Powered by Deep Web Technologies
Note: This page contains sample records for the topic "offshore shale proved" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

,"Alaska (with Total Offshore) Shale Proved Reserves (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Alaska (with Total Offshore) Shale Proved Reserves (Billion Cubic Feet)",1,"Annual",2013 ,"Release Date:","124...

2

,"Texas--State Offshore Shale Proved Reserves (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Texas--State Offshore Shale Proved Reserves (Billion Cubic Feet)",1,"Annual",2010 ,"Release Date:","124...

3

,"Alabama (with State Offshore) Shale Proved Reserves (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Alabama (with State Offshore) Shale Proved Reserves (Billion Cubic Feet)",1,"Annual",2010 ,"Release Date:","124...

4

,"Louisiana (with State Offshore) Shale Proved Reserves (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana (with State Offshore) Shale Proved Reserves (Billion Cubic Feet)",1,"Annual",2013 ,"Release Date:","124...

5

,"Texas (with State Offshore) Shale Proved Reserves (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Texas (with State Offshore) Shale Proved Reserves (Billion Cubic Feet)",1,"Annual",2013 ,"Release Date:","124...

6

Texas--State Offshore Shale Proved Reserves (Billion Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Texas--State Offshore Shale Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 2010's 0 - No Data...

7

Federal Offshore California Coalbed Methane Proved Reserves ...  

Gasoline and Diesel Fuel Update (EIA)

12312015 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 Federal Offshore, Pacific (California) Coalbed Methane Proved Reserves, Reserves Changes, and...

8

Miscellaneous States Shale Gas Proved Reserves Acquisitions ...  

U.S. Energy Information Administration (EIA) Indexed Site

Acquisitions (Billion Cubic Feet) Miscellaneous States Shale Gas Proved Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

9

,"Federal Offshore California Coalbed Methane Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore California Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2013...

10

,"Federal Offshore California Lease Condensate Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore California Lease Condensate Proved Reserves, Reserve Changes, and Production",10,"Annual",2012,...

11

,"Federal Offshore, Pacific (California) Proved Nonproducing...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Pacific (California) Proved Nonproducing Reserves",5,"Annual",2012,"6301996" ,"Release Date:","410...

12

,"California State Offshore Proved Nonproducing Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California State Offshore Proved Nonproducing Reserves",5,"Annual",2012,"6301996" ,"Release...

13

Texas (with State Offshore) Coalbed Methane Proved Reserves ...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Texas (with State Offshore) Coalbed Methane Proved Reserves (Billion Cubic Feet) Texas (with State Offshore) Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0...

14

,"Louisiana Shale Gas Proved Reserves, Reserves Changes, and...  

U.S. Energy Information Administration (EIA) Indexed Site

Shale Gas Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

15

,"Kentucky Shale Gas Proved Reserves, Reserves Changes, and Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Shale Gas Proved Reserves, Reserves Changes, and Production",10,"Annual",2012,"6302007"...

16

,"West Virginia Shale Gas Proved Reserves, Reserves Changes,...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","West Virginia Shale Gas Proved Reserves, Reserves Changes, and Production",10,"Annual",2012,"6302007"...

17

California Federal Offshore Natural Gas Plant Liquids, Proved...  

Gasoline and Diesel Fuel Update (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) California Federal Offshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

18

California Federal Offshore Crude Oil + Lease Condensate Proved...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Crude Oil + Lease Condensate Proved Reserves (Million Barrels) California Federal Offshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1...

19

California State Offshore Crude Oil + Lease Condensate Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Crude Oil + Lease Condensate Proved Reserves (Million Barrels) California State Offshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2...

20

Louisiana State Offshore Crude Oil + Lease Condensate Proved...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Louisiana State Offshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2...

Note: This page contains sample records for the topic "offshore shale proved" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Texas--State Offshore Coalbed Methane Proved Reserves (Billion...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 Texas State Offshore Coalbed Methane Proved Reserves, Reserves Changes, and...

22

Louisiana--State Offshore Coalbed Methane Proved Reserves (Billion...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 LA, State Offshore Coalbed Methane Proved Reserves, Reserves Changes, and...

23

Texas State Offshore Crude Oil + Lease Condensate Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Texas State Offshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2...

24

Federal Offshore--Texas Coalbed Methane Proved Reserves (Billion...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Release Date: 12312015 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 Federal Offshore Texas Coalbed Methane Proved Reserves, Reserves Changes, and Production...

25

California State Offshore Natural Gas Plant Liquids, Proved Reserves...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Gas Plant Liquids, Proved Reserves (Million Barrels) California State Offshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

26

California--State Offshore Coalbed Methane Proved Reserves (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Next Release Date: 12312015 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 CA, State Offshore Coalbed Methane Proved Reserves, Reserves Changes, and Production...

27

Federal Offshore Gulf of Mexico Proved Reserves  

Gasoline and Diesel Fuel Update (EIA)

Federal Offshore Gulf of Mexico Proved Reserves Federal Offshore Gulf of Mexico Proved Reserves Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Data Series 2002 2003 2004 2005 2006 2007 View History Dry Natural Gas (billion cubic feet) 24,689 22,059 18,812 17,007 14,549 13,634 1992-2007 Depth Less Than 200 Meters 14,423 12,224 10,433 8,964 8,033 NA 1992-2007 Depth Greater Than 200 Meters 10,266 9,835 8,379 8,043 6,516 NA 1992-2007 Percentage from Depth Greater Than 200 Meters 41.6 44.6 45 47 45 NA 1992-2007 Natural Gas Wet After Lease Separation (billion cubic feet) 25,347 22,522 19,288 17,427 14,938 14,008 1992-2007 Depth Less Than 200 Meters 14,807 12,481 10,698 9,385 8,248 9,888 1992-2007

28

,"Federal Offshore Texas Crude Oil plus Lease Condensate Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore Texas Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2012,"630...

29

,"CA, State Offshore Crude Oil plus Lease Condensate Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","CA, State Offshore Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2012,"6302009"...

30

,"Texas State Offshore Crude Oil plus Lease Condensate Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas State Offshore Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2012,"6302009"...

31

,"LA, State Offshore Crude Oil plus Lease Condensate Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","LA, State Offshore Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2012,"6302009"...

32

,"California--State Offshore Coalbed Methane Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","California--State Offshore Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2013 ,"Release...

33

,"Texas (with State Offshore) Coalbed Methane Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Texas (with State Offshore) Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2013 ,"Release...

34

,"Louisiana--State Offshore Coalbed Methane Proved Reserves ...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana--State Offshore Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2013 ,"Release...

35

,"Lower 48 Federal Offshore Coalbed Methane Proved Reserves ...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Lower 48 Federal Offshore Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2013 ,"Release...

36

,"Texas--State Offshore Coalbed Methane Proved Reserves (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Texas--State Offshore Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2013 ,"Release...

37

,"Louisiana (with State Offshore) Coalbed Methane Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana (with State Offshore) Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2013 ,"Release...

38

,"Federal Offshore--Texas Coalbed Methane Proved Reserves (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore--Texas Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2013...

39

,"California Federal Offshore Crude Oil + Lease Condensate Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","California Federal Offshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2013...

40

,"Alaska (with Total Offshore) Coalbed Methane Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Alaska (with Total Offshore) Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2013 ,"Release...

Note: This page contains sample records for the topic "offshore shale proved" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

,"Texas State Offshore Crude Oil + Lease Condensate Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas State Offshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2013...

42

,"Louisiana State Offshore Crude Oil + Lease Condensate Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana State Offshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2013...

43

,"California State Offshore Crude Oil + Lease Condensate Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","California State Offshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2013...

44

,"Federal Offshore California Dry Natural Gas Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore California Dry Natural Gas Proved Reserves",10,"Annual",2012,"6301977" ,"Release Date:","4...

45

Miscellaneous States Shale Gas Proved Reserves Revision Decreases...  

U.S. Energy Information Administration (EIA) Indexed Site

Decreases (Billion Cubic Feet) Miscellaneous States Shale Gas Proved Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

46

Miscellaneous States Shale Gas Proved Reserves Sales (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Sales (Billion Cubic Feet) Miscellaneous States Shale Gas Proved Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

47

Miscellaneous States Shale Gas Proved Reserves Adjustments (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Adjustments (Billion Cubic Feet) Miscellaneous States Shale Gas Proved Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

48

Miscellaneous States Shale Gas Proved Reserves Revision Increases...  

U.S. Energy Information Administration (EIA) Indexed Site

Increases (Billion Cubic Feet) Miscellaneous States Shale Gas Proved Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

49

Miscellaneous States Shale Gas Proved Reserves New Field Discoveries...  

U.S. Energy Information Administration (EIA) Indexed Site

New Field Discoveries (Billion Cubic Feet) Miscellaneous States Shale Gas Proved Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

50

Miscellaneous States Shale Gas Proved Reserves Extensions (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Extensions (Billion Cubic Feet) Miscellaneous States Shale Gas Proved Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

51

Louisiana State Offshore Natural Gas Plant Liquids, Proved Reserves...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Gas Plant Liquids, Proved Reserves (Million Barrels) Louisiana State Offshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

52

Texas--State Offshore Natural Gas Liquids Lease Condensate, Proved...  

Gasoline and Diesel Fuel Update (EIA)

Proved Reserves (Million Barrels) Texas--State Offshore Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

53

Texas State Offshore Natural Gas Plant Liquids, Proved Reserves...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Gas Plant Liquids, Proved Reserves (Million Barrels) Texas State Offshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

54

Louisiana (with State Offshore) Coalbed Methane Proved Reserves...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Coalbed Methane Proved Reserves (Billion Cubic Feet) Louisiana (with State Offshore) Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

55

,"TX, State Offshore Proved Nonproducing Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

2R9911RTXSF1","RNGR9908RTXSF1","RNGR9909RTXSF1","RNGR9910RTXSF1" "Date","Texas--State Offshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)","Texas--State...

56

,"LA, State Offshore Proved Nonproducing Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

11RLASF1","RNGR9908RLASF1","RNGR9909RLASF1","RNGR9910RLASF1" "Date","Louisiana--State Offshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)","Louisiana--Stat...

57

Gulf of Mexico Federal Offshore Natural Gas Liquids Proved Reserves...  

Gasoline and Diesel Fuel Update (EIA)

(Million Barrels) Gulf of Mexico Federal Offshore Natural Gas Liquids Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

58

California State Offshore Natural Gas, Wet After Lease Separation Proved  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) California State Offshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 234 1980's 166 256 254 243 235 1990's 194 60 63 65 63 59 49 56 44 77 2000's 91 85 91 83 87 90 90 83 57 57 2010's 66 82 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 CA, State Offshore Natural Gas Reserves Summary as of Dec. 31 Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

59

Texas State Offshore Natural Gas, Wet After Lease Separation Proved  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Texas State Offshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,112 1,073 739 634 564 610 1990's 461 477 350 337 230 313 293 290 350 419 2000's 400 468 436 456 321 265 305 261 220 164 2010's 131 118 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 TX, State Offshore Natural Gas Reserves Summary as of Dec. 31 Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

60

Louisiana State Offshore Natural Gas, Wet After Lease Separation Proved  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Louisiana State Offshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,269 1,351 1,478 1,209 1,273 1990's 1,019 1,082 845 946 988 862 783 743 571 661 2000's 721 772 512 527 394 433 442 392 934 728 2010's 386 519 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 LA, State Offshore Natural Gas Reserves Summary as of Dec. 31

Note: This page contains sample records for the topic "offshore shale proved" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Lower 48 Federal Offshore Coalbed Methane Proved Reserves (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Lower 48 Federal Offshore Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's...

62

California Federal Offshore Dry Natural Gas Proved Reserves (Billion Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Dry Natural Gas Proved Reserves (Billion Cubic Feet) Dry Natural Gas Proved Reserves (Billion Cubic Feet) California Federal Offshore Dry Natural Gas Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 250 246 322 1980's 414 1,325 1,452 1,552 1,496 1990's 1,454 1,162 1,118 1,099 1,170 1,265 1,244 544 480 536 2000's 576 540 515 511 459 824 811 805 704 739 2010's 724 710 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Dry Natural Gas Proved Reserves as of Dec. 31 Federal Offshore California Dry Natural Gas Proved Reserves Dry Natural Gas Proved Reserves as of 12/31 (Summary)

63

California Federal Offshore Natural Gas, Wet After Lease Separation Proved  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) California Federal Offshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 322 1980's 414 1,337 1,466 1,570 1,519 1990's 1,469 1,174 1,136 1,123 1,187 1,289 1,266 556 489 536 2000's 576 540 515 511 459 825 811 805 705 740 2010's 725 711 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Federal Offshore, Pacific (California) Natural Gas Reserves Summary

64

Table 15: Shale natural gas proved reserves, reserves changes, and production, w  

U.S. Energy Information Administration (EIA) Indexed Site

: Shale natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011" : Shale natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011" "billion cubic feet" ,,"Changes in Reserves During 2011" ,"Published",,,,,,,,"New Reservoir" ,"Proved",,"Revision","Revision",,,,"New Field","Discoveries","Estimated","Proved" ,"Reserves","Adjustments","Increases","Decreases","Sales","Acquisitions","Extensions","Discoveries","in Old Fields","Production","Reserves" "State and Subdivision",40543,"(+,-)","(+)","(-)","(-)","(+)","(+)","(+)","(+)","(-)",40908

65

Table 14. Shale natural gas proved reserves and production, 2008-2011  

U.S. Energy Information Administration (EIA) Indexed Site

: Shale natural gas proved reserves and production, 2008 - 2011 : Shale natural gas proved reserves and production, 2008 - 2011 billion cubic feet State and Subdivision 2008 2009 2010 2011 2008 2009 2010 2011 Alaska 0 0 0 0 0 0 0 0 Lower 48 States 34,428 60,644 97,449 131,616 2,116 3,110 5,336 7,994 Alabama 2 0 0 0 0 0 0 0 Arkansas 3,833 9,070 12,526 14,808 279 527 794 940 California 0 0 0 855 0 0 0 101 Colorado 0 4 4 10 0 1 1 3 Florida 0 0 0 0 0 0 0 0 Kansas 0 0 0 0 0 0 0 0 Kentucky 20 55 10 41 2 5 4 4 Louisiana 858 9,307 20,070 21,950 23 293 1,232 2,084 North 858 9,307 20,070 21,950 23 293 1,232 2,084 South 0 0 0 0 0 0 0 0 State Offshore 0 0 0 0 0 0 0 0 Michigan 2,894 2,499 2,306 1,947 122 132 120 106 Mississippi 0 0 0 0 0 0 0 0 Montana 125 137 186 192 13 7 13 13 New Mexico 0 36 123 144 0 2 6 9 East 0 7 35 23 0 1 3 5 West 0 29 88 121 0 1 3 4 New York 0 0 0 0 0 0 0 0 North Dakota 24 368 1,185 1,649 3 25 64 95 Ohio 0 0 0 0 0 0 0 0 Oklahoma 3,845 6,389 9,670 10,733 168 249 403 476 Pennsylvania 88 3,790 10,708

66

,"U.S. Federal Offshore Crude Oil + Lease Condensate Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Federal Offshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2013...

67

U.S. Federal Offshore Crude Oil + Lease Condensate Proved Reserves...  

Gasoline and Diesel Fuel Update (EIA)

+ Lease Condensate Proved Reserves (Million Barrels) U.S. Federal Offshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

68

U.S. Federal Offshore Natural Gas Plant Liquids, Proved Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) U.S. Federal Offshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

69

Alaska (with Total Offshore) Coalbed Methane Proved Reserves...  

Gasoline and Diesel Fuel Update (EIA)

company data. Release Date: 1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 Alaska Coalbed Methane Proved Reserves,...

70

Shale Natural Gas Proved Reserves as of Dec. 31  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Proved Reserves as of Dec. 31 Adjustments Revision Increases Revision Decreases Sales Acquisitions Extensions New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Period: Data Series: Proved Reserves as of Dec. 31 Adjustments Revision Increases Revision Decreases Sales Acquisitions Extensions New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 View History U.S. 23,304 34,428 60,644 97,449 131,616 2007-2011 Alaska 0 0 0 0 0 2007-2011 Lower 48 States 23,304 34,428 60,644 97,449 131,616 2007-2011 Alabama 1 2 0 0 2007-2010 Arkansas 1,460 3,833 9,070 12,526 14,808 2007-2011 California 855 2011-2011 San Joaquin Basin Onshore 855 2011-2011 Colorado 0 0 4 4 10 2007-2011 Kentucky

71

,"Federal Offshore U.S. Crude Oil plus Lease Condensate Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore U.S. Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2012,"630...

72

Table 4. Principal shale gas plays: natural gas production and proved reserves,  

U.S. Energy Information Administration (EIA) Indexed Site

Principal shale gas plays: natural gas production and proved reserves, 2010-2011" Principal shale gas plays: natural gas production and proved reserves, 2010-2011" "trillion cubic feet" ,,, 2010,, 2011,," Change 2011-2010" "Basin","Shale Play","State(s)","Production","Reserves","Production","Reserves","Production","Reserves" "Fort Worth","Barnett","TX",1.9,31,2,32.6,0.1,1.6 "Appalachian","Marcellus","PA, WV, KY, TN, NY, OH",0.5,13.2,1.4,31.9,0.9,18.7 "Texas-Louisiana Salt","Haynesville/Bossier","TX, LA",1.5,24.5,2.5,29.5,1,5 "Arkoma","Fayetteville","AR",0.8,12.5,0.9,14.8,0.1,2.3

73

Table 14: Shale natural gas proved reserves and production, 2008 - 2011  

U.S. Energy Information Administration (EIA) Indexed Site

: Shale natural gas proved reserves and production, 2008 - 2011" : Shale natural gas proved reserves and production, 2008 - 2011" "billion cubic feet" ,,"Reserves",,,,,"Production" "State and Subdivision",,2008,2009,2010,2011,,2008,2009,2010,2011 "Alaska",,0,0,0,0,,0,0,0,0 "Lower 48 States",,34428,60644,97449,131616,,2116,3110,5336,7994 "Alabama",,2,0,0,0,,0,0,0,0 "Arkansas",,3833,9070,12526,14808,,279,527,794,940 "California",,0,0,0,855,,0,0,0,101 "Colorado",,0,4,4,10,,0,1,1,3 "Florida",,0,0,0,0,,0,0,0,0 "Kansas",,0,0,0,0,,0,0,0,0 "Kentucky",,20,55,10,41,,2,5,4,4 "Louisiana",,858,9307,20070,21950,,23,293,1232,2084 " North",,858,9307,20070,21950,,23,293,1232,2084 " South",,0,0,0,0,,0,0,0,0

74

Table 4. Principal shale gas plays: natural gas production and proved reserves, 2010-1011  

U.S. Energy Information Administration (EIA) Indexed Site

Principal shale gas plays: natural gas production and proved reserves, 2010-2011 Principal shale gas plays: natural gas production and proved reserves, 2010-2011 trillion cubic feet Basin Shale Play State(s) Production Reserves Production Reserves Production Reserves Fort Worth Barnett TX 1.9 31.0 2.0 32.6 0.1 1.6 Appalachian Marcellus PA, WV, KY, TN, NY, OH 0.5 13.2 1.4 31.9 0.9 18.7 Texas-Louisiana Salt Haynesville/Bossier TX, LA 1.5 24.5 2.5 29.5 1.0 5.0 Arkoma Fayetteville AR 0.8 12.5 0.9 14.8 0.1 2.3 Anadarko Woodford TX, OK 0.4 9.7 0.5 10.8 0.1 1.1 Western Gulf Eagle Ford TX 0.1 2.5 0.4 8.4 0.3 5.9 Sub-total 5.2 93.4 7.7 128.0 2.5 34.6 Other shale gas plays 0.2 4.0 0.3 3.6 0.1 -0.4 All U.S. Shale Plays 5.4 97.4 8.0 131.6 2.6 34.2 Change 2011-2010 2010 2011 Notes: Some columns may not add up to its subtotal because of independent rounding. Natural gas is wet after lease separation. The above table is

75

Table 15. Shale natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011  

U.S. Energy Information Administration (EIA) Indexed Site

: Shale natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011 : Shale natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011 billion cubic feet Published New Reservoir Proved Revision Revision New Field Discoveries Estimated Proved Reserves Adjustments Increases Decreases Sales Acquisitions Extensions Discoveries in Old FieldsProduction Reserves State and Subdivision 12/31/10 (+,-) (+) (-) (-) (+) (+) (+) (+) (-) 12/31/11 Alaska 0 0 0 0 0 0 0 0 0 0 0 Lower 48 States 97,449 1,584 25,993 23,455 22,694 27,038 32,764 232 699 7,994 131,616 Alabama 0 0 0 0 0 0 0 0 0 0 0 Arkansas 12,526 655 502 141 6,087 6,220 2,073 0 0 940 14,808 California 0 1 912 0 0 0 43 0 0 101 855 Colorado 4 0 4 0 0 0 5 0 0 3 10 Florida 0 0 0 0 0 0 0 0 0 0 0 Kansas 0 0 0 0 0 0 0 0 0 0 0 Kentucky 10 0 44 11 45 45 2 0 0 4 41 Louisiana 20,070 -172 2,002 3,882 3,782 4,291 5,367 0 140 2,084 21,950 North Onshore 20,070 -172 2,002 3,882 3,782 4,291 5,367

76

Gulf of Mexico Federal Offshore - Texas Dry Natural Gas Proved Reserves  

U.S. Energy Information Administration (EIA) Indexed Site

Dry Natural Gas Proved Reserves (Billion Cubic Feet) Dry Natural Gas Proved Reserves (Billion Cubic Feet) Gulf of Mexico Federal Offshore - Texas Dry Natural Gas Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 6,878 6,493 7,444 7,219 7,241 6,968 1990's 7,300 6,675 6,996 6,661 6,383 6,525 5,996 5,988 5,648 5,853 2000's 6,384 6,775 6,189 5,331 4,127 3,342 2,725 2,544 2,392 2,451 2010's 2,145 1,554 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Dry Natural Gas Proved Reserves as of Dec. 31 Federal Offshore Texas Dry Natural Gas Proved Reserves Dry Natural Gas Proved Reserves as of 12/31 (Summary)

77

U.S. Federal Offshore Natural Gas, Wet After Lease Separation Proved  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) U.S. Federal Offshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 31,849 29,914 28,186 27,586 28,813 29,518 29,419 29,011 27,426 26,598 2000's 27,467 27,640 25,862 23,033 19,747 18,252 15,750 14,813 13,892 12,856 2010's 12,120 10,820 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Federal Offshore U.S. Natural Gas Reserves Summary as of Dec. 31

78

U.S. Shale Gas Proved Reserves, Reserves Changes, and Production  

U.S. Energy Information Administration (EIA) Indexed Site

Area: U.S. Alaska Lower 48 States Alabama Arkansas California CA, San Joaquin Basin Onshore Colorado Kentucky Louisiana North Louisiana LA, South Onshore Michigan Montana New Mexico NM, East NM, West North Dakota Ohio Oklahoma Pennsylvania Texas TX, RRC District 1 TX, RRC District 2 Onshore TX, RRC District 3 Onshore TX, RRC District 4 Onshore TX, RRC District 5 TX, RRC District 6 TX, RRC District 7B TX, RRC District 7C TX, RRC District 8 TX, RRC District 9 TX, RRC District 10 TX, State Offshore West Virginia Wyoming Miscellaneous Period: Area: U.S. Alaska Lower 48 States Alabama Arkansas California CA, San Joaquin Basin Onshore Colorado Kentucky Louisiana North Louisiana LA, South Onshore Michigan Montana New Mexico NM, East NM, West North Dakota Ohio Oklahoma Pennsylvania Texas TX, RRC District 1 TX, RRC District 2 Onshore TX, RRC District 3 Onshore TX, RRC District 4 Onshore TX, RRC District 5 TX, RRC District 6 TX, RRC District 7B TX, RRC District 7C TX, RRC District 8 TX, RRC District 9 TX, RRC District 10 TX, State Offshore West Virginia Wyoming Miscellaneous Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area

79

U.S. Natural Gas Liquids Proved Reserves  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Liquids Proved Reserves (Million Barrels) Area: U.S. Federal Offshore U.S. Federal Offshore, Pacific (California) Federal Offshore, Gulf of Mexico, LA & AL Federal Offshore, Gulf...

80

Gulf of Mexico Proved Reserves By Water Depth, 2009  

U.S. Energy Information Administration (EIA) Indexed Site

Gulf of Mexico Proved Reserves and Production by Water Depth, 2009 Gulf of Mexico Proved Reserves and Production by Water Depth, 2009 1 Gulf of Mexico Proved Reserves and Production by Water Depth The Gulf of Mexico Federal Offshore region (GOM Fed) has long been one of the Nation's principal sources of proved reserves. At the end of 2009, the GOM Fed accounted for close to one-fifth of oil proved reserves (second only to Texas) and just over four percent of natural gas proved reserves (the country's seventh largest reporting region). 1 Natural gas proved reserves from the GOM Fed have gradually diminished, both volumetrically and as a percentage of overall U.S. proved reserves. The latter is especially true in recent years as onshore additions (particularly those associated with shale gas activity) have increased considerably. Proved oil reserves from

Note: This page contains sample records for the topic "offshore shale proved" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Tribology offshore  

SciTech Connect (OSTI)

The papers presented in this book deal with the performance and reliability of plant and materials in offshore engineering operations. The rigours of the North Sea environment have proved to be particularly strenuous for offshore equipment. The lessons learned in the last few years of exploration are relevant to offshore sites throughout the world. The topics covered include lifting gear, compressors, pumps, valves and seals, lubricants and lubrication, underwater equipment, friction and wear associated with the anchorage of rigs and platforms, sliding contract and condition monitoring offshore.

Not Available

1985-01-01T23:59:59.000Z

82

OIL SHALE  

E-Print Network [OSTI]

Seyitömer, Himmeto?lu and Hat?lda? oil shale deposits. The results demonstrate that these oil shales are

Fields (in-situ Combustion Approach; M. V. Kök; G. Guner; S. Bagci?

83

Proved reserves  

Science Journals Connector (OSTI)

Proved reserves are the working stocks of the energy industries on which they have to rely for the supply of energy in the near term. The major proved reserves on a world scale are restricted to those from the...

D. C. Ion

1980-01-01T23:59:59.000Z

84

Table 3. Changes to proved reserves of wet natural gas by source, 2011  

U.S. Energy Information Administration (EIA) Indexed Site

Changes to proved reserves of wet natural gas by source, 2011" Changes to proved reserves of wet natural gas by source, 2011" "trillion cubic feet" ,"Proved",,"Revisions &",,"Proved" ,"Reserves","Discoveries","Other Changes","Production","Reserves" "Source of Gas","Year-End 2010",2011,2011,2011,"Year-End 2011" "Coalbed Methane",17.5,0.7,0.4,-1.8,16.8 "Shale",97.4,33.7,8.5,-8,131.6 "Other (Conventional & Tight)" " Lower 48 Onshore",181.7,14.7,-3.5,-12.8,180.1 " Lower 48 Offshore",12.1,0.8,-0.4,-1.7,10.8 " Alaska",8.9,0,0.9,-0.3,9.5 "TOTAL",317.6,49.9,5.9,-24.6,348.8 "Source: U.S. Energy Information Administration, Form EIA-23, "Annual Survey of Domestic Oil and Gas Reserves."

85

Federal Offshore California Lease Condensate Proved Reserves...  

Gasoline and Diesel Fuel Update (EIA)

2 2 2 2 0 1979-2013 Adjustments -1 0 0 0 0 2009-2013 Revision Increases 5 0 0 0 0 2009-2013 Revision Decreases 2 0 0 0 2...

86

Federal Offshore, Pacific (California) Proved Nonproducing Reserves  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

12 12 13 13 25 17 1996-2013 Lease Condensate (million bbls) 0 2 2 2 2 0 1998-2013 Total Gas (billion cu ft) 32 36 35 42 46 16 1996-2013 Nonassociated Gas (billion cu ft) 0 2 0 0 0...

87

California State Offshore Proved Nonproducing Reserves  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

27 23 46 47 62 53 1996-2012 Lease Condensate (million bbls) 0 0 0 0 2 1 1998-2012 Total Gas (billion cu ft) 12 8 25 26 33 21 1996-2012 Nonassociated Gas (billion cu ft) 2 0 3 0 2 1...

88

CA, State Offshore Proved Nonproducing Reserves  

U.S. Energy Information Administration (EIA) Indexed Site

23 46 47 62 53 52 1996-2013 Lease Condensate (million bbls) 0 0 0 2 1 0 1998-2013 Total Gas (billion cu ft) 8 25 26 33 21 13 1996-2013 Nonassociated Gas (billion cu ft) 0 3 0 2 1 0...

89

Hydrotreating of oil from eastern oil shale  

SciTech Connect (OSTI)

Oil shale provides one of the major fossil energy reserves for the United States. The quantity of reserves in oil shale is less than the quantity in coal, but is much greater (by at least an order of magnitude) than the quantity of crude oil reserves. With so much oil potentially available from oil shale, efforts have been made to develop techniques for its utilization. In these efforts, hydrotreating has proved to be an acceptable technique for upgrading raw shale oil to make usuable products. The present work demonstrated the use of the hydrotreating technique for upgrading an oil from Indiana New Albany oil shale.

Scinta, J.; Garner, J.W.

1984-01-01T23:59:59.000Z

90

Federal Offshore--California Natural Gas Liquids Lease Condensate...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Date: 12312015 Referring Pages: Lease Condensate Estimated Production Federal Offshore California Lease Condensate Proved Reserves, Reserve Changes, and Production Lease...

91

,"California Federal Offshore Nonassociated Natural Gas, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","California Federal Offshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic...

92

,"Federal Offshore, Pacific (California) Nonassociated Natural...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Pacific (California) Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation",10,"Annual",...

93

Texas State Offshore Nonassociated Natural Gas, Wet After Lease...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas State Offshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic...

94

Texas State Offshore Associated-Dissolved Natural Gas, Wet After...  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas State Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves...

95

Federal Offshore--California Natural Gas Liquids Lease Condensate...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Liquids Lease Condensate, Proved Reserves (Million Barrels) Federal Offshore--California Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade Year-0...

96

Lower 48 Federal Offshore Natural Gas Liquids Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Lease Condensate, Proved Reserves (Million Barrels) Lower 48 Federal Offshore Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade Year-0 Year-1...

97

Federal Offshore--Louisiana and Alabama Natural Gas Liquids Lease...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Lease Condensate, Proved Reserves (Million Barrels) Federal Offshore--Louisiana and Alabama Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade...

98

California--State Offshore Natural Gas Liquids Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Lease Condensate, Proved Reserves (Million Barrels) California--State Offshore Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade Year-0 Year-1...

99

Coalbed Methane Proved Reserves  

Gasoline and Diesel Fuel Update (EIA)

Coalbed Methane Proved Reserves (Billion Cubic Feet) Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes 2003 2004 2005 2006 2007 2008 View History U.S. 18,743 18,390 19,892 19,620 21,874 20,798 1989-2008 Alabama 1,665 1,900 1,773 2,068 2,126 1,727 1989-2008 Alaska 0 0 2007-2008 Arkansas 31 31 2007-2008 California 0 0 2007-2008 Colorado 6,473 5,787 6,772 6,344 7,869 8,238 1989-2008 Florida 0 0 2007-2008 Kansas 340 301 2007-2008 Kentucky 0 0 2007-2008 Louisiana 7 9 2007-2008 North 7 9 2007-2008 South Onshore 0 0 2007-2008 South Offshore 0 0 2007-2008 Michigan 0 0 2007-2008 Mississippi 0 0 2007-2008 Montana 66 75 2007-2008 New Mexico 4,396 5,166 5,249 4,894 4,169 3,991 1989-2008

100

Offshore Wind Power USA  

Broader source: Energy.gov [DOE]

The Offshore Wind Power USA conference provides the latest offshore wind market updates and forecasts.

Note: This page contains sample records for the topic "offshore shale proved" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

NATURAL GAS FROM SHALE: Questions and Answers Why is Shale Gas Important?  

Broader source: Energy.gov (indexed) [DOE]

Why is Shale Gas Important? Why is Shale Gas Important? With the advance of extraction technology, shale gas production has led to a new abundance of natural gas supply in the United States over the past decade, and is expected to continue to do so for the foreseeable future. According to the Energy Information Administration (EIA), the unproved technically recoverable U.S. shale gas resource is estimated at 482 trillion cubic feet. 1 Estimated proved and unproved shale gas resources amount to a combined 542 trillion cubic feet (or 25 percent) out of a total U.S. resource of 2,203 trillion cubic feet. 2 U.S. shale gas production has increased 12-fold over the last

102

Shale Gas Formations and Their Potential for Carbon Storage: Opportunities and Outlook  

Science Journals Connector (OSTI)

Shale gas resources are proving to be globally abundant...2...(carbon dioxide) to mitigate the climate impacts of global carbon emissions from power and industrial sectors. This paper reviews global shale gas res...

Roozbeh Khosrokhavar; Steve Griffiths; Karl-Heinz Wolf

2014-09-01T23:59:59.000Z

103

,"Alabama Proved Nonproducing Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

L2R9911SAL1","RNGR9908SAL1","RNGR9909SAL1","RNGR9910SAL1" "Date","Alabama (with State Offshore) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)","Alabama (with...

104

,"Alaska Proved Nonproducing Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

RL2R9911SAK1","RNGR9908SAK1","RNGR9909SAK1","RNGR9910SAK1" "Date","Alaska (with Total Offshore) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)","Alaska (with...

105

,"Federal Offshore, Gulf of Mexico, Louisiana & Alabama Coalbed...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Louisiana & Alabama Coalbed Methane Proved Reserves, Reserves Changes, and...

106

,"Federal Offshore, Gulf of Mexico, Louisiana & Alabama Dry Natural...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Louisiana & Alabama Dry Natural Gas Proved Reserves",10,"Annual",2012,"6301981"...

107

,"Federal Offshore, Gulf of Mexico, Louisiana & Alabama Associated...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Louisiana & Alabama Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease...

108

,"Federal Offshore, Gulf of Mexico, Louisiana & Alabama Nonassociated...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Louisiana & Alabama Nonassociated Natural Gas Proved Reserves, Wet After Lease...

109

,"Federal Offshore, Gulf of Mexico, Louisiana & Alabama Crude...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Louisiana & Alabama Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2012...

110

,"U.S. Federal Offshore Nonassociated Natural Gas, Wet After...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Federal Offshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic...

111

,"Federal Offshore--California Natural Gas Liquids Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore--California Natural Gas Liquids Lease Condensate, Proved Reserves (Million...

112

,"California State Offshore Associated-Dissolved Natural Gas...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","California State Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves...

113

,"Texas--State Offshore Natural Gas Liquids Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Texas--State Offshore Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2...

114

,"Louisiana--State Offshore Natural Gas Liquids Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana--State Offshore Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2...

115

,"California Federal Offshore Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","California Federal Offshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic...

116

,"Federal Offshore--Louisiana and Alabama Natural Gas Liquids...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore--Louisiana and Alabama Natural Gas Liquids Lease Condensate, Proved Reserves (Million...

117

,"California Federal Offshore Associated-Dissolved Natural Gas...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","California Federal Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves...

118

,"California State Offshore Nonassociated Natural Gas, Wet After...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","California State Offshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic...

119

,"Mississippi (with State Offshore) Natural Gas Liquids Lease...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi (with State Offshore) Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",...

120

,"Louisiana State Offshore Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana State Offshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic...

Note: This page contains sample records for the topic "offshore shale proved" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Texas--State Offshore Coalbed Methane Production (Billion Cubic...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Date: 12312015 Referring Pages: Coalbed Methane Estimated Production Texas State Offshore Coalbed Methane Proved Reserves, Reserves Changes, and Production Coalbed Methane...

122

,"Louisiana State Offshore Associated-Dissolved Natural Gas,...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana State Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves...

123

California--State Offshore Natural Gas Liquids Lease Condensate...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Date: 12312015 Referring Pages: Lease Condensate Estimated Production CA, State Offshore Lease Condensate Proved Reserves, Reserve Changes, and Production Lease Condensate...

124

,"Lower 48 Federal Offshore Natural Gas Liquids Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Lower 48 Federal Offshore Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2...

125

,"Alaska (with Total Offshore) Natural Gas Liquids Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Alaska (with Total Offshore) Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",...

126

,"Texas State Offshore Associated-Dissolved Natural Gas, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas State Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves...

127

,"Texas (with State Offshore) Natural Gas Liquids Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Texas (with State Offshore) Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",...

128

,"Louisiana (with State Offshore) Natural Gas Liquids Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana (with State Offshore) Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",...

129

,"Federal Offshore--Texas Natural Gas Liquids Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore--Texas Natural Gas Liquids Lease Condensate, Proved Reserves (Million...

130

,"California--State Offshore Natural Gas Liquids Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","California--State Offshore Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2...

131

,"California (with State Offshore) Natural Gas Liquids Lease...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","California (with State Offshore) Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",...

132

,"Texas State Offshore Nonassociated Natural Gas, Wet After Lease...  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas State Offshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic...

133

,"Alabama (with State Offshore) Natural Gas Liquids Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Alabama (with State Offshore) Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",...

134

,"California State Offshore Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","California State Offshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic...

135

Louisiana--State Offshore Coalbed Methane Production (Billion...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Release Date: 12312015 Referring Pages: Coalbed Methane Estimated Production LA, State Offshore Coalbed Methane Proved Reserves, Reserves Changes, and Production Coalbed Methane...

136

,"Texas State Offshore Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas State Offshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic...

137

,"Louisiana State Offshore Nonassociated Natural Gas, Wet After...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana State Offshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic...

138

,"Federal Offshore California Crude Oil plus Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore California Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2012,"6302009"...

139

,"Federal Offshore California Associated-Dissolved Natural Gas...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore California Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease...

140

Lower 48 Federal Offshore Coalbed Methane Production (Billion...  

Gasoline and Diesel Fuel Update (EIA)

company data. Release Date: 1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Estimated Production Federal Offshore U.S. Coalbed Methane Proved...

Note: This page contains sample records for the topic "offshore shale proved" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

EIS-0068: Development Policy Options for the Naval Oil Shale Reserves in Colorado  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy Office of Naval Petroleum and Oil Shale Reserves prepared this programmatic statement to examine the environmental and socioeconomic impacts of development projects on the Naval Oil Shale Reserve 1, and examine select alternatives, such as encouraging production from other liquid fuel resources (coal liquefaction, biomass, offshore oil and enhanced oil recovery) or conserving petroleum in lieu of shale oil production.

142

Colorado Shale Gas Proved Reserves, Reserves Changes, and Production  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 4 4 10 53 2007-2012 Adjustments 1 -1 0 31 2009-2012 Revision Increases 0 1 4 13 2009-2012 Revision Decreases 0 2 0 1 2009-2012 Sales 0 0 0 1 2009-2012 Acquisitions 0 0 0 0...

143

Apparatus for distilling shale oil from oil shale  

SciTech Connect (OSTI)

An apparatus for distilling shale oil from oil shale comprises: a vertical type distilling furnace which is divided by two vertical partitions each provided with a plurality of vent apertures into an oil shale treating chamber and two gas chambers, said oil shale treating chamber being located between said two gas chambers in said vertical type distilling furnace, said vertical type distilling furnace being further divided by at least one horizontal partition into an oil shale distilling chamber in the lower part thereof and at least one oil shale preheating chamber in the upper part thereof, said oil shale distilling chamber and said oil shale preheating chamber communication with each other through a gap provided at an end of said horizontal partition, an oil shale supplied continuously from an oil shale supply port provided in said oil shale treating chamber at the top thereof into said oil shale treating chamber continuously moving from the oil shale preheating chamber to the oil shale distilling chamber, a high-temperature gas blown into an oil shale distilling chamber passing horizontally through said oil shale in said oil shale treating chamber, thereby said oil shale is preheated in said oil shale preheating chamber, and a gaseous shale oil is distilled from said preheated oil shale in said oil shale distilling chamber; and a separator for separating by liquefaction a gaseous shale oil from a gas containing the gaseous shale oil discharged from the oil shale preheating chamber.

Shishido, T.; Sato, Y.

1984-02-14T23:59:59.000Z

144

Offshore structures  

Science Journals Connector (OSTI)

... SIR,-We have had some experience with modelling offshore structures in the laboratory, and wish to call attention to the need for better ... have already occurred have been serious enough, but the failure of one of the giant rigs or platforms now being planned would be a catastrophe of unprecedented proportions.

CHESLEY J. POSEY; RICHARD SILVESTER

1975-11-20T23:59:59.000Z

145

Federal Offshore--Texas Natural Gas Liquids Lease Condensate...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Proved Reserves (Million Barrels) Federal Offshore--Texas Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

146

Louisiana--State Offshore Natural Gas Liquids Lease Condensate...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Proved Reserves (Million Barrels) Louisiana--State Offshore Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

147

A National Offshore Wind Strategy: Creating an Offshore Wind...  

Broader source: Energy.gov (indexed) [DOE]

A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in the United States A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in...

148

What is shale gas? | Department of Energy  

Office of Environmental Management (EM)

What is shale gas? What is shale gas? What is shale gas? More Documents & Publications Natural Gas from Shale: Questions and Answers Shale Gas Glossary How is shale gas produced?...

149

CORROSION OF METALS IN OIL SHALE ENVIRONMENTS  

E-Print Network [OSTI]

temperature, type of shale and oil content of shale iscontent of the shale, and shale oil content of the rock cantemperatures. Lean and Rich Shale Oil shales vary in their

Bellman Jr., R.

2012-01-01T23:59:59.000Z

150

Federal Offshore Texas Crude Oil plus Lease Condensate Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

03 304 252 354 2009-2012 Adjustments -1 -1 0 -10 2009-2012 Revision Increases 61 51 80 181 2009-2012 Revision Decreases 17 27 86 41 2009-2012 Sales 0 2 0 6 2009-2012 Acquisitions 2...

151

Federal Offshore California Crude Oil plus Lease Condensate Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

350 363 352 326 2009-2012 Adjustments -1 -2 1 -50 2009-2012 Revision Increases 33 38 25 6 2009-2012 Revision Decreases 17 4 15 6 2009-2012 Sales 0 0 0 0 2009-2012 Acquisitions 0 0...

152

LA, State Offshore Crude Oil plus Lease Condensate Proved Reserves  

U.S. Energy Information Administration (EIA) Indexed Site

56 57 61 76 2009-2012 Adjustments -1 1 -3 16 2009-2012 Revision Increases 9 13 14 19 2009-2012 Revision Decreases 6 9 5 13 2009-2012 Sales 0 11 1 1 2009-2012 Acquisitions 3 14 5 4...

153

CA, State Offshore Crude Oil plus Lease Condensate Proved Reserves  

U.S. Energy Information Administration (EIA) Indexed Site

164 167 200 198 2009-2012 Adjustments 2 -2 0 0 2009-2012 Revision Increases 32 10 24 15 2009-2012 Revision Decreases 0 1 1 21 2009-2012 Sales 0 0 5 0 2009-2012 Acquisitions 0 0 15...

154

Texas State Offshore Crude Oil plus Lease Condensate Proved Reserves  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 3 3 2009-2012 Adjustments -2 0 -2 1 2009-2012 Revision Increases 1 0 3 0 2009-2012 Revision Decreases 0 0 2 1 2009-2012 Sales 0 0 0 0 2009-2012 Acquisitions 0 1 0 0 2009-2012...

155

Federal Offshore U.S. Dry Natural Gas Proved Reserves  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

13,546 12,552 11,765 10,420 9,392 8,193 1990-2013 Adjustments 14 22 -123 -28 -610 185 1990-2013 Revision Increases 1,699 2,312 2,978 2,467 2,835 1,315 1990-2013 Revision Decreases...

156

Federal Offshore Texas Lease Condensate Proved Reserves, Reserve...  

Gasoline and Diesel Fuel Update (EIA)

76 92 83 64 51 51 1981-2013 Adjustments -3 -1 0 -2 1 2009-2013 Revision Increases 27 15 26 30 14 2009-2013 Revision Decreases 3 9 29 19 4 2009-2013 Sales 0 0 0 4 1 2009-2013...

157

Federal Offshore California Dry Natural Gas Proved Reserves  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

704 739 724 710 651 261 1977-2013 Adjustments -1 0 0 -1 -50 8 1977-2013 Revision Increases 23 79 23 39 16 6 1977-2013 Revision Decreases 87 7 10 21 14 383 1977-2013 Sales 0 0 0 0 0...

158

Federal Offshore, Gulf of Mexico, Louisiana & Alabama Proved...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

2,229 2,013 1,595 2,597 2,130 2,406 1996-2013 Lease Condensate (million bbls) 89 66 60 57 39 47 1998-2013 Total Gas (billion cu ft) 5,560 4,446 3,882 4,290 3,466 3,360 1996-2013...

159

Federal Offshore U.S. Nonassociated Natural Gas Proved Reserves...  

Gasoline and Diesel Fuel Update (EIA)

8,786 7,633 6,916 5,374 3,989 3,037 1990-2013 Adjustments -1 2 -41 73 -361 221 1990-2013 Revision Increases 1,131 1,511 2,054 984 1,086 546 1990-2013 Revision Decreases 1,631 1,400...

160

Federal Offshore, Gulf of Mexico, Texas Proved Nonproducing Reserves  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

56 125 102 52 34 33 1996-2013 Lease Condensate (million bbls) 23 35 29 20 8 11 1998-2013 Total Gas (billion cu ft) 1,152 1,557 874 561 296 320 1996-2013 Nonassociated Gas (billion...

Note: This page contains sample records for the topic "offshore shale proved" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Federal Offshore Texas Dry Natural Gas Proved Reserves  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

2,392 2,451 2,145 1,554 1,450 1,450 1981-2013 Adjustments 5 20 -17 1 -131 101 1981-2013 Revision Increases 446 596 338 378 590 292 1981-2013 Revision Decreases 618 447 461 712 419...

162

Federal Offshore Texas Crude Oil plus Lease Condensate Proved...  

Gasoline and Diesel Fuel Update (EIA)

03 304 252 354 359 2009-2013 Adjustments -1 -1 0 -10 6 2009-2013 Revision Increases 61 51 80 181 64 2009-2013 Revision Decreases 17 27 86 41 19 2009-2013 Sales 0 2 0 6 11 2009-2013...

163

Federal Offshore Texas Nonassociated Natural Gas Proved Reserves...  

Gasoline and Diesel Fuel Update (EIA)

1,937 1,822 1,456 1,015 643 535 1981-2013 Adjustments 10 6 -16 1 -65 110 1981-2013 Revision Increases 245 506 240 244 220 103 1981-2013 Revision Decreases 510 379 428 489 345 80...

164

Federal Offshore California Crude Oil plus Lease Condensate Proved...  

Gasoline and Diesel Fuel Update (EIA)

50 363 352 326 326 2009-2013 Adjustments -1 -2 1 -50 13 2009-2013 Revision Increases 33 38 25 6 35 2009-2013 Revision Decreases 17 4 15 6 28 2009-2013 Sales 0 0 0 0 11 2009-2013...

165

Federal Offshore U.S. Lease Condensate Proved Reserves, Reserve...  

Gasoline and Diesel Fuel Update (EIA)

227 228 214 195 151 139 1981-2013 Adjustments -8 2 0 -5 0 2009-2013 Revision Increases 72 59 56 60 37 2009-2013 Revision Decreases 36 37 55 62 20 2009-2013 Sales 5 13 8 11 19...

166

Federal Offshore Texas Associated-Dissolved Natural Gas Proved...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

465 629 689 539 854 973 1981-2013 Adjustments -1 4 -1 0 -20 7 1981-2013 Revision Increases 203 90 98 134 389 200 1981-2013 Revision Decreases 110 68 33 223 88 83 1981-2013 Sales 0...

167

CA, State Offshore Nonassociated Natural Gas Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

3 4 3 3 1 0 1979-2013 Adjustments 0 0 0 0 -1 0 1979-2013 Revision Increases 2 1 2 2 1 0 1979-2013 Revision Decreases 1 0 3 0 1 1 1979-2013 Sales 0 0 0 1 0 0 2000-2013 Acquisitions...

168

CA, State Offshore Associated-Dissolved Natural Gas Proved Reserves...  

Gasoline and Diesel Fuel Update (EIA)

54 53 63 79 65 75 1979-2013 Adjustments 0 2 0 1 0 3 1979-2013 Revision Increases 0 2 11 9 0 12 1979-2013 Revision Decreases 28 3 0 0 14 2 1979-2013 Sales 0 0 0 1 0 0 2000-2013...

169

CA, State Offshore Dry Natural Gas Proved Reserves  

U.S. Energy Information Administration (EIA) Indexed Site

57 57 66 82 66 75 1977-2013 Adjustments 0 2 0 1 -1 3 1977-2013 Revision Increases 2 3 13 11 1 12 1977-2013 Revision Decreases 29 3 3 0 15 3 1977-2013 Sales 0 0 0 2 0 0 2000-2013...

170

CA, State Offshore Lease Condensate Proved Reserves, Reserve...  

U.S. Energy Information Administration (EIA) Indexed Site

0 3 1 1 1979-2013 Adjustments 0 0 0 0 -1 2009-2013 Revision Increases 0 0 3 0 1 2009-2013 Revision Decreases 0 0 0 2...

171

Shale Gas Glossary | Department of Energy  

Office of Environmental Management (EM)

Glossary Shale Gas Glossary Shale Gas Glossary More Documents & Publications Natural Gas from Shale: Questions and Answers Modern Shale Gas Development in the United States: A...

172

,"California Proved Nonproducing Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Proved Nonproducing Reserves",5,"Annual",2012,"6301996" ,"Release Date:","410...

173

Scour around an offshore platform  

SciTech Connect (OSTI)

On the whole offshore scour has proved less of a problem than one might fear without being overly pessimistic, based on experience from other hydrotechnical works. The offshore setting, the environment as well as the structures, was simply beyond the reach to which conventional concepts and models could be safely extrapolated. The essentially empirical art of sediment engineering had to acquire a new empirical base. Today we know a lot more than we did a decade ago, however, our knowledge is still fragmentary, and we have no unifying theory yet.

Carstens, T.

1983-01-01T23:59:59.000Z

174

U.S. Proved Nonproducing Reserves  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Area: U.S. Federal Offshore U.S. Federal Offshore, Pacific (California) Federal Offshore, Gulf of Mexico, LA & AL Federal Offshore, Gulf of Mexico, TX Alaska Lower 48 States...

175

Sulfur isotopes related to sedimentation conditions for metalliferous black shales of Pennsylvanian Age  

SciTech Connect (OSTI)

Sulfur isotope composition were determined for pyrite and sphalerite grains isolated from 8 metalliferous Missourian, Desmoinesian, and Atokan black shales from Missouri, Illinois, Kansas, and Indiana. The younger Missourian shales from the Forest City and Illinois basins contain consistently light sulfur as expected for euxinic conditions, but sulfides from the older shales show heavier and more erratic sulfur values. These isotope patterns suggest that younger shales accumulated slowly offshore, although older shales may have been deposited more quickly in shallower water. Isotope values, which also correlate with heavy metal patterns (e.g., higher molybdenum values for the eastern most older shales), may therefore reflect gradually deepening conditions for the epicontinental Pennsylvanian seas of the US Mid-Continent.

Coveney, R.M. Jr.; Shaffer, N.R.

1985-02-01T23:59:59.000Z

176

Geological Characterization of California's Offshore  

E-Print Network [OSTI]

Geological Characterization of California's Offshore Carbon Dioxide Storage Capacity ENVIRONMENTAL offshore onto the continental shelf, and these offshore sections constitute additional storage capacity potential of Californias offshore subsurface environment. California offshore sedimentary basins (in green

177

Oil shale retorted underground  

Science Journals Connector (OSTI)

Oil shale retorted underground ... Low-temperature underground retorting of oil shale produces a crude oil with many attractive properties, Dr. George R. Hill of the University of Utah told a meeting of the American Institute of Mining, Metallurgical, and Petroleum Engineers last week in Los Angeles. ... Typical above-ground retorting of oil shale uses temperatures of 900° to 1100° F. because of the economic need ... ...

1967-02-27T23:59:59.000Z

178

Shale Gas Hydraulic Fracturing in the Dutch Posidonia Shale:.  

E-Print Network [OSTI]

??Recently the oil and gas industry is looking at the Posidonia shale in the Dutch subsurface for production of the unconventional shale gas. This is… (more)

Janzen, M.R.

2012-01-01T23:59:59.000Z

179

Oil shale technology  

SciTech Connect (OSTI)

Oil shale is undoubtedly an excellent energy source that has great abundance and world-wide distribution. Oil shale industries have seen ups and downs over more than 100 years, depending on the availability and price of conventional petroleum crudes. Market forces as well as environmental factors will greatly affect the interest in development of oil shale. Besides competing with conventional crude oil and natural gas, shale oil will have to compete favorably with coal-derived fuels for similar markets. Crude shale oil is obtained from oil shale by a relatively simple process called retorting. However, the process economics are greatly affected by the thermal efficiencies, the richness of shale, the mass transfer effectiveness, the conversion efficiency, the design of retort, the environmental post-treatment, etc. A great many process ideas and patents related to the oil shale pyrolysis have been developed; however, relatively few field and engineering data have been published. Due to the vast heterogeneity of oil shale and to the complexities of physicochemical process mechanisms, scientific or technological generalization of oil shale retorting is difficult to achieve. Dwindling supplied of worldwide petroleum reserves, as well as the unprecedented appetite of mankind for clean liquid fuel, has made the public concern for future energy market grow rapidly. the clean coal technology and the alternate fuel technology are currently of great significance not only to policy makers, but also to process and chemical researchers. In this book, efforts have been made to make a comprehensive text for the science and technology of oil shale utilization. Therefore, subjects dealing with the terminological definitions, geology and petrology, chemistry, characterization, process engineering, mathematical modeling, chemical reaction engineering, experimental methods, and statistical experimental design, etc. are covered in detail.

Lee, S. (Akron Univ., OH (United States). Dept. of Chemical Engineering)

1991-01-01T23:59:59.000Z

180

Sandia National Laboratories: Offshore Wind RD&D: Large Offshore...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Large Offshore Rotor Development Offshore Wind RD&D: Large Offshore Rotor Development Overview Sandia National Laboratories Wind Energy Technologies Department, creates and...

Note: This page contains sample records for the topic "offshore shale proved" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Shale Gas 101  

Broader source: Energy.gov [DOE]

This webpage has been developed to answer the many questions that people have about shale gas and hydraulic fracturing (or fracking). The information provided below explains the basics, including what shale gas is, where it’s found, why it’s important, how it’s produced, and challenges associated with production.

182

Why is shale gas important? | Department of Energy  

Office of Environmental Management (EM)

Why is shale gas important? Why is shale gas important? More Documents & Publications Natural Gas from Shale: Questions and Answers Shale Gas Glossary How is shale gas...

183

How is shale gas produced? | Department of Energy  

Office of Environmental Management (EM)

How is shale gas produced? How is shale gas produced? How is shale gas produced? More Documents & Publications Natural Gas from Shale: Questions and Answers Shale Gas Glossary...

184

,"U.S. Federal Offshore Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Federal Offshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic...

185

,"U.S. Federal Offshore Associated-Dissolved Natural Gas, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Federal Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves...

186

Reactive gases evolved during pyrolysis of Devonian oil shale  

SciTech Connect (OSTI)

Computer modeling of oil shale pyrolysis is an important part of the Lawrence Livermore National Laboratory (LLNL) Oil Shale Program. Models containing detailed chemistry have been derived from an investigation of Colorado oil shale. We are currently attempting to use models to treat more completely reactions of nitrogen and sulfur compounds in the retort to better understand emissions. Batch retorting work on Devonian oil shale is proving particularly useful for this study of nitrogen/sulfur chemistry. Improved analytical methods have been developed to quantitatively determine reactive volatiles at the parts-per-million level. For example, the triple quadrupole mass spectrometer (TQMS) is used in the chemical ionization (CI) mode to provide real-time analytical data on ammonia evolution as the shale is pyrolyzed. A heated transfer line and inlet ensure rapid and complete introduction of ammonia to the instrument by preventing water condensation. Ammonia and water release data suitable for calculating kinetic parameters have been obtained from a New Albany Shale sample. An MS/MS technique with the TQMS in the electron ionization (EI) mode allows hydrogen sulfide, carbonyl sulfide, and certain trace organic sulfur compounds to be monitored during oil shale pyrolysis. Sensitivity and selectivity for these compounds have been increased by applying artificial intelligence techniques to tuning of the spectrometer. Gas evolution profiles (100 to 900/sup 0/C) are reported for hydrogen sulfide, water, ammonia, and trace sulfur species formed during pyrolysis of Devonian oil shale. Implications for retorting chemistry are discussed. 18 refs., 11 figs., 3 tabs.

Coburn, T.T.; Crawford, R.W.; Gregg, H.R.; Oh, M.S.

1986-11-01T23:59:59.000Z

187

Oil shale research in China  

SciTech Connect (OSTI)

There have been continued efforts and new emergence in oil shale research in Chine since 1980. In this paper, the studies carried out in universities, academic, research and industrial laboratories in recent years are summarized. The research areas cover the chemical structure of kerogen; thermal behavior of oil shale; drying, pyrolysis and combustion of oil shale; shale oil upgrading; chemical utilization of oil shale; retorting waste water treatment and economic assessment.

Jianqiu, W.; Jialin, Q. (Beijing Graduate School, Petroleum Univ., Beijing (CN))

1989-01-01T23:59:59.000Z

188

Sandia National Laboratories: Offshore Wind  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EnergyOffshore Wind Offshore Wind Sandia executes several projects in support of the DOE Offshore Wind program, which address unique R&D needs related to offshore siting and, in...

189

Shale Gas Development Challenges: Fracture Fluids | Department...  

Office of Environmental Management (EM)

Fluids Shale Gas Development Challenges: Fracture Fluids More Documents & Publications Natural Gas from Shale: Questions and Answers Shale Gas Glossary FracFocus 2.0 Task Force...

190

Shale gas - what happened? | Department of Energy  

Office of Environmental Management (EM)

seems like shale gas came out of nowhere - what happened? More Documents & Publications Natural Gas from Shale: Questions and Answers Natural Gas from Shale Challenges associated...

191

Shale Gas Development Challenges: Surface Impacts | Department...  

Office of Environmental Management (EM)

Impacts Shale Gas Development Challenges: Surface Impacts More Documents & Publications Natural Gas from Shale: Questions and Answers Challenges associated with shale gas...

192

Challenges associated with shale gas production | Department...  

Office of Environmental Management (EM)

What challenges are associated with shale gas production? More Documents & Publications Natural Gas from Shale: Questions and Answers Shale Gas Development Challenges: Air...

193

Shale Gas Development Challenges: Earthquakes | Department of...  

Office of Environmental Management (EM)

Shale Gas Development Challenges: Induced Seismic Events More Documents & Publications Natural Gas from Shale: Questions and Answers Challenges associated with shale gas...

194

WASTEWATER TREATMENT IN THE OIL SHALE INDUSTRY  

E-Print Network [OSTI]

during oil shale retorting: retort water and gas condensate.commercial oil shale plant, retort water and gas condensateunique to an oil shale retort water, gas condensate, and

Fox, J.P.

2010-01-01T23:59:59.000Z

195

Characterization of interim reference shales  

SciTech Connect (OSTI)

Measurements have been made on the chemical and physical properties of two oil shales designated as interim reference oil shales by the Department of Energy. One oil shale is a Green River Formation, Parachute Creek Member, Mahogany Zone Colorado oil shale from the Anvil Points mine and the other is a Clegg Creek Member, New Albany shale from Kentucky. Material balance Fischer assays, kerogen concentrates, carbon aromaticities, thermal properties, and bulk mineralogic properties have been determined for the oil shales. The measured properties of the interim reference shales are comparable to results obtained from previous studies on similar shales. The western interim reference shale has a low carbon aromaticity, high Fischer assay conversion to oil, and a dominant carbonate mineralogy. The eastern interim reference shale has a high carbon aromaticity, low Fischer assay conversion to oil, and a dominant silicate mineralogy. Chemical and physical properties, including ASTM distillations, have been determined for shale oils produced from the interim reference shales. The distillation data were used in conjunction with API correlations to calculate a large number of shale oil properties that are required for computer models such as ASPEN. The experimental determination of many of the shale oil properties was beyond the scope of this study. Therefore, direct comparison between calculated and measured values of many properties could not be made. However, molecular weights of the shale oils were measured. In this case, there was poor agreement between measured molecular weights and those calculated from API and other published correlations. 23 refs., 12 figs., 15 tabs.

Miknis, F.P.; Sullivan, S.; Mason, G.

1986-03-01T23:59:59.000Z

196

Gulf of Mexico Federal Offshore Natural Gas, Wet After Lease...  

Gasoline and Diesel Fuel Update (EIA)

(Billion Cubic Feet) Gulf of Mexico Federal Offshore Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

197

Production of Shale Oil  

E-Print Network [OSTI]

Intensive pre-project feasibility and engineering studies begun in 1979 have produced an outline plan for development of a major project for production of shale oil from private lands in the Piceance Basin in western Colorado. This outline plan...

Loper, R. D.

1982-01-01T23:59:59.000Z

198

offshore wind farm  

Science Journals Connector (OSTI)

offshore wind farm, wind farm [‘Wind park’ which one may find on the ... engineers and should not be used. A wind farm consists of a network of wind turbines] ? Windkraftanlage f, Windpark m; Offshore

2014-08-01T23:59:59.000Z

199

Fixed Offshore Wind Turbines  

Science Journals Connector (OSTI)

In this chapter, a perspective of offshore wind farms, applied concepts for fixed offshore wind turbines, and related statistics are given. One example of a large wind farm, which is successfully operating, is st...

Madjid Karimirad

2014-01-01T23:59:59.000Z

200

Offshore wind metadata management  

Science Journals Connector (OSTI)

Offshore wind energy is gaining more and more attention from industry and research community due to its high potential in producing green energy and lowering price on electricity consumption. However, offshore wind is facing many challenges, and hence ...

Trinh Hoang Nguyen; Rocky Dunlap; Leo Mark; Andreas Prinz; Bjűrn Mo Űstgren; Trond Friisű

2014-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "offshore shale proved" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Offshore Wind Development 2011  

Science Journals Connector (OSTI)

Growth in the European offshore market will depend principally on the ability ... manufacturing capacity, and the development of specialized offshore wind turbines with their own manufacturing supply chain are...

Mark J. Kaiser; Brian F. Snyder

2012-01-01T23:59:59.000Z

202

CONGRESSIONAL BRIEFING Offshore Wind  

E-Print Network [OSTI]

CONGRESSIONAL BRIEFING Offshore Wind Lessons Learned from Europe: Reducing Costs and Creating Jobs Thursday, June 12, 2014 Capitol Visitors Center, Room SVC 215 Enough offshore wind capacity to power six the past decade. What has Europe learned that is applicable to a U.S. effort to deploy offshore wind off

Firestone, Jeremy

203

Offshore Wind Geoff Sharples  

E-Print Network [OSTI]

Offshore Wind Geoff Sharples geoff@clearpathenergyllc.com #12;Frequently Unanswered Ques?ons · Why don't "they" build more offshore wind? · Why not make the blades bigger? · How big will turbines get? #12;Offshore Resource is Good #12

Kammen, Daniel M.

204

Carcinogenicity Studies of Estonian Oil Shale Soots  

E-Print Network [OSTI]

determine the carcinogenicity of Estonian oil shale soot as well as the soot from oil shale fuel oil. All

A. Vosamae

205

January 20, 2011 Marcellus Shale 101  

E-Print Network [OSTI]

. Will oil shale be viable as well? Oil shale will not be economically viable anytime in the near future

Hardy, Christopher R.

206

Generic Argillite/Shale Disposal Reference Case  

E-Print Network [OSTI]

of eastern Devonian gas shale: Society of PetroleumShale Disposal Reference Case August 2014 Borehole activity: Oil and gas

Zheng, Liange

2014-01-01T23:59:59.000Z

207

CORROSION OF METALS IN OIL SHALE ENVIRONMENTS  

E-Print Network [OSTI]

products, percent: Oil Gas Spent Shale TOTAL Average tracecontent of the gases for the lean shale exceeded that for

Bellman Jr., R.

2012-01-01T23:59:59.000Z

208

Offshore Wind Projects | Department of Energy  

Office of Environmental Management (EM)

Offshore Wind Projects Offshore Wind Projects This report covers the Wind and Water Power Program's offshore wind energy projects from fiscal years 2006 to 2014. Offshore Wind...

209

WINDExchange Offshore Wind Webinar: Transmission Planning and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Offshore Wind Webinar: Transmission Planning and Interconnection for Offshore Wind WINDExchange Offshore Wind Webinar: Transmission Planning and Interconnection for Offshore Wind...

210

Shale Gas R&D  

Broader source: Energy.gov [DOE]

Natural gas from shales has the potential to significantly increase America’s security of energy supply, reduce greenhouse gas emissions, and lower prices for consumers. Although shale gas has been...

211

Process for oil shale retorting  

DOE Patents [OSTI]

Particulate oil shale is subjected to a pyrolysis with a hot, non-oxygenous gas in a pyrolysis vessel, with the products of the pyrolysis of the shale contained kerogen being withdrawn as an entrained mist of shale oil droplets in a gas for a separation of the liquid from the gas. Hot retorted shale withdrawn from the pyrolysis vessel is treated in a separate container with an oxygenous gas so as to provide combustion of residual carbon retained on the shale, producing a high temperature gas for the production of some steam and for heating the non-oxygenous gas used in the oil shale retorting process in the first vessel. The net energy recovery includes essentially complete recovery of the organic hydrocarbon material in the oil shale as a liquid shale oil, a high BTU gas, and high temperature steam.

Jones, John B. (300 Enterprise Bldg., Grand Junction, CO 80501); Kunchal, S. Kumar (300 Enterprise Bldg., Grand Junction, CO 80501)

1981-10-27T23:59:59.000Z

212

Nineteenth oil shale symposium proceedings  

SciTech Connect (OSTI)

This book contains 23 selections. Some of the titles are: Effects of maturation on hydrocarbon recoveries from Canadian oil shale deposits; Dust and pressure generated during commercial oil shale mine blasting: Part II; The petrosix project in Brazil - An update; Pathway of some trace elements during fluidized-bed combustion of Israeli Oil Shale; and Decommissioning of the U.S. Department of Energy Anvil Points Oil Shale Research Facility.

Gary, J.H.

1986-01-01T23:59:59.000Z

213

Oil shale retort apparatus  

DOE Patents [OSTI]

A retorting apparatus including a vertical kiln and a plurality of tubes for delivering rock to the top of the kiln and removal of processed rock from the bottom of the kiln so that the rock descends through the kiln as a moving bed. Distributors are provided for delivering gas to the kiln to effect heating of the rock and to disturb the rock particles during their descent. The distributors are constructed and disposed to deliver gas uniformly to the kiln and to withstand and overcome adverse conditions resulting from heat and from the descending rock. The rock delivery tubes are geometrically sized, spaced and positioned so as to deliver the shale uniformly into the kiln and form symmetrically disposed generally vertical paths, or "rock chimneys", through the descending shale which offer least resistance to upward flow of gas. When retorting oil shale, a delineated collection chamber near the top of the kiln collects gas and entrained oil mist rising through the kiln.

Reeves, Adam A. (Grand Junction, CO); Mast, Earl L. (Norman, OK); Greaves, Melvin J. (Littleton, CO)

1990-01-01T23:59:59.000Z

214

Oil shale: Technology status report  

SciTech Connect (OSTI)

This report documents the status of the US Department of Energy's (DOE) Oil Shale Program as of the end of FY 86. The report consists of (1) a status of oil shale development, (2) a description of the DOE Oil Shale Program, (3) an FY 86 oil shale research summary, and (4) a summary of FY 86 accomplishments. Discoveries were made in FY 86 about the physical and chemical properties and behavior of oil shales, process chemistry and kinetics, in situ retorting, advanced processes, and the environmental behavior and fate of wastes. The DOE Oil Shale Program shows an increasing emphasis on eastern US oil shales and in the development of advanced oil shale processing concepts. With the award to Foster Wheeler for the design of oil shale conceptual plants, the first step in the development of a systems analysis capability for the complete oil shale process has been taken. Unocal's Parachute Creek project, the only commercial oil shale plant operating in the United States, is operating at about 4000 bbl/day. The shale oil is upgraded at Parachute Creek for input to a conventional refinery. 67 refs., 21 figs., 3 tabs.

Not Available

1986-10-01T23:59:59.000Z

215

Spent Shale Grouting of Abandoned In-Situ Oil Shale Retorts  

E-Print Network [OSTI]

Mineral Reactions in Colorado Oil Shale," Lawrence Livermore1978. of Decomposition of Colorado Oil Shale: II. LivermoreEffects Lawrence of Steam on Oil Shale Retorting: Livermore

Fox, J.P.; Persoff, P.

1980-01-01T23:59:59.000Z

216

Natural Gas from Shale: Questions and Answers | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Shale: Questions and Answers Natural Gas from Shale: Questions and Answers Natural Gas from Shale: Questions and Answers More Documents & Publications Shale Gas Development...

217

Horizontal low-void retorting of eastern and western oil shale  

SciTech Connect (OSTI)

Horizontal in situ retorting processes have been developed to recover oil from thin, shallow oil shale deposits. To date the most successful field tests have been conducted in Green River oil shale located in Utah. Consideration is being given to applying this technology to the New Albany oil shales in Indiana. Western Research Institute (WRI) conducted two horizontal in situ oil shale experiments using eastern oil shale and the results are compared with results obtained from a similar experiment using Green River oil shale. The objectives of the three experiments were to simulate the horizontal retorting process and determine oil yield, retorting zone profiles and product characteristics using alternative operating conditions for eastern and western oil shales. The tests proved that horizontal retorting could be simulated in the laboratory. However, air bypass problems occurred in the experiments, which probably reduced oil recovery compared with recovery from field tests. During the eastern oil shale tests plugging was encountered in the gas recovery system because of the production of a solid material containing sulfur compounds. This plugging could be a potential problem for future laboratory and field experimentation. The oil produced from eastern oil shale has different properties from western shale oil. The oil is highly aromatic and when hydrogenated may yield a prototype high density jet fuel. 10 refs., 8 figs., 11 tabs.

Fahy, L.J.

1986-02-01T23:59:59.000Z

218

Solar retorting of oil shale  

DOE Patents [OSTI]

An apparatus and method for retorting oil shale using solar radiation. Oil shale is introduced into a first retorting chamber having a solar focus zone. There the oil shale is exposed to solar radiation and rapidly brought to a predetermined retorting temperature. Once the shale has reached this temperature, it is removed from the solar focus zone and transferred to a second retorting chamber where it is heated. In a second chamber, the oil shale is maintained at the retorting temperature, without direct exposure to solar radiation, until the retorting is complete.

Gregg, David W. (Morago, CA)

1983-01-01T23:59:59.000Z

219

Combustion heater for oil shale  

DOE Patents [OSTI]

A combustion heater for oil shale heats particles of spent oil shale containing unburned char by burning the char. A delayed fall is produced by flowing the shale particles down through a stack of downwardly sloped overlapping baffles alternately extending from opposite sides of a vertical column. The delayed fall and flow reversal occurring in passing from each baffle to the next increase the residence time and increase the contact of the oil shale particles with combustion supporting gas flowed across the column to heat the shale to about 650 to 700/sup 0/C for use as a process heat source.

Mallon, R.; Walton, O.; Lewis, A.E.; Braun, R.

1983-09-21T23:59:59.000Z

220

Combustion heater for oil shale  

DOE Patents [OSTI]

A combustion heater for oil shale heats particles of spent oil shale containing unburned char by burning the char. A delayed fall is produced by flowing the shale particles down through a stack of downwardly sloped overlapping baffles alternately extending from opposite sides of a vertical column. The delayed fall and flow reversal occurring in passing from each baffle to the next increase the residence time and increase the contact of the oil shale particles with combustion supporting gas flowed across the column to heat the shale to about 650.degree.-700.degree. C. for use as a process heat source.

Mallon, Richard G. (Livermore, CA); Walton, Otis R. (Livermore, CA); Lewis, Arthur E. (Los Altos, CA); Braun, Robert L. (Livermore, CA)

1985-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "offshore shale proved" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Offshore Rankine Cycles.  

E-Print Network [OSTI]

?? The title of the thesis - "Offshore Rankine Cycles" - is very general and cover a large range of engineering fields, e.g. thermodynamic cycles… (more)

Brandsar, Jo

2012-01-01T23:59:59.000Z

222

Offshore Structure Design and Development  

Science Journals Connector (OSTI)

...installation and operation of offshore structures for oil and gas exploration and production...service. The importance of offshore oil and gas may be judged by the...exploration investments will go to offshore prospects in future years...

1982-01-01T23:59:59.000Z

223

Foundations for offshore wind turbines  

Science Journals Connector (OSTI)

...T. Thompson Foundations for offshore wind turbines B. W. Byrne G. T...civil-engineering problems encountered for offshore wind turbines. A critical component...energy suppliers. Foundations|Offshore Wind Turbines|Renewable Energy...

2003-01-01T23:59:59.000Z

224

Proved Reserves as of 12/31  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Proved Reserves as of 12/31 Adjustments (+,-) Revision Increases (+) Revision Decreases (-) Sales (-) Acquisitions (+) Extensions (+) New Field Discoveries (+) New Reservoir Discoveries in Old Fields (+) Estimated Production (-) Period: Data Series: Proved Reserves as of 12/31 Adjustments (+,-) Revision Increases (+) Revision Decreases (-) Sales (-) Acquisitions (+) Extensions (+) New Field Discoveries (+) New Reservoir Discoveries in Old Fields (+) Estimated Production (-) Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2006 2007 2008 2009 2010 2011 View History U.S. Total 20,972 21,317 19,121 20,682 23,267 26,544 1899-2011 Lower 48 States 17,093 17,154 15,614 17,116 19,545 22,728 1977-2011 Federal Offshore 4,096 3,905 3,903 4,129 4,496 4,976 1980-2011 Pacific (California) 441 441 357 348 361 350 1977-2011 Gulf of Mexico (Louisiana) 3,500 3,320 3,388 3,570 3,914 4,438 1981-2011

225

Natural Gas Plant Liquids Proved Reserves  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Proved Reserves Liquids Proved Reserves (Million Barrels) Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes 2006 2007 2008 2009 2010 2011 View History U.S. 7,133 7,648 7,842 8,557 9,809 10,825 1979-2011 Alabama 41 32 92 55 68 68 1979-2011 Alaska 338 325 312 299 288 288 1979-2011 Arkansas 2 2 1 2 2 3 1979-2011 California 130 126 113 129 114 94 1979-2011 Coastal Region Onshore 22 14 10 10 11 12 1979-2011 Los Angeles Basin Onshore 8 9 6 6 5 4 1979-2011 San Joaquin Basin Onshore 100 103 97 113 98 78 1979-2011 State Offshore 0 0 0 0 0 0 1979-2011 Colorado 382 452 612 722 879 925 1979-2011 Florida 3 2 0 0 0 0 1979-2011 Kansas 204 194 175 162 195 192 1979-2011

226

Spent Shale Grouting of Abandoned In-Situ Oil Shale Retorts  

E-Print Network [OSTI]

for the grout. SPENT SHALE Oil shale, which is a low-gradeMineral Reactions in Colorado Oil Shale," Lawrence Livermore1978. of Decomposition of Colorado Oil Shale: II. Livermore

Fox, J.P.; Persoff, P.

1980-01-01T23:59:59.000Z

227

Sandia National Laboratories: Offshore Publications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Publications Offshore Publications Jason Magalen, Craig Jones, and Jesse Roberts, Offshore Wind Guidance Document: Oceanography and Sediment Stability, Development of a Conceptual...

228

U.S. Crude Oil plus Lease Condensate Proved Reserves  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reserves, Reserves Changes, and Production (Million Barrels) Area: U.S. Federal Offshore U.S. Federal Offshore, Pacific (California) Federal Offshore, Gulf of Mexico, LA & AL...

229

I. Canada EIA/ARI World Shale Gas and Shale Oil Resource Assessment I. CANADA SUMMARY  

E-Print Network [OSTI]

by this resource study. Figure I-1 illustrates certain of the major shale gas and shale oil basins in

unknown authors

230

Offshore Sulfur Comes In  

Science Journals Connector (OSTI)

Offshore Sulfur Comes In ... "The deposit is a major new source of sulfur," say Hines H. Baker, president of Humble Oil, and Langbourne M. Williams, president of Freeport Sulphur. ... Humble's deposit, known as Grand Isle (Block 18), was discovered in the course of offshore oil exploration and it ranks among the most important sulfur discoveries of recent years. ...

1956-10-01T23:59:59.000Z

231

Mobility for Offshore Drilling  

Science Journals Connector (OSTI)

Mobility for Offshore Drilling ... New type unit designed by Humble Oil to operate in Gulf of Mexico in 30 to 70 feet deep water ... HUMBLE OIL & REFINING is inviting bids on construction of a new type of mobile drilling platform to be used in offshore operations. ...

1956-03-26T23:59:59.000Z

232

OFFSHORE DRILLING REVISITED  

Science Journals Connector (OSTI)

OFFSHORE DRILLING REVISITED ... Congress and the Obama Administration weigh the benefits and risks of expanded OIL AND GAS PRODUCTION ... ENERGY INDUSTRY OFFICIALS, coastal states, and environmental activists are clashing over whether Congress and the Obama Administration should allow offshore drilling for oil and natural gas in federal waters that until last year were off limits to development. ...

GLENN HESS

2009-03-23T23:59:59.000Z

233

Chapter 3 - Safety Offshore  

Science Journals Connector (OSTI)

This chapter focuses on specific issues to do with managing safety in offshore oil and gas facilities. The distinctions between drilling, pipelines and production are described. Offshore special issues include congestion, the number of people onboard, hurricanes/cyclones and dropped objects.

Ian Sutton

2014-01-01T23:59:59.000Z

234

Offshore wind energy systems  

Science Journals Connector (OSTI)

Wind energy systems deployed in the shallow but windy waters of the southern North Sea have the potential to provide more than 20% of UK electricity needs. With existing experience of windmills, and of aircraft and offshore structures, such wind energy systems could be developed within a relatively short timescale. A preliminary assessment of the economics of offshore wind energy systems is encouraging.

P Musgrove

1978-01-01T23:59:59.000Z

235

The twentieth oil shale symposium proceedings  

SciTech Connect (OSTI)

This book contains 20 selections. Some of the titles are: The technical contributions of John Ward Smith in oil shale research; Oil shale rubble fires: ignition and extinguishment; Fragmentation of eastern oil shale for in situ recovery; A study of thermal properties of Chinese oil shale; and Natural invasion of native plants on retorted oil shale.

Gary, J.H.

1987-01-01T23:59:59.000Z

236

Technically Recoverable Shale Oil and Shale Gas Resources  

U.S. Energy Information Administration (EIA) Indexed Site

Technically Recoverable Shale Oil and Technically Recoverable Shale Oil and Shale Gas Resources: An Assessment of 137 Shale Formations in 41 Countries Outside the United States June 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 June 2013 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources 1 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or

237

Prototype Validation Exercise (PROVE) Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Validation > PROVE Validation > PROVE The Prototype Validation Exercise (PROVE) Project Overview The Prototype Validation Exercise (PROVE) was a mini field campaign conducted at the Jornada Experimental Range in the Chihuahuan Desert, near Las Cruces, New Mexico in May 1997. The goals of PROVE were to: Gain experience in the collection and use of field data for EOS product validation Develop protocols for coordination, measurement, and data archival Compile a synoptic land and atmospheric data set for testing algorithms The remote-sensing portion of PROVE involved investigators from three NASA Earth Observing System (EOS) instrument teams: MODIS (Moderate-Resolution Imaging Spectrometer) ASTER (Advanced Space-borne Thermal Emission and Reflectance Radiometer) MISR (Multi-Angle Imaging Spectro Radiometer)

238

Offshore wind metadata management  

Science Journals Connector (OSTI)

Offshore wind energy is gaining more and more attention from industry and research community due to its high potential in producing green energy and lowering price on electricity consumption. However, offshore wind is facing many challenges, and hence it is still expensive to install in large scale. It therefore needs to be considered from different aspects of technologies in order to overcome these challenges. One of the problems of the offshore wind is that information comes from different sources with diversity in types and format. Besides, there are existing wind databases that should be utilised in order to enrich the knowledge base of the wind domain. This paper describes an approach to managing offshore wind metadata effectively using semantic technologies. An offshore wind ontology has been developed. The semantic gap between the developed ontology and the relational database is investigated. A prototype system has been developed to demonstrate the use of the ontology.

Trinh Hoang Nguyen; Rocky Dunlap; Leo Mark; Andreas Prinz; BjĂžrn Mo Ă?stgren; Trond FriisĂž

2014-01-01T23:59:59.000Z

239

,"New York Proved Nonproducing Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Proved Nonproducing Reserves",5,"Annual",2013,"6301996" ,"Release Date:","1242014"...

240

,"New Mexico Proved Nonproducing Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Proved Nonproducing Reserves",5,"Annual",2012,"6301996" ,"Release Date:","4102014"...

Note: This page contains sample records for the topic "offshore shale proved" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

,"New York Proved Nonproducing Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Proved Nonproducing Reserves",5,"Annual",2012,"6301996" ,"Release Date:","4102014"...

242

Shale oil recovery process  

DOE Patents [OSTI]

A process of producing within a subterranean oil shale deposit a retort chamber containing permeable fragmented material wherein a series of explosive charges are emplaced in the deposit in a particular configuration comprising an initiating round which functions to produce an upward flexure of the overburden and to initiate fragmentation of the oil shale within the area of the retort chamber to be formed, the initiating round being followed in a predetermined time sequence by retreating lines of emplaced charges developing further fragmentation within the retort zone and continued lateral upward flexure of the overburden. The initiating round is characterized by a plurality of 5-spot patterns and the retreating lines of charges are positioned and fired along zigzag lines generally forming retreating rows of W's. Particular time delays in the firing of successive charges are disclosed.

Zerga, Daniel P. (Concord, CA)

1980-01-01T23:59:59.000Z

243

Shale Gas and Hydrofracturing  

Science Journals Connector (OSTI)

Advances in horizontal drilling technology and hydrofracturing allow natural gas to escape from shale formations following high pressure treatment, i.e. “fracking” with sand, water and chemicals. ... With fracking, natural gas prices have remained low at less than $2.50 per million BTU. ... Fracking chemicals, petrochemicals, and metals and radionuclides from source rock cause major environmental burdens if not properly treated or deep-injected. ...

Jerald L. Schnoor

2012-04-05T23:59:59.000Z

244

AVESTARÂź - Shale Gas Processing (SGP)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Shale Gas Processing (SGP) Shale Gas Processing (SGP) SPG The shale gas revolution is transforming America's energy landscape and economy. The shale gas boom, including the Marcellus play in Appalachia, is driving job creation and investment in the energy sector and is also helping to revive other struggling sectors of the economy like manufacturing. Continued growth in domestic shale gas processing requires that energy companies maximize the efficiency and profitability from their operations through excellent control and drive maximum business value from all their plant assets, all while reducing negative environmental impact and improving safety. Changing demographics and rapidly evolving plant automation and control technologies also necessitate training and empowering the next-generation of shale gas process engineering and

245

U.S. Proved Nonproducing Reserves  

U.S. Energy Information Administration (EIA) Indexed Site

Area: U.S. Federal Offshore U.S. Federal Offshore, Pacific (California) Federal Offshore, Gulf of Mexico, LA & AL Federal Offshore, Gulf of Mexico, TX Alaska Lower 48 States Alabama Arkansas California CA, Coastal Region Onshore CA, Los Angeles Basin Onshore CA, San Joaquin Basin Onshore CA, State Offshore Colorado Florida Illinois Indiana Kansas Kentucky Louisiana North Louisiana LA, South Onshore LA, State Offshore Michigan Mississippi Montana Nebraska New Mexico NM, East NM, West New York North Dakota Ohio Oklahoma Pennsylvania Texas TX, RRC District 1 TX, RRC District 2 Onshore TX, RRC District 3 Onshore TX, RRC District 4 Onshore TX, RRC District 5 TX, RRC District 6 TX, RRC District 7B TX, RRC District 7C TX, RRC District 8 TX, RRC District 8A TX, RRC District 9 TX, RRC District 10 TX, State Offshore Utah Virginia West Virginia Wyoming Miscellaneous Period:

246

U.S. Dry Natural Gas Proved Reserves  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Area: U.S. Federal Offshore U.S. Federal Offshore, Pacific (California) Federal Offshore, Gulf of Mexico, LA & AL Federal Offshore, Gulf of Mexico, TX Alaska Lower 48 States...

247

WASTEWATER TREATMENT IN THE OIL SHALE INDUSTRY  

E-Print Network [OSTI]

is in intimate contact with oil and shale during In in-situin contact with the oil and shale. These methods and othersWaters from Green River Oil Shale," Chem. and Ind. , 1. ,

Fox, J.P.

2010-01-01T23:59:59.000Z

248

T-matrix approach to shale acoustics  

Science Journals Connector (OSTI)

......when modelling the anisotropic elastic properties of a perfect shale. One of the reviewers...aligned cracks in anisotropic shales can dramatically...J.A., 1994. Anisotropic effective medium...elastic properties of shales, Geophysics, 59......

Morten Jakobsen; John A. Hudson; Tor Arne Johansen

2003-08-01T23:59:59.000Z

249

Case Study: Shale Bings in Central  

E-Print Network [OSTI]

and oil shale was widespread. The extraction of oil from shales began in the 1850s and developed within the region that the oil-shale bings constitute one of the eight main habi- tats in West Lothian

250

HYDRAULIC CEMENT PREPARATION FROM LURGI SPENT SHALE  

E-Print Network [OSTI]

hydraulic cement from spent oil shale," Vol. 10, No. 4, p.J. W. , "Colorado's primary oil shale resource for verticalSimulated effects of oil-shale development on the hydrology

Mehta, P.K.

2013-01-01T23:59:59.000Z

251

WASTEWATER TREATMENT IN THE OIL SHALE INDUSTRY  

E-Print Network [OSTI]

Waters from Green River Oil Shale," Chem. and Ind. , 1. ,Effluents from In-Situ oil Shale Processing," in Proceedingsin the Treatment of Oil Shale Retort Waters," in Proceedings

Fox, J.P.

2010-01-01T23:59:59.000Z

252

CORROSION OF METALS IN OIL SHALE ENVIRONMENTS  

E-Print Network [OSTI]

CORROSION OF METALS IN OIL SHALE ENVIRONMENTS A. Levy and R.of Metals in In-Situ Oil Shale Retorts," NACE Corrosion 80,Elevated Temperature Corrosion of Oil Shale Retort Component

Bellman Jr., R.

2012-01-01T23:59:59.000Z

253

WASTEWATER TREATMENT IN THE OIL SHALE INDUSTRY  

E-Print Network [OSTI]

III, "Method of Breaking Shale Oil-Water Emulsion," U. S.and Biological Treatment of Shale Oil Retort Water, DraftPA (1979). H. H. Peters, Shale Oil Waste Water Recovery by

Fox, J.P.

2010-01-01T23:59:59.000Z

254

Research of Shale Gas in China  

Science Journals Connector (OSTI)

The shale gas is an efficient and abundant energy sources ... field. With the support of our country, shale gas research has very progress. The researchers commenced ... in the early period of 21st century. Shale

Haifeng Chen; Miao He; Bing Han; Zhonglin Li…

2013-01-01T23:59:59.000Z

255

Apparatus for oil shale retorting  

DOE Patents [OSTI]

A cascading bed retorting process and apparatus in which cold raw crushed shale enters at the middle of a retort column into a mixer stage where it is rapidly mixed with hot recycled shale and thereby heated to pyrolysis temperature. The heated mixture then passes through a pyrolyzer stage where it resides for a sufficient time for complete pyrolysis to occur. The spent shale from the pyrolyzer is recirculated through a burner stage where the residual char is burned to heat the shale which then enters the mixer stage.

Lewis, Arthur E. (Los Altos, CA); Braun, Robert L. (Livermore, CA); Mallon, Richard G. (Livermore, CA); Walton, Otis R. (Livermore, CA)

1986-01-01T23:59:59.000Z

256

Methane adsorption on Devonian shales  

E-Print Network [OSTI]

important regional source of natural gas. In addition to the free gas which is located in the pore space and the natural fractures of the shales, the natural gas is also stored iu the shale matrix as an adsorbed state; therefore, these shales... are considered an uuconvcsstional gas us(. rvo(r. 8('hfle it is estimated tlrat, the adsorbed phas( may account, I'or morc thau half of the total gas content of th(. Devonian shales, very I'ew studi( s hav( been done on this topic, arrcl few measured data...

Li, Fan-Chang

2012-06-07T23:59:59.000Z

257

Oil shale - Heir to the petroleum kingdom  

Science Journals Connector (OSTI)

Oil shale - Heir to the petroleum kingdom ... A discussion of oil shale provides students with real-world problems that require chemical literacy. ...

Y. Schachter

1983-01-01T23:59:59.000Z

258

Oil shale: The environmental challenges III  

SciTech Connect (OSTI)

This book presents the papers of a symposium whose purpose was to discuss the environmental and socio-economic aspects of oil shale development. Topics considered include oil shale solid waste disposal, modeling spent shale disposal, water management, assessing the effects of oil shale facilities on water quality, wastewater treatment and use at oil shale facilities, potential air emissions from oil shale retorting, the control of air pollutant emissions from oil shale facilities, oil shale air emission control, socioeconomic research, a framework for mitigation agreements, the Garfield County approach to impact mitigation, the relationship of applied industrial hygiene programs and experimental toxicology programs, and industrial hygiene programs.

Petersen, K.K.

1983-01-01T23:59:59.000Z

259

Optimising the Use of Spent Oil Shale.  

E-Print Network [OSTI]

??Worldwide deposits of oil shales are thought to represent ~3 trillion barrels of oil. Jordanian oil shale deposits are extensive and high quality, and could… (more)

FOSTER, HELEN,JANE

2014-01-01T23:59:59.000Z

260

offshore | OpenEI  

Open Energy Info (EERE)

offshore offshore Dataset Summary Description GIS data for offshore wind speed (meters/second). Specified to Exclusive Economic Zones (EEZ).Wind resource based on NOAA blended sea winds and monthly wind speed at 30km resolution, using a 0.11 wind sheer to extrapolate 10m - 90m. Annual average >= 10 months of data, no nulls. Source National Renewable Energy Laboratory (NREL) Date Released Unknown Date Updated Unknown Keywords GIS global NOAA NREL offshore wind wind speed Data application/zip icon Download Shapefile (zip, 18.5 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Other or unspecified, see optional comment below Comment Please cite NREL and NOAA Rate this dataset Usefulness of the metadata

Note: This page contains sample records for the topic "offshore shale proved" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Safety in Offshore Industry  

Science Journals Connector (OSTI)

A large number of accidents in offshore industry have occurred over the years. Ten of the deadliest of these accidents occurred at or on the Piper Alpha ... , the Alexander L. Kielland (a Norwegian semi-submersible

2010-01-01T23:59:59.000Z

262

Chapter 3 - Offshore Platforms  

Science Journals Connector (OSTI)

Abstract Modern offshore crude oil and natural gas exploration—the search for likely environments where crude oil and natural gas may exist in the rock formations that are beneath the surface of the waterways of the world. In addition, offshore operations include transporting crude oil and natural gas from their point of production offshore to refineries and plants on land. Very little refining of the crude oil and natural gas is carried out on the production platform. This chapter focuses on exploration, drilling, and production of crude oil and natural gas and the wide range of technologies involved as well as the additional technologies that relate to a marine environment necessary for offshore activities.

James G. Speight

2015-01-01T23:59:59.000Z

263

Magnolia Goes Offshore  

Science Journals Connector (OSTI)

Magnolia Goes Offshore ... It will be put to use in early 1956, when the company launches an attempt to locate oil in the Gulf of Mexico near the mouth of the Mississippi River. ...

1955-12-12T23:59:59.000Z

264

Session: Offshore wind  

SciTech Connect (OSTI)

This session at the Wind Energy and Birds/Bats workshop consisted of two presentations. Due to time constraints, a discussion period was not possible. The session addressed the current state of offshore wind energy development. The first presentation ''Monitoring Program and Results: Horns Rev and Nysted'' by Jette Gaarde summarized selected environmental studies conducted to date at operating offshore wind turbine projects in Denmark and lessons from other offshore wind developments in Europe. Wildlife impacts studies from the Danish sites focused on birds, fish, and mammals. The second presentation ''What has the U.S. Wind Industry Learned from the European Example'' by Bonnie Ram provided an update on current permit applications for offshore wind developments in the U.S. as well as lessons that may be drawn from the European experience.

Gaarde, Jette; Ram, Bonnie

2004-09-01T23:59:59.000Z

265

Louisiana State Offshore Nonassociated Natural Gas, Wet After Lease  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Louisiana State Offshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,820 1,100 1,218 1,002 1,042 1990's 812 875 691 789 820 714 626 613 473 541 2000's 592 627 428 448 333 370 386 327 248 215 2010's 279 468 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 LA, State Offshore Nonassociated Natural Gas Proved Reserves, Wet

266

California State Offshore Nonassociated Natural Gas, Wet After Lease  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California State Offshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 8 1980's 6 12 22 22 29 1990's 6 5 4 2 4 3 2 2 5 19 2000's 5 5 6 7 2 1 5 4 3 4 2010's 3 3 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 CA, State Offshore Nonassociated Natural Gas Proved Reserves, Wet

267

California Federal Offshore Nonassociated Natural Gas, Wet After Lease  

U.S. Energy Information Administration (EIA) Indexed Site

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California Federal Offshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 73 1980's 107 227 217 258 267 1990's 240 179 149 147 110 94 115 58 52 48 2000's 76 50 56 55 47 49 55 53 3 9 2010's 3 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Federal Offshore California Nonassociated Natural Gas Proved

268

Shale Reservoir Characterization | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Oil & Gas » Shale Gas » Shale Reservoir Oil & Gas » Shale Gas » Shale Reservoir Characterization Shale Reservoir Characterization Geologist examining the base of the Marcellus Shale at an outcrop near Bedford, PA. Geologist examining the base of the Marcellus Shale at an outcrop near Bedford, PA. Gas-producing shales are predominantly composed of consolidated clay-sized particles with a high organic content. High subsurface pressures and temperatures convert the organic matter to oil and gas, which may migrate to conventional petroleum traps and also remains within the shale. However, the clay content severely limits gas and fluid flow within the shales. It is, therefore, necessary to understand the mineral and organic content, occurrence of natural fractures, thermal maturity, shale volumes, porosity

269

Shale Play Industry Transportation Challenges,  

E-Print Network [OSTI]

in excess of 50 MMT/Yr. · Life of current Shale Oil & Gas explora-on trend ­ High volume commodi-es flows in and out of shale plays · Sand In....Oil Demand and Supply Factors ­Gas and Oil Commodity Pricing ­Finite Demand ­Rapid

Minnesota, University of

270

Wind Offshore Port Readiness | Department of Energy  

Office of Environmental Management (EM)

Wind Offshore Port Readiness Wind Offshore Port Readiness This study will aid decision-makers in making informed decisions regarding the choice of ports for specific offshore...

271

Blyth Offshore Wind Ltd | Open Energy Information  

Open Energy Info (EERE)

Blyth Offshore Wind Ltd Jump to: navigation, search Name: Blyth Offshore Wind Ltd Place: United Kingdom Sector: Renewable Energy, Wind energy Product: Blyth Offshore Wind Limited,...

272

Lake Michigan Offshore Wind Feasibility Assessment  

SciTech Connect (OSTI)

The purpose of this project was to conduct the first comprehensive offshore wind assessment over Lake Michigan and to advance the body of knowledge needed to support future commercial wind energy development on the Great Lakes. The project involved evaluation and selection of emerging wind measurement technology and the permitting, installation and operation of the first mid-lake wind assessment meteorological (MET) facilities in Michigan’s Great Lakes. In addition, the project provided the first opportunity to deploy and field test floating LIDAR and Laser Wind Sensor (LWS) technology, and important research related equipment key to the sitting and permitting of future offshore wind energy development in accordance with public participation guidelines established by the Michigan Great Lakes Wind Council (GLOW). The project created opportunities for public dialogue and community education about offshore wind resource management and continued the dialogue to foster Great Lake wind resource utilization consistent with the focus of the GLOW Council. The technology proved to be effective, affordable, mobile, and the methods of data measurement accurate. The public benefited from a substantial increase in knowledge of the wind resources over Lake Michigan and gained insights about the potential environmental impacts of offshore wind turbine placements in the future. The unique first ever hub height wind resource assessment using LWS technology over water and development of related research data along with the permitting, sitting, and deployment of the WindSentinel MET buoy has captured public attention and has helped to increase awareness of the potential of future offshore wind energy development on the Great Lakes. Specifically, this project supported the acquisition and operation of a WindSentinel (WS) MET wind assessment buoy, and associated research for 549 days over multiple years at three locations on Lake Michigan. Four research objectives were defined for the project including to: 1) test and validate floating LIDAR technology; 2) collect and access offshore wind data; 3) detect and measure bird and bat activity over Lake Michigan; 4) conduct an over water sound propagation study; 5) prepare and offer a college course on offshore energy, and; 6) collect other environmental, bathometric, and atmospheric data. Desk-top research was performed to select anchorage sites and to secure permits to deploy the buoy. The project also collected and analyzed data essential to wind industry investment decision-making including: deploying highly mobile floating equipment to gather offshore wind data; correlating offshore wind data with conventional on-shore MET tower data; and performing studies that can contribute to the advancement and deployment of offshore wind technologies. Related activities included: • Siting, permitting, and deploying an offshore floating MET facility; • Validating the accuracy of floating LWS using near shoreline cup anemometer MET instruments; • Assessment of laser pulse technology (LIDAR) capability to establish hub height measurement of wind conditions at multiple locations on Lake Michigan; • Utilizing an extended-season (9-10 month) strategy to collect hub height wind data and weather conditions on Lake Michigan; • Investigation of technology best suited for wireless data transmission from distant offshore structures; • Conducting field-validated sound propagation study for a hypothetical offshore wind farm from shoreline locations; • Identifying the presence or absence of bird and bat species near wind assessment facilities; • Identifying the presence or absence of benthic and pelagic species near wind assessment facilities; All proposed project activities were completed with the following major findings: • Floating Laser Wind Sensors are capable of high quality measurement and recordings of wind resources. The WindSentinel presented no significant operational or statistical limitations in recording wind data technology at a at a high confidence level as compared to traditional an

Boezaart, Arnold [GVSU; Edmonson, James [GVSU; Standridge, Charles [GVSU; Pervez, Nahid [GVSU; Desai, Neel [University of Michigan; Williams, Bruce [University of Delaware; Clark, Aaron [GVSU; Zeitler, David [GVSU; Kendall, Scott [GVSU; Biddanda, Bopi [GVSU; Steinman, Alan [GVSU; Klatt, Brian [Michigan State University; Gehring, J. L. [Michigan State University; Walter, K. [Michigan State University; Nordman, Erik E. [GVSU

2014-06-30T23:59:59.000Z

273

Oil shale, tar sands, and related materials  

SciTech Connect (OSTI)

This sixteen-chapter book focuses on the many problems and the new methodology associated with the commercialization of the oil shale and tar sand industry. Topics discussed include: an overview of the Department of Energy's oil shale R, D, and D program; computer simulation of explosive fracture of oil shale; fracturing of oil shale by treatment with liquid sulfur dioxide; chemistry of shale oil cracking; hydrogen sulfide evolution from Colorado oil shale; a possible mechanism of alkene/alkane production in oil shale retorting; oil shale retorting kinetics; kinetics of oil shale char gasification; a comparison of asphaltenes from naturally occurring shale bitumen and retorted shale oils: the influence of temperature on asphaltene structure; beneficiation of Green River oil shale by density methods; beneficiation of Green River oil shale pelletization; shell pellet heat exchange retorting: the SPHER energy-efficient process for retorting oil shale; retorted oil shale disposal research; an investigation into the potential economics of large-scale shale oil production; commercial scale refining of Paraho crude shale oil into military specification fuels; relation between fuel properties and chemical composition; chemical characterization/physical properties of US Navy shale-II fuels; relation between fuel properties and chemical composition: stability of oil shale-derived jet fuel; pyrolysis of shale oil residual fractions; synfuel stability: degradation mechanisms and actual findings; the chemistry of shale oil and its refined products; the reactivity of Cold Lake asphaltenes; influence of thermal processing on the properties of Cold Lake asphaltenes: the effect of distillation; thermal recovery of oil from tar sands by an energy-efficient process; and hydropyrolysis: the potential for primary upgrading of tar sand bitumen.

Stauffer, H.C.

1981-01-01T23:59:59.000Z

274

NATURAL GAS FROM SHALE: Questions and Answers Shale Gas Glossary  

Broader source: Energy.gov (indexed) [DOE]

Glossary Glossary Acquifer - A single underground geological formation, or group of formations, containing water. Antrim Shale - A shale deposit located in the northern Michigan basin that is a Devonian age rock formation lying at a relatively shallow depth of 1,000 feet. Gas has been produced from this formation for several decades primarily via vertical, rather than horizontal, wells. The Energy Information Administration (EIA) estimates the technically recoverable Antrim shale resource at 20 trillion cubic feet (tcf). Appalachian Basin - The geological formations that roughly follow the Appalachian Mountain range and contain

275

Oil Shale Research in the United States  

Broader source: Energy.gov [DOE]

Profiles of Oil Shale Research and Development Activities In Universities, National Laboratories, and Public Agencies

276

Favorable conditions noted for Australia shale oil  

SciTech Connect (OSTI)

After brief descriptions of the Rundle, Condor, and Stuart/Kerosene Creek oil shale projects in Queensland, the competitive advantages of oil shale development and the state and federal governments' attitudes towards an oil shale industry in Australia are discussed. It is concluded that Australia is the ideal country in which to start an oil shale industry.

Not Available

1986-09-01T23:59:59.000Z

277

Bureau of Land Management Oil Shale Development  

E-Print Network [OSTI]

Bureau of Land Management Oil Shale Development Unconventional Fuels Conference University of Utah May 17, 2011 #12;#12;Domestic Oil Shale Resources Primary oil shale resources in the U.S. are in the Green River Formation in Wyoming, Utah, and Colorado. 72 % of this oil shale resource is on Federal

Utah, University of

278

Fire and explosion hazards of oil shale  

SciTech Connect (OSTI)

The US Bureau of Mines publication presents the results of investigations into the fire and explosion hazards of oil shale rocks and dust. Three areas have been examined: the explosibility and ignitability of oil shale dust clouds, the fire hazards of oil shale dust layers on hot surfaces, and the ignitability and extinguishment of oil shale rubble piles. 10 refs., 54 figs., 29 tabs.

Not Available

1989-01-01T23:59:59.000Z

279

NATURAL GAS FROM SHALE: Questions and Answers  

Broader source: Energy.gov (indexed) [DOE]

Where is shale gas found Where is shale gas found in the United States? Shale gas is located in many parts of the United States. These deposits occur in shale "plays" - a set of discovered, undiscovered or possible natural gas accumulations that exhibit similar geological characteristics. Shale plays are located within large-scale basins or accumulations of sedimentary rocks, often hundreds of miles across, that also may contain other oil and gas resources. 1 Shale gas production is currently occurring in 16 states. 1 U.S. Government Accountability Office, Report to Congressional Requesters, "Oil and Gas: Information on Shale Resources, Development, and

280

Oil shale retorting method and apparatus  

SciTech Connect (OSTI)

Disclosed is an improved method and apparatus for the retorting of oil shale and the formation of spent oil shale having improved cementation properties. The improved method comprises passing feed comprising oil shale to a contacting zone wherein the feed oil shale is contacted with heat transfer medium to heat said shale to retorting temperature. The feed oil shale is substantially retorted to form fluid material having heating value and forming partially spent oil shale containing carbonaceous material. At least a portion of the partially spent oil shale is passed to a combustion zone wherein the partially spent oil shale is contacted with oxidizing gas comprising oxygen and steam to substantially combust carbonaceous material forming spent oil shale having improved cementation properties.

York, E.D.

1983-03-22T23:59:59.000Z

Note: This page contains sample records for the topic "offshore shale proved" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Carbon sequestration in depleted oil shale deposits  

SciTech Connect (OSTI)

A method and apparatus are described for sequestering carbon dioxide underground by mineralizing the carbon dioxide with coinjected fluids and minerals remaining from the extraction shale oil. In one embodiment, the oil shale of an illite-rich oil shale is heated to pyrolyze the shale underground, and carbon dioxide is provided to the remaining depleted oil shale while at an elevated temperature. Conditions are sufficient to mineralize the carbon dioxide.

Burnham, Alan K; Carroll, Susan A

2014-12-02T23:59:59.000Z

282

Interior acts on oil shale  

Science Journals Connector (OSTI)

Interior acts on oil shale ... The Interior Department has taken the first step to open up the vast oil-shale deposits on public lands. ... According to Secretary of the Interior Stewart L. Udall, the new program is designed to encourage competition in developing oil-shale resources, prevent speculation and windfall profits, promote mining operation and production practices that are consistent with good conservation management, encourage the fullest use of the resources, and provide reasonable revenues to the states and to the Federal Government. ...

1967-02-06T23:59:59.000Z

283

GAOH Offshore | Open Energy Information  

Open Energy Info (EERE)

GAOH Offshore Jump to: navigation, search Name: GAOH Offshore Place: St Peter Port, United Kingdom Zip: GY1 4EE Sector: Wind energy Product: Intends to become the preferred...

284

Shale Gas Development Challenges: Water | Department of Energy  

Office of Environmental Management (EM)

Challenges: Water Shale Gas Development Challenges: Water More Documents & Publications Natural Gas from Shale: Questions and Answers Shale Gas Development Challenges: Fracture...

285

Shale Gas Development Challenges: Air | Department of Energy  

Office of Environmental Management (EM)

Challenges: Air Shale Gas Development Challenges: Air More Documents & Publications Natural Gas from Shale: Questions and Answers Challenges associated with shale gas...

286

Oil Shale and Other Unconventional Fuels Activities | Department...  

Broader source: Energy.gov (indexed) [DOE]

Naval Reserves Oil Shale and Other Unconventional Fuels Activities Oil Shale and Other Unconventional Fuels Activities The Fossil Energy program in oil shale focuses on...

287

Eastern shale hydroretorting  

SciTech Connect (OSTI)

The overall objective of the Bench-Scale Unit (BSU) test program was to determine the effects of major process variables on conversion of organic carbon, yields and properties of oil and gas and consumption of hydrogen for hydroretorting of a specific Indiana New Albany shale. A preliminary error-propagation analysis was performed to identify possible improvements in BSU measurements that could lead to better overall material and elemental balances. A list of additional potential sources of uncertainty (primarily due to the operating procedures used) was compiled. Based on the identification of these possible sources of uncertainty, additional equipment was ordered and installed and existing operating procedures and calculation methods were modified. The result was excellent overall material balance closures (100% +/- 1%).

Roberts, M.J.; Feldkirchner, H.L.; Punwani, D.V.; Rex, R.C. Jr.

1984-01-01T23:59:59.000Z

288

POTENTIAL USES OF SPENT SHALE IN THE TREATMENT OF OIL SHALE RETORT WATERS  

E-Print Network [OSTI]

pore-volume study of retorted oil shale," Lawrence Livermoreits contact with the oil and shale. The gas condensate, onkinetics between and oil-shale residual carbon. 1. co Effect

Fox, J.P.

2013-01-01T23:59:59.000Z

289

POTENTIAL USES OF SPENT SHALE IN THE TREATMENT OF OIL SHALE RETORT WATERS  

E-Print Network [OSTI]

pore-volume study of retorted oil shale," Lawrence Livermorekinetics between and oil-shale residual carbon. 1. co Effectkinetics between and oil-shale residual carbon. 2. co 2

Fox, J.P.

2013-01-01T23:59:59.000Z

290

POTENTIAL USES OF SPENT SHALE IN THE TREATMENT OF OIL SHALE RETORT WATERS  

E-Print Network [OSTI]

pore-volume study of retorted oil shale," Lawrence LivermoreReaction kinetics between and oil-shale residual carbon. 1.Reaction kinetics between and oil-shale residual carbon. 2.

Fox, J.P.

2013-01-01T23:59:59.000Z

291

MARCELLUS SHALE APRIL 2011 EDITION  

E-Print Network [OSTI]

Wells (213111); Support Activities for Oil & Gas Operations (213112); Oil & Gas Pipeline & Related Structures Construction (237120); and Pipeline Transportation of Natural Gas (486210). Marcellus Shale (541620); Remediation Services (562910); Commercial & Industrial Machinery & Equipment Repair

Boyer, Elizabeth W.

292

The elastic anisotrophy of shales  

SciTech Connect (OSTI)

Shales constitute about 75% of the clastic fill sedimentary basins and have a decisive effect on fluid flow and seismic wave propagation because of their low permeability and anisotropic microstructure. The elastic stiffnesses of a shale with partially oriented clay particles is expressed in terms of the coefficients W(sub lmn) in an expansion of the clay-particle orientation distribution function in generalized Legendre functions. Application is made to the determination of the anellipticity of shales. For transverse isotrophy the anellipticity quantifies the deviation of the P wave slowness curve from an ellipse and is shown to depend on a single coefficient W(sub 400) in the expansion of the clay-particle orientation distribution function. If W(sub 400) is small, the anellipticity may be neglected, as is apparently the case for a near-surface late Tertiary shale studied by Winterstein and Paulson. Strongly aligned clay particles result in a positive value of W(sub 400) and a positive anellipticity, in agreement with the majority of the field measurements. However, less well ordered shales could have a significantly positive second moment W(sub 200) but only a small positive or even negative value of W(sub 400). For such shales the anellipticity would be small or negative despite a preferred alignment of clay particles in the bedding plane. Numerical examples of clay particle orientation distribution functions leading to zero or negative anellipticity are given.

Sayers, C.M. [Schlumberger Cambridge Research, Cambridge (United Kingdom)] [Schlumberger Cambridge Research, Cambridge (United Kingdom)

1994-01-01T23:59:59.000Z

293

Baltic oil: Moving offshore  

Science Journals Connector (OSTI)

... the consortium of Soviet, Polish and East German oil interests, will sink its first offshore bore-hole in the Baltic. This move follows four years of intensive prospecting, which ... findings. For a time, plans were afort to buy or hire a Vexco drilling rig, but when these had to be abondoned for lack of hard currency, the shut ...

Vera Rich

1980-06-19T23:59:59.000Z

294

Offshore Wind Potential Tables  

Wind Powering America (EERE)

Offshore wind resource by state and wind speed interval within 50 nm of shore. Wind Speed at 90 m (ms) 7.0 - 7.5 7.5 - 8.0 8.0 - 8.5 8.5 - 9.0 9.0 - 9.5 9.5 - 10.0 >10.0 Total...

295

CONTENTS Japan Completes First Offshore  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Japan Completes First Offshore Japan Completes First Offshore Production Test .............................1 New Seismic Data Over Known Hydrate Occurrences in the Deepwater Gulf of Mexico .........3 Gas Hydrate Reservoirs in the Offshore Caribbean Region of Colombia ..........................................7 CSEM Survey of a Methane Vent Site, Offshore West Svalbard...12 Pressure Core Analysis Tools Used to Characterize Hydrate- Bearing Sediments from The Nankai Trough ..............................19 Using Noble Gas Signatures to Fingerprint Gas Streams Derived from Dissociating Methane Hydrate .......................................... 23 Announcements ...................... 27 * North Slope Oil and Gas Lands Set Aside for Methane Hydrate Research * 2014 Offshore Technology Conference to Have Sessions on

296

Offshore Wind Research (Fact Sheet)  

SciTech Connect (OSTI)

This 2-page fact sheet describes NREL's offshore wind research and development efforts and capabilities. The National Renewable Energy Laboratory is internationally recognized for offshore wind energy research and development (R&D). Its experience and capabilities cover a wide spectrum of wind energy disciplines. NREL's offshore wind R&D efforts focus on critical areas that address the long-term needs of the offshore wind energy industry and the Department of Energy (DOE). R&D efforts include: (1) Developing offshore design tools and methods; (2) Collaborating with international partners; (3) Testing offshore systems and developing standards; (4) Conducting economic analyses; (5) Characterizing offshore wind resources; and (6) Identifying and mitigating offshore wind grid integration challenges and barriers. NREL has developed and maintains a robust, open-source, modular computer-aided engineering (CAE) tool, known as FAST. FAST's state-of-the-art capabilities provide full dynamic system simulation for a range of offshore wind systems. It models the coupled aerodynamic, hydrodynamic, control system, and structural response of offshore wind systems to support the development of innovative wind technologies that are reliable and cost effective. FAST also provides dynamic models of wind turbines on offshore fixed-bottom systems for shallow and transitional depths and floating-platform systems in deep water, thus enabling design innovation and risk reduction and facilitating higher performance designs that will meet DOE's cost of energy, reliability, and deployment objectives.

Not Available

2011-10-01T23:59:59.000Z

297

CONTROL STRATEGIES FOR ABANDONED IN-SITU OIL SHALE RETORTS  

E-Print Network [OSTI]

recovery Vent gas '\\Raw shale oil Recycled gas compressorThis process produces shale oil, a low BTU gas, and char,Oil Shale Process" in Oil Shale and Tar Sands, J. W. Smith

Persoff, P.

2011-01-01T23:59:59.000Z

298

CONTROL STRATEGIES FOR ABANDONED IN-SITU OIL SHALE RETORTS  

E-Print Network [OSTI]

the carbon, oil, and gas from the shale are combusted; andceases •t II Burner gas and shale heat shale ll>" ~Air AirFigure 2. Oil recovery Vent gas '\\Raw shale oil Recycled gas

Persoff, P.

2011-01-01T23:59:59.000Z

299

NREL: Wind Research - Offshore Wind Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Offshore Wind Research Offshore Wind Research Photo of a European offshore wind farm. Early progress in European Offshore Wind Energy over the last decade provides a glimpse into the vast potential of the global offshore resource. For more than eight years, NREL has worked with the Department of Energy to become an international leader in offshore wind energy research. Capabilities NREL's offshore wind capabilities focus on critical areas that reflect the long-term needs of the offshore wind energy industry and the U.S. Department of Energy including: Offshore Design Tools and Methods Offshore Standards and Testing Energy Analysis of Offshore Systems Offshore Wind Resource Characterization Grid Integration of Offshore Wind Key Research NREL documented the status of offshore wind energy in the United States in

300

POLYVINYLCHLORIDE WASTE WITH OIL SHALE ASH TO CAPTURE  

E-Print Network [OSTI]

alkaline oil shale ash. Solid heat carrier (Galoter process)-type oil shale retorting units, where the

V. Oja; A. Elenurm; I. Rohtla; E. Tearo; E. Tali

Note: This page contains sample records for the topic "offshore shale proved" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Attitudes toward offshore oil development: A summary of current evidence  

E-Print Network [OSTI]

Press; 1968. [11] Offshore Staff. Deep sea drillingproject completes second leg. Offshore 1969:67–72. [12] Weeks LG. Offshore operations around the world. Offshore

Gramling, R; Freudenburg, Wm R

2006-01-01T23:59:59.000Z

302

EA-1970: Fishermen's Energy LLC Offshore Wind Demonstration Project...  

Broader source: Energy.gov (indexed) [DOE]

70: Fishermen's Energy LLC Offshore Wind Demonstration Project, offshore Atlantic City, New Jersey EA-1970: Fishermen's Energy LLC Offshore Wind Demonstration Project, offshore...

303

Geology of the Douala basin, offshore Cameroon, West Africa  

SciTech Connect (OSTI)

The Douala basin is predominantly an offshore basin extending from the Cameroon volcanic line in the north to the Corisco arch in the south near the Equatorial Guinea-Gabon border. The basin lies wholly within the territorial borders of Cameroon and Equatorial Guinea. The Douala basin is one of a series of divergent margin basins occurring along the southwest African coastline resulting from the rifting of Africa from South America. Continental rifting in the Doula basin was initiated at least by Aptian-Albian time and possibly as early as Jurassic. The rift stage persisted until Albian time when the onset of drifting occurred. The sedimentary section in the basin has a maximum thickness of 8-10 km, based on exploration drilling and gravity and magnetics modeling. The synrift section consists of Aptian-Albian sands and shales, deposited primarily as submarine fans, fan-deltas, and turbidite deposits. These are overlain by salt, thought to be equivalent to the Ezagna salt of Aptian age in the Gabon basin to the south. The synrift section is separated from the overlying postrift shale sequence of Late Cretaceous and Tertiary age by a major late Albian unconformity. The Douala basin has been explored for hydrocarbons intermittently over the last 25 years. Results show a distinct tendency for gas-proneness. The largest field recorded to date is the Sanaga Sud gas field, discovered in 1979, offshore, near the coastal city of Kribi.

Pauken, R.J.; Thompson, J.M.; Schumann, J.R. (Mobil New Exploration Ventures Co., Dallas, TX (United States)); Cooke, J.C. (Mobil Exploration and Production Services Inc., Dallas, TX (United States))

1991-03-01T23:59:59.000Z

304

Shale gas is natural gas trapped inside  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Shale gas is natural gas trapped inside formations of shale - fine grained sedimentary rocks that can be rich sources of petroleum and natural gas. Just a few years ago, much of...

305

Ammonia evolution during oil shale pyrolysis  

Science Journals Connector (OSTI)

Ammonia evolution during oil shale pyrolysis ... Parallel pyrolytic studies were carried out on an immature, ultralaminae-rich, type I kerogen (Göynük oil shale kerogen) and a related algaenan (isolated from the extant green microalga Scenedesmus communis). ...

Myongsook S. Oh; Robert W. Taylor; Thomas T. Coburn; Richard W. Crawford

1988-01-01T23:59:59.000Z

306

Net thickness of the radioactive shale facies in the lower Olentangy shale (Hamilton group)  

SciTech Connect (OSTI)

The net thickness of radioactive shale is determined by first establishing a normal base line for each well based upon the gamma ray log response of shale units, such as the Bedford, Chagrin, and certain units within the Olentangy, observed to be fairly consistently radioactive. Radioactive shales are then defined as those shales having a gamma ray response 20 API units or more to the right of the shale base line. The combined thickness of beds reaching the radioactive shale threshold value is reported as the net thickness of radioactive shale facies within the mapping unit. Maps are included.

Majchszak, F.L.; Honeycutt, M.

1980-01-01T23:59:59.000Z

307

Net thickness of the radioactive shale facies in the Cleveland member of the Ohio shale  

SciTech Connect (OSTI)

The net thickness of radioactive shale is determined by first establishing a normal base line for each well based upon the gamma ray log response of shale units, such as the Bedford, Chagrin, and certain units within the Olentangy, observed to be fairly consistently radioactive. Radioactive shales are then defined as those shales having a gamma ray response 20 API units or more to the right of the shale base line. The combined thickness of beds reaching the radioactive shale threshold value is reported as the net thickness of radioactive shale facies within the mapping unit.

Majchszak, F.L.; Honeycutt, M.

1980-01-01T23:59:59.000Z

308

Net thickness of the radioactive shale facies in the upper Olentangy Shale  

SciTech Connect (OSTI)

This map represents the net thickness of the radioactive shale facies included in that part of the Olentangy Shale of Ohio which correlates to the West Falls, Sonyea, and Genesee Formations of New York State. Specifically excluded from consideration is the uppermost part of the upper Olentangy Shale which correlates to the Java Formation of New York. The net thickness of radioactive shale is determined by first establishing a normal base line for each well based upon the gamma ray log response of shale units, such as the Bedford, Chagrin, and certain units within the Olentangy, observed to be fairly consistently radioactive. Radioactive shales are then defined as those shales having a gamma ray response 20 API units or more to the right of the shale base line. The combined thickness of beds reaching the radioactive shale threshold value is reported as the net thickness of radioactive shale facies within the mapping unit.

Honeycutt, M.; Majchszak, F.L.

1980-01-01T23:59:59.000Z

309

THERMAL PROCESSING OF OIL SHALE/SANDS  

E-Print Network [OSTI]

)-based simulation tools to a modified in-situ process for production of oil from oil shale. The simulation tools

Michal Hradisky; Philip J. Smith; Doe Award; No. De-fe

2009-01-01T23:59:59.000Z

310

Shale Gas Development: A Smart Regulation Framework  

Science Journals Connector (OSTI)

Shale Gas Development: A Smart Regulation Framework ... Mandatory reporting of greenhouse gases: Petroleum and natural gas systems; Final rule. ...

Katherine E. Konschnik; Mark K. Boling

2014-02-24T23:59:59.000Z

311

The Future of Offshore Wind Energy  

E-Print Network [OSTI]

1 The Future of Offshore Wind Energy #12;2 #12;3 Offshore Wind Works · Offshore wind parks: 28 in 10 countries · Operational since 1991 · Current installed capacity: 1,250 MW · Offshore wind parks in the waters around Europe #12;4 US Offshore Wind Projects Proposed Atlantic Ocean Gulf of Mexico Cape Wind

Firestone, Jeremy

312

MERCURY EMISSIONS FROM A SIMULATED IN-SITU OIL SHALE RETORT  

E-Print Network [OSTI]

Minor elements in oil shale and oil~shale products, LERCmercury to the oil shale, shale oil, and retort water. Thesemercury to spent shale, shale oil, retort water and offgas

Fox, J. P.

2012-01-01T23:59:59.000Z

313

Oil shale technology. Final report  

SciTech Connect (OSTI)

This collaborative project with industrial participants studied oil shale retorting through an integrated program of fundamental research, mathematical model development and operation of a 4-tonne-per-day solid recirculation oil shale test unit. Quarterly, project personnel presented progress and findings to a Project Guidance Committee consisting of company representatives and DOE program management. We successfully operated the test unit, developed the oil shale process (OSP) mathematical model, evaluated technical plans for process scale up and determined economics for a successful small scale commercial deployment, producing premium motor fuel, specility chemicals along with electricity co-production. In budget negotiations, DOE funding for this three year CRADA was terminated, 17 months prematurely, as of October 1993. Funds to restore the project and continue the partnership have not been secured.

NONE

1995-03-01T23:59:59.000Z

314

Heat Requirements for Retorting Oil Shale  

Science Journals Connector (OSTI)

Heat Requirements for Retorting Oil Shale ... Converting Oil Shale to Liquid Fuels: Energy Inputs and Greenhouse Gas Emissions of the Shell in Situ Conversion Process ... Converting Oil Shale to Liquid Fuels: Energy Inputs and Greenhouse Gas Emissions of the Shell in Situ Conversion Process ...

H. W. Sohns; L. E. Mitchell; R. J. Cox; W. I. Barnet; W. I. R. Murphy

1951-01-01T23:59:59.000Z

315

Restraint urged in developing oil shale  

Science Journals Connector (OSTI)

Restraint urged in developing oil shale ... An oil shale industry producing 400,000 bbl per day could be created by 1990 using existing technologies and without additional leasing of federal land. ... "Utah and Colorado, with most of the nation's oil shale reserves," Hatch says, "are looking at the business end of a very large federal cannon, loaded with billions for synthetic fuels development." ...

1980-06-30T23:59:59.000Z

316

Oil shale technology and evironmental aspects  

SciTech Connect (OSTI)

Oil shale processes are a combination of mining, retorting, and upgrading facilities. This work outlines the processing steps and some design considerations required in an oil shale facility. A brief overview of above ground and in situ retorts is presented; 6 retorts are described. The development aspects which the oil shale industry is addressing to protect the environment are presented.

Scinta, J.

1982-01-01T23:59:59.000Z

317

Australian developments in oil shale processing  

SciTech Connect (OSTI)

This study gives some background on Australian oil shale deposits, briefly records some history of oil shale processing in the country and looks at the current status of the various proposals being considered to produce syncrudes from Australian oil shales. 5 refs.

Baker, G.L.

1981-01-01T23:59:59.000Z

318

Shale oil processes ready for commercialization  

Science Journals Connector (OSTI)

Shale oil processes ready for commercialization ... However, Lurgi has been in the shale processing business by itself since the 1930s, and hopes to capitalize on this experience. ... Lurgi developed the Lurgi-Ruhrgas (LR) process in concert with Ruhrgas with an eye on the U.S. shale oil markets of the future. ...

1982-04-12T23:59:59.000Z

319

Chapter 2: BACKGROUND (I) Description of the coal Conversion and Oil Shale Retorting Fuel Cycles 2  

E-Print Network [OSTI]

oil shale 2.2 Coal and Oil Shale Resources energy systems retorting. Coal and oil shale resources are

unknown authors

320

Gas Shale Plays… The Global Transition  

U.S. Energy Information Administration (EIA) Indexed Site

XX. China EIA/ARI World Shale Gas and Shale Oil Resource Assessment XX. China EIA/ARI World Shale Gas and Shale Oil Resource Assessment May 17, 2013 XX-1 XX. CHINA SUMMARY China has abundant shale gas and shale oil potential in seven prospective basins: Sichuan, Tarim, Junggar, Songliao, the Yangtze Platform, Jianghan and Subei, Figure XX-1. Figure XX-1. China's Seven Most Prospective Shale Gas and Shale Oil Basins are the Jianghan, Junggar, Sichuan, Songliao, Subei, Tarim, and Yangtze Platform. Source: ARI, 2013. XX. China EIA/ARI World Shale Gas and Shale Oil Resource Assessment

Note: This page contains sample records for the topic "offshore shale proved" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Titanium for Offshore Oil Drilling  

Science Journals Connector (OSTI)

Current and future applications for titanium and its alloys for offshore drilling have been examined. Successful applications were shown ... chlorination systems. Future applications especially for deepwater drilling

Dennis F. Hasson; C. Robert Crowe

1982-01-01T23:59:59.000Z

322

Inventory of Shale Formations in the US, Including Geologic, Hydrological, and Mechanical Characteristics  

E-Print Network [OSTI]

International Coalbed and Shale Gas Symposium, Paper 808.Shale RVSP, New Albany Shale Gas Project, RVSP SeismicWave Analysis from Antrim Shale Gas Play, Michigan Basin,

Dobson, Patrick

2014-01-01T23:59:59.000Z

323

Recordkeeping for Offshore Course Offerings Guideline  

E-Print Network [OSTI]

Guideline Recordkeeping for Offshore Course Offerings Guideline Policy Supported: Recordkeeping and operation of Offshore Courses. Contact Officer: Manager, Records Management Phone: 9360 2162 Printed copies outlines responsibilities for managing records in all formats associated with Offshore Courses

324

44 MArch 2006 Can offshore aquaculture  

E-Print Network [OSTI]

44 MArch 2006 Can offshore aquaculture of carnivorous fish be sustainable? Case studies from opera- tions further offshore. The United States is paving the technological road to sustainable development of offshore aquaculture through university-industry-government partnerships. Emerging technology

Miami, University of

325

Offshore Aquaculture in the United States  

E-Print Network [OSTI]

Offshore Aquaculture in the United States: Economic Considerations, Implications & Opportunities). 2008. Offshore Aquaculture in the United States: Economic Considerations, Implications & Opportunities;Offshore Aquaculture in the United States: Economic Considerations, Implications & Opportunities Prepared

326

Japan Completes First Offshore Production Test .............................1  

E-Print Network [OSTI]

1 CONTENTS Japan Completes First Offshore Production Test .............................1 New Reservoirs in the Offshore Caribbean Region of Colombia..........................................7 CSEM Survey of a Methane Vent Site, Offshore West Svalbard...12 Pressure Core Analysis Tools Used

327

Electrification of offshore petroleum installations with offshore wind integration  

Science Journals Connector (OSTI)

Electric power supply to oil and gas platforms is conventionally provided by gas turbines located on the platforms. As these gas turbines emit considerable amounts of CO2 and NOx, it is desirable to find alternative solutions. One alternative is to feed the platforms from the onshore power system via subsea power cables, which already have been implemented on some platforms in the Norwegian part of the North Sea. The paper studies a cluster of petroleum installations in this geographic area, connected to the Norwegian onshore power system through an HVDC voltage link. In the study, an offshore wind farm is also connected to the offshore AC power system. The main focus is investigation of transient stability in the offshore power system, and several fault cases have been studied for different levels of wind power generation. Simulations show that faults on the offshore converter platform can be critical due to the dependency of the reactive power delivered by the HVDC link to the offshore AC system. However, it is shown that local wind power production matching the offshore power demand will improve both voltage- and frequency-stability. Further on, it is indicated that offshore reactive power injections or alternative wind farm control topologies could improve voltage stability offshore.

Jorun I. Marvik; Eirik V. Űyslebű; Magnus Korpćs

2013-01-01T23:59:59.000Z

328

NATURAL GAS FROM SHALE: Questions and Answers  

Broader source: Energy.gov (indexed) [DOE]

is shale gas? is shale gas? Basically, it is natural gas - primarily methane - found in shale formations, some of which were formed 300-million-to-400-million years ago during the Devonian period of Earth's history. The shales were deposited as fine silt and clay particles at the bottom of relatively enclosed bodies of water. At roughly the same time, primitive plants were forming forests on land and the first amphibians were making an appearance. Some of the methane that formed from the organic matter buried with the sediments escaped into sandy rock layers adjacent to the shales, forming conventional accumulations of natural gas which are relatively easy to extract. But some of it remained locked in the tight, low permeability shale layers, becoming shale gas.

329

New Albany shale group of Illinois  

SciTech Connect (OSTI)

The Illinois basin's New Albany shale group consists of nine formations, with the brownish-black laminated shales being the predominant lithology in southeastern Illinois and nearby parts of Kentucky where the group reaches its maximum thickness of 460 ft. A second depositional center lies in west-central Illinois and southeastern Iowa, where the group is about 300 ft thick and the predominant lithology is bioturbated olive-gray to greenish-gray shale. A northeast-trending area of thin strata (mostly interfingering gray and black shales) separates these two depocenters. The distribution and types of lithofacies in the New Albany suggest that the shale was deposited across a shelf-slope-basin transition in a marine, stratified anoxic basin. The record of depositional events in the shale group could serve as a baseline for interpreting the history of tectonically more complex sequences such as the Appalachian basin's Devonian shales.

Cluff, R.M.; Reinbold, M.L.; Lineback, J.A.

1981-01-01T23:59:59.000Z

330

Jordan ships oil shale to China  

SciTech Connect (OSTI)

Jordan and China have signed an agreement to develop oil shale processing technology that could lead to a 200 ton/day oil shale plant in Jordan. China will process 1200 tons of Jordanian oil shale at its Fu Shun refinery. If tests are successful, China could build the demonstration plant in Jordan's Lajjun region, where the oil shale resource is estimated at 1.3 billion tons. China plans to send a team to Jordan to conduct a plant design study. A Lajjun oil shale complex could produce as much as 50,000 b/d of shale oil. An earlier 500 ton shipment of shale is said to have yielded promising results.

Not Available

1986-12-01T23:59:59.000Z

331

Offshore Wind Advanced Technology Demonstration Projects | Department...  

Office of Environmental Management (EM)

will help address key challenges associated with installing full-scale offshore wind turbines, connecting offshore turbines to the power grid, and navigating new permitting and...

332

Energy Department Announces Offshore Wind Demonstration Awardees...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

will help address key challenges associated with installing utility-scale offshore wind turbines, connecting offshore turbines to the power grid, and navigating new permitting and...

333

Offshore Ostsee Wind AG | Open Energy Information  

Open Energy Info (EERE)

Name: Offshore Ostsee Wind AG Place: Brgerende, Mecklenburg-Western Pomerania, Germany Zip: 18211 Sector: Wind energy Product: Joint venture formed to exploit offshore wind...

334

Offshore Wind Accelerator | Open Energy Information  

Open Energy Info (EERE)

Offshore Wind Accelerator Place: United Kingdom Sector: Wind energy Product: Research and development initiative aimed at cutting the cost of offshore wind energy. References:...

335

Developing Integrated National Design Standards for Offshore...  

Broader source: Energy.gov (indexed) [DOE]

Developing Integrated National Design Standards for Offshore Wind Plants Developing Integrated National Design Standards for Offshore Wind Plants January 6, 2014 - 10:00am Addthis...

336

Scira Offshore Energy | Open Energy Information  

Open Energy Info (EERE)

Scira Offshore Energy Jump to: navigation, search Name: Scira Offshore Energy Place: Lowestoft, Suffolk, United Kingdom Zip: NR32 1DE Sector: Wind energy Product: Developer of the...

337

Sandia National Laboratories: Quantifying Offshore Wind Scour...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ClimateECEnergyComputational Modeling & SimulationQuantifying Offshore Wind Scour with Sandia's Environmental Fluid Dynamics Code (SNL---EFDC) Quantifying Offshore Wind Scour with...

338

Federal Offshore U.S. Crude Oil plus Lease Condensate Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

4,357 4,710 5,171 5,282 2009-2012 Adjustments 0 -6 -1 -153 2009-2012 Revision Increases 710 879 1,966 1,264 2009-2012 Revision Decreases 208 214 1,455 807 2009-2012 Sales 20 56 42...

339

Federal Offshore U.S. Crude Oil plus Lease Condensate Proved...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

,357 4,710 5,171 5,282 5,276 2009-2013 Adjustments 0 -6 -1 -153 -246 2009-2013 Revision Increases 710 879 1,966 1,264 666 2009-2013 Revision Decreases 208 214 1,455 807 369...

340

Federal Offshore U.S. Associated-Dissolved Natural Gas Proved...  

Gasoline and Diesel Fuel Update (EIA)

,106 5,223 5,204 5,446 5,864 5,530 1990-2013 Adjustments 7 12 -14 -22 -165 -73 1990-2013 Revision Increases 609 854 1,028 1,583 1,894 829 1990-2013 Revision Decreases 430 517 879...

Note: This page contains sample records for the topic "offshore shale proved" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Towers for Offshore Wind Turbines  

Science Journals Connector (OSTI)

Increasing energy demand coupled with pollution free production of energy has found a viable solution in wind energy. Land based windmills have been utilized for power generation for more than two thousand years. In modern times wind generated power has become popular in many countries. Offshore wind turbines are being used in a number of countries to tap the energy from wind over the oceans and convert to electric energy. The advantages of offshore wind turbines as compared to land are that offshore winds flow at higher speed than onshore winds and the more available space. In some land based settings for better efficiency turbines are separated as much as 10 rotor diameters from each other. In offshore applications where only two wind directions are likely to predominate the distances between the turbines arranged in a line can be shortened to as little as two or four rotor diameters. Today more than a dozen offshore European wind facilities with turbine ratings of 450 kw to 3.6 MW exist offshore in very shallow waters of 5 to 12 m. Compared to onshore wind turbines offshore wind turbines are bigger and the tower height in offshore are in the range of 60 to 80 m. The water depths in oceans where offshore turbines can be located are within 30 m. However as the distance from land increases the costs of building and maintaining the turbines and transmitting the power back to shore also increase sharply. The objective of this paper is to review the parameters of design for the maximum efficiency of offshore wind turbines and to develop types offshore towers to support the wind turbines. The methodology of design of offshore towers to support the wind turbine would be given and the environmental loads for the design of the towers would be calculated for specific cases. The marine corrosion on the towers and the methods to control the corrosion also would be briefly presented. As the wind speeds tend to increase with distance from the shore turbines build father offshore will be able to capture more wind energy. Currently two types of towers are considered. Cylindrical tubular structures and truss type structures. But truss type structures have less weight and flexibility in design. The construction of the offshore towers to harness the wind energy is also presented. The results will include the calculation of wind and wave forces on the tower and the design details for the tower.

V. J. Kurian; S. P. Narayanan; C. Ganapathy

2010-01-01T23:59:59.000Z

342

Brazoria Offshore | Open Energy Information  

Open Energy Info (EERE)

Brazoria Offshore Brazoria Offshore Jump to: navigation, search Name Brazoria Offshore Facility Brazoria Offshore Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Coastal Point Energy LLC Developer Coastal Point Energy LLC Location Gulf of Mexico TX Coordinates 28.764°, -95.33° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":28.764,"lon":-95.33,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

343

Gulf of Mexico Federal Offshore - Louisiana and Alabama Natural Gas Plant  

Gasoline and Diesel Fuel Update (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) Gas Plant Liquids, Proved Reserves (Million Barrels) Gulf of Mexico Federal Offshore - Louisiana and Alabama Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 614 566 532 512 575 1990's 519 545 472 490 500 496 621 785 776 833 2000's 921 785 783 598 615 603 575 528 464 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Liquids Proved Reserves as of Dec. 31 Federal Offshore, Gulf of Mexico, Louisiana & Alabama Natural Gas Liquids Proved Reserves Natural Gas Liquids Proved Reserves as of Dec.

344

Conversion characteristics of 10 selected oil shales  

SciTech Connect (OSTI)

The conversion behavior of 10 oil shale from seven foreign and three domestic deposits has been studied by combining solid- and liquid-state nuclear magnetic resonance (NMR) measurements with material balance Fischer assay conversion data. The extent of aromatization of aliphatic carbons was determined. Between zero and 42% of the raw shale aliphatic carbon formed aromatic carbon during Fischer assay. For three of the shales, there was more aromatic carbon in the residue after Fisher assay than in the raw shale. Between 10 and 20% of the raw shale aliphatic carbons ended up as aliphatic carbons on the spent shale. Good correlations were found between the raw shale aliphatic carbon and carbon in the oil and between the raw shale aromatic carbon and aromatic carbon on the spent shale. Simulated distillations and molecular weight determinations were performed on the shale oils. Greater than 50% of the oil consisted of the atmospheric and vacuum gas oil boiling fractions. 14 refs., 15 figs., 1 tab.

Miknis, F.P.

1989-08-01T23:59:59.000Z

345

Production of hydrogen from oil shale  

SciTech Connect (OSTI)

A process for production of hydrogen from oil shale fines by direct introduction of the oil shale fines into a fluidized bed at temperatures about 1200/sup 0/ to about 2000/sup 0/ F. to obtain rapid heating of the oil shale. The bed is fluidized by upward passage of steam and oxygen, the steam introduced in the weight ratio of about 0.1 to about 10 on the basis of the organic carbon content of the oil shale and the oxygen introduced in less than the stoichiometric quantity for complete combustion of the organic carbonaceous kerogen content of the oil shale. Embodiments are disclosed for heat recovery from the spent shale and heat recovery from the spent shale and product gas wherein the complete process and heat recovery is carried out in a single reaction vessel. The process of this invention provides high conversion of organic carbon component of oil shale and high production of hydrogen from shale fines which when used in combination with a conventional oil shale hydroconversion process results in increased overall process efficiency of greater than 15 percent.

Schora, F. C.; Feldkirchner, H. L.; Janka, J. C.

1985-12-24T23:59:59.000Z

346

Miscellaneous States Coalbed Methane Proved Reserves (Billion...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Coalbed Methane Proved Reserves (Billion Cubic Feet) Miscellaneous States Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

347

Evaluation of Lower Cambrian Shale in Northern Guizhou Province, South China: Implications for Shale Gas Potential  

Science Journals Connector (OSTI)

The overall minerals are similar to those present in the Ohio and Woodford/Barnett shales (west Texas), which have successfully produced commercial shale gas. ... Adsorption of gases in multimolecular layers ...

Shuangbiao Han; Jinchuan Zhang; Yuxi Li; Brian Horsfield; Xuan Tang; Wenli Jiang; Qian Chen

2013-05-07T23:59:59.000Z

348

Shale Energy Resources Alliance (SERA)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

contActS contActS George Darakos Business Manager 412-386-7390 george.darakos@netl.doe.gov Barbara Kutchko, PhD Shallow Stray Gas, Research Team Leader 412-386-5149 barbara.kutchko@netl.doe.gov Natalie Pekney, PhD Air Emissions, Research Team Leader 412-386-5953 natalie.pekney@netl.doe.gov Paul Ziemkiewicz, PhD Water, Research Team Leader 304-293-6958 pziemkie@wvu.edu nEtL-RUA PARtnERS Carnegie Mellon University Penn State University of Pittsburgh URS Corporation Virginia Tech West Virginia University Shale Energy Resources Alliance (SERA) Mission To support the environmentally and socially sustainable development of shale resources through collaborative research and development among industry, university, and government partners on: resource characterization; drilling and

349

Shale Oil Value Enhancement Research  

SciTech Connect (OSTI)

Raw kerogen oil is rich in heteroatom-containing compounds. Heteroatoms, N, S & O, are undesirable as components of a refinery feedstock, but are the basis for product value in agrochemicals, pharmaceuticals, surfactants, solvents, polymers, and a host of industrial materials. An economically viable, technologically feasible process scheme was developed in this research that promises to enhance the economics of oil shale development, both in the US and elsewhere in the world, in particular Estonia. Products will compete in existing markets for products now manufactured by costly synthesis routes. A premium petroleum refinery feedstock is also produced. The technology is now ready for pilot plant engineering studies and is likely to play an important role in developing a US oil shale industry.

James W. Bunger

2006-11-30T23:59:59.000Z

350

CONMOW: Condition Monitoring for Offshore Wind Farms  

E-Print Network [OSTI]

practice the European project CONMOW (Condition Monitoring for Offshore Wind Farms) was started in November

Edwin Wiggelinkhuizen; Theo Verbruggen; Henk Braam; Luc Rademakers; Miguel Catalin Tipluica; Andrew Maclean; Axel Juhl Christensen; Edwin Becker; Pr?ftechnik Cm Gmbh (d; Dirk Scheffler; Nordex Energy Gmbh (d

351

Offshore Wind Turbines and Their Installation  

Science Journals Connector (OSTI)

Offshore winds tend to be higher, more constant and not disturbed by rough terrain, so there is a large potential for utilizing wind energy near to the sea. Compared with the wind energy converters onland, wind turbine components offshore will subject ... Keywords: renewable energy, wind power generation, offshore wind turbines, offshore installation

Liwei Li; Jianxing Ren

2010-01-01T23:59:59.000Z

352

Offshore Wind Potential Tables  

Wind Powering America (EERE)

Offshore wind resource by state and wind speed interval within 50 nm of shore. Offshore wind resource by state and wind speed interval within 50 nm of shore. Wind Speed at 90 m (m/s) 7.0 - 7.5 7.5 - 8.0 8.0 - 8.5 8.5 - 9.0 9.0 - 9.5 9.5 - 10.0 >10.0 Total >7.0 State Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) California 11,439 (57,195) 24,864 (124,318) 23,059 (115,296) 22,852 (114,258) 13,185 (65,924) 15,231 (76,153) 6,926 (34,629) 117,555 (587,773) Connecticut 530 (2,652) 702 (3,508) 40 (201) 0 (0) 0 (0) 0 (0) 0 (0) 1,272 (6,360) Delaware 223 (1,116) 724 (3,618) 1,062 (5,310) 931 (4,657) 0 (0) 0 (0) 0 (0) 2,940 (14,701) Georgia 3,820 (19,102) 7,741 (38,706) 523 (2,617) 0 (0) 0 (0) 0 (0) 0 (0) 12,085 (60,425) Hawaii 18,873 (94,363) 42,298 (211,492)

353

Lease Condensate Proved Reserves as of Dec. 31  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Proved Reserves as of Dec. 31 Adjustments Revision Increases Revision Decreases Sales Acquisitions Extensions New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Period: Data Series: Proved Reserves as of Dec. 31 Adjustments Revision Increases Revision Decreases Sales Acquisitions Extensions New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2006 2007 2008 2009 2010 2011 View History U.S. 1,339 1,495 1,433 1,633 1,914 2,406 1979-2011 Federal Offshore U.S. 254 255 227 228 214 195 1981-2011 Pacific (California) 4 4 0 2 2 2 1979-2011 Louisiana & Alabama 185 163 151 134 129 129 1981-2011 Texas 65 88 76 92 83 64 1981-2011 Alaska 0 0 0 0 0 36 1979-2011 Lower 48 States 1,339 1,495 1,433 1,633 1,914 2,370 1979-2011

354

Coalbed Methane Proved Reserves as of Dec. 31  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Proved Reserves as of Dec. 31 Adjustments Revision Increases Revision Decreases Sales Acquisitions Extensions New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Period: Data Series: Proved Reserves as of Dec. 31 Adjustments Revision Increases Revision Decreases Sales Acquisitions Extensions New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2006 2007 2008 2009 2010 2011 View History U.S. 19,620 21,874 20,798 18,578 17,508 16,817 1989-2011 Federal Offshore U.S. 0 0 0 0 0 0 2005-2011 Pacific (California) 0 0 0 0 0 0 2005-2011 Louisiana & Alabama 0 0 0 0 0 0 2005-2011 Texas 0 0 0 0 0 0 2005-2011 Alaska 0 0 0 0 0 0 2005-2011 Lower 48 States 19,620 21,874 20,798 18,578 17,508 16,817 2005-2011

355

Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Proved Reserves as of Dec. 31 Adjustments Revision Increases Revision Decreases Sales Acquisitions Extensions New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Period: Data Series: Proved Reserves as of Dec. 31 Adjustments Revision Increases Revision Decreases Sales Acquisitions Extensions New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2006 2007 2008 2009 2010 2011 View History U.S. 29,640 32,668 29,023 33,383 35,746 42,823 1979-2011 Federal Offshore U.S. 4,835 4,780 5,106 5,223 5,204 5,446 1990-2011 Pacific (California) 756 752 702 731 722 711 1979-2011 Louisiana & Alabama 3,701 3,651 3,939 3,863 3,793 4,196 1981-2011 Texas 378 377 465 629 689 539 1981-2011 Alaska 8,886 10,752 6,627 8,093 7,896 8,535 1979-2011

356

Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation, as  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Proved Reserves as of Dec. 31 Adjustments Revision Increases Revision Decreases Sales Acquisitions Extensions New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Period: Data Series: Proved Reserves as of Dec. 31 Adjustments Revision Increases Revision Decreases Sales Acquisitions Extensions New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2006 2007 2008 2009 2010 2011 View History U.S. 190,776 215,121 226,012 250,496 281,901 305,986 1979-2011 Federal Offshore U.S. 10,915 10,033 8,786 7,633 6,916 5,374 1990-2011 Pacific (California) 55 53 3 9 3 0 1979-2011 Louisiana & Alabama 8,500 7,807 6,846 5,802 5,457 4,359 1981-2011 Texas 2,360 2,173 1,937 1,822 1,456 1,015 1981-2011 Alaska 1,447 1,270 1,139 1,090 1,021 976 1979-2011

357

4C Offshore Limited | Open Energy Information  

Open Energy Info (EERE)

4C Offshore Limited 4C Offshore Limited Jump to: navigation, search Name 4C Offshore Limited Place Suffolk, United Kingdom Country United Kingdom Product Project planning, consulting for offshore industries (wind, oil, gas) Year founded 2009 Company Type For Profit Company Ownership Private Small Business No Affiliated Companies 4C Offshore Limited Technology Offshore Wind Phone number +44 (0)1502 509260 Website http://www.4coffshore.com/ References 4C Offshore website[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. 4C Offshore Limited is a company based in Suffolk, United Kingdom. 4C Offshore is an independent marine consulting firm, that provides advice and consulting services in offshore development, particularly renewables and

358

Developments in oil shale in 1987  

SciTech Connect (OSTI)

Oil shale development continued at a slow pace in 1987. The continuing interest in this commodity is demonstrated by the 342 oil shale citations added to the US Department of Energy Energy Database during 1987. The Unocal project in Parachute, Colorado, produced 600,000 bbl of synfuel in 1987. An appreciable amount of 1987's activity was associated with the nonsynfuel uses of oil shale. 4 figs., 2 tabs.

Knutson, C.F.; Dana, G.F.; Solti, G.; Qian, J.L.; Ball, F.D.; Hutton, A.C.; Hanna, J.; Russell, P.L.; Piper, E.M.

1988-10-01T23:59:59.000Z

359

ORGANIC GEOCHEMICAL CHARACTERIZATION AND MINERALOGIC PROPERTIES OF MENGEN OIL SHALE (LUTETIAN  

E-Print Network [OSTI]

, lignite, and oil shale sequences. Oil shale deposit has been accumulated in shallow restricted back

unknown authors

360

Gas Shale Plays… The Global Transition  

U.S. Energy Information Administration (EIA) Indexed Site

Canada EIA/ARI World Shale Gas and Shale Oil Resource Assessment Canada EIA/ARI World Shale Gas and Shale Oil Resource Assessment May 17, 2013 I-1 I. CANADA SUMMARY Canada has a series of large hydrocarbon basins with thick, organic-rich shales that are assessed by this resource study. Figure I-1 illustrates certain of the major shale gas and shale oil basins in Western Canada. Figure I-1. Selected Shale Gas and Oil Basins of Western Canada Source: ARI, 2012. I. Canada EIA/ARI World Shale Gas and Shale Oil Resource Assessment May 17, 2013 I-2 The full set of Canadian shale gas and shale oil basins assessed in this study include:

Note: This page contains sample records for the topic "offshore shale proved" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Heat of combustion of Green River oil shale  

Science Journals Connector (OSTI)

Heat of combustion of Green River oil shale ... AMSO’s Novel Approach to In-Situ Oil Shale Recovery ... AMSO’s Novel Approach to In-Situ Oil Shale Recovery ...

Michael J. Muehlbauer; Alan K. Burnham

1984-04-01T23:59:59.000Z

362

Mathematical modelling of anisotropy of illite-rich shale  

Science Journals Connector (OSTI)

......clay minerals in shale is one of the causes for its anisotropic behaviour with the...Hudson J., 1994. Anisotropic effective-medium...elastic properties of shales, Geophysics, 59...surfaces of indurated anisotropic shales, Surv. Geophys......

Evgeni M. Chesnokov; Dileep K. Tiwary; Irina O. Bayuk; Matthew A. Sparkman; Raymon L. Brown

2009-09-01T23:59:59.000Z

363

Impact of fabric, microcracks and stress field on shale anisotropy  

Science Journals Connector (OSTI)

......some of these factors on shale velocity and anisotropic response. This study investigates...documented rock responses. This shale is also highly anisotropic with its anisotropy factors...velocity surfaces of indurated anisotropic shales, Surv. Geophys., 15......

David N. Dewhurst; Anthony F. Siggins

2006-04-01T23:59:59.000Z

364

Control Strategies for Abandoned in situ Oil Shale Retorts  

E-Print Network [OSTI]

Presented elt the TUJelfth Oil Shale Synlposittnz, Golden,for Abandoned In Situ Oil Shale Retorts P. Persoll and ]. P.Water Pollution of Spent Oil Shale Residues, EDB Lea,

Persoff, P.; Fox, J.P.

1979-01-01T23:59:59.000Z

365

CONTROL STRATEGIES FOR ABANDONED IN-SITU OIL SHALE RETORTS  

E-Print Network [OSTI]

Controls for a Commercial Oil Shale In~try, Vol. I, An En~in Second Briefing on In-Situ Oil Shale Technology, LawrenceReactions in Colorado Oil Shale, Lawrence Report UCRL-

Persoff, P.

2011-01-01T23:59:59.000Z

366

INVESTIGATIONS ON HYDRAULIC CEMENTS FROM SPENT OIL SHALE  

E-Print Network [OSTI]

CEMENTS FROM SPENT OIL SHALE P.K. Mehta and P. Persoff AprilCement Manufacture from Oil Shale, U.S. Patent 2,904,445,CEMENTS FROM SPENT OIL SHALE P, K, Mehta Civil Engineering

Mehta, P.K.

2012-01-01T23:59:59.000Z

367

INVESTIGATIONS ON HYDRAULIC CEMENTS FROM SPENT OIL SHALE  

E-Print Network [OSTI]

20 to 40% of the oil shale, and explosively rubblizing andCEMENTS FROM SPENT OIL SHALE P.K. Mehta and P. Persoff AprilCement Manufacture from Oil Shale, U.S. Patent 2,904,445,

Mehta, P.K.

2012-01-01T23:59:59.000Z

368

Comparison of organic-rich shales of Pennsylvanian age in Indiana with New Albany Shale  

SciTech Connect (OSTI)

Abundant black organic-rich shales occur in rocks of Pennsylvanian age in southwestern Indiana. They have not been well characterized except for a few thin intervals in small areas, the best example being at the abandoned Mecca Quarry in west-central Indiana. Although these shales are thinner and less widespread than the organic-rich shales of the New Albany Shale (Devonian and Mississippian age) they warrant characterization because of their accessibility during strip mining of underlying coals. Organic-rich shales of Pennsylvanian age contain up to 44% organic carbon and might be considered potential oil shales. Carbon to hydrogen ratios in these shales are similar to those in the New Albany. Relatively high concentrations of certain metals occur in shales of both ages, especially where phosphate is abundant, and sulfur values for both shales range from < 1 to 6%. Sulfur values are much higher for thin pyrite-rich units. Siderite nodules are common in Pennsylvania shales, but little siderite if found in the New Albany. Dolomite, commonly ferroan, and calcite in a variety of forms are the dominant carbonates in the New Albany. Some Pennsylvanian shales may contain large fossils or mica flakes, but such coarse-grained features are uncommon in the New Albany Shale.

Shaffer, N.R.; Leininger, R.K.; Ennis, M.V.

1983-09-01T23:59:59.000Z

369

NATURAL GAS FROM SHALE: Questions and Answers  

Broader source: Energy.gov (indexed) [DOE]

Challenges are Associated with Challenges are Associated with Shale Gas Production? Developing any energy resource - whether conventional or non-conventional like shale - carries with it the possibility and risk of environmental, public health, and safety issues. Some of the challenges related to shale gas production and hydraulic fracturing include: * Increased consumption of fresh water (volume and sources); * Induced seismicity (earthquakes) from shale flowback water disposal;Chemical disclosure of fracture fluid additives; * Potential ground and surface water contamination; * Air quality impacts; * Local impacts, such as the volume of truck traffic, noise, dust and land disturbance.

370

Challenges and strategies of shale gas development.  

E-Print Network [OSTI]

??The objective of this paper is to help new investors and project developers identify the challenges of shale gas E&P and to enlighten them of… (more)

Lee, Sunje

2012-01-01T23:59:59.000Z

371

Production Optimization in Shale Gas Reservoirs.  

E-Print Network [OSTI]

?? Natural gas from organic rich shales has become an important part of the supply of natural gas in the United States. Modern drilling and… (more)

Knudsen, Brage Rugstad

2010-01-01T23:59:59.000Z

372

Decline Curve Analysis of Shale Oil Production.  

E-Print Network [OSTI]

?? Production of oil and gas from shale is often described as a revolution to energyproduction in North America. Since the beginning of this century… (more)

Lund, Linnea

2014-01-01T23:59:59.000Z

373

Crude Oil plus Lease Condensate Proved Reserves  

Gasoline and Diesel Fuel Update (EIA)

46 188 207 2009-2011 46 188 207 2009-2011 Federal Offshore U.S. 0 -6 -1 2009-2011 Pacific (California) -1 -2 1 2009-2011 Louisiana & Alabama 2 -3 -2 2009-2011 Texas -1 -1 0 2009-2011 Alaska 0 0 1 2009-2011 Lower 48 States 46 188 206 2009-2011 Alabama 1 12 2 2009-2011 Arkansas 2 3 -2 2009-2011 California -17 14 32 2009-2011 Coastal Region Onshore 1 0 -3 2009-2011 Los Angeles Basin Onshore 10 15 19 2009-2011 San Joaquin Basin Onshore -30 1 16 2009-2011 State Offshore 2 -2 0 2009-2011 Colorado -9 25 -1 2009-2011 Florida -1 2 -2 2009-2011 Illinois 3 10 -10 2009-2011 Indiana -7 1 0 2009-2011 Kansas 20 61 22 2009-2011 Kentucky 4 -11 1 2009-2011 Louisiana -1 7 -8 2009-2011 North -4 -7 1 2009-2011 South Onshore 4 13 -6 2009-2011 State Offshore

374

Proposed Evanston Offshore Wind Farm  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Evanston Offshore Wind Farm Evanston Offshore Wind Farm August 1, 2011 Monday, August 1, 2011 Off Shore Wind Farm FAQ Document available from http://www.greenerevanston.org/ at the Renewable Energy Task Force tab Monday, August 1, 2011 City Manager Commits to City to sign onto Kyoto emissions reduction goals Wind Farm Timeline April 2006 Summer 2007 Fall 2008 February 2008 April 2010 March 2011 July 2011 Network for Evanston's Future proposes joint climate planning effort CGE Formed and Renewable Energy Task Force formed - Wind farm concept begun ECAP passed by City Council with 1st version of proposed Offshore Wind Farm included Offshore Wind Farm RFI unanimously passed by City Council Mayor Tisdahl appointments Committee on the Wind Farm City Council

375

Jefferson Offshore | Open Energy Information  

Open Energy Info (EERE)

Jefferson Offshore Jefferson Offshore Facility Jefferson Offshore Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Coastal Point Energy LLC Developer Coastal Point Energy LLC Location Gulf of Mexico TX Coordinates 29.568°, -93.957° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.568,"lon":-93.957,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

376

Freeport Begins Offshore Sulfur Plant  

Science Journals Connector (OSTI)

Freeport Begins Offshore Sulfur Plant ... Discovered by Humble Oil & Refining, the sulfur deposit off Grand Isle is believed by industry observers to be one of the largest discovered in recent years. ...

1958-07-07T23:59:59.000Z

377

Materials Requirements for Offshore Structures  

Science Journals Connector (OSTI)

...effect temporary simple repairs underwater but the...for the submarine repair of offshore platforms...possibility exists that pipelines at this depth may require local repair. For such simple...connection of bolts for patch repairs etc. and...

1976-01-01T23:59:59.000Z

378

TREATMENT OF MULTIVARIATE ENVIRONMENTAL AND HEALTH PROBLEMS ASSOCIATED WITH OIL SHALE TECHNOLOGY  

E-Print Network [OSTI]

Chemicals Identified in Oil Shale and Shale Oil. list." 1.of Trace Contaminants in Oil Shale Retort Wa- ters", Am.Trace Contaminants in Oil Shale Retort Waters", in Oil Shale

Kland, M.J.

2010-01-01T23:59:59.000Z

379

INTERLABORATORY, MULTIMETHOD STUDY OF AN IN SITU PRODUCED OIL SHALE PROCESS WATER  

E-Print Network [OSTI]

Minor Elements in Oil Shale and Oil Shale Products. LERCfor Use 1n Oil Shale and Shale Oil. OSRD-32, 1945. Jeris, J.Water coproduced with shale oil and decanted from it is

Farrier, D.S.

2011-01-01T23:59:59.000Z

380

TREATMENT OF MULTIVARIATE ENVIRONMENTAL AND HEALTH PROBLEMS ASSOCIATED WITH OIL SHALE TECHNOLOGY  

E-Print Network [OSTI]

Identified in Oil Shale and Shale Oil. list." 1. Preliminaryrisks of large scale shale oil production are sufficient tofound in oil shale and shale oil by EMIC and ETIC, has

Kland, M.J.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "offshore shale proved" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

CONTAMINATION OF GROUNDWATER BY ORGANIC POLLUTANTS LEACHED FROM IN-SITU SPENT SHALE  

E-Print Network [OSTI]

decomposition of kerogen to shale oil and related by~of Oil Shale to Produce Shale Oil and Related Byproducts.Ref. 3). Chemis of Oil Shale Oil shale is a sedimentary

Amy, Gary L.

2013-01-01T23:59:59.000Z

382

Characterization of DOE reference oil shales: Mahogany Zone, Parachute Creek Member, Green River Formation Oil Shale, and Clegg Creek Member, New Albany Shale  

SciTech Connect (OSTI)

Measurements have been made on the chemical and physical properties of two oil shales designated as reference oil shales by the Department of Energy. One oil shale is a Green River Formation, Parachute Creek Member, Mahogany Zone Colorado oil shale from the Exxon Colony mine and the other is a Clegg Creek Member, New Albany shale from Kentucky. Material balance Fischer assays, carbon aromaticities, thermal properties, and bulk mineralogic properties have been determined for the oil shales. Kerogen concentrates were prepared from both shales. The measured properties of the reference shales are comparable to results obtained from previous studies on similar shales. The western reference shale has a low carbon aromaticity, high Fischer assay conversion to oil, and a dominant carbonate mineralogy. The eastern reference shale has a high carbon aromaticity, low Fischer assay conversion to oil, and a dominant silicate mineralogy. Chemical and physical properties, including ASTM distillations, have been determined for shale oils produced from the reference shales. The distillation data were used in conjunction with API correlations to calculate a large number of shale oil properties that are required for computer models such as ASPEN. There was poor agreement between measured and calculated molecular weights for the total shale oil produced from each shale. However, measured and calculated molecular weights agreed reasonably well for true boiling point distillate fractions in the temperature range of 204 to 399/sup 0/C (400 to 750/sup 0/F). Similarly, measured and calculated viscosities of the total shale oils were in disagreement, whereas good agreement was obtained on distillate fractions for a boiling range up to 315/sup 0/C (600/sup 0/F). Thermal and dielectric properties were determined for the shales and shale oils. The dielectric properties of the reference shales and shale oils decreased with increasing frequency of the applied frequency. 42 refs., 34 figs., 24 tabs.

Miknis, F. P.; Robertson, R. E.

1987-09-01T23:59:59.000Z

383

California Federal Offshore Associated-Dissolved Natural Gas, Wet After  

U.S. Energy Information Administration (EIA) Indexed Site

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California Federal Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 249 1980's 307 1,110 1,249 1,312 1,252 1990's 1,229 995 987 976 1,077 1,195 1,151 498 437 488 2000's 500 490 459 456 412 776 756 752 702 731 2010's 722 711 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

384

Method for forming an in-situ oil shale retort in differing grades of oil shale  

SciTech Connect (OSTI)

An in-situ oil shale retort is formed in a subterranean formation containing oil shale. The formation comprises at least one region of relatively richer oil shale and another region of relatively leaner oil shale. According to one embodiment, formation is excavated from within a retort site for forming at least one void extending horizontally across the retort site, leaving a portion of unfragmented formation including the regions of richer and leaner oil shale adjacent such a void space. A first array of vertical blast holes are drilled in the regions of richer and leaner oil shale, and a second array of blast holes are drilled at least in the region of richer oil shale. Explosive charges are placed in portions of the blast holes in the first and second arrays which extend into the richer oil shale, and separate explosive charges are placed in portions of the blast holes in the first array which extend into the leaner oil shale. This provides an array with a smaller scaled depth of burial (sdob) and closer spacing distance between explosive charges in the richer oil shale than the sdob and spacing distance of the array of explosive charges in the leaner oil shale. The explosive charges are detonated for explosively expanding the regions of richer and leaner oil shale toward the horizontal void for forming a fragmented mass of particles. Upon detonation of the explosive, greater explosive energy is provided collectively by the explosive charges in the richer oil shale, compared with the explosive energy produced by the explosive charges in the leaner oil shale, resulting in comparable fragmentation in both grades of oil shale.

Ricketts, T.E.

1984-04-24T23:59:59.000Z

385

Strategic Significance of Americas Oil Shale Resource  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

II Oil Shale Resources Technology and Economics Office of Deputy Assistant Secretary for Petroleum Reserves Office of Naval Petroleum and Oil Shale Reserves U.S. Department of...

386

DOE - Office of Legacy Management -- Naval Oil Shale Reserves...  

Office of Legacy Management (LM)

Oil Shale Reserves Site - 013 FUSRAP Considered Sites Site: Naval Oil Shale Reserves Site (013 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site...

387

Louisiana State Offshore Associated-Dissolved Natural Gas, Wet After Lease  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Louisiana State Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 449 251 260 207 231 1990's 207 207 154 157 168 148 157 130 98 120 2000's 129 145 84 79 61 63 56 65 686 513 2010's 107 51 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 LA, State Offshore Associated-Dissolved Natural Gas Proved Reserves,

388

EA-1985: Virginia Offshore Wind Technology Advancement Project...  

Broader source: Energy.gov (indexed) [DOE]

5: Virginia Offshore Wind Technology Advancement Project (VOWTAP), 24 nautical miles offshore of Virginia Beach, Virginia EA-1985: Virginia Offshore Wind Technology Advancement...

389

2014 Offshore Wind Market & Economic Analysis Cover Photo | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

4 Offshore Wind Market & Economic Analysis Cover Photo 2014 Offshore Wind Market & Economic Analysis Cover Photo Navigant 2014 Offshore Wind Market and Economic Analysis.JPG More...

390

Assessment of Offshore Wind Energy Resources for the United States...  

Broader source: Energy.gov (indexed) [DOE]

Assessment of Offshore Wind Energy Resources for the United States Assessment of Offshore Wind Energy Resources for the United States This report summarizes the offshore wind...

391

U.S. Offshore Wind Advanced Technology Demonstration Projects...  

Broader source: Energy.gov (indexed) [DOE]

Offshore Wind Advanced Technology Demonstration Projects Public Meeting Transcript for Offshore Wind Demonstrations U.S. Offshore Wind Advanced Technology Demonstration Projects...

392

,"Natural Gas Plant Liquids Proved Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Natural Gas Plant Liquids Proved Reserves",49,"Annual",2012,"6301979" ,"Release...

393

,"New York Dry Natural Gas Proved Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Dry Natural Gas Proved Reserves",10,"Annual",2013,"6301977" ,"Release Date:","124...

394

,"Natural Gas Plant Liquids Proved Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Natural Gas Plant Liquids Proved Reserves",49,"Annual",2013,"6301979" ,"Release...

395

,"New Mexico Dry Natural Gas Proved Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Dry Natural Gas Proved Reserves",10,"Annual",2012,"6301977" ,"Release Date:","410...

396

,"California Lease Condensate Proved Reserves, Reserve Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Lease Condensate Proved Reserves, Reserve Changes, and Production",10,"Annual",2012,...

397

,"California Dry Natural Gas Proved Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Dry Natural Gas Proved Reserves",10,"Annual",2012,"6301977" ,"Release Date:","4...

398

Miscellaneous States Coalbed Methane Proved Reserves Revision...  

U.S. Energy Information Administration (EIA) Indexed Site

Revision Decreases (Billion Cubic Feet) Miscellaneous States Coalbed Methane Proved Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

399

,"Colorado Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

400

,"Arkansas Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

Note: This page contains sample records for the topic "offshore shale proved" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

,"Wyoming Coalbed Methane Proved Reserves, Reserves Changes,...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

402

,"Miscellaneous States Coalbed Methane Proved Reserves (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

403

,"Montana Coalbed Methane Proved Reserves, Reserves Changes,...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Montana Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

404

,"Oklahoma Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

405

,"Pennsylvania Coalbed Methane Proved Reserves (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2013 ,"Release...

406

,"Virginia Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Virginia Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

407

,"Pennsylvania Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

408

,"Miscellaneous Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

409

,"Alabama Coalbed Methane Proved Reserves, Reserves Changes,...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

410

,"California - Coastal Region Coalbed Methane Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

411

,"New York Dry Natural Gas Proved Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Dry Natural Gas Proved Reserves",10,"Annual",2012,"6301977" ,"Release Date:","410...

412

Accelerating Offshore Wind Development | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Accelerating Offshore Wind Development Accelerating Offshore Wind Development Accelerating Offshore Wind Development December 12, 2012 - 2:15pm Addthis Matthew Loveless Matthew Loveless Data Integration Specialist, Office of Public Affairs What does this project do? The 2012 investments support innovative offshore installations for commercial deployment by 2017. The 2011 grants were targeted at projects that aim to either improve the technology used for offshore wind generation or remove the market barriers to offshore wind generation. View the Full Map Today the Energy Department announced investments in seven offshore wind demonstration projects. These projects are part of a broader effort to launch an offshore wind industry in the United States, and support innovative offshore installations for commercial deployment by 2017.

413

Insulated dipole antennas for heating oil shale  

Science Journals Connector (OSTI)

Insulated dipole antennas in the HF band are potentially useful in heating shale i n s i t u to extract oil. To help evaluate the efficiency of such antennas the spatial distribution of the power absorbed per unit volume in the shale is computed.

John P. Casey; Rajeev Bansal

1987-01-01T23:59:59.000Z

414

Fluidized bed retorting of eastern oil shale  

SciTech Connect (OSTI)

This topical report summarizes the conceptual design of an integrated oil shale processing plant based on fluidized bed retorting of eastern New Albany oil shale. This is the fourth design study conducted by Foster Wheeler; previous design cases employed the following technologies: Fluidized bed rotating/combustion of Colorado Mahogany zone shale. An FCC concept of fluidized bed retorting/combustion of Colorado Mahogany zone shale. Directly heated moving vertical-bed process using Colorado Mahogany zone shale. The conceptual design encompasses a grassroots facility which processes run-of-mine oil shale into a syncrude oil product and dispose of the spent shale solids. The plant has a nominal capacity of 50,000 barrels per day of syncrude product, produced from oil shale feed having a Fischer Assay of 15 gallons per ton. Design of the processing units was based on non-confidential published information and supplemental data from process licensors. Maximum use of process and cost information developed in the previous Foster Wheeler studies was employed. The integrated plant design is described in terms of the individual process units and plant support systems. The estimated total plant investment is detailed by plant section and estimates of the annual operating requirements and costs are provided. In addition, process design assumptions and uncertainties are documented and recommendations for process alternatives, which could improve the overall plant economics, are discussed. 12 refs., 17 figs., 52 tabs.

Gaire, R.J.; Mazzella, G.

1989-03-01T23:59:59.000Z

415

Chemical kinetics and oil shale process design  

SciTech Connect (OSTI)

Oil shale processes are reviewed with the goal of showing how chemical kinetics influences the design and operation of different processes for different types of oil shale. Reaction kinetics are presented for organic pyrolysis, carbon combustion, carbonate decomposition, and sulfur and nitrogen reactions.

Burnham, A.K.

1993-07-01T23:59:59.000Z

416

U.S. Crude Oil plus Lease Condensate Proved Reserves  

U.S. Energy Information Administration (EIA) Indexed Site

Area: U.S. Federal Offshore U.S. Federal Offshore, Pacific (California) Federal Offshore, Gulf of Mexico, LA & AL Federal Offshore, Gulf of Mexico, TX Alaska Lower 48 States Alabama Arkansas California CA, Coastal Region Onshore CA, Los Angeles Basin Onshore CA, San Joaquin Basin Onshore CA, State Offshore Colorado Florida Illinois Indiana Kansas Kentucky Louisiana North Louisiana LA, South Onshore LA, State Offshore Michigan Mississippi Montana Nebraska New Mexico NM, East NM, West North Dakota Ohio Oklahoma Pennsylvania Texas TX, RRC District 1 TX, RRC District 2 Onshore TX, RRC District 3 Onshore TX, RRC District 4 Onshore TX, RRC District 5 TX, RRC District 6 TX, RRC District 7B TX, RRC District 7C TX, RRC District 8 TX, RRC District 8A TX, RRC District 9 TX, RRC District 10 TX, State Offshore Utah West Virginia Wyoming Miscellaneous Period:

417

Thermomechanical properties of selected shales  

SciTech Connect (OSTI)

The experimental work discussed in this report is part of an ongoing program concerning evaluation of sedimentary and other rock types as potential hosts for a geologic repository. The objectives are the development of tools and techniques for repository characterization and performance assessment in a diversity of geohydrologic settings. This phase of the program is a laboratory study that investigates fundamental thermomechanical properties of several different shales. Laboratory experiments are intrinsically related to numerical modeling and in situ field experiments, which together will be used for performance assessment.

Hansen, F.D.; Vogt, T.J.

1987-08-01T23:59:59.000Z

418

Land Validation Holdings, PROVE, June 2001  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PROVE Data and Images Released PROVE Data and Images Released Data and images are now available from the Prototype Validation Exercise (PROVE), a field campaign conducted in May 1997 at the Jornada Experimental Range near Las Cruces, New Mexico. The Jornada Experimental Range is an expansive plateau on the Chihuahuan Desert and hosts a complex mosaic of grasses and shrubs that were characterized during PROVE. PROVE researchers collected land and atmospheric measurements for use in validating data from Earth Observing System (EOS) satellites. Measurements included surface reflectance, surface temperature, albedo, and leaf area index, among other parameters. We anticipate that additional data associated with papers published in a recent special issue of Remote Sensing of the Environment (October 2000) will be registered in the ORNL

419

LLNL oil shale project review: METC third annual oil shale contractors meeting  

SciTech Connect (OSTI)

The Lawrence Livermore National Laboratory combines laboratory and pilot-scale experimental measurements with mathematical modeling of fundamental chemistry and physics to provide a technical base for evaluating oil shale retorting alternatives. Presented herein are results of four research areas of interest in oil shale process development: Recent Progress in Solid-Recycle Retorting and Related Laboratory and Modeling Studies; Water Generation During Pyrolysis of Oil Shale; Improved Analytical Methods and Measurements of Rapid Pyrolysis Kinetics for Western and Eastern Oil Shale; and Rate of Cracking or Degradation of Oil Vapor In Contact with Oxidized Shale. We describe operating results of a 1 tonne-per-day, continuous-loop, solid-recycle, retort processing both Western And Eastern oil shale. Sulfur chemistry, solid mixing limits, shale cooling tests and catalyst addition are all discussed. Using a triple-quadrupole mass spectrometer, we measure individual species evolution with greater sensitivity and selectivity. Herein we discuss our measurements of water evolution during ramped heating of Western and Eastern oil shale. Using improved analytical techniques, we determine isothermal pyrolysis kinetics for Western and Eastern oil shale, during rapid heating, which are faster than previously thought. Finally, we discuss the rate of cracking of oil vapor in contact with oxidized shale, qualitatively using a sand fluidized bed and quantitatively using a vapor cracking apparatus. 3 refs., 4 figs., 1 tab.

Cena, R.J.; Coburn, T.T.; Taylor, R.W.

1988-01-01T23:59:59.000Z

420

New Report Characterizes Existing Offshore Wind Grid Interconnection...  

Office of Environmental Management (EM)

New Report Characterizes Existing Offshore Wind Grid Interconnection Capabilities New Report Characterizes Existing Offshore Wind Grid Interconnection Capabilities September 3,...

Note: This page contains sample records for the topic "offshore shale proved" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Secure Fuels from Domestic Resources- Oil Shale and Tar Sands  

Broader source: Energy.gov [DOE]

Profiles of Companies Engaged in Domestic Oil Shale and Tar Sands Resource and Technology Development

422

Morphological Investigations of Fibrogenic Action of Estonian Oil Shale Dust  

E-Print Network [OSTI]

dust produced in the mining and processing of Estonian oil shale is given. Histological examination of

V. A. Kung

423

Study of composite cement containing burned oil shale  

E-Print Network [OSTI]

Study of composite cement containing burned oil shale Julien Ston Supervisors : Prof. Karen properties. SCMs can be by-products from various industries or of natural origin, such as shale. Oil shale correctly, give a material with some cementitious properties known as burned oil shale (BOS). This study

Dalang, Robert C.

424

Focus on the Marcellus Shale By Lisa Sumi  

E-Print Network [OSTI]

Shale Gas: Focus on the Marcellus Shale By Lisa Sumi FOR THE OIL & GAS ACCOUNTABILITY PROJECT on potential oil and gas development in the Marcellus Shale formation in northeastern Pennsylvania and gas development. We hope that this report will help address many questions about the Marcellus Shale

Boyer, Elizabeth W.

425

wind offshore | OpenEI  

Open Energy Info (EERE)

offshore offshore Dataset Summary Description This dataset presents summary information related to world wind energy. It is part of a supporting dataset for the book World On the Edge: How to Prevent Environmental and Economic Collapse by Lester R. Brown, available from the Earth Policy Institute. Source Earth Policy Institute Date Released January 12th, 2011 (3 years ago) Date Updated Unknown Keywords EU wind offshore Wind Power wind power capacity world Data application/vnd.ms-excel icon Excel spreadsheet, data on multiple tabs (xls, 114.7 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period through 2009 License License Open Data Commons Attribution License Comment "Reuse of our data is permitted. We merely ask that wherever it is listed, it be appropriately cited"

426

offshore resource | OpenEI  

Open Energy Info (EERE)

resource resource Dataset Summary Description Global Wind Potential Supply Curves by Country, Class, and Depth (quantities in GW) Source National Renewable Energy Laboratory Date Released July 12th, 2012 (2 years ago) Date Updated July 12th, 2012 (2 years ago) Keywords offshore resource offshore wind renewable energy potential Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon offshore_resource_100_vs2.xlsx (xlsx, 41.7 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote

427

offshore wind | OpenEI  

Open Energy Info (EERE)

wind wind Dataset Summary Description Global Wind Potential Supply Curves by Country, Class, and Depth (quantities in GW) Source National Renewable Energy Laboratory Date Released July 12th, 2012 (2 years ago) Date Updated July 12th, 2012 (2 years ago) Keywords offshore resource offshore wind renewable energy potential Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon offshore_resource_100_vs2.xlsx (xlsx, 41.7 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote

428

Definition: Offshore Wind | Open Energy Information  

Open Energy Info (EERE)

Offshore Wind Offshore Wind (Redirected from Offshore Wind) Jump to: navigation, search Dictionary.png Offshore Wind Wind turbine installations built near-shore or further offshore on coastlines for commercial electricity generation.[1] View on Wikipedia Wikipedia Definition View on Reegle Reegle Definition No reegle definition available Related Terms wind turbine, wind farm, near-shore, offshore References ↑ http://en.wikipedia.org/wiki/Offshore_wind_power Retrie LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ved from "http://en.openei.org/w/index.php?title=Definition:Offshore_Wind&oldid=586583" Category: Definitions What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

429

AWEA Offshore Windpower Conference & Exhibition 2014 | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AWEA Offshore Windpower Conference & Exhibition 2014 AWEA Offshore Windpower Conference & Exhibition 2014 October 7, 2014 12:00PM EDT to October 8, 2014 9:00PM EDT Atlantic City,...

430

American Wind Energy Association Offshore WINDPOWER Conference...  

Broader source: Energy.gov (indexed) [DOE]

Offshore WINDPOWER Conference & Exhibition American Wind Energy Association Offshore WINDPOWER Conference & Exhibition October 7, 2014 9:00AM EDT to October 8, 2014 5:00PM EDT AWEA...

431

Mari Voldsund Exergy analysis of offshore  

E-Print Network [OSTI]

Mari Voldsund Exergy analysis of offshore oil and gas processing Doctoral thesis for the degree my contact persons, helping out both with administrative issues, and with matters concerning offshore

Kjelstrup, Signe

432

U.S. Offshore Wind Port Readiness  

Broader source: Energy.gov [DOE]

Report that reviews the current capability of U.S. ports to support offshore wind project development and assesses the challenges and opportunities related to upgrading this capability to support as much as 54 gigawatts of offshore wind by 2030.

433

Storage of Carbon Dioxide in Offshore Sediments  

Science Journals Connector (OSTI)

...Carbon Dioxide in Offshore Sediments 10...efforts to increase energy efficiency; efforts...sources, including renewable and nuclear energy; and investment...repositories. Offshore geological repositories...between Scotland and Norway and far out of...

Daniel P. Schrag

2009-09-25T23:59:59.000Z

434

About Hercules Offshore Headquartered in Houston, Texas, Hercules Offshore serves the oil and  

E-Print Network [OSTI]

About Hercules Offshore Headquartered in Houston, Texas, Hercules Offshore serves the oil and gas exploration, drilling and related maintenance tasks. Hercules Offshore operates in key oil producing sites at Hercules Offshore require precision control, global management and careful integration of both on

Fisher, Kathleen

435

Federal Offshore--Louisiana and Alabama Natural Gas Liquids Lease  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Reserves Based Production (Million Barrels) Federal Offshore--Louisiana and Alabama Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 34 28 27 29 32 1990's 33 34 35 35 37 40 49 59 57 61 2000's 76 60 60 53 49 39 37 40 28 28 2010's 28 24 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Lease Condensate Estimated Production Federal Offshore, Gulf of Mexico, Louisiana & Alabama Lease Condensate Proved Reserves, Reserve Changes, and Production Lease Condensate

436

Probabilistic fracture toughness of welded joint for offshore structures  

SciTech Connect (OSTI)

The paper investigated the probabilistic properties for fracture toughness of offshore steel welded joint at 26 C, 0 C, {minus}20 C, {minus}40 C and {minus}60 C by experiment. On the basis of experimental data, it can be proved by statistical method that probabilistic critical CTOD (Crack Tip Opening Displacement) of A131 steel welded joint under different temperatures can be represented approximately by Weibull distribution, and their distribution parameters are also obtained. The P-T-{delta}{sub C} curve is established, which is used to describe the relationship among three parameters: CTOD, temperature and probability. These results are very useful for fracture reliability analysis and defect assessment of offshore structures.

Chen Guoming; Xu Fayan; Fang Huacan [Univ. of Petroleum, Shandong, Dongying (China); Yang Xiaogang [China Offshore Oil Engineering Design Corp., Tianjin (China)

1996-12-01T23:59:59.000Z

437

Macrodispersion in sand-shale sequences  

SciTech Connect (OSTI)

Macrodispersion in sand-shale sequences is investigated by a series of numerical tracer tests. Hydraulic conductivity is modeled as a binary, spatially correlated random function. Realizations of the random conductivity field are simulated on a nodal grid discretizing the heterogeneous formation. Corresponding realizations of the random velocity field are obtained by solving the equation for saturated steady state flow. Particle tracking, with flux-weighted tracer injection and detection, is used to generate experimental residence time distributions (RTDs). Moments of the RTD are used to characterize longitudinal tracer spreading. Results show that macrodispersive transport in sand-shale sequences cannot be represented by a Fickian model. RTDs display a bimodal structural caused by the fast arrival of particles traveling along preferential sandstone and shale. The relative importance of channeling and tortuous flow transport mechanisms is determined by sand-shale conductivity contrast, shale volume fraction, and conductivity spatial correlation structure. Channeling is promoted by high conductivity contrasts, low shale fractions, and flow parallel to bedding in anisotropic media. Low contrasts, high shale fractions, and flow perpendicular to bedding act to break up channels and to enhance tracer spreading.

Desbarats, A.J. (Geological Survey of Canada, Ottawa, Ontario (Canada))

1990-01-01T23:59:59.000Z

438

In situ retorting or oil shale  

SciTech Connect (OSTI)

An improved method of in situ retorting of oil shale wherein a cavern of crushed shale is created within an oil shale deposit, preferably by igniting a powerful explosion within the oil shale deposit, thereby creating a localized area or cavern of rubblized oil shale. Combustion gases are injected into the bottom of this cavern and particulate material, preferably a cracking catalyst, is deposited into a void at the top of the cavern and allowed to trickle down and fill the voids in the rubblized cavern. The oil shale is ignited at the bottom of the cavern and a combustion zone proceeds upwardly while the particulate material is caused by gas flow to percolate downwardly. A fluidized bed of particulate material is thereby formed at the combustion zone providing a controlled, evelny advancing combustion zone. This, in turn, efficiently retorts oil shale, provides increased recovery of hydrocarbon while ismultaneously producing a catalytically cracked volatile, high octane gasoline exiting from the top of the retort.

Hettinger, W.P. Jr.

1984-09-11T23:59:59.000Z

439

Adsorption of pyridine by combusted oil shale  

SciTech Connect (OSTI)

Large volumes of solid waste material will be produced during the commercial production of shale oil. An alternative to the disposal of the solid waste product is utilization. One potential use of spent oil shale is for the stabilization of hazardous organic compounds. The objective of this study was to examine the adsorption of pyridine, commonly found in oil shale process water, by spent oil shale. The adsorption of pyridine by fresh and weathered samples of combusted New Albany Shale and Green River Formation oil shale was examined. In general, pyridine adsorption can be classified as L-type and the isotherms modeled with the Langmuir and Freundlich equations. For the combusted New Albany Shale, weathering reduced the predicted pyridine adsorption maximum and increased the amount of pyridine adsorption maximum. The pyridine adsorption isotherms were similar to those mathematically described by empirical models, the reduction in solution concentrations of pyridine was generally less than 10 mg L{sup {minus}1} at an initial concentration of 100 mg L{sup {minus}1}. 31 refs., 3 figs., 3 tabs.

Essington, M.E.; Hart, B.K.

1990-03-01T23:59:59.000Z

440

Nitrogen chemistry during oil shale pyrolysis  

SciTech Connect (OSTI)

Real time evolution of ammonia (NH{sub 3}) and hydrogen cyanide (HCN), two major nitrogen-containing volatiles evolved during oil shale pyrolysis, was measured by means of a mass spectrometer using chemical ionization and by infrared spectroscopy. While the on-line monitoring of NH{sub 3} in oil shale pyrolysis games was possible by both techniques, HCN measurements were only possible by IR. We studied one Green River Formation oil shale and one New Albany oil shale. The ammonia from the Green River oil shale showed one broad NH{sub 3} peak maximizing at a high temperature. For both oil shales, most NH{sub 3} evolves at temperatures above oil-evolving temperature. The important factors governing ammonia salts such as Buddingtonite in Green River oil shales, the distribution of nitrogen functional groups in kerogen, and the retorting conditions. The gas phase reactions, such as NH{sub 3} decomposition and HCN conversion reactions, also play an important role in the distribution of nitrogen volatiles, especially at high temperatures. Although pyrolysis studies of model compounds suggests the primary nitrogen product from kerogen pyrolysis to be HCN at high temperatures, we found only a trace amount of HCN at oil-evolving temperatures and none at high temperatures (T {gt} 600{degree}C). 24 refs., 6 figs., 2 tabs.

Oh, Myongsook S.; Crawford, R.W.; Foster, K.G.; Alcaraz, A.

1990-01-10T23:59:59.000Z

Note: This page contains sample records for the topic "offshore shale proved" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Gasification characteristics of eastern oil shale  

SciTech Connect (OSTI)

The Institute of Gas Technology (IGT) is evaluating the gasification characteristics of Eastern oil shales as a part of a cooperative agreement between the US Department of Energy and HYCRUDE Corporation to expand the data base on moving-bed hydroretorting of Eastern oil shales. Gasification of shale fines will improve the overall resource utilization by producing synthesis gas or hydrogen needed for the hydroretorting of oil shale and the upgrading of shale oil. Gasification characteristics of an Indiana New Albany oil shale have been determined over temperature and pressure ranges of 1600 to 1900/sup 0/F and 15 to 500 psig, respectively. Carbon conversion of over 95% was achieved within 30 minutes at gasification conditions of 1800/sup 0/F and 15 psig in a hydrogen/steam gas mixture for the Indiana New Albany oil shale. This paper presents the results of the tests conducted in a laboratory-scale batch reactor to obtain reaction rate data and in a continuous mini-bench-scale unit to obtain product yield data. 2 refs., 7 figs., 4 tabs.

Lau, F.S.; Rue, D.M.; Punwani, D.V.; Rex, R.C. Jr.

1986-11-01T23:59:59.000Z

442

Isothermal kinetics of new Albany oil shale  

SciTech Connect (OSTI)

From the development of technologies for the utilization of eastern U.S. oil shales, fluidized bed pyrolysis technology is emerging as one of the most promising in terms of oil yield, operating cost, and capital investment. Bench-scale testing of eastern shales has reached a level where scale-up represents the next logical step in the evolution of this technology. A major consideration in this development and an essential part of any fluidized bed reactor scale-up effort--isothermal kinetics-- has largely been ignored for eastern US shale with the exception of a recent study conducted by Richardson et al. with a Cleveland shale. The method of Richardson et al. was used previously by Wallman et al. with western shale and has been used most recently by Forgac, also with western shale. This method, adopted for the present study, entails injecting a charge of shale into a fluidized bed and monitoring the hydrocarbon products with a flame ionization detector (FID). Advantages of this procedure are that fluidized bed heat-up effects are simulated exactly and real-time kinetics are obtained due to the on-line FID. Other isothermal methods have suffered from heat-up and cool-down effects making it impossible to observe the kinetics at realistic operating temperatures. A major drawback of the FID approach, however, is that no differentiation between oil and gas is possible.

Carter, S.D.

1987-04-01T23:59:59.000Z

443

ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION  

SciTech Connect (OSTI)

CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. Initial estimates indicate a sequestration capacity of 5.3 billion tons CO{sub 2} in the Lower Huron Member of the Ohio shale in parts of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker portions of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

Brandon C. Nuttall

2003-07-28T23:59:59.000Z

444

Virginia Coalbed Methane Proved Reserves Extensions (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Extensions (Billion Cubic Feet) Virginia Coalbed Methane Proved Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

445

Oklahoma Coalbed Methane Proved Reserves Extensions (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Extensions (Billion Cubic Feet) Oklahoma Coalbed Methane Proved Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

446

Pennsylvania Coalbed Methane Proved Reserves Revision Decreases...  

U.S. Energy Information Administration (EIA) Indexed Site

Decreases (Billion Cubic Feet) Pennsylvania Coalbed Methane Proved Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

447

Virginia Coalbed Methane Proved Reserves Adjustments (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Adjustments (Billion Cubic Feet) Virginia Coalbed Methane Proved Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

448

Arkansas Coalbed Methane Proved Reserves Adjustments (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Adjustments (Billion Cubic Feet) Arkansas Coalbed Methane Proved Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

449

Colorado Coalbed Methane Proved Reserves Revision Increases ...  

U.S. Energy Information Administration (EIA) Indexed Site

Increases (Billion Cubic Feet) Colorado Coalbed Methane Proved Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

450

Pennsylvania Coalbed Methane Proved Reserves Revision Increases...  

U.S. Energy Information Administration (EIA) Indexed Site

Increases (Billion Cubic Feet) Pennsylvania Coalbed Methane Proved Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

451

Virginia Coalbed Methane Proved Reserves Revision Decreases ...  

U.S. Energy Information Administration (EIA) Indexed Site

Decreases (Billion Cubic Feet) Virginia Coalbed Methane Proved Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

452

Colorado Coalbed Methane Proved Reserves Extensions (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Extensions (Billion Cubic Feet) Colorado Coalbed Methane Proved Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

453

Oklahoma Coalbed Methane Proved Reserves Revision Decreases ...  

U.S. Energy Information Administration (EIA) Indexed Site

Decreases (Billion Cubic Feet) Oklahoma Coalbed Methane Proved Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

454

Montana Coalbed Methane Proved Reserves Adjustments (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Adjustments (Billion Cubic Feet) Montana Coalbed Methane Proved Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

455

Wyoming Coalbed Methane Proved Reserves Acquisitions (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Acquisitions (Billion Cubic Feet) Wyoming Coalbed Methane Proved Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

456

Wyoming Coalbed Methane Proved Reserves Adjustments (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Adjustments (Billion Cubic Feet) Wyoming Coalbed Methane Proved Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

457

Arkansas Coalbed Methane Proved Reserves Revision Increases ...  

U.S. Energy Information Administration (EIA) Indexed Site

Increases (Billion Cubic Feet) Arkansas Coalbed Methane Proved Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

458

Oklahoma Coalbed Methane Proved Reserves Revision Increases ...  

U.S. Energy Information Administration (EIA) Indexed Site

Increases (Billion Cubic Feet) Oklahoma Coalbed Methane Proved Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

459

Miscellaneous States Coalbed Methane Proved Reserves Adjustments...  

U.S. Energy Information Administration (EIA) Indexed Site

Adjustments (Billion Cubic Feet) Miscellaneous States Coalbed Methane Proved Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

460

Oklahoma Coalbed Methane Proved Reserves Adjustments (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Adjustments (Billion Cubic Feet) Oklahoma Coalbed Methane Proved Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

Note: This page contains sample records for the topic "offshore shale proved" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Pennsylvania Coalbed Methane Proved Reserves Extensions (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Extensions (Billion Cubic Feet) Pennsylvania Coalbed Methane Proved Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

462

Colorado Coalbed Methane Proved Reserves Adjustments (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Adjustments (Billion Cubic Feet) Colorado Coalbed Methane Proved Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

463

Arkansas Coalbed Methane Proved Reserves Acquisitions (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Acquisitions (Billion Cubic Feet) Arkansas Coalbed Methane Proved Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

464

Colorado Coalbed Methane Proved Reserves Acquisitions (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Acquisitions (Billion Cubic Feet) Colorado Coalbed Methane Proved Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

465

Oklahoma Coalbed Methane Proved Reserves Acquisitions (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Acquisitions (Billion Cubic Feet) Oklahoma Coalbed Methane Proved Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

466

Colorado Coalbed Methane Proved Reserves Revision Decreases ...  

U.S. Energy Information Administration (EIA) Indexed Site

Decreases (Billion Cubic Feet) Colorado Coalbed Methane Proved Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

467

Arkansas Coalbed Methane Proved Reserves Revision Decreases ...  

U.S. Energy Information Administration (EIA) Indexed Site

Decreases (Billion Cubic Feet) Arkansas Coalbed Methane Proved Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

468

Virginia Coalbed Methane Proved Reserves Revision Increases ...  

U.S. Energy Information Administration (EIA) Indexed Site

Increases (Billion Cubic Feet) Virginia Coalbed Methane Proved Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

469

Pennsylvania Coalbed Methane Proved Reserves Adjustments (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Adjustments (Billion Cubic Feet) Pennsylvania Coalbed Methane Proved Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

470

OpenEI - offshore wind  

Open Energy Info (EERE)

/0 en Offshore Wind Resource /0 en Offshore Wind Resource http://en.openei.org/datasets/node/921 Global Wind Potential Supply Curves by Country, Class, and Depth (quantities in GW)

License
471

Uniform retorting of an anisotropic shale bed  

SciTech Connect (OSTI)

In situ oil shale retorts have typically been designed for the fracturing event to produce a rubble bed having uniform cross-sectional rubble properties. This uniform rubble bed approach strived to produce constant void fraction and particle size distribution within all regions of the rubble bed. Ideally, these isotropic rubble beds have uniform flow of oxidants, retorting and combustion products. However, edge effects during the blast event typically produce channeling at the retort walls during processing, reducing the rubble sweep and the local yield. Second generation in situ retorts are addressing uniform retorting within the rubble bed rather than the uniformity of rubble bed properties. Here, the blast design produces and anisotropic rubble bed with varying particle size distribution and void fraction normal to the direction of flow. This paper describes a laboratory experiment in which a highly-instrumented, 100 kg bed of shale with zones of differing particle size and void was retorted. Shale particle size and void were varied over the retort cross-section so that a retorting front would move at a constant velocity downward through the rubble bed. The bed was designed using data from numerous pressure drop measurements on uniform shale beds of varying shale particle size distribution and void. Retorting of the bed showed a uniform retorting front and a yield comparable with that achieved in isotropic shale beds. We present thermal data and offgas, oil and shale analyses (allowing material and energy balance closures) and compare these data to previous vertical retorting experiments on uniform and non-uniform beds of shale. This experiment verifies that uniform retorting fronts can be achieved in correctly designed anisotropic beds of shale and validates the concept of uniform retorting in order increase the oil recovery in second generation retorts. 20 refs., 17 figs., 4 tabs.

Bickel, T.C.; Cook, D.W.; Engler, B.P.

1986-01-01T23:59:59.000Z

472

Differential thermal analysis of the reaction properties of raw and retorted oil shale with air  

SciTech Connect (OSTI)

The results of a study to determine the kinetics of combustion of oil shale and its char by using differential thermal analysis are reported. The study indicates that Colorado oil shale and its char combustion rate is the fastest while Fushun oil shale and its char combustion rate is the slowest among the six oil shales used in this work. Oil shale samples used were Fushun oil shale, Maoming oil shale, Huang county oil shale, and Colorado oil shale.

Wang, T.F.

1984-01-01T23:59:59.000Z

473

U.S. Shale Gas and Shale Oil Plays Review of Emerging Resources:  

Gasoline and Diesel Fuel Update (EIA)

Shale Gas and Shale Oil Plays Shale Gas and Shale Oil Plays Review of Emerging Resources: July 2011 www.eia.gov U.S. Depa rtment of Energy W ashington, DC 20585 This page inTenTionally lefT blank The information presented in this overview is based on the report Review of Emerging Resources: U.S. Shale Gas and Shale Oil Plays, which was prepared by INTEK, Inc. for the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. The full report is attached. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies.

474

What is shale gas and why is it important?  

Reports and Publications (EIA)

Shale gas refers to natural gas that is trapped within shale formations. Shales are fine-grained sedimentary rocks that can be rich sources of petroleum and natural gas. Over the past decade, the combination of horizontal drilling and hydraulic fracturing has allowed access to large volumes of shale gas that were previously uneconomical to produce. The production of natural gas from shale formations has rejuvenated the natural gas industry in the United States.

2012-01-01T23:59:59.000Z

475

Gas Shale Plays… The Global Transition  

U.S. Energy Information Administration (EIA) Indexed Site

VIII. Poland EIA/ARI World Shale Gas and Shale Oil Resource Assessment VIII. Poland EIA/ARI World Shale Gas and Shale Oil Resource Assessment May 17, 2013 VIII-1 VIII. POLAND (INCLUDING LITHUANIA AND KALININGRAD) SUMMARY Poland has some of Europe's most favorable infrastructure and public support for shale development. The Baltic Basin in northern Poland remains the most prospective region with a relatively simple structural setting. The Podlasie and Lublin basins also have potential but are

476

Kerogen extraction from subterranean oil shale resources  

DOE Patents [OSTI]

The present invention is directed to methods for extracting a kerogen-based product from subsurface (oil) shale formations, wherein such methods rely on fracturing and/or rubblizing portions of said formations so as to enhance their fluid permeability, and wherein such methods further rely on chemically modifying the shale-bound kerogen so as to render it mobile. The present invention is also directed at systems for implementing at least some of the foregoing methods. Additionally, the present invention is also directed to methods of fracturing and/or rubblizing subsurface shale formations and to methods of chemically modifying kerogen in situ so as to render it mobile.

Looney, Mark Dean (Houston, TX); Lestz, Robert Steven (Missouri City, TX); Hollis, Kirk (Los Alamos, NM); Taylor, Craig (Los Alamos, NM); Kinkead, Scott (Los Alamos, NM); Wigand, Marcus (Los Alamos, NM)

2010-09-07T23:59:59.000Z

477

MFR PAPER 1179 Offshore Headboat Fishing in  

E-Print Network [OSTI]

MFR PAPER 1179 Offshore Headboat Fishing in North Carolina and South Carolina GENE R. HUNTSMAN. Bill Gulf Stream /I Mustang /I Comanche J. J. Operated in Fishing area t972 1973 OffShore X OUshore X X Ollshore X X Offshore X X Inshore X X Inshore X X Inshore X X Inshore X X Inshore X X Inshore X Inshore X X

478

Ankndigung Stellenausschreibung Forschungsprojekt Offshore-Solutions  

E-Print Network [OSTI]

AnkĂŒndigung Stellenausschreibung fĂŒr das Forschungsprojekt Offshore-Solutions - Dienstleistungspotenziale von Werften und Reedereien als Lösungsanbieter wĂ€hrend des Betriebs von Offshore Windparks und Reedereien in der Betriebsphase von Offshore-Windparks, ggf. bis zu einer Positionierung als

Berlin,Technische UniversitÀt

479

The Offshore Services Global Value Chain  

E-Print Network [OSTI]

The Offshore Services Global Value Chain ECONOMIC UPGRADING AND WORKFORCE DEVELOPMENT Karina & COMPETITIVENESS #12;The Offshore Services Global Value Chain: Economic Upgrading and Workforce Development "Skills & Competitiveness, Duke University Posted: November 17, 2011 #12;The Offshore Services Global Value Chain: Economic

Richardson, David

480

Offshore wind resource assessment through satellite images  

E-Print Network [OSTI]

1 Slide no. 4 Offshore wind resource assessment through satellite images Charlotte Bay Hasager images for offshore wind ressource assessment in lieu of in-situ mast observations #12;4 Slide no Hasager, Dellwik, Nielsen and Furevik, 2004, Validation of ERS-2 SAR offshore wind-speed maps in the North

Note: This page contains sample records for the topic "offshore shale proved" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

A Simple Model of Offshore Outsourcing,  

E-Print Network [OSTI]

A Simple Model of Offshore Outsourcing, Technology Upgrading and Welfare Jaewon JUNG THEMA Simple Model of Offshore Outsourcing, Technology Upgrading and Welfare Jaewon Jung and Jean Mercenier in the North as making explicit offshore outsourcing decisions to cheap-labor economies. Globalization results

Paris-Sud XI, Université de

482

Offshore Wind Turbines: Some Technical Challenges  

E-Print Network [OSTI]

1 Offshore Wind Turbines: Some Technical Challenges Prof. Guy Houlsby FREng Oxford University House engineers concerned with installation of offshore wind turbines. The author is Professor of Civil of foundations for offshore structures. He also has a strong interest in the development of the fundamental

Houlsby, Guy T.

483

Net thickness of the radioactive shale facies in the Huron and Chagrin members of the Ohio shale  

SciTech Connect (OSTI)

The net thickness of radioactive shale is determined by first establishing a normal base line for each well based upon the gamma ray log response of shale units, such as Bedford, Chagrin, and certain units within the Olentangy, observed to be fairly consistently radioactive. Radioactive shales are then defined as those shales having a gamma ray response 20 API units or more to the right of the shale base line. The combined thickness of beds reaching the radioactive shale threshold value is reported as the net thickness of radioactive shale facies within the mapping unit.

Majchszak, F.L.; Honeycutt, M.

1980-01-01T23:59:59.000Z

484

CONTAMINATION OF GROUNDWATER BY ORGANIC POLLUTANTS LEACHED FROM IN-SITU SPENT SHALE  

E-Print Network [OSTI]

OF FIGURES Areal extent of oil shale deposits in the Greencommercial in~·situ oil shale facility. Possible alternativefor pyrolysis of oil shale Figure 7. Establishment of

Amy, Gary L.

2013-01-01T23:59:59.000Z

485

Method for retorting oil shale  

DOE Patents [OSTI]

The recovery of oil from oil shale is provided in a fluidized bed by using a fluidizing medium of a binary mixture of carbon dioxide and 5 steam. The mixture with a steam concentration in the range of about 20 to 75 volume percent steam provides an increase in oil yield over that achievable by using a fluidizing gas of carbon dioxide or steam alone when the mixture contains higher steam concentrations. The operating parameters for the fluidized bed retorted are essentially the same as those utilized with other gaseous fluidizing mediums with the significant gain being in the oil yield recovered which is attributable solely to the use of the binary mixture of carbon dioxide and steam. 2 figs.

Shang, Jer-Yu; Lui, A.P.

1985-08-16T23:59:59.000Z

486

Oil shale mining studies and analyses of some potential unconventional uses for oil shale  

SciTech Connect (OSTI)

Engineering studies and literature review performed under this contract have resulted in improved understanding of oil shale mining costs, spent shale disposal costs, and potential unconventional uses for oil shale. Topics discussed include: costs of conventional mining of oil shale; a mining scenario in which a minimal-scale mine, consistent with a niche market industry, was incorporated into a mine design; a discussion on the benefits of mine opening on an accelerated schedule and quantified through discounted cash flow return on investment (DCFROI) modelling; an estimate of the costs of disposal of spent shale underground and on the surface; tabulation of potential increases in resource recovery in conjunction with underground spent shale disposal; the potential uses of oil shale as a sulfur absorbent in electric power generation; the possible use of spent shale as a soil stabilizer for road bases, quantified and evaluated for potential economic impact upon representative oil shale projects; and the feasibility of co-production of electricity and the effect of project-owned and utility-owned power generation facilities were evaluated. 24 refs., 5 figs., 19 tabs.

McCarthy, H.E.; Clayson, R.L.

1989-07-01T23:59:59.000Z

487

Materials Requirements for Offshore Structures  

Science Journals Connector (OSTI)

...conditions may occur more frequently in marine applications than on land. The handling...various reasons offshore platforms and other marine installations may be found to be in need...operating lives despite the rigours of wear and weather, and the maintenance of public...

1976-01-01T23:59:59.000Z

488

Offshore Wind Research (Fact Sheet), National Wind Technology Center (NWTC)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Offshore Offshore Wind Research The National Renewable Energy Laboratory is internationally recognized for offshore wind energy research and development (R&D). Its experience and capabilities cover a wide spectrum of wind energy disciplines. NREL's offshore wind R&D efforts focus on critical areas that address the long-term needs of the offshore wind energy industry and the Department of Energy (DOE). R&D efforts include: * Developing offshore design tools and methods * Collaborating with international partners * Testing offshore systems and developing standards * Conducting economic analyses * Characterizing offshore wind resources * Identifying and mitigating offshore wind grid integration challenges and barriers NREL documented the status of offshore wind energy in the United

489

Unconventional Groundwater System Proves Effective in Reducing  

Broader source: Energy.gov (indexed) [DOE]

Unconventional Groundwater System Proves Effective in Reducing Unconventional Groundwater System Proves Effective in Reducing Contamination at West Valley Demonstration Project Unconventional Groundwater System Proves Effective in Reducing Contamination at West Valley Demonstration Project July 22, 2013 - 12:00pm Addthis In the two years prior to the operation of the permeable treatment wall, pictured here, WVDP conducted extensive engineering and planning to ensure it would effectively remove strontium-90. In the two years prior to the operation of the permeable treatment wall, pictured here, WVDP conducted extensive engineering and planning to ensure it would effectively remove strontium-90. This 2009 photo shows a trenching machine, which is capable of cutting a continuous trench up to 30 feet deep and 3 feet wide. The machine was used in a pilot study to evaluate the effectiveness of zeolite placement as the trench was dug. This ensured a consistent depth and width for the zeolite placement along the entire length of the permeable treatment wall.

490

Devonian shale gas resource assessment, Illinois basin  

SciTech Connect (OSTI)

In 1980 the National Petroleum Council published a resource appraisal for Devonian shales in the Appalachian, Michigan, and Illinois basins. Their Illinois basin estimate of 86 TCFG in-place has been widely cited but never verified nor revised. The NPC estimate was based on extremely limited canister off-gas data, used a highly simplified volumetric computation, and is not useful for targeting specific areas for gas exploration. In 1994 we collected, digitized, and normalized 187 representative gamma ray-bulk density logs through the New Albany across the entire basin. Formulas were derived from core analyses and methane adsorption isotherms to estimate total organic carbon (r{sup 2}=0.95) and gas content (r{sup 2}=0.79-0.91) from shale bulk density. Total gas in place was then calculated foot-by-foot through each well, assuming normal hydrostatic pressures and assuming the shale is gas saturated at reservoir conditions. The values thus determined are similar to peak gas contents determined by canister off-gassing of fresh cores but are substantially greater than average off-gas values. Greatest error in the methodology is at low reservoir pressures (or at shallow depths), however, the shale is generally thinner in these areas so the impact on the total resource estimate is small. The total New Albany gas in place was determined by integration to be 323 TCFG. Of this, 210 TCF (67%) is in the upper black Grassy Creek Shale, 72 TCF (23%) in the middle black and gray Selmier Shale, and 31 TCF (10%) in the basal black Blocher Shale. Water production concerns suggest that only the Grassy Creek Shale is likely to be commercially exploitable.

Cluff, R.M.; Cluff, S.G.; Murphy, C.M. [Discovery Group, Inc., Denver, CO (United States)

1996-12-31T23:59:59.000Z

491

Devonian shale gas resource assessment, Illinois basin  

SciTech Connect (OSTI)

In 1980 the National Petroleum Council published a resource appraisal for Devonian shales in the Appalachian, Michigan, and Illinois basins. Their Illinois basin estimate of 86 TCFG in-place has been widely cited but never verified nor revised. The NPC estimate was based on extremely limited canister off-gas data, used a highly simplified volumetric computation, and is not useful for targeting specific areas for gas exploration. In 1994 we collected, digitized, and normalized 187 representative gamma ray-bulk density logs through the New Albany across the entire basin. Formulas were derived from core analyses and methane adsorption isotherms to estimate total organic carbon (r[sup 2]=0.95) and gas content (r[sup 2]=0.79-0.91) from shale bulk density. Total gas in place was then calculated foot-by-foot through each well, assuming normal hydrostatic pressures and assuming the shale is gas saturated at reservoir conditions. The values thus determined are similar to peak gas contents determined by canister off-gassing of fresh cores but are substantially greater than average off-gas values. Greatest error in the methodology is at low reservoir pressures (or at shallow depths), however, the shale is generally thinner in these areas so the impact on the total resource estimate is small. The total New Albany gas in place was determined by integration to be 323 TCFG. Of this, 210 TCF (67%) is in the upper black Grassy Creek Shale, 72 TCF (23%) in the middle black and gray Selmier Shale, and 31 TCF (10%) in the basal black Blocher Shale. Water production concerns suggest that only the Grassy Creek Shale is likely to be commercially exploitable.

Cluff, R.M.; Cluff, S.G.; Murphy, C.M. (Discovery Group, Inc., Denver, CO (United States))

1996-01-01T23:59:59.000Z

492

HYDRAULIC CEMENT PREPARATION FROM LURGI SPENT SHALE  

SciTech Connect (OSTI)

Low cost material is needed for grouting abandoned retorts. Experimental work has shown that a hydraulic cement can be produced from Lurgi spent shale by mixing it in a 1:1 weight ratio with limestone and heating one hour at 1000°C. With 5% added gypsum, strengths up to 25.8 MPa are obtained. This cement could make an economical addition up to about 10% to spent shale grout mixes, or be used in ordinary cement applications.

Mehta, P.K.; Persoff, P.; Fox, J.P.

1980-06-01T23:59:59.000Z

493

Pyrolysis of shale oil vacuum distillate fractions  

SciTech Connect (OSTI)

The freezing point of US Navy jet fuel (JP-5) has been related to the amounts of large n-alkanes present in the fuel. This behavior applies to jet fuels derived from alternate fossil fuel resources, such as shale oil, coal, and tar sands, as well as those derived from petroleum. In general, jet fuels from shale oil have the highest and those from coal the lowest n-alkane content. The origin of these n-alkanes in the amounts observed, especially in shale-derived fuels, is not readily explained on the basis of literature information. Studies of the processes, particularly the ones involving thermal stress, used to produce these fuels are needed to define how the n-alkanes form from larger molecules. The information developed will significantly contribute to the selection of processes and refining techniques for future fuel production from shale oil. Carbon-13 nmr studies indicate that oil shale rock contains many long unbranched straight chain hydrocarbon groups. The shale oil derived from the rock also gives indication of considerable straight chain material with large peaks at 14, 23, 30, and 32 ppM in the C-13 nmr spectrum. Previous pyrolysis studies stressed fractions of shale crude oil residua, measured the yields of JP-5, and determined the content of potential n-alkanes in the JP-5 distillation range (4). In this work, a shale crude oil vacuum distillate (Paraho) was separated into three chemical fractions. The fractions were then subjected to nmr analysis to estimate the potential for n-alkane production and to pyrolysis studies to determine an experimental n-alkane yield.

Hazlett, R.N.; Beal, E.

1983-01-01T23:59:59.000Z

494

Pyrolysis of shale oil vacuum distillate fractions  

SciTech Connect (OSTI)

The freezing point of U.S. Navy jet fuel (JP-5) has been related to the amounts of large nalkanes present in the fuel. This behavior applies to jet fuels derived from alternate fossil fuel resources, such as shale oil, coal, and tar sands, as well as those derived from petroleum. In general, jet fuels from shale oil have the highest and those from coal the lowest n-alkane content. The origin of these n-alkanes in the amounts observed, especially in shale-derived fuels, is not readily explained on the basis of literature information. Studies of the processes, particularly the ones involving thermal stress, used to produce these fuels are needed to define how th n-alkanes form from larger molecules. The information developed will significantly contribute to the selection of processes and refining techniques for future fuel production from shale oil. Carbon-13 nmr studies indicate that oil shale rock contains many long unbranched straight chain hydrocarbon groups. The shale oil derived from the rock also gives indication of considerable straight chain material with large peaks at 14, 23, 30 and 32 ppm in the C-13 nmr spectrum. Previous pyrolysis studies stressed fractions of shale crude oil residua, measured the yields of JP-5, and determined the content of potential n-alkanes in the JP-5 distillation range (4). In this work, a shale crude oil vacuum distillate (Paraho) was separated into three chemical fractions. The fractions were then subjected to nmr analysis to estimate the potential for n-alkane production and to pyrolysis studies to determine an experimental n-alkane yield.

Hazlett, R.N.; Beal, E.

1983-02-01T23:59:59.000Z

495

National Offshore Wind Energy Grid Interconnection Study  

SciTech Connect (OSTI)

The National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) considers the availability and potential impacts of interconnecting large amounts of offshore wind energy into the transmission system of the lower 48 contiguous United States. A total of 54GW of offshore wind was assumed to be the target for the analyses conducted. A variety of issues are considered including: the anticipated staging of offshore wind; the offshore wind resource availability; offshore wind energy power production profiles; offshore wind variability; present and potential technologies for collection and delivery of offshore wind energy to the onshore grid; potential impacts to existing utility systems most likely to receive large amounts of offshore wind; and regulatory influences on offshore wind development. The technologies considered the reliability of various high-voltage ac (HVAC) and high-voltage dc (HVDC) technology options and configurations. The utility system impacts of GW-scale integration of offshore wind are considered from an operational steady-state perspective and from a regional and national production cost perspective.

Daniel, John P. [ABB Inc; Liu, Shu [ABB Inc; Ibanez, Eduardo [National Renewable Energy Laboratory; Pennock, Ken [AWS Truepower; Reed, Greg [University of Pittsburgh; Hanes, Spencer [Duke Energy

2014-07-30T23:59:59.000Z

496

Failure surface model for oil shale  

SciTech Connect (OSTI)

One promising means of recovering oil from oil shale is to retort the shale in situ. Currently, modified in situ technology requires the construction of extensive underground openings or retorts. The remaining media (structure left around these retorts must support the overburden and contain the retorting shale. A failure criterion for oil shale, which is presented in this paper, was developed so that regions in the retort structure where the shale may be approaching failure can be identified. This criterion, adapted from composite materials applications, is essentially a closed surface in six-dimensional stress space and makes it possible to describe the anisotropic nature of failure in layered materials. The failure surface can be defined by five parameters which are determined from five simple laboratory tests. The surface is developed for a 80 ml/kg kerogen content shale and its features are discussed in detail. The predictions of the model are found to be in agreement with the results of a large number of laboratory tests, including uniaxial and triaxial compression tests. One unique (for rocks) test series is discussed which involves the failure of thin-walled tubes under combined compression and torsion. Finally, it is shown how the model can be extended to include the variation of material properties with kerogen content and temperature.

Costin, L.S.

1981-08-01T23:59:59.000Z

497

Technically recoverable Devonian shale gas in Kentucky  

SciTech Connect (OSTI)

This report evaluates the natural gas potential of the Devonian Age shales of Kentucky. For this, the study: (1) compiles the latest geologic and reservoir data to establish the gas in-place; (2) analyzes and models the dominant gas production mechanisms; and (3) examines alternative well stimulation and production strategies for most efficiently recovering the in-place gas. The major findings of the study include the following: (1) The technically recoverable gas from Devonian shale (Lower and Upper Huron, Rhinestreet, and Cleveland intervals) in Kentucky is estimated to range from 9 to 23 trillion cubic feet (Tcf). (2) The gas in-place for the Devonian shales in eastern Kentucky is 82 Tcf. About one half of this amount is found in the Big Sandy gas field and its immediate extensions. The remainder is located in the less naturally fractured, but organically rich area to the west of the Big Sandy. (3) The highly fractured shales in the Big Sandy area in southeast Kentucky and the more shallow shales of eastern Kentucky respond well to small-scale stimulation. New, larger-scale stimulation technology will be required for the less fractured, anisotropic Devonian shales in the rest of the state. 44 refs., 49 figs., 24 tabs.

Kuuskraa, V.A.; Sedwick, K.B.; Thompson, K.B.; Wicks, D.E.

1985-05-01T23:59:59.000Z

498

An approach for assessing engineering risk from shale gas wells in the United States  

Science Journals Connector (OSTI)

Abstract In response to a series of “energy crises” in the 1970s, the United States government began investigating the potential of unconventional, domestic sources of energy to offset imported oil. Hydraulic fracturing applied to vertical tight sand and coal bed methane wells achieved some degree of success during a period of high energy prices in the early 1980s, but shale gas remained largely untapped until the late 1990s with the application of directional drilling, a mature technology adapted from deepwater offshore platforms that allowed horizontal wells to penetrate kilometers of organic-rich shale, and staged hydraulic fracturing, which created high permeability flowpaths from the horizontal wells into a much greater volume of the target formations than previous completion methods. These new engineering techniques opened up vast unconventional natural gas and oil reserves, but also raised concerns about potential environmental impacts. These include short-term and long-term impacts to air and water quality from rig operations, potential migration of gas, fluids and chemicals through the ground, and effects on small watersheds and landscapes from roads, pads and other surface structures. Engineering risk assessment commonly uses integrated assessment models (IAMs), which define sources of risk from features, events and processes. The risk from each system element is assessed using high-fidelity models. Output from these is simplified into reduced-order models, so that a large, integrated site performance assessment can be run using the IAM. The technique has been applied to engineered systems in geologic settings for sequestering carbon dioxide, and it is also applicable to shale gas, albeit with some modifications of the various system elements. Preliminary findings indicate that shale gas well drilling and hydraulic fracturing techniques are generally safe when properly applied. Incident reports recorded by state environmental agencies suggest that human error resulting from the disregard of prescribed practices is the greatest cause of environmental incidents. This can only be addressed through education, regulations and enforcement.

Daniel J. Soeder; Shikha Sharma; Natalie Pekney; Leslie Hopkinson; Robert Dilmore; Barbara Kutchko; Brian Stewart; Kimberly Carter; Alexandra Hakala; Rosemary Capo

2014-01-01T23:59:59.000Z

499

Using Stalmarck's algorithm to prove inequalities  

E-Print Network [OSTI]

of coverings. A covering C of a formula f is a set of monomials drawn from a set of predicates P of the abstraction. St°almarck's algorithm is a candidate method for computing these appoxima- tive coverings whenUsing St°almarck's algorithm to prove inequalities Byron Cook and Georges Gonthier Microsoft

Rajamani, Sriram K.

500

California - Coastal Region Coalbed Methane Proved Reserves ...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 - No Data...