National Library of Energy BETA

Sample records for offshore wind facility

  1. New Research Facility to Remove Hurdles to Offshore Wind and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research Facility to Remove Hurdles to Offshore Wind and Water Power Development New Research Facility to Remove Hurdles to Offshore Wind and Water Power Development January 10, ...

  2. Tillamook Offshore Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Tillamook Offshore Wind Farm Jump to: navigation, search Name Tillamook Offshore Wind Farm Facility Tillamook Offshore Wind Farm Sector Wind energy Facility Type Offshore Wind...

  3. Galveston Offshore Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Galveston Offshore Wind Farm Jump to: navigation, search Name Galveston Offshore Wind Farm Facility Galveston Offshore Wind Farm Sector Wind energy Facility Type Offshore Wind...

  4. New Facility to Shed Light on Offshore Wind Resource (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-05-01

    Chesapeake Light Tower facility will gather key data for unlocking the nation's vast offshore wind resource.

  5. New Facility to Shed Light on Offshore Wind Resource (Fact Sheet...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photo by Rick Driscoll, NREL 25660 Chesapeake Light Tower facility will gather key data for unlocking the nation's vast offshore wind resource. According to the National Offshore ...

  6. Offshore Wind

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... HomeStationary PowerEnergy Conversion EfficiencyWind EnergyOffshore Wind Offshore Wind Tara Camacho-Lopez 2016-0... March 2014, Barcelona, Spain, PO 225. Griffith, D.T., and ...

  7. Rhode Island Offshore Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Rhode Island Offshore Wind Farm Jump to: navigation, search Name Rhode Island Offshore Wind Farm Facility Rhode Island Offshore Wind Farm Sector Wind energy Facility Type Offshore...

  8. Mustang Island Offshore Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Island Offshore Wind Farm Jump to: navigation, search Name Mustang Island Offshore Wind Farm Facility Mustang Island Offshore Wind Farm Sector Wind energy Facility Type Offshore...

  9. Michigan Offshore Wind Pilot Project | Open Energy Information

    Open Energy Info (EERE)

    Michigan Offshore Wind Pilot Project Jump to: navigation, search Name Michigan Offshore Wind Pilot Project Facility Michigan Offshore Wind Pilot Project Sector Wind energy Facility...

  10. Offshore Wind Power USA

    Broader source: Energy.gov [DOE]

    The Offshore Wind Power USA conference provides the latest offshore wind market updates and forecasts.

  11. New Research Facility to Remove Hurdles to Offshore Wind and Water Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development | Department of Energy Research Facility to Remove Hurdles to Offshore Wind and Water Power Development New Research Facility to Remove Hurdles to Offshore Wind and Water Power Development January 10, 2013 - 1:59pm Addthis This is an excerpt from the Fourth Quarter 2012 edition of the Wind Program R&D Newsletter. Virginia Beach, Virginia - A new U.S. Department of Energy (DOE) research facility could help bring the United States closer to generating power from the winds and

  12. Garden State Offshore Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Developer Garden State Offshore Energy Location Offshore from Avalon NJ Coordinates 39.08, -74.310556...

  13. A National Offshore Wind Strategy: Creating an Offshore Wind...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in the United States A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in ...

  14. Wind Offshore Port Readiness | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Offshore Port Readiness Wind Offshore Port Readiness This study will aid decision-makers in making informed decisions regarding the choice of ports for specific offshore projects, and the types of investments that would be required to make individual port facilities suitable to serve offshore wind manufacturing, installation and/or operations. Assessment of Ports for Offshore Wind Development in the United States (4.37 MB) More Documents & Publications U.S. Offshore Wind Port Readiness

  15. A National Offshore Wind Strategy: Creating an Offshore Wind Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industry in the United States | Department of Energy A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in the United States A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in the United States Strategic plan for accelerating the responsible deployment of offshore wind energy in the United States. A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in the United States. (1.35 MB) More Documents & Publications

  16. NREL: Wind Research - Offshore Wind Resource Characterization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Resource Characterization Map of the United States, showing the wind potential of offshore areas across the country. Enlarge image US offshore wind speed estimates at 90-m ...

  17. Articles about Offshore Wind

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    unprecedented information on offshore wind patterns, making it possible to harness wind power in entirely new locations.

    Mon, 07 Dec 2015 18:52:00 +0000...

  18. Maryland Offshore Wind Annual Meeting

    Broader source: Energy.gov [DOE]

    This event will provide updates on regional offshore wind projects and will help attendees understand Maryland's offshore wind project and the team members required. Participants will also learn...

  19. Articles about Offshore Wind | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Offshore Wind Articles about Offshore Wind RSS Below are stories about offshore wind featured by the U.S. Department of Energy (DOE) Wind Program. December 7, 2015 Articles about Offshore Wind Wind Measurement Buoy Advances Offshore Wind Energy A next-generation buoy will provide unprecedented information on offshore wind patterns, making it possible to harness wind power in entirely new locations. October 27, 2015 Articles about Offshore Wind Innovative Study Helps Offshore Wind Developers

  20. NREL: Wind Research - Offshore Wind Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL's Offshore Wind Testing Capabilities 35 years of wind turbine testing experience ... Testing Applying 35 years of wind turbine testing expertise, NREL has developed ...

  1. NREL: Wind Research - Offshore Wind Turbine Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Offshore Wind Turbine Research Photo of a European offshore wind farm. Photo by Siemens For more than eight years, NREL has worked with the U.S. Department of Energy (DOE) to become an international leader in offshore wind energy research. NREL's offshore wind turbine research capabilities focus on critical areas that reflect the long-term needs of the industry and DOE. National Wind Technology Center (NWTC) researchers are perpetually exploring new wind and water power concepts, materials, and

  2. Offshore Wind Research (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This 2-page fact sheet describes NREL's offshore wind research and development efforts and capabilities. The National Renewable Energy Laboratory is internationally recognized for offshore wind energy research and development (R&D). Its experience and capabilities cover a wide spectrum of wind energy disciplines. NREL's offshore wind R&D efforts focus on critical areas that address the long-term needs of the offshore wind energy industry and the Department of Energy (DOE). R&D efforts include: (1) Developing offshore design tools and methods; (2) Collaborating with international partners; (3) Testing offshore systems and developing standards; (4) Conducting economic analyses; (5) Characterizing offshore wind resources; and (6) Identifying and mitigating offshore wind grid integration challenges and barriers. NREL has developed and maintains a robust, open-source, modular computer-aided engineering (CAE) tool, known as FAST. FAST's state-of-the-art capabilities provide full dynamic system simulation for a range of offshore wind systems. It models the coupled aerodynamic, hydrodynamic, control system, and structural response of offshore wind systems to support the development of innovative wind technologies that are reliable and cost effective. FAST also provides dynamic models of wind turbines on offshore fixed-bottom systems for shallow and transitional depths and floating-platform systems in deep water, thus enabling design innovation and risk reduction and facilitating higher performance designs that will meet DOE's cost of energy, reliability, and deployment objectives.

  3. Long Island New York City Offshore Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Long Island New York City Offshore Wind Farm Jump to: navigation, search Name Long Island New York City Offshore Wind Farm Facility Long Island New York City Offshore Wind Farm...

  4. U.S. Offshore Wind Port Readiness

    SciTech Connect (OSTI)

    C. Elkinton, A. Blatiak, H. Ameen

    2013-10-13

    This study will aid decision-makers in making informed decisions regarding the choice of ports for specific offshore projects, and the types of investments that would be required to make individual port facilities suitable to serve offshore wind manufacturing, installation and/or operations.

  5. DOE Offers Conditional Commitment to Cape Wind Offshore Wind...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Offers Conditional Commitment to Cape Wind Offshore Wind Generation Project DOE Offers Conditional Commitment to Cape Wind Offshore Wind Generation Project September 11, 2014 - ...

  6. Offshore Wind Accelerator | Open Energy Information

    Open Energy Info (EERE)

    search Name: Offshore Wind Accelerator Place: United Kingdom Sector: Wind energy Product: Research and development initiative aimed at cutting the cost of offshore wind energy....

  7. Norfolk Offshore Wind NOW | Open Energy Information

    Open Energy Info (EERE)

    Norfolk Offshore Wind NOW Jump to: navigation, search Name: Norfolk Offshore Wind (NOW) Place: United Kingdom Sector: Wind energy Product: Formed to develop the 100MW Cromer...

  8. WINDExchange: Offshore 90-Meter Wind Maps and Wind Resource Potential

    Wind Powering America (EERE)

    Offshore 90-Meter Wind Maps and Wind Resource Potential The U.S. Department of Energy provides 90-meter (m) height, high-resolution wind maps and estimates of the total offshore wind potential that would be possible from developing the available offshore areas. The offshore wind resource maps can be used as a guide to identify regions for commercial wind development. A map of the United States showing offshore wind resource. Washington offshore wind map. Oregon offshore wind map. California

  9. Energy from Offshore Wind: Preprint

    SciTech Connect (OSTI)

    Musial, W.; Butterfield, S.; Ram, B.

    2006-02-01

    This paper provides an overview of the nascent offshore wind energy industry including a status of the commercial offshore industry and the technologies that will be needed for full market development.

  10. Articles about Offshore Wind | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Offshore Wind Articles about Offshore Wind RSS Below are stories about offshore wind featured by the U.S. Department of Energy (DOE) Wind Program. December 7, 2015 Articles about...

  11. Offshore Wind Potential Tables

    Wind Powering America (EERE)

    Offshore wind resource by state and wind speed interval within 50 nm of shore. Wind Speed at 90 m (m/s) 7.0 - 7.5 7.5 - 8.0 8.0 - 8.5 8.5 - 9.0 9.0 - 9.5 9.5 - 10.0 >10.0 Total >7.0 State Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) California 11,439 (57,195) 24,864 (124,318) 23,059 (115,296) 22,852 (114,258) 13,185 (65,924) 15,231 (76,153) 6,926 (34,629) 117,555 (587,773) Connecticut 530 (2,652) 702 (3,508) 40

  12. Energy Department Announces Offshore Wind Demonstration Awardees...

    Energy Savers [EERE]

    Offshore Wind Demonstration Awardees Energy Department Announces Offshore Wind Demonstration Awardees January 10, 2013 - 1:08pm Addthis This is an excerpt from the Fourth Quarter ...

  13. Three Offshore Wind Advanced Technology Demonstration Projects...

    Energy Savers [EERE]

    Three Offshore Wind Advanced Technology Demonstration Projects Receive Phase 2 Funding Three Offshore Wind Advanced Technology Demonstration Projects Receive Phase 2 Funding ...

  14. Offshore Wind Technology Development Projects | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Offshore Wind Technology Development Projects The Wind Program invests in projects to develop the engineering modeling and analysis tools required to lower overall offshore ...

  15. Lake Michigan Offshore Wind Feasibility Assessment

    SciTech Connect (OSTI)

    Boezaart, Arnold; Edmonson, James; Standridge, Charles; Pervez, Nahid; Desai, Neel; Williams, Bruce; Clark, Aaron; Zeitler, David; Kendall, Scott; Biddanda, Bopi; Steinman, Alan; Klatt, Brian; Gehring, J. L.; Walter, K.; Nordman, Erik E.

    2014-06-30

    The purpose of this project was to conduct the first comprehensive offshore wind assessment over Lake Michigan and to advance the body of knowledge needed to support future commercial wind energy development on the Great Lakes. The project involved evaluation and selection of emerging wind measurement technology and the permitting, installation and operation of the first mid-lake wind assessment meteorological (MET) facilities in Michigan’s Great Lakes. In addition, the project provided the first opportunity to deploy and field test floating LIDAR and Laser Wind Sensor (LWS) technology, and important research related equipment key to the sitting and permitting of future offshore wind energy development in accordance with public participation guidelines established by the Michigan Great Lakes Wind Council (GLOW). The project created opportunities for public dialogue and community education about offshore wind resource management and continued the dialogue to foster Great Lake wind resource utilization consistent with the focus of the GLOW Council. The technology proved to be effective, affordable, mobile, and the methods of data measurement accurate. The public benefited from a substantial increase in knowledge of the wind resources over Lake Michigan and gained insights about the potential environmental impacts of offshore wind turbine placements in the future. The unique first ever hub height wind resource assessment using LWS technology over water and development of related research data along with the permitting, sitting, and deployment of the WindSentinel MET buoy has captured public attention and has helped to increase awareness of the potential of future offshore wind energy development on the Great Lakes. Specifically, this project supported the acquisition and operation of a WindSentinel (WS) MET wind assessment buoy, and associated research for 549 days over multiple years at three locations on Lake Michigan. Four research objectives were defined for the

  16. Apex Offshore Phase 2 | Open Energy Information

    Open Energy Info (EERE)

    2 Jump to: navigation, search Name Apex Offshore Phase 2 Facility Apex Offshore Phase 2 Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Apex Wind...

  17. Apex Offshore Phase 1 | Open Energy Information

    Open Energy Info (EERE)

    1 Jump to: navigation, search Name Apex Offshore Phase 1 Facility Apex Offshore Phase 1 Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Apex Wind...

  18. Offshore Wind Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Projects Offshore Wind Projects This report covers the Wind and Water Power Program's offshore wind energy projects from fiscal years 2006 to 2016. Offshore Wind Energy Projects 2006-2016 (4.2 MB) More Documents & Publications Testing, Manufacturing, and Component Development Projects Wind Integration, Transmission, and Resource Assessment and Characterization Projects Wind Integration, Transmission, and Resource Assessment and Characterization Projects

  19. NREL: Wind Research - NREL Supports Innovative Offshore Wind...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Supports Innovative Offshore Wind Energy Projects Demonstration Projects Eligible for ... it would fund seven offshore wind demonstration projects as part of an effort to ...

  20. EA-1970: Fishermen's Energy LLC Offshore Wind Demonstration Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0: Fishermen's Energy LLC Offshore Wind Demonstration Project, offshore Atlantic City, New Jersey EA-1970: Fishermen's Energy LLC Offshore Wind Demonstration Project, offshore ...

  1. Offshore Wind Power | Open Energy Information

    Open Energy Info (EERE)

    Offshore Wind Power Place: St Albans, United Kingdom Zip: AL1 3AW Sector: Wind energy Product: Formed to develop offshore wind farms around the coast of Great Britain. References:...

  2. Offshore Ostsee Wind AG | Open Energy Information

    Open Energy Info (EERE)

    Ostsee Wind AG Jump to: navigation, search Name: Offshore Ostsee Wind AG Place: Brgerende, Mecklenburg-Western Pomerania, Germany Zip: 18211 Sector: Wind energy Product: Joint...

  3. Assessment of Offshore Wind Energy Resources for the United States...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assessment of Offshore Wind Energy Resources for the United States Assessment of Offshore Wind Energy Resources for the United States This report summarizes the offshore wind ...

  4. Accelerating Offshore Wind Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Offshore Wind Development Accelerating Offshore Wind Development December 12, 2012 - 2:15pm Addthis Matthew Loveless Matthew Loveless Data Integration Specialist, Office of Public Affairs What does this project do? The 2012 investments support innovative offshore installations for commercial deployment by 2017. The 2011 grants were targeted at projects that aim to either improve the technology used for offshore wind generation or remove the market barriers to offshore wind generation. View the

  5. NREL: Wind Research - Grid Integration of Offshore Wind

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grid Integration of Offshore Wind Photograph of a wind turbine in the ocean. Located about 10 kilometers off the coast of Arklow, Ireland, the Arklow Bank offshore wind park ...

  6. Offshore Wind Energy Market Overview (Presentation)

    SciTech Connect (OSTI)

    Baring-Gould, I.

    2013-07-01

    This presentation describes the current international market conditions regarding offshore wind, including the breakdown of installation costs, how to reduce costs, and the physical siting considerations considered when planning offshore wind construction. The presentation offers several examples of international existing and planned offshore wind farm sites and compares existing international offshore resources with U.S. resources. The presentation covers future offshore wind trends and cites some challenges that the United States must overcome before it will be able to fully develop offshore wind sites.

  7. Articles about Offshore Wind | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    August 29, 2014 New Reports Highlight Major Potential in Offshore Wind Energy The Energy Department today announced a new report showing steady progress for the U.S. offshore wind...

  8. INFOGRAPHIC: Offshore Wind Outlook | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    INFOGRAPHIC: Offshore Wind Outlook INFOGRAPHIC: Offshore Wind Outlook December 12, 2012 - 2:15pm Addthis According to a new report commissioned by the Energy Department, a U.S. ...

  9. New Report Characterizes Existing Offshore Wind Grid Interconnection...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report Characterizes Existing Offshore Wind Grid Interconnection Capabilities New Report Characterizes Existing Offshore Wind Grid Interconnection Capabilities September 3, 2014 - ...

  10. European Wind Atlas: Offshore | Open Energy Information

    Open Energy Info (EERE)

    URI: cleanenergysolutions.orgcontenteuropean-wind-atlas-offshore,http:c Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance This...

  11. Offshore Wind Research, Development, and Deployment Projects...

    Broader source: Energy.gov (indexed) [DOE]

    Offshore Wind Research, Development, and Deployment Projects View All Maps Addthis Careers & Internships EERE Home Contact EERE Energy.gov

  12. Articles about Offshore Wind | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    January 10, 2013 Energy Department Announces Offshore Wind Demonstration Awardees This is an excerpt from the Fourth Quarter 2012 edition of the Wind Program R&D Newsletter....

  13. Offshore Wind Energy | Open Energy Information

    Open Energy Info (EERE)

    Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Offshore Wind Energy Jump to: navigation, search The Middelgrunden Wind Farm was established as a...

  14. Energy Department Announces Offshore Wind Demonstration Awardees |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Announces Offshore Wind Demonstration Awardees Energy Department Announces Offshore Wind Demonstration Awardees January 10, 2013 - 1:08pm Addthis This is an excerpt from the Fourth Quarter 2012 edition of the Wind Program R&D Newsletter. The U.S. Department of Energy (DOE) Wind Program recently announced seven technology demonstration partnerships with broad consortia that are developing breakthrough offshore wind energy generation projects. The primary goals of

  15. DOE Offers Conditional Commitment to Cape Wind Offshore Wind Generation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project | Department of Energy Offers Conditional Commitment to Cape Wind Offshore Wind Generation Project DOE Offers Conditional Commitment to Cape Wind Offshore Wind Generation Project September 11, 2014 - 3:26pm Addthis The U.S. Department of Energy (DOE) recently announced the first step toward issuing a $150 million loan guarantee to support the construction of the Cape Wind offshore wind project with a conditional commitment to Cape Wind Associates, LLC. The project could be the first

  16. National Offshore Wind Energy Grid Interconnection Study

    SciTech Connect (OSTI)

    Daniel, John P.; Liu, Shu; Ibanez, Eduardo; Pennock, Ken; Reed, Greg; Hanes, Spencer

    2014-07-30

    The National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) considers the availability and potential impacts of interconnecting large amounts of offshore wind energy into the transmission system of the lower 48 contiguous United States. A total of 54GW of offshore wind was assumed to be the target for the analyses conducted. A variety of issues are considered including: the anticipated staging of offshore wind; the offshore wind resource availability; offshore wind energy power production profiles; offshore wind variability; present and potential technologies for collection and delivery of offshore wind energy to the onshore grid; potential impacts to existing utility systems most likely to receive large amounts of offshore wind; and regulatory influences on offshore wind development. The technologies considered the reliability of various high-voltage ac (HVAC) and high-voltage dc (HVDC) technology options and configurations. The utility system impacts of GW-scale integration of offshore wind are considered from an operational steady-state perspective and from a regional and national production cost perspective.

  17. Tackling the Challenges of Offshore Wind | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tackling the Challenges of Offshore Wind Tackling the Challenges of Offshore Wind January 10, ... Charlestown, Massachusetts-While electricity produced by land-based wind farms in the ...

  18. Strengthening America's Energy Security with Offshore Wind (Fact Sheet) (Revised)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01

    This fact sheet provides a brief description of offshore wind energy development in the U.S. and DOE's Wind Program offshore wind R&D activities.

  19. EIS-0470: Cape Wind Energy Project, Nantucket Sound, Offshore...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0: Cape Wind Energy Project, Nantucket Sound, Offshore of Massachusetts EIS-0470: Cape Wind Energy Project, Nantucket Sound, Offshore of Massachusetts EIS-0470: Cape Wind Energy ...

  20. Foundation for Offshore Wind Energy | Open Energy Information

    Open Energy Info (EERE)

    for Offshore Wind Energy Jump to: navigation, search Name: Foundation for Offshore Wind Energy Place: Varel, Germany Zip: D-26316 Sector: Wind energy Product: Foundation...

  1. Accelerating Offshore Wind Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Accelerating Offshore Wind Development Accelerating Offshore Wind Development Click on a project for more information. The Energy Department has selected seven projects that will accelerate the commercialization of innovative offshore wind technologies in the United States. Each project will receive up to $4 million from the Energy Department to complete the engineering, site evaluation, and planning phase of their project. Upon completion of this phase, the Energy Department will select the up

  2. Oregon Department of Energy Webinar: Offshore Wind

    Broader source: Energy.gov [DOE]

    The intended audience for this webinar on offshore wind basics is decision-makers, energy industry practitioners, utilities, and those knowledgeable about renewable energy. The webinar will feature...

  3. Offshore Wind Advanced Technology Demonstration Projects | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Technology Demonstration Projects Offshore Wind Advanced Technology Demonstration Projects With roughly 80% of the U.S. electricity demand originating from coastal states, ...

  4. WINDExchange Webinar: Offshore Wind Market Update

    Broader source: Energy.gov [DOE]

    Aaron Smith, an energy analyst at the National Renewable Energy Laboratory, will present an overview and update of the U.S. offshore wind market.

  5. Assessment of Offshore Wind Energy Potential in the United States (Poster)

    SciTech Connect (OSTI)

    Elliott, D.; Schwartz, M.; Haymes, S.; Heimiller, D.; Musial, W.

    2011-05-01

    The development of an offshore wind resource database is one of the first steps necessary to understand the magnitude of the resource and to plan the distribution and development of future offshore wind power facilities. The U.S. Department of Energy supported the production of offshore wind resource maps and potential estimates for much of the United States. This presentation discusses NREL's 2010 offshore wind resources report; current U.S., regional, and state offshore maps; methodology for the wind mapping and validation; wind potential estimates; the Geographic Information Systems database; and future work and conclusions.

  6. Offshore Wind Turbines Estimated Noise from Offshore Wind Turbine, Monhegan Island, Maine Addendum 2

    SciTech Connect (OSTI)

    Aker, Pamela M.; Jones, Anthony M.; Copping, Andrea E.

    2011-03-01

    Additional modeling for offshore wind turbines, for proposed floating wind platforms to be deployed by University of Maine/DeepCwind.

  7. 2014 Offshore Wind Market & Economic Analysis Cover Photo | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Offshore Wind Market & Economic Analysis Cover Photo 2014 Offshore Wind Market & Economic Analysis Cover Photo Navigant 2014 Offshore Wind Market and Economic Analysis.JPG (33.04 ...

  8. Deepwater Offshore Wind Technology Research Requirements (Poster)

    SciTech Connect (OSTI)

    Musial, W.

    2005-05-01

    A poster presentation for AWEA's WindPower 2005 conference in Denver, Colorado, May 15-18, 2005 that provides an outline of the requirements for deepwater offshore wind technology development

  9. Blyth Offshore Wind Ltd | Open Energy Information

    Open Energy Info (EERE)

    Product: Blyth Offshore Wind Limited, comprising Border Wind, PowerGen Renewables (a joint venture between Abbot Group and PowerGen), Nuon UK and Shell Renewables built the...

  10. Offshore Wind Research and Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research & Development » Offshore Wind Research and Development Offshore Wind Research and Development The offshore wind projects map provides information about progress around the country. The offshore wind projects map provides information about progress around the country. The U.S. Department of Energy's Wind Program funds research nationwide to develop and deploy offshore wind technologies that can capture wind resources off the coasts of the United States and convert that wind into

  11. NREL: Wind Research - Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    support the growth of wind energy development across the United States. National Wind Technology Center Facilities Our facilities are contained within a 305-acre area that...

  12. Wind Measurement Buoy Advances Offshore Wind Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Measurement Buoy Advances Offshore Wind Energy Wind Measurement Buoy Advances Offshore Wind Energy December 7, 2015 - 1:52pm Addthis Wind Measurement Buoy Advances Offshore Wind Energy Alana Duerr Alana Duerr Ph.D., Ocean Engineer (New West Technologies) Seen here at a visit to the Energy Department's headquarters in Washington D.C., the Axys WindSentinel buoy is now deployed at its final destination off the coast of New Jersey. Photo courtesy: U.S. Department of Energy. The United States

  13. DOE Releases Comprehensive Report on Offshore Wind Power in the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Releases Comprehensive Report on Offshore Wind Power in the United States DOE Releases Comprehensive Report on Offshore Wind Power in the United States October 7, 2010 -...

  14. Innovative Offshore Vertical-Axis Wind Turbine Rotors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Offshore Vertical-Axis Wind Turbine Rotors - Sandia Energy Energy Search Icon Sandia Home ... Google + Vimeo Newsletter Signup SlideShare Innovative Offshore Vertical-Axis Wind Turbine ...

  15. EA-1792: University of Maine's Deepwater Offshore Floating Wind...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Offshore Floating Wind Turbine Testing and Demonstration Project, Gulf of Maine EA-1792: University of Maine's Deepwater Offshore Floating Wind Turbine Testing and Demonstration ...

  16. New Reports Chart Offshore Wind's Path Forward | Department of...

    Office of Environmental Management (EM)

    Reports Chart Offshore Wind's Path Forward New Reports Chart Offshore Wind's Path Forward ... The answer to this question, among many others, is explored in two new reports released ...

  17. U.S. Offshore Wind Advanced Technology Demonstration Projects...

    Office of Environmental Management (EM)

    Advanced Technology Demonstration Projects Public Meeting Transcript for Offshore Wind Demonstrations U.S. Offshore Wind Advanced Technology Demonstration Projects Public Meeting ...

  18. Assessment of Offshore Wind System Design, Safety, and Operation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assessment of Offshore Wind System Design, Safety, and Operation Standards Assessment of Offshore Wind System Design, Safety, and Operation Standards The U.S. Department of ...

  19. Energy Department Announces Innovative Offshore Wind Energy Projects...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovative Offshore Wind Energy Projects Energy Department Announces Innovative Offshore Wind Energy Projects May 7, 2014 - 2:05pm Addthis NEWS MEDIA CONTACT (202) 586-4940 ...

  20. Offshore Wind Jobs and Economic Development Impacts in the United...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Offshore Wind Jobs and Economic Development Impacts in the United States: Four Regional Scenarios Offshore wind has tremendous potential in the United States as a clean, renewable ...

  1. EA-1985: Virginia Offshore Wind Technology Advancement Project (VOWTAP), 24 nautical miles offshore of Virginia Beach, Virginia

    Broader source: Energy.gov [DOE]

    DOE is proposing to fund Virginia Electric and Power Company's Virginia Offshore Wind Technology Advancement Project (VOWTAP). The proposed VOWTAP project consists of design, construction and operation of a 12 megawatt offshore wind facility located approximately 24 nautical miles off the coast of Virginia Beach, VA on the Outer Continental Shelf.

  2. Offshore Wind Market and Economic Analysis Report 2013 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Offshore Wind Market and Economic Analysis Report 2013 Offshore Wind Market and Economic Analysis Report 2013 Offshore Wind Market and Economic Analysis Report 2013 Analysis of the U.S. wind market, including analysis of developments in wind technology, changes in policy, and effect on economic impact, regional development, and job creation. Published in October 2013. offshore_wind_market_and_economic_analysis_10_2013.pdf (2.46 MB) More Documents & Publications 2014 Offshore Wind

  3. Offshore Wind Energy Systems Engineering Curriculum Development

    SciTech Connect (OSTI)

    McGowan, Jon G.; Manwell, James F.; Lackner, Matthew A.

    2012-12-31

    Utility-scale electricity produced from offshore wind farms has the potential to contribute significantly to the energy production of the United States. In order for the U.S. to rapidly develop these abundant resources, knowledgeable scientists and engineers with sound understanding of offshore wind energy systems are critical. This report summarizes the development of an upper-level engineering course in "Offshore Wind Energy Systems Engineering." This course is designed to provide students with a comprehensive knowledge of both the technical challenges of offshore wind energy and the practical regulatory, permitting, and planning aspects of developing offshore wind farms in the U.S. This course was offered on a pilot basis in 2011 at the University of Massachusetts and the National Renewable Energy Laboratory (NREL), TU Delft, and GL Garrad Hassan have reviewed its content. As summarized in this report, the course consists of 17 separate topic areas emphasizing appropriate engineering fundamentals as well as development, planning, and regulatory issues. In addition to the course summary, the report gives the details of a public Internet site where references and related course material can be obtained. This course will fill a pressing need for the education and training of the U.S. workforce in this critically important area. Fundamentally, this course will be unique due to two attributes: an emphasis on the engineering and technical aspects of offshore wind energy systems, and a focus on offshore wind energy issues specific to the United States.

  4. Offshore Wind Energy Projects, Fiscal Years 2006-2014

    SciTech Connect (OSTI)

    None, None

    2014-04-01

    This report covers the Wind and Water Power Technologies Office's Offshore Wind Energy Projects from 2006 to 2014.

  5. Loads Analysis of Several Offshore Floating Wind Turbine Concepts

    SciTech Connect (OSTI)

    Robertson, A. N.; Jonkman, J. M.

    2011-10-01

    This paper presents a comprehensive dynamic-response analysis of six offshore floating wind turbine concepts.

  6. A National Offshore Wind Strategy. Creating an Offshore Wind Energy Industry in the United States

    SciTech Connect (OSTI)

    Beaudry-Losique, Jacques; Boling, Ted; Brown-Saracino, Jocelyn; Gilman, Patrick; Hahn, Michael; Hart, Chris; Johnson, Jesse; McCluer, Megan; Morton, Laura; Naughton, Brian; Norton, Gary; Ram, Bonnie; Redding, Tim; Wallace, Wendy

    2011-02-01

    This document outlines the Department of Energy's strategy for accelerating the responsible development of offshore wind energy in the United States.

  7. Landmark Report Analyzes Current State of U.S. Offshore Wind Industry (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-09-01

    New report assesses offshore wind industry, offshore wind resource, technology challenges, economics, permitting procedures, and potential risks and benefits. The National Renewable Energy Laboratory (NREL) recently published a new report that analyzes the current state of the offshore wind energy industry, Large-Scale Offshore Wind Power in the United States. It provides a broad understanding of the offshore wind resource, and details the associated technology challenges, economics, permitting procedures, and potential risks and benefits of developing this clean, domestic, renewable resource. The United States possesses large and accessible offshore wind energy resources. The availability of these strong offshore winds close to major U.S. coastal cities significantly reduces power transmission issues. The report estimates that U.S. offshore winds have a gross potential generating capacity four times greater than the nation's present electric capacity. According to the report, developing the offshore wind resource along U.S. coastlines and in the Great Lakes would help the nation: (1) Achieve 20% of its electricity from wind by 2030 - Offshore wind could supply 54 gigawatts of wind capacity to the nation's electrical grid, increasing energy security, reducing air and water pollution, and stimulating the domestic economy. (2) Provide clean power to its coastal demand centers - Wind power emits no carbon dioxide (CO2) and there are plentiful winds off the coasts of 26 states. (3) Revitalize its manufacturing sector - Building 54 GW of offshore wind energy facilities would generate an estimated $200 billion in new economic activity, and create more than 43,000 permanent, well-paid technical jobs in manufacturing, construction, engineering, operations and maintenance. NREL's report concludes that the development of the nation's offshore wind resources can provide many potential benefits, and with effective research, policies, and commitment, offshore wind energy can

  8. Engineering Challenges for Floating Offshore Wind Turbines

    SciTech Connect (OSTI)

    Butterfield, S.; Musial, W.; Jonkman, J.; Sclavounos, P.

    2007-09-01

    The major objective of this paper is to survey the technical challenges that must be overcome to develop deepwater offshore wind energy technologies and to provide a framework from which the first-order economics can be assessed.

  9. 2014 Offshore Wind Market and Economic Analysis

    SciTech Connect (OSTI)

    Hamilton, Bruce

    2014-08-25

    The objective of this report is to provide a comprehensive annual assessment of the U.S. offshore wind market.This 3rd annual report focuses on new developments that have occurred in 2014. The report provides stakeholders with a reliable and consistent data source addressing entry barriers and U.S. competitiveness in the offshore wind market. Available for download are both the full report and the report's underlying data.

  10. Offshore Wind Market and Economic Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    February 22, 2013 Offshore Wind Market and Economic Analysis Page ii Document Number DE-EE0005360 U.S. Offshore Wind Market and Economic Analysis Annual Market Assessment Document Number DE-EE0005360 Prepared for: U.S. Department of Energy Michael Hahn Patrick Gilman Prepared by: Navigant Consulting, Inc. Lisa Frantzis, Principal Investigator Lindsay Battenberg Mark Bielecki Charlie Bloch Terese Decker Bruce Hamilton Aris Karcanias Birger Madsen Jay Paidipati Andy Wickless Feng Zhao Navigant

  11. EA-1992: Funding for Principle Power, Inc., for the WindFloat Pacific Offshore Wind Demonstration Project, offshore of Coos Bay, Oregon

    Broader source: Energy.gov [DOE]

    Funding for Principle Power, Inc., for the WindFloat Pacific Offshore Wind Demonstration Project, offshore of Coos Bay, Oregon

  12. Strengthening America's Energy Security with Offshore Wind (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-02-01

    This fact sheet describes the current state of the offshore wind industry in the United States and the offshore wind research and development activities conducted the U.S. Department of Energy Wind and Water Power Program.

  13. Offshore Wind Technologie GmbH OWT | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Offshore Wind Technologie GmbH (OWT) Place: Leer, Germany Zip: 26789 Sector: Wind energy Product: Germany-based wind project developer....

  14. Advanced Offshore Wind Tech: Accelerating New Opportunities for Clean

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy | Department of Energy Advanced Offshore Wind Tech: Accelerating New Opportunities for Clean Energy Advanced Offshore Wind Tech: Accelerating New Opportunities for Clean Energy May 7, 2014 - 12:11pm Addthis Watch the Energy 101 video above to learn about how wind turbines capture wind energy on land and offshore. Greg Matzat Senior Advisor on Offshore Wind Technologies, Wind Program With almost 80% of the U.S. electricity demand coming from cities and towns located in coastal states,

  15. American Wind Energy Association Offshore WINDPOWER Conference & Exhibition

    Broader source: Energy.gov [DOE]

    AWEA Offshore WINDPOWER 2014 Conference & Exhibition is the largest offshore wind energy event in North America. The conference and exhibition will be held at the Atlantic City Convention...

  16. NREL: Wind Research - Energy Analysis of Offshore Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Analysis of Offshore Systems Chart of cost data for actual and projected offshore wind projects as reported by developers. Enlarge image NREL has a long history of ...

  17. Baseline Wind Energy Facility | Open Energy Information

    Open Energy Info (EERE)

    Wind Energy Facility Jump to: navigation, search Name Baseline Wind Energy Facility Facility Baseline Wind Energy Facility Sector Wind energy Facility Type Commercial Scale Wind...

  18. Wildcat Ridge Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wildcat Ridge Wind Farm Facility Wildcat Ridge Wind Farm Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Midwest Wind Energy Developer Midwest Wind...

  19. Radial Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    search Name Radial Wind Farm Facility Radial Wind Farm Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Radial Wind Developer Radial Wind Location...

  20. Offshore Wind Market Acceleration Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Offshore Wind » Offshore Wind Market Acceleration Projects Offshore Wind Market Acceleration Projects The program supports market acceleration projects intended to mitigate market barriers to the development of the U.S. offshore wind market. These projects address both environmental and supply chain-related issues, and are broken down into seven categories: Wind resource characterization and design conditions Environmental surveys, monitoring tools, and resources Electromagnetic interference

  1. U.S. Offshore Wind Port Readiness | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Port Readiness U.S. Offshore Wind Port Readiness Report that reviews the current capability of U.S. ports to support offshore wind project development and assesses the challenges and opportunities related to upgrading this capability to support as much as 54 gigawatts of offshore wind by 2030. Assessment of Ports for Offshore Wind Development in the United States.pdf (4.32 MB) More Documents & Publications Wind Offshore Port Readiness Assessment of Vessel Requirements for the U.S. Offshore

  2. New Report Shows Domestic Offshore Wind Industry Potential, 21...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Continuing to increase in size, the average offshore wind turbine installed in 2014 had a 377-foot-diameter rotor on a 279-foot-tall tower. The average capacity of offshore wind ...

  3. New Model Demonstrates Offshore Wind Industry's Job Growth Potential...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and number of jobs associated with fixed-bottom offshore wind development, applies to ... The fixed-bottom offshore wind JEDI is one of several user-friendly NREL models that ...

  4. Floating Offshore Wind in Hawaii: Potential for Jobs and Economic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Executive Summary Construction of the first offshore wind power plant in the United States ... occur if, for example, a natural gas power plant were built instead of an offshore wind ...

  5. Sixth North American Offshore Wind Development and Finance Summit

    Broader source: Energy.gov [DOE]

    Join leading offshore wind developers, Federal and State policy-makers, U.S. and European banks and investors and other key stakeholders at the 6th North American Offshore Wind Development &...

  6. National Offshore Wind Energy Grid Interconnection Study Full Report

    SciTech Connect (OSTI)

    Daniel, John P.; Liu, Shu; Ibanez, Eduardo; Pennock, Ken; Reed, Gregory; Hanes, Spencer

    2014-07-30

    The National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) considers the availability and potential impacts of interconnecting large amounts of offshore wind energy into the transmission system of the lower 48 contiguous United States.

  7. Maine Project Launches First Grid-Connected Offshore Wind Turbine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Launches First Grid-Connected Offshore Wind Turbine in the U.S. Maine Project Launches First Grid-Connected Offshore Wind Turbine in the U.S. May 31, 2013 - 11:00am Addthis ...

  8. United States Launches First Grid-Connected Offshore Wind Turbine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    United States Launches First Grid-Connected Offshore Wind Turbine United States Launches First Grid-Connected Offshore Wind Turbine August 22, 2013 - 12:00am Addthis Leveraging an ...

  9. University of Michigan Gets Offshore Wind Ready for Winter on...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Michigan Gets Offshore Wind Ready for Winter on Lake Michigan University of Michigan Gets Offshore Wind Ready for Winter on Lake Michigan April 16, 2013 - 12:00am Addthis The ...

  10. Energy Department Releases New Land-Based/Offshore Wind Resource...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Releases New Land-BasedOffshore Wind Resource Map Energy Department Releases New Land-BasedOffshore Wind Resource Map May 1, 2012 - 2:23pm Addthis This is an excerpt from the ...

  11. Department of Energy Awards $43 Million to Spur Offshore Wind...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Awards 43 Million to Spur Offshore Wind Energy Department of Energy Awards 43 Million to Spur Offshore Wind Energy October 3, 2011 - 12:00pm Addthis This is an excerpt from the ...

  12. Facilitating the Development of Offshore Wind Energy in the United...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facilitating the Development of Offshore Wind Energy in the United States Facilitating the Development of Offshore Wind Energy in the United States May 14, 2015 - 1:10pm Addthis ...

  13. Making Offshore Wind Areas Available for Leasing | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Making Offshore Wind Areas Available for Leasing Making Offshore Wind Areas Available for Leasing October 1, 2013 - 3:31pm Addthis This is an excerpt from the Third Quarter 2013 ...

  14. New DOE Report Investigates Port Readiness for Offshore Wind...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Investigates Port Readiness for Offshore Wind New DOE Report Investigates Port Readiness for Offshore Wind October 1, 2013 - 1:22pm Addthis This is an excerpt from the Third ...

  15. New DOE Reports Assess Offshore Wind Market and Supply Chain...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reports Assess Offshore Wind Market and Supply Chain New DOE Reports Assess Offshore Wind Market and Supply Chain April 1, 2013 - 12:58pm Addthis This is an excerpt from the First ...

  16. An Update on the National Offshore Wind Strategy | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    An Update on the National Offshore Wind Strategy An Update on the National Offshore Wind Strategy December 17, 2012 - 12:00am Addthis Off the shores of the United States and the ...

  17. EERE Success Story-University of Michigan Gets Offshore Wind...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    University of Michigan Gets Offshore Wind Ready for Winter on Lake Michigan EERE Success Story-University of Michigan Gets Offshore Wind Ready for Winter on Lake Michigan April 16, ...

  18. AWEA and DOE Collaborate on Offshore Wind Recommended Practices...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AWEA and DOE Collaborate on Offshore Wind Recommended Practices AWEA and DOE Collaborate on Offshore Wind Recommended Practices October 1, 2012 - 11:37am Addthis This is an excerpt ...

  19. National Offshore Wind Energy Grid Interconnection Study Executive Summary

    SciTech Connect (OSTI)

    Daniel, John P.; Liu, Shu; Ibanez, Eduardo; Pennock, Ken; Reed, Gregory; Hanes, Spencer

    2014-07-30

    The National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) considers the availability and potential impacts of interconnecting large amounts of offshore wind energy into the transmission system of the lower 48 contiguous United States.

  20. A National Offshore Wind Strategy: Creating an Offshore Wind...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Concepts and hardware that allow for load balancing, short-term forecasting of wind farm ... that lower capital and installation costs Demonstrated and validated innovative ...

  1. NREL Releases Estimate of National Offshore Wind Energy Potential - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL Releases Estimate of National Offshore Wind Energy Potential September 10, 2010 The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) announces the release of a new report that assesses the electricity generating potential of offshore wind resources in the United States. According to the Assessment of Offshore Wind Energy Resources for the United States, 4,150 gigawatts of potential wind turbine nameplate capacity (maximum turbine capacity) from offshore

  2. National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Offshore Wind Energy Grid Interconnection Study (NOWEGIS) National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) The National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) considers the availability and potential impacts of interconnecting large amounts of offshore wind energy into the transmission system of the lower 48 contiguous United States. NOWEGIS Full Report.pdf (20.21 MB) NOWEGIS Executive Summary.pdf (808.92 KB) More Documents &

  3. Chu, Salazar to Announce Major Offshore Wind Energy Initiatives |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Chu, Salazar to Announce Major Offshore Wind Energy Initiatives Chu, Salazar to Announce Major Offshore Wind Energy Initiatives February 4, 2011 - 12:00am Addthis NORFOLK,VA - On Monday, February 7, 2011 Energy Secretary Steven Chu and Secretary of the Interior Ken Salazar will announce major new initiatives to accelerate the responsible siting and development of offshore wind energy projects. WHAT: Offshore Wind Energy News Conference WHEN: Monday, February 7, 11:00 AM

  4. New Report Characterizes Existing Offshore Wind Grid Interconnection

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Capabilities | Department of Energy Characterizes Existing Offshore Wind Grid Interconnection Capabilities New Report Characterizes Existing Offshore Wind Grid Interconnection Capabilities September 3, 2014 - 10:49am Addthis The Energy Department today released the first National Offshore Wind Energy Grid Interconnection Study (NOWEGIS). The NOWEGIS investigated the key economic and technological factors that will influence the integration of offshore wind energy onto the national grid.

  5. Offshore Wind Market and Economic Analysis Report 2013

    SciTech Connect (OSTI)

    Frantzis, Lisa

    2013-10-01

    The objective of this report is to provide a comprehensive annual assessment of the U.S. offshore wind market.

  6. U.S. Offshore Wind Manufacturing and Supply Chain Development...

    Broader source: Energy.gov (indexed) [DOE]

    an organized, analytical approach to identifying and bounding uncertainties around offshore wind manufacturing and supply chain capabilities; projecting potential...

  7. NREL Assesses National Design Standards for Offshore Wind (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-06-01

    Report summarizes regulations, standards, and guidelines for the design and operation of offshore wind projects in the United States.

  8. 2014 Offshore Wind Market and Economic Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Offshore Wind Market and Economic Analysis 2014 Offshore Wind Market and Economic Analysis The objective of this report is to provide a comprehensive annual assessment of the U.S. offshore wind market.This 3rd annual report focuses on new developments that have occurred in 2014. The report provides stakeholders with a reliable and consistent data source addressing entry barriers and U.S. competitiveness in the offshore wind market. Available for download are both the full report and the

  9. 2015 Offshore Wind Market Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Offshore Wind Market Report 2015 Offshore Wind Market Report This report provides data and analysis to assess the status of the U.S. offshore wind industry through June 30, 2015. It builds on the foundation laid by the Navigant Consortium, which produced three market reports between 2012 and 2014. The report summarizes domestic and global market developments, technology trends, and economic data to help U.S. offshore wind industry stakeholders, including policymakers, regulators, developers,

  10. Spearville Wind Energy Facility | Open Energy Information

    Open Energy Info (EERE)

    Wind Energy Facility Jump to: navigation, search Name Spearville Wind Energy Facility Facility Spearville Wind Energy Facility Sector Wind energy Facility Type Commercial Scale...

  11. Ainsworth Wind Energy Facility | Open Energy Information

    Open Energy Info (EERE)

    Ainsworth Wind Energy Facility Jump to: navigation, search Name Ainsworth Wind Energy Facility Facility Ainsworth Wind Energy Facility Sector Wind energy Facility Type Commercial...

  12. Searsburg Wind Energy Facility | Open Energy Information

    Open Energy Info (EERE)

    Searsburg Wind Energy Facility Jump to: navigation, search Name Searsburg Wind Energy Facility Facility Searsburg Wind Energy Facility Sector Wind energy Facility Type Commercial...

  13. Offshore Wind Farm Model Development - Upcoming Release of the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Offshore Wind Farm Model Development - Upcoming Release of the University of Minnesota's ... September 16, 2015 - 1:14pm Addthis Large-eddy simulation of wind farms with ...

  14. Global Offshore Wind Farms Database | Open Energy Information

    Open Energy Info (EERE)

    Wind Farms Database Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Global Offshore Wind Farms Database Focus Area: Renewable Energy Topics: Deployment Data Website:...

  15. NREL Collaborates with SWAY on Offshore Wind Demonstration (Fact...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on an offshore wind energy demonstration project deployed off the coast of Bergen, Norway. ... SWAY's one-fifth scale prototype demonstration wind energy system installed off the coast ...

  16. Salazar, Chu Announce Major Offshore Wind Initiatives | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    projects that support offshore wind energy deployment and several high priority Wind Energy ... industry in a way that reduces conflict with other ocean uses and protects resources. ...

  17. New Report Shows Trend Toward Larger Offshore Wind Systems, with...

    Energy Savers [EERE]

    projects that have at least signed a power purchase agreement, received approval for ... sizes, and the increased severity of wind and wave loading at offshore wind projects. ...

  18. Assessment of Offshore Wind Energy Resources for the United States

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... 50 nm of shore. ...... 69 Table B15. New Hampshire offshore wind resource by wind speed interval, water depth and distance from shore ...

  19. National Offshore Wind Strategy: Facilitating the Development of the Offshore Wind Industry in the United States

    Office of Energy Efficiency and Renewable Energy (EERE)

    Offshore wind energy holds the promise of significant environmental and economic benefits for the United States. It is an abundant, low-carbon, domestic energy resource. It is located close to...

  20. Offshore Wind Turbines - Estimated Noise from Offshore Wind Turbine, Monhegan Island, Maine: Environmental Effects of Offshore Wind Energy Development

    SciTech Connect (OSTI)

    Aker, Pamela M.; Jones, Anthony M.; Copping, Andrea E.

    2010-11-23

    Deep C Wind, a consortium headed by the University of Maine will test the first U.S. offshore wind platforms in 2012. In advance of final siting and permitting of the test turbines off Monhegan Island, residents of the island off Maine require reassurance that the noise levels from the test turbines will not disturb them. Pacific Northwest National Laboratory, at the request of the University of Maine, and with the support of the U.S. Department of Energy Wind Program, modeled the acoustic output of the planned test turbines.

  1. Texas Offshore Pilot Research Project | Open Energy Information

    Open Energy Info (EERE)

    Offshore Pilot Research Project Jump to: navigation, search Name Texas Offshore Pilot Research Project Facility Texas Offshore Pilot Research Project Sector Wind energy Facility...

  2. Offshore Wind RD&D: Large Offshore Rotor Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Offshore wind resource by state and wind speed interval within 50 nm of shore. Wind Speed at 90 m (m/s) 7.0 - 7.5 7.5 - 8.0 8.0 - 8.5 8.5 - 9.0 9.0 - 9.5 9.5 - 10.0 >10.0 Total >7.0 State Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) California 11,439 (57,195) 24,864 (124,318) 23,059 (115,296) 22,852 (114,258) 13,185 (65,924) 15,231 (76,153) 6,926 (34,629) 117,555 (587,773) Connecticut 530 (2,652) 702 (3,508) 40

  3. Operational Impacts of Large Deployments of Offshore Wind (Poster)

    SciTech Connect (OSTI)

    Ibanez, E.; Heaney, M.

    2014-10-01

    The potential operational impact of deploying 54 GW of offshore wind in the United States was examined. The capacity was not evenly distributed; instead, it was concentrated in regions with better wind quality and close to load centers (Table 1). A statistical analysis of offshore wind power time series was used to assess the effect on the power system. The behavior of offshore wind resembled that of onshore wind, despite the former presenting higher capacity factors, more consistent power output across seasons, and higher variability levels. Thus, methods developed to manage onshore wind variability can be extended and applied to offshore wind.

  4. South Carolina Opens Nation's Largest Wind Drivetrain Testing Facility |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy South Carolina Opens Nation's Largest Wind Drivetrain Testing Facility South Carolina Opens Nation's Largest Wind Drivetrain Testing Facility November 27, 2013 - 12:00am Addthis The Energy Department and Clemson University officials on November 21 dedicated the nation's largest wind energy testing facility in North Charleston, South Carolina. The facility will help test and validate new turbines, particularly for offshore wind- €helping to speed deployment of next

  5. Deepwater Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Name Deepwater Wind Farm Facility Deepwater Wind Farm Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner PSEG Renewable Generation Deepwater Wind...

  6. First State Marine Wind | Open Energy Information

    Open Energy Info (EERE)

    State Marine Wind Jump to: navigation, search Name First State Marine Wind Facility First State Marine Wind Sector Wind energy Facility Type Offshore Wind Facility Status Proposed...

  7. Cape Wind Project | Open Energy Information

    Open Energy Info (EERE)

    Project Jump to: navigation, search Name Cape Wind Project Facility Cape Wind Sector Wind energy Facility Type Offshore wind Facility Status Proposed Owner Cape Wind Developer Cape...

  8. Brigantine OffshoreMW Phase 1 | Open Energy Information

    Open Energy Info (EERE)

    Brigantine OffshoreMW Phase 1 Jump to: navigation, search Name Brigantine OffshoreMW Phase 1 Facility Brigantine OffshoreMW Phase 1 Sector Wind energy Facility Type Offshore Wind...

  9. Innovative Study Helps Offshore Wind Developers Protect Wildlife |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Study Helps Offshore Wind Developers Protect Wildlife Innovative Study Helps Offshore Wind Developers Protect Wildlife October 27, 2015 - 9:33am Addthis Innovative Study Helps Offshore Wind Developers Protect Wildlife Jocelyn Brown-Saracino Jocelyn Brown-Saracino Environmental Research Manager, Wind and Water Power Technologies Office Thanks to a first-of-its-kind in-depth study of wildlife distribution and movements, the nation's Eastern Seaboard is better prepared than

  10. 2011 DOE Funded Offshore Wind Project Updates | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2011 DOE Funded Offshore Wind Project Updates 2011 DOE Funded Offshore Wind Project Updates September 12, 2014 - 10:52am Addthis For the past few years, much of the U.S. Department of Energy's (DOE's) Wind Program research and development efforts have been focused on accelerating the development and deployment of offshore wind energy technology. In 2011, DOE awarded $43 million to 41 projects across 20 states to speed technical innovations, lower costs, and shorten the timeline for deploying

  11. PNNL Reviews Wildlife-Interaction Monitoring for Offshore Wind Farms -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Hybrids Show Best Potential | Department of Energy PNNL Reviews Wildlife-Interaction Monitoring for Offshore Wind Farms - Technology Hybrids Show Best Potential PNNL Reviews Wildlife-Interaction Monitoring for Offshore Wind Farms - Technology Hybrids Show Best Potential February 24, 2012 - 11:30am Addthis This is an excerpt from the First Quarter 2012 edition of the Wind Program R&D Newsletter. Adding offshore wind to the U.S. renewable energy portfolio promises access to a

  12. Modeling the National Potential for Offshore Wind: Preprint

    SciTech Connect (OSTI)

    Short, W.; Sullivan, P.

    2007-06-01

    The Wind Deployment System (WinDS) model was created to assess the potential penetration of offshore wind in the United States under different technology development, cost, and policy scenarios.

  13. “Open Hatch” Tour of Offshore Wind Buoy

    SciTech Connect (OSTI)

    Zayas, Jose

    2015-09-18

    Wind and Water Power Technologies Office Director, Jose Zayas gives a behind the scenes tour of the AXYS WindSentinel research buoy, which uses high-tech instruments to measure conditions for potential offshore wind energy development.

  14. Obama Administration Hosts Great Lakes Offshore Wind Workshop in Chicago

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    with Great Lakes Wind Collaborative | Department of Energy Hosts Great Lakes Offshore Wind Workshop in Chicago with Great Lakes Wind Collaborative Obama Administration Hosts Great Lakes Offshore Wind Workshop in Chicago with Great Lakes Wind Collaborative October 28, 2010 - 12:00am Addthis WASHINGTON - The White House Council on Environmental Quality and the U.S. Department of Energy hosted a workshop with the Great Lakes Wind Collaborative in Chicago on October 26 - 27, 2010, focused on the

  15. International Collaboration on Offshore Wind Energy Under IEA Annex XXIII

    SciTech Connect (OSTI)

    Musial, W.; Butterfield, S.; Lemming, J.

    2005-11-01

    This paper defines the purpose of IEA Annex XXIII, the International Collaboration on Offshore Wind Energy. This international collaboration through the International Energy Agency (IEA) is an efficient forum from which to advance the technical and environmental experiences collected from existing offshore wind energy projects, as well as the research necessary to advance future technology for deep-water wind energy technology.

  16. Offshore Code Comparison Collaboration (OC3) for IEA Wind Task 23 Offshore Wind Technology and Deployment

    SciTech Connect (OSTI)

    Jonkman, J.; Musial, W.

    2010-12-01

    This final report for IEA Wind Task 23, Offshore Wind Energy Technology and Deployment, is made up of two separate reports, Subtask 1: Experience with Critical Deployment Issues and Subtask 2: Offshore Code Comparison Collaborative (OC3). Subtask 1 discusses ecological issues and regulation, electrical system integration, external conditions, and key conclusions for Subtask 1. Subtask 2 included here, is the larger of the two volumes and contains five chapters that cover background information and objectives of Subtask 2 and results from each of the four phases of the project.

  17. Improving Design Methods for Fixed-Foundation Offshore Wind Energy Systems

    Broader source: Energy.gov [DOE]

    The design basis for an offshore wind farm establishes the conditions, needs, and requirements to be taken into account in designing the facility. To address design knowledge gaps and facilitate safe deployment of U.S. offshore wind projects in areas along the U.S. Atlantic Coast, DOE is funding research by a team consisting of DOE's Savannah River National Laboratory, Coastal Carolina University, MMI Engineering, and DOE's National Renewable Energy Laboratory.

  18. Three Offshore Wind Advanced Technology Demonstration Projects Receive

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Phase 2 Funding | Department of Energy Offshore Wind Advanced Technology Demonstration Projects Receive Phase 2 Funding Three Offshore Wind Advanced Technology Demonstration Projects Receive Phase 2 Funding September 11, 2014 - 3:16pm Addthis The U.S. Department of Energy (DOE) awarded additional funding to three of the seven projects from the Offshore Wind Advanced Technology Demonstration Funding Opportunity. Dominion Virginia Power, Fishermen's Energy of New Jersey, and Principle Power

  19. EIS-0470: Cape Wind Energy Project, Nantucket Sound, Offshore of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Massachusetts | Department of Energy 0: Cape Wind Energy Project, Nantucket Sound, Offshore of Massachusetts EIS-0470: Cape Wind Energy Project, Nantucket Sound, Offshore of Massachusetts June 25, 2014 EIS-0470: Cape Wind Energy Project, Final General Conformity Determination Cape Wind Energy Project, Final General Conformity Determination, June 23, 2014 December 21, 2012 EIS-0470: Final Environmental Impact Statement Cape Wind Energy Project, Nantucket Sound, MA December 31, 2012 EIS-0470:

  20. NREL Assesses National Design Standards for Offshore Wind (Fact...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Report summarizes regulations, standards, and guidelines for the design and operation of ... analysis of current and pending wind and offshore design standards and guidelines. ...

  1. Property:PotentialOffshoreWindCapacity | Open Energy Information

    Open Energy Info (EERE)

    Property Type Quantity Description The nameplate capacity technical potential from Offshore Wind for a particular place. Use this property to express potential electric...

  2. Property:PotentialOffshoreWindGeneration | Open Energy Information

    Open Energy Info (EERE)

    Property Type Quantity Description The estimated potential energy generation from Offshore Wind for a particular place. Use this type to express a quantity of energy. The...

  3. 2011 Grants for Offshore Wind Power | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Web Policies Home Social Media Article Guidance History Offices 2011 Grants for Offshore Wind Power View All Maps Addthis Careers & Internships Contact Us link to facebook link to...

  4. EA-1985: Virginia Offshore Wind Technology Advancement Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EA-1985: Virginia Offshore Wind Technology Advancement Project (VOWTAP), 24 nautical miles ... (OCS EISEA BOEM 2014-1000 and DOEEA-1985). http:www.boem.govVOWTAP PUBLIC ...

  5. Blowing in the Wind ...Offshore | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Blowing in the Wind ...Offshore Blowing in the Wind ...Offshore February 10, 2011 - 9:28am Addthis Cathy Zoi Former Assistant Secretary, Office of Energy Efficiency & Renewable Energy What will this project do? The new offshore wind strategy lays out a path to potentially have 54 gigawatts of offshore wind capacity by 2030, enough to power more than 15 million homes with clean, renewable energy. Have you ever flown a kite at the beach? If you have, you know how breezy it can be. A few miles

  6. U.S. Offshore Wind Advanced Technology Demonstration Projects...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    OFFSHORE WIND: ADVANCED TECHNOLOGY DEMONSTRATION PROJECTS + + + + + PUBLIC MEETING + + ... we are here 19 today to discuss our demonstration program, 20 which is the last and very ...

  7. Offshore Wind Jobs and Economic Development Impacts in the United...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... of fixed-bottom technologies. The current JEDI model does not accommodate floating offshore wind turbine systems. ... Maryland Michigan Florida South Carolina Delaware ...

  8. Mid-Atlantic Wind Park | Open Energy Information

    Open Energy Info (EERE)

    Park Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Developer NRG Bluewater Wind Location Offshore from Rehoboth Beach DE Coordinates 38.633333,...

  9. Brigantine OffshoreMW Phase 2 | Open Energy Information

    Open Energy Info (EERE)

    2 Jump to: navigation, search Name Brigantine OffshoreMW Phase 2 Facility Brigantine OffshoreMW Phase 2 Sector Wind energy Facility Type Offshore Wind Facility Status Proposed...

  10. U.S. Offshore Wind Advanced Technology Demonstration Projects Public Meeting Transcript for Offshore Wind Demonstrations

    Office of Energy Efficiency and Renewable Energy (EERE)

    Provides an account of the proceedings of public meeting DE-FOA-0000659 on February 7, 2012 in Washington, DC Contains discussion of the draft financial opportunity announcement DE-FOA-0000410-DRAFT Includes information on offshore wind and the national strategy of the U.S. Department of Energy

  11. Palmetto Wind Research Project | Open Energy Information

    Open Energy Info (EERE)

    Wind Research Project Jump to: navigation, search Name Palmetto Wind Research Project Facility Palmetto Wind Research Project Sector Wind energy Facility Type Offshore Wind...

  12. Top 10 Things You Didn't Know About Offshore Wind Energy | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Offshore Wind Energy Top 10 Things You Didn't Know About Offshore Wind Energy May 6, 2014 ... advanced technologies. 6. Offshore Wind Farms Use Undersea Cables to Transmit ...

  13. The November WINDExchange Webinar: Offshore Wind Market Update

    Broader source: Energy.gov [DOE]

    Aaron Smith, an energy analyst at the National Renewable Energy Laboratory, will present an overview and update of the U.S. offshore wind market. Stacy Tingley and Bryan Wilson of Deepwater Wind...

  14. Developing Integrated National Design Standards for Offshore Wind Plants

    Office of Energy Efficiency and Renewable Energy (EERE)

    The DOE Wind Program and the National Renewable Energy Laboratory recently published a report that summarizes the regulations, standards, and guidelines for the design and operation of offshore wind projects in the United States.

  15. Wind Program to Host Exhibit Booth at AWEA's Offshore WINDPOWER...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Program to Host Exhibit Booth at AWEA's Offshore WINDPOWER October 1, 2012 - 11:15am Addthis This is an excerpt from the Third Quarter 2012 edition of the Wind Program R&D ...

  16. New Reports Highlight Major Potential in Offshore Wind Energy...

    Broader source: Energy.gov (indexed) [DOE]

    announced a new report showing steady progress for the U.S. offshore wind energy industry ... Energy Department Releases Report, Evaluates Potential for Wind Power in All 50 States New ...

  17. Offshore Ambitions for the Vertical-Axis Wind Turbine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ambitions for the Vertical-Axis Wind Turbine - Sandia Energy Energy Search Icon Sandia ... Offshore Ambitions for the Vertical-Axis Wind Turbine HomeEnergy, News, News & Events, ...

  18. NREL Software Aids Offshore Wind Turbine Designs (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-10-01

    NREL researchers are supporting offshore wind power development with computer models that allow detailed analyses of both fixed and floating offshore wind turbines. While existing computer-aided engineering (CAE) models can simulate the conditions and stresses that a land-based wind turbine experiences over its lifetime, offshore turbines require the additional considerations of variations in water depth, soil type, and wind and wave severity, which also necessitate the use of a variety of support-structure types. NREL's core wind CAE tool, FAST, models the additional effects of incident waves, sea currents, and the foundation dynamics of the support structures.

  19. 2014-2015 Offshore Wind Technologies Market Report

    SciTech Connect (OSTI)

    Smith, Aaron

    2015-11-18

    This presentation provides an overview of progress toward offshore wind cost reduction in Europe and implications for the U.S. market. The presentation covers an overview of offshore wind developments, economic and performance trends, empirical evidence of LCOE reduction, and challenges and opportunities in the U.S. market.

  20. NREL/University of Delaware Offshore Wind R&D Collaboration: Cooperative Research and Development Final Report, CRADA Number CRD-10-393

    SciTech Connect (OSTI)

    Musial, Walt

    2015-11-12

    Specifically, the work under this CRADA includes, but is not limited to, the development of test procedures for an offshore test site in Delaware waters; testing of installed offshore wind turbines; performance monitoring of those turbines; and a program of research and development on offshore wind turbine blades, components, coatings, foundations, installation and construction of bottom-fixed structures, environmental impacts, policies, and more generally on means to enhance the reliability, facilitate permitting, and reduce costs for offshore wind turbines. This work will be conducted both at NREL's National Wind Technology Center and participant facilities, as well as the established offshore wind test sites.

  1. Final Report DE-EE0005380 - Assessment of Offshore Wind Farm...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Final Report DE-EE0005380 - Assessment of Offshore Wind Farm Effects on Sea Surface, ... marine environment where offshore wind farms could be installed. ...

  2. Assessment of Ports for Offshore Wind Development in the United States

    SciTech Connect (OSTI)

    Elkinton, Chris; Blatiak, Alicia; Ameen, Hafsa

    2014-03-21

    As offshore wind energy develops in the United States, port facilities will become strategic hubs in the offshore wind farm supply chain because all plant and transport logistics must transit through these facilities. Therefore, these facilities must provide suitable infrastructure to meet the specific requirements of the offshore wind industry. As a result, it is crucial that federal and state policy-makers and port authorities take effective action to position ports in the offshore wind value chain to take best advantage of their economic potential. The U.S. Department of Energy tasked the independent consultancy GL Garrad Hassan (GL GH) with carrying out a review of the current capability of U.S. ports to support offshore wind project development and an assessment of the challenges and opportunities related to upgrading this capability to support the growth of as many as 54 gigawatts of offshore wind installed in U.S. waters by 2030. The GL GH report and the open-access web-based Ports Assessment Tool resulting from this study will aid decision-makers in making informed decisions regarding the choice of ports for specific offshore projects, and the types of investments that would be required to make individual port facilities suitable to serve offshore wind manufacturing, installation and/or operations. The offshore wind industry in the United States is still in its infancy and this study finds that additional port facilities capable of supporting offshore wind projects are needed to meet the anticipated project build-out by 2030; however, no significant barriers exist to prevent the development of such facilities. Furthermore, significant port capabilities are in place today with purpose-build port infrastructure currently being built. While there are currently no offshore wind farms operating in the United States, much of the infrastructure critical to the success of such projects does exist, albeit in the service of other industries. This conclusion is based

  3. International Effort Advances Offshore Wind Turbine Design Codes |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy International Effort Advances Offshore Wind Turbine Design Codes International Effort Advances Offshore Wind Turbine Design Codes September 12, 2014 - 12:16pm Addthis For the past several years, the U.S. Department of Energy's National Renewable Energy Laboratory has teamed with the Fraunhofer Institute for Wind Energy and Energy System Technology (IWES) in Germany to lead an international effort under the International Energy Agency's (IEA) Task 30 to improve the tools

  4. Offshore Wind Balance-of-System Cost Modeling

    SciTech Connect (OSTI)

    Maness, Michael; Stehly, Tyler; Maples, Ben; Mone, Christopher

    2015-09-29

    Offshore wind balance-of-system (BOS) costs contribute up to 70% of installed capital costs. Thus, it is imperative to understand the impact of these costs on project economics as well as potential cost trends for new offshore wind technology developments. As a result, the National Renewable Energy Laboratory (NREL) developed and recently updated a BOS techno-economic model using project cost estimates created from wind energy industry sources.

  5. 2014 WIND POWER PROGRAM PEER REVIEW-OFFSHORE DEMOS

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Offshore Demos March 24, 2014 Wind Energy Technologies PR-5000-62152 2 Contents GOWind Demonstration Project-Ian Hatton, Baryonyx Corporation Fishermen's Atlantic City Windfarm: Birthplace of Offshore Wind in the Americas-Stanley M. White, Fishermen's Atlantic City Windfarm, LLC Project Icebreaker-Lorry Wagner, Lake Erie Energy Development Corporation WindFloat Pacific OSW Demo Project-Alla Weinstein, Principle Power, Inc. Hywind Maine-Trine Ingebjørg Ulla, Statoil New England Aqua Ventus

  6. Energy Department Offers Conditional Commitment to Cape Wind Offshore Wind Generation Project

    Broader source: Energy.gov [DOE]

    The Department of Energy today announced the first step toward issuing a $150 million loan guarantee to support the construction of the Cape Wind offshore wind project with a conditional commitment to Cape Wind Associates, LLC.

  7. Assessment of Offshore Wind System Design, Safety, and Operation Standards

    SciTech Connect (OSTI)

    Sirnivas, S.; Musial, W.; Bailey, B.; Filippelli, M.

    2014-01-01

    This report is a deliverable for a project sponsored by the U.S. Department of Energy (DOE) entitled National Offshore Wind Energy Resource and Design Data Campaign -- Analysis and Collaboration (contract number DE-EE0005372; prime contractor -- AWS Truepower). The project objective is to supplement, facilitate, and enhance ongoing multiagency efforts to develop an integrated national offshore wind energy data network. The results of this initiative are intended to 1) produce a comprehensive definition of relevant met-ocean resource assets and needs and design standards, and 2) provide a basis for recommendations for meeting offshore wind energy industry data and design certification requirements.

  8. Scaled Wind Farm Technology (SWIFT) Facility Wind Turbine Controller...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (SWIFT) Facility Wind Turbine Controller Ground Testing - Sandia Energy Energy Search Icon ... Scaled Wind Farm Technology (SWIFT) Facility Wind Turbine Controller Ground Testing Home...

  9. Bluewater Wind Rhode Island | Open Energy Information

    Open Energy Info (EERE)

    Island Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner NRG Bluewater Wind Developer NRG Bluewater Wind Location Atlantic Ocean RI Coordinates...

  10. Offshore Wind Resource Characterization Buoy “Open-Hatch” Exposition

    Broader source: Energy.gov [DOE]

    Please join the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy for an “Open-Hatch” as one of the nation’s most advanced offshore wind resource characterization buoys...

  11. New Report Shows Trend Toward Larger Offshore Wind Systems

    Broader source: Energy.gov [DOE]

    The Energy Department released a new report showing progress for the U.S. offshore wind energy market in 2012, including 11 commercial-scale U.S. projects reaching an advanced stage of development.

  12. Rhode Island to Build First Offshore Wind Farm

    Broader source: Energy.gov [DOE]

    Block Island, a small town with only 1,000 full-time, residents, is the site for a big project, when it will become home to Rhode Island’s first offshore wind farm.

  13. Offshore Wind Balance-of-System Cost Modeling (Poster), NREL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    parameters, can yield a rise in BOS cost, such as the spike near 500 megawatts. Figure 4. Offshore wind fixed substructure BOS costs decrease as turbine rating increases, which is...

  14. Obama Administration Hosts Great Lakes Offshore Wind Workshop...

    Office of Environmental Management (EM)

    WASHINGTON - The White House Council on Environmental Quality and the U.S. Department of ... on October 26 - 27, 2010, focused on the siting of offshore wind power in the Great Lakes. ...

  15. Innovative Deepwater Platform Aims to Harness Offshore Wind and...

    Energy Savers [EERE]

    combine their floating offshore wind turbine platform with wave energy convertors, so ... The tower that supports the turbine is built on top of one of the columns that form the ...

  16. Aeroelastic Instabilities of Large Offshore and Onshore Wind Turbines: Preprint

    SciTech Connect (OSTI)

    Bir, G.; Jonkman, J.

    2007-08-01

    This paper examines the aeroelastic stability of a 5-MW conceptual wind turbine mounted on a floating barge and presents results for onshore and offshore configurations for various conditions.

  17. Offshore Wind Energy Market Installed Capacity is Anticipated...

    Open Energy Info (EERE)

    Offshore Wind Energy Market Installed Capacity is Anticipated to Reach 52,120.9 MW by 2022 Home > Groups > Renewable Energy RFPs Wayne31jan's picture Submitted by Wayne31jan(150)...

  18. Improving Design Methods for Fixed-Foundation Offshore Wind Energy...

    Broader source: Energy.gov (indexed) [DOE]

    ... Addthis Related Articles New Wave Power Project In Oregon DOE Launches High-Tech Research Buoys to Advance U.S. Offshore Wind Development An Energy Department buoy that recently ...

  19. Offshore Wind and Vehicle to Grid Power | Princeton Plasma Physics...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    November 11, 2013, 4:30pm to 6:00pm Princeton University Computer Science Auditorium 104 Offshore Wind and Vehicle to Grid Power Professor Willett Kempton University of Delaware ...

  20. 2014–2015 Offshore Wind Technologies Market Report

    SciTech Connect (OSTI)

    Smith, Aaron; Stehly, Tyler; Musial, Walter

    2015-09-01

    This report provides data and analysis to assess the status of the U.S. offshore wind industry through June 30, 2015. It builds on the foundation laid by the Navigant Consortium, which produced three market reports between 2012 and 2014. The report summarizes domestic and global market developments, technology trends, and economic data to help U.S. offshore wind industry stakeholders, including policymakers, regulators, developers, financiers, and supply chain participants, to identify barriers and opportunities.

  1. Offshore Wind Market and Economic Analysis Report 2013

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    October 17, 2013 Offshore Wind Market and Economic Analysis Page ii Document Number DE-EE0005360 U.S. Offshore Wind Market and Economic Analysis Annual Market Assessment Document Number DE-EE0005360 Prepared for: U.S. Department of Energy Michael Hahn Patrick Gilman Prepared by: Navigant Consulting, Inc. Bruce Hamilton, Principal Investigator Lindsay Battenberg Mark Bielecki Charlie Bloch Terese Decker Lisa Frantzis Jay Paidipati Andy Wickless Feng Zhao Navigant Consortium Member Organizations

  2. 2014-2015 Offshore Wind Technologies Market Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. 2014-2015 Offshore Wind Technologies Market Report 2014-2015 Offshore Wind Technologies Market Report Aaron Smith, Tyler Stehly, and Walter Musial National Renewable Energy Laboratory Prepared under Task No. WE14.CG02 Link to Data Tables NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy,

  3. Conceptual Model of Offshore Wind Environmental Risk Evaluation System

    SciTech Connect (OSTI)

    Anderson, Richard M.; Copping, Andrea E.; Van Cleve, Frances B.; Unwin, Stephen D.; Hamilton, Erin L.

    2010-06-01

    In this report we describe the development of the Environmental Risk Evaluation System (ERES), a risk-informed analytical process for estimating the environmental risks associated with the construction and operation of offshore wind energy generation projects. The development of ERES for offshore wind is closely allied to a concurrent process undertaken to examine environmental effects of marine and hydrokinetic (MHK) energy generation, although specific risk-relevant attributes will differ between the MHK and offshore wind domains. During FY10, a conceptual design of ERES for offshore wind will be developed. The offshore wind ERES mockup described in this report will provide a preview of the functionality of a fully developed risk evaluation system that will use risk assessment techniques to determine priority stressors on aquatic organisms and environments from specific technology aspects, identify key uncertainties underlying high-risk issues, compile a wide-range of data types in an innovative and flexible data organizing scheme, and inform planning and decision processes with a transparent and technically robust decision-support tool. A fully functional version of ERES for offshore wind will be developed in a subsequent phase of the project.

  4. Sensitivity Analysis of Offshore Wind Cost of Energy (Poster)

    SciTech Connect (OSTI)

    Dykes, K.; Ning, A.; Graf, P.; Scott, G.; Damiami, R.; Hand, M.; Meadows, R.; Musial, W.; Moriarty, P.; Veers, P.

    2012-10-01

    No matter the source, offshore wind energy plant cost estimates are significantly higher than for land-based projects. For instance, a National Renewable Energy Laboratory (NREL) review on the 2010 cost of wind energy found baseline cost estimates for onshore wind energy systems to be 71 dollars per megawatt-hour ($/MWh), versus 225 $/MWh for offshore systems. There are many ways that innovation can be used to reduce the high costs of offshore wind energy. However, the use of such innovation impacts the cost of energy because of the highly coupled nature of the system. For example, the deployment of multimegawatt turbines can reduce the number of turbines, thereby reducing the operation and maintenance (O&M) costs associated with vessel acquisition and use. On the other hand, larger turbines may require more specialized vessels and infrastructure to perform the same operations, which could result in higher costs. To better understand the full impact of a design decision on offshore wind energy system performance and cost, a system analysis approach is needed. In 2011-2012, NREL began development of a wind energy systems engineering software tool to support offshore wind energy system analysis. The tool combines engineering and cost models to represent an entire offshore wind energy plant and to perform system cost sensitivity analysis and optimization. Initial results were collected by applying the tool to conduct a sensitivity analysis on a baseline offshore wind energy system using 5-MW and 6-MW NREL reference turbines. Results included information on rotor diameter, hub height, power rating, and maximum allowable tip speeds.

  5. Lincoln Wind Energy Facility I | Open Energy Information

    Open Energy Info (EERE)

    I Jump to: navigation, search Name Lincoln Wind Energy Facility I Facility Lincoln Wind Energy Facility Sector Wind energy Facility Type Community Wind Facility Status In Service...

  6. Lincoln Wind Energy Facility II | Open Energy Information

    Open Energy Info (EERE)

    II Jump to: navigation, search Name Lincoln Wind Energy Facility II Facility Lincoln Wind Energy Facility Sector Wind energy Facility Type Community Wind Facility Status In Service...

  7. Wind Manufacturing Facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Facilities Wind Manufacturing Facilities Wind Manufacturing Facilities America's wind energy industry supports a growing domestic industrial base. Check out this map to find manufacturing facilities in your state

  8. U.S. Offshore Wind Manufacturing and Supply Chain Development

    SciTech Connect (OSTI)

    Hamilton, Bruce Duncan

    2013-02-22

    The objective of the report is to provide an assessment of the domestic supply chain and manufacturing infrastructure supporting the U.S. offshore wind market. The report provides baseline information and develops a strategy for future development of the supply chain required to support projected offshore wind deployment levels. A brief description of each of the key chapters includes: » Chapter 1: Offshore Wind Plant Costs and Anticipated Technology Advancements. Determines the cost breakdown of offshore wind plants and identifies technical trends and anticipated advancements in offshore wind manufacturing and construction. » Chapter 2: Potential Supply Chain Requirements and Opportunities. Provides an organized, analytical approach to identifying and bounding the uncertainties associated with a future U.S. offshore wind market. It projects potential component-level supply chain needs under three demand scenarios and identifies key supply chain challenges and opportunities facing the future U.S. market as well as current suppliers of the nation’s land-based wind market. » Chapter 3: Strategy for Future Development. Evaluates the gap or competitive advantage of adding manufacturing capacity in the U.S. vs. overseas, and evaluates examples of policies that have been successful . » Chapter 4: Pathways for Market Entry. Identifies technical and business pathways for market entry by potential suppliers of large-scale offshore turbine components and technical services. The report is intended for use by the following industry stakeholder groups: (a) Industry participants who seek baseline cost and supplier information for key component segments and the overall U.S. offshore wind market (Chapters 1 and 2). The component-level requirements and opportunities presented in Section 2.3 will be particularly useful in identifying market sizes, competition, and risks for the various component segments. (b) Federal, state, and local policymakers and economic development

  9. Promoting Offshore Wind Along the "Fresh Coast" | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Promoting Offshore Wind Along the "Fresh Coast" Promoting Offshore Wind Along the "Fresh Coast" October 12, 2010 - 12:18pm Addthis Chris Hart Offshore Wind Team Lead, Wind & Water Power Program When people think about offshore wind power, the first location that comes to mind probably isn't Cleveland, Ohio. Most of the offshore wind turbines installed around the world are operating in salt water, like Europe's North Sea and Baltic Sea, and most of the offshore wind

  10. Assessment of Vessel Requirements for the U.S. Offshore Wind Sector |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Vessel Requirements for the U.S. Offshore Wind Sector Assessment of Vessel Requirements for the U.S. Offshore Wind Sector Report that investigates the anticipated demand for various vessel types associated with offshore wind development in the United States through 2030 and assesses related market barriers and mitigating policy options. Assessment of Vessel Requirements for the U.S. Offshore Wind Sector (14.82 MB) Assessment of Vessel Requirements for the U.S. Offshore

  11. EA-1970: Fishermen’s Energy LLC Offshore Wind Demonstration Project, offshore Atlantic City, New Jersey

    Broader source: Energy.gov [DOE]

    DOE is proposing to provide funding to Fishermen’s Atlantic City Windfarm, LLC to construct and operate up to six wind turbine generators, for an offshore wind demonstration project, approximately 2.8 nautical miles off the coast of Atlantic City, NJ. The proposed action includes a cable crossing from the turbines to an on-shore existing substation.

  12. Electrical Collection and Transmission Systems for Offshore Wind Power: Preprint

    SciTech Connect (OSTI)

    Green, J.; Bowen, A.; Fingersh, L.J.; Wan, Y.

    2007-03-01

    The electrical systems needed for offshore wind farms to collect power from wind turbines--and transmit it to shore--will be a significant cost element of these systems. This paper describes the development of a simplified model of the cost and performance of such systems.

  13. Virginia Offshore Wind Cost Reduction Through Innovation Study (VOWCRIS) (Poster)

    SciTech Connect (OSTI)

    Maples, B.; Campbell, J.; Arora, D.

    2014-10-01

    The VOWCRIS project is an integrated systems approach to the feasibility-level design, performance, and cost-of-energy estimate for a notional 600-megawatt offshore wind project using site characteristics that apply to the Wind Energy Areas of Virginia, Maryland and North Carolina.

  14. U.S. Offshore Wind Manufacturing and Supply Chain Development

    SciTech Connect (OSTI)

    Hamilton, Bruce

    2013-02-22

    This report seeks to provide an organized, analytical approach to identifying and bounding uncertainties around offshore wind manufacturing and supply chain capabilities; projecting potential component-level supply chain needs under three demand scenarios; and identifying key supply chain challenges and opportunities facing the future U.S. market and current suppliers of the nation’s landbased wind market.

  15. EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI EA-1726: Final Environmental ...

  16. Virginia Offshore Wind Technology Advancement Project on the Atlantic Outer Continental Shelf Offshore Virginia Revised Environmental Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Interior Bureau of Ocean Energy Management Office of Renewable Energy Programs OCS EIS/EA BOEM 2015-031 Virginia Offshore Wind Technology Advancement Project on the Atlantic Outer Continental Shelf Offshore Virginia Revised Environmental Assessment OCS EIS/EA BOEM 2015-031 Virginia Offshore Wind Technology Advancement Project on the Atlantic Outer Continental Shelf Offshore Virginia Revised Environmental Assessment Author Bureau of Ocean Energy Management Office of Renewable Energy Programs

  17. Conneaut Wastewater Facility Wind Turbine | Open Energy Information

    Open Energy Info (EERE)

    Wastewater Facility Wind Turbine Jump to: navigation, search Name Conneaut Wastewater Facility Wind Turbine Facility Conneaut Wastewater Facility Wind Turbine Sector Wind energy...

  18. 2014-2015 Offshore Wind Technologies Market Report

    SciTech Connect (OSTI)

    Smith, Aaron; Stehly, Tyler; Musial, Walter

    2015-09-01

    This report provides data and analysis to assess the status of the U.S. offshore wind industry through June 30, 2015. It builds on the foundation laid by the Navigant Consortium, which produced three market reports between 2012 and 2014. The report summarizes domestic and global market developments, technology trends, and economic data to help U.S. offshore wind industry stakeholders, including policymakers, regulators, developers, financiers, and supply chain participants, to identify barriers and opportunities. Title page contains link to associated data tables posted at http://www.nrel.gov/docs/fy15osti/64283_data_tables.xlsx.

  19. Development of Offshore Wind Recommended Practice for U.S. Waters: Preprint

    SciTech Connect (OSTI)

    Musial, W. D.; Sheppard, R. E.; Dolan, D.; Naughton, B.

    2013-04-01

    This paper discusses how the American Petroleum Institute oil and gas standards were interfaced with International Electrotechnical Commission and other wind turbine and offshore industry standards to provide guidance for reliable engineering design practices for offshore wind energy systems.

  20. New Report Shows Domestic Offshore Wind Industry Potential, 21 Projects Planned in U.S. Waters

    Broader source: Energy.gov [DOE]

    The Energy Department today released a new report showing strong progress for the U.S. offshore wind market—including the start of construction of the nation’s first commercial-scale offshore wind...

  1. DOE-Funded Project Develops Safer Access to Offshore Wind Turbine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE-Funded Project Develops Safer Access to Offshore Wind Turbine Platforms DOE-Funded Project Develops Safer Access to Offshore Wind Turbine Platforms September 10, 2015 - 6:21pm ...

  2. U.S. Department of Energy and SWAY Collaborate on Offshore Wind...

    Energy Savers [EERE]

    and SWAY Collaborate on Offshore Wind Demonstration Project U.S. Department of Energy and SWAY Collaborate on Offshore Wind Demonstration Project October 1, 2012 - 12:13pm Addthis ...

  3. Large-Scale Offshore Wind Power in the United States: Executive Summary

    SciTech Connect (OSTI)

    Musial, W.; Ram, B.

    2010-09-01

    This document provides a summary of a 236-page NREL report that provides a broad understanding of today's offshore wind industry, the offshore wind resource, and the associated technology challenges, economics, permitting procedures, and potential risks and benefits.

  4. Hunting Hurricanes...and Data to Help Build Better Offshore Wind...

    Energy Savers [EERE]

    Hunting Hurricanes...and Data to Help Build Better Offshore Wind Turbines Hunting Hurricanes...and Data to Help Build Better Offshore Wind Turbines June 2, 2014 - 12:21pm Addthis ...

  5. United States- Land Based and Offshore Annual Average Wind Speed at 100 Meters

    Broader source: Energy.gov [DOE]

    Full-size, high resolution version of the 100-meter land-based and offshore wind speed resource map.

  6. 2012-2014 Offshore Wind Market and Economic Analysis Reports | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy -2014 Offshore Wind Market and Economic Analysis Reports 2012-2014 Offshore Wind Market and Economic Analysis Reports These reports authored by the Navigant Consortium provide a comprehensive annual assessment of the U.S. offshore wind market from 2012 to 2014. The reports provides stakeholders with a reliable and consistent data source addressing entry barriers and U.S. competitiveness in the offshore wind market. The 2012 edition contains significant policy and economic analyses,

  7. 41 Offshore Wind Power R&D Projects Receive Energy Department Funding |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 1 Offshore Wind Power R&D Projects Receive Energy Department Funding 41 Offshore Wind Power R&D Projects Receive Energy Department Funding September 7, 2011 - 3:02pm Addthis Department of Energy Awards $43 Million to speed technical innovations, lower costs, and shorten the timeline for deploying offshore wind energy systems. Applicant Location DOE Award Description U.S. Offshore Wind: Technology Development Funding Opportunity Modeling & Analysis Design

  8. 2012 & 2013 Offshore Wind Market & Economic Analysis Reports | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy 2 & 2013 Offshore Wind Market & Economic Analysis Reports 2012 & 2013 Offshore Wind Market & Economic Analysis Reports The objective of these report is to provide a comprehensive annual assessment of the U.S. offshore wind market. Available for download are the 2012 & 2013 Offshore Wind Market & Economic Analysis full reports prepared by Navigant Consulting. The 2012 report contains the following significant analyses which are not present in the 2013 or 2014

  9. 2012-2014 Offshore Wind Market and Economic Analysis Reports | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy 2012-2014 Offshore Wind Market and Economic Analysis Reports 2012-2014 Offshore Wind Market and Economic Analysis Reports These reports authored by the Navigant Consortium provide a comprehensive annual assessment of the U.S. offshore wind market from 2012 to 2014. The reports provides stakeholders with a reliable and consistent data source addressing entry barriers and U.S. competitiveness in the offshore wind market. The 2012 edition contains significant policy and economic

  10. Assessment of Vessel Requirements for the U.S. Offshore Wind Sector

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    © Douglas-Westwood Page 22 Overview of the Vessel-Related Aspects of the Offshore Wind Industry Part 1 Overview of the Vessel-Related Aspects of the Offshore Wind Industry © Douglas-Westwood Page 23 Introduction Only a handful of Western European countries (and to a lesser extent China) have so far developed significant amounts of offshore wind power generating capacities. Understanding the policy frameworks under which offshore wind has developed in these countries provides useful guidance

  11. 2014-2015 Offshore Wind Technologies Market Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -2015 Offshore Wind Technologies Market Report 2014-2015 Offshore Wind Technologies Market Report 2014-2015-Offshore-Wind-Technologies-Market-Report.jpg This report provides data and analysis to assess the status of the U.S. offshore wind industry through June 30, 2015. It builds on the foundation laid by the Navigant Consortium, which produced three market reports between 2012 and 2014. The report summarizes domestic and global market developments, technology trends, and economic data to help

  12. DOE Announces Webinars on Economic Impacts of Offshore Wind, Clean Energy Financing Programs, and More

    Broader source: Energy.gov [DOE]

    EERE announces upcoming webinars on topics such as Economic Impacts of Offshore Wind and Clean Energy Financing Programs.

  13. Bluewater Wind New Jersey | Open Energy Information

    Open Energy Info (EERE)

    Wind energy Facility Type Commercial Scale Wind Facility Status Proposed Developer NRG Bluewater Wind Location Offshore from Atlantic Beach NJ Coordinates 39.18, -74.14...

  14. DOE Looks to the Future of Offshore Wind | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Looks to the Future of Offshore Wind DOE Looks to the Future of Offshore Wind September 10, 2015 - 6:11pm Addthis Turning the page on the largely successful 2011 joint offshore wind strategy developed in partnership with the U.S. Department of the Interior, the U.S. Department of Energy (DOE) Wind Program is now reaching ahead to develop a new offshore wind strategy that builds on the original. The objectives of the 2011 strategy were to reduce both the cost of offshore wind energy and the

  15. Study Reveals Challenges and Opportunities Related to Vessels for U.S. Offshore Wind

    Broader source: Energy.gov [DOE]

    The installation of offshore wind farms requires a highly specialized fleet of vessels--but no such fleet currently exists in the United States. As part of a broader DOE initiative to accelerate the growth of the U.S. offshore wind industry, energy research group Douglas-Westwood identified national vessel requirements under several offshore wind industry growth scenarios.

  16. Offshore Wind Jobs and Economic Development Impact: Four Regional Scenarios (Presentation)

    SciTech Connect (OSTI)

    Tegen, S.

    2014-11-01

    NREL's Jobs and Economic Development Impact (JEDI) Model for Offshore Wind, is a computer tool for studying the economic impacts of fixed-bottom offshore wind projects in the United States. This presentation provides the results of an analysis of four offshore wind development scenarios in the Southeast Atlantic, Great Lakes, Mid-Atlantic, and Gulf of Mexico regions.

  17. Study Finds 54 Gigawatts of Offshore Wind Capacity Technically Possible by 2030

    Broader source: Energy.gov [DOE]

    DOE recently funded a study that finds the deployment of at least 54 gigawatts of offshore wind power to be technically possible by 2030. The National Offshore Wind Energy Grid Interconnection Study (NOWEGIS), which focused on two DOE objectives in reducing barriers to deployment of offshore wind, cost of energy and timeline of deployment.

  18. Sandia vertical axis wind turbines (VAWTs) demonstrate offshore advantages

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    vertical axis wind turbines (VAWTs) demonstrate offshore advantages - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy

  19. High-Resolution Computational Algorithms for Simulating Offshore Wind Farms

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computational Algorithms for Simulating Offshore Wind Farms - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense

  20. NREL: Wind Research - Offshore Design Tools and Methods

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Design Tools and Methods Graphic of a modular depiction of the FAST tool, which includes aerodynamics, hydrodynamics, control and electrical system dynamics, and structural dynamics modules. NREL's CAE Tool, FAST, and its Sub-Modules Illustration of wind turbines in various environments including land-based, shallow water (0-30m), transitional depth (30-60m), and deep water floating (greater than 60m). FAST has the capability of modeling a wide range of offshore wind system configurations

  1. Innovative Offshore Vertical-Axis Wind Turbine Rotors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Offshore Vertical-Axis Wind Turbine Rotors - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management

  2. EA-2045: LAKE ERIE ENERGY DEVELOPMENT CORPORATION’S PROJECT ICEBREAKER, AN OFFSHORE WIND ADVANCED TECHNOLOGY DEMONSTRATION PROJECT, OFFSHORE CLEVELAND, OHIO IN LAKE ERIE.

    Broader source: Energy.gov [DOE]

    Lake Erie Energy Development Corporation’s Project Icebreaker, an offshore wind advanced technology demonstration project, offshore Cleveland, Ohio in Lake Erie

  3. Where the wind blows: navigating offshore wind development, domestically and abroad

    SciTech Connect (OSTI)

    Colander, Brandi

    2010-04-15

    2010 is a defining year for offshore wind power globally. Many are watching with bated breath to see how the Department of Interior will handle the future of the industry in the United States. (author)

  4. An Update on the National Offshore Wind Strategy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the National Offshore Wind Strategy An Update on the National Offshore Wind Strategy December 17, 2012 - 11:27am Addthis Principle Power's wind float prototype in Portugal. The company was recently awarded an Energy Department grant to support a 30 megawatt floating offshore wind farm near Oregon's Port of Coos Bay. | Photo courtesy of Principle Power. Principle Power's wind float prototype in Portugal. The company was recently awarded an Energy Department grant to support a 30 megawatt floating

  5. Advanced Offshore Wind Energy - Atlantic Consortium

    SciTech Connect (OSTI)

    Kempton, Willett

    2015-11-04

    This project developed relationships among the lead institution, U of Delaware, wind industry participants from 11 companies, and two other universities in the region. The participating regional universities were University of Maryland and Old Dominion University. Research was carried out in six major areas: Analysis and documentation of extreme oceanic wind events & their impact on design parameters, calibration of corrosivity estimates measured on a coastal turbine, measurment and modeling of tower structures, measurement and modeling of the tribology of major drive components, and gearbox conditioning monitoring using acoustic sensors. The project also had several educational goals, including establishing a course in wind energy and training graduate students. Going beyond these goals, three new courses were developed, a graduate certificate program in wind power was developed and approved, and an exchange program in wind energy was established with Danish Technical University. Related to the installation of a Gamesa G90 turbine on campus and a Gamesa-UD research program established in part due to this award, several additional research projects have been carried out based on mutual industry-university interests, and funded by turbine revenues. This award and the Gamesa partnership have jointly led to seven graduate students receiving full safety and climb training, to become “research climbers” as part of their wind power training, and contributing to on-turbine research. As a result of the educational program, already six graduate students have taken jobs in the US wind industry.

  6. Wind/Wave Misalignment in the Loads Analysis of a Floating Offshore Wind Turbine: Preprint

    SciTech Connect (OSTI)

    Barj, L.; Stewart, S.; Stewart, G.; Lackner, M.; Jonkman, J.; Robertson, A.

    2014-02-01

    Wind resources far from the shore and in deeper seas have encouraged the offshore wind industry to look into floating platforms. The International Electrotechnical Commission (IEC) is developing a new technical specification for the design of floating offshore wind turbines that extends existing design standards for land-based and fixed-bottom offshore wind turbines. The work summarized in this paper supports the development of best practices and simulation requirements in the loads analysis of floating offshore wind turbines by examining the impact of wind/wave misalignment on the system loads under normal operation. Simulations of the OC3-Hywind floating offshore wind turbine system under a wide range of wind speeds, significant wave heights, peak-spectral periods and wind/wave misalignments have been carried out with the aero-servo-hydro-elastic tool FAST [4]. The extreme and fatigue loads have been calculated for all the simulations. The extreme and fatigue loading as a function of wind/wave misalignment have been represented as load roses and a directional binning sensitivity study has been carried out. This study focused on identifying the number and type of wind/wave misalignment simulations needed to accurately capture the extreme and fatigue loads of the system in all possible metocean conditions considered, and for a down-selected set identified as the generic US East Coast site. For this axisymmetric platform, perpendicular wind and waves play an important role in the support structure and including these cases in the design loads analysis can improve the estimation of extreme and fatigue loads. However, most structural locations see their highest extreme and fatigue loads with aligned wind and waves. These results are specific to the spar type platform, but it is expected that the results presented here will be similar to other floating platforms.

  7. "Open Hatch" Tour of Offshore Wind Buoy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    "Open Hatch" Tour of Offshore Wind Buoy "Open Hatch" Tour of Offshore Wind Buoy Addthis Description Wind and Water Power Technologies Office Director, Jose Zayas gives a behind the scenes tour of the AXYS WindSentinel research buoy, which uses high-tech instruments to measure conditions for potential offshore wind energy development. Text Version Below is the text version for the "Open Hatch" Tour of Offshore Wind Buoy video. We're standing on top of one of the two

  8. DOE-DOI Strategy Seeks to Harness U.S. Offshore Wind Energy Potential |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy DOE-DOI Strategy Seeks to Harness U.S. Offshore Wind Energy Potential DOE-DOI Strategy Seeks to Harness U.S. Offshore Wind Energy Potential May 20, 2011 - 1:34pm Addthis This is an excerpt from the Second Quarter 2011 edition of the Wind Program R&D Newsletter. Image of the EERE National Offshore Wind Strategy report cover featuring a photo of a receding line of offshore wind turbines in the ocean. The winds of change are blowing for renewable energy policy, and some

  9. DOE Wind Program Presentations and Posters at AWEA Offshore WINDPOWER 2015

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Wind Program Presentations and Posters at AWEA Offshore WINDPOWER 2015 DOE Wind Program Presentations and Posters at AWEA Offshore WINDPOWER 2015 September 15, 2015 - 3:06pm Addthis The Department of Energy's Wind Program will once again host a booth at the AWEA Offshore WINDPOWER Conference and Exhibition in Baltimore Maryland, September 29-30, 2015. Stop by booth #303 to meet Wind Program personnel and learn about the latest DOE-funded research. Visitors can also

  10. Characterizing Scaled Wind Farm Technology Facility Inflow

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scaled Wind Farm Technology Facility Inflow - Sandia Energy Energy Search Icon Sandia Home ... Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ...

  11. WIND TURBINE DRIVETRAIN TEST FACILITY DATA ACQUISITION SYSTEM

    SciTech Connect (OSTI)

    Mcintosh, J.

    2012-01-03

    The Wind Turbine Drivetrain Test Facility (WTDTF) is a state-of-the-art industrial facility used for testing wind turbine drivetrains and generators. Large power output wind turbines are primarily installed for off-shore wind power generation. The facility includes two test bays: one to accommodate turbine nacelles up to 7.5 MW and one for nacelles up to 15 MW. For each test bay, an independent data acquisition system (DAS) records signals from various sensors required for turbine testing. These signals include resistance temperature devices, current and voltage sensors, bridge/strain gauge transducers, charge amplifiers, and accelerometers. Each WTDTF DAS also interfaces with the drivetrain load applicator control system, electrical grid monitoring system and vibration analysis system.

  12. “Open Hatch” Tour of Offshore Wind Buoy- Text Alt Version

    Broader source: Energy.gov [DOE]

    Wind and Water Power Technologies Office Director, Jose Zayas gives a behind the scenes tour of the AXYS WindSentinel research buoy, which uses high-tech instruments to measure conditions for potential offshore wind energy development.

  13. Assessment of Offshore Wind Energy Resources for the United States

    SciTech Connect (OSTI)

    Schwartz, M.; Heimiller, D.; Haymes, S.; Musial, W.

    2010-06-01

    This report summarizes the offshore wind resource potential for the contiguous United States and Hawaii as of May 2009. The development of this assessment has evolved over multiple stages as new regional meso-scale assessments became available, new validation data was obtained, and better modeling capabilities were implemented. It is expected that further updates to the current assessment will be made in future reports.

  14. Offshore Code Comparison Collaboration Continuation (OC4), Phase I - Results of Coupled Simulations of an Offshore Wind Turbine with Jacket Support Structure: Preprint

    SciTech Connect (OSTI)

    Popko, W.; Vorpahl, F.; Zuga, A.; Kohlmeier, M.; Jonkman, J.; Robertson, A.; Larsen, T. J.; Yde, A.; Saetertro, K.; Okstad, K. M.; Nichols, J.; Nygaard, T. A.; Gao, Z.; Manolas, D.; Kim, K.; Yu, Q.; Shi, W.; Park, H.; Vasquez-Rojas, A.

    2012-03-01

    This paper presents the results of the IEA Wind Task 30, Offshore Code Comparison Collaboration Continuation Project - Phase 1.

  15. Final Report DE-EE0005380 - Assessment of Offshore Wind Farm...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Final Report DE-EE0005380 - Assessment of Offshore Wind Farm Effects on Sea Surface, Subsurface and Airborne Electronic Systems Final Report DE-EE0005380 - Assessment of Offshore...

  16. Optimizing Installation, Operation, and Maintenance at Offshore Wind Projects in the United States

    Broader source: Energy.gov [DOE]

    For the United States to ensure that the substantial rollout of offshore wind energy projects envisioned by the DOE is carried out in an efficient and cost-effective manner, it is important to observe the current and emerging practices in the international offshore wind energy industry. In this manner, the United States can draw from the experience already gained around the world, combined with experience from the sizeable U.S. land-based wind industry, to develop a strong offshore wind sector. The work detailed in this report will support that learning curve by enabling optimization of the cost-effectiveness of installation, operation, and maintenance activities for offshore wind farms.

  17. Low Wind Speed Technology Phase II: Offshore Floating Wind Turbine Concepts: Fully Coupled Dynamic Response Simulations; Massachusetts Institute of Technology

    SciTech Connect (OSTI)

    Not Available

    2006-03-01

    This fact sheet describes a subcontract with Massachusetts Institute of Technology to study dynamic response simulations to evaluate floating platform concepts for offshore wind turbines.

  18. For Cape Wind, Summer Breeze Makes Offshore Wind Feel Fine |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Harsh winds from extreme storms battered Cape Cod this past winter and resulted in power outages across the region, and as summers get warmer, beachgoers rely more and more on ...

  19. Simulating Turbulent Wind Fields for Offshore Turbines in Hurricane-Prone Regions (Poster)

    SciTech Connect (OSTI)

    Guo, Y.; Damiani, R.; Musial, W.

    2014-04-01

    Extreme wind load cases are one of the most important external conditions in the design of offshore wind turbines in hurricane prone regions. Furthermore, in these areas, the increase in load with storm return-period is higher than in extra-tropical regions. However, current standards have limited information on the appropriate models to simulate wind loads from hurricanes. This study investigates turbulent wind models for load analysis of offshore wind turbines subjected to hurricane conditions. Suggested extreme wind models in IEC 61400-3 and API/ABS (a widely-used standard in oil and gas industry) are investigated. The present study further examines the wind turbine response subjected to Hurricane wind loads. Three-dimensional wind simulator, TurbSim, is modified to include the API wind model. Wind fields simulated using IEC and API wind models are used for an offshore wind turbine model established in FAST to calculate turbine loads and response.

  20. New Report Highlights Trends in Offshore Wind with 14 Projects Currently In

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Stages of Development | Department of Energy Report Highlights Trends in Offshore Wind with 14 Projects Currently In Advanced Stages of Development New Report Highlights Trends in Offshore Wind with 14 Projects Currently In Advanced Stages of Development September 3, 2014 - 10:57am Addthis The Energy Department today released a new report showing progress for the U.S. offshore wind energy market over the past year, including two projects that have moved into the initial stages of

  1. Thanks to Energy Department Funding, Safer Access to Offshore Wind Turbine

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Platforms is Demonstrated | Department of Energy Thanks to Energy Department Funding, Safer Access to Offshore Wind Turbine Platforms is Demonstrated Thanks to Energy Department Funding, Safer Access to Offshore Wind Turbine Platforms is Demonstrated August 17, 2015 - 10:04am Addthis Thanks to Energy Department Funding, Safer Access to Offshore Wind Turbine Platforms is Demonstrated Alana Duerr Alana Duerr Ph.D., Ocean Engineer (New West Technologies) More than 4,000 gigawatts of estimated

  2. Ready, Set, Go: New Tool and Report Help Offshore Wind Industry Take Off |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Ready, Set, Go: New Tool and Report Help Offshore Wind Industry Take Off Ready, Set, Go: New Tool and Report Help Offshore Wind Industry Take Off April 30, 2014 - 3:47pm Addthis Click on a project for more information. The Energy Department has selected seven projects that will accelerate the commercialization of innovative offshore wind technologies in the United States. Each project will receive up to $4 million from the Energy Department to complete the engineering,

  3. EERE Success Story-University of Michigan Gets Offshore Wind Ready for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Winter on Lake Michigan | Department of Energy Michigan Gets Offshore Wind Ready for Winter on Lake Michigan EERE Success Story-University of Michigan Gets Offshore Wind Ready for Winter on Lake Michigan April 16, 2013 - 12:00am Addthis The University of Michigan received funding from EERE to develop a modeling tool to simulate surface water ice impact on offshore wind turbine designs, especially designs involving innovative substructures. The funding will be used to augment existing

  4. Final Report DE-EE0005380 - Assessment of Offshore Wind Farm Effects on Sea

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Surface, Subsurface and Airborne Electronic Systems | Department of Energy Final Report DE-EE0005380 - Assessment of Offshore Wind Farm Effects on Sea Surface, Subsurface and Airborne Electronic Systems Final Report DE-EE0005380 - Assessment of Offshore Wind Farm Effects on Sea Surface, Subsurface and Airborne Electronic Systems Report that assesses possible interference to various kinds of equipment operating in the marine environment where offshore wind farms could be installed.

  5. 2014 U.S. Offshore Wind Market Report: Industry Trends, Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stehly, Walt Musial Floating Substructure Sensitivities Global Market Trends * The global offshore wind industry is set to reach a deployment record with 4,000 megawatts (MW)...

  6. Dynamics Modeling and Loads Analysis of an Offshore Floating Wind Turbine

    SciTech Connect (OSTI)

    Jonkman, J. M.

    2007-12-01

    This report describes the development, verification, and application of a comprehensive simulation tool for modeling coupled dynamic responses of offshore floating wind turbines.

  7. Large-scale Offshore Wind Power in the United States. Assessment of Opportunities and Barriers

    SciTech Connect (OSTI)

    Musial, Walter; Ram, Bonnie

    2010-09-01

    This report describes the benefits of and barriers to large-scale deployment of offshore wind energy systems in U.S. waters.

  8. Large-Scale Offshore Wind Power in the United States: Assessment of Opportunities and Barriers

    SciTech Connect (OSTI)

    Musial, W.; Ram, B.

    2010-09-01

    This paper assesses the potential for U.S. offshore wind to meet the energy needs of many coastal and Great Lakes states.

  9. Department of Energy Awards $43 Million to Spur Offshore Wind Energy, Wind Program Newsletter, September 2011 Edition (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-09-01

    EERE Wind Program Quarterly Newsletter - September 2011. In September, the U.S. Department of Energy announced that it will award $43 million over the next five years to 41 projects across 20 states to speed technical innovations, lower costs, and shorten the timeline for deploying offshore wind energy systems. The projects will advance wind turbine design tools and hardware, improve information about U.S. offshore wind resources, and accelerate the deployment of offshore wind by reducing market barriers such as supply chain development, transmission and infrastructure. The projects announced in September focus on approaches to advancing offshore technology and removing market barriers to responsible offshore wind energy deployment. Funding is subject to Congressional appropriations.

  10. Improved Offshore Wind Resource Assessment in Global Climate Stabilization Scenarios

    SciTech Connect (OSTI)

    Arent, D.; Sullivan, P.; Heimiller, D.; Lopez, A.; Eurek, K.; Badger, J.; Jorgensen, H. E.; Kelly, M.; Clarke, L.; Luckow, P.

    2012-10-01

    This paper introduces a technique for digesting geospatial wind-speed data into areally defined -- country-level, in this case -- wind resource supply curves. We combined gridded wind-vector data for ocean areas with bathymetry maps, country exclusive economic zones, wind turbine power curves, and other datasets and relevant parameters to build supply curves that estimate a country's offshore wind resource defined by resource quality, depth, and distance-from-shore. We include a single set of supply curves -- for a particular assumption set -- and study some implications of including it in a global energy model. We also discuss the importance of downscaling gridded wind vector data to capturing the full resource potential, especially over land areas with complex terrain. This paper includes motivation and background for a statistical downscaling methodology to account for terrain effects with a low computational burden. Finally, we use this forum to sketch a framework for building synthetic electric networks to estimate transmission accessibility of renewable resource sites in remote areas.

  11. Block Island Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    energy Facility Type Commercial Scale Wind Facility Status Proposed Developer Deepwater Wind Location Offshore from Block Island RI Coordinates 41.1, -71.53 Show Map Loading...

  12. Assessment of Offshore Wind Energy Resources for the United States

    Wind Powering America (EERE)

    Technical Report NREL/TP-500-45889 June 2010 Assessment of Offshore Wind Energy Resources for the United States Marc Schwartz, Donna Heimiller, Steve Haymes, and Walt Musial National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 Technical

  13. National Offshore Wind Strategy Supporting Technical Reports | Department

    Office of Environmental Management (EM)

    Offshore Wind Energy Grid Interconnection Study Executive Summary DOE Award No. EE-0005365 ABB, Inc. 12040 Regency Pkwy. Suite 200 Cary, NC 27518-7708 Project Period: 10/11 - 04/14 Authors: John P. Daniel Dr. Shu Liu Dr. Eduardo Ibanez (Principal Investigator) ABB, Inc. National Renewable Energy Laboratory ABB, Inc. 919-856-2473 303-384-6926 940 Main Campus Dr. shu.liu@us.abb.com eduardo.ibanez@nrel.gov Raleigh, NC 27606 919-856-3306 john.daniel@us.abb.com Ken Pennock Dr. Gregory Reed Spencer

  14. National Offshore Wind Energy Grid Interconnection Study - Executive Summary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Offshore Wind Energy Grid Interconnection Study Executive Summary DOE Award No. EE-0005365 ABB, Inc. 12040 Regency Pkwy. Suite 200 Cary, NC 27518-7708 Project Period: 10/11 - 04/14 Authors: John P. Daniel Dr. Shu Liu Dr. Eduardo Ibanez (Principal Investigator) ABB, Inc. National Renewable Energy Laboratory ABB, Inc. 919-856-2473 303-384-6926 940 Main Campus Dr. shu.liu@us.abb.com eduardo.ibanez@nrel.gov Raleigh, NC 27606 919-856-3306 john.daniel@us.abb.com Ken Pennock Dr. Gregory Reed Spencer

  15. Assessment of Offshore Wind System Design, Safety, and Operation Standards

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Contract No. DE-AC36-08GO28308 Assessment of Offshore Wind System Design, Safety, and Operation Standards Senu Sirnivas and Walt Musial National Renewable Energy Laboratory Bruce Bailey and Matthew Filippelli AWS Truepower LLC Technical Report NREL/TP-5000-60573 January 2014 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC. This report is available at no cost from the National

  16. Definition of a 5-MW Reference Wind Turbine for Offshore System Development

    SciTech Connect (OSTI)

    Jonkman, J.; Butterfield, S.; Musial, W.; Scott, G.

    2009-02-01

    This report describes a three-bladed, upwind, variable-speed, variable blade-pitch-to-feather-controlled multimegawatt wind turbine model developed by NREL to support concept studies aimed at assessing offshore wind technology.

  17. First U.S. Grid-Connected Offshore Wind Turbine Installed Off...

    Broader source: Energy.gov (indexed) [DOE]

    A 65-foot tall, 20-kilowatt wind turbine with a white rotor and a yellow tower on a ... Academy and Cianbro to launch a deepwater offshore floating wind turbine near Bangor. ...

  18. Secretary Chu Unveils 41 New Offshore Wind Power R&D Projects

    Office of Energy Efficiency and Renewable Energy (EERE)

     The $43 million dollars in offshore wind funding Secretary Chu announced today is part of a coordinated federal strategy to put the nation's wind resources to work and support innovation and jobs...

  19. DOE Wind Program to Host Booth at Offshore WINDPOWER | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Wind Program to Host Booth at Offshore WINDPOWER DOE Wind Program to Host Booth at Offshore WINDPOWER September 12, 2014 - 10:16am Addthis The Department of Energy's Wind Program will once again host a booth at the AWEA Offshore WINDPOWER Conference and Exhibition in Atlantic City, New Jersey, October 7 and 8, 2014. Stop by booth #200 to meet Wind Program personnel and learn about the latest DOE-funded research. Visitors can also pick up a free flash drive containing the Wind Program's most

  20. New Modeling Tool Analyzes Floating Platform Concepts for Offshore Wind Turbines (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-02-01

    Researchers at the National Renewable Energy Laboratory (NREL) developed a new complex modeling and analysis tool capable of analyzing floating platform concepts for offshore wind turbines. The new modeling tool combines the computational methodologies used to analyze land-based wind turbines with the comprehensive hydrodynamic computer programs developed for offshore oil and gas industries. This new coupled dynamic simulation tool will enable the development of cost-effective offshore technologies capable of harvesting the rich offshore wind resources at water depths that cannot be reached using the current technology.

  1. OC3 -- Benchmark Exercise of Aero-Elastic Offshore Wind Turbine Codes: Preprint

    SciTech Connect (OSTI)

    Passon, P.; Kuhn, M.; Butterfield, S.; Jonkman, J.; Camp, T.; Larsen, T. J.

    2007-08-01

    This paper introduces the work content and status of the first international investigation and verification of aero-elastic codes for offshore wind turbines as performed by the "Offshore Code Comparison Collaboration" (OC3) within the "IEA Wind Annex XXIII -- Subtask 2".

  2. Offshore Wind Jobs and Economic Development Impacts in the United States: Four Regional Scenarios

    Broader source: Energy.gov [DOE]

    This report uses the offshore wind Jobs and Economic Development Impacts (JEDI) model and provides four case studies of potential offshore wind deployment scenarios in different regions of the United States: the Southeast, the Great Lakes, the Gulf Coast, and the Mid-Atlantic.

  3. Hyde County- Wind Energy Facility Ordinance

    Broader source: Energy.gov [DOE]

    Hyde County, located in eastern North Carolina, adopted a wind ordinance in 2008 to regulate the use of wind energy facilities throughout the county, including waters within the boundaries of Hyde...

  4. Tyrrell County- Wind Energy Facility Ordinance

    Broader source: Energy.gov [DOE]

    Tyrrell County, located in northeastern North Carolina, adopted a wind ordinance in 2009 to regulate the use of wind energy facilities in the unincorporated areas of the county. The ordinance is...

  5. Energy Department Releases New Land-Based/Offshore Wind Resource Map |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Releases New Land-Based/Offshore Wind Resource Map Energy Department Releases New Land-Based/Offshore Wind Resource Map May 1, 2012 - 2:23pm Addthis This is an excerpt from the Second Quarter 2012 edition of the Wind Program R&D Newsletter. The Energy Department recently released a new wind resource map compiled by the National Renewable Energy Laboratory (NREL) and AWS Truepower that combines land-based with offshore resources. The new combined map, posted on the

  6. Analyzing the Deployment of Large Amounts of Offshore Wind to Design an Offshore Transmission Grid in the United States: Preprint

    SciTech Connect (OSTI)

    Ibanez, E.; Mai, T.; Coles, L.

    2012-09-01

    This paper revisits the results from the U.S. Department of Energy's '20% Wind Energy By 2030' study, which envisioned that 54 GW of offshore wind would be installed by said year. The analysis is conducted using the Regional Energy Deployment System (ReEDS), a capacity expansion model developed by the National Renewable Energy Laboratory. The model is used to optimize the deployment of the 54 GW of wind capacity along the coasts and lakes of the United States. The graphical representation of the results through maps will be used to provide a qualitative description for planning and designing an offshore grid. ReEDS takes into account many factors in the process of siting offshore wind capacity, such as the quality of the resource, capital and O&M costs, interconnection costs, or variability metrics (wind capacity value, forecast error, expected curtailment). The effect of these metrics in the deployment of offshore wind will be analyzed through examples in the results.

  7. Offshore Wind Energy Permitting: A Survey of U.S. Project Developers

    SciTech Connect (OSTI)

    Van Cleve, Frances B.; Copping, Andrea E.

    2010-11-30

    The U.S. Department of Energy (DOE) has adopted a goal to generate 20% of the nation’s electricity from wind power by 2030. Achieving this “20% Wind Scenario” in 2030 requires acceleration of the current rate of wind project development. Offshore wind resources contribute substantially to the nation’s wind resource, yet to date no offshore wind turbines have been installed in the U.S. Progress developing offshore wind projects has been slowed by technological challenges, uncertainties about impacts to the marine environment, siting and permitting challenges, and viewshed concerns. To address challenges associated with siting and permitting, Pacific Northwest National Laboratory (PNNL) surveyed offshore wind project developers about siting and project development processes, their experience with the environmental permitting process, and the role of coastal and marine spatial planning (CMSP) in development of the offshore wind industry. Based on the responses to survey questions, we identify several priority recommendations to support offshore wind development. Recommendations also include considerations for developing supporting industries in the U.S. and how to use Coastal and Marine Spatial Planning (CMSP) to appropriately consider ocean energy among existing ocean uses. In this report, we summarize findings, discuss the implications, and suggest actions to improve the permitting and siting process.

  8. South Carolina Opens Nation's Largest Wind Drivetrain Testing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The facility will help test and validate new turbines, particularly for offshore wind- ... conduct research on stronger, more durable wind drivetrains for land-based wind farms. ...

  9. Offshore Wind Jobs and Economic Development Impacts in the United States: Four Regional Scenarios

    SciTech Connect (OSTI)

    Tegen, S.; Keyser, D.; Flores-Espino, F.; Miles, J.; Zammit, D.; Loomis, D.

    2015-02-01

    This report uses the offshore wind Jobs and Economic Development Impacts (JEDI) model and provides four case studies of potential offshore deployment scenarios in different regions of the United States: the Southeast, the Great Lakes, the Gulf Coast, and the Mid-Atlantic. Researchers worked with developers and industry representatives in each region to create potential offshore wind deployment and supply chain growth scenarios, specific to their locations. These scenarios were used as inputs into the offshore JEDI model to estimate jobs and other gross economic impacts in each region.

  10. FERN Blue Ribbon Wind Farm II* | Open Energy Information

    Open Energy Info (EERE)

    II* Jump to: navigation, search Name FERN Blue Ribbon Wind Farm II* Facility FERN Blue Ribbon Wind Farm II* Sector Wind energy Facility Type Offshore Wind Facility Status Proposed...

  11. FERN Blue Ribbon Wind Farm I | Open Energy Information

    Open Energy Info (EERE)

    FERN Blue Ribbon Wind Farm I Jump to: navigation, search Name FERN Blue Ribbon Wind Farm I Facility FERN Blue Ribbon Wind Farm I Sector Wind energy Facility Type Offshore Wind...

  12. Assessment of Offshore Wind Energy Leasing Areas for the BOEM Maryland Wind Energy Area

    SciTech Connect (OSTI)

    Musial, W.; Elliott, D.; Fields, J.; Parker, Z.; Scott, G.; Draxl, C.

    2013-06-01

    The National Renewable Energy Laboratory (NREL), under an interagency agreement with the Bureau of Ocean Energy Management (BOEM), is providing technical assistance to identify and delineate leasing areas for offshore wind energy development within the Atlantic Coast Wind Energy Areas (WEAs) established by BOEM. This report focuses on NREL's evaluation of the delineation proposed by the Maryland Energy Administration (MEA) for the Maryland (MD) WEA and two alternative delineations. The objectives of the NREL evaluation were to assess MEA's proposed delineation of the MD WEA, perform independent analysis, and recommend how the MD WEA should be delineated.

  13. Numerical and experimental analysis of a retrievable offshore loading facility

    SciTech Connect (OSTI)

    Sterndorff, M.J.; O`Brien, P.

    1995-12-31

    ROLF (Retrievable Offshore Loading Facility) has been proposed as an alternative offshore oil export tanker loading system for the North Sea. The system consists of a flexible riser ascending from the seabed in a lazy wave configuration to the bow of a dynamically positioned tanker. In order to supplant and support the numerical analyses performed to design the system, an extensive model test program was carried out in a 3D offshore basin at scale 1:50. A model riser with properties equivalent to the properties of the oil filled prototype riser installed in seawater was tested in several combinations of waves and current. During the tests the forces at the bow of the tanker and at the pipeline end manifold were measured together with the motions of the tanker and the riser. The riser motions were measured by means of a video based 3D motion monitoring system. Of special importance was accurate determination of the minimum bending radius for the riser. This was derived based on the measured riser motions. The results of the model tests were compared to numerical analyses by an MCS proprietary riser analysis program.

  14. Permitting of Wind Energy Facilities: A Handbook

    SciTech Connect (OSTI)

    NWCC Siting Work Group

    2002-08-01

    This handbook has been written for individuals and groups involved in evaluating wind projects: decision-makers and agency staff at all levels of government, wind developers, interested parties and the public. Its purpose is to help stakeholders make permitting wind facility decisions in a manner which assures necessary environmental protection and responds to public needs.

  15. Comparison of API & IEC Standards for Offshore Wind Turbine Applications in the U.S. Atlantic Ocean: Phase II; March 9, 2009 - September 9, 2009

    SciTech Connect (OSTI)

    Jha, A.; Dolan, D.; Gur, T.; Soyoz, S.; Alpdogan, C.

    2013-01-01

    This report compares two design guidelines for offshore wind turbines: Recommended Practice for Planning, Designing, and Constructing Fixed Offshore Platform Structures and the International Electrotechnical Commission 61400-3 Design Requirements for Offshore Wind Turbines.

  16. New Report Shows Trend Toward Larger Offshore Wind Systems, with 11

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Stage Projects Proposed in U.S. Waters | Department of Energy Report Shows Trend Toward Larger Offshore Wind Systems, with 11 Advanced Stage Projects Proposed in U.S. Waters New Report Shows Trend Toward Larger Offshore Wind Systems, with 11 Advanced Stage Projects Proposed in U.S. Waters October 23, 2013 - 10:52am Addthis The Energy Department today released a new report showing progress for the U.S. offshore wind energy market in 2012, including the completion of two commercial

  17. Potential Economic Impacts from Offshore Wind in the Mid-Atlantic Region (Fact Sheet)

    SciTech Connect (OSTI)

    Keyser, D.; Tegen, S.; Flores, F.; Zammit, D.; Kraemer, M.; Miles, J.

    2014-01-01

    Offshore wind is a clean, renewable source of energy and can be an economic driver in the United States. To better understand the employment opportunities and other potential regional economic impacts from offshore wind development, the U.S. Department of Energy (DOE) funded research that focuses on four regions of the country. The studies use multiple scenarios with various local job and domestic manufacturing content assumptions. Each regional study uses the new offshore wind Jobs and Economic Development Impacts (JEDI) model, developed by the National Renewable Energy Laboratory. This fact sheet summarizes the potential economic impacts for the Mid-Atlantic region.

  18. Potential Economic Impacts from Offshore Wind in the Great Lakes Region (Fact Sheet)

    SciTech Connect (OSTI)

    Tegen, S.; Keyser, D.

    2014-01-01

    Offshore wind is a clean, renewable source of energy and can be an economic driver in the United States. To better understand the employment opportunities and other potential regional economic impacts from offshore wind development, the U.S. Department of Energy (DOE) funded research that focuses on four regions of the country. The studies use multiple scenarios with various local job and domestic manufacturing content assumptions. Each regional study uses the new offshore wind Jobs and Economic Development Impacts (JEDI) model, developed by DOE's National Renewable Energy Laboratory. This fact sheet summarizes the potential economic impacts identified by the study for the Great Lakes region.

  19. DOE Launches High-Tech Research Buoys to Advance U.S. Offshore Wind

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development | Department of Energy Launches High-Tech Research Buoys to Advance U.S. Offshore Wind Development DOE Launches High-Tech Research Buoys to Advance U.S. Offshore Wind Development May 18, 2015 - 3:18pm Addthis The U.S. Department of Energy (DOE) is exploring the immense potential for offshore wind energy development off the Atlantic and Pacific coasts using high-tech research buoys. In December 2014, researchers from DOE's Pacific Northwest National Laboratory (PNNL) deployed one

  20. Potential Economic Impacts from Offshore Wind in the Gulf of Mexico Region (Fact Sheet)

    SciTech Connect (OSTI)

    Flores, F.; Keyser, D.; Tegen, S.

    2014-01-01

    Offshore wind is a clean, renewable source of energy and can be an economic driver in the United States. To better understand the employment opportunities and other potential regional economic impacts from offshore wind development, the U.S. Department of Energy (DOE) funded research that focuses on four regions of the country. The studies use multiple scenarios with various local job and domestic manufacturing content assumptions. Each regional study uses the new offshore wind Jobs and Economic Development Impacts (JEDI) model, developed by the National Renewable Energy Laboratory. This fact sheet summarizes the potential economic impacts for the Gulf of Mexico region.

  1. United States Offshore Wind Resource Map at 90 Meters

    Wind Powering America (EERE)

    Offshore Wind Speed at 90 m 10-JAN-2011 1.1.1 Wind Speed at 90 m m/s 11.5 - 12.0 11.0 - 11.5 10.5 - 11.0 10.0 - 10.5 9.5 - 10.0 9.0 - 9.5 8.5 - 9.0 8.0 - 8.5 7.5 - 8.0 7.0 - 7.5 6.5 - 7.0 6.0 - 6.5 0.0 - 6.0 mph 25.7 - 26.8 24.6 - 25.7 23.5 - 24.6 22.4 - 23.5 21.3 - 22.4 20.1 - 21.3 19.0 - 20.1 17.9 - 19.0 16.8 - 17.9 15.7 - 16.8 14.5 - 15.7 13.4 - 14.5 0.0 - 13.4

  2. New Wind Test Facilities Open in Colorado and South Carolina

    Broader source: Energy.gov [DOE]

    Two state-of-the-art wind testing facilities will accelerate development and deployment of wind energy technologies.

  3. Effect of Second-Order Hydrodynamics on Floating Offshore Wind Turbines: Preprint

    SciTech Connect (OSTI)

    Roald, L.; Jonkman, J.; Robertson, A,; Chokani, N.

    2013-07-01

    Offshore winds are generally stronger and more consistent than winds on land, making the offshore environment attractive for wind energy development. A large part of the offshore wind resource is however located in deep water, where floating turbines are the only economical way of harvesting the energy. The design of offshore floating wind turbines relies on the use of modeling tools that can simulate the entire coupled system behavior. At present, most of these tools include only first-order hydrodynamic theory. However, observations of supposed second-order hydrodynamic responses in wave-tank tests performed by the DeepCwind consortium suggest that second-order effects might be critical. In this paper, the methodology used by the oil and gas industry has been modified to apply to the analysis of floating wind turbines, and is used to assess the effect of second-order hydrodynamics on floating offshore wind turbines. The method relies on combined use of the frequency-domain tool WAMIT and the time-domain tool FAST. The proposed assessment method has been applied to two different floating wind concepts, a spar and a tension-leg-platform (TLP), both supporting the NREL 5-MW baseline wind turbine. Results showing the hydrodynamic forces and motion response for these systems are presented and analysed, and compared to aerodynamic effects.

  4. The Great Plains Wind Power Test Facility

    SciTech Connect (OSTI)

    Schroeder, John

    2014-01-31

    This multi-year, multi-faceted project was focused on the continued development of a nationally-recognized facility for the testing, characterization, and improvement of grid-connected wind turbines, integrated wind-water desalination systems, and related educational and outreach topics. The project involved numerous faculty and graduate students from various engineering departments, as well as others from the departments of Geosciences (in particular the Atmospheric Science Group) and Economics. It was organized through the National Wind Institute (NWI), which serves as an intellectual hub for interdisciplinary and transdisciplinary research, commercialization and education related to wind science, wind energy, wind engineering and wind hazard mitigation at Texas Tech University (TTU). Largely executed by an academic based team, the project resulted in approximately 38 peer-reviewed publications, 99 conference presentations, the development/expansion of several experimental facilities, and two provisional patents.

  5. Stakeholder Engagement and Outreach Webinar: Jobs and Economic Development Impacts of Offshore Wind

    Broader source: Energy.gov [DOE]

    Starting more than a year ago, NREL initiated work to expand the Jobs and Economic Development Impacts (JEDI) model to include fixed-bottom offshore wind technology. Following the completion of the...

  6. Monitoring and Mitigation Alternatives for Protection of North Atlantic Right Whales during Offshore Wind Farm Installation

    SciTech Connect (OSTI)

    Carlson, Thomas J.; Halvorsen, Michele B.; Matzner, Shari; Copping, Andrea E.; Stavole, Jessica

    2012-09-01

    Progress report on defining and determining monitoring and mitigation measures for protecting North Atlantic Right Whales from the effects of pile driving and other activities associated with installation of offshore wind farms.

  7. DOE-Funded Project Develops Safer Access to Offshore Wind Turbine Platforms

    Broader source: Energy.gov [DOE]

    More than 4,000 gigawatts of estimated gross offshore wind potential lies off the U.S. coastline—that’s more than four times the current generation capacity of the United States. With the coastal...

  8. Challenges in Simulation of Aerodynamics, Hydrodynamics, and Mooring-Line Dynamics of Floating Offshore Wind Turbines

    SciTech Connect (OSTI)

    Matha, D.; Schlipf, M.; Cordle, A.; Pereira, R.; Jonkman, J.

    2011-10-01

    This paper presents the current major modeling challenges for floating offshore wind turbine design tools and describes aerodynamic and hydrodynamic effects due to rotor and platform motions and usage of non-slender support structures.

  9. Loads Analysis of a Floating Offshore Wind Turbine Using Fully Coupled Simulation: Preprint

    SciTech Connect (OSTI)

    Jonkman, J. M.; Buhl, M. L., Jr.

    2007-06-01

    This paper presents the use of fully coupled aero-hydro-servo-elastic simulation tools to perform a loads analysis of a 5-MW offshore wind turbine supported by a barge with moorings, one of many promising floating platform concepts.

  10. Offshore Code Comparison Collaboration within IEA Wind Annex XXIII: Phase II Results Regarding Monopile Foundation Modeling

    SciTech Connect (OSTI)

    Jonkman, J.; Butterfield, S.; Passon, P.; Larsen, T.; Camp, T.; Nichols, J.; Azcona, J.; Martinez, A.

    2008-01-01

    This paper presents an overview and describes the latest findings of the code-to-code verification activities of the Offshore Code Comparison Collaboration, which operates under Subtask 2 of the International Energy Agency Wind Annex XXIII.

  11. Assessment of Vessel Requirements for the U.S. Offshore Wind...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6. A2SEA Sea Worker Installing a Siemens Turbine in ... offshore wind stands in a stark contrast to solar panels. ... competitiveness to low-cost Chinese competitors, and ...

  12. New Model Demonstrates Offshore Wind Industry’s Job Growth Potential

    Broader source: Energy.gov [DOE]

    The Energy Department’s National Renewable Energy Laboratory (NREL) has developed a tool to estimate jobs and other economic impacts associated with offshore wind development in the United States.

  13. U.S. Offshore Wind Manufacturing and Supply Chain Development | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Manufacturing and Supply Chain Development U.S. Offshore Wind Manufacturing and Supply Chain Development This report seeks to provide an organized, analytical approach to identifying and bounding uncertainties around offshore wind manufacturing and supply chain capabilities; projecting potential component-level supply chain needs under three demand scenarios; and identifying key supply chain challenges and opportunities facing the future U.S. market and current suppliers of the

  14. New DOE Modeling Tool Estimates Economic Benefits of Offshore Wind Plants

    Office of Energy Efficiency and Renewable Energy (EERE)

    To help developers more readily estimate the economic benefits of offshore wind plants, DOE recently released a new version of the Jobs and Economic Development Impact (JEDI) input-output modeling tool. The original tool was developed by the National Renewable Energy Laboratory to estimate the economic impacts of constructing renewable power plants. The updated version allows users to better understand the potential regional economic impacts of offshore wind development.

  15. DOE to Develop Multi-Megawatt Offshore Wind Turbine with General Electric |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy to Develop Multi-Megawatt Offshore Wind Turbine with General Electric DOE to Develop Multi-Megawatt Offshore Wind Turbine with General Electric March 9, 2006 - 11:44am Addthis Contract Valued at $27 million, supports President Bush's Advanced Energy Initiative WASHINGTON, D.C. - The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) in Golden, Colorado, has signed a $27 million, multi-year contract with the General Electric Company (GE) to

  16. Jobs and Economic Development Impact (JEDI) Model: Offshore Wind User Reference Guide

    SciTech Connect (OSTI)

    Lantz, E.; Goldberg, M.; Keyser, D.

    2013-06-01

    The Offshore Wind Jobs and Economic Development Impact (JEDI) model, developed by NREL and MRG & Associates, is a spreadsheet based input-output tool. JEDI is meant to be a user friendly and transparent tool to estimate potential economic impacts supported by the development and operation of offshore wind projects. This guide describes how to use the model as well as technical information such as methodology, limitations, and data sources.

  17. Sandia Energy - Scaled Wind Farm Technology Facility Baselining...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Project Accelerates Work Home Renewable Energy Energy SWIFT Facilities Partnership News Wind Energy News & Events Systems Analysis Scaled Wind Farm Technology Facility Baselining...

  18. NREL, Clemson University Collaborate on Wind Energy Testing Facilities...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL, Clemson University Collaborate on Wind Energy Testing Facilities June 8, 2015 Two of our nation's most advanced wind energy research and test facilities have joined forces to ...

  19. Effects of Second-Order Hydrodynamic Forces on Floating Offshore Wind Turbines

    SciTech Connect (OSTI)

    Duarte, T.; Sarmento, A. J. N. A.; Jonkman, J.

    2014-04-01

    Relative to first-order, second-order wave-excitation loads are known to cause significant motions and additional loads in offshore oil and gas platforms. The design of floating offshore wind turbines was partially inherited from the offshore oil and gas industry. Floating offshore wind concepts have been studied with powerful aero-hydro-servo-elastic tools; however, most of the existing work on floating offshore wind turbines has neglected the contribution of second-order wave-excitation loads. As a result, this paper presents a computationally efficient methodology to consider these loads within FAST, a wind turbine computer-aided engineering tool developed by the National Renewable Energy Laboratory. The method implemented was verified against the commercial OrcaFlex tool, with good agreement, and low computational time. A reference floating offshore wind turbine was studied under several wind and wave load conditions, including the effects of second-order slow-drift and sum-frequency loads. Preliminary results revealed that these loads excite the turbine's natural frequencies, namely the surge and pitch natural frequencies.

  20. First U.S. Grid-Connected Offshore Wind Turbine Installed Off the Coast of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Maine | Department of Energy First U.S. Grid-Connected Offshore Wind Turbine Installed Off the Coast of Maine First U.S. Grid-Connected Offshore Wind Turbine Installed Off the Coast of Maine October 1, 2013 - 12:33pm Addthis This is an excerpt from the Third Quarter 2013 edition of the Wind Program R&D Newsletter. A 65-foot tall, 20-kilowatt wind turbine with a white rotor and a yellow tower on a floating platform in the ocean. Castine, Maine - On May 31, 2013, the University of Maine's

  1. Offshore Code Comparison Collaboration within IEA Wind Annex XXIII: Phase III Results Regarding Tripod Support Structure Modeling

    SciTech Connect (OSTI)

    Nichols, J.; Camp, T.; Jonkman, J.; Butterfield, S.; Larsen, T.; Hansen, A.; Azcona, J.; Martinez, A.; Munduate, X.; Vorpahl, F.; Kleinhansl, S.; Kohlmeier, M.; Kossel, T.; Boker, C.; Kaufer, D.

    2009-01-01

    Offshore wind turbines are designed and analyzed using comprehensive simulation codes. This paper describes the findings of code-to-code verification activities of the IEA Offshore Code Comparison Collaboration.

  2. Effect of Second-Order Hydrodynamics on a Floating Offshore Wind Turbine

    SciTech Connect (OSTI)

    Roald, L.; Jonkman, J.; Robertson, A.

    2014-05-01

    The design of offshore floating wind turbines uses design codes that can simulate the entire coupled system behavior. At the present, most codes include only first-order hydrodynamics, which induce forces and motions varying with the same frequency as the incident waves. Effects due to second- and higher-order hydrodynamics are often ignored in the offshore industry, because the forces induced typically are smaller than the first-order forces. In this report, first- and second-order hydrodynamic analysis used in the offshore oil and gas industry is applied to two different wind turbine concepts--a spar and a tension leg platform.

  3. Assessing Fatigue and Ultimate Load Uncertainty in Floating Offshore Wind Turbines Due to Varying Simulation Length

    SciTech Connect (OSTI)

    Stewart, G.; Lackner, M.; Haid, L.; Matha, D.; Jonkman, J.; Robertson, A.

    2013-07-01

    With the push towards siting wind turbines farther offshore due to higher wind quality and less visibility, floating offshore wind turbines, which can be located in deep water, are becoming an economically attractive option. The International Electrotechnical Commission's (IEC) 61400-3 design standard covers fixed-bottom offshore wind turbines, but there are a number of new research questions that need to be answered to modify these standards so that they are applicable to floating wind turbines. One issue is the appropriate simulation length needed for floating turbines. This paper will discuss the results from a study assessing the impact of simulation length on the ultimate and fatigue loads of the structure, and will address uncertainties associated with changing the simulation length for the analyzed floating platform. Recommendations of required simulation length based on load uncertainty will be made and compared to current simulation length requirements.

  4. New Report Highlights Trends in Offshore Wind with 14 Projects...

    Broader source: Energy.gov (indexed) [DOE]

    The Energy Department today released a new report showing progress for the U.S. offshore ... of their Advanced Technology Demonstration Projects off New Jersey, Virginia and Oregon. ...

  5. Offshore Wind Market Acceleration Projects | Department of Energy

    Office of Environmental Management (EM)

    ... As part of an international collaboration with the International Energy Agency, the Energy ... of planning, construction, and integration practices, which will ensure offshore ...

  6. Assessment of Offshore Wind Energy Leasing Areas for the BOEM New Jersey Wind Energy Area

    SciTech Connect (OSTI)

    Musial, W.; Elliott, D.; Fields, J.; Parker, Z.; Scott, G.; Draxl, C.

    2013-10-01

    The National Renewable Energy Laboratory (NREL), under an interagency agreement with the U.S. Department of the Interior's Bureau of Ocean Energy Management (BOEM), is providing technical assistance to identify and delineate leasing areas for offshore wind energy development within the Atlantic Coast Wind Energy Areas (WEAs) established by BOEM. This report focuses on NREL's development and evaluation of the delineations for the New Jersey (NJ) WEA. The overarching objective of this study is to develop a logical process by which the New Jersey WEA can be subdivided into non-overlapping leasing areas for BOEM's use in developing an auction process in a renewable energy lease sale. NREL identified a selection of leasing areas and proposed delineation boundaries within the established NJ WEA. The primary output of the interagency agreement is this report, which documents the methodology, including key variables and assumptions, by which the leasing areas were identified and delineated.

  7. Analysis of Offshore Wind Energy Leasing Areas for the Rhode Island/Massachusetts Wind Energy Area

    SciTech Connect (OSTI)

    Musial, W.; Elliott, D.; Fields, J.; Parker, Z.; Scott, G.

    2013-04-01

    The National Renewable Energy Laboratory (NREL), under an interagency agreement with the Bureau of Ocean Energy Management (BOEM), is providing technical assistance to BOEM on the identification and delineation of offshore leasing areas for offshore wind energy development within the Atlantic Coast Wind Energy Areas (WEAs) established by BOEM in 2012. This report focuses on NREL's evaluation of BOEM's Rhode Island/Massachusetts (RIMA) WEA leasing areas. The objective of the NREL evaluation was to assess the proposed delineation of the two leasing areas and determine if the division is reasonable and technically sound. Additionally, the evaluation aimed to identify any deficiencies in the delineation. As part of the review, NREL performed the following tasks: 1. Performed a limited review of relevant literature and RIMA call nominations. 2. Executed a quantitative analysis and comparison of the two proposed leasing areas 3. Conducted interviews with University of Rhode Island (URI) staff involved with the URI Special Area Management Plan (SAMP) 4. Prepared this draft report summarizing the key findings.

  8. Environmental Risk Evaluation System (ERES) for Offshore Wind - Mock-Up of ERES, Fiscal Year 2010 Progress Report

    SciTech Connect (OSTI)

    Anderson, Richard M.; Copping, Andrea E.; Van Cleve, Frances B.

    2010-11-01

    The Environmental Risk Evaluation System (ERES) has been created to set priorities among the environmental risks from offshore wind development. This report follows the conceptual design for ERES and shows what the system would look like, using a web interface created as part of a Knowledge Management System (KMS) for offshore wind. The KMS, called Zephyrus, and ERES for offshore wind, will be populated and made operational in a later phase of the project.

  9. Offshore Code Comparison Collaboration, Continuation: Phase II Results of a Floating Semisubmersible Wind System: Preprint

    SciTech Connect (OSTI)

    Robertson, A.; Jonkman, J.; Musial, W.; Vorpahl, F.; Popko, W.

    2013-11-01

    Offshore wind turbines are designed and analyzed using comprehensive simulation tools that account for the coupled dynamics of the wind inflow, aerodynamics, elasticity, and controls of the turbine, along with the incident waves, sea current, hydrodynamics, and foundation dynamics of the support structure. The Offshore Code Comparison Collaboration (OC3), which operated under the International Energy Agency (IEA) Wind Task 23, was established to verify the accuracy of these simulation tools [1]. This work was then extended under the Offshore Code Comparison Collaboration, Continuation (OC4) project under IEA Wind Task 30 [2]. Both of these projects sought to verify the accuracy of offshore wind turbine dynamics simulation tools (or codes) through code-to-code comparison of simulated responses of various offshore structures. This paper describes the latest findings from Phase II of the OC4 project, which involved the analysis of a 5-MW turbine supported by a floating semisubmersible. Twenty-two different organizations from 11 different countries submitted results using 24 different simulation tools. The variety of organizations contributing to the project brought together expertise from both the offshore structure and wind energy communities. Twenty-one different load cases were examined, encompassing varying levels of model complexity and a variety of metocean conditions. Differences in the results demonstrate the importance and accuracy of the various modeling approaches used. Significant findings include the importance of mooring dynamics to the mooring loads, the role nonlinear hydrodynamic terms play in calculating drift forces for the platform motions, and the difference between global (at the platform level) and local (at the member level) modeling of viscous drag. The results from this project will help guide development and improvement efforts for these tools to ensure that they are providing the accurate information needed to support the design and

  10. Model Wind Energy Facility Ordinance

    Broader source: Energy.gov [DOE]

    Note: This model ordinance was designed to provide guidance to local governments that wish to develop their own siting rules for wind turbines. While it was developed as part of a cooperative...

  11. U.S. Department of Energy and SWAY Collaborate on Offshore Wind

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration Project | Department of Energy U.S. Department of Energy and SWAY Collaborate on Offshore Wind Demonstration Project U.S. Department of Energy and SWAY Collaborate on Offshore Wind Demonstration Project October 1, 2012 - 12:13pm Addthis This is an excerpt from the Third Quarter 2012 edition of the Wind Program R&D Newsletter. The U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) is collaborating with SWAY, a renewable energy company from

  12. DOE Announces Webinars on an Offshore Wind Economic Impacts Model, Resources for Tribal Energy Efficiency Projects, and More

    Broader source: Energy.gov [DOE]

    DOE's webinars include information on the economic impact of offshore wind, tools to develop better clean energy financing programs, and more.

  13. Offshore Wind Plant Balance-of-Station Cost Drivers and Sensitivities (Poster)

    SciTech Connect (OSTI)

    Saur, G.; Maples, B.; Meadows, B.; Hand, M.; Musial, W.; Elkington, C.; Clayton, J.

    2012-09-01

    With Balance of System (BOS) costs contributing up to 70% of the installed capital cost, it is fundamental to understanding the BOS costs for offshore wind projects as well as potential cost trends for larger offshore turbines. NREL developed a BOS model using project cost estimates developed by GL Garrad Hassan. Aspects of BOS covered include engineering and permitting, ports and staging, transportation and installation, vessels, foundations, and electrical. The data introduce new scaling relationships for each BOS component to estimate cost as a function of turbine parameters and size, project parameters and size, and soil type. Based on the new BOS model, an analysis to understand the non-turbine costs associated with offshore turbine sizes ranging from 3 MW to 6 MW and offshore wind plant sizes ranging from 100 MW to 1000 MW has been conducted. This analysis establishes a more robust baseline cost estimate, identifies the largest cost components of offshore wind project BOS, and explores the sensitivity of the levelized cost of energy to permutations in each BOS cost element. This presentation shows results from the model that illustrates the potential impact of turbine size and project size on the cost of energy from US offshore wind plants.

  14. Coastal Ohio Wind Project for Reduced Barriers to Deployment of Offshore Wind Energy

    SciTech Connect (OSTI)

    Gorsevski, Peter; Afjeh, Abdollah; Jamali, Mohsin; Carroll, Michael

    2014-04-09

    The Coastal Ohio Wind Project was created to establish the viability of wind turbines on the coastal and offshore regions of Northern Ohio. The project’s main goal was to improve operational unit strategies used for environmental impact assessment of offshore turbines on lake wildlife by optimizing and fusing data from the multi-instrument surveillance system and providing an engineering analysis of potential design/operational alternatives for offshore wind turbines. The project also developed a general economic model for offshore WTG deployment to quantify potential revenue losses due to wind turbine shutdown related to ice and avian issues. In a previous phase of this project (Award Number: DE-FG36-06GO86096), we developed a surveillance system that was used to collect different parameters such as passage rates, flight paths, flight directions, and flight altitudes of nocturnal migrating species, movements of birds and bats, and bird calls for assessing patterns and peak passage rates during migration. To derive such parameters we used thermal IR imaging cameras, acoustic recorders, and marine radar Furuno (XANK250), which was coupled with a XIR3000B digitizing card from Russell Technologies and open source radR processing software. The integration yielded a development of different computational techniques and methods, which we further developed and optimized as a combined surveillance system. To accomplish this task we implemented marine radar calibration, optimization of processing parameters, and fusion of the multi-sensor data in order to make inferences about the potential avian targets. The main goal of the data fusion from the multi-sensor environment was aimed at reduction of uncertainties while providing acceptable confidence levels with detailed information about the migration patterns. Another component comprised of an assessment of wind resources in a near lake environment and an investigation of the effectiveness of ice coating materials to

  15. Offshore Code Comparison Collaboration within IEA Wind Task 23: Phase IV Results Regarding Floating Wind Turbine Modeling; Preprint

    SciTech Connect (OSTI)

    Jonkman, J.; Larsen, T.; Hansen, A.; Nygaard, T.; Maus, K.; Karimirad, M.; Gao, Z.; Moan, T.; Fylling, I.

    2010-04-01

    Offshore wind turbines are designed and analyzed using comprehensive simulation codes that account for the coupled dynamics of the wind inflow, aerodynamics, elasticity, and controls of the turbine, along with the incident waves, sea current, hydrodynamics, and foundation dynamics of the support structure. This paper describes the latest findings of the code-to-code verification activities of the Offshore Code Comparison Collaboration, which operates under Subtask 2 of the International Energy Agency Wind Task 23. In the latest phase of the project, participants used an assortment of codes to model the coupled dynamic response of a 5-MW wind turbine installed on a floating spar buoy in 320 m of water. Code predictions were compared from load-case simulations selected to test different model features. The comparisons have resulted in a greater understanding of offshore floating wind turbine dynamics and modeling techniques, and better knowledge of the validity of various approximations. The lessons learned from this exercise have improved the participants' codes, thus improving the standard of offshore wind turbine modeling.

  16. Offshore Code Comparison Collaboration, Continuation within IEA Wind Task 30: Phase II Results Regarding a Floating Semisubmersible Wind System: Preprint

    SciTech Connect (OSTI)

    Robertson, A.; Jonkman, J.; Vorpahl, F.; Popko, W.; Qvist, J.; Froyd, L.; Chen, X.; Azcona, J.; Uzungoglu, E.; Guedes Soares, C.; Luan, C.; Yutong, H.; Pengcheng, F.; Yde, A.; Larsen, T.; Nichols, J.; Buils, R.; Lei, L.; Anders Nygard, T.; et al.

    2014-03-01

    Offshore wind turbines are designed and analyzed using comprehensive simulation tools (or codes) that account for the coupled dynamics of the wind inflow, aerodynamics, elasticity, and controls of the turbine, along with the incident waves, sea current, hydrodynamics, and foundation dynamics of the support structure. This paper describes the latest findings of the code-to-code verification activities of the Offshore Code Comparison Collaboration, Continuation (OC4) project, which operates under the International Energy Agency (IEA) Wind Task 30. In the latest phase of the project, participants used an assortment of simulation codes to model the coupled dynamic response of a 5-MW wind turbine installed on a floating semisubmersible in 200 m of water. Code predictions were compared from load-case simulations selected to test different model features. The comparisons have resulted in a greater understanding of offshore floating wind turbine dynamics and modeling techniques, and better knowledge of the validity of various approximations. The lessons learned from this exercise have improved the participants? codes, thus improving the standard of offshore wind turbine modeling.

  17. SLIDESHOW: America's Wind Testing Facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SLIDESHOW: America's Wind Testing Facilities SLIDESHOW: America's Wind Testing Facilities July 17, 2012 - 4:51pm Addthis National Wind Technology Center - Colorado 1 of 7 National Wind Technology Center - Colorado The first of 4 towers is lifted as work continues on the 2 MW Gamesa wind turbine being installed at NREL's National Wind Technology Center (NWTC). | Photo by Dennis Schroeder. Date taken: 2011-09-15 13:53 National Wind Technology Center - Colorado 2 of 7 National Wind Technology

  18. PNNL Reviews Wildlife-Interaction Monitoring for Offshore Wind...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... higher penetration of wind power utilizing expertise in ... resources, operating reserves, area control error, and control room use of forecasting to address wind and load ...

  19. 2014-2015 Offshore Wind Technologies Market Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Consulting, the American Wind Energy Association, the Great Lakes Wind Collaborative, Green Giraffe Energy Bankers, Ocean and Coastal Consultants (a COWI company), and Tetra...

  20. Offshore Wind Project Surges Ahead in South Carolina

    Broader source: Energy.gov [DOE]

    The Center for Marine and Wetland Studies studies wind speed data from buoys, which have been measuring wind speed and direction for the past year.

  1. 2014-2015 Offshore Wind Technologies Market Report

    Office of Environmental Management (EM)

    ... NREL would like to recognize the Navigant Consortium, including Navigant Consulting, the American Wind Energy Association, the Great Lakes Wind Collaborative, Green Giraffe Energy ...

  2. Effects of Second-Order Hydrodynamics on a Semisubmersible Floating Offshore Wind Turbine: Preprint

    SciTech Connect (OSTI)

    Bayati, I.; Jonkman, J.; Robertson, A.; Platt, A.

    2014-07-01

    The objective of this paper is to assess the second-order hydrodynamic effects on a semisubmersible floating offshore wind turbine. Second-order hydrodynamics induce loads and motions at the sum- and difference-frequencies of the incident waves. These effects have often been ignored in offshore wind analysis, under the assumption that they are significantly smaller than first-order effects. The sum- and difference-frequency loads can, however, excite eigenfrequencies of the system, leading to large oscillations that strain the mooring system or vibrations that cause fatigue damage to the structure. Observations of supposed second-order responses in wave-tank tests performed by the DeepCwind consortium at the MARIN offshore basin suggest that these effects might be more important than originally expected. These observations inspired interest in investigating how second-order excitation affects floating offshore wind turbines and whether second-order hydrodynamics should be included in offshore wind simulation tools like FAST in the future. In this work, the effects of second-order hydrodynamics on a floating semisubmersible offshore wind turbine are investigated. Because FAST is currently unable to account for second-order effects, a method to assess these effects was applied in which linearized properties of the floating wind system derived from FAST (including the 6x6 mass and stiffness matrices) are used by WAMIT to solve the first- and second-order hydrodynamics problems in the frequency domain. The method has been applied to the OC4-DeepCwind semisubmersible platform, supporting the NREL 5-MW baseline wind turbine. The loads and response of the system due to the second-order hydrodynamics are analysed and compared to first-order hydrodynamic loads and induced motions in the frequency domain. Further, the second-order loads and induced response data are compared to the loads and motions induced by aerodynamic loading as solved by FAST.

  3. Development of a 5 MW reference gearbox for offshore wind turbines: 5 MW reference gearbox

    SciTech Connect (OSTI)

    Nejad, Amir Rasekhi; Guo, Yi; Gao, Zhen; Moan, Torgeir

    2015-07-27

    This paper presents detailed descriptions, modeling parameters and technical data of a 5MW high-speed gearbox developed for the National Renewable Energy Laboratory offshore 5MW baseline wind turbine. The main aim of this paper is to support the concept studies and research for large offshore wind turbines by providing a baseline gearbox model with detailed modeling parameters. This baseline gearbox follows the most conventional design types of those used in wind turbines. It is based on the four-point supports: two main bearings and two torque arms. The gearbox consists of three stages: two planetary and one parallel stage gears. The gear ratios among the stages are calculated in a way to obtain the minimum gearbox weight. The gearbox components are designed and selected based on the offshore wind turbine design codes and validated by comparison to the data available from large offshore wind turbine prototypes. All parameters required to establish the dynamic model of the gearbox are then provided. Moreover, a maintenance map indicating components with high to low probability of failure is shown. The 5 MW reference gearbox can be used as a baseline for research on wind turbine gearboxes and comparison studies. It can also be employed in global analysis tools to represent a more realistic model of a gearbox in a coupled analysis.

  4. Potential Economic Impacts from Offshore Wind in the Southeast Region (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-07-01

    Offshore wind is a clean, renewable source of energy and can be an economic driver in the United States. To better understand the employment opportunities and other potential regional economic impacts from offshore wind development, the U.S. Department of Energy (DOE) funded research that focuses on four regions of the country. The studies use multiple scenarios with various local job and domestic manufacturing content assumptions. Each regional study uses the new offshore wind Jobs and Economic Development Impacts (JEDI) model, developed by the National Renewable Energy Laboratory. This fact sheet summarizes the potential economic impacts identified by the study for the Southeast (defined here as Georgia, South Carolina, North Carolina, and Virginia).

  5. Grid Simulator for Testing a Wind Turbine on Offshore Floating Platform

    SciTech Connect (OSTI)

    Gevorgian, V.

    2012-02-01

    An important aspect of such offshore testing of a wind turbine floating platform is electrical loading of the wind turbine generator. An option of interconnecting the floating wind turbine with the onshore grid via submarine power cable is limited by many factors such as costs and associated environmental aspects (i.e., an expensive and lengthy sea floor study is needed for cable routing, burial, etc). It appears to be a more cost effective solution to implement a standalone grid simulator on a floating platform itself for electrical loading of the test wind turbine. Such a grid simulator must create a stable fault-resilient voltage and frequency bus (a micro grid) for continuous operation of the test wind turbine. In this report, several electrical topologies for an offshore grid simulator were analyzed and modeled.

  6. Development of Fully Coupled Aeroelastic and Hydrodynamic Models for Offshore Wind Turbines: Preprint

    SciTech Connect (OSTI)

    Jonkman, J. M.; Sclavounos, P. D.

    2006-01-01

    Aeroelastic simulation tools are routinely used to design and analyze onshore wind turbines, in order to obtain cost effective machines that achieve favorable performance while maintaining structural integrity. These tools employ sophisticated models of wind-inflow; aerodynamic, gravitational, and inertial loading of the rotor, nacelle, and tower; elastic effects within and between components; and mechanical actuation and electrical responses of the generator and of control and protection systems. For offshore wind turbines, additional models of the hydrodynamic loading in regular and irregular seas, the dynamic coupling between the support platform motions and wind turbine motions, and the dynamic characterization of mooring systems for compliant floating platforms are also important. Hydrodynamic loading includes contributions from hydrostatics, wave radiation, and wave scattering, including free surface memory effects. The integration of all of these models into comprehensive simulation tools, capable of modeling the fully coupled aeroelastic and hydrodynamic responses of floating offshore wind turbines, is presented.

  7. Installation, Operation, and Maintenance Strategies to Reduce the Cost of Offshore Wind Energy

    SciTech Connect (OSTI)

    Maples, B.; Saur, G.; Hand, M.; van de Pietermen, R.; Obdam, T.

    2013-07-01

    Currently, installation, operation, and maintenance (IO&M) costs contribute approximately 30% to the LCOE of offshore wind plants. To reduce LCOE while ensuring safety, this paper identifies principal cost drivers associated with IO&M and quantifies their impacts on LCOE. The paper identifies technology improvement opportunities and provides a basis for evaluating innovative engineering and scientific concepts developed subsequently to the study. Through the completion of a case study, an optimum IO&M strategy for a hypothetical offshore wind project is identified.

  8. New Wind Turbine Dynamometer Test Facility Dedicated at NREL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Wind Turbine Dynamometer Test Facility Dedicated at NREL November 19, 2013 Today, the ... dynamometer test, a powerful motor replaces the rotor and blades of a wind turbine. ...

  9. Sandia Energy - Increasing the Scaled Wind Farm Technology Facility...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power Production Home Renewable Energy Energy SWIFT Facilities Partnership News Wind Energy News & Events Systems Analysis Increasing the Scaled Wind Farm Technology...

  10. EERE Leadership Celebrates Offshore Wind in Maine | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    floating wind turbine off the coast of Castine, Maine. Assistant Secretary Dr. Danielson speaks in front of the VolturnUS floating wind turbine off the coast of Castine, Maine. ...

  11. Assessment of Offshore Wind Energy Leasing Areas for the BOEM Massachusetts Wind Energy Area

    SciTech Connect (OSTI)

    Musial, W.; Parker, Z.; Fields, M.; Scott, G.; Elliott, D.; Draxl, C.

    2013-12-01

    The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL), under an interagency agreement with the Bureau of Ocean Energy Management (BOEM), is providing technical assistance to identify and delineate leasing areas for offshore wind energy development within the Atlantic Coast Wind Energy Areas (WEAs) established by BOEM. This report focuses on NREL's development of three delineated leasing area options for the Massachusetts (MA) WEA and the technical evaluation of these leasing areas. The overarching objective of this study is to develop a logical process by which the MA WEA can be subdivided into non-overlapping leasing areas for BOEM's use in developing an auction process in a renewable energy lease sale. NREL worked with BOEM to identify an appropriate number of leasing areas and proposed three delineation alternatives within the MA WEA based on the boundaries announced in May 2012. A primary output of the interagency agreement is this report, which documents the methodology, including key variables and assumptions, by which the leasing areas were identified and delineated.

  12. EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy 6: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI May 3, 2010 EA-1726: Final Environmental Assessment Loan Guarantee to Kahuku Wind Power, LLC for Construction of the Kahuku Wind Power Facility in Kahuku, O'ahu, Hawai'i May 13, 2010 Kahuku Wind Power Biological Opinion Kahuku Wind Power, LLC, Construction of the Kahuku Wind Power Facility in Kahuku, O'ahu, Hawaii May 27, 2010

  13. NREL to Partner with University of Delaware on Offshore Wind Research -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Releases | NREL to Partner with University of Delaware on Offshore Wind Research June 15, 2010 The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) and the University of Delaware (UD) today announced they will work to facilitate the potential establishment of a test site for commercial wind turbines off the Delaware coast. Under a Cooperative Research and Development Agreement (CRADA) worth $500,000 over the next five years, UD will work with federal and

  14. Offshore Wind Jobs and Economic Development Impacts in the United States: Four Regional Scenarios

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Offshore Wind Jobs and Economic Development Impacts in the United States: Four Regional Scenarios S. Tegen, D. Keyser, and F. Flores-Espino National Renewable Energy Laboratory J. Miles and D. Zammit James Madison University D. Loomis Great Lakes Wind Network Technical Report NREL/TP-5000-61315 February 2015 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is

  15. New Wind Test Facilities Open in Colorado and South Carolina...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Test Facilities Open in Colorado and South Carolina New Wind Test Facilities Open in Colorado and South Carolina January 1, 2014 - 12:00am Addthis Two of the world's largest ...

  16. Advanced Wind Energy Projects Test Facility Moving to Texas Tech...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Energy Projects Test Facility Moving to Texas Tech University Advanced Wind Energy Projects Test Facility Moving to Texas Tech University December 19, 2011 - 1:32pm Addthis ...

  17. NREL, Clemson University Collaborate on Wind Energy Testing Facilities

    Broader source: Energy.gov [DOE]

    In May, two of our nation’s most advanced wind research and test facilities joined forces to help the wind energy industry improve the performance of wind turbine drivetrains and better understand...

  18. Simulation-Length Requirements in the Loads Analysis of Offshore Floating Wind Turbines: Preprint

    SciTech Connect (OSTI)

    Haid, L.; Stewart, G.; Jonkman, J.; Robertson, A.; Lackner, M.; Matha, D.

    2013-06-01

    The goal of this paper is to examine the appropriate length of a floating offshore wind turbine (FOWT) simulation - a fundamental question that needs to be answered to develop design requirements. To examine this issue, a loads analysis of an example FOWT was performed in FAST with varying simulation lengths. The offshore wind system used was the OC3-Hywind spar buoy, which was developed for use in the International Energy Agency Code Comparison Collaborative Project and supports NREL's offshore 5-megawatt baseline turbine. Realistic metocean data from the National Oceanic and Atmospheric Administration and repeated periodic wind files were used to excite the structure. The results of the analysis clearly show that loads do not increase for longer simulations. In regards to fatigue, a sensitivity analysis shows that the procedure used for counting half cycles is more important than the simulation length itself. Based on these results, neither the simulation length nor the periodic wind files affect response statistics and loads for FOWTs (at least for the spar studied here); a result in contrast to the offshore oil and gas industry, where running simulations of at least 3 hours in length is common practice.

  19. New Model Demonstrates Offshore Wind Industry’s Job Growth Potential

    Broader source: Energy.gov [DOE]

    A new modeling tool developed by DOE’s National Renewable Energy Laboratory estimates that offshore wind development in areas like the Gulf Coast, could support 14,500 full-time jobs during construction and up to 650 long-term jobs.

  20. Two Facilities, One Goal: Advancing America's Wind Industry | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Two Facilities, One Goal: Advancing America's Wind Industry Two Facilities, One Goal: Advancing America's Wind Industry November 27, 2013 - 1:35pm Addthis Energy Deputy Secretary Daniel Poneman speaks at the Clemson University Wind Turbine Drivetrain Testing Facility dedication in South Carolina. | Photo courtesy of Clemson University Energy Deputy Secretary Daniel Poneman speaks at the Clemson University Wind Turbine Drivetrain Testing Facility dedication in South Carolina. |

  1. Offshore Wind Market and Economic Analysis Report 2013

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Economic Analysis Page 16 Document Number DE-EE0005360 by combining an excellent wind source and efficient large capacity turbines with the design, fabrication, and...

  2. Department of Energy Awards $43 Million to Spur Offshore Wind...

    Energy Savers [EERE]

    The 41 projects across 20 states will advance wind turbine design tools and hardware, ... such as floating support structures and turbine rotor and control subsystems that may ...

  3. International Effort Advances Offshore Wind Turbine Design Codes...

    Broader source: Energy.gov (indexed) [DOE]

    a reference model based on a 5-megawatt turbine on a floating semisubmersible foundation. ... New Modularization Framework Transforms FAST Wind Turbine Modeling Tool New Modeling Tool ...

  4. New Model Demonstrates Offshore Wind Industry's Job Growth Potential...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    at relatively conservative levels of deployment and domestic supply chain growth. ... The Wind Program is also working with the Bureau of Ocean Energy Management to advance a ...

  5. Offshore Wind Market and Economic Analysis Report 2013

    Office of Environmental Management (EM)

    Jeff Anthony and Chris Long Great Lakes Wind Collaborative Victoria Pebbles Green Giraffe Energy Bankers Marie de Graaf, Jrme Guillet, and Niels Jongste National Renewable ...

  6. NaREC Offshore and Drivetrain Test Facility Collaboration: Cooperative Research and Development Final Report, CRADA Number CRD-04-140

    SciTech Connect (OSTI)

    Musial, W.

    2014-08-01

    The National Renewable Energy Laboratory (NREL) and the National Renewable Energy Centre (NaREC) in the United Kingdom (UK) have a mutual interest in collaborating in the development of full-scale offshore wind energy and drivetrain testing facilities. NREL and NaREC will work together to share resources and experiences in the development of future wind energy test facilities. This Cooperative Research and Development Agreement (CRADA) includes sharing of test protocols, infrastructure cost data, test plans, pro forma contracting instruments, and safe operating strategies. Furthermore, NREL and NaREC will exchange staff for training and development purposes.

  7. Computing America's Offshore Wind Energy Potential | Department of Energy

    Office of Environmental Management (EM)

    Department of Energy Capturing Process Knowledge for Facility Deactivation and Decommissioning Capturing Process Knowledge for Facility Deactivation and Decommissioning The Office of Environmental Management (EM) is responsible for the disposition of a vast number of facilities at numerous sites around the country which have been declared excess to current mission needs. Capturing Process Knowledge for Facility Deactivation and Decommissioning (252.61 KB) More Documents & Publications

  8. 2014 U.S. Offshore Wind Market Report: Industry Trends, Technology Advancement, and Cost Reduction

    SciTech Connect (OSTI)

    Smith, Aaron; Stehly, Tyler; Walter Musial

    2015-09-29

    2015 has been an exciting year for the U.S. offshore wind market. After more than 15 years of development work, the U.S. has finally hit a crucial milestone; Deepwater Wind began construction on the 30 MW Block Island Wind Farm (BIWF) in April. A number of other promising projects, however, have run into economic, legal, and political headwinds, generating much speculation about the future of the industry. This slow, and somewhat painful, start to the industry is not without precedent; each country in northern Europe began with pilot-scale, proof-of-concept projects before eventually moving to larger commercial scale installations. Now, after more than a decade of commercial experience, the European industry is set to achieve a new deployment record, with more than 4 GW expected to be commissioned in 2015, with demonstrable progress towards industry-wide cost reduction goals. DWW is leveraging 25 years of European deployment experience; the BIWF combines state-of-the-art technologies such as the Alstom 6 MW turbine with U.S. fabrication and installation competencies. The successful deployment of the BIWF will provide a concrete showcase that will illustrate the potential of offshore wind to contribute to state, regional, and federal goals for clean, reliable power and lasting economic development. It is expected that this initial project will launch the U.S. industry into a phase of commercial development that will position offshore wind to contribute significantly to the electric systems in coastal states by 2030.

  9. Offshore Wind Guidance Document: Oceanography and Sediment Stability (Version 1) Development of a Conceptual Site Model.

    SciTech Connect (OSTI)

    Roberts, Jesse D.; Jason Magalen; Craig Jones

    2014-06-01

    This guidance document provide s the reader with an overview of the key environmental considerations for a typical offshore wind coastal location and the tools to help guide the reader through a thoro ugh planning process. It will enable readers to identify the key coastal processes relevant to their offshore wind site and perform pertinent analysis to guide siting and layout design, with the goal of minimizing costs associated with planning, permitting , and long - ter m maintenance. The document highlight s site characterization and assessment techniques for evaluating spatial patterns of sediment dynamics in the vicinity of a wind farm under typical, extreme, and storm conditions. Finally, the document des cribe s the assimilation of all of this information into the conceptual site model (CSM) to aid the decision - making processes.

  10. Structural health and prognostics management for the enhancement of offshore wind turbine operations and maintenance strategies

    SciTech Connect (OSTI)

    Griffith, D. Todd; Yoder, Nathanael C.; Resor, Brian; White, Jonathan; Paquette, Joshua

    2013-09-19

    Offshore wind turbines are an attractive source for clean and renewable energy for reasons including their proximity to population centers and higher capacity factors. One obstacle to the more widespread installation of offshore wind turbines in the USA, however, is that recent projections of offshore operations and maintenance costs vary from two to five times the land-based costs. One way in which these costs could be reduced is through use of a structural health and prognostics management (SHPM) system as part of a condition-based maintenance paradigm with smart loads management. Our paper contributes to the development of such strategies by developing an initial roadmap for SHPM, with application to the blades. One of the key elements of the approach is a multiscale simulation approach developed to identify how the underlying physics of the system are affected by the presence of damage and how these changes manifest themselves in the operational response of a full turbine. A case study of a trailing edge disbond is analysed to demonstrate the multiscale sensitivity of damage approach and to show the potential life extension and increased energy capture that can be achieved using simple changes in the overall turbine control and loads management strategy. Finally, the integration of health monitoring information, economic considerations such as repair costs versus state of health, and a smart loads management methodology provides an initial roadmap for reducing operations and maintenance costs for offshore wind farms while increasing turbine availability and overall profit.

  11. Structural health and prognostics management for the enhancement of offshore wind turbine operations and maintenance strategies

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Griffith, D. Todd; Yoder, Nathanael C.; Resor, Brian; White, Jonathan; Paquette, Joshua

    2013-09-19

    Offshore wind turbines are an attractive source for clean and renewable energy for reasons including their proximity to population centers and higher capacity factors. One obstacle to the more widespread installation of offshore wind turbines in the USA, however, is that recent projections of offshore operations and maintenance costs vary from two to five times the land-based costs. One way in which these costs could be reduced is through use of a structural health and prognostics management (SHPM) system as part of a condition-based maintenance paradigm with smart loads management. Our paper contributes to the development of such strategies bymore » developing an initial roadmap for SHPM, with application to the blades. One of the key elements of the approach is a multiscale simulation approach developed to identify how the underlying physics of the system are affected by the presence of damage and how these changes manifest themselves in the operational response of a full turbine. A case study of a trailing edge disbond is analysed to demonstrate the multiscale sensitivity of damage approach and to show the potential life extension and increased energy capture that can be achieved using simple changes in the overall turbine control and loads management strategy. Finally, the integration of health monitoring information, economic considerations such as repair costs versus state of health, and a smart loads management methodology provides an initial roadmap for reducing operations and maintenance costs for offshore wind farms while increasing turbine availability and overall profit.« less

  12. Offshore Wind Resource Characterization Buoy "Open-Hatch" Exposition...

    Broader source: Energy.gov (indexed) [DOE]

    the nuts and bolts of the WindSentinel, open its hatch, and learn more about its advanced research equipment. Throughout the Day Energy Department Staff Will be Available to Answer...

  13. U.S. Offshore Wind Manufacturing and Supply Chain Development

    Office of Environmental Management (EM)

    ... the land-based wind market, with some potential concerns over supplies of rare earth elements (for permanent magnet generators) and larger-sized bearings and forgings (BTM 2011). ...

  14. Advanced Offshore Wind Tech: Accelerating New Opportunities for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    wind industry with innovations which lower the cost of energy and address market barriers ... A recent innovation by a U.S. company has resulted in a twisted jacket foundation, ...

  15. Variable Frequency Operations of an Offshore Wind Power Plant with HVDC-VSC: Preprint

    SciTech Connect (OSTI)

    Gevorgian, V.; Singh, M.; Muljadi, E.

    2011-12-01

    In this paper, a constant Volt/Hz operation applied to the Type 1 wind turbine generator. Various control aspects of Type 1 generators at the plant level and at the turbine level will be investigated. Based on DOE study, wind power generation may reach 330 GW by 2030 at the level of penetration of 20% of the total energy production. From this amount of wind power, 54 GW of wind power will be generated at offshore wind power plants. The deployment of offshore wind power plants requires power transmission from the plant to the load center inland. Since this power transmission requires submarine cable, there is a need to use High-Voltage Direct Current (HVDC) transmission. Otherwise, if the power is transmitted via alternating current, the reactive power generated by the cable capacitance may cause an excessive over voltage in the middle of the transmission distance which requires unnecessary oversized cable voltage breakdown capability. The use of HVDC is usually required for transmission distance longer than 50 kilometers of submarine cables to be economical. The use of HVDC brings another advantage; it is capable of operating at variable frequency. The inland substation will be operated to 60 Hz synched with the grid, the offshore substation can be operated at variable frequency, thus allowing the wind power plant to be operated at constant Volt/Hz. In this paper, a constant Volt/Hz operation applied to the Type 1 wind turbine generator. Various control aspects of Type 1 generators at the plant level and at the turbine level will be investigated.

  16. Modeling and simulation of offshore wind farm O&M processes

    SciTech Connect (OSTI)

    Joschko, Philip; Widok, Andi H.; Appel, Susanne; Greiner, Saskia; Albers, Henning; Page, Bernd

    2015-04-15

    This paper describes a holistic approach to operation and maintenance (O&M) processes in the domain of offshore wind farm power generation. The acquisition and process visualization is followed by a risk analysis of all relevant processes. Hereafter, a tool was designed, which is able to model the defined processes in a BPMN 2.0 notation, as well as connect and simulate them. Furthermore, the notation was enriched with new elements, representing other relevant factors that were, to date, only displayable with much higher effort. In that regard a variety of more complex situations were integrated, such as for example new process interactions depending on different weather influences, in which case a stochastic weather generator was combined with the business simulation or other wind farm aspects important to the smooth running of the offshore wind farms. In addition, the choices for different methodologies, such as the simulation framework or the business process notation will be presented and elaborated depending on the impact they had on the development of the approach and the software solution. - Highlights: • Analysis of operation and maintenance processes of offshore wind farms • Process modeling with BPMN 2.0 • Domain-specific simulation tool.

  17. 2014 WIND POWER PROGRAM PEER REVIEW-TEST FACILITIES

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Test Facilities March 24-27, 2014 Wind Energy Technologies PR-5000-62152 2 Contents Test Facilities Blade Test Facilities-Scott Hughes, National Renewable Energy Laboratory Massachusetts Large Blade Testing Facility-Rahul Yarala, WTTC, Massachusetts Clean Energy Center NREL Dynamometer Facilities-Robb Wallen, National Renewable Energy Laboratory Clemson University Wind Turbine Drivetrain Testing Facility-Nikolaos Rigas, Clemson University Controllable Grid Interface (CGI)-Mark McDade, National

  18. Final Report DE-EE0005380: Assessment of Offshore Wind Farm Effects on Sea Surface, Subsurface and Airborne Electronic Systems

    SciTech Connect (OSTI)

    Ling, Hao; Hamilton, Mark F.; Bhalla, Rajan; Brown, Walter E.; Hay, Todd A.; Whitelonis, Nicholas J.; Yang, Shang-Te; Naqvi, Aale R.

    2013-09-30

    Offshore wind energy is a valuable resource that can provide a significant boost to the US renewable energy portfolio. A current constraint to the development of offshore wind farms is the potential for interference to be caused by large wind farms on existing electronic and acoustical equipment such as radar and sonar systems for surveillance, navigation and communications. The US Department of Energy funded this study as an objective assessment of possible interference to various types of equipment operating in the marine environment where offshore wind farms could be installed. The objective of this project was to conduct a baseline evaluation of electromagnetic and acoustical challenges to sea surface, subsurface and airborne electronic systems presented by offshore wind farms. To accomplish this goal, the following tasks were carried out: (1) survey electronic systems that can potentially be impacted by large offshore wind farms, and identify impact assessment studies and research and development activities both within and outside the US, (2) engage key stakeholders to identify their possible concerns and operating requirements, (3) conduct first-principle modeling on the interactions of electromagnetic signals with, and the radiation of underwater acoustic signals from, offshore wind farms to evaluate the effect of such interactions on electronic systems, and (4) provide impact assessments, recommend mitigation methods, prioritize future research directions, and disseminate project findings. This report provides a detailed description of the methodologies used to carry out the study, key findings of the study, and a list of recommendations derived based the findings.

  19. Offshore wind project surges ahead in South Carolina

    Broader source: Energy.gov [DOE]

    Researchers from Coastal Carolina University, working alongside Clemson University, Savannah River National Laboratory and the University of South Carolina, started collecting wind speeds, as well as current, wave and other oceanographic information, in July 2009 from near the coast to as far as 12 miles off shore.

  20. Final Summary Report: Em-Powering Coastal States and Utilities through Model Offshore Wind Legislation and Outreach

    SciTech Connect (OSTI)

    Jeremy Firestone; Dawn Kurtz Crompton

    2011-11-30

    The final summary report summarizes the most significant findings from three project reports detailing: feed-in tariffs, model request for proposals for new generation, and model state offshore wind power legislation.

  1. Pitch Error and Shear Web Disbond Detection on Wind Turbine Blades for Offshore Structural Health and Prognostics Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    American Institute of Aeronautics and Astronautics 1 Pitch Error and Shear Web Disbond Detection on Wind Turbine Blades for Offshore Structural Health and Prognostics Management Noah J. Myrent 1 , Joshua F. Kusnick 2 , and Douglas E. Adams 3 Purdue Center for Systems Integrity, Lafayette, IN, 47905 D. Todd Griffith 4 Sandia National Laboratories, Albuquerque, NM, 87185 Operations and maintenance costs for offshore wind plants are estimated to be significantly higher than the current costs for

  2. Offshore Wind RD&D: Sediment Transport

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sediment Transport - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear

  3. Floating Offshore Wind in California: Gross Potential for Jobs and Economic Impacts from Two Future Scenarios

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Floating Offshore Wind in California: Gross Potential for Jobs and Economic Impacts from Two Future Scenarios Bethany Speer, David Keyser, and Suzanne Tegen National Renewable Energy Laboratory This report is available from the Bureau of Ocean Energy Management by referencing OCS Study BOEM 2016-029. The report may be downloaded from BOEM's Recently Completed Environmental Studies - Pacific webpage at http://www.boem.gov/Pacific-Completed-Studies/. This study was funded by the U.S. Department of

  4. An Energy Preserving Time Integration Method for Gyric Systems: Development of the Offshore Wind

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Preserving Time Integration Method for Gyric Systems: Development of the Offshore Wind Energy Simulation Toolkit Brian C. Owens Texas A&M University brian_owens@tamu.edu John E. Hurtado Texas A&M University jehurtado@tamu.edu Matthew Barone Sandia National Laboratories* mbarone@sandia.gov Joshua A. Paquette Sandia National Laboratories* japaque@sandia.gov *Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned

  5. EA-1792: University of Maine's Deepwater Offshore Floating Wind Turbine Testing and Demonstration Project, Gulf of Maine

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to support research on floating offshore wind turbine platforms. This project would support the mission, vision, and goals of DOE’s Office of Energy Efficiency and Renewable Energy Wind and Water Power Program to improve performance, lower costs, and accelerate deployment of innovative wind power technologies. Development of offshore wind energy technologies would help the nation reduce its greenhouse gas emissions, diversify its energy supply, provide cost-competitive electricity to key coastal regions, and stimulate revitalization of key sectors of the economy.

  6. Structural health and prognostics management for offshore wind turbines : an initial roadmap.

    SciTech Connect (OSTI)

    Griffith, Daniel Todd; Resor, Brian Ray; White, Jonathan Randall; Paquette, Joshua A.; Yoder, Nathanael C.

    2012-12-01

    Operations and maintenance costs for offshore wind plants are expected to be significantly higher than the current costs for onshore plants. One way in which these costs may be able to be reduced is through the use of a structural health and prognostic management system as part of a condition based maintenance paradigm with smart load management. To facilitate the creation of such a system a multiscale modeling approach has been developed to identify how the underlying physics of the system are affected by the presence of damage and how these changes manifest themselves in the operational response of a full turbine. The developed methodology was used to investigate the effects of a candidate blade damage feature, a trailing edge disbond, on a 5-MW offshore wind turbine and the measurements that demonstrated the highest sensitivity to the damage were the local pitching moments around the disbond. The multiscale method demonstrated that these changes were caused by a local decrease in the blade's torsional stiffness due to the disbond, which also resulted in changes in the blade's local strain field. Full turbine simulations were also used to demonstrate that derating the turbine power by as little as 5% could extend the fatigue life of a blade by as much as a factor of 3. The integration of the health monitoring information, conceptual repair cost versus damage size information, and this load management methodology provides an initial roadmap for reducing operations and maintenance costs for offshore wind farms while increasing turbine availability and overall profit.

  7. Calibration and Validation of a Spar-Type Floating Offshore Wind Turbine Model using the FAST Dynamic Simulation Tool: Preprint

    SciTech Connect (OSTI)

    Browning, J. R.; Jonkman, J.; Robertson, A.; Goupee, A. J.

    2012-11-01

    In 2007, the FAST wind turbine simulation tool, developed and maintained by the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL), was expanded to include capabilities that are suitable for modeling floating offshore wind turbines. In an effort to validate FAST and other offshore wind energy modeling tools, DOE funded the DeepCwind project that tested three prototype floating wind turbines at 1/50th scale in a wave basin, including a semisubmersible, a tension-leg platform, and a spar buoy. This paper describes the use of the results of the spar wave basin tests to calibrate and validate the FAST offshore floating simulation tool, and presents some initial results of simulated dynamic responses of the spar to several combinations of wind and sea states.

  8. EPAct at One Event - Clipper Wind Manufacturing Facility | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy EPAct at One Event - Clipper Wind Manufacturing Facility EPAct at One Event - Clipper Wind Manufacturing Facility August 2, 2006 - 8:37am Addthis Remarks for Energy Secretary Samuel Bodman Thank you, Tom, for the introduction. I enjoyed my tour of your new manufacturing facility this morning, and am very excited about the tremendous strides being made here in the development of wind turbine technology, and its integration into our national economy. I'd also like to thank Senator

  9. New Report Shows Trend Toward Larger Offshore Wind Systems, with 11 Advanced Stage Projects Proposed in U.S. Waters

    Broader source: Energy.gov [DOE]

    The Energy Department today released a new report showing progress for the U.S. offshore wind energy market in 2012, including the completion of two commercial lease auctions for federal Wind Energy Areas and 11 commercial-scale U.S. projects repre

  10. NREL: Wind Research - Dynamometer Test Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dynamometer test configuration for a wind turbine drivetrain. Enlarge image Dynamometers ... dynamometer test, a powerful motor replaces the rotor and blades of a wind turbine. ...

  11. Structural health and prognostics management for the enhancement of offshore wind turbine operations and maintenance strategies. Structural health and prognostics management for offshore O&M

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Griffith, D. Todd; Yoder, Nathanael C.; Resor, Brian; White, Jonathan; Paquette, Joshua

    2013-09-19

    Offshore wind turbines are an attractive source for clean and renewable energy for reasons including their proximity to population centers and higher capacity factors. One obstacle to the more widespread installation of offshore wind turbines in the USA, however, is that recent projections of offshore operations and maintenance costs vary from two to five times the land-based costs. One way in which these costs could be reduced is through use of a structural health and prognostics management (SHPM) system as part of a condition-based maintenance paradigm with smart loads management. Our paper contributes to the development of such strategies bymoredeveloping an initial roadmap for SHPM, with application to the blades. One of the key elements of the approach is a multiscale simulation approach developed to identify how the underlying physics of the system are affected by the presence of damage and how these changes manifest themselves in the operational response of a full turbine. A case study of a trailing edge disbond is analysed to demonstrate the multiscale sensitivity of damage approach and to show the potential life extension and increased energy capture that can be achieved using simple changes in the overall turbine control and loads management strategy. Finally, the integration of health monitoring information, economic considerations such as repair costs versus state of health, and a smart loads management methodology provides an initial roadmap for reducing operations and maintenance costs for offshore wind farms while increasing turbine availability and overall profit.less

  12. Model Development and Loads Analysis of a Wind Turbine on a Floating Offshore Tension Leg Platform

    SciTech Connect (OSTI)

    Matha, D.; Fischer, T.; Kuhn, M.; Jonkman, J.

    2010-02-01

    This report presents results of the analysis of a 5-MW wind turbine located on a floating offshore tension leg platform (TLP) that was conducted using the fully coupled time-domain aero-hydro-servo-elastic design code FAST with AeroDyn and HydroDyn. Models in this code are of greater fidelity than most of the models that have been used to analyze floating turbines in the past--which have neglected important hydrodynamic and mooring system effects. The report provides a description of the development process of a TLP model, which is a modified version of a Massachusetts Institute of Technology design derived from a parametric linear frequency-domain optimization process. An extensive loads and stability analysis for ultimate and fatigue loads according to the procedure of the International Electrotechnical Commission offshore wind turbine design standard was performed with the verified TLP model. Response statistics, extreme event tables, fatigue lifetimes, and selected time histories of design-driving extreme events are analyzed and presented. Loads for the wind turbine on the TLP are compared to those of an equivalent land-based turbine in terms of load ratios. Major instabilities for the TLP are identified and described.

  13. Observed drag coefficients in high winds in the near offshore of the South China Sea

    SciTech Connect (OSTI)

    Bi, Xueyan; Liu, Yangan; Gao, Zhiqiu; Liu, Feng; Song, Qingtao; Huang, Jian; Huang, Huijun; Mao, Weikang; Liu, Chunxia

    2015-07-14

    This paper investigates the relationships between friction velocity, 10 m drag coefficient, and 10 m wind speed using data collected at two offshore observation towers (one over the sea and the other on an island) from seven typhoon episodes in the South China Sea from 2008 to 2014. The two towers were placed in areas with different water depths along a shore-normal line. The depth of water at the tower over the sea averages about 15 m, and the depth of water near the island is about 10 m. The observed maximum 10 min average wind speed at a height of 10 m is about 32 m s⁻¹. Momentum fluxes derived from three methods (eddy covariance, inertial dissipation, and flux profile) are compared. The momentum fluxes derived from the flux profile method are larger (smaller) over the sea (on the island) than those from the other two methods. The relationship between the 10 m drag coefficient and the 10 m wind speed is examined by use of the data obtained by the eddy covariance method. The drag coefficient first decreases with increasing 10 m wind speed when the wind speeds are 5–10 m s⁻¹, then increases and reaches a peak value of 0.002 around a wind speed of 18 m s⁻¹. The drag coefficient decreases with increasing 10 m wind speed when 10 m wind speeds are 18–27 m s⁻¹. A comparison of the measurements from the two towers shows that the 10 m drag coefficient from the tower in 10 m water depth is about 40% larger than that from the tower in 15 m water depth when the 10 m wind speed is less than 10 m s⁻¹. Above this, the difference in the 10 m drag coefficients of the two towers disappears.

  14. Observed drag coefficients in high winds in the near offshore of the South China Sea

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bi, Xueyan; Liu, Yangan; Gao, Zhiqiu; Liu, Feng; Song, Qingtao; Huang, Jian; Huang, Huijun; Mao, Weikang; Liu, Chunxia

    2015-07-14

    This paper investigates the relationships between friction velocity, 10 m drag coefficient, and 10 m wind speed using data collected at two offshore observation towers (one over the sea and the other on an island) from seven typhoon episodes in the South China Sea from 2008 to 2014. The two towers were placed in areas with different water depths along a shore-normal line. The depth of water at the tower over the sea averages about 15 m, and the depth of water near the island is about 10 m. The observed maximum 10 min average wind speed at a heightmore » of 10 m is about 32 m s⁻¹. Momentum fluxes derived from three methods (eddy covariance, inertial dissipation, and flux profile) are compared. The momentum fluxes derived from the flux profile method are larger (smaller) over the sea (on the island) than those from the other two methods. The relationship between the 10 m drag coefficient and the 10 m wind speed is examined by use of the data obtained by the eddy covariance method. The drag coefficient first decreases with increasing 10 m wind speed when the wind speeds are 5–10 m s⁻¹, then increases and reaches a peak value of 0.002 around a wind speed of 18 m s⁻¹. The drag coefficient decreases with increasing 10 m wind speed when 10 m wind speeds are 18–27 m s⁻¹. A comparison of the measurements from the two towers shows that the 10 m drag coefficient from the tower in 10 m water depth is about 40% larger than that from the tower in 15 m water depth when the 10 m wind speed is less than 10 m s⁻¹. Above this, the difference in the 10 m drag coefficients of the two towers disappears.« less

  15. Observed drag coefficients in high winds in the near offshore of the South China Sea

    SciTech Connect (OSTI)

    Bi, Xueyan; Liu, Yangan; Gao, Zhiqiu; Liu, Feng; Song, Qingtao; Huang, Jian; Huang, Huijun; Mao, Weikang; Liu, Chunxia

    2015-07-14

    This paper investigates the relationships between friction velocity, 10 m drag coefficient, and 10 m wind speed using data collected at two offshore observation towers (one over the sea and the other on an island) from seven typhoon episodes in the South China Sea from 2008 to 2014. The two towers were placed in areas with different water depths along a shore-normal line. The depth of water at the tower over the sea averages about 15 m, and the depth of water near the island is about 10 m. The observed maximum 10 min average wind speed at a height of 10 m is about 32 m s?. Momentum fluxes derived from three methods (eddy covariance, inertial dissipation, and flux profile) are compared. The momentum fluxes derived from the flux profile method are larger (smaller) over the sea (on the island) than those from the other two methods. The relationship between the 10 m drag coefficient and the 10 m wind speed is examined by use of the data obtained by the eddy covariance method. The drag coefficient first decreases with increasing 10 m wind speed when the wind speeds are 510 m s?, then increases and reaches a peak value of 0.002 around a wind speed of 18 m s?. The drag coefficient decreases with increasing 10 m wind speed when 10 m wind speeds are 1827 m s?. A comparison of the measurements from the two towers shows that the 10 m drag coefficient from the tower in 10 m water depth is about 40% larger than that from the tower in 15 m water depth when the 10 m wind speed is less than 10 m s?. Above this, the difference in the 10 m drag coefficients of the two towers disappears.

  16. Assessment of Ports for Offshore Wind Development in the United States

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    OF PORTS FOR OFFSHORE WIND DEVELOPMENT IN THE UNITED STATES Client U.S. Department of Energy Document No. 700694-USPO-R-03 Issue E Status Final Classification Published Date 21 March 2014 Author C. Elkinton, A. Blatiak, H. Ameen Checked by N. Baldock, D. Soares Approved by P. Dutton Garrad Hassan America, Inc. Registered in America No. 94-3402236 Registered Office: 9665 Chesapeake Drive, Suite 435, San Diego, California 92123 USA IMPORTANT NOTICE AND DISCLAIMER 1 This document has been prepared

  17. Information on commercial disposal facilities that may have received offshore drilling wastes.

    SciTech Connect (OSTI)

    Gasper, J. R.; Veil, J. A.; Ayers, R. C., Jr.

    2000-08-25

    The U.S. Environmental Protection Agency (EPA) is developing regulations that would establish requirements for discharging synthetic-based drill cuttings from offshore wells into the ocean. Justification for allowing discharges of these cuttings is that the environmental impacts from discharging drilling wastes into the ocean may be less harmful than the impacts from hauling them to shore for disposal. In the past, some onshore commercial facilities that disposed of these cuttings were improperly managed and operated and left behind environmental problems. This report provides background information on commercial waste disposal facilities in Texas, Louisiana, California, and Alaska that received or may have received offshore drilling wastes in the past and are now undergoing cleanup.

  18. Doubly Fed Induction Generator in an Offshore Wind Power Plant Operated at Rated V/Hz: Preprint

    SciTech Connect (OSTI)

    Muljadi, E.; Singh, M.; Gevorgian, V.

    2012-06-01

    This paper introduces the concept of constant Volt/Hz operation of offshore wind power plants. The deployment of offshore WPPs requires power transmission from the plant to the load center inland. Since this power transmission requires submarine cables, there is a need to use High-Voltage Direct Current transmission, which is economical for transmission distances longer than 50 kilometers. In the concept presented here, the onshore substation is operated at 60 Hz synced with the grid, and the offshore substation is operated at variable frequency and voltage, thus allowing the WPP to be operated at constant Volt/Hz.

  19. National Wind Technology Center to Debut New Dynamometer (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-05-01

    New test facility will be used to accelerate the development and deployment of next-generation offshore and land-based wind energy technologies.

  20. EERE Success Story—New Wind Test Facilities Open in Colorado and South Carolina

    Broader source: Energy.gov [DOE]

    Two state-of-the-art wind testing facilities will accelerate development and deployment of wind energy technologies.

  1. America's Wind Testing Facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Date taken: 2011-09-15 13:53 National Wind Technology Center - Colorado 2 of 7 National Wind Technology Center - Colorado Workers use a giant crane for lifting the blade assembly ...

  2. Incorporation of Multi-Member Substructure Capabilities in FAST for Analysis of Offshore Wind Turbines: Preprint

    SciTech Connect (OSTI)

    Song, H.; Robertson, A.; Jonkman, J.; Sewell, D.

    2012-05-01

    FAST, developed by the National Renewable Energy Laboratory (NREL), is an aero-hydro-servo-elastic tool widely used for analyzing onshore and offshore wind turbines. This paper discusses recent modifications made to FAST to enable the examination of offshore wind turbines with fixed-bottom, multi-member support structures (which are commonly used in transitional-depth waters).; This paper addresses the methods used for incorporating the hydrostatic and hydrodynamic loading on multi-member structures in FAST through its hydronamic loading module, HydroDyn. Modeling of the hydrodynamic loads was accomplished through the incorporation of Morison and buoyancy loads on the support structures. Issues addressed include how to model loads at the joints of intersecting members and on tapered and tilted members of the support structure. Three example structures are modeled to test and verify the solutions generated by the modifications to HydroDyn, including a monopile, tripod, and jacket structure. Verification is achieved through comparison of the results to a computational fluid dynamics (CFD)-derived solution using the commercial software tool STAR-CCM+.

  3. Offshore Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab Photovoltaic Systems Evaluation Laboratory PV Regional ... Facility Geomechanics and Drilling Labs National ... Twitter Google + Vimeo GovDelivery SlideShare Offshore ...

  4. South Carolina Opens Nation's Largest Wind Drivetrain Testing Facility

    Broader source: Energy.gov [DOE]

    Today, U.S. Deputy Secretary of Energy Daniel Poneman joined with officials from Clemson University to dedicate the nation's largest and one of the world's most advanced wind energy testing facilities in North Charleston, S.C.

  5. Big Sky Wind Facility | Open Energy Information

    Open Energy Info (EERE)

    :"","icon":"","group":"","inlineLabel":"","visitedicon":"" References "Wind Energy Data and Information Gateway (WENDI)" Retrieved from "http:en.openei.orgw...

  6. Development of mooring-anchor program in public domain for coupling with floater program for FOWTs (Floating Offshore Wind Turbines)

    SciTech Connect (OSTI)

    Kim, MooHyun

    2014-08-01

    This report presents the development of offshore anchor data sets which are intended to be used to develop a database that allows preliminary selection and sizing of anchors for the conceptual design of floating offshore wind turbines (FOWTs). The study is part of a project entitled “Development of Mooring-Anchor Program in Public Domain for Coupling with Floater Program for FOWTs (Floating Offshore Wind Turbines)”, under the direction of Dr. Moo-Hyun Kim at the Texas A&M University and with the sponsorship from the US Department of Energy (Contract No. DE-EE0005479, CFDA # 81.087 for DE-FOA-0000415, Topic Area 1.3: Subsurface Mooring and Anchoring Dynamics Models).

  7. Summary of Conclusions and Recommendations Drawn from the DeepCWind Scaled Floating Offshore Wind System Test Campaign: Preprint

    SciTech Connect (OSTI)

    Robertson, A. N.; Jonkman, J. M.; Masciola, M. D.; Molta, P.; Goupee, A. J.; Coulling, A. J.; Prowell, I.; Browning, J.

    2013-07-01

    The DeepCwind consortium is a group of universities, national labs, and companies funded under a research initiative by the U.S. Department of Energy (DOE) to support the research and development of floating offshore wind power. The two main objectives of the project are to better understand the complex dynamic behavior of floating offshore wind systems and to create experimental data for use in validating the tools used in modeling these systems. In support of these objectives, the DeepCwind consortium conducted a model test campaign in 2011 of three generic floating wind systems, a tension-leg platform (TLP), a spar-buoy (spar), and a semisubmersible (semi). Each of the three platforms was designed to support a 1/50th-scale model of a 5 MW wind turbine and was tested under a variety of wind/wave conditions. The focus of this paper is to summarize the work done by consortium members in analyzing the data obtained from the test campaign and its use for validating the offshore wind modeling tool, FAST.

  8. Calibration and validation of a spar-type floating offshore wind turbine model using the FAST dynamic simulation tool

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Browning, J. R.; Jonkman, J.; Robertson, A.; Goupee, A. J.

    2014-01-01

    In this study, high-quality computer simulations are required when designing floating wind turbines because of the complex dynamic responses that are inherent with a high number of degrees of freedom and variable metocean conditions. In 2007, the FAST wind turbine simulation tool, developed and maintained by the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL), was expanded to include capabilities that are suitable for modeling floating offshore wind turbines. In an effort to validate FAST and other offshore wind energy modeling tools, DOE funded the DeepCwind project that tested three prototype floating wind turbines at 1/50th scale inmore » a wave basin, including a semisubmersible, a tension-leg platform, and a spar buoy. This paper describes the use of the results of the spar wave basin tests to calibrate and validate the FAST offshore floating simulation tool, and presents some initial results of simulated dynamic responses of the spar to several combinations of wind and sea states. Wave basin tests with the spar attached to a scale model of the NREL 5-megawatt reference wind turbine were performed at the Maritime Research Institute Netherlands under the DeepCwind project. This project included free-decay tests, tests with steady or turbulent wind and still water (both periodic and irregular waves with no wind), and combined wind/wave tests. The resulting data from the 1/50th model was scaled using Froude scaling to full size and used to calibrate and validate a full-size simulated model in FAST. Results of the model calibration and validation include successes, subtleties, and limitations of both wave basin testing and FAST modeling capabilities.« less

  9. Calibration and validation of a spar-type floating offshore wind turbine model using the FAST dynamic simulation tool

    SciTech Connect (OSTI)

    Browning, J. R.; Jonkman, J.; Robertson, A.; Goupee, A. J.

    2014-01-01

    In this study, high-quality computer simulations are required when designing floating wind turbines because of the complex dynamic responses that are inherent with a high number of degrees of freedom and variable metocean conditions. In 2007, the FAST wind turbine simulation tool, developed and maintained by the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL), was expanded to include capabilities that are suitable for modeling floating offshore wind turbines. In an effort to validate FAST and other offshore wind energy modeling tools, DOE funded the DeepCwind project that tested three prototype floating wind turbines at 1/50th scale in a wave basin, including a semisubmersible, a tension-leg platform, and a spar buoy. This paper describes the use of the results of the spar wave basin tests to calibrate and validate the FAST offshore floating simulation tool, and presents some initial results of simulated dynamic responses of the spar to several combinations of wind and sea states. Wave basin tests with the spar attached to a scale model of the NREL 5-megawatt reference wind turbine were performed at the Maritime Research Institute Netherlands under the DeepCwind project. This project included free-decay tests, tests with steady or turbulent wind and still water (both periodic and irregular waves with no wind), and combined wind/wave tests. The resulting data from the 1/50th model was scaled using Froude scaling to full size and used to calibrate and validate a full-size simulated model in FAST. Results of the model calibration and validation include successes, subtleties, and limitations of both wave basin testing and FAST modeling capabilities.

  10. Energy Department Reports Highlight Strength of U.S. Wind Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... off-grid homes and farms as well as local schools and manufacturing facilities. ... Industry New Report Shows Domestic Offshore Wind Industry Potential, 21 Projects Planned ...

  11. Optimizing Installation, Operation, and Maintenance at Offshore...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optimizing Installation, Operation, and Maintenance at Offshore Wind Projects in the United States Optimizing Installation, Operation, and Maintenance at Offshore Wind Projects in...

  12. Optimizing Installation, Operation, and Maintenance at Offshore...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optimizing Installation, Operation, and Maintenance at Offshore Wind Projects in the United States Optimizing Installation, Operation, and Maintenance at Offshore Wind Projects in ...

  13. Developing Integrated National Design Standards for Offshore...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Developing Integrated National Design Standards for Offshore Wind Plants Developing Integrated National Design Standards for Offshore Wind Plants January 6, 2014 - 10:00am Addthis ...

  14. Capital Energy Offshore | Open Energy Information

    Open Energy Info (EERE)

    Sector: Wind energy Product: JV between Gamesa and Capital Energy to develop offshore wind farms References: Capital Energy Offshore1 This article is a stub. You can help...

  15. Rationale for wind-borne missile criteria for DOE facilities

    SciTech Connect (OSTI)

    McDonald, J R; Murray, R

    1999-09-01

    High winds tend to pick up and transport various objects and debris, which are referred to as wind-borne missiles or tornado missiles, depending on the type of storm. Missiles cause damage by perforating the building envelope or by collapsing structural elements such as walls, columns or frames. The primary objectives of this study are as follows: (1) to provide a basis for wind-borne or tornado missile criteria for the design and evaluation of DOE facilities, and (2) to provide guidelines for the design and evaluation of impact-resistant missile barriers for DOE facilities The first objective is accomplished through a synthesis of information from windstorm damage documentation experience and computer simulation of missile trajectories. The second objective is accomplished by reviewing the literature, which describes various missile impact tests, and by conducting a series of impact tests at a Texas Tech University facility to fill in missing information.

  16. West Winds Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Winds Wind Farm Jump to: navigation, search Name West Winds Wind Farm Facility West Winds Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  17. Sandia Energy - Sandia-Univ. of Minnesota (UMN) Floating Offshore...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE-sponsored offshore wind Funding Opportunity Announcement on high-resolution offshore wind turbinefarm modeling. UMN's contribution is experimentation and wind turbine...

  18. Wind Power Career Chat, Wind And Water Power Program (WWPP)

    Wind Powering America (EERE)

    WIND AND WATER POWER PROGRAM Wind Power Career Chat Overview Students will learn about careers in the wind energy industry. Wind energy, both land-based and offshore, is expected to provide thousands of new jobs in the next several decades. Wind energy companies are growing rapidly to meet America's demand for clean, renewable, and domestic energy. These companies need skilled professionals. Trained and qualified workers manufacture, construct, operate, and manage wind energy facilities. In

  19. JacketSE: An Offshore Wind Turbine Jacket Sizing Tool: Theory Manual and Sample Usage with Preliminary Validation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    JacketSE: An Offshore Wind Turbine Jacket Sizing Tool Theory Manual and Sample Usage with Preliminary Validation Rick Damiani National Renewable Energy Laboratory Technical Report NREL/TP-5000-65417 February 2016 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

  20. Verification of the New FAST v8 Capabilities for the Modeling of Fixed-Bottom Offshore Wind Turbines: Preprint

    SciTech Connect (OSTI)

    Barahona, B.; Jonkman, J.; Damiani, R.; Robertson, A.; Hayman, G.

    2014-12-01

    Coupled dynamic analysis has an important role in the design of offshore wind turbines because the systems are subject to complex operating conditions from the combined action of waves and wind. The aero-hydro-servo-elastic tool FAST v8 is framed in a novel modularization scheme that facilitates such analysis. Here, we present the verification of new capabilities of FAST v8 to model fixed-bottom offshore wind turbines. We analyze a series of load cases with both wind and wave loads and compare the results against those from the previous international code comparison projects-the International Energy Agency (IEA) Wind Task 23 Subtask 2 Offshore Code Comparison Collaboration (OC3) and the IEA Wind Task 30 OC3 Continued (OC4) projects. The verification is performed using the NREL 5-MW reference turbine supported by monopile, tripod, and jacket substructures. The substructure structural-dynamics models are built within the new SubDyn module of FAST v8, which uses a linear finite-element beam model with Craig-Bampton dynamic system reduction. This allows the modal properties of the substructure to be synthesized and coupled to hydrodynamic loads and tower dynamics. The hydrodynamic loads are calculated using a new strip theory approach for multimember substructures in the updated HydroDyn module of FAST v8. These modules are linked to the rest of FAST through the new coupling scheme involving mapping between module-independent spatial discretizations and a numerically rigorous implicit solver. The results show that the new structural dynamics, hydrodynamics, and coupled solutions compare well to the results from the previous code comparison projects.

  1. MODEL REQUEST FOR PROPOSALS TO PROVIDE ENERGY AND OTHER ATTRIBUTES FROM AN OFFSHORE WIND POWER PROJECT

    SciTech Connect (OSTI)

    Jeremy Firestone; Dawn Kurtz Crompton

    2011-10-22

    This document provides a model RFP for new generation. The 'base' RFP is for a single-source offshore wind RFP. Required modifications are noted should a state or utility seek multi-source bids (e.g., all renewables or all sources). The model is premised on proposals meeting threshold requirements (e.g., a MW range of generating capacity and a range in terms of years), RFP issuer preferences (e.g., likelihood of commercial operation by a date certain, price certainty, and reduction in congestion), and evaluation criteria, along with a series of plans (e.g., site, environmental effects, construction, community outreach, interconnection, etc.). The Model RFP places the most weight on project risk (45%), followed by project economics (35%), and environmental and social considerations (20%). However, if a multi-source RFP is put forward, the sponsor would need to either add per-MWh technology-specific, life-cycle climate (CO2), environmental and health impact costs to bid prices under the 'Project Economics' category or it should increase the weight given to the 'Environmental and Social Considerations' category.

  2. Environmental Effects of Offshore Wind Development. Fiscal Year 2012 Progress Report

    SciTech Connect (OSTI)

    Copping, Andrea E.; Hanna, Luke A.; Butner, R. Scott; Carlson, Thomas J.; Halvorsen, Michele B.; Duberstein, Corey A.; Matzner, Shari; Whiting, Jonathan M.; Blake, Kara M.; Stavole, Jessica

    2012-09-30

    Potential environmental effects of offshore wind (OSW) energy projects are not well understood, and regulatory agencies are required to make decisions in spite of substantial uncertainty about environmental impacts and their long-term consequences. An understanding of risks associated with interactions between OSW installations and aquatic receptors, including animals, habitats, and ecosystems, can help define key uncertainties and focus regulatory actions and scientific studies on interactions of most concern. To examine the environmental risks associated with OSW developments in the U.S. Pacific Northwest National Laboratory (PNNL) focused on the following four priority research areas in FY 2012: • Environmental Risk Evaluation System (ERES) - Followed project developments on the two OSW projects that PNNL screened in FY 2011 for environmental consequence: Fishermen’s Energy off the coast of Atlantic City, NJ and LEEDCo. near Cleveland, OH in Lake Erie. • Tethys - Developed a smart knowledge base which houses environmental research, data and information pertaining to OSW energy: • Technical Assessment - Produced a new software to create an automated process of identifying and differentiating between flying organism such as birds and bats by using thermal imagery; and • North Atlantic Right Whales - Developed an environmental risk management system to mitigate the impacts on North Atlantic Right Whales (NARW) during installation and piledriving stages of OSW developments. By identifying and addressing the highest priority environmental risks for OSW devices and associated installations the ERES process assists project proponents, regulators, and stakeholders to engage in the most efficient and effective siting and permitting pathways.

  3. Screening Analysis for the Environmental Risk Evaluation System Fiscal Year 2011 Report Environmental Effects of Offshore Wind Energy

    SciTech Connect (OSTI)

    Copping, Andrea E.; Hanna, Luke A.

    2011-11-01

    Potential environmental effects of offshore wind (OSW) energy development are not well understood, and yet regulatory agencies are required to make decisions in spite of substantial uncertainty about environmental impacts and their long-term consequences. An understanding of risks associated with interactions between OSW installations and avian and aquatic receptors, including animals, habitats, and ecosystems, can help define key uncertainties and focus regulatory actions and scientific studies on interactions of most concern. During FY 2011, Pacific Northwest National Laboratory (PNNL) scientists adapted and applied the Environmental Risk Evaluation System (ERES), first developed to examine the effects of marine and hydrokinetic energy devices on aquatic environments, to offshore wind development. PNNL scientists conducted a risk screening analysis on two initial OSW cases: a wind project in Lake Erie and a wind project off the Atlantic coast of the United States near Atlantic City, New Jersey. The screening analysis revealed that top-tier stressors in the two OSW cases were the dynamic effects of the device (e.g., strike), accidents/disasters, and effects of the static physical presence of the device, such as alterations in bottom habitats. Receptor interactions with these stressors at the highest tiers of risk were dominated by threatened and endangered animals. Risk to the physical environment from changes in flow regime also ranked high. Peer review of this process and results will be conducted during FY 2012. The ERES screening analysis provides an assessment of the vulnerability of environmental receptors to stressors associated with OSW installations; a probability analysis is needed to determine specific risk levels to receptors. As more data become available that document effects of offshore wind farms on specific receptors in U.S. coastal and Great Lakes waters, probability analyses will be performed.

  4. File:Permitting of Wind Energy Facilities 2002.pdf | Open Energy...

    Open Energy Info (EERE)

    Permitting of Wind Energy Facilities 2002.pdf Jump to: navigation, search File File history File usage File:Permitting of Wind Energy Facilities 2002.pdf Size of this preview: 463...

  5. SUMMARY OF REVISED TORNADO, HURRICANE AND EXTREME STRAIGHT WIND CHARACTERISTICS AT NUCLEAR FACILITY SITES

    Office of Energy Efficiency and Renewable Energy (EERE)

    Summary of Revised Tornado, Hurricane and Extreme Straight Wind Characteristics at Nuclear Facility Sites BY: John D. Stevenson Consulting Engineer

  6. New Structural-Dynamics Module for Offshore Multimember Substructures within the Wind Turbine Computer-Aided Engineering Tool FAST: Preprint

    SciTech Connect (OSTI)

    Song, H.; Damiani, R.; Robertson, A.; Jonkman, J.

    2013-08-01

    FAST, developed by the National Renewable Energy Laboratory (NREL), is a computer-aided engineering (CAE) tool for aero-hydro-servo-elastic analysis of land-based and offshore wind turbines. This paper discusses recent upgrades made to FAST to enable loads simulations of offshore wind turbines with fixed-bottom, multimember support structures (e.g., jackets and tripods, which are commonly used in transitional-depth waters). The main theory and strategies for the implementation of the multimember substructure dynamics module (SubDyn) within the new FAST modularization framework are introduced. SubDyn relies on two main engineering schematizations: 1) a linear frame finite-element beam (LFEB) model and 2) a dynamics system reduction via Craig-Bampton's method. A jacket support structure and an offshore system consisting of a turbine atop a jacket substructure were simulated to test the SubDyn module and to preliminarily assess results against results from a commercial finite-element code.

  7. Offshore Wind Farm Model Development – Upcoming Release of the University of Minnesota’s Virtual Wind Simulator

    Broader source: Energy.gov [DOE]

    Large-eddy simulation of wind farms with parameterization of wind turbines is emerging as a powerful tool for improving the performance and lowering the maintenance cost of existing wind farms and...

  8. Prairie Winds Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind Farm Jump to: navigation, search Name Prairie Winds Wind Farm Facility Prairie Winds Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  9. NREL: National Wind Technology Center Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL: National Wind Technology Center National Wind Technology Center The National Wind Technology Center (NWTC) at NREL is the nation's premier wind energy technology research facility. The NWTC advances the development of innovative land-based and offshore wind energy technologies through its research and testing facilities. Researchers draw on years of experience and their wealth of expertise in fluid dynamics and structural testing to also advance marine and hydrokinetic water power

  10. Twin Groves Wind Energy Facility Cut-in Speeds

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SYNTHESIS OF OPERATIONAL MITIGATION STUDIES TO REDUCE BAT FATALITIES AT WIND ENERGY FACILITIES IN NORTH AMERICA Prepared for: The National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401 Prepared by: Edward B. Arnett 1 , Gregory D. Johnson 2 , Wally P. Erickson 2 , and Cris D. Hein 3 1 Theordore Roosevelt Conservation Partnership 2 Western EcoSystems Technology, Inc. 3 Bat Conservation International March 2013 CITATION Arnett, E. B., G. D. Johnson, W. P. Erickson, and C.

  11. Final Report DE-EE0005380 Assessment of Offshore Wind Farm Effects on Sea Surface, Subsurface and Airborne Electronic Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    UNIVERSITY OF TEXAS AT AUSTIN Final Report DE-EE0005380 Assessment of Offshore Wind Farm Effects on Sea Surface, Subsurface and Airborne Electronic Systems Prepared for: U.S. Department of Energy Prepared by: Hao Ling (UT) Mark F. Hamilton (ARL:UT) Rajan Bhalla (SAIC) Walter E. Brown (ARL:UT) Todd A. Hay (ARL:UT) Nicholas J. Whitelonis (UT) Shang-Te Yang (UT) Aale R. Naqvi (UT) 9/30/2013 DE-EE0005380 The University of Texas at Austin ii Notice and Disclaimer This report is being disseminated by

  12. Development of an Offshore Direct-Drive Wind Turbine Model by Using a Flexible Multibody Simulation (Poster)

    SciTech Connect (OSTI)

    Bergua, R.; Jove, J.; Campbell, J.; Guo, Y.; Van Dam, J.

    2014-05-01

    Modern wind turbines are complex, highly-coupled systems. The dynamic interaction between various components is especially pronounced for multi-megawatt wind turbines. As a result, design process is generally split in several phases. First step consists of creating a global aero-elastic model that includes essential dynamics of structural components using the minimum-possible number of degrees of freedom (d.o.f.). The most important simplifications concern drivetrain and rotor-nacelle assembly (RNA). This approach has been shown valid for several wind turbine configurations. Nevertheless, with increasing size of wind turbines, any simplified design approach must be validated. The present work deals with the comparison and validation of the two modeling approaches for directdrive offshore wind turbines. ARNA/drivetrain model idealized as collection of lumped masses and springs is compared to a detailed Finite Element Method (FEM) based model. The comparison between models focuses on dynamic loads concerning drivetrain system. The comparison is performed in several operational conditions in order to explore the range of validity of the simplified model. Finally, the paper proposes a numerical-based workflow to assess the validity of simplified models of RNA/drivetrain in an aero-elastic global WT model.

  13. 4C Offshore Limited | Open Energy Information

    Open Energy Info (EERE)

    database and interactive map for global offshore wind development. The Global Offshore Wind Farms Database contains details on over 600 wind farms in over30 countries. The 4C...

  14. Thanks to Energy Department Funding, Safer Access to Offshore...

    Office of Environmental Management (EM)

    Thanks to Energy Department Funding, Safer Access to Offshore Wind Turbine Platforms is Demonstrated Thanks to Energy Department Funding, Safer Access to Offshore Wind Turbine ...

  15. Wind Energy Facilities and Residential Properties: The Effect of Proximity and View on Sales Prices

    SciTech Connect (OSTI)

    Hoen, Ben; Wiser, Ryan; Cappers, Peter; Thayer, Mark; Sethi, Gautam

    2010-04-01

    With an increasing number of communities considering nearby wind power developments, there is a need to empirically investigate community concerns about wind project development. One such concern is that property values may be adversely affected by wind energy facilities, and relatively little research exists on the subject. The present research investigates roughly 7,500 sales of single-family homes surrounding 24 existing U.S. wind facilities. Across four different hedonic models the results are consistent: neither the view of the wind facilities nor the distance of the home to those facilities is found to have a statistically significant effect on home sales prices.

  16. Access Framework: Model Text (November 2011): An Act to Establish a Framework for Development of Offshore Wind Power

    SciTech Connect (OSTI)

    Jeremy Firestone; Dawn Kurtz Crompton

    2011-10-22

    The model offshore wind power legislation focused on two aspects: compensation for use of ocean space and environmental assessment. In particular, the model legislation recommends the adoption of a rent and royalty scheme that is premised on high rent and low royalties in order to stimulate qualified bids from developers who are motivated to begin production as early as possible and to discourage sham bidding. The model legislation also includes a provision that sets royalties at a lower rate in the early years of project operation, and that provides states with the discretion to waive or defer rent and/or royalties for a period of time to meet the goals and objectives of energy independence, job creation, reduced emissions of conventional pollutants and greenhouse gases and increased state requirements for electricity from renewable sources. The environmental impact assessment (EIA) is structured to provide a systematic and interdisciplinary evaluation of the potential positive and negative life-cycle effects of a proposed offshore wind project on the physical, biological, cultural and socio-economic attributes of the project.

  17. Cisco Wind Energy Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Cisco Wind Energy Wind Farm Jump to: navigation, search Name Cisco Wind Energy Wind Farm Facility Cisco Wind Energy Sector Wind energy Facility Type Commercial Scale Wind Facility...

  18. Aeroelastic Modeling of Large Off-shore Vertical-axis Wind Turbines...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... K. Dixon, C. Ferreira, C. Hofemann, G. van Bussel, and G. van Kuik, "A 3D unsteady panel method for vertical axis wind turbines," Proceedings of the European Wind Energy ...

  19. Wind Power Career Chat

    SciTech Connect (OSTI)

    L. Flowers

    2011-01-01

    This document will teach students about careers in the wind energy industry. Wind energy, both land-based and offshore, is expected to provide thousands of new jobs in the next several decades. Wind energy companies are growing rapidly to meet America's demand for clean, renewable, and domestic energy. These companies need skilled professionals. Wind power careers will require educated people from a variety of areas. Trained and qualified workers manufacture, construct, operate, and manage wind energy facilities. The nation will also need skilled researchers, scientists, and engineers to plan and develop the next generation of wind energy technologies.

  20. EA-1992: Funding for Principle Power, Inc., for the WindFloat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pacific Offshore Wind Demonstration Project, offshore of Coos Bay, Oregon EA-1992: Funding for Principle Power, Inc., for the WindFloat Pacific Offshore Wind Demonstration ...

  1. Construction Completed on Wind Plant Optimization R&D Facility | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Construction Completed on Wind Plant Optimization R&D Facility Construction Completed on Wind Plant Optimization R&D Facility April 1, 2013 - 12:33pm Addthis This is an excerpt from the First Quarter 2013 edition of the Wind Program R&D Newsletter. The U.S. Department of Energy (DOE) and Sandia National Laboratories (SNL) have completed construction of a new state-of-the-art wind plant research facility at Texas Tech University in Lubbock, Texas. The Scaled Wind Farm

  2. Framework for assessing impacts of pile-driving noise from offshore wind farm construction on a harbour seal population

    SciTech Connect (OSTI)

    Thompson, Paul M.; Hastie, Gordon D.; Nedwell, Jeremy; Barham, Richard; Brookes, Kate L.; Cordes, Line S.; Bailey, Helen; McLean, Nancy

    2013-11-15

    Offshore wind farm developments may impact protected marine mammal populations, requiring appropriate assessment under the EU Habitats Directive. We describe a framework developed to assess population level impacts of disturbance from piling noise on a protected harbour seal population in the vicinity of proposed wind farm developments in NE Scotland. Spatial patterns of seal distribution and received noise levels are integrated with available data on the potential impacts of noise to predict how many individuals are displaced or experience auditory injury. Expert judgement is used to link these impacts to changes in vital rates and applied to population models that compare population changes under baseline and construction scenarios over a 25 year period. We use published data and hypothetical piling scenarios to illustrate how the assessment framework has been used to support environmental assessments, explore the sensitivity of the framework to key assumptions, and discuss its potential application to other populations of marine mammals. -- Highlights: • We develop a framework to support Appropriate Assessment for harbour seal populations. • We assessed potential impacts of wind farm construction noise. • Data on distribution of seals and noise were used to predict effects on individuals. • Expert judgement linked these impacts to vital rates to model population change. • We explore the sensitivity of the framework to key assumptions and uncertainties.

  3. Investigation of a FAST-OrcaFlex Coupling Module for Integrating Turbine and Mooring Dynamics of Offshore Floating Wind Turbines: Preprint

    SciTech Connect (OSTI)

    Masciola, M.; Robertson, A.; Jonkman, J.; Driscoll, F.

    2011-10-01

    To enable offshore floating wind turbine design, the following are required: accurate modeling of the wind turbine structural dynamics, aerodynamics, platform hydrodynamics, a mooring system, and control algorithms. Mooring and anchor design can appreciably affect the dynamic response of offshore wind platforms that are subject to environmental loads. From an engineering perspective, system behavior and line loads must be studied well to ensure the overall design is fit for the intended purpose. FAST (Fatigue, Aerodynamics, Structures and Turbulence) is a comprehensive simulation tool used for modeling land-based and offshore wind turbines. In the case of a floating turbine, continuous cable theory is used to emulate mooring line dynamics. Higher modeling fidelity can be gained through the use of finite element mooring theory. This can be achieved through the FASTlink coupling module, which couples FAST with OrcaFlex, a commercial simulation tool used for modeling mooring line dynamics. In this application, FAST is responsible for capturing the aerodynamic loads and flexure of the wind turbine and its tower, and OrcaFlex models the mooring line and hydrodynamic effects below the water surface. This paper investigates the accuracy and stability of the FAST/OrcaFlex coupling operation.

  4. Investigation of Response Amplitude Operators for Floating Offshore Wind Turbines: Preprint

    SciTech Connect (OSTI)

    Ramachandran, G. K. V.; Robertson, A.; Jonkman, J. M.; Masciola, M. D.

    2013-07-01

    This paper examines the consistency between response amplitude operators (RAOs) computed from WAMIT, a linear frequency-domain tool, to RAOs derived from time-domain computations based on white-noise wave excitation using FAST, a nonlinear aero-hydro-servo-elastic tool. The RAO comparison is first made for a rigid floating wind turbine without wind excitation. The investigation is further extended to examine how these RAOs change for a flexible and operational wind turbine. The RAOs are computed for below-rated, rated, and above-rated wind conditions. The method is applied to a floating wind system composed of the OC3-Hywind spar buoy and NREL 5-MW wind turbine. The responses are compared between FAST and WAMIT to verify the FAST model and to understand the influence of structural flexibility, aerodynamic damping, control actions, and waves on the system responses. The results show that based on the RAO computation procedure implemented, the WAMIT- and FAST-computed RAOs are similar (as expected) for a rigid turbine subjected to waves only. However, WAMIT is unable to model the excitation from a flexible turbine. Further, the presence of aerodynamic damping decreased the platform surge and pitch responses, as computed by both WAMIT and FAST when wind was included. Additionally, the influence of gyroscopic excitation increased the yaw response, which was captured by both WAMIT and FAST.

  5. GAOH Offshore | Open Energy Information

    Open Energy Info (EERE)

    GAOH Offshore Jump to: navigation, search Name: GAOH Offshore Place: St Peter Port, United Kingdom Zip: GY1 4EE Sector: Wind energy Product: Intends to become the preferred...

  6. Model Development and Loads Analysis of an Offshore Wind Turbine on a Tension Leg Platform with a Comparison to Other Floating Turbine Concepts: April 2009

    SciTech Connect (OSTI)

    Matha, D.

    2010-02-01

    This report presents results of the analysis of a 5-MW wind turbine located on a floating offshore tension leg platform (TLP) that was conducted using the fully coupled time-domain aero-hydro-servo-elastic design code FAST with AeroDyn and HydroDyn. The report also provides a description of the development process of the TLP model. The model has been verified via comparisons to frequency-domain calculations. Important differences have been identified between the frequency-domain and time-domain simulations, and have generated implications for the conceptual design process. An extensive loads and stability analysis for ultimate and fatigue loads according to the procedure of the IEC 61400-3 offshore wind turbine design standard was performed with the verified TLP model. This report compares the loads for the wind turbine on the TLP to those of an equivalent land-based turbine. Major instabilities for the TLP are identified and described.

  7. Numerical Prediction of Experimentally Observed Behavior of a Scale Model of an Offshore Wind Turbine Supported by a Tension-Leg Platform: Preprint

    SciTech Connect (OSTI)

    Prowell, I.; Robertson, A.; Jonkman, J.; Stewart, G. M.; Goupee, A. J.

    2013-01-01

    Realizing the critical importance the role physical experimental tests play in understanding the dynamics of floating offshore wind turbines, the DeepCwind consortium conducted a one-fiftieth-scale model test program where several floating wind platforms were subjected to a variety of wind and wave loading condition at the Maritime Research Institute Netherlands wave basin. This paper describes the observed behavior of a tension-leg platform, one of three platforms tested, and the systematic effort to predict the measured response with the FAST simulation tool using a model primarily based on consensus geometric and mass properties of the test specimen.

  8. Development and Verification of a Fully Coupled Simulator for Offshore Wind Turbines: Preprint

    SciTech Connect (OSTI)

    Jonkman, J. M.; Buhl, M. L. Jr.

    2007-01-01

    This report outlines the development of an analysis tool capable of analyzing a variety of wind turbine, support platform, and mooring system configurations.The simulation capability was tested by model-to-model comparisons to ensure its correctness.

  9. Wind Power Partners '94 Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    4 Wind Farm Jump to: navigation, search Name Wind Power Partners '94 Wind Farm Facility Wind Power Partners '94 Sector Wind energy Facility Type Commercial Scale Wind Facility...

  10. Wind Energy Facilities and Residential Properties: The Effect of Proximity and View on Sales Prices

    SciTech Connect (OSTI)

    Hoen, Ben; Wiser, Ryan; Cappers, Peter; Thayer, Mark; Sethi, Gautam

    2010-04-01

    With wind energy expanding rapidly in the U.S. and abroad, and with an increasing number of communities considering nearby wind power developments, there is a need to empirically investigate community concerns about wind project development. One such concern is that property values may be adversely affected by wind energy facilities, and relatively little existing research exists on the subject. The present research is based on almost 7,500 sales of single-family homes situated within ten miles of 24 existing wind facilities in nine different U.S. states. The conclusions of the study are drawn from four different hedonic pricing models. The model results are consistent in that neither the view of the wind facilities nor the distance of the home to those facilities is found to have a statistically significant effect on home sales prices.

  11. Danielson Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Danielson Wind Facility Danielson Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer Juhl Wind...

  12. Kawailoa Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Kawailoa Wind Facility Kawailoa Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind...

  13. Palouse Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Palouse Wind Facility Palouse Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind...

  14. Harbor Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Harbor Wind Facility Harbor Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Harbor Wind LLC...

  15. Kahuku Wind | Open Energy Information

    Open Energy Info (EERE)

    Kahuku Wind Jump to: navigation, search Name Kahuku Wind Facility Kahuku Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind...

  16. Wiota Wind | Open Energy Information

    Open Energy Info (EERE)

    Wiota Wind Jump to: navigation, search Name Wiota Wind Facility Wiota Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Wiota Wind Energy LLC...

  17. Bravo Wind | Open Energy Information

    Open Energy Info (EERE)

    Bravo Wind Jump to: navigation, search Name Bravo Wind Facility Bravo Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status Proposed Developer Bravo Wind LLC...

  18. Auwahi Wind | Open Energy Information

    Open Energy Info (EERE)

    Auwahi Wind Jump to: navigation, search Name Auwahi Wind Facility Auwahi Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner BP Wind Energy...

  19. Traer Wind | Open Energy Information

    Open Energy Info (EERE)

    Traer Wind Jump to: navigation, search Name Traer Wind Facility Traer Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Norsemen Wind Energy LLC...

  20. Sheffield Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Sheffield Wind Facility Sheffield Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind...

  1. Rollins Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Rollins Wind Facility Rollins Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind...

  2. Scira Offshore Energy | Open Energy Information

    Open Energy Info (EERE)

    Kingdom Zip: NR32 1DE Sector: Wind energy Product: Developer of the Sheringham Shoals offshore wind farm. References: Scira Offshore Energy1 This article is a stub. You can...

  3. Advanced Offshore Wind Turbine/Foundation Concept for the Great Lakes

    SciTech Connect (OSTI)

    Afjeh, Abdollah A.; Windpower, Nautica; Marrone, Joseph; Wagner, Thomas

    2013-08-29

    This project investigated a conceptual 2-bladed rotor wind turbine design and assessed its feasibility for installation in the Great Lakes. The levelized cost of energy was used for this purpose. A location in Lake Erie near the coast of Cleveland, Ohio was selected as the application site. The loading environment was defined using wind and wave data collected at a weather station in Lake Erie near Cleveland. In addition, the probability distributions of the annual significant wave height and wind speed were determined. A model of the dependence of the above two quantities was also developed and used in the study of wind turbine system loads. Loads from ice floes and ridges were also included.The NREL 5 MW 3-bladed rotor wind turbine concept was used as the baseline design. The proposed turbine design employs variable pitch blade control with tip-brakes and a teeter mechanism. The rotor diameter, rated power and the tower dimensions were selected to closely match those of the NREL 5 MW wind turbine.A semi-floating gravity base foundation was designed for this project primarily to adapt to regional logistical constraints to transport and install the gravity base foundation. This foundation consists of, from bottom to top, a base plate, a buoyancy chamber, a taper zone, a column (with ice cone), and a service platform. A compound upward-downward ice cone was selected to secure the foundation from moving because of ice impact.The turbine loads analysis was based on International ElectroTechnical Committee (IEC) Standard 61400-1, Class III winds. The NREL software FAST was the primary computational tool used in this study to determine all design load cases. An initial set of studies of the dynamics of wind turbines using Automatic Dynamic Analysis of Mechanical Systems (ADAMS) demonstrated that FAST and ADAMS load predictions were comparable. Because of its relative simplicity and short run times, FAST was selected for this study. For ice load calculations, a method

  4. Reliable, Lightweight Transmissions For Off-Shore, Utility Scale Wind Turbines

    SciTech Connect (OSTI)

    Jean-Claude Ossyra

    2012-10-25

    The objective of this project was to reduce the technical risk for a hydrostatic transmission based drivetrain for high-power utility-size wind turbines. A theoretical study has been performed to validate the reduction of cost of energy (CoE) for the wind turbine, identify risk mitigation strategies for the drive system and critical components, namely the pump, shaft connection and hydrostatic transmission (HST) controls and address additional benefits such as reduced deployment costs, improved torque density and improved mean time between repairs (MTBR).

  5. Large Wind Turbine Blade Test Facilities to be in Mass., Texas - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL Large Wind Turbine Blade Test Facilities to be in Mass., Texas Access to waterways key; NREL to continue testing smaller blades in Colorado June 25, 2007 The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) will work with consortiums from Texas and Massachusetts to design, build and operate new facilities to test the next generation of giant wind turbine blades. The Department of Energy (DOE) announced the blade test facility cooperative research and

  6. CT Offshore | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: CT Offshore Place: Otterup, Denmark Zip: 5450 Sector: Wind energy Product: Denmark-based consultancy which provides assistance for project...

  7. Effectiveness of Changing Wind Turbine Cut-in Speed to Reduce Bat Fatalities at Wind Facilities

    SciTech Connect (OSTI)

    Huso, Manuela M. P.; Hayes, John P.

    2009-04-01

    This report details an experiment on the effectiveness of changing wind turbine cut-in speed on reducing bat fatality from wind turbines at the Casselman Wind Project in Somerset County, Pennsylvania.

  8. Computation of Wave Loads under Multidirectional Sea States for Floating Offshore Wind Turbines: Preprint

    SciTech Connect (OSTI)

    Duarte, T.; Gueydon, S.; Jonkman, J.; Sarmento, A.

    2014-03-01

    This paper focuses on the analysis of a floating wind turbine under multidirectional wave loading. Special attention is given to the different methods used to synthesize the multidirectional sea state. This analysis includes the double-sum and single-sum methods, as well as an equal-energy discretization of the directional spectrum. These three methods are compared in detail, including the ergodicity of the solution obtained. From the analysis, the equal-energy method proved to be the most computationally efficient while still retaining the ergodicity of the solution. This method was chosen to be implemented in the numerical code FAST. Preliminary results on the influence of these wave loads on a floating wind turbine showed significant additional roll and sway motion of the platform.

  9. EA-1792-S1: University of Maine's Deepwater Offshore Floating Wind Turbine Testing and Demonstration Project – Castine Harbor Test Site

    Broader source: Energy.gov [DOE]

    This Supplemental EA evaluates the environmental impacts of the University of Maine proposal to use Congressionally directed federal funding, from DOE, to deploy, test and retrieve one 1/8-scale floating wind turbine (20kw) prototype in Castine Harbor, offshore of Castine Maine. This test would be conducted prior to testing at the site 2 miles from Monhegan Island (evaluated under DOE EA-1792).

  10. Wind Energy Facilities and Residential Properties: The Effect of Proximity and View on Sales Prices

    SciTech Connect (OSTI)

    San Diego State University; Bard Center for Environmental Policy at Bard College; Hoen, Ben; Wiser, Ryan; Cappers, Peter; Thayer, Mark; Sethi, Gautam

    2011-06-23

    With increasing numbers of communities considering wind power developments, empirical investigations regarding related community concerns are needed. One such concern is that proximate property values may be adversely affected, yet relatively little research exists on the subject. The present research investigates roughly 7,500 sales of single-family homes surrounding 24 existing U.S. wind facilities. Across four different hedonic models, and a variety of robustness tests, the results are consistent: neither the view of the wind facilities nor the distance of the home to those facilities is found to have a statistically significant effect on sales prices, yet further research is warranted.

  11. Shallow Water Offshore Wind Optimization for the Great Lakes (DE-FOA-0000415) Final Report: A Conceptual Design for Wind Energy in the Great Lakes

    SciTech Connect (OSTI)

    Wissemann, Chris; White, Stanley M

    2014-02-28

    The primary objective of the project was to develop a innovative Gravity Base Foundation (GBF) concepts, including fabrication yards, launching systems and installation equipment, for a 500MW utility scale project in the Great Lakes (Lake Erie). The goal was to lower the LCOE by 25%. The project was the first to investigate an offshore wind project in the Great Lakes and it has furthered the body of knowledge for foundations and installation methods within Lake Erie. The project collected historical geotechnical information for Lake Erie and also used recently obtained data from the LEEDCo Icebreaker Project (FOA DE-EE0005989) geotechnical program to develop the conceptual designs. Using these data-sets, the project developed design wind and wave conditions from actual buoy data in order to develop a concept that would de-risk a project using a GBF. These wind and wave conditions were then utilized to create reference designs for various foundations specific to installation in Lake Erie. A project partner on the project (Weeks Marine) provided input for construction and costing the GBF fabrication and installation. By having a marine contractor with experience with large marine projects as part of the team provides credibility to the LCOE developed by NREL. NREL then utilized the design and construction costing information as part of the LCOE model. The report summarizes the findings of the project. • Developed a cost model and “baseline” LCOE • Documented Site Conditions within Lake Erie • Developed Fabrication, Installation and Foundations Innovative Concept Designs • Evaluated LCOE Impact of Innovations • Developed Assembly line “Rail System” for GBF Construction and Staging • Developed Transit-Inspired Foundation Designs which incorporated: Semi-Floating Transit with Supplemental Pontoons Barge mounted Winch System • Developed GBF with “Penetration Skirt” • Developed Integrated GBF with Turbine Tower • Developed Turbine, Plant

  12. Articles about Wind Program Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (DOE) Wind Program. October 1, 2013 DOE to Host a Booth at Offshore WINDPOWER The Wind Program will be exhibiting at the American Wind Energy Association (AWEA) Offshore...

  13. Two Facilities, One Goal: Advancing America's Wind Industry | Department of

    Office of Environmental Management (EM)

    of Energy Twelve Collegiate Teams Gear Up to Compete at WINDPOWER 2016 Twelve Collegiate Teams Gear Up to Compete at WINDPOWER 2016 May 18, 2015 - 2:38pm Addthis Twelve collegiate teams are gearing up to participate in the U.S. Department of Energy's (DOE's) second Collegiate Wind Competition that will take place at the annual American Wind Energy Association (AWEA) WINDPOWER Conference and Exhibition in New Orleans, Louisiana, from May 23 to 26, 2016. The Collegiate Wind Competition

  14. South Carolina Opens Nation’s Largest Wind Drivetrain Testing Facility

    Broader source: Energy.gov [DOE]

    Today, U.S. Deputy Secretary of Energy Daniel Poneman joined with officials from Clemson University to dedicate the nation's largest and one of the world's most advanced wind energy testing facilities in North Charleston, S.C.

  15. Advanced Wind Energy Projects Test Facility Moving to Texas Tech University

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Department of Energy (DOE) Sandia National Laboratories (SNL) is moving its wind energy test facility to a new location near the campus of Texas Tech University in Lubbock, Texas.

  16. DOE/SNL Scaled Wind-Farm Technology facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, ... variable-pitch Vestas V27 turbines and two 60 m anemometer ...

  17. NREL, Clemson University Collaborate on Wind Energy Testing Facilities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    example of how a university and a national laboratory can work together," said Brian Smith, acting center director for the National Wind Technology Center at NREL. "The ...

  18. Smith River Rancheria - Wind and Biomass Power Generation Facility...

    Broader source: Energy.gov (indexed) [DOE]

    Greg Retzlaff Strategic Energy Solutions, Inc. Wind & Biomass Power Generation Smith River Rancheria 2 Smith River Rancheria * Coastal Community of 600 in Northern California and ...

  19. Garnet Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Garnet Wind Facility Garnet Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Azusa Light & Water...

  20. Lime Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Lime Wind Facility Lime Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Joseph Millworks Inc...

  1. Fairhaven Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Fairhaven Wind Facility Fairhaven Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Solaya Energy Palmer...

  2. Scituate Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Scituate Wind Facility Scituate Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Solaya Energy ...

  3. Pacific Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Pacific Wind Facility Pacific Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner enXco Developer...

  4. Galactic Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Galactic Wind Facility Galactic Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Epic Systems...

  5. Rockland Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Rockland Wind Facility Rockland Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer Ridgeline...

  6. Greenfield Wind | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name Greenfield Wind Facility Greenfield Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Greenfield Wind Power...

  7. Willmar Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Willmar Wind Facility Willmar Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Willmar...

  8. 2015 International Off shore Wind Partnering Forum

    Broader source: Energy.gov [DOE]

    The 2015 International Offshore Wind Partnering Forum injects U.S. innovation into the offshore wind dialogue, while highlighting European expertise. Our event sparks ideas, offers a different...

  9. Wind Program News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    September 3, 2014 New Report Characterizes Existing Offshore Wind Grid Interconnection Capabilities The Energy Department today released the first National Offshore Wind Energy...

  10. Wethersfield Wind Power Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wethersfield Wind Power Wind Farm Jump to: navigation, search Name Wethersfield Wind Power Wind Farm Facility Wethersfield Wind Power Sector Wind energy Facility Type Commercial...

  11. Stetson Wind Expansion Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Stetson Wind Expansion Wind Farm Jump to: navigation, search Name Stetson Wind Expansion Wind Farm Facility Stetson Wind Expansion Sector Wind energy Facility Type Commercial Scale...

  12. Harbec Plastic Wind Turbine Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Harbec Plastic Wind Turbine Wind Farm Jump to: navigation, search Name Harbec Plastic Wind Turbine Wind Farm Facility Harbec Plastic Wind Turbine Sector Wind energy Facility Type...

  13. Where Are We Now: The U.S. Department of Energy Makes Strides to Advance Offshore Wind in the United States, Wind Program Newsletter: October 2012 Edition (Newsletter)

    SciTech Connect (OSTI)

    Not Available

    2012-12-01

    This newsletter describes the U.S. Department of Energy Wind Program's recent wind energy research and development efforts.

  14. Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities The the WTGa1 turbine (aka DOE/SNL #1) retuns to power as part of a final series of commissioning tests. Permalink Gallery First Power for SWiFT Turbine Achieved during Recommissioning Facilities, News, Renewable Energy, SWIFT, Wind Energy, Wind News First Power for SWiFT Turbine Achieved during Recommissioning The Department of Energy's Scaled Wind Farm Technology (SWiFT) Facility reached an exciting milestone with the return to power production of the WTGa1 turbine (aka DOE/SNL #1)

  15. Structural health and prognostics management for offshore wind turbines : case studies of rotor fault and blade damage with initial O&M cost modeling.

    SciTech Connect (OSTI)

    Myrent, Noah J.; Kusnick, Joshua F.; Barrett, Natalie C.; Adams, Douglas E.; Griffith, Daniel Todd

    2013-04-01

    Operations and maintenance costs for offshore wind plants are significantly higher than the current costs for land-based (onshore) wind plants. One way to reduce these costs would be to implement a structural health and prognostic management (SHPM) system as part of a condition based maintenance paradigm with smart load management and utilize a state-based cost model to assess the economics associated with use of the SHPM system. To facilitate the development of such a system a multi-scale modeling approach developed in prior work is used to identify how the underlying physics of the system are affected by the presence of damage and faults, and how these changes manifest themselves in the operational response of a full turbine. This methodology was used to investigate two case studies: (1) the effects of rotor imbalance due to pitch error (aerodynamic imbalance) and mass imbalance and (2) disbond of the shear web; both on a 5-MW offshore wind turbine in the present report. Based on simulations of damage in the turbine model, the operational measurements that demonstrated the highest sensitivity to the damage/faults were the blade tip accelerations and local pitching moments for both imbalance and shear web disbond. The initial cost model provided a great deal of insight into the estimated savings in operations and maintenance costs due to the implementation of an effective SHPM system. The integration of the health monitoring information and O&M cost versus damage/fault severity information provides the initial steps to identify processes to reduce operations and maintenance costs for an offshore wind farm while increasing turbine availability, revenue, and overall profit.

  16. Crow Lake Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Crow Lake Wind Facility Crow Lake Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Prairie Winds...

  17. Zirbel Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name Zirbel Wind Farm Facility Zirbel Wind Farm (Glenmore Wind Energy Facility) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  18. NREL, Clemson University Collaborate on Wind Energy Testing Facilities...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that can help engineers better understand how wind turbines will react to grid disturbances. Supported by a 45.6 million DOE investment that is cost matched with over 70 million ...

  19. Offshore Renewable Energy R&D (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This fact sheet describes the offshore renewable energy R&D efforts at NREL's NWTC. As the United States increases its efforts to tap the domestic energy sources needed to diversify its energy portfolio and secure its energy supply, more attention is being focused on the rich renewable resources located offshore. Offshore renewable energy sources include offshore wind, waves, tidal currents, ocean and river currents, and ocean thermal gradients. According to a report published by the National Renewable Energy Laboratory (NREL) in 2010,1 U.S. offshore wind resources have a gross potential generating capacity four times greater than the nation's present electric capacity, and the Electric Power Research Institute estimates that the nation's ocean energy resources could ultimately supply at least 10% of its electric supply. For more than 30 years, NREL has advanced the science of renewable energy while building the capabilities to guide rapid deployment of commercial applications. Since 1993, NREL's National Wind Technology Center (NWTC) has been the nation's premier wind energy research facility, specializing in the advancement of wind technologies that range in size from a kilowatt to several megawatts. For more than 8 years, the NWTC has been an international leader in the field of offshore floating wind system analysis. Today, researchers at the NWTC are taking their decades of experience and extensive capabilities and applying them to help industry develop cost-effective hydrokinetic systems that convert the kinetic energy in water to provide power for our nation's heavily populated coastal regions. The center's capabilities and experience cover a wide spectrum of wind and water energy engineering disciplines, including atmospheric and ocean fluid mechanics, aerodynamics; aeroacoustics, hydrodynamics, structural dynamics, control systems, electrical systems, and testing.

  20. Overview and Meteorological Validation of the Wind Integration National Dataset toolkit

    SciTech Connect (OSTI)

    Draxl, C.; Hodge, B. M.; Clifton, A.; McCaa, J.

    2015-04-13

    The Wind Integration National Dataset (WIND) Toolkit described in this report fulfills these requirements, and constitutes a state-of-the-art national wind resource data set covering the contiguous United States from 2007 to 2013 for use in a variety of next-generation wind integration analyses and wind power planning. The toolkit is a wind resource data set, wind forecast data set, and wind power production and forecast data set derived from the Weather Research and Forecasting (WRF) numerical weather prediction model. WIND Toolkit data are available online for over 116,000 land-based and 10,000 offshore sites representing existing and potential wind facilities.