Sample records for office commercial building

  1. Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings

    E-Print Network [OSTI]

    Fridley, David G.

    2008-01-01T23:59:59.000Z

    Case 25 Figure 9 CO2 Emissions from Commercial Buildings (27 Figure 12 CO2 Emissions by Sector (Primary Energy,16 Office Building CO2 Emissions (Reference Case, Primary

  2. Recommendations for 15% Above-Code Energy Efficiency Measures for Commercial Office Buildings

    E-Print Network [OSTI]

    Montgomery, C.; Yazdani, B.; Haberl, J. S.; Culp, C.; Liu, Z.; Mukhopadhyay, J.; Cho, S.

    This report presents detailed information about the recommendations for achieving 15% above-code energy performance for commercial office buildings complying with ASHRAE Standard 90.1-19991. To accomplish the 15% annual energy consumption reductions...

  3. Energy Savings Modeling of Standard Commercial Building Re-tuning Measures: Large Office Buildings

    SciTech Connect (OSTI)

    Fernandez, Nicholas; Katipamula, Srinivas; Wang, Weimin; Huang, Yunzhi; Liu, Guopeng

    2012-06-01T23:59:59.000Z

    Today, many large commercial buildings use sophisticated building automation systems (BASs) to manage a wide range of building equipment. While the capabilities of BASs have increased over time, many buildings still do not fully use the BAS's capabilities and are not properly commissioned, operated or maintained, which leads to inefficient operation, increased energy use, and reduced lifetimes of the equipment. This report investigates the energy savings potential of several common HVAC system retuning measures on a typical large office building prototype model, using the Department of Energy's building energy modeling software, EnergyPlus. The baseline prototype model uses roughly as much energy as an average large office building in existing building stock, but does not utilize any re-tuning measures. Individual re-tuning measures simulated against this baseline include automatic schedule adjustments, damper minimum flow adjustments, thermostat adjustments, as well as dynamic resets (set points that change continuously with building and/or outdoor conditions) to static pressure, supply air temperature, condenser water temperature, chilled and hot water temperature, and chilled and hot water differential pressure set points. Six combinations of these individual measures have been formulated - each designed to conform to limitations to implementation of certain individual measures that might exist in typical buildings. All of these measures and combinations were simulated in 16 cities representative of specific U.S. climate zones. The modeling results suggest that the most effective energy savings measures are those that affect the demand-side of the building (air-systems and schedules). Many of the demand-side individual measures were capable of reducing annual HVAC system energy consumption by over 20% in most cities that were modeled. Supply side measures affecting HVAC plant conditions were only modestly successful (less than 5% annual HVAC energy savings for most cities for all measures). Combining many of the retuning measures revealed deep savings potential. Some of the more aggressive combinations revealed 35-75% reductions in annual HVAC energy consumption, depending on climate and building vintage.

  4. Detailed Energy Data Collection for Miscellaneous and Electronic Loads in a Commercial Office Building

    E-Print Network [OSTI]

    Culler, David E.

    Detailed Energy Data Collection for Miscellaneous and Electronic Loads in a Commercial Office Miscellaneous and electronic loads (MELs) consume about 20% of the primary energy used in U.S. buildings and accurate data to inform MELs energy use. Introduction Background Buildings account for 40% of the total

  5. commercial buildings initiative | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Commercial Buildings Initiative The DOE Building Technologies Office works with the commercial building industry to accelerate the use of energy efficiency technologies in both...

  6. Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings

    SciTech Connect (OSTI)

    Fridley, David; Fridley, David G.; Zheng, Nina; Zhou, Nan

    2008-03-01T23:59:59.000Z

    Buildings represent an increasingly important component of China's total energy consumption mix. However, accurately assessing the total volume of energy consumed in buildings is difficult owing to deficiencies in China's statistical collection system and a lack of national surveys. Official statistics suggest that buildings account for about 19% of China's total energy consumption, while others estimate the proportion at 23%, rising to 30% over the next few years. In addition to operational energy, buildings embody the energy used in the in the mining, extraction, harvesting, processing, manufacturing and transport of building materials as well as the energy used in the construction and decommissioning of buildings. This embodied energy, along with a building's operational energy, constitutes the building's life-cycle energy and emissions footprint. This report first provides a review of international studies on commercial building life-cycle energy use from which data are derived to develop an assessment of Chinese commercial building life-cycle energy use, then examines in detail two cases for the development of office building operational energy consumption to 2020. Finally, the energy and emissions implications of the two cases are presented.

  7. Demand Relief and Weather Sensitivity in Large California Commercial Office Buildings

    E-Print Network [OSTI]

    Kinney, S.; Piette, M. A.; Gu, L.; Haves, P.

    2001-01-01T23:59:59.000Z

    implemented or are under consideration. Historically, the target customers have been large industrial users who can reduce the equivalent load of several large office buildings. While the individual load reduction from an individual office building may be less...

  8. Transforming Commercial Building Operations - 2013 BTO Peer Review...

    Energy Savers [EERE]

    - 2013 BTO Peer Review Transforming Commercial Building Operations - 2013 BTO Peer Review Commercial Buildings Integration Project for the 2013 Building Technologies Office's...

  9. Methods for detailed energy data collection of miscellaneous and electronic loads in a commercial office building

    E-Print Network [OSTI]

    California at Berkeley, University of

    Methods for detailed energy data collection of miscellaneous and electronic loads in a commercial and electronic loads (MELs) consume about 20% of the primary energy used in U.S. buildings, and this share Buildings account for 40% of the total primary energy con- sumption in the U.S., with 22% consumed

  10. Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings

    E-Print Network [OSTI]

    Fridley, David G.

    2008-01-01T23:59:59.000Z

    Geothermal Heat Pump Central AC by NG Electric water heaterwater heating Technologies Electric heater Gas boiler Coal Boiler Small cogen Stove District heating Heat pumpHeat Pump* *COP Reference Case Alternative Case Table 10 Office Buildings: Water Heating Efficiency Boiler Gas Boiler Small Cogen Electric Water Heater

  11. Commercial Buildings Characteristics, 1992

    SciTech Connect (OSTI)

    Not Available

    1994-04-29T23:59:59.000Z

    Commercial Buildings Characteristics 1992 presents statistics about the number, type, and size of commercial buildings in the United States as well as their energy-related characteristics. These data are collected in the Commercial Buildings Energy Consumption Survey (CBECS), a national survey of buildings in the commercial sector. The 1992 CBECS is the fifth in a series conducted since 1979 by the Energy Information Administration. Approximately 6,600 commercial buildings were surveyed, representing the characteristics and energy consumption of 4.8 million commercial buildings and 67.9 billion square feet of commercial floorspace nationwide. Overall, the amount of commercial floorspace in the United States increased an average of 2.4 percent annually between 1989 and 1992, while the number of commercial buildings increased an average of 2.0 percent annually.

  12. Commercial Building Demonstration and Deployment Overview - 2014...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office's Commercial Building Demonstration and Deployment activities. Through robust feedback, the BTO Program Peer Review enhances existing efforts and improves future designs....

  13. Evaluation of the near-term commercial potential of technologies being developed by the Office of Building Technologies

    SciTech Connect (OSTI)

    Weijo, R.O. (Portland General Electric Co., OR (USA)); Nicholls, A.K.; Weakley, S.A.; Eckert, R.L.; Shankle, D.L.; Anderson, M.R.; Anderson, A.R. (Pacific Northwest Lab., Richland, WA (USA))

    1991-03-01T23:59:59.000Z

    This project developed an inventory of the Office of Building Technologies (OBT) from a survey administered in 1988 to program managers and principal investigators from OBT. Information provided on these surveys was evaluated to identify equipment and practices that are near-term opportunities for technology commercialization and to determine whether they needed some form of assistance from OBT to be successful in the marketplace. The near-term commercial potential of OBT technologies was assessed by using a technology selection screening methodology. The screening first identified those technologies that were ready to be commercialized in the next two years. The second screen identified the technologies that had a simple payback period of less than five years, and the third identified those that met a current need in the marketplace. Twenty-six OBT technologies met all the criteria. These commercially promising technologies were further screened to determine which would succeed on their own and which would require further commercialization support. Additional commercialization support was recommended for OBT technologies where serious barriers to adoption existed or where no private sector interest in a technology could be identified. Twenty-three technologies were identified as requiring commercialization support from OBT. These are categorized by each division within OBT and are shown in Table S.1. The methodology used could easily be adapted to screen other DOE-developed technologies to determine commercialization potential and to allocate resources accordingly. It provides a systematic way to analyze numerous technologies and a defensible and documented procedure for comparing them. 4 refs., 7 figs., 10 tabs.

  14. Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings

    E-Print Network [OSTI]

    Fridley, David G.

    2008-01-01T23:59:59.000Z

    of Central Government Buildings. ” Available at: http://Energy Commission, PIER Building End-Use Energy Efficiencythe total lifecycle of a building such as petroleum and

  15. PHOTOVOLTAICS AND COMMERCIAL BUILDINGS--

    E-Print Network [OSTI]

    Perez, Richard R.

    management of electricity demand. · PV applications are now being integrated directly into building roofs, Valuation of Demand-Side Commercial PV Systems in the United States, we sought to measure the costPHOTOVOLTAICS AND COMMERCIAL BUILDINGS-- A NATURAL MATCH A study highlighting strategic

  16. Office Buildings - Full Report

    Gasoline and Diesel Fuel Update (EIA)

    1). Table 1. Totals and means of of floorspace, number of workers, and hours of operation for office buildings, 2003 Buildings (thousand) Total Floorspace (million sq. ft.)...

  17. The Advantage of Highly Controlled Lighting for Offices and Commercial Buildings

    E-Print Network [OSTI]

    Rubinstein, Francis

    2010-01-01T23:59:59.000Z

    of Highly Controlled Lighting for Offices and Commercialefficient, customized lighting for open-office cubicles.s “ambient” and “task” lighting components, 2) occupancy

  18. Request for Information: High Impact Commercial Building Technology...

    Energy Savers [EERE]

    U.S. Department of Energy's (DOE) Building Technologies Office (BTO) is developing a pipeline of high impact, cost-effective, energy saving and underutilized commercial building...

  19. The Advantages of Highly Controlled Lighting for Offices and Commercial

    E-Print Network [OSTI]

    LBNL-2514E The Advantages of Highly Controlled Lighting for Offices and Commercial Buildings F for Offices and Commercial Buildings Francis Rubinstein and Dmitriy Bolotov, Lawrence Berkeley National 25% of the electrical energy used in US commercial buildings (DOE 2007). Advanced lighting controls

  20. Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings

    E-Print Network [OSTI]

    Fridley, David G.

    2008-01-01T23:59:59.000Z

    Primary Electricity Coal Final energy use in buildings is9 million tonnes of coal equivalent energy could be saved byproportion of energy consumed from coal, coke, liquid fuels,

  1. Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings

    E-Print Network [OSTI]

    Fridley, David G.

    2008-01-01T23:59:59.000Z

    material intensity, energy intensity of materials, buildingtype’s manufacturing energy intensity (how much energy itthe manufacturing energy intensity of each type of building

  2. Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings

    E-Print Network [OSTI]

    Fridley, David G.

    2008-01-01T23:59:59.000Z

    such as increasing boiler efficiency from 68% averageBuildings: Water Heating Efficiency Boiler Gas Boiler SmallSpace Heating Efficiency District Heating Boiler Gas Boiler

  3. Energy 101: Energy Efficient Commercial Buildings

    ScienceCinema (OSTI)

    None

    2014-06-26T23:59:59.000Z

    Learn how commercial buildings can incorporate whole-building design to save energy and money while enhancing performance and comfort. This video highlights several energy-saving features of the Research Support Facility at the Energy Department's National Renewable Energy Laboratory-a model for high-performance office building design.

  4. Energy 101: Energy Efficient Commercial Buildings

    SciTech Connect (OSTI)

    None

    2014-03-14T23:59:59.000Z

    Learn how commercial buildings can incorporate whole-building design to save energy and money while enhancing performance and comfort. This video highlights several energy-saving features of the Research Support Facility at the Energy Department's National Renewable Energy Laboratory-a model for high-performance office building design.

  5. A Case Study of Retro Commissioning in a Standard Commercial Office Building in Japan

    E-Print Network [OSTI]

    Kamitani, K.; Shimazu, M.; Inomata, N.

    2006-01-01T23:59:59.000Z

    /h ? 487 , 500kcal/h? 1,200M J /h 1 , 700 l/min?? 7.5kW?? 108MJ/h 108MJ/h 27MJ/h CHRH (b) External melting type ice thermal storage system ICEBO2006, Shenzhen, China Building Commissioning for Energy Efficiency and Comfort, Vol.VI-9... at cooperation with the ice thermal storage tank which already exists ICEBO2006, Shenzhen, China Building Commissioning for Energy Efficiency and Comfort, Vol.VI-9-1 in 1989. Inorder to secure stable thermal storage operationand want to storage many...

  6. Characterization of commercial building appliances. Final report

    SciTech Connect (OSTI)

    Patel, R.F.; Teagan, P.W.; Dieckmann, J.T.

    1993-08-01T23:59:59.000Z

    This study focuses on ``other`` end-uses category. The purpose of this study was to determine the relative importance of energy end-use functions other than HVAC and lighting for commercial buildings, and to identify general avenues and approaches for energy use reduction. Specific energy consuming technologies addressed include non-HVAC and lighting technologies in commercial buildings with significant energy use to warrant detailed analyses. The end-uses include office equipment, refrigeration, water heating, cooking, vending machines, water coolers, laundry equipment and electronics other than office equipment. The building types include offices, retail, restaurants, schools, hospitals, hotels/motels, grocery stores, and warehouses.

  7. Measured energy performance of a US-China demonstration energy-efficient office building

    E-Print Network [OSTI]

    Xu, Peng; Huang, Joe; Jin, Ruidong; Yang, Guoxiong

    2006-01-01T23:59:59.000Z

    China demonstration energy- efficient commercial building”,China Demonstration Energy Efficient Office Building insideUS-China demonstration energy-efficient office building Peng

  8. The Advantage of Highly Controlled Lighting for Offices and Commercial Buildings

    SciTech Connect (OSTI)

    Rubinstein, Francis; Bolotov, Dmitriy; Levi, Mark; Powell, Kevin; Schwartz, Peter

    2008-08-17T23:59:59.000Z

    The paper presents results from pilot studies of new 'workstation-specific' luminaires that are designed to provide highly, efficient, customized lighting for open-office cubicles. Workstation specific luminaires have the following characteristics: (1) they provide separate, dimming control of the cubicle's 'ambient' and 'task' lighting components, (2) occupancy sensors and control photosensors are integrated into the fixture's design and operation, (3) luminaires can be networked using physical cabling, microcontrollers and a PC running control software. The energy savings, demand response capabilities and quality of light from the two WS luminaires were evaluated and compared to the performance of a static, low-ambient lighting system that is uncontrolled. Initial results from weeks of operation provide strong indication that WS luminaires can largely eliminate the unnecessary lighting of unoccupied cubicles while providing IESNA-required light levels when the cubicles are occupied. Because each cubicle's lighting is under occupant sensor control, the WS luminaires can capitalize on the fact cubicles are often unoccupied during normal working hours and reduce their energy use accordingly.

  9. Commercial Building Partnership

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth Codesthe NaturalCommercial Building Energy

  10. Commercial Buildings Consortium

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth Codesthe NaturalCommercial Building

  11. Commercial Buildings Integration (CBI)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth Codesthe NaturalCommercial Building1 | Energy

  12. Commercial Buildings Integration Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth Codesthe NaturalCommercial Building1 | Energy

  13. Commercial Building Funding Opportunity Webinar

    Broader source: Energy.gov [DOE]

    This webinar provide an overview of the Commercial Building Technology Demonstrations Funding Opportunity Announcement DE-FOA-0001084.

  14. Commercial Buildings Integration Program Overview - 2013 BTO...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial Buildings Integration Program Overview - 2013 BTO Peer Review Commercial Buildings Integration Program Overview - 2013 BTO Peer Review Commercial Buildings Integration...

  15. Strategies for Demand Response in Commercial Buildings

    E-Print Network [OSTI]

    Watson, David S.; Kiliccote, Sila; Motegi, Naoya; Piette, Mary Ann

    2006-01-01T23:59:59.000Z

    Strategies for Demand Response in Commercial Buildings DavidStrategies for Demand Response in Commercial Buildings Davidadjusted for demand response in commercial buildings. The

  16. A Look at Office Buildings - Index

    Gasoline and Diesel Fuel Update (EIA)

    professional offices, and administrative offices. For example, an office may be a computer center, bank, consultant's office, law office, or medical office. An office building...

  17. Trends in Commercial Buildings--Buildings and Floorspace

    Gasoline and Diesel Fuel Update (EIA)

    Home > Trends in Commercial Buildings > Trends in Buildings Floorspace Data tables Commercial Buildings TrendDetail Commercial Floorspace TrendDetail Background: Adjustment to...

  18. Participation through Automation: Fully Automated Critical Peak Pricing in Commercial Buildings

    E-Print Network [OSTI]

    Piette, Mary Ann; Watson, David S.; Motegi, Naoya; Kiliccote, Sila; Linkugel, Eric

    2006-01-01T23:59:59.000Z

    Figure 2. Demand Response Automation Server and BuildingDemand Response Control Strategies in Commercial Buildings,X X Example of Demand Response from an Office Building This

  19. Bradshaw Construction New Office Building

    High Performance Buildings Database

    Eldersburg, MD The New Office Building is part of an effort by Bradshaw Construction Corporation to combine office, off-site shop buildings and off-site storage yards at one consolidated location. The new site, located off Maryland Route 26, shall provide space for an office building and parking; and secured shop building and storage yard. The New Office Building Project has achieved LEED Silver certification. The office building is designed as a free standing building of approximately 8,200 square feet in area, one story in height.

  20. Performance Metrics for Commercial Buildings

    SciTech Connect (OSTI)

    Fowler, Kimberly M.; Wang, Na; Romero, Rachel L.; Deru, Michael P.

    2010-09-30T23:59:59.000Z

    Commercial building owners and operators have requested a standard set of key performance metrics to provide a systematic way to evaluate the performance of their buildings. The performance metrics included in this document provide standard metrics for the energy, water, operations and maintenance, indoor environmental quality, purchasing, waste and recycling and transportation impact of their building. The metrics can be used for comparative performance analysis between existing buildings and industry standards to clarify the impact of sustainably designed and operated buildings.

  1. Commercial & Institutional Green Building Performance

    E-Print Network [OSTI]

    Harrison, S.; Mundell,C.; Meline, K.; Kraatz,J.

    2014-01-01T23:59:59.000Z

    Buildings Voluntary Green Building Programs: • LEED www.usgbc.org • Living Building Challenge living-future.org/lbc • Green Globes www.greenglobes.com • WELL Buildings wellbuildinginstitute.com • ENERGY STAR energystar.gov ESL-KT-14...The North Central Branch Texas Public Works Association Commercial & Institutional Green Building Performance 11.19.2014 ESL-KT-14-11-26 CATEE 2014: Clean Air Through Efficiency Conference, Dallas, Texas Nov. 18-20 Q&A Your Presenters: Chris...

  2. Energy Consumption Analyses of Frequently-used HVAC System Types in High Performance Office Buildings.

    E-Print Network [OSTI]

    Yan, Liusheng

    2014-01-01T23:59:59.000Z

    ??The high energy consumption of heating, ventilation and air-conditioning (HVAC) systems in commercial buildings is a hot topic. Office buildings, a typical building set of… (more)

  3. Contacts - EERE Commercialization Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User GroupInformation AdministrationEnvironmentalCommercialization

  4. commercializaTion office Agriculture

    E-Print Network [OSTI]

    Arnold, Jonathan

    Technology commercializaTion office Agriculture ·Biotechnology ·Blueberries ·Cotton ·Forages Utilization, Renewable Energy ·Algalbiofuels ·Biodiesel ·Biomassengineering ·Biomasspre,skincare,andwoundhealing ·Vaccines Information Technology ·Bioinformaticstools ·Imagerenderingandenhancement ·3

  5. High-performance commercial building systems

    SciTech Connect (OSTI)

    Selkowitz, Stephen

    2003-10-01T23:59:59.000Z

    This report summarizes key technical accomplishments resulting from the three year PIER-funded R&D program, ''High Performance Commercial Building Systems'' (HPCBS). The program targets the commercial building sector in California, an end-use sector that accounts for about one-third of all California electricity consumption and an even larger fraction of peak demand, at a cost of over $10B/year. Commercial buildings also have a major impact on occupant health, comfort and productivity. Building design and operations practices that influence energy use are deeply engrained in a fragmented, risk-averse industry that is slow to change. Although California's aggressive standards efforts have resulted in new buildings designed to use less energy than those constructed 20 years ago, the actual savings realized are still well below technical and economic potentials. The broad goal of this program is to develop and deploy a set of energy-saving technologies, strategies, and techniques, and improve processes for designing, commissioning, and operating commercial buildings, while improving health, comfort, and performance of occupants, all in a manner consistent with sound economic investment practices. Results are to be broadly applicable to the commercial sector for different building sizes and types, e.g. offices and schools, for different classes of ownership, both public and private, and for owner-occupied as well as speculative buildings. The program aims to facilitate significant electricity use savings in the California commercial sector by 2015, while assuring that these savings are affordable and promote high quality indoor environments. The five linked technical program elements contain 14 projects with 41 distinct R&D tasks. Collectively they form a comprehensive Research, Development, and Demonstration (RD&D) program with the potential to capture large savings in the commercial building sector, providing significant economic benefits to building owners and health and performance benefits to occupants. At the same time this program can strengthen the growing energy efficiency industry in California by providing new jobs and growth opportunities for companies providing the technology, systems, software, design, and building services to the commercial sector. The broad objectives across all five program elements were: (1) To develop and deploy an integrated set of tools and techniques to support the design and operation of energy-efficient commercial buildings; (2) To develop open software specifications for a building data model that will support the interoperability of these tools throughout the building life-cycle; (3) To create new technology options (hardware and controls) for substantially reducing controllable lighting, envelope, and cooling loads in buildings; (4) To create and implement a new generation of diagnostic techniques so that commissioning and efficient building operations can be accomplished reliably and cost effectively and provide sustained energy savings; (5) To enhance the health, comfort and performance of building occupants. (6) To provide the information technology infrastructure for owners to minimize their energy costs and manage their energy information in a manner that creates added value for their buildings as the commercial sector transitions to an era of deregulated utility markets, distributed generation, and changing business practices. Our ultimate goal is for our R&D effort to have measurable market impact. This requires that the research tasks be carried out with a variety of connections to key market actors or trends so that they are recognized as relevant and useful and can be adopted by expected users. While some of this activity is directly integrated into our research tasks, the handoff from ''market-connected R&D'' to ''field deployment'' is still an art as well as a science and in many areas requires resources and a timeframe well beyond the scope of this PIER research program. The TAGs, PAC and other industry partners have assisted directly in this effort

  6. 1999 Commercial Buildings Characteristics

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquids Reserve3. LightingImports Building7.p e uData

  7. Commercial Buildings Characteristics 1992

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import96 4.87 1967-2010Barrels)Buildings Characteristics 1992

  8. Commercial Buildings Characteristics 1992

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import96 4.87 1967-2010Barrels)Buildings Characteristics

  9. An in-depth Analysis of Space Heating Energy Use in Office Buildings

    E-Print Network [OSTI]

    . In this study, the prototypical small and large-size office buildings of the USDOE commercial reference is further benchmarked against those from similar office buildings in two U.S. commercial buildings databases is the largest one [USDOE]. The U.S. Energy Information Administration [EIA] 2003 Commercial Building Energy

  10. New Construction Commercial Reference Buildings — Archive

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

  11. Energy Information Administration (EIA)- Commercial Buildings...

    U.S. Energy Information Administration (EIA) Indexed Site

    Stock: Results from EIA's 2012 CBECS 2012 building stock results Source: U.S. Energy Information Administration, Commercial Buildings Energy Consumption Survey 2012, March...

  12. A Look at Principal Building Activities in Commercial Buildings

    Gasoline and Diesel Fuel Update (EIA)

    Buildings Home> Special Topics > 1995 Principal Building Activities Office Education Health Care Retail and Service Food Service Food Sales Lodging Religious Worship Public...

  13. Commercial Building Energy Asset Score

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth Codesthe Natural ResourcesCommercial Building Energy

  14. Trends in energy use in commercial buildings -- Sixteen years of EIA's commercial buildings energy consumption survey

    SciTech Connect (OSTI)

    Davis, J.; Swenson, A.

    1998-07-01T23:59:59.000Z

    The Commercial Buildings Energy Consumption Survey (CBECS) collects basic statistical information on energy consumption and energy-related characteristics of commercial buildings in the US. The first CBECS was conducted in 1979 and the most recent was completed in 1995. Over that period, the number of commercial bindings and total amount of floorspace increased, total consumption remained flat, and total energy intensity declined. By 1995, there were 4.6 million commercial buildings and 58.8 billion square feet of floorspace. The buildings consumed a total of 5.3 quadrillion Btu (site energy), with a total intensity of 90.5 thousand Btu per square foot per year. Electricity consumption exceeded natural gas consumption (2.6 quadrillion and 1.9 quadrillion Btu, respectively). In 1995, the two major users of energy were space heating (1.7 quadrillion Btu) and lighting (1.2 quadrillion Btu). Over the period 1979 to 1995, natural gas intensity declined from 71.4 thousand to 51.0 thousand Btu per square foot per year. Electricity intensity did not show a similar decline (44.2 thousand Btu per square foot in 1979 and 45.7 thousand Btu per square foot in 1995). Two types of commercial buildings, office buildings and mercantile and service buildings, were the largest consumers of energy in 1995 (2.0 quadrillion Btu, 38% of total consumption). Three building types, health care, food service, and food sales, had significantly higher energy intensities. Buildings constructed since 1970 accounted for half of total consumption and a majority (59%) of total electricity consumption.

  15. Electric Storage in California's Commercial Buildings

    E-Print Network [OSTI]

    Stadler, Michael

    2014-01-01T23:59:59.000Z

    CHP system at the commercial building could be used to offset EV charging at home at the residential

  16. Technology Commercialization Fund - EERE Commercialization Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fund The Technology Commercialization Fund (TCF) is designed to complement angel investment or early stage corporate product development. The fund totaled nearly 14.3 million in...

  17. Development of an integrated building load and ground source heat pump model to assess heat pump and ground loop design and performance in a commercial office building.

    E-Print Network [OSTI]

    Blair, Jacob Dale

    2014-01-01T23:59:59.000Z

    ??Ground source heat pumps (GSHPs) offer an efficient method for cooling and heating buildings, reducing energy usage and operating cost. In hot, arid regions such… (more)

  18. Energy use in office buildings

    SciTech Connect (OSTI)

    None

    1980-10-01T23:59:59.000Z

    This is the report on Task IB, Familiarization with Additional Data Collection Plans of Annual Survey of BOMA Member and Non-Member Buildings in 20 Cities, of the Energy Use in Office Buildings project. The purpose of the work was to monitor and understand the efforts of the Building Owners and Managers Association International (BOMA) in gathering an energy-use-oriented data base. In order to obtain an improved data base encompassing a broad spectrum of office space and with information suitable for energy analysis in greater detail than is currently available, BOMA undertook a major data-collection effort. Based on a consideration of geographic area, climate, population, and availability of data, BOMA selected twenty cities for data collection. BOMA listed all of the major office space - buildings in excess of 40,000 square feet - in each of the cities. Tax-assessment records, local maps, Chamber of Commerce data, recent industrial-development programs, results of related studies, and local-realtor input were used in an effort to assemble a comprehensive office-building inventory. In order to verify the accuracy and completeness of the building lists, BOMA assembled an Ad-Hoc Review Committee in each city to review the assembled inventory of space. A questionnaire on office-building energy use and building characteristics was developed. In each city BOMA assembled a data collection team operating under the supervision of its regional affiliate to gather the data. For each city a random sample of buildings was selected, and data were gathered. Responses for over 1000 buildings were obtained.

  19. Energy Management Systems Package for Small Commercial Buildings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Management Systems Package for Small Commercial Buildings Energy Management Systems Package for Small Commercial Buildings Commercial Buildings Integration Project for the...

  20. Office Buildings: Assessing and Reducing Plug and Process Loads in Office Buildings (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-04-01T23:59:59.000Z

    Plug and process loads (PPLs) in commercial buildings account for almost 5% of U.S. primary energy consumption. Minimizing these loads is a primary challenge in the design and operation of an energy-efficient building. PPLs are not related to general lighting, heating, ventilation, cooling, and water heating, and typically do not provide comfort to the occupants. They use an increasingly large fraction of the building energy use pie because the number and variety of electrical devices have increased along with building system efficiency. Reducing PPLs is difficult because energy efficiency opportunities and the equipment needed to address PPL energy use in office spaces are poorly understood.

  1. VALIDATION OF THE eCALC COMMERCIAL CODE-COMPLIANT SIMULATION VERSUS MEASURED DATA FROM AN OFFICE BUILDING IN A HOT AND HUMID CLIMATE

    E-Print Network [OSTI]

    Cho, S.; Haberl, J.

    for the case-study building were performed and reported in Cho and Haberl (2008). In this paper an extension of the previous work is presented using the eCALC commercial simulation model, which uses simplified geometry and ASHRAE Standard 90.1-compliant...

  2. Assessment of Energy Impact of Window Technologies for Commercial Buildings

    E-Print Network [OSTI]

    Hong, Tianzhen

    2014-01-01T23:59:59.000Z

    average commercial buildings site energy usage of 91 kBtu/commercial buildings, even though the average Energy Usage

  3. Development and Testing of an Information Monitoring and Diagnostics System for Large Commercial Buildings

    E-Print Network [OSTI]

    A commercial office #12;buildings. Class A buildings are the most prestigious buildings in a particular marketDevelopment and Testing of an Information Monitoring and Diagnostics System for Large Commercial Buildings Mary Ann Piette , Lisa Gartland, Satkartar Khalsa, Lawrence Berkeley National Laboratory, Berkeley

  4. Building Technologies Office Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartmentFebruaryResistanceBuilding EnergyEnergy 2015

  5. Director's Office Building 510F

    E-Print Network [OSTI]

    McDonald, Kirk

    Director's Office Building 510F P.O. Box 11973-5000 Phone 516 344-5414 Fax 516 344-5820 tkirk report the following recommendation was made regarding your experiment, AGS E951, "An R&D Program as part of the national muon collider R&D program. On behalf of Brookhaven National Laboratory

  6. Archive Reference Buildings by Building Type: Large office

    Office of Energy Efficiency and Renewable Energy (EERE)

    Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

  7. Archive Reference Buildings by Building Type: Small office

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

  8. Better Buildings Alliance

    Broader source: Energy.gov [DOE]

    Commercial Buildings Integration Project for the 2013 Building Technologies Office's Program Peer Review

  9. Research scoping report: visualizing information in commercial buildings

    E-Print Network [OSTI]

    Lehrer, David

    2009-01-01T23:59:59.000Z

    and demand response in commercial buildings," Lawrencefor basic building monitoring, demand response, enterprise

  10. Energy-Efficient Commercial Buildings Tax Deduction

    Broader source: Energy.gov [DOE]

    The federal Energy Policy Act of 2005 established a tax deduction for energy-efficient commercial buildings applicable to qualifying systems and buildings placed in service from January 1, 2006,...

  11. Evaluation of a case-based Reasoning Energy Prediction Tool for Commercial Buildings

    E-Print Network [OSTI]

    Monfet, D.; Arkhipova, E.; Choiniere, D.

    2013-01-01T23:59:59.000Z

    This paper presents the results of an energy predictor that predicts the energy demand of commercial buildings using Case Based Reasoning (CBR). The proposed approach is evaluated using monitored data in a real office building located in Varennes...

  12. Energy Efficiency Trends in Residential and Commercial Buildings...

    Energy Savers [EERE]

    Energy Efficiency Trends in Residential and Commercial Buildings - August 2010 Energy Efficiency Trends in Residential and Commercial Buildings - August 2010 Overview of building...

  13. Commercial Building Energy Asset Score Sample Report | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Sample Report Commercial Building Energy Asset Score Sample Report Example report showing the results of an energy asset score rating on a building Commercial Building Energy Asset...

  14. Automated Demand Response Strategies and Commissioning Commercial Building Controls

    E-Print Network [OSTI]

    Piette, Mary Ann; Watson, David; Motegi, Naoya; Kiliccote, Sila; Linkugel, Eric

    2006-01-01T23:59:59.000Z

    for Demand Response in New and Existing Commercial BuildingsDemand Response Strategies and National Conference on BuildingDemand Response Strategies and Commissioning Commercial Building

  15. Apply: Funding Opportunity- Advancing Solutions to Improve Energy Efficiency of Commercial Buildings

    Broader source: Energy.gov [DOE]

    Closed Application Deadline: January 20, 2015 The Building Technologies Office (BTO) Commercial Buildings Integration Program has announced the availability of nearly $9 million for Funding Opportunity Announcement (FOA) DE-FOA-0001168, “Advancing Solutions to Improve the Energy Efficiency of U.S. Commercial Buildings.”

  16. Project materials [Commercial High Performance Buildings Project

    SciTech Connect (OSTI)

    None

    2001-01-01T23:59:59.000Z

    The Consortium for High Performance Buildings (ChiPB) is an outgrowth of DOE'S Commercial Whole Buildings Roadmapping initiatives. It is a team-driven public/private partnership that seeks to enable and demonstrate the benefit of buildings that are designed, built and operated to be energy efficient, environmentally sustainable, superior quality, and cost effective.

  17. Office of Intellectual Property Commercialization

    E-Print Network [OSTI]

    Ickert-Bond, Steffi

    to commercialize intellectual property. Local businesses are key to the development of UAF IP designed defense, local companies will likely be the first to develop technologies around mining, fisheries, and energy development in the North. We are grateful to those companies who have contacted us to date and we

  18. Identification of Market Requirements of Smart Buildings Technologies for High Rise Office Buildings

    E-Print Network [OSTI]

    Reffat, R. M.

    2010-01-01T23:59:59.000Z

    practices of utilizing hi-tech smart building technologies in office buildings, required additional features of smart building technologies for office buildings, challenges for integrating smart building technologies for office buildings, major benefits...

  19. Commercial Building Codes and Standards

    Broader source: Energy.gov [DOE]

    Once an energy-efficient technology or practice is widely available in the market, it can become the baseline of performance through building energy codes and equipment standards. The Building...

  20. Commercial Building Energy Efficiency Education Project

    SciTech Connect (OSTI)

    None

    2013-01-13T23:59:59.000Z

    The primary objective of this grant is to educate the public about carbon emissions and the energy-saving and job-related benefits of commercial building energy efficiency. investments in Illinois.

  1. Cooling, Heating, and Power for Commercial Buildings - Benefits...

    Broader source: Energy.gov (indexed) [DOE]

    Cooling, Heating, and Power for Commercial Buildings - Benefits Analysis, April 2002 Cooling, Heating, and Power for Commercial Buildings - Benefits Analysis, April 2002 In this...

  2. DOE Commercial Reference Buildings Summary of Changes Between...

    Broader source: Energy.gov (indexed) [DOE]

    Buildings refbldgschangesv40tov70.pdf More Documents & Publications DOE Commercial Reference Buildings Summary of Changes Between Versions Department of Energy Commercial...

  3. EIA Energy Efficiency-Commercial Buildings Sector Energy Intensities...

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Buildings Sector Energy Intensities Commercial Buildings Sector Energy Intensities: 1992- 2003 Released Date: December 2004 Page Last Revised: August 2009 These tables...

  4. Commercial Building Energy Asset Score: 2013 Pilot Overview ...

    Office of Environmental Management (EM)

    Score: 2013 Pilot Overview Commercial Building Energy Asset Score: 2013 Pilot Overview provides an overview of the 2013 pilot for the commercial building energy asset score...

  5. Commercial Building Energy Asset Scoring Tool Application Programming...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Commercial Building Energy Asset Scoring Tool Application Programming Interface Commercial Building Energy Asset Scoring Tool Application Programming Interface slides from June 14,...

  6. 1999 Commercial Buildings Characteristics--Building Size

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion Cubic Feet)WyomingSquare FeetHouseholds, Buildings1999Size of

  7. Evaluation of Energy Concepts for Office Buildings

    E-Print Network [OSTI]

    Fisch, M.; Norbert, M.; Plesser, S.

    2005-01-01T23:59:59.000Z

    Evaluation of Energyconcepts for Office Buildings Fisch, M. Norbert, Stefan Plesser; IGS – Institute for Building and Solar Technology, Technical University Braunschweig, Germany September 2005 Abstract “Glass façades” have become a... synonym for innovative office buildings in Germany over the last 10 years. Since almost no reliable results of measurement and verification have been made public on the performance of these buildings – often very prominent company headquarters...

  8. Technical and Energy Assessment of Building Integrated Photovoltaic Systems applied to the UAE Office Buildings

    E-Print Network [OSTI]

    Radhi, H.

    2010-01-01T23:59:59.000Z

    Technical and Energy Assessment of Building Integrated Photovoltaic Systems applied to the UAE Office Buildings Hassan Radhi Assistant Professor College of Engineering UAE University Al-Ain, United Arab Emirates ABSTRACT In the market... due to the PV panels represents an important factor when the EPBT is estimated Keywords: BiPV, embodied energy, UAE commercial buildings. INTRODUCTION Developments in the design and manufacture of photovoltaic cells have recently been a...

  9. Towards Embedded Wireless-Networked Intelligent Daylighting Systems for Commercial Buildings

    E-Print Network [OSTI]

    Agogino, Alice M.

    Towards Embedded Wireless-Networked Intelligent Daylighting Systems for Commercial Buildings Yao, daylighting systems are not widely used in the commercial office building. Barriers prohibiting adoption) `Smart Dust motes' wireless platforms is explored. Due to their small size, they can be placed directly

  10. Archived Reference Building Type: Medium office

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the commercial reference building models for existing buildings constructed in or after 1980, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available.

  11. Existing Commercial Reference Buildings Constructed In or After 1980 — Archive

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the commercial reference building models for existing buildings constructed in or after 1980, organized by building type and location.

  12. Indoor-Outdoor Air Leakage of Apartments and Commercial Buildings

    E-Print Network [OSTI]

    Price, P.N.

    2011-01-01T23:59:59.000Z

    Measured Airflows in a Multifamily Building," AirflowPerformance of Building Envelopes, Components, and Systems,APARTMENTS AND COMMERCIAL BUILDINGS Price, P.N. ; Shehabi,

  13. Energy Efficiency Building Code for Commercial Buildings in Sri Lanka

    SciTech Connect (OSTI)

    Busch, John; Greenberg, Steve; Rubinstein, Francis; Denver, Andrea; Rawner, Esther; Franconi, Ellen; Huang, Joe; Neils, Danielle

    2000-09-30T23:59:59.000Z

    1.1.1 To encourage energy efficient design or retrofit of commercial buildings so that they may be constructed, operated, and maintained in a manner that reduces the use of energy without constraining the building function, the comfort, health, or the productivity of the occupants and with appropriate regard for economic considerations. 1.1.2 To provide criterion and minimum standards for energy efficiency in the design or retrofit of commercial buildings and provide methods for determining compliance with them. 1.1.3 To encourage energy efficient designs that exceed these criterion and minimum standards.

  14. Commercial Building Partners Catalyze High Performance Buildings Across the Nation

    SciTech Connect (OSTI)

    Baechler, Michael C.; Dillon, Heather E.; Bartlett, Rosemarie

    2012-08-01T23:59:59.000Z

    In 2008 the US Department of Energy (DOE) launched the Commercial Buildings Partnership (CBP) project to accelerate market adoption of commercially available energy saving technologies into the design process for new and upgraded commercial buildings. The CBP represents a unique collaboration between industry leaders and DOE to develop high performance buildings as a model for future construction and renovation. CBP was implemented in two stages. This paper focuses on lessons learned at Pacific Northwest National Laboratory (PNNL) in the first stage and discusses some partner insights from the second stage. In the first stage, PNNL and the National Renewable Energy Laboratory recruited CBP partners that own large portfolios of buildings. The labs provide assistance to the partners' design teams and make a business case for energy investments.

  15. DOE Commercial Building Energy Asset Score Web Service (Draft)

    SciTech Connect (OSTI)

    Elliott, Geoffrey; Wang, Na

    2013-09-30T23:59:59.000Z

    Documentation of the DOE Commercial Building Energy Asset Score application programming interface (API).

  16. Monitored Performance of an Office Building with an Under-floor Air Distribution System

    E-Print Network [OSTI]

    Walker, C.; Norford, L.

    2005-01-01T23:59:59.000Z

    - conditioning equipment was assessed and energy and ventilation improvements suggested. The building was found to fall within good practice and standard practice for energy usage in air-conditioned commercial office buildings for the United Kingdom.... However, if not installed or designed properly, these systems can use as much or more energy than a conventional HVAC system. The results of long-term monitoring and short-term measurements in a commercial office building with a UFAD are presented...

  17. Drivers of Commercial Building Operator Skills

    E-Print Network [OSTI]

    Domanski, J.

    2011-01-01T23:59:59.000Z

    0 Drivers of Commercial Building Operator Skills C&W OVERVIEW C&W SUSTAINABILITY STRATEGIES GROUP WHAT?S DRIVING THE NEED FOR TRAINING? NECESSARY SKILLS & KNOWLEDGE C&W DEVELOPMENT & TRAINING OPPORTUNITIES International Conference... ? Managerial skills ? Market knowledge ? Building certifications ? Energy Star, LEED ? Industry resources 9 C&W TRAINING & DEVELOPMENT OPPORTUNITIES ? C&W Training and Support programs ? C&W Green Practice Policies ? LEED Green Associate and AP...

  18. Commercial Building Partnerships Replication and Diffusion

    SciTech Connect (OSTI)

    Antonopoulos, Chrissi A.; Dillon, Heather E.; Baechler, Michael C.

    2013-09-16T23:59:59.000Z

    This study presents findings from survey and interview data investigating replication efforts of Commercial Building Partnership (CBP) partners that worked directly with the Pacific Northwest National Laboratory (PNNL). PNNL partnered directly with 12 organizations on new and retrofit construction projects, which represented approximately 28 percent of the entire U.S. Department of Energy (DOE) CBP program. Through a feedback survey mechanism, along with personal interviews, PNNL gathered quantitative and qualitative data relating to replication efforts by each organization. These data were analyzed to provide insight into two primary research areas: 1) CBP partners’ replication efforts of technologies and approaches used in the CBP project to the rest of the organization’s building portfolio (including replication verification), and, 2) the market potential for technology diffusion into the total U.S. commercial building stock, as a direct result of the CBP program. The first area of this research focused specifically on replication efforts underway or planned by each CBP program participant. Factors that impact replication include motivation, organizational structure and objectives firms have for implementation of energy efficient technologies. Comparing these factors between different CBP partners revealed patterns in motivation for constructing energy efficient buildings, along with better insight into market trends for green building practices. The second area of this research develops a diffusion of innovations model to analyze potential broad market impacts of the CBP program on the commercial building industry in the United States.

  19. Archived Reference Building Type: Medium office

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the commercial reference building models for existing buildings constructed before 1980, organized by building type and location. A summary ofbuilding types and climate zones is available for reference. Current versions are also available.

  20. Advanced Commercial Buildings Research; Electricity, Resources, & Building Systems Integration (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-09-01T23:59:59.000Z

    Factsheet describing the Advanced Commercial Buildings Research group within NREL's Electricity, Resources, and Buildings Systems Integration Center.

  1. Commercial Buildings Partnerships - Overview of Higher Education Projects

    SciTech Connect (OSTI)

    Parrish, Kristen; Robinson, Alastair; Regnier, Cindy

    2013-02-01T23:59:59.000Z

    The Commercial Building Partnership (CBP), a public/private, cost-shared program sponsored by the U.S. Department of Energy (DOE), paired selected commercial building owners and operators with representatives of DOE, its national laboratories, and private-sector technical experts. These teams explored energy-saving measures across building systems – including some considered too costly or technologically challenging – and used advanced energy modeling to achieve peak whole-building performance. Modeling results were then included in new construction or retrofit designs to achieve significant energy reductions. CBP design goals aimed to achieve 50 percent energy savings compared to ANSI/ASHRAE/IES Standard 90.1-2004 for new construction, while retrofits are designed to consume at least 30 percent less energy than either Standard 90.1-2004 or current consumption. After construction and commissioning of the project, laboratory staff continued to work with partners to collect and analyze data for verification of the actual energy reduction. CBP projects represent diverse building types in commercial real estate, including lodging, grocery, retail, higher education, office, and warehouse/storage facilities. Partners also commit to replicating low-energy technologies and strategies from their CBP projects throughout their building portfolios. As a result of CBP projects, five sector overviews (Lodging, Food Sales, General Merchandise, Higher Education, Offices) were created to capture successful strategies and recommended energy efficiency measures that could broadly be applied across these sectors. These overviews are supplemented with individual case studies providing specific details on the decision criteria, modeling results, and lessons learned on specific projects. Sector overviews and CBP case studies will also be updated to reflect verified data and replication strategies as they become available.

  2. Commercial Building National Accounts | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreisVolcanicPowerRaftColumbia RuralCommercial Algae

  3. Biology Advising Office Building 44, Room 135

    E-Print Network [OSTI]

    Tipple, Brett

    Biology Advising Office Building 44, Room 135 Mailing Address: Biology Advising Office, University of Utah, 257 South 1400 East, Salt Lake City, Utah 84112-0840 http://www.biology.utah.edu/undergraduate/advising.php Email: advising@biology.utah.edu Phone: (801) 581-6244 Fax: (801) 581-8571 Dr. David Gard, Director

  4. Energy conservation in commercial and residential buildings

    SciTech Connect (OSTI)

    Chiogioji, M.H.; Oura, E.N.

    1982-01-01T23:59:59.000Z

    Energy experts have indicated that we can, by exploiting currently available technology, cut energy consumption by 30 to 50% in new buildings and 10 to 30% in existing buildings, with no significant loss in standard of living, comfort, or convenience. This book surveys the many architectural/engineering techniques for combating energy waste in residential and commercial buildings. The experts in these 10 chapters acquaint us with what is being done and with what can be done in the design, construction, and maintenance of buildings in order to foster energy efficiency; they emphasize life-cycle costing as the only sound approach toward energy conservation. A separate abstract was prepared for each chapter; all abstracts will appear in Energy Abstracts for Policy Analysis (EAPA), with 5 appearing in Energy Research Abstracts (ERA).

  5. Reference Buildings by Building Type: Large office

    Office of Energy Efficiency and Renewable Energy (EERE)

    In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

  6. Visualizing Energy Information in Commercial Buildings: A Study of Tools, Expert Users, and Building Occupants

    E-Print Network [OSTI]

    Lehrer, David; Vasudev, Janani

    2011-01-01T23:59:59.000Z

    of LEED-Certified Commercial Buildings. ” Proceedings,on Energy Efficiency in Buildings, ACEEE, Washington DC,System User Interface for Building Occupants. ” ASHRAE

  7. "Recovery Act: Training Program Development for Commercial Building...

    Broader source: Energy.gov (indexed) [DOE]

    "Recovery Act: Training Program Development for Commercial Building Equipment Technicians, Building Operators, and Energy Commissioning AgentsAuditors" "Recovery Act: Training...

  8. Commercial Buildings Energy Consumption Survey 2003 - Detailed Tables

    Reports and Publications (EIA)

    2008-01-01T23:59:59.000Z

    The tables contain information about energy consumption and expenditures in U.S. commercial buildings and information about energy-related characteristics of these buildings.

  9. Commercial Building Energy Asset Score Sample Report | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Score Sample Report Commercial Building Energy Asset Score Sample Report Example report showing the results of an energy asset score rating on a building energyassetscoresample...

  10. Apply: Commercial Building Technology Demonstrations (DE-FOA...

    Office of Environmental Management (EM)

    Technologies (BENEFIT) - 2014 (DE-FOA-0001027) Energy Savings Through Improved Mechanical Systems and Building Envelope Technologies (DE-FOA-0000621) Commercial Building...

  11. Thermal Energy Storage for Cooling of Commercial Buildings

    E-Print Network [OSTI]

    Akbari, H.

    2010-01-01T23:59:59.000Z

    Building Thermal Energy _Storage in ASEAN Countries,"Company, "Thermal Energy Storage for Cooling," SeminarTHERMAL FOR COOLING ENERGY STORAGE BUILDINGS OF COMMERCIAL

  12. Commercial Buildings: Asset Scoring Efforts and Request for Informatio...

    Energy Savers [EERE]

    Buildings: Asset Scoring Efforts and Request for Information: February 2013 webinar Commercial Buildings: Asset Scoring Efforts and Request for Information: February 2013 webinar...

  13. Continuous Commissioning® in an Aged Office Building

    E-Print Network [OSTI]

    Cui, Y.; Liu, M.

    2005-01-01T23:59:59.000Z

    ICEBO2005 Cui and Liu Continuous Commissioning SM in an Aged Office Building Y. Cui, Ph.D. Energy Systems Laboratory Architectural Engineering Department University of Nebraska-Lincoln Omaha, NE 68182 cuiy@unomaha.edu Mingsheng Liu, Ph... and Liu Units (AHUs). Among these, 7 AHUs serve the Main Building and Executive Wing areas: one AHU, called Primary AHU, for the perimeter of the Main Building and Executive Wing areas, and six AHUs, called Interior AHUs, for the interior of Main...

  14. A Methodology to Measure Retrofit Energy Savings in Commercial Buildings

    E-Print Network [OSTI]

    Kissock, John Kelly

    2008-01-16T23:59:59.000Z

    . This dissertation develops a methodology to measure retrofit energy savings and the uncertainty of the savings in commercial buildings. The functional forms of empirical models of cooling and heating energy use in commercial buildings are derived from an engineering...

  15. Energy Information Agency's 2003 Commercial Building Energy Consumption Survey Tables

    Broader source: Energy.gov [DOE]

    Energy use intensities in commercial buildings vary widely and depend on activity and climate, as shown in this data table, which was derived from the Energy Information Agency's 2003 Commercial Building Energy Consumption Survey.

  16. Commercial Building Energy Asset Rating Program -- Market Research

    SciTech Connect (OSTI)

    McCabe, Molly J.; Wang, Na

    2012-04-19T23:59:59.000Z

    Under contract to Pacific Northwest National Laboratory, HaydenTanner, LLC conducted an in-depth analysis of the potential market value of a commercial building energy asset rating program for the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy. The market research objectives were to: (1) Evaluate market interest and need for a program and tool to offer asset rating and rapidly identify potential energy efficiency measures for the commercial building sector. (2) Identify key input variables and asset rating outputs that would facilitate increased investment in energy efficiency. (3) Assess best practices and lessons learned from existing national and international energy rating programs. (4) Identify core messaging to motivate owners, investors, financiers, and others in the real estate sector to adopt a voluntary asset rating program and, as a consequence, deploy high-performance strategies and technologies across new and existing buildings. (5) Identify leverage factors and incentives that facilitate increased investment in these buildings. To meet these objectives, work consisted of a review of the relevant literature, examination of existing and emergent asset and operational rating systems, interviews with industry stakeholders, and an evaluation of the value implication of an asset label on asset valuation. This report documents the analysis methodology and findings, conclusion, and recommendations. Its intent is to support and inform the DOE Office of Energy Efficiency and Renewable Energy on the market need and potential value impacts of an asset labeling and diagnostic tool to encourage high-performance new buildings and building efficiency retrofit projects.

  17. Strategies for Demand Response in Commercial Buildings

    SciTech Connect (OSTI)

    Watson, David S.; Kiliccote, Sila; Motegi, Naoya; Piette, Mary Ann

    2006-06-20T23:59:59.000Z

    This paper describes strategies that can be used in commercial buildings to temporarily reduce electric load in response to electric grid emergencies in which supplies are limited or in response to high prices that would be incurred if these strategies were not employed. The demand response strategies discussed herein are based on the results of three years of automated demand response field tests in which 28 commercial facilities with an occupied area totaling over 11 million ft{sup 2} were tested. Although the demand response events in the field tests were initiated remotely and performed automatically, the strategies used could also be initiated by on-site building operators and performed manually, if desired. While energy efficiency measures can be used during normal building operations, demand response measures are transient; they are employed to produce a temporary reduction in demand. Demand response strategies achieve reductions in electric demand by temporarily reducing the level of service in facilities. Heating ventilating and air conditioning (HVAC) and lighting are the systems most commonly adjusted for demand response in commercial buildings. The goal of demand response strategies is to meet the electric shed savings targets while minimizing any negative impacts on the occupants of the buildings or the processes that they perform. Occupant complaints were minimal in the field tests. In some cases, ''reductions'' in service level actually improved occupant comfort or productivity. In other cases, permanent improvements in efficiency were discovered through the planning and implementation of ''temporary'' demand response strategies. The DR strategies that are available to a given facility are based on factors such as the type of HVAC, lighting and energy management and control systems (EMCS) installed at the site.

  18. Energy management systems for commercial buildings. Final report

    SciTech Connect (OSTI)

    Woody, A.W.

    1986-02-01T23:59:59.000Z

    Increasing costs of energy and the development of lower cost microelectronics have created a growing market for energy management systems applied to commercial buildings. This report examines the spectrum of EMS available and how they are used in different types of commercial buildings. An informal survey of 197 commercial building owners provided additional information on EMS installed and the energy savings attributed to those systems. Evaluations were performed to identify types of EMS appropriate to specific types of commercial buildings.

  19. Better Buildings Alliance Equipment Performance Specifications...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Better Buildings Alliance Equipment Performance Specifications - 2013 BTO Peer Review Commercial Buildings Integration Project for the 2013 Building Technologies Office's...

  20. Innovative Faade Systems for Low-energy Commercial Buildings

    E-Print Network [OSTI]

    Innovative Façade Systems for Low-energy Commercial Buildings Eleanor Lee, Stephen Selkowitz abstract Glazing and façade systems have very large impacts on all aspects of commercial building for commercial buildings to significantly reduce energy and demand, helping to move us toward our goal of net

  1. Evaluation of the near-term commercial potential of technologies being developed by the Office of Building Technologies Volune II - Survey Results

    SciTech Connect (OSTI)

    Weijo, R.O. (Portland General Electric Co., OR (USA)); Nicholls, A.K.; Weakley, S.A.; Eckert, R.L.; Shankle, D.L.; Anderson, M.R.; Anderson, A.R. (Pacific Northwest Lab., Richland, WA (USA))

    1991-03-01T23:59:59.000Z

    This report consists of the results from each Equipment and Practice Form completed by the program managers and principal investigators. Information collected from the Equipment and Practice Form include the following: name and description of the technology; energy characteristics; when the technology will be ready for commercialization; estimated payback period; market sectors that would benefit; important commercialization barriers to overcome; energy-related benefits; and non-energy benefits of the technology to customers. Some of these technologies include: heat pumps, heat exchangers, insulation lighting systems; cooling systems, ventilation systems, burners, leak detection systems, retrofit procedure, operating and maintenance procedures, wall systems, windows, sampling equipment, measuring methods and instruments, thermal analysis methods, and computer codes.

  2. Achieving 50% Energy Savings in Office Buildings, Advanced Energy Design Guides: Office Buildings (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-09-01T23:59:59.000Z

    This fact sheet summarizes recommendations for designing new office buildings that result in 50% less energy use than conventional designs meeting minimum code requirements. The recommendations are drawn from the Advanced Energy Design Guide for Small to Medium Office Buildings, an ASHRAE publication that provides comprehensive recommendations for designing low-energy-use office buildings with gross floor areas up to 100,000 ft2 (see sidebar). Designed as a stand-alone document, this fact sheet provides key principles and a set of prescriptive design recommendations appropriate for smaller office buildings with insufficient budgets to fully implement best practices for integrated design and optimized performance. The recommendations have undergone a thorough analysis and review process through ASHRAE, and have been deemed the best combination of measures to achieve 50% savings in the greatest number of office buildings.

  3. Demand Responsive and Energy Efficient Control Technologies and Strategies in Commercial Buildings

    E-Print Network [OSTI]

    Piette, Mary Ann; Kiliccote, Sila

    2006-01-01T23:59:59.000Z

    Demand Response in Commercial Buildings 3.1. Demand Response in Commercial Buildings ElectricityDemand Response: Understanding the DR potential in commercial buildings

  4. Advanced Controls and Communications for Demand Response and Energy Efficiency in Commercial Buildings

    E-Print Network [OSTI]

    Kiliccote, Sila; Piette, Mary Ann; Hansen, David

    2006-01-01T23:59:59.000Z

    PA. 3. DEMAND RESPONSE IN COMMERCIAL BUILDINGS ElectricityDemand Response and Energy Efficiency in Commercial BuildingsDemand Response and Energy Efficiency in Commercial Buildings

  5. Design and Operation of an Open, Interoperable Automated Demand Response Infrastructure for Commercial Buildings

    E-Print Network [OSTI]

    Piette, Mary Ann

    2010-01-01T23:59:59.000Z

    and Demand Response in Commercial Building,” Report No.Demand Response Infrastructure for Commercial Buildings MaryDemand Response Infrastructure for Commercial Buildings Mary

  6. Advanced Energy Retrofit Guide Office Buildings

    SciTech Connect (OSTI)

    Liu, Guopeng; Liu, Bing; Wang, Weimin; Zhang, Jian; Athalye, Rahul A.; Moser, Dave; Crowe, Eliot; Bengtson, Nick; Effinger, Mark; Webster, Lia; Hatten, Mike

    2011-09-27T23:59:59.000Z

    The Advanced Energy Retrofit Guide for Office Buildings is a component of the Department of Energy’s Advanced Energy Retrofit Guides for Existing Buildings series. The aim of the guides is to facilitate a rapid escalation in the number of energy efficiency projects in existing buildings and to enhance the quality and depth of those projects. By presenting general project planning guidance as well as financial payback metrics for the most common energy efficiency measures, these guides provide a practical roadmap to effectively planning and implementing performance improvements for existing buildings.

  7. Analysis of Innovative HVAC System Technologies and Their Application for Office Buildings in Hot and Humid Climates

    E-Print Network [OSTI]

    Tanskyi, Oleksandr

    2012-02-14T23:59:59.000Z

    The commercial buildings sector in the United States used 18 percent (17.93 Quads) of the U.S. primary energy in 2006. Office buildings are the largest single energy consumption category in the commercial buildings sector of the United States...

  8. Methodology for Rating a Building's Overall Performance based on the ASHRAE/CIBSE/USGBC Performance Measurement Protocols for Commercial Buildings

    E-Print Network [OSTI]

    Kim, Hyojin 1981-

    2012-11-14T23:59:59.000Z

    METHODOLOGY FOR RATING A BUILDING?S OVERALL PERFORMANCE BASED ON THE ASHRAE/CIBSE/USGBC PERFORMANCE MEASUREMENT PROTOCOLS FOR COMMERCIAL BUILDINGS A Dissertation by HYOJIN KIM Submitted to the Office of Graduate Studies of Texas A&M... Bruner of the Texas A&M University Utilities and Energy Management Energy Office for his essential support that allowed me to launch my study at the case-study site; and to Mr. Tony Tasillo of the Texas Engineering Extension Service for his invaluable...

  9. Commercial Building Partnership | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top FiveDepartment ofCarrieof EnergybyTendrilCommercial Building

  10. Commercial Buildings Consortium | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top FiveDepartment ofCarrieof EnergybyTendrilCommercial BuildingEnergy

  11. Commercial Buildings Cooperative Agreements | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLE FORSuperiorThethe NaturalCommercial Building

  12. DOE Commercial Reference Buildings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebratePartnersDepartment ofEnergy -Buildings DOE Commercial

  13. Commercializing government-sponsored innovations: Twelve successful buildings case studies

    SciTech Connect (OSTI)

    Brown, M.A.; Berry, L.G.; Goel, R.K.

    1989-01-01T23:59:59.000Z

    This report examines the commercialization and use of R and D results funded by DOE's Office of Buildings and Community Systems (OBCS), an office that is dedicated to improving the energy efficiency of the nation's buildings. Three goals guided the research described in this report: to improve understanding of the factors that hinder or facilitate the transfer of OBCS R and D results, to determine which technology transfer strategies are most effective and under what circumstances each is appropriate, and to document the market penetration and energy savings achieved by successfully-commercialized innovations that have received OBCS support. Twelve successfully-commercialized innovations are discussed here. The methodology employed involved a review of the literature, interviews with innovation program managers and industry personnel, and data collection from secondary sources. Six generic technology transfer strategies are also described. Of these, contracting R and D to industrial partners is found to be the most commonly used strategy in our case studies. The market penetration achieved to date by the innovations studied ranges from less than 1% to 100%. For the three innovations with the highest predicted levels of energy savings (i.e., the flame retention head oil burner, low-E windows, and solid-state ballasts), combined cumulative savings by the year 2000 are likely to approach 2 quads. To date the energy savings for these three innovations have been about 0.2 quads. Our case studies illustrate the important role federal agencies can play in commercializing new technologies. 27 refs., 21 figs., 4 tabs.

  14. Industry Research and Recommendations for New Commercial Buildings

    SciTech Connect (OSTI)

    Hendron, B.; Leach, M.; Gregory, N.; Pless, S.; Selkowitz, S.; Matthew, P.

    2014-05-01T23:59:59.000Z

    Researchers evaluated industry needs and developed logic models to support possible future commercial new construction research and deployment efforts that could be led or supported by DOE's Commercial Building Integration program or other national initiatives. The authors believe that these recommendations support a proposed course of action from the current state of commercial building energy efficiency to a possible long-term goal of achieving significant market penetration of cost-effective NZE buildings in all building sectors and climates by 2030.

  15. Commercial Lighting Solutions Webtool Peer Review Report, Office Solutions

    SciTech Connect (OSTI)

    Beeson, Tracy A.; Jones, Carol C.

    2010-02-01T23:59:59.000Z

    The Commercial Lighting Solutions (CLS) project directly supports the U.S. Department of Energy’s Commercial Building Energy Alliance efforts to design high performance buildings. CLS creates energy efficient best practice lighting designs for widespread use, and they are made available to users via an interactive webtool that both educates and guides the end user through the application of the Lighting Solutions. This report summarizes the peer review of the CLS webtool for offices. The methodology for the peer review process included data collection (stakeholder input), analysis of the comments, and organization of the input into categories for prioritization of the comments against a set of criteria. Based on this process, recommendations were developed for the release of version 2.0 of the webtool at the Lightfair conference in Las Vegas in May 2010. The report provides a list of the top ten most significant and relevant improvements that will be made within the webtool for version 2.0 as well as appendices containing the comments and short-term priorities in additional detail. Peer review comments that are considered high priority by the reviewers and the CLS team but cannot be completed for Version 2.0 are listed as long-term recommendations.

  16. Commercial Building Energy Asset Rating Tool User's Guide

    SciTech Connect (OSTI)

    Wang, Na; Makhmalbaf, Atefe; Matsumoto, Steven W.

    2012-05-01T23:59:59.000Z

    The U.S. Department of Energy’s Commercial Building Energy Asset Rating Tool is a web-based system that is designed to allow building owners, managers, and operators to more accurately assess the energy performance of their commercial buildings. This document provide a step-by-step instruction on how to use the tool.

  17. Financing Turnkey Efficiency Solutions for Small Buildings and...

    Energy Savers [EERE]

    Financing Turnkey Efficiency Solutions for Small Buildings and Small Portfolios Commercial Buildings Integration Project for the 2013 Building Technologies Office's...

  18. Automated Continuous Commissioning of Commercial Buildings

    E-Print Network [OSTI]

    Bailey, Trevor

    2013-01-01T23:59:59.000Z

    in building total energy consumption and related costs (overin building total energy consumption and related costs (overin building total energy consumption and related costs (over

  19. Automated Continuous Commissioning of Commercial Buildings

    E-Print Network [OSTI]

    Bailey, Trevor

    2013-01-01T23:59:59.000Z

    P. “Real Time Model-based Energy Diagnostics in Buildings. ”Proc. Building Simulation ’11, Sydney, Australia, Novemberhttp://www.eere.energy.gov/buildings/energyplus/. 7. http://

  20. Thermal Energy Storage for Cooling of Commercial Buildings

    E-Print Network [OSTI]

    Akbari, H.

    2010-01-01T23:59:59.000Z

    of Commercial Building Thermal Energy _Storage in ASEANGas Electric Company, "Thermal Energy Storage for Cooling,"LBL--25393 DE91 ,THERMAL ENERGY STORAGE FOR COOLING OF

  1. Commercial Building Energy Asset Score Data Collection Priority...

    Broader source: Energy.gov (indexed) [DOE]

    Score Data Collection Priority Map Commercial Building Energy Asset Score Data Collection Priority Map the priority map provides assistance in prioritizing energ asset score data...

  2. Laying the Foundation for Energy Efficient Commercial Buildings

    Office of Energy Efficiency and Renewable Energy (EERE)

    Find out how the Energy Department is helping commercial building owners and operators throughout America save energy and reduce carbon emissions.

  3. Energy Department Invests $6 Million to Support Commercial Building...

    Office of Environmental Management (EM)

    help businesses cut energy costs through improved efficiency, while also reducing carbon pollution. Last year, commercial buildings consumed about 20 percent of all energy used in...

  4. Commercial Building Energy Asset Score - 2014 BTO Peer Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Score - 2014 BTO Peer Review Commercial Building Energy Asset Score - 2014 BTO Peer Review Presenter: Nora Wang, Pacific Northwest National Laboratory One of the primary market...

  5. Commercial Building Energy Asset Score: Pilot Findings and Program...

    Office of Environmental Management (EM)

    Score: Pilot Findings and Program Update Commercial Building Energy Asset Score: Pilot Findings and Program Update The webinar was held on April 16, 2014, to share the findings...

  6. Commercial Building Energy Asset Scoring Tool 2013 Pilot Training...

    Office of Environmental Management (EM)

    Scoring Tool 2013 Pilot Training Session Commercial Building Energy Asset Scoring Tool 2013 Pilot Training Session overview of the June 18, 2013 pilot training session for the...

  7. Assessment of Energy Impact of Window Technologies for Commercial Buildings

    E-Print Network [OSTI]

    Hong, Tianzhen

    2014-01-01T23:59:59.000Z

    1.2 quads. Future window technologies offer energy savingsImpact of Window Technologies for Commercial BuildingsEnvironmental Energy Technologies Division October 2009 This

  8. Power Signatures as Characteristics of Commercial and Related Buildings

    E-Print Network [OSTI]

    MacDonald, M.

    1988-01-01T23:59:59.000Z

    characteristics and building physical characteristics is seen as an important area for improvement of analytical tools for commercial and related buildings. Knowledge of the causes of variations in energy use, and the expected relative impacts of different...

  9. Scenario Analysis of Peak Demand Savings for Commercial Buildings with Thermal Mass in California

    SciTech Connect (OSTI)

    Yin, Rongxin; Kiliccote, Sila; Piette, Mary Ann; Parrish, Kristen

    2010-05-14T23:59:59.000Z

    This paper reports on the potential impact of demand response (DR) strategies in commercial buildings in California based on the Demand Response Quick Assessment Tool (DRQAT), which uses EnergyPlus simulation prototypes for office and retail buildings. The study describes the potential impact of building size, thermal mass, climate, and DR strategies on demand savings in commercial buildings. Sensitivity analyses are performed to evaluate how these factors influence the demand shift and shed during the peak period. The whole-building peak demand of a commercial building with high thermal mass in a hot climate zone can be reduced by 30percent using an optimized demand response strategy. Results are summarized for various simulation scenarios designed to help owners and managers understand the potential savings for demand response deployment. Simulated demand savings under various scenarios were compared to field-measured data in numerous climate zones, allowing calibration of the prototype models. The simulation results are compared to the peak demand data from the Commercial End-Use Survey for commercial buildings in California. On the economic side, a set of electricity rates are used to evaluate the impact of the DR strategies on economic savings for different thermal mass and climate conditions. Our comparison of recent simulation to field test results provides an understanding of the DR potential in commercial buildings.

  10. Office Buildings: Developer's Requirements- Consultant's Solutions

    E-Print Network [OSTI]

    Forster, P.; Arndt, J.

    Ein Kooperationsvortrag von Office Buildings: Developer?s Requirements ? Consultant?s Solutions Dipl.-Ing. (TU) Jens Arndt Vivico Real Estate GmbH, Frankfurt a. M., Germany Dipl.-Ing. (TU) Peter Forster Ebert-Ingenieure Berlin GmbH 8. Kongress f...?r Geb?ude- und Betriebsoptimierung - ICEBO?08 October 20/21/22 2008 ESL-IC-08-10-35a Proceedings of the Eighth International Conference for Enhanced Building Operations, Berlin, Germany, October 20-22, 2008 Seite 2 Dipl.-Ing (TU) Jens Arndt; Vivico...

  11. Electric Storage in California's Commercial Buildings

    E-Print Network [OSTI]

    Stadler, Michael

    2014-01-01T23:59:59.000Z

    to enable demand response or any other building strategy (demand response. By using EVs connected to the buildings for

  12. Findings from Seven Years of Field Performance Data for Automated Demand Response in Commercial Buildings

    E-Print Network [OSTI]

    Kiliccote, Sila

    2010-01-01T23:59:59.000Z

    Automated Demand Response for Small Commercial Buildings. ”Demand Response Strategies and Commissioning Commercial Buildingfor Automated Demand Response in Commercial Buildings Sila

  13. Towards a Very Low Energy Building Stock: Modeling the US Commercial Building Sector

    E-Print Network [OSTI]

    Towards a Very Low Energy Building Stock: Modeling the US Commercial Building Sector to Support and continuing development of a model of time varying energy consumption in the US commercial building stock targeting very low future energy consumption in the building stock. Model use has highlighted the scale

  14. U.S. Department of Energy Commercial Reference Building Models of the National Building Stock

    SciTech Connect (OSTI)

    Deru, M.; Field, K.; Studer, D.; Benne, K.; Griffith, B.; Torcellini, P.; Liu, B.; Halverson, M.; Winiarski, D.; Rosenberg, M.; Yazdanian, M.; Huang, J.; Crawley, D.

    2011-02-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) Building Technologies Program has set the aggressive goal of producing marketable net-zero energy buildings by 2025. This goal will require collaboration between the DOE laboratories and the building industry. We developed standard or reference energy models for the most common commercial buildings to serve as starting points for energy efficiency research. These models represent fairly realistic buildings and typical construction practices. Fifteen commercial building types and one multifamily residential building were determined by consensus between DOE, the National Renewable Energy Laboratory, Pacific Northwest National Laboratory, and Lawrence Berkeley National Laboratory, and represent approximately two-thirds of the commercial building stock.

  15. Building Operator Certification: Improving Commercial Building Energy Efficiency Through Operator Training and Certification

    E-Print Network [OSTI]

    Putnam, C.; Mulak, A.

    2001-01-01T23:59:59.000Z

    Building Operator Certification (BOC) is a competency-based certification for building operators designed to improve the energy efficiency of commercial buildings. Operators earn certification by attending training sessions and completing project...

  16. Automated Demand Response Technology Demonstration Project for Small and Medium Commercial Buildings

    E-Print Network [OSTI]

    Page, Janie

    2012-01-01T23:59:59.000Z

    Demand Response for Small Commercial Buildings.   Lawrence small?medium buildings’ roles in demand response  efforts.  demand response for small? medium commercial buildings 

  17. Guidelines for the Competition - EERE Commercialization Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scope of Business Plans All business plan proposals should fall within DOE's Office of Energy Efficiency and Renewable Energy (EERE) mission and technology portfolio, as defined...

  18. Development of a Model Specification for Performance Monitoring Systems for Commercial Buildings

    E-Print Network [OSTI]

    Development of a Model Specification for Performance Monitoring Systems for Commercial Buildings the development of a model specification for performance monitoring systems for commercial buildings capabilities in #12;commercial buildings by demonstrating the capabilities of commercially available technology

  19. An Evaluation of Savings and Measure Persistence from Retrocommissioning of Large Commercial Buildings

    E-Print Network [OSTI]

    Buildings Norman J. Bourassa, Mary Ann Piette, Naoya Motegi - LBNL ABSTRACT Commercial building tool for building owners and operators. Large commercial buildings have many energy consuming systemsAn Evaluation of Savings and Measure Persistence from Retrocommissioning of Large Commercial

  20. HPCBSHigh Performance Commercial Building Systems Amanda Potter, Hannah Friedman and Tudi Haasl,

    E-Print Network [OSTI]

    HPCBSHigh Performance Commercial Building Systems Amanda Potter, Hannah Friedman and Tudi Haasl commercial building energy use. Although the success and cost-effectiveness of commissioning projects depends systems are becoming more prevalent in commercial buildings, yet building owners often find

  1. Methodology for Modeling Building Energy Performance across the Commercial Sector

    SciTech Connect (OSTI)

    Griffith, B.; Long, N.; Torcellini, P.; Judkoff, R.; Crawley, D.; Ryan, J.

    2008-03-01T23:59:59.000Z

    This report uses EnergyPlus simulations of each building in the 2003 Commercial Buildings Energy Consumption Survey (CBECS) to document and demonstrate bottom-up methods of modeling the entire U.S. commercial buildings sector (EIA 2006). The ability to use a whole-building simulation tool to model the entire sector is of interest because the energy models enable us to answer subsequent 'what-if' questions that involve technologies and practices related to energy. This report documents how the whole-building models were generated from the building characteristics in 2003 CBECS and compares the simulation results to the survey data for energy use.

  2. Procedure for Measuring and Reporting Commercial Building Energy Performance

    SciTech Connect (OSTI)

    Barley, D.; Deru, M.; Pless, S.; Torcellini, P.

    2005-10-01T23:59:59.000Z

    This procedure is intended to provide a standard method for measuring and characterizing the energy performance of commercial buildings. The procedure determines the energy consumption, electrical energy demand, and on-site energy production in existing commercial buildings of all types. The performance metrics determined here may be compared against benchmarks to evaluate performance and verify that performance targets have been achieved.

  3. Commercial Building Energy Asset Scoring Tool

    Broader source: Energy.gov [DOE]

    This Asset Scoring Tool will guide your data collection, store your building information, and generate Asset Scores and system evaluations for your building envelope and building systems. The Asset...

  4. Commercial building integrated photovoltaics: Market and policy implications

    SciTech Connect (OSTI)

    Byrne, J.; Letendre, S.; Agbemabiese, L.; Redlin, D. [Univ. of Delaware, Newark, DE (United States). Center for Energy and Environmental Policy; Nigro, R.

    1997-12-31T23:59:59.000Z

    This paper reports on the latest results in support of a US Department of Energy PV-BONUS initiative to develop a commercially viable, modular, grid-connected DPV-PS system which also provides emergency power service for the commercial buildings sector. In this study, the authors: (a) Assess the market for dual-function PV systems designed to serve peak-shaving and emergency power needs of the commercial buildings sector; and (b) Use the market assessment results to investigate policy options for promoting the adoption of dual-function PV systems in the commercial buildings sector.

  5. SmartBuildings Detroit commercial case study

    Broader source: Energy.gov [DOE]

    This is a document from BetterBuilds for Michigan posted on the website of the U.S. Department of Energy's Better Buildings Neighborhood Program website.

  6. TECHNOLOGY DATA CHARACTERIZING LIGHTING IN COMMERCIAL BUILDINGS: APPLICATION TO END-USE FORECASTING WITH COMMEND 4.0

    E-Print Network [OSTI]

    LBL-34243 UC - 1600 TECHNOLOGY DATA CHARACTERIZING LIGHTING IN COMMERCIAL BUILDINGS: APPLICATION Technologies, and the Office of Environmental Analysis, Office of Policy, Planning, and Analysis of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098. #12;Technology Data Characterizing Lighting

  7. A Retrofit Tool for Improving Energy Efficiency of Commercial Buildings

    SciTech Connect (OSTI)

    Levine, Mark; Feng, Wei; Ke, Jing; Hong, Tianzhen; Zhou, Nan

    2013-06-06T23:59:59.000Z

    Existing buildings will dominate energy use in commercial buildings in the United States for three decades or longer and even in China for the about two decades. Retrofitting these buildings to improve energy efficiency and reduce energy use is thus critical to achieving the target of reducing energy use in the buildings sector. However there are few evaluation tools that can quickly identify and evaluate energy savings and cost effectiveness of energy conservation measures (ECMs) for retrofits, especially for buildings in China. This paper discusses methods used to develop such a tool and demonstrates an application of the tool for a retrofit analysis. The tool builds on a building performance database with pre-calculated energy consumption of ECMs for selected commercial prototype buildings using the EnergyPlus program. The tool allows users to evaluate individual ECMs or a package of ECMs. It covers building envelope, lighting and daylighting, HVAC, plug loads, service hot water, and renewable energy. The prototype building can be customized to represent an actual building with some limitations. Energy consumption from utility bills can be entered into the tool to compare and calibrate the energy use of the prototype building. The tool currently can evaluate energy savings and payback of ECMs for shopping malls in China. We have used the tool to assess energy and cost savings for retrofit of the prototype shopping mall in Shanghai. Future work on the tool will simplify its use and expand it to cover other commercial building types and other countries.

  8. Automated Continuous Commissioning of Commercial Buildings

    E-Print Network [OSTI]

    Bailey, Trevor

    2013-01-01T23:59:59.000Z

    electricity consumption ..the total building electricity consumption between measured87 Figure 49 Total electricity consumption end use breakdown

  9. Commercial Building Partnerships | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    lighting Daylighting Variable speed rooftop supply fans Variable speed hydronic systems Energy recovery Plug-load controls and efficient office equipment Outdoor air optimization...

  10. Green Campus Committee 2009/2010 Buildings & Estates Office

    E-Print Network [OSTI]

    Schellekens, Michel P.

    Green Campus Committee 2009/2010 Buildings & Estates Office Barrie Curley Maurice Ahern, Stephan An Taisce Ellen Murphy, Green Schools Development Officer Birgit O'Driscoll, Green Schools Development

  11. Measured energy performance of a US-China demonstration energy-efficient office building

    E-Print Network [OSTI]

    Xu, Peng; Huang, Joe; Jin, Ruidong; Yang, Guoxiong

    2006-01-01T23:59:59.000Z

    and Renewable Energy, Office of Building Technology,and Renewable Energy, Office of Building Technology,and renewable energy improvements to the building. One of

  12. Top Resources | Commercial Buildings Resource Database

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    commissioning can greatly improve the quality and energy efficiency of commercial refrigeration systems. This guide provides... How-To Guide Download Read more Download...

  13. Achieving Energy Efficiency in Exis0ng Buildings How achieve significant commercial building energy efficiency?

    E-Print Network [OSTI]

    Hutyra, Lucy R.

    · Led BU Energy Audit over past 3 years · University Sustainability CommiAchieving Energy Efficiency in Exis0ng Buildings ·How achieve significant commercial building energy efficiency? Focus on HVAC. ·Our solu0on

  14. Recovery Act: Training Program Development for Commercial Building Equipment Technicians

    SciTech Connect (OSTI)

    Leah Glameyer

    2012-07-12T23:59:59.000Z

    The overall goal of this project has been to develop curricula, certification requirements, and accreditation standards for training on energy efficient practices and technologies for commercial building technicians. These training products will advance industry expertise towards net-zero energy commercial building goals and will result in a substantial reduction in energy use. The ultimate objective is to develop a workforce that can bring existing commercial buildings up to their energy performance potential and ensure that new commercial buildings do not fall below their expected optimal level of performance. Commercial building equipment technicians participating in this training program will learn how to best operate commercial buildings to ensure they reach their expected energy performance level. The training is a combination of classroom, online and on-site lessons. The Texas Engineering Extension Service (TEEX) developed curricula using subject matter and adult learning experts to ensure the training meets certification requirements and accreditation standards for training these technicians. The training targets a specific climate zone to meets the needs, specialized expertise, and perspectives of the commercial building equipment technicians in that zone. The combination of efficient operations and advanced design will improve the internal built environment of a commercial building by increasing comfort and safety, while reducing energy use and environmental impact. Properly trained technicians will ensure equipment operates at design specifications. A second impact is a more highly trained workforce that is better equipped to obtain employment. Organizations that contributed to the development of the training program include TEEX and the Texas Engineering Experiment Station (TEES) (both members of The Texas A&M University System). TEES is also a member of the Building Commissioning Association. This report includes a description of the project accomplishments, including the course development phases, tasks associated with each phase, and detailed list of the course materials developed. A summary of each year's activities is also included.

  15. Residential and commercial buildings data book: Third edition

    SciTech Connect (OSTI)

    Amols, G.R.; Howard, K.B.; Nicholls, A.K.; Guerra, T.D.

    1988-02-01T23:59:59.000Z

    This Data Book updates and expands the previous Data Book originally published by the Department of Energy in September, 1986 (DOE/RL/01830/16). Energy-related information is provided under the following headings: Characteristics of Residential Buildings in the US; Characteristics of New Single Family Construction in the US; Characteristics of New Multi-Family Construction in the US; Household Appliances; Residential Sector Energy Consumption, Prices, and Expenditures; Characteristics of US Commercial Buildings; Commercial Buildings Energy Consumption, Prices, and Expenditures; and Additional Buildings and Community Systems Information. 12 refs., 59 figs., 118 tabs.

  16. The Role of Energy Storage in Commercial Building

    SciTech Connect (OSTI)

    Kintner-Meyer, Michael CW; Subbarao, Krishnappa; Prakash Kumar, Nirupama; Bandyopadhyay, Gopal K.; Finley, C.; Koritarov, V. S.; Molburg, J. C.; Wang, J.; Zhao, Fuli; Brackney, L.; Florita, A. R.

    2010-09-30T23:59:59.000Z

    Motivation and Background of Study This project was motivated by the need to understand the full value of energy storage (thermal and electric energy storage) in commercial buildings, the opportunity of benefits for building operations and the potential interactions between a building and a smart grid infrastructure. On-site or local energy storage systems are not new to the commercial building sector; they have been in place in US buildings for decades. Most building-scale storage technologies are based on thermal or electrochemical storage mechanisms. Energy storage technologies are not designed to conserve energy, and losses associated with energy conversion are inevitable. Instead, storage provides flexibility to manage load in a building or to balance load and generation in the power grid. From the building owner's perspective, storage enables load shifting to optimize energy costs while maintaining comfort. From a grid operations perspective, building storage at scale could provide additional flexibility to grid operators in managing the generation variability from intermittent renewable energy resources (wind and solar). To characterize the set of benefits, technical opportunities and challenges, and potential economic values of storage in a commercial building from both the building operation's and the grid operation's view-points is the key point of this project. The research effort was initiated in early 2010 involving Argonne National Laboratory (ANL), the National Renewable Energy Laboratory (NREL), and Pacific Northwest National Laboratory (PNNL) to quantify these opportunities from a commercial buildings perspective. This report summarizes the early discussions, literature reviews, stakeholder engagements, and initial results of analyses related to the overall role of energy storage in commercial buildings. Beyond the summary of roughly eight months of effort by the laboratories, the report attempts to substantiate the importance of active DOE/BTP R&D activities in this space.

  17. DOE Commercial Building Benchmark Models: Preprint

    SciTech Connect (OSTI)

    Torcelini, P.; Deru, M.; Griffith, B.; Benne, K.; Halverson, M.; Winiarski, D.; Crawley, D. B.

    2008-07-01T23:59:59.000Z

    To provide a consistent baseline of comparison and save time conducting such simulations, the U.S. Department of Energy (DOE) has developed a set of standard benchmark building models. This paper will provide an executive summary overview of these benchmark buildings, and how they can save building analysts valuable time. Fully documented and implemented to use with the EnergyPlus energy simulation program, the benchmark models are publicly available and new versions will be created to maintain compatibility with new releases of EnergyPlus. The benchmark buildings will form the basis for research on specific building technologies, energy code development, appliance standards, and measurement of progress toward DOE energy goals. Having a common starting point allows us to better share and compare research results and move forward to make more energy efficient buildings.

  18. OFFICE OF STUDENT FINANCIAL AID 0102 Lee Building

    E-Print Network [OSTI]

    Milchberg, Howard

    11PASSET OFFICE OF STUDENT FINANCIAL AID 0102 Lee Building College Park, Maryland 20742-5145 TEL, other securities. $ $ Business and Investment Farm. Include the market value of land, buildings

  19. OFFICE OF STUDENT FINANCIAL AID 0102 Lee Building

    E-Print Network [OSTI]

    Milchberg, Howard

    11SASSET OFFICE OF STUDENT FINANCIAL AID 0102 Lee Building College Park, Maryland 20742-5145 TEL and Investment Farm. Include the market value of land, buildings, machinery, equipment, inventory, etc. Do

  20. 2013 Building Technologies Office Program Peer Review Report...

    Broader source: Energy.gov (indexed) [DOE]

    (SOM) used EnergyPlus to design a new 380,000 square foot federal office building in West Virginia. The building has an advanced ventilated double facade and uses low-energy...

  1. City of Friendswood- Commercial Green Building Tax Abatement

    Broader source: Energy.gov [DOE]

    The City of Friendswood offers a tax abatement for LEED-certified commercial buildings located within the city. Applicants must register their projects with the USGBC before submiting an...

  2. A Methodology for Identifying Retrofit Energy Savings in Commercial Buildings

    E-Print Network [OSTI]

    Kissock, K.; Reddy, A.; Claridge, D.

    Measured energy savings resulting from energy conservation retrofits in commercial buildings can be used to verify the success of the retrofits, determine the payment schedule for the retrofits, and guide the selection of future retrofits...

  3. Trends in Commercial Buildings--Trends in Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    the use of the four major sources and other energy sources (e.g., district chilled water, solar, wood). Energy consumed in commercial buildings is a significant fraction of that...

  4. Transforming Commercial Building Operations | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    & Publications Retrocommissioning and the Public Sector retrocommissioningpublicsector.doc Small- and Medium-Size Building Automation and Control System Needs: Scoping Study...

  5. Small Buildings Small Portfolio Commercial Upstream Incentive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and operation-to address region-specific challenges, such as regulatory constraints and energy pricing dynamics. By collaborating with regional energy partners and building on...

  6. Automated Continuous Commissioning of Commercial Buildings

    E-Print Network [OSTI]

    Bailey, Trevor

    2013-01-01T23:59:59.000Z

    Building 7230, the existing Siemens APOGEE TM control system14], interfaces with the Siemens BACnet server in order to17, there are five devices (Siemens MEC controllers), with

  7. Commercial Building Energy Asset Score Features | Department...

    Broader source: Energy.gov (indexed) [DOE]

    year built, climate zone, building type, year the energy Asset Score is issued Source energy use intensity and the corresponding score Potential source energy use and score...

  8. Black Box Approach for Energy Monitoring of Commercial Buildings

    E-Print Network [OSTI]

    Komhard, S.; Neumann, C.

    Page 1 of paper submitted to ICEBO 2008 Berlin Black Box Approach for Energy Monitoring of Commercial Buildings Susanne Komhard M.Sc. student Fraunhofer-Institute for Solar Energy Systems Freiburg, Germany Christian Neumann Project... leader Fraunhofer-Institute for Solar Energy Systems Freiburg, Germany ABSTRACT The potential to save energy by changing operational parameters - especially in existing commercial buildings ? is in the magnitude of 5-30%. In order to realize...

  9. Duct thermal performance models for large commercial buildings

    SciTech Connect (OSTI)

    Wray, Craig P.

    2003-10-01T23:59:59.000Z

    Despite the potential for significant energy savings by reducing duct leakage or other thermal losses from duct systems in large commercial buildings, California Title 24 has no provisions to credit energy-efficient duct systems in these buildings. A substantial reason is the lack of readily available simulation tools to demonstrate the energy-saving benefits associated with efficient duct systems in large commercial buildings. The overall goal of the Efficient Distribution Systems (EDS) project within the PIER High Performance Commercial Building Systems Program is to bridge the gaps in current duct thermal performance modeling capabilities, and to expand our understanding of duct thermal performance in California large commercial buildings. As steps toward this goal, our strategy in the EDS project involves two parts: (1) developing a whole-building energy simulation approach for analyzing duct thermal performance in large commercial buildings, and (2) using the tool to identify the energy impacts of duct leakage in California large commercial buildings, in support of future recommendations to address duct performance in the Title 24 Energy Efficiency Standards for Nonresidential Buildings. The specific technical objectives for the EDS project were to: (1) Identify a near-term whole-building energy simulation approach that can be used in the impacts analysis task of this project (see Objective 3), with little or no modification. A secondary objective is to recommend how to proceed with long-term development of an improved compliance tool for Title 24 that addresses duct thermal performance. (2) Develop an Alternative Calculation Method (ACM) change proposal to include a new metric for thermal distribution system efficiency in the reporting requirements for the 2005 Title 24 Standards. The metric will facilitate future comparisons of different system types using a common ''yardstick''. (3) Using the selected near-term simulation approach, assess the impacts of duct system improvements in California large commercial buildings, over a range of building vintages and climates. This assessment will provide a solid foundation for future efforts that address the energy efficiency of large commercial duct systems in Title 24. This report describes our work to address Objective 1, which includes a review of past modeling efforts related to duct thermal performance, and recommends near- and long-term modeling approaches for analyzing duct thermal performance in large commercial buildings.

  10. Space Heaters, Computers, Cell Phone Chargers: How Plugged In AreCommercial Buildings?

    SciTech Connect (OSTI)

    Sanchez, Marla; Webber, Carrie; Brown, Richard; Busch, John; Pinckard, Margaret; Roberson, Judy

    2007-02-28T23:59:59.000Z

    Evidenceof electric plug loads in commercial buildings isvisible everyday: space heaters, portable fans, and the IT technician'stwo monitors connected to one PC. The Energy Information Administrationestimates that office and miscellaneous equipment together will consume2.18 quads in 2006, nearly 50 percent of U.S. commercial electricity use.Although the importance of commercial plug loads is documented, its verynature (diverse product types, products not installed when buildinginitially constructed, and products often hidden in closets) makes itdifficult to accurately count and categorize the end use.We auditedsixteen buildings in three cities (San Francisco, Atlanta, Pittsburgh)including office, medical and education building types. We inventoriedthe number and types of office and miscellaneous electric equipment aswell as estimated total energy consumption due to these product types. Intotal, we audited approximately 4,000 units of office equipment and 6,000units of miscellaneous equipment and covered a diverse range of productsranging from electric pencil sharpeners with a unit energy consumption(UEC) of 1 kWh/yr to a kiln with a UEC of 7,000 kWh/yr. Our paperpresents a summary of the density and type of plug load equipment foundas well as the estimated total energy consumption of the equipment.Additionally, we present equipment trends observed and provide insightsto how policy makers can target energy efficiency for this growing enduse.

  11. Flexibility of Commercial Building HVAC Fan as Ancillary Service for Smart Grid

    E-Print Network [OSTI]

    Maasoumy, Mehdi

    2013-01-01T23:59:59.000Z

    Efficient Building Control Systems, Smart Grid and AircraftCommercial Building HVAC Fan as Ancillary Service for Smart

  12. High Performance Commercial Building Systems William L. Carroll

    E-Print Network [OSTI]

    Efficiency and Renewable Energy, Building Technologies Program of the U.S. Department of Energy underHigh Performance Commercial Building Systems William L. Carroll Ernest Orlando Lawrence Berkeley.2 ­ Retrofit Tools Task 2 HPBCS E2P2.2T3 LBNL - 57775 California Energy Commission Public Interest Energy

  13. Existing Commercial Reference Buildings Constructed Before 1980 |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit|Department of Energy56Executive Summit on WindMarch 2006 |January

  14. High-performance commercial building facades

    SciTech Connect (OSTI)

    Lee, Eleanor; Selkowitz, Stephen; Bazjanac, Vladimir; Inkarojrit, Vorapat; Kohler, Christian

    2002-06-01T23:59:59.000Z

    This study focuses on advanced building facades that use daylighting, sun control, ventilation systems, and dynamic systems. A quick perusal of the leading architectural magazines, or a discussion in most architectural firms today will eventually lead to mention of some of the innovative new buildings that are being constructed with all-glass facades. Most of these buildings are appearing in Europe, although interestingly U.S. A/E firms often have a leading role in their design. This ''emerging technology'' of heavily glazed fagades is often associated with buildings whose design goals include energy efficiency, sustainability, and a ''green'' image. While there are a number of new books on the subject with impressive photos and drawings, there is little critical examination of the actual performance of such buildings, and a generally poor understanding as to whether they achieve their performance goals, or even what those goals might be. Even if the building ''works'' it is often dangerous to take a design solution from one climate and location and transport it to a new one without a good causal understanding of how the systems work. In addition, there is a wide range of existing and emerging glazing and fenestration technologies in use in these buildings, many of which break new ground with respect to innovative structural use of glass. It is unclear as to how well many of these designs would work as currently formulated in California locations dominated by intense sunlight and seismic events. Finally, the costs of these systems are higher than normal facades, but claims of energy and productivity savings are used to justify some of them. Once again these claims, while plausible, are largely unsupported. There have been major advances in glazing and facade technology over the past 30 years and we expect to see continued innovation and product development. It is critical in this process to be able to understand which performance goals are being met by current technology and design solutions, and which ones need further development and refinement. The primary goal of this study is to clarify the state-of-the-art of the performance of advanced building facades so that California building owners and designers can make informed decisions as to the value of these building concepts in meeting design goals for energy efficiency, ventilation, productivity and sustainability.

  15. Demand Shifting with Thermal Mass in Large Commercial Buildings in a California Hot Climate Zone

    E-Print Network [OSTI]

    Xu, Peng

    2010-01-01T23:59:59.000Z

    of Cooling Strategies and Building Features on EnergyPerformance of Office Buildings. ”Energy and Buildings 34(2002): Braun, J. E. 1990. “Reducing

  16. Assessing and Reducing Plug and Process Loads in Office Buildings (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-06-01T23:59:59.000Z

    Plug and process loads (PPLs) in commercial buildings account for almost 5% of U.S. primary energy consumption. Minimizing these loads is a primary challenge in the design and operation of an energy-efficient building. PPLs are not related to general lighting, heating, ventilation, cooling, and water heating, and typically do not provide comfort to the occupants. They use an increasingly large fraction of the building energy use pie because the number and variety of electrical devices have increased along with building system efficiency. Reducing PPLs is difficult because energy efficiency opportunities and the equipment needed to address PPL energy use in office spaces are poorly understood.

  17. Demand Responsive and Energy Efficient Control Technologies and Strategies in Commercial Buildings

    E-Print Network [OSTI]

    Piette, Mary Ann; Kiliccote, Sila

    2006-01-01T23:59:59.000Z

    Study in Energy Efficiency in Buildings August Nationalelectric loads in buildings: energy efficiency (for steady-and Energy Efficiency Options Using Commercial Building

  18. Collecting Occupant Presence Data for Use in Energy Management of Commercial Buildings

    E-Print Network [OSTI]

    Rosenblum, Benjamin Tarr

    2012-01-01T23:59:59.000Z

    Visualization in Commercial Buildings: Design, Technology,diversity factors for common university building types. ”Energy and Buildings 42 (9) (September): 1543-1551. Dhummi,

  19. Variability in Automated Responses of Commercial Buildings and Industrial Facilities to Dynamic Electricity Prices

    E-Print Network [OSTI]

    Mathieu, Johanna L.

    2012-01-01T23:59:59.000Z

    building control strategies and techniques for demand response,”demand response and energy ef?ciency in commercial buildings,”building electricity use with application to demand response,”

  20. Machine to machine (M2M) technology in demand responsive commercial buildings

    E-Print Network [OSTI]

    Watson, David S.; Piette, Mary Ann; Sezgen, Osman; Motegi, Naoya; ten Hope, Laurie

    2004-01-01T23:59:59.000Z

    and Demand Response in Commercial Buildings. ” Highoperate buildings to maximize demand response and minimizeDemand Response Demonstration”, 2004 ACEEE Summer Study on Energy Efficiency in Buildings.

  1. Introduction to Commercial Building Control Strategies and Techniques for Demand Response -- Appendices

    E-Print Network [OSTI]

    Motegi, N.

    2011-01-01T23:59:59.000Z

    for Demand Response in New and Existing Commercial BuildingsBuilding Control Strategies and Techniques for Demand Response -Building Control Strategies and Techniques for Demand Response

  2. Are CHP Systems Ready for Commercial Buildings?

    SciTech Connect (OSTI)

    Katipamula, Srinivas; Brambley, Michael R.; Zaltash, Abdi; Sands, Jim

    2005-06-27T23:59:59.000Z

    This paper highlights challenges associated with integration of CHP systems with existing buildings and maintaining their performance over time. The paper also identifies key research and development needs to address the challenges, so that CHP technologies can deliver the promised performance and reach their full potential market penetration.

  3. Residential and commercial buildings data book. Second edition

    SciTech Connect (OSTI)

    Crumb, L.W.; Bohn, A.A.

    1986-09-01T23:59:59.000Z

    This Data Book updates and expands the previous Data Book originally published by the Department of Energy in October, 1984 (DOE/RL/01830/16). Energy-related information is provided under the following headings: Characteristics of Residential Buildings in the US; Characteristics of New Single Family Construction in the US; Characteristics of New Multi-Family Construction in the US; Household Appliances; Residential Sector Energy Consumption, Prices, and Expenditures; Characteristics of US Commercial Buildings; Commercial Buildings Energy Consumption, Prices, and Expenditures; Additional Buildings and Community Systems Information. This Data Book complements another Department of Energy document entitled ''Overview of Building Energy Use and Report of Analysis-1985'' October, 1985 (DOE/CE-0140). The Data Book provides supporting data and documentation to the report.

  4. Transcript of See Action and Technical Assistance Program Webcast: Energy Audit and Retro-Commissioning Policies for Public and Commercial Buildings

    Broader source: Energy.gov [DOE]

    U.S. Department of Energy Office (DOE) of Energy Efficiency and Renewable Energy (EERE) transcript of See Action and Technical Assistance Program Webcast: Energy Audit and Retro-Commissioning Policies for Public and Commercial Buildings.

  5. Office of the Vice President for Research 203 Administration Building

    E-Print Network [OSTI]

    Office of the Vice President for Research 203 Administration Building Fort Collins, Colorado 80523 of the Vice President for Research. The Institute builds on the long history of broad work in energy at the Powerhouse Energy Institute (when that building is completed in 2014) and Engines & Energy Conversion

  6. Towards a Very Low Energy Building Stock: Modeling the U.S. Commercial Building Sector to Support Policy and Innovation Planning

    E-Print Network [OSTI]

    Coffey, Brian

    2010-01-01T23:59:59.000Z

    the US EIA Commercial Buildings Energy Consumption Survey (2: US commercial building stock energy consumption and floorof time varying energy consumption in the US commercial

  7. Commercial Buildings Partnerships | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomenthe HouseStudents2.2 Documentation andSupportingDepartment of EnergyCommercial

  8. Commercial Reference Buildings | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste andAccessCO2 InjectionDepartment of Energy CommercialRMCommercialPast

  9. commercial buildings initiative | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon Capture and Storage CleanDiscovery ofDevelopment ofCommercial

  10. Indoor-Outdoor Air Leakage of Apartments and Commercial Buildings

    SciTech Connect (OSTI)

    Price, P.N.; Shehabi, A.; Chan, R.W.; Gadgil, A.J.

    2006-06-01T23:59:59.000Z

    We compiled and analyzed available data concerning indoor-outdoor air leakage rates and building leakiness parameters for commercial buildings and apartments. We analyzed the data, and reviewed the related literature, to determine the current state of knowledge of the statistical distribution of air exchange rates and related parameters for California buildings, and to identify significant gaps in the current knowledge and data. Very few data were found from California buildings, so we compiled data from other states and some other countries. Even when data from other developed countries were included, data were sparse and few conclusive statements were possible. Little systematic variation in building leakage with construction type, building activity type, height, size, or location within the u.s. was observed. Commercial buildings and apartments seem to be about twice as leaky as single-family houses, per unit of building envelope area. Although further work collecting and analyzing leakage data might be useful, we suggest that a more important issue may be the transport of pollutants between units in apartments and mixed-use buildings, an under-studied phenomenon that may expose occupants to high levels of pollutants such as tobacco smoke or dry cleaning fumes.

  11. Commercial Building Energy Assest Score Overall Building Score

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth Codesthe Natural Resources DefenseonAssetCommercial

  12. Trends in Commercial Buildings--Overview

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18 Q 10 14.0 12.2 1.1 Q 0.6 Building602634

  13. Technical Support Document: Development of the Advanced Energy Design Guide for Small Office Buildings

    SciTech Connect (OSTI)

    Jarnagin, Ronald E.; Liu, Bing; Winiarski, David W.; McBride, Merle F.; Suharli, L.; Walden, D.

    2006-11-30T23:59:59.000Z

    This Technical Support Document (TSD) describes the process and methodology for the development of the Advanced Energy Design Guide for Small Office Buildings (AEDG-SO), a design guidance document intended to provide recommendations for achieving 30% energy savings in small office buildings over levels contained in ANSI/ASHRAE/IESNA Standard 90.1-1999, Energy Standard for Buildings Except Low-Rise Residential Buildings. The AEDG-SO is the first in a series of guides being developed by a partnership of organizations, including the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE), the American Institute of Architects (AIA), the Illuminating Engineering Society of North America (IESNA), the New Buildings Institute (NBI), and the U.S. Department of Energy (DOE). Each of the guides in the AEDG series will provide recommendations and user-friendly design assistance to designers, developers and owners of small commercial buildings that will encourage steady progress towards net-zero energy buildings. The guides will provide prescriptive recommendation packages that are capable of reaching the energy savings target for each climate zone in order to ease the burden of the design and construction of energy-efficient small commercial buildings The AEDG-SO was developed by an ASHRAE Special Project committee (SP-102) made up of representatives of each of the partner organizations in eight months. This TSD describes the charge given to the committee in developing the office guide and outlines the schedule of the development effort. The project committee developed two prototype office buildings (5,000 ft2 frame building and 20,000 ft2 two-story mass building) to represent the class of small office buildings and performed an energy simulation scoping study to determine the preliminary levels of efficiency necessary to meet the energy savings target. The simulation approach used by the project committee is documented in this TSD along with the characteristics of the prototype buildings. The prototype buildings were simulated in the same climate zones used by the prevailing energy codes and standards to evaluate energy savings. Prescriptive packages of recommendations presented in the guide by climate zone include enhanced envelope technologies, lighting and day lighting technologies and HVAC and SWH technologies. The report also documents the modeling assumptions used in the simulations for both the baseline and advanced buildings. Final efficiency recommendations for each climate zone are included, along with the results of the energy simulations indicating an average energy savings over all buildings and climates of approximately 38%.

  14. Toward the Holy Grail of Perfect Information: Lessons Learned Implementing an Energy Information System in a Commercial Building

    E-Print Network [OSTI]

    Kircher, Kevin

    2010-01-01T23:59:59.000Z

    and Demand Response in Commercial Buildings. LBNL- 52510.building controls, energy efficiency and demand response.

  15. Analysis of institutional mechanisms affecting residential and commercial buildings retrofit

    SciTech Connect (OSTI)

    Not Available

    1980-09-01T23:59:59.000Z

    Barriers to energy conservation in the residential and commercial sectors influence (1) the willingness of building occupants to modify their energy usage habits, and (2) the willingness of building owners/occupants to upgrade the thermal characteristics of the structures within which they live or work and the appliances which they use. The barriers that influence the willingness of building owners/occupants to modify the thermal efficiency characteristics of building structures and heating/cooling systems are discussed. This focus is further narrowed to include only those barriers that impede modifications to existing buildings, i.e., energy conservation retrofit activity. Eight barriers selected for their suitability for Federal action in the residential and commercial sectors and examined are: fuel pricing policies that in the short term do not provide enough incentive to invest in energy conservation; high finance cost; inability to evaluate contractor performance; inability to evaluate retrofit products; lack of well-integrated or one-stop marketing systems (referred to as lack of delivery systems); lack of precise or customized information; lack of sociological/psychological incentives; and use of the first-cost decision criterion (expanded to include short-term payback criterion for the commercial sector). The impacts of these barriers on energy conservation are separately assessed for the residential and commercial sectors.

  16. Post Office Building, Rancho Mirage, California | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Post Office in California The U.S. Postal Service (USPS) has been making an effort to add solar power to its offices as part of the Million Solar Roofs Initiative. They have been...

  17. Case Study of Continuous Commissioning in an Office Building

    E-Print Network [OSTI]

    Pang, X.; Zheng, B.; Liu, M.

    2006-01-01T23:59:59.000Z

    ICEBO2006, Shenzhen, China Building Commissioning for Energy Efficiency and Comfort, Vol.VI-9-3 Case Study of Continuous Commissioning? in an Office Building Xiufeng Pang Bin Zheng Mingsheng Liu Graduate Student Graduate...&M University examined system operations in a number of newly retrofitted buildings and found that optimizing the system can double energy savings and improve building comfort [Liu et al.]. In 1996, the CC? process was first developed. While most...

  18. Visualizing Energy Information in Commercial Buildings: A Study of Tools, Expert Users, and Building Occupants

    E-Print Network [OSTI]

    Lehrer, David; Vasudev, Janani

    2011-01-01T23:59:59.000Z

    BIBLIOGRAPHY —“Breaking the Net Zero Energy Barrier: The ‘31carbon neutrality and net-zero energy for all new commercialBenchmarking for Net-Zero Energy Buildings. ” 12 Included in

  19. Rating the energy performance of buildings

    E-Print Network [OSTI]

    Olofsson, Thomas; Meier, Alan; Lamberts, Roberto

    2004-01-01T23:59:59.000Z

    Energy and Sustainable Buildings, 2004 Available at http://Energy and Sustainable Buildings, Vol. 3, (2004), Olofsson,for a commercial office building in Melbourne, Australia,

  20. Development of a Training Program for Commercial Building Technicians

    SciTech Connect (OSTI)

    Rinholm, Rod

    2013-05-31T23:59:59.000Z

    This project focused on developing and deploying a comprehensive program of 22 training modules, including certification requirements, and accreditation standards for commercial building technicians, to help achieve the full savings potential of energy efficient buildings, equipment, and systems. This curriculum extended the currently available commercial building technician programs -- training a labor force in a growing market area focused on energy efficiency. The program helps to remove a major market impediment to low energy/zero energy commercial building system acceptance, namely a lack of operating personnel capable of handling more complex high efficiency systems. The project developed a training curriculum for commercial building technicians, with particular focus on high-efficiency building technology, and systems. In Phase 1, the project team worked collaboratively in developing a draft training syllabus to address project objectives. The team identified energy efficiency knowledge gaps in existing programs and plans and plans to address the gaps with either modified or new curricula. In Phase 2, appropriate training materials were developed to meet project objectives. This material was developed for alternative modes of delivery, including classroom lecture materials, e-learning elements, video segments, exercises, and hands-on training elements. A Certification and Accreditation Plan and a Commercialization and Sustainability Plan were also investigated and developed. The Project Management Plan was updated quarterly and provided direction on the management approaches used to accomplish the expected project objectives. GTI project management practices tightly coordinate project activities using management controls to deliver optimal customer value. The project management practices include clear scope definition, schedule/budget tracking, risk/issue resolution and team coordination.

  1. 1999 Commercial Buildings Characteristics--CBECS Building Types

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion Cubic Feet)WyomingSquare FeetHouseholds, Buildings1999Size

  2. Trends in Commercial Buildings--Buildings and Floorspace

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18 Q 10 14.0 12.2 1.1 Q 0.6 Building602634 Home

  3. Characterization of changes in commercial building structure, equipment, and occupants: End-Use Load and Consumer Assessment Program

    SciTech Connect (OSTI)

    Lucas, R.G.; Taylor, Z.T.; Miller, N.E.; Pratt, R.G.

    1990-12-01T23:59:59.000Z

    Changes in commercial building structure, equipment, and occupants result in changes in building energy use. The frequency and magnitude of those changes have substantial implications for conservation programs and resource planning. For example, changes may shorten the useful lifetime of a conservation measure as well as impact the savings from that measure. This report summarizes the frequency of changes in a commercial building sample that was end-use metered under the End-Use Load and Consumer Assessment Program (ELCAP). The sample includes offices, dry good retails, groceries, restaurants, warehouses, schools, and hotels. Two years of metered data, site visit records, and audit data were examined for evidence of building changes. The observed changes were then classified into 12 categories, which included business type, equipment, remodel, vacancy, and operating schedule. The analysis characterized changes in terms of frequency of types of change; relationship to building vintage and floor area; and variation by building type. The analysis also examined the energy impacts of various changes. The analysis determined that the rate of change in commercial buildings is high--50% of the buildings experienced one type of change during the 2 years for which monitoring data were examined. Equipment changes were found to be most frequent in offices and retail stores. Larger, older office buildings tend to experience a wider variety of changes more frequently than the smaller, newer buildings. Key findings and observations are presented in Section 2. Section 3 provides the underlying motivation and objectives. In Section 4, the methodology used is documented, including the commercial building sample and the data sources used. Included are the definitions of change events and the overall approach taken. Results are analyzed in Section 5, with additional technical details in Appendixes. 2 refs., 46 figs., 22 tabs. (JF)

  4. Monitoring of Electrical End-Use Loads in Commercial Buildings

    E-Print Network [OSTI]

    Martinez, M.; Alereza, T.; Mort, D.

    1988-01-01T23:59:59.000Z

    Southern California Edison is currently conducting a program to collect end-use metered data from commercial buildings in its service area. The data will provide actual measurements of end-use loads and will be used in research and in designing...

  5. DOE/ NREL Build One of the World's Most Energy Efficient Office Spaces

    ScienceCinema (OSTI)

    None

    2013-05-29T23:59:59.000Z

    Technology ? from sophisticated computer modeling to advanced windows that actually open ? will help the newest building at the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) be one of the world's most energy efficient offices. Scheduled to open this summer, the 222,000 square-foot RSF will house more than 800 staff and an energy efficient information technology data center. Because 19 percent of the country's energy is used by commercial buildings, DOE plans to make this facility a showcase for energy efficiency. DOE hopes the design of the RSF will be replicated by the building industry and help reduce the nation's energy consumption by changing the way commercial buildings are designed and built.

  6. Planning for energy efficiency in new commercial buildings

    SciTech Connect (OSTI)

    Deakin, J.F.; O'Sullivan, T.

    1986-02-01T23:59:59.000Z

    The project described in this report provides other cities with an example of a city working to develop locally sponsored building energy review procedures. These procedures should result in the construction of new buildings incorporating the most energy efficient design measures. This will provide two specific benefits to San Francisco. First, it will reduce energy consumption in new buildings and will slow down the overall energy growth rate for the City's commercial sector. Over the past five years the growth rate for commercial building electricity use in San Francisco has averaged 5% per year, a rate double that of Citywide growth. This project works toward bringing that growth rate in line with the rest of San Francisco's energy users. In addition, San Francisco has the highest rental costs for commercial space in the nation outside of New York City. Any action that can be taken to reduce energy consumption in a new building will result in lower operating costs throughout its life. Reducing costs that would otherwise be spent on energy frees those resources to be spent on more productive areas of the local economy. 39 refs., 8 figs., 8 tabs.

  7. On Variations of Space-heating Energy Use in Office Buildings

    SciTech Connect (OSTI)

    Lin, Hung-Wen; Hong, Tianzhen

    2013-05-01T23:59:59.000Z

    Space heating is the largest energy end use, consuming more than 7 quintillion joules of site energy annually in the U.S. building sector. A few recent studies showed discrepancies in simulated space-heating energy use among different building energy modeling programs, and the simulated results are suspected to be underpredicting reality. While various uncertainties are associated with building simulations, especially when simulations are performed by different modelers using different simulation programs for buildings with different configurations, it is crucial to identify and evaluate key driving factors to space-heating energy use in order to support the design and operation of low-energy buildings. In this study, 10 design and operation parameters for space-heating systems of two prototypical office buildings in each of three U.S. heating climates are identified and evaluated, using building simulations with EnergyPlus, to determine the most influential parameters and their impacts on variations of space-heating energy use. The influence of annual weather change on space-heating energy is also investigated using 30-year actual weather data. The simulated space-heating energy use is further benchmarked against those from similar actual office buildings in two U.S. commercial-building databases to better understand the discrepancies between simulated and actual energy use. In summary, variations of both the simulated and actual space-heating energy use of office buildings in all three heating climates can be very large. However these variations are mostly driven by a few influential parameters related to building design and operation. The findings provide insights for building designers, owners, operators, and energy policy makers to make better decisions on energy-efficiency technologies to reduce space-heating energy use for both new and existing buildings.

  8. Office of International Education Savant Building, Suite 211

    E-Print Network [OSTI]

    Li, Mo

    Office of International Education Savant Building, Suite 211 Atlanta, Georgia 30332-0284 PHONE: 404 Participant FROM: Stephanie Bullard Education Abroad Assistant, Office of International Education RE that GT programs do not currently sponsor. If you intend to transfer credit back to GT for courses your

  9. A Prototype Data Archive for the PIER "Thermal Distribution Systems in Commercial Buildings" Project

    E-Print Network [OSTI]

    A Prototype Data Archive for the PIER "Thermal Distribution Systems in Commercial Buildings archive for a selection of building energy data on thermal distribution systems in commercial buildings and Purpose The PIER "Thermal Distribution Systems in Commercial Buildings" (TDSCB) project (Diamond et al

  10. ENERGY-EFFICIENT NEW COMMERCIAL BUILDINGS IN THE NORTHWEST REGION: A COMPILATION OF MEASURED DATA

    E-Print Network [OSTI]

    Piette, M.A.

    2010-01-01T23:59:59.000Z

    might expect an energy-efficient building to be expensive toand Analysis of Energy Efficient New Commercial Buildings,possible to build an energy-efficient building for no more

  11. On Variations of Space-heating Energy Use in Office Buildings

    E-Print Network [OSTI]

    Lin, Hung-Wen

    2014-01-01T23:59:59.000Z

    simulation results with the building databases forthe large office building in Chicago. Figure 9.simulation results with the building databases for the small

  12. Results and Lessons Learned From the DOE Commercial Building Partnerships: Preprint

    SciTech Connect (OSTI)

    Hirsch, A.; Deru, M.; Langner, R.; Stark, G.; Doebber, I.; Scheib, J.; Sheppy, M.; Bonnema, E.; Pless, S.; Livingood, B.; Torcellini, P.

    2014-09-01T23:59:59.000Z

    Over the course of 5 years, NREL worked with commercial building owners and their design teams in the DOE Commercial Building Partnerships (CBP) to cut energy consumption by 50% in new construction (versus code) and by 30% in existing building pilot projects (versus code or pre-retrofit operational energy use depending on the preference of the Partner) using strategies that could be replicated across their building portfolios. A number of different building types were addressed, including supermarket, retail merchandise, combination big box (general merchandise and food sales), high rise office space, and warehouse. The projects began in pre-design and included a year of measurement data to evaluate performance against design expectations. Focused attention was required throughout the entire process to achieve a design with the potential to hit the energy performance target and to operate the resulting building to reach this potential. This paper will report quantitative results and cover both the technical and the human sides of CBP, including the elements that were required to succeed and where stumbling blocks were encountered. It will also address the impact of energy performance goals and intensive energy modeling on the design process innovations and best practices.

  13. Post Occupancy Evaluation of Indoor Environmental Quality in Commercial Buildings: Do green buildings have more satisfied occupants?

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Post Occupancy Evaluation of Indoor Environmental Quality in Commercial Buildings: Do green of Indoor Environmental Quality in Commercial Buildings: Do green buildings have more satisfied occupants the promise of a bright future ­ just like the green building movement. i #12;Post Occupancy Evaluation

  14. Demand Shifting with Thermal Mass in Large Commercial Buildings in a California Hot Climate Zone

    E-Print Network [OSTI]

    Xu, Peng

    2010-01-01T23:59:59.000Z

    implement demand-response programs involving buildingthan the building envelope in demand response effectiveness.demand response, thermal mass, hot climates, office buildings

  15. LED Site Lighting in the Commercial Building Sector: Opportunities, Challenges, and the CBEA Performance Specification

    Broader source: Energy.gov [DOE]

    This March 26, 2009 webcast presented information about the Commercial Building Energy Alliances' (CBEA) efforts to explore the viability of LED site lighting in commercial parking lots. LED...

  16. Building Technologies Office: 179D DOE Calculator

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    or 0.60ft for a partially qualifying property for envelope, heating, ventilating, and air conditioning (HVAC), or lighting improvements. In addition, a building may qualify...

  17. Generic Models in the Design of Solar Commercial Buildings , N. ISAACS1

    E-Print Network [OSTI]

    Amor, Robert

    of generic models were developed. These include: Standard data on building materials used in commercial buildings in New Zealand; Materials data collated into descriptions of standard buildings which are representative of commercial building `types'; Standard building model descriptions which are intended to provide

  18. Smarter Buildings Survey Consumers Rank Their Office Buildings

    E-Print Network [OSTI]

    of all electricity in the US is consumed by buildings ­ and up to 50 percent of that is wasted will be the single largest energy consumers and emitters of greenhouse gasses on our planet. The skyscrapers and building portfolios: · Operational costs. The combined effect of rising energy costs and a dwindling global

  19. Window-Related Energy Consumption in the US Residential and Commercial Building Stock

    E-Print Network [OSTI]

    Apte, Joshua; Arasteh, Dariush

    2008-01-01T23:59:59.000Z

    2001). "Residential Energy Consumption Survey." 2006, fromCommercial Building Energy Consumption Survey." from http://Total Building Energy Consumption (Trillion BTU/yr) Area,

  20. Model Predictive Control of Regulation Services from Commercial Buildings to the Smart Grid

    E-Print Network [OSTI]

    Maasoumy, Mehdi

    2014-01-01T23:59:59.000Z

    Services from Commercial Buildings to the Smart Grid Mehdicommercial building hvac fan as ancillary service for smartbuildings flexibility can be utilized for frequency regulation provision in the smart

  1. Commercial Buildings Asset Rating Program RFI | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth Codesthe NaturalCommercial Building EnergyBuildings

  2. STIL2 Swedish Office Buildings Survey - Offices_Sweden_-20100409...

    Open Energy Info (EERE)

    resource type file revision id 76f29d91-6c61-47c0-a681-83ba0b26cb01 size 1.4 MiB state active url type upload Resources OfficesSweden-20100409.... Social Google+ Twitter Facebook...

  3. Impact of Continuous Commissioning® on the Energy Star® Rating of Hospitals and Office Buildings

    E-Print Network [OSTI]

    Kulkarni, Aditya Arun

    2012-02-14T23:59:59.000Z

    in Commercial Buildings ..................................................... 1 1.2 Commercial Buildings Energy Performance .......................................... 2 1.3 Background and Purpose of Study... the reduction in consumption by improving overall efficiency is apparently one of the most viable options to explore. 1.1 Energy Use in Commercial Buildings Energy costs for an estimated total of 4.8 million commercial buildings in the United States...

  4. The Reality and Future Scenarios of Commercial Building Energy Consumption in China

    E-Print Network [OSTI]

    Zhou, Nan

    2008-01-01T23:59:59.000Z

    of Commercial Building Energy Consumption in China Nan Zhou,Commercial Building Energy Consumption in China* Nan Zhou, 1whether and how the energy consumption trend can be changed

  5. Advancing Solutions to Improve the Energy Efficiency of Commercial Buildings FOA Webinar (Text Version)

    Broader source: Energy.gov [DOE]

    Below is the text version of the webinar, Advancing Solutions to Improve the Energy Efficiency of Commercial Buildings FOA, presented by Kristen Taddonio of the Commercial Buildings program in...

  6. Evaluating the energy performance of the first generation of LEED-certified commercial buildings

    E-Print Network [OSTI]

    Diamond, Rick

    2011-01-01T23:59:59.000Z

    one element of sustainable building design, and we hope thatDesign (LEED) rating system for sustainable commercial buildingsdesign expectations for energy performance is just one step towards moving the existing commercial building market towards a more sustainable

  7. Demand Shifting with Thermal Mass in Light and Heavy Mass Commercial Buildings

    E-Print Network [OSTI]

    Xu, Peng

    2010-01-01T23:59:59.000Z

    as a Demand Response (DR) strategy for commercial buildings.demand response program because the added demand reduction from different buildingsdemand response, thermal mass INTRODUCTION The structural mass within existing commercial buildings

  8. Scenario Analysis of Peak Demand Savings for Commercial Buildings with Thermal Mass in California

    E-Print Network [OSTI]

    Yin, Rongxin

    2010-01-01T23:59:59.000Z

    of demand response (DR) strategies in commercial buildingscommercial buildings. Introduction Demand response (DR) is ademand response quick assessment tool – DRQAT – was developed for evaluating DR strategies in commercial buildings.

  9. Commercial Building Energy Asset Score 2013 Pilot Data Collection Form |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth Codesthe Natural ResourcesCommercial Building

  10. Commercial Building Energy Asset Scoring Tool 2013 Pilot Training Session

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth Codesthe NaturalCommercial Building Energy Asset

  11. New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy

    SciTech Connect (OSTI)

    Sidheswaran, Meera; Destaillats, Hugo; Sullivan, Douglas P.; Fisk, William J.

    2010-10-27T23:59:59.000Z

    Approximately ten percent of the energy consumed in U.S. commercial buildings is used by HVAC systems to condition outdoor ventilation air. Reducing ventilation rates would be a simple and broadly-applicable energy retrofit option, if practical counter measures were available that maintained acceptable concentrations of indoor-generated air pollutants. The two general categories of countermeasures are: 1) indoor pollutant source control, and 2) air cleaning. Although pollutant source control should be used to the degree possible, source control is complicated by the large number and changing nature of indoor pollutant sources. Particle air cleaning is already routinely applied in commercial buildings. Previous calculations indicate that particle filtration consumes only 10percent to 25percent of the energy that would otherwise be required to achieve an equivalent amount of particle removal with ventilation. If cost-effective air cleaning technologies for volatile organic compounds (VOCs) were also available, outdoor air ventilation rates could be reduced substantially and broadly in the commercial building stock to save energy. The research carried out in this project focuses on developing novel VOC air cleaning technologies needed to enable energy-saving reductions in ventilation rates. The minimum required VOC removal efficiency to counteract a 50percent reduction in ventilation rate for air cleaning systems installed in the HVAC supply airstream is modest (generally 20percent or less).

  12. Reference Buildings by Building Type: Medium office | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartmentnews-flashes Office ofofDepartment ofofofMedium office

  13. Monitoring the Energy-Use Effects of Cool Roofs on California Commercial Buildings

    SciTech Connect (OSTI)

    Akbari, Hashem; Levinson, Ronnen; Konopaki, Steve; Rainer, Leo

    2004-07-01T23:59:59.000Z

    Solar-reflective roofs stay cooler in the sun than solar-absorptive roofs. Such ''cool'' roofs achieve lower surface temperatures that reduce heat conduction into the building and the building's cooling load. The California Energy Commission has funded research in which Lawrence Berkeley National Laboratory (LBNL) has measured the electricity use and peak demand in commercial buildings to document savings from implementing the Commission's Cool Roofs program. The study seeks to determine the savings achieved by cool roofs by monitoring the energy use of a carefully selected assortment of buildings participating in the Cool Roofs program. Measurements were needed because the peak savings resulting from the application of cool roofs on different types of buildings in the diverse California climate zones have not been well characterized to date. Only a few occupancy categories (e.g., office and retail buildings) have been monitored before this, and those were done under a limited number of climatic conditions. To help rectify this situation, LBNL was tasked to select the buildings to be monitored, measure roof performance before and after replacing a hot roof by a cool roof, and document both energy and peak demand savings resulting from installation of cool roofs. We monitored the effects of cool roofs on energy use and environmental parameters in six California buildings at three different sites: a retail store in Sacramento; an elementary school in San Marcos (near San Diego); and a 4-building cold storage facility in Reedley (near Fresno). The latter included a cold storage building, a conditioning and fruit-palletizing area, a conditioned packing area, and two unconditioned packing areas (counted as one building).

  14. Sealing Ducts in Large Commercial Buildings with Aerosolized Sealant M. P. Modera, O. Brzozowski**

    E-Print Network [OSTI]

    LBNL-42414 1 Sealing Ducts in Large Commercial Buildings with Aerosolized Sealant Particles M. P buildings is on the order of 10 kWh/m2 per year (1 kWh/ft2 ). We have tested, in two large commercial technology is capable of sealing the leaks in a large commercial building duct system within a reasonable

  15. EXPLORING DECISION-MAKING METHODS FOR SUSTAINABLE DESIGN IN COMMERCIAL BUILDINGS

    E-Print Network [OSTI]

    Tommelein, Iris D.

    EXPLORING DECISION-MAKING METHODS FOR SUSTAINABLE DESIGN IN COMMERCIAL BUILDINGS by Paz Arroyo for Sustainable Design in Commercial Buildings Copyright 2014 by Paz Arroyo #12;1 ABSTRACT Exploring Decision-Making Methods for Sustainable Design in Commercial Buildings by Paz Arroyo Doctor

  16. LBNL# 40102 Field Investigation of Duct System Performance in California Light Commercial Buildings 1 of 26

    E-Print Network [OSTI]

    LBNL# 40102 Field Investigation of Duct System Performance in California Light Commercial Buildings 1 of 26 Field Investigation of Duct System Performance in California Light Commercial Buildings Wm performance in fifteen systems located in eight northern California buildings. Abstract Light commercial

  17. Over the Energy Edge: Results from a Seven Year New Commercial Buildings Research and Demonstration Project

    E-Print Network [OSTI]

    Diamond, Richard

    Over the Energy Edge: Results from a Seven Year New Commercial Buildings Research and Demonstration that began in 1985. Twenty-eight commercial buildings were designed and constructed to use 30% less was a research-oriented demonstration of energy efficiency in 28 new commercial buildings that provided Northwest

  18. Evaluating the Energy Performance of the First Generation of LEED-Certified Commercial Buildings

    E-Print Network [OSTI]

    Evaluating the Energy Performance of the First Generation of LEED-Certified Commercial Buildings Design (LEED) rating system for sustainable commercial buildings as of January 2006. This paper explores for energy performance is just one step towards moving the existing commercial building market towards a more

  19. Window-Related Energy Consumption in the US Residential and Commercial Building Stock

    E-Print Network [OSTI]

    Apte, Joshua; Arasteh, Dariush

    2008-01-01T23:59:59.000Z

    Efficiency and Renewable Energy, Building Technologies, U.S.and Renewable Energy (2005). 2005 Buildings Energy Databook,Buildings Energy Databook Table 1.2.3 (US DOE Office of Energy Efficiency and Renewable

  20. Building Technologies Office | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartment of4 Federal6Clean Energy |-FormerofBuilding RemovalBuilding

  1. Reference Buildings by Building Type: Large office | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartmentnews-flashes Office ofofDepartment ofofof

  2. Building Load Simulation and Validation of an Office Building

    E-Print Network [OSTI]

    Alghimlas, F.

    2002-01-01T23:59:59.000Z

    of the model for electricity use were calibrated to match the actual electricity use for the average year of the available data for years 1998, 1999, and 2000. The monthly and annual cooling loads of the building were calculated by using the DOE2.1E. The extra...

  3. Commercial Buildings Sector Agent-Based Model | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreisVolcanicPowerRaftColumbia RuralCommercial AlgaeAgent-Based

  4. Reference Buildings by Building Type: Small office | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartmentnews-flashes Office ofofDepartmentHotel Reference

  5. Building Technologies Office | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorizationSunShotAppealsBudgetEnergyBuilding

  6. A Look at Office Buildings - Index

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion Cubic Feet)WyomingSquareEnd-Use EquipmentJulyOffice Home: A

  7. Offices and dwellings: what building acoustics for sustainable development?

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Offices and dwellings: what building acoustics for sustainable development? M. Asselineau, A.asselineau@peutz.fr Proceedings of the Acoustics 2012 Nantes Conference 23-27 April 2012, Nantes, France 3211 #12;Sustainability for sustainable projects as defined in the French standards, one specifically deals with acoustic comfort. Over

  8. Radiological Laboratory, Utility, Office Building LEED Strategy & Achievement

    SciTech Connect (OSTI)

    Seguin, Nicole R. [Los Alamos National Laboratory

    2012-07-18T23:59:59.000Z

    Missions that the Radiological Laboratory, utility, Office Building (RLUOB) supports are: (1) Nuclear Materials Handling, Processing, and Fabrication; (2) Stockpile Management; (3) Materials and Manufacturing Technologies; (4) Nonproliferation Programs; (5) Waste Management Activities - Environmental Programs; and (6) Materials Disposition. The key capabilities are actinide analytical chemistry and material characterization.

  9. Commercial Buildings Partnership Projects - Metered Data Format and Delivery

    SciTech Connect (OSTI)

    Katipamula, Srinivas

    2010-11-16T23:59:59.000Z

    A number of the Commercial Building Partnership Projects (CBPs) will require metering, monitoring, data analysis and verification of savings after the retrofits are complete. Although monitoring and verification (M&V) agents are free to use any metering and monitoring devices that they chose, the data they collect should be reported to Pacific Northwest National Laboratory (PNNL) in a standard format. PNNL will store the data collected in its CBP database for further use by PNNL and U.S. Department of Energy. This document describes the data storage process and the deliver format of the data from the M&V agents.

  10. Commercial Building Energy Asset Score 2013 Pilot | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth Codesthe Natural ResourcesCommercial BuildingScore

  11. Commercial Buildings: Asset Scoring Efforts and Request for Information:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth Codesthe NaturalCommercial Building1 | EnergyFebruary

  12. Pennsylvania: Window Technology First of Its Kind for Commercial Buildings

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.epsEnergy1.pdf MoreEnergyEnergyPendingCommercial Buildings ||

  13. Commercial Building Integration Program Overview - 2014 BTO Peer Review |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top FiveDepartment ofCarrieof EnergybyTendrilCommercial Building Energy

  14. Commercial Building Performance Monitoring and Evaluation | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLE FORSuperiorThethe NaturalCommercial Building Energy

  15. Commercial Building Energy Asset Scoring Tool 2013 Pilot Training Session |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste andAccessCO2 InjectionDepartment of Energy Commercial Building Energy

  16. Commercial Building Energy Asset Scoring Tool Application Programming Interface

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste andAccessCO2 InjectionDepartment of Energy Commercial Building

  17. building tech office | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon Capture and Storage Clean Coal Power Initiative PowerBuilding

  18. The CO2 Reduction Potential of Combined Heat and Power in California's Commercial Buildings

    SciTech Connect (OSTI)

    Stadler, Michael; Marnay, Chris; Cardoso, Goncalo; Lipman, Tim; Megel, Olivier; Ganguly, Srirupa; Siddiqui, Afzal; Lai, Judy

    2009-11-16T23:59:59.000Z

    The Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) is working with the California Energy Commission (CEC) to determine the potential role of commercial sector distributed generation (DG) with combined heat and power (CHP) capability deployment in greenhouse gas emissions (GHG) reductions. CHP applications at large industrial sites are well known, and a large share of their potential has already been harvested. In contrast, relatively little attention has been paid to the potential of medium-sized commercial buildings, i.e., ones with peak electric loads ranging from 100 kW to 5 MW. We examine how this sector might implement DG with CHP in cost minimizing microgrids that are able to adopt and operate various energy technologies, such as solar photovoltaics (PV), on-site thermal generation, heat exchangers, solar thermal collectors, absorption chillers, and storage systems. We apply a mixed-integer linear program (MILP) that minimizes a site's annual energy costs as its objective. Using 138 representative mid-sized commercial sites in California (CA), existing tariffs of three major electricity distribution ultilities plus a natural gas company, and performance data of available technology in 2020, we find the GHG reduction potential for this CA commercial sector segment, which represents about 35percent of total statewide commercial sector sales. Under the assumptions made, in a reference case, this segment is estimated to be capable of economically installing 1.4 GW of CHP, 35percent of the California Air Resources Board (CARB) statewide 4 GW goal for total incremental CHP deployment by 2020. However, because CARB's assumed utilization is far higherthan is found by the MILP, the adopted CHP only contributes 19percent of the CO2 target. Several sensitivity runs were completed. One applies a simple feed-in tariff similar to net metering, and another includes a generous self-generation incentive program (SGIP) subsidy for fuel cells. The feed-in tariff proves ineffective at stimulating CHP deployment, while the SGIP buy down is more powerful. The attractiveness of CHP varies widely by climate zone and service territory, but in general, hotter inland areas and San Diego are the more attractive regions because high cooling loads achieve higher equipment utilization. Additionally, large office buildings are surprisingly good hosts for CHP, so large office buildings in San Diego and hotter urban centers emerge as promising target hosts. Overall the effect on CO2 emissions is limited, never exceeding 27percent of the CARB target. Nonetheless, results suggest that the CO2 emissions abatement potential of CHP in mid-sized CA buildings is significant, and much more promising than is typically assumed.

  19. THE CO2 ABATEMENT POTENTIAL OF CALIFORNIA'S MID-SIZED COMMERCIAL BUILDINGS

    SciTech Connect (OSTI)

    Stadler, Michael; Marnay, Chris; Cardoso, Goncalo; Lipman, Tim; Megel, Olivier; Ganguly, Srirupa; Siddiqui, Afzal; Lai, Judy

    2009-12-31T23:59:59.000Z

    The Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) is working with the California Energy Commission (CEC) todetermine the potential role of commercial sector distributed generation (DG) with combined heat and power (CHP) capability deployment in greenhouse gas emissions (GHG) reductions. CHP applications at large industrial sites are well known, and a large share of their potential has already been harvested. In contrast, relatively little attention has been paid to the potential of medium-sized commercial buildings, i.e. ones with peak electric loads ranging from 100 kW to 5 MW. We examine how this sector might implement DG with CHP in cost minimizing microgrids that are able to adopt and operate various energy technologies, such as solar photovoltaics (PV), on-site thermal generation, heat exchangers, solar thermal collectors, absorption chillers, and storage systems. We apply a mixed-integer linear program (MILP) that minimizes a site?s annual energy costs as its objective. Using 138 representative mid-sized commercial sites in California (CA), existing tariffs of three major electricity distribution ultilities, and performance data of available technology in 2020, we find the GHG reduction potential for this CA commercial sector segment, which represents about 35percent of total statewide commercial sector sales. Under the assumptions made, in a reference case, this segment is estimated to be capable of economically installing 1.4 GW of CHP, 35percent of the California Air Resources Board (CARB) statewide 4 GW goal for total incremental CHP deployment by 2020. However, because CARB?s assumed utilization is far higher than is found by the MILP, the adopted CHP only contributes 19percent of the CO2 target. Several sensitivity runs were completed. One applies a simple feed-in tariff similar to net metering, and another includes a generous self-generation incentive program (SGIP) subsidy for fuel cells. The feed-in tariff proves ineffective at stimulating CHP deployment, while the SGIP buy down is more powerful. The attractiveness of CHP varies widely by climate zone and service territory, but in general, hotter inlandareas and San Diego are the more attractive regions because high cooling loads achieve higher equipment utilization. Additionally, large office buildings are surprisingly good hosts for CHP, so large office buildings in San Diego and hotter urban centers emerge as promising target hosts. Overall the effect on CO2 emissions is limited, never exceeding 27 percent of the CARB target. Nonetheless, results suggest that the CO2 emissions abatement potential of CHP in mid-sized CA buildings is significant, and much more promising than is typically assumed.

  20. Analysis of electric vehicle interconnection with commercial building microgrids

    SciTech Connect (OSTI)

    Stadler, Michael; Mendes, Goncalo; Marnay, Chris; M& #233; gel, Olivier; Lai, Judy

    2011-04-01T23:59:59.000Z

    The outline of this presentation is: (1) global concept of microgrid and electric vehicle (EV) modeling; (2) Lawrence Berkeley National Laboratory's Distributed Energy Resources Customer Adoption Model (DER-CAM); (3) presentation summary - how does the number of EVs connected to the building change with different optimization goals (cost versus CO{sub 2}); (3) ongoing EV modeling for California: the California commercial end-use survey (CEUS) database, objective: 138 different typical building - EV connections and benefits; (4) detailed analysis for healthcare facility: optimal EV connection at a healthcare facility in southern California; and (5) conclusions. Conclusions are: (1) EV Charging/discharging pattern mainly depends on the objective of the building (cost versus CO{sub 2}); (2) performed optimization runs show that stationary batteries are more attractive than mobile storage when putting more focus on CO{sub 2} emissions. Why? Stationary storage is available 24 hours a day for energy management - more effective; (3) stationary storage will be charged by PV, mobile only marginally; (4) results will depend on the considered region and tariff - final work will show the results for 138 different buildings in nine different climate zones and three major utility service territories.

  1. Measured energy performance of a US-China demonstration energy-efficient office building

    E-Print Network [OSTI]

    Xu, Peng; Huang, Joe; Jin, Ruidong; Yang, Guoxiong

    2006-01-01T23:59:59.000Z

    an energy-efficient demonstration building and design centerenergy- efficient demonstration office building and designenergy-efficient materials, space-conditioning systems, controls, and design

  2. Revealing Occupancy Patterns in Office Buildings Through the use of Annual Occupancy Sensor Data

    SciTech Connect (OSTI)

    Carlos Duarte; Kevin Van Den Wymelenberg; Craig Rieger

    2013-06-01T23:59:59.000Z

    Energy simulation programs like DOE-2 and EnergyPlus are tools that have been proven to aid with energy calculations to predict energy use in buildings. Some inputs to energy simulation models are relatively easy to find, including building size, orientation, construction materials, and HVAC system size and type. Others vary with time (e.g. weather and occupancy) and some can be a challenge to estimate in order to create an accurate simulation. In this paper, the analysis of occupancy sensor data for a large commercial, multi-tenant office building is presented. It details occupancy diversity factors for private offices and summarizes the same for open offices, hallways, conference rooms, break rooms, and restrooms in order to better inform energy simulation parameters. Long-term data were collected allowing results to be presented to show variations of occupancy diversity factors in private offices for time of day, day of the week, holidays, and month of the year. The diversity factors presented differ as much as 46% from those currently published in ASHRAE 90.1 2004 energy cost method guidelines, a document referenced by energy modelers regarding occupancy diversity factors for simulations. This may result in misleading simulation results and may introduce inefficiencies in the final equipment and systems design.

  3. Revealing Occupancy Patterns in an Office Building through the Use of Occupancy Sensor Data

    SciTech Connect (OSTI)

    Carlos Duarte; Kevin Van Den Wymelenberg; Craig Rieger

    2013-12-01T23:59:59.000Z

    Energy simulation programs like DOE-2 and EnergyPlus are tools that have been proven to aid with energy calculations to predict energy use in buildings. Some inputs to energy simulation models are relatively easy to find, including building size, orientation, construction materials, and HVAC system size and type. Others vary with time (e.g. weather and occupancy) and some can be a challenge to estimate in order to create an accurate simulation. In this paper, the analysis of occupancy sensor data for a large commercial, multi-tenant office building is presented. It details occupancy diversity factors for private offices and summarizes the same for open offices, hallways, conference rooms, break rooms, and restrooms in order to better inform energy simulation parameters. Long-term data were collected allowing results to be presented to show variations of occupancy diversity factors in private offices for time of day, day of the week, holidays, and month of the year. The diversity factors presented differ as much as 46% from those currently published in ASHRAE 90.1 2004 energy cost method guidelines, a document referenced by energy modelers regarding occupancy diversity factors for simulations. This may result in misleading simulation results and may introduce inefficiencies in the final equipment and systems design.

  4. Field Analysis of Thermal Comfort in Two Energy Efficient Office Buildings in Malaysia

    E-Print Network [OSTI]

    Qahtan, A. T.; Keumala, N.; Rao, S. P.; Samad, Z. A.

    2010-01-01T23:59:59.000Z

    the effectiveness of tropical passive solar control components in integrating thermal comfort with energy efficiency in office building. Field measurements are carried out in selected workspace of two office buildings that have been practiced the passive solar...

  5. Thermal energy storage for cooling of commercial buildings

    SciTech Connect (OSTI)

    Akbari, H. (Lawrence Berkeley Lab., CA (USA)); Mertol, A. (Science Applications International Corp., Los Altos, CA (USA))

    1988-07-01T23:59:59.000Z

    The storage of coolness'' has been in use in limited applications for more than a half century. Recently, because of high electricity costs during utilities' peak power periods, thermal storage for cooling has become a prime target for load management strategies. Systems with cool storage shift all or part of the electricity requirement from peak to off-peak hours to take advantage of reduced demand charges and/or off-peak rates. Thermal storage technology applies equally to industrial, commercial, and residential sectors. In the industrial sector, because of the lack of economic incentives and the custom design required for each application, the penetration of this technology has been limited to a few industries. The penetration rate in the residential sector has been also very limited due to the absence of economic incentives, sizing problems, and the lack of compact packaged systems. To date, the most promising applications of these systems, therefore, appear to be for commercial cooling. In this report, the current and potential use of thermal energy storage systems for cooling commercial buildings is investigated. In addition, a general overview of the technology is presented and the applicability and cost-effectiveness of this technology for developed and developing countries are discussed. 28 refs., 12 figs., 1 tab.

  6. Miscellaneous and Electronic Loads Energy Efficiency Opportunities for Commercial Buildings: A Collaborative Study by the United States and India

    E-Print Network [OSTI]

    Ghatikar, Girish

    2014-01-01T23:59:59.000Z

    and provide energy efficiency and building technologies toStudy on Energy Efficiency in Buildings. Pacific Grove,in improving energy efficiency in commercial buildings would

  7. A look at commercial buildings in 1995: Characteristics, energy consumption, and energy expenditures

    SciTech Connect (OSTI)

    NONE

    1998-10-01T23:59:59.000Z

    The commercial sector consists of business establishments and other organizations that provide services. The sector includes service businesses, such as retail and wholesale stores, hotels and motels, restaurants, and hospitals, as well as a wide range of facilities that would not be considered commercial in a traditional economic sense, such as public schools, correctional institutions, and religious and fraternal organizations. Nearly all energy use in the commercial sector takes place in, or is associated with, the buildings that house these commercial activities. Analysis of the structures, activities, and equipment associated with different types of buildings is the clearest way to evaluate commercial sector energy use. The Commercial Buildings Energy Consumption Survey (CBECS) is a national-level sample survey of commercial buildings and their energy suppliers conducted quadrennially (previously triennially) by the Energy Information Administration (EIA). The target population for the 1995 CBECS consisted of all commercial buildings in the US with more than 1,000 square feet of floorspace. Decision makers, businesses, and other organizations that are concerned with the use of energy--building owners and managers, regulators, legislative bodies and executive agencies at all levels of government, utilities and other energy suppliers--are confronted with a buildings sector that is complex. Data on major characteristics (e.g., type of building, size, year constructed, location) collected from the buildings, along with the amount and types of energy the buildings consume, help answer fundamental questions about the use of energy in commercial buildings.

  8. DOE standard compliance demonstration program: An office building example

    SciTech Connect (OSTI)

    Bailey, S.A.; Keller, J.M.; Wrench, L.E.; Williams, C.J.

    1993-06-01T23:59:59.000Z

    The US Department of Energy (DOE) issued interim new building energy standards (10 CFR 435 1989) to achieve maximum energy efficiency in the designs of new buildings. DOE then entered into a project to demonstrate and assess the impact of these standards on the design community. One area of focus was a test to see how a less conventional design-focused building would meet the standards` requirements -- DOE wanted to demonstrate that compliance with energy standards does not mean compromising the architectural intent of a building. This study, which was initiated at Pacific Northwest Laboratory (PNL), illustrated the process by which compliance with the standards can be proven for a highly {open_quotes}design-oriented{close_quotes} office building. The study also assessed the impact of the whole building simulation compliance alternatives on design. This report documents the compliance requirements, gives a description of the sample building chosen for the study, provides general guidance for the compliance process, documents the method of compliance that was undertaken for the sample building, presents the results of the study, and provides a recommendation on how the compliance requirements could be improved to reflect more realistic use types.

  9. Building-related risk factors and work-related lower respiratory symptoms in 80 office buildings

    SciTech Connect (OSTI)

    Mendell, M.J.; Naco, G.M.; Wilcox, T.G.; Sieber, W.K.

    2002-01-01T23:59:59.000Z

    We assessed building-related risk factors for lower respiratory symptoms in office workers. The National Institute for Occupational Safety and Health in 1993 collected data during indoor environmental health investigations of workplaces. We used multivariate logistic regression analyses to assess relationships between lower respiratory symptoms in office workers and risk factors plausibly related to microbiologic contamination. Among 2,435 occupants in 80 office buildings, frequent, work-related multiple lower respiratory symptoms were strongly associated, in multivariate models, with two risk factors for microbiologic contamination: poor pan drainage under cooling coils and debris in outside air intake. Associations tended to be stronger among those with a history of physician-diagnosed asthma. These findings suggest that adverse lower respiratory health effects from indoor work environments, although unusual, may occur in relation to poorly designed or maintained ventilation systems, particularly among previously diagnosed asthmatics. These findings require confirmation in more representative buildings.

  10. Office of Building Technologies evaluation and planning report

    SciTech Connect (OSTI)

    Pierce, B.

    1994-06-01T23:59:59.000Z

    The US Department of Energy (DOE) Office of Building Technologies (OBT) encourages increased efficiency of energy use in the buildings sector through the conduct of a comprehensive research program, the transfer of research results to industry, and the implementation of DOE`s statutory responsibilities in the buildings area. The planning and direction of these activities require the development and maintenance of database and modeling capability, as well as the conduct of analyses. This report summarizes the results of evaluation and planning activities undertaken on behalf of OBT during the past several years. It provides historical data on energy consumption patterns, prices, and building characteristics used in OBT`s planning processes, and summaries of selected recent OBT analysis activities.

  11. Ground-source Heat Pumps Applied to Commercial Buildings

    SciTech Connect (OSTI)

    Parker, Steven A.; Hadley, Donald L.

    2009-07-14T23:59:59.000Z

    Ground-source heat pumps can provide an energy-efficient, cost-effective way to heat and cool commercial facilities. While ground-source heat pumps are well established in the residential sector, their application in larger, commercial-style, facilities is lagging, in part because of a lack of experience with the technology by those in decision-making positions. Through the use of a ground-coupling system, a conventional water-source heat pump design is transformed to a unique means of utilizing thermodynamic properties of earth and groundwater for efficient operation throughout the year in most climates. In essence, the ground (or groundwater) serves as a heat source during winter operation and a heat sink for summer cooling. Many varieties in design are available, so the technology can be adapted to almost any site. Ground-source heat pump systems can be used widely in commercial-building applications and, with proper installation, offer great potential for the commercial sector, where increased efficiency and reduced heating and cooling costs are important. Ground-source heat pump systems require less refrigerant than conventional air-source heat pumps or air-conditioning systems, with the exception of direct-expansion-type ground-source heat pump systems. This chapter provides information and procedures that an energy manager can use to evaluate most ground-source heat pump applications. Ground-source heat pump operation, system types, design variations, energy savings, and other benefits are explained. Guidelines are provided for appropriate application and installation. Two case studies are presented to give the reader a sense of the actual costs and energy savings. A list of manufacturers and references for further reading are included for prospective users who have specific or highly technical questions not fully addressed in this chapter. Sample case spreadsheets are provided in Appendix A. Additional appendixes provide other information on the ground-source heat pump technology.

  12. Passive-solar-cooling system concepts for small office buildings. Final report

    SciTech Connect (OSTI)

    Whiddon, W.I.; Hart, G.K.

    1983-02-01T23:59:59.000Z

    This report summarizes the efforts of a small group of building design professionals and energy analysis experts to develop passive solar cooling concepts including first cost estimates for small office buildings. Two design teams were brought together at each of two workshops held in the fall of 1982. Each team included an architect, mechanical engineer, structural engineer, and energy analysis expert. This report presents the passive cooling system concepts resulting from the workshops. It summarizes the design problems, solutions and first-cost estimates relating to each technology considered, and documents the research needs identified by the participants in attempting to implement the various technologies in an actual building design. Each design problem presented at the workshops was based on the reference (base case) small office building analyzed as part of LBL's Cooling Assessment. Chapter II summarizes the thermal performance, physical specifications and estimated first-costs of the base case design developed for this work. Chapters III - VI describe the passive cooling system concepts developed for each technology: beam daylighting; mass with night ventilation; evaporative cooling; and integrated passive cooling systems. The final Chapters, VII and VIII present the preliminary implications for economics of passive cooling technologies (based on review of the design concepts) and recommendations of workshop participants for future research in passive cooling for commercial buildings. Appendices provide backup information on each chapter as indicated.

  13. Toward the Holy Grail of Perfect Information: Lessons Learned Implementing an Energy Information System in a Commercial Building

    SciTech Connect (OSTI)

    Kircher, Kevin; Ghatikar, Girish; Greenberg, Steve; Watson, Dave; Diamond, Rick; Sartor, Dale; Federspiel, Cliff; McEachern, Alex; Owen, Tom

    2010-05-14T23:59:59.000Z

    Energy information systems (real-time acquisition, analysis, and presentation of information from energy end-uses) in commercial buildings have demonstrated value as tools for improving energy efficiency and thermal comfort. These improvements include characterization through benchmarking, identification of retrofit opportunities, anomaly detection to inform retro-commissioning, and feedback to occupants to encourage shifts in behavior. Energy information systems can play a vital role in achieving a variety of ambitious sustainability goals for the existing stock of commercial buildings, but their implementation is often fraught with pitfalls. In this paper, we present a case study of an EIS and sub-metering project executed in a representative commercial office building. We describe the building, highlight a few of its problems, and detail the hardware and software technologies we employed to address them. We summarize the difficulties encountered and lessons learned, and suggest general guidelines for future EIS projects to improve performance and save energy in the commercial building fleet. These guidelines include measurement criteria, monitoring strategies, and analysis methods. In particular, we propose processes for: - Defining project goals, - Selecting end-use targets and depth of metering, - Selecting contractors and software vendors, - Installing and networking measurement devices, - Commissioning and using the energy information system.

  14. Building Technologies Office Program Peer Review | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orA BRIEFAprilBudgetAbout » Building Technologies Office

  15. Functional Testing Protocols for Commercial Building Efficiency Baseline Modeling Software

    SciTech Connect (OSTI)

    Jump, David; Price, Phillip N.; Granderson, Jessica; Sohn, Michael

    2013-09-06T23:59:59.000Z

    This document describes procedures for testing and validating proprietary baseline energy modeling software accuracy in predicting energy use over the period of interest, such as a month or a year. The procedures are designed according to the methodology used for public domain baselining software in another LBNL report that was (like the present report) prepared for Pacific Gas and Electric Company: ?Commercial Building Energy Baseline Modeling Software: Performance Metrics and Method Testing with Open Source Models and Implications for Proprietary Software Testing Protocols? (referred to here as the ?Model Analysis Report?). The test procedure focuses on the quality of the software?s predictions rather than on the specific algorithms used to predict energy use. In this way the software vendor is not required to divulge or share proprietary information about how their software works, while enabling stakeholders to assess its performance.

  16. Green Buildings in Green Cities: Integrating Energy Efficiency into the Real Estate Industry

    E-Print Network [OSTI]

    Bardhan, Ashok; Kroll, Cynthia A.

    2011-01-01T23:59:59.000Z

    Doing Good? Green Office Buildings. American Economic ReviewEnergy Effriciency in Commercial Buildings in Operation.Energy and Buildings. 43(11): 3106-3111. Ezovski, Derek.

  17. Assessment of Energy Impact of Window Technologies for Commercial Buildings

    E-Print Network [OSTI]

    Hong, Tianzhen

    2014-01-01T23:59:59.000Z

    Energy, 2007 Buildings Energy Data Book, September 2007.levels (2006 Buildings Energy Data Book). Figure 1 - Shareto the 2007 Buildings Energy Data Book, among all types of

  18. A Retrofit Tool for Improving Energy Efficiency of Commercial Buildings

    E-Print Network [OSTI]

    Levine, Mark

    2014-01-01T23:59:59.000Z

    For Energy Efficiency of Public Building -- GB 50189.communication on building energy efficiency policy in China.Improving energy efficiency in existing buildings. ASHRAE

  19. Scenario analysis of retrofit strategies for reducing energy consumption in Norwegian office buildings

    E-Print Network [OSTI]

    Engblom, Lisa A. (Lisa Allison)

    2006-01-01T23:59:59.000Z

    Model buildings were created for simulation to describe typical office buildings from different construction periods. A simulation program was written to predict the annual energy consumption of the buildings in their ...

  20. Field Test Results of Automated Demand Response in a Large Office Building

    E-Print Network [OSTI]

    Han, Junqiao

    2008-01-01T23:59:59.000Z

    Building Control Strategies and Techniques for Demand Response,Automated Demand Response in a Large Office Building JunqiaoDemand Response Load Impacts: Evaluation of Baseline Load Models for Non-Residential Building

  1. Window-Related Energy Consumption in the US Residential and Commercial Building Stock

    E-Print Network [OSTI]

    Apte, Joshua; Arasteh, Dariush

    2008-01-01T23:59:59.000Z

    2001). "Residential Energy Consumption Survey." 2006, fromCommercial Building Energy Consumption Survey." from http://Scale window-related energy consumption to account for new

  2. The Reality and Future Scenarios of Commercial Building Energy Consumption in China

    E-Print Network [OSTI]

    Zhou, Nan

    2008-01-01T23:59:59.000Z

    for a reduction of energy intensity by 2010, whether and howbuildings; (3) energy intensity (particularly electricity)commercial building, energy intensity, energy efficiency,

  3. Energy Consumption Analysis and Energy Conservation Evaluation of a Commercial Building in Shanghai

    E-Print Network [OSTI]

    Chen, C.; Pan, Y.; Huang, Z.; Wu, G.

    2006-01-01T23:59:59.000Z

    The paper presents a model of a commercial building in Shanghai with energy simulation software, and after calibration, the energy consumption of this building is calculated. On the basis of the simulation and calculation, a series of energy saving...

  4. Best Practice For the Location of Air and Thermal Boundaries in Small Commercial Buildings

    E-Print Network [OSTI]

    Cummings, J. B.; Withers, C. R.

    2000-01-01T23:59:59.000Z

    Suspended t-bar ceilings are common in commercial buildings. Research has found that these ceilings are very leaky, and several problems arise from this. If the space above the ceiling is vented to outdoors, the entire building becomes leaky...

  5. Internet-based Building Performance Analysis Provided as a Low-Cost Commercial Service

    E-Print Network [OSTI]

    Heinemeier, K.; Koran, W.

    2001-01-01T23:59:59.000Z

    Internet-based monitoring services can play a very important role in reducing the energy consumed in commercial buildings. They can provide the information needed to identify improvements that should be made in the operation of particular buildings...

  6. Commercial remodeling : using computer graphic imagery to evaluate building energy performance during conceptual redesign

    E-Print Network [OSTI]

    Williams, Kyle D

    1985-01-01T23:59:59.000Z

    This research is an investigation of the relationship between commercial remodeling and building thermal performance. A computer graphic semiotic is developed to display building thermal performance based on this relationship. ...

  7. Commercial Building Indoor Environmental Quality Evaluation: Methods and Tools

    E-Print Network [OSTI]

    Heinzerling, David

    2012-01-01T23:59:59.000Z

    quality (IEQ) acceptance in residential buildings.Energy and Buildings, 41(9), 930–936. doi:10.1016/j.more tolerant of “green” buildings? Building Research &

  8. Research scoping report: visualizing information in commercial buildings

    E-Print Network [OSTI]

    Lehrer, David

    2009-01-01T23:59:59.000Z

    display the building’s carbon footprint with a numericalto reduce their personal carbon footprint. (Holmes 2007) The

  9. Optimal Technology Selection and Operation of Microgrids in Commercial Buildings

    E-Print Network [OSTI]

    Marnay, Chris; Venkataramanan, Giri; Stadler, Michael; Siddiqui, Afzal; Firestone, Ryan; Chandran, Bala

    2008-01-01T23:59:59.000Z

    CHP and SQRA reflects some real technical challenges posed by commercial and residentialon the residential and commercial sectors in which CHP

  10. Statewide Savings Projections from the Adoption of Commercial Building Energy Codes in Illinois

    SciTech Connect (OSTI)

    Cort, Katherine A.; Belzer, David B.

    2002-09-30T23:59:59.000Z

    ANSI/ASHRAE/IESNA Standard 90.1-1999 Energy Standard for Buildings except Low-Rise Residential Buildings was developed in an effort to set minimum requirements for the energy efficient design and construction of new commercial buildings. A number of jurisdictions in the state of Illinois are considering adopting ASHRAE 90.1-1999 as their commercial building energy code. This report builds on the results of a previous study, "Analysis of Potential Benefits and Costs of Adopting ASHRAE Standard 90.1-1999 as a Commercial Building Energy Code in Illinois Jurisdictions," to estimate the total potential impact of adopting ASHRAE 90.1-1999 as a statewide commercial building code in terms of Life-Cycle Cost (LCC) savings, total primary energy savings, and pollution emissions reductions.

  11. University of Minnesota Start-up Guide Office for Technology Commercialization (OTC) -Venture Center

    E-Print Network [OSTI]

    Amin, S. Massoud

    ....................................................................................... 18 APPENDIX D: UNIVERSITY FUNDING OPPORTUNITIESUniversity of Minnesota Start-up Guide Office for Technology Commercialization (OTC) - Venture on University of Minnesota research Revised September 2010 1000 Westgate Drive: Suite 160 St. Paul, MN 55114 612

  12. EMCS and time-series energy data analysis in a large government office building

    SciTech Connect (OSTI)

    Piette, Mary Ann; Kinney, Satkartar; Friedman, Hannah

    2001-04-01T23:59:59.000Z

    Energy Management Control System (EMCS) data are an underutilized source of information on the performance of commercial buildings. Newer EMCS's have the ability and storage capacity to trend large amounts of data and perform preliminary analyses; however, these features often receive little or no use, as operators are generally not trained in data management, visualization, and analysis. Whole-building hourly electric-utility data are another readily available and underutilized source of information. This paper outlines the use of EMCS and utility data to evaluate the performance of the Ronald V. Dellums Federal Building in Oakland, California, a large office building operated by the Federal General Services Administration (GSA). The project began as an exploratory effort at Lawrence Berkeley National Laboratory (LBNL) to examine the procedures operators were using to obtain information and operate their buildings. Trending capabilities were available, but in limited use by the operators. LBNL worked with the building operators to use EMCS to trend one-minute data for over one-hundred points. Hourly electricity-use data were also used to understand usage patterns and peak demand. The paper describes LBNL's key findings in the following areas: Characterization of cooling plant operations; Characterization of economizer performance; Analysis of annual energy use and peak demand operations; Techniques, strengths, and shortcomings of EMCS data analysis; Future plans at the building for web-based remote monitoring and diagnostics. These findings have helped GSA develop strategies for peak demand reduction in this and other GSA buildings. Such activities are of great interest in California and elsewhere, where electricity reliability and demand are currently problematic. Overall, though the building's energy use is fairly low, significant energy savings are available by improving the existing EMCS control strategies.

  13. Funding Opportunity Webinar- Advancing Solutions To Improve the Energy Efficiency of US Commercial Buildings

    Broader source: Energy.gov [DOE]

    This webinar provides an overview of the DOE Funding Opportunity Announcement DE-FOA-0001168, "Advancing Solutions to Improve the Energy Efficiency of U.S. Commercial Buildings," which seeks to fund the scale-up of promising solutions to the market barriers that hinder the growth of energy efficiency in the commercial building sector.

  14. THERMAL DISTRIBUTION SYSTEMS IN COMMERCIAL BUILDINGS Rick Diamond, Craig Wray, Darryl Dickerhoff, Nance Matson, and Duo Wang

    E-Print Network [OSTI]

    1 THERMAL DISTRIBUTION SYSTEMS IN COMMERCIAL BUILDINGS Rick Diamond, Craig Wray, Darryl Dickerhoff SYSTEMS IN COMMERCIAL BUILDINGS 2 Acknowledgements Our largest debt of gratitude is to our Energy assistance guiding us through the EMCS system of the large commercial test building. The building management

  15. Greenhouse Gas Abatement with Distributed Generation in California's Commercial Buildings

    SciTech Connect (OSTI)

    Stadler, Michael; Marnay, Chris; Cardoso, Goncalo; Megel, Olivier; Siddiqui, Afzal; Lai, Judy

    2009-08-15T23:59:59.000Z

    Lawrence Berkeley National Laboratory (LBL) is working with the California Energy Commission (CEC) to determine the role of distributed generation (DG) in greenhouse gas reductions. The impact of DG on large industrial sites is well known, and mostly, the potentials are already harvested. In contrast, little is known about the impact of DG on commercial buildings with peak electric loads ranging from 100 kW to 5 MW. We examine how DG with combined heat and power (CHP) may be implemented within the context of a cost minimizing microgrid that is able to adopt and operate various smart energy technologies, such as thermal and photovoltaic (PV) on-site generation, heat exchangers, solar thermal collectors, absorption chillers, and storage systems. We use a mixed-integer linear program (MILP) that has the minimization of a site's annual energy costs as objective. Using 138 representative commercial sites in California (CA) with existing tariff rates and technology data, we find the greenhouse gas reduction potential for California's commercial sector. This paper shows results from the ongoing research project and finished work from a two year U.S. Department of Energy research project. To show the impact of the different technologies on CO2 emissions, several sensitivity runs for different climate zones within CA with different technology performance expectations for 2020 were performed. The considered sites can contribute between 1 Mt/a and 1.8 Mt/a to the California Air Resources Board (CARB) goal of 6.7Mt/a CO2 abatement potential in 2020. Also, with lower PV and storage costs as well as consideration of a CO2 pricing scheme, our results indicate that PV and electric storage adoption can compete rather than supplement each other when the tariff structure and costs of electricity supply have been taken into consideration. To satisfy the site's objective of minimizing energy costs, the batteries will be charged also by CHP systems during off-peak and mid-peak hours and not only by PV during sunny on-peak hours.

  16. Analysis of Potential Benefits and Costs of Adopting a Commercial Building Energy Standard in South Dakota

    SciTech Connect (OSTI)

    Belzer, David B.; Cort, Katherine A.; Winiarski, David W.; Richman, Eric E.

    2005-03-04T23:59:59.000Z

    The state of South Dakota is considering adopting a commercial building energy standard. This report evaluates the potential costs and benefits to South Dakota residents from requiring compliance with the most recent edition of the ANSI/ASHRAE/IESNA 90.1-2001 Energy Standard for Buildings except Low-Rise Residential Buildings. These standards were developed in an effort to set minimum requirements for the energy efficient design and construction of new commercial buildings. The quantitative benefits and costs of adopting a commercial building energy code are modeled by comparing the characteristics of assumed current building practices with the most recent edition of the ASHRAE Standard, 90.1-2001. Both qualitative and quantitative benefits and costs are assessed in this analysis. Energy and economic impacts are estimated using results from a detailed building simulation tool (Building Loads Analysis and System Thermodynamics [BLAST] model) combined with a Life-Cycle Cost (LCC) approach to assess corresponding economic costs and benefits.

  17. Commercial Building Energy Asset Score | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Refrigerator Standards Save Consumers Billions Tools EnergyPlus Whole Building Energy Simulation OpenStudio Energy Simulation Application Suite Buildings Performance...

  18. Commercial Building Indoor Environmental Quality Evaluation: Methods and Tools

    E-Print Network [OSTI]

    Heinzerling, David

    2012-01-01T23:59:59.000Z

    buildenv.2010.07.024 Buildings Energy Data Book. (n.d. ).CO 2 (18%) (“Buildings Energy Data Book,” n.d. ; EPA, 2009).

  19. BetterBuildings for Michigan: Commercial Program Fact Sheet

    Broader source: Energy.gov [DOE]

    This is a document from BetterBuildings for Michigan posted on the website of the U.S. Department of Energy's Better Buildings Neighborhood Program

  20. Commercial Building Energy Asset Score 2013 Pilot | Department...

    Broader source: Energy.gov (indexed) [DOE]

    understanding of the following: Time requirements for collecting and entering data How energy use intensity (EUI) estimates of a wide range of buildings and building types vary...

  1. Final report on the energy edge impact evaluation of 28 new, low-energy commercial buildings

    SciTech Connect (OSTI)

    Piette, M.A.; Diamond, R.; Nordman, B. [and others

    1994-08-01T23:59:59.000Z

    This report presents the findings of the Energy Edge Impact Evaluation. It is the fourth and final report in a series of project impact evaluation reports. Energy Edge is a research-oriented demonstration of energy efficiency in 28 new commercial buildings. Beginning in 1985,the project, sponsored by the Bonneville Power Administration (BPA), was developed to evaluate the potential for electricity conservation in new commercial buildings. By focusing on the construction of new commercial buildings, Energy Edge meets the region`s goal of capturing otherwise lost opportunities to accomplish energy conservation. That is, the best time to add an energy-efficiency measure to a building is during the construction phase.

  2. Energy Efficiency in Commercial Buildings: Experiences and Results from the German funding Program SolarBau

    E-Print Network [OSTI]

    Herkel, S.; Lohnert, G.; Voss, K.; Wagner, A.

    2004-01-01T23:59:59.000Z

    University Karlsruhe (TH) - Department of Architecture Building Physics and Technical Building Services Energy Efficiency inCommercial Buildings Experiences and Results from theGerman funding Program SolarBau S. Herkel, G. L?hnert, K. Voss, A... comfort range? Energy use oflean officebuildings University Karlsruhe (TH) - Department of Architecture Building Physics and Technical Building Services Targets ofSolarBau End- bzw. Prim?renergie in kWh/m?a 050100150200250300 Beleuchtung Klimatisierung L...

  3. Development of a methodology for defining whole-building energy design targets for commercial buildings: Phase 2, Development concept stage report

    SciTech Connect (OSTI)

    Jones, J.W. (American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., Atlanta, GA (USA)); Deringer, J.J. (American Inst. of Architects, Washington, DC (USA)); McKay, H.N. (Illuminating Engineering Society of North America, New York, NY (USA))

    1990-09-01T23:59:59.000Z

    Since 1985, the Pacific Northwest Laboratory (PNL) has managed the Whole-Building Energy Design Targets project for the US Department of Energy (DOE) Office of Building Technologies (formerly the Office of Buildings and Community Systems). The primary focus of the Targets project is to develop a flexible methodology for buildings industry use in setting energy performance guidelines for commercial buildings and for determining compliance with those guidelines. The project is being conducted as a two-phase effort. In Phase 1, Planning, the project team determined the research that was necessary for developing the Targets methodology. In the concept stage of Phase 2, Development, the team sought to define the technical and software development concepts upon which the overall Targets methodology will be based. The concept stage work is documented in four volumes, of which this summary volume is the first. The three other volumes are Volume 2: Technical Concept Development Task Reports, Volume 3: Workshop Summaries, and Volume 4: Software Concept Development Task Reports. 8 refs., 14 figs.

  4. CO2 MONITORING FOR DEMAND CONTROLLED VENTILATION IN COMMERCIAL BUILDINGS

    SciTech Connect (OSTI)

    Fisk, William J.; Sullivan, Douglas P.; Faulkner, David; Eliseeva, Ekaterina

    2010-03-17T23:59:59.000Z

    Carbon dioxide (CO{sub 2}) sensors are often deployed in commercial buildings to obtain CO{sub 2} data that are used, in a process called demand-controlled ventilation, to automatically modulate rates of outdoor air ventilation. The objective is to keep ventilation rates at or above design specifications and code requirements and also to save energy by avoiding excessive ventilation rates. Demand controlled ventilation is most often used in spaces with highly variable and sometime dense occupancy. Reasonably accurate CO{sub 2} measurements are needed for successful demand controlled ventilation; however, prior research has suggested substantial measurement errors. Accordingly, this study evaluated: (a) the accuracy of 208 CO{sub 2} single-location sensors located in 34 commercial buildings, (b) the accuracy of four multi-location CO{sub 2} measurement systems that utilize tubing, valves, and pumps to measure at multiple locations with single CO{sub 2} sensors, and (c) the spatial variability of CO{sub 2} concentrations within meeting rooms. The field studies of the accuracy of single-location CO{sub 2} sensors included multi-concentration calibration checks of 90 sensors in which sensor accuracy was checked at multiple CO{sub 2} concentrations using primary standard calibration gases. From these evaluations, average errors were small, -26 ppm and -9 ppm at 760 and 1010 ppm, respectively; however, the averages of the absolute values of error were 118 ppm (16%) and 138 ppm (14%), at concentrations of 760 and 1010 ppm, respectively. The calibration data are generally well fit by a straight line as indicated by high values of R{sup 2}. The Title 24 standard specifies that sensor error must be certified as no greater than 75 ppm for a period of five years after sensor installation. At 1010 ppm, 40% of sensors had errors greater than {+-}75 ppm and 31% of sensors has errors greater than {+-}100 ppm. At 760 ppm, 47% of sensors had errors greater than {+-}75 ppm and 37% of sensors had errors greater than {+-}100 ppm. A significant fraction of sensors had errors substantially larger than 100 ppm. For example, at 1010 ppm, 19% of sensors had an error greater than 200 ppm and 13% of sensors had errors greater than 300 ppm. The field studies also included single-concentration calibration checks of 118 sensors at the concentrations encountered in the buildings, which were normally less than 500 ppm during the testing. For analyses, these data were combined with data from the calibration challenges at 510 ppm obtained during the multi-concentration calibration checks. For the resulting data set, the average error was 60 ppm and the average of the absolute value of error was 154 ppm. Statistical analyses indicated that there were statistically significant differences between the average accuracies of sensors from different manufacturers. Sensors with a 'single lamp single wavelength' design tended to have a statistically significantly smaller average error than sensors with other designs except for 'single lamp dual wavelength' sensors, which did not have a statistically significantly lower accuracy. Sensor age was not consistently a statistically significant predictor of error.

  5. Developing evidence-based prescriptive ventilation rate standards for commercial buildings in California: a proposed framework

    SciTech Connect (OSTI)

    Mendell, Mark J.; Fisk, William J.

    2014-02-01T23:59:59.000Z

    Background - The goal of this project, with a focus on commercial buildings in California, was to develop a new framework for evidence-based minimum ventilation rate (MVR) standards that protect occupants in buildings while also considering energy use and cost. This was motivated by research findings suggesting that current prescriptive MVRs in commercial buildings do not provide occupants with fully safe and satisfactory indoor environments. Methods - The project began with a broad review in several areas ? the diverse strategies now used for standards or guidelines for MVRs or for environmental contaminant exposures, current knowledge about adverse human effects associated with VRs, and current knowledge about contaminants in commercial buildings, including their their presence, their adverse human effects, and their relationships with VRs. Based on a synthesis of the reviewed information, new principles and approaches are proposed for setting evidence-based VRs standards for commercial buildings, considering a range of human effects including health, performance, and acceptability of air. Results ? A review and evaluation is first presented of current approaches to setting prescriptive building ventilation standards and setting acceptable limits for human contaminant exposures in outdoor air and occupational settings. Recent research on approaches to setting acceptable levels of environmental exposures in evidence-based MVR standards is also described. From a synthesis and critique of these materials, a set of principles for setting MVRs is presented, along with an example approach based on these principles. The approach combines two sequential strategies. In a first step, an acceptable threshold is set for each adverse outcome that has a demonstrated relationship to VRs, as an increase from a (low) outcome level at a high reference ventilation rate (RVR, the VR needed to attain the best achievable levels of the adverse outcome); MVRs required to meet each specific outcome threshold are estimated; and the highest of these MVRs, which would then meet all outcome thresholds, is selected as the target MVR. In a second step, implemented only if the target MVR from step 1 is judged impractically high, costs and benefits are estimated and this information is used in a risk management process. Four human outcomes with substantial quantitative evidence of relationships to VRs are identified for initial consideration in setting MVR standards. These are: building-related symptoms (sometimes called sick building syndrome symptoms), poor perceived indoor air quality, and diminished work performance, all with data relating them directly to VRs; and cancer and non-cancer chronic outcomes, related indirectly to VRs through specific VR-influenced indoor contaminants. In an application of step 1 for offices using a set of example outcome thresholds, a target MVR of 9 L/s (19 cfm) per person was needed. Because this target MVR was close to MVRs in current standards, use of a cost/benefit process seemed unnecessary. Selection of more stringent thresholds for one or more human outcomes, however, could raise the target MVR to 14 L/s (30 cfm) per person or higher, triggering the step 2 risk management process. Consideration of outdoor air pollutant effects would add further complexity to the framework. For balancing the objective and subjective factors involved in setting MVRs in a cost-benefit process, it is suggested that a diverse group of stakeholders make the determination after assembling as much quantitative data as possible.

  6. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    to totals. Source: Energy Information Administration, Office of Energy Markets and End Use, Forms EIA-871A, C, and E of the 2003 Commercial Buildings Energy Consumption Survey....

  7. Small Commercial Building Re-tuning: A Primer

    SciTech Connect (OSTI)

    Cort, Katherine A.; Hostick, Donna J.; Underhill, Ronald M.; Fernandez, Nicholas; Katipamula, Srinivas

    2013-09-30T23:59:59.000Z

    To help building owners and managers address issues related to energy-efficient operation of small buildings, DOE has developed a Small Building Re-tuning training curriculum. This "primer" provides additional background information to understand some of the concepts presented in the Small Building Re-tuning training. The intent is that those who are less familiar with the buidling energy concepts will review this material before taking the building re-tuning training class.

  8. MEASURED ENERGY PERFORMANCE OF ENERGY-EFFICIENT NEW COMMERCIAL BUILDINGS: RESULTS FROM THE BECA-CN DATA COMPILATION

    E-Print Network [OSTI]

    Piette, M.A.

    2010-01-01T23:59:59.000Z

    and energy usage for 133 buildings in the BECA-CN (Buildings Energy-Use Compilation and Analysis - part CN: New Energy-Efficient Commercial

  9. Greenhouse Gas Abatement with Distributed Generation in California's Commercial Buildings

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01T23:59:59.000Z

    energy efficiency requirements. In this work, we estimate the CO 2 abatement potential in the California commercial sector and report

  10. SOLAR MODELLING OF COMMERCIAL BUILDINGS Robert Amor, Michael Donn and Ian van der Werff

    E-Print Network [OSTI]

    Amor, Robert

    SOLAR MODELLING OF COMMERCIAL BUILDINGS Robert Amor, Michael Donn and Ian van der Werff Energy of modelling the thermal response of buildings. There have been two major obstacles precluding these programs of the research was: "to develop two energy thermal simulation programs as design tools for New Zealand buildings

  11. Impacts of Regional Electricity Prices and Building Type on the Economics of Commercial Photovoltaic Systems

    SciTech Connect (OSTI)

    Ong, S.; Campbell, C.; Clark, N.

    2012-12-01T23:59:59.000Z

    To identify the impacts of regional electricity prices and building type on the economics of solar photovoltaic (PV) systems, 207 rate structures across 77 locations and 16 commercial building types were evaluated. Results for expected solar value are reported for each location and building type. Aggregated results are also reported, showing general trends across various impact categories.

  12. Increasing Federal Office Building Water Efficiency, Federal Energy Management Program (FEMP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-04-01T23:59:59.000Z

    Quick guide to increasing Federal office building water efficiency, water management planning, performing a water audit, calculating a water balance, and best management practices.

  13. THE PASSIVE SOLAR DESIGN PROCESS FOR A SMALL OFFICE/LABORATORY BUILDING

    E-Print Network [OSTI]

    Andersson, Brandt

    2011-01-01T23:59:59.000Z

    SOLAR DESIGN PROCESS FOR A SMALL OFFICE/LABORATORY BUILDING Brandt Andersson, Ron Kammerud, and Wayne Place October 1979 TWO-WEEK LOAN

  14. Software for fault detection in HVAC systems in commercial buildings

    E-Print Network [OSTI]

    Deshmukh, Suhrid Avinash

    2014-01-01T23:59:59.000Z

    The building sector of the United States currently consumes over 41% of the United States primary energy supply. Estimates suggest that between 5 and 30% of any building's annual energy consumption is unknowingly wasted ...

  15. Commercial Building Tenant Energy Usage Aggregation and Privacy

    SciTech Connect (OSTI)

    Livingston, Olga V.; Pulsipher, Trenton C.; Anderson, David M.; Wang, Na

    2014-10-31T23:59:59.000Z

    A growing number of building owners are benchmarking their building energy use. This requires the building owner to acquire monthly whole-building energy usage information, which can be challenging for buildings in which individual tenants have their own utility meters and accounts with the utility. Some utilities and utility regulators have turned to aggregation of customer energy use data (CEUD) as a way to give building owners whole-building energy usage data while protecting customer privacy. Meter profile aggregation adds a layer of protection that decreases the risk of revealing CEUD as the number of meters aggregated increases. The report statistically characterizes the similarity between individual energy usage patterns and whole-building totals at various levels of meter aggregation.

  16. Rehabilitation for redevelopment : an approach to the conversion of old office buildings to housing

    E-Print Network [OSTI]

    Hellinghausen, D. Michael

    1984-01-01T23:59:59.000Z

    This thesis contends that the rehabilitation of existing building stock is a viable alternative to new construction in the production of housing. Principally, the thesis proposes that old office buildings, built between ...

  17. Analysis of electric vehicle interconnection with commercial building microgrids

    E-Print Network [OSTI]

    Stadler, Michael

    2011-01-01T23:59:59.000Z

    energy costs, CO 2 emissions, or multiple objectives of providing services to a building microgrid produces technology neutral

  18. ASHRAE's New Performance Measurement Protocols for Commercial Buildings

    E-Print Network [OSTI]

    Haberl, J.; Davies, H.; Owens, B.; Hunn, B.

    Services Administration. 10 IEA is the International Energy Agency. ESL-IC-08-10-11 Proceedings of the Eighth International Conference for Enhanced Building Operations, Berlin, Germany, October 20-22, 2008 2 The resultant protocols are intended to provide... Building Operations, Berlin, Germany, October 20-22, 2008 3 Chapter 1: Energy (Authors: MacDonald, Haberl). In Chapter 1 the protocols for measuring the building?s energy useare presented. These protocols begin with acollection of facility information...

  19. Technical Support Document: 50% Energy Savings for Small Office Buildings

    SciTech Connect (OSTI)

    Thornton, Brian A.; Wang, Weimin; Huang, Yunzhi; Lane, Michael D.; Liu, Bing

    2010-04-30T23:59:59.000Z

    The Technical Support Document (TSD) for 50% energy savings in small office buildings documents the analysis and results for a recommended package of energy efficiency measures (EEMs) referred to as the advanced EEMs. These are changes to a building design that will reduce energy usage. The package of advanced EEMs achieves a minimum of 50% energy savings and a construction area weighted average energy savings of 56.6% over the ANSI/ASHRAE/IESNA Standard 90.1-2004 for 16 cities which represent the full range of climate zones in the United States. The 50% goal is for site energy usage reduction. The weighted average is based on data on the building area of construction in the various climate locations. Cost-effectiveness of the EEMs is determined showing an average simple payback of 6.7 years for all 16 climate locations. An alternative set of results is provided which includes a variable air volume HVAC system that achieves at least 50% energy savings in 7 of the 16 climate zones with a construction area weighted average savings of 48.5%. Other packages of EEMs may also achieve 50% energy savings; this report does not consider all alternatives but rather presents at least one way to reach the goal. Design teams using this TSD should follow an integrated design approach and utilize additional analysis to evaluate the specific conditions of a project.

  20. Analysis of electric vehicle interconnection with commercial building microgrids

    E-Print Network [OSTI]

    Stadler, Michael

    2011-01-01T23:59:59.000Z

    USA http://eetd.lbl.gov/EA/EMP/emp-pubs.html The work described in this paper was funded by the Office of Electricity

  1. Commercial Building Integration Program Overview - 2014 BTO Peer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Office's Appliance and Equipment Standards Program. Through robust feedback, the BTO Program Peer Review enhances existing efforts and future designs. View the...

  2. Next Location Prediction Within a Smart Office Building Jan Petzold, Faruk Bagci, Wolfgang Trumler, and Theo Ungerer

    E-Print Network [OSTI]

    Vintan, Lucian N.

    Next Location Prediction Within a Smart Office Building Jan Petzold, Faruk Bagci, Wolfgang Trumler is notified about the probable next location of an absent office owner within a smart office building the efficiency of several prediction methods. The scenario concerns employees in an office building visiting

  3. A Meta-Analysis of Energy Savings from Lighting Controls in Commercial Buildings

    E-Print Network [OSTI]

    Williams, Alison

    2012-01-01T23:59:59.000Z

    lighting in existing non-residential buildings: a comparisonComparison of control options in private offices in an advanced lightingLighting Energy Only Actual Installation Only Fig. 7. Comparison

  4. Commercial Building Energy Asset Score Program Overview and Technical Protocol (Version 1.1)

    SciTech Connect (OSTI)

    Wang, Na; Goel, Supriya; Makhmalbaf, Atefe

    2013-08-09T23:59:59.000Z

    The U.S. Department of Energy (DOE) is developing a voluntary national scoring system for commercial buildings to help building owners and managers assess a building’s energy-related systems independent of operations. The goal of the score is to facilitate cost-effective investment in energy efficiency improvements of commercial buildings. The system, known as the Commercial Building Energy Asset Score, will allow building owners and managers to compare their building infrastructure against peers and track building upgrades over time. The system will also help other building stakeholders (e.g., building investors, tenants, financiers, and appraisers) understand the relative efficiency of different buildings in a way that is independent from operations and occupancy. This report outlines the technical protocol used to generate the energy asset score, explains the scoring methodology, and provides additional details regarding the energy asset scoring tool. The alternative methods that were considered prior to developing the current approach are described in the Program Overview and Technical Protocol Version 1.0.

  5. Small- and Medium-Sized Commercial Building Monitoring and Controls Needs: A Scoping Study

    SciTech Connect (OSTI)

    Katipamula, Srinivas; Underhill, Ronald M.; Goddard, James K.; Taasevigen, Danny J.; Piette, M. A.; Granderson, J.; Brown, Rich E.; Lanzisera, Steven M.; Kuruganti, T.

    2012-10-31T23:59:59.000Z

    Buildings consume over 40% of the total energy consumption in the U.S. A significant portion of the energy consumed in buildings is wasted because of the lack of controls or the inability to use existing building automation systems (BASs) properly. Much of the waste occurs because of our inability to manage and controls buildings efficiently. Over 90% of the buildings are either small-size (<5,000 sf) or medium-size (between 5,000 sf and 50,000 sf); these buildings currently do not use BASs to monitor and control their building systems from a central location. According to Commercial Building Energy Consumption Survey (CBECS), about 10% of the buildings in the U.S. use BASs or central controls to manage their building system operations. Buildings that use BASs are typically large (>100,000 sf). Lawrence Berkeley National Laboratory (LBNL), Oak Ridge National Laboratory (ORNL) and Pacific Northwest National Laboratory (PNNL) were asked by the U.S. Department of Energy’s (DOE’s) Building Technologies Program (BTP) to identify monitoring and control needs for small- and medium-sized commercial buildings and recommend possible solutions. This study documents the needs and solutions for small- and medium-sized buildings.

  6. Peak demand reduction from pre-cooling with zone temperature reset in an office building

    SciTech Connect (OSTI)

    Xu, Peng; Haves, Philip; Piette, Mary Ann; Braun, James

    2004-08-01T23:59:59.000Z

    The objective of this study was to demonstrate the potential for reducing peak-period electrical demand in moderate-weight commercial buildings by modifying the control of the HVAC system. An 80,000 ft{sup 2} office building with a medium-weight building structure and high window-to-wall ratio was used for a case study in which zone temperature set-points were adjusted prior to and during occupancy. HVAC performance data and zone temperatures were recorded using the building control system. Additional operative temperature sensors for selected zones and power meters for the chillers and the AHU fans were installed for the study. An energy performance baseline was constructed from data collected during normal operation. Two strategies for demand shifting using the building thermal mass were then programmed in the control system and implemented progressively over a period of one month. It was found that a simple demand limiting strategy performed well in this building. This strategy involved maintaining zone temperatures at the lower end of the comfort region during the occupied period up until 2 pm. Starting at 2 pm, the zone temperatures were allowed to float to the high end of the comfort region. With this strategy, the chiller power was reduced by 80-100% (1-2.3 W/ft{sup 2}) during normal peak hours from 2-5 pm, without causing any thermal comfort complaints. The effects on the demand from 2-5 pm of the inclusion of pre-cooling prior to occupancy are unclear.

  7. Peak Demand Reduction from Pre-Cooling with Zone Temperature Reset in an Office Building

    SciTech Connect (OSTI)

    Xu, Peng; Haves, Philip; Piette, Mary Ann; Braun, James

    2006-08-01T23:59:59.000Z

    The objective of this study was to demonstrate the potential for reducing peak-period electrical demand in moderate-weight commercial buildings by modifying the control of the HVAC system. An 80,000 ft{sup 2} office building with a medium-weight building structure and high window-to-wall ratio was used for a case study in which zone temperature set-points were adjusted prior to and during occupancy. HVAC performance data and zone temperatures were recorded using the building control system. Additional operative temperature sensors for selected zones and power meters for the chillers and the AHU fans were installed for the study. An energy performance baseline was constructed from data collected during normal operation. Two strategies for demand shifting using the building thermal mass were then programmed in the control system and implemented progressively over a period of one month. It was found that a simple demand limiting strategy performed well in this building. This strategy involved maintaining zone temperatures at the lower end of the comfort region during the occupied period up until 2 pm. Starting at 2 pm, the zone temperatures were allowed to float to the high end of the comfort region. With this strategy, the chiller power was reduced by 80-100% (1-2.3 W/ft{sup 2}) during normal peak hours from 2-5 pm, without causing any thermal comfort complaints. The effects on the demand from 2-5 pm of the inclusion of pre-cooling prior to occupancy are unclear.

  8. Using Fourier Series to Model Hourly Energy Use in Commercial Buildings

    E-Print Network [OSTI]

    Dhar, A.; Reddy, T. A.; Claridge, D. E.

    1993-01-01T23:59:59.000Z

    Fourier series analysis is eminently suitable for modeling strongly periodic data. Weather independent energy use such as lighting and equipment load in commercial buildings is strongly periodic and is thus appropriate for Fourier series treatment...

  9. Energy Savings with Energy-Efficient HVAC Systems in Commercial Buildings of Hong Kong

    E-Print Network [OSTI]

    Yang, J.; Chan, K.; Wu, X.

    2006-01-01T23:59:59.000Z

    Hong Kong has seen a dramatic increase in energy consumption in recent years, particularly electricity use in commercial buildings. The growth of electricity demand in future years is crucial both economically and environmentally. As over half...

  10. Exploring the potential of the suburban commercial building : nurturing our paths and places

    E-Print Network [OSTI]

    Boomer, Marnie Lanore

    1992-01-01T23:59:59.000Z

    In the advancement of commercial and economic interests, modern society continually litters the earth's landscapes with insensitive buildings. When I speak of the environment I mean not only the landscape in which the ...

  11. Harris County- Green Building Tax Abatement for New Commercial Construction (Texas)

    Broader source: Energy.gov [DOE]

    In 2008, the Harris County Commissioners Court adopted guidelines for partial tax abatements for new construction of commercial LEED-certified buildings. The tax abatement was renewed in 2009, and...

  12. Energy Audit and Retro-Commissioning Policies for Public and Commercial Buildings

    Broader source: Energy.gov [DOE]

    U.S. Department of Energy's Technical Assistance Program and SEE Action hosted this webinar on August 30, 2012, on retro-commissioning for energy efficiency in commercial buildings.

  13. Commercial Building Tenant Energy Usage Data Aggregation and Privacy: Technical Appendix

    SciTech Connect (OSTI)

    Livingston, Olga V.; Pulsipher, Trenton C.; Anderson, David M.

    2014-11-12T23:59:59.000Z

    This technical appendix accompanies report PNNL–23786 “Commercial Building Tenant Energy Usage Data Aggregation and Privacy”. The objective is to provide background information on the methods utilized in the statistical analysis of the aggregation thresholds.

  14. Applying the Leap Experience to Monitoring of Commercial Buildings in Hot and Humid Climates

    E-Print Network [OSTI]

    Mazzucchi, R. P.; Stoops, J. L.

    1988-01-01T23:59:59.000Z

    Energy use monitoring projects for commercial buildings must be carefully configured and managed to assure useful data products are produced in a timely and cost-effective manner. Many challenges associated with site selection, data definition...

  15. Indoor-Outdoor Air Leakage of Apartments and Commercial Buildings

    E-Print Network [OSTI]

    Price, P.N.

    2011-01-01T23:59:59.000Z

    Building Environment and Thermal Envelope Council (BETEC)of Thermal Performance of the Exterior Envelopes ofof the Thermal Performance of the Exterior Envelopes of

  16. Developing Performance-Based Policies for Commercial Buildings

    Broader source: Energy.gov [DOE]

    The State & Local Energy Efficiency Action Network (SEE Action) recently released a report, Greater Energy Savings through Building Energy Performance Policy: Four Leading Policy and Program...

  17. Thermal Energy Storage for Cooling of Commercial Buildings

    E-Print Network [OSTI]

    Akbari, H.

    2010-01-01T23:59:59.000Z

    For the ice storage system, during direct cooling, thethe building cooling load. In dynamic systems, ice is formedcooling/demand-limited storage / electric load management / full storage / ice

  18. Transforming the Commercial Building Operations - 2014 BTO Peer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - 2014 BTO Peer Review Project Objective The overall goal of this project is to train building operations staff and service providers in a systematic process for...

  19. Energy and Energy Cost Savings Analysis of the IECC for Commercial Buildings

    SciTech Connect (OSTI)

    Zhang, Jian; Athalye, Rahul A.; Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Goel, Supriya; Mendon, Vrushali V.; Liu, Bing

    2013-08-30T23:59:59.000Z

    The purpose of this analysis is to assess the relative energy and energy cost performance of commercial buildings designed to meet the requirements found in the commercial energy efficiency provisions of the International Energy Conservation Code (IECC). Section 304(b) of the Energy Conservation and Production Act (ECPA), as amended, requires the Secretary of Energy to make a determination each time a revised version of ASHRAE Standard 90.1 is published with respect to whether the revised standard would improve energy efficiency in commercial buildings. As many states have historically adopted the IECC for both residential and commercial buildings, PNNL has evaluated the impacts of the commercial provisions of the 2006, 2009, and 2012 editions of the IECC. PNNL also compared energy performance with corresponding editions of ANSI/ASHRAE/IES Standard 90.1 to help states and local jurisdictions make informed decisions regarding model code adoption.

  20. Doing Well By Doing Good? Green Office Buildings

    E-Print Network [OSTI]

    Eichholtz, Piet; Kok, Nils; Quigley, John M.

    2009-01-01T23:59:59.000Z

    and Financial Benefits of Green Buildings , October 2003.average quality of the green buildings is somewhat higherquality of the non-green buildings in the clustered samples.

  1. Doing Well By Doing Good? Green Office Buildings

    E-Print Network [OSTI]

    Eichholtz, Piet; Kok, Nils; Quigley, John M.

    2009-01-01T23:59:59.000Z

    pp. 99-124. California’s Sustainable Building Taskforce.Benefits of Green Buildings , October 2003. Eichholtz, Pietin a Name? Reputation Building and Corporate Strategy." The

  2. Technical support document for the proposed Federal Commercial Building energy code

    SciTech Connect (OSTI)

    Somasundaram, S.; Halverson, M.A.; Jones, C.C.; Hadley, D.L.

    1995-11-01T23:59:59.000Z

    This report presents the justification and technical documentation for all changes and updates made (since 1993) to the Energy Code for Commercial and High-Rise Residential Buildings, the codified version of ASHRAE/IES Standard 90.1-1989, ``Energy Efficient Design of New Buildings Except Low-Rise Residential Buildings.`` These changes and updates, which were subject to the ASHRAE addenda approval process, include Addenda b, c, d, e, g, and i. A seventh addenda, Addenda f, which has not been officially approved by ASHRAE, has been included into the proposed rule. Also included in the changes was technical work conducted to justify revisions to the 1993 DOE lighting power densities. The updated text will be reviewed by the U.S. Department of Energy (DOE) and issued as the new Federal Commercial Building Energy Code (10 CFR 434); Mandatory for New Federal Commercial and Multi-Family High Rise Residential Buildings.

  3. Lighting Controls in Commercial Buildings Alison Williams1*

    E-Print Network [OSTI]

    buildings. Keywords--Energy, daylighting, occupancy sensors, controls, tuning. 1 INTRODUCTION Lighting buildings in the United States have daylighting sensors and only 1 percent have energy management, such as those by the National Research Council Canada and Florida Solar Energy Center, present results from lab

  4. Energymaster Desiccant System Application to Light Commercial Buildings

    E-Print Network [OSTI]

    Blanpied, M. C.; Coellner, J. A.; Macintosh, D. S.

    1987-01-01T23:59:59.000Z

    Desiccant cooling systems offer unique advantages over conventional equipment in certain applications. AskCorp's Energymaster unit has been applied in several commercial situations where these advantages are most significant. The magnitude...

  5. Sentinel: Occupancy Based HVAC Actuation using Existing WiFi Infrastructure within Commercial Buildings

    E-Print Network [OSTI]

    Gupta, Rajesh

    Sentinel: Occupancy Based HVAC Actuation using Existing WiFi Infrastructure within Commercial.agarwal@cs.cmu.edu ABSTRACT Commercial buildings contribute to 19% of the primary energy consumption in the US, with HVAC systems accounting for 39.6% of this usage. To reduce HVAC energy use, prior studies have pro- posed using

  6. Status of state and local adoption of energy standards for new commercial buildings

    SciTech Connect (OSTI)

    Boulin, J.J. [USDOE, Washington, DC (United States); Conover, D.R. [Pacific Northwest Lab., Richland, WA (United States)

    1992-09-01T23:59:59.000Z

    This paper presents a summary of building energy standards adoption by state and major local governments and how the standards apply to new commercial buildings. Numerous public and private sector agencies and organizations develop energy standards and codes for commercial buildings. These documents serve, among others, state and local legislators and regulators who are interested in requiring their use to reduce the energy consumption of new commercial buildings. Through adoption or adaptation of these documents by state or local governments, minimum acceptable design and construction criteria for new commercial buildings are established in law. The energy standard or code adopted, or used as a basis for a state developed standard, may be any one of a number of documents. The authority of the state to regulate construction may apply throughout the entire state, only to a few types of buildings, or may be absent, in which case local government has regulatory authority. The means of adoption may be by legislation, regulation, municipal code, or other legal vehicle. At the present time there are widespread differences in the energy standards adopted by state and local government and the application of these standards to new commercial buildings.

  7. Commercial Building Energy Asset Score: 2013 Pilot Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth Codesthe Natural ResourcesCommercialCommercial

  8. Commercialization Assistance| U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User Group and UserofProtein structureAnalysis ofCommercialization

  9. Development of an Online Toolkit for Measuring Commercial Building Energy Efficiency Performance -- Scoping Study

    SciTech Connect (OSTI)

    Wang, Na

    2013-03-13T23:59:59.000Z

    This study analyzes the market needs for building performance evaluation tools. It identifies the existing gaps and provides a roadmap for the U.S. Department of Energy (DOE) to develop a toolkit with which to optimize energy performance of a commercial building over its life cycle.

  10. Energy conservation potential of the US Department of Energy interim commercial building standards

    SciTech Connect (OSTI)

    Hadley, D.L.; Halverson, M.A.

    1993-12-01T23:59:59.000Z

    This report describes a project conducted to demonstrate the whole-building energy conservation potential achievable from full implementation of the US Department of Energy (DOE) Interim Energy Conservation Performance Standards for New Commercial and Multi-Family High Rise Residential Buildings. DOE`s development and implementation of energy performance standards for commercial buildings were established by the Energy Conservation Standards for New Buildings Act of 1976, as amended, Public Law (PL) 94-385, 42 USC 6831 et seq., hereinafter referred to as the Act. In accordance with the Act, DOE was to establish performance standards for both federal and private sector buildings ``to achieve the maximum practicable improvements in energy efficiency and use of non-depletable resources for all new buildings``.

  11. Development of whole-building energy design targets for commercial buildings: Phase 1, Planning: Volume 1, Final report

    SciTech Connect (OSTI)

    Crawley, D.B.; Briggs, R.S.; Jones, J.W.; Seaton, W.W.; Kaufman, J.E.; Deringer, J.J.; Kennett, E.W.

    1987-04-01T23:59:59.000Z

    This report describes background research for preparation of a plan for development of whole-building energy targets for new commercial buildings. The lead laboratory for this program is the Pacific Northwest Laboratory. A wide variety of expertise and resources from industry, academia, other government entities, and other DOE laboratories are used in planning, reviewing and conducting research activities. Cooperative and complementary research development, and technology transfer activities with other interested organizations are actively pursued.

  12. City of Chamblee- LEED Requirement for Public and Commercial Buildings

    Broader source: Energy.gov [DOE]

    In March 2008, the Chamblee City Council voted unanimously to require all private development 20,000 square feet or greater to become LEED certified. Additionally, all future municipal buildings...

  13. Duct leakage impacts on VAV system performance in California large commercial buildings

    SciTech Connect (OSTI)

    Wray, Craig P.; Matson, Nance E.

    2003-10-01T23:59:59.000Z

    The purpose of this study is to evaluate the variability of duct leakage impacts on air distribution system performance for typical large commercial buildings in California. Specifically, a hybrid DOE-2/TRNSYS sequential simulation approach was used to model the energy use of a low-pressure terminal-reheat variable-air-volume (VAV) HVAC system with six duct leakage configurations (tight to leaky) in nine prototypical large office buildings (representing three construction eras in three California climates where these types of buildings are common). Combined fan power for the variable-speed-controlled supply and return fans at design conditions was assumed to be 0.8 W/cfm. Based on our analyses of the 54 simulation cases, the increase in annual fan energy is estimated to be 40 to 50% for a system with a total leakage of 19% at design conditions compared to a tight system with 5% leakage. Annual cooling plant energy also increases by about 7 to 10%, but reheat energy decreases (about 3 to 10%). In combination, the increase in total annual HVAC site energy is 2 to 14%. The total HVAC site energy use includes supply and return fan electricity consumption, chiller and cooling tower electricity consumption, boiler electricity consumption, and boiler natural gas consumption. Using year 2000 average commercial sector energy prices for California ($0.0986/kWh and $7.71/Million Btu), the energy increases result in 9 to 18% ($7,400 to $9,500) increases in HVAC system annual operating costs. Normalized by duct surface area, the increases in annual operating costs are 0.14 to 0.18 $/ft{sup 2}. Using a suggested one-time duct sealing cost of $0.20 per square foot of duct surface area, these results indicate that sealing leaky ducts in VAV systems has a simple payback period of about 1.3 years. Even with total leakage rates as low as 10%, duct sealing is still cost effective. This suggests that duct sealing should be considered at least for VAV systems with 10% or more total duct leakage. The VAV system that we simulated had perfectly insulated ducts, and maintained constant static pressure in the ducts upstream of the VAV boxes and a constant supply air temperature at the airhandler. Further evaluations of duct leakage impacts should be carried out in the future after methodologies are developed to deal with duct surface heat transfer effects, to deal with airflows entering VAV boxes from ceiling return plenums (e.g., to model parallel fan-powered VAV boxes), and to deal with static pressure reset and supply air temperature reset strategies.

  14. A Retrospective Analysis of Commercial Building Energy Codes: 1990 – 2008

    SciTech Connect (OSTI)

    Belzer, David B.; McDonald, Sean C.; Halverson, Mark A.

    2010-10-01T23:59:59.000Z

    Building Energy Codes Program's efforts are designed to result in increased stringency in national model energy codes, more rapid and broader adoption by states and localities of updated codes, and increased compliance and enforcement. Report estimates the historical impact of Building Energy Codes Program in terms of energy savings achieved that are based upon various editions of ANSI/ASHRAE/IESNA Standard 90.1 (ASHRAE Standard 90.1).

  15. Technical Support Document: 50% Energy Savings Design Technology Packages for Medium Office Buildings

    SciTech Connect (OSTI)

    Thornton, Brian A.; Wang, Weimin; Lane, Michael D.; Rosenberg, Michael I.; Liu, Bing

    2009-09-01T23:59:59.000Z

    This Technical Support Document (TSD) describes the process and methodology for development of the Advanced Energy Design Guide for Medium Offices (AEDG-MO or the Guide), a design guidance document which intends to provide recommendations for achieving 50% energy savings in medium office buildings that just meet the requirements of ANSI/ASHRAE/IESNA Standard 90.1-2004, Energy Standard for Buildings Except Low-Rise Residential Buildings.

  16. Manage Organizational Energy Use in a Commercial Building | Department of

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't HappenLow-Cost Production ExMajor DOEEnergy

  17. New Construction - Commercial Reference Buildings | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't32Department U.S.NationalNaturalValley,toMarketsDepartment ofNew

  18. Existing Commercial Reference Buildings Constructed In or After 1980 |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit|Department of Energy56Executive Summit on WindMarch 2006

  19. Data Visualization for Quality-Check Purposes of Monitored Electricity Consumption in All Office Buildings in the ESL Database

    E-Print Network [OSTI]

    Sreshthaputra, A.; Abushakra, B.; Haberl, J. S.; Claridge, D. E.

    2000-01-01T23:59:59.000Z

    This report comprises an effort to visualize the monitored electricity consumption in all office buildings (not including the office buildings comprising other functions as classrooms and laboratories, for instance) in the ESL database. This data...

  20. Job/Task Analysis: Enhancing the Commercial Building Workforce Through the Development of Foundational Materials; Preprint

    SciTech Connect (OSTI)

    Studer, D.; Kemkar, S.

    2012-09-01T23:59:59.000Z

    For many commercial building operation job categories, industry consensus has not been reached on the knowledge, skills, and abilities that practitioners should possess. The goal of this guidance is to help streamline the minimum competencies taught or tested by organizations catering to building operations and maintenance personnel while providing a basis for developing and comparing new and existing training programs in the commercial building sector. The developed JTAs will help individuals identify opportunities to enhance their professional skills, enable industry to identify an appropriately skilled workforce, and allow training providers to ensure that they are providing the highest quality product possible.

  1. The Reality and Future Scenarios of Commercial Building Energy Consumption in China

    SciTech Connect (OSTI)

    Zhou, Nan; Lin, Jiang

    2007-08-01T23:59:59.000Z

    While China's 11th Five Year Plan called for a reduction of energy intensity by 2010, whether and how the energy consumption trend can be changed in a short time has been hotly debated. This research intends to evaluate the impact of a variety of scenarios of GDP growth, energy elasticity and energy efficiency improvement on energy consumption in commercial buildings in China using a detailed China End-use Energy Model. China's official energy statistics have limited information on energy demand by end use. This is a particularly pertinent issue for building energy consumption. The authors have applied reasoned judgments, based on experience of working on Chinese efficiency standards and energy related programs, to present a realistic interpretation of the current energy data. The bottom-up approach allows detailed consideration of end use intensity, equipment efficiency, etc., thus facilitating assessment of potential impacts of specific policy and technology changes on building energy use. The results suggest that: (1) commercial energy consumption in China's current statistics is underestimated by about 44%, and the fuel mix is misleading; (2) energy efficiency improvements will not be sufficient to offset the strong increase in end-use penetration and intensity in commercial buildings; (3) energy intensity (particularly electricity) in commercial buildings will increase; (4) different GDP growth and elasticity scenarios could lead to a wide range of floor area growth trajectories , and therefore, significantly impact energy consumption in commercial buildings.

  2. Energy Efficiency Potential in Existing Commercial Buildings: Review of Selected Recent Studies

    SciTech Connect (OSTI)

    Belzer, David B.

    2009-04-03T23:59:59.000Z

    This report reviews six recent studies (from 2002 through 2006) by states and utilities to assess the energy saving potential in existing commercial buildings. The studies cover all or portions of California, Connecticut, Vermont, Colorado, Illinois, and the Pacific Northwest. The studies clearly reveal that lighting remains the single largest and most cost effective end use that can be reduced to save energy. Overall the study indicated that with existing technologies and costs, a reasonable range of economic savings potential in existing commercial buildings is between 10 and 20 percent of current energy use. While not a focus of the study, an additional conclusion is that implementation of commercial building monitoring and controls would also play an important role in the nation’s efforts to improve energy efficiency of existing buildings.

  3. Doing Well by Doing Good? Green Office Buildings

    E-Print Network [OSTI]

    Eichholtz, Piet; Kok, Nils; Quigley, John M.

    2009-01-01T23:59:59.000Z

    dummy variables, one for each green building in the sample.dummy variables, one for each green building in the sample.nificantly higher for green buildings than for the most “

  4. Doing Well by Doing Good? Green Office Buildings

    E-Print Network [OSTI]

    Eichholtz, Piet; Kok, Nils; Quigley, John M.

    2009-01-01T23:59:59.000Z

    clusters as distinct. That is, 694 rated buildings and7,411 control buildings, each located within 1,300feet of a rated building. VOL. 100 NO. 5 EICHHOLTZ ET AL. :

  5. sector Renewable Energy Non renewable Energy Biomass Buildings Commercial

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskey Flatshydro Home Water Homerequest forresults

  6. High Performance Commercial Buildings Technology Roadmap | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power BasicsGermany: EnergyPowerInformation Rhode IslandInformation

  7. Variability in Automated Responses of Commercial Buildings and Industrial

    E-Print Network [OSTI]

    for buildings to change their electricity consumption patterns through both "shifts" in energy use and load to Dynamic Electricity Prices Johanna L. Mathieu, Duncan S. Callaway, Sila Kiliccote Environmental Energy was prepared as an account of work sponsored by the United States Government. While this document is believed

  8. Duct Thermal Performance Models for Large Commercial Buildings

    E-Print Network [OSTI]

    Energy Technologies Division Indoor Environment Department Lawrence Berkeley National Laboratory Berkeley Secretary for Energy Efficiency and Renewable Energy, Building Technologies Program, of the U.S. Department) for his assistance in defining the duct surface heat transfer models described in the body of this report

  9. Analysis of Plug Load Capacities and Power Requirements in Commercial Buildings: Preprint

    SciTech Connect (OSTI)

    Sheppy, M.; Torcellini, P.; Gentile-Polese, L.

    2014-08-01T23:59:59.000Z

    Plug and process load power requirements are frequently overestimated because designers often use estimates based on 'nameplate' data, or design assumptions are high because information is not available. This generally results in oversized heating, ventilation, and air-conditioning systems; increased initial construction costs; and increased energy use caused by inefficiencies at low, part-load operation. Rightsizing of chillers in two buildings reduced whole-building energy use by 3%-4%. If an integrated design approach could enable 3% whole-building energy savings in all U.S. office buildings stock, it could save 34 TBtu of site energy per year.

  10. Doing Well By Doing Good? Green Office Buildings

    E-Print Network [OSTI]

    Eichholtz, Piet; Kok, Nils; Quigley, John M.

    2009-01-01T23:59:59.000Z

    sustainability, energy efficiency, green labels, real estateestate, the evidence on energy savings in green buildings isin Energy and Environmental Design”) green building rating

  11. Doing Well by Doing Good? Green Office Buildings

    E-Print Network [OSTI]

    Eichholtz, Piet; Kok, Nils; Quigley, John M.

    2009-01-01T23:59:59.000Z

    Sustainable Building Task Force. http://www.ciwmb.ca.gov/Greenbuilding/Design/Design”) green building rating system to encourage the “adoption of sustainable

  12. Commercial Building Energy Asset Score Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth Codesthe Natural ResourcesCommercial

  13. Towards a Very Low Energy Building Stock: Modeling the U.S. Commercial Building Sector to Support Policy and Innovation Planning

    E-Print Network [OSTI]

    Coffey, Brian

    2010-01-01T23:59:59.000Z

    Potential for Achieving Net Zero-Energy Buildings in thea commitment to delivering net-zero energy new (and in someplan calls for net-zero energy commercial buildings by

  14. Infiltration modeling guidelines for commercial building energy analysis

    SciTech Connect (OSTI)

    Gowri, Krishnan; Winiarski, David W.; Jarnagin, Ronald E.

    2009-09-30T23:59:59.000Z

    This report presents a methodology for modeling air infiltration in EnergyPlus to account for envelope air barrier characteristics. Based on a review of various infiltration modeling options available in EnergyPlus and sensitivity analysis, the linear wind velocity coefficient based on DOE-2 infiltration model is recommended. The methodology described in this report can be used to calculate the EnergyPlus infiltration input for any given building level infiltration rate specified at known pressure difference. The sensitivity analysis shows that EnergyPlus calculates the wind speed based on zone altitude, and the linear wind velocity coefficient represents the variation in infiltration heat loss consistent with building location and weather data.

  15. The cost effectiveness of geotechnical investigations in commercial building construction

    E-Print Network [OSTI]

    Temple, Merdith Wyndham Bolling

    1985-01-01T23:59:59.000Z

    (83). The failure of an earth dam at Benghazi, Libya in December, 1977 provides another ii lustation of the extent of this problem. Water infiltration of a clay core caused this disaster. As stated by one of the failure's investigators, "remedial... has caused expensive foundation remedial measures to insure the stability of the building. 29 SAVINGS ON NAJOR PROJECTS Although it, seems clear that failure to conduct good soils studies often results in costs far exceeding any hopeful "savings...

  16. Commercial Building Loads Providing Ancillary Services in PJM

    SciTech Connect (OSTI)

    MacDonald, Jason; Kiliccote, Sila; Boch, Jim; Chen, Jonathan; Nawy, Robert

    2014-06-27T23:59:59.000Z

    The adoption of low carbon energy technologies such as variable renewable energy and electric vehicles, coupled with the efficacy of energy efficiency to reduce traditional base load has increased the uncertainty inherent in the net load shape. Handling this variability with slower, traditional resources leads to inefficient system dispatch, and in some cases may compromise reliability. Grid operators are looking to future energy technologies, such as automated demand response (DR), to provide capacity-based reliability services as the need for these services increase. While DR resources are expected to have the flexibility characteristics operators are looking for, demonstrations are necessary to build confidence in their capabilities. Additionally, building owners are uncertain of the monetary value and operational burden of providing these services. To address this, the present study demonstrates the ability of demand response resources providing two ancillary services in the PJM territory, synchronous reserve and regulation, using an OpenADR 2.0b signaling architecture. The loads under control include HVAC and lighting at a big box retail store and variable frequency fan loads. The study examines performance characteristics of the resource: the speed of response, communications latencies in the architecture, and accuracy of response. It also examines the frequency and duration of events and the value in the marketplace which can be used to examine if the opportunity is sufficient to entice building owners to participate.

  17. Web-based energy information systems for large commercial buildings

    SciTech Connect (OSTI)

    Motegi, Naoya; Piette, Mary Ann

    2003-03-29T23:59:59.000Z

    Energy Information Systems (EIS), which monitor and organize building energy consumption and related trend data over the Internet, have been evolving over the past decade. This technology helps perform key energy management functions such as organizing energy use data, identifying energy consumption anomalies, managing energy costs, and automating demand response strategies. During recent years numerous developers and vendors of EIS have been deploying these products in a highly competitive market. EIS offer various software applications and services for a variety of purposes. Costs for such system vary greatly depending on the system's capabilities and how they are marketed. Some products are marketed directly to end users while others are made available as part of electric utility programs. EIS can be a useful tool in building commissioning and retro-commissioning. This paper reviews more than a dozen EIS. We have developed an analytical framework to characterize the main features of these products, which are developed for a variety of utility programs and end-use markets. The purpose of this research is to evaluate EIS capabilities and limitations, plus examine longer-term opportunities for utilizing such technology to improve building energy efficiency and load management.

  18. Request for Information: High Impact Commercial Building Technology

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energy fromComments onReply Comments ofDepartment ofPublicDepartment

  19. Simulated Energy Savings Comparison Between Two Continuous Commissioning® Methods Applied to a Retrofitted Office Building

    E-Print Network [OSTI]

    Texas A& M Campus Building CC® Team

    The 8 th International Conference for Enhanced Building Operations (ICEBO 2008) October 20-22, 2008, Berlin, Germany Simulated Energy Savings Comparison Between Two Continuous Commissioning ? Methods Applied to a Retrofitted Office Building... and the cold and hot 1 ESL-IC-08-10-30 Proceedings of the Eighth International Conference for Enhanced Building Operations, Berlin, Germany, October 20-22, 2008 The 8 th International Conference for Enhanced Building Operations (ICEBO 2008) October 20...

  20. Commercial Buildings Integration Program Overview - 2013 BTO Peer Review |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top FiveDepartment ofCarrieof EnergybyTendrilCommercialDepartment of Energy

  1. Commercial Building Energy Asset Score 2013 Pilot | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste andAccessCO2 Injection Begins8:EnergyServicesMoneyCommentsCommercial

  2. Energy 101: Energy Efficient Commercial Buildings | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing Zirconia Nanoparticles asSecond stage ofDefects on . GradeCoolCommercial

  3. Simulation as a Tool to Develop Guidelines of Envelope Design of a Typical Office Building in Egypt

    E-Print Network [OSTI]

    Samaan, M.M.; Ahmed, A.N.; Farag, O.M.A.; El-Sayed Khalil, M.

    2011-01-01T23:59:59.000Z

    This paper describes the use of building performance simulation software in order to develop guidelines for designing energy-efficient office building. In Egypt energy codes for all building types are being under development. On the other hand...

  4. Energy Savings Potential of Flexible and Adaptive HVAC Distribution Systems for Office Buildings

    SciTech Connect (OSTI)

    Loftness, Vivian; Brahme, Rohini; Mondazzi, Michelle; Vineyard, Edward; MacDonald, Michael

    2002-06-01T23:59:59.000Z

    It has been understood by architects and engineers that office buildings with easily re-configurable space and flexible mechanical and electrical systems are able to provide comfort that increases worker productivity while using less energy. Raised floors are an example of how fresh air, thermal conditioning, lighting needs, and network access can be delivered in a flexible manner that is not ''embedded'' within the structure. What are not yet documented is how well these systems perform and how much energy they can save. This area is being investigated in phased projects of the 21st Century Research Program of the Air-conditioning and Refrigeration Technology Institute. For the initial project, research teams at the Center for Building Performance and Diagnostics, Pittsburgh, Pennsylvania, and Oak Ridge National Laboratory, Oak Ridge, Tennessee, documented the diversity, performance, and incidence of flexible and adaptive HVAC systems. Information was gathered worldwide from journal and conference articles, case studies, manufactured products and assemblies, and interviews with design professionals. Their report thoroughly describes the variety of system types along with the various design alternatives observed for plenums, diffusers, individual control, and system integration. Many of the systems are illustrated in the report and the authors provide quantitative and qualitative comparisons. Among conclusions regarding key design issues, and barriers to widespread adoption, the authors state that flexible and adaptive HVAC systems, such as underfloor air, perform as well if not better than ceiling-based systems. Leading engineers have become active proponents after their first experience, which is resulting in these flexible and adaptive HVAC systems approaching 10 percent of the new construction market. To encourage adoption of this technology that improves thermal comfort and indoor air quality, follow-on work is required to further document performance. Architects, professional engineers, and commercial real estate developers will benefit from the availability of information that quantifies energy savings, first cost construction differences, and additional operating costs created when office space must be reconfigured to accommodate new tenants.

  5. Building Technologies Program: Tax Deduction Qualified Software- Owens Corning Commercial Energy Calculator (OC-CEC) version 1.1

    Broader source: Energy.gov [DOE]

    Provides required documentation that Owens Corning Commercial Energy Calculator (OC-CEC) version 1.1 meets Internal Revenue Code §179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

  6. 1999 Commercial Buildings Energy Consumption Survey Detailed Tables

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquids Reserve3. LightingImports Building7.p e uData

  7. About the Commercial Buildings Integration Program | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South ValleyASGovLtr.pdfAbout the Better Buildings Residential

  8. Buildings Energy Data Book: 3.3 Commercial Sector Expenditures

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural12 Building4 Case

  9. Commercial Buildings Energy Consumption Survey (CBECS) - U.S. Energy

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import96 4.87 1967-2010Barrels)BuildingsInformation

  10. Impacts of Standard 90.1-2007 for Commercial Buildings at State Level

    SciTech Connect (OSTI)

    Bartlett, Rosemarie; Halverson, Mark A.; Gowri, Krishnan

    2009-10-12T23:59:59.000Z

    This report examines the requirements of Standard 90.1-2007 on commercial buildings on a state-by-state basis with a separate, stand-alone chapter for each state. Standard 90.1-2007 is compared to the current state code for most states. This is the final version of the draft previously cleared and assigned ERICA # PNNL-18544, titled "Commercial Nationwide Report."

  11. Commissioning of A Large Office Building in Texas - A Case Study

    E-Print Network [OSTI]

    Deng, S.; Turner, W. D.; Liu, M.

    2000-01-01T23:59:59.000Z

    This case study involves commissioning of a large office building in the hot and humid climate of south Texas. The commissioning involved the installation of a VFD (Variable Frequency Drive) on a chilled water pump, improved EMCS (Energy Management...

  12. E-Print Network 3.0 - air-conditioned office buildings Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from 6:00 a.m. to 2... Bachman Hall Multi-Purpose Building ... Source: Hawaii Natural Energy Institute Collection: Renewable Energy 13 UNITED STATES PATENT AND TRADEMARK OFFICE...

  13. NREL Technical Reports Guide the Way to 50% Energy Savings in Hospitals, Office Buildings (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-02-01T23:59:59.000Z

    Researchers at the National Renewable Energy Laboratory (NREL) have developed two technical reports that provide recommendations to help designers and operators of large office buildings and hospitals achieve at least a 50% energy savings using existing technology.

  14. Solar load ratio method applied to commercial building active solar system sizing

    SciTech Connect (OSTI)

    Schnurr, N.M.; Hunn, B.D.; Williamson, K.D. III

    1981-01-01T23:59:59.000Z

    The hourly simulation procedure is the DOE-2 building energy analysis computer program. It is capable of calculating the loads and of simulating various control strategies in detail for both residential and commercial buildings and yet is computationally efficient enough to be used for extensive parametric studies. In addition, to a Building Service Hot Water (BSHW) System and a combined space heating and hot water system using liquid collectors for a commercial building analyzed previously, a space heating system using an air collector is analyzed. A series of runs is made for systems using evacuated tube collectors for comparison to flat-plate collectors, and the effects of additional system design parameters are investigated. Also, the generic collector types are characterized by standard efficiency curves, rather than by detailed collector specifications. (MHR)

  15. Text-Alternative Version: LED Site Lighting in the Commercial Building Sector: Opportunities, Challenges, and the CBEA Performance Specification

    Broader source: Energy.gov [DOE]

    Below is the text-alternative version of the LED Site Lighting in the Commercial Building Sector: Opportunities, Challenges, and the CBEA Performance Specification webcast.

  16. Model Predictive Control Approach to Online Computation of Demand-Side Flexibility of Commercial Buildings HVAC Systems for Supply Following

    E-Print Network [OSTI]

    Maasoumy, Mehdi

    2014-01-01T23:59:59.000Z

    of commercial building HVAC fan as ancillary service foralgorithm design for hvac systems in energy efficientoptimal control design for HVAC systems,” in Dynamic System

  17. Bells and Whistles, or Just Plain Effective? The New Generation of Wireless Controls in Existing Commercial Buildings.

    E-Print Network [OSTI]

    LaFlamme, S.

    2013-01-01T23:59:59.000Z

    Wireless controls are a key feature for improving the energy efficiency of existing commercial buildings. But what impact do they really have on building performance? This paper provides three case studies to explore the costs, benefits...

  18. Sub-metering to Electricity Use in Large-scale Commercial Buildings

    E-Print Network [OSTI]

    Yuan, W.

    2006-01-01T23:59:59.000Z

    ;?#0;? Practice??Project example #0;?#0;? Use of data??Analysis Software Sub-metering and statistics to electricity use in commercial buildings 8 Method of sub-metering Whole electric power consumption of a building Hvac system Heating Circulating pump Oter... systems and equipments Equipments on Socket Special function room Electrically driven heating equipment Chiller Fan of cooling tower Chilled pump cooling pump Air hand unit Fresh air hand unit Fan coil unit Air conditioner Heating water system drinking...

  19. Simulation- Assisted Audit of an Air Conditioned Office Building

    E-Print Network [OSTI]

    Bertagnolio, S.; Lebrun, J.; Hannay, J.; Silva, C. A.

    Conference for Enhanced Building Operations, Berlin, Germany, October 20-22, 2008 performances of the installation. Finally, some significant retrofit opportunities are proposed. BUILDING DESCRIPTION Building design The considered building is an existing... Conference for Enhanced Building Operations, Berlin, Germany, October 20-22, 2008 In nominal heating conditions (outdoor : -10?C/RH 90%; indoor : 20?C/RH50%), with ?t = 30 K, this gives a sensible power demand of: g1843g4662g3046,g3041g3042g3040 =g343623...

  20. Health effects associated with energy conservation measures in commercial buildings

    SciTech Connect (OSTI)

    Stenner, R.D.; Baechler, M.C.

    1990-09-01T23:59:59.000Z

    Indoor air quality can be impacted by hundreds of different chemicals. More than 900 different organic compounds alone have been identified in indoor air. Health effects that could arise from exposure to individual pollutants or mixtures of pollutants cover the full range of acute and chronic effects, including largely reversible responses, such as rashes and irritations, to the irreversible toxic and carcinogenic effects. These indoor contaminants are emitted from a large variety of materials and substances that are widespread components of everyday life. Pacific Northwest Laboratory conducted a search of the peer-reviewed literature on health effects associated with indoor air contaminants for the Bonneville Power Administration to aid the agency in the preparation of environmental documents. Results are reported in two volumes. Volume 1 summarizes the results of the search of the peer-reviewed literature on health effects associated with a selected list of indoor air contaminants. In addition, the report discusses potential health effects of polychlorinated biphenyls and chlorofluorocarbons. All references to the literature reviewed are found in this document Volume 2. Volume 2 provides detailed information from the literature reviewed, summarizes potential health effects, reports health hazard ratings, and discusses quantitative estimates of carcinogenic risk in humans and animals. Contaminants discussed in this report are those that; have been measured in the indoor air of a public building; have been measured (significant concentrations) in test situations simulating indoor air quality (as presented in the referenced literature); and have a significant hazard rating. 38 refs., 7 figs., 23 tabs.

  1. Building Retrofits: Energy Conservation and Employee Retention Considerations in Medium-Size Commercial Buildings

    E-Print Network [OSTI]

    Freeman, Janice

    2013-04-29T23:59:59.000Z

    of Environmental Economics and Management, Lighting Design and Application, Academy of Management Executive, Artificial Intelligence Review, Indoor Built Environment, Journal of Corporate Real Estate, Science, Indoor Air, and Healthy Buildings, Journal of Real..., Science, Indoor Air, Healthy Buildings, Journal of Real Estate Research, Journal of Property Investment and Finance, Journal of Sustainable Real Estate. Reputable Organizations Rocky Mountain Institute, Environmental Protection Agency (EPA), Energy...

  2. Case Study of Energy Diagnose and Re-commissioning in a Green Office Building

    E-Print Network [OSTI]

    Zhang, Y.; Wei, Q.

    2006-01-01T23:59:59.000Z

    systems' efficiency and bridge the gap between acceptance and management phase, finally realize a real green building. In this paper, it presents a case study result of applying this approach in a green office building in Beijing and shows how re...

  3. THE PASSIVE SOLAR DESIGN PROCESS FOR A SMALL OFFICE/LABORATORY BUILDING

    E-Print Network [OSTI]

    Andersson, Brandt

    2011-01-01T23:59:59.000Z

    PASSIVE SOLAR DESIGN PROCESS FOR A SMALL OFFICE/LABORATORY BUILDINGpassive solar buildings will be built in the corning years. Thei r designdesign; and (3) development of building energy analysis programs which can evalu- ate the thermal and daylighting performance of passive solar

  4. A PILOT STUDY OF THE ACCURACY OF CO2 SENSORS IN COMMERCIAL BUILDINGS

    SciTech Connect (OSTI)

    Fisk, William; Fisk, William J.; Faulkner, David; Sullivan, Douglas P.

    2007-09-01T23:59:59.000Z

    Carbon dioxide (CO2) sensors are often deployed in commercial buildings to obtain CO2 data that are used to automatically modulate rates of outdoor air supply. The goal is to keep ventilation rates at or above design requirements and to save energy by avoiding ventilation rates exceeding design requirements. However, there have been many anecdotal reports of poor CO2 sensor performance in actual commercial building applications. This study evaluated the accuracy of 44 CO2 sensors located in nine commercial buildings to determine if CO2 sensor performance, in practice, is generally acceptable or problematic. CO2 measurement errors varied widely and were sometimes hundreds of parts per million. Despite its small size, this study provides a strong indication that the accuracy of CO2 sensors, as they are applied and maintained in commercial buildings, is frequently less than needed to measure typical values of maximum one-hour-average indoor-outdoor CO2 concentration differences with less than a 20percent error. Thus, we conclude that there is a need for more accurate CO2 sensors and/or better sensor maintenance or calibration procedures.

  5. Energy Management Strategy for Commercial Buildings Integrating PV and Storage Systems

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Energy Management Strategy for Commercial Buildings Integrating PV and Storage Systems He ZHANG1 by using the solution proposed. Keywords: Photovoltaic (PV) systems, fuzzy logic, storage system, energy connected to the power network and associated to photovoltaic and storage system. Some energy management

  6. The Post-occupancy Performance of Green Office Buildings: Evidence for the Fiekd

    E-Print Network [OSTI]

    Newsham, G.

    2013-01-01T23:59:59.000Z

    The Post-occupancy Performance of Green Office Buildings Evidence from the field Guy Newsham Ph D and colleagues , . . Introduction ? How do green buildings perform when occupied? ? Indoor Environment Quality Occupant Comfort and Well....nrc-cnrc.gc.ca/npsi/ctrl?action=rtdoc&an=20857897&article=0&fd=pdf ?Do ?green? buildings have better indoor environments? New evidence?, Building Research & Information: http://dx.doi.org/10.1080/09613218.2013.789951 Field study stud ? Four sources of data from each building: ? On...

  7. Development of whole-building energy design targets for commercial buildings: Phase 1, Planning: Volume 2, Technical report

    SciTech Connect (OSTI)

    Crawley, D.B.; Briggs, R.S.; Jones, J.W.; Seaton, W.W.; Kaufman, J.E.; Deringer, J.J.; Kennett, E.W.

    1987-08-01T23:59:59.000Z

    This is the second volume of the Phase 1 report and discusses the 10 tasks performed in Phase 1. The objective of this research is to develop a methodology for setting energy design targets to provide voluntary guidelines for the buildings industry. The whole-building energy targets project is being conducted at the Pacific Northwest Laboratory (PNL) for the US Department of Energy (DOE) to encourage the construction of energy-efficient buildings by informing designers and owners about cost-effective goals for energy use in new commercial buildings. The outcome of this research will be a flexible methodology for setting such targets. The tasks are listed and discussed in this report as follows: Task 1 - Develop Detailed Project Goals and Objectives; Task 2 - Establish Buildings-Industry Liaison; Task 3 - Develop Approaches to the Energy Targets Model, Building Operations, and Climate; Task 4 - Develop an Approach for Treating Economic Considerations; Task 5 - Develop an Approach for Treating Energy Sources; Task 6 - Collect Energy-Use Data; Task 7 - Survey Energy Expert Opinion; Task 8 - Evaluation Procedure Specification and Integration; Task 9 - Phase 1 Report Development; and Task 10 - Phase 1 Review Planning.

  8. Review of California and National Methods for Energy PerformanceBenchmarking of Commercial Buildings

    SciTech Connect (OSTI)

    Matson, Nance E.; Piette, Mary Ann

    2005-09-05T23:59:59.000Z

    This benchmarking review has been developed to support benchmarking planning and tool development under discussion by the California Energy Commission (CEC), Lawrence Berkeley National Laboratory (LBNL) and others in response to the Governor's Executive Order S-20-04 (2004). The Executive Order sets a goal of benchmarking and improving the energy efficiency of California's existing commercial building stock. The Executive Order requires the CEC to propose ''a simple building efficiency benchmarking system for all commercial buildings in the state''. This report summarizes and compares two currently available commercial building energy-benchmarking tools. One tool is the U.S. Environmental Protection Agency's Energy Star National Energy Performance Rating System, which is a national regression-based benchmarking model (referred to in this report as Energy Star). The second is Lawrence Berkeley National Laboratory's Cal-Arch, which is a California-based distributional model (referred to as Cal-Arch). Prior to the time Cal-Arch was developed in 2002, there were several other benchmarking tools available to California consumers but none that were based solely on California data. The Energy Star and Cal-Arch benchmarking tools both provide California with unique and useful methods to benchmark the energy performance of California's buildings. Rather than determine which model is ''better'', the purpose of this report is to understand and compare the underlying data, information systems, assumptions, and outcomes of each model.

  9. Findings from Seven Years of Field Performance Data for Automated Demand Response in Commercial Buildings

    SciTech Connect (OSTI)

    Kiliccote, Sila; Piette, Mary Ann; Mathieu, Johanna; Parrish, Kristen

    2010-05-14T23:59:59.000Z

    California is a leader in automating demand response (DR) to promote low-cost, consistent, and predictable electric grid management tools. Over 250 commercial and industrial facilities in California participate in fully-automated programs providing over 60 MW of peak DR savings. This paper presents a summary of Open Automated DR (OpenADR) implementation by each of the investor-owned utilities in California. It provides a summary of participation, DR strategies and incentives. Commercial buildings can reduce peak demand from 5 to 15percent with an average of 13percent. Industrial facilities shed much higher loads. For buildings with multi-year savings we evaluate their load variability and shed variability. We provide a summary of control strategies deployed, along with costs to install automation. We report on how the electric DR control strategies perform over many years of events. We benchmark the peak demand of this sample of buildings against their past baselines to understand the differences in building performance over the years. This is done with peak demand intensities and load factors. The paper also describes the importance of these data in helping to understand possible techniques to reach net zero energy using peak day dynamic control capabilities in commercial buildings. We present an example in which the electric load shape changed as a result of a lighting retrofit.

  10. Lessons Learned from Continuous Commissioning of the Robert E. Johnson State Office Building, Austin, TX

    E-Print Network [OSTI]

    Bynum, J.; Claridge, D. E.

    2008-09-22T23:59:59.000Z

    ESL-TR-08-08-03 Lessons Learned from Continuous Commissioning ® of the Robert E. Johnson State Office Building, Austin, TX Submitted to Lawrence Berkeley National Laboratory By David Claridge, Ph.D., P.E. John Bynum Energy....5% annual lighting energy savings or 5.6% annual whole building energy savings based on a DOE-2 simulation analysis. Three main lessons were learned from the experience with the Robert E. Johnson building: • The traditional design...

  11. Prospects to Reduce the Use of Energy by 50% in Existing Office Buildings

    E-Print Network [OSTI]

    Dalenback, J.; Abel, E.

    on input, i.e. building and ESL-IC-08-10-21 Proceedings of the Eighth International Conference for Enhanced Building Operations, Berlin, Germany, October 20-22, 2008 system data, present energy use, etc., gathered by the local consultants... of the Eighth International Conference for Enhanced Building Operations, Berlin, Germany, October 20-22, 2008 Figure 1. Pennf?ktaren with offices and restaurants in the centre of Stockholm. Figure 2. Prismahuset with lecture halls, laboratories...

  12. Combined heat and power (CHP or cogeneration) for saving energy and carbon in commercial buildings

    SciTech Connect (OSTI)

    Kaarsberg, T.; Fiskum, R.; Romm, J.; Rosenfeld, A.; Koomey, J.; Teagan, W.P.

    1998-07-01T23:59:59.000Z

    Combined Heat and Power (CHP) systems simultaneously deliver electric, thermal and mechanical energy services and thus use fuel very efficiently. Today's small-scale CHP systems already provide heat, cooling and electricity at nearly twice the fuel efficiency of heat and power based on power remote plants and onsite hot water and space heating. In this paper, the authors have refined and extended the assessments of small-scale building CHP previously done by the authors. They estimate the energy and carbon savings for existing small-scale CHP technology such as reciprocating engines and two promising new CHP technologies--microturbines and fuel cells--for commercial buildings. In 2010 the authors estimate that small-scale CHP will emit 14--65% less carbon than separate heat and power (SHP) depending on the technologies compared. They estimate that these technologies in commercial buildings could save nearly two-thirds of a quadrillion Btu's of energy and 23 million tonnes of carbon.

  13. Vehicle Technologies Office Merit Review 2014: Development and Commercialization of a Novel Low-Cost Carbon Fiber

    Broader source: Energy.gov [DOE]

    Presentation given by Zoltek at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development and commercialization of a...

  14. Cold Air Distribution in Office Buildings: Technology Assessment for California

    E-Print Network [OSTI]

    Bauman, F.S.

    2008-01-01T23:59:59.000Z

    available. The cooling plant is an ice harvester designedused for ice making or for building cooling. During iceyears. The cooling plant is a Mueller ice harvester system

  15. Comparison of ASHRAE Standard 90.1, 189.1 and IECC Codes for Large Office Building in Texas), Energy Systems Laboratory, Texas A&M University.

    E-Print Network [OSTI]

    Mukhopadhyay, J.; Baltazar, J.C.; Kim,H.; Haberl, J.

    2011-01-01T23:59:59.000Z

    herein is necessarily error-free. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement, recommendation, or favoring by the Energy.... The comparison is carried out using the simulation model for a large office building initially developed by Ahmad et al. (2005) and Kim et al. (2009) using DOE-2.1e simulation program. The model has been updated and modified as per the requirements...

  16. Commercial Building Energy Asset Score System: Program Overview and Technical Protocol (Version 1.0)

    SciTech Connect (OSTI)

    Wang, Na; Gorrissen, Willy J.

    2013-01-11T23:59:59.000Z

    The U.S. Department of Energy (DOE) is developing a national voluntary energy asset score system that includes an energy asset score tool to help building owners evaluate their buildings with respect to the score system. The goal of the energy asset score system is to facilitate cost-effective investment in energy efficiency improvements of commercial buildings. The system will allow building owners and managers to compare their building infrastructure against peers and track building upgrade progress over time. The system can also help other building stakeholders (e.g., building operators, tenants, financiers, and appraisers) understand the relative efficiency of different buildings in a way that is independent from their operations and occupancy. This report outlines the technical protocol used to generate the energy asset score, explains the scoring methodology, and provides additional details regarding the energy asset score tool. This report also describes alternative methods that were considered prior to developing the current approach. Finally, this report describes a few features of the program where alternative approaches are still under evaluation.

  17. A Survey of High Performance Office Buildings in the United States

    E-Print Network [OSTI]

    Cho, S.; Haberl, J. S.

    2006-01-01T23:59:59.000Z

    - Daylight & Passive Solar Heating #0;? Shed Roof ? Rainwater Collection for Fire Protection, Landscaping, & Cloths and Hand Washing #0;? Natural Ventilation System 14 #0;? Energy cost savings of 67% compared to the Standard 90.1-2001. ESL-HH-06-07-21a... buildings, energy conservation is a straightforward “green” benefit that can be shared between owner and tenant (Traugott, 2000). A high performance commercial building is a substantially better building than standard practice in terms of energy...

  18. Energy Survey and Energy Savings in an Office Building with Aid of Building Software.

    E-Print Network [OSTI]

    Lu, Yinghao

    2008-01-01T23:59:59.000Z

    ?? Simulation is one of the best Analytical tools for Building Research .Energy Efficient Buildings are of great concern which is gaining importance steeply in… (more)

  19. Structural feasibility of a medium-rise timber office building

    E-Print Network [OSTI]

    Nasr, Mohsen, 1981-

    2005-01-01T23:59:59.000Z

    Using timber as a structural material for commercial projects will certainly gain importance and popularity in the coming decades as more focus is placed on reducing environmental effects created by a dependence on steel ...

  20. Asbestos in public and commercial buildings: A literature review and synthesis of current knowledge

    SciTech Connect (OSTI)

    Not Available

    1991-09-25T23:59:59.000Z

    The Health Effects Institute-Asbestos Research assembled an expert Panel to review the literature on asbestos in public and commercial buildings, and make recommendations for future research. The Panel concluded that: (1) Asbestos-containing building material (ACBM) in good repair is unlikely to expose general building occupants to fiber concentrations above those found outside such buildings. The added life-time risk of cancer for such occupants in well-maintained buildings appears to be lower than the risks from other pollutants such as radon and environmental tobacco smoke. (2) Janitorial, custodial, maintenance, and renovation workers may disturb or damage ACBM and episodically produce relatively high fiber concentrations; therefore the added life-time cancer risk in such workers may be appreciably higher than the risk to general building occupants. (3) Asbestos removal workers are at the highest risk of potential exposure. Good work practice and respiratory protection are essential to avoid dangerous exposure of such workers. (4) Determining exposure risks and forms of prevention or remediation warranted in a building are site-specific tasks. Uncontrolled disturbance of ACBM should be avoided. In well-maintained buildings, improper removal or improper abatement action can cause persistent increases of fiber levels.

  1. Better Building Alliance, Plug and Process Loads in Commercial Buildings: Capacity and Power Requirement Analysis (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-09-01T23:59:59.000Z

    This brochure addresses gaps in actionable knowledge that can help reduce the plug load capacities designed into buildings. Prospective building occupants and real estate brokers lack accurate references for plug and process load (PPL) capacity requirements, so they often request 5-10 W/ft2 in their lease agreements. This brochure should be used to make these decisions so systems can operate more energy efficiently; upfront capital costs will also decrease. This information can also be used to drive changes in negotiations about PPL energy demands. It should enable brokers and tenants to agree about lower PPL capacities. Owner-occupied buildings will also benefit. Overestimating PPL capacity leads designers to oversize electrical infrastructure and cooling systems.

  2. Comparison of Standard 90.1-2007 and the 2009 IECC with Respect to Commercial Buildings

    SciTech Connect (OSTI)

    Conover, David R.; Bartlett, Rosemarie; Halverson, Mark A.

    2009-12-11T23:59:59.000Z

    The U.S. Department of Energy’s (DOE’s) Building Energy Codes Program (BECP) has been asked by some states and energy code stakeholders to address the comparability of the 2009 International Energy Conservation Code® (IECC) as applied to commercial buildings and ANSI/ASHRAE/IESNA Standard 90.1-2007 (hereinafter referred to as Standard 90.1-07). An assessment of comparability will help states respond to and implement conditions specified in the State Energy Program (SEP) Formula Grants American Recovery and Reinvestment Act Funding Opportunity, Number DE-FOA-0000052, and eliminate the need for the states individually or collectively to perform comparative studies of the 2009 IECC and Standard 90.1-07. The funding opportunity announcement contains the following conditions: (2) The State, or the applicable units of local government that have authority to adopt building codes, will implement the following: (A) A residential building energy code (or codes) that meets or exceeds the most recent International Energy Conservation Code, or achieves equivalent or greater energy savings. (B) A commercial building energy code (or codes) throughout the State that meets or exceeds the ANSI/ASHRAE/IESNA Standard 90.1-2007, or achieves equivalent or greater energy savings . (C) A plan to achieve 90 percent compliance with the above energy codes within eight years. This plan will include active training and enforcement programs and annual measurement of the rate of compliance. With respect to item (B) above, many more states, regardless of the edition date, directly adopt the IECC than Standard 90.1-07. This is predominately because the IECC is a model code and part of a coordinated set of model building codes that state and local government have historically adopted to regulate building design and construction. This report compares the 2009 IECC to Standard 90.1-07 with the intent of helping states address whether the adoption and application of the 2009 IECC for commercial buildings can be considered equivalent to the adoption and application of Standard 90.1-07. Based on this document, states adopting the 2009 IECC, which is the document cited in (A), above, for residential construction, can also determine if they are in compliance with the above provisions for commercial buildings in (B) above and if their code meets or exceeds the ANSI/ASHRAE/IESNA Standard 90.1-07.

  3. Development of a Model Specification for Performance MonitoringSystems for Commercial Buildings

    SciTech Connect (OSTI)

    Haves, Philip; Hitchcock, Robert J.; Gillespie, Kenneth L.; Brook, Martha; Shockman, Christine; Deringer, Joseph J.; Kinney,Kristopher L.

    2006-08-01T23:59:59.000Z

    The paper describes the development of a model specification for performance monitoring systems for commercial buildings. The specification focuses on four key aspects of performance monitoring: (1) performance metrics; (2) measurement system requirements; (3) data acquisition and archiving; and (4) data visualization and reporting. The aim is to assist building owners in specifying the extensions to their control systems that are required to provide building operators with the information needed to operate their buildings more efficiently and to provide automated diagnostic tools with the information required to detect and diagnose faults and problems that degrade energy performance. The paper reviews the potential benefits of performance monitoring, describes the specification guide and discusses briefly the ways in which it could be implemented. A prototype advanced visualization tool is also described, along with its application to performance monitoring. The paper concludes with a description of the ways in which the specification and the visualization tool are being disseminated and deployed.

  4. Delaware Company Breathes New Life into Old Post Office Building...

    Broader source: Energy.gov (indexed) [DOE]

    the company set out to create the new workspace. The long-term goal: Qualify for the U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED) Platinum...

  5. Doing Well by Doing Good? Green Office Buildings

    E-Print Network [OSTI]

    Eichholtz, Piet; Kok, Nils; Quigley, John M.

    2009-01-01T23:59:59.000Z

    estimated for a green building, or to Energy Star. 2008. “square foot) Green rating (1 = yes) Energy Star (1 = yes)square foot) Green rating (1 = yes) Energy Star (1 = yes)

  6. How to Select Lighting Controls for Offices and Public Buildings

    Broader source: Energy.gov (indexed) [DOE]

    can be used for demand limiting to allow building managers to reduce lighting loads when electricity demand costs are high. Some types of lighting are not well suited to certain...

  7. Cold Air Distribution in Office Buildings: Technology Assessment for California

    E-Print Network [OSTI]

    Bauman, F.S.

    2008-01-01T23:59:59.000Z

    During building cooling the chillers supply 42 °P water towith 42°P supply air always reduced cooling and totalpart-load) cooling with cold air supply. In most California

  8. Advancing Net-Zero Energy Commercial Buildings; Electricity, Resources, & Building Systems Integration (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-10-01T23:59:59.000Z

    This fact sheet provides an overview of the research the National Renewable Energy Laboratory is conducting to achieve net-zero energy buildings (NZEBs). It also includes key definitions of NZEBs and inforamtion about an NZEB database that captures information about projects around the world.

  9. A systematic approach to energy efficiency retrofit solutions for exsisting office buildings

    E-Print Network [OSTI]

    Shao,Y.

    2014-01-01T23:59:59.000Z

    Institute of Energy Efficient and Sustainable Design and Building Prof. Dr.-Ing. Werner Lang Yunming Shao Prof. Dr.-Ing. Werner Lang Technical University of Munich, Germany 11/11/2014 A systematic approach to energy efficiency retrofit solutions... for existing office buildings ESL-IC-14-09-33 Proceedings of the 14th International Conference for Enhanced Building Operations, Beijing, China, September 14-17, 2014 Institute of Energy Efficient and Sustainable Design and Building Prof. Dr.-Ing. Werner Lang...

  10. The Value of the EWIT Computer Program in Identifying Economically Viable Retrofit Options for Existing Commercial Buildings

    E-Print Network [OSTI]

    Andrews, W. M.

    1984-01-01T23:59:59.000Z

    EWIT's potential as a tool for evaluating retrofit options for existing commercial buildings. To achieve this goal two case buildings in the Denver area were analyzed by means of the EWIT program. The first building is a one story structure of 10...

  11. Predicted versus monitored performance of energy-efficiency measures in new commercial buildings from energy edge

    SciTech Connect (OSTI)

    Piette, M.A.; Nordman, B.; deBuen, O.; Diamond, R.

    1993-08-01T23:59:59.000Z

    Energy Edge is a research-oriented demonstration program involving 28 new commercial buildings in the Pacific Northwest. This paper discusses the energy savings and cost-effectiveness of energy-efficiency measures for the first 12 buildings evaluated using simulation models calibrated with measured end-use data. Average energy savings per building from the simulated code baseline building was 19%, less than the 30% target. The most important factor for the lower savings is that many of the installed measures differ from the measures specified in the design predictions. Only one of the first 12 buildings met the project objective of reducing energy use by more than 30% at a cost below the target of 56 mills/kWh (in 1991 dollars). Based on results from the first 12 calibrated simulation models, 29 of the 66 energy-efficiency measures, or 44%, met the levelized cost criterion. Despite the lower energy savings from individual measures, the energy-use intensities of the buildings are lower than other regional comparison data for new buildings. The authors review factors that contribute to the uncertainty regarding measured savings and suggest methods to improve future evaluations.

  12. Commercial Buildings

    Broader source: Energy.gov [DOE]

    Learn how the Energy Department is helping businesses, nonprofits and local governments reduce energy use through energy efficiency and renewable energy technologies.

  13. Indoor environmental quality and ventilation in U.S. office buildings: A view of current issues

    SciTech Connect (OSTI)

    Fisk, W.J.

    1994-11-01T23:59:59.000Z

    Much of the current focus on indoor environmental quality and ventilation in US office buildings is a response to sick building syndrome and occupant complaints about building-related health symptoms, poor indoor air quality, and thermal discomfort. The authors know that serious ``sick-building`` problems occur in a significant number of US office buildings and that a significant proportion of the occupants in many normal (non-sick) buildings report building-related health symptoms. Concerns about the health effects of environmental tobacco smoke have also focused attention on the indoor environment. The major responses of industry and governments, underway at the present time, are to restrict smoking in offices, to attempt to reduce the emissions of indoor pollutants, and to improve the operation of heating, ventilating and air conditioning (HVAC) systems. Better air filtration, improved HVAC commissioning and maintenance, and increased provisions for individual control of HVAC are some of the improvements in HVAC that are currently being, evaluated. In the future, the potential for improved productivity and reduced airborne transmission of infectious disease may become the major driving force for improved indoor environments.

  14. Grand Junction Projects Office Remedial Action Project Building 2 public dose evaluation. Final report

    SciTech Connect (OSTI)

    Morris, R.

    1996-05-01T23:59:59.000Z

    Building 2 on the U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) site, which is operated by Rust Geotech, is part of the GJPO Remedial Action Program. This report describes measurements and modeling efforts to evaluate the radiation dose to members of the public who might someday occupy or tear down Building 2. The assessment of future doses to those occupying or demolishing Building 2 is based on assumptions about future uses of the building, measured data when available, and predictive modeling when necessary. Future use of the building is likely to be as an office facility. The DOE sponsored program, RESRAD-BUILD, Version. 1.5 was chosen for the modeling tool. Releasing the building for unrestricted use instead of demolishing it now could save a substantial amount of money compared with the baseline cost estimate because the site telecommunications system, housed in Building 2, would not be disabled and replaced. The information developed in this analysis may be used as part of an as low as reasonably achievable (ALARA) cost/benefit determination regarding disposition of Building 2.

  15. Recommendations for 15% Above ASHRAE 90.1-2007 Code-Compliant Building Energy Efficiency Measures for Small Office Buildings

    E-Print Network [OSTI]

    Kim, H.; Baltazar, J. C.; Haberl, J.; Yazdani, B.

    2012-01-01T23:59:59.000Z

    per 2009 IECC Section 501.2 15% Above-Code Analysis for Small Office, p.5 January 2012 Energy Systems Laboratory, Texas A&M University Table 1. Base-Case Building Description Building Type Number of occupants = 73 Gross Area (sq. ft.) PNNL...-19341 (Thornton et al. 2010) Aspect Ratio PNNL-19341 (Thornton et al. 2010) Square shape Number of Floors PNNL-19341 (Thornton et al. 2010) Floor-to-Floor Height (ft.) ASHRAE 90.1-1989 13.7.1 Floor-to-Ceiling Height = 9 ft Orientation PNNL-19341...

  16. Automated Demand Response Technology Demonstration Project for Small and Medium Commercial Buildings

    SciTech Connect (OSTI)

    Page, Janie; Kiliccote, Sila; Dudley, Junqiao Han; Piette, Mary Ann; Chiu, Albert K.; Kellow, Bashar; Koch, Ed; Lipkin, Paul

    2011-07-01T23:59:59.000Z

    Small and medium commercial customers in California make up about 20-25% of electric peak load in California. With the roll out of smart meters to this customer group, which enable granular measurement of electricity consumption, the investor-owned utilities will offer dynamic prices as default tariffs by the end of 2011. Pacific Gas and Electric Company, which successfully deployed Automated Demand Response (AutoDR) Programs to its large commercial and industrial customers, started investigating the same infrastructures application to the small and medium commercial customers. This project aims to identify available technologies suitable for automating demand response for small-medium commercial buildings; to validate the extent to which that technology does what it claims to be able to do; and determine the extent to which customers find the technology useful for DR purpose. Ten sites, enabled by eight vendors, participated in at least four test AutoDR events per site in the summer of 2010. The results showed that while existing technology can reliably receive OpenADR signals and translate them into pre-programmed response strategies, it is likely that better levels of load sheds could be obtained than what is reported here if better understanding of the building systems were developed and the DR response strategies had been carefully designed and optimized for each site.

  17. Measured Energy Use Indices for 27 Office Buildings

    E-Print Network [OSTI]

    Haberl, J. S.; Sreshthaputra, A.; Claridge, D. E.; Turner, W. D.; Harmon, K.; Kisselburgh, J.; Mase, R.

    2001-01-01T23:59:59.000Z

    -building electricity, cooling and heating use, as well as the electricity used by the motor controls centers (i.e., fans, pumps, etc.) and the combined lights and receptacles. In this paper a comparative summary of the information is presented across all the sites...

  18. Demand Shifting with Thermal Mass in Light and Heavy Mass Commercial Buildings

    SciTech Connect (OSTI)

    Xu, Peng; Zagreus, Leah

    2009-05-01T23:59:59.000Z

    The potential for utilizing building thermal mass for load shifting and peak demand reduction has been demonstrated in a number of simulation, laboratory, and field studies. This project studied the potential of pre-cooling and demand limiting in a heavy mass and a light mass building in the Bay Area of California. The conclusion of the work to date is that pre-cooling has the potential to improve the demand responsiveness of commercial buildings while maintaining acceptable comfort conditions. Results indicate that pre-cooling increases the depth (kW) and duration (kWh) of the shed capacity of a given building, all other factors being equal. Due to the time necessary for pre-cooling, it is only applicable to day-ahead demand response programs. Pre-cooling can be very effective if the building mass is relatively heavy. The effectiveness of night pre-cooling under hot weather conditions has not been tested. Further work is required to quantify and demonstrate the effectiveness of pre-cooling in different climates. Research is also needed to develop screening tools that can be used to select suitable buildings and customers, identify the most appropriate pre-cooling strategies, and estimate the benefits to the customer and the utility.

  19. DOE Commercial Building Asset Rating: An Application of Centralized Modeling Tools

    SciTech Connect (OSTI)

    Wang, Na; Gorrissen, Willy J.; Srivastava, Viraj; Taylor, Cody

    2012-06-26T23:59:59.000Z

    This paper presents a novel approach used to develop the U.S. Department of Energy (DOE) Commercial Building Asset Rating, which is intended to help building owners better understand the installed system performance and the total energy use. A simplified data collection and energy-modeling method is employed to disaggregate building energy information. Furthermore, the approach outlined will also include a mechanism for identifying energy improvement opportunities. A detailed modeling approach to formulate an Asset Rating would most likely provide the greatest flexibility and accuracy. Such an approach would, however, require a substantial amount of user investment for collecting the energy audit, data and hiring a professional to perform energy modeling and analysis. A simplified model approach requires fewer input combinations, which could reduce opportunities for error and allow an inexperienced user to quickly develop energy models. However, the accuracy of the results is often questionable. To address the above issue, the method presented in this paper separates model inputs into categories based on overall energy impact, difficulty to obtain, and variability among buildings. We outline an approach that will allow great flexibility in terms of how many and which of the different categories of variables must be found to produce an accurate energy model. The approach will allow all key variables to be inferred from some minimum set of variables while at the same time allowing a user to enter many more variables if he or she has reliable values for them. The approach outlined will also provide constant values for some variables and algorithms for finding those which are very difficult to determine in the field. The whole of this approach will reduce modeling time and expertise required while maintaining accuracy and the ability to support the variability and complexity that exist in buildings. Therefore, the goals of facilitating cost-effective investment in energy efficiency and reducing energy use in the commercial building sector are met.

  20. Building Technologies Office 2015 Program Peer Review | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartmentFebruaryResistanceBuilding EnergyEnergy 2015 Program

  1. Building Technologies Office Load Control Strategies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartmentFebruaryResistanceBuilding EnergyEnergy 2015

  2. Building Technologies Office 2014 Program Peer Review | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsBSCmemo.pdf BSCmemo.pdfBiopower BasicsEmerging Technologies »FY'14Office

  3. Building Thermal Envelope Systems and Materials (BTESM) progress report for DOE Office of Buildings Energy Research

    SciTech Connect (OSTI)

    Burn, G. (comp.)

    1990-01-01T23:59:59.000Z

    The Monthly Report of the Building Thermal Envelope Systems and Materials (BTESM) Program is a monthly update of both in-house ORNL projects and subcontract activities in the research areas of building materials, wall systems, foundations, roofs, building diagnostics, and research utilization and technology transfer. Presentations are not stand-alone paragraphs every month. Their principal values are the short-time lapse between accomplishment and reporting and their evolution over a period of several months.

  4. NIOSH (National Institute for Occupational Safety and Health) indoor air quality in office buildings

    SciTech Connect (OSTI)

    Wallingford, K.M.

    1987-01-01T23:59:59.000Z

    A total of 356 indoor-air-quality health-hazard evaluations were completed by NIOSH from 1971 through December of 1985. Most of these studies concerned government and private office buildings where there were worker complaints. Worker complaints resulted from contamination from inside the building (19% of the cases), contamination from outside (11 percent), contamination from the building fabric (4%), biological contamination (5%), inadequate ventilation (50%), and unknown causes (11%). Health complaints addressed by investigative efforts included eye irritation, dry throat, headache, fatigue, sinus congestion, skin irritation, shortness of breath, cough, dizziness, and nausea.

  5. Web-based energy information systems for energy management and demand response in commercial buildings

    SciTech Connect (OSTI)

    Motegi, Naoya; Piette, Mary Ann; Kinney, Satkartar; Herter, Karen

    2003-04-18T23:59:59.000Z

    Energy Information Systems (EIS) for buildings are becoming widespread in the U.S., with more companies offering EIS products every year. As a result, customers are often overwhelmed by the quickly expanding portfolio of EIS feature and application options, which have not been clearly identified for consumers. The object of this report is to provide a technical overview of currently available EIS products. In particular, this report focuses on web-based EIS products for large commercial buildings, which allow data access and control capabilities over the Internet. EIS products combine software, data acquisition hardware, and communication systems to collect, analyze and display building information to aid commercial building energy managers, facility managers, financial managers and electric utilities in reducing energy use and costs in buildings. Data types commonly processed by EIS include energy consumption data; building characteristics; building system data, such as heating, ventilation, and air-conditioning (HVAC) and lighting data; weather data; energy price signals; and energy demand-response event information. This project involved an extensive review of research and trade literature to understand the motivation for EIS technology development. This study also gathered information on currently commercialized EIS. This review is not an exhaustive analysis of all EIS products; rather, it is a technical framework and review of current products on the market. This report summarizes key features available in today's EIS, along with a categorization framework to understand the relationship between EIS, Energy Management and Control Systems (EMCSs), and similar technologies. Four EIS types are described: Basic Energy Information Systems (Basic-EIS); Demand Response Systems (DRS); Enterprise Energy Management (EEM); and Web-based Energy Management and Control Systems (Web-EMCS). Within the context of these four categories, the following characteristics of EIS are discussed: Metering and Connectivity; Visualization and Analysis Features; Demand Response Features; and Remote Control Features. This report also describes the following technologies and the potential benefits of incorporating them into future EIS products: Benchmarking; Load Shape Analysis; Fault Detection and Diagnostics; and Savings Analysis.

  6. Office of the General Counsel Building 460 P.O. Box 5000

    E-Print Network [OSTI]

    Office of the General Counsel Building 460 P.O. Box 5000 Upton. NY 11973-5000 Phone 516 344-8629 EN of Energy WY;'W.bnl.gov Memo Date: September 30, 1999 To: George Malosh From: Gregory Fes~ Subject: DOE Te: As above stated #12;DEPARTMENT OF ENERGY TECHNOLOGY PARTNERSHIP 0!\\-1BUDS INTTIATIVE C01\\rf

  7. Phase-change wallboard and mechanical night ventilation in commercial buildings: Potential for HVAC system downsizing

    SciTech Connect (OSTI)

    Stetiu, C.; Feustel, H.E.

    1998-07-01T23:59:59.000Z

    As thermal storage media, phase-change materials (PCMs) such as paraffin, eutectic salts, etc. offer an order-of-magnitude increase in thermal storage capacity, and their discharge is almost isothermal. By embedding PCMs in dypsum board, plaster, or other wall-covering materials, the building structure acquires latent storage properties. Structural elements containing PCMs can store large amounts of energy while maintaining the indoor temperature within a relatively narrow range. As heat storage takes place inside the building where the loads occur, rather than at a central exterior location, the internal loads are removed without the need for additional transport energy. Distributed latent storage can thus be used to reduce the peak power demand of a building, downsize the cooling system, and/or switch to low-energy cooling sources. The authors used RADCOOL, a thermal building simulation program based on the finite difference approach, to numerically evaluate the thermal performance of PCM wallboard coupled with mechanical night ventilation in office buildings offers the opportunity for system downsizing in climates where the outside air temperature drops below 18 C at night. In climates where the outside air temperature remains above 19 C at night, the use of PCM wallboard should be coupled with discharge mechanisms other than mechanical night ventilation with outside air.

  8. July 11 Public Meeting: Physical Characterization of Grid-Connected Commercial And Residential Building End-Use Equipment And Appliances

    Broader source: Energy.gov [DOE]

    These documents contain the three slide decks presented at the public meeting on the Physical Characterization of Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances, held on July 11, 2014 in Washington, DC.

  9. Charting a Path to Net Zero Energy: Public-Private Sector Perspectives of the Commercial Buildings Consortium

    E-Print Network [OSTI]

    Harris, J.

    2011-01-01T23:59:59.000Z

    Transforming the commercial buildings market to become "net-zero-energy-capable" will require dramatically lower levels of energy use sector wide. A comprehensive and concerted industry effort, partnering with utilities and government, must...

  10. VAV System Optimization through Continuous Commissioning in an Office Building

    E-Print Network [OSTI]

    Cho, Y.; Pang, X.; Liu, M.

    2007-01-01T23:59:59.000Z

    control Existing schedule: The existing control modulates the relief fan VFD to maintain the building pressure at its set-point (0.02 in.W.C). The relief damper is modulated according to the relief fan VFD speed. Table 3. Outside air damper.... AHU 2 serves the 3 rd , 4 th and 5 th floors. Both use similar control sequences, except that some parameter settings differ. The supply fans and relief fans have their respective VFD controls. One single-duct AHU system is shown in Figure 2...

  11. Building Technologies Office FY 2015 Budget At-A-Glance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartmentFebruaryResistanceBuilding EnergyEnergy 2015 Program5

  12. Building Technologies Office Overview - 2013 Peer Review | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartmentFebruaryResistanceBuilding EnergyEnergy 2015Energy

  13. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    sum to totals. Source: Energy Information Administration, Office of Energy Markets and End Use, Forms EIA-871A, C, and E of the 2003 Commercial Buildings Energy Consumption Survey....

  14. The Application and Energy Savings Potential of Occupancy Counters/Transmitters in Office Buildings

    E-Print Network [OSTI]

    Medlin, J. W.

    1987-01-01T23:59:59.000Z

    because the occupancy is below the design occupancy. In hot and humid climates, such as the Gulf Southwest, a considerable portion of the cooling energy in a commercial building is expended cooling and dehumidifying the air needed to maintain fresh air...

  15. Analysis of federal policy options for improving US lighting energy efficiency: Commercial and residential buildings

    SciTech Connect (OSTI)

    Atkinson, B.A.; McMahon, J.E.; Mills, E.; Chan, P.; Chan, T.W.; Eto, J.H.; Jennings, J.D.; Koomey, J.G.; Lo, K.W.; Lecar, M.; Price, L.; Rubinstein, F.; Sezgen, O.; Wenzel, T.

    1992-12-01T23:59:59.000Z

    The US Department of Energy (DOE) has recognized the opportunity to achieve energy, economic, and environmental benefits by promoting energy-efficient lighting through federal policies, including lighting standards, financial incentives, and information programs. To assist in this process, the Office of Conservation and Renewable Energy`s Office of Codes and Standards invited Lawrence Berkeley Laboratory to assess prospective national impacts for a variety of policy options. Some progress has already been made in developing lighting policies at both the federal and state levels. The US DOE`s Office of Building Technologies has evaluated lighting efficiency incentives as part of its analysis for the National Energy Strategy. Fluorescent and incandescent lamp standards are included in the national Energy Policy Act of 1992 (P.L. 102-486, October 24, 1992). A few states have analyzed or implemented lamp and luminaire standards. Many policy-related issues merit further investigation. For example, there is considerable debate over issues such as mandatory or voluntary standards versus component labeling and other education-oriented strategies. Several different technologies are involved that interact with each other-lamps (incandescent, compact fluorescent, and HID), ballasts (for fluorescent and HID lamps), and fixtures with reflectors and lenses. Control systems and operation patterns must also be considered (timers, automated dimming, or occupancy sensors). Lighting applications are diverse, ranging from offices, restaurants, hallways, hospital operating rooms, to exterior lights. Lighting energy use influences heating and cooling requirements in buildings. Successful lighting system design must also address interactions between architectural design elements and daylighting availability. Proper system installation and ongoing operation and maintenance are crucial. The economic aspects of the preceding points must also be considered for policy making.

  16. Analysis of federal policy options for improving US lighting energy efficiency: Commercial and residential buildings

    SciTech Connect (OSTI)

    Atkinson, B.A.; McMahon, J.E.; Mills, E.; Chan, P.; Chan, T.W.; Eto, J.H.; Jennings, J.D.; Koomey, J.G.; Lo, K.W.; Lecar, M.; Price, L.; Rubinstein, F.; Sezgen, O.; Wenzel, T.

    1992-12-01T23:59:59.000Z

    The US Department of Energy (DOE) has recognized the opportunity to achieve energy, economic, and environmental benefits by promoting energy-efficient lighting through federal policies, including lighting standards, financial incentives, and information programs. To assist in this process, the Office of Conservation and Renewable Energy's Office of Codes and Standards invited Lawrence Berkeley Laboratory to assess prospective national impacts for a variety of policy options. Some progress has already been made in developing lighting policies at both the federal and state levels. The US DOE's Office of Building Technologies has evaluated lighting efficiency incentives as part of its analysis for the National Energy Strategy. Fluorescent and incandescent lamp standards are included in the national Energy Policy Act of 1992 (P.L. 102-486, October 24, 1992). A few states have analyzed or implemented lamp and luminaire standards. Many policy-related issues merit further investigation. For example, there is considerable debate over issues such as mandatory or voluntary standards versus component labeling and other education-oriented strategies. Several different technologies are involved that interact with each other-lamps (incandescent, compact fluorescent, and HID), ballasts (for fluorescent and HID lamps), and fixtures with reflectors and lenses. Control systems and operation patterns must also be considered (timers, automated dimming, or occupancy sensors). Lighting applications are diverse, ranging from offices, restaurants, hallways, hospital operating rooms, to exterior lights. Lighting energy use influences heating and cooling requirements in buildings. Successful lighting system design must also address interactions between architectural design elements and daylighting availability. Proper system installation and ongoing operation and maintenance are crucial. The economic aspects of the preceding points must also be considered for policy making.

  17. Evaluating Energy Performance and Improvement Potential of China Office Buildings in the Hot Humid Climate Against U.S. Reference Buildings: Preprint

    SciTech Connect (OSTI)

    Herrman, L.; Deru, M.; Zhai, J.

    2010-08-01T23:59:59.000Z

    This study compares the building code standards for office buildings in hot humid climates of China and the USA. A benchmark office building model is developed for Guangzhou, China that meets China's minimum national and regional building codes with incorporation of common design and construction practices for the area. The Guangzhou office benchmark model is compared to the ASHRAE standard based US model for Houston, Texas which has similar climate conditions. The research further uses a building energy optimization tool to optimize the Chinese benchmark with existing US products to identify the primary areas for potential energy savings. The most significant energy-saving options are then presented as recommendations for potential improvements to current China building codes.

  18. ISO 50001 for Commercial Buildings: Lessons Learned From U.S. DOE Pilot Project: Preprint

    SciTech Connect (OSTI)

    Deru, M.; Field, K.; Punjabi, S.

    2014-08-01T23:59:59.000Z

    In the U.S., the ISO 50001 Standard, which establishes energy management systems (EnMSs) and processes, has shown uptake primarily in the industrial sector. The U.S. Department of Energy (DOE) undertook a pilot program to explore ISO 50001 implementation in commercial buildings. Eight organizations participated as pilots, with technical assistance provided by DOE, the National Renewable Energy Laboratory (NREL), the Lawrence Berkeley National Laboratory (LBNL), and the Georgia Institute of Technology (Georgia Tech). This paper shares important lessons learned from the pilot. Staff time was the most critical resource required to establish effective EnMSs in commercial buildings. The pilot also revealed that technical support and template/example materials were essential inputs. Crucial activities included evaluating performance, identifying goals, making connections, communicating operational controls, and tracking/reviewing progress. Benefits realized included enhanced intra-organizational connections, greater energy awareness, increased process efficiencies, and improved ability to make business cases. Incremental benefits for ISO 50001 certification were greater accountability, assurance of best practices, public relations opportunities, and potential to unlock verified savings credits or incentive money. Incremental certification costs included more staff/consultant time, money for certification, and a tendency to limit EnMS scope in order to ensure favorable audit results. Five best practices were identified - utilizing expert technical assistance, training, and other resources; focusing on implementation over documentation; keeping top management involved; considering organizational structure when selecting EnMS scope; and matching the implementation level to an EnMS's scope and scale. The last two practices are particularly relevant to the commercial buildings sector.

  19. 15% Above-Code Energy Efficiency Measures for Commercial Buildings in Texas

    E-Print Network [OSTI]

    Haberl, J. S.; Culp, C.; Yazdani, B.

    efficiency measures. In the pages that follow, 15% above-code measures for new commercial buildings are presented for the 41 non-attainment and affected counties in Texas, separated by climate area. Each page contains a description of the individual....6% $1,718 $18,135 $0 - $0 3 Occupancy Sensors Installation 11.5% $32,242 -3.6% -$576 $31,667 $26,500 - $28,000 4 Shading (none to 2.5 ft overhangs) 1.6% $3,261 2.4% $395 $3,656 $67,900 - $110,000 B HVAC System Measures 5 Cold Deck Reset 5.7% $4...

  20. Action-Oriented Benchmarking: Using the CEUS Database to Benchmark Commercial Buildings in California

    SciTech Connect (OSTI)

    Mathew, Paul; Mills, Evan; Bourassa, Norman; Brook, Martha

    2008-02-01T23:59:59.000Z

    The 2006 Commercial End Use Survey (CEUS) database developed by the California Energy Commission is a far richer source of energy end-use data for non-residential buildings than has previously been available and opens the possibility of creating new and more powerful energy benchmarking processes and tools. In this article--Part 2 of a two-part series--we describe the methodology and selected results from an action-oriented benchmarking approach using the new CEUS database. This approach goes beyond whole-building energy benchmarking to more advanced end-use and component-level benchmarking that enables users to identify and prioritize specific energy efficiency opportunities - an improvement on benchmarking tools typically in use today.

  1. Targeted Energy Efficiency Expert Evaluation (E4) Report: Iowa City Federal Building and U.S. Post Office, Iowa City, IA

    SciTech Connect (OSTI)

    Goddard, James K.; Fernandez, Nicholas; Underhill, Ronald M.; Gowri, Krishnan

    2013-03-01T23:59:59.000Z

    Final report summarizing Targeted E4 measures and energy savings analysis for the Iowa City Federal Building and Post Office.

  2. Review of Prior Commercial Building Energy Efficiency Retrofit Evaluation: A Report to Snohomish Public Utilities District

    SciTech Connect (OSTI)

    Price, Phillip

    2014-12-22T23:59:59.000Z

    Snohomish County Public Utilities District (the District or Snohomish PUD) provides electricity to about 325,000 customers in Snohomish County, Washington. The District has an incentive programs to encourage commercial customers to improve energy efficiency: the District partially reimburses the cost of approved retrofits if they provide a level of energy performance improvement that is specified by contract. In 2013 the District contracted with Lawrence Berkeley National Laboratory to provide a third-party review of the Monitoring and Verification (M&V) practices the District uses to evaluate whether companies are meeting their contractual obligations. This work helps LBNL understand the challenges faced by real-world practitioners of M&V of energy savings, and builds on a body of related work such as Price et al. (2013). The District selected a typical project for which they had already performed an evaluation. The present report includes the District's original evaluation as well as LBNL's review of their approach. The review is based on the document itself; on investigation of the load data and outdoor air temperature data from the building evaluated in the document; and on phone discussions with Bill Harris of the Snohomish County Public Utilities District. We will call the building studied in the document the subject building, the original Snohomish PUD report will be referred to as the Evaluation, and this discussion by LBNL is called the Review.

  3. Plug-Load Control and Behavioral Change Research in GSA Office Buildings

    SciTech Connect (OSTI)

    Metzger, I.; Cutler, D.; Sheppy, M.

    2012-10-01T23:59:59.000Z

    The U.S. General Services Administration (GSA) owns and leases over 354 million square feet (ft2) of space in over 9,600 buildings [1]. GSA is a leader among federal agencies in aggressively pursuing energy efficiency (EE) opportunities for its facilities and installing renewable energy (RE) systems to provide heating, cooling, and power to these facilities. According to several energy assessments of GSA's buildings conducted by the National Renewable Energy Laboratory (NREL), plug-loads account for approximately 21% of the total electricity consumed within a standard GSA Region 3 office building. This study aims to provide insight on how to effectively manage plug-load energy consumption and attain higher energy and cost savings for plug-loads. As GSA improves the efficiency of its building stock, plug-loads will become an even greater portion of its energy footprint.

  4. Evaluating the energy performance of the first generation of LEED-certified commercial buildings

    E-Print Network [OSTI]

    Diamond, Rick

    2011-01-01T23:59:59.000Z

    The Federal Commitment to Green Building: Experiences andEvaluation Report. Cascadia Green Building Council.U.S. Green Building Council (USGBC). 2003. "Green Building

  5. A prototype toolkit for evaluating indoor environmental quality in commercial buildings

    E-Print Network [OSTI]

    Heinzerling, David; Webster, Tom; Schiavon, Stefano; Anwar, George; Dickerhoff, Darryl

    2013-01-01T23:59:59.000Z

    more tolerant of “green” buildings? Building Research &Korkmaz S. Effects of green buildings on employee health andcosts and financial benefits of green buildings: a report to

  6. COMPREHENSIVE DIAGNOSTIC AND IMPROVEMENT TOOLS FOR HVAC-SYSTEM INSTALLATIONS IN LIGHT COMMERCIAL BUILDINGS

    SciTech Connect (OSTI)

    Abram Conant; Mark Modera; Joe Pira; John Proctor; Mike Gebbie

    2004-10-31T23:59:59.000Z

    Proctor Engineering Group, Ltd. (PEG) and Carrier-Aeroseal LLP performed an investigation of opportunities for improving air conditioning and heating system performance in existing light commercial buildings. Comprehensive diagnostic and improvement tools were created to address equipment performance parameters (including airflow, refrigerant charge, and economizer operation), duct-system performance (including duct leakage, zonal flows and thermal-energy delivery), and combustion appliance safety within these buildings. This investigation, sponsored by the National Energy Technology Laboratory, a division of the U.S. Department of Energy, involved collaboration between PEG and Aeroseal in order to refine three technologies previously developed for the residential market: (1) an aerosol-based duct sealing technology that allows the ducts to be sealed remotely (i.e., without removing the ceiling tiles), (2) a computer-driven diagnostic and improvement-tracking tool for residential duct installations, and (3) an integrated diagnosis verification and customer satisfaction system utilizing a combined computer/human expert system for HVAC performance. Prior to this work the aerosol-sealing technology was virtually untested in the light commercial sector--mostly because the savings potential and practicality of this or any other type of duct sealing had not been documented. Based upon the field experiences of PEG and Aeroseal, the overall product was tailored to suit the skill sets of typical HVAC-contractor personnel.

  7. CAN SORBENT-BASED GAS PHASE AIR CLEANING FOR VOCS SUBSTITUTE FOR VENTILATION IN COMMERCIAL BUILDINGS?

    SciTech Connect (OSTI)

    Fisk, William; Fisk, William J.

    2007-08-01T23:59:59.000Z

    This paper reviews current knowledge about the suitability of sorbent-based air cleaning for removing volatile organic compounds (VOCs) from the air in commercial buildings, as needed to enable reductions in ventilation rates and associated energy savings. The principles of sorbent air cleaning are introduced, criteria are suggested for sorbent systems that can counteract indoor VOC concentration increases from reduced ventilation, major findings from research on sorbent performance for this application are summarized, and related priority research needs are identified. Major conclusions include: sorbent systems can remove a broad range of VOCs with moderate to high efficiency, sorbent technologies perform effectively when challenged with VOCs at the low concentrations present indoors, and there is a large uncertainty about the lifetime and associated costs of sorbent air cleaning systems when used in commercial buildings for indoor VOC control. Suggested priority research includes: experiments to determine sorbent system VOC removal efficiencies and lifetimes considering the broad range and low concentration of VOCs indoors; evaluations of in-situ regeneration of sorbents; and an updated analysis of the cost of sorbent air cleaning relative to the cost of ventilation.

  8. Sorbent-Based Gas Phase Air Cleaning for VOCs in CommercialBuildings

    SciTech Connect (OSTI)

    Fisk, William J.

    2006-05-01T23:59:59.000Z

    This paper provides a review of current knowledge about the suitability of sorbent-based air cleaning for removing volatile organic compounds (VOCs) from the air in commercial buildings as needed to enable reductions in ventilation rates and associated energy savings. The fundamental principles of sorbent air cleaning are introduced, criteria are suggested for sorbent systems that can counteract indoor VOC concentration increases from reduced ventilation, major findings from research on sorbent performance for this application are summarized, novel sorbent technologies are described, and related priority research needs are identified. Major conclusions include: sorbent systems can remove a broad range of VOCs with moderate to high efficiency, sorbent technologies perform effectively when challenged with VOCs at the low concentrations present indoors, and there is a large uncertainty about the lifetime and associated costs of sorbent air cleaning systems when used in commercial buildings for indoor VOC control. Suggested priority research includes: experiments to determine sorbent system VOC removal efficiencies and lifetimes considering the broad range and low concentration of VOCs indoors; evaluations of in-situ regeneration of sorbents; and an updated analysis of the cost of sorbent air cleaning relative to the cost of ventilation.

  9. Proceedings of the 8th International Conference on Durability of Building Materials and Components, May 30 -June

    E-Print Network [OSTI]

    .S. Environmental Protection Agency, Office of Atmospheric Programs, Atmospheric Pollution Prevention Division. Selkowitz Commercial Building Systems Building Technologies Department Environmental Energy TechnologiesLBNL-43136 LC-401 Proceedings of the 8th International Conference on Durability of Building

  10. Presented at the International Conference for Enhanced Building Operations, July 16-19, 2001 in Austin, TX This work was partially supported by the U.S. General Services Administration, the California Energy Commission,

    E-Print Network [OSTI]

    and Weather Sensitivity in Large California Commercial Office Buildings Satkartar Kinney, Mary Ann Piette;Demand Relief and Weather Sensitivity in Large California Commercial Office Buildings Satkartar Kinney of research has examined the weather sensitivity of energy consumption in commercial buildings; however

  11. Alternative Formats to Achieve More Efficient Energy Codes for Commercial Buildings

    SciTech Connect (OSTI)

    Conover, David R.; Rosenberg, Michael I.; Halverson, Mark A.; Taylor, Zachary T.; Makela, Eric J.

    2013-01-26T23:59:59.000Z

    This paper identifies and examines several formats or structures that could be used to create the next generation of more efficient energy codes and standards for commercial buildings. Pacific Northwest National Laboratory (PNNL) is funded by the U.S. Department of Energy’s Building Energy Codes Program (BECP) to provide technical support to the development of ANSI/ASHRAE/IES Standard 90.1. While the majority of PNNL’s ASHRAE Standard 90.1 support focuses on developing and evaluating new requirements, a portion of its work involves consideration of the format of energy standards. In its current working plan, the ASHRAE 90.1 committee has approved an energy goal of 50% improvement in Standard 90.1-2013 relative to Standard 90.1-2004, and will likely be considering higher improvement targets for future versions of the standard. To cost-effectively achieve the 50% goal in manner that can gain stakeholder consensus, formats other than prescriptive must be considered. Alternative formats that include reducing the reliance on prescriptive requirements may make it easier to achieve these aggressive efficiency levels in new codes and standards. The focus on energy code and standard formats is meant to explore approaches to presenting the criteria that will foster compliance, enhance verification, and stimulate innovation while saving energy in buildings. New formats may also make it easier for building designers and owners to design and build the levels of efficiency called for in the new codes and standards. This paper examines a number of potential formats and structures, including prescriptive, performance-based (with sub-formats of performance equivalency and performance targets), capacity constraint-based, and outcome-based. The paper also discusses the pros and cons of each format from the viewpoint of code users and of code enforcers.

  12. An annotated bibliography of completed and in-progress behavioral research for the Office of Buildings and Community Systems. [About 1000 items, usually with abstracts

    SciTech Connect (OSTI)

    Weijo, R.O.; Roberson, B.F.; Eckert, R.; Anderson, M.R.

    1988-05-01T23:59:59.000Z

    This report provides an annotated bibliography of completed and in-progress consumer decision research useful for technology transfer and commercialization planning by the US Department of Energy's (DOE) Office of Buildings and Community Systems (OBCS). This report attempts to integrate the consumer research studies conducted across several public and private organizations over the last four to five years. Some of the sources of studies included in this annotated bibliography are DOE National Laboratories, public and private utilities, trade associations, states, and nonprofit organizations. This study divides the articles identified in this annotated bibliography into sections that are consistent with or similar to the system of organization used by OBCS.

  13. Commercial Weatherization

    Broader source: Energy.gov [DOE]

    Commercial buildings consume 19 percent of the energy used in the U.S. Learn how the Energy Department is supporting research and deployment on commercial weatherization.

  14. Commercial Lighting

    Broader source: Energy.gov [DOE]

    Commercial lighting accounts for more than 20 percent of total commercial building energy use. The Energy Department works to reduce lighting energy use through research and deployment.

  15. EA-2001: Energy Efficiency Design Standards: New Federal Commercial and Multi-Family High-Rise Residential Buildings and New Federal Low-Rise Residential Buildings

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) is publishing this final rule to implement provisions in the Energy Conservation and Production Act (ECPA) that require DOE to update the baseline Federal energy efficiency performance standards for the construction of new Federal commercial and multi-family high-rise residential buildings. This rule updates the baseline Federal commercial standard to the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) Standard 90.1-2013.

  16. A Meta-Analysis of Energy Savings from Lighting Controls in Commercial Buildings

    E-Print Network [OSTI]

    Williams, Alison

    2012-01-01T23:59:59.000Z

    Efficiency and Renewable Energy, Building TechnologiesEfficiency and Renewable Energy, Building Technologies

  17. Quantifying National Energy Savings Potential of Lighting Controls in Commercial Buildings

    E-Print Network [OSTI]

    Williams, Alison

    2013-01-01T23:59:59.000Z

    Efficiency and Renewable Energy, Building TechnologiesEfficiency and Renewable Energy, Building Technologies

  18. Sorbent-Based Gas Phase Air Cleaning for VOCs in Commercial Buildings

    E-Print Network [OSTI]

    Fisk, William J.

    2006-01-01T23:59:59.000Z

    Efficiency and Renewable Energy, Building TechnologiesEfficiency and Renewable Energy, Building Technologies

  19. Accuracy of CO2 sensors in commercial buildings: a pilot study

    E-Print Network [OSTI]

    Fisk, William J.; Faulkner, David; Sullivan, Douglas P.

    2006-01-01T23:59:59.000Z

    Efficiency and Renewable Energy, Building TechnologiesEfficiency and Renewable Energy, Building Technologies

  20. Technology data characterizing space conditioning in commercial buildings: Application to end-use forecasting with COMMEND 4.0

    SciTech Connect (OSTI)

    Sezgen, O.; Franconi, E.M.; Koomey, J.G.; Greenberg, S.E.; Afzal, A.; Shown, L.

    1995-12-01T23:59:59.000Z

    In the US, energy consumption is increasing most rapidly in the commercial sector. Consequently, the commercial sector is becoming an increasingly important target for state and federal energy policies and also for utility-sponsored demand side management (DSM) programs. The rapid growth in commercial-sector energy consumption also makes it important for analysts working on energy policy and DSM issues to have access to energy end-use forecasting models that include more detailed representations of energy-using technologies in the commercial sector. These new forecasting models disaggregate energy consumption not only by fuel type, end use, and building type, but also by specific technology. The disaggregation of space conditioning end uses in terms of specific technologies is complicated by several factors. First, the number of configurations of heating, ventilating, and air conditioning (HVAC) systems and heating and cooling plants is very large. Second, the properties of the building envelope are an integral part of a building`s HVAC energy consumption characteristics. Third, the characteristics of commercial buildings vary greatly by building type. The Electric Power Research Institute`s (EPRI`s) Commercial End-Use Planning System (COMMEND 4.0) and the associated data development presented in this report attempt to address the above complications and create a consistent forecasting framework. This report describes the process by which the authors collected space-conditioning technology data and then mapped it into the COMMEND 4.0 input format. The data are also generally applicable to other end-use forecasting frameworks for the commercial sector.