline Valley Calistoga The Geysers Lassen Wendel - Amedee Glass

37

CA-067-2006-12 | Open Energy Information  

Open Energy Info (EERE)

CA-067-2006-12 CA-067-2006-12 Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: CA-067-2006-12 EA at East Mesa Geothermal Area for {{{GeothermalDevelopmentPhases}}} Ormesa Geothermal Projects Continuing Geothermal Lease Operations East Mesa Known Geothermal Resource Area Imperial County, California General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EA Applicant Consultant Environmental Management Associates, Inc. Geothermal Area East Mesa Geothermal Area Project Location California Project Phase Techniques Time Frame (days) Participating Agencies Lead Agency none provided Funding Agency none provided Managing District Office none provided Managing Field Office none provided Funding Agencies none provided

38

Mesa Top Photovoltaic Array, NREL (Fact Sheet)  

NLE Websites -- All DOE Office Websites (Extended Search)

Mesa Top Photovoltaic Array Mesa Top Photovoltaic Array System Specifications System size: 720 kilowatts (kW) DC Characteristics: Single axis tracker photovoltaic, ground mounted Annual output: 1.2 gigawatt hours (GWh) Location: Top of South Table Mountain, Golden, Colorado Start of operation: December 2008 Financial Terms System ownership: SunEdison financed, built, owns, operates and maintains the system Solar Power and Services Agreement (SPSA): SunEdison and the Western Area Power Administration (WAPA) entered into a 20-year SPSA to provide Solar Energy Services to the Department of Energy (DOE) for use at the National Renewable Energy Laboratory (NREL) Cost to DOE/NREL: There are no up-front costs to DOE or NREL * The price per kilowatt hour (kWh) for the power purchased from the

39

Mesa Top Photovoltaic Array, NREL (Fact Sheet)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mesa Top Photovoltaic Array Mesa Top Photovoltaic Array System Specifications System size: 720 kilowatts (kW) DC Characteristics: Single axis tracker photovoltaic, ground mounted Annual output: 1.2 gigawatt hours (GWh) Location: Top of South Table Mountain, Golden, Colorado Start of operation: December 2008 Financial Terms System ownership: SunEdison financed, built, owns, operates and maintains the system Solar Power and Services Agreement (SPSA): SunEdison and the Western Area Power Administration (WAPA) entered into a 20-year SPSA to provide Solar Energy Services to the Department of Energy (DOE) for use at the National Renewable Energy Laboratory (NREL) Cost to DOE/NREL: There are no up-front costs to DOE or NREL * The price per kilowatt hour (kWh) for the power purchased from the

40

Southwest Mesa Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Southwest Mesa Wind Farm Jump to: navigation, search Name Southwest Mesa Wind Farm Facility Southwest Mesa Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer Cielo Wind Power Energy Purchaser American Electric Power Location McCamey TX Coordinates 30.933346°, -102.154191° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.933346,"lon":-102.154191,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "ogilby mesa ca" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

East Mesa Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

East Mesa Geothermal Area East Mesa Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: East Mesa Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Heat Source 8 Geofluid Geochemistry 9 NEPA-Related Analyses (1) 10 Exploration Activities (3) 11 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.78333333,"lon":-115.25,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

42

DOE and Colorado Mesa University Education Agreement Expands LM's Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Colorado Mesa University Education Agreement Expands LM's and Colorado Mesa University Education Agreement Expands LM's Site Reuse Portfolio DOE and Colorado Mesa University Education Agreement Expands LM's Site Reuse Portfolio October 16, 2012 - 2:49pm Addthis Rich Bush, DOE Site Manager, explains the Grand Junction, Colorado, Disposal Site to Colorado Mesa University students. Rich Bush, DOE Site Manager, explains the Grand Junction, Colorado, Disposal Site to Colorado Mesa University students. DOE Site Manager Rich Bush explains the Enhanced Cover Assessment Project to Colorado Mesa University students while standing next to one of LM’s Systems Operation and Analysis at Remote Sites locations, which collects data remotely and transmits it to LM servers daily. DOE Site Manager Rich Bush explains the Enhanced Cover Assessment Project

43

Tracer Testing At East Mesa Geothermal Area (1983) | Open Energy  

Open Energy Info (EERE)

Tracer Testing At East Mesa Geothermal Area (1983) Tracer Testing At East Mesa Geothermal Area (1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Tracer Testing At East Mesa Geothermal Area (1983) Exploration Activity Details Location East Mesa Geothermal Area Exploration Technique Tracer Testing Activity Date 1983 Usefulness not indicated DOE-funding Unknown Notes Two field experiments were conducted to develop chemical tracer procedures for use with injection-backflow testing, one on the fracture-permeability Raft River reservoir and the other on the matrix-permeability East Mesa reservoir. Results from tests conducted with incremental increases in the injection volume at both East Mesa and Raft River suggests that, for both reservoirs, permeability remained uniform with increasing distance from the

44

EIS-0472: Uranium Leasing Program, Mesa, Montrose, and San Miguel...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sites Power Marketing Administration Other Agencies You are here Home EIS-0472: Uranium Leasing Program, Mesa, Montrose, and San Miguel Counties, Colorado EIS-0472: Uranium...

45

Ca  

NLE Websites -- All DOE Office Websites (Extended Search)

P O. Box 3090 P O. Box 3090 Ca rlsbad, New Mexico 88221 Mr. John Kieling , Acting Bureau Chief Hazardous Waste Bureau MAY 1 6 2012 New Mexico Environment Department 2905 E. Rodeo Park Drive, Bldg . 1 Santa Fe, New Mexico 87505-6303 Subject: Transmittal of the Waste Isolation Pilot Plant Revised Calendar Year 2005-2008 Culebra Potentiometric Surface Map Package Dear Mr. Kieling: On August 5 , 2011 , the New Mexico Environmental Department (NMED) approved the Groundwater Work Plan submitted as a condition to the Final Stipulated Order dated December 1, 2009. An additional condition of the Order, upon approval of the Work Plan , is the submittal of a series of revised Culebra potentiometric surface maps within timeframes specified by the Order. Enclosed is the revised second submittal due to the NMED. The

46

Otay Mesa, CA Natural Gas Exports to Mexico  

Gasoline and Diesel Fuel Update (EIA)

GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba...

47

South Trent Mesa Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Trent Mesa Wind Farm Trent Mesa Wind Farm Jump to: navigation, search Name South Trent Mesa Wind Farm Facility South Trent Mesa Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Babcock & Brown Developer Babcock & Brown Location Trent TX Coordinates 32.444461°, -100.236819° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.444461,"lon":-100.236819,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

48

Indian Mesa Wind Farm II | Open Energy Information  

Open Energy Info (EERE)

Mesa Wind Farm II Mesa Wind Farm II Jump to: navigation, search Name Indian Mesa Wind Farm II Facility Indian Mesa Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Vestas Developer Great Plains Windpower Location Hansford County TX Coordinates 36.278°, -101.345° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.278,"lon":-101.345,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

49

Sigma Mesa: Background elemental concentrations in soil and vegetation, 1979  

DOE Green Energy (OSTI)

In 1979, soil and vegetation samples were collected on Sigma Mesa to provide background data before construction on the mesa. Elemental data are presented for soil, grass, juniper, pinon pine, and oak. None of the data looks out of the ordinary. The purpose of the sampling program was to acquire, before any disturbance, a set of data to be used as background for future impact analysis. 6 refs., 2 figs., 7 tabs.

Ferenbaugh, R.W.; Gladney, E.S.; Brooks, G.H. Jr.

1990-10-01T23:59:59.000Z

50

City of Mesa, Arizona (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Mesa, Arizona (Utility Company) Mesa, Arizona (Utility Company) Jump to: navigation, search Name City of Mesa Place Arizona Utility Id 12351 Utility Location Yes Ownership M NERC Location WECC NERC WECC Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Bundled Services Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Dusk to Dawn Commercial Lighting Service (Existing Wood Pole) Lighting Dusk to Dawn Commercial Lighting Service (New Wood Pole) Lighting Dusk to Dawn Commercial Lighting Service (Steel Pole) Lighting Dusk to Dawn Residential Lighting Service Lighting

51

Project development plan for East Mesa Geothermal Test Center  

DOE Green Energy (OSTI)

Plans for a test facility for geothermal energy systems and components designed for moderate temperature/low salinity geothermal fluids available at the East Mesa site in the Imperial Valley of California are discussed. Details of the following phases of development are given: technical plan; management plan; procurement and contracting plan; technology transfer and utilization plan; and resource requirements. (JGB)

Not Available

1975-03-01T23:59:59.000Z

52

San Juan Mesa Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Farm Farm Jump to: navigation, search Name San Juan Mesa Wind Farm Facility San Juan Mesa Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Edison Mission Group owns majority Developer Edison Mission Group Energy Purchaser Xcel Energy Location Elida County NM Coordinates 33.9697°, -103.844° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.9697,"lon":-103.844,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

53

Mesa County Valley Wind Project | Open Energy Information  

Open Energy Info (EERE)

Valley Wind Project Valley Wind Project Jump to: navigation, search Name Mesa County Valley Wind Project Facility Mesa County Valley Sector Wind energy Facility Type Community Wind Location CO Coordinates 39.076191°, -108.508514° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.076191,"lon":-108.508514,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

54

Costa Mesa, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Costa Mesa, California: Energy Resources Costa Mesa, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.6411316°, -117.9186689° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.6411316,"lon":-117.9186689,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

55

Battlement Mesa, Colorado: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Battlement Mesa, Colorado: Energy Resources Battlement Mesa, Colorado: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.441367°, -108.0250738° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.441367,"lon":-108.0250738,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

56

NREL Mesa Top PV System | Open Energy Information  

Open Energy Info (EERE)

NREL Mesa Top PV System NREL Mesa Top PV System Jump to: navigation, search Name NREL Mesa Top PV System Facility National Renewable Energy Laboratory Sector Solar Facility Type Photovoltaic Owner SunEdison Solar Developer SunEdison Solar Energy Purchaser National Renewable Energy Laboratory Address 15500 Denver West Parkway Location Golden, CO Coordinates 39.744550202°, -105.174608231° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.744550202,"lon":-105.174608231,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

57

Hydraulic Property and Soil Textural Classification Measurements for Rainier Mesa, Nevada Test Site, Nevada  

SciTech Connect

This report presents particle size analysis, field-saturated hydraulic conductivity measurements, and qualitative descriptions of surficial materials at selected locations at Rainier Mesa, Nevada. Measurements and sample collection were conducted in the Rainier Mesa area, including unconsolidated sediments on top of the mesa, an ephemeral wash channel near the mesa edge, and dry U12n tunnel pond sediments below the mesa. Particle size analysis used a combination of sieving and optical diffraction techniques. Field-saturated hydraulic conductivity measurements employed a single-ring infiltrometer with analytical formulas that correct for falling head and spreading outside the ring domain. These measurements may prove useful to current and future efforts at Rainier Mesa aimed at understanding infiltration and its effect on water fluxes and radionuclide transport in the unsaturated zone.

Ebel, Brian A.; Nimmo, John R.

2009-12-29T23:59:59.000Z

58

Preliminary evaluation of fluid chemistry in the East Mesa KGRA  

DOE Green Energy (OSTI)

One of the major problems needing consideration when bringing a geothermal field into production is the anticipation and control of mineral precipitation in both the producing formations and production equipment. Prediction of the chemical interactions between natural multicomponent thermal fluids and the minerals comprising a producing formation can be accomplished by the study of equilibrium models approximating the natural system. Models are constructed from theoretically and experimentally derived thermodynamic data for the involved minerals and aqueous species. This equilibrium modeling approach was applied to the rock-water system at the East Mesa geothermal area in the Imperial Valley of California. Results of petrographic and fluid analyses are given. (JGB)

Hoagland, J.R.

1976-10-04T23:59:59.000Z

59

Estimation of Unsaturated Zone Traveltimes for Rainier Mesa and Shoshone Mountain, Nevada Test  

E-Print Network (OSTI)

of Las Vegas. The NTS is bordered by the Nellis Air Force Range and the Tonopah 5 #12;Test RangeEstimation of Unsaturated Zone Traveltimes for Rainier Mesa and Shoshone Mountain, Nevada Test Site for Rainier Mesa and Shoshone Mountain, Nevada Test Site, Nevada, using a source-responsive preferential

60

2010 Google -Map data 2010 Google -Driving directions to 1850 Table Mesa Dr, Boulder, CO 80305  

E-Print Network (OSTI)

©2010 Google - Map data ©2010 Google - Driving directions to 1850 Table Mesa Dr, Boulder, CO 80305 obey all signs or notices regarding your route. Map data ©2010 Google Report a problem Print Send Link, CO 80305 to 1850 Table Mesa... http://maps.google.com/maps?f=d&source=s_d&saddr=32... 1 of 1 9

Note: This page contains sample records for the topic "ogilby mesa ca" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Indian Mesa Wind Farm I | Open Energy Information  

Open Energy Info (EERE)

Wind Farm I Wind Farm I Jump to: navigation, search Name Indian Mesa Wind Farm I Facility Indian Mesa Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer National Wind Power; Orion Energy Energy Purchaser TXU Electric & Gas- Lower Colorado River Authority Location Pecos County TX Coordinates 30.920167°, -102.116811° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.920167,"lon":-102.116811,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

62

East Mesa geothermal pump test facility (EMPTF). Final report  

DOE Green Energy (OSTI)

The design, fabrication and installation of a geothermal pump test facility (EMPFT) at the DOE geothermal site at East Mesa, California which is capable of testing 70 to 750 horsepower downwell pumps in a controlled geothermal environment were completed. The facility consists of a skid-mounted brine control module, a 160 foot below test well section, a hydraulic turbine for power recovery, a gantry-mounted hoist for pump handling and a 3-phase, 480 VAC, 1200 amp power supply to handle pump electric requirements. Geothermal brine is supplied to the EMPTF from one of the facility wells at East Mesa. The EMPTF is designed with a great amount of flexibility. The 20-inch diameter test well can accommodate a wide variety of pumps. The controls are interactive and can be adjusted to obtain a full complement of pump operation data, or set to maintain constant conditions to allow long-term testing with a minimum of operator support. The hydraulic turbine allows the EMPTF user to recover approximately 46% of the input pump power to help defray the operating cost of the unit. The hoist is provided for material handling and pump servicing and reduces the equipment that the user must supply for pump installation, inspection and removal.

Olander, R.G.; Roberts, G.K.

1984-11-28T23:59:59.000Z

63

East Mesa geothermal pump test facility (EMPTF). Final report  

DOE Green Energy (OSTI)

Barber-Nichols has completed the design, fabrication and installation of a geothermal pump test facility at the DOE geothermal site at East Mesa, California which is capable of testing 70 to 750 horsepower downwell pumps in a controlled geothermal environment. The facility consists of a skid-mounted brine control module, a 160 foot below ground test well section, a hydraulic turbine for power recovery, a gantry-mounted hoist for pump handling and a 3-phase, 480 VAC, 1200 amp power supply to handle pump electric requirements. Geothermal brine is supplied to the EMPTF from one of the facility wells at East Mesa. The EMPTF is designed with a great amount of flexibility to attract the largest number of potential users. The 20-inch diameter test well can accommodate a wide variety of pumps. The controls are interactive and can be adjusted to obtain a full complement of pump operation data, or set to maintain constant conditions to allow long-term testing with a minimum of operator support. The hydraulic turbine allows the EMPTF user to recover approximately 46% of the input pump power to help defray the operating cost of the unit. The hoist is provided for material handling and pump servicing and reduces the equipment that the user must supply for pump installation, inspection and removal.

Olander, R.G.; Roberts, G.K.

1984-11-28T23:59:59.000Z

64

Archaeological investigations on the Buckboard Mesa Road Project  

SciTech Connect

In 1986, the Desert Research Institute (DRI) conducted an archaeological reconnaissance of a new alignment for the Buckboard Mesa Road on the Nevada Test Site for the Department of Energy (DOE). During this reconnaissance, several archaeological sites of National Register quality were discovered and recorded including a large quarry, site 26Ny4892, and a smaller lithic scatter, site 26Ny4894. Analysis of the debitage at 26Ny4892 indicates that this area was used primarily as a quarry for relatively small cobbles of obsidian found in the alluvium. Lithic reduction techniques used here are designed for efficiently reducing small pieces of toolstone and are oriented towards producing flake blanks from small cores and bifacially reducing exhausted cores. Projectile point cross references indicate that the area has seen at least casual use for about 10,000 years and more sustained use for the last 3,000 years. Initial obsidian hydration measurements indicate sustained use of the quarry for about the last 3,000 years although the loci of activities appear to change over time. Based on this study, the DRI recommends that quarrying activities in the area of 26Ny4892 are sufficiently sampled and that additional investigations into that aspect of prehistoric activity in the area are not necessary. This does not apply to other aspects of prehistoric use. DRI recommends that preconstruction surveys continue to identify nonquarrying, prehistoric utilization of the area. With the increased traffic on the Buckboard Mesa Road, there is a greater potential for vandalism to sites of National Register-quality located near the road. The DRI recommends that during the orientation briefing the workers at the Test Site be educated about the importance of cultural resources and the need for their protection. 202 refs., 41 figs., 52 tabs.

Amick, D.S.; Henton, G.H.; Pippin, L.C.

1991-10-01T23:59:59.000Z

65

EIS-0472: Uranium Leasing Program, Mesa, Montrose, and San Miguel Counties,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2: Uranium Leasing Program, Mesa, Montrose, and San Miguel 2: Uranium Leasing Program, Mesa, Montrose, and San Miguel Counties, Colorado EIS-0472: Uranium Leasing Program, Mesa, Montrose, and San Miguel Counties, Colorado Summary This EIS evaluates the environmental impacts of management alternatives for DOE's Uranium Leasing Program, under which DOE administers tracts of land in western Colorado for exploration, development, and the extraction of uranium and vanadium ores. The cooperating agencies are U.S. Department of the Interior; Bureau of Land Management; U.S. Environmental Protection Agency; Colorado Department of Transportation; Colorado Division of Reclamation, Mining, and Safety; Colorado Parks and Wildlife; Mesa County Commission; Montrose County Commission; San Juan County Commission; San Miguel County Board of

66

Observations of Silver Iodide Plumes over the Grand Mesa of Colorado  

Science Conference Proceedings (OSTI)

A series of wintertime airborne tracing experiments was examined to determine some characteristics of the plumes of silver iodide smoke released either from the ground or from an aircraft over the Grand Mesa of Colorado. The plumes were ...

Edmond W. Holroyd III; Jack T. McPartland; Arlin B. Super

1988-10-01T23:59:59.000Z

67

U.S. Liquefied Natural Gas Exports to Japan  

Gasoline and Diesel Fuel Update (EIA)

Babb, MT Havre, MT Port of Morgan, MT Pittsburg, NH Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Sabine Pass, LA Period: Monthly Annual

68

U.S. Natural Gas Exports to Russia  

Gasoline and Diesel Fuel Update (EIA)

Babb, MT Havre, MT Port of Morgan, MT Pittsburg, NH Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Sabine Pass, LA Period: Monthly Annual

69

U.S. Total Exports  

Gasoline and Diesel Fuel Update (EIA)

Babb, MT Havre, MT Port of Morgan, MT Pittsburg, NH Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Sabine Pass, LA Period: Monthly Annual

70

U.S. Liquefied Natural Gas Exports to United Kingdom  

Gasoline and Diesel Fuel Update (EIA)

Babb, MT Havre, MT Port of Morgan, MT Pittsburg, NH Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Sabine Pass, LA Period: Monthly Annual

71

U.S. Natural Gas Exports to China  

Gasoline and Diesel Fuel Update (EIA)

Babb, MT Havre, MT Port of Morgan, MT Pittsburg, NH Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Sabine Pass, LA Period: Monthly Annual

72

U.S. Liquefied Natural Gas Exports to India  

Gasoline and Diesel Fuel Update (EIA)

Babb, MT Havre, MT Port of Morgan, MT Pittsburg, NH Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Sabine Pass, LA Period: Monthly Annual

73

U.S. Natural Gas Exports to Russia  

Gasoline and Diesel Fuel Update (EIA)

Babb, MT Havre, MT Port of Morgan, MT Pittsburg, NH Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Sabine Pass, LA Period: Monthly Annual

74

U.S. Natural Gas Exports to Portugal  

Gasoline and Diesel Fuel Update (EIA)

Babb, MT Havre, MT Port of Morgan, MT Pittsburg, NH Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Sabine Pass, LA Period: Monthly Annual

75

U.S. Natural Gas Exports to Mexico  

Gasoline and Diesel Fuel Update (EIA)

Babb, MT Havre, MT Port of Morgan, MT Pittsburg, NH Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Sabine Pass, LA Period: Monthly Annual

76

GEOTHERMAL RESOURCE AND RESERVOIR INVESTIGATIONS OF U.S. BUREAU OF RECLAMATION LEASEHOLDS AT EAST MESA, IMPERIAL VALLEY, CALIFORNIA  

E-Print Network (OSTI)

document. LBL-7094 UC-66~1 GEOTHERMAL RESOURCE AND RESERVOIRInc. , 1976. Study of the geothermal reservoir underlyingtest, 1976, East Mesa geothermal field in California.

2009-01-01T23:59:59.000Z

77

Estimation of Groundwater Recharge at Pahute Mesa using the Chloride Mass-Balance Method  

SciTech Connect

Groundwater recharge on Pahute Mesa was estimated using the chloride mass-balance (CMB) method. This method relies on the conservative properties of chloride to trace its movement from the atmosphere as dry- and wet-deposition through the soil zone and ultimately to the saturated zone. Typically, the CMB method assumes no mixing of groundwater with different chloride concentrations; however, because groundwater is thought to flow into Pahute Mesa from valleys north of Pahute Mesa, groundwater flow rates (i.e., underflow) and chloride concentrations from Kawich Valley and Gold Flat were carefully considered. Precipitation was measured with bulk and tipping-bucket precipitation gauges installed for this study at six sites on Pahute Mesa. These data, along with historical precipitation amounts from gauges on Pahute Mesa and estimates from the PRISM model, were evaluated to estimate mean annual precipitation. Chloride deposition from the atmosphere was estimated by analyzing quarterly samples of wet- and dry-deposition for chloride in the bulk gauges and evaluating chloride wet-deposition amounts measured at other locations by the National Atmospheric Deposition Program. Mean chloride concentrations in groundwater were estimated using data from the UGTA Geochemistry Database, data from other reports, and data from samples collected from emplacement boreholes for this study. Calculations were conducted assuming both no underflow and underflow from Kawich Valley and Gold Flat. Model results estimate recharge to be 30 mm/yr with a standard deviation of 18 mm/yr on Pahute Mesa, for elevations >1800 m amsl. These estimates assume Pahute Mesa recharge mixes completely with underflow from Kawich Valley and Gold Flat. The model assumes that precipitation, chloride concentration in bulk deposition, underflow and its chloride concentration, have been constant over the length of time of recharge.

Cooper, Clay A [DRI] [DRI; Hershey, Ronald L [DRI] [DRI; Healey, John M [DRI] [DRI; Lyles, Brad F [DRI] [DRI

2013-07-01T23:59:59.000Z

78

DOE - Office of Legacy Management -- Chupadera Mesa NM Site - NM 04  

Office of Legacy Management (LM)

Chupadera Mesa NM Site - NM 04 Chupadera Mesa NM Site - NM 04 FUSRAP Considered Sites Chupadera Mesa, NM Alternate Name(s): None Location: Approximately 28 miles northeast of the Trinity nuclear test site on the White Sands Missile Range, Northeast of Bingham, New Mexico NM.04-5 Historical Operations: Received the deposition of longer-lived radionuclides in the fallout from the nuclear test, primarily cesium-137, strontium-90, plutonium-239, cobalt-60, and europium-155. NM.04-2 NM.04-5 Eligibility Determination: No further action required. Radiation levels below cleaunup criteria. NM.04-1 NM.04-2 Radiological Survey(s): Assessment Surveys NM.04-3 NM.04-4 Site Status: NA - No Further Action Required NM.04-1 NM.04-2 Long-term Care Requirements: Long-Term Surveillance and Maintenance Requirements for Remediated FUSRAP Sites S07566_FUSRAP

79

Actinide Sorption in Rainier Mesa Tunnel Waters from the Nevada Test Site  

Science Conference Proceedings (OSTI)

The sorption behavior of americium (Am), plutonium (Pu), neptunium (Np), and uranium (U) in perched Rainier Mesa tunnel water was investigated. Both volcanic zeolitized tuff samples and groundwater samples were collected from Rainier Mesa, Nevada Test Site, NV for a series of batch sorption experiments. Sorption in groundwater with and without the presence of dissolved organic matter (DOM) was investigated. Am(III) and Pu(IV) are more soluble in groundwater that has high concentrations of DOM. The sorption K{sub d} for Am(III) and Pu(IV) on volcanic zeolitized tuff was up to two orders of magnitude lower in samples with high DOM (15 to 19 mg C/L) compared to samples with DOM removed (Rainier Mesa, the low actinide Kd values measured in groundwater with high DOM concentrations must be incorporated in predictive transport models.

Zhao, P; Zavarin, M; Leif, R; Powell, B; Singleton, M; Lindvall, R; Kersting, A

2007-12-17T23:59:59.000Z

80

Coal petrographic genetic units in deltaic-plain deposits of the Campanian Mesa Verde Group (New Mexico, USA)  

E-Print Network (OSTI)

Coal petrographic genetic units in deltaic-plain deposits of the Campanian Mesa Verde Group (New stratigraphy; Coal; Maceral analysis; Microlithotype Abstract The Campanian rocks of the Mesa Verde Group units, i.e. intermediate term cycles. The continental facies consist of coastal-plain deposits (coals

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "ogilby mesa ca" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Geothermal resource and reservoir investigations of U. S. Bureau of Reclamation leaseholds at East Mesa, Imperial Valley, California  

DOE Green Energy (OSTI)

The study included five parts: geology, seismicity, well testing, reservoir simulation, and geochemistry. Included in appendices are: production test data and discussion, interference tests, production tests in the northern portion of the East Mesa KGRA, conversion tables, chemical analysis of fluids from East Mesa wells, and results of laboratory studies of scale samples taken from the vertical tube evaporator. (MHR)

Howard, J.; Apps, J.A.; Benson, S.

1978-10-01T23:59:59.000Z

82

Transportation of the MOAB Uranium Mill Tailings to White Mesa Mill by Slurry Pipeline  

SciTech Connect

The Moab uranium mill tailings pile, located at the former Atlas Minerals Corporation site approximately three miles north of Moab, Utah, is now under the control of the US Department of Energy (''DOE''). The location of the tailings pile adjacent to the Colorado River, and the ongoing contamination of groundwater and seepage of pollutants into the river, have lead to the investigation, as part of the final site remediation program, of alternatives to relocate the tailings to a qualified permanent disposal site. This paper will describe the approach being taken by the team formed between International Uranium (USA) Corporation (''IUC'') and Washington Group International (''WGINT'') to develop an innovative technical proposal to relocate the Moab tailings to IUC's White Mesa Mill south of Blanding, Utah. The proposed approach for relocating the tailings involves using a slurry pipeline to transport the tailings to the White Mesa Mill. The White Mesa Mill is a fully licensed, active uranium mill site that is uniquely suited for permanent disposal of the Moab tailings. The tailings slurry would be dewatered at the White Mesa Mill, the slurry water would be recycled to the Moab site for reuse in slurry makeup, and the ''dry'' tailings would be permanently disposed of in an approved below grade cell at the mill site.

Hochstein, R. F.; Warner, R.; Wetz, T. V.

2003-02-26T23:59:59.000Z

83

ERDA test facilities, East Mesa Test Site. Geothermal resource investigations, Imperial Valley, California  

DOE Green Energy (OSTI)

Detailed specifications which must be complied with in the construction of the ERDA Test Facilities at the East Mesa Site for geothermal resource investigations in Imperial Valley, California are presented for use by prospective bidders for the construction contract. The principle construction work includes a 700 gpm cooling tower with its associated supports and equipment, pipelines from wells, electrical equipment, and all earthwork. (LCL)

Not Available

1976-01-01T23:59:59.000Z

84

Completion Report for Well ER-20-4 Corrective Action Units 101 and 102: Central and Western Pahute Mesa  

SciTech Connect

Well ER-20-4 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Nevada Environmental Restoration Project at the Nevada National Security Site, Nye County, Nevada. The well was drilled in August and September 2010 as part of the Pahute Mesa Phase II drilling program. The primary purpose of the well was to investigate the possibility of radionuclide transport from up-gradient underground nuclear tests conducted in central Pahute Mesa. This well also provided detailed hydrogeologic information in the Tertiary volcanic section that will help reduce uncertainties within the Pahute Mesa-Oasis Valley hydrostratigraphic framework model.

NSTec Environmental Management

2011-04-30T23:59:59.000Z

85

Completion Report for Well ER-EC-15 Corrective Action Units 101 and 102: Central and Western Pahute Mesa  

SciTech Connect

Well ER-EC-15 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Nevada Environmental Restoration Project at the Nevada National Security Site (formerly known as the Nevada Test Site), Nye County, Nevada. The well was drilled in October and November 2010, as part of the Pahute Mesa Phase II drilling program. The primary purpose of the well was to provide detailed hydrogeologic information in the Tertiary volcanic section in the area between Pahute Mesa and the Timber Mountain caldera complex that will help address uncertainties within the Pahute MesaOasis Valley hydrostratigraphic model. In particular, the well was intended to help define the structural position and hydraulic parameters of volcanic aquifers potentially down-gradient from underground nuclear tests on Pahute Mesa. It may also be used as a long-term monitoring well.

NSTec Environmental Management

2011-05-31T23:59:59.000Z

86

Completion Report for Well ER-EC-12 Corrective Action Units 101 and 102: Central and Western Pahute Mesa  

Science Conference Proceedings (OSTI)

Well ER-EC-12 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Nevada Environmental Restoration Project at the Nevada National Security Site (formerly known as the Nevada Test Site), Nye County, Nevada. The well was drilled in June and July 2010 as part of the Pahute Mesa Phase II drilling program. The primary purpose of the well was to provide detailed hydrogeologic information in the Tertiary volcanic section in the area between Pahute Mesa and the Timber Mountain caldera complex that will help address uncertainties within the Pahute MesaOasis Valley hydrostratigraphic model. In particular, the well was intended to help define the structural position and hydraulic parameters for volcanic aquifers potentially down-gradient from historic underground nuclear tests on Pahute Mesa. It may also be used as a long-term monitoring well.

NSTec Environmental Management

2011-04-30T23:59:59.000Z

87

Earth Tidal Analysis At East Mesa Geothermal Area (1984) | Open Energy  

Open Energy Info (EERE)

Geothermal Area (1984) Geothermal Area (1984) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Earth Tidal Analysis At East Mesa Geothermal Area (1984) Exploration Activity Details Location East Mesa Geothermal Area Exploration Technique Earth Tidal Analysis Activity Date 1984 Usefulness useful DOE-funding Unknown Exploration Basis Determine porosity of the reservoir Notes The response of a confined, areally infinite aquifer to external loads imposed by earth tides is examined. Because the gravitational influence of celestial objects occurs over large areas of the earth, the confined aquifer is assumed to respond in an undrained fashion. Since undrained response is controlled by water compressibility, earth tide response can be directly used only to evaluate porous medium compressibility if porosity is

88

NE-23 Elimination of the Chupadera Mesa and Los Alamos County Industrial Waste  

Office of Legacy Management (LM)

AM? 2 2 1986 AM? 2 2 1986 NE-23 Elimination of the Chupadera Mesa and Los Alamos County Industrial Waste Line Sites from Further Consideration for FUSRAP Inclusion Carlos E. Garcia, Director Environmental Safety and Health Division Albuquerque Operations Office The enclosed material is being provided to you to document the final actions taken under the Department's Formerly Utilized Sites Remedial Action Program (FUSRAP) for the Chupadera Mesa area and the Los Alamos County Industrial Waste Lines, New Mexico. Copies of designation/ elimination reviews for each of the sites are enclosed for your records. We have determined that neither site warrants inclusion in the remedial action program. Primary sources of data for this determination were two survey reports prepared through your Division, LA-10256-MS, "Radiological

89

Geohydrologic data and models of Rainier Mesa and their implications to Yucca Mountain  

Science Conference Proceedings (OSTI)

The geohydrologic data collected at Rainier Mesa provide the only extensive observations in tunnels presently available on flow and transport in tuff units similar to those of a potential nuclear waste repository at Yucca Mountain. This information can, therefore, be of great value in planning the Exploratory Studies Facility (ESF) testing in underground drifts at Yucca Mountain. In this paper, we compare the geohydrologic characteristics of tuff units of these two sites and summarize the hydrochemical data indicating the presence of nearly meteoric water in Rainier Mesa tunnels. A simple analytic model is used to evaluate the possibility of propagating transient pulses of water along fractures or faults through the Paintbrush nonwelded tuff unit to reach the tunnel beds below. The results suggest that fast flow could occur without significant mixing between meteoric fracture water and matrix pore water. The implications of these findings on planning for the ESF Calico Hills study at Yucca Mountain are discussed.

Wang, J.S.Y.; Cook, N.G.W.; Wollenberg, H.A.; Carnahan, C.L.; Javandel, I.; Tsang, C.F.

1993-01-01T23:59:59.000Z

90

Variation in the annual average radon concentration measured in homes in Mesa County, Colorado  

Science Conference Proceedings (OSTI)

The purpose of this study is to examine the variability in the annual average indoor radon concentration. The TMC has been collecting annual average radon data for the past 5 years in 33 residential structures in Mesa County, Colorado. This report is an interim report that presents the data collected up to the present. Currently, the plans are to continue this study in the future. 62 refs., 3 figs., 12 tabs.

Rood, A.S.; George, J.L.; Langner, G.H. Jr.

1990-04-01T23:59:59.000Z

91

Origin of elevated water levels encountered in Pahute Mesa emplacement boreholes: Preliminary investigations  

SciTech Connect

The presence of standing water well above the predicted water table in emplacement boreholes on Pahute Mesa has been a recurring phenomenon at the Nevada Test Site (NTS). If these levels represent naturally perched aquifers, they may indicate a radionuclide migration hazard. In any case, they can pose engineering problems in the performance of underground nuclear tests. The origin of these elevated waters is uncertain. Large volumes of water are introduced during emplacement drilling, providing ample source for artificially perched water, yet elevated water levels can remain constant for years, suggesting a natural origin instead. In an effort to address the issue of unexpected standing water in emplacement boreholes, three different sites were investigated in Area 19 on Pahute Mesa by Desert Research Institute (DRI) staff from 1990-93. These sites were U-19az, U-19ba, and U-19bh. As of this writing, U-19bh remains available for access; however, nuclear tests were conducted at the former two locations subsequent to this investigations. The experiments are discussed in chronological order. Taken together, the experiments indicate that standing water in Pahute Mesa emplacement holes originates from the drainage of small-volume naturally perched zones. In the final study, the fluids used during drilling of the bottom 100 m of emplacement borehole U-19bh were labeled with a chemical tracer. After hole completion, water level rose in the borehole, while tracer concentration decreased. In fact, total mass of tracer in the borehole remained constant, while water levels rose. After water levels stabilized in this hole, no change in tracer mass was observed over two years, indicating that no movement of water out of the borehole is taking place (as at U- 19ba). Continued labeling tests of standing water are recommended to confirm the conclusions made here, and to establish their validity throughout Pahute Mesa.

Brikowski, T.; Chapman, J.; Lyles, B.; Hokett, S.

1993-11-01T23:59:59.000Z

92

U.S. Natural Gas Exports to Portugal  

Gasoline and Diesel Fuel Update (EIA)

Warroad, MN Babb, MT Havre, MT Port of Morgan, MT Sherwood, ND Pittsburg, NH Buffalo, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Freeport, TX Kenai, AK Port Nikiski, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA San Diego, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Freeport, TX Sabine Pass, LA LNG Exports from Cameron, LA LNG Exports from Kenai, AK LNG Exports from Freeport, TX LNG Exports from Nogales, AZ LNG Exports from Otay Mesa, CA LNG Exports from Sabine Pass, LA LNG Exports from Sweetgrass, MT Period: Monthly Annual

93

U.S. Liquefied Natural Gas Exports to Spain  

Gasoline and Diesel Fuel Update (EIA)

Warroad, MN Babb, MT Havre, MT Port of Morgan, MT Sherwood, ND Pittsburg, NH Buffalo, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Freeport, TX Kenai, AK Port Nikiski, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA San Diego, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Freeport, TX Sabine Pass, LA LNG Exports from Cameron, LA LNG Exports from Kenai, AK LNG Exports from Freeport, TX LNG Exports from Nogales, AZ LNG Exports from Otay Mesa, CA LNG Exports from Sabine Pass, LA LNG Exports from Sweetgrass, MT Period: Monthly Annual

94

U.S. Liquefied Natural Gas Exports to United Kingdom  

Gasoline and Diesel Fuel Update (EIA)

Warroad, MN Babb, MT Havre, MT Port of Morgan, MT Sherwood, ND Pittsburg, NH Buffalo, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Freeport, TX Kenai, AK Port Nikiski, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA San Diego, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Freeport, TX Sabine Pass, LA LNG Exports from Cameron, LA LNG Exports from Kenai, AK LNG Exports from Freeport, TX LNG Exports from Nogales, AZ LNG Exports from Otay Mesa, CA LNG Exports from Sabine Pass, LA LNG Exports from Sweetgrass, MT Period: Monthly Annual

95

U.S. Natural Gas Exports to Chile  

Gasoline and Diesel Fuel Update (EIA)

Warroad, MN Babb, MT Havre, MT Port of Morgan, MT Sherwood, ND Pittsburg, NH Buffalo, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Freeport, TX Kenai, AK Port Nikiski, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA San Diego, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Freeport, TX Sabine Pass, LA LNG Exports from Cameron, LA LNG Exports from Kenai, AK LNG Exports from Freeport, TX LNG Exports from Nogales, AZ LNG Exports from Otay Mesa, CA LNG Exports from Sabine Pass, LA LNG Exports from Sweetgrass, MT Period: Monthly Annual

96

U.S. Liquefied Natural Gas Exports To Brazil  

Gasoline and Diesel Fuel Update (EIA)

Warroad, MN Babb, MT Havre, MT Port of Morgan, MT Sherwood, ND Pittsburg, NH Buffalo, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Freeport, TX Kenai, AK Port Nikiski, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA San Diego, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Freeport, TX Sabine Pass, LA LNG Exports from Cameron, LA LNG Exports from Kenai, AK LNG Exports from Freeport, TX LNG Exports from Nogales, AZ LNG Exports from Otay Mesa, CA LNG Exports from Sabine Pass, LA LNG Exports from Sweetgrass, MT Period: Monthly Annual

97

U.S. LNG Imports from Canada  

Gasoline and Diesel Fuel Update (EIA)

Warroad, MN Babb, MT Havre, MT Port of Morgan, MT Sherwood, ND Pittsburg, NH Buffalo, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Freeport, TX Kenai, AK Port Nikiski, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA San Diego, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Freeport, TX Sabine Pass, LA LNG Exports from Cameron, LA LNG Exports from Kenai, AK LNG Exports from Freeport, TX LNG Exports from Nogales, AZ LNG Exports from Otay Mesa, CA LNG Exports from Sabine Pass, LA LNG Exports from Sweetgrass, MT Period: Monthly Annual

98

U.S. Liquefied Natural Gas Exports to India  

Gasoline and Diesel Fuel Update (EIA)

Warroad, MN Babb, MT Havre, MT Port of Morgan, MT Sherwood, ND Pittsburg, NH Buffalo, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Freeport, TX Kenai, AK Port Nikiski, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA San Diego, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Freeport, TX Sabine Pass, LA LNG Exports from Cameron, LA LNG Exports from Kenai, AK LNG Exports from Freeport, TX LNG Exports from Nogales, AZ LNG Exports from Otay Mesa, CA LNG Exports from Sabine Pass, LA LNG Exports from Sweetgrass, MT Period: Monthly Annual

99

U.S. Liquefied Natural Gas Exports to Japan  

Gasoline and Diesel Fuel Update (EIA)

Warroad, MN Babb, MT Havre, MT Port of Morgan, MT Sherwood, ND Pittsburg, NH Buffalo, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Freeport, TX Kenai, AK Port Nikiski, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA San Diego, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Freeport, TX Sabine Pass, LA LNG Exports from Cameron, LA LNG Exports from Kenai, AK LNG Exports from Freeport, TX LNG Exports from Nogales, AZ LNG Exports from Otay Mesa, CA LNG Exports from Sabine Pass, LA LNG Exports from Sweetgrass, MT Period: Monthly Annual

100

U.S. Natural Gas Exports to Mexico  

Gasoline and Diesel Fuel Update (EIA)

Warroad, MN Babb, MT Havre, MT Port of Morgan, MT Sherwood, ND Pittsburg, NH Buffalo, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Freeport, TX Kenai, AK Port Nikiski, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA San Diego, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Freeport, TX Sabine Pass, LA LNG Exports from Cameron, LA LNG Exports from Kenai, AK LNG Exports from Freeport, TX LNG Exports from Nogales, AZ LNG Exports from Otay Mesa, CA LNG Exports from Sabine Pass, LA LNG Exports from Sweetgrass, MT Period: Monthly Annual

Note: This page contains sample records for the topic "ogilby mesa ca" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

U.S. Natural Gas Exports to Russia  

Gasoline and Diesel Fuel Update (EIA)

Warroad, MN Babb, MT Havre, MT Port of Morgan, MT Sherwood, ND Pittsburg, NH Buffalo, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Freeport, TX Kenai, AK Port Nikiski, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA San Diego, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Freeport, TX Sabine Pass, LA LNG Exports from Cameron, LA LNG Exports from Kenai, AK LNG Exports from Freeport, TX LNG Exports from Nogales, AZ LNG Exports from Otay Mesa, CA LNG Exports from Sabine Pass, LA LNG Exports from Sweetgrass, MT Period: Monthly Annual

102

Geology, hydrothermal petrology, stable isotope geochemistry, and fluid inclusion geothermometry of LASL geothermal test well C/T-1 (Mesa 31-1), East Mesa, Imperial Valley, California, USA  

DOE Green Energy (OSTI)

Borehole Mesa 31-1 (LASL C/T-1) is an 1899-m (6231-ft) deep well located in the northwestern part of the East Mesa Geothermal Field. Mesa 31-1 is the first Calibration/Test Well (C/T-1) in the Los Alamos Scientific Laboratory (LASL), Geothermal Log Interpretation Program. The purpose of this study is to provide a compilation of drillhole data, drill cuttings, well lithology, and formation petrology that will serve to support the use of well LASL C/T-1 as a calibration/test well for geothermal logging. In addition, reviews of fluid chemistry, stable isotope studies, isotopic and fluid inclusion geothermometry, and the temperature log data are presented. This study provides the basic data on the geology and hydrothermal alteration of the rocks in LASL C/T-1 as background for the interpretation of wireline logs.

Miller, K.R.; Elders, W.A.

1980-08-01T23:59:59.000Z

103

Actinide Sorption in Rainier Mesa Tunnel Waters from the Nevada Test Site  

SciTech Connect

The sorption behavior of americium (Am), plutonium (Pu), neptunium (Np), and uranium (U) in perched Rainier Mesa tunnel water was investigated. Both volcanic zeolitized tuff samples and groundwater samples were collected from Rainier Mesa, Nevada Test Site, NV for a series of batch sorption experiments. Sorption in groundwater with and without the presence of dissolved organic matter (DOM) was investigated. Am(III) and Pu(IV) are more soluble in groundwater that has high concentrations of DOM. The sorption K{sub d} for Am(III) and Pu(IV) on volcanic zeolitized tuff was up to two orders of magnitude lower in samples with high DOM (15 to 19 mg C/L) compared to samples with DOM removed (< 0.4 mg C/L) or samples with naturally low DOM (0.2 mg C/L). In contrast, Np(V) and U(VI) sorption to zeolitized tuff was much less affected by the presence of DOM. The Np(V) and U(VI) sorption Kds were low under all conditions. Importantly, the DOM was not found to significantly sorb to the zeolitized tuff during these experiment. The concentration of DOM in groundwater affects the transport behavior of actinides in the subsurface. The mobility of Am(III) and Pu(IV) is significantly higher in groundwater with elevated levels of DOM resulting in potentially enhanced transport. To accurately model the transport behavior of actinides in groundwater at Rainier Mesa, the low actinide Kd values measured in groundwater with high DOM concentrations must be incorporated in predictive transport models.

Zhao, P; Zavarin, M; Leif, R; Powell, B; Singleton, M; Lindvall, R; Kersting, A

2007-12-17T23:59:59.000Z

104

Failure analysis report: 10 MW geothermal binary turbine, Magma Electric Company, East Mesa, California  

SciTech Connect

The cause of failure of two isobutane turbines at the East Mesa geothermal plant was investigated. One turbine lost all the vanes in all three stages, while the other turbine sustained dings and nicks in the vanes, but remained intact. The exact cause of failure could not be determined. Three possibilities were determined: (1) a single foreign object, possibly a bolt; (2) foreign substance (geothermal fluid, oil, liquid isobutane, or particulate corrosion products) entered both turbines; or (3) one or more brazed joints failed by fatigue or by a corrosive process. 5 refs., 13 figs. (ACR)

Anliker, D.M.

1981-01-01T23:59:59.000Z

105

SUMMARY REPORT For MONITORTNG AND MITIGATlON OF MESA VERDE CACTUS  

Office of Legacy Management (LM)

SUMMARY REPORT SUMMARY REPORT For MONITORTNG AND MITIGATlON OF MESA VERDE CACTUS (SCLEROCACTUS MESAEVERDAE) NAVAJO TRIBAL UTILITY AUTHORITY POWERLINE UMTRA GROUND WATER PROJECT, SHIPROCK SlTE ON NAVAJO NATION TRIBAL LAND IN SAN JUAN COUNTY, NEW MEXICO Prepared For: S. M. STOLLER CORPORATION GRAND JUNCTION, COLORADO On Behalf of DEPARTMENT O W ENERGY GRAND JUNCTION, COLORADO Prepared By: ECOSPHERE ENVIRONMENTAL SERVICES NAVAJO FISH AND WJLDLIli'E PERMIT #000802-001 FARIVWGTON, NEW MEXICO NOVEMBER 2003 RECORD COP\' TABLE OF CONTENTS EXECUTIVE SUMMARY 1 LOCATION ... . . , , . . . . . . . . . . . . . . . . 1 WORK SUMMA 3 LIST OF PREPARER 7 CONSULTATION AND COORDINATION ...... ........ .. ,, . . . . . . . . 7 ATTACHMENTS ATTACHMENT A NFWD September 30,2002 Letter EXECUTIVE SUMMARY

106

Cutoff-mesa isolated rib optical waveguide for III-V heterostructure photonic integrated circuits  

DOE Patents (OSTI)

A cutoff mesa rib waveguide provides single-mode performance regardless of any deep etches that might be used for electrical isolation between integrated electrooptic devices. Utilizing a principle of a cutoff slab waveguide with an asymmetrical refractive index profile, single mode operation is achievable with a wide range of rib widths and does not require demanding etch depth tolerances. This new waveguide design eliminates reflection effects, or self-interference, commonly seen when conventional rib waveguides are combined with deep isolation etches and thereby reduces high order mode propagation and crosstalk compared to the conventional rib waveguides.

Vawter, Gregory A. (Albuquerque, NM); Smith, Robert E. (Albuquerque, NM)

1998-01-01T23:59:59.000Z

107

Thoughts Regarding the Dimensions of Faults at Rainier and Aqueduct Mesas, Nye County, Nevada, Based on Surface and Underground Mapping  

Science Conference Proceedings (OSTI)

The geologic setting and history, along with observations through 50 years of detailed geologic field work, show that large-displacement (i.e., greater than 30 meters of displacement) syn- to post-volcanic faults are rare in the Rainier Mesa area. Faults observed in tunnels and drill holes are mostly tight, with small displacements (most less than 1.5 meters) and small associated damage zones. Faults are much more abundant in the zeolitized tuffs than in the overlying vitric tuffs, and there is little evidence that faults extend downward from the tuff section through the argillic paleocolluvium into pre-Tertiary rocks. The differences in geomechanical characteristics of the various tuff lithologies at Rainier Mesa suggest that most faults on Rainer Mesa are limited to the zeolitic units sandwiched between the overlying vitric bedded tuffs and the underlying pre-Tertiary units (lower carbonate aquifer3, lower clastic confining unit1, and Mesozoic granite confining unit).

Drellack, S.L.; Prothro, L.B.; Townsend, M.J.; Townsend, D.R.

2011-02-01T23:59:59.000Z

108

Predicted Geology of the Pahute Mesa-Oasis Valley Phase II Drilling Initiative  

SciTech Connect

Pahute MesaOasis Valley (PM-OV) Phase II drilling will occur within an area that encompasses approximately 117 square kilometers (45 square miles) near the center of the Phase I PM-OV hydrostratigraphic framework model area. The majority of the investigation area lies within dissected volcanic terrain between Pahute Mesa on the north and Timber Mountain on the south. This area consists of a complex distribution of volcanic tuff and lava of generally rhyolitic composition erupted from nearby calderas and related vents. Several large buried volcanic structural features control the distribution of volcanic units in the investigation area. The Area 20 caldera, including its structural margin and associated caldera collapse collar, underlies the northeastern portion of the investigation area. The southern half of the investigation area lies within the northwestern portion of the Timber Mountain caldera complex, including portions of the caldera moat and resurgent dome. Another significant structural feature in the area is the west-northwest-trending Northern Timber Mountain moat structural zone, which bisects the northern portion of the investigation area and forms a structural bench. The proposed wells of the UGTA Phase II drilling initiative can be grouped into four generalized volcanic structural domains based on the stratigraphic distribution and structural position of the volcanic rocks in the upper 1,000 meters (3,300 feet) of the crust, a depth that represents the approximate planned total depths of the proposed wells.

NSTec Environmental Restoration

2009-04-20T23:59:59.000Z

109

A Hydrostratigraphic Model of the Pahute Mesa - Oasis Valley Area, Nye County, Nevada  

SciTech Connect

A 3-D hydrostratigraphic framework model has been built for the use of hydrologic modelers who are tasked with developing a model to determine how contaminants are transported by groundwater flow in an area of complex geology. The area of interest includes Pahute Mesa, a former nuclear testing area at the Nevada Test Site (NTS), and Oasis Valley, a groundwater discharge area down-gradient from contaminant source areas on Pahute Mesa. To build the framework model, the NTS hydrogeologic framework was integrated with an extensive collection of drill-hole data (stratigraphic, lithologic, and alteration data); a structural model; and several recent geophysical, geological, and hydrological studies to formulate a hydrostratigraphic system. The authors organized the Tertiary volcanic units in the study area into 40 hydrostratigraphic units that include 16 aquifers, 13 confining units, and 11 composite units. The underlying pre-Tertiary rocks were divided into six hydrostratigraphic units, including two aquifers and four confining units. The model depicts the thickness, extent, and geometric relationships of these hydrostratigraphic units (''layers'' in the model) along with all the major structural features that control them, including calderas and faults. The complexity of the model area and the non-uniqueness of some of the interpretations incorporated into the base model made it necessary to address alternative interpretations for some of the major features in the model. Six of these alternatives were developed so they could be modeled in the same fashion as the base model.

S. L. Drellack, Jr.; L. B. Prothro; J. L. Gonzales

2001-12-01T23:59:59.000Z

110

Faults and gravity anomalies over the East Mesa hydrothermal-geothermal system  

DOE Green Energy (OSTI)

Detailed interpretations of gravity anomalies over geothermal systems may be extremely useful for mapping the fracture or fault systems that control the circulation of the thermal waters. This approach seems to be particularly applicable in areas like the Salton Trough where reactions between the thermal waters and the porous sediments produce authigenic-hydrothermal minerals in sufficient quantity to cause distinct gravity anomalies at the surface. A 3-D inversion of the residual Bouguer gravity anomaly over the East Mesa geothermal field was made to examine the densified volume of rock. We show that the data not only resolve a north-south and an intersecting northwest structure, but that it may be possible to distinguish between the active present-day hydrothermal system and an older and cooler part of the system. The densified region is compared spatially to self-potential, thermal and seismic results and we find a good concordance between the different geophysical data sets. Our results agree with previous studies that have indicated that the main feeder fault recharging the East Mesa reservoir dips steeply to the west.

Goldstein, N.E.; Carle, S.

1986-05-01T23:59:59.000Z

111

Hydraulic-fracture stimulation treatments at East Mesa, Well 58-30. Geothermal-reservoir well-stimulation program  

DOE Green Energy (OSTI)

East Mesa Well 58-30 was selected for two stimulation treatments: a conventional hydraulic fracture in a deep, low permeability interval, and a dendritic fracture in a shallow, high permeability interval of completion. The well selection, pre-stimulation evaluation, fracture treatment design, and post-stimulation evaluation are presented.

Not Available

1981-02-01T23:59:59.000Z

112

Computer Simulations of Edge Effects in a Small-Area Mesa N-P Junction Diodes: Preprint  

DOE Green Energy (OSTI)

In this work, computer simulations are used to determine the influence of edge conditions on the overall performance of mesa diodes under dark and illuminated conditions. In particular, we examine the effect of edge shape on the I-V characteristics of the diode.

Appel, J.; Sopori, B.; Ravindra, N. M.

2009-02-01T23:59:59.000Z

113

A Geomorphological Assessment of Armored Deposits Along the Southern Flanks of Grand Mesa, CO, USA  

E-Print Network (OSTI)

A series of deposits, located along the southern flanks of Grand Mesa, Colorado, and extending to the south, are problematic, and the processes related to emplacement are not understood. The overall area is dominated by two landform systems, Grand Mesa, which supported a Pleistocene ice cap, and the North Fork Gunnison River drainage. Thus, one has to ask: Are these deposits the result of the melting of the ice cap or are they fluvial terraces associated with the evolution of the ancestral Gunnison River? The goal of this research was to map the areal extent of the deposits and to interpret the formation and climatic significance in understanding the evolution of the Pleistocene landscape in the region. An extensive exposure, parallel to State Highway 65 near Cory Grade, was used for detailed description and sampling. Three additional exposures, ~10 to 20 km (~6 to 12 mi) were used to extend the areal extent of sampling. The study area was mapped using aerial photography and traditional field mapping aided by GPS. From the field work, a detailed stratigraphic column, including lithology and erodability, was constructed. Vertical exposures of the deposits were described, mapped, and recorded in the field and using detailed photo mosaics. Samples were collected from each stratum of the deposits for grain-size, shape, and sorting analyses. Five distinct depositional facies were identified. Sieve analysis on collected samples shows that four distinct grain-sizes occur in the outcrops; coarse sand, very-coarse sand, granule, and pebble and boulder. Mean grain-sizes range from 0.0722 to 0.9617, -0.0948 to -0.9456, -1.0566 to -1.9053, and -2.0050 to -3.4643, respectively. Glacio-fluvial depositional environments were identified and supported with observations of sedimentary structures and clast composition. Two major environments of deposition are recorded in the deposits; fluvial deposits from glacial outburst floods, and debris flow deposits. Imbrication of clasts in the strata suggests the flow came from the direction of Grand Mesa to the north. Facies and subsequent sequences were constructed to portray evidence that supports the glacio-fluvial mode of deposition.

Brunk, Timothy J.

2010-05-01T23:59:59.000Z

114

Environmental assessment for the new looped power system on Rainier Mesa  

Science Conference Proceedings (OSTI)

The Nevada Test Site (NTS) is the single location within the continental United States where tests involving nuclear explosive devices are conducted. The NTS is a land mass of 1,350 square miles. It is located 65 miles northwest of Las Vegas, Nevada, on the eastern edge of the Great Mohave Desert in high desert country where altitude ranges from 3,500 feet to approximately 7,700 feet. It is in a remote, isolated and sparsely populated area. The proposed action supports the underground nuclear weapons test program conducted on the NTS as defined in the Nevada Test Site Final Environmental Impact Statement, dated September 1977. The project involves the construction of a new looped power system, to be performed in three phases, indicated on Rainier Mesa in Area 12 at the NTS. The phases are described in this paper.

Not Available

1992-08-26T23:59:59.000Z

115

Baseline studies in the desert ecosystem at East Mesa Geothermal Test Site, Imperial Valley, California  

DOE Green Energy (OSTI)

Baseline data reported herein for soil, vegetation, and small mammal components of the East Mesa desert ecosystem represent a collection period from October 1975 to September 1977. Inasmuch as changes in salt balance from geothermal brine sources are of potential impact upon the ecosystem, considerable analytical effort was given to the determination of element constituents in soil, plant, and animal samples. A preliminary synthesis of data was done to investigate the heterogeneity of element constituents among the sampled population and to summarize results. Findings indicate that periodic sampling and chemical analysis of vegetation around an industrialized geothermal energy source is probably the best way to monitor the surrounding ecosystem for assuring containment of any resource pollutants.

Romney, E.M.; Wallace, A.; Lunt, O.R.; Ackerman, T.A.; Kinnear, J.E.

1977-09-01T23:59:59.000Z

116

Field tests of 2- and 40-tube condensers at the East Mesa Geothermal Test Site  

DOE Green Energy (OSTI)

Two water-cooled isobutane condensers, one with 2 tubes and one with 40 tubes, were subjected to field tests at the East Mesa Geothermal Test Site to assess relative heat transfer performance in both surface evaporator and direct-contact evaporator modes. The five groups of tests established that field performance was below earlier laboratory-determined levels and that direct-contact evaporator mode performance was poorer than that for the surface evaporator mode. In all test situations, fluted condenser tubes performed better than smooth condenser tubes. Cooling water quality had no significant effect on performance, but brine preflash in the direct-contact mode did promote some relative performance improvement. Important implications of these results for binary geothermal power plants are that (1) working-fluid-side impurities can significantly degrade heat transfer performance of the power plant condensers and (2) provisions for minimizing such impurities may be required.

Murphy, R.W.; Domingo, N.

1982-05-01T23:59:59.000Z

117

East Mesa Magmamax Power Process Geothermal Generating Plant, A Preliminary Analysis  

SciTech Connect

During recent months, Magma Power Company has been involved in the shakedown and startup of their 10 MW binary cycle power plant at East Mesa in the Imperial Valley of Southern California. This pilot plant has been designed specifically as an R & D facility, with its primary goal to explore the necessary technology improvements required to make the binary cycle an efficient, cost effective and reliable conversion process. Magma Power's exploration activities, carried out in other parts of the Western United States after the initial discovery and development at The Geyser's, gave evidence that The Geyser's type of steam reservoir was unique and that the majority of geothermal resources would be of the hydrothermal, or pressurized hot water type. Initial flow tests throughout different locations where this type of resource was discovered indicated that well bore scaling occurred at the flash point in the wells. Initial evaluations indicated that if the well fluid could be maintained under pressure as it traversed the well bore, the potential for scaling would be mitigated. Tests carried out in the late 60's at Magma's Brady Hot Springs development in Nevada indicated that scaling was mitigated with the installation of a pump in the geothermal well. Subsequently, designs were developed of a binary process, utilizing heat exchangers for power generation. Magma was able to acquire process patents associated with this and had a patent issued (Magmamax Power Process). This incorporates the concept of pumping a geothermal well and transferring the heat in the geothermal fluid to a secondary power fluid in heat exchangers. Magma's desire to demonstrate this technology was one of the prime motivations associated with the installation of the East Mesa plant.

Hinrichs, T.C.; Dambly, B.W.

1980-12-01T23:59:59.000Z

118

High resolution seismic imaging of Rainier Mesa using surface reflection and surface to tunnel tomography  

SciTech Connect

In the interpretation of seismic data to infer properties of an explosion source, it is necessary to account for wave propagation effects. In order to understand and remove these propagation effects, it is necessary to have a model. An open question concerning this matter is the detail and accuracy which must be present in the velocity model in order to produce reliable estimates in the estimated source properties. While it would appear that the reliability of the results would be directly related to the accuracy of the velocity and density models used in the interpretation, it may be that certain deficiencies in these models can be compensated by the and amount of seismic data which is used in the inversion. The NPE provided an opportunity to test questions of this sort. In August 1993, two high resolution seismic experiments were performed in N-Tunnel and on the surface of Rainier Mesa above it. The first involved a surface-to-tunnel imaging experiment with sources on the surface and receivers in tunnel U12n.23 about 88 meters west of the NPE. It was possible to estimate the apparent average velocity between the tunnel and the surface. In a separate experiment, a high resolution reflection experiment was performed in order to image the lithology in Rainier Mesa. Good quality, broad band, reflections were obtained from depths extending into the Paleozoic basement. A high velocity layer near the surface is underlain by a thick section of low velocity material, providing a nonuniform but low average velocity between the depth of the NPE and the surface.

Majer, E.L.; Johnson, L.R.; Karageorgi, E.K.; Peterson, J.E.

1994-06-01T23:59:59.000Z

119

Completion Report for Well ER-12-3 Corrective Action Unit 99: Rainier Mesa - Shoshone Mountain  

Science Conference Proceedings (OSTI)

Well ER-12-3 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, in support of the Nevada Environmental Restoration Project at the Nevada Test Site, Nye County, Nevada. The well was drilled in March and April 2005 as part of a hydrogeologic investigation program for the Rainier Mesa-Shoshone Mountain Corrective Action Unit. The overall purpose of the well was to gather subsurface data to better characterize the hydrogeology of central Rainier Mesa, especially in the older Tertiary volcanic rocks and Paleozoic sedimentary rocks. The main 47.0-centimeter hole was drilled to a depth of 799.2 meters and cased with 33.97-centimeter casing to 743.1 meters. The hole diameter was then decreased to 31.1 centimeters, and the well was drilled to a total depth of 1,496.0 meters. The completion string consisted of 13.97-centimeter stainless steel casing, with two slotted intervals open to the lower carbonate aquifer, suspended from 19.37-centimeter carbon steel casing. A piezometer string was installed outside the 33.97-centimeter casing to a depth of 467.1 meters to monitor a zone of perched water within the Tertiary volcanic section. Data gathered during and shortly after hole construction include composite drill cuttings samples collected every 3 meters (extra cuttings samples were collected from the Paleozoic rocks for paleontological analyses), sidewall core samples from 35 depths, various geophysical logs, and water level measurements. These data indicate that the well penetrated 674.2 meters of Tertiary volcanic rocks and 821.7 meters of Paleozoic dolomite and limestone. Forty-nine days after the well was completed, but prior to well development and testing, the water level inside the main hole was tagged at the depth of 949.1 meters, and the water level inside the piezometer string was tagged at 379.9 meters.

U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Bechtel Nevada Corporation

2006-05-01T23:59:59.000Z

120

Density logging and density of rocks in Rainier Mesa Area, Nevada Test Site  

SciTech Connect

Density logs from all 35 vertical drill holes in the Rainier Mesa area in which logs were obtained were evaluated and the distribution of densities of units in the geologic section was derived. Densities were obtained in only 10 holes in which calibrated logging tools had been run. The logs from an additional 10 holes were calibrated with core. Densities vary from nearly 1 g/cc in tunnel bed 5 to over 2.8 g/cc in the dolomitic rocks. Log densities were found to agree well with core data in those subunits (chiefly within tunnel beds 3 and 4) where an adequate number of core measurements were available for comparison. Lithologic correlations based on density log signatures were found to extend for more than 8 km in several units and subunits in the area. Although the volcanic rocks in the Rainier Mesa area are comprised of a wider spectrum of minerals than the petroliferous rocks generally involved in most commercial logging applications, grain density may be estimated with good accuracy with only a knowledge of glass and zeolite content. The variability of the Z/A ratio of the matrix in these volcanic rocks is also negligible compared to the value of 0.5 generally assumed in density logging. However, due to the assumptions made concerning the Z/A of water in deriving the output of commercial density tools, one should be aware of the errors inherent in assuming that recorded log densities are true densities. These errors are normally small, being less than 3 percent for compensated limestone'' tools and 2 percent for tools which output electron density. 35 refs., 25 figs., 12 tabs.

Carroll, R.D.

1989-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ogilby mesa ca" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Corrective Action Investigation Plan for Corrective Action Unit 99: Rainier Mesa/Shoshone Mountain, Nevada Test Site, Nevada, Rev. No. 0  

SciTech Connect

This Corrective Action Investigation Plan (CAIP) was developed for Corrective Action Unit (CAU) 99, Rainier Mesa/Shoshone Mountain. The CAIP is a requirement of the ''Federal Facility Agreement and Consent Order'' (FFACO) agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense (DoD) (FFACO, 1996). The FFACO addresses environmental restoration activities at U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) facilities and sites including the underground testing area(s) of the Nevada Test Site (NTS). This CAIP describes the investigation activities currently planned for the Rainier Mesa/Shoshone Mountain CAU. These activities are consistent with the current Underground Test Area (UGTA) Project strategy described in Section 3.0 of Appendix VI, Revision No. 1 (December 7, 2000) of the FFACO (1996) and summarized in Section 2.1.2 of this plan. The Rainier Mesa/Shoshone Mountain CAU extends over several areas of the NTS (Figure 1-1) and includes former underground nuclear testing locations in Areas 12 and 16. The area referred to as ''Rainier Mesa'' includes the geographical area of Rainier Mesa proper and the contiguous Aqueduct Mesa. Figure 1-2 shows the locations of the tests (within tunnel complexes) conducted at Rainier Mesa. Shoshone Mountain is located approximately 20 kilometers (km) south of Rainier Mesa, but is included within the same CAU due to similarities in their geologic setting and in the nature and types of nuclear tests conducted. Figure 1-3 shows the locations of the tests conducted at Shoshone Mountain. The Rainier Mesa/Shoshone Mountain CAU falls within the larger-scale Rainier Mesa/Shoshone Mountain Investigation Area, which also includes the northwest section of the Yucca Flat CAU as shown in Figure 1-1. Rainier Mesa and Shoshone Mountain lie adjacent to the Timber Mountain Caldera Complex and are composed of volcanic rocks that erupted from the caldera as well as from more distant sources. This has resulted in a layered volcanic stratigraphy composed of thick deposits of welded and nonwelded ash-flow tuff and lava flows. These deposits are proximal to the source caldera and are interstratified with the more distal facies of fallout tephra and bedded reworked tuff from more distant sources. In each area, a similar volcanic sequence was deposited upon Paleozoic carbonate and siliciclastic rocks that are disrupted by various thrust faults, normal faults, and strike-slip faults. In both Rainier Mesa (km) to the southwest, and Tippipah Spring, 4 km to the north, and the tunnel complex is dry. Particle-tracking simulations performed during the value of information analysis (VOIA) (SNJV, 2004b) indicate that most of the regional groundwater that underlies the test locations at Rainier Mesa and Shoshone Mountain eventually follows similar and parallel paths and ultimately discharges in Death Valley and the Amargosa Desert. Particle-tracking simulations conducted for the regional groundwater flow and risk assessment indicated that contamination from Rainier Mesa and Shoshone Mountain were unlikely to leave the NTS during the 1,000-year period of interest (DOE/NV, 1997a). It is anticipated that CAU-scale modeling will modify these results somewhat, but it is not expected to radically alter the outcome of these previous particle-tracking simulations within the 1,000-year period of interest. The Rainier Mesa/Shoshone Mountain CAIP describes the corrective action investigation (CAI) to be conducted at the Rainier Mesa/Shoshone Mountain CAU to evaluate the extent of contamination in groundwater due to the underground nuclear testing. The CAI will be conducted by the UGTA Project, which is part of the NNSA/NSO Environmental Restoration Project (ERP). The purpose and scope of the CAI are presented in this section, followed by a summary of the entire document.

John McCord

2004-12-01T23:59:59.000Z

122

The spatial and temporal subsidence variability of the East Mesa Geothermal Field, California, USA, and its potential impact on the All American Canal System  

Science Conference Proceedings (OSTI)

The spatiotemporal variability of subsidence around the East Mesa Geothermal Field (EMGF) near the All American Canal (AAC) has been measured using 30 temporally averaged interferograms from 1992 to 2000. Deformation rate maps from two shorter time periods ...

Joo-Yup Han; R. R. Forster; D. E. Moser; A. L. J. Ford; J. Ramirez-Hernandez; K. F. Tiampo

2011-06-01T23:59:59.000Z

123

Planning and design of additional East Mesa Geothermal Test Facilities. Phase 1B. Volume I. Final report  

DOE Green Energy (OSTI)

The planning and design of additions to the ERDA East Mesa Geothermal Component Test Facility are discussed. The ERDA East Mesa Geothermal Component Test Facility will provide moderate temperature/low salinity fluids to facilitate comprehensive testing of conversion systems and components under realistic field conditions. The project objectives included development of designs of new wells and modifications to existing wells to improve definitive reservoir evaluations and design of additional test facilities integrated with the limited-scale facilities to accommodate diverse commercial utilization technology experiments. A reservoir utilization evaluation was conducted to establish locations and design drilling programs for three new wells and modifications to existing wells to improve reservoir definition and provide a comprehensive inventory of geothermal well fluids for testing. Ten test facility additions were developed as individual procurement packages of specifications and drawings to facilitate near term construction activation.

Pearson, R.O.

1976-10-01T23:59:59.000Z

124

Applications of Geophysical and Geological Techniques to Identify Areas for Detailed Exploration in Black Mesa Basin, Arizona  

SciTech Connect

A recent report submitted to the U.S. Department of Energy (DOE) (NIPER/BDM-0226) discussed in considerable detail, the geology, structure, tectonics, and history of oil production activities in the Black Mesa basin in Arizona. As part of the final phase of wrapping up research in the Black Mesa basin, the results of a few additional geophysical studies conducted on structure, stratigraphy, petrophysical analysis, and oil and gas occurrences in the basin are presented here. A second objective of this study is to determine the effectiveness of relatively inexpensive, noninvasive techniques like gravity or magnetic in obtaining information on structure and tectonics in sufficient detail for hydrocarbon exploration, particularly by using the higher resolution satellite data now becoming available to the industry.

George, S.; Reeves, T.K.; Sharma, Bijon; Szpakiewicz, M.

1999-04-29T23:59:59.000Z

125

Completion Report for Well ER-EC-13 Corrective Action Units 101 and 102: Central and Western Pahute Mesa  

SciTech Connect

Well ER-EC-13 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, in support of the Nevada Environmental Restoration Project at the Nevada National Security Site (formerly Nevada Test Site), Nye County, Nevada. The well was drilled in October 2010 as part of the Pahute Mesa Phase II drilling program. A main objective was to provide detailed hydrogeologic information for the Fortymile Canyon composite unit hydrostratigraphic unit in the Timber Mountain moat area, within the Timber Mountain caldera complex, that will help address uncertainties within the Pahute MesaOasis Valley hydrostratigraphic framework model. This well may also be used as a long-term monitoring well.

NSTec Environmental Management

2011-05-31T23:59:59.000Z

126

Completion Report for Well ER-12-4, Corrective Action Unit 99: Rainier Mesa - Shoshone Mountain (includes Errata Sheet)  

Science Conference Proceedings (OSTI)

Well ER-12-4 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, in support of the Nevada Environmental Restoration Project at the Nevada Test Site, Nye County, Nevada. This well was drilled in May 2005, as part of a hydrogeologic investigation program for the Rainier Mesa-Shoshone Mountain Corrective Action Unit in the north-central portion of the Nevada Test Site. The well is located on Rainier/Aqueduct Mesa, northwest of Yucca Flat, within Area 12 of the Nevada Test Site. The well provided information regarding the radiological and physical environment near underground nuclear tests conducted in U12t Tunnel, information on the pre-Tertiary rocks in the area, and depth to the regional water table.

U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Bechtel Nevada

2006-05-01T23:59:59.000Z

127

Temporary camps at drill hole U19aq on Pahute Mesa, Nye County, Nevada  

SciTech Connect

The US Department of Energy, Nevada Field Office, has proposed a nuclear test at drill hole U19aq (902100N/585000E, Nevada Coordinate System, Central Zone) on Pahute Mesa, Nevada Test Site, Nevada. In compliance with Section 106 of the National Historic Preservation Act, the DOE/NV had the Quatenary Sciences Center, Desert Research Institute, identify and evaluate the potential effects of this activity on cultural resources. To determine the nature of cultural resources in the area, DRI conducted a Class III intensive archaeological survey of an approximately 1-km{sup 2} area around the drill hole. That survey, conducted in June 1985, located and recorded 20 archaeological sites. Two of those sites, interpreted as temporary camps of ancient hunters and gatherers, covered an extensive portion of the area proposed for nuclear testing. Half the sites were small concentrations of artifacts or isolated artifacts and were collected at the time of their discovery and 10 sites were left in place. Those sites were in danger of being adversely affected by the land-disturbing activities proposed at the drill hole. In August and September 1985, DRI conducted limited test excavations (15 test units) at those sites to further evaluate their scientific significance and to provide information that could be used in designing a plan for data recovery.

Pippin, L.C.; Reno, R.L.; Henton, G.H.; Hemphill, M.; Lockett, C.L.

1992-12-31T23:59:59.000Z

128

Temporary camps at drill hole U19aq on Pahute Mesa, Nye County, Nevada  

SciTech Connect

The US Department of Energy, Nevada Field Office, has proposed a nuclear test at drill hole U19aq (902100N/585000E, Nevada Coordinate System, Central Zone) on Pahute Mesa, Nevada Test Site, Nevada. In compliance with Section 106 of the National Historic Preservation Act, the DOE/NV had the Quatenary Sciences Center, Desert Research Institute, identify and evaluate the potential effects of this activity on cultural resources. To determine the nature of cultural resources in the area, DRI conducted a Class III intensive archaeological survey of an approximately 1-km[sup 2] area around the drill hole. That survey, conducted in June 1985, located and recorded 20 archaeological sites. Two of those sites, interpreted as temporary camps of ancient hunters and gatherers, covered an extensive portion of the area proposed for nuclear testing. Half the sites were small concentrations of artifacts or isolated artifacts and were collected at the time of their discovery and 10 sites were left in place. Those sites were in danger of being adversely affected by the land-disturbing activities proposed at the drill hole. In August and September 1985, DRI conducted limited test excavations (15 test units) at those sites to further evaluate their scientific significance and to provide information that could be used in designing a plan for data recovery.

Pippin, L.C.; Reno, R.L.; Henton, G.H.; Hemphill, M.; Lockett, C.L.

1992-01-01T23:59:59.000Z

129

MESA MODELS OF CLASSICAL NOVA OUTBURSTS: THE MULTICYCLE EVOLUTION AND EFFECTS OF CONVECTIVE BOUNDARY MIXING  

SciTech Connect

Novae are cataclysmic variables driven by accretion of H-rich material onto a white dwarf (WD) star from its low-mass main-sequence binary companion. New time-domain observational capabilities, such as the Palomar Transient Factory and Pan-STARRS, have revealed a diversity of their behavior that should be theoretically addressed. Nova outbursts depend sensitively on nuclear physics data, and more readily available nova simulations are needed in order to effectively prioritize experimental effort in nuclear astrophysics. In this paper, we use the MESA stellar evolution code to construct multicycle nova evolution sequences with CO WD cores. We explore a range of WD masses and accretion rates as well as the effect of different cooling times before the onset of accretion. In addition, we study the dependence on the elemental abundance distribution of accreted material and convective boundary mixing at the core-envelope interface. Models with such convective boundary mixing display an enrichment of the accreted envelope with C and O from the underlying WD that is commensurate with observations. We compare our results with the previous work and investigate a new scenario for novae with the {sup 3}He-triggered convection.

Denissenkov, Pavel A.; Herwig, Falk [Department of Physics and Astronomy, University of Victoria, P.O. Box 3055, Victoria, BC V8W 3P6 (Canada)] [Department of Physics and Astronomy, University of Victoria, P.O. Box 3055, Victoria, BC V8W 3P6 (Canada); Bildsten, Lars; Paxton, Bill, E-mail: pavelden@uvic.ca, E-mail: fherwig@uvic.ca, E-mail: bildsten@kitp.ucsb.edu, E-mail: paxton@kitp.ucsb.edu [Kavli Institute for Theoretical Physics and Department of Physics, Kohn Hall, University of California, Santa Barbara, CA 93106 (United States)] [Kavli Institute for Theoretical Physics and Department of Physics, Kohn Hall, University of California, Santa Barbara, CA 93106 (United States)

2013-01-01T23:59:59.000Z

130

Internal Technical Report, Hydrothermal Injection Program - East Mesa 1983-84 Test Data  

DOE Green Energy (OSTI)

This report presents a test data index and a data plots for a series of 12 drawdown and tracer injection-withdrawal tests in porous-media aquifers at the East Mesa Geothermal Field located in the Imperial Valley near El Centro, California. Test and instrumentation summaries are also provided. The first 10 of these tests were completed during July and August 1983. The remaining 2 tests were completed in February 1984, after a 6-month quiescent period, in which tracers were left in the reservoir. The test wells used were 56-30 and 56-19, with 38-30 supplying water for the injection phase and 52-29 used as a disposal well during the backflowing of the test wells. Six other wells in the surrounding area were measured periodically for possible hydrologic effects during testing. It is not the intent of this report to supply analyzed data, but to list the uninterpreted computer stored data available for analysis. The data have been examined only to the extent to ensure that they are reasonable and internally consistent. This data is stored on permanent files at the Idaho National Engineering Laboratory (INEL) Cyber Computer Complex. The main processors for this complex are located at the Computer Science Center (CSC) in Idaho Falls, Idaho. The Hydrothermal Injection Test program, funded by the Department of Energy, was a joint effort between EG and G Idaho, Inc., the University of Utah Research Institute (UURI) and Republic Geothermal, Inc. (RGI) of Santa Fe Springs, California.

Freiburger, R.M.

1984-09-01T23:59:59.000Z

131

Test results from the 500 kW direct contact pilot plant at East Mesa  

DOE Green Energy (OSTI)

A 500 kW power plant utilizing direct contact heat exchange (DCHX) between the geothermal brine and the isobutane (IC/sub 4/) working fluid is being operated at the East Mesa test facility. The power plant incorporates a 40-inch-diameter direct-contactor approximately 35 feet tall. The purpose of the pilot plant is to determine the feasibility of large-scale direct-contact heat exchange and power plant operation with the DCHX. The binary cycle offers higher conversion factors (heat energy transformed to electrical energy) than the flashed steam approach for geothermal brines in the 300 to 400/sup 0/F range and preliminary results indicate the DCHX system may have higher performance than the conventional tube-and-shell binary approach. This performance advantage results from the absence of any fouling and the very close pinch temperatures achieved in the DCHX itself. The baseline performance tests for the plant were completed in January 1980. The results of these tests and follow-on testing are covered.

Nichols, K.E.; Olander, R.G.; Lobach, J.L.

1980-09-01T23:59:59.000Z

132

Survey of radon and radon daughter concentrations in selected Rainier Mesa tunnels  

SciTech Connect

A survey of radon and radon daughter concentrations (RDCs) in selected tunnels on Rainier Mesa at the Nevada Test Site (NTS) was conducted as a part of the underground testing program at NTS. Measurements were taken in three tunnels, N, T, and G. Results of preliminary measurements indicate that N and T Tunnels have low RDCs, i.e., 0.01 WL (working level) (3% of the EPA standard), with normal ventilation conditions. However, it was demonstrated that RDCs can rise to relatively high levels, i.e., 0.24 WL when ventilation rates are significantly lowered. The radon daughter concentrations measured in G Tunnel were an order of magnitude higher than those in N and T Tunnels. The average RDC in the rock mechanics drift (the ''worst-case'' location in G Tunnel) was 0.13 WL with a range from 0.07 WL to 0.23 WL. Elevated RDCs found in the rock mechanics drift of G Tunnel seemed to be attributable to a lower ventilation rate in conjunction with the more highly fractured nature of the ''welded tuff'' rock formation in which the incline drift was mined. By increasing the ventilation rate, a 60% reduction in RDCs from an average of 0.13 Wl to an average of 0.05 WL was achieved.

Fauver, D.N.

1987-01-01T23:59:59.000Z

133

Recording experiment on Rainier Mesa in conjunction with a reflection survey  

SciTech Connect

The chemical explosion of the NPE was recorded on the surface of Rainier Mesa along the same line which had previously been the site of a high resolution reflection survey. Six three-component accelerometer stations where distributed along the 550 meter line, which was offset about 600 meters from the epicenter of the explosion. The bandwidth of the acceleration data extends to 100 Hz. Even though the separations of the stations was only about 100 meters, the waveforms and the amplitudes exhibited considerable variability, especially for the transverse component of motion. The maximum accelerations ranged between 0.27 g and 1.46 g, with the maximums of the average traces being 0.57 g on the radial component, 0.28 on the transverse component, and 0.50 g on the vertical component. Using the results of the reflection survey to help constrain the velocity model, the acceleration data were inverted to obtain a preliminary estimate of the seismic moment tensor of the NPE. This result is a strong diagnostic for the NPE being an explosion, showing a somewhat asymmetric extensional source with very small shear components. When interpreted in terms of a spectral model and scaling relationships, the isotropic moment tensor indicates a yield of 1.4 kt, an elastic radius of 116 meters and a cavity radius of 15.5 meters. This interpretation includes a source time function which contains appreciable overshoot, and, if shown to be reliable, this feature of the explosion could have a significant effect upon the analyses of other types of seismic data.

Johnson, L.R.

1994-06-01T23:59:59.000Z

134

TYBO/BENHAM: Model Analysis of Groundwater Flow and Radionuclide Migration from Underground Nuclear Tests in Southwestern Pahute Mesa, Nevada  

Science Conference Proceedings (OSTI)

Recent field studies have led to the discovery of trace quantities of plutonium originating from the BENHAM underground nuclear test in two groundwater observation wells on Pahute Mesa at the Nevada Test Site. These observation wells are located 1.3 km from the BENHAM underground nuclear test and approximately 300 m from the TYBO underground nuclear test. In addition to plutonium, several other conservative (e.g. tritium) and reactive (e.g. cesium) radionuclides were found in both observation wells. The highest radionuclide concentrations were found in a well sampling a welded tuff aquifer more than 500m above the BENHAM emplacement depth. These measurements have prompted additional investigations to ascertain the mechanisms, processes, and conditions affecting subsurface radionuclide transport in Pahute Mesa groundwater. This report describes an integrated modeling approach used to simulate groundwater flow, radionuclide source release, and radionuclide transport near the BENHAM and TYBO underground nuclear tests on Pahute Mesa. The components of the model include a flow model at a scale large enough to encompass many wells for calibration, a source-term model capable of predicting radionuclide releases to aquifers following complex processes associated with nonisothermal flow and glass dissolution, and site-scale transport models that consider migration of solutes and colloids in fractured volcanic rock. Although multiple modeling components contribute to the methodology presented in this report, they are coupled and yield results consistent with laboratory and field observations. Additionally, sensitivity analyses are conducted to provide insight into the relative importance of uncertainty ranges in the transport parameters.

Andrew Wolfsberg; Lee Glascoe; Guoping Lu; Alyssa Olson; Peter Lichtner; Maureen McGraw; Terry Cherry; Guy Roemer

2002-09-01T23:59:59.000Z

135

Planning and design of additional East Mesa Geothermal Test Facilities. Phase 1B. Volume II. Procurement package  

DOE Green Energy (OSTI)

Procurement packages of technical specifications and construction drawings for eleven test facility additions to the ERDA East Mesa Geothermal Component Test Facility are presented. Each of the specifications includes all of the technical requirements needed for procurement and construction starting with Division 2. The information is presented under the following subject headings: injection pump system: 52-2 injection pipeline; control and instrumentation spools; calibration test bench; test pad modifications; test pad piping headers; production and injection wells; well 5-2 modifications; well 8-1 down-hole pump; well 6-1 down-hole pump; and well 8-1 booster pump. (JGB)

Pearson, R.O.

1976-10-15T23:59:59.000Z

136

Micrometeorological and Soil Data for Calculating Evapotranspiration for Rainier Mesa, Nevada Test Site, Nevada 2002-05.  

SciTech Connect

Micrometeorological and soil-moisture data were collected at two instrumented sites on Rainier Mesa at the Nevada Test Site, January 1, 2002/August 23, 2005. Data collected at each site include net radiation, air temperature, and relative humidity at two heights; wind speed and direction; subsurface soil heat flux; subsurface soil temperature; volumetric soil water; and matric water potential. These data were used to estimate 20-minute average and daily average evapotranspiration values. The data presented in this report are collected and calculated evapotranspiration rates.

Guy A. DeMeo; Alan L. Flint; Randell J. Laczniak; Walter E. Nylund

2006-12-28T23:59:59.000Z

137

CA.0  

Office of Legacy Management (LM)

of_f$ergy of_f$ergy Washington, DC 20545 *. CA.0 MAY 2 9 1987 .r ,. Hr. Carl Schafer Director of Environmental Poli,cy Office of the Deputy Assistant Secretary of Defense for Installations Pentagon . ..&&&.@.&&;-D.C. 20301 Dear Mr.~:Schafer: As you know, the Department of Ene,rgy (DOE) is implementing a program to identify sites that may be radiologically contaminated as a result of DOE predecessor operations and to correct any pioblems associated with this contamination if there is DOE authority to do so. Reviews of historical materials from the Manhattan Engineer District (MED) and Atomic Energy Commission (AEC) era conducted in support of this program have identified number of active and former Department of Defense (DOD) installations and

138

Completion Report for Wells ER-20-8 and ER-20-8#2 Corrective Action Units 101 and 102: Central and Western Pahute Mesa  

SciTech Connect

Wells ER-20-8 and ER-20-8#2 were drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Nevada Environmental Restoration Project at the Nevada National Security Site (formerly Nevada Test Site), Nye County, Nevada. The holes were drilled in July and August 2009, as part of the Pahute Mesa Phase II drilling program. The primary purpose of these wells was to provide detailed hydrogeologic information in the Tertiary volcanic section that will help address uncertainties within the Pahute MesaOasis Valley hydrostratigraphic framework model. They may also be used as long-term monitoring wells.

NSTec Environmental Management

2011-02-28T23:59:59.000Z

139

Completion Report for Well ER-16-1 Corrective Action Unit 99: Rainier Mesa - Shoshone Mountain  

Science Conference Proceedings (OSTI)

Well ER-16-1 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, in support of the Nevada Environmental Restoration Project at the Nevada Test Site, Nye County, Nevada. The well was drilled in June and July 2005 as part of a hydrogeologic investigation program for the Rainier Mesa-Shoshone Mountain Corrective Action Unit, Number 99. The overall purpose of the well was to gather subsurface data to better characterize the hydrogeology of the Shoshone Mountain area, especially in the older Tertiary and pre-Tertiary strata. The main 46.99-centimeter hole was drilled to a depth of 702.9 meters and cased with 33.97-centimeter casing to 663.7 meters. The hole diameter was then decreased to 31.1 centimeters, and the well was drilled to total depth of 1,220.7 meters. A completion string set at the depth of 1,162.4 meters consisted of 13.97-centimeter stainless-steel casing, with one continuous slotted interval open to the lower carbonate aquifer. The fluid level in the borehole soon dropped, so the borehole was deepened in July 2006. To deepen the borehole, the slotted section was cemented and a 12.1-centimeter hole was drilled through the bottom of the completion string to the new total depth of 1,391.7 meters, which is 171.0 meters deeper than the original borehole. A string of 6.03-centimeter carbon-steel tubing with one continuous slotted interval at 1,361.8 to 1,381.4 meters, and open to the lower carbonate aquifer, was installed in the well with no gravel packing or cement, to serve as a monitoring string. Data gathered during and shortly after hole construction include composite drill cuttings samples collected every 3 meters (extra cuttings samples were collected from the Paleozoic rocks for paleontological analyses), sidewall core samples from 37 depths, various geophysical logs, and water level measurements. These data indicate that the well penetrated 646.8 meters of Tertiary volcanic rocks and 744.9 meters of Paleozoic dolomite, quartzite, shale, and limestone. Three weeks after the monitoring string was installed, the water level was tagged at the drill hole depth of 1,271.9 meters, which equates to an estimated elevation of 761.7 meters, accounting for the borehole angle.

NSTec Geology Services

2006-12-01T23:59:59.000Z

140

Completion Report for Well ER-EC-14, Corrective Action Units 101 and 102: Central and Western Pahute Mesa  

Science Conference Proceedings (OSTI)

Well ER-EC-14 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Nevada Environmental Management Operations Underground Test Area (UGTA) Activity at the Nevada National Security Site (NNSS; formerly Nevada Test Site), Nye County, Nevada. The well was drilled in September and October 2012, as part of the Central and Western Pahute Mesa Corrective Action Unit Phase II drilling program. The primary purpose of the well was to provide detailed hydrogeologic information for the Fortymile Canyon composite hydrostratigraphic unit in the Timber Mountain moat area, within the Timber Mountain caldera complex, that will help address uncertainties within the Pahute MesaOasis Valley hydrostratigraphic framework model. The main 55.9-centimeter (cm) hole was drilled to a total depth of 325.5 meters (m) and cased with 40.6-cm casing to 308.1 m. The hole diameter was then decreased to 37.5 cm, and drilling continued to a total depth of 724.8 m. The completion casing string, set to the depth of 690.9 m, consists of 16.8-cm stainless-steel casing hanging from 19.4-cm carbon-steel casing. The stainless-steel casing has two slotted intervals open to the Rainier Mesa Tuff. Two piezometer strings were installed in Well ER-EC-14. Both piezometer strings, each with one slotted interval, consist of 6.0-cm carbon-steel tubing at the surface, then cross over to 7.3-cm stainless-steel tubing just above the water table. The shallow piezometer string was landed at 507.8 m, and the deep piezometer string was landed at 688.6 m. Both piezometer strings are set to monitor groundwater within moderately to densely welded Rainier Mesa Tuff. Data collected during and shortly after hole construction include composite drill cuttings samples collected every 3.0 m, various geophysical logs, water quality (including tritium and other radionuclides) measurements, and water level measurements. The well penetrated 15.2 m of alluvium and 709.6 m of Tertiary volcanic rocks. The stratigraphy and general lithology were not as expected due to the position of Well ER-EC-14 relative to the buried caldera margins of the Timber Mountain caldera complex. The well is located inside the Rainier Mesa caldera, but outside the younger Ammonia Tanks caldera. On November 5, 2012, a preliminary fluid level in the shallow piezometer string was measured at the depth of 311.8 m. This water level depth was taken before installation of the bridge plug (to be placed within the main completion casing to separate the two slotted zones). Well development, hydrologic testing, and sampling, will be conducted at a later date. No tritium above levels detectable by field methods were encountered in this hole. All Fluid Management Plan (FMP) requirements for Well ER-EC-14 were met. Analysis of monitoring samples and FMP confirmatory samples indicated that fluids generated during drilling at Well ER-EC-14 met the FMP criteria for discharge to an unlined sump or designated infiltration area. All sanitary and hydrocarbon waste generated was properly handled and disposed of.

None

2013-03-05T23:59:59.000Z

Note: This page contains sample records for the topic "ogilby mesa ca" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Microphysical Effects of Wintertime Cloud Seeding with Silver Iodide over the Rocky Mountains. Part III: Observations over the Grand Mesa, Colorado  

Science Conference Proceedings (OSTI)

During March 1986, several airborne and ground-based silver iodide (AgI) seeding experiments were conducted over the Grand Mesa, Colorado, during a three-day period of northerly flow and shallow orographic cloud. While little natural snowfall was ...

Arlin B. Super; Bruce A. Boe

1988-10-01T23:59:59.000Z

142

A Hydrostrat Model and Alternatives for Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 99: Rainer Mesa-Shoshone Mountain, Nye County, Nevada  

Science Conference Proceedings (OSTI)

The three-dimensional hydrostratigraphic framework model for the Rainier Mesa-Shoshone Mountain Corrective Action Unit was completed in Fiscal Year 2006. The model extends from eastern Pahute Mesa in the north to Mid Valley in the south and centers on the former nuclear testing areas at Rainier Mesa, Aqueduct Mesa, and Shoshone Mountain. The model area also includes an overlap with the existing Underground Test Area Corrective Action Unit models for Yucca Flat and Pahute Mesa. The model area is geologically diverse and includes un-extended yet highly deformed Paleozoic terrain and high volcanic mesas between the Yucca Flat extensional basin on the east and caldera complexes of the Southwestern Nevada Volcanic Field on the west. The area also includes a hydrologic divide between two groundwater sub-basins of the Death Valley regional flow system. A diverse set of geological and geophysical data collected over the past 50 years was used to develop a structural model and hydrostratigraphic system for the model area. Three deep characterization wells, a magnetotelluric survey, and reprocessed gravity data were acquired specifically for this modeling initiative. These data and associated interpretive products were integrated using EarthVision{reg_sign} software to develop the three-dimensional hydrostratigraphic framework model. Crucial steps in the model building process included establishing a fault model, developing a hydrostratigraphic scheme, compiling a drill-hole database, and constructing detailed geologic and hydrostratigraphic cross sections and subsurface maps. The more than 100 stratigraphic units in the model area were grouped into 43 hydrostratigraphic units based on each unit's propensity toward aquifer or aquitard characteristics. The authors organized the volcanic units in the model area into 35 hydrostratigraphic units that include 16 aquifers, 12 confining units, 2 composite units (a mixture of aquifer and confining units), and 5 intrusive confining units. The underlying pre-Tertiary rocks are divided into six hydrostratigraphic units, including three aquifers and three confining units. Other units include an alluvial aquifer and a Mesozoic-age granitic confining unit. The model depicts the thickness, extent, and geometric relationships of these hydrostratigraphic units ('layers' in the model). The model also incorporates 56 Tertiary normal faults and 4 Mesozoic thrust faults. The complexity of the model area and the non-uniqueness of some of the interpretations incorporated into the base model made it necessary to formulate alternative interpretations for some of the major features in the model. Four of these alternatives were developed so they can be modeled in the same fashion as the base model. This work was done for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Underground Test Area Subproject of the Environmental Restoration Project.

NSTec Geotechnical Sciences Group

2007-03-01T23:59:59.000Z

143

Curecanti-Blue Mesa-Salida 115-kV transmission lines access roads rehabilitation, maintenance, and construction project. Environmental Assessment  

SciTech Connect

Western Area Power Administration (Western) is a power marketing agency of the US Department of Energy, with jurisdiction in 15 western states. The Salt Lake City Area (SLCA) of Western performs the agency`s mission in parts of Colorado, New Mexico, Texas, Utah, Arizona, Wyoming, and Nevada. As part of its mission, Western owns, operates, and maintains a system of transmission lines for transmitting bulk electrical energy from points of generation to and between delivery points. Part of that system in southwestern Colorado includes the Blue Mesa-Curecanti and Blue Mesa-Salida 115-kV transmission lines. Western proposes to conduct maintenance and improve its access roads for these two transmission lines. This paper discusses the impacts to the existing environment as well as the environmental consequences resulting from the maintenance and construction that is proposed.

Not Available

1993-07-01T23:59:59.000Z

144

The Underground Test Area Project of the Nevada Test Site: Building Confidence in Groundwater Flow and Transport Models at Pahute Mesa Through Focused Characterization Studies  

SciTech Connect

Pahute Mesa at the Nevada Test Site contains about 8.0E+07 curies of radioactivity caused by underground nuclear testing. The Underground Test Area Subproject has entered Phase II of data acquisition, analysis, and modeling to determine the risk to receptors from radioactivity in the groundwater, establish a groundwater monitoring network, and provide regulatory closure. Evaluation of radionuclide contamination at Pahute Mesa is particularly difficult due to the complex stratigraphy and structure caused by multiple calderas in the Southwestern Nevada Volcanic Field and overprinting of Basin and Range faulting. Included in overall Phase II goals is the need to reduce the uncertainty and improve confidence in modeling results. New characterization efforts are underway, and results from the first year of a three-year well drilling plan are presented.

Pawloski, G A; Wurtz, J; Drellack, S L

2009-12-29T23:59:59.000Z

145

DOE - Office of Legacy Management -- Berkeley CA Site - CA 03  

Office of Legacy Management (LM)

Berkeley CA Site - CA 03 Berkeley CA Site - CA 03 FUSRAP Considered Sites Berkeley, CA Alternate Name(s): University of California Gilman Hall, University of California CA.03-1 Location: Gilman Hall, University of California, Berkeley, California CA.03-1 Historical Operations: Performed research and development on the synthesis and production of plutonium, resulting in uranium, plutonium, cesium and americium contamination. CA.03-3 CA.03-5 Eligibility Determination: Eligible CA.03-1 CA.03-2 Radiological Survey(s): Assessment Surveys CA.03-3 CA.03-4 Site Status: Certified- Certification Basis and Certification Statement CA.03-5 CA.03-6 Long-term Care Requirements: Long-Term Surveillance and Maintenance Requirements for Remediated FUSRAP Sites S07566_FUSRAP Also see Berkeley, CA, Site

146

Final Environmental Assessment for the Proposed Consolidation of Certain Dynamic Experimentation Activities at the Two-Mile Mesa Complex Los Alamos National Laboratory, Los Alamos, New Mexico  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

47 47 Final Environmental Assessment for the Proposed Consolidation of Certain Dynamic Experimentation Activities at the Two-Mile Mesa Complex Los Alamos National Laboratory, Los Alamos, New Mexico November 3, 2003 Department of Energy National Nuclear Security Administration Los Alamos Site Office Environmental Assessment for the Proposed DX Division Strategic Facility Plan at LANL DOE LASO November 3, 2003 iii Contents Acronyms and Terms................................................................................................................................vii Executive Summary ...................................................................................................................................xi 1.0 Purpose and Need

147

Hunter-gatherer adaptations and environmental change in the southern Great Basin: The evidence from Pahute and Rainier mesas  

Science Conference Proceedings (OSTI)

This paper reviews the evidence for fluctuations in past environments in the southern Great Basin and examines how these changes may have affected the strategies followed by past hunter and gatherers in their utilization of the resources available on a highland in this region. The evidence used to reconstruct past environments for the region include botanical remains from packrat middens, pollen spectra from lake and spring deposits, faunal remains recovered from archaeological and geologic contexts, tree-ring indices from trees located in sensitive (tree-line) environments, and eolian, alluvial and fluvial sediments deposited in a variety of contexts. Interpretations of past hunter and gatherer adaptive strategies are based on a sample of 1,311 archaeological sites recorded during preconstruction surveys on Pahute and Rainier mesas in advance of the US Department of Energy`s nuclear weapons testing program. Projectile point chronologies and available tree-ring, radiocarbon, thermoluminescence and obsidian hydration dates were used to assign these archaeological sites to specific periods of use.

Pippin, L.C.

1998-06-01T23:59:59.000Z

148

Investigations on the Structure Tectonics, Geophysics, Geochemistry, and Hydrocarbon Potential of the Black Mesa Basin, Northeastern Arizona  

SciTech Connect

The U.S. Department of Energy (DOE) has instituted a basin-analysis study program to encourage drilling in underexplored and unexplored areas and increase discovery rates for hydrocarbons by independent oil companies within the continental United States. The work is being performed at the DOE's National Institute for Petroleum and Energy Research (NIPER) in Bartlesville, Oklahoma, by the Exploration and Drilling Group within BDM-Oklahoma (BDM), the manager of the facility for DOE. Several low-activity areas in the Mid-Continent, west, and southwest were considered for the initial study area (Reeves and Carroll 1994a). The Black Mesa region in northwestern Arizona is shown on the U.S. Geological Survey 1995 oil and gas map of the United States as an undrilled area, adapted from Takahashi and Gautier 1995. This basin was selected by DOE s the site for the initial NIPER-BDM survey to develop prospects within the Lower-48 states (Reeves and Carroll 1994b).

Barker, Colin; Carroll, Herbert; Erickson, Richard; George, Steve; Guo, Genliang; Reeves,T.K.; Sharma, Bijon; Szpakiewicz, Michael; Volk, Len

1999-04-27T23:59:59.000Z

149

Bi-Ca (Bismuth - Calcium)  

Science Conference Proceedings (OSTI)

Bi-Ca crystallographic data...Bi-Ca crystallographic data Phase Composition, wt% Ca Pearson symbol Space group (Bi) 0 hR 2 R m Bi 3 Ca 6 ? ? Bi 10 Ca 11 17.4 tI 84 I 4/ mmm Bi 3 Ca 5 24.2 oP 32 Pnma BiCa 2 27.8 tI 12 I 4/ mmm (αCa) 100 cF 4 Fm m (βCa) 100 cI 2 Im m...

150

Facies, depositional environments, and reservoir properties of the Shattuck sandstone, Mesa Queen Field and surrounding areas, southeastern New Mexico  

E-Print Network (OSTI)

The Shattuck Sandstone Member of the Guadalupian age Queen Formation was deposited in back-reef environments on a carbonate platform of the Northwest Shelf (Permian Basin, New Mexico, USA) during a lowstand of sea level. At Mesa Queen Field, the Shattuck Sandstone is a sheet-like sand body that averages 30 ft (9.1 m) in thickness. The Shattuck Sandstone includes deposits of four major siliciclastic environments: (1) fluvial sandflats, (2) eolian sand sheets, (3) inland sabkhas, and (4) marine-reworked eolian sands. Fluvial sandflat deposits are further subdivided into sheetflood, wadi plain, and river-mouth deposits. Dolomites, evaporites, and siliciclastics that formed in adjacent coastal sabkha and lagoonal environments bound the Shattuck Sandstone from above and below. The Shattuck Sandstone is moderately- to well-sorted, very fine-grained subarkose, with a mean grain size of 98 ?m (3.55?). Eolian sand sheet, wadi plain, and marine-reworked eolian facies comprise the productive reservoir intervals. Reservoir quality reflects intragranular and intergranular secondary porosity formed by partial dissolution of labile feldspar grains, and pore-filling anhydrite and dolomite cements. Vertical successions and regional facies patterns support previous interpretations that these deposits formed during a sea-level lowstand and early stages of the subsequent transgression. Facies patterns across the shelf indicate fluvial sandflats prograded over coastal and continental sabkhas, and eolian sand deposition became more common during sea-level fall and lowstand. During subsequent transgression, eolian sediments in the upper portion of the Shattuck Sandstone were reworked as coastal and lagoon environments became reestablished on the inner carbonate platform.

Haight, Jared

2002-08-01T23:59:59.000Z

151

Completion Report for Well ER-EC-11 Corrective Action Units 101 and 102: Central and Western Pahute Mesa  

Science Conference Proceedings (OSTI)

Well ER-EC-11 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, in support of the Nevada Environmental Restoration Project at the Nevada National Security Site (formerly Nevada Test Site), Nye County, Nevada. The well was drilled in September and October 2009 as part of the Pahute Mesa Phase II drilling program. A main objective was to investigate radionuclide migration down-gradient from Well Cluster ER-20-5 and Well ER-20-7 and across the northern Timber Mountain moat structural zone into the area referred to as the Bench, between Pahute Mesa and the Timber Mountain caldera complex. A secondary purpose of the well was to provide detailed hydrogeologic information for the shallow- to intermediate-depth Tertiary volcanic section in the Bench area. This well also provided detailed hydrogeologic information in the Tertiary volcanic section to reduce uncertainties within the Pahute Mesa-Oasis Valley hydrostratigraphic framework model (Bechtel Nevada, 2002). The main 52.1-centimeter hole was drilled to a depth of 507.5 meters and then opened to a diameter of 66.0 centimeters. It was cased with 50.8-centimeter casing to 504.9 meters. The hole diameter was then decreased to 47.0 centimeters, and drilling continued to a total depth of 979.3 meters. It was then cased with 34.0-centimeter casing set at 965.5 meters. The hole diameter was then decreased to 31.1 centimeters and the borehole was drilled to a total depth of 1,264.3 meters. The completion casing string, set to the depth of 1,262.5 meters, consists of 19.4-centimeter stainless-steel casing hanging from 19.4-centimeter carbon-steel casing. The stainless-steel casing has two slotted intervals open to the Tiva Canyon and Topopah Spring aquifers. Four piezometer strings were installed in Well ER-EC-11. A string of carbon-steel 6.0-centimeter tubing with one slotted interval was inserted outside the 50.8-centimeter casing, within the 66.0-centimeter borehole for access to the Timber Mountain aquifer, and landed at 475.3 meters. A second string of 6.0-centimeter tubing with one slotted interval was inserted outside the 34.0-centimeter casing, within the 47.0-centimeter borehole for access to the Benham aquifer, and landed at 911.7 meters. A third piezometer string consists of 7.3-centimeter stainless-steel tubing that hangs from 6.0-centimeter carbon-steel tubing via a crossover sub. This string was landed at 1,029.5 meters to monitor the Tiva Canyon aquifer. The deepest string of 7.3-centimeter tubing was landed at 1,247.8 meters to monitor the Topopah Spring aquifer. Data collected during and shortly after hole construction include composite drill cuttings samples collected every 3.0 meters, 67 percussion gun and rotary sidewall core samples, various geophysical logs, fluid samples (for groundwater chemistry analysis and tritium measurements), and water-level measurements. The well penetrated 1,264.3 meters of Tertiary volcanic rock, including three saturated welded-tuff aquifers and one saturated lava-flow aquifer. A water level was measured in the Timber Mountain aquifer at 449.6 meters, during open-hole geophysical logging on September 20, 2009. The fluid level measured after the total depth was reached and the upper aquifer was cased off was 450.0 meters when measured in the open borehole on October 17, 2009. Measurements on samples taken from the undeveloped well indicated that tritium levels averaging approximately 12,430 picocuries per liter (less than Safe Drinking Water Act levels) were encountered within the Benham aquifer. Tritium was below the minimum detectable activity concentration for samples collected from the Tiva Canyon aquifer and the Topopah Spring aquifer.

NSTec Environmental Management

2010-12-01T23:59:59.000Z

152

TRACER STABILITY AND CHEMICAL CHANGES IN AN INJECTED GEOTHERMAL FLUID DURING INJECTION-BACKFLOW TESTING AT THE EAST MESA GEOTHERMAL FIELD  

DOE Green Energy (OSTI)

The stabilities of several tracers were tested under geothermal conditions while injection-backflow tests were conducted at East Mesa. The tracers I and Br were injected continuously while SCN (thiocyanate), B, and disodium fluorescein were each injected as a point source (slug). The tracers were shown to be stable, except where the high concentrations used during slug injection induced adsorption of the slug tracers. However, adsorption of the slug tracers appeared to ''armor'' the formation against adsorption during subsequent tests. Precipitation behavior of calcite and silica as well as Na/K shifts during injection are also discussed.

Adams, M.C.

1985-01-22T23:59:59.000Z

153

CA.O-O  

Office of Legacy Management (LM)

3sR L C, C II Department of Energy -e ' Washington, DC 20545 CA.O-O - 0 MAY 2 9 1987 Mr. Carl Schafer Director of Environmental Policy Office of the Deputy Assistant Secretary of...

154

U.S. LNG Imports from Canada  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

155

U.S. LNG Imports from Norway  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

156

U.S. LNG Imports from Equatorial Guinea  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

157

U.S. LNG Imports from Australia  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

158

U.S. LNG Imports from United Arab Emirates  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

159

U.S. LNG Imports from Other Countries  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

160

U.S. LNG Imports from Egypt  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

Note: This page contains sample records for the topic "ogilby mesa ca" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

U.S. LNG Imports from Malaysia  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

162

U.S. LNG Imports from Peru  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

163

U.S. LNG Imports from Trinidad/Tobago  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

164

U.S. LNG Imports from Algeria  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

165

U.S. LNG Imports from Nigeria  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

166

U.S. LNG Imports from Qatar  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

167

U.S. LNG Imports from Yemen  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

168

U.S. Total Exports  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

169

U.S. LNG Imports from Indonesia  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

170

Phase I Contaminant Transport Parameters for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 99: Rainier Mesa/Shoshone Mountain, Nevada Test Site, Nye County, Nevada, Revision 1  

SciTech Connect

This document presents a summary and framework of available transport data and other information directly relevant to the development of the Rainier Mesa/Shoshone Mountain (RMSM) Corrective Action Unit (CAU) 99 groundwater transport model. Where appropriate, data and information documented elsewhere are briefly summarized with reference to the complete documentation.

Nathan Bryant

2008-05-01T23:59:59.000Z

171

Phase I Hydrologic Data for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 99: Rainier Mesa/Shoshone Mountain, Nevada Test Site, Nye County, Nevada, Revision 1  

Science Conference Proceedings (OSTI)

This document presents a summary and framework of the available hydrologic data and other information directly relevant to the development of the Rainier Mesa/Shoshone Mountain (RMSM) Corrective Action Unit (CAU) 99 groundwater flow models. Where appropriate, data and information documented elsewhere are briefly summarized with reference to the complete documentation.

Nathan Bryant

2008-05-01T23:59:59.000Z

172

MESA PRODUCTS, INC. PROFILE  

Science Conference Proceedings (OSTI)

... The entire oil and gas industry has benefited by the contributions of ... This process includes both a long-term and short-term outlook of the future. ...

2007-04-04T23:59:59.000Z

173

2012 MESA Application Summary  

Science Conference Proceedings (OSTI)

... v All employees are trained and audited ... of means, including training programs, team ... This systematic approach incorporates input from stakeholders ...

2013-04-04T23:59:59.000Z

174

MESA Products, Inc.  

Science Conference Proceedings (OSTI)

... This electrochemical form of corrosion control is applied to underground or submerged structures, such as pipelines and tanks. ...

2010-11-26T23:59:59.000Z

175

MESA Products, Inc., 2012  

Science Conference Proceedings (OSTI)

... of corrosion control and integrity solutions to the pipeline industry. ... including expansion into the asset integrity market for pipelines, has created ...

2012-11-14T23:59:59.000Z

176

MESA PRODUCTS, INC. PROFILE  

Science Conference Proceedings (OSTI)

... services and products are energy related companies ... programs including the annual Appalachian Underground ... term and short-term outlook of the ...

2007-04-04T23:59:59.000Z

177

Well Completion Report for Well ER-20-11, Corrective Action Units 101 and 102: Central and Western Pahute Mesa  

Science Conference Proceedings (OSTI)

Well ER-20-11 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Nevada Environmental Management Operations Underground Test Area (UGTA) Activity at the Nevada National Security Site (formerly Nevada Test Site), Nye County, Nevada. The well was drilled in September 2012 as part of the Central and Western Pahute Mesa Corrective Action Unit Phase II drilling program. Well ER-20-11 was constructed to further investigate the nature and extent of radionuclidecontaminated groundwater encountered in two nearby UGTA wells, to help define hydraulic and transport parameters for the contaminated Benham aquifer, and to provide data for the UGTA hydrostratigraphic framework model. The 44.5-centimeter (cm) surface hole was drilled to a depth of 520.0 meters (m) and cased with 34.0-cm casing to 511.5 m. The hole diameter was then decreased to 31.1 cm, and the borehole was drilled to a total depth of 915.6 m. The hole was completed to allow access for hydrologic testing and sampling in the target aquifer, which is a lava-flow aquifer known as the Benham aquifer. The completion casing string, set to the depth of 904.3 m, consists of a string of 6?-inch (in.) stainless-steel casing hanging from a string of 7?-in. carbon-steel casing. The stainless-steel casing has one slotted interval at 796.3 to 903.6 m. One piezometer string was installed, which consists of 2?-in. stainless-steel tubing that hangs from 2?-in. carbon-steel tubing via a crossover sub. This string was landed at 903.8 m and is slotted in the interval 795.3 to 903.1 m. Data collected during and shortly after hole construction include composite drill cuttings samples collected every 3.0 m, various geophysical logs, fluid samples (for groundwater chemistry analysis and tritium measurements), and water-level measurements. The well penetrated 915.6 m of Tertiary volcanic rock, including one saturated lava flow aquifer. Measurements on samples taken from the undeveloped well indicated elevated tritium levels within the Benham aquifer. The maximum tritium level measured with field equipment was 146,131 picocuries per liter from a sample obtained at the depth of 912.0 m. The fluid level was measured in the piezometer string at a depth of 504.5 m on September 26, 2012. All Fluid Management Plan (FMP) requirements for Well ER-20-11 were met. Analysis of monitoring samples and FMP confirmatory samples indicated that fluids generated during drilling at Well ER-20-11 met the FMP criteria for discharge to an unlined sump or designated infiltration area. Well development, hydrologic testing, and sampling will be conducted at a later date.

NSTec Environmental Management

2013-02-27T23:59:59.000Z

178

Modeling Approach/Strategy for Corrective Action Unit 99: Rainier Mesa and Shoshone Mountain, Nevada Test Site, Nye County, Nevada, Revision 1, with ROTC-1  

Science Conference Proceedings (OSTI)

This document describes an approach for preliminary (Phase I) flow and transport modeling for the Rainier Mesa/Shoshone Mountain (RMSM) Corrective Action Unit (CAU). This modeling will take place before the planned Phase II round of data collection to better identify the remaining data gaps before the fieldwork begins. Because of the geologic complexity, limited number of borings, and large vertical gradients, there is considerable uncertainty in the conceptual model for flow; thus different conceptual models will be evaluated, in addition to different framework and recharge models. The transport simulations will not be used to formally calculate the Contaminant Boundary at this time. The modeling (Phase II) will occur only after the available data are considered sufficient in scope and quality.

Greg Ruskauff

2008-06-01T23:59:59.000Z

179

Ca rlsbad Field Office  

NLE Websites -- All DOE Office Websites (Extended Search)

En ergy En ergy Ca rlsbad Field Office P. O . Box 3090 Carlsbad , New Mexico 88221 AUG 2 9 2013 Mr. John E. Kieling , Chief Hazardous Waste Bureau New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303 Subject: Notification of Class 1 Permit Modification to the Waste Isolation Pilot Plant Hazardous Waste Facility Permit Number: NM4890139088-TSDF

180

Phase I Transport Model of Corrective Action Units 101 and 102: Central and Western Pahute Mesa, Nevada Test Site, Nye County, Nevada with Errata Sheet 1, 2, 3, Revision 1  

Science Conference Proceedings (OSTI)

As prescribed in the Pahute Mesa Corrective Action Investigation Plan (CAIP) (DOE/NV, 1999) and Appendix VI of the Federal Facility Agreement and Consent Order (FFACO) (1996, as amended February 2008), the ultimate goal of transport analysis is to develop stochastic predictions of a contaminant boundary at a specified level of uncertainty. However, because of the significant uncertainty of the model results, the primary goal of this report was modified through mutual agreement between the DOE and the State of Nevada to assess the primary model components that contribute to this uncertainty and to postpone defining the contaminant boundary until additional model refinement is completed. Therefore, the role of this analysis has been to understand the behavior of radionuclide migration in the Pahute Mesa (PM) Corrective Action Unit (CAU) model and to define, both qualitatively and quantitatively, the sensitivity of such behavior to (flow) model conceptualization and (flow and transport) parameterization.

Greg Ruskauff

2009-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "ogilby mesa ca" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Estimation of unsaturated zone traveltimes for Rainier Mesa and Shoshone Mountain, Nevada Test Site, Nevada, using a source-responsive preferential-flow model  

SciTech Connect

Traveltimes for contaminant transport by water from a point in the unsaturated zone to the saturated zone are a concern at Rainier Mesa and Shoshone Mountain in the Nevada Test Site, Nevada. Where nuclear tests were conducted in the unsaturated zone, contaminants must traverse hundreds of meters of variably saturated rock before they enter the saturated zone in the carbonate rock, where the regional groundwater system has the potential to carry them substantial distances to a location of concern. The unsaturated-zone portion of the contaminant transport path may cause a significant delay, in addition to the time required to travel within the saturated zone, and thus may be important in the overall evaluation of the potential hazard from contamination. Downward contaminant transport through the unsaturated zone occurs through various processes and pathways; this can lead to a broad distribution of contaminant traveltimes, including exceedingly slow and unexpectedly fast extremes. Though the bulk of mobile contaminant arrives between the time-scale end members, the fastest contaminant transport speed, in other words the speed determined by the combination of possible processes and pathways that would bring a measureable quantity of contaminant to the aquifer in the shortest time, carries particular regulatory significance because of its relevance in formulating the most conservative hazard-prevention scenarios. Unsaturated-zone flow is usually modeled as a diffusive process responding to gravity and pressure gradients as mediated by the unsaturated hydraulic properties of the materials traversed. The mathematical formulation of the diffuse-flow concept is known as Richards' equation, which when coupled to a solute transport equation, such as the advection-dispersion equation, provides a framework to simulate contaminant migration in the unsaturated zone. In recent decades awareness has increased that much fluid flow and contaminant transport within the unsaturated zone takes place as preferential flow, faster than would be predicted by the coupled Richards' and advection-dispersion equations with hydraulic properties estimated by traditional means. At present the hydrologic community has not achieved consensus as to whether a modification of Richards' equation, or a fundamentally different formulation, would best quantify preferential flow. Where the fastest contaminant transport speed is what needs to be estimated, there is the possibility of simplification of the evaluation process. One way of doing so is by a two-step process in which the first step is to evaluate whether significant preferential flow and solute transport is possible for the media and conditions of concern. The second step is to carry out (a) a basic Richards' and advection-dispersion equation analysis if it is concluded that preferential flow is not possible or (b) an analysis that considers only the fastest possible preferential-flow processes, if preferential flow is possible. For the preferential-flow situation, a recently published model describable as a Source-Responsive Preferential-Flow (SRPF) model is an easily applied option. This report documents the application of this two-step process to flow through the thick unsaturated zones of Rainier Mesa and Shoshone Mountain in the Nevada Test Site. Application of the SRPF model involves distinguishing between continuous and intermittent water supply to preferential flow paths. At Rainier Mesa and Shoshone Mountain this issue is complicated by the fact that contaminant travel begins at a location deep in the subsurface, where there may be perched water that may or may not act like a continuous supply, depending on such features as the connectedness of fractures and the nature of impeding layers. We have treated this situation by hypothesizing both continuous and intermittent scenarios for contaminant transport to the carbonate aquifer and reporting estimation of the fastest speed for both of these end members.

Brian A. Ebel; John R. Nimmo

2009-09-11T23:59:59.000Z

182

Report on the reconnaissance resistivity survey in the East Mesa area, Imperial County, California for U. S. Department of the Interior, Bureau of Reclamation  

DOE Green Energy (OSTI)

A section of notes on geothermal exploration using the resistivity method precedes the main body of the paper. Field data from the Broadlands Area of New Zealand, Java, and the Imperial Valley, California are included. The reconnaissance resistivity survey recently completed in the East Mesa Area confirmed that a broad zone of low resistivities at depth extends through the area in a NNW direction. The interpretation of the resistivity data and the location of the resistivity lows at depth is much less definite in the Imperial Valley than it is in other areas of geothermal exploration. This is due to the extremely low background level of resistivities. The low resistivities in the Imperial Valley are due to the high porosity of the sediments and the high salinity of the solutions contained within the rock. The expected decrease in resistivity due to elevated temperature is much more difficult to detect in this environment. Edges of the zones of low resistivities have been delineated in almost all directions. (JGB)

Bell, B.S.; Hallof, P.G.

1974-01-21T23:59:59.000Z

183

CA IOUs Comment Letter  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June 19, 2012 June 19, 2012 Mr. Daniel Cohen U.S. Department of Energy Office of the General Council 1000 Independence Avenue, SW., Room 6A245 Washington, DC 20585-0121 Dear Mr. Cohen: This letter comprises the comments of the Pacific Gas and Electric Company (PG&E), Southern California Gas Company (SCGC), San Diego Gas and Electric (SDG&E), and Southern California Edison (SCE) in response to the U.S. Department of Energy's (DOE) Request for Information on Regulatory Burden. The signatories of this letter, collectively referred to herein as the California Investor Owned Utilities (CA IOUs) represent some of the largest utility companies in the Western United States, serving over 35 million customers.

184

Category:LA, CA | Open Energy Information  

Open Energy Info (EERE)

LA, CA LA, CA Jump to: navigation, search Go Back to PV Economics By Location Media in category "LA, CA" The following 16 files are in this category, out of 16 total. SVFullServiceRestaurant LA CA City of Los Angeles California (Utility Company).png SVFullServiceRestauran... 89 KB SVHospital LA CA City of Los Angeles California (Utility Company).png SVHospital LA CA City ... 88 KB SVLargeHotel LA CA City of Los Angeles California (Utility Company).png SVLargeHotel LA CA Cit... 88 KB SVLargeOffice LA CA City of Los Angeles California (Utility Company).png SVLargeOffice LA CA Ci... 92 KB SVMediumOffice LA CA City of Los Angeles California (Utility Company).png SVMediumOffice LA CA C... 87 KB SVMidriseApartment LA CA City of Los Angeles California (Utility Company).png

185

Category:Arcata, CA | Open Energy Information  

Open Energy Info (EERE)

Arcata, CA Arcata, CA Jump to: navigation, search Go Back to PV Economics By Location Media in category "Arcata, CA" The following 16 files are in this category, out of 16 total. SVFullServiceRestaurant Arcata CA Pacific Gas & Electric Co.png SVFullServiceRestauran... 76 KB SVHospital Arcata CA Pacific Gas & Electric Co.png SVHospital Arcata CA P... 83 KB SVLargeHotel Arcata CA Pacific Gas & Electric Co.png SVLargeHotel Arcata CA... 78 KB SVLargeOffice Arcata CA Pacific Gas & Electric Co.png SVLargeOffice Arcata C... 79 KB SVMediumOffice Arcata CA Pacific Gas & Electric Co.png SVMediumOffice Arcata ... 79 KB SVMidriseApartment Arcata CA Pacific Gas & Electric Co.png SVMidriseApartment Arc... 71 KB SVOutPatient Arcata CA Pacific Gas & Electric Co.png

186

Predevelopment Water-Level Contours for Aquifers in the Rainier Mesa and Shoshone Mountain area of the Nevada Test Site, Nye County, Nevada  

Science Conference Proceedings (OSTI)

Contaminants introduced into the subsurface of the Nevada Test Site at Rainier Mesa and Shoshone Mountain by underground nuclear testing are of concern to the U.S. Department of Energy and regulators responsible for protecting human health and safety. Although contaminants were introduced into low-permeability rocks above the regional flow system, the potential for contaminant movement away from the underground test areas and into the accessible environment is greatest by ground-water transport. The primary hydrologic control on this transport is evaluated and examined through a series of contour maps developed to represent the water-level distribution within each of the major aquifers underlying the area. Aquifers were identified and their extents delineated by merging and analyzing multiple hydrostratigraphic framework models developed by other investigators from existing geologic information. The contoured water-level distribution in each major aquifer was developed from a detailed evaluation and assessment of available water-level measurements. Multiple spreadsheets that accompany this report provide pertinent water-level and geologic data by well or drill hole. Aquifers are mapped, presented, and discussed in general terms as being one of three aquifer typesvolcanic aquifer, upper carbonate aquifer, or lower carbonate aquifer. Each of these aquifer types was subdivided and mapped as independent continuous and isolated aquifers, based on the continuity of its component rock. Ground-water flow directions, as related to the transport of test-generated contaminants, were developed from water-level contours and are presented and discussed for each of the continuous aquifers. Contoured water-level altitudes vary across the study area and range from more than 5,000 feet in the volcanic aquifer beneath a recharge area in the northern part of the study area to less than 2,450 feet in the lower carbonate aquifer in the southern part of the study area. Variations in water-level altitudes within any single continuous aquifer range from a few hundred feet in a lower carbonate aquifer to just more than 1,100 feet in a volcanic aquifer. Flow directions throughout the study area are dominantly southward with minor eastward or westward deviations. Primary exceptions are westward flow in the northern part of the volcanic aquifer and eastward flow in the eastern part of the lower carbonate aquifer. Northward flow in the upper and lower carbonate aquifers in the northern part of the study area is possible but cannot be substantiated because data are lacking. Interflow between continuous aquifers is evaluated and mapped to define major flow paths. These flow paths delineate tributary flow systems, which converge to form the regional ground-water flow system. The implications of these tributary flow paths in controlling transport away from the underground test areas at Rainier Mesa and Shoshone Mountain are discussed. The obvious data gaps contributing to uncertainties in the delineation of aquifers and development of water-level contours are identified and evaluated.

Joseph M. Fenelon; Randell J. Laczniak; and Keith J. Halford

2008-06-24T23:59:59.000Z

187

Remedial actions at the former Climax Uranium Company, Uranium Mill site, Grand Junction, Mesa County, Colorado. Volume 1, Text: Final environmental impact statement  

SciTech Connect

This statement evaluates and compares the environmental impacts associated with the remedial actions of the residual radioactive materials remaining at the inactive uranium processing site and associated vicinity properties at Grand Junction, Mesa County, Colorado. This statement is also intended to aid the BLM in amending their management framework plans and final resource management plan, as well as assisting in compliance with the withdrawal application as appropriate. The site is a 114-acre tract of private and state owned land which contains approximately 3.1 million cubic yards of tailings and associated contaminated soils. The vicinity properties are homes, businesses, public buildings, and vacant lots which may have been contaminated during construction by the use of tailings as building material. An estimated 3465 vicinity properties would be cleaned up during remedial action of the tailings pile. The tailings were produced by the former Climax Uranium Company which processed uranium ore, which it sold to the US Atomic Energy Commission from 1951 to 1966 and to private sources from 1966 to 1970. This statement evaluates six alternatives for stabilization and disposal of the tailings and other contaminated materials: (1) No action. (2) Stabilization at the Grand Junction site. (3) Disposal at the Cheney Reservoir site with truck transport. (4) Disposal at the Cheney Reservoir site with train and truck transport. (5) Disposal at the Two Road site with truck transport. (6) Disposal at the Two Road site with train and truck transport. All of the alternatives except no action include remedial action at an estimated 3465 vicinity properties. Alternative 3 is DOE`s preferred alternative.

None

1986-12-01T23:59:59.000Z

188

CA-TRIBE-YUROK TRIBE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CA-TRIBE-YUROK TRIBE CA-TRIBE-YUROK TRIBE Location: Tribe CA-TRIBE-YUROK CA TRIBE American Recovery and Reinvestment Act: Proposed Action or Project Description The Yurok Tribe of California proposes to conduct energy efficiency retrofits to the Klamath and Weitchpec Tribal Offices based on the results of the energy audits completed in 2006. The Klamath Office energy efficiency building retrofits would include repair/re-weatherstripping of exterior doors; installation of operable lovers on passive vents in the attic; replacement of double-pane windows; caulking; heating, ventilating, and air conditioning system repair and tuning; installation of check valves in hot water lines; insulation of hot water lines; timer repair; delamping; and occupancy sensors. The Weitchpec Office

189

Southern CA Area | Open Energy Information  

Open Energy Info (EERE)

Southern CA Area Southern CA Area Jump to: navigation, search Contents 1 Clean Energy Clusters in the Southern CA Area 1.1 Products and Services in the Southern CA Area 1.2 Research and Development Institutions in the Southern CA Area 1.3 Networking Organizations in the Southern CA Area 1.4 Investors and Financial Organizations in the Southern CA Area 1.5 Policy Organizations in the Southern CA Area Clean Energy Clusters in the Southern CA Area Products and Services in the Southern CA Area Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":500,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

190

Thermodynamic Modeling of the CaO-FetO-CaF2 System for ...  

Science Conference Proceedings (OSTI)

In the present study, the thermodynamic modeling of the CaO-CaF2-FeO system was carried out. First, all available thermodynamic data on the CaF2-FeO and...

191

NATURAL HERITAGE MESA COUNTY, COLORADO  

E-Print Network (OSTI)

of Biological Sciences, the American Association for the Advancement of Science, the British Ecological Society- struction of the Trans-Alaska Pipeline for the Alaskan Resource Sciences Corporation from 1975 to 1977. From at Columbia University in 1972, engaged in postdoctoral research in 1973, and was a guest scientist

192

Uncompahgre Mesas Forest Restoration Project  

E-Print Network (OSTI)

't a wham-bam thing." The slow pace of collaboration, and its cycling back over time is challenging for some

193

Sandia National Laboratory (CA) Former Workers, Construction...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Former Workers, Construction Worker Screening Projects Sandia National Laboratory (CA) Former Workers, Construction Worker Screening Projects Project Name: Worker Health...

194

Ca  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mr. Eric J. Fygi Mr. Eric J. Fygi U.S. Department of Energy Office of General Counsel GC-52 1000 Independence Ave. S.W. Washington, D.C. 20585 (PAA.notice@hq.doe.gov) RE: Comments Concerning the Continuation or Modification of the Provisions of the Price- Anderson Act Dear Mr. Fygi: On behalf of the Board of Lincoln County Commissioners, the Caliente City Council, and their Joint City/County Impact Alleviation Committee, I am pleased to submit the following comments concerning the continuation or modification of the provisions of the Price-Anderson Act. These comments reflect the perspectives of a county and city which are located at the end of " the funnel" through which the majority of all shipments of spent nuclear fuel, high and low-level radioactive waste will pass on their way to interim storage and/or disposal sites at the Nevada Test Site (NTS). Since

195

Ca  

NLE Websites -- All DOE Office Websites (Extended Search)

transmits the Final Audit Report for Carlsbad Field Office Audit A-12-04 of the Savannah River Site Central Chara cterization Project (SRSCCP) processes performed to...

196

Ca  

NLE Websites -- All DOE Office Websites (Extended Search)

elevation data for each year during the reporting period to determine the best month to map for that year. Month selection is based on the least perturbation to the natural...

197

CA-96062042 | Open Energy Information  

Open Energy Info (EERE)

96062042 96062042 Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: CA-96062042 EIS at Medicine Lake Geothermal Area for Geothermal/Power Plant, Geothermal/Well Field, Geothermal/Transmission, Fourmile Hill Geothermal Development Project Environmental Impact Statement (EIS) / Environmental Impact Report (EIR) General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EIS Applicant Calpine Corporation Consultant MHA Environmental Consulting, Inc. Geothermal Area Medicine Lake Geothermal Area Project Location California Project Phase Geothermal/Power Plant, Geothermal/Well Field, Geothermal/Transmission Techniques Time Frame (days) NEPA Process Time 1455 Participating Agencies Lead Agency USFS, BLM Alturas Field Office

198

Nearly itinerant ferromagnetism in CaNi2 and CaNi3  

SciTech Connect

Single crystals of CaNi2 and CaNi3 are successfully grown out of excess Ca. Both compounds manifest a metallic ground state with enhanced, temperature-dependent magnetic susceptibility. The relatively high Stoner factors of Z=0.79 and 0.87 found for CaNi2 and CaNi3, respectively, reveal their close vicinity to ferromagnetic instabilities. The pronounced field dependence of the magnetic susceptibility of CaNi3 at low temperatures (T<25 K) suggests strong ferromagnetic fluctuations. A corresponding contribution to the specific heat with a temperature dependence of T3lnT is also observed.

Jesche, Anton; Dennis, Kevin W.; Kreyssig, Andreas; Canfield, Paul C.

2012-06-26T23:59:59.000Z

199

CA-TRIBE-SUSANVILLE INDIAN RANCHERIA, CALIFORNIA  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Department of Energy Categorical Exclusion Determination Form Program or Field Office: Energy Efficiency and Conservation Block Grant Program Project Title CA-TRIBE-SUSANVILLE INDIAN RANCHERIA, CALIFORNIA Location: Tribe CA-TRIBE- SUSANVILLE INDIAN RANCHERIA, CALIFORNIA CA American Recovery and Reinvestment Act: Proposed Action or Project Description The Susanville Indian Racheria proposes to establish the EPA's Portfolio Manager tool to collect key

200

AOCS Recommended Practice Ca 16-75  

Science Conference Proceedings (OSTI)

Polyethylene in Fats and Oils AOCS Recommended Practice Ca 16-75 Methods Methods and Analyses Analytical Chemistry Methods Downloads Methods Downloads AOCS DEFINITION This method determine

Note: This page contains sample records for the topic "ogilby mesa ca" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

AOCS Official Method Ca 18c-91  

Science Conference Proceedings (OSTI)

Determination of Lead by Direct Graphite Furnace Atomic Absorption Spectrophotometry AOCS Official Method Ca 18c-91 Methods Methods and Analyses Analytical Chemistry Methods Downloads Methods Downloads DEFINITION ...

202

AOCS Official Method Ca 12b-92  

Science Conference Proceedings (OSTI)

Phosphorus by Direct Graphite Furnace Atomic Absorption Spectrometry AOCS Official Method Ca 12b-92 Methods Methods and Analyses Analytical Chemistry Methods Downloads Methods Downloads DEFINITION This method,

203

AOCS Official Method Ca 19-86  

Science Conference Proceedings (OSTI)

Phospholipids in Vegetable Oils Nephelometric Method AOCS Official Method Ca 19-86 Methods Methods and Analyses Analytical Chemistry Methods Downloads Methods Downloads DEFINITION The nephelometric method measu

204

AOCS Official Method Ca 12-55  

Science Conference Proceedings (OSTI)

Phosphorus AOCS Official Method Ca 12-55 Methods Methods and Analyses Analytical Chemistry Methods Downloads Methods Downloads DEFINITION This method determines phosphorus or the equivalent phosphatide content

205

AOCS Official Method Ca 6a-40  

Science Conference Proceedings (OSTI)

Unsaponifiable Matter AOCS Official Method Ca 6a-40 Methods Methods and Analyses Analytical Chemistry Methods Downloads Methods Downloads DEFINITION Unsaponifiable matter includes those substances frequently fo

206

AOCS Official Method Ca 6b-53  

Science Conference Proceedings (OSTI)

Unsaponifiable Matter AOCS Official Method Ca 6b-53 Methods Methods and Analyses Analytical Chemistry Methods Downloads Methods Downloads DEFINITION Unsaponifiable matter includes those substances frequently fo

207

Biodegradable Mg-Ca and Mg-1Ca-1Y alloys for Regenerative ...  

Science Conference Proceedings (OSTI)

Biodegradable Mg-Ca and Mg-1Ca-1Y alloys for Regenerative Medicine ... in MultiLengthScale Bone Structure An Investigation Using High-Energy X- Rays.

208

Ca-Based Liquid Metal Battery for Grid Scale Energy Storage: Ca-Mg  

Science Conference Proceedings (OSTI)

Building upon the thermodynamic and electrochemical investigations of calcium- magnesium (Ca-Mg) and calcium-bismuth (Ca-Bi) binary electrode systems, the recent development and progress of ... Contact programming@programmaster. org.

209

Amendment of Presidential Permit (PP-68) San Diego Gas & Electric Company for Interconnection of Otay Mesa Generating Project to Miguel-Tijuana 230 kV Transmission Line San Diego, California  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Section Page S:\COMM\NEPA\TODO \EA1383\EATOC1 -R.DOC 4/1/02 -i- 1.0 INTRODUCTION 1-1 1.1 BACKGROUND 1-1 1.2 SCOPE OF PROJECT 1-2 1.3 PURPOSE AND NEED 1-3 1.4 AGENCY ACTIONS 1-3 1.4.1 Federal 1-3 1.4.1.1 U.S. Department of Energy 1-3 1.4.1.2 U.S. Fish and Wildlife Service 1-4 1.4.2 Other Agenc y Actions 1-4 1.4.2.1 California Energy Commission 1-4 1.4.2.2 California Department of Fish and Game 1-4 1.4.2.3 State Historic Preservation Office 1-5 1.4.2.4 San Diego County 1-5 2.0 PROPOSED ACTION AND ALTERNATIVES 2-1 2.1 NO ACTION ALTERNATIVE 2-1 2.2 PROPOSED ACTION 2-1 2.2.1 Proposed Amendment to Presidential Permit (PP-68) 2-2 2.2.2 Description of Proposed Project Components and Activities 2-3 2.2.2.1 Otay Mesa 230 kV Switchyard 2-3

210

San Diego, CA Liquefied Natural Gas Exports to Mexico (Dollars...  

U.S. Energy Information Administration (EIA) Indexed Site

San Diego, CA Liquefied Natural Gas Exports to Mexico (Dollars per Thousand Cubic Feet) San Diego, CA Liquefied Natural Gas Exports to Mexico (Dollars per Thousand Cubic Feet)...

211

Calexico, CA Natural Gas Pipeline Exports to Mexico (Million...  

Annual Energy Outlook 2012 (EIA)

View History: Monthly Annual Download Data (XLS File) Calexico, CA Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Calexico, CA Natural Gas Pipeline Exports to Mexico...

212

Microsoft Word - Household Energy Use CA  

U.S. Energy Information Administration (EIA) Indexed Site

0 20 40 60 80 100 US PAC CA Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US PAC CA Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US PAC CA Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US PAC CA Expenditures dollars ELECTRICITY ONLY average per household  California households use 62 million Btu of energy per home, 31% less than the U.S. average. The lower than average site consumption results in households spending 30% less for energy than the U.S. average.  Average site electricity consumption in California homes is among the lowest in the nation, as the mild climate in much of the state leads to less reliance on

213

CA Core Competency Worksheet August 2010  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CA Core Competency Worksheet August 2010 CA Core Competency Worksheet August 2010 1 DOE CYBER SECURITY EBK: CORE COMPETENCY TRAINING REQUIREMENTS Key Cyber Security Role: Certification Agent (CA) (Also referred to as Security Control Assessor) Role Definition: The CA is the individual responsible for assessing the management, operational, assurance, and technical security controls implemented on an information system via security testing and evaluation (ST&E) methods. This individual must be independent of system development, operation, and deficiency mitigation. Competency Area: Data Security Functional Requirement: Design Competency Definition: Refers to the application of the principles, policies, and procedures necessary to ensure the confidentiality, integrity, availability, and privacy of data in all forms of media (i.e., electronic

214

AOCS Official Method Ca 3b-87  

Science Conference Proceedings (OSTI)

Hexane Residues in Fats and Oils AOCS Official Method Ca 3b-87 Methods Methods and Analyses Analytical Chemistry Methods Downloads Methods Downloads DEFINITION The residual hexane content is the quantity of vol

215

AOCS Official Method Ca 14-56  

Science Conference Proceedings (OSTI)

Total, Free and Combined Glycerol Iodometric-Periodic Acid Method AOCS Official Method Ca 14-56 Methods Methods and Analyses Analytical Chemistry Methods Downloads Methods Downloads DEFINITION This method deter

216

CA-TRIBE-BLUE LAKE RANCHERIA  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CA-TRIBE-BLUE LAKE RANCHERIA CA-TRIBE-BLUE LAKE RANCHERIA Location: Tribe CA-TRIBE-BLUE CA LAKE RANCHERIA American Recovery and Reinvestment Act: Proposed Action or Project Description The Blue Lake Rancheria Tribe of California proposes to hire a technical consultant to gather additional information and make recommendations as to the best energy efficiency and conservation project or projects to utilize energy efficiency and conservation block grant funds. Following these recommendations, a decision will be made on building retrofits, and the specific retrofits will be identified and submitted for NEPA review. Conditions: None Categorical Exclusion(s) Applied: A9, A11 *-For the complete DOE National Environmental Policy Act regulations regarding categorical exclusions, see Subpart D of 10 CFR10 21

217

Microsoft Word - Household Energy Use CA  

Gasoline and Diesel Fuel Update (EIA)

0 20 40 60 80 100 US PAC CA Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US PAC CA Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US PAC CA Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US PAC CA Expenditures dollars ELECTRICITY ONLY average per household  California households use 62 million Btu of energy per home, 31% less than the U.S. average. The lower than average site consumption results in households spending 30% less for energy than the U.S. average.  Average site electricity consumption in California homes is among the lowest in the nation, as the mild climate in much of the state leads to less reliance on

218

AOCS Recommended Practice Ca 5d-01  

Science Conference Proceedings (OSTI)

Free Fatty Acids in Crude Vegetable Oils by Capillary Gas Chromatography AOCS Recommended Practice Ca 5d-01 Methods Methods and Analyses Analytical Chemistry Methods Downloads Methods Downloads AOCS DEFI

219

AOCS Official Method Ca 5a-40  

Science Conference Proceedings (OSTI)

Free Fatty Acids AOCS Official Method Ca 5a-40 Methods Methods and Analyses Analytical Chemistry Methods Downloads DEFINITION This method determines the free fatty acids existing in the sample. SC

220

AOCS Official Method Ca 18b-91  

Science Conference Proceedings (OSTI)

Determination of Copper, Iron, and Nickel by Direct Graphite Furnace Atomic Absorption Spectrophotometry AOCS Official Method Ca 18b-91 Methods Methods and Analyses Analytical Chemistry Methods Downloads Methods Downloads DEFI

Note: This page contains sample records for the topic "ogilby mesa ca" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

carleton.ca/science FACULTY OF SCIENCE  

E-Print Network (OSTI)

carleton.ca/science FACULTY OF SCIENCE ANYTHING BUT TEXTBOOK #12;Areas of study Bachelor of Computer Science* Algorithms Biomedical Computing Computer Game Development Computer and Internet Security Mathematics Computer Science and Mathematics Concentrations in Computing Theory and Numerical Methods

Carleton University

222

AOCS Official Method Ca 3c-01  

Science Conference Proceedings (OSTI)

Detection of a Volatile Organic Contaminant by GC-MS AOCS Official Method Ca 3c-01 Methods Methods and Analyses Analytical Chemistry Methods Downloads Methods Downloads DEFINITION This method describes the dete

223

AOCS Official Method Ca 18d-01  

Science Conference Proceedings (OSTI)

Determination of Cadmium Content by Direct Graphite Furnace Atomic Absorption Spectrophotometry AOCS Official Method Ca 18d-01 Methods Methods and Analyses Analytical Chemistry Methods Downloads Methods Downloads DEFINITION...

224

AOCS Official Method Ca 3a-46  

Science Conference Proceedings (OSTI)

Insoluble Impurities AOCS Official Method Ca 3a-46 Methods Methods and Analyses Analytical Chemistry Methods Downloads Methods Downloads DEFINITION This method determines dirt, meal, and other foreign substance

225

AOCS Official Method Ca 14b-96  

Science Conference Proceedings (OSTI)

Quantification of Free Glycerin in Selected Glycerides and Fatty Acid Methyl Esters by HPLC with Laser Light-Scattering Detection AOCS Official Method Ca 14b-96 Methods Methods and Analyses Analytical Chemistry Methods Downloads Methods Downloads ...

226

AOCS Official Method Ca 9a-52  

Science Conference Proceedings (OSTI)

Refining Loss AOCS Official Method Ca 9a-52 Methods Methods and Analyses Analytical Chemistry Methods Downloads Methods Downloads DEFINITION This method determines the loss of free fatty acids, oil, and impurit

227

AOCS Official Method Ca 2e-84  

Science Conference Proceedings (OSTI)

Moisture Karl Fischer Reagent AOCS Official Method Ca 2e-84 Methods Methods and Analyses Analytical Chemistry Methods Downloads Methods Downloads DEFINITION This method determines the actual water content of fa

228

AOCS Official Method Ca 2b-38  

Science Conference Proceedings (OSTI)

Moisture and Volatile Matter Hot Plate Method AOCS Official Method Ca 2b-38 Methods Methods and Analyses Analytical Chemistry Methods Downloads Methods Downloads DEFINITION This method determines the moisture a

229

AOCS Official Method Ca 2d-25  

Science Conference Proceedings (OSTI)

Moisture and Volatile Matter Vacuum Oven Method AOCS Official Method Ca 2d-25 Methods Methods and Analyses Analytical Chemistry Methods Downloads Methods Downloads DEFINITION This method determines the moisture

230

AOCS Official Method Ca 20-99  

Science Conference Proceedings (OSTI)

Analysis for Phosphorus in Oil by Inductively Coupled Plasma Optical Emission Spectroscopy AOCS Official Method Ca 20-99 Methods Methods and Analyses Analytical Chemistry Methods Downloads Methods Downloads DEFINITION ...

231

AOCS Official Method Ca 17-01  

Science Conference Proceedings (OSTI)

Determination of Trace Elements (Calcium, Copper, Iron, Magnesium, Nickel, Silicon, Sodium, Lead, and Cadmium) in Oil by Inductively Coupled Plasma Optical Emission Spectroscopy AOCS Official Method Ca 17-01 Methods Methods and Analyses Analytical Chemi

232

AOCS Official Method Ca 18-79  

Science Conference Proceedings (OSTI)

Analysis for Chromium, Copper, Iron, Nickel, and Manganese in Triglyceride Oils by Atomic Absorption Spectrophotometry Using a Graphite Furnace AOCS Official Method Ca 18-79 Methods Methods and Analyses Analytical Chemistry Methods Downloads Methods D

233

AOCS Official Method Ca 3e-02  

Science Conference Proceedings (OSTI)

Determination of Visible Foots in Crude Fats and Oils AOCS Official Method Ca 3e-02 Methods Methods and Analyses Analytical Chemistry Methods Downloads Methods Downloads DEFINITION A homogenized test portion of

234

AOCS Official Method Ca 5c-87  

Science Conference Proceedings (OSTI)

Butyric Acid AOCS Official Method Ca 5c-87 Methods Methods and Analyses Analytical Chemistry Methods Downloads Methods Downloads DEFINITION The butyric acid content of milkfat, butterfat, or mixtures of fats co

235

AOCS Official Method Ca 9f-57  

Science Conference Proceedings (OSTI)

Neutral Oil and Loss AOCS Official Method Ca 9f-57 Methods Methods and Analyses Analytical Chemistry Methods Downloads Methods Downloads DEFINITION The total neutral oil of natural fats and oils consisting esse

236

AOCS Official Method Ca 2c-25  

Science Conference Proceedings (OSTI)

Moisture and Volatile Matter Air Oven Method AOCS Official Method Ca 2c-25 Methods Methods and Analyses Analytical Chemistry Methods Downloads Methods Downloads DEFINITION This method determines the moisture an

237

AOCS Official Method Ca 15b-87  

Science Conference Proceedings (OSTI)

Sodium and Calcium by Atomic Absorption Spectrophotometry AOCS Official Method Ca 15b-87 Methods Methods and Analyses Analytical Chemistry Methods Downloads Methods Downloads DEFINITION Sodium (sodium soap) and

238

AOCS Official Method Ca 15-75  

Science Conference Proceedings (OSTI)

Analyses for Chromium, Copper, Iron and Nickel in Vegetable Oils by Atomic Absorption Spectrophotometry AOCS Official Method Ca 15-75 Methods Methods and Analyses Analytical Chemistry Methods Downloads Methods Downloads DEFINI

239

AOCS Official Method Ca 11-55  

Science Conference Proceedings (OSTI)

Ash AOCS Official Method Ca 11-55 Methods Methods and Analyses Analytical Chemistry Methods Downloads Methods Downloads DEFINITION This method determines the residue remaining after incineration under the speci

240

AOCS Official Method Ca 12a-02  

Science Conference Proceedings (OSTI)

Colorimetric Determination of Phosphorus Content in Fats and Oils AOCS Official Method Ca 12a-02 Methods Methods and Analyses Analytical Chemistry Methods Downloads Methods Downloads DEFINITION The test portion

Note: This page contains sample records for the topic "ogilby mesa ca" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

AOCS Official Method Ca 3d-02  

Science Conference Proceedings (OSTI)

Determination of Sediment in Crude Fats and OilsCentrifuge Method AOCS Official Method Ca 3d-02 Methods Methods and Analyses Analytical Chemistry Methods Downloads Methods Downloads AOCS DEFINITION...

242

AOCS Official Method Ca 13-56  

Science Conference Proceedings (OSTI)

Total Gossypol in Oils AOCS Official Method Ca 13-56 Methods Methods and Analyses Analytical Chemistry Methods Downloads Methods Downloads DEFINITION Total gossypol defines gossypol and gossypol derivatives, bo

243

AOCS Official Method Ca 2f-93  

Science Conference Proceedings (OSTI)

Determination of Moisture and Volatile Matter in Fats and Oils Modified Method AOCS Official Method Ca 2f-93 Methods Methods and Analyses Lipid Library Methods Downloads Methods Downloads DEFINITION This method

244

AOCS Official Method Ca 4-25  

Science Conference Proceedings (OSTI)

Soluble Mineral Matter and Fatty Acids Combined as Mineral Soap AOCS Official Method Ca 4-25 Methods Methods and Analyses Analytical Chemistry Methods Downloads Methods Downloads DEFINITION This method determin

245

AOCS Official Method Ca 2a-45  

Science Conference Proceedings (OSTI)

Moisture Distillation Method AOCS Official Method Ca 2a-45 Methods Methods and Analyses Analytical Chemistry Methods Downloads Methods Downloads DEFINITION This method determines the moisture by distillation wi

246

AOCS Official Method Ca 6c-65  

Science Conference Proceedings (OSTI)

Hydrocarbons (Mineral Oil) AOCS Official Method Ca 6c-65 Methods Methods and Analyses Analytical Chemistry Methods Downloads Methods Downloads DEFINITION The sample in solvent is passed through a chromatographi

247

DOE - Office of Legacy Management -- Electro Circuits Inc - CA 08  

Office of Legacy Management (LM)

Electro Circuits Inc - CA 08 Electro Circuits Inc - CA 08 FUSRAP Considered Sites Site: Electro Circuits, Inc. (CA.08 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: 401 East Green Street , Pasadena , California CA.08-1 Evaluation Year: 1994 CA.08-2 Site Operations: Conducted ultrasonic tests on uranium ingots in the early 1950s. CA.08-3 CA.08-4 Site Disposition: Eliminated - Potential for contamination remote based on limited operations at the site CA.08-2 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium Metal CA.08-3 Radiological Survey(s): No Site Status: Eliminated from consideration under FUSRAP Also see Documents Related to Electro Circuits, Inc. CA.08-1 - AEC Memorandum; Parsegian to Musser; Subject: Transfer of

248

Potential long-term chemical effects of diesel fuel emissions on a mining environment: A preliminary assessment based on data from a deep subsurface tunnel at Rainer Mesa, Nevada test site  

SciTech Connect

The general purpose of the Yucca Mountain Site Characterization Project (YMSCP) Introduced Materials Task is to understand and predict potential long-term modifications of natural water chemistry related to the construction and operation of a radioactive waste repository that may significantly affect performance of the waste packages. The present study focuses on diesel exhaust. Although chemical information on diesel exhaust exists in the literature, it is either not explicit or incomplete, and none of it establishes mechanisms that might be used to predict long-term behavior. In addition, the data regarding microbially mediated chemical reactions are not well correlated with the abiotic chemical data. To obtain some of the required long-term information, we chose a historical analog: the U12n tunnel at Rainier Mesa, Nevada Test Site. This choice was based on the tunnel`s extended (30-year) history of diesel usage, its geological similarity to Yucca Mountain, and its availability. The sample site within the tunnel was chosen based on visual inspection and on information gathered from miners who were present during tunnel operations. The thick layer of dark deposit at that site was assumed to consist primarily of rock powder and diesel exhaust. Surface samples and core samples were collected with an intent to analyze the deposit and to measure potential migration of chemical components into the rock. X-ray diffraction (XRD), x-ray fluorescence (XRF), scanning electron microscopy (SEM) with energy dispersive spectra (EDS) analysis, secondary-ion mass spectrometry (SIMS), and Fourier transform infrared (FTIR) analysis were used to measure both spatial distribution and concentration for the wide variety of chemical components that were expected based on our literature survey.

Meike, A.; Bourcier, W.L.; Alai, M. [and others

1995-09-01T23:59:59.000Z

249

Category:San Francisco, CA | Open Energy Information  

Open Energy Info (EERE)

CA CA Jump to: navigation, search Go Back to PV Economics By Location Media in category "San Francisco, CA" The following 16 files are in this category, out of 16 total. SVFullServiceRestaurant San Francisco CA Southern California Edison Co.png SVFullServiceRestauran... 71 KB SVMidriseApartment San Francisco CA Southern California Edison Co.png SVMidriseApartment San... 65 KB SVPrimarySchool San Francisco CA Southern California Edison Co.png SVPrimarySchool San Fr... 70 KB SVQuickServiceRestaurant San Francisco CA Southern California Edison Co.png SVQuickServiceRestaura... 66 KB SVSecondarySchool San Francisco CA Southern California Edison Co.png SVSecondarySchool San ... 65 KB SVStandAloneRetail San Francisco CA Southern California Edison Co.png SVStandAloneRetail San...

250

DOE - Office of Legacy Management -- Stauffer-Temescal Co - CA 12  

Office of Legacy Management (LM)

Stauffer-Temescal Co - CA 12 Stauffer-Temescal Co - CA 12 FUSRAP Considered Sites Site: STAUFFER-TEMESCAL CO. (CA.12) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: Stauffer Metals Company Stauffer-Temescal Co. CA.12-1 CA.12-2 CA.12-3 Location: 1201 South 47th Street , Richmond , California CA.12-1 CA.12-4 Evaluation Year: 1990 CA.12-5 CA.12-6 Site Operations: Conducted tests to determine the capabilities of electron beam melting on the purification of uranium. CA.12-1 CA.12-3 CA.12-4 Site Disposition: Eliminated - Potential for contamination remote based on limited operations at the site CA.12-5 CA.12-6 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium CA.12-1 CA.12-3 Radiological Survey(s): Health and safety monitoring CA.12-7

251

www.arts.uOttawa.ca www.programmes.uOttawa.ca 5-281  

E-Print Network (OSTI)

www.arts.uOttawa.ca www.programmes.uOttawa.ca 5-281 Linguistique MINEURE Le programme de mineure baccalauréat avec spécialisation approfondie avec Mineure en linguistique ­ 30 crédits mineure ou un des Sciences de la santé. LIN1710 Introduction à la linguistique I : Des mots aux énoncés

Petriu, Emil M.

252

Metropolitan Water District of S CA | Open Energy Information  

Open Energy Info (EERE)

Water District of S CA Jump to: navigation, search Name Metropolitan Water District of S CA Place California Utility Id 12397 Utility Location Yes Ownership S NERC Location WECC...

253

Financial Statement: IG-FS-CA-06-04  

Energy.gov (U.S. Department of Energy (DOE))

Review of Actions to Correct Financial Control and Reporting Weaknesses; Audit Report No: OAS-FS/CA-06-04

254

Ca, Li and Mg Based Lightweight Intermetallics for Hydrogen Storage  

Science Conference Proceedings (OSTI)

... Nanoparticle Catalysts for Hydrogen Production from Methanol and Methane Ca, Li and Mg Based Lightweight Intermetallics for Hydrogen Storage.

255

Ca 2? permeation in cyclic nucleotide-gated channels  

E-Print Network (OSTI)

Cyclic nucleotide-gated (CNG) channels conduct Na ?, K ? and Ca2 ? currents under the control of cGMP and cAMP. Activation of CNG channels leads to depolarization of the membrane voltage and to a concomitant increase of the cytosolic Ca2 ? concentration. Several polypeptides were identified that constitute principal and modulatory subunits of CNG channels in both neurons and non-excitable cells, co-assembling to form a variety of heteromeric proteins with distinct biophysical properties. Since the contribution of each channel type to Ca2 ? signaling depends on its specific Ca2 ? conductance, it is necessary to analyze Ca2 ? permeation for each individual channel type. We have analyzed Ca2 ? permeation in all principal subunits of vertebrates and for a principal subunit from Drosophila melanogaster. We measured the fractional Ca2 ? current over the physiological range of Ca2 ? concentrations and found that Ca2 ? permeation is determined by subunit composition and modulated by membrane voltage and extracellular pH. Ca2 ? permeation is controlled by the Ca2?-binding affinity of the intrapore cation-binding site, which varies profoundly between members of the CNG channel family, and gives rise to a surprising diversity in the ability to generate Ca2 ? signals.

Claudia Dzeja; Volker Hagen; Stephan Frings

1999-01-01T23:59:59.000Z

256

www.uwo.ca/sci Discover yourself at Western  

E-Print Network (OSTI)

www.uwo.ca/sci Science at Western Discover yourself at Western including the Bachelor of Medical Sciences (BMSc) Program www.uwo.ca/bmscc #12;The University of Western Ontario Science at Western|2010|www.uwo.ca/sci Dear Student, Your interests and skills have guided you to seek higher education in the sciences. I am

Christensen, Dan

257

GRR/Elements/18-CA-c.16 to 18-CA-c.17 - Does the Developer or...  

Open Energy Info (EERE)

Public Appeal the Decision < GRR | Elements Jump to: navigation, search Edit 18-CA-b.16 to 18-CA-17 - Does the Developer or Public Appeal the Decision If the DTSC denies the...

258

GRR/Elements/18-CA-a.10 to 18-CA-a.11 - Does the Facility Discharge...  

Open Energy Info (EERE)

GRRElements18-CA-a.10 to 18-CA-a.11 - Does the Facility Discharge Waste Water or Drilling Waste to Land < GRR | Elements Jump to: navigation, search GRR-logo.png GEOTHERMAL...

259

GRR/Elements/14-CA-c.1 to 14-CA-c.2 - Is the Waste Water Associated...  

Open Energy Info (EERE)

Elements14-CA-c.1 to 14-CA-c.2 - Is the Waste Water Associated Only with Geothermal Operations < GRR | Elements Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY...

260

GRR/Elements/18-CA-a.13 to 18-CA-a.16 - Is the Waste Water Associated...  

Open Energy Info (EERE)

8-CA-a.13 to 18-CA-a.16 - Is the Waste Water Associated Only with Geothermal Operations < GRR | Elements Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP...

Note: This page contains sample records for the topic "ogilby mesa ca" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

GRR/Elements/18-CA-c.1 to 18-CA-c.3 - Does the Project Discharge...  

Open Energy Info (EERE)

icon Twitter icon GRRElements18-CA-c.1 to 18-CA-c.3 - Does the Project Discharge Waste to Land in a Diffused Manner or Affect Groundwater Quality < GRR | Elements Jump...

262

Recipient: County of San Bernadino,CA  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recipient: County of San Bernadino,CA Recipient: County of San Bernadino,CA Award #: EE 000 0903 ENERGY EFFICIENCY AND CONSERVATION BLOCK GRANTS NEPA COMPLIANCE FORM Activities Determination/ Categorical Exclusion Reviewer's Specific Instructions and Rationale (Restrictions and Allowable Activity) Greenhouse Gas Emissions Reduction Plan Environmental Impact Report (EECS) A9, All None - this NEPA determination is for the report only. Solar Electric System for Rancho Cucamonga County Office Building A9, All Waste Stream Clause Historic Preservation Clause Engineering Clause **This NEPA determination is limited to a roof-mounted system only. County Heating Ventilation and Air-Condition (HVAC) Retrofit Program B5.1 Waste Stream Clause Historic Preservation Clause Engineering clause Solar Electric System for High Desert Government Center

263

U.S. LNG Imports from Oman  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

264

U.S. LNG Imports from Australia  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

265

U.S. LNG Imports from Nigeria  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

266

U.S. LNG Imports from Yemen  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

267

U.S. LNG Imports from United Arab Emirates  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

268

U.S. LNG Imports from Algeria  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

269

U.S. Total Exports  

U.S. Energy Information Administration (EIA) Indexed Site

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

270

U.S. LNG Imports from Indonesia  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

271

U.S. LNG Imports from Brunei  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

272

U.S. LNG Imports from Egypt  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

273

U.S. LNG Imports from Canada  

U.S. Energy Information Administration (EIA) Indexed Site

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

274

U.S. LNG Imports from Trinidad/Tobago  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

275

U.S. LNG Imports from Peru  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

276

U.S. LNG Imports from Malaysia  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

277

U.S. Natural Gas Imports by Pipeline from Mexico  

U.S. Energy Information Administration (EIA) Indexed Site

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

278

Generalized Partitioned Quantum Cellular Automata and Quantization of Classical CA  

E-Print Network (OSTI)

In this paper, in order to investigate natural transformations from discrete CA to QCA, we introduce a new formulation of finite cyclic QCA and generalized notion of partitioned QCA. According to the formulations, we demonstrate the condition of local transition functions, which induce a global transition of well-formed QCA. Following the results, extending a natural correspondence of classical cells and quantum cells to the correspondence of classical CA and QCA, we have the condition of classical CA such that CA generated by quantumization of its cells is well-formed QCA. Finally we report some results of computer simulations of quantumization of classical CA.

Shuichi Inokuchi; Yoshihiro Mizoguchi

2003-12-11T23:59:59.000Z

279

Mesa, Arizona: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Arizona: Energy Resources Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.4222685°, -111.8226402° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.4222685,"lon":-111.8226402,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

280

www.arts.uOttawa.ca www.programmes.uOttawa.ca 5-279  

E-Print Network (OSTI)

www.arts.uOttawa.ca www.programmes.uOttawa.ca 5-279 Linguistique B.A. spécialisé avec majeure en linguistique ­ 120 crédits (4 ans) Total 1re année 2e année 3e année 4e année Total 120 crédits (40 cours) 30) LIN1710 Introduction à la linguistique I : Des mots aux énoncés LIN1720 Introduction à la linguistique

Petriu, Emil M.

Note: This page contains sample records for the topic "ogilby mesa ca" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

GRR/Elements/18-CA-a.5 to 18-CA-a.9 - Is the Hazardous Waste Discovered at  

Open Energy Info (EERE)

GRR/Elements/18-CA-a.5 to 18-CA-a.9 - Is the Hazardous Waste Discovered at GRR/Elements/18-CA-a.5 to 18-CA-a.9 - Is the Hazardous Waste Discovered at Site or will Site Produce Hazardous Waste < GRR‎ | Elements Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections 18-CA-a.5 to 18-CA-a.9 - Is the Hazardous Waste Discovered at Site or will Site Produce Hazardous Waste Delete Logic Chain No Parents \V/ GRR/Elements/18-CA-a.5 to 18-CA-a.9 - Is the Hazardous Waste Discovered at Site or will Site Produce Hazardous Waste (this page) \V/ No Dependents Under Development Add.png Add an Element Retrieved from "http://en.openei.org/w/index.php?title=GRR/Elements/18-CA-a.5_to_18-CA-a.9_-_Is_the_Hazardous_Waste_Discovered_at_Site_or_will_Site_Produce_Hazardous_Waste&oldid=487194"

282

The Mount Wilson Ca II K index  

E-Print Network (OSTI)

It is well established that both total and spectral solar irradiance are modulated by variable magnetic activity on the solar surface. However, there is still disagreement about the contribution of individual solar features for changes in the solar output, in particular over decadal time scales. Ionized Ca II K line spectroheliograms are one of the major resources for these long-term trend studies, mainly because such measurements have been available now for more than 100 years. In this paper we introduce a new Ca II K plage and active network index time series derived from the digitization of almost 40,000 photographic solar images that were obtained at the 60-foot solar tower, between 1915 and 1985, as a part of the monitoring program of the Mount Wilson Observatory. We describe here the procedure we applied to calibrate the images and the properties of our new defined index, which is strongly correlated to the average fractional area of the visible solar disk occupied by plages and active network. We show ...

Bertello, Luca; Boyden, John E; 10.1007/s11207-010-9570-z

2010-01-01T23:59:59.000Z

283

3-1 Computer and Network Services (CaNS)  

NLE Websites -- All DOE Office Websites (Extended Search)

CaNS User Resources CaNS User Resources Computer and Network Services (CaNS) The primary mission of the CaNS Group is to provide the infrastructure and computing services within the W.R. Wiley Environmental Sciences Laboratory (EMSL) for an advanced computing environment that enables staff, visitors, and collaborators to effectively use computer and network resources for their scientific research and business requirements. In supporting EMSL's growing business and research needs regarding information sciences, CaNS secures global information access to our facilities by providing online remote access to both computing resources and scientific equipment. A large portion of the CaNS Group's efforts involves providing customer support to EMSL researchers and offsite users. For

284

California Fuel Cell Partnership CaFCP | Open Energy Information  

Open Energy Info (EERE)

Partnership CaFCP Partnership CaFCP Jump to: navigation, search Name California Fuel Cell Partnership (CaFCP) Place West Sacramento, California Zip 95691 Sector Hydro, Hydrogen, Vehicles Product A collaboration of auto manufacturers, energy companies, fuel cell technology companies, and government agencies intended to demonstrate fuel cell vehicles under real driving conditions and to assist in the development of a hydrogen infrastructure. References California Fuel Cell Partnership (CaFCP)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. California Fuel Cell Partnership (CaFCP) is a company located in West Sacramento, California . References ↑ "California Fuel Cell Partnership (CaFCP)"

285

CA-TRIBE-PAIUTE-SHOSHONE INDIANS OF THE LONE PINE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Department of Energy Categorical Exclusion Determination Form Program or Field Office: Energy Efficiency and Conservation Block Grant Program Project Title CA-TRIBE-PAIUTE-SHOSHONE INDIANS OF THE LONE PINE COMMUNITY Location: Tribe CA-TRIBE-PAIUTE- SHOSHONE INDIANS OF THE LONE PINE COMMUNITY CA American Recovery and Reinvestment Act: Proposed Action or Project Description The Paiute-Shoshone Indians of the Lone Pine Community propose to prepare a feasibility study for

286

DOE - Office of Legacy Management -- Santa Susana Field Laboratory - CA 09  

NLE Websites -- All DOE Office Websites (Extended Search)

Santa Susana Field Laboratory - CA Santa Susana Field Laboratory - CA 09 FUSRAP Considered Sites Site: SANTA SUSANA FIELD LABORATORY (CA.09 ) Eliminated from consideration under FUSRAP - Remediation and certification complete Designated Name: Not Designated Alternate Name: Rockwell International, Energy Systems Group Atomics International CA.09-1 CA.09-2 Location: Chatsworth , California CA.09-3 Evaluation Year: 1985 CA.09-3 Site Operations: Conducted sodium reactor, irradiation and fuel burn up experimentation. CA.09-3 Site Disposition: Eliminated - Certification of remedial action completed CA.09-1 CA.09-3 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium CA.09-2 Radiological Survey(s): Yes CA.09-3 CA.09-4 Site Status: Eliminated from consideration under FUSRAP - Remediation and certification complete CA.09-5

287

Sandia National Laboratory (CA), Former Production Workers Screening...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

, Former Production Workers Screening Projects Sandia National Laboratory (CA), Former Production Workers Screening Projects Project Name: Worker Health Protection Program Covered...

288

*Department of Computer Science, Stanford University, Stanford, CA ...  

E-Print Network (OSTI)

*Department of Computer Science, Stanford University, Stanford, CA 94305. E- mail: manchoso@cs.stanford.edu. Department of Management Science and...

289

RECIPIENT:Dehlsen Associates STATE: CA PROJECT TITLE:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

STATE: CA PROJECT TITLE: Marine & Hydrokinetic Energy System Development of the Aquantis 2.5MW Ocean-Current Electricity Generation Device Funding Opportunity Announcement...

290

AMORPHOUS THIN FILMS CONSISTING OF TERNARY MgZnCa ...  

Science Conference Proceedings (OSTI)

Jul 20, 2012 ... AMORPHOUS THIN FILMS CONSISTING OF TERNARY MgZnCa-ALLOYS by K. Schlter, C. Zamponi, U. Schrmann, N. Hort, L. Kienle, K.U....

291

Beta decay of Neutron-Rich 53-56Ca  

E-Print Network (OSTI)

Beta-decay properties of neutron-rich Ca isotopes have been obtained. Half-life values were determined for the first time for 54Ca [86(7) ms], 55Ca [22(2) ms], and 56Ca [11(2) ms]. The half-life of 230(6) ms deduced for 53Ca is significantly longer than reported previously, where the decay chain 53K -> 53Ca -> 53Sc was considered. A delayed gamma ray with energy 247 keV as identified following beta decay of 54Ca, and is proposed to depopulate the first 1+ level in 54Sc. The beta-decay properties compare favorably with the results of shell model calculations completed in the full pf-space with the GXPF1 interaction. The half-lives of the neutron-rich Ca isotopes are also compared with gross beta-decay theory. The systematic trend of the neutron-rich Ca half-lives is consistent with the presence of a subshell gap at N=32.

P. F. Mantica; R. Broda; H. L. Crawford; A. Damaske; B. Fornal; A. A. Hecht; C. Hoffman; M. Horoi; N. Hoteling; R. V. F. Janssens; J. Pereira; J. S. Pinter; J. B. Stoker; S. L. Tabor; T. Sumikama; W. B. Walters; X. Wang; S. Zhu

2008-01-07T23:59:59.000Z

292

Beta decay of Neutron-Rich 53-56Ca  

E-Print Network (OSTI)

Beta-decay properties of neutron-rich Ca isotopes have been obtained. Half-life values were determined for the first time for 54Ca [86(7) ms], 55Ca [22(2) ms], and 56Ca [11(2) ms]. The half-life of 230(6) ms deduced for 53Ca is significantly longer than reported previously, where the decay chain 53K -> 53Ca -> 53Sc was considered. A delayed gamma ray with energy 247 keV as identified following beta decay of 54Ca, and is proposed to depopulate the first 1+ level in 54Sc. The beta-decay properties compare favorably with the results of shell model calculations completed in the full pf-space with the GXPF1 interaction. The half-lives of the neutron-rich Ca isotopes are also compared with gross beta-decay theory. The systematic trend of the neutron-rich Ca half-lives is consistent with the presence of a subshell gap at N=32.

Mantica, P F; Crawford, H L; Damaske, A; Fornal, B; Hecht, A A; Hoffman, C; Horoi, M; Hoteling, N; Janssens, R V F; Pereira, J; Pinter, J S; Stoker, J B; Tabor, S L; Sumikama, T; Walters, W B; Wang, X; Zhu, S

2008-01-01T23:59:59.000Z

293

GRR/Elements/18-CA-c.1 to 18-CA-c.3 - Does the Project Discharge Waste to  

Open Energy Info (EERE)

GRR/Elements/18-CA-c.1 to 18-CA-c.3 - Does the Project Discharge Waste to GRR/Elements/18-CA-c.1 to 18-CA-c.3 - Does the Project Discharge Waste to Land in a Diffused Manner or Affect Groundwater Quality < GRR‎ | Elements Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections 18-CA-c.1 to 18-CA-c.3 - Does the Project Discharge Waste to Land in a Diffused Manner or Affect Groundwater Quality If waste is discharged to land in a diffused manner, such as that it causes soil erosion or the discharge affects groundwater, the developer must file a Report of Waste Discharge application (Form 200) and the necessary supplemental information with the appropriate Regional Water Quality Control Board (RWQCB) at least 120 days before beginning to discharge waste. Logic Chain No Parents

294

081001 CA CO2 Storage Pilot  

NLE Websites -- All DOE Office Websites (Extended Search)

California California CO2 Storage Pilot Regional Carbon Sequestration Partnerships Initiative Review Meeting Pittsburgh, Pennsylvania October 7, 2008 John Henry Beyer, Ph.D. WESTCARB Program Manager, Geophysicist 510-486-7954, jhbeyer@lbl.gov Lawrence Berkeley National Laboratory Earth Sciences Division, MS 90-1116 Berkeley, CA 94720 2 Industry Partner: Shell Oil Company Committed to reducing global CO2 emissions Extensive technical expertise in: - Geologic evaluation - Well log analysis - Porosity and permeability evaluation - Geophysics - Deep well drilling - CO2 injection A welcome industry partner 3 - Bevilacqua-Knight, Inc. (DOE/PIER) - Lawrence Berkeley National Lab (PIER) - Sandia Technologies, LLC (DOE/PIER) - Terralog (DOE) Northern California CO2 Storage Pilot Contracting and Funding Flow

295

Microsoft Word - Cd-CA.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

The First Cadmium Enzyme - Carbonic Anhydrase 2 from the marine diatom Thalassiosira weissflogii Todd W. Lane 1 , Mak A. Saito 2 , Graham N. George 3 , Ingrid J. Pickering 3 , Roger C. Prince 4 and François M.M. Morel 5 1 Biosystems Research Department, Sandia National Labs, Livermore, CA 2 Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA 3 Department of Geological Sciences, University of Saskatchewan, Saskatoon, Canada 4 ExxonMobil Research and Engineering Company, Annandale, NJ 5 Department of Geosciences, Princeton University, Princeton, NJ Cadmium is known to be extremely toxic to mammals, and is generally viewed alongside mercury an environmental problem and toxic element that is not used by nature in any way. We have reported the characterization of a previously unknown

296

CA Mr. Wayne Klassing Klassing Hardbrake Company  

Office of Legacy Management (LM)

s/L / ' s/L / ' CA _ _.- Mr. Wayne Klassing Klassing Hardbrake Company P.O. Box 860 Joliet, Illinois 60434 E- 3 --- ,"".Y.- 1 , -4 v / 1 /89 ., ._ I.. Dear Mr. Klassing: The Department of Energy (DOE) has completed its review of the preliminary radiological data from the May 1989 survey of your facility in Joliet, Illinois, which is the site of the former W. E. Pratt Manufacturing Company. We are pleased to inform you that the survey has verified that the radiological condition of your facility is in compliance with applicable DOE Guidelines and that no remedial action or further investigations are necessary. We have directed our contractor, Oak Ridge Associated Universities, to send you a copy of the final report as soon as it is published. Once the final report is published, your site

297

County, CA. RECORD OF CATEGORICAL EXCLUSION DETERMINATION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

access road maintenance access road maintenance and replacement of down guy wlfes and guy anchors on structure16/5 on the existing (Army Tap) Gila-Senator Wash 69-kV T.L. in Imperial County, CA. RECORD OF CATEGORICAL EXCLUSION DETERMINATION A. Proposed Action: Western proposes to conduct maintenance on access roads leading to structure 16/5 of the Gila-Senator Wash 69kV Transmission Line. All work will be done along existing access roads. This will consist of blading and leveling out areas of the existing access road using dozers, bucket trucks, crew trucks and pickup trucks. A backhoe will be used during replacement of the anchor guy and down guys, This work is necessary to maintain the safety and reliability of the bulk electrical system. The attached map shows the project area situated within Section 5 Township 15

298

Low-energy electron scattering from Ca atoms and photodetachment of Ca{sup -}  

SciTech Connect

The B-spline R-matrix method is used to investigate electron scattering from neutral calcium and photodetachment of Ca{sup -} in the low-energy range from threshold to 4 eV. The multiconfiguration Hartree-Fock method with nonorthogonal orbital sets is employed for an accurate representation of the target wave functions. The close-coupling expansion includes 39 bound states of neutral calcium, covering all states from the ground state to 4s8s {sup 1}S. The present calculations yield good agreement with the few available experimental data for both elastic electron scattering and photodetachment of Ca{sup -}. The prominent resonance structure in the low-energy region is analyzed and discussed.

Zatsarinny, Oleg; Bartschat, Klaus; Gedeon, Sergey; Gedeon, Viktor; Lazur, Vladimir [Department of Physics and Astronomy, Drake University, Des Moines, Iowa 50311 (United States); Department of Theoretical Physics, Uzhgorod State University, Uzhgorod 88000 (Ukraine)

2006-11-15T23:59:59.000Z

299

DOE - Office of Legacy Management -- Dow Chemical Co - Walnut Creek - CA 02  

Office of Legacy Management (LM)

Dow Chemical Co - Walnut Creek - CA Dow Chemical Co - Walnut Creek - CA 02 FUSRAP Considered Sites Site: Dow Chemical Co. - Walnut Creek (CA.02 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: 2800 Mitchell Drive , Walnut Creek , California CA.02-1 Evaluation Year: 1987 CA.02-2 CA.02-3 Site Operations: From 1947 to 1957, conducted process studies and experimental investigations on different uranium and thorium-bearing ores; pilot-scale solvent extraction of uranium from phosphoric acid; liquid waste disposal studies CA.02-1 CA.02-4 CA.02-5 Site Disposition: Eliminated - Radiation levels below criteria CA.02-6 CA.02-7 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium, Thorium CA.02-1 CA.02-4

300

NPP Grassland: Cañas, Costa Rica  

NLE Websites -- All DOE Office Websites (Extended Search)

Cañas, Costa Rica, 1969-1970 Cañas, Costa Rica, 1969-1970 [PHOTOGRAPH] Photograph: Exclosure at the Cañas site (click on the photo to view a series of images from this site). Data Citation Cite this data set as follows: Daubenmire, J. 1997. NPP Grassland: Cañas, Costa Rica, 1969-1970. Data set. Available on-line [http://www.daac.ornl.gov] from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, U.S.A. Description Productivity of a derived savanna was determined at the Cañas study site in north-western Costa Rica. Monthly dynamics of above-ground plant matter (live biomass, total live + dead standing crop and estimated mortality) were monitored from July 1969 to June 1970. The Cañas study site (10.4 N 85.1 W) was situated 8 km northwest of the town of Cañas in Guanacaste Province, 1.8 km from the Cañas (La Pacifica)

Note: This page contains sample records for the topic "ogilby mesa ca" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Determination of Liquidus Temperatures from Viscosity for CaO ...  

Science Conference Proceedings (OSTI)

A Novel Vacuum Aluminothermic Reduction Lithium Process A Study on Production of ... An Estimation Model for the Viscosities of CaF2(-CaO)-Al2O3 Slags .... The Directional Preparation of Colored Steel Slag Glass-ceramic The Effect of...

302

Comparison of phosgene, chlorine, and hydrogen chloride as reagents for converting molten CaO. CaCl/sub 2/ to CaCl/sub 2/  

Science Conference Proceedings (OSTI)

One method at Los Alamos for preparing impure plutonium metal from the impure oxide is by batch reduction with calcium metal at 850/sup 0/C in a CaCl/sub 2/ solvent. The solvent salt from this reduction is currently discarded as low-level radioactivity waste only because it is saturated with the CaO byproduct. We have demonstrated a pyrochemical technique for converting the CaO to CaCl/sub 2/ thereby incorporating solvent recycling into the batch reduction process. We will discuss the effectiveness of HCl, Cl/sub 2/, and COCl/sub 2/ as chlorinating agents and recycling actual spent process solvent salts. 6 refs., 8 figs.

Fife, K.W.

1985-01-01T23:59:59.000Z

303

Microsoft Word - CaNS_2006c.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

CaNS Overview CaNS Overview Section 3-1-1 Computing and Networking Services The primary mission of Computing and Networking Services (CaNS) is to provide the infrastructure and computing services within the W.R. Wiley Environmental Molecular Sciences Laboratory (EMSL) for an advanced computing environment that enables staff, visitors, and collaborators to effectively use computer and network resources for their scientific and business requirements. In supporting growing business and research needs of EMSL in the area of information sciences, CaNS secures global information access to our facilities by providing online remote access to both computing resources and scientific equipment. A large portion of the efforts undertaken by CaNS staff members involves

304

Property:EIA/861/IsoCa | Open Energy Information  

Open Energy Info (EERE)

IsoCa IsoCa Jump to: navigation, search Property Name ISO_CA Property Type Boolean Description Indicates that the organization conducts operations in the CA ISO region [1] References ↑ "EIA Form EIA-861 Final Data File for 2010 - 861 Webfile Layout for 2010.doc" Pages using the property "EIA/861/IsoCa" Showing 25 pages using this property. (previous 25) (next 25) 3 3 Phases Energy Services + true + C City & County of San Francisco (Utility Company) + true + City of Alameda, California (Utility Company) + true + City of Anaheim, California (Utility Company) + true + City of Azusa, California (Utility Company) + true + City of Banning, California (Utility Company) + true + City of Biggs, California (Utility Company) + true + City of Colton, California (Utility Company) + true +

305

GRR/Elements/18-CA-c.13 to 18-CA-c.14 - Does the RWQCB Issue a Waste  

Open Energy Info (EERE)

to 18-CA-c.14 - Does the RWQCB Issue a Waste to 18-CA-c.14 - Does the RWQCB Issue a Waste Discharge Permit < GRR‎ | Elements Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections 18-CA-c.13 to 18-CA-c.14 - Does the RWQCB Issue a Waste Discharge Permit If the RWQCB adopts the WDRs, it issues the developer a WDR Permit. The WDR Permit is valid until the project no longer discharges or until revoked by the RWQCB. Logic Chain No Parents \V/ GRR/Elements/18-CA-c.13 to 18-CA-c.14 - Does the RWQCB Issue a Waste Discharge Permit (this page) \V/ No Dependents Under Development Add.png Add an Element Retrieved from "http://en.openei.org/w/index.php?title=GRR/Elements/18-CA-c.13_to_18-CA-c.14_-_Does_the_RWQCB_Issue_a_Waste_Discharge_Permit&oldid=480725

306

GRR/Elements/14-CA-c.8 to 14-CA-c.9 - Public Notice and Comment on Draft  

Open Energy Info (EERE)

GRR/Elements/14-CA-c.8 to 14-CA-c.9 - Public Notice and Comment on Draft GRR/Elements/14-CA-c.8 to 14-CA-c.9 - Public Notice and Comment on Draft Project Approval Letter and Public Hearing (If Significant Amount of Comments) < GRR‎ | Elements Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections 14-CA-c.8 to 14-CA-c.9 - Public Notice and Comment on Draft Project Approval Letter and Public Hearing (If Significant Amount of Comments) The State Board posts the Draft Project Approval Letter for public comment. If the State Board receives a significant amount of comments on the Draft Project Approval Letter, the State Board will hold a public hearing on the Draft Project Approval Letter. Logic Chain No Parents \V/ GRR/Elements/14-CA-c.8 to 14-CA-c.9 - Public Notice and Comment on Draft

307

High-Resolution Structure of the Photosynthetic Mn4Ca Catalyst from X-ray Spectroscopy  

E-Print Network (OSTI)

the Photosynthetic Mn 4 Ca Catalyst from X-ray Spectroscopystructure of the Mn 4 Ca catalyst at high-resolution whichthe structure of Mn 4 Ca catalyst as it cycles through the

Yano, Junko

2008-01-01T23:59:59.000Z

308

New Superheavy Element Isotopes: 242Pu(48Ca,5n)285114  

E-Print Network (OSTI)

New Superheavy Element Isotopes: Pu( 48 Ca,5n) 285 114 P. A.48 Ca irradiations of 242 Pu targets at a center-of-targetelement shell e?ects. The 242 Pu( 48 Ca,5n) 285 114 cross

Ellison, Paul A

2010-01-01T23:59:59.000Z

309

Thermodynamic properties and atomic structure of Ca-based liquid alloys  

E-Print Network (OSTI)

To identify the most promising positive electrodes for Ca-based liquid metal batteries, the thermodynamic properties of diverse Ca-based liquid alloys were investigated. The thermodynamic properties of Ca-Sb alloys were ...

Poizeau, Sophie (Sophie Marie Claire)

2013-01-01T23:59:59.000Z

310

CA Mr. Andrew Wallo, III, NE-23  

Office of Legacy Management (LM)

?9OQ, 95.5 L'E&nt Plaza, SW.. W.ashin@.m, D.C. 20024.2174, Tekphone: (202) 488AQOO ?9OQ, 95.5 L'E&nt Plaza, SW.. W.ashin@.m, D.C. 20024.2174, Tekphone: (202) 488AQOO 7117-03.B7.cdy.43 23 September 1987 CA Mr. Andrew Wallo, III, NE-23 Division of Facility & Site Decommissioning Projects U.S. Oepartment of Energy Germantown, Maryland 20545 Dear Mr. Wallo: ELIMINATION RECOMMENDATION -- COLLEGES AND UNIVERSITIES zh/ ! o-01 lM!tl5 ML)!o-05 PI 77!0> The attached elimination recoannendation was prepared in accordance . -1 rlL.0~ with your suggestion during our meeting on 22 September. The recommendation flD.o-02 includes 26 colleges and universities identified~in Enclosure 4 to Aerospace letter subject: Status of Actions - FUSRAP Site List, dated MO.07. 27 May 1987; three institutions (Tufts College, University of Virginia, UCIIOJ and the University of Washington) currently identified on the FUSRAP

311

CA-170-02-15 | Open Energy Information  

Open Energy Info (EERE)

CA-170-02-15 CA-170-02-15 Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: CA-170-02-15 EA at Long Valley Caldera Geothermal Area for Geothermal/Exploration Basalt Canyon Slim Hole and Geothermal Well Exploration Projects General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EA Applicant Mammoth Pacific Consultant EMA Associates Geothermal Area Long Valley Caldera Geothermal Area Project Location California Project Phase Geothermal/Exploration Techniques Drilling Methods, Exploration Drilling, Exploratory Well, Slim Holes Time Frame (days) NEPA Process Time 77 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office BLM Central California District Office

312

CA-017-05-051 | Open Energy Information  

Open Energy Info (EERE)

CA-017-05-051 CA-017-05-051 Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: CA-017-05-051 EA at Long Valley Caldera Geothermal Area for Geothermal/Well Field, Basalt Canyon Geothermal Pipeline Project Environmental Assessment and Draft Environmental Impact Report General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EA Applicant Mammoth Pacific Consultant Environmental Management Associates, Inc. Geothermal Area Long Valley Caldera Geothermal Area Project Location California Project Phase Geothermal/Well Field Techniques Comments California Clearinghouse Number 2003092101 Time Frame (days) Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office BLM Bishop Field Office

313

Nanoscale modulations in (KLa)(CaW)O-6 and (NaLa)(CaW)O-6  

Science Conference Proceedings (OSTI)

Complex nanoscale modulations are identified in two new A-site ordered perovskites, (KLa)(CaW)O{sub 6} and (NaLa)(CaW)O{sub 6}. In (KLa)(CaW)O{sub 6}, selected-area electron diffraction (SAED) and high-resolution transmission electron microscopy (HRTEM) show an incommensurate nanocheckerboard modulation with {approx}9.4 x 9.4 a{sub p} periodicity (a{sub p} {approx} 4 {angstrom} for the cubic perovskite aristotype). For (NaLa)(CaW)O{sub 6} a one-dimensional modulation is observed with a {approx}16(1 1 0)a{sub p} repeat; the orientation of the nanostripes is different from the stripes observed in other mixed A-site systems. Studies using high temperature x-ray diffraction suggest the formation of the complex modulations is associated with small deviations from the ideal 1:1:1:1 stoichiometry of the (A{sup +}La{sup 3+})(CaW)O{sub 6} phases. Z-contrast images acquired on an aberration-corrected microscope provide evidence for deviations from stoichiometry with a {approx}1:15 periodic arrangement of La{sub 4/3}(CaW)O{sub 6}:(NaLa)(CaW)O{sub 6} nano-phases.

Licurse, Mark [University of Pennsylvania; Borisevich, Albina Y [ORNL; Davies, Peter [University of Pennsylvania

2012-01-01T23:59:59.000Z

314

Determination of the forms of calcium present in coal chars by Ca K-edge XANES with Synchrotron Radiation  

E-Print Network (OSTI)

This work is concerned with the Ca transformations during the pyrolysis of Ca(OH)2 or CaCO3-added coals. Ca K-edge X-ray absorption near edge structure (XANES) spectroscopy was applied to determine the forms of Ca in chars prepared from the pyrolysis of Ca-added coal. Results showed that Ca(OH)2 and CaSO4 existed in both the Ca(OH)2-added chars and the CaCO3-added chars, while CaS and CaO only existed in the chars prepared from the Ca(OH)2-added coal. Moreover, it was found that carboxyl Ca was formed during pyrolysis for either the Ca(OH)2-added coal or the CaCO3-added coals.

Liu, Lijuan; Cui, Mingqi; Hu, Yongfeng; Zheng, Lei; Zhao, Yidong; Ma, Chenyan; Xi, Shibo; Yang, Dongliang; Guo, Zhiying; Wang, Jie

2012-01-01T23:59:59.000Z

315

GN470094 - Handling Chemicals at SNL/CA  

NLE Websites -- All DOE Office Websites (Extended Search)

094, Handling Chemicals at SNL/CA 094, Handling Chemicals at SNL/CA Sponsor: Michael W. Hazen, 4000 Revision Date: October 31, 2008 Replaces Document Dated: October 16, 2007 This document is no longer a CPR. This document implements the requirements of Corporate procedure ESH100.2.IH.25, Control Chemical Hazards at SNL/CA. IMPORTANT NOTICE: A printed copy of this document may not be the document currently in effect. The official version is the online version located on the Sandia Restricted Network (SRN). GN470094 - HANDLING CHEMICALS AT SNL/CA Subject Matter Expert: Al Buerer GN470094, Issue E Revision Date: October 31, 2008; Replaces Document Dated: October 16, 2007 Change History 1.0 Purpose, Scope, and Ownership 2.0 Responsibilities 3.0 Definitions 4.0 Training 5.0 Protective Equipment 6.0 Procurement of Chemicals

316

Misocyclone Characteristics along Florida Gust Fronts during CaPE  

Science Conference Proceedings (OSTI)

Multiple-Doppler radar and rawinsonde data are used to examine misocyclone characteristics along gust fronts observed during the Convection and Precipitation/Electrification (CaPE) project in Florida. The objective of this study is to investigate ...

Katja Friedrich; David E. Kingsmill; Carl R. Young

2005-11-01T23:59:59.000Z

317

Ohmic heated sheet for the Ca ion beam production  

SciTech Connect

The production of intense accelerated {sup 48}Ca ion beams is the key problem in the experiments on the synthesis of new superheavy nuclei. For this purpose in the FLNR (JINR), an electron cyclotron resonance ion source is used at the U-400 cyclotron. The combination of a micro oven with a hot tantalum sheet inside the discharge chamber allowed the production of the intense {sup 48}Ca{sup 5+} ion beam at the {sup 48}Ca consumption of about 0.5 mg/h. In this case, the tantalum sheet is heated by microwaves and plasma electrons. The microwave power of up to 500 W is required to heat the sheet to the temperature of about 500 deg. C. To decrease the required microwave power, a new sheet with a direct Ohmic heating was designed. The present paper describes the method, technique, and preliminary experimental results on the production of the Ca ion beam.

Efremov, A.; Bogomolov, S.; Kazarinov, N.; Kochagov, O.; Loginov, V. [Joint Institute for Nuclear Research, Dubna, Moscow 141980 (Russian Federation)

2008-02-15T23:59:59.000Z

318

DOE - Office of Legacy Management -- Arthur D Little Co - CA 01  

NLE Websites -- All DOE Office Websites (Extended Search)

Arthur D Little Co - CA 01 Arthur D Little Co - CA 01 FUSRAP Considered Sites Site: Arthur D Little Co (CA.01 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: Merrill Company CA.01-1 Location: San Francisco , California CA.01-2 Evaluation Year: 1986 CA.01-1 Site Operations: Performed research and development work on the modified char process for recovery of uranium from leach acid slurries; solvent extraction from carbonate leach solutions; and air oxidation of reduced uranium compounds CA.01-2 CA.01-3 Site Disposition: Eliminated - Facility torn down and removed CA.01-1 CA.01-3 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium, Vanadium CA.01-2 Radiological Survey(s): No Site Status: Eliminated from consideration under FUSRAP

319

DOE - Office of Legacy Management -- Mare Island Navy Yard - CA 0-01  

Office of Legacy Management (LM)

Mare Island Navy Yard - CA 0-01 Mare Island Navy Yard - CA 0-01 FUSRAP Considered Sites Site: MARE ISLAND NAVY YARD (CA.0-01 ) Eliminated from consideration under FUSRAP - Referred to DoD Designated Name: Not Designated Alternate Name: None Location: Mare Island , California CA.0-01-2 Evaluation Year: 1989 CA.0-01-1 Site Operations: Naval yard and shipping station. CA.0-01-2 Site Disposition: Eliminated - Referred to DOD CA.0-01-1 CA.0-01-2 Radioactive Materials Handled: None Indicated Primary Radioactive Materials Handled: None CA.0-01-2 Radiological Survey(s): None Indicated Site Status: Eliminated from consideration under FUSRAP - Referred to DoD CA.0-01-2 Also see Documents Related to MARE ISLAND NAVY YARD CA.0-01-1 - DOE Memorandum; Wallo to Carwell; Subject: List of

320

Phase equilibria in Ca-Co-O system  

Science Conference Proceedings (OSTI)

The phase equilibria in the ternary Ca-Co-O system have been studied by thermal analysis (DSC/DTA, TGA), X-ray diffraction of quenched samples and low temperature heat capacity measurements. These experimental data were combined with the data available in literature and used to assess the thermodynamic quantities of the involved phases. A particular focus was put on the misfit cobaltite Ca{sub 3}Co{sub 3.93}O{sub 9.36} as a potential candidate for high temperature thermoelectric conversion whose observed nonstoichiometry was described in terms of compound energy formalism. The phase diagram was mapped using FactSage program. - Graphical abstract: Heat capacity and decomposition behavior of misfit layer cobaltite, Ca{sub 3}Co{sub 3.93+x}O{sub 9+{delta}}. Highlights: Black-Right-Pointing-Pointer Thermodynamic properties of phases involved in the Ca-Co-O system were assessed. Black-Right-Pointing-Pointer The misfit layer cobaltite Ca{sub 3}Co{sub 3.93+x}O{sub 9+d} was described using compound energy formalism. Black-Right-Pointing-Pointer The phase diagram of the Ca-Co-O system was calculated.

Sedmidubsky, D., E-mail: sedmidub@vscht.cz [Institute of Chemical Technology, Technicka 5, 166 28 Prague (Czech Republic); Jakes, V.; Jankovsky, O.; Leitner, J.; Sofer, Z. [Institute of Chemical Technology, Technicka 5, 166 28 Prague (Czech Republic)] [Institute of Chemical Technology, Technicka 5, 166 28 Prague (Czech Republic); Hejtmanek, J. [Institute of Physics of ASCR, v.v.i, Na Slovance 2, 182 21 Prague (Czech Republic)] [Institute of Physics of ASCR, v.v.i, Na Slovance 2, 182 21 Prague (Czech Republic)

2012-10-15T23:59:59.000Z

Note: This page contains sample records for the topic "ogilby mesa ca" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

GRR/Elements/18-CA-a.5 to 18-CA-a.9 - Is the Hazardous Waste...  

Open Energy Info (EERE)

5 to 18-CA-a.9 - Is the Hazardous Waste Discovered at Site or will Site Produce Hazardous Waste < GRR | Elements Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY...

322

GRR/Elements/18-CA-c.13 to 18-CA-c.14 - Does the RWQCB Issue...  

Open Energy Info (EERE)

3 to 18-CA-c.14 - Does the RWQCB Issue a Waste Discharge Permit < GRR | Elements Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help...

323

GRR/Elements/14-CA-c.4 to 14-CA-c.5 - Review Application material and Data  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » GRR/Elements/14-CA-c.4 to 14-CA-c.5 - Review Application material and Data Request/Response < GRR‎ | Elements Jump to: navigation, search Edit 14-CA-c.4 to 14-CA-c.5 - Review Application material and Data Request/Response The DOGGR Regional and State Boards review the application and consult one another and local agencies, as necessary, to determine whether the application is complete. The DOGGR Regional and State Boards may require the applicant to submit additional data to demonstrate that the proposed injection will not endanger water quality. Retrieved from "http://en.openei.org/w/index.php?title=GRR/Elements/14-CA-c.4_to_14-CA-c.5_-_Review_Application_material_and_Data_Request/Response&oldid=539604"

324

Laser interactions with embedded Ca metal nanoparticles in single crystal CaF{sub 2}  

SciTech Connect

Single crystal calcium fluoride (CaF{sub 2}) is an important material for vacuum-ultraviolet optics. Nevertheless, prolonged exposure to energetic radiation can color the material by producing calcium metal nanoparticles. We compare the effectiveness of laser conditioning treatments at wavelengths ranging from the near infrared to the deep ultraviolet in removing this coloration. Treatments at 157, 532, and 1064 nm can significantly reduce the visible coloration due to nanoparticles. In contrast, irradiation at 248 nm has little effect at fluences below the damage threshold for the material employed in this work. We present evidence that the effect of laser irradiation on coloration is principally thermal and is largely confined to the first 50 ns after each laser pulse. We attribute the wavelength dependence of the bleaching process to the wavelength dependence associated with Mie absorption by metal nanoparticles. The consequences of these observations with regard to laser conditioning processes in bulk optical materials are discussed.

Cramer, L.P.; Schubert, B.E.; Petite, P.S.; Langford, S.C.; Dickinson, J.T. [Materials Science Program and Physics Department, Washington State University, Pullman, Washington 99164-2814 (United States)

2005-04-01T23:59:59.000Z

325

DOE - Office of Legacy Management -- Naval Ordnance Test Station - CA 06  

NLE Websites -- All DOE Office Websites (Extended Search)

Ordnance Test Station - CA 06 Ordnance Test Station - CA 06 FUSRAP Considered Sites Site: NAVAL ORDNANCE TEST STATION (CA.06) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: China Lake Naval Weapons Center Salt Wells Pilot Plant CA.06-1 Location: Inyokern , California CA.06-1 Evaluation Year: 1987 CA.06-1 Site Operations: Naval facility; experimental development work on shape charges and quality castings on a pilot plant scale. CA.06-1 Site Disposition: Eliminated - No indication that radioactive materials were handled at the site CA.06-1 Radioactive Materials Handled: None Indicated CA.06-1 Primary Radioactive Materials Handled: None CA.06-1 Radiological Survey(s): No Site Status: Eliminated from consideration under FUSRAP Also see

326

DOE - Office of Legacy Management -- Burris Park Field Station - CA 10  

NLE Websites -- All DOE Office Websites (Extended Search)

Burris Park Field Station - CA 10 Burris Park Field Station - CA 10 FUSRAP Considered Sites Site: Burris Park Field Station (CA.10 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Kingsburg , California CA.10-1 Evaluation Year: 1987 CA.10-2 Site Operations: Site owned and operated by Univ. of CA conducted experiments on decontamination of soils containing Strontium-90. CA.10-1 Site Disposition: Eliminated - Adequate remediation activities performed by the University of California CA.10-2 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Strontium CA.10-1 Radiological Survey(s): Yes CA.10-1 Site Status: Eliminated from consideration under FUSRAP Also see Documents Related to Burris Park Field Station

327

DOE - Office of Legacy Management -- Shannon Luminous Metals Co - CA 0-03  

NLE Websites -- All DOE Office Websites (Extended Search)

Shannon Luminous Metals Co - CA Shannon Luminous Metals Co - CA 0-03 FUSRAP Considered Sites Site: SHANNON LUMINOUS METALS CO. (CA.0-03 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: Shannon Luminous Metals CA.0-03-3 Location: 7356 Santa Monica Blvd. , Hollywood , California CA.0-03-1 Evaluation Year: 1987 CA.0-03-2 Site Operations: Research and development of uranium use in luminous paint pigments in the 1950s. CA.0-03-1 Site Disposition: Eliminated - No Authority - NRC licensed CA.0-03-3 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium CA.0-03-1 Radiological Survey(s): No Site Status: Eliminated from consideration under FUSRAP Also see Documents Related to SHANNON LUMINOUS METALS CO. CA.0-03-1 - AEC Letter; Burman to Alburger; Subject: AEC License

328

Influence of activity of CaSO4 ? 2H2O on hydrothermal formation of CaSO4 ? 0.5H2O whiskers  

Science Conference Proceedings (OSTI)

Theinfluence of the activity of calciumsulfate dihydrate (CaSO4 ? 2H2O) on the hydrothermal formation of CaSO4 ?0.5H2O whiskers was investigated in this paper, using commercial CaSO4 ? ...

S. C. Hou, L. Xiang

2013-01-01T23:59:59.000Z

329

McMaster University Libraries library.mcmaster.ca 905.525.9140 x22000 thoderef@mcmaster.ca Introduction to Searching SciFinder Web  

E-Print Network (OSTI)

Master University Libraries · library.mcmaster.ca · 905.525.9140 x22000 · thoderef@mcmaster.ca Enter terms in search. How to Search SciFinder From the Library Homepage: library.mcmaster.ca enter scifinderFinder Web Enter formula in search box and click Hill order is not required, but in case no results are found

Haykin, Simon

330

Nanoscale modulations in (KLa)(CaW)O{sub 6} and (NaLa)(CaW)O{sub 6}  

Science Conference Proceedings (OSTI)

Complex nanoscale modulations are identified in two new A-site ordered perovskites, (KLa)(CaW)O{sub 6} and (NaLa)(CaW)O{sub 6}. In (KLa)(CaW)O{sub 6}, selected-area electron diffraction (SAED) and high-resolution transmission electron microscopy (HRTEM) show an incommensurate nanocheckerboard modulation with {approx}9.4 Multiplication-Sign 9.4a{sub p} periodicity (a{sub p} Almost-Equal-To 4 A for the cubic perovskite aristotype). For (NaLa)(CaW)O{sub 6} a one-dimensional modulation is observed with a {approx}16(1 1 0)a{sub p} repeat; the Left-Pointing-Angle-Bracket 1 1 0 Right-Pointing-Angle-Bracket orientation of the nanostripes is different from the Left-Pointing-Angle-Bracket 1 0 0 Right-Pointing-Angle-Bracket stripes observed in other mixed A-site systems. Studies using high temperature x-ray diffraction suggest the formation of the complex modulations is associated with small deviations from the ideal 1:1:1:1 stoichiometry of the (A{sup +}La{sup 3+})(CaW)O{sub 6} phases. Z-contrast images acquired on an aberration-corrected microscope provide evidence for deviations from stoichiometry with a {approx}1:15 periodic arrangement of La{sub 4/3}(CaW)O{sub 6}:(NaLa)(CaW)O{sub 6} nano-phases. - Graphical abstract: Complex nanoscale modulations are identified in two new A-site ordered perovskites, (KLa)(CaW)O{sub 6} and (NaLa)(CaW)O{sub 6}. In (KLa)(CaW)O{sub 6}, selected-area electron diffraction and high-resolution transmission electron microscopy show a two-dimensional, nanocheckerboard modulation. For (NaLa)(CaW)O{sub 6} a one-dimensional modulation is observed; the Left-Pointing-Angle-Bracket 1 1 0 Right-Pointing-Angle-Bracket orientation of the nanostripes is different from the Left-Pointing-Angle-Bracket 1 0 0 Right-Pointing-Angle-Bracket stripes observed in other mixed A-site systems. Highlights: Black-Right-Pointing-Pointer Two new A-site ordered perovskites were synthesized, (KLa)(CaW)O{sub 6} and (NaLa)(CaW)O{sub 6}. Black-Right-Pointing-Pointer Unusual 1D and 2D nanoscale patterns were observed. Black-Right-Pointing-Pointer Tolerance factor shown to be not enough to predict the observed morphologies. Black-Right-Pointing-Pointer High temperature x-ray diffraction data suggests a loss of stoichiometry is related to the modulations. Black-Right-Pointing-Pointer Z-contrast imaging provides direct evidence for non-stoichiometry and a new model.

Licurse, Mark W., E-mail: mlicurse@seas.upenn.edu [Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA 19104 (United States); Borisevich, Albina Y., E-mail: albinab@ornl.gov [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Davies, Peter K., E-mail: davies@seas.upenn.edu [Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA 19104 (United States)

2012-07-15T23:59:59.000Z

331

BRIEFINGS ON PHYSICAL SECURITY OF ELECTRICITY SUBSTATIONS - SAN JOSE, CA  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

BRIEFINGS ON PHYSICAL SECURITY OF ELECTRICITY SUBSTATIONS - SAN BRIEFINGS ON PHYSICAL SECURITY OF ELECTRICITY SUBSTATIONS - SAN JOSE, CA BRIEFINGS ON PHYSICAL SECURITY OF ELECTRICITY SUBSTATIONS - SAN JOSE, CA Briefings on Physical Security of Electricity Substations The Department of Energy (DOE) and Department of Homeland Security (DHS), in coordination with the Federal Bureau of Investigation, the Federal Energy Regulatory Commission's Office of Energy Infrastructure Security, the Electricity Sector Information Sharing and Analysis Center (ES-ISAC), North American Electricity Reliability Corporation (NERC), and industry experts, will conduct a series of briefings across the country with electricity sector owners and operators, and local law enforcement on the physical security of electricity substations. The session for FEMA Region IX will be held in San Jose, CA and hosted by

332

FUPWG Meeting Agenda - San Francisco, CA | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Francisco, CA Francisco, CA FUPWG Meeting Agenda - San Francisco, CA October 7, 2013 - 3:15pm Addthis Energy Efficiency - The San Francisco Treat / FUPWG November 1-2, 2006 November 1-2, 2006 Hosted by Pacific Gas and Electric Company Tuesday, October 31, 2006 5:00 - 6:30 Steering Committee meeting at Puccini and Pinetti Restaurant 6:30 until... Networking dinner at Puccini and Pinetti Restaurant Hosted by: Pacific Gas and Electric logo FEMP logo Wednesday, November 1, 2006 7:45 - 8:30 Registration/Continental Breakfast 8:30 - 8:45 PG&E Welcome Beverly Alexander, Vice President, Customer Care, PG&E 8:45 - 9:00 FEMP Welcome David McAndrew, FEMP 9:00 - 10:00 Agency Update: U.S. Postal Service Energy Program Ray Levinson, USPS 10:00 - 10:30 Break - Networking 10:30 - 11:10 Washington Update

333

Emission Regulations Reduced Impact of Climate Change in CA  

NLE Websites -- All DOE Office Websites (Extended Search)

Emission Regulations Emission Regulations Reduced Impact of Climate Change in CA Emission Regulations Reduced Impact of Climate Change in CA Study shows clean diesel programs slashed black carbon, a powerful short-term contributor to global warming June 13, 2013 | Tags: Climate Research, Hopper Jon Weiner 510-486-4014 jrweiner@lbl.gov CA-BC-graphic.jpg Sacramento - Reductions in emissions of black carbon since the late 1980s, mostly from diesel engines as a result of air quality programs, have resulted in a measurable reduction of concentrations of global warming pollutants in the atmosphere, according to a first-of-its-kind study examining the impact of black carbon on California's climate. The study, funded by the California Air Resources Board and led by Dr. Veerabhadran Ramanathan of the Scripps Institution of Oceanography at the

334

FUPWG Meeting Agenda - San Diego, CA | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Diego, CA Diego, CA FUPWG Meeting Agenda - San Diego, CA October 7, 2013 - 2:59pm Addthis FUPWG Fall 2007 - San Diego, California: Clean and Green November 28 - 29, 2007 Hosted by San Diego Gas & Electric Tuesday, November 27, 2007 8:00 - 5:00 Utility Energy Service Contract (UESC) 5:30 pm Steering Committee Meeting - Pacific Ballroom 6:30 pm Networking Dinner - Elephant Castle Restaurant and Pub Hosted by: San Diego Gas and Electric - A Sempra Energy utility logo FEMP logo Wednesday, November 28, 2007 7:45 - 8:30 Registration/Continental Breakfast 8:30 - 8:45 San Diego Gas & Electric Welcome Rick Morrow 8:45 - 9:15 FEMP Welcome and Attendee Introductions David McAndrew, FEMP 9:15 - 9:45 Washington Update David McAndrew, FEMP FEMP Updates Legislative Update Strategic Action Plan Update

335

Dynamic polarizabilities for the low lying states of Ca+  

E-Print Network (OSTI)

The dynamic polarizabilities of the 4s, 3d and 4p states of Ca$^+$, are calculated using a relativistic structure model. The wavelengths at which the Stark shifts between different pairs of transitions are zero are computed. Experimental determination of the magic wavelengths can be used to estimate the ratio of the $f_{3d_{J}\\to 4p_{J'}}$ and $f_{4s_{1/2} \\to 4p_{J'}}$ oscillator strengths. This could prove valuable in developing better atomic structure models and in particular lead to improved values of the polarizabilities needed in the evaluation of the blackbody radiation shift of the Ca$^+$ ion.

Tang, Yong-Bo; Shi, Ting-Yun; Mitroy, J

2013-01-01T23:59:59.000Z

336

DOE - Office of Legacy Management -- North American Aviation Inc - CA 07  

Office of Legacy Management (LM)

North American Aviation Inc - CA 07 North American Aviation Inc - CA 07 FUSRAP Considered Sites Site: NORTH AMERICAN AVIATION, INC. (CA.07) Eliminated from consideration under FUSRAP Designated Name: None Designated Alternate Name: None Location: Downey , California CA.07-1 Evaluation Year: 1987 CA.07-1 Site Operations: Research and development on a bench scale using a small reactor; work done during the early 1950s. CA.07-1 Site Disposition: Eliminated - Potential for contamination remote based on limited scope of operations CA.07-2 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium CA.07-3 Radiological Survey(s): No Site Status: Eliminated from consideration under FUSRAP Also see Documents Related to NORTH AMERICAN AVIATION, INC. CA.07-1 - Memorandum/Checklist; Young to the File; Subject:

337

DOE - Office of Legacy Management -- General Electric Co - San Jose - CA 13  

Office of Legacy Management (LM)

General Electric Co - San Jose - CA General Electric Co - San Jose - CA 13 FUSRAP Considered Sites Site: General Electric Co. - San Jose (CA.13 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: San Jose , California CA.13-1 Evaluation Year: 1995 CA.13-2 Site Operations: Fabricated uranium metal. CA.13-1 Site Disposition: Eliminated - No Authority - NRC licensed CA.13-2 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium CA.13-1 Radiological Survey(s): No Site Status: Eliminated from consideration under FUSRAP Also see Documents Related to General Electric Co. - San Jose CA.13-1 - General Electric Letter; MacCready to Travis; Subject: Extrusion of Uranium Dioxide for General Electric - APED; Circa 1957

338

Multi-channel CSMA/CA based smart utility networks  

Science Conference Proceedings (OSTI)

IEEE 802.15.4g is a recent standard for Smart Utility Networks (SUN). SUN is a house-to-house level subordinate network in the Smart Grid network. IEEE 802.15.4g uses a Carrier Sense Multiple Access/Collision Avoidance (CSMA/CA) algorithm for channel ...

Jiyoung Cha; Hu Jin; Dan Keun Sung

2011-08-01T23:59:59.000Z

339

California Climate Change Center www.climatechange.ca.gov/research  

E-Print Network (OSTI)

California Climate Change Center www.climatechange.ca.gov/research California Energy Commission Public Interest Energy Research Climate Change Program #12;The California Climate Change Center and international studies, generating new information that can be used to shape California's climate change policy

340

California Energy Commission www.energy.ca.gov  

E-Print Network (OSTI)

California Energy Commission www.energy.ca.gov TECHNICAL ASSISTANCE TO PUBLIC AGENCIES Request Program o Energy Partnership Technical Assistance Program o Energy Conservation Assistance Act (ECAA) Loan Program · RFQ Overview · How to Respond to this RFQ · Questions and Answers California Energy Commission

Note: This page contains sample records for the topic "ogilby mesa ca" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Cold chemistry with electronically excited Ca{sup +} Coulomb crystals  

SciTech Connect

Rate constants for chemical reactions of laser-cooled Ca{sup +} ions and neutral polar molecules (CH{sub 3}F, CH{sub 2}F{sub 2}, or CH{sub 3}Cl) have been measured at low collision energies (/k{sub B}=5-243 K). Low kinetic energy ensembles of {sup 40}Ca{sup +} ions are prepared through Doppler laser cooling to form ''Coulomb crystals'' in which the ions form a latticelike arrangement in the trapping potential. The trapped ions react with translationally cold beams of polar molecules produced by a quadrupole guide velocity selector or with room-temperature gas admitted into the vacuum chamber. Imaging of the Ca{sup +} ion fluorescence allows the progress of the reaction to be monitored. Product ions are sympathetically cooled into the crystal structure and are unambiguously identified through resonance-excitation mass spectrometry using just two trapped ions. Variations of the laser-cooling parameters are shown to result in different steady-state populations of the electronic states of {sup 40}Ca{sup +} involved in the laser-cooling cycle, and these are modeled by solving the optical Bloch equations for the eight-level system. Systematic variation of the steady-state populations over a series of reaction experiments allows the extraction of bimolecular rate constants for reactions of the ground state ({sup 2}S{sub 1/2}) and the combined excited states ({sup 2}D{sub 3/2} and {sup 2}P{sub 1/2}) of {sup 40}Ca{sup +}. These results are analyzed in the context of capture theories and ab initio electronic structure calculations of the reaction profiles. In each case, suppression of the ground state rate constant is explained by the presence of a submerged or real barrier on the ground state potential surface. Rate constants for the excited states are generally found to be in line with capture theories.

Gingell, Alexander D.; Bell, Martin T.; Oldham, James M.; Softley, Timothy P. [Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford OX1 3TA (United Kingdom); Harvey, Jeremy N. [Department of Chemistry, University of Bristol, Bristol BS8 1TS (United Kingdom)

2010-11-21T23:59:59.000Z

342

Library Homepage http://library.queensu.ca Connect from OffCampus http://proxy.queensu.ca/  

E-Print Network (OSTI)

http://library.queensu.ca/research/databases/record/2990 Journals@Ovid Full Text http for classes and assignments; · format bibliographies automatically in any of the major bibliographic styles to add data to your RefWorks database: 1. Export citations from indexes and databases. 2. Import text

Graham, Nick

343

GRR/Elements/18-CA-b.16 - Does the Developer or Public Appeal...  

Open Energy Info (EERE)

Public Appeal the Decision < GRR | Elements Jump to: navigation, search Edit 18-CA-b.16 to 18-CA-b.19 - Does the Developer or Public Appeal the Decision If the DTSC denies the...

344

GRR/Section 3-CA-a - State Land Leasing Process and Land Access...  

Open Energy Info (EERE)

3-CA-a - State Land Leasing Process and Land Access (ROWs) < GRR Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleGRRSection3-CA-a-StateLand...

345

GRR/Section 1-CA-a - State Land Use Planning | Open Energy Information  

Open Energy Info (EERE)

Section 1-CA-a - State Land Use Planning < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 1-CA-a -...

346

distribution mod 1 comp.graphics.opengl loki@cecm.sfu.ca plouffe ...  

E-Print Network (OSTI)

distribution mod 1 comp.graphics.opengl loki@cecm.sfu.ca plouffe@cecm.sfu.ca glPixelZoom Graphic File Format page Guide to Available Mathematical...

347

Investment Casting of Titanium Alloys with CaO Crucible and ...  

Science Conference Proceedings (OSTI)

Feb 1, 2001 ... Investment Casting of Titanium Alloys with CaO Crucible and CaZrO3 Mold by S. K. Kim, T. K. Kim, M. G. Kim, T. W. Hong and J. Y. Kim...

348

The Continuing Debate about Safety in NumbersData from Oakland, CA  

E-Print Network (OSTI)

from Oakland, CA Judy Geyer, Noah Raford and David Ragland,94709 jgeyer@berkeley.edu Noah Raford Traffic Safety Center

Geyer, Judy; Raford, Noah; Ragland, David; Pham, Trinh

2006-01-01T23:59:59.000Z

349

Rapid Traffic Information Dissemination Using Named Data Los Angeles, CA, USA  

E-Print Network (OSTI)

@cs.ucla.edu Alexander Afanasyev UCLA Los Angeles, CA, USA afanasev@cs.ucla.edu Romain Kuntz Toyota InfoTechnology Center Mountain View, CA, USA rkuntz@us.toyota-itc.com Rama Vuyyuru Toyota InfoTechnology Center Mountain View, CA, USA rama@us.toyota-itc.com Ryuji Wakikawa Toyota InfoTechnology Center Mountain View, CA, USA ryuji@us.toyota

California at Los Angeles, University of

350

Steam catalysis in CaO carbonation under low steam partial pressure  

Science Conference Proceedings (OSTI)

CaO was widely used to capture CO{sub 2} in direct hydrogen production process, where steam always existed simultaneously. The effect of steam on CaO carbonation performance under low steam partial pressure was investigated using a pressurized thermogravimetric apparatus. The experimental results revealed that steam improved CaO carbonation performance significantly no matter whether Ca(OH){sub 2} was produced or not. At 823 K and 0.5 MPa of steam partial pressure, effect of steam on CaO carbonation performance could not be attributed mainly to production of Ca(OH){sub 2} because the hydration rate of CaO was very slow. The main reason was steam catalysis in CaO carbonation. Enhancement of steam on CaO carbonation performance without Ca(OH){sub 2} production could not be attributed to improvement of steam on the physical property, but to catalytic effect of steam. Effects of CaO precursors, CO{sub 2} partial pressure, steam partial pressure, and temperature with steam addition on CaO carbonation performance were also investigated.

Yang, S.J.; Xiao, Y.H. [Chinese Academy of Science, Beijing (China)

2008-06-15T23:59:59.000Z

351

Preparation and electrical properties of xCaRuO{sub 3}/(1 - x)CaTiO{sub 3} perovskite composites  

SciTech Connect

CaRuO{sub 3}-CaTiO{sub 3} ceramic composites were prepared by sintering for short times for potential applications in the areas of electronic ceramics. Scanning electron microscopy and energy dispersive X-ray analysis showed two separate phases, CaRuO{sub 3} and CaTiO{sub 3} in the composite. Conductivity data, measured by the four-probe method, showed that the composites have high electrical conductivity when x {>=} 0.19 in xCaRuO{sub 3}-(1 - x)CaTiO{sub 3} composites. Furthermore, the nanoparticle of calcium ruthenate prepared by reverse micelle synthesis was used to be conductive agent for the composite. The result shows that the use of nano-sized calcium ruthenate enabled higher electrical conductivity to be maintained down to x = 0.09.

Jiao, Shuqiang, E-mail: sj332@cam.ac.uk [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom); Kumar, Krishnankutty-Nair P.; Kilby, Kamal Tripuraneni [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom); Fray, Derek J., E-mail: djf25@cam.ac.uk [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom)

2009-08-05T23:59:59.000Z

352

File:INL-geothermal-ca.pdf | Open Energy Information  

Open Energy Info (EERE)

ca.pdf ca.pdf Jump to: navigation, search File File history File usage California Geothermal Resources Size of this preview: 439 × 599 pixels. Other resolution: 439 × 600 pixels. Full resolution ‎(4,277 × 5,839 pixels, file size: 1.4 MB, MIME type: application/pdf) Description California Geothermal Resources Sources Idaho National Laboratory Authors Patrick Laney; Julie Brizzee Related Technologies Geothermal Creation Date 2003-11-01 Extent State Countries United States UN Region Northern America States California File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 12:22, 16 December 2010 Thumbnail for version as of 12:22, 16 December 2010 4,277 × 5,839 (1.4 MB) MapBot (Talk | contribs) Automated upload from NREL's "mapsearch" data

353

CA-TRIBE-TUOLUMNE BAND OF MEWUK INDIANS  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TRIBE-TUOLUMNE BAND OF MEWUK INDIANS TRIBE-TUOLUMNE BAND OF MEWUK INDIANS Location: Tribe CA-TRIBE- TUOLUMNE BAND OF MEWUK INDIANS CA American Recovery and Reinvestment Act: Proposed Action or Project Description The Tuolumne Band of MeWuk Indians proposes to reduce their fossil fuel emissions through increased energy efficiency and the implementation of renewable energy where applicable. Currently, the Tribe has contracted with the Renewable and Appropriate Energy Laboratory (RAEL) of the University of California, Berkeley, to identify the most cost-effective opportunities for increased energy efficiency and renewable energy technologies. The Tribe proposes to use a portion of the funding to allocate funds to RAEL for technical consultant services to assist the Tribe in identifying, prioritizing, and coordinating site specific

354

Ca(OH)[sub 2]-treated ceramic microsphere  

DOE Patents (OSTI)

Geothermal wells with lost circulation problems are treated with a lightweight, high temperature (i.e. 350 C) cement slurry which incorporates pressure resistant hollow microspheres into the slurry wherein the spheres have been pretreated with an alkali compound such as Ca(OH)[sub 2] for up to 20 hours and at 100--300 C. Preferably, the alkali solution is a saturated aqueous solution and the treatment is for 10 hours. 2 figs.

Sugama, Toshifumi.

1990-06-26T23:59:59.000Z

355

Ca(OH)[sub 2]-treated ceramic microsphere  

DOE Patents (OSTI)

Geothermal wells with lost circulation problems are treated with a lightweight, high temperature (i.e. 350 C) cement slurry which incorporates pressure resistant hollow microspheres into the slurry wherein the spheres have been pretreated with an alkali compound such as Ca(OH)[sub 2] for up to 20 hours and at 100--300 C. Preferably, the alkali solution is a saturated aqueous solution and the treatment is for 10 hours. 2 figs.

Sugama, Toshifumi.

1989-04-18T23:59:59.000Z

356

Ca(OH).sub.2 -treated ceramic microsphere  

DOE Patents (OSTI)

Geothermal wells with lost circulation problems are treated with a lightweight, high temperature (i.e. 350.degree. C.) cement slurry which incorporates pressure resistant hollow microspheres into the slurry wherein the spheres have been pretreated with an alkali compound such as Ca(OH).sub.2 for up to 20 hours and at 100.degree.-300.degree. C. Preferably, the alkali solution is a saturated aqueous solution and the treatment is for 10 hours.

Sugama, Toshifumi (Mastic Beach, NY)

1989-01-01T23:59:59.000Z

357

Ca(OH).sub.2 -treated ceramic microsphere  

DOE Patents (OSTI)

Geothermal wells with lost circulation problems are treated with a lightweight, high temperature (i.e. 350.degree. C.) cement slurry which incorporates pressure resistant hollow microspheres into the slurry wherein the spheres have been pretreated with an alkali compound such as Ca(OH).sub.2 for up to 20 hours and at 100.degree.-300.degree. C. Preferably, the alkali solution is a saturated aqueous solution and the treatment is for 10 hours.

Sugama, Toshifumi (Mastic Beach, NY)

1990-01-01T23:59:59.000Z

358

Concentration of Ca in blood of amateur runners using NAA  

Science Conference Proceedings (OSTI)

In this study the Ca levels were determined in amateur runners blood at LABEX (Laboratorio de Bioquimica do Exercicio - UNICAMP, Brazil), using Neutron Activation Analyses (NAA) technique. The range established at rest (162 - 410 mgL{sup -1}) when compared with control group (51 - 439 mgL{sup -1}) suggests that there is a dependency of these limits in the function of the adopted physical training.

Kovacs, L.; Zamboni, C. B.; Metairon, S. [Instituto de Pesquisas Energeticas e Nucleares (IPEN / CNEN - SP) - Centro do Reator de Pesquisas Av. Professor Lineu Prestes, 2242 - 05508-000 Sao Paulo, SP (Brazil); Nunes, L. A. S.; Lourenco, T. F.; Macedo, D. V. [Universidade Estadual de Campinas - UNICAMP - Laboratorio de Bioquimica do Exercicio - LABEX Cidade Universitaria 13083-970 - Campinas, SP Brazil - Caixa-Postal: 6109 (Brazil)

2013-05-06T23:59:59.000Z

359

Measurement of neutron capture on $^{48}$Ca at thermal and thermonuclear energies  

E-Print Network (OSTI)

At the Karlsruhe pulsed 3.75\\,MV Van de Graaff accelerator the thermonuclear $^{48}$Ca(n,$\\gamma$)$^{49}$Ca(8.72\\,min) cross section was measured by the fast cyclic activation technique via the 3084.5\\,keV $\\gamma$-ray line of the $^{49}$Ca-decay. Samples of CaCO$_3$ enriched in $^{48}$Ca by 77.87\\,\\% were irradiated between two gold foils which served as capture standards. The capture cross-section was measured at the neutron energies 25, 151, 176, and 218\\,keV, respectively. Additionally, the thermal capture cross-section was measured at the reactor BR1 in Mol, Belgium, via the prompt and decay $\\gamma$-ray lines using the same target material. The $^{48}$Ca(n,$\\gamma$)$^{49}$Ca cross-section in the thermonuclear and thermal energy range has been calculated using the direct-capture model combined with folding potentials. The potential strengths are adjusted to the scattering length and the binding energies of the final states in $^{49}$Ca. The small coherent elastic cross section of $^{48}$Ca+n is explained through the nuclear Ramsauer effect. Spectroscopic factors of $^{49}$Ca have been extracted from the thermal capture cross-section with better accuracy than from a recent (d,p) experiment. Within the uncertainties both results are in agreement. The non-resonant thermal and thermonuclear experimental data for this reaction can be reproduced using the direct-capture model. A possible interference with a resonant contribution is discussed. The neutron spectroscopic factors of $^{49}$Ca determined from shell-model calculations are compared with the values extracted from the experimental cross sections for $^{48}$Ca(d,p)$^{49}$Ca and $^{48}$Ca(n,$\\gamma$)$^{49}$Ca.

H. Beer; C. Coceva; P. V. Sedyshev; Yu. P. Popov; H. Herndl; R. Hofinger; P. Mohr; H. Oberhummer

1996-08-07T23:59:59.000Z

360

Physicochemical basis of the Na-K-Ca geothermometer  

DOE Green Energy (OSTI)

Regular changes in solution composition were observed experimentally during granite reaction with dilute NaCl (+CaCl/sub 2/) solutions; these changes closely follow the empirical Na-K-Ca geothermometer relationship. Initial minerals forming the granite (quartz, plagioclase, K-feldspar, and biotite) were etched by the reactions. Alteration phases formed include calcium-zeolite at <300/sup 0/C, feldspar overgrowths at >300/sup 0/C, and minor amounts of clay and calcsilicate at all temperatures. Amphibole overgrowths were also found at 340/sup 0/C. Quartz is near saturation in all experiments, and preliminary calculations of aqueous species distributions and mineral affinities indicate that the solutions achieve super-saturation with feldspars as the temperature increase. A consistent variation attributable to pH differences was observed in the empirical geothermometer relationship for all experimental data. At 340/sup 0/C, the experimental solutions appear to have deviated slightly from the empirical Na-K-Ca relationship. Such deviations may also be found in natural systems that attain such temperatures.

Janecky, D.R.; Charles, R.W.; Bayhurst, G.K.; Benjamin, T.M.

1986-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "ogilby mesa ca" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Evidence of strong-coupling superconductivity in CaC{sub 6} from tunneling spectroscopy.  

Science Conference Proceedings (OSTI)

Tunneling in CaC{sub 6} crystals reproducibly reveals superconducting gaps {Delta} of 2.3 {+-} 0.2 meV that are {approx}40% larger than reported earlier. In an isotropic s-wave scenario, that puts CaC{sub 6} into the class of very strongly coupled superconductors, since 2{Delta}/kT{sub c} {approx} 4.6, implying that soft Ca phonons are primarily involved in the superconductivity. This conclusion explains the relatively large Ca isotope effect found recently for CaC{sub 6}, but it could also signal a strong anisotropy in the electron-phonon interaction.

Kurter, C.; Ozyuzer, L.; Mazur, D.; Zasadzinski, J. F.; Rosenmann, D.; Claus, H.; Hinks, D. G.; Gray, K. E.; Materials Science Division; Illinois Inst. Tech.; Izmir Inst. Tech.

2007-01-01T23:59:59.000Z

362

DOEEA-(0962) BLM EA # CA-016-93-140 BLM R/W S E W NO. CA 31330  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(0962) (0962) BLM EA # CA-016-93-140 BLM R/W S E W NO. CA 31330 JOINT ENVIRONMENTAL ASSESSMENT FOR THE CONSTRUCTION AND ROUTINE OPERATION OF A 12-KILOVOLT (KV) OVERHEAD POWERLINE RIGHT-OF-WAY, AND FORMAL AUTHORIZATION FOR A 10-INCH AND 8-INCH FRESH WATER PIPELINE RIGHT-OF-WAY, NAVAL PETROLEUM RESERVE NO. 1, KERN COUNTY, CALFORNIA OCTOBER 1994 U.S. DEPARTMENT OF ENERGY NAVAL PETROLEUM RESERVES IN CALIFORNIA U. S. DEPARTMENT OF THE INTERIOR BUREAU OF LAND MANAGEMENT CALIENTE RESOURCE AREA . DISCLAIMER This report was .prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for

363

V-006: CA ARCserve Backup Flaws Let Remote Users Execute Arbitrary Code and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6: CA ARCserve Backup Flaws Let Remote Users Execute Arbitrary 6: CA ARCserve Backup Flaws Let Remote Users Execute Arbitrary Code and Deny Service V-006: CA ARCserve Backup Flaws Let Remote Users Execute Arbitrary Code and Deny Service October 19, 2012 - 6:00am Addthis PROBLEM: CA ARCserve Backup Flaws Let Remote Users Execute Arbitrary Code and Deny Service PLATFORM: CA ARCserve Backup for Windows r12.5, r15, r16 ABSTRACT: Two vulnerabilities were reported in CA ARCserve Backup. A remote user can execute arbitrary code on the target system. A remote user can cause denial of service conditions. REFERENCE LINKS: SecurityTracker Alert ID: 1027683 CA Technologies Support CVE-2012-2971 CVE-2012-2972 IMPACT ASSESSMENT: High DISCUSSION: A remote user can send specially crafted RPC requests to execute arbitrary code on the target system [CVE-2012-2971]. The code will run with the

364

V-006: CA ARCserve Backup Flaws Let Remote Users Execute Arbitrary Code and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6: CA ARCserve Backup Flaws Let Remote Users Execute Arbitrary 6: CA ARCserve Backup Flaws Let Remote Users Execute Arbitrary Code and Deny Service V-006: CA ARCserve Backup Flaws Let Remote Users Execute Arbitrary Code and Deny Service October 19, 2012 - 6:00am Addthis PROBLEM: CA ARCserve Backup Flaws Let Remote Users Execute Arbitrary Code and Deny Service PLATFORM: CA ARCserve Backup for Windows r12.5, r15, r16 ABSTRACT: Two vulnerabilities were reported in CA ARCserve Backup. A remote user can execute arbitrary code on the target system. A remote user can cause denial of service conditions. REFERENCE LINKS: SecurityTracker Alert ID: 1027683 CA Technologies Support CVE-2012-2971 CVE-2012-2972 IMPACT ASSESSMENT: High DISCUSSION: A remote user can send specially crafted RPC requests to execute arbitrary code on the target system [CVE-2012-2971]. The code will run with the

365

Preparation of CaO as OLED getter material through control of crystal growth of CaCO{sub 3} by block copolymers in aqueous solution  

SciTech Connect

As the starting materials of organic light-emitting diode (OLED) getter, calcium carbonate (CaCO{sub 3}) particles with various shapes and crystal structures have been successfully prepared with additives (L64 or PEGPG), which contain blocks of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO). These CaCO{sub 3} particles were calcinated into highly crystalline calcium oxide (CaO) nanoparticles with high capacity of water adsorption up to 14.23 wt.%. The CaCO{sub 3} and CaO particles prepared at various conditions were characterized using the field emission scanning electron microscopy (FE-SEM), Fourier transform infrared microscopy (FT-IR), X-ray powder diffraction (XRD), and dynamic vapor sorption (DVS) method.

Park, Jae-Hyung [Department of Chemical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Oh, Seong-Geun [Department of Chemical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of)], E-mail: seongoh@hanyang.ac.kr

2009-01-08T23:59:59.000Z

366

CA-670-2010-CX | Open Energy Information  

Open Energy Info (EERE)

CX CX Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: CA-670-2010-CX CX at {{{GeothermalArea}}} for Geothermal/Exploration, Ram-Power Seismic Reflection Survey General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type CX Applicant Ram Power Consultant NA Geothermal Area {{{GeothermalArea}}}"{{{GeothermalArea}}}" cannot be used as a page name in this wiki. Project Location Project Phase Geothermal/Exploration Techniques Seismic Techniques Time Frame (days) Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office BLM California Desert District Office Managing Field Office El Central Field Office Funding Agencies none provided Surface Manager none provided

367

CA-670-2010-107 | Open Energy Information  

Open Energy Info (EERE)

107 107 Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: CA-670-2010-107 CX at {{{GeothermalArea}}} for Production well drilling Geothermal Drilling Permit for Production Well 78A-6 General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type CX Applicant Ormat Nevada, Inc. Consultant NA Geothermal Area {{{GeothermalArea}}}"{{{GeothermalArea}}}" cannot be used as a page name in this wiki. Project Location Project Phase Production well drilling Techniques Drilling Methods Comments Geothermal Drilling Permit Productio Well 78A-6 Time Frame (days) Application Time 525 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office BLM California Desert District Office

368

DOI-BLM-CA-EA-2002-??? | Open Energy Information  

Open Energy Info (EERE)

EA-2002-??? EA-2002-??? Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-CA-EA-2002-??? EA at Glass Mountain Geothermal Area for Geothermal/Well Field, Glass Mountain Exploration Environmental Assessment/Initial Study General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EA Applicant Calpine Corporation (Calpine) and CPN Telephone Flat Inc. (CPN) Consultant MHA Environmental Consulting, Inc. Geothermal Area Glass Mountain Geothermal Area Project Location California, California Project Phase Geothermal/Well Field Techniques Exploration Drilling, Thermal Gradient Holes Time Frame (days) Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office BLM Northern California District Office

369

Modeling CaCO{sub 3} deposition in geothermal wellbores  

DOE Green Energy (OSTI)

The capacity of a geothermal liquid to carry calcium varies mainly with the concentrations of CO{sub 2} and HCO{sub 3}, temperature and ionic strength, of which the CO{sub 2} concentration (pressure) changes most in the wellbore. Wellbore models that carry accurate computations for CO{sub 2} and other gas pressures might be adapted to compute profile thicknesses of CaCO{sub 3} scale. A general model for carbonate scale deposition in a wellbore must make a simultaneous accounting for pressures of H{sub 2}O, CO{sub 2}, and two or three other gases plus salt effects on those pressures. In addition, the elevation of flash initiation must be accurately identified and combined with profiles of temperature, etc., in the 2-phase zone. Such a model has been developed and its principle features are described here, including calibration of some factors with measured scale deposits. The model provides insight about the scale deposition processes through parametric studies. Tactics and strategies for confronting the effects of CaCO{sub 3} deposition in wells and wellfields can be explored with the model. Modeling of specific wellbores/wellfluids can help quantify risks and benefits concerning scale inhibition, wellfluid monitoring, timing of consequences relating to failure of scale inhibiting apparatus, urgency of remedial actions, and other aspects.

Michels, Donald E.

1992-01-01T23:59:59.000Z

370

Mountain Mesa, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

393975°, -118.4056391° 393975°, -118.4056391° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.6393975,"lon":-118.4056391,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

371

La Mesa, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

678287°, -117.0230839° 678287°, -117.0230839° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.7678287,"lon":-117.0230839,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

372

Mesa County, Colorado: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

County, Colorado: Energy Resources County, Colorado: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 38.9585381°, -108.6175626° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.9585381,"lon":-108.6175626,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

373

Red Mesa, Arizona: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

783°, -109.369842° 783°, -109.369842° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.992783,"lon":-109.369842,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

374

Survey of Critical Wetlands and Riparian Areas in Mesa County  

E-Print Network (OSTI)

Memorandum of Agreement/Cooperative Agreement . . . . . . . . . . . . . 9 Kingsley Dam FERC Relicensing projects in the front range area. The FERC relicensing proceedings for Kingsley Dam have demonstrated stakeholders. The Kingsley Dam FERC relicensing procedures demonstrate the necessity for developing

375

Updated 2/1/13 MESA Engineering Program (MEP)  

E-Print Network (OSTI)

containers in the room. Be responsible, clean up after yourself. _____ Electrical Appliances: Turn off the appliances you use. Do not leave any scorched food or liquid--clean all spills and food particles from

California at Santa Cruz, University of

376

DOE and Colorado Mesa University Education Agreement Expands...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Junction disposal site. This removal action significantly reduced the potential for radiation exposure to the residents of Grand Junction. Because there are a number of vicinity...

377

Tracer Testing At East Mesa Geothermal Area (1984) | Open Energy...  

Open Energy Info (EERE)

L.; Yorgason, K. R.; Moore, J. N. (1 December 1984) Preferred methods of analysis for chemical tracers in moderate- and high-temperature geothermal environments Retrieved from...

378

ASU/Mesa Pilot Development Minimum Flight Program Cost Estimates  

E-Print Network (OSTI)

of natural gas use in electricity generation, prompted by repeal of the Fuel Use Act, low gas prices-profit research management organization formed in 1976 and funded through a FERC-sanctioned surcharge placed on interstate pipeline gas volumes. The surcharge was determined on an annual basis according to a 5-year

Shumway, John

379

DOE - Office of Legacy Management -- EFB White Mesa Site - 033  

NLE Websites -- All DOE Office Websites (Extended Search)

active when the Uranium Mill tailings Radiation Control Act was passed in 1978. The milling conducted at this site was for private sale. After the owner completes U. S. Nuclear...

380

Rainier Mesa CAU Infiltration Model using INFILv3  

SciTech Connect

The outline of this presentation are: (1) Model Inputs - DEM, Precipitation, Air temp, Soil props, Surface geology, Vegetation; (2) Model Pre-processing - Runoff Routing and sinks, Slope and Azimuth, Soil Ksat reduction with slope (to mitigate bathtub ring), Soil-Bedrock Interface permeabilities; (3) Model Calibration - ET using PEST, Chloride mass balance data, Streamflow using PEST; (4) Model Validation - Streamflow data not used for calibration; (5) Uncertainty Analysis; and (6) Results. Conclusions are: (1) Average annual infiltration rates =11 to 18 mm/year for RM domain; (2) Average annual infiltration rates = 7 to 11 mm/year for SM domain; (3) ET = 70% of precipitation for both domains; (4) Runoff = 8-9% for RM; and 22-24% for SM - Apparently high average runoff is caused by the truncation of the lowerelevation portions of watersheds where much of the infiltration of runoff waters would otherwise occur; (5) Model results are calibrated to measured ET, CMB data, and streamflow observations; (6) Model results are validated using streamflow observations discovered after model calibration was complete; (7) Use of soil Ksat reduction with slope to mitigate bathtub ring was successful (based on calibration results); and (8) Soil-bedrock K{_}interface is innovative approach.

Levitt, Daniel G. [Los Alamos National Laboratory; Kwicklis, Edward M. [Los Alamos National Laboratory

2012-07-13T23:59:59.000Z

Note: This page contains sample records for the topic "ogilby mesa ca" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Mesa Top Photovoltaic Array SyStem SpecificationS  

E-Print Network (OSTI)

Innovation for Our Energy Future National Renewable Energy Laboratory For more information contact: EERE Information Center 1-877-EERE-INF (1-877-337-3463) www.eere.energy.gov DOE/GO-102008-2546 January 2008 #12;

382

Localization and activation of CaMKII delta isoforms and their involvement in heart failure  

E-Print Network (OSTI)

hypertrophy and heart failure ..CaMKII mediated hypertrophy and heart failure .. I.F.II.C. Preparation of heart tissue extract and cell lysate

Mishra, Shikha

2010-01-01T23:59:59.000Z

383

GRR/Elements/18-CA-b.12 - Notify Applicant of Technical Completeness...  

Open Energy Info (EERE)

GRRElements18-CA-b.12 - Notify Applicant of Technical Completeness < GRR | Elements Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleGRR...

384

Lighting recommendations for the Social Security Administration Frank Hagel Federal Building in Richmond CA  

E-Print Network (OSTI)

Lighting Research Group FinalReport October 1999 Lighting Recommendations for the Socialin Richmond CA Final Report Lighting Recommendations for the

Rubinstein, Francis M.

1999-01-01T23:59:59.000Z

385

GRR/Section 14-CA-e - Waste Discharge Permit | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit History Facebook icon Twitter icon GRRSection 14-CA-e - Waste Discharge Permit < GRR Jump to: navigation, search Retrieved from "http:...

386

Tuning carrier type and density in Bi2Se3 by Ca-doping  

E-Print Network (OSTI)

was observed in electrical resistivity measurements of Ca-We have performed electrical resistivity measurements on ?vesamples. The electrical resistivity varies signi?cantly for

2010-01-01T23:59:59.000Z

387

Fuel Cell Power Plants Biofuel Case Study - Tulare, CA  

NLE Websites -- All DOE Office Websites (Extended Search)

clean clean Fuel Cell Power Plants Biofuel Case Study - Tulare, CA DOE-NREL Workshop Golden, CO June 11-13, 2012 FuelCell Energy, the FuelCell Energy logo, Direct FuelCell and "DFC" are all registered trademarks (®) of FuelCell Energy, Inc. Integrated Fuel Cell Company 2 Manufacture Sell (direct & via partners) Install Services 1.4 MW plant at a municipal building 2.4 MW plant owned by an Independent power producer 600 kW plant at a food processor 11.2 MW plant - largest fuel cell park in the world Delivering ultra-clean baseload distributed generation globally Growing Market Presence 180 MW installed and in backlog Over 80 Direct FuelCell® plants generating power at more than 50 sites globally Providing:

388

CA-650-2005-086 | Open Energy Information  

Open Energy Info (EERE)

2005-086 2005-086 Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: CA-650-2005-086 EA at Coso Geothermal Area for Geothermal/Exploration {{{NEPA_Name}}} General NEPA Document Info Environmental Analysis Type EA Applicant Robert A. Phinney, Deep Rose LLC Geothermal Area Coso Geothermal Area Project Location California Project Phase Geothermal/Exploration Techniques Exploratory Well, Flow Test Time Frame (days) Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office BLM California Desert District Office Managing Field Office BLM Ridgecrest Field Office Funding Agencies none provided Surface Manager BLM Mineral Manager BLM Selected Dates Decision Document Date 6/3/2006 Relevant Numbers Lead Agency

389

CA M r. Andrew Wallo, III. NE-23  

Office of Legacy Management (LM)

i5W 95.5 L' i5W 95.5 L' E&nt plom. S. W.:. Washingr on. D.C. ZOOX2i74, Tekphm: (202) 488-6OGb 7II7-03.87.cdy.43 23 September 1987. Ii CA M r. Andrew Wallo, III. NE-23 Division of Facility & Site Decommissioning Projects U.S. Department of Energy Germantown, Maryland 20545 Dear M r. Wallo: ELIMINATION RECOMMENDATION -- COLLEGES AND UNIVERSITIES pqq.0' 05 PI ;p.03- The attached elimination recommendation was prepared in accordance ,I ML.05 with your suggestion during our meeting on 22 September. The recommendation flO.O-02 includes 26 colleges and universities identified in Enclosure 4 to Aerospace letter subject: Status of Actions - FUSRAP Site List, dated 27 May 1987; three institutions (Tufts College, University of Virginia, and the University of Washington) currently identified on the FUSRAP

390

Data:D362149f-2ca1-40ca-a968-8baae0c51fda | Open Energy Information  

Open Energy Info (EERE)

49f-2ca1-40ca-a968-8baae0c51fda 49f-2ca1-40ca-a968-8baae0c51fda No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Cleco Power LLC Effective date: 2011/02/01 End date if known: Rate name: Company-Owned Fixture - Decorative Cobra Head Fixtures 400 Watt Mercury Vapor Sector: Lighting Description: Source or reference: www.cleco.com Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service Voltage Category: Phase Wiring: << Previous 1 2 3 Next >>

391

Data:Ea8f3963-ca5b-4de0-b1b5-7ca79017471c | Open Energy Information  

Open Energy Info (EERE)

f3963-ca5b-4de0-b1b5-7ca79017471c f3963-ca5b-4de0-b1b5-7ca79017471c No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Cotton Electric Coop, Inc Effective date: 2010/02/01 End date if known: Rate name: General Service Three Phase Sector: Description: Available to farm home and residential customers subject to the established rules and regulations of the cooperative. No resale, standby, or auxiliary service permitted. Source or reference: ISU Documentation Rate Binder Kelly 4 Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh):

392

Data:17e441d9-5010-41c5-81ca-447297f8ca8b | Open Energy Information  

Open Energy Info (EERE)

d9-5010-41c5-81ca-447297f8ca8b d9-5010-41c5-81ca-447297f8ca8b No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Town of Waynesville, North Carolina (Utility Company) Effective date: 2010/07/01 End date if known: Rate name: Area Lighting- 150W Sodium Vapor Sector: Lighting Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service Voltage Category: Phase Wiring: << Previous 1 2 3 Next >>

393

Data:F068b5b6-56ca-422c-a787-b2dae7afd0a5 | Open Energy Information  

Open Energy Info (EERE)

8b5b6-56ca-422c-a787-b2dae7afd0a5 8b5b6-56ca-422c-a787-b2dae7afd0a5 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: City of Prescott, Arkansas (Utility Company) Effective date: End date if known: Rate name: Rental Lights-Flood Light (400 HP Sodium)) Sector: Lighting Description: Source or reference: Rate Binder#4 (Illinois State University) Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service Voltage Category: Phase Wiring: << Previous

394

Data:71c1d4e9-ca25-4eac-9bdc-ca421c8bb07e | Open Energy Information  

Open Energy Info (EERE)

d4e9-ca25-4eac-9bdc-ca421c8bb07e d4e9-ca25-4eac-9bdc-ca421c8bb07e No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Middle Georgia El Member Corp Effective date: End date if known: Rate name: Outdoor Lighting Cobra Head 400 W Wood Pole Sector: Lighting Description: Source or reference: http://www.mgemc.com/rates.aspx Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service Voltage Category: Phase Wiring: << Previous 1 2 3 Next >> << Previous

395

Data:Bd423956-caa2-491c-a667-ca6d371d826d | Open Energy Information  

Open Energy Info (EERE)

23956-caa2-491c-a667-ca6d371d826d 23956-caa2-491c-a667-ca6d371d826d No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Arrowhead Electric Coop, Inc Effective date: 2012/07/17 End date if known: Rate name: General Service Heat Pump - Closed Sector: Description: This rate class is now Closed and is not being offered to new customers. Source or reference: Illinois State University Archives Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service Voltage Category:

396

Data:88faea60-16ca-4ca7-bfc2-22c6f985605d | Open Energy Information  

Open Energy Info (EERE)

faea60-16ca-4ca7-bfc2-22c6f985605d faea60-16ca-4ca7-bfc2-22c6f985605d No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Adams Electric Coop Effective date: 2009/01/01 End date if known: Rate name: Rate Schedule MSL (Metered Security Lighting)(Standard fixtures 175 Watt MV) Sector: Lighting Description: Available to all cooperative members. 175 Watt MV. Source or reference: Rate Binder #7 (Illinois State University) Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V):

397

Charge transport and magnetization profile at the interface between the correlated metal CaRuO{sub3} and the antiferromagnetic insulator CaMnO{sub3}.;  

Science Conference Proceedings (OSTI)

A combination of spectroscopic probes was used to develop a detailed experimental description of the transport and magnetic properties of superlattices composed of the paramagnetic metal CaRuO{sub 3} and the antiferromagnetic insulator CaMnO{sub 3}. The charge-carrier density and Ru valence state in the superlattices are not significantly different from those of bulk CaRuO{sub 3}. The small charge transfer across the interface implied by these observations confirms predictions derived from density-functional calculations. However, a ferromagnetic polarization due to canted Mn spins penetrates 3-4 unit cells into CaMnO{sub 3}, far exceeding the corresponding predictions. The discrepancy may indicate the formation of magnetic polarons at the interface.

Freeland, J. W.; Chakhalian, J.; Boris, A. V.; Tonnerre, J-M.; Kavich, JJ.; Yordanov, P.; Grenier,S.; Zschack, P.; Karapetrova, E.; Popovich, P.; Lee, H. N.; Keimer, B. (X-Ray Science Division); ( PSC-USR); (Univ. of Arkansas); (Max Planck Inst. for Solid State Research); (Loughborough Univ.); (CNRS and Univ. Joseph Fourier); (Univ. of Illinois); (ORNL)

2010-01-01T23:59:59.000Z

398

Data:Ce785d69-ca41-42be-9958-7344cd74ca3c | Open Energy Information  

Open Energy Info (EERE)

Ce785d69-ca41-42be-9958-7344cd74ca3c Ce785d69-ca41-42be-9958-7344cd74ca3c No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: South Central Public Pwr Dist Effective date: 2012/05/01 End date if known: Rate name: Area&Directional Lighting Service Rate N722 Sector: Lighting Description: Source or reference: Illinois State University Rate Binder #10 Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service Voltage Category: Phase Wiring: << Previous

399

Structural and thermal characterization of CaO-MgO-SiO2-P2O5-CaF2 glasses  

SciTech Connect

The paper presents the influence of varying CaO/MgO ratio on the structure and thermal properties of CaO-MgO-SiO2-P2O5-CaF2 glasses. A series of eight glass compositions in the glass forming region of diopside (CaMgSi2O6) - fluorapatite [Ca5(PO4)3F] - wollastonite (CaSiO3) ternary system have been designed and synthesized by varying diopside/wollastonite ratio in glasses. The as prepared melt-quenched glasses have been characterized for their structure by infrared spectroscopy (FTIR) and magic angle spinning (MAS)-nuclear magnetic resonance (NMR) spectroscopy. Silicon is predominantly present as Q2 (Si) species, while phosphorus tends to coordinate in orthophosphate environment in all the investigated glasses. The change in CaO/MgO ratio had an insignificant affect on the structure of glasses. The thermal sintering and crystallization parameters for the studied glasses have been obtained from differential thermal analysis (DTA) while crystalline phase fractions in the sintered glass-ceramics have been analyzed by X-ray diffraction adjoined with Rietveld refinement. Diopside, fluorapatite, wollastonite and pseudowollastonite have crystallized as the main crystalline phases in all the glass-ceramics with their content varying with respect to variation in CaO/MgO ratio in glasses. Scanning electron microscopy (SEM) has been used to shed light on the microstructure of glass-ceramics. The possible implications of structure and sintering behaviour of glasses on their bioactivity have been discussed.

Kansal, Ishu; Goel, Ashutosh; Tulyaganov, Dilshat U.; Rajagopal, Raghu R.; Ferreira, Jose M.

2012-08-01T23:59:59.000Z

400

TG-FTIR Analysis on Sawdust Catalytic Pyrolysis with CaO  

Science Conference Proceedings (OSTI)

Due to the global warming and energy crisis, the utilization of biomass in zero emission system has aroused more attention. In this study, the effect of catalyst CaO on sawdust pyrolysis was investigated using a thermogravimetric analyzer coupled with ... Keywords: CaO, biomass, pyrolysis, TG-FTIR, zero emission

Qiang Ma; Qinhui Wang; Long Han; Chunjiang Yu; Zhongyang Luo

2009-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "ogilby mesa ca" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Low radioactivity CaF{sub 2} scintillator crystals for CANDLES  

Science Conference Proceedings (OSTI)

CANDLES is the project to search for neutrinoless double beta (0{nu}{beta}{beta}) decay of {sup 48}Ca by using CaF{sub 2} scintillators. The observation of 0{nu}{beta}{beta} decay will prove the existence of massive Majorana neutrinos. Expected performances and current status of the CANDLES system are described.

Ogawa, I.; Umehara, S.; Ito, G.; Yasuda, K.; Kakubata, H.; Miyashita, M.; Matsuoka, K.; Nomachi, M. [Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Kishimoto, T. [Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Fushimi, K. [Faculty of Integrated Arts and Science, University of Tokushima, Tokushima 770-8502 (Japan); Hazama, R. [Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8527 (Japan); Ohsumi, H. [Faculty of Culture and Education, Saga University, Saga 840-8502 (Japan); Okada, K. [Department of Computer Science and Engineering, Kyoto San-gyo University, Kyoto 603-8555 (Japan); Tamagawa, Y. [Faculty of Engineering, University of Fukui, Fukui 910-8507 (Japan); Yoshida, S. [Research Center for Neutrino Science, Tohoku University, Sendai, Miyagi 980-8578 (Japan)

2011-04-27T23:59:59.000Z

402

CaF2 surface passivation of lead selenide grown on BaF2  

Science Conference Proceedings (OSTI)

A new method of surface passivation of PbSe epitaxial layers by growing a thin epitaxial CaF"2 layer is proposed. Improvement in photoluminescence (PL) intensity is observed when the PbSe layer is passivated. The minority carrier lifetime (@t), measured ... Keywords: CaF2 passivation, Lead salts, Minority carrier lifetime, Photoluminescence

Shaibal Mukherjee; D. Li; G. Bi; J. Ma; S. L. Elizondo; A. Gautam; Z. Shi

2011-03-01T23:59:59.000Z

403

GRR/Section 3-CA-b - State Land Access | Open Energy Information  

Open Energy Info (EERE)

3-CA-b - State Land Access 3-CA-b - State Land Access < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-CA-b - State Land Access 3-CA-b State Land Access.pdf Click to View Fullscreen Contact Agencies California State Lands Commission Regulations & Policies California State Lands Commission Regulations California Coastal Act Triggers None specified Click "Edit With Form" above to add content 3-CA-b State Land Access.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative In California access to state lands is controlled by the California State Lands Commission. Access to state lands is granted through a lease,

404

GRR/Section 13-CA-a - Coastal Land Use Assessment | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 13-CA-a - Coastal Land Use Assessment GRR/Section 13-CA-a - Coastal Land Use Assessment < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 13-CA-a - Coastal Land Use Assessment 13-CA-a Coastal Land Use Assessment.pdf Click to View Fullscreen Contact Agencies California Coastal Commission California State Lands Commission Regulations & Policies California Coastal Act California PRC § 6826 Triggers None specified Click "Edit With Form" above to add content 13-CA-a Coastal Land Use Assessment.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Under the California Coastal Act, projects in California Coastal Zones may

405

GRR/Section 14-CA-a - Nonpoint Source Pollution | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 14-CA-a - Nonpoint Source Pollution GRR/Section 14-CA-a - Nonpoint Source Pollution < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-CA-a - Nonpoint Source Pollution 14-CA-a - Nonpoint Source Pollution.pdf Click to View Fullscreen Contact Agencies [[California State Water Resources Control Board]] [[California Coastal Commission]] Regulations & Policies Porter-Cologne Water Quality Control Act Triggers None specified Click "Edit With Form" above to add content 14-CA-a - Nonpoint Source Pollution.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This flowchart illustrates the procedures in California for dealing with

406

GRR/Section 20-CA-a - Well Abandonment Process | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 20-CA-a - Well Abandonment Process GRR/Section 20-CA-a - Well Abandonment Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 20-CA-a - Well Abandonment Process 20-CA-a - Well Abandonment Process.pdf Click to View Fullscreen Contact Agencies California Department of Conservation, Division of Oil, Gas, and Geothermal Resources Regulations & Policies California Public Resources Code 3746-3750 Triggers None specified Click "Edit With Form" above to add content 20-CA-a - Well Abandonment Process.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This flowchart illustrates the process for abandonment of geothermal wells

407

GRR/Section 8-CA-a - State Transmission | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 8-CA-a - State Transmission GRR/Section 8-CA-a - State Transmission < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 8-CA-a - State Transmission 08CAACaliforniaTransmission.pdf Click to View Fullscreen Contact Agencies California Energy Commission Regulations & Policies CPUC General Order (G.O) 131-D Triggers None specified Click "Edit With Form" above to add content 08CAACaliforniaTransmission.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative 8-CA-a.1 to 8-CA-a.2 - Is the Planned Geothermal Plant Capacity Greater than 50 MW The California Energy Commission (CEC) has the statutory responsibility for

408

GRR/Elements/14-CA-b.7 - Publish public notice | Open Energy Information  

Open Energy Info (EERE)

GRR/Elements/14-CA-b.7 - Publish public notice GRR/Elements/14-CA-b.7 - Publish public notice < GRR‎ | Elements Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections 14-CA-b.7 - Publish public notice After RWQCB notifies the developer that the application will be considered, the developer must publish notice of the NPDES application in a local newspaper. Proof of the publication must be submitted to the RWQCB. Logic Chain No Parents \V/ GRR/Elements/14-CA-b.7 - Publish public notice (this page) \V/ No Dependents Under Development Add.png Add an Element Retrieved from "http://en.openei.org/w/index.php?title=GRR/Elements/14-CA-b.7_-_Publish_public_notice&oldid=482584" Categories: Geothermal Regulatory Roadmap Elements Under Development

409

Effect of angiotensin II on Ca sup 2+ kinetics and contraction in cultured rat glomerular mesangial cells  

SciTech Connect

This in vitro study was undertaken to determine the changes in Ca{sup 2+} kinetics and cell shape of cultured putative glomerular mesangial cells in the rat in response to angoitensin II (ANG II). Intracellular Ca{sup 2+} ((Ca{sup 2+}){sub i}) was measured using quin 2. ANG II-stimulated {sup 45}Ca{sup 2+} efflux was also determined. ANG II induced rapid concentration-dependent increases in (Ca{sup 2+}){sub i} and {sup 45}Ca{sup 2+} efflux. ANG II also induced contraction of mesangial cells as assessed by alterations in cell shape. Even in Ca{sup 2+}-free medium, ANG II increased (Ca{sup 2+}){sub i} and {sup 45}Ca{sub 2+} efflux, but to a lesser extent. Under this condition, contraction of mesangial cells induced by ANG II was also observed. Readdition of extracellular Ca{sup 2+} and the ANG II-induced increase in (Ca{sup 2+}){sub i} caused a second and slower (Ca{sup 2+}){sub i} increase. High potassium (50 mM) induced a change of (Ca{sup 2+}){sub i}, but to a lesser extent compared with the ANG II-induced change. The Ca{sup 2+} channel blocker verapamil partially inhibited ANG II-induced {sup 45}Ca{sup 2+} influx but totally blocked the increase in (Ca{sup 2+}){sub i} induced by high potassium. Verapamil did not inhibit ANG II-stimulated Ca{sup 2+} efflux or the change in cell shape. Dantrolene (10{sup {minus}4} M), a blocker of Ca{sup 2+} release from endoplasmic reticulum, inhibited ANG II-stimulated Ca{sup 2+} efflux and change in cell shape. These results indicate that ANG II rapidly increases (Ca{sup 2+}){sub i} in cultured rat mesangial cells, in part by mobilizing Ca{sup 2+} from dantrolene-sensitive intracellular pools and in part through activation of receptor-operated and voltage-dependent Ca{sup 2+} channels. The (Ca{sup 2+}){sub i} mobilization, however, seems to be the primary modulator of initial glomerular mesangial cell contraction.

Takeda, Katsuji; Meyer-Lehnert, H.; Kim, J.K.; Schrier, R.W. (Univ. of Colorado School of Medicine, Denver (USA))

1988-02-01T23:59:59.000Z

410

Wiberg: The Santa Rita Village Mortuary Complex (CA-ALA-413): Evidence and Implications of a Meganos Intrusion  

E-Print Network (OSTI)

does not critically evaluate the merit of the Meganos hypothesis, the meaning of observed differences between CA-ALA-413

Fenenga, Gerrit L

1994-01-01T23:59:59.000Z

411

Vibrational, rotational, and isotopic dependence of CaBr X/sup 2/. sigma. spin-rotational and HFS parameters  

Science Conference Proceedings (OSTI)

The previously published molecular-beam, laser-rf, double-resonance study of the rotational and isotopic dependences of the spin-rotational and hyperfine interactions in the v'' = 0, X/sup 2/..sigma.. state of CaBr is supplemented here with data for v''=1. The vibrational dependence of the parameters is now obtained. The results for CaBr are displayed along with analogous, previously published results for CaF and CaCl.

Childs, W.J.; Cok, D.R.; Goodman, L.S.

1982-01-01T23:59:59.000Z

412

CA CAIOlf Mr. Andrew Wallo. III, NE-23  

Office of Legacy Management (LM)

kire 7900. 955 L*E,,fa,u PLUG S. W.. Washin@ on. D.C. 20024-2174, Tekphme: (202) 488-6000 kire 7900. 955 L*E,,fa,u PLUG S. W.. Washin@ on. D.C. 20024-2174, Tekphme: (202) 488-6000 7117-03.87.cdy.43 23 September 1987 CA CAIOlf Mr. Andrew Wallo. III, NE-23 Division of Facility & Site Decommissioning Projects U.S. Department of Energy Germantown, Maryland 20545 CT.05 FL .0-o/ lti.Ob id.Or Dear Mr. Wallo: In/. O-01 flA.05 ELIMINATION RECOMMENDATION -- COLLEGES AND UNIVERSITIES Mbj.o-03 I4 v.o+ The attached elimination recommendation was prepared in accordance ML.o= with your suggestion during our meeting on 22 September. The recommendation nO.O-02 includes 26 colleges and universities identified.in Enclosure 4 to Aerospace letter subject: Status of Actions - FUSRAP Site List, dated N0.63' 27 May 1987; three institutions (Tufts College, University of Virginia, kfC900

413

Temperature dependence of the Ca 2 ?-ATPase (SERCA2) in the ventricles of tuna and mackerel  

E-Print Network (OSTI)

physiological studies on the cardiovascular performance of tunas suggest that the elevated heart rates of these fish may rely on increased use of intracellular sarcoplasmic reticulum (SR) Ca2 ? stores. In this study, we compare the cellular cardiac performance in endothermic tunas (bluefin, albacore, yellowfin) and their ectothermic sister taxa (mackerel) in response to acute temperature change. The cardiac sarco/endoplasmic reticulum Ca2?-ATPase (SERCA2) plays a major role during cardiac excitation-contraction (E-C) coupling, transporting Ca2 ? from the cytosol into the lumen of the SR and thus promoting the relaxation of the muscle. Measurements of oxalate-supported Ca2 ? uptake in SR-enriched ventricular vesicles indicated that tunas were capable of sustaining a rate of Ca2 ? uptake that was significantly higher than the mackerel. Among tunas, the cold-tolerant bluefin had the highest rates of SR Ca2 ? uptake and ATPase activity. The differences among Ca2 ? uptake and ATP hydrolysis rates do not seem

Ana M. L; Jeffery M. Morrissette; Jason M. Blank; Barbara A. Block; Ana M; Jeffery M. Morrissette; Jason M; J Physiol; Regul Integr; Comp Physiol Rr

2003-01-01T23:59:59.000Z

414

Photoionization of Ca in a static electric field  

SciTech Connect

We present a joint theoretical and experimental investigation for electric-field effects on ground-state photoionization of Ca. For an electric field with its direction along the z axis, the dominant field-free, doubly excited, odd-parity (i.e., 3dnp and/or 3dnf) resonances of the {sup 1,3}L{sub J=1}{sup o} (i.e., {sup 1,3}P{sub J=1}{sup o} and {sup 3}D{sub J=1}{sup o}) symmetries are coupled with the even-parity (i.e., 3dns, 3dnd, and/or 3dng) resonances of the {sup 1,3}L{sub J=0}{sup e} (i.e., {sup 1}S{sub J=0}{sup e} and {sup 3}P{sub J=0}{sup e}) and {sup 1,3}L{sub J=2}{sup e} (i.e., {sup 3}P{sub J=2}{sup e}, {sup 1,3}D{sub J=2}{sup e}, and {sup 3}F{sub J=2}{sup e}) symmetries. Using a B-spline-based complex-rotation method with spin-dependent interaction, our theoretically calculated spectrum is found to be in good agreement with the observed spectrum from a cross-beam photoionization experiment for field strengths up to 25 kV/cm. We present in detail a number of qualitative features of the field-induced level crossing and avoided crossing in energy between neighboring resonances, their corresponding changes in width, and the resulting variation in resonance structure profiles. A few ''hidden'' resonances due to strong overlap with more prominant resonances are also identified theoretically.

Fang, T. K. [Department of Physics, Fu Jen Catholic University, Taipei, Taiwan 242 (China); Lo, J. I.; Yih, T. S. [Department of Physics, National Central University, Chungli, Taiwan 32001 (China); Chang, T. N. [Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089-0484 (United States)

2010-12-15T23:59:59.000Z

415

Large energy gaps in CaC{sub 6} from tunneling spectroscopy : possible evidence of strong-coupling superconductivity.  

Science Conference Proceedings (OSTI)

Tunneling in CaC{sub 6} crystals reproducibly reveals superconducting gaps {Delta} of 2.3 {+-} 0.2 meV that are {approx}40% larger than reported earlier. In an isotropic s-wave scenario, that puts CaC{sub 6} into the class of very strongly coupled superconductors, since 2{Delta}/kT{sub c}-4.6, implying that soft Ca phonons are primarily involved in the superconductivity. This conclusion explains the relatively large Ca isotope effect found recently for CaC{sub 6}, but it could also signal a strong anisotropy in the electron-phonon interaction.

Kurter, C.; Ozyuzer, L.; Mazur, D.; Zasadzinski, J. F.; Rosenmann, D.; Claus, H.; Hinks, D. G.; Gray, K. E.; Materials Science Division; Illinois Inst. of Tech.; Izmir Inst. of Tech.

2007-12-01T23:59:59.000Z

416

Photoionization thresholds of rare-earth impurity ions. EuS :CaF2, CeT :YAG, and SmS :CaF2  

SciTech Connect

The spectral dependence of the photoionization energy of EuS :CaF2, CeT :YAG, and SmS :CaF2 systems have been measured and thresholds experimentally determined and compared with theoretical values calculated from electrostatic models. It is shown that the excited state absorption transitions or the persistent hole burning observed by other authors occur above the threshold energy of photoionization of the impurities and that the states of the crystal which form the bottom of the conduction band may play an important role in the strong probability of these processes. A review of thresholds now known is also given.

Pedrini, C.; Rogemond, F.; McClure, D.S.

1986-02-15T23:59:59.000Z

417

GRR/Elements/18-CA-c.2 - Onsite Treatment Process | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » GRR/Elements/18-CA-c.2 - Onsite Treatment Process < GRR‎ | Elements Jump to: navigation, search Edit 18-CA-b.2 - Onsite Treatment Process Non-RCRA waste treated on-site receives a California on-site treatment permit from the California DTSC. See Flowchart 18-CA-XX. Retrieved from "http://en.openei.org/w/index.php?title=GRR/Elements/18-CA-c.2_-_Onsite_Treatment_Process&oldid=539943" What links here Related changes Special pages Printable version Permanent link Browse properties About us Disclaimers Energy blogs Linked Data Developer services OpenEI partners with a broad range of international organizations to grow

418

GRR/Section 8-CA-b - CPUC Process | Open Energy Information  

Open Energy Info (EERE)

8-CA-b - CPUC Process 8-CA-b - CPUC Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 8-CA-b - CPUC Process 08CABCaliforniaTransmissionCPUCProcess.pdf Click to View Fullscreen Contact Agencies California Public Utilities Commission Regulations & Policies California Environmental Quality Act General Order 131-D Triggers None specified Click "Edit With Form" above to add content 08CABCaliforniaTransmissionCPUCProcess.pdf 08CABCaliforniaTransmissionCPUCProcess.pdf 08CABCaliforniaTransmissionCPUCProcess.pdf Error creating thumbnail: Page number not in range. Flowchart Narrative 8-CA-b.1 - Is the Transmission Line Between 50kV - 200 kV No electric public utility shall begin construction in this state of any

419

CRUSTAL STRESS HETEROGENEITY IN THE VICINITY OF COSO GEOTHERMAL FIELD, CA |  

Open Energy Info (EERE)

CRUSTAL STRESS HETEROGENEITY IN THE VICINITY OF COSO GEOTHERMAL FIELD, CA CRUSTAL STRESS HETEROGENEITY IN THE VICINITY OF COSO GEOTHERMAL FIELD, CA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: CRUSTAL STRESS HETEROGENEITY IN THE VICINITY OF COSO GEOTHERMAL FIELD, CA Details Activities (1) Areas (1) Regions (0) Abstract: Borehole induced structures in image logs of wells from the Coso Geothermal Field (CGF), CA record variation in the azimuth of principal stress. Image logs of these structures from five wells were analyzed to quantify the stress heterogeneity for three geologically distinct locations: two wells within the CGF (one in an actively produced volume), two on the margin of the CGF and outside the production area, and a control well several tens of kilometers south of the CGF. Average directions of

420

GRR/Elements/18-CA-b.2 - Onsite Treatment Process | Open Energy...  

Open Energy Info (EERE)

2 - Onsite Treatment Process < GRR | Elements Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleGRRElements18-CA-b.2-OnsiteTreatmentProces...

Note: This page contains sample records for the topic "ogilby mesa ca" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

GRR/Elements/14-CA-b.12 - Were all EPA objections resolved |...  

Open Energy Info (EERE)

Were all EPA objections resolved < GRR | Elements Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections 14-CA-b.12 -...

422

GRR/Elements/14-CA-a.12 - Did a majority of the Regional Board...  

Open Energy Info (EERE)

12 - Did a majority of the Regional Board adopt the WDR's at the public hearing < GRR | Elements Jump to: navigation, search Edit 14-CA-a.12 - Did a majority of the Regional...

423

GRR/Elements/18-CA-c.12 - WDR Public Hearing | Open Energy Information  

Open Energy Info (EERE)

WDR Public Hearing < GRR | Elements Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections 18-CA-c.12 - WDR Public...

424

UNIVERSITY OF CALIFORNIA, SAN DIEGO 9500 Gilman Drive La Jolla, CA 92093  

E-Print Network (OSTI)

UNIVERSITY OF CALIFORNIA, SAN DIEGO 9500 Gilman Drive La Jolla, CA 92093 STUDENT HEALTH SERVICES that applies: Mental Health Treatment: ____ Medical Care, including laboratory and x-ray results ___ Dates/or Academic Coordination Other________________________________ NOTICE: UCSD Student Health Services

Russell, Lynn

425

www.uwo.ca/earth/grad/ Western's award winning faculty members, cutting  

E-Print Network (OSTI)

Professor Stable isotope biogeochemistry: Microbial alteration of modern and ancient oceanic crust; Evidence; Astrobiology. CORCORAN, P L , Assistant Professor Sedimentary petrology, Precambrian geology, & geochemistry, weathering. #12;www.uwo.ca/earth/grad/ HICOCK, S R , Professor Glacial & Quaternary geology; Genesis

Christensen, Dan

426

GRR/Elements/18-CA-c.10 - Draft Waste Discharge Permit | Open...  

Open Energy Info (EERE)

0 - Draft Waste Discharge Permit < GRR | Elements Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections 18-CA-c.10 -...

427

GRR/Elements/14-CA-c.10 - Propose Revisions | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » GRR/Elements/14-CA-c.10 - Propose Revisions < GRR‎ | Elements Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections 14-CA-c.10 - Propose Revisions The Regional Board determines whether the draft requirements provide protection to ground and surface waters with present or anticipated beneficial use. If the Regional Board determines the draft requirements are not adequate, the Regional Board has 30 days to propose revisions which satisfy the Regional Board's concerns. Logic Chain No Parents \V/ GRR/Elements/14-CA-c.10 - Propose Revisions (this page) \V/ No Dependents Under Development Add.png Add an Element Retrieved from "http://en.openei.org/w/index.php?title=GRR/Elements/14-CA-c.10_-_Propose_Revisions&oldid=539622"

428

An Empirical Na-K-Ca Geothermometer For Natural Waters | Open Energy  

Open Energy Info (EERE)

Empirical Na-K-Ca Geothermometer For Natural Waters Empirical Na-K-Ca Geothermometer For Natural Waters Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: An Empirical Na-K-Ca Geothermometer For Natural Waters Details Activities (0) Areas (0) Regions (0) Abstract: An empirical method of estimating the last temperature of water-rock interaction has been devised. It is based upon molar Na, K and Ca concentrations in natural waters from temperature environments ranging from 4 to 340°C. The data for most geothermal waters cluster near a straight line when plotted as the function vs reciprocal of absolute temperature, where Β is either or depending upon whether the water equilibrated above or below 100°C. For most waters tested, the method gives better results than the methods suggested by other workers. The ratio

429

Influence of the Synoptic-Scale Flow on Sea Breezes Observed during CaPE  

Science Conference Proceedings (OSTI)

Mean sea-breeze characteristics were determined by analyzing a number of sea-breeze events during offshore, parallel, and onshore flow regimes during the Convection and Precipitation/Electrification Experiment (CaPE). It was observed that ...

Nolan T. Atkins; Roger M. Wakimoto

1997-09-01T23:59:59.000Z

430

Single crystal growth and superconductivity of Ca(Fe1-xCox)2As2  

SciTech Connect

We report the single crystal growth of Ca(Fe1-xCox)2As2 (0 <= x <= 0.082) from Sn flux. The temperature-composition phase diagram is mapped out based on the magnetic susceptibility and electrical transport measurements. Phase diagram of Ca(Fe1-xCox)2As2 is qualitatively different from those of Sr and Ba, it could be due to both the charge doping and structural tuning effects associated with Co substitution.

Hu, Rongwei; Ran, Sheng; Budko, Serguei; Straszheim, Warren E.; Canfield, Paul C.

2012-05-18T23:59:59.000Z

431

career services Gordon Hall, 74 Union Street 613 533 2992 careers.queensu.ca  

E-Print Network (OSTI)

.aecon.com Agnico-Eagle Mines www.agnico-eagle.com Alberici www.alberici.com/ Aversan Inc. www.aversan.com BRP www.prairiefyre.com Proctor & Gamble http://www.pg.com/en_CA/index.shtml Sherritt Coal www.sherritt.com Schlumberger.spartancontrols.com Statoil Canada Ltd. www.statoil.com StonCor Group www.stoncor.ca Teck Coal Ltd. www.teck.com Trane www

Graham, Nick

432

Data:5fb3c97f-ce9a-48f6-8ca8-49490c5257ca | Open Energy Information  

Open Energy Info (EERE)

fb3c97f-ce9a-48f6-8ca8-49490c5257ca fb3c97f-ce9a-48f6-8ca8-49490c5257ca No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Clay Electric Cooperative, Inc Effective date: 2011/01/01 End date if known: Rate name: Rate Schedule - SS Sector: Commercial Description: To consumers whose electric service requirements are normally supplied or supplemented from sources other than the Cooperative, including any consumer having on-site generating equipment, and who request firm standby service. A consumer having on-site generating equipment and requesting firm standby service is required to take service under this rate schedule if his total generating capability: (1) exceeds 100 kW, and (2) supplies at least 20% of his total electrical load, and (3) is operated for other than emergency and test purposes.

433

Data:5e1a0ca0-8d0e-42ca-83b2-60d0855d7160 | Open Energy Information  

Open Energy Info (EERE)

a0ca0-8d0e-42ca-83b2-60d0855d7160 a0ca0-8d0e-42ca-83b2-60d0855d7160 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: PUD No 1 of Chelan County Effective date: 2012/04/01 End date if known: Rate name: Primary Power Service Schedules 30 Sector: Industrial Description: These schedules apply to Customers with average electrical loads from 0.4 annual average megawatts (aMWs) up to and including 5 annual aMWs at a single Point of Delivery. These rate schedules are available throughout the District's service area with the exception of the Stehekin area. Service under Schedule 3, 30, and 33 may require a power sales contract between the Customer and the District prior to connection of service.

434

Data:Abe526c1-9c10-4b5c-a982-dbd652ca6b20 | Open Energy Information  

Open Energy Info (EERE)

Abe526c1-9c10-4b5c-a982-dbd652ca6b20 Abe526c1-9c10-4b5c-a982-dbd652ca6b20 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Halifax Electric Member Corp Effective date: 2012/10/01 End date if known: Rate name: RESIDENTIAL SERVICE Sector: Residential Description: AVAILABILITY: This Schedule is available in all territory served by the Cooperative, subject to its established Service Rules and Regulations. APPLICABILITY: This Schedule is applicable when electric service is used for domestic purposes in and about a residential dwelling unit. Service under this Schedule is not applicable for farm operations such as crop dryers or tobacco barns, or for other commercial purposes. However, where this type of service is in combination with residential service and the total demand of the nonresidential usage is not greater than the total demand of the residential service requirements, the consumer may be served under this Schedule. If the predominant demand is nonresidential in nature, the Member must be served under a General Service schedule or the residential and nonresidential loads will be metered separately and billed under the appropriate schedule for each service. Service shall be provided at one location through one meter.

435

Data:Eb0ca68b-e5bc-4c3b-8301-737584d9ca18 | Open Energy Information  

Open Energy Info (EERE)

ca68b-e5bc-4c3b-8301-737584d9ca18 ca68b-e5bc-4c3b-8301-737584d9ca18 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Foley Board of Utilities Effective date: 1990/01/01 End date if known: Rate name: Unmetered Outdoor Lighting- 250W High Pressure Sodium -With Pole Sector: Lighting Description: Dusk to dawn unmetered service is covered by charges set forth below which also cover initial installation of overhead lines, poles (where applicable), fixture assembly including four foot mounting hardware for standard luminaries and two foot mounting hardware for flood lights, and maintenance including lamp replacements due to burn outs. Such charges do not cover replacement of lamps, luminaries, brackets or overhead lines which are damaged or destroyed due to vandalism or any other cause beyond the Utility's control, such facilities damaged or destroyed under such circumstances to be replaced by the Utility at the Consumer's expense. Lamp renewals and required maintenance will be performed only during regular daytime working hours as soon as practical after notification by the Consumer of the necessity.

436

Data:720e2ca4-ba21-4070-9eb5-41ca3ee17d9b | Open Energy Information  

Open Energy Info (EERE)

e2ca4-ba21-4070-9eb5-41ca3ee17d9b e2ca4-ba21-4070-9eb5-41ca3ee17d9b No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: City of New Richmond, Wisconsin (Utility Company) Effective date: 2011/08/12 End date if known: Rate name: Ms-1 Street and Yard Lighting Service Ornamental 250 W HPS Sector: Lighting Description: Power Cost Adjustment Clause - All metered rates shall be subject to a positive or negative power cost adjustment charge equivalent to the amount by which the current cost of power (per kilowatt-hour of sales) is greater or lesser than the base cost of power purchased (per kilowatt-hour of sales). The base cost of power (U) is $0.0710 per kilowatt-hour.

437

Data:Dff57447-d8ee-418c-a1ca-c2b6b9d49107 | Open Energy Information  

Open Energy Info (EERE)

Dff57447-d8ee-418c-a1ca-c2b6b9d49107 Dff57447-d8ee-418c-a1ca-c2b6b9d49107 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Northern States Power Co - Wisconsin Effective date: 2012/01/01 End date if known: Rate name: CUSTOMER OWNED STREET LIGHTING 400* W SV Sector: Lighting Description: Availability: Available for year-round illumination of public streets, parkways, and highways by electric lamps mounted on standards where the customer owns and maintains an Ornamental Street Lighting system complete with standards, luminaires with refractors, lamps and other appurtenances, together with all necessary cables extending between standards and to points of connection to Company's facilities as designated by Company. Mercury Vapor street lighting service under this schedule is limited to the luminaires being served as of December 31, 1987.

438

Data:6188de3c-0ca3-4d0c-a60b-c796b10000a1 | Open Energy Information  

Open Energy Info (EERE)

8de3c-0ca3-4d0c-a60b-c796b10000a1 8de3c-0ca3-4d0c-a60b-c796b10000a1 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: City of New Richmond, Wisconsin (Utility Company) Effective date: 2010/02/01 End date if known: Rate name: Cp-1 Small Power Service between 50kW and 200kW Demand Primary Metering and Transformer Ownership Discount Sector: Industrial Description: Power Cost Adjustment Clause - All metered rates shall be subject to a positive or negative power cost adjustment charge equivalent to the amount by which the current cost of power (per kilowatt-hour of sales) is greater or lesser than the base cost of power purchased (per kilowatt-hour of sales). The base cost of power (U) is $0.0710 per kilowatt-hour.

439

Data:43c68747-c0e6-47ca-a52d-c72a51ca6ab7 | Open Energy Information  

Open Energy Info (EERE)

8747-c0e6-47ca-a52d-c72a51ca6ab7 8747-c0e6-47ca-a52d-c72a51ca6ab7 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Prairie Land Electric Coop Inc Effective date: 2010/01/14 End date if known: Rate name: CONTROLLED PRIVATE AREA LIGHTING: MV 400W Sector: Lighting Description: To any customer for lighting of outdoor areas on a dusk to dawn, photo-controlled, unmetered basis from Cooperative's existing distribution system. No additional lamps will be installed under this schedule after the effective date of September 26, 1994. Annual Rate/Unit = $210.96 1) For each additional standard distribution pole, not longer than thirty-five (35) feet, required for such area

440

Data:0bdcbfd8-1bbb-480b-a9b3-ca816ca17d7b | Open Energy Information  

Open Energy Info (EERE)

bdcbfd8-1bbb-480b-a9b3-ca816ca17d7b bdcbfd8-1bbb-480b-a9b3-ca816ca17d7b No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Northeast Nebraska P P D Effective date: 2013/01/01 End date if known: Rate name: Annual Single Phase Sector: Commercial Description: AVAILABILITY Available to customers of the District for all farm, stock pumps, equipment, commercial and residential using less than 500 kWh per year. TYPE OF SERVICE Single-phase, 60 cycle, at available voltages. RATE: ANNUAL MINIMUM CHARGES The annual minimum charge under the above rate shall be $275.00 where 25 KVA or less of transformer capacity is required. For consumers requiring more than 25 KVA of transformer capacity, the annual minimum charge shall be increased at the rate of $12.00 for each additional KVA or fraction thereof required. Payment of the annual minimum charge will be made annually in advance of receiving service for self-read/self-bill customers. No kWh's are allowed for the annual minimum charge.

Note: This page contains sample records for the topic "ogilby mesa ca" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Academic Staff -Mechanical & Industrial Engineering (20 June 2013) ALEMAN, Dionne M. Assistant Professor (416) 978 6780 MC 319 aleman@mie.utoronto.ca  

E-Print Network (OSTI)

@mie.utoronto.ca CLEGHORN, William L. Professor (416) 978 3043 MB62 cleghrn@mie.utoronto.ca CONSENS, Mariano P. Associate@mie.utoronto.ca SHU, Lily H. Associate Professor (416) 946 3028 MC420 shu@mie.utoronto.ca SIMMONS, Craig A. Associate

Sun, Yu

442

High-Resolution Structure of the Photosynthetic Mn4Ca Catalyst from X-ray Spectroscopy  

Science Conference Proceedings (OSTI)

The application of high-resolution X-ray spectroscopy methods to study the photosynthetic water oxidizing complex, which contains a unique hetero-nuclear catalytic Mn4Ca cluster, are described. Issues of X-ray damage especially at the metal sites in the Mn4Ca cluster are discussed. The structure of the Mn4Ca catalyst at high-resolution which has so far eluded attempts of determination by X-ray diffraction, EXAFS and other spectroscopic techniques has been addressed using polarized EXAFS techniques applied to oriented PS II membrane preparations and PS II single crystals. A review of how the resolution of traditional EXAFS techniques can be improved, using methods such as range-extended EXAFS is presented, and the changes that occur in the structure of the cluster as it advances through the catalytic cycle are described. X-ray absorption and emission techniques (XANES and K? emission) have been used earlier to determine the oxidation states of the Mn4Ca cluster, and in this report we review the use of X-ray resonant Raman spectroscopy to understand the electronic structure of the Mn4Ca cluster as it cycles through the intermediate S-states.

Yachandra, Vittal; Yano, Junko; Kern, Jan; Pushkar, Yulia; Sauer, Kenneth; Glatzel, Pieter; Bergmann, Uwe; Messinger, Johannes; Zouni, Athina; Yachandra, Vittal K.

2007-08-01T23:59:59.000Z

443

Hyperfine structure of the X /sup 2/. sigma. /sup +/ ground state of Ca /sup 35/Cl and Ca /sup 37/Cl by molecular-beam, laser-rf double resonance  

Science Conference Proceedings (OSTI)

The hyperfine structure of the X /sup 2/..sigma../sup +/ state of Ca /sup 35/Cl and Ca /sup 37/Cl, unresolved in previous studies, has been investigated in detail by the molecular-beam, laser-rf, double-resonance technique. Results for the spin-rotation interaction and the dipole and quadrupole hfs constants are given in the form of Dunham coefficients so that the N'' and v'' dependence of each constant can be explicitly exhibited. The results, after dividing out the purely nuclear effects, fall between the corresponding values for CaF and CaBr, as expected.

Childs, W.J.; Cok, D.R.; Goodman, L.S.

1982-04-15T23:59:59.000Z

444

GRR/Section 4-CA-a - State Exploration Process | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 4-CA-a - State Exploration Process GRR/Section 4-CA-a - State Exploration Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 4-CA-a - State Exploration Process 04CAAExploration.pdf Click to View Fullscreen Contact Agencies California Department of Conservation, Division of Oil, Gas, and Geothermal Resources Regulations & Policies California Division of Oil, Gas, and Geothermal Resources (DOGGR) laws are found in Chapter 4 of Divison 3 of the California Public Resources Code. California Division of Oil, Gas, and Geothermal Resources regulations are found in the California Code of Regulations Title 14, Division 2, Chapter 4 California Laws for Conservation of Geothermal Resources Triggers None specified Click "Edit With Form" above to add content

445

GRR/Elements/14-CA-b.3 - Is the application complete for the Regional Water  

Open Energy Info (EERE)

Is the application complete for the Regional Water Is the application complete for the Regional Water Quality Control Board < GRR‎ | Elements Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections 14-CA-b.3 - Is the application complete for the Regional Water Quality Control Board If the application is incomplete, RWQCB will notify the applicant of deficiencies. Once the application is complete, it is forwarded to EPA to consider. Logic Chain No Parents \V/ GRR/Elements/14-CA-b.3 - Is the application complete for the Regional Water Quality Control Board (this page) \V/ No Dependents Under Development Add.png Add an Element Retrieved from "http://en.openei.org/w/index.php?title=GRR/Elements/14-CA-b.3_-_Is_the_application_complete_for_the_Regional_Water_Quality_Control_Board&oldid=482577

446

GRR/Elements/14-CA-b.2 - Review of application for completeness | Open  

Open Energy Info (EERE)

application for completeness application for completeness < GRR‎ | Elements Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections 14-CA-b.2 - Review of application for completeness RWQCB reviews the initial application to ensure that all the required information is included and all the appropriate forms have been submitted. RWQCB will notify the applicant within 30 days of any required additional submissions. Estimated Time Clock.png 30 days0.0821 years 720 hours 4.286 weeks 0.986 months No explanation of time estimate. Logic Chain No Parents \V/ GRR/Elements/14-CA-b.2 - Review of application for completeness (this page) \V/ No Dependents Under Development Add.png Add an Element Retrieved from "http://en.openei.org/w/index.php?title=GRR/Elements/14-CA-b.2_-_Review_of_application_for_completeness&oldid=482574

447

GRR/Section 18-CA-b - RCRA Process (Hazardous Waste Facility Permit) | Open  

Open Energy Info (EERE)

18-CA-b - RCRA Process (Hazardous Waste Facility Permit) 18-CA-b - RCRA Process (Hazardous Waste Facility Permit) < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18-CA-b - RCRA Process (Hazardous Waste Facility Permit) 18CABRCRAProcess (2).pdf Click to View Fullscreen Contact Agencies California Environmental Protection Agency Department of Toxic Substances Control Regulations & Policies Resource Conservation and Recovery Act 40 CRF 261 Title 22, California Code of Regulations, Division 4.5 Triggers None specified Click "Edit With Form" above to add content 18CABRCRAProcess (2).pdf 18CABRCRAProcess (2).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative

448

GRR/Section 14-CA-b - NPDES Permit | Open Energy Information  

Open Energy Info (EERE)

4-CA-b - NPDES Permit 4-CA-b - NPDES Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-CA-b - NPDES Permit 14CABNPDESPERMIT.pdf Click to View Fullscreen Contact Agencies California State Water Resources Control Board Environmental Protection Agency Regulations & Policies Clean Water Act Porter-Cologne Water Quality Control Act Triggers None specified Click "Edit With Form" above to add content 14CABNPDESPERMIT.pdf 14CABNPDESPERMIT.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative A National Pollutant Discharge Elimination System (NPDES) permit is required for point source discharges to surface water. The permits are

449

GRR/Section 6-CA-b - Construction Storm Water Program | Open Energy  

Open Energy Info (EERE)

6-CA-b - Construction Storm Water Program 6-CA-b - Construction Storm Water Program < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 6-CA-b - Construction Storm Water Program 06CABConstructionStormWaterProgram.pdf Click to View Fullscreen Contact Agencies California State Water Resources Control Board Regulations & Policies 40 CFR 122.2: Definitions Triggers None specified Click "Edit With Form" above to add content 06CABConstructionStormWaterProgram.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Construction activities requiring a Construction Storm Water General Permit must submit a Storm Water Pollution Prevention Plan and a Construction

450

GRR/Section 14-CA-d - Section 401 Water Quality Certification | Open Energy  

Open Energy Info (EERE)

GRR/Section 14-CA-d - Section 401 Water Quality Certification GRR/Section 14-CA-d - Section 401 Water Quality Certification < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-CA-d - Section 401 Water Quality Certification 14CADSection401WaterQualityCertification (1).pdf Click to View Fullscreen Contact Agencies California State Water Resources Control Board Regulations & Policies Section 401 Clean Water Act (33 U.S.C. 1251 et seq.) Porter-Cologne Water Quality Control Act Code of Regulations Title 23, Section 3855 et. seq. Triggers None specified Click "Edit With Form" above to add content 14CADSection401WaterQualityCertification (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

451

GRR/Section 15-CA-b - Air Permit - Operating Permit | Open Energy  

Open Energy Info (EERE)

15-CA-b - Air Permit - Operating Permit 15-CA-b - Air Permit - Operating Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 15-CA-b - Air Permit - Operating Permit 15CABAirPermitOperatingPermit.pdf Click to View Fullscreen Contact Agencies California Air Resources Board Regulations & Policies Clean Air Act (42 USC 1857 et seq.) California Air Pollution Control Laws Triggers None specified Click "Edit With Form" above to add content 15CABAirPermitOperatingPermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative A developer operating a facility that emits air pollutants must obtain an

452

Energy Efficiency and Conservation Block Grant Program CA-City-San Buenaventura (Ventura)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CA-City-San Buenaventura (Ventura) CA-City-San Buenaventura (Ventura) Location: City San Buenaventura CA (Ventura) American Recovery and Reinvestment Act: Proposed Action or Project Description 1) Public private partnership joint effort to meet clean air mandates (greenhouse gas reduction modeling and cost effective strategy development), 2) direct install program for non-profit organizations, 3) provide training to local workforce on energy efficiency building retrofits, 4) retrofit high pressure sodium street lights with energy efficiency light fixtures, and 5) install 300 kWh DC solar electric system and AC/DC inverters and battery power packs at historic City Hall (install as parking lot canopy or on top of concrete roof water reservoir) Conditions: None Categorical Exclusion(s) Applied: A9, A11, B2.5, B5.1

453

GRR/Section 14-CA-c - Underground Injection Control Permit | Open Energy  

Open Energy Info (EERE)

14-CA-c - Underground Injection Control Permit 14-CA-c - Underground Injection Control Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-CA-c - Underground Injection Control Permit 14CACUndergroundInjectionControl.pdf Click to View Fullscreen Contact Agencies California Department of Conservation, Division of Oil, Gas, and Geothermal Resources Regulations & Policies Division 3, Chapter 4 of the California Public Resources Code Title 14, Division 2, Chapter 4 of the California Code of Regulations Title 40, Code of Federal Regulations, Part 144 Title 40, Code of Federal Regulations, Part 146 Triggers None specified Click "Edit With Form" above to add content 14CACUndergroundInjectionControl.pdf Error creating thumbnail: Page number not in range.

454

GRR/Elements/14-CA-c.3 - Application For Proposed Underground Injection  

Open Energy Info (EERE)

CA-c.3 - Application For Proposed Underground Injection CA-c.3 - Application For Proposed Underground Injection Project < GRR‎ | Elements Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections 14-CA-c.3 - Application For Proposed Underground Injection Project Under the Memorandum of Agreement Between State Water Resources Control Board and DOGGR geothermal operators must file an application for underground geothermal wastewater injection with the appropriate DOGGR district office. The application must include: A chemical analysis to characterize the proposed injection fluid; A chemical analysis from the proposed zone of injection considering the characteristics of the zone; and The depth, location, and injection formation of the proposed well. Logic Chain

455

GRR/Section 9-CA-a - State Environmental Process | Open Energy Information  

Open Energy Info (EERE)

9-CA-a - State Environmental Process 9-CA-a - State Environmental Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 9-CA-a - State Environmental Process 09CAAStateEnvironmentalProcessUse.pdf Click to View Fullscreen Contact Agencies California Environmental Protection Agency California Natural Resources Agency Regulations & Policies California Environmental Quality Act (CEQA) Statute PRC 21000-21177 and Guidelines CCR Title 14, Div 6, Chap 3, 15000-15387 Statutory Exemptions Categorical Exemptions Triggers None specified Click "Edit With Form" above to add content 09CAAStateEnvironmentalProcessUse.pdf 09CAAStateEnvironmentalProcessUse.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

456

GRR/Elements/14-CA-c.12 - Does the DOGGR Approve the Underground Injection  

Open Energy Info (EERE)

- Does the DOGGR Approve the Underground Injection - Does the DOGGR Approve the Underground Injection Project < GRR‎ | Elements Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections 14-CA-c.12 - Does the DOGGR Approve the Underground Injection Project After the end of the comment period and after reviewing any proposed revisions furnished by the Regional Board, the State Board decides whether to approve the Underground Injection Project. Logic Chain No Parents \V/ GRR/Elements/14-CA-c.12 - Does the DOGGR Approve the Underground Injection Project (this page) \V/ No Dependents Under Development Add.png Add an Element Retrieved from "http://en.openei.org/w/index.php?title=GRR/Elements/14-CA-c.12_-_Does_the_DOGGR_Approve_the_Underground_Injection_Project&oldid=539630

457

DOI-BLM-CA-ES-2013-002+1793-EIS | Open Energy Information  

Open Energy Info (EERE)

DOI-BLM-CA-ES-2013-002+1793-EIS DOI-BLM-CA-ES-2013-002+1793-EIS Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-CA-ES-2013-002+1793-EIS EIS at Long Valley Caldera Geothermal Area for Geothermal/Power Plant Casa Diablo IV Geothermal Development Project General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EIS Applicant ORNI 50 LLC Consultant Environmental Science Associates Geothermal Area Long Valley Caldera Geothermal Area Project Location California Project Phase Geothermal/Power Plant Techniques Time Frame (days) Application Time 1272 NEPA Process Time 269 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office BLM Central California District Office Managing Field Office BLM Bishop Field Office

458

Structure of the Kinase Domain of CaMKII and Modeling the Holoenzyme  

NLE Websites -- All DOE Office Websites (Extended Search)

Structure of the Kinase Domain of CaMKII and Modeling the Holoenzyme Print Structure of the Kinase Domain of CaMKII and Modeling the Holoenzyme Print The rate and intensity of calcium (Ca2+) currents that oscillate through the plasma membrane around a cell affect such diverse phenomena as fertilization, the cardiac rhythm, and even the formation of memories. How does the cell sense these digital oscillations and transduce them into a cellular signal, such as changes in phosphorylation (addition of a phosphate group to a protein) or gene transcription? A group from the University of California, Berkeley, the Yale University School of Medicine, and Berkeley Lab has combined protein crystallography and small-angle x-ray scattering to give a first glimpse into what this conversion may look like as well as the structural consequences of the conversion.

459

GRR/Section 7-CA-d - CPCN for Small Power Plant Exemption | Open Energy  

Open Energy Info (EERE)

GRR/Section 7-CA-d - CPCN for Small Power Plant Exemption GRR/Section 7-CA-d - CPCN for Small Power Plant Exemption < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 7-CA-d - CPCN for Small Power Plant Exemption 07CADCPCNForSmallPowerPlantExemption.pdf Click to View Fullscreen Contact Agencies California Public Utilities Commission Regulations & Policies General Order 131-D California Environmental Quality Act Triggers None specified Click "Edit With Form" above to add content 07CADCPCNForSmallPowerPlantExemption.pdf 07CADCPCNForSmallPowerPlantExemption.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative A public utility seeking to construct a new generation facility in excess

460

GRR/Elements/14-CA-b.6 - Does RWQCB decide to allow discharge | Open Energy  

Open Energy Info (EERE)

RWQCB decide to allow discharge RWQCB decide to allow discharge < GRR‎ | Elements Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections 14-CA-b.6 - Does RWQCB decide to allow discharge Once the RWQCB and EPA deem the application complete, the RWQCB makes an initial determination whether the application is appropriate for consideration or if it should be denied outright. If the discharge is denied outright, the process ends. If RWQCB decides to consider the application, the public process is triggered. Logic Chain No Parents \V/ GRR/Elements/14-CA-b.6 - Does RWQCB decide to allow discharge (this page) \V/ No Dependents Under Development Add.png Add an Element Retrieved from "http://en.openei.org/w/index.php?title=GRR/Elements/14-CA-b.6_-_Does_RWQCB_decide_to_allow_discharge&oldid=482583

Note: This page contains sample records for the topic "ogilby mesa ca" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

GRR/Elements/14-CA-c.6 - Comment on Application (Optional) | Open Energy  

Open Energy Info (EERE)

Comment on Application (Optional) Comment on Application (Optional) < GRR‎ | Elements Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections 14-CA-c.6 - Comment on Application (Optional) The DOGGR Regional Board receives the option to comment on the application prior to the issuance of a Draft Project Approval Letter for review. The DOGGR Regional Board shall furnish any comments to the DOGGR State Board within 14 days of the applicant submitting the application. Logic Chain No Parents \V/ GRR/Elements/14-CA-c.6 - Comment on Application (Optional) (this page) \V/ No Dependents Under Development Add.png Add an Element Retrieved from "http://en.openei.org/w/index.php?title=GRR/Elements/14-CA-c.6_-_Comment_on_Application_(Optional)&oldid=539608

462

GRR/Section 5-CA-a - Drilling and Well Development | Open Energy  

Open Energy Info (EERE)

5-CA-a - Drilling and Well Development 5-CA-a - Drilling and Well Development < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 5-CA-a - Drilling and Well Development 05CAADrillingApplicationProcess (1).pdf Click to View Fullscreen Contact Agencies California Department of Conservation, Division of Oil, Gas, and Geothermal Resources Triggers None specified Click "Edit With Form" above to add content 05CAADrillingApplicationProcess (1).pdf 05CAADrillingApplicationProcess (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The California Department of Conservation, Division of Oil and Gas (DOGGR) administers geothermal well drilling activities (permitting, drilling,

463

Clean Air Cool Planet (CA-CP) Small Town Carbon Calculator | Open Energy  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Clean Air Cool Planet (CA-CP) Small Town Carbon Calculator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Clean Air Cool Planet (CA-CP) Small Town Carbon Calculator Focus Area: Crosscutting Topics: Opportunity Assessment & Screening Website: www.cleanair-coolplanet.org/for_communities/stocc.php Equivalent URI: cleanenergysolutions.org/content/clean-air-cool-planet-ca-cp-small-tow Language: English Policies: Deployment Programs DeploymentPrograms: Training & Education The Small Town Carbon Calculator (STOCC) was developed to help small towns address the growing costs of municipal energy use and emissions. It is a tool to inventory greenhouse gas emissions as well as energy use and to

464

More Than 350 Now at Work Building CA Valley Solar Plant | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

More Than 350 Now at Work Building CA Valley Solar Plant More Than 350 Now at Work Building CA Valley Solar Plant More Than 350 Now at Work Building CA Valley Solar Plant February 27, 2012 - 12:13pm Addthis The California Valley Solar Ranch facility is creating clean energy jobs in San Luis Obispo County, California. Sonia Taylor Loan Programs Office What are the key facts? About 350 skilled workers are busy constructing the 250-megawatt California Valley Solar Ranch. The facility is expected to avoid over 425,000 metric tons of carbon dioxide annually. Once operational, the new solar facility is expected to provide enough clean electricity to power 64,000 homes. Last fall, the Energy Department finalized a $1.2 billion loan guarantee in support of the California Valley Solar Ranch (CVSR) -- a new solar facility in San Luis Obispo County, California.

465

GRR/Section 8-CA-d - CAISO Queue Cluster Process | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 8-CA-d - CAISO Queue Cluster Process GRR/Section 8-CA-d - CAISO Queue Cluster Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 8-CA-d - CAISO Queue Cluster Process 08CADCAISOQueueClusterProcess.pdf Click to View Fullscreen Contact Agencies California Independent System Operator Regulations & Policies List of FERC CAISO Orders FERC Order 1000 - Transmission Planning and Cost Allocation Triggers None specified Click "Edit With Form" above to add content 08CADCAISOQueueClusterProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative See the proposed transmission planning and generator interconnection

466

GRR/Section 19-CA-a - Water Access and Water Rights Issues | Open Energy  

Open Energy Info (EERE)

GRR/Section 19-CA-a - Water Access and Water Rights Issues GRR/Section 19-CA-a - Water Access and Water Rights Issues < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-CA-a - Water Access and Water Rights Issues 19CAAWaterAccessWaterRightsIssues.pdf Click to View Fullscreen Contact Agencies California State Water Resources Control Board California Division of Water Rights Regulations & Policies California Water Code Triggers None specified Click "Edit With Form" above to add content 19CAAWaterAccessWaterRightsIssues.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative California's water acquisition process is governed by state law and common

467

GRR/Elements/18-CA-c.1 - What Level of Hazardous Waste Facility Permit Does  

Open Energy Info (EERE)

GRR/Elements/18-CA-c.1 - What Level of Hazardous Waste Facility Permit Does GRR/Elements/18-CA-c.1 - What Level of Hazardous Waste Facility Permit Does the Facility Require < GRR‎ | Elements Jump to: navigation, search Edit 18-CA-b.1 - What Level of Hazardous Waste Facility Permit Does the Facility Require California employs a five-tier permitting program which imposes regulatory requirements matching the degree of risk posed by the level of hazardous waste: * The Full Permit Tier includes all facilities requiring a RCRA permit as well as selected non-RCRA activities under Title 22 California Code of Regulations. * The Standardized Permit Tier includes facilities that manage waste not regulated by RCRA, but regulated as hazardous waste in California. * Onsite Treatment Permits (3-Tiered) includes onsite treatment of non-RCRA waste regulated in California.

468

GRR/Section 7-CA-b - State Plant Commissioning Process, Small Power Plant  

Open Energy Info (EERE)

7-CA-b - State Plant Commissioning Process, Small Power Plant 7-CA-b - State Plant Commissioning Process, Small Power Plant Exception < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 7-CA-b - State Plant Commissioning Process, Small Power Plant Exception 07CABPlantCommissioningProcessSmallPowerPlantExemption.pdf Click to View Fullscreen Contact Agencies California Energy Commission Regulations & Policies California Code of Regulations, Title 20 - Public Utilities and Energy Triggers None specified Click "Edit With Form" above to add content 07CABPlantCommissioningProcessSmallPowerPlantExemption.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

469

GRR/Section 15-CA-a - Air Permit - Authority to Construct | Open Energy  

Open Energy Info (EERE)

GRR/Section 15-CA-a - Air Permit - Authority to Construct GRR/Section 15-CA-a - Air Permit - Authority to Construct < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 15-CA-a - Air Permit - Authority to Construct 15CAAAirPermitAuthorityToConstruct (1).pdf Click to View Fullscreen Contact Agencies California Air Resources Board Regulations & Policies Clean Air Act (42 USC 1857 et seq.) California Air Pollution Control Laws Triggers None specified Click "Edit With Form" above to add content 15CAAAirPermitAuthorityToConstruct (1).pdf 15CAAAirPermitAuthorityToConstruct (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative A developer seeking to construct, modify, or operate a facility or