Sample records for office ccs carbon

  1. Mountaineer Commerical Scale Carbon Capture and Storage (CCS) Project

    SciTech Connect (OSTI)

    Deanna Gilliland; Matthew Usher

    2011-12-31T23:59:59.000Z

    The Final Technical documents all work performed during the award period on the Mountaineer Commercial Scale Carbon Capture & Storage project. This report presents the findings and conclusions produced as a consequence of this work. As identified in the Cooperative Agreement DE-FE0002673, AEP's objective of the Mountaineer Commercial Scale Carbon Capture and Storage (MT CCS II) project is to design, build and operate a commercial scale carbon capture and storage (CCS) system capable of treating a nominal 235 MWe slip stream of flue gas from the outlet duct of the Flue Gas Desulfurization (FGD) system at AEP's Mountaineer Power Plant (Mountaineer Plant), a 1300 MWe coal-fired generating station in New Haven, WV. The CCS system is designed to capture 90% of the CO{sub 2} from the incoming flue gas using the Alstom Chilled Ammonia Process (CAP) and compress, transport, inject and store 1.5 million tonnes per year of the captured CO{sub 2} in deep saline reservoirs. Specific Project Objectives include: (1) Achieve a minimum of 90% carbon capture efficiency during steady-state operations; (2) Demonstrate progress toward capture and storage at less than a 35% increase in cost of electricity (COE); (3) Store CO{sub 2} at a rate of 1.5 million tonnes per year in deep saline reservoirs; and (4) Demonstrate commercial technology readiness of the integrated CO{sub 2} capture and storage system.

  2. Introduction! Carbon capture and storage (CCS) may be a key option

    E-Print Network [OSTI]

    Boyer, Edmond

    Introduction! Carbon capture and storage (CCS) may be a key option against climate change). A scalable infrastructure model for carbon capture and storage: SimCCS. Energy Policy 37(3), 1052. Considering a couple of plausible scenarios for the future of the technology in the country, do we find any

  3. Carbon Capture and Storage Database (CCS) from DOE's National Energy Technology Laboratory (NETL)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    NETL's Carbon Capture and Storage (CCS) Database includes active, proposed, canceled, and terminated CCS projects worldwide. Information in the database regarding technologies being developed for capture, evaluation of sites for carbon dioxide (CO2) storage, estimation of project costs, and anticipated dates of completion is sourced from publically available information. The CCS Database provides the public with information regarding efforts by various industries, public groups, and governments towards development and eventual deployment of CCS technology. The database contains more than 260 CCS projects worldwide in more than 30 countries across 6 continents. Access to the database requires use of Google Earth, as the NETL CCS database is a layer in Google Earth. Or, users can download a copy of the database in MS-Excel directly from the NETL website.

  4. A Strategy for Carbon Capture and Storage (CCS) in the United...

    Open Energy Info (EERE)

    A Strategy for Carbon Capture and Storage (CCS) in the United Kingdom and Beyond Jump to: navigation, search Tool Summary LAUNCH TOOL Name: A Strategy for Carbon Capture and...

  5. s.haszeldine@ed.ac.uk CCS Scotland, 14 May 2008 Cross Party Group Sci Tech,. Holyrood 1 Carbon Capture and Storage

    E-Print Network [OSTI]

    Haszeldine, Stuart

    ,. Holyrood 7 CCS worldwide potential: very big Deep saline aquifers 400 - 10,000 Gt (16 - 400yr) Oil and gass.haszeldine@ed.ac.uk CCS Scotland, 14 May 2008 Cross Party Group Sci Tech,. Holyrood 1 Carbon projection CO2 rate of emission rising Emissions, CCS, Scotland #12;s.haszeldine@ed.ac.uk CCS Scotland, 14

  6. Marine transportation for Carbon Capture and Sequestration (CCS)

    E-Print Network [OSTI]

    Alexandrakis, Mary-Irene

    2010-01-01T23:59:59.000Z

    The objective of this report is to determine whether opportunities to use liquefied carbon dioxide carriers as part of a carbon capture and storage system will exist over the next twenty years. Factors that encourage or ...

  7. EIS-0464: Lake Charles Carbon Capture and Storage (CCS) Project...

    Broader source: Energy.gov (indexed) [DOE]

    for an award of financial assistance through a competitive process under the Industrial Carbon Capture and Sequestration Program. Public Comment Opportunities None available at...

  8. Carbon Capture and Storage (CCS) and Community Engagement | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpen EnergyCallawayCapara Energia S A JumpOpenCarbon

  9. The Mississippi CCS Project

    SciTech Connect (OSTI)

    Doug Cathro

    2010-09-30T23:59:59.000Z

    The Mississippi CCS Project is a proposed large-scale industrial carbon capture and sequestration (CCS) project which would have demonstrated advanced technologies to capture and sequester carbon dioxide (CO{sub 2}) emissions from industrial sources into underground formations. Specifically, the Mississippi CCS Project was to accelerate commercialization of large-scale CO{sub 2} storage from industrial sources by leveraging synergy between a proposed petcoke to Substitute Natural Gas (SNG) plant that is selected for a Federal Loan Guarantee and would be the largest integrated anthropogenic CO{sub 2} capture, transport, and monitored sequestration program in the U.S. Gulf Coast Region. The Mississippi CCS Project was to promote the expansion of enhanced oil recovery (EOR) in the Mississippi, Alabama and Louisiana region which would supply greater energy security through increased domestic energy production. The capture, compression, pipeline, injection, and monitoring infrastructure would have continued to sequester CO{sub 2} for many years after the completion of the term of the DOE agreement. The objectives of this project were expected to be fulfilled through two distinct phases. The overall objective of Phase 1 was to develop a fully definitive project basis for a competitive Renewal Application process to proceed into Phase 2 - Design, Construction and Operations. Phase 1 included the studies that establish the engineering design basis for the capture, compression and transportation of CO{sub 2} from the MG SNG Project, and the criteria and specifications for a monitoring, verification and accounting (MVA) plan at the Soso oil field in Mississippi. The overall objective of Phase 2, was to execute design, construction and operations of three capital projects: the CO{sub 2} capture and compression equipment, the Mississippi CO{sub 2} Pipeline to Denbury's Free State Pipeline, and an MVA system at the Soso oil field.

  10. EIS-0464: Lake Charles Carbon Capture and Storage (CCS) Project in Calcasieu Parish, Louisiana

    Broader source: Energy.gov [DOE]

    This EIS evaluates the potential environmental impacts of providing financial assistance for the construction and operation of a project proposed by Leucadia Energy, LLC. DOE selected this project for an award of financial assistance through a competitive process under the Industrial Carbon Capture and Sequestration Program.

  11. Rethinking CCS - strategies for technology development in times of uncertainty

    E-Print Network [OSTI]

    Eide, Jan

    2013-01-01T23:59:59.000Z

    Concerns over climate change and a reliance on CO?-emitting fossil fuels for a majority of the world's energy supply have motivated the development of carbon dioxide capture and storage (CCS). However, CCS is not yet ...

  12. Regulatory Promotion of Emergent CCS Technology

    SciTech Connect (OSTI)

    Davies, Lincoln; Uchitel, Kirsten; Johnson, David

    2014-01-01T23:59:59.000Z

    Despite the growing inevitability of climate change and the attendant need for mitigation strategies, carbon capture and sequestration (CCS) has yet to gain much traction in the United States. Recent regulatory proposals by the U.S. Environmental Protection Agency (EPA), limited in scope to new-build power plants, represent the only significant policy initiative intended to mandate diffusion of CCS technology. Phase I of this Project assessed barriers to CCS deployment as prioritized by the CCS community. That research concluded that there were four primary barriers: (1) cost, (2) lack of a carbon price, (3) liability, and (4) lack of a comprehensive regulatory regime. Phase II of this Project, as presented in this Report, assesses potential regulatory models for CCS and examines where those models address the hurdles to diffusing CCS technology identified in Phase I. It concludes (1) that a CCS-specific but flexible standard, such as a technology performance standard or a very particular type of market-based regulation, likely will promote CCS diffusion, and (2) that these policies cannot work alone, but rather, should be combined with other measures, such as liability limits and a comprehensive CCS regulatory regime.

  13. India's challenge of improving the living standards of its growing population through a low-emission development calls for early adaptation of carbon capture and storage (CCS) though the available

    E-Print Network [OSTI]

    -emission development calls for early adaptation of carbon capture and storage (CCS) though the available storage, sequestration or overseas shipment of CO .2 Rudra Kapila and Jon Gibbins getting India ready for carbon capture to become clearer, and the only way to contain it is, if fossil fuels are used, to employ carbon capture

  14. China's Energy and Carbon Emissions Outlook to 2050

    E-Print Network [OSTI]

    Zhou, Nan

    2011-01-01T23:59:59.000Z

    commercialization of carbon capture and sequestration (CCS)commercialization of carbon capture and sequestration (CCS)of installing carbon capture and sequestration (CCS)

  15. A Low-Carbon Fuel Standard for California Part 2: Policy Analysis

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    If carbon capture and storage (CCS) technologies that are12: If carbon capture and storage (CCS) technologies thatof carbon capture and storage (CCS) technologies that are

  16. A Low-Carbon Fuel Standard for California, Part 2: Policy Analysis

    E-Print Network [OSTI]

    Farrell, Alexander; Sperling, Daniel

    2007-01-01T23:59:59.000Z

    If carbon capture and storage (CCS) technologies that are12: If carbon capture and storage (CCS) technologies thatof carbon capture and storage (CCS) technologies that are

  17. The Lake Charles CCS Project

    SciTech Connect (OSTI)

    Doug Cathro

    2010-06-30T23:59:59.000Z

    The Lake Charles CCS Project is a large-scale industrial carbon capture and sequestration (CCS) project which will demonstrate advanced technologies that capture and sequester carbon dioxide (CO{sub 2}) emissions from industrial sources into underground formations. Specifically the Lake Charles CCS Project will accelerate commercialization of large-scale CO{sub 2} storage from industrial sources by leveraging synergy between a proposed petroleum coke to chemicals plant (the LCC Gasification Project) and the largest integrated anthropogenic CO{sub 2} capture, transport, and monitored sequestration program in the U.S. Gulf Coast Region. The Lake Charles CCS Project will promote the expansion of EOR in Texas and Louisiana and supply greater energy security by expanding domestic energy supplies. The capture, compression, pipeline, injection, and monitoring infrastructure will continue to sequester CO{sub 2} for many years after the completion of the term of the DOE agreement. The objectives of this project are expected to be fulfilled by working through two distinct phases. The overall objective of Phase 1 was to develop a fully definitive project basis for a competitive Renewal Application process to proceed into Phase 2 - Design, Construction and Operations. Phase 1 includes the studies attached hereto that will establish: the engineering design basis for the capture, compression and transportation of CO{sub 2} from the LCC Gasification Project, and the criteria and specifications for a monitoring, verification and accounting (MVA) plan at the Hastings oil field in Texas. The overall objective of Phase 2, provided a successful competitive down-selection, is to execute design, construction and operations of three capital projects: (1) the CO{sub 2} capture and compression equipment, (2) a Connector Pipeline from the LLC Gasification Project to the Green Pipeline owned by Denbury and an affiliate of Denbury, and (3) a comprehensive MVA system at the Hastings oil field.

  18. Carbon Trading Protocols for Geologic Sequestration

    E-Print Network [OSTI]

    Hoversten, Shanna

    2009-01-01T23:59:59.000Z

    H. , 2005, IPCC: Carbon Capture and Storage: Technical05CH11231. INTRODUCTION Carbon capture and storage (CCS)Development Mechanism CCS: Carbon Capture and Storage C02e:

  19. Microsoft PowerPoint - CCS Forum 9-8-2010 final.pptx

    Broader source: Energy.gov (indexed) [DOE]

    Roadmap for Carbon Capture and Sequestration CCS Forum University of Charleston Charleston, West Virginia 8 September, 2010 America has abundant coal resources Coal will continue...

  20. Methanation of Carbon Dioxide

    E-Print Network [OSTI]

    Goodman, Daniel Jacob

    2013-01-01T23:59:59.000Z

    cycle plants, possibly with carbon capture and storage (CCS)natural gas plant with carbon capture and storage technology

  1. Methanation of Carbon Dioxide

    E-Print Network [OSTI]

    Goodman, Daniel Jacob

    2013-01-01T23:59:59.000Z

    gas plant with carbon capture and storage technology werewith carbon capture and storage (CCS) technology, to replace

  2. The Role of CCS as a Mitigation Technology and Challenges to its Commercialization

    E-Print Network [OSTI]

    industrial facilities and power plants, carbon capture and storage (CCS) is expected to play an important to be close substitutes for technologies that serve the needs of a low-carbon economy in the latter halfThe Role of CCS as a Mitigation Technology and Challenges to its Commercialization by Sadia P

  3. ER 100/200, PP C184/284 GSI Section Notes Energy & Society b Week 14: CCS and Renewables

    E-Print Network [OSTI]

    Kammen, Daniel M.

    _____________________________________________________________________________________ I. Carbon Capture and Sequestration Carbon Capture and Storage (CCS) is a technology that can formations. First, capture technologies allow the separation of carbon dioxide from gases produced. Carbon Capture and Sequestration (CCS) II. Geothermal Energy III. Integration of Renewables to the Grid

  4. Recovery Act: 'Carbonsheds' as a Framework for Optimizing United States Carbon Capture and Storage (CCS) Pipeline Transport on a Regional to National Scale

    SciTech Connect (OSTI)

    Pratson, Lincoln

    2012-11-30T23:59:59.000Z

    Carbonsheds are regions in which the estimated cost of transporting CO{sub 2} from any (plant) location in the region to the storage site it encompasses is cheaper than piping the CO{sub 2} to a storage site outside the region. We use carbonsheds to analyze the cost of transport and storage of CO{sub 2} in deploying CCS on land and offshore of the continental U.S. We find that onshore the average cost of transport and storage within carbonsheds is roughly $10/t when sources cooperate to reduce transport costs, with the costs increasing as storage options are depleted over time. Offshore transport and storage costs by comparison are found to be roughly twice as expensive but t may still be attractive because of easier access to property rights for sub-seafloor storage as well as a simpler regulatory system, and possibly lower MMV requirements, at least in the deep-ocean where pressures and temperatures would keep the CO{sub 2} negatively buoyant. Agent-based modeling of CCS deployment within carbonsheds under various policy scenarios suggests that the most cost-effective strategy at this point in time is to focus detailed geology characterization of storage potential on only the largest onshore reservoirs where the potential for mitigating emissions is greatest and the cost of storage appears that it will be among the cheapest.

  5. Organized Research Unit (ORU) on Carbon Capture and Sequestration: Meeting the Needs of the Energy Sector

    E-Print Network [OSTI]

    Zhou, Chongwu

    Organized Research Unit (ORU) on Carbon Capture and Sequestration: Meeting the Needs of the Energy of an Organized Research Unit (ORU) on Carbon Capture and Sequestration (CCS). The purpose of this effort Frontier Research Center proposal: "Integrated Science of Geological Carbon Sequestration" to BES office

  6. Rethinking CCS -Strategies for Technology Development in Times of Uncertainty MIT Energy Initiative

    E-Print Network [OSTI]

    to be supplied by fossil fuels. The growing demand for energy, and particularly fossil-fuel fired electricity for CCS technologies that can provide low-carbon electricity from fossil fuels. Electricity generation from renewables received $64 billion in subsidies in 2011 worldwide3 , and a global CCS demonstration

  7. Methods and MeasuresMethods and Measures for CCS Costsfor CCS Costs

    E-Print Network [OSTI]

    1 Methods and MeasuresMethods and Measures for CCS Costsfor CCS Costs Edward S. Rubin Department, Pennsylvania Presentation to the CCS Cost Workshop Paris, France March 22, 2011 E.S. Rubin, Carnegie Mellon Outline of TalkOutline of Talk · What measures of CCS cost are most useful? · What methods are used

  8. The role of Life Cycle Assessment in identifying and reducing environmental impacts of CCS

    SciTech Connect (OSTI)

    Sathre, Roger; Masanet, Eric; Cain, Jennifer; Chester, Mikhail

    2011-04-20T23:59:59.000Z

    Life Cycle Assessment (LCA) should be used to assist carbon capture and sequestration (CCS) planners to reduce greenhouse gas (GHG) emissions and avoid unintended environmental trade-offs. LCA is an analytical framework for determining environmental impacts resulting from processes, products, and services. All life cycle stages are evaluated including raw material sourcing, processing, operation, maintenance, and component end-of-life, as well as intermediate stages such as transportation. In recent years a growing number of LCA studies have analyzed CCS systems. We reviewed 50+ LCA studies, and selected 11 studies that compared the environmental performance of 23 electric power plants with and without CCS. Here we summarize and interpret the findings of these studies. Regarding overall climatemitigation effectiveness of CCS, we distinguish between the capture percentage of carbon in the fuels, the net carbon dioxide (CO2) emission reduction, and the net GHG emission reduction. We also identify trade-offs between the climate benefits and the potential increased non-climate impacts of CCS. Emissions of non-CO2 flue gases such as NOx may increase due to the greater throughput of fuel, and toxicity issues may arise due to the use of monoethanolamine (MEA) capture solvent, resulting in ecological and human health impacts. We discuss areas where improvements in LCA data or methods are needed. The decision to implement CCS should be based on knowledge of the overall environmental impacts of the technologies, not just their carbon capture effectiveness. LCA will be an important tool in providing that knowledge.

  9. Techno-Economic Models for Carbon Dioxide Compression, Transport, and Storage & Correlations for Estimating Carbon Dioxide Density and Viscosity

    E-Print Network [OSTI]

    McCollum, David L; Ogden, Joan M

    2006-01-01T23:59:59.000Z

    research in the field of carbon capture and storage (CCS)heightened interest in carbon capture and storage (CCS) as areservoirs. To be sure, carbon capture and sequestration is

  10. Carbon Capture and Storage (CCS) Studies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platformBuilding RemovalCSS Letter -SeptemberWorkshop |Capturing WasteMultiple

  11. Planning Proofs of Correctness of CCS Systems 

    E-Print Network [OSTI]

    Monroy-Borja, Raul

    The specification and verification of communicating systems has captured increasing interest in the last decades. CCS, a Calculus of Communicating Systems [Milner 89a], was especially designed to help this enterprise; it is widely used in both...

  12. China's Energy and Carbon Emissions Outlook to 2050

    E-Print Network [OSTI]

    Zhou, Nan

    2011-01-01T23:59:59.000Z

    installing carbon capture and sequestration (CCS) technologycapture of carbon emissions for pre- and post-combustion technologiescapture of carbon emissions for pre- and post-combustion technologies

  13. Vehicle Technologies Office: Long-Term Lightweight Materials Research (Magnesium and Carbon Fiber)

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office supports research into magnesium and carbon fiber reinforced composites, which could reduce the weight of some components by 50-75 percent in the long-term.

  14. Vehicle Technologies Office Merit Review 2015: Novel Non-Carbonate Based Electrolytes for Silicon Anodes

    Broader source: Energy.gov [DOE]

    Presentation given by Wildcat Discovery at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about novel non-carbonate based...

  15. Office of the Vice President for Research UGA IACUC Policy on Rodent Euthanasia using Carbon Dioxide

    E-Print Network [OSTI]

    Arnold, Jonathan

    Office of the Vice President for Research UGA IACUC Policy on Rodent Euthanasia using Carbon with this guidance and to ensure effective euthanasia of rodents used in research. Rodents must be euthanized source of carbon dioxide for euthanasia. The use of compressed gas and handling gas cylinders can

  16. Examining CCS deployment potential in China via application of an integrated CCS cost curve

    SciTech Connect (OSTI)

    Dahowski, Robert T.; Davidson, Casie L.; Li, Xiaochun; Wei, Ning

    2013-06-01T23:59:59.000Z

    Cost curves focusing on CO2 transport and storage have been previously published and used to help establish the large potential for CCS technologies to deploy in China. This paper examines the results from recent work to incorporate the costs of CO2 capture and compression within integrated cost curves that better reflect the complete costs and therefore possible value of CCS. Results show that significant potential exists for large-scale deployment of CCS at costs less than $70/tCO2. Mapping of the cost curve results confirms that the majority of existing CO2 point sources may be able to utilize CCS technologies, and that - except for many sources in southern China - onshore storage capacity appears accessible and sufficient for decades of large-scale deployment.

  17. CCS Project Permit Acquisition Protocols

    SciTech Connect (OSTI)

    Lee, Si-Yong; Zaluski, Wade; Matthews, Vince; McPherson, Brian

    2013-06-30T23:59:59.000Z

    Geologic carbon storage projects require a vast range of permits prior to deployment. These include land-access permits, drilling permits, seismic survey permits, underground injection control permits, and any number of local and state permits, depending on the location of the project. For the “Characterization of Most Promising Sequestration Formations in the Rocky Mountain Region” (RMCCS) project in particular, critical permits included site access permits, seismic survey permits, and drilling permits for the characterization well. Permits for these and other activities were acquired either prior to or during the project.

  18. A Low-Carbon Fuel Standard for California, Part 2: Policy Analysis

    E-Print Network [OSTI]

    Farrell, Alexander; Sperling, Daniel

    2007-01-01T23:59:59.000Z

    61 4.3 Carbon capture andPart II: Policy Analysis Page 5 R12: Carbon capture andstorage If carbon capture and storage (CCS) technologies

  19. Calcifying Cyanobacteria - The potential of biomineralization for Carbon Capture and Storage

    E-Print Network [OSTI]

    Jansson, Christer G

    2010-01-01T23:59:59.000Z

    Herzog H, Golomb D: Carbon Capture and Storage from Fossil for point-source carbon capture and sequestration. Althoughof renewable biofuels, and carbon capture and storage (CCS).

  20. A Low-Carbon Fuel Standard for California Part 2: Policy Analysis

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    61 4.3 Carbon capture andPart II: Policy Analysis Page 5 R12: Carbon capture andstorage If carbon capture and storage (CCS) technologies

  1. The role of optimality in characterizing CO2 seepage from geological carbon sequestration sites

    E-Print Network [OSTI]

    Cortis, Andrea

    2009-01-01T23:59:59.000Z

    Clim. Change 2002. Workshop carbon capture storage. Proc.this concern, various Carbon Capture and Storage (CCS)Special Report on carbon dioxide capture and storage, ISBN

  2. China's Energy and Carbon Emissions Outlook to 2050

    E-Print Network [OSTI]

    Zhou, Nan

    2011-01-01T23:59:59.000Z

    potential impact of carbon capture and sequestration (CCS).CCS base case Efficiency Scenario Figure 65 Power Sector CO 2 Emissions under Three Scenarios The total national emissions mitigation potential

  3. March 2005 Number 238 CARBON CAPTURE AND

    E-Print Network [OSTI]

    Mather, Tamsin A.

    March 2005 Number 238 CARBON CAPTURE AND STORAGE (CCS) As part of the government's global strategy. This POSTnote discusses the potential of carbon capture and storage (CCS), a method of carbon sequestration2 and will be included in the forthcoming Department of Trade and Industry (DTI) Carbon Abatement Technology Strategy

  4. Worker safety in a mature carbon capture and storage industry in the United States based upon analog industry experience

    E-Print Network [OSTI]

    Jordan, P.D.

    2014-01-01T23:59:59.000Z

    attributable to carbon capture and storage in 2050.safety in a mature carbon capture and storage industry insafety in a mature carbon capture and storage (CCS) industry

  5. EIS-0366: Implementation of the Office of Fossil Energy's Carbon Sequestration Program

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) announces its intent to prepare a Programmatic Environmental Impact Statement (PEIS) to assess the potential environmental impacts from the Department of Energy’s (DOE’s) Carbon Sequestration Program, which is being implemented by the Office of Fossil Energy.

  6. Coal with CCS | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew York: Energy Resources JumpCloverCounty,CCS Jump to:

  7. CCS Maasvlakte (ROAD-project) Toetsingsadvies over het milieueffectrapport

    E-Print Network [OSTI]

    Hack, Robert

    voorkomen wordt door 1 Een joint-venture van E.ON Benelux, Electrabel Nederland/GDF SUEZ. 2 CCS Maasvlakte

  8. DOE - Office of Legacy Management -- National Carbon Co - NY 48

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling Corp - CT 0-01 FUSRAPMonsantoMorseAcmeCarbon Co

  9. The Cost of CCS forThe Cost of CCS for Natural GasNatural Gas--Fired Power PlantsFired Power Plants

    E-Print Network [OSTI]

    regulations for coal plants New concerns about nuclear power after Fukushima · Recent studies also show emissions · Most CCS cost studies have focused on coal-based power plants; relatively few on NGCC with CCS1 The Cost of CCS forThe Cost of CCS for Natural GasNatural Gas--Fired Power PlantsFired Power

  10. Processus communicants Communication synchrone CSP/CCS/-calcul

    E-Print Network [OSTI]

    Grigoras, .Romulus

    Processus communicants Communication synchrone CSP/CCS/-calcul Rendez-vous étendu Ada Huitième partie Processus communicants CSP/Ada Systèmes concurrents 2 / 44 #12;Processus communicants Communication synchrone CSP/CCS/-calcul Rendez-vous étendu Ada Principes Synchronisation Désignation

  11. The role of Life Cycle Assessment in identifying and reducing environmental impacts of CCS

    E-Print Network [OSTI]

    Sathre, Roger

    2011-01-01T23:59:59.000Z

    effectiveness of CCS, as well as potential trade-offsand the potential increased non-climate impacts of CCS.of CCS in case-study power plants. Acidification Potential

  12. Geologic Storage of carbon dioxide : risk analyses and implications for public acceptance

    E-Print Network [OSTI]

    Singleton, Gregory R. (Gregory Randall)

    2007-01-01T23:59:59.000Z

    Carbon Capture and Storage (CCS) technology has the potential to enable large reductions in global greenhouse gas emissions, but one of the unanswered questions about CCS is whether it will be accepted by the public. In ...

  13. The lifetime of carbon capture and storage as a climate-change mitigation technology

    E-Print Network [OSTI]

    Szulczewski, Michael Lawrence

    In carbon capture and storage (CCS), CO[subscript 2] is captured at power plants and then injected underground into reservoirs like deep saline aquifers for long-term storage. While CCS may be critical for the continued ...

  14. Scaling up carbon dioxide capture and storage: From megatons to gigatons Howard J. Herzog

    E-Print Network [OSTI]

    Global warming Carbon mitigation Low carbon energy technologies Carbon dioxide capture and storage (CCS) Carbon dioxide (CO2) capture and storage (CCS) is the only technology that can reduce CO2 emissionsScaling up carbon dioxide capture and storage: From megatons to gigatons Howard J. Herzog MIT

  15. Scaling up carbon dioxide capture and storage: From megatons to gigatons Howard J. Herzog

    E-Print Network [OSTI]

    warming Carbon mitigation Low carbon energy technologies Carbon dioxide capture and storage (CCS) CarbonScaling up carbon dioxide capture and storage: From megatons to gigatons Howard J. Herzog MIT dioxide (CO2) capture and storage (CCS) is the only technology that can reduce CO2 emissions substantially

  16. Strategic Analysis of the Global Status of Carbon Capture and...

    Open Energy Info (EERE)

    Strategic Analysis of the Global Status of Carbon Capture and Storage (CCS): Country Studies, United Arab Emirates Jump to: navigation, search Tool Summary LAUNCH TOOL Name:...

  17. Overview of Carbon Storage Research | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    groups which promote CCS on a regional, national, and international level: Regional Carbon Sequestration Partnerships (RCSPs) - DOE has created a nationwide network of...

  18. An analytical framework for long term policy for commercial deployment and innovation in carbon capture and sequestration technology in the United States

    E-Print Network [OSTI]

    Hamilton, Michael Roberts

    2010-01-01T23:59:59.000Z

    Carbon capture and sequestration (CCS) technology has the potential to be a key CO2 emissions mitigation technology for the United States. Several CCS technology options are ready for immediate commercial-scale demonstration, ...

  19. Economics and policies for carbon capture and sequestration in the western United States : a marginal cost analysis of potential power plant deployment

    E-Print Network [OSTI]

    Shu, Gary

    2010-01-01T23:59:59.000Z

    Carbon capture and sequestration (CCS) is a technology that can significantly reduce power sector greenhouse gas (GHG) emissions from coal-fired power plants. CCS technology is currently in development and requires higher ...

  20. The Cost of CCS forThe Cost of CCS for Natural GasNatural Gas--Fired Power PlantsFired Power Plants

    E-Print Network [OSTI]

    1 The Cost of CCS forThe Cost of CCS for Natural GasNatural Gas--Fired Power PlantsFired Power, Pennsylvania Presentation to the Natural Gas CCS Forum Washington, DC November 4, 2011 E.S. Rubin, Carnegie Mellon MotivationMotivation · Electric utilities again looking to natural gas combined cycle (NGCC

  1. WORKING PAPER N 2010 -11 Carbon price and optimal extraction of a polluting fossil

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    technological options to mitigate greenhouse gas (GHG) emissions, Carbon Capture and Storage technology (CCS increasing carbon concentration. Among these options, Carbon Capture and Storage (CCS) technology appears with restricted carbon capture Renaud Coulomb Fanny Henriet JEL Codes: Q31, Q38, Q41, Q54, Q55 Keywords: Dynamic

  2. Research projects for 2014 Carbon Dioxide Chemistry Prof. Chris Rayner Prof. Chris Rayner

    E-Print Network [OSTI]

    Rzepa, Henry S.

    commercialising our recently patented technology for carbon dioxide capture.3 Carbon dioxide in Synthesis. Our underway, summarised below. Carbon capture and storage (CCS) is a key strategy for reducing atmospheric CO2 chemistry similar to that which occurs in carbon capture processes for CCS, in the purification of high

  3. Carbon Capture and Storage (CCS) Studies | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJuneWaste To Wisdom: UtilizingDepartment62-LNG

  4. Utilizing rare earth elements as tracers in high TDS reservoir brines in CCS applications

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    McLing, Travis; Smith, William; Smith, Robert

    2014-01-01T23:59:59.000Z

    In this paper we report the result of research associated with the testing of a procedures necessary for utilizing natural occurring trace elements, specifically the Rare Earth Elements (REE) as geochemical tracers in Carbon Capture and Storage (CCS) applications. Trace elements, particularly REE may be well suited to serve as in situ tracers for monitoring geochemical conditions and the migration of CO?-charged waters within CCS storage systems. We have been conducting studies to determine the efficacy of using REE as a tracer and characterization tool in the laboratory, at a CCS analogue site in Soda Springs, Idaho, and at amore »proposed CCS reservoir at the Rock Springs Uplift, Wyoming. Results from field and laboratory studies have been encouraging and show that REE may be an effective tracer in CCS systems and overlying aquifers. In recent years, a series of studies using REE as a natural groundwater tracer have been conducted successfully at various locations around the globe. Additionally, REE and other trace elements have been successfully used as in situ tracers to describe the evolution of deep sedimentary Basins. Our goal has been to establish naturally occurring REE as a useful monitoring measuring and verification (MMV) tool in CCS research because formation brine chemistry will be particularly sensitive to changes in local equilibrium caused by the addition of large volumes of CO?. Because brine within CCS target formations will have been in chemical equilibrium with the host rocks for millions of years, the addition of large volumes of CO? will cause reactions in the formation that will drive changes to the brine chemistry due to the pH change caused by the formation of carbonic acid. This CO? driven change in formation fluid chemistry will have a major impact on water rock reaction equilibrium in the formation, which will impart a change in the REE fingerprint of the brine that can measured and be used to monitor in situ reservoir conditions. Our research has shown that the REE signature imparted to the formation fluid by the introduction of CO? to the formation, can be measured and tracked as part of an MMV program. Additionally, this REE fingerprint may serve as an ideal tracer for fluid migration, both within the CCS target formation, and should formation fluids migrate into overlying aquifers. However application of REE and other trace elements to CCS system is complicated by the high salt content of the brines contained within the target formations. In the United States by regulation, in order for a geologic reservoir to be considered suitable for carbon storage, it must contain formation brine with total dissolved solids (TDS) > 10,000 ppm, and in most cases formation brines have TDS well in excess of that threshold. The high salinity of these brines creates analytical problems for elemental analysis, including element interference with trace metals in Inductively Coupled Plasma Mass Spectroscopy (ICP-MS) (i.e. element mass overlap due to oxide or plasma phenomenon). Additionally, instruments like the ICP-MS that are sensitive enough to measure trace elements down to the parts per trillion level are quickly oversaturated when water TDS exceeds much more than 1,000 ppm. Normally this problem is dealt with through dilution of the sample, bringing the water chemistry into the instruments working range. However, dilution is not an option when analyzing these formation brines for trace metals, because trace elements, specifically the REE, which occur in aqueous solutions at the parts per trillion levels. Any dilution of the sample would make REE detection impossible. Therefore, the ability to use trace metals as in situ natural tracers in high TDS brines environments requires the development of methods for pre-concentrating trace elements, while reducing the salinity and associated elemental interference such that the brines can be routinely analyzed by standard ICP-MS methods. As part of the Big Sky Carbon Sequestration Project the INL-CAES has developed a rapid, easy to use proces

  5. Overcoming Barriers toOvercoming Barriers to Widespread CCS DeploymentWidespread CCS Deployment

    E-Print Network [OSTI]

    Presentation to the Interagency Task Force on Carbon Capture and Storage Washington, DC May 6, 2010 #12;E Federal Strategy on Carbon Capture and Storage "... I hereby establish an Interagency Task Force on Carbon of time · Provide additional incentives for capture technology innovation by establishing a market price

  6. The subsurface fluid mechanics of geologic carbon dioxide storage

    E-Print Network [OSTI]

    Szulczewski, Michael Lawrence

    2013-01-01T23:59:59.000Z

    In carbon capture and storage (CCS), CO? is captured at power plants and then injected into deep geologic reservoirs for long-term storage. While CCS may be critical for the continued use of fossil fuels in a carbon-constrained ...

  7. Rethinking CCS Strategies for Technology Development in Times of Uncertainty

    E-Print Network [OSTI]

    received increased attention due to the positive value that EOR storage puts on CO2. Second, the EPA has change and a reliance on CO2-emitting fossil fuels for a majority of the world's energy supply have proposed a 1000 lbs CO2/MWh emission standard that would require new coal plants to install CCS. Using

  8. Commercial Structures for Integrated CCS-EOR Projects

    E-Print Network [OSTI]

    Agarwal, Anna

    In this paper, we evaluate alternate commercial structures for an integrated CCS-EOR project where the source of CO[subscript 2] is a coal-fired power plant, and the CO[subscript 2] is transported via a dedicated pipeline ...

  9. ConocoPhillips Sweeny IGCC/CCS Project

    SciTech Connect (OSTI)

    Paul Talarico; Charles Sugg; Thomas Hren; Lauri Branch; Joseph Garcia; Alan Rezigh; Michelle Pittenger; Kathleen Bower; Jonathan Philley; Michael Culligan; Jeremy Maslen; Michele Woods; Kevin Elm

    2010-06-16T23:59:59.000Z

    Under its Industrial Carbon Capture and Sequestration (ICCS) Program, the United States (U.S.) Department of Energy (DOE) selected ConocoPhillips Company (ConocoPhillips) to receive funding through the American Recovery and Reinvestment Act (ARRA) of 2009 for the proposed Sweeny Integrated Gasification Combined Cycle (IGCC)/Carbon Capture and Storage (CCS) Project (Project) to be located in Brazoria County, Texas. Under the program, the DOE is partnering with industry to demonstrate the commercial viability and operational readiness of technologies that would capture carbon dioxide (CO{sub 2}) emissions from industrial sources and either sequester those emissions, or beneficially reuse them. The primary objective of the proposed Project was to demonstrate the efficacy of advanced technologies that capture CO{sub 2} from a large industrial source and store the CO{sub 2} in underground formations, while achieving a successful business venture for the entity (entities) involved. The Project would capture 85% of the CO{sub 2} produced from a petroleum coke (petcoke) fed, 703 MWnet (1,000 MWgross) IGCC power plant, using the ConocoPhillips (COP) proprietary and commercially proven E-Gas{trademark} gasification technology, at the existing 247,000 barrel per day COP Sweeny Refinery. In addition, a number of other commercially available technologies would be integrated into a conventional IGCC Plant in a unique, efficient, and reliable design that would capture CO{sub 2}. The primary destination for the CO{sub 2} would be a depleted natural gas field suitable for CO{sub 2} storage ('Storage Facility'). COP would also develop commercial options to sell a portion of the IGCC Plant's CO{sub 2} output to the growing Gulf Coast enhanced oil recovery (EOR) market. The IGCC Plant would produce electric power for sale in the Electric Reliability Council of Texas Houston Zone. The existing refinery effluent water would be treated and reused to fulfill all process water needs. The DOE ICCS program adopts a two-phase approach. During the 7-month Phase 1 period, ConocoPhillips further defined the Project by advancing the preliminary design, permits, and contracts. In addition, ConocoPhillips was developing a Phase 2 renewal application to seek continued DOE funding for the Project's design, construction, and early operations. The DOE and ConocoPhillips entered into a Phase1 Cooperative Agreement (DOE Award Number DE-FE0001859) on November 16, 2009, agreeing to share cost on a 50/50 basis during the Phase 1 period, with a DOE budget of $2,989,174. On April 7, 2010, ConocoPhillips informed the DOE that it would not participate in Phase 2 of the DOE ICCS program. The company believes that enabling legislation and regulations at both the federal and state levels will not be approved and implemented in time to make a final investment decision such that the Project would be substantially constructed by September 30, 2015, the end of the AARA funding period. Considering current price assumptions, the Project would not generate investment level returns. ConocoPhillips elected not to submit a Phase 2 renewal application, which was due on April 16, 2010. This Final Scientific/Technical Report provides an overview of the Project, including highlights and benefits of the proposed carbon capture and storage project scope, sites, and technologies. It also summarizes the work accomplishments during the Phase 1 period from November 16, 2009 to June 16, 2010. Due to ConocoPhillips decision not to submit the Phase 2 renewal application and not to enter into related agreements, certain information regarding the proposed CO{sub 2} storage facility cannot be publicly reported due to confidentiality agreements.

  10. Actuarial risk assessment of expected fatalities attributable to carbon capture and storage in 2050

    E-Print Network [OSTI]

    Actuarial risk assessment of expected fatalities attributable to carbon capture and storage in 2050-00487175,version2-10Feb2011 #12;1. Introduction Carbon capture and storage (CCS) involves capturing the CO2 is assessed integrating all steps of the CCS chain: additional coal production, coal transportation, carbon

  11. An international comparison of public attitudes towards carbon capture and storage technologies

    E-Print Network [OSTI]

    1 An international comparison of public attitudes towards carbon capture and storage technologies as an important element in determining the eventual fate of new technologies and carbon capture and storage (CCS, with particular emphasis on attitudes towards carbon capture and storage (CCS). We find low levels of awareness

  12. Carbon Capture and Sequestration: how much does this uncertain option affect near-term policy choices?

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Carbon Capture and Sequestration: how much does this uncertain option affect near-term policy Carbon Capture and Sequestration (CCS) as a key option to avoid costly emission reduction. While Carbon Capture and Sequestration (CCS) technologies are receiving increasing atten- tion, mainly

  13. Carbon capture and storage update Matthew E. Boot-Handford,a

    E-Print Network [OSTI]

    Haszeldine, Stuart

    Carbon capture and storage update Matthew E. Boot-Handford,a Juan C. Abanades,b Edward J. Anthony,a Joseph G. Yaoa and Paul S. Fennell*a In recent years, Carbon Capture and Storage (Sequestration) (CCS. Finally, we discuss the economic and legal aspects of CCS. 1. Introduction This paper discusses Carbon

  14. Foraging Ecology of North Pacific Albacore in the California Current System (CCS)

    E-Print Network [OSTI]

    Glaser, Sarah M.

    2009-01-01T23:59:59.000Z

    CCS), classify the foraging strategy of albacore, and examine the potentialCCS), to classify the foraging strategy of albacore, and to measure the potentialCCS are negatively correlated with changes in anchovy recruitment biomass the following year, suggesting the potential

  15. Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding access to scienceScientificObservation of aObservingOff-Grid

  16. 9780199573288 13-Helm-c13 Helm Hepburn (Typeset by SPi, Chennai) 263 of 283 June 21, 2009 12:8 Carbon Dioxide Capture and Storage

    E-Print Network [OSTI]

    :8 13 Carbon Dioxide Capture and Storage Howard Herzog I. INTRODUCTION Carbon dioxide capture and storage (CCS) is the capture and secure storage of carbon dioxide (CO2) that would otherwise be emitted 12:8 264 Carbon Dioxide Capture and Storage discusses the future of CCS in the context of climate

  17. A Low-Carbon Fuel Standard for California Part 1: Technical Analysis

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    110 Table 4-14: WESTCARB carbon capture and sequestrationThat $25 charge might make carbon capture and storage (CCS)combined cycle with carbon capture and storage Natural gas

  18. A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis

    E-Print Network [OSTI]

    Farrell, Alexander E.; Sperling, Dan

    2007-01-01T23:59:59.000Z

    110 Table 4-14: WESTCARB carbon capture and sequestrationThat $25 charge might make carbon capture and storage (CCS)combined cycle with carbon capture and storage Natural gas

  19. Borehole EM Monitoring at Aquistore: Final Report to the Carbon Capture Project (CCP)

    E-Print Network [OSTI]

    Daley, T.

    2014-01-01T23:59:59.000Z

    Report  to  Carbon Capture Project, Lawrence Berkeley Final Report to the Carbon Capture Project (CCP)  Thomas part of a program  of  carbon  capture  and storage  (CCS

  20. Major Projects with Quick Starts & Jobs Creation Office of Clean...

    Office of Environmental Management (EM)

    2011 2014 90,000 Ramgen 30 30 60 2009 2010 2012 1,800 Total Job Years Including Fund Infusion 349,65 Context Carbon dioxide capture and storage (CCS) is a technology that is...

  1. International Energy Workshop, Cape Town, June 19-21, 2012 Power system and Carbon capture under Climate policy

    E-Print Network [OSTI]

    Boyer, Edmond

    International Energy Workshop, Cape Town, June 19-21, 2012 Power system and Carbon capture under-term modelling, TIAM-FR, Climate change, CO2 mitigation, Carbon Capture and Storage (CCS), Water impact 1 `readiness' of advanced technologies, in particular the industrial scale of carbon capture and storage (CCS

  2. On an Enhanced PERSIANN-CCS Algorithm for Precipitation Estimation

    SciTech Connect (OSTI)

    Mahrooghy, Majid [Mississippi State University (MSU); Anantharaj, Valentine G [ORNL; Younan, Nicolas H. [Mississippi State University (MSU); Aanstoos, James [Mississippi State University (MSU); Hsu, Kuo-Lin [University of California, Irvine

    2012-01-01T23:59:59.000Z

    By employing wavelet and selected features (WSF), median merging (MM), and selected curve-fitting (SCF) techniques, the Precipitation Estimation from Remotely Sensed Imagery using an Artificial Neural Networks Cloud Classification System (PERSIANN-CCS) has been improved. The PERSIANN-CCS methodology includes the following four main steps: 1) segmentation of satellite cloud images into cloud patches, 2) feature extraction, 3) classification of cloud patches, and 4) derivation of the temperature rain-rate (T R) relationship for every cluster. The enhancements help improve step 2 by employing WSF, and step 4 by employing MM and SCF. For the study area herein, the results show that the enhanced methodology improves the equitable threat score (ETS) of the daily and hourly rainfall estimates mostly in the winter and fall. The ETS percentage improvement is about 20% for the daily (10% for hourly) estimates in the winter, 10% for the daily (8% for hourly) estimates in the fall, and at most 5% for the daily estimates in the summer at some rainfall thresholds. In the winter and fall, the area bias is improved almost at all rainfall thresholds for daily and hourly estimates. However, no significant improvement is obtained in the spring, and the area bias in the summer is also greater than that of the implemented PERSIANN-CCS algorithm.

  3. s.haszeldine@ed.ac.uk CCS deployment 11 April 2008 Inst Public Policy Research, London 1 CCS : one tool for mitigation

    E-Print Network [OSTI]

    Haszeldine, Stuart

    .haszeldine@ed.ac.uk CCS deployment 11 April 2008 Inst Public Policy Research, London 3 World energy prediction (Business power Hydro power Other renewables Fossil fuel use doubles in next 30yr IEA 2004 World Energy outlook Fossil fuels will still provide most of world energy #12;s.haszeldine@ed.ac.uk CCS deployment 11 April

  4. Regulating carbon dioxide capture and storage

    E-Print Network [OSTI]

    De Figueiredo, Mark A.

    2007-01-01T23:59:59.000Z

    This essay examines several legal, regulatory and organizational issues that need to be addressed to create an effective regulatory regime for carbon dioxide capture and storage ("CCS"). Legal, regulatory, and organizational ...

  5. Development of a Sorption Enhanced Steam Hydrogasification Process for In-situ Carbon Dioxide (CO2) Removal and Enhanced Synthetic Fuel Production

    E-Print Network [OSTI]

    Liu, Zhongzhe

    2013-01-01T23:59:59.000Z

    and potential solutions to reduce energy-related CO 2 emissions: energy conservation; improving energy efficiency; carbon capture and sequestration (CCS)

  6. Vehicle Technologies Office Merit Review 2015: Advanced Oxidation & Stabilization of PAN-Based Carbon Precursor Fibers

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced...

  7. Vehicle Technologies Office Merit Review 2014: Novel Non-Carbonate Based Electrolytes for Silicon Anodes

    Broader source: Energy.gov [DOE]

    Presentation given by Wildcat Discovery Technologies at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about novel non...

  8. Vehicle Technologies Office Merit Review 2014: Advanced Oxidation & Stabilization of PAN-Based Carbon Precursor Fibers

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced...

  9. Carbon dioxide storage professor Martin Blunt

    E-Print Network [OSTI]

    Carbon dioxide storage professor Martin Blunt executive summary Carbon Capture and Storage (CCS) referS to the Set of technologies developed to capture carbon dioxide (Co2) gas from the exhausts raises new issues of liability and risk. the focus of this briefing paper is on the storage of carbon

  10. CCS Task Force - Executive Summary | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The BigSidingState6 (2-91)A2015 Peer ReviewCCS Task Force -

  11. The role of Life Cycle Assessment in identifying and reducing environmental impacts of CCS

    E-Print Network [OSTI]

    Sathre, Roger

    2011-01-01T23:59:59.000Z

    EG. 2010. Human and environmental impact assessment ofof the overall environmental impacts and benefits of theand reducing environmental impacts of CCS Roger Sathre and

  12. Today's announcement is a direct investment in CCS-related infrastruct...

    Energy Savers [EERE]

    Today&8217;s announcement is a direct investment in CCS-related infrastructure among electric power and industrial facilities, academic institutions, and other organizations...

  13. Vehicle Technologies Office Merit Review 2014: Validation of Material Models for Automotive Carbon Fiber Composite Structures

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about validation of material models...

  14. Carbon capture and storage in the U.S. : a sinking climate solution

    E-Print Network [OSTI]

    Henschel, Rachel Hockfield

    2009-01-01T23:59:59.000Z

    Coal-fired power plants produce half of the United States' electricity and are also the country's largest emitter of carbon dioxide, the greenhouse gas responsible for climate change. Carbon Capture and Storage (CCS) is a ...

  15. 2013 STAMP Workshop, MITApplication of STPA to ESF-CCS Dong-Ah Lee

    E-Print Network [OSTI]

    Junbeom Yoo Konkuk University Korea Atomic Energy Research Institute Application of STAP to ESF-CCS #12, MITApplication of STPA to ESF-CCS Introduction · For developing the I&C system of a nuclear power plant, more) was extremely difficult to justify the safety. · Most hazards came from the wrong interaction of the components

  16. Deployment of CCS Technologies across the Load Curve for a Competitive Electricity Market as a Function of CO2 Emissions Permit Prices

    SciTech Connect (OSTI)

    Luckow, Patrick; Wise, Marshall A.; Dooley, James J.

    2011-04-18T23:59:59.000Z

    Consistent with other published studies, the modelling presented here reveals that baseload power plants are the first aspects of the electricity sector to decarbonize and are essentially decarbonized once CO2 permit prices exceed a certain threshold ($90/ton CO2 in this study). The decarbonization of baseload electricity is met by significant expansions of nuclear power and renewable energy generation technologies as well as the application of carbon dioxide capture and storage (CCS) technologies applied to both coal and natural gas fired power plants. Relatively little attention has been paid thus far to whether intermediate and peaking units would respond the same way to a climate policy given the very different operational and economic context that these kinds of electricity generation units operate under. In this paper, the authors discuss key aspects of the load segmentation methodology used to imbed a varying electricity demand within the GCAM (a state-of-the-art Integrated Assessment Model) energy and economic modelling framework and present key results on the role CCS technologies could play in decarbonizng subpeak and peak generation (encompassing only the top 10% of the load) and under what conditions. To do this, the authors have modelled two hypothetical climate policies that require 50% and 80% reductions in US emissions from business as usual by the middle of this century. Intermediate electricity generation is virtually decarbonized once carbon prices exceed approximately $150/tonCO2. When CO2 permit prices exceed $160/tonCO2, natural gas power plants with CCS have roughly the same marketshare as conventional gas plants in serving subpeak loads. The penetration of CCS into peak load (upper 6% here) is minimal under the scenarios modeled here suggesting that CO2 emissions from this aspect of the U.S. electricity sector would persist well into the future even with stringent CO2 emission control policies in place.

  17. Stakeholder attitudes on carbon capture and storage -- An international comparison

    E-Print Network [OSTI]

    Johnsson, Filip

    This paper presents results from a survey on stakeholder attitudes towards Carbon Capture and Storage (CCS). The survey is the first to make a global comparison across three major regions; USA, Japan, and Europe. The ...

  18. Water Challenges for Geologic Carbon Capture and Sequestration

    E-Print Network [OSTI]

    Newmark, Robin L.; Friedmann, Samuel J.; Carroll, Susan A.

    2010-01-01T23:59:59.000Z

    for solvent-based carbon capture technologies is largely duecarbon capture and sequestration. Environmental Science and Technologycarbon capture (DOE-NETL 2007c) using the cost and performance impacts associated with CCS technologies

  19. Uncertainty analysis of capacity estimates and leakage potential for geologic storage of carbon dioxide in saline aquifers

    E-Print Network [OSTI]

    Raza, Yamama

    2009-01-01T23:59:59.000Z

    The need to address climate change has gained political momentum, and Carbon Capture and Storage (CCS) is a technology that is seen as being feasible for the mitigation of carbon dioxide emissions. However, there is ...

  20. Improving Carbon Sequestration | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven National LaboratoryJeffrey L80's »RegionalsScienceImproving Carbon

  1. DOE Advances Innovative CCS Polygeneration Plant Through NEPA Process |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | DepartmentI Office of ENERGY ScienceDNSComments

  2. Carbon Dioxide Capture by Chemical Absorption: A Solvent Comparison Study

    E-Print Network [OSTI]

    1 Carbon Dioxide Capture by Chemical Absorption: A Solvent Comparison Study by Anusha Kothandaraman Students #12;2 #12;3 Carbon Dioxide Capture by Chemical Absorption: A Solvent Comparison Study by Anusha with electricity generation accounting for 40% of the total1 . Carbon capture and sequestration (CCS) is one

  3. Electrochemically Mediated Separation for Carbon Capture Michael C. Sterna

    E-Print Network [OSTI]

    . ___________________________________________________________________________________ Abstract Carbon capture technology has been proposed as an effective approach for the mitigation to an environmentally responsible economy [4]. Carbon capture and storage (CCS) technology has been proposed1 Electrochemically Mediated Separation for Carbon Capture Michael C. Sterna , Fritz Simeona

  4. Carbon Dioxide Capture DOI: 10.1002/anie.201000431

    E-Print Network [OSTI]

    ] Carbon capture and storage (CCS) schemes embody a group of technologies for the capture of CO2 from powerCarbon Dioxide Capture DOI: 10.1002/anie.201000431 Carbon Dioxide Capture: Prospects for New- and gas-fired power plants.[3­5] Such conven- tional technologies for large-scale capture have been com

  5. Economic Modeling of Carbon Capture and Sequestration Technologies

    E-Print Network [OSTI]

    Economic Modeling of Carbon Capture and Sequestration Technologies Jim McFarland (jrm1@mit.edu; +1 explores the economics of carbon capture and sequestration technologies as applied to electric generating of the world economy, is used to model two of the most promising carbon capture and sequestration (CCS

  6. The lifetime of carbon capture and storage as a climate-change mitigation technology

    SciTech Connect (OSTI)

    Juanes, Ruben [MIT

    2013-12-30T23:59:59.000Z

    In carbon capture and storage (CCS), CO2 is captured at power plants and then injected underground into reservoirs like deep saline aquifers for long-term storage. While CCS may be critical for the continued use of fossil fuels in a carbon-constrained world, the deployment of CCS has been hindered by uncertainty in geologic storage capacities and sustainable injection rates, which has contributed to the absence of concerted government policy. Here, we clarify the potential of CCS to mitigate emissions in the United States by developing a storage-capacity supply curve that, unlike current large-scale capacity estimates, is derived from the fluid mechanics of CO2 injection and trapping and incorporates injection-rate constraints. We show that storage supply is a dynamic quantity that grows with the duration of CCS, and we interpret the lifetime of CCS as the time for which the storage supply curve exceeds the storage demand curve from CO2 production. We show that in the United States, if CO2 production from power generation continues to rise at recent rates, then CCS can store enough CO2 to stabilize emissions at current levels for at least 100 years. This result suggests that the large-scale implementation of CCS is a geologically viable climate-change mitigation option in the United States over the next century.

  7. Synthesis and Characterization of Rationally Designed Porous Materials for Energy Storage and Carbon Capture

    E-Print Network [OSTI]

    Sculley, Julian Patrick

    2013-04-30T23:59:59.000Z

    Two of the hottest areas in porous materials research in the last decade have been in energy storage, mainly hydrogen and methane, and in carbon capture and sequestration (CCS). Although these topics are intricately linked in terms of our future...

  8. Carbon Dioxide (CO2) Capture Project Phase 2 (CCP2) - Storage...

    Open Energy Info (EERE)

    eight oil and gas companies and two associate members that are working together to reduce carbon capture and sequestration (CCS) costs. During Phase 2, between 2005 and 2009, the...

  9. Communicating Carbon Capture and Storage Technologies: Opportunities and Constraints across Media 

    E-Print Network [OSTI]

    Feldpausch-Parker, Andrea Marie

    2011-10-21T23:59:59.000Z

    In 2003, the U.S. Department of Energy created regional joint governmentindustry partnerships as part of a larger incentive to develop carbon dioxide capture and storage (CCS) technologies to address the issue of climate ...

  10. Carbon Capture and Storage, 2008

    ScienceCinema (OSTI)

    None

    2010-01-08T23:59:59.000Z

    The U.S. Department of Energy is researching the safe implementation of a technology called carbon sequestration, also known as carbon capture and storage, or CCS. Based on an oilfield practice, this approach stores carbon dioxide, or CO2 generated from human activities for millennia as a means to mitigate global climate change. In 2003, the Department of Energys National Energy Technology Laboratory formed seven Regional Carbon Sequestration Partnerships to assess geologic formations suitable for storage and to determine the best approaches to implement carbon sequestration in each region. This video describes the work of these partnerships.

  11. Carbon Capture and Storage, 2008

    SciTech Connect (OSTI)

    2009-03-19T23:59:59.000Z

    The U.S. Department of Energy is researching the safe implementation of a technology called carbon sequestration, also known as carbon capture and storage, or CCS. Based on an oilfield practice, this approach stores carbon dioxide, or CO2 generated from human activities for millennia as a means to mitigate global climate change. In 2003, the Department of Energys National Energy Technology Laboratory formed seven Regional Carbon Sequestration Partnerships to assess geologic formations suitable for storage and to determine the best approaches to implement carbon sequestration in each region. This video describes the work of these partnerships.

  12. Vehicle Technologies Office Merit Review 2014: Predictive Engineering Tools for Injection-Molded Long-Carbon-Fiber Thermoplastic Composites

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  13. Vehicle Technologies Office Merit Review 2014: Synthesis and Characterization of Structured Si-Carbon Nanocomposite Anodes and Functional Polymer Binders

    Broader source: Energy.gov [DOE]

    Presentation given by The Pennsylvania State University at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about synthesis...

  14. Strategies for demonstration and early deployment of carbon capture and storage : a technical and economic assessment of capture percentage

    E-Print Network [OSTI]

    Hildebrand, Ashleigh Nicole

    2009-01-01T23:59:59.000Z

    Carbon capture and storage (CCS) is a critical technology for reducing greenhouse gas emissions from electricity production by coal-fired power plants. However, full capture (capture of nominally 90% of emissions) has ...

  15. No geologic evidence that seismicity causes fault leakage that would render large-scale carbon capture and storage unsuccessful

    E-Print Network [OSTI]

    Juanes, Ruben

    In a recent Perspective (1), Zoback and Gorelick argued that carbon capture and storage (CCS) is likely not a viable strategy for reducing CO[subscript 2] emissions to the atmosphere. They argued that maps of earthquake ...

  16. Cost and U.S. public policy for new coal power plants with carbon capture and sequestration

    E-Print Network [OSTI]

    Hamilton, Michael R.

    This paper provides a financial analysis for new supercritical pulverized coal plants with carbon capture and sequestration (CCS) that compares the effects of two relevant climate policies. First, an updated cost estimate ...

  17. Carbon Capture and Sequestration: A Regulatory Gap Assessment

    SciTech Connect (OSTI)

    Lincoln Davies; Kirsten Uchitel; John Ruple; Heather Tanana

    2012-04-30T23:59:59.000Z

    Though a potentially significant climate change mitigation strategy, carbon capture and sequestration (CCS) remains mired in demonstration and development rather than proceeding to full-scale commercialization. Prior studies have suggested numerous reasons for this stagnation. This Report seeks to empirically assess those claims. Using an anonymous opinion survey completed by over 200 individuals involved in CCS, it concludes that there are four primary barriers to CCS commercialization: (1) cost, (2) lack of a carbon price, (3) liability risks, and (4) lack of a comprehensive regulatory regime. These results largely confirm previous work. They also, however, expose a key barrier that prior studies have overlooked: the need for comprehensive, rather than piecemeal, CCS regulation. The survey data clearly show that the CCS community sees this as one of the most needed incentives for CCS deployment. The community also has a relatively clear idea of what that regulation should entail: a cooperative federalism approach that directly addresses liability concerns and that generally does not upset traditional lines of federal-state authority.

  18. The Social Dynamics of Carbon Capture and Storage

    E-Print Network [OSTI]

    The Social Dynamics of Carbon Capture and Storage Understanding CCS Representations, Governance studies. He works as a Research Associate at the Scottish Carbon Capture and Storage research centre works on assessing options for removal and storage of CO2. This includes techno-economic, socio

  19. The Subsurface Fluid Mechanics of Geologic Carbon Dioxide Storage

    E-Print Network [OSTI]

    The Subsurface Fluid Mechanics of Geologic Carbon Dioxide Storage by Michael Lawrence Szulczewski S Mechanics of Geologic Carbon Dioxide Storage by Michael Lawrence Szulczewski Submitted to the Department capture and storage (CCS), CO2 is captured at power plants and then injected into deep geologic reservoirs

  20. Vehicle Technologies Office Merit Review 2015: Laser-Assisted Joining Process of Aluminum and Carbon Fiber Components

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about laser-assisted...

  1. Vehicle Technologies Office Merit Review 2014: Development and Commercialization of a Novel Low-Cost Carbon Fiber

    Broader source: Energy.gov [DOE]

    Presentation given by Zoltek at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development and commercialization of a...

  2. Vehicle Technologies Office Merit Review 2015: Validation of Material Models for Crash Simulation of Automotive Carbon Fiber Composite Structures (VMM)

    Broader source: Energy.gov [DOE]

    Presentation given by Ford Motor Company at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about validation of material...

  3. Recovery Act: Understanding the Impact of CO{sub 2} Injection on the Subsurface Microbial Community in an Illinois Basin CCS Reservoir: Integrated Student Training in Geoscience and Geomicrobiology

    SciTech Connect (OSTI)

    Fouke, Bruce

    2013-03-31T23:59:59.000Z

    An integrated research and teaching program was developed to provide cross-­?disciplinary training opportunities in the emerging field of carbon capture and storage (CCS) for geobiology students attending the University of Illinois Urbana-­?Champaign (UIUC). Students from across the UIUC campus participated, including those from the departments of Geology, Microbiology, Biochemistry, Civil and Environmental Engineering, Animal Sciences and the Institute for Genomic Biology. The project took advantage of the unique opportunity provided by the drilling and sampling of the large-­?scale Phase III CCS demonstration Illinois Basin -­? Decatur Project (IBDP) in the central Illinois Basin at nearby Decatur, Illinois. The IBPD is under the direction of the Illinois State Geological Survey (ISGS, located on the UIUC campus) and the Midwest Geological Sequestration Consortium (MGSC). The research component of this project focused on the subsurface sampling and identification of microbes inhabiting the subsurface Cambrian-­?age Mt. Simon Sandstone. In addition to formation water collected from the injection and monitoring wells, sidewall rock cores were collected and analyzed to characterize the cements and diagenetic features of the host Mt. Simon Sandstone. This established a dynamic geobiological framework, as well as a comparative baseline, for future studies of how CO2 injection might affect the deep microbial biosphere at other CCS sites. Three manuscripts have been prepared as a result of these activities, which are now being finalized for submission to top-­?tier international peer-­?reviewed research journals. The training component of this project was structured to ensure that a broad group of UIUC students, faculty and staff gained insight into CCS issues. An essential part of this training was that the UIUC faculty mentored and involved undergraduate and graduate students, as well as postdocs and research scientists, at all stages of the project in order to develop CCS-­?focused classroom and field courses, as well as seminars. This program provided an excellent opportunity for participants to develop the background necessary to establish longer-­?term research in CCS-­?related geology and microbial ecology. Further, the program provided an ongoing dynamic platform to foster long-­?term collaboration with the regional ISGS and MGSC sequestration partnership, while offering hands-­?on, applied learning experiences.

  4. CARBON ISOTOPE AND ISOTOPOMER FRACTIONATION IN COLD DENSE CLOUD CORES

    SciTech Connect (OSTI)

    Furuya, Kenji; Aikawa, Yuri [Department of Earth and Planetary Sciences, Kobe University, Kobe 657-8501 (Japan); Sakai, Nami; Yamamoto, Satoshi, E-mail: furuya@stu.kobe-u.ac.jp [Department of Physics and Research Center for the Early Universe, University of Tokyo, Bunkyo-ku, Tokyo 113-003 (Japan)

    2011-04-10T23:59:59.000Z

    We construct a gas-grain chemical network model which includes carbon isotopes ({sup 12}C and {sup 13}C) with an emphasis on isotopomer-exchange reactions. Temporal variations of molecular abundances, the carbon isotope ratios ({sup 12}CX/{sup 13}CX), and the isotopomer ratios ({sup 12}C{sup 13}CX/{sup 13}C{sup 12}CX) of CCH and CCS in cold dense cloud cores are investigated by numerical calculations. We confirm that the isotope ratios of molecules, both in the gas phase and grain surfaces, are significantly different depending on whether the molecule is formed from the carbon atom (ion) or the CO molecule. Molecules formed from carbon atoms have CX/{sup 13}CX ratios greater than the elemental abundance ratio of [{sup 12}C/{sup 13}C]. On the other hand, molecules formed from CO molecules have CX/{sup 13}CX ratios smaller than the [{sup 12}C/{sup 13}C] ratio. We reproduce the observed C{sup 13}CH/{sup 13}CCH ratio in TMC-1, if the isotopomer-exchange reaction, {sup 13}CCH + H {r_reversible} C{sup 13}CH + H + 8.1 K, proceeds with the forward rate coefficient k{sub f} > 10{sup -11} cm{sup 3} s{sup -1}. However, the C{sup 13}CS/{sup 13}CCS ratio is lower than that observed in TMC-1. We then assume the isotopomer-exchange reaction catalyzed by the H atom, {sup 13}CCS + H {r_reversible} C{sup 13}CS + H + 17.4 K. In the model with this reaction, we reproduce the observed C{sup 13}CS/{sup 13}CCS, CCS/C{sup 13}CS, and CCS/{sup 13}CCS ratios simultaneously.

  5. Actuarial risk assessment of expected fatalities attributable to carbon capture and storage in 2050

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Actuarial risk assessment of expected fatalities attributable to carbon capture and storage : 10.1016/j.ijggc.2011.07.004 #12;2 1. Introduction Carbon capture and storage (CCS) involves capturing of carbon and the cost of capture. From the engineering, psychological or climatic point of view, one

  6. Expert Judgments on the Future of Carbon Capture Tyler R. Loggins

    E-Print Network [OSTI]

    Mountziaris, T. J.

    Expert Judgments on the Future of Carbon Capture Tyler R. Loggins University of Massachusetts.D., Insight Decisions LLC, Greg Nemet Ph.D., University of Wisconsin Abstract Carbon Capture and Storage (CCS of Carbon Capture" by Erin Baker, Karen Jenni, Greg Nemet, and Tyler Loggins. Future Work · Gathering

  7. Regulating Carbon Dioxide Capture and Storage 07-003 April 2007

    E-Print Network [OSTI]

    Regulating Carbon Dioxide Capture and Storage by 07-003 April 2007 M.A. de Figueiredo, H.J. Herzog, P.L. Joskow, K.A. Oye, and D.M. Reiner #12;#12;Regulating Carbon Dioxide Capture and Storage M.A. de to be addressed to create an effective regulatory regime for carbon dioxide capture and storage ("CCS"). Legal

  8. Lifetime of carbon capture and storage as a climate-change mitigation technology

    E-Print Network [OSTI]

    Lifetime of carbon capture and storage as a climate-change mitigation technology Michael L) In carbon capture and storage (CCS), CO2 is captured at power plants and then injected underground contributor to climate change (1). One promising technology to mitigate CO2 emissions is carbon cap- ture

  9. ECONOMIC MODELING OF THE GLOBAL ADOPTION OF CARBON CAPTURE AND SEQUESTRATION TECHNOLOGIES

    E-Print Network [OSTI]

    ECONOMIC MODELING OF THE GLOBAL ADOPTION OF CARBON CAPTURE AND SEQUESTRATION TECHNOLOGIES J. R. Mc of carbon capture and sequestration technologies as applied to electric generating plants. The MIT Emissions, is used to model carbon capture and sequestration (CCS) technologies based on a natural gas combined cycle

  10. Pathways to Adoption of Carbon Capture and Sequestration in India: Technologies and Policies

    E-Print Network [OSTI]

    Pathways to Adoption of Carbon Capture and Sequestration in India: Technologies and Policies, Technology and Policy Program #12;2 #12;Pathways to Carbon Capture and Sequestration in India: Technologies to control India's emissions will have to be a global priority. Carbon capture and sequestration (CCS) can

  11. Sequestering Carbon from Power Plants: The Jury is Still Out Sean D. Biggs

    E-Print Network [OSTI]

    ) model to analyze the economic potential of carbon capture and sequestration (CCS) power plant ............................................................................................ 10 2.1 Overview of Carbon Capture and Sequestration Technologies............ 13 2.1.1 Natural Sinks.........................................................................................24 3 Modeling Carbon Capture and Sequestration Technologies ........................ 25 3

  12. A Strategy for Carbon Capture and Storage (CCS) in the United Kingdom and

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 WindtheEnergy InformationOfand RangeOpenOfBeyond | Open

  13. Tracing the evolutionary stage of Bok globules: CCS and NH3

    E-Print Network [OSTI]

    Marka, C; Launhardt, R; Semenov, D A; Henning, Th

    2011-01-01T23:59:59.000Z

    We pursue the investigation of a previously proposed correlation between chemical properties and physical evolutionary stage of isolated low-mass star-forming regions. In the past, the NH3/CCS abundance ratio was suggested to be a potentially useful indicator for the evolutionary stage of cloud cores. We aim to study its applicability for isolated Bok globules. A sample of 42 Bok globules with and without signs of current star formation was searched for CCS(2-1) emission, the observations were complemented with NH3 measurements available in the literature and own observations. The abundance ratio of both molecules is discussed with respect to the evolutionary stage of the objects and in the context of chemical models. The NH3/CCS ratio could be assessed for 18 Bok globules and is found to be moderately high and roughly similar across all evolutionary stages from starless and prestellar cores towards internally heated cores harbouring protostars of Class 0, Class I or later. Bok globules with extremely high CC...

  14. Thesis office Internship office

    E-Print Network [OSTI]

    Thesis office Internship office Servicedesk Smartstudie Look at the thesis project flowchart when (education). Submit your thesis application form to: ThesisOffice-TNW@tudelft.nl. At the internship office you can find information about internships, other student experiences and tips. Contact: Internship

  15. Report of the Interagency Task Force on Carbon Capture and Storage

    SciTech Connect (OSTI)

    None

    2010-08-01T23:59:59.000Z

    Carbon capture and storage (CCS) refers to a set of technologies that can greatly reduce carbon dioxide (CO{sub 2}) emissions from new and existing coal- and gas-fired power plants, industrial processes, and other stationary sources of CO{sub 2}. In its application to electricity generation, CCS could play an important role in achieving national and global greenhouse gas (GHG) reduction goals. However, widespread cost-effective deployment of CCS will occur only if the technology is commercially available and a supportive national policy framework is in place. In keeping with that objective, on February 3, 2010, President Obama established an Interagency Task Force on Carbon Capture and Storage composed of 14 Executive Departments and Federal Agencies. The Task Force, co-chaired by the Department of Energy (DOE) and the Environmental Protection Agency (EPA), was charged with proposing a plan to overcome the barriers to the widespread, cost-effective deployment of CCS within ten years, with a goal of bringing five to ten commercial demonstration projects online by 2016. Composed of more than 100 Federal employees, the Task Force examined challenges facing early CCS projects as well as factors that could inhibit widespread commercial deployment of CCS. In developing the findings and recommendations outlined in this report, the Task Force relied on published literature and individual input from more than 100 experts and stakeholders, as well as public comments submitted to the Task Force. The Task Force also held a large public meeting and several targeted stakeholder briefings. While CCS can be applied to a variety of stationary sources of CO{sub 2}, its application to coal-fired power plant emissions offers the greatest potential for GHG reductions. Coal has served as an important domestic source of reliable, affordable energy for decades, and the coal industry has provided stable and quality high-paying jobs for American workers. At the same time, coal-fired power plants are the largest contributor to U.S. greenhouse gas (GHG) emissions, and coal combustion accounts for 40 percent of global carbon dioxide (CO{sub 2}) emissions from the consumption of energy. EPA and Energy Information Administration (EIA) assessments of recent climate and energy legislative proposals show that, if available on a cost-effective basis, CCS can over time play a large role in reducing the overall cost of meeting domestic emissions reduction targets. By playing a leadership role in efforts to develop and deploy CCS technologies to reduce GHG emissions, the United States can preserve the option of using an affordable, abundant, and domestic energy resource, help improve national security, help to maximize production from existing oil fields through enhanced oil recovery (EOR), and assist in the creation of new technologies for export. While there are no insurmountable technological, legal, institutional, regulatory or other barriers that prevent CCS from playing a role in reducing GHG emissions, early CCS projects face economic challenges related to climate policy uncertainty, first-of-a-kind technology risks, and the current high cost of CCS relative to other technologies. Administration analyses of proposed climate change legislation suggest that CCS technologies will not be widely deployed in the next two decades absent financial incentives that supplement projected carbon prices. In addition to the challenges associated with cost, these projects will need to meet regulatory requirements that are currently under development. Long-standing regulatory programs are being adapted to meet the circumstances of CCS, but limited experience and institutional capacity at the Federal and State level may hinder implementation of CCS-specific requirements. Key legal issues, such as long-term liability and property rights, also need resolution. A climate policy designed to reduce our Nation's GHG emissions is the most important step for commercial deployment of low-carbon technologies such as CCS, because it will create a stable, long-term framework for p

  16. CARBON MANAGEMENT TECHNOLOGY CONFERENCE OCTOBER 21-23, 2013 Hilton Alexandria Old Town Alexandria, Virginia Page 1

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    CARBON MANAGEMENT TECHNOLOGY CONFERENCE OCTOBER 21-23, 2013· Hilton Alexandria Old Town· Alexandria University Abstract Carbon Capture and Storage (CCS) projects are subject to monitoring and verification) on Mt. Simon sandstone (USA) #12;CARBON MANAGEMENT TECHNOLOGY CONFERENCE OCTOBER 21-23, 2013· Hilton

  17. The role of Life Cycle Assessment in identifying and reducing environmental impacts of CCS

    E-Print Network [OSTI]

    Sathre, Roger

    2011-01-01T23:59:59.000Z

    O. 2007. Comparison of carbon capture and storage withand liability for carbon capture and sequestration.fuel power plants with carbon capture and storage. Energy

  18. Regional Opportunities for Carbon Dioxide Capture and Storage in China: A Comprehensive CO2 Storage Cost Curve and Analysis of the Potential for Large Scale Carbon Dioxide Capture and Storage in the People’s Republic of China

    SciTech Connect (OSTI)

    Dahowski, Robert T.; Li, Xiaochun; Davidson, Casie L.; Wei, Ning; Dooley, James J.

    2009-12-01T23:59:59.000Z

    This study presents data and analysis on the potential for carbon dioxide capture and storage (CCS) technologies to deploy within China, including a survey of the CO2 source fleet and potential geologic storage capacity. The results presented here indicate that there is significant potential for CCS technologies to deploy in China at a level sufficient to deliver deep, sustained and cost-effective emissions reductions for China over the course of this century.

  19. File:CCS EA 2012 Web-ready.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,Size of this preview: 463Map.pdfFile EditBreakoutCCS EA

  20. Vehicle Technologies Office Merit Review 2014: Validation of...

    Broader source: Energy.gov (indexed) [DOE]

    Validation of Material Models for Automotive Carbon Fiber Composite Structures Vehicle Technologies Office Merit Review 2014: Validation of Material Models for Automotive Carbon...

  1. Los Alamos CCS (Center for Computer Security) formal computer security model

    SciTech Connect (OSTI)

    Dreicer, J.S.; Hunteman, W.J. (Los Alamos National Lab., NM (USA))

    1989-01-01T23:59:59.000Z

    This paper provides a brief presentation of the formal computer security model currently being developed at the Los Alamos Department of Energy (DOE) Center for Computer Security (CCS). The initial motivation for this effort was the need to provide a method by which DOE computer security policy implementation could be tested and verified. The actual analytical model was a result of the integration of current research in computer security and previous modeling and research experiences. The model is being developed to define a generic view of the computer and network security domains, to provide a theoretical basis for the design of a security model, and to address the limitations of present models. Formal mathematical models for computer security have been designed and developed in conjunction with attempts to build secure computer systems since the early 70's. The foundation of the Los Alamos DOE CCS model is a series of functionally dependent probability equations, relations, and expressions. The mathematical basis appears to be justified and is undergoing continued discrimination and evolution. We expect to apply the model to the discipline of the Bell-Lapadula abstract sets of objects and subjects. 5 refs.

  2. Assessment of Brine Management for Geologic Carbon Sequestration

    E-Print Network [OSTI]

    Breunig, Hanna M.

    2014-01-01T23:59:59.000Z

    sequestration  (CCS)  has  the  potential  to  play  a  CCS  and   prior  research  has  focused  on  its  potential  of  CCS.  In  order  to  maximize  this   potential,  

  3. Perspectives on Carbon Capture and Sequestration in the United States

    E-Print Network [OSTI]

    Wong-Parodi, Gabrielle

    2011-01-01T23:59:59.000Z

    living near actual or potential CCS projects, and the lastlocated near actual or potential CCS pilot projects. Theselocated near actual or potential CCS sites. These chapters

  4. Water Challenges for Geologic Carbon Capture and Sequestration

    E-Print Network [OSTI]

    Newmark, Robin L.; Friedmann, Samuel J.; Carroll, Susan A.

    2010-01-01T23:59:59.000Z

    2004; DOE 2007). CCS poses potential challenges to water9 Water chemistries from potential CCS target formation canCCS deployment presents some challenges to water resources. Potential

  5. Japan's Long-term Energy Demand and Supply Scenario to 2050 - Estimation for the Potential of Massive CO2 Mitigation

    E-Print Network [OSTI]

    Komiyama, Ryoichi

    2010-01-01T23:59:59.000Z

    and CCS (carbon capture and storage) technology and somewithout CCS (carbon capture and storage) technology taken

  6. The role of Life Cycle Assessment in identifying and reducing environmental impacts of CCS

    E-Print Network [OSTI]

    Sathre, Roger

    2011-01-01T23:59:59.000Z

    carbon capture and storage with renewable energy technologiescarbon capture and sequestration. Environmental Science and Technologyimpacts of the technologies, not just their carbon capture

  7. Wyoming Carbon Capture and Storage Institute

    SciTech Connect (OSTI)

    Nealon, Teresa

    2014-06-30T23:59:59.000Z

    This report outlines the accomplishments of the Wyoming Carbon Capture and Storage (CCS) Technology Institute (WCTI), including creating a website and online course catalog, sponsoring technology transfer workshops, reaching out to interested parties via news briefs and engaging in marketing activities, i.e., advertising and participating in tradeshows. We conclude that the success of WCTI was hampered by the lack of a market. Because there were no supporting financial incentives to store carbon, the private sector had no reason to incur the extra expense of training their staff to implement carbon storage. ii

  8. The Potential for Increased Atmospheric CO2 Emissions and Accelerated Consumption of Deep Geologic CO2 Storage Resources Resulting from the Large-Scale Deployment of a CCS-Enabled Unconventional Fossil Fuels Industry in the U.S.

    SciTech Connect (OSTI)

    Dooley, James J.; Dahowski, Robert T.; Davidson, Casie L.

    2009-11-02T23:59:59.000Z

    Desires to enhance the energy security of the United States have spurred significant interest in the development of abundant domestic heavy hydrocarbon resources including oil shale and coal to produce unconventional liquid fuels to supplement conventional oil supplies. However, the production processes for these unconventional fossil fuels create large quantities of carbon dioxide (CO2) and this remains one of the key arguments against such development. Carbon dioxide capture and storage (CCS) technologies could reduce these emissions and preliminary analysis of regional CO2 storage capacity in locations where such facilities might be sited within the U.S. indicates that there appears to be sufficient storage capacity, primarily in deep saline formations, to accommodate the CO2 from these industries. Nevertheless, even assuming wide-scale availability of cost-effective CO2 capture and geologic storage resources, the emergence of a domestic U.S. oil shale or coal-to-liquids (CTL) industry would be responsible for significant increases in CO2 emissions to the atmosphere. The authors present modeling results of two future hypothetical climate policy scenarios that indicate that the oil shale production facilities required to produce 3MMB/d from the Eocene Green River Formation of the western U.S. using an in situ retorting process would result in net emissions to the atmosphere of between 3000-7000 MtCO2, in addition to storing potentially 900-5000 MtCO2 in regional deep geologic formations via CCS in the period up to 2050. A similarly sized, but geographically more dispersed domestic CTL industry could result in 4000-5000 MtCO2 emitted to the atmosphere in addition to potentially 21,000-22,000 MtCO2 stored in regional deep geologic formations over the same period. While this analysis shows that there is likely adequate CO2 storage capacity in the regions where these technologies are likely to deploy, the reliance by these industries on large-scale CCS could result in an accelerated rate of utilization of the nation’s CO2 storage resource, leaving less high-quality storage capacity for other carbon-producing industries including electric power generation.

  9. Microsoft Word - NETL Offshore CCS Paper_OTC 2011_DRAFT_V3.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OTC Paper Number OTC-21987-PP Carbon Capture and Sequestration: The U.S. Department of Energy's R&D Efforts to Characterize Opportunities for Deep Geologic Storage of Carbon...

  10. DOCUMENTS DE TRAVAIL / WORKING PAPERS A survey on the public perception of CCS in

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    la capture et le stockage de carbone a été menée sur un échantillon représentatif de français âgés de sur le `Stockage' ('Storage' en anglais), et la seconde sur la `Sequestration'. La manipulation du Carbone, opinion publique. Keywords : Carbon capture and storage, public opinion. #12;#12;A survey

  11. Office of Facilities Planning and Management

    E-Print Network [OSTI]

    Ford, James

    approved areas) Carbon Fooprint Reminders Less Energy Less Paper Less Water Timer installation (Department #12;Office of Facilities Planning and Management Carbon Footprint Reminders to ourselves Reminders & Ziplock (rinsed) Bubble Wrap NO Paper with food Paper cups (coffee, soda) Napkins Chip bags #12;Office

  12. Progress and new developments in carbon capture and storage

    SciTech Connect (OSTI)

    Plasynski, S.I.; Litynski, J.T.; McIlvried, H.G.; Srivastava, R.D. [US DOE, Pittsburgh, PA (United States). National Energy Technology Laboratory

    2009-07-01T23:59:59.000Z

    Growing concern over the impact on global climate change of the buildup of greenhouse gases (GHGs) in the atmosphere has resulted in proposals to capture carbon dioxide (CO{sub 2}) at large point sources and store it in geologic formations, such as oil and gas reservoirs, unmineable coal seams, and saline formations, referred to as carbon capture and storage (CCS). There are three options for capturing CO{sub 2} from point sources: post-combustion capture, pre-combustion capture, and oxy-combustion. Several processes are available to capture CO{sub 2}, and new or improved processes are under development. However, CO{sub 2} capture is the most expensive part of CCS, typically accounting for 75% of overall cost. CCS will benefit significantly from the development of a lower cost post-combustion CO{sub 2} capture process that can be retrofitted to existing power plants. Once captured, the CO{sub 2} is compressed to about 150 atm and pipelined at supercritical conditions to a suitable storage site. Oil and gas reservoirs, because they have assured seals and are well characterized, are promising early opportunity sites. Saline formations are much more extensive and have a huge potential storage capacity, but are much less characterized. Several commercial and a number of pilot CCS projects are underway around the world.

  13. TWELFTH ANNUAL CONFERENCE ON CARBON CAPTURE, UTILIZATION AND SEQUESTRATION MAY 1316, 2013 DAVID L. Lawrence Convention Center Pittsburgh, Pennsylvania Page1

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    TWELFTH ANNUAL CONFERENCE ON CARBON CAPTURE, UTILIZATION AND SEQUESTRATION MAY 1316 approaches of CCS. The main concern for a geologic carbon dioxide (CO2) sequestration is sustained of CO2 Sequestration in Deep Saline Reservoir, Citronelle Dome, USA S.Alireza Haghighat1 , Shahab D

  14. The screening and scoping of Environmental Impact Assessment and Strategic Environmental Assessment of Carbon Capture and Storage in the Netherlands

    SciTech Connect (OSTI)

    Koornneef, J.; Faaij, A.; Turkenburg, W. [University of Utrecht, Utrecht (Netherlands)

    2008-08-15T23:59:59.000Z

    The Environmental Impact Assessment (EIA) and Strategic Environmental Assessment (SEA) are procedural tools which have as goal to assess and evaluate possible environmental effects of, respectively, a proposed project or policy plan. The goal of this article is to explore possible bottlenecks in applying both the EIA and SEA procedures on Carbon Capture and Storage (CCS) activities in the Netherlands, as experience is currently minimal or lacking. In this study we focus mainly on the institutional and procedural aspects of the screening and scoping phases of both procedures. This is achieved by reviewing EIA and SEA procedures for analogue projects for the three distinctive process steps of a CCS project, namely the power plant with capture, the transport and finally the underground storage of the CO{sub 2}. Additionally, EIA and SEA or similar procedures on CCS in other countries are reviewed and the legal framework for the Dutch EIA and SEA is studied. This article shows a concise overview of the EIA and SEA procedure in the Netherlands and the relation between both procedures. Based on our findings we have constructed a conceptual taxonomy for the scope of both procedures for CCS in the Netherlands. This taxonomy conceptualizes the possible integration of assessing the environmental impacts for tiered levels of decision making. This integration might be needed for first CCS projects as decisions on the strategic (spatial planning) level are currently absent for CCS in the Netherlands. Perpendicular to such integration is the integration of linked activities in the CCS chain and their alternatives, into one procedure. We argue that it would be beneficial to combine the separate EIA procedures for CCS activities into one procedure or at least provide close linkage between them.

  15. Purification and Processing of Graphitic Carbons

    E-Print Network [OSTI]

    Worsley, Kimberly Anne

    2010-01-01T23:59:59.000Z

    the CCs, the solution ionic strength, zeta potentials, andCCs, the solution ionic strength, and the zeta potential. 36potential, leading to a relatively poor colloidal stability and thus, a poor dispersion and separation of the CCs.

  16. Production of precipitated calcium carbonate from industrial by-product slags (Slag2PCC)

    E-Print Network [OSTI]

    Zevenhoven, Ron

    , it seems that carbonation of silicate minerals could be one of the solutions with most potential. More impor- tantly, it seems to be the only CO2 capture and storage (CCS) option for Finland (Koljonen et al industry, where it is used as a filler and coating pigment in paper. The potential for producing

  17. A survey on the public perception of CCS in Minh Ha-Duong

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    § December 21, 2007 Abstract An awareness and opinion survey on Carbon Capture and Storage was conducted: questioning one half about `Stockage' (English: storage), the other about `Sequestration'. Manipulating of or opposition to' the use of Carbon Capture and Storage in France was conducted to explore the variability

  18. Campus Sustainability Office Campus Planning Office

    E-Print Network [OSTI]

    Caughman, John

    Campus Sustainability Office (CSO) Campus Planning Office (CPO) Campus Sustainability Manager (Molly Bressers) Campus Sustainability Office and Campus Planning Office September 2014 Student Employee

  19. NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

    E-Print Network [OSTI]

    Coal-CCS integrated gasification combined cycle coal with carbon capture and sequestration Coal-IGCC integrated gasification combined cycle coal CoalNew advanced super critical coal steam plant (with SO2 and NOx controls) CoalOldScr conventional pulverized coal steam plant (with SO2 scrubber) Coal

  20. EIS-0445: American Electric Power Service Corporation's Mountaineer Commercial Scale Carbon Capture and Storage Demonstration, New Haven, Mason County, West Virginia

    Broader source: Energy.gov [DOE]

    DOE evaluates the potential environmental impacts of providing financial assistance for the construction and operation of a project proposed by American Electric Power Service Corporation (AEP). DOE selected tbis project for an award of financial assistance through a competitive process under the Clean Coal Power Initiative (CCPI) Program. AEP's Mountaineer Commercial Scale Carbon Capture and Storage Project (Mountaineer CCS II Project) would construct a commercial scale carbon dioxide (C02l capture and storage (CCS) system at AEP's existing Mountaineer Power Plant and other AEP owned properties located near New Haven, West Virginia.

  1. CMTA Office

    High Performance Buildings Database

    Prospect, KY When CMTA outgrew their old office space, the consultant engineering company decided to construct a new building. Not only does the structure provide offices for the firm, it also showcases progressive design elements and allows the firm to test new technologies and demonstrate their effectiveness to clients. The new CMTA office building is located in a live-work development on the outskirts of Louisville, KY. The location was selected to place the office close to where the employees live.

  2. The Ohio State University Office of Human Resources, Policy 8.15 Corrective Action Resources Edited 12/19/13, Page 1 of 1 Corrective Action and Involuntary Termination

    E-Print Network [OSTI]

    Howat, Ian M.

    Edited 12/19/13, Page 1 of 1 Corrective Action and Involuntary Termination Policy 8.15 Office of Human-292-2800 ohrc@hr.osu.edu hr.osu.edu/ohrc Appeals for CCS staff only; 3rd Level Notice (Termination) State

  3. President Office Vice President Office

    E-Print Network [OSTI]

    Wu, Yih-Min

    Affairs Division Computer Information Management Division Media Instruction and Production Center Division Campus Security Supplies Office Office of Research and Development Planning Section and Waste Control Division Radiation Protection Division Biological Pollution Control Division #12

  4. The role of CCS as a mitigation technology and challenges to its commercialization

    E-Print Network [OSTI]

    Raveendran, Sadia P

    2013-01-01T23:59:59.000Z

    Greenhouse gases are being emitted at an increasing rate, which may cause irreversible damage to the earth's climate. Considering the magnitude of CO? emissions from industrial facilities and power plants, carbon capture ...

  5. California's Energy Future - The View to 2050

    E-Print Network [OSTI]

    2011-01-01T23:59:59.000Z

    Fossil fuel with carbon capture and sequestration (CCS)and natural gas) with carbon capture and storage (CCS) andpower, fossil fuel with carbon capture and storage (CCS),

  6. California’s Energy Future: The View to 2050 - Summary Report

    E-Print Network [OSTI]

    Yang, Christopher

    2011-01-01T23:59:59.000Z

    Fossil fuel with carbon capture and sequestration (CCS)and natural gas) with carbon capture and storage (CCS) andpower, fossil fuel with carbon capture and storage (CCS),

  7. Vehicle Technologies Office Merit Review 2014: Predictive Engineering...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Predictive Engineering Tools for Injection-Molded Long-Carbon-Fiber Thermoplastic Composites Vehicle Technologies Office Merit Review 2014: Predictive Engineering Tools for...

  8. Mineralization of Carbon Dioxide: Literature Review

    SciTech Connect (OSTI)

    Romanov, V; Soong, Y; Carney, C; Rush, G; Nielsen, B; O'Connor, W

    2015-01-01T23:59:59.000Z

    CCS research has been focused on CO2 storage in geologic formations, with many potential risks. An alternative to conventional geologic storage is carbon mineralization, where CO2 is reacted with metal cations to form carbonate minerals. Mineralization methods can be broadly divided into two categories: in situ and ex situ. In situ mineralization, or mineral trapping, is a component of underground geologic sequestration, in which a portion of the injected CO2 reacts with alkaline rock present in the target formation to form solid carbonate species. In ex situ mineralization, the carbonation reaction occurs above ground, within a separate reactor or industrial process. This literature review is meant to provide an update on the current status of research on CO2 mineralization. 2

  9. Confirming CCS Security and Environmental Safety Aim of Newly Selected Field Projects

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy’s portfolio of field projects aimed at confirming that long-term geologic carbon dioxide storage is safe and environmentally secure has been expanded by three projects selected to collectively receive $34.5 million over four years.

  10. DOE NEPA Compliance Officers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NEPA Compliance Officers NEPA Compliance Officers are listed first for Program Offices, then Power Marketing Administrations, then Field Offices. Please send updates to...

  11. Conceptual Design of Optimized Fossil Energy Systems with Capture and Sequestration of Carbon Dioxide

    SciTech Connect (OSTI)

    Nils Johnson; Joan Ogden

    2010-12-31T23:59:59.000Z

    In this final report, we describe research results from Phase 2 of a technical/economic study of fossil hydrogen energy systems with carbon dioxide (CO{sub 2}) capture and storage (CCS). CO{sub 2} capture and storage, or alternatively, CO{sub 2} capture and sequestration, involves capturing CO{sub 2} from large point sources and then injecting it into deep underground reservoirs for long-term storage. By preventing CO{sub 2} emissions into the atmosphere, this technology has significant potential to reduce greenhouse gas (GHG) emissions from fossil-based facilities in the power and industrial sectors. Furthermore, the application of CCS to power plants and hydrogen production facilities can reduce CO{sub 2} emissions associated with electric vehicles (EVs) and hydrogen fuel cell vehicles (HFCVs) and, thus, can also improve GHG emissions in the transportation sector. This research specifically examines strategies for transitioning to large-scale coal-derived energy systems with CCS for both hydrogen fuel production and electricity generation. A particular emphasis is on the development of spatially-explicit modeling tools for examining how these energy systems might develop in real geographic regions. We employ an integrated modeling approach that addresses all infrastructure components involved in the transition to these energy systems. The overall objective is to better understand the system design issues and economics associated with the widespread deployment of hydrogen and CCS infrastructure in real regions. Specific objectives of this research are to: Develop improved techno-economic models for all components required for the deployment of both hydrogen and CCS infrastructure, Develop novel modeling methods that combine detailed spatial data with optimization tools to explore spatially-explicit transition strategies, Conduct regional case studies to explore how these energy systems might develop in different regions of the United States, and Examine how the design and cost of coal-based H{sub 2} and CCS infrastructure depend on geography and location.

  12. Sustainability Performance Office | Department of Energy

    Energy Savers [EERE]

    Sustainability Performance Office Sustainability Performance Office Sustainability Performance Office Sustainability Performance Office Sustainability Performance Office...

  13. Fellows' Officers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA)Budget » FYU.S. DOE Office ofPublicDirectoryOfficers

  14. Reading the Tea Leaves: How Utilities in the West Are Managing Carbon Regulatory Risk in their Resource Plans

    E-Print Network [OSTI]

    Barbose, Galen

    2008-01-01T23:59:59.000Z

    lacking CCS, clearly have the potential to significantlyperceived potential to retrofit IGCC plants with CCS at a

  15. Guidelines for carbon dioxide capture, transport and storage

    SciTech Connect (OSTI)

    Hanson, S.

    2008-07-01T23:59:59.000Z

    The goal of this effort was to develop a set of preliminary guidelines and recommendations for the deployment of carbon capture and storage (CCS) technologies in the United States. The CCS Guidelines are written for those who may be involved in decisions on a proposed project: the developers, regulators, financiers, insurers, project operators, and policymakers. Contents are: Part 1: introduction; Part 2: capture; Part 3: transport; Part 4; storage; Part. 5 supplementary information. Within these parts, eight recommended guidelines are given for: CO{sub 2} capture; ancillary environmental impacts from CO{sub 2}; pipeline design and operation; pipeline safety and integrity; siting CO{sub 2} pipelines; pipeline access and tariff regulation; guidelines for (MMV); risk assessment; financial responsibility; property rights and ownership; site selection and characterisation; injection operations; site closure; and post-closure. 18 figs., 9 tabs., 4 apps.

  16. Executive Officer

    Broader source: Energy.gov [DOE]

    THIS VACANCY ANNOUNCEMENT HAS BEEN MODIFIED TO EXTEND THE CLOSING DATE. A successful candidate in this position will serve as the Executive Officer to the Administrator of the Bonneville Power...

  17. Office of Chief Financial Officer

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-01-19T23:59:59.000Z

    This Order implements the provisions of the Chief Financial Officers Act of 1990 within the Department of Energy. Cancels SEN 34-91. Canceled by DOE O 520.1A.

  18. WNR Offices

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulenceUtilizeRural Public Reading*Official DocumentsOffices,

  19. Office Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar Apr May Jun Jul Aug SepDecade Year-0DecadeOffice

  20. Comparative Analysis of Modeling Studies on China's Future Energy and Emissions Outlook

    E-Print Network [OSTI]

    Zheng, Nina

    2010-01-01T23:59:59.000Z

    which carbon capture and sequestration (CCS) technology isCarbon No - CCS examined in Capture & separate CIS with CCS Sequestration (CCS) scenario Technologytechnologies in the industrial sector. McKinsey counts on carbon capture

  1. Office of Chief Financial Officer

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-11-27T23:59:59.000Z

    Page Change 1 to DOE O 520.1 modifies the responsibility statement to include NNSA Field CFO positions, modifies Heads of Field Elements responsibilities for consistency with the CFO responsibilities, and makes a minor change to reflect the establishment of the Office of Management, Budget and Evaluation. Cancels SEN 34-9.

  2. CARBON-CARBON COMPOSITE ALLCOMP Carbon-Carbon Composite

    E-Print Network [OSTI]

    Rollins, Andrew M.

    materials. MATERIALS AND DESIRED DATA Carbon-Carbon Composites(T300 & SWB): Crush Resistance, Bend StrengthCARBON-CARBON COMPOSITE ALLCOMP Carbon-Carbon Composite · C-C supplied in two forms · T300: C strength 4340 steel, carbon-carbon composite, and Carbon-Silicon Carbide composite were tested to examine

  3. An Assessment of the Commercial Availability of Carbon Dioxide Capture and Storage Technologies as of June 2009

    SciTech Connect (OSTI)

    Dooley, James J.; Davidson, Casie L.; Dahowski, Robert T.

    2009-06-26T23:59:59.000Z

    Currently, there is considerable confusion within parts of the carbon dioxide capture and storage (CCS) technical and regulatory communities regarding the maturity and commercial readiness of the technologies needed to capture, transport, inject, monitor and verify the efficacy of carbon dioxide (CO2) storage in deep, geologic formations. The purpose of this technical report is to address this confusion by discussing the state of CCS technological readiness in terms of existing commercial deployments of CO2 capture systems, CO2 transportation pipelines, CO2 injection systems and measurement, monitoring and verification (MMV) systems for CO2 injected into deep geologic structures. To date, CO2 has been captured from both natural gas and coal fired commercial power generating facilities, gasification facilities and other industrial processes. Transportation via pipelines and injection of CO2 into the deep subsurface are well established commercial practices with more than 35 years of industrial experience. There are also a wide variety of MMV technologies that have been employed to understand the fate of CO2 injected into the deep subsurface. The four existing end-to-end commercial CCS projects – Sleipner, Snøhvit, In Salah and Weyburn – are using a broad range of these technologies, and prove that, at a high level, geologic CO2 storage technologies are mature and capable of deploying at commercial scales. Whether wide scale deployment of CCS is currently or will soon be a cost-effective means of reducing greenhouse gas emissions is largely a function of climate policies which have yet to be enacted and the public’s willingness to incur costs to avoid dangerous anthropogenic interference with the Earth’s climate. There are significant benefits to be had by continuing to improve through research, development, and demonstration suite of existing CCS technologies. Nonetheless, it is clear that most of the core technologies required to address capture, transport, injection, monitoring, management and verification for most large CO2 source types and in most CO2 storage formation types, exist.

  4. A Look at Office Buildings - Index

    Gasoline and Diesel Fuel Update (EIA)

    professional offices, and administrative offices. For example, an office may be a computer center, bank, consultant's office, law office, or medical office. An office building...

  5. Bioenergy with Carbon Capture and Sequestration WorkshopBioenergy with Carbon Capture and Sequestration (BECCS) Workshop

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy (FE) and the Bioenergy Technologies Office (BETO) in the Office of Energy Efficiency and Renewable Energy (EERE) at the U.S. Department of Energy (DOE) is hosting a Bioenergy with Carbon Capture and Sequestration (BECCS) Workshop on Monday, May 18, 2015 in Washington, DC.

  6. Sustainability Assessment of Coal-Fired Power Plants with Carbon Capture and Storage

    SciTech Connect (OSTI)

    Widder, Sarah H.; Butner, R. Scott; Elliott, Michael L.; Freeman, Charles J.

    2011-11-30T23:59:59.000Z

    Carbon capture and sequestration (CCS) has the ability to dramatically reduce carbon dioxide (CO2) emissions from power production. Most studies find the potential for 70 to 80 percent reductions in CO2 emissions on a life-cycle basis, depending on the technology. Because of this potential, utilities and policymakers are considering the wide-spread implementation of CCS technology on new and existing coal plants to dramatically curb greenhouse gas (GHG) emissions from the power generation sector. However, the implementation of CCS systems will have many other social, economic, and environmental impacts beyond curbing GHG emissions that must be considered to achieve sustainable energy generation. For example, emissions of nitrogen oxides (NOx), sulfur oxides (SOx), and particulate matter (PM) are also important environmental concerns for coal-fired power plants. For example, several studies have shown that eutrophication is expected to double and acidification would increase due to increases in NOx emissions for a coal plant with CCS provided by monoethanolamine (MEA) scrubbing. Potential for human health risks is also expected to increase due to increased heavy metals in water from increased coal mining and MEA hazardous waste, although there is currently not enough information to relate this potential to actual realized health impacts. In addition to environmental and human health impacts, supply chain impacts and other social, economic, or strategic impacts will be important to consider. A thorough review of the literature for life-cycle analyses of power generation processes using CCS technology via the MEA absorption process, and other energy generation technologies as applicable, yielded large variability in methods and core metrics. Nonetheless, a few key areas of impact for CCS were developed from the studies that we reviewed. These are: the impact of MEA generation on increased eutrophication and acidification from ammonia emissions and increased toxicity from MEA production and the impact of increased coal use including the increased generation of NOx from combustion and transportation, impacts of increased mining of coal and limestone, and the disposal of toxic fly ash and boiler ash waste streams. Overall, the implementing CCS technology could contribute to a dramatic decrease in global GHG emissions, while most other environmental and human health impact categories increase only slightly on a global scale. However, the impacts on human toxicity and ecotoxicity have not been studied as extensively and could have more severe impacts on a regional or local scale. More research is needed to draw strong conclusions with respect to the specific relative impact of different CCS technologies. Specifically, a more robust data set that disaggregates data in terms of component processes and treats a more comprehensive set of environmental impacts categories from a life-cycle perspective is needed. In addition, the current LCA framework lacks the required temporal and spatial scales to determine the risk of environmental impact from carbon sequestration. Appropriate factors to use when assessing the risk of water acidification (groundwater/oceans/aquifers depending on sequestration site), risk of increased human toxicity impact from large accidental releases from pipeline or wells, and the legal and public policy risk associated with licensing CO2 sequestration sites are also not currently addressed. In addition to identifying potential environmental, social, or risk-related issues that could impede the large-scale deployment of CCS, performing LCA-based studies on energy generation technologies can suggest places to focus our efforts to achieve technically feasible, economically viable, and environmentally conscious energy generation technologies for maximum impact.

  7. Technologies for Carbon Capture and Storage

    E-Print Network [OSTI]

    Hydrogen Program · FutureGen · Carbon Sequestration Leadership Forum (CSLF) #12;24-Jun-03 Slide 3 OfficeFutureGen Technologies for Carbon Capture and Storage and Hydrogen and Electricity Production-to-hydrogen costs must be lowered and affordable methods developed to sequester the "left behind" carbon #12;24-Jun

  8. Carbon Dioxide Transport and Storage Costs in NETL Studies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Office of Program Performance and Benefits 2 Carbon Dioxide Transport and Storage Costs in NETL Studies Quality Guidelines for Energy System Studies May 2014...

  9. Research Experience in Carbon Sequestration 2015 Now Accepting...

    Broader source: Energy.gov (indexed) [DOE]

    capture, utilization and storage (CCUS) by participating in the Research Experience in Carbon Sequestration (RECS) program. The initiative, supported by Department's Office of...

  10. Advanced Oxidation & Stabilization of PAN-Based Carbon Precursor...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Advanced Oxidation & Stabilization of PAN-Based Carbon Precursor Fibers Vehicle Technologies Office Merit Review 2014: Advanced Oxidation &...

  11. Synthesis and Characterization of Structured Si-Carbon Nanocomposite...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Si-Carbon Nanocomposite Anodes and Functional Polymer Binders Vehicle Technologies Office Merit Review 2014: High Energy, Long Cycle Life Lithium-ion Batteries for EV Applications...

  12. Carbon Foam Thermal Management Materials for Electronic Packaging...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Foam Thermal Management Materials for Electronic Packaging Carbon Foam Thermal Management Materials for Electronic Packaging Presentation from the U.S. DOE Office of Vehicle...

  13. Privacy Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeedingTechnical News, informationPriority Firm Exchange . . .

  14. Director's Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign: PotentialFederalDirectionsDirector's Office Print Roger

  15. Realistic costs of carbon capture

    SciTech Connect (OSTI)

    Al Juaied, Mohammed (Harvard Univ., Cambridge, MA (US). Belfer Center for Science and International Affiaris); Whitmore, Adam (Hydrogen Energy International Ltd., Weybridge (GB))

    2009-07-01T23:59:59.000Z

    There is a growing interest in carbon capture and storage (CCS) as a means of reducing carbon dioxide (CO2) emissions. However there are substantial uncertainties about the costs of CCS. Costs for pre-combustion capture with compression (i.e. excluding costs of transport and storage and any revenue from EOR associated with storage) are examined in this discussion paper for First-of-a-Kind (FOAK) plant and for more mature technologies, or Nth-of-a-Kind plant (NOAK). For FOAK plant using solid fuels the levelised cost of electricity on a 2008 basis is approximately 10 cents/kWh higher with capture than for conventional plants (with a range of 8-12 cents/kWh). Costs of abatement are found typically to be approximately US$150/tCO2 avoided (with a range of US$120-180/tCO2 avoided). For NOAK plants the additional cost of electricity with capture is approximately 2-5 cents/kWh, with costs of the range of US$35-70/tCO2 avoided. Costs of abatement with carbon capture for other fuels and technologies are also estimated for NOAK plants. The costs of abatement are calculated with reference to conventional SCPC plant for both emissions and costs of electricity. Estimates for both FOAK and NOAK are mainly based on cost data from 2008, which was at the end of a period of sustained escalation in the costs of power generation plant and other large capital projects. There are now indications of costs falling from these levels. This may reduce the costs of abatement and costs presented here may be 'peak of the market' estimates. If general cost levels return, for example, to those prevailing in 2005 to 2006 (by which time significant cost escalation had already occurred from previous levels), then costs of capture and compression for FOAK plants are expected to be US$110/tCO2 avoided (with a range of US$90-135/tCO2 avoided). For NOAK plants costs are expected to be US$25-50/tCO2. Based on these considerations a likely representative range of costs of abatement from CCS excluding transport and storage costs appears to be US$100-150/tCO2 for first-of-a-kind plants and perhaps US$30-50/tCO2 for nth-of-a-kind plants.The estimates for FOAK and NOAK costs appear to be broadly consistent in the light of estimates of the potential for cost reductions with increased experience. Cost reductions are expected from increasing scale, learning on individual components, and technological innovation including improved plant integration. Innovation and integration can both lower costs and increase net output with a given cost base. These factors are expected to reduce abatement costs by approximately 65% by 2030. The range of estimated costs for NOAK plants is within the range of plausible future carbon prices, implying that mature technology would be competitive with conventional fossil fuel plants at prevailing carbon prices.

  16. Office of Chief Financial Officer

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEWResponse toOctober 2014 National Idling ReductionOfficeVolume 3

  17. Development of a Software Framework for System-Level Carbon Sequestration Risk Assessment

    SciTech Connect (OSTI)

    Miller, R.

    2013-02-28T23:59:59.000Z

    The overall purpose of this project was to identify, evaluate, select, develop, and test a suite of enhancements to the GoldSim software program, in order to make it a better tool for use in support of Carbon Capture and Sequestration (CCS) projects. The GoldSim software is a foundational tool used by scientists at NETL and at other laboratories and research institutions to evaluate system-level risks of proposed CCS projects. The primary product of the project was a series of successively improved versions of the GoldSim software, supported by an extensive User’s Guide. All of the enhancements were tested by scientists at Los Alamos National Laboratory, and several of the enhancements have already been incorporated into the CO{sub 2}-PENS sequestration model.

  18. Space Geodesy and Geochemistry Applied to the Monitoring, Verification of Carbon Capture and Storage

    SciTech Connect (OSTI)

    Swart, Peter

    2013-11-30T23:59:59.000Z

    This award was a training grant awarded by the U.S. Department of Energy (DOE). The purpose of this award was solely to provide training for two PhD graduate students for three years in the general area of carbon capture and storage (CCS). The training consisted of course work and conducting research in the area of CCS. Attendance at conferences was also encouraged as an activity and positive experience for students to learn the process of sharing research findings with the scientific community, and the peer review process. At the time of this report, both students have approximately two years remaining of their studies, so have not fully completed their scientific research projects.

  19. Finance & Administration Controller's Office

    E-Print Network [OSTI]

    Weston, Ken

    Finance & Administration Controller's Office April 2014 Michael Williams Controller Controller ICOFA 61318 Revised: 4/4/2014 #12;Finance & Administration Controller's Office Accounting & Asset Coordinator Property Surplus Sales 81269 Revised: 4/4/2014 #12;Finance & Administration Controller's Office

  20. SITE OFFICE CONSOLIDATION

    Broader source: Energy.gov [DOE]

    Paul Golan, Site Office Manager, SLAC/LBNL, will present on the role of the DOE Site Office. We anticipate that Paul will cover the role of the DOE Site Office, operating model, and vision.

  1. Director, Vehicle Technologies Office

    Broader source: Energy.gov [DOE]

    This position is located within the Vehicle Technologies Office (VTO), within the Office of Energy Efficiency and Renewable Energy (EERE). The Office reports to the Deputy Assistant Secretary for...

  2. Managing Carbon Regulatory Risk in Utility Resource Planning: Current Practices in the Western United States

    E-Print Network [OSTI]

    Barbose, Galen

    2008-01-01T23:59:59.000Z

    sub-critical pulverized coal generation, representing thecontaining new pulverized coal generation without CCS. Ofthe operating cost of coal-fired generation without CCS, and

  3. Managing Carbon Regulatory Risk in Utility Resource Planning: Current Practices in the Western United States

    E-Print Network [OSTI]

    Barbose, Galen

    2009-01-01T23:59:59.000Z

    sub-critical pulverized coal generation, representing thecontaining new pulverized coal generation without CCS. Ofthe operating cost of coal-fired generation without CCS, and

  4. Calcifying Cyanobacteria - The potential of biomineralization for Carbon Capture and Storage

    E-Print Network [OSTI]

    Jansson, Christer G

    2010-01-01T23:59:59.000Z

    calcification and its potential in CCS by a briefCCS using calcifying cyanobacteria Through photosynthesis and calcification, cyanobacteria have the potential

  5. Bioenergy Technologies Office (BETO) Announces Renewable Carbon...

    Office of Environmental Management (EM)

    to develop and transform biomass resources into commercially viable, high-performance biofuels, bioproducts, and biopower through targeted research development, demonstration, and...

  6. LANSCE | Training Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    header TA-53 Training Office User Specific Training LANL Training Services (Internal) LANL UTRAIN (Internal) LANL EXTRAIN (External) Training Office dotline Please note current...

  7. Chief Information Officer

    Broader source: Energy.gov [DOE]

    The Federal Energy Regulatory Commission is looking for an experienced senior level executive to serve as the Chief Information Officer (CIO). The Chief Information Officer (CIO) reports directly...

  8. Advanced Manufacturing Office (Formerly Industrial Technologies Program)

    E-Print Network [OSTI]

    Advanced Manufacturing Office (Formerly Industrial Technologies Program) Leo Christodoulou Jamie August 11, 2011 #12;Background and Opportunity Background Industry accounts for 30% of energy consumption-value industries such as the renewable energy industry. Example materials include low-cost carbon fiber, low

  9. Near Surface Leakage Monitoring for the Verification and Accounting of Geologic Carbon Sequestration Using a Field Ready {sup 14}C Isotopic Analyzer

    SciTech Connect (OSTI)

    Marino, Bruno

    2014-04-14T23:59:59.000Z

    Results for the development of a field ready multi-isotopic analyzer for {sup 12}CO{sub 2}, {sup 13}CO{sub 2} and {sup 14}CO{sub 2} and applications for carbon capture and storage (CCS) containment performance are described. A design goal of the field platform was to provide isotopic data with a high data rate, a standardized reference baseline and acceptable precision (e.g., ~ ±50 per mil D{sup 14}CO{sub 2}) for detection and quantification of fossil-fuel CO{sub 2} CCS leakage scenarios. The instrument platform was not designed to replace high precision accelerator mass spectrometry. An additional goal was to combine project scale isotopic data and associated fluxes with unique financial instruments linking CCS containment performance to a publicly traded security providing project revenue to stakeholders. While the primary goals of the project were attained additional work is needed for the instrument platform and deployment within a full scale CCS site that was not available during the project timeframe.

  10. The current state of CCS: Ongoing research at the University of Cambridge with application to the UK policy framework

    E-Print Network [OSTI]

    Daniels, K.A.; Huppert, H.E.; Neufeld, J.A.; Reiner, D.

    2012-12-14T23:59:59.000Z

    of crushed rock, reactive rock formations and un- derground reservoirs such as depleted oil and gas reservoirs or saline aquifers [3]. CO2 can 12Mainly bituminous coal, with some anthracite, is combusted for electricity in the UK. Bituminous coal is higher... Roadmap, Electricity Market Reform, carbon capture technologies, carbon sequestration, storage reservoir processes. JEL Classification O13 Q40 Q41 Q42 Q48 Q51 Q54 Q55 Q58 Contact K.A.Daniels@damtp.cam.ac.uk Publication December, 2012 Financial...

  11. Fresh Water Generation from Aquifer-Pressured Carbon Storage: Annual Report FY09

    SciTech Connect (OSTI)

    Wolery, T; Aines, R; Hao, Y; Bourcier, W; Wolfe, T; Haussman, C

    2009-11-25T23:59:59.000Z

    This project is establishing the potential for using brine pressurized by Carbon Capture and Storage (CCS) operations in saline formations as the feedstock for desalination and water treatment technologies including reverse osmosis (RO) and nanofiltration (NF). The aquifer pressure resulting from the energy required to inject the carbon dioxide provides all or part of the inlet pressure for the desalination system. Residual brine is reinjected into the formation at net volume reduction, such that the volume of fresh water extracted balances the volume of CO{sub 2} injected into the formation. This process provides additional CO{sub 2} storage capacity in the aquifer, reduces operational risks (cap-rock fracturing, contamination of neighboring fresh water aquifers, and seismicity) by relieving overpressure in the formation, and provides a source of low-cost fresh water to offset costs or operational water needs. This multi-faceted project combines elements of geochemistry, reservoir engineering, and water treatment engineering. The range of saline formation waters is being identified and analyzed. Computer modeling and laboratory-scale experimentation are being used to examine mineral scaling and osmotic pressure limitations. Computer modeling is being used to evaluate processes in the storage aquifer, including the evolution of the pressure field. Water treatment costs are being evaluated by comparing the necessary process facilities to those in common use for seawater RO. There are presently limited brine composition data available for actual CCS sites by the site operators including in the U.S. the seven regional Carbon Sequestration Partnerships (CSPs). To work around this, we are building a 'catalog' of compositions representative of 'produced' waters (waters produced in the course of seeking or producing oil and gas), to which we are adding data from actual CCS sites as they become available. Produced waters comprise the most common examples of saline formation waters. Therefore, they are expected to be representative of saline formation waters at actual and potential future CCS sites. We are using a produced waters database (Breit, 2002) covering most of the United States compiled by the U.S. Geological Survey (USGS). In one instance to date, we have used this database to find a composition corresponding to the brine expected at an actual CCS site (Big Sky CSP, Nugget Formation, Sublette County, Wyoming). We have located other produced waters databases, which are usually of regional scope (e.g., NETL, 2005, Rocky Mountains basins).

  12. Tribological Characterization of Carbon Based Solid Lubricants

    E-Print Network [OSTI]

    Sanchez, Carlos Joel

    2012-10-19T23:59:59.000Z

    TRIBOLOGICAL CHARACTERIZATION OF CARBON BASED SOLID LUBRICANTS A Thesis by CARLOS JOEL SANCHEZ Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE August 2011 Major Subject: Mechanical Engineering TRIBOLOGICAL CHARACTERIZATION OF CARBON BASED SOLID LUBRICANTS A Thesis by CARLOS JOEL SANCHEZ Submitted to the Office of Graduate Studies of Texas...

  13. Columbia University Postdoctoral Officers

    E-Print Network [OSTI]

    Grishok, Alla

    Columbia University Postdoctoral Officers Handbook 2013 #12;Greetings! I am excited to welcome you to the Columbia University community of scholars and investigators. The Columbia University Office of Postdoctoral Director, Office of Postdoctoral Affairs Columbia University in the city of new york office of postdoctoral

  14. CDIAC -WHPO/CCHDO Data Management Plan for CTD/Hydrographic/CO2/Tracer Data for the Global Ocean Carbon and

    E-Print Network [OSTI]

    Carbon and Repeat Hydrography Program Alex Kozyr Carbon Dioxide Information Analysis Center Environmental://cdiac.esd.ornl.gov/oceans/home.html James H. Swift WOCE Hydrographic Program Office (CLIVAR and Carbon Hydrographic Data Office) UCSD oceanographic research depends on the availability and clarity of existing data. Two data offices in the US deal

  15. Site Office Contracting Officer E-mail address Ames Site Office...

    National Nuclear Security Administration (NNSA)

    Office Contracting Officer E-mail address Ames Site Office Jackie York Jacquelyn.york@ch.doe.gov Argonne Site Office Jacquelyn York Jacquelyn.york@ch.doe.gov Brookhaven Site Office...

  16. California’s Energy Future: The View to 2050 - Summary Report

    E-Print Network [OSTI]

    Yang, Christopher

    2011-01-01T23:59:59.000Z

    Coast Regional Carbon Sequestration Partnership: Source-Sinkfuel with carbon capture and sequestration (CCS) wouldBoard CCS Carbon capture and sequestration CCST California

  17. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01T23:59:59.000Z

    power plants without carbon capture and sequestration. iiSystem Operator CCS Carbon capture and sequestration CECnew nuclear power or carbon capture and sequestration (CCS)

  18. Development and Application of Advanced Models for Steam Hydrogasification: Process Design and Economic Evaluation

    E-Print Network [OSTI]

    Lu, Xiaoming

    2012-01-01T23:59:59.000Z

    coal plant with 90% Carbon Capture and Storage (CCS) using awith pre-combustion Carbon Capture and Storage (CCS) isbaseline with 90% carbon capture, Woods et al. estimated

  19. Summary for Policymakers IPCC Fourth Assessment Report, Working Group III

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    commercialized before 2030. Carbon Capture and Storage (CCS)production utilizing carbon capture and storage. [Figurethe baseline. CCS includes carbon capture and storage from

  20. Japan's Long-term Energy Demand and Supply Scenario to 2050 - Estimation for the Potential of Massive CO2 Mitigation

    E-Print Network [OSTI]

    Komiyama, Ryoichi

    2010-01-01T23:59:59.000Z

    power plant, and CCS (carbon capture and storage) technologypower generation Carbon capture and storage The present paceEven without CCS (carbon capture and storage) technology

  1. Research project on CO2 geological storage and groundwater resources: Large-scale hydrological evaluation and modeling of impact on groundwater systems

    E-Print Network [OSTI]

    Birkholzer, Jens; Zhou, Quanlin; Rutqvist, Jonny; Jordan, Preston; Zhang, K.; Tsang, Chin-Fu

    2008-01-01T23:59:59.000Z

    confidence in carbon capture and storage technologies, thereIf carbon dioxide capture and storage (CCS) technologies areIf carbon dioxide capture and storage (CCS) technologies are

  2. Microwave-Assisted Ignition for Improved Internal Combustion Engine Efficiency

    E-Print Network [OSTI]

    DeFilippo, Anthony Cesar

    2013-01-01T23:59:59.000Z

    though carbon capture and storage (CCS) technology couldmonoxide. Carbon Capture and Sequestration (CCS) technologyof the technology. A power plant built with carbon capture

  3. California's Energy Future - The View to 2050

    E-Print Network [OSTI]

    2011-01-01T23:59:59.000Z

    Coast Regional Carbon Sequestration Partnership: Source-Sinkfuel with carbon capture and sequestration (CCS) wouldBoard CCS Carbon capture and sequestration CCST California

  4. Reading the Tea Leaves: How Utilities in the West Are Managing Carbon Regulatory Risk in their Resource Plans

    E-Print Network [OSTI]

    Barbose, Galen

    2008-01-01T23:59:59.000Z

    containing new pulverized coal generation without CCS. Ofwith any coal-fired generation. Of these utilities, four areor contracting with coal-fired generation lacking CCS.

  5. A Low-Carbon Fuel Standard for California, Part 2: Policy Analysis

    E-Print Network [OSTI]

    Sperling, Daniel; Farrell, Alexander

    2007-01-01T23:59:59.000Z

    potential direction for technological innovation in transportation fuels. Therefore, we recommended that fuels produced using CCS

  6. A Low-Carbon Fuel Standard for California Part 2: Policy Analysis

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    potential direction for technological innovation in transportation fuels. Therefore, we recommended that fuels produced using CCS

  7. Finance & Administration Controller's Office

    E-Print Network [OSTI]

    McQuade, D. Tyler

    Finance & Administration Controller's Office July 2014 Michael Williams Controller Controller Administrative Services 51111 Catherine Hebert Program Director ICOFA 61318 Revised: 7/28/2014 #12;Finance Surplus Property 81269 Revised: 7/28/2014 #12;Finance & Administration Controller's Office Disbursement

  8. Manager, Carlsbad Field Office

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE), Office of Environmental Management (EM), Carlsbad Field Office (CBFO) is seeking a highly experienced and motivated executive-minded individual to fill its...

  9. Office of Information Management

    Broader source: Energy.gov [DOE]

    The Office of Information Management provides a broad range of information technology services in support of the Associate Under Secretary for the Office of Environment, Health, Safety and Security (AU).

  10. Richland Operations Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy Richland Operations Office P.O. Box 550 &?ATES0Richland, Washington 99352 10O-AMSE-0054 A PR I Mr. J. G. Lehew III, President and Chief Executive Officer...

  11. Mathematics Business Office

    E-Print Network [OSTI]

    Mathematics Business Office. Welcome to new faculty · Moving Procedures · Forms · Travel; Research. Pre-Award Center · Vice President for Research ...

  12. Columbia University Postdoctoral Officers

    E-Print Network [OSTI]

    Grishok, Alla

    Columbia University Postdoctoral Officers Handbook 2011 #12;Greetings! I am excited to welcome you to the Columbia University community of scholars and investigators. The Columbia University Office of Postdoctoral of Postdoctoral Affairs Columbia university in the City of new york offiCe of postdoCtoral affairs 840 Interchurch

  13. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01T23:59:59.000Z

    the grid. Carbon capture and sequestration technology is notor carbon capture and sequestration (CCS) technology. The

  14. An Evaluation of the Carbon Sequestration Potential of the Cambro?Ordovician Strata of the Illinois and Michigan Basins

    SciTech Connect (OSTI)

    Leetaru, Hannes

    2014-09-30T23:59:59.000Z

    The studies summarized herein were conducted during 2009–2014 to investigate the utility of the Knox Group and St. Peter Sandstone deeply buried geologic strata for underground storage of carbon dioxide (CO{sub 2}), a practice called CO{sub 2} sequestration (CCS). In the subsurface of the midwestern United States, the Knox and associated strata extend continuously over an area approaching 500,000 sq. km, about three times as large as the State of Illinois. Although parts of this region are underlain by the deeper Mt. Simon Sandstone, which has been proven by other Department of Energy?funded research as a resource for CCS, the Knox strata may be an additional CCS resource for some parts of the Midwest and may be the sole geologic storage (GS) resource for other parts. One group of studies assembles, analyzes, and presents regional?scale and point?scale geologic information that bears on the suitability of the geologic formations of the Knox for a CCS project. New geologic and geo?engineering information was developed through a small?scale test of CO{sub 2} injection into a part of the Knox, conducted in western Kentucky. These studies and tests establish the expectation that, at least in some locations, geologic formations within the Knox will (a) accept a commercial?scale flow rate of CO{sub 2} injected through a drilled well; (b) hold a commercial?scale mass of CO{sub 2} (at least 30 million tons) that is injected over decades; and (c) seal the injected CO{sub 2} within the injection formations for hundreds to thousands of years. In CCS literature, these three key CCS?related attributes are called injectivity, capacity, and containment. The regional?scale studies show that reservoir and seal properties adequate for commercial?scale CCS in a Knox reservoir are likely to extend generally throughout the Illinois and Michigan Basins. Information distinguishing less prospective subregions from more prospective fairways is included in this report. Another group of studies report the results of reservoir flow simulations that estimate the progress and outcomes of hypothetical CCS projects carried out within the Knox (particularly within the Potosi Dolomite subunit, which, in places, is highly permeable) and within the overlying St. Peter Sandstone. In these studies, the regional?scale information and a limited amount of detailed data from specific boreholes is used as the basis for modeling the CO{sub 2} injection process (dynamic modeling). The simulation studies were conducted progressively, with each successive study designed to refine the conclusions of the preceding one or to answer additional questions. The simulation studies conclude that at Decatur, Illinois or a geologically similar site, the Potosi Dolomite reservoir may provide adequate injectivity and capacity for commercial?scale injection through a single injection well. This conclusion depends on inferences from seismic?data attributes that certain highly permeable horizons observed in the wells represent laterally persistent, porous vuggy zones that are vertically more common than initially evident from wellbore data. Lateral persistence of vuggy zones is supported by isotopic evidence that the conditions that caused vug development (near?surface processes) were of regional rather than local scale. Other studies address aspects of executing and managing a CCS project that targets a Knox reservoir. These studies cover well drilling, public interactions, representation of datasets and conclusions using geographic information system (GIS) platforms, and risk management.

  15. Molecular Line Observations of a Carbon-Chain-Rich Core L492

    E-Print Network [OSTI]

    Tomoya Hirota; Satoshi Yamamoto

    2006-04-04T23:59:59.000Z

    We report on molecular abundances and distributions in a starless dense core L492. We have found that the abundances of carbon-chain molecules such as CCS, C$_{3}$S, HC$_{3}$N, HC$_{5}$N, and HC$_{7}$N are comparable to those in chemically young dark cloud cores called "carbon-chain--producing regions", such as L1495B, L1521B, L1521E, and TMC-1. This is the first dark cloud core with extremely rich in carbon-chain-molecules that is found outside the Taurus region. In addition, the deuterium fractionation ratios of DNC/HNC and DCO$^{+}$/HCO$^{+}$ are also comparable to those in carbon-chain--producing regions, being significantly lower than those in the evolved prestellar cores such as L1498 and L1544. On the other hand, the abundances of NH$_{3}$ and N$_{2}$H$^{+}$ are systematically higher than those in carbon-chain--producing regions. Our mapping observations reveal that the central hole of molecular distributions, which were reported for CCS and C$^{34}$S in evolved prestellar cores is not significant in L492, indicating that the depletion factor of molecules is not very high. Furthermore, L492 is dynamically more evolved than carbon-chain--producing regions, and the protostellar collapse has started like L1498 and L1544. Therefore, it is likely that the chemical and dynamical evolutionary stage of L492 is intermediate between carbon-chain--producing regions (L1495B, L1521B, L1521E, and TMC-1) and evolved prestellar cores (L1498 and L1544).

  16. National Level Co-Control Study of the Targets for Energy Intensity and Sulfur Dioxide in China

    E-Print Network [OSTI]

    Zhou, Nan

    2013-01-01T23:59:59.000Z

    the reduction from carbon capture and sequestration (CCS) isES-1 In addition, a carbon capture and sequestration (CCS)It should be noted that carbon capture and storage (CCS) for

  17. Carbon Smackdown: Carbon Capture

    ScienceCinema (OSTI)

    Jeffrey Long

    2010-09-01T23:59:59.000Z

    In this July 9, 2010 Berkeley Lab summer lecture, Lab scientists Jeff Long of the Materials Sciences and Nancy Brown of the Environmental Energy Technologies Division discuss their efforts to fight climate change by capturing carbon from the flue gas of power plants, as well as directly from the air

  18. Development of a Carbon Management Geographic Information System (GIS) for the United States

    SciTech Connect (OSTI)

    Howard Herzog; Holly Javedan

    2009-12-31T23:59:59.000Z

    In this project a Carbon Management Geographical Information System (GIS) for the US was developed. The GIS stored, integrated, and manipulated information relating to the components of carbon management systems. Additionally, the GIS was used to interpret and analyze the effect of developing these systems. This report documents the key deliverables from the project: (1) Carbon Management Geographical Information System (GIS) Documentation; (2) Stationary CO{sub 2} Source Database; (3) Regulatory Data for CCS in United States; (4) CO{sub 2} Capture Cost Estimation; (5) CO{sub 2} Storage Capacity Tools; (6) CO{sub 2} Injection Cost Modeling; (7) CO{sub 2} Pipeline Transport Cost Estimation; (8) CO{sub 2} Source-Sink Matching Algorithm; and (9) CO{sub 2} Pipeline Transport and Cost Model.

  19. NASA Office of Inspector General Office of Audits

    E-Print Network [OSTI]

    Waliser, Duane E.

    NASA Office of Inspector General Office of Audits Report No. IG-15-003 NASA'S LAUNCH SUPPORT Center October 23, 2014 NASA Office of Inspector General Office of Audits IG-15-003 (A-13 National Aeronautics and Space Administration #12;Office of Inspector General To report, fraud, waste

  20. Vehicle Technologies Office: News

    Broader source: Energy.gov [DOE]

    EERE intends to issue, on behalf of its Fuel Cell Technologies Office, a Funding Opportunity Announcement (FOA) entitled "Fuel Cell Technologies Incubator: Innovations in Fuel Cell and Hydrogen...

  1. Mathematics Business Office

    E-Print Network [OSTI]

    The Department Business Office will contact the University Purchasing Department with your name, address, phone number, and the company you wish to use.

  2. Office of Physical Protection

    Broader source: Energy.gov [DOE]

    The Office of Physical Protection is comprised of a team of security specialists engaged in providing Headquarters-wide physical protection.

  3. Solar Energy Technologies Office

    Broader source: Energy.gov [DOE]

    In 2011, the Energy Department's Solar Energy Technologies Office (SETO) became the SunShot Initiative, a collaborative national effort that aggressively drives innovation to make solar energy...

  4. Director, Geothermal Technologies Office

    Broader source: Energy.gov [DOE]

    The mission of the Geothermal Technologies Office (GTO) is to accelerate the development and deployment of clean, domestic geothermal resources that will promote a stronger, more productive economy...

  5. Site Office Manager, Princeton

    Broader source: Energy.gov [DOE]

    A successful candidate in this position will serve as the Princeton Site Office (PSO) Manager by providing overall executive leadership to the PSO.

  6. Office Buildings - Full Report

    Gasoline and Diesel Fuel Update (EIA)

    1). Table 1. Totals and means of of floorspace, number of workers, and hours of operation for office buildings, 2003 Buildings (thousand) Total Floorspace (million sq. ft.)...

  7. Sandia Energy - Carbon Capture

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatings Initiated at PNNL's Sequim BayCapture Home Carbon Capture The

  8. Sandia Energy - Carbon Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatings Initiated at PNNL's Sequim BayCapture Home Carbon

  9. Carbon Capture FAQs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o . C l a r8.05CarBen Version 3 Prototype:carbon

  10. Carbon Storage Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o . C l aNanocomposites, and DevicesCarbonProgram

  11. Office of the Chief Financial Officer Annual Report 2009

    SciTech Connect (OSTI)

    Fernandez, Jeffrey

    2009-12-15T23:59:59.000Z

    Presented is the 2009 Chief Financial Officer's Annual Report. The data included in this report has been compiled from the Budget Office, the Controller, Procurement and Property Management and the Sponsored Projects Office.

  12. Office of Sustainability Support

    Broader source: Energy.gov [DOE]

    The Office of Sustainability Support serves as AU’s organizational lead in partnering with the Department’s Sustainability Performance Office to support the understanding and implementation of sustainability programs and requirements within the Department, including through supporting development and implementation of DOE’s annual Strategic Sustainability Program Plan.

  13. Europaisches Patent Office

    E-Print Network [OSTI]

    Vertes, Akos

    (19) (12) Europaisches Patentamt European Patent Office Office europeen des brevets 11111~11111111111111111"11111111111111111"11""1111111111II~,,~1111 (11) EP 2 356 668 81 EUROPEAN PATENT SPECIFICATION (86) International application number: PCT/US2009/065891 (45) Date of publication and mention of the grant of the patent: 17.07.2013 Bulletin

  14. Office of Business Operations

    Broader source: Energy.gov [DOE]

    The Office of Business Operations manages financial and acquisition management programs throughout the Associate Under Secretary for the Office of Environment, Health, Safety and Security (AU), including the formulation and execution of the AU budget; funding control and accounting activities; preparation of management studies; and provision of acquisition management support.

  15. Appointment of Contracting Officers and Contracting Officer Representatives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-04-21T23:59:59.000Z

    The Order established procedures governing the selection, appointment and termination of Department of Energy contracting officers and contracting officer representatives. Cancels DOE O 541.1A.

  16. OFFICE OF GRADUATE STUDIES Thesis Office

    E-Print Network [OSTI]

    in creating a thesis or dissertation for Texas A&M University that conforms to the guidelines set forth not negate your responsibility to follow all the Thesis Manual guidelines. If you have any questions about and paragraphs indented. The Thesis Office allows for text to be formatted either left aligned or justified

  17. OFFICE OF GRADUATE STUDIES Thesis Office

    E-Print Network [OSTI]

    in creating a thesis or dissertation for Texas A&M University that conforms to the guidelines set forth not negate your responsibility to follow all the Thesis Manual guidelines. If you have any questions about. The abstract is formatted with text left aligned and paragraphs indented. The Thesis Office allows for text

  18. OFFICE OF GRADUATE STUDIES Thesis Office

    E-Print Network [OSTI]

    in creating a thesis or dissertation for Texas A&M University that conforms to the guidelines set forth your responsibility to follow all the Thesis Manual guidelines. If you have any questions about. The abstract is formatted with text left aligned and paragraphs indented. The Thesis Office allows for text

  19. LANSCE | Training Office | User Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    header TA-53 Training Office User Specific Training LANL Training Services (Internal) LANL UTRAIN (Internal) LANL EXTRAIN (External) Training Office dotline User Training Below is...

  20. DEPARTMENT OF I Office

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | DepartmentI Office of ENERGY Science SLAC Site Office

  1. Offices | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Astrophysics One ofSpeeding accessOffice ofOffices Offices

  2. NASA Office of Inspector General Office of Audits

    E-Print Network [OSTI]

    Waliser, Duane E.

    NASA Office of Inspector General Office of Audits Report No. IG-15-002 AUDIT OF NASA'S PREMIUM AIR General Office of Audits IG-15-002 (A-14-010-00) With limited exceptions, the General Services TRAVEL October 21, 2014 National Aeronautics and Space Administration #12;Office of Inspector General

  3. Office of Nuclear Safety

    Broader source: Energy.gov [DOE]

    The Office of Nuclear Safety establishes nuclear safety requirements and expectations for the Department to ensure protection of workers and the public from the hazards associated with nuclear operations with all Department operations.

  4. Carlsbad Field Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Expiration Current Ponntt WavNumbor Submlttlld * Status 25. Office of New MeKico Slate Monitoring WeD Exhaust Shaft C-2803 02123101 None Active Engineer Exploratory Borehole...

  5. CSU Office of International

    E-Print Network [OSTI]

    CSU Office of International Programs - Education Abroad Program Types Currently 750 programs on the OIP Education Abroad website. CSU, through Division of Continuing Education/ Online Education Abroad website. Transfer Semester, year & possibly summer CSU tuition and fees (All other fees

  6. Mathematics Business Office

    E-Print Network [OSTI]

    On behalf of the entire Business Office staff of the Departments of Mathematics I would like to express how happy we are that you will be joining our faculty and ...

  7. Office of Information Security

    Broader source: Energy.gov [DOE]

    The Office of Information Security is responsible for implementation of the Classified Matter Protection and Control Program (CMPC), the Operations Security Program (OPSEC) and the Facility Clearance Program and the Survey Program for Headquarters

  8. Program Assistant (Office Automation)

    Broader source: Energy.gov [DOE]

    The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, providing more than 40 percent of total funding for this vital area of...

  9. Office of Quality Assurance

    Broader source: Energy.gov [DOE]

    The Office of Quality Assurance establishes and maintains the quality assurance (QA) policies, requirements and guidance for the Department and serves as DOE's corporate resource to ensure that products and services meet or exceed the Department’s quality objectives.

  10. Supervisory Program Analysis Officer

    Broader source: Energy.gov [DOE]

    A successful candidate in this position will be responsible for the program analysis and evaluation of all activities which fall within the purview of the Office. The incumbent directs a moderate...

  11. Office of Security Policy

    Broader source: Energy.gov [DOE]

    The Office of Security Policy is the central source within the Department of Energy for the development and analysis of safeguards and security policies and standards affecting facilities, nuclear materials, personnel, and classified information.

  12. Manager, Golden Field Office

    Broader source: Energy.gov [DOE]

    This position is located in the Office of Energy Efficiency and Renewable Energy (EERE). The mission of EERE is to create and sustain American leadership in the global transition to a clean energy...

  13. Portsmouth Paducah Project Office

    Broader source: Energy.gov [DOE]

    U.S. Department of Energy (DOE) established the Portsmouth/Paducah Project Office (PPPO) on October 1, 2003, to provide focused leadership to the Environmental Management missions at the Portsmouth...

  14. Green Office Program: Innovation Credits

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Green Office Program: Innovation Credits There are plenty of sustainable practices that aren't on our Green Office Program checklist. In an effort to encourage such practices, and reward offices Green: 5 Think outside the box, but make sure your innovation credits are approved by your Green Office

  15. ORNL/CDIAC-34 Carbon Dioxide Information Analysis Center and

    E-Print Network [OSTI]

    Research U.S. Department of Energy Budget Activity Number KP 12 04 01 0 Prepared by the Carbon Dioxide. Burtis Carbon Dioxide Information Analysis Center Environmental Sciences Division Publication No. 4777's (DOE) Environmental Sciences Division, Office of Biological and Environmental Research (OBER

  16. Final Scientific/Technical Report Carbon Capture and Storage Training Northwest - CCSTNW

    SciTech Connect (OSTI)

    Workman, James

    2013-09-30T23:59:59.000Z

    This report details the activities of the Carbon Capture and Storage Training Northwest (CCSTNW) program 2009 to 2013. The CCSTNW created, implemented, and provided Carbon Capture and Storage (CCS) training over the period of the program. With the assistance of an expert advisory board, CCSTNW created curriculum and conducted three short courses, more than three lectures, two symposiums, and a final conference. The program was conducted in five phases; 1) organization, gap analysis, and form advisory board; 2) develop list serves, website, and tech alerts; 3) training needs survey; 4) conduct lectures, courses, symposiums, and a conference; 5) evaluation surveys and course evaluations. This program was conducted jointly by Environmental Outreach and Stewardship Alliance (dba. Northwest Environmental Training Center – NWETC) and Pacific Northwest National Laboratories (PNNL).

  17. Death Valley Lower Carbonate Aquifer Monitoring Program Wells Down Gradient of the Proposed Yucca Mountain Nuclear Waste Repository, U. S. Department of Energy Grant DE-RW0000233 2010 Project Report, prepared by The Hydrodynamics Group, LLC for Inyo County Yucca Mountain Repository Assessment Office

    SciTech Connect (OSTI)

    King, Michael J; Bredehoeft, John D., Dr.

    2010-09-03T23:59:59.000Z

    Inyo County completed the first year of the U.S. Department of Energy Grant Agreement No. DE-RW0000233. This report presents the results of research conducted within this Grant agreement in the context of Inyo County's Yucca Mountain oversight program goals and objectives. The Hydrodynamics Group, LLC prepared this report for Inyo County Yucca Mountain Repository Assessment Office. The overall goal of Inyo County's Yucca Mountain research program is the evaluation of far-field issues related to potential transport, by ground water, of radionuclide into Inyo County, including Death Valley, and the evaluation of a connection between the Lower Carbonate Aquifer (LCA) and the biosphere. Data collected within the Grant is included in interpretive illustrations and discussions of the results of our analysis. The centeral elements of this Grant prgoram was the drilling of exploratory wells, geophysical surveys, geological mapping of the Southern Funeral Mountain Range. The cullimination of this research was 1) a numerical ground water model of the Southern Funeral Mountain Range demonstrating the potential of a hydraulic connection between the LCA and the major springs in the Furnace Creek area of Death Valley, and 2) a numerical ground water model of the Amargosa Valley to evaluate the potential for radionuclide transport from Yucca Mountain to Inyo County, California. The report provides a description of research and activities performed by The Hydrodynamics Group, LLC on behalf of Inyo County, and copies of key work products in attachments to this report.

  18. The Hanford Site Richland Operations Office Office of River Protection Office of Science

    E-Print Network [OSTI]

    The Hanford Site Richland Operations Office Office of River Protection Office of Science Plateau Remediation Contractor Tank Operations Contractor Analytical Services Contractor Waste Treatment Plant (WTP;HANFORDSMALLBUSINESSCOUNCIL Richland Operations Office Sally A. Sieracki Small Business Program Manager E-mail: sally

  19. Office of Clinical Trials Research, Office of Sponsored Programs' Pre-Award Service Office

    E-Print Network [OSTI]

    Hayden, Nancy J.

    the effects on health outcomes. The NIH defines a clinical trial as · A prospective biomedical or behavioralOffice of Clinical Trials Research, Office of Sponsored Programs' Pre-Award Service Office and Research Protections Office University of Vermont/Fletcher Allen Health Care CLINICAL TRIALS REGISTRATION

  20. Office Buildings - Types of Office Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(Million Barrels)21 4.65per9 0 1 2 3 4PDF Office

  1. Carbon capture technology: future fossil fuel use and mitigating climate change

    E-Print Network [OSTI]

    sources for countries heavily reliant on imported fuels4 . Why CCS is not just a synonym for `clean coal

  2. An Economic Study of Carbon Capture and Storage System Design and Policy

    E-Print Network [OSTI]

    Prasodjo, Darmawan

    2012-10-19T23:59:59.000Z

    cost-effective arrangement for deploying CCS infrastructure. This study also analyzes CCS deployment under the features in a piece of legislation the draft of American Power Act (APA) - that was proposed in 2010 which contained a goal of CCS capacity...

  3. Office of Inspector General

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagementOPAM PolicyOf EnvironmentalGuide, July 29,Office of IndianOffice

  4. SSRL Safety Office Memo

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronicResourcesjobsJuly throughR E Q U E N C4Safety Office SSO

  5. Office of Heath, Safety and Security Now Two New Offices

    Broader source: Energy.gov [DOE]

    To serve you better, DOE has structured the former HSS into to new organizations: the Office Independent Enterprise Assessment (IEA); and Office of Environment, Health, Safety and Security (EHSS).

  6. Appointment of Contracting Officers and Contracting Officer Representatives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-04-30T23:59:59.000Z

    To establish procedures governing the selection, appointment, and termination of contracting officers and for the appointment of contracting officer representatives. Cancels DOE Order 4200.4A. Canceled by DOE O 541.1A.

  7. Workforce Management Office (WFMO) Functional Statements WORKFORCE MANAGEMENT OFFICE

    E-Print Network [OSTI]

    , and destruction. BMD oversees WFMO's personal property management, Freedom of Information Act responses, Entry, organizing, and administering comprehensive human resources management programs in collaboration wMay 2014 Workforce Management Office (WFMO) ­ Functional Statements WORKFORCE MANAGEMENT OFFICE

  8. China's Energy and Carbon Emissions Outlook to 2050

    E-Print Network [OSTI]

    Zhou, Nan

    2011-01-01T23:59:59.000Z

    greater shifts in coal generation technology (i.e. ,use of supercritical coal generation) and higher renewableCCS) technology to coal generation under the CIS pathway of

  9. Livermore Field Office | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Us Our Operations Management and Budget Office of Civil Rights Workforce Statistics Livermore Field Office Livermore Field Office FY15 Semi Annual Report FY14 Year...

  10. Sandia Field Office | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Us Our Operations Management and Budget Office of Civil Rights Workforce Statistics Sandia Field Office Sandia Field Office FY15 Semi Annual Report FY14 Year End...

  11. Pantex Field Office | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Us Our Operations Management and Budget Office of Civil Rights Workforce Statistics Pantex Field Office Pantex Field Office FY12 Semi Annual Report FY11 Year End...

  12. Nevada Field Office | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Us Our Operations Management and Budget Office of Civil Rights Workforce Statistics Nevada Field Office Nevada Field Office FY15 Semi Annual Report FY14 Year End...

  13. OFFICE ERGONOMICS A Self-Assessment

    E-Print Network [OSTI]

    Brownstone, Rob

    OFFICE ERGONOMICS A Self-Assessment Guide Environmental Health and Safety Office safety, along with additional information on ergonomics, is also available through the Dalhousie Safety Office

  14. Independent Oversight Evaluation, Office of Secure Transportation...

    Office of Environmental Management (EM)

    Evaluation, Office of Secure Transportation - February 2004 Independent Oversight Evaluation, Office of Secure Transportation - February 2004 February 2004 Evaluation of the Office...

  15. Fuel Cell Technologies Office Accomplishments and Progress |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Fuel Cell Technologies Office Fuel Cell Technologies Office Accomplishments and Progress Fuel Cell Technologies Office Accomplishments and Progress The U.S. Department of...

  16. Universitat Stuttgart -Institut fur Wasser-und Umweltsystemmodellierung

    E-Print Network [OSTI]

    Cirpka, Olaf Arie

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 CCS ­ Carbon Capture and Storage . . . . . . . . . . . . . . . . . . . . 2 1.2.1 Technology

  17. Appointment of Contracting Officers and Contracting Officer's Representatives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-10-27T23:59:59.000Z

    To establish procedures governing the selection, appointment, and termination of contracting officers and for the appointment of contracting officer's representatives. To ensure that only trained and qualified procurement and financial assistance professionals, within the scope of this Order, serve as contracting officers. Cancels DOE O 541.1. Canceled by DOE O 541.1B.

  18. NASA OFFICE OF INSPECTOR GENERAL OFFICE OF AUDITS

    E-Print Network [OSTI]

    Waliser, Duane E.

    NASA OFFICE OF INSPECTOR GENERAL OFFICE OF AUDITS SUITE 8U71, 300 E ST SW WASHINGTON, D.C. 20546 Directorate's Mission Extension Process (Report No. IG-15-001; Assignment No. A-13-014-00) Dear Associate Administrator Grunsfeld, The Office of Inspector General (OIG) examined the Science Mission Directorate's (SMD

  19. EXECUTIVE OFFICE OF THE PRESIDENT OFFICE OF MANAGEMENT AND BUDGET

    E-Print Network [OSTI]

    EXECUTIVE OFFICE OF THE PRESIDENT OFFICE OF MANAGEMENT AND BUDGET WASHINGTON, D. C . 20503.C. 20515 Dear Mr. Speaker: Enclosed please find the Office ofManagement and Budget (OMB) Report to the Congress on the sequestration for fiscal year (FY) 2013 required by section 251A of the Balanced Budget

  20. Annual Report 2008 -- Office of the Chief Financial Officer (OCFO)

    SciTech Connect (OSTI)

    Fernandez, Jeffrey

    2008-12-22T23:59:59.000Z

    It is with great pleasure that I present to you the 2008 Chief Financial Officer's Annual Report. The data included in this report has been compiled from the Budget Office, the Controller, Procurement and Property Management and the Sponsored Projects Office. Also included are some financial comparisons with other DOE Laboratories and a glossary of commonly used acronyms.

  1. Office Ergonomics An Overview

    E-Print Network [OSTI]

    Homes, Christopher C.

    Office Ergonomics An Overview Presented for the Physics Department 4/12/07 Room 2-160 Presented by N. Bernholc, CIH Safety and Health Services Division #12;Ergonomics... Definition What is Ergonomics relationships between workers and their work environments. #12;Ergonomics... Or More Simply said: Ergonomics

  2. Office Automation Document Preparation

    E-Print Network [OSTI]

    North Carolina at Chapel Hill, University of

    .2 Distinctions 1.3 Facilities 1.3.1 Document Preparation 1.3.2 Records Management 1.3.3 Communication 1 organizations contemplating the installation of document-preparation systems. * Administrative managersOffice Automation and Document Preparation for the v' University of North Carolina at Chapel Hill

  3. Chief Financial Officer Responsibilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-11-21T23:59:59.000Z

    The Order sets forth requirements for operating the Department of Energy in full compliance with the Chief Financial Officers Act of 1990 and sets standards for sound financial management policies and practices, effective internal controls, accurate and timely financial information, and well-qualified financial managers. Cancels DOE O 520.1.

  4. Sustainable Office Lighting Options

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Sustainable Office Lighting Options Task Lighting: Task lighting is a localized method of lighting a workspace so that additional, unnecessary lighting is eliminated, decreasing energy usage and costs. Illumination levels in the targeted work areas are higher with task lighting than with the ambient levels

  5. Office of Document Reviews

    Broader source: Energy.gov [DOE]

    The Office of Document Reviews ensures that all documents prepared at DOE Headquarters are properly marked to identify the level and category of protected information they contain (if any) and to ensure that all documents the Department prepares or is required to review under applicable statutes for public release contain no information requiring protection under law, regulations and Executive orders.

  6. Office of Quality Management

    Broader source: Energy.gov [DOE]

    The Office of Quality Management develops and interprets Government-wide policies and procedures and conducts training to ensure the accurate identification of information and documents that must be classified or controlled under statute or Executive order to protect the national security and controlled unclassified Official Use Only information for the effective operation of the Government.

  7. POLICY SECTIONS POLICY OFFICE

    E-Print Network [OSTI]

    Minnesota, University of

    POLICY SECTIONS POLICY OFFICE POLICIES FORMS PROCEDURES UNIVERSITY POLICY #12;guide to WRITING POLICIES Administrative policies align opera- tions, set behavior expectations across the University system and communicate policy roles and responsibilities. You, as the policy owner or writer, have the important task

  8. Office of Security Assistance

    Broader source: Energy.gov [DOE]

    The Office of Security Assistance manages the Technology Deployment Program to improve the security posture of the Department of Energy and the protection of its assets and facilities through the deployment of new safeguards and security technologies and development of advanced technologies that reduce operating costs, save protective force lives, and improve security effectiveness.

  9. Deputy Director, Advanced Manufacturing Office

    Broader source: Energy.gov [DOE]

    This position is located in the Advanced Manufacturing Office (AMO), within the Office of Energy Efficiency and Renewable Energy (EERE). EERE leads the U.S. Department of Energy's efforts to...

  10. Europaisches Patentamt European Patent Office

    E-Print Network [OSTI]

    Church, George M.

    Europaisches Patentamt European Patent Office Office europeen des brevets ® Publication number: o 303 459 A2 @ EUROPEAN PATENT APPLICATION ® Application number: 88307391.8 @ Int. C1.4: C 12 Q 1

  11. Energy efficiency in office technology

    E-Print Network [OSTI]

    Dandridge, Cyane Bemiss

    1994-01-01T23:59:59.000Z

    This thesis, directed toward a wide variety of persons interested in energy efficiency issues with office technology, explores several issues relating to reducing energy use and improving energy efficiency of office ...

  12. Carbon Fiber

    ScienceCinema (OSTI)

    McGetrick, Lee

    2014-07-23T23:59:59.000Z

    Lee McGetrick leads ORNL's effort to produce light, durable carbon fiber at lower cost -- a key to improvements in manufacturing that will produce more fuel-efficient vehicles and other advances.

  13. Carbon Sequestration

    SciTech Connect (OSTI)

    None

    2013-05-06T23:59:59.000Z

    Carbon Sequestration- the process of capturing the CO2 released by the burning of fossil fuels and storing it deep withing the Earth, trapped by a non-porous layer of rock.

  14. Carbon Fiber

    SciTech Connect (OSTI)

    McGetrick, Lee

    2014-04-17T23:59:59.000Z

    Lee McGetrick leads ORNL's effort to produce light, durable carbon fiber at lower cost -- a key to improvements in manufacturing that will produce more fuel-efficient vehicles and other advances.

  15. The impact of instrument choice on investment in abatement technologies: a case study of tax versus trade incentives for CCS and Biomass for electricity

    E-Print Network [OSTI]

    Laing, T; Grubb, Michael

    over damages or the social cost of carbon can be seen in Figure 1. Estimates for 2050, even for this specific model vary by a factor of more than twenty. The uncertainties can be grouped into two basic areas. The first concerns the likely ‘cost... to be larger for regulators than for firms due to asymmetric information between the parties. 3 Figure 1: Social cost of carbon over time, Hope and Newberry (2008) Our aim is to investigate the impact that the choice of instruments has on firm...

  16. Introduction Kobe University Overseas Offices

    E-Print Network [OSTI]

    Banbara, Mutsunori

    -10-6253-8664 E-Mailopie-chinaoffice@office.kobe-u.ac.jp http://www.office.kobe-u.ac.jp/opie 173 Boulvevard du Triomphe Brussel 1160 Bruxelles TEL+32-2-672-6460 FAX+32-2-672-0210 http://www.office.kobe-u.ac.jp/opie

  17. UNIVERSITY OF YORK COMMUNICATIONS OFFICE

    E-Print Network [OSTI]

    Wirosoetisno, Djoko

    UNIVERSITY OF YORK COMMUNICATIONS OFFICE WEB OFFICE Web Strategy Date 4 February, 2003 Version 4, Press and PR Officer William Mackintosh, Web Manager #12;Web Strategy 4.4 ©University of York Page 2............................................................................................... 6 3.2 Objectives of the Web Strategy

  18. Office of the Chief Information Officer DOERM@hq.doe.gov Office...

    Broader source: Energy.gov (indexed) [DOE]

    Information Officer DOERM@hq.doe.gov Office of IT Planning, Architecture and E-government Records Management Division (IM-23) Employee Separation: Completing HQ F 3293.1, Section...

  19. A Joint Workshop on Promoting the Development and Deployment of IGCC/Co-Production/CCS Technologies in China and the United States. Workshop report

    SciTech Connect (OSTI)

    Zhao, Lifeng; Ziao, Yunhan; Gallagher, Kelly Sims

    2009-06-03T23:59:59.000Z

    With both China and the United States relying heavily on coal for electricity, senior government officials from both countries have urged immediate action to push forward technology that would reduce carbon dioxide emissions from coal-fired plants. They discussed possible actions at a high-level workshop in April 2009 at the Harvard Kennedy School jointly sponsored by the Belfer Center's Energy Technology Innovation Policy (ETIP) research group, China's Ministry of Science and Technology, and the Chinese Academy of Sciences. The workshop examined issues surrounding Integrated Gasification Combined Cycle (IGCC) coal plants, which turn coal into gas and remove impurities before the coal is combusted, and the related carbon capture and sequestration, in which the carbon dioxide emissions are captured and stored underground to avoid releasing carbon dioxide into the atmosphere. Though promising, advanced coal technologies face steep financial and legal hurdles, and almost certainly will need sustained support from governments to develop the technology and move it to a point where its costs are low enough for widespread use.

  20. Office of the Chief Financial Officer Annual Report 2010

    SciTech Connect (OSTI)

    Fernandez, Jeffrey

    2010-12-20T23:59:59.000Z

    In March, a review team consisting of CFOs from other national laboratories, industry, and members of the University of California Office of the President (UCOP) convened for three days to conduct a comprehensive peer review of the OCFO. This was the first time in almost a decade that the financial operations of the Laboratory had been reviewed. The Committee relayed their observations on our strengths, and their very thoughtful recommendations for improvement, which we are actively pursuing. These improvements, when implemented, will benefit the entire Laboratory for many years to come. The complete report is available on the OCFO website (www.lbl.gov/Workplace/CFO). In August, the senior management team of the OCFO participated in a strategic planning retreat. The purpose of the two and a half day exercise was, of course, to update our strategic plan, but instead of spending days developing a written document, we enlisted the expertise of a seasoned journalist who also happens to be a very talented graphic artist. He listened carefully to our ideas and committed them to a visual roadmap. All members of the OCFO, Business Managers, and the Laboratory Leadership Team reviewed this draft roadmap. By having a completely visual strategic plan that is posted widely throughout the OCFO, all employees can easily see and identify with the goals that we are all working towards. FY2010 was an extraordinary year. The Laboratory welcomed its seventh Director, Dr. Paul Alivisatos, who wasted no time communicating his vision and priorities for Berkeley Lab. They include five very ambitious initiatives: Carbon Cycle 2.0, The Next Generation Light Source, a Safe and Efficient Lab, Building Community, and Space. In response, the Office of the Chief Financial Officer (OCFO) developed twelve specific initiatives that align completely with these five priorities. We will be very focused on these in the coming fiscal year, but for now, let's review what happened in FY2010. FY2010 was a pivotal year for the Procurement and Property Department. A provision of the management contract that was signed fives years ago required us to achieve cost savings of $30M. I am proud to announce that this last fiscal year we reached that goal, in large part due to the implementation of eBuy, and the negotiation of strategic sourcing contracts. Our last wall-to-wall inventory exceeded all the Department of Energy's (DOE) national targets and DOE approved the LBNL property system unconditionally. Of the total inventory, 92.3% or 25,601 assets were accounted for using barcode scanning that made the inventory process much more efficient. The effective management of the American Recovery and Reinvestment Act (ARRA) funds was strengthened by the continued successful partnership that LBNL shares with our DOE Site Office. They provided authority, support and clarity to this very complex task. The Laboratory's ARRA Stimulus Committee played a critical role in assuring internal controls, compliance with DOE regulations and quality financial management. The LBNL Budget Officer led a DOE complex-wide effort to identify and share how various DOE facilities track and report ARRA-funded projects, share best practices, evaluate issues and discuss solutions. LBNL has been recognized as a leader in this process and will continue to share knowledge and best practices with other DOE laboratories. Continuous education of our staff as well as the greater Laboratory population was still a major focus of the OCFO. With the help of many OCFO senior managers and staff that acted as subject-matter experts, the Core Financial Management Program was completely re-engineered and resulted in a revised classroom and web-based curriculum that will be formally rolled out Lab-wide in early FY2011. The Office of Sponsored Projects and Industry Partnerships (OSPIP) led the effort to select and purchase four Click Commerce software modules for the LBNL electronic Scientific Research Administration (eSRA) project. In early FY2010, the implementation of the Institutional Review Board (IRB) module,

  1. Business Opportunities Session Office of Environmental Management...

    Broader source: Energy.gov (indexed) [DOE]

    Business Opportunities Session Office of Environmental Management Business Opportunities Session Office of Environmental Management Environmental Clean up Business Opportunities...

  2. Vehicle Technologies Office: Workforce Development and Professional...

    Office of Environmental Management (EM)

    Education & Workforce Development Vehicle Technologies Office: Workforce Development and Professional Education Vehicle Technologies Office: Workforce Development and...

  3. Welcome to The Office of Science

    ScienceCinema (OSTI)

    Brinkman, William

    2013-05-29T23:59:59.000Z

    The Director of the Department of Energy's Office of Science, Dr. William Brinkman, introduces the new Office of Science website.

  4. Support of US CLIVAR Project Office 2012

    SciTech Connect (OSTI)

    Cummings, Donna

    2013-11-21T23:59:59.000Z

    SUBJECT: CLOSEOUT OF AWARD NO DE-SC0008494 FINAL REPORT: SUPPORT OF US CLIVAR PROJECT OFFICE 2012 UNIVERSITY CORPORATION FOR ATMOSPHERIC RESEARCH Director of JOSS, supervised the U.S. CLIVAR Project Office Director and helped direct the officer to enhance the goals and objectives of the U.S. CLIVAR Project and budget. Financial Manager of JOSS, worked to complete proposals and monitor compliance with award requirements and funding limitations and ensure the U.S. CLIVAR Project Office complied with UCAR policies and procedures. Project Coordinator administered the funding for the U.S. CLIVAR Project Office and was responsible for coordinating special projects that required additional support from JOSS technical staff. These projects included activities such as website updates, technology upgrades, production of printed reports, and development of graphic elements like logos. Web Developer worked both on web development and graphic work and the work consisted of the following: Maintaining the site ? installing updates to Drupal CMS (Content Management System). Creating new templates for webpages and styling them with CSS and JavaScript/jQuery code. Fixing the styling on webpages that the content contributor/manager (Jenn Mays) created and has had trouble with. Creating new web forms for abstract uploading, subscriptions, and meeting registrations. Created 4 webpages for the ?ASP: Key Uncertainties in the Global Carbon-Cycle? meeting. Developed a document review form, instruction webpages, login redirect, dynamic table with form submissions for the US CLIVAR SSC Science Plan Document Review. This was open to the public from June 12, 2013 until July 10, 2013. During this time the user accounts had to be checked (daily) that were created by the public, to delete any spam ones. Graphics work: preparing images for general use on webpages, webpage banners, and for meeting name badges, creating a US CLIVAR letterhead, redesigning the US AMOC logo. System Administrator spent time working on the migration of the US CLIVAR site from the USGCRP office to UCAR here Boulder. This was done to increase the general speed of the site & to allow the web developer to work in it more efficiently. Main tasks were to Archive the old Site, create new development site for web developer, and move web address to new website when web developer was finished with development. There are no patients or equipment related to this proposals

  5. Integrated Mid-Continent Carbon Capture, Sequestration & Enhanced Oil Recovery Project

    SciTech Connect (OSTI)

    Brian McPherson

    2010-08-31T23:59:59.000Z

    A consortium of research partners led by the Southwest Regional Partnership on Carbon Sequestration and industry partners, including CAP CO2 LLC, Blue Source LLC, Coffeyville Resources, Nitrogen Fertilizers LLC, Ash Grove Cement Company, Kansas Ethanol LLC, Headwaters Clean Carbon Services, Black & Veatch, and Schlumberger Carbon Services, conducted a feasibility study of a large-scale CCS commercialization project that included large-scale CO{sub 2} sources. The overall objective of this project, entitled the 'Integrated Mid-Continent Carbon Capture, Sequestration and Enhanced Oil Recovery Project' was to design an integrated system of US mid-continent industrial CO{sub 2} sources with CO{sub 2} capture, and geologic sequestration in deep saline formations and in oil field reservoirs with concomitant EOR. Findings of this project suggest that deep saline sequestration in the mid-continent region is not feasible without major financial incentives, such as tax credits or otherwise, that do not exist at this time. However, results of the analysis suggest that enhanced oil recovery with carbon sequestration is indeed feasible and practical for specific types of geologic settings in the Midwestern U.S.

  6. Bradshaw Construction New Office Building

    High Performance Buildings Database

    Eldersburg, MD The New Office Building is part of an effort by Bradshaw Construction Corporation to combine office, off-site shop buildings and off-site storage yards at one consolidated location. The new site, located off Maryland Route 26, shall provide space for an office building and parking; and secured shop building and storage yard. The New Office Building Project has achieved LEED Silver certification. The office building is designed as a free standing building of approximately 8,200 square feet in area, one story in height.

  7. Low Carbon Fuel Standards

    E-Print Network [OSTI]

    Sperling, Dan; Yeh, Sonia

    2009-01-01T23:59:59.000Z

    gas, or even coal with carbon capture and sequestration. Afuels that facilitate carbon capture and sequestration. Forenergy and could capture and sequester carbon emissions.

  8. Capturing carbon | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carbon Released: October 02, 2011 New technology enables molecular-level insight into carbon sequestration Carbon sequestration is a potential solution for reducing greenhouse...

  9. Modeling Studies on the Transport of Benzene and H2S in CO2-Water Systems

    E-Print Network [OSTI]

    Zheng, L.

    2011-01-01T23:59:59.000Z

    potential effects of carbon capture and geologic storage (CCS)CCS and groundwater resources (Birkholzer et al. , 2008), we evaluated the potentialCCS operations. Therefore, TMVOC_REACT was used to assess the potential

  10. Potential Energy Savings and CO2 Emissions Reduction of China's Cement Industry

    E-Print Network [OSTI]

    Ke, Jing

    2013-01-01T23:59:59.000Z

    absence of CCS, there is diminishing potential for process-potential is rapidly declining. Second, carbon capture and storage (CCS)CCS is not taken into consideration. Significant energy savings and CO2 emissions reduction potential

  11. Carbon supercapacitors

    SciTech Connect (OSTI)

    Delnick, F.M.

    1993-11-01T23:59:59.000Z

    Carbon supercapacitors are represented as distributed RC networks with transmission line equivalent circuits. At low charge/discharge rates and low frequencies these networks approximate a simple series R{sub ESR}C circuit. The energy efficiency of the supercapacitor is limited by the voltage drop across the ESR. The pore structure of the carbon electrode defines the electrochemically active surface area which in turn establishes the volume specific capacitance of the carbon material. To date, the highest volume specific capacitance reported for a supercapacitor electrode is 220F/cm{sup 3} in aqueous H{sub 2}SO{sub 4} (10) and {approximately}60 F/cm{sup 3} in nonaqueous electrolyte (8).

  12. Carbon Fiber Consortium | Partnerships | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o . C l a r8.05CarBen VersionCarbon

  13. Carbon microtubes

    DOE Patents [OSTI]

    Peng, Huisheng (Shanghai, CN); Zhu, Yuntian Theodore (Cary, NC); Peterson, Dean E. (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM)

    2011-06-14T23:59:59.000Z

    A carbon microtube comprising a hollow, substantially tubular structure having a porous wall, wherein the microtube has a diameter of from about 10 .mu.m to about 150 .mu.m, and a density of less than 20 mg/cm.sup.3. Also described is a carbon microtube, having a diameter of at least 10 .mu.m and comprising a hollow, substantially tubular structure having a porous wall, wherein the porous wall comprises a plurality of voids, said voids substantially parallel to the length of the microtube, and defined by an inner surface, an outer surface, and a shared surface separating two adjacent voids.

  14. DOE Releases Report on Techniques to Ensure Safe, Effective Geologic Carbon Sequestration

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy's National Energy Technology Laboratory has created a comprehensive new document that examines existing and emerging techniques to monitor, verify, and account for carbon dioxide stored in geologic formations.

  15. Carbon Storage Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon Sequestration Partnership MSU . . . . . . . . . . . . . . . . . . . . . . . Montana State University MVA . . . . . . . . . . . . . . . . . . . . . . . Monitoring,...

  16. Characterization of double walled carbon nanotubes-polyvinylidene fluoride nanocomposites

    E-Print Network [OSTI]

    Almasri, Atheer Mohammad

    2007-04-25T23:59:59.000Z

    CHARACTERIZATION OF DOUBLE WALLED CARBON NANOTUBES- POLYVINYLIDENE FLUORIDE NANOCOMPOSITES A Thesis by ATHEER MOHAMMAD ALMASRI Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... MOHAMMAD ALMASRI Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Approved by: Chair of Committee, Zoubeida Ounaies...

  17. Office of the Chief Financial Officer Annual Report 2010

    E-Print Network [OSTI]

    Fernandez, Jeffrey

    2011-01-01T23:59:59.000Z

    of Energy Efficiency and Renewable Energy (EERE) and non-DOEEnergy Efficiency and Renewable Energy (EERE) While OfficeEnergy Efficiency and Renewable Energy Assistant Secretary

  18. Low Carbon Fuel Standards

    E-Print Network [OSTI]

    Sperling, Dan; Yeh, Sonia

    2009-01-01T23:59:59.000Z

    gas, or even coal with carbon capture and sequestration. Afuels that facilitate carbon capture and sequestration. For

  19. Diffusion of low-carbon technologies and the feasibility of long-term climate targets

    SciTech Connect (OSTI)

    Iyer, Gokul C.; Hultman, Nathan; Eom, Jiyong; McJeon, Haewon C.; Patel, Pralit L.; Clarke, Leon E.

    2015-01-01T23:59:59.000Z

    Stabilizing the global climate will require large-scale global deployment of low-carbon technologies. Even in the presence of aggressive climate policies, however, the diffusion of such technologies may be limited by several, institutional, behavioral, and social factors. In this paper, we review the literature on the sources of such diffusion constraints, and explore the potential implications of such non-economic constraints based on the GCAM integrated assessment model. Our analysis highlights that non-economic factors that limit technology deployment may have sizeable impacts on the feasibility and mitigation costs of achieving stringent stabilization targets. And such impacts are greatly amplified with major delays in serious climate policies. The results generally indicate that constraints on the expansions of CCS and renewables are more costly than those on nuclear or bioenergy, and jointly constraining these technologies leaves some scenarios infeasible.

  20. Geologic carbon sequestration as a global strategy to mitigate CO2 emissions: Sustainability and environmental risk

    SciTech Connect (OSTI)

    Oldenburg, C.M.

    2011-04-01T23:59:59.000Z

    Fossil fuels are abundant, inexpensive to produce, and are easily converted to usable energy by combustion as demonstrated by mankind's dependence on fossil fuels for over 80% of its primary energy supply (13). This reliance on fossil fuels comes with the cost of carbon dioxide (CO{sub 2}) emissions that exceed the rate at which CO{sub 2} can be absorbed by terrestrial and oceanic systems worldwide resulting in increases in atmospheric CO{sub 2} concentration as recorded by direct measurements over more than five decades (14). Carbon dioxide is the main greenhouse gas linked to global warming and associated climate change, the impacts of which are currently being observed around the world, and projections of which include alarming consequences such as water and food shortages, sea level rise, and social disruptions associated with resource scarcity (15). The current situation of a world that derives the bulk of its energy from fossil fuel in a manner that directly causes climate change equates to an energy-climate crisis. Although governments around the world have only recently begun to consider policies to avoid the direst projections of climate change and its impacts, sustainable approaches to addressing the crisis are available. The common thread of feasible strategies to the energy climate crisis is the simultaneous use of multiple approaches based on available technologies (e.g., 16). Efficiency improvements (e.g., in building energy use), increased use of natural gas relative to coal, and increased development of renewables such as solar, wind, and geothermal, along with nuclear energy, are all available options that will reduce net CO{sub 2} emissions. While improvements in efficiency can be made rapidly and will pay for themselves, the slower pace of change and greater monetary costs associated with increased use of renewables and nuclear energy suggests an additional approach is needed to help bridge the time period between the present and a future when low-carbon energy is considered cheap enough to replace fossil fuels. Carbon dioxide capture and storage (CCS) is one such bridging technology (1). CCS has been the focus of an increasing amount of research over the last 15-20 years and is the subject of a comprehensive IPCC report that thoroughly covers the subject (1). CCS is currently being carried out in several countries around the world in conjunction with natural gas extraction (e.g., 2, 3) and enhanced oil recovery (17). Despite this progress, widespread deployment of CCS remains the subject of research and future plans rather than present action on the scale needed to mitigate emissions from the perspective of climate change. The reasons for delay in deploying CCS more widely are concerns about cost (18), regulatory and legal uncertainty (19), and potential environmental impacts (21). This chapter discusses the long-term (decadal) sustainability and environmental hazards associated with the geologic CO{sub 2} storage (GCS) component of large-scale CCS (e.g., 20). Discussion here barely touches on capture and transport of CO{sub 2} which will occur above ground and which are similar to existing engineering, chemical processing, and pipeline transport activities and are therefore easier to evaluate with respect to risk assessment and feasibility. The focus of this chapter is on the more uncertain part of CCS, namely geologic storage. The primary concern for sustainability of GCS is whether there is sufficient capacity in sedimentary basins worldwide to contain the large of amounts of CO{sub 2} needed to address climate change. But there is also a link between sustainability and environmental impacts. Specifically, if GCS is found to cause unacceptable impacts that are considered worse than its climate-change mitigation benefits, the approach will not be widely adopted. Hence, GCS has elements of sustainability insofar as capacity of the subsurface for CO{sub 2} is concerned, and also in terms of whether the associated environmental risks are acceptable or not to the public.

  1. Office of Fossil Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagementOPAM PolicyOf EnvironmentalGuide, July 29, 2009 |OfficeEnergy

  2. Office of Personnel Management

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagementOPAM PolicyOf EnvironmentalGuide, July 29,Office0 -

  3. Education Office Housing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasRelease Date:research community --Education Office Housing

  4. News - EERE Commercialization Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project Taps HPCNew User andNew,About

  5. Idaho Operations Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)Hydrogen StorageITERITER Subscribe to RSS -InnovationA p r

  6. Idaho Operations Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)Hydrogen StorageITERITER Subscribe to RSS -InnovationA p

  7. Idaho Operations Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)Hydrogen StorageITERITER Subscribe to RSS -InnovationA

  8. Initiatives - EERE Commercialization Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)HydrogenRFPTri-PartyFor manyInhibiting Individual

  9. Corel Office Document

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site Office (FSO) FSOConvertingCopyNatural Gas Usage

  10. Corel Office Document

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site Office (FSO) FSOConvertingCopyNatural Gas

  11. Corel Office Document

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site Office (FSO) FSOConvertingCopyNatural

  12. - EERE Commercialization Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) - Energy Innovation Portal Advanced Materialsj o n p o J

  13. Ames Site Office Jobs

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, ,Development1USummerNewsDOE Office ofHome Ames

  14. Argonne Site Office Jobs

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, ,Development1USummerNewsDOE Office ofHomeHome

  15. OFFICE: NEPA REVIEWS:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment of Order No. EA-212-AOAHU2014) | DepartmentOE's3OFFICE:

  16. Office of Fossil Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment of OrderSUBCOMMITTEEEnergy Office ofExecutiveEnergy

  17. User Liaison Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrinceton PlasmaAfternoon4. UraniumUsedFacilities Office Space User

  18. User Liaison Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrinceton PlasmaAfternoon4. UraniumUsedFacilities Office Space User

  19. User Liaison Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrinceton PlasmaAfternoon4. UraniumUsedFacilities Office Space User

  20. DOE NEPA Compliance Officers

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM |TRU Waste CleanupDesignationsResearch InitiativeNEPA

  1. Office of Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Astrophysics One ofSpeeding accessOffice of Science

  2. OFFICE OF ACCOUTNING SERVICES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project TapsDOERecoveryNuclearLifeMeals & Lodging:

  3. OFFICE OF RIVER PROTECTION

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project TapsDOERecoveryNuclearLifeMeals &

  4. Sandia Corporate Ombuds Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronicResourcesjobsJuly throughRSpectrometerisSANDIA NATIONAL

  5. Sandia Corporate Ombuds Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronicResourcesjobsJuly throughRSpectrometerisSANDIA

  6. Sandia Corporate Ombuds Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronicResourcesjobsJuly throughRSpectrometerisSANDIATECHNOLOGY

  7. Vision Office Products

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulenceUtilize AvailableMedia1.1 The History of the University

  8. Vision Office Products

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulenceUtilize AvailableMedia1.1 The History of the

  9. Ca rlsbad Field Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o . C l a r8.0 -CURRICULUM9831

  10. Carlsbad Field Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o . C l aNanocomposites,ProgramsCarl Wieman,OWaste

  11. Carlsbad Field Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o . C l aNanocomposites,ProgramsCarl

  12. Carlsbad Field Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o . C l aNanocomposites,ProgramsCarl2 8 2014 Mr.

  13. Carlsbad Field Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o . C l aNanocomposites,ProgramsCarl2 8 2014

  14. Carlsbad Field Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o . C l aNanocomposites,ProgramsCarl2 8 2014 21

  15. Carlsbad Field Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o . C l aNanocomposites,ProgramsCarl2 8 2014 21W

  16. Carlsbad Field Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o . C l aNanocomposites,ProgramsCarl2 8 2014 21W.

  17. Carlsbad Field Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o . C l aNanocomposites,ProgramsCarl2 8 2014

  18. Carlsbad Field Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o . C l aNanocomposites,ProgramsCarl2 8 201410,

  19. Carlsbad Field Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o . C l aNanocomposites,ProgramsCarl2 8 201410,O.

  20. Fermilab | Directorate | Offices

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New Mexico Feb. 13, 2013 NAME:JobTimothyOPMOScientific andOffices

  1. Office of Information Resources

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR - T en Y earEnergy T H E DofitemsFallFederalOffice of

  2. Office of River Protection

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR - T en Y earEnergy T H E DofitemsFallFederalOffice

  3. Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: EnergyExcellenceOffice of State Lands and Investments - Easementsfor

  4. Office Buildings - Energy Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar Apr May Jun Jul Aug SepDecadeEnergy Consumption

  5. Office Buildings - Full Report

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar Apr May Jun Jul Aug SepDecadeEnergy ConsumptionPDF

  6. Events - EERE Commercialization Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA) /Email Announcements12:25 p.m. - EmergencyEvents

  7. Carbon Additionality: Discussion Paper

    E-Print Network [OSTI]

    Carbon Additionality: A review Discussion Paper Gregory Valatin November 2009 Forest Research. Voluntary Carbon Standards American Carbon Registry Forest Carbon Project Standard (ACRFCPS) 27 CarbonFix Standard (CFS) 28 Climate, Community and Biodiversity Standard (CCBS) 28 Forest Carbon Standard (FCS) 28

  8. Bioenergy Technologies Office (BETO) Announces Renewable Carbon Fiber

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergyand SustainedBio-OilBioenergy 2015Bioenergy

  9. Vehicle Technologies Office Merit Review 2014: Carbon Fiber Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and03/02 TUEValidation of&Systems andFacility | Department

  10. Low carbon and clean energy scenarios for India: Analysis of targets approach

    SciTech Connect (OSTI)

    Shukla, Priyadarshi R.; Chaturvedi, Vaibhav

    2012-12-01T23:59:59.000Z

    Low carbon energy technologies are gaining increasing importance in India for reducing emissions as well as diversifying its energy supply mix. The present paper presents and analyses a targeted approach for pushing solar, wind and nuclear technologies in the Indian energy market. Targets for these technologies have been constructed on the basis of Indian government documents, policy announcements and expert opinion. Different targets have been set for the reference scenario and the carbon price scenario. In the reference scenario it is found that in the long run all solar, wind and nuclear will achieve their targets without any subsidy push. In the short run however, nuclear and solar energy require significant subsidy push. Nuclear energy requires a much higher subsidy allocation as compared to solar because the targets assumed are also higher for nuclear energy. Under a carbon price scenario, the carbon price drives the penetration of these technologies significantly. Still subsidy is required especially in the short run when the carbon price is low. It is also found that pushing solar, wind and nuclear technologies might lead to decrease in share of CCS under the price scenario and biomass under both BAU and price scenario, which implies that one set of low carbon technologies is substituted by other set of low carbon technologies. Thus the objective of emission mitigation might not be achieved due to this substitution. Moreover sensitivity on nuclear energy cost was done to represent risk mitigation for this technology and it was found that higher cost can significantly decrease the share of this technology under both the BAU and carbon price scenario.

  11. Carbon Flux to the Atmosphere fromCarbon Flux to the Atmosphere from Land-Use Changes: 1850 to 1990Land-Use Changes: 1850 to 1990

    E-Print Network [OSTI]

    for the Environmental Sciences Division Office of Biological and Environmental Research U.S. Department of Energy Budget Hole Research Center Woods Hole, Massachusetts Prepared by Robert M. Cushman Carbon Dioxide Information Activity Number KP 12 04 01 0 Prepared by the Carbon Dioxide Information Analysis Center Environmental

  12. Carbon Flux to the Atmosphere fromCarbon Flux to the Atmosphere from Land-Use Changes: 1850 to 1990Land-Use Changes: 1850 to 1990

    E-Print Network [OSTI]

    and Environmental Research U.S. Department of Energy Budget Activity Number KP 12 04 01 0 Prepared by the Carbon. Cushman Carbon Dioxide Information Analysis Center Environmental Sciences Division Publication No. 5054 Date Published: February 2001 Prepared for the Environmental Sciences Division Office of Biological

  13. Modeling H2 adsorption in carbon-based structures

    E-Print Network [OSTI]

    Lamonte, Kevin Anthony

    2009-05-15T23:59:59.000Z

    MODELING H2 ADSORPTION IN CARBON-BASED STRUCTURES A Thesis by KEVIN ANTHONY LAMONTE Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 2008 Major... Subject: Chemical Engineering MODELING H2 ADSORPTION IN CARBON-BASED STRUCTURES A Thesis by KEVIN ANTHONY LAMONTE Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER...

  14. Environmental Challenges of Climate-Nuclear Fusion: A Case Study of India

    E-Print Network [OSTI]

    Badrinarayan, Deepa

    2011-01-01T23:59:59.000Z

    nuclear and carbon capture and storage technologies couldthat carbon capture and storage (CCS) technology, as well as

  15. Analysis of Class 8 Hybrid-Electric Truck Technologies Using Diesel, LNG, Electricity, and Hydrogen, as the Fuel for Various Applications

    E-Print Network [OSTI]

    Zhao, Hengbing

    2013-01-01T23:59:59.000Z

    Air Resources Board Carbon Capture and Storage Compressionhaul drive cycles. If no Carbon Capture and Storage (CCS) is

  16. California Carbon Capture and Storage Panel Members Carl Bauer was appointed NETL Director in August

    E-Print Network [OSTI]

    and Environmental Systems, and Director of NETL's Office of Product Management for Environmental Management. Under of Acquisition Management; and director of the Office of Technology Systems. Prior to joining the Department technologies and energy systems for a low- carbon future, groundwater quality and remediation, biogeochemistry

  17. Geothermal Technologies Office: Financial Opportunities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Financial Opportunities Printable Version Share this resource Send a link to Geothermal Technologies Office: Financial Opportunities to someone by E-mail Share Geothermal...

  18. Vehicle Technologies Office: Propulsion Systems

    Broader source: Energy.gov [DOE]

    Vehicle Technologies Office research focuses much of its effort on improving vehicle fuel economy while meeting increasingly stringent emissions standards. Achieving these goals requires a...

  19. Sustainable UMass Green Office Program: Certification Checklist Office: Eco Leader

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    or are programmed to shut off through a timer Waste & Recycling: Prerequisites WP1 We have a designated area in our, printers, A/V, office phones, etc.) to the Office of Waste Management for proper recycling W6 We have percent post-consumer recycled content K3 We only offer organic and/or f

  20. EXECUTIVE OFFICE OF THE PRESIDENT OFFICE OF MANAGEMENT AND BUDGET

    E-Print Network [OSTI]

    Myers, Lawrence C.

    EXECUTIVE OFFICE OF THE PRESIDENT OFFICE OF MANAGEMENT AND BUDGET WASHINGTON, D.C. 20503 March 1 Balanced Budget and Emergency Deficit Control Act of 1985, as Amended This memorandum is to inform) in accordance with section 251A of the Balanced Budget and Emergency Deficit Control Act, as amended (BBEDCA), 2

  1. Carbon Trading, Carbon Taxes and Social Discounting

    E-Print Network [OSTI]

    Weiblen, George D

    Carbon Trading, Carbon Taxes and Social Discounting Elisa Belfiori belf0018@umn.edu University of Minnesota Abstract This paper considers the optimal design of policies to carbon emissions in an economy, such as price or quantity controls on the net emissions of carbon, are insufficient to achieve the social

  2. Resistivity changes in carbon-implanted Teflon

    E-Print Network [OSTI]

    Jackson, Matthew R.

    2013-02-22T23:59:59.000Z

    UNDERGRADUATE RESEARCH FELLOW April 2004 Major: Nuclear Engineering RESISTIVITY CHANGES IN CARBON-IMPLANTED TEFLON A Senior Honors Thesis by MATTHEW R. JACKSON Submitted to the Office of Honors Programs k Academic Scholarships Texas A&M University... In partial fulfillment of the requirements of the UNIVERSITY UNDERGRADUATE RESEARCH FELLOW Approved as to style and content by: Ron Hart (Fellows Advisor) April 2004 Edward A. Funkhouser (Executive Director) Major: Nuclear Engineering ABSTRACT...

  3. J. Douglas Streit, Information Security Officer Office of Computing and Communications Services

    E-Print Network [OSTI]

    J. Douglas Streit, Information Security Officer Office of Computing and Communications Services Last updated February 6, 2012 Old Dominion University Information Technology Security Program #12;J. Douglas Streit, Information Security Officer Office of Computing and Communications Services Last updated

  4. Effects of lithium carbonate administration to healthy cats 

    E-Print Network [OSTI]

    Dieringer, Therese Marie

    1990-01-01T23:59:59.000Z

    EFFECTS DF LITHIUM CARBONATE ADMINISTRATION TO HEALTHY CATS A Thesis by THERESE MARIE DIERINGER Submitted to the Office of Graduate Studies of Texas AlkM University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE December 1990 Major Subject: Veterinary Medicine and Surgery EFFECTS OF LITHIUM CARBONATE ADMINISTRATION TO HEALTHY CATS A Thesis by THERESE MARIE DIERINGER Approved as to style and content by: George E. Lees (Chai r of Committee) Scott...

  5. A manual for evaluation and exploitation of carbonate reservoirs

    E-Print Network [OSTI]

    Cordova, Pedro Luis

    1992-01-01T23:59:59.000Z

    A MANUAL FOR EVALUATION AND EXPI OITATION OF CARBONATE RESERVOIRS A Thesis bv PEDRO CORDOVA Submitted to the Office of Graduate Studies of Texas ASM University In Partial fulfillment of the requiren;enis for (he dc(n. ee of MASTER OF SCIENCE.... Brimhall (Member) James E. Russell (Head of Department) December 1992 ABSTRACT A Manual for Evaluation and Exploitation of Carbonate Reservoirs. (December 1992) Pedro Luis Cordova, B. S. , Universidad del Zulia Chair of Advisory Committee: Dr. W. J...

  6. Y-12 Site Office Recognized For Contributions To Combined Federal...

    National Nuclear Security Administration (NNSA)

    Home Field Offices Welcome to the NNSA Production Office NPO News Releases Y-12 Site Office Recognized For Contributions To ... Y-12 Site Office Recognized For...

  7. 2012 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    - Energy (ARPA-E) Office of Environmental Management (EM) Office of Energy Efficiency and Renewable Energy (EERE) Office of Fossil Energy (FE) Office of Nuclear Energy (NE)...

  8. Public Review Draft: A Method for Assessing Carbon Stocks, Carbon

    E-Print Network [OSTI]

    Public Review Draft: A Method for Assessing Carbon Stocks, Carbon Sequestration, and Greenhouse, and Zhu, Zhiliang, 2010, Public review draft; A method for assessing carbon stocks, carbon sequestration

  9. Carbon-Optimal and Carbon-Neutral Supply Chains

    E-Print Network [OSTI]

    Caro, F.; Corbett, C. J.; Tan, T.; Zuidwijk, R.

    2011-01-01T23:59:59.000Z

    Li, M. Daskin. 2009. Carbon Footprint and the Management ofThe Importance of Carbon Footprint Estimation Boundaries.Carbon accounting and carbon footprint - more than just

  10. OKLAHOMA STATE UNIVERSITY BURSAR'S OFFICE

    E-Print Network [OSTI]

    Veiga, Pedro Manuel Barbosa

    OKLAHOMA STATE UNIVERSITY BURSAR'S OFFICE RESTRICTED TITLE IV FUND PAYMENT Valid through July 31st, return form to: Oklahoma State University Office of the Bursar 113 Student Union Building Stillwater, Oklahoma 74078 Your authorization may be rescinded at any time by sending a written cancellation request

  11. OKLAHOMA STATE UNIVERSITY BURSAR'S OFFICE

    E-Print Network [OSTI]

    Veiga, Pedro Manuel Barbosa

    OKLAHOMA STATE UNIVERSITY BURSAR'S OFFICE RESTRICTED PLUS LOAN PAYMENT Valid through July 31st, return form to: Oklahoma State University Office of the Bursar 113 Student Union Building Stillwater, Oklahoma 74078 Your authorization may be rescinded at any time by sending a written cancellation request

  12. Richland Operations Office technology summary

    SciTech Connect (OSTI)

    Not Available

    1994-05-01T23:59:59.000Z

    This document has been prepared by the Department of Energy`s Environmental Management Office of Technology Development to highlight its research, development, demonstration, testing, and evaluation activities funded through the Richland Operations Office. Technologies and processes described have the potential to enhance cleanup and waste management efforts.

  13. THE UNIVERSITY OF UTAH OFFICE OF SUSTAINABILITY

    E-Print Network [OSTI]

    Feschotte, Cedric

    THE UNIVERSITY OF UTAH OFFICE OF SUSTAINABILITY THE UNIVERSITY OF UTAH OFFICE OF SUSTAINABILITY THE UNIVERSITY OF UTAH OFFICE OF SUSTAINABILITY GREENERGREENERGREENERGREENERGREENERGREENERGREENERGREENERGREENERGREENERGREENERGREENERFall 2010 - Spring 2011 GREENERGREENERGREENERGREENERGREENERGREENER Working for a Sustainable Campus

  14. DOE Report Assesses Potential for Carbon Dioxide Storage Beneath Federal Lands

    Broader source: Energy.gov [DOE]

    As a complementary document to the U.S. Department of Energy's Carbon Sequestration Atlas of the United States and Canada issued in November 2008, the Office of Fossil Energy's National Energy Technology Laboratory has now released a report that provides an initial estimate of the potential to store carbon dioxide underneath millions of acres of Federal lands.

  15. Large-Scale Utilization of Biomass Energy and Carbon Dioxide Capture and Storage in the Transport and Electricity Sectors under Stringent CO2 Concentration Limit Scenarios

    SciTech Connect (OSTI)

    Luckow, Patrick; Wise, Marshall A.; Dooley, James J.; Kim, Son H.

    2010-08-05T23:59:59.000Z

    This paper examines the potential role of large scale, dedicated commercial biomass energy systems under global climate policies designed to meet atmospheric concentrations of CO2 at 400ppm and 450ppm by the end of the century. We use an integrated assessment model of energy and agriculture systems to show that, given a climate policy in which terrestrial carbon is appropriately valued equally with carbon emitted from the energy system, biomass energy has the potential to be a major component of achieving these low concentration targets. A key aspect of the research presented here is that the costs of processing and transporting biomass energy at much larger scales than current experience are explicitly incorporated into the modeling. From the scenario results, 120-160 EJ/year of biomass energy is produced globally by midcentury and 200-250 EJ/year by the end of this century. In the first half of the century, much of this biomass is from agricultural and forest residues, but after 2050 dedicated cellulosic biomass crops become the majority source, along with growing utilization of waste-to-energy. The ability to draw on a diverse set of biomass based feedstocks helps to reduce the pressure for drastic large-scale changes in land use and the attendant environmental, ecological, and economic consequences those changes would unleash. In terms of the conversion of bioenergy feedstocks into value added energy, this paper demonstrates that biomass is and will continue to be used to generate electricity as well as liquid transportation fuels. A particular focus of this paper is to show how climate policies and technology assumptions - especially the availability of carbon dioxide capture and storage (CCS) technologies - affect the decisions made about where the biomass is used in the energy system. The potential for net-negative electric sector emissions through the use of CCS with biomass feedstocks provides an attractive part of the solution for meeting stringent emissions constraints; we find that at carbon prices above 150$/tCO2, over 90% of biomass in the energy system is used in combination with CCS. Despite the higher technology costs of CCS, it is a very important tool in controlling the cost of meeting a target, offsetting the venting of CO2 from sectors of the energy system that may be more expensive to mitigate, such as oil use in transportation. CCS is also used heavily with other fuels such as coal and natural gas, and by 2095 a total of 1530 GtCO2 has been stored in deep geologic reservoirs. The paper also discusses the role of cellulosic ethanol and Fischer-Tropsch biomass derived transportation fuels as two representative conversion processes and shows that both technologies may be important contributors to liquid fuels production, with unique costs and emissions characteristics.

  16. DOL: Office of the Ombudsman for EEOICPA

    Broader source: Energy.gov [DOE]

    The Office of the Ombudsman for the Energy Employees Occupational Illness Compensation Program is an independent office within the Department of Labor that provides assistance and information to...

  17. Quality New Mexico recognizes Community Programs Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quality New Mexico recognizes Community Programs Office March 6, 2012 LOS ALAMOS, New Mexico, March 6, 2012-Los Alamos National Laboratory's Community Programs Office received...

  18. Vehicle Technologies Office Recognizes Outstanding Researchers...

    Energy Savers [EERE]

    Vehicle Technologies Office Recognizes Outstanding Researchers and Projects Vehicle Technologies Office Recognizes Outstanding Researchers and Projects June 24, 2015 - 11:51am...

  19. Vehicle Technologies Office: AVTA - Evaluating National Parks...

    Energy Savers [EERE]

    Vehicle Technologies Office: AVTA - Evaluating National Parks and Forest Service Fleets for Plug-in Electric Vehicles Vehicle Technologies Office: AVTA - Evaluating National Parks...

  20. Office of Acquisition and Project Management

    Office of Environmental Management (EM)

    services to HQ managers. Office of Corporate Information Technology Mission The Office of Corporate Information Technology (EM-72) serves as the principal advisor for the EM...

  1. The Energy Department's Geothermal Technologies Office Releases...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Energy Department's Geothermal Technologies Office Releases 2013 Annual Report The Energy Department's Geothermal Technologies Office Releases 2013 Annual Report February 7,...

  2. Sandia National Laboratories: Geothermal Technologies Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technologies Office Sandia Wins DOE Geothermal Technologies Office Funding Award On December 15, 2014, in Advanced Materials Laboratory, Capabilities, Energy, Facilities,...

  3. The Geothermal Technologies Office Congratulates this Year's...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Geothermal Technologies Office Congratulates this Year's GEA Honors Awardees The Geothermal Technologies Office Congratulates this Year's GEA Honors Awardees December 11, 2013...

  4. Geothermal Technologies Office | Department of Energy

    Office of Environmental Management (EM)

    Geothermal Technologies Office Energy Department Opens Job Search for Geothermal Technologies Office Director Position Energy Department Opens Job Search for Geothermal...

  5. Geothermal Technologies Office | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Energy Department Opens Job Search for Geothermal Technologies Office Director Position Energy Department Opens Job Search for Geothermal Technologies Office Director Position The...

  6. Independent Oversight Inspection, Office of Secure Transportation...

    Office of Environmental Management (EM)

    Office of Secure Transportation - March 2007 Independent Oversight Inspection, Office of Secure Transportation - March 2007 March 2007 Inspection of Emergency Management at the...

  7. Vehicle Technologies Office: AVTA - Diesel Internal Combusion...

    Energy Savers [EERE]

    Vehicle Technologies Office: AVTA - Diesel Internal Combusion Engine Vehicles Vehicle Technologies Office: AVTA - Diesel Internal Combusion Engine Vehicles The Advanced Vehicle...

  8. Daniel Lee Cloyd named Counterintelligence Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FBI officer accepts LANL counterintelligence post November 10, 2010 Daniel Lee Cloyd named Counterintelligence Office leader LOS ALAMOS, New Mexico, November 10, 2010-Daniel Lee...

  9. ORISE Resources: Medical Office Preparedness Planner

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    partnership with CDC yields Medical Office Preparedness Planner for Primary Care Providers The Medical Office Preparedness Planner is a tool for primary care providers (PCPs) and...

  10. EXECUTIVE OFFICE OF THE PRESIDENT OFFICE OF MANAGEMENT AND BUDGET

    E-Print Network [OSTI]

    that will improve energy security by expanding the use of clean coal technology. In addition for carbon sequestration technologies, which are part of the President's Coal Research Initiative

  11. Vehicle Technologies Office Merit Review 2015: Vehicle Technologies Office Overview

    Broader source: Energy.gov [DOE]

    Presentation given by U.S. Department of Energy  at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation meeting about Vehicle...

  12. CALIFORNIA CARBON SEQUESTRATION THROUGH

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION CARBON SEQUESTRATION THROUGH CHANGES IN LAND USE IN WASHINGTON. Carbon Sequestration Through Changes in Land Use in Washington: Costs and Opportunities. California for Terrestrial Carbon Sequestration in Oregon. Report to Winrock International. #12;ii #12;iii Preface

  13. Photophysics of carbon nanotubes

    E-Print Network [OSTI]

    Samsonidze, Georgii G

    2007-01-01T23:59:59.000Z

    This thesis reviews the recent advances made in optical studies of single-wall carbon nanotubes. Studying the electronic and vibrational properties of carbon nanotubes, we find that carbon nanotubes less than 1 nm in ...

  14. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    for carbon capture and storage technologies. Annual Reviewof carbon capture and storage (CCS) technology offers aCarbon dioxide Capture and Storage (CCS), including oxy-fuel combustion21 Process-specific technologies

  15. Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production

    E-Print Network [OSTI]

    Narasayya, Vivek

    #12;Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward

  16. Carbon Code Requirements for voluntary carbon sequestration projects

    E-Print Network [OSTI]

    Woodland Carbon Code Requirements for voluntary carbon sequestration projects ® Version 1.2 July trademark 10 3. Carbon sequestration 11 3.1 Units of carbon calculation 11 3.2 Carbon baseline 11 3.3 Carbon leakage 12 3.4 Project carbon sequestration 12 3.5 Net carbon sequestration 13 4. Environmental quality 14

  17. Annual Report: Carbon Capture Simulation Initiative (CCSI) (30 September 2012)

    SciTech Connect (OSTI)

    Miller, David C; Syamlal, Madhava; Cottrell, Roger; Kress, Joel D; Sun, Xin; Sundaresan, S; Sahinidis, Nikolaos V; Zitney, Stephen E; Bhattacharyya, D; Agarwal, Deb; Tong, Charles; Lin, Guang; Dale, Crystal; Engel, Dave; Calafiura, Paolo; Beattie, Keith

    2012-09-30T23:59:59.000Z

    The Carbon Capture Simulation Initiative (CCSI) is a partnership among national laboratories, industry and academic institutions that is developing and deploying state-of-the-art computational modeling and simulation tools to accelerate the commercialization of carbon capture technologies from discovery to development, demonstration, and ultimately the widespread deployment to hundreds of power plants. The CCSI Toolset will provide end users in industry with a comprehensive, integrated suite of scientifically validated models, with uncertainty quantification (UQ), optimization, risk analysis and decision making capabilities. The CCSI Toolset incorporates commercial and open-source software currently in use by industry and is also developing new software tools as necessary to fill technology gaps identified during execution of the project. Ultimately, the CCSI Toolset will (1) enable promising concepts to be more quickly identified through rapid computational screening of devices and processes; (2) reduce the time to design and troubleshoot new devices and processes; (3) quantify the technical risk in taking technology from laboratory-scale to commercial-scale; and (4) stabilize deployment costs more quickly by replacing some of the physical operational tests with virtual power plant simulations. CCSI is organized into 8 technical elements that fall under two focus areas. The first focus area (Physicochemical Models and Data) addresses the steps necessary to model and simulate the various technologies and processes needed to bring a new Carbon Capture and Storage (CCS) technology into production. The second focus area (Analysis & Software) is developing the software infrastructure to integrate the various components and implement the tools that are needed to make quantifiable decisions regarding the viability of new CCS technologies. CCSI also has an Industry Advisory Board (IAB). By working closely with industry from the inception of the project to identify industrial challenge problems, CCSI ensures that the simulation tools are developed for the carbon capture technologies of most relevance to industry. CCSI is led by the National Energy Technology Laboratory (NETL) and leverages the Department of Energy (DOE) national laboratories? core strengths in modeling and simulation, bringing together the best capabilities at NETL, Los Alamos National Laboratory (LANL), Lawrence Berkeley National Laboratory (LBNL), Lawrence Livermore National Laboratory (LLNL), and Pacific Northwest National Laboratory (PNNL). The CCSI?s industrial partners provide representation from the power generation industry, equipment manufacturers, technology providers and engineering and construction firms. The CCSI?s academic participants (Carnegie Mellon University, Princeton University, West Virginia University, and Boston University) bring unparalleled expertise in multiphase flow reactors, combustion, process synthesis and optimization, planning and scheduling, and process control techniques for energy processes. During Fiscal Year (FY) 12, CCSI released its first set of computational tools and models. This pre-release, a year ahead of the originally planned first release, is the result of intense industry interest in getting early access to the tools and the phenomenal progress of the CCSI technical team. These initial components of the CCSI Toolset provide new models and computational capabilities that will accelerate the commercial development of carbon capture technologies as well as related technologies, such as those found in the power, refining, chemicals, and gas production industries. The release consists of new tools for process synthesis and optimization to help identify promising concepts more quickly, new physics-based models of potential capture equipment and processes that will reduce the time to design and troubleshoot new systems, a framework to quantify the uncertainty of model predictions, and various enabling tools that provide new capabilities such as creating reduced order models (ROMs) from reacting multiphase flow

  18. Method of making carbon-carbon composites

    DOE Patents [OSTI]

    Engle, Glen B. (16716 Martincoit Rd., Poway, CA 92064)

    1993-01-01T23:59:59.000Z

    A process for making 2D and 3D carbon-carbon composites having a combined high crystallinity, high strength, high modulus and high thermal and electrical conductivity. High-modulus/high-strength mesophase derived carbon fibers are woven into a suitable cloth. Layers of this easily graphitizible woven cloth are infiltrated with carbon material to form green composites. The carbonized composite is then impregnated several times with pitch by covering the composite with hot pitch under pressure. The composites are given a heat treatment between each impregnant step to crack up the infiltrated carbon and allow additional pitch to enter the microstructure during the next impregnation cycle. The impregnated composites are then given a final heat treatment in the range 2500.degree. to 3100.degree. C. to fully graphitize the fibers and the matrix carbon. The composites are then infiltrated with pyrolytic carbon by chemical vapor deposition in the range 1000.degree. C. to 1300.degree. C. at a reduced. pressure.

  19. Carbon Fiber Technology Facility

    Broader source: Energy.gov (indexed) [DOE]

    The Carbon Fiber Technology Facility is relevant in proving the scale- up of low-cost carbon fiber precursor materials and advanced manufacturing technologies * Significant...

  20. Motivating carbon dioxide | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Motivating carbon dioxide Motivating carbon dioxide Released: April 17, 2013 Scientists show what it takes to get the potential fuel feedstock to a reactive spot on a model...

  1. Portsmouth Paducah Project Office People

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PPPO People Photo Gallery To view a larger photo, click on the thumbnail photo. Photo will open in a new browser window. PortsmouthPaducah Project Office 1017 Majestic Drive,...

  2. MSU Enterprise Chief Information Officer

    E-Print Network [OSTI]

    Lawrence, Rick L.

    MSU Enterprise Chief Information Officer Dr. Dewitt Latimer User Support Services Associate CIO Martin Bourque Chuck Hatfield Mike Hall Mike Hitch Jeff Kimm Jacob Hahn Lisa Bogar Communications David

  3. Portsmouth/Paducah Project Office,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    August 1, 2012 Robert.Smith@lex.doe.gov DOE Workshop Gauges Paducah Plant Interest PADUCAH, KY - The U.S. Department of Energy's PortsmouthPaducah Project Office (PPPO) is...

  4. Portsmouth/Paducah Project Office,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 22, 2012 Robert.Smith@lex.doe.gov DOE Plans Workshop to Assess Paducah Plant Interest PADUCAH, KY. - The U.S. Department of Energy's (DOE) PortsmouthPaducah Project Office is...

  5. Office of Departmental Personnel Security

    Broader source: Energy.gov [DOE]

    The Office of Departmental Personnel Security serves as the central leader and advocate vested with the authority to ensure consistent and effective implementation of personnel security programs Department-wide (including for the National Nuclear Security Administration (NNSA).

  6. Global Environment Facility Evaluation Office

    E-Print Network [OSTI]

    Pfaff, Alex

    Global Environment Facility Evaluation Office PROTECTED AREAS AND AVOIDED DEFORESTATION #12;Protected Areas and Avoided Deforestation: An Econometric Evaluation - i - TABLE OF CONTENTS 1................................................................................4 3.3 ESTIMATED EFFECTS OF PROTECTED AREAS ON DEFORESTATION

  7. Carbon Capture (Carbon Cycle 2.0)

    ScienceCinema (OSTI)

    Smit, Berend

    2011-06-08T23:59:59.000Z

    Berend Smit speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 3, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

  8. Atlantic Oceanographic and Meteorological LaboratoryNovember-December 2009 Volume 13, Number 6 AOML is an environmental research laboratory of NOAA's Office of Oceanic and Atmospheric

    E-Print Network [OSTI]

    is an environmental research laboratory of NOAA's Office of Oceanic and Atmospheric Research located on Virginia KeyAtlantic With an estimated 40% of the carbon dioxide (CO2 ) from fossil fuels having entered the oceans since the start studies in the Atlantic and equatorial Pacific performed by NOAA researchers and their affiliates. Carbon

  9. DB-Netz AG Offices

    High Performance Buildings Database

    Hamm, Germany The new office building for DB Netz AG was designed by the collaborative team of Architrav Architects and the Buildings Physics and Technical Building Services group of the University of Karlsruhe. The team developed an energy efficient building concept for the 64,304 sqft office building, located in Hamm, Germany. The design concept of the building is dominated by architectural solutions for ventilation, cooling and lighting. Use of HVAC and electric lighting is minimized as much as possible.

  10. Composite carbon foam electrode

    DOE Patents [OSTI]

    Mayer, S.T.; Pekala, R.W.; Kaschmitter, J.L.

    1997-05-06T23:59:59.000Z

    Carbon aerogels used as a binder for granulated materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy. 1 fig.

  11. Composite carbon foam electrode

    DOE Patents [OSTI]

    Mayer, Steven T. (San Leandro, CA); Pekala, Richard W. (Pleasant Hill, CA); Kaschmitter, James L. (Pleasanton, CA)

    1997-01-01T23:59:59.000Z

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivty and power to system energy.

  12. Lawrence Berkeley National Laboratory Engineering Division Office

    E-Print Network [OSTI]

    /4867399 DMAttia@lbl.gov Administrative Staff Glenda Fish Division Office Administrator 510/4867123 GJFish

  13. Ozone Removal by Filters Containing Activated Carbon: A Pilot Study

    SciTech Connect (OSTI)

    Fisk, William; Spears, Mike; Sullivan, Douglas; Mendell, Mark

    2009-09-01T23:59:59.000Z

    This study evaluated the ozone removal performance of moderate-cost particle filters containing activated carbon when installed in a commercial building heating, ventilating, and air conditioning (HVAC) system. Filters containing 300 g of activated carbon per 0.09 m2 of filter face area were installed in two 'experimental' filter banks within an office building located in Sacramento, CA. The ozone removal performance of the filters was assessed through periodic measurements of ozone concentrations in the air upstream and downstream of the filters. Ozone concentrations were also measured upstream and downstream of a 'reference' filter bank containing filters without any activated carbon. The filter banks with prefilters containing activated carbon were removing 60percent to 70percent of the ozone 67 and 81 days after filter installation. In contrast, there was negligible ozone removal by the reference filter bank without activated carbon.

  14. Calcifying Cyanobacteria - The potential of biomineralization for Carbon Capture and Storage

    E-Print Network [OSTI]

    Jansson, Christer G

    2010-01-01T23:59:59.000Z

    water produced from petroleum production or geological CO 2production or CCS can be cultured in marine waters, saline drainage water, or brine from petroleum

  15. A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis

    E-Print Network [OSTI]

    Farrell, Alexander; Sperling, Daniel

    2007-01-01T23:59:59.000Z

    biomass, delivered by pipeline Hydrogen Hydrogen from steam-Coal-based hydrogen with CCS and pipeline distribution mightbiomass, delivered by pipeline H11 Hydrogen Hydrogen from

  16. A Low-Carbon Fuel Standard for California Part 1: Technical Analysis

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    biomass, delivered by pipeline Hydrogen Hydrogen from steam-Coal-based hydrogen with CCS and pipeline distribution mightbiomass, delivered by pipeline H11 Hydrogen Hydrogen from

  17. 2014 Ceremony | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruary 2004AugustAprilJanuaryDecember 20144 AuditCarbon4

  18. Standards Panel: 1. Stephen Diamond, General Manager, Industry Standards Office and Global Standards Officer, EMC

    E-Print Network [OSTI]

    Standards Officer, EMC Corporation, Office of the CTO Steve Diamond has 30 years of management, marketing was President of the IEEE Computer Society. Steve is General Manager of the Industry Standards Office at EMC Corporation, and Global Standards Officer in the Office of the CTO. Before EMC, he was responsible for cloud

  19. NON-DESTRUCTIVE SOIL CARBON ANALYZER.

    SciTech Connect (OSTI)

    WIELOPOLSKI,L.MITRA,S.HENDREY,G.ORION,I.ROGERS,H.TORBERT,A.PRIOR,S.RUNION,B.

    2004-02-01T23:59:59.000Z

    This report describes the feasibility, calibration, and safety considerations of a non-destructive, in situ, quantitative, volumetric soil carbon analytical method based on inelastic neutron scattering (INS). The method can quantify values as low as 0.018 gC/cc, or about 1.2% carbon by weight with high precision under the instrument's configuration and operating conditions reported here. INS is safe and easy to use, residual soil activation declines to background values in under an hour, and no radiological requirements are needed for transporting the instrument. The labor required to obtain soil-carbon data is about 10-fold less than with other methods, and the instrument offers a nearly instantaneous rate of output of carbon-content values. Furthermore, it has the potential to quantify other elements, particularly nitrogen. New instrumentation was developed in response to a research solicitation from the U.S. Department of Energy (DOE LAB 00-09 Carbon Sequestration Research Program) supporting the Terrestrial Carbon Processes (TCP) program of the Office of Science, Biological and Environmental Research (BER). The solicitation called for developing and demonstrating novel techniques for quantitatively measuring changes in soil carbon. The report includes raw data and analyses of a set of proof-of-concept, double-blind studies to evaluate the INS approach in the first phase of developing the instrument. Managing soils so that they sequester massive amounts of carbon was suggested as a means to mitigate the atmospheric buildup of anthropogenic CO{sub 2}. Quantifying changes in the soils' carbon stocks will be essential to evaluating such schemes and documenting their performance. Current methods for quantifying carbon in soil by excavation and core sampling are invasive, slow, labor-intensive and locally destroy the system being observed. Newly emerging technologies, such as Laser Induced Breakdown Spectroscopy and Near-Infrared Spectroscopy, offer soil-carbon analysis; however, these also are invasive and destructive techniques. The INS approach permits quantification in a relatively large volume of soil without disrupting the measurement site. The technique is very fast and provides nearly instantaneous results thereby reducing the cost, and speeding up the rate of analysis. It also has the potential to cover large areas in a mobile scanning mode. These capabilities will significantly advance the tracking carbon sequestration and offer a tool for research in agronomy, forestry, soil ecology and biogeochemistry.

  20. Research Summary Carbon Additionality

    E-Print Network [OSTI]

    of the quality assurance of emissions reduction and carbon sequestration activities, but remains a source of muchResearch Summary Carbon Additionality Additionality is widely considered to be a core aspect controversy in national carbon accounting, international regulatory frameworks and carbon markets. A review

  1. Acetylenic carbon allotrope

    DOE Patents [OSTI]

    Lagow, R.J.

    1998-02-10T23:59:59.000Z

    A fourth allotrope of carbon, an acetylenic carbon allotrope, is described. The acetylenic carbon allotropes of the present invention are more soluble than the other known carbon allotropes in many common organic solvents and possesses other desirable characteristics, e.g. high electron density, ability to burn cleanly, and electrical conductive properties. Many uses for this fourth allotrope are described herein. 17 figs.

  2. Carbon Monoxide Environmental Public

    E-Print Network [OSTI]

    The National Workgroup on Carbon Monoxide Surveillance Formed in April 2005 Membership: EPHT grantees Academic

  3. The Woodland Carbon Code

    E-Print Network [OSTI]

    The Woodland Carbon Code While society must continue to make every effort to reduce greenhouse gas a role by removing carbon dioxide from the atmosphere. The potential of woodlands to soak up carbon to help compensate for their carbon emissions. But before investing in such projects, people want to know

  4. Mesoporous carbon materials

    SciTech Connect (OSTI)

    Dai, Sheng; Fulvio, Pasquale Fernando; Mayes, Richard T.; Wang, Xiqing; Sun, Xiao-Guang; Guo, Bingkun

    2014-09-09T23:59:59.000Z

    A conductive mesoporous carbon composite comprising conductive carbon nanoparticles contained within a mesoporous carbon matrix, wherein the conductive mesoporous carbon composite possesses at least a portion of mesopores having a pore size of at least 10 nm and up to 50 nm, and wherein the mesopores are either within the mesoporous carbon matrix, or are spacings delineated by surfaces of said conductive carbon nanoparticles when said conductive carbon nanoparticles are fused with each other, or both. Methods for producing the above-described composite, devices incorporating them (e.g., lithium batteries), and methods of using them, are also described.

  5. Perspectives on Carbon Capture and Sequestration in the United States

    E-Print Network [OSTI]

    Wong-Parodi, Gabrielle

    2011-01-01T23:59:59.000Z

    internationally, is ‘clean coal technologies’ (e.g. , Parsonof Energy 2008b Clean coal technology and the President’stechnology. Recognizing the importance of public support, CCS proponents have launched a “clean coal”

  6. Basin-Scale Leakage Risks from Geologic Carbon Sequestration: Impact on Carbon Capture and Storage Energy Market Competitiveness

    SciTech Connect (OSTI)

    Peters, Catherine; Fitts, Jeffrey; Wilson, Elizabeth; Pollak, Melisa; Bielicki, Jeffrey; Bhatt, Vatsal

    2013-03-13T23:59:59.000Z

    This three-year project, performed by Princeton University in partnership with the University of Minnesota and Brookhaven National Laboratory, examined geologic carbon sequestration in regard to CO{sub 2} leakage and potential subsurface liabilities. The research resulted in basin-scale analyses of CO{sub 2} and brine leakage in light of uncertainties in the characteristics of leakage processes, and generated frameworks to monetize the risks of leakage interference with competing subsurface resources. The geographic focus was the Michigan sedimentary basin, for which a 3D topographical model was constructed to represent the hydrostratigraphy. Specifically for Ottawa County, a statistical analysis of the hydraulic properties of underlying sedimentary formations was conducted. For plausible scenarios of injection into the Mt. Simon sandstone, leakage rates were estimated and fluxes into shallow drinking-water aquifers were found to be less than natural analogs of CO{sub 2} fluxes. We developed the Leakage Impact Valuation (LIV) model in which we identified stakeholders and estimated costs associated with leakage events. It was found that costs could be incurred even in the absence of legal action or other subsurface interference because there are substantial costs of finding and fixing the leak and from injection interruption. We developed a model framework called RISCS, which can be used to predict monetized risk of interference with subsurface resources by combining basin-scale leakage predictions with the LIV method. The project has also developed a cost calculator called the Economic and Policy Drivers Module (EPDM), which comprehensively calculates the costs of carbon sequestration and leakage, and can be used to examine major drivers for subsurface leakage liabilities in relation to specific injection scenarios and leakage events. Finally, we examined the competiveness of CCS in the energy market. This analysis, though qualitative, shows that financial incentives, such as a carbon tax, are needed for coal combustion with CCS to gain market share. In another part of the project we studied the role of geochemical reactions in affecting the probability of CO{sub 2} leakage. A basin-scale simulation tool was modified to account for changes in leakage rates due to permeability alterations, based on simplified mathematical rules for the important geochemical reactions between acidified brines and caprock minerals. In studies of reactive flows in fractured caprocks, we examined the potential for permeability increases, and the extent to which existing reactive transport models would or would not be able to predict it. Using caprock specimens from the Eau Claire and Amherstburg, we found that substantial increases in permeability are possible for caprocks that have significant carbonate content, but minimal alteration is expected otherwise. We also found that while the permeability increase may be substantial, it is much less than what would be predicted from hydrodynamic models based on mechanical aperture alone because the roughness that is generated tends to inhibit flow.

  7. Office of the Chief Information Officer DOERM@hq.doe.gov

    Office of Environmental Management (EM)

    a Records Management Field Officer (RMFO) to represent each Field site or office to support their respective RM processes. RMFOs are officials at the Field level who provide...

  8. STIL2 Swedish Office Buildings Survey - Offices_Sweden_-20100409...

    Open Energy Info (EERE)

    OfficesSweden-20100409.xls URL: http:en.openei.orgdatasetsdatasete2c18a14-ee37-49d0-9820-68b1195fdcd2resource5cd10f28-0d85-4466-b1e7-61d37085584ddownload...

  9. UNIVERSITYOF Cambridge Working

    E-Print Network [OSTI]

    Cambridge, University of

    % of the 1990 levels by 2050. With an increase in future fossil fuel use, Carbon Capture and Storage (CCS, Carbon Capture and Storage (CCS), the CCS Roadmap, Electricity Market Reform, carbon capture technologies and still main- tain a secure energy supply into the future, primarily through Carbon Capture and Stor- age

  10. Soil metagenomics and carbon cycling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and carbon cycling Establishing a foundational understanding of the microbial and ecosystem factors that control carbon cycling to improve climate modeling and carbon...

  11. Carbon Nanostructure-Based Sensors

    E-Print Network [OSTI]

    Sarkar, Tapan

    2012-01-01T23:59:59.000Z

    Control of Single-Walled Carbon Nanotube Functionalization.M. S. Characterizing carbon nanotube samples with resonancewith a Single-Walled Carbon Nanotube Capacitor. Science

  12. Large Magnetization at Carbon Surfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Magnetization at Carbon Surfaces Large Magnetization at Carbon Surfaces Print Wednesday, 31 August 2011 00:00 From organic matter to pencil lead, carbon is a versatile...

  13. The Australian terrestrial carbon budget

    E-Print Network [OSTI]

    2013-01-01T23:59:59.000Z

    Australian terrestrial carbon budget Open Access 3 , G. P.The Australian terrestrial carbon budget Luo, C. , Mahowald,terrestrial carbon budget Richards, G. P. , Borough, C. ,

  14. Carbon fuel cells with carbon corrosion suppression

    DOE Patents [OSTI]

    Cooper, John F. (Oakland, CA)

    2012-04-10T23:59:59.000Z

    An electrochemical cell apparatus that can operate as either a fuel cell or a battery includes a cathode compartment, an anode compartment operatively connected to the cathode compartment, and a carbon fuel cell section connected to the anode compartment and the cathode compartment. An effusion plate is operatively positioned adjacent the anode compartment or the cathode compartment. The effusion plate allows passage of carbon dioxide. Carbon dioxide exhaust channels are operatively positioned in the electrochemical cell to direct the carbon dioxide from the electrochemical cell.

  15. Enhanced Performance Assessment System (EPAS) for carbon sequestration.

    SciTech Connect (OSTI)

    Wang, Yifeng; Sun, Amy Cha-Tien; McNeish, Jerry A. (Sandia National Laboratories, Livermore, CA); Dewers, Thomas A.; Hadgu, Teklu; Jove-Colon, Carlos F.

    2010-09-01T23:59:59.000Z

    Carbon capture and sequestration (CCS) is an option to mitigate impacts of atmospheric carbon emission. Numerous factors are important in determining the overall effectiveness of long-term geologic storage of carbon, including leakage rates, volume of storage available, and system costs. Recent efforts have been made to apply an existing probabilistic performance assessment (PA) methodology developed for deep nuclear waste geologic repositories to evaluate the effectiveness of subsurface carbon storage (Viswanathan et al., 2008; Stauffer et al., 2009). However, to address the most pressing management, regulatory, and scientific concerns with subsurface carbon storage (CS), the existing PA methodology and tools must be enhanced and upgraded. For example, in the evaluation of a nuclear waste repository, a PA model is essentially a forward model that samples input parameters and runs multiple realizations to estimate future consequences and determine important parameters driving the system performance. In the CS evaluation, however, a PA model must be able to run both forward and inverse calculations to support optimization of CO{sub 2} injection and real-time site monitoring as an integral part of the system design and operation. The monitoring data must be continually fused into the PA model through model inversion and parameter estimation. Model calculations will in turn guide the design of optimal monitoring and carbon-injection strategies (e.g., in terms of monitoring techniques, locations, and time intervals). Under the support of Laboratory-Directed Research & Development (LDRD), a late-start LDRD project was initiated in June of Fiscal Year 2010 to explore the concept of an enhanced performance assessment system (EPAS) for carbon sequestration and storage. In spite of the tight time constraints, significant progress has been made on the project: (1) Following the general PA methodology, a preliminary Feature, Event, and Process (FEP) analysis was performed for a hypothetical CS system. Through this FEP analysis, relevant scenarios for CO{sub 2} release were defined. (2) A prototype of EPAS was developed by wrapping an existing multi-phase, multi-component reservoir simulator (TOUGH2) with an uncertainty quantification and optimization code (DAKOTA). (3) For demonstration, a probabilistic PA analysis was successfully performed for a hypothetical CS system based on an existing project in a brine-bearing sandstone. The work lays the foundation for the development of a new generation of PA tools for effective management of CS activities. At a top-level, the work supports energy security and climate change/adaptation by furthering the capability to effectively manage proposed carbon capture and sequestration activities (both research and development as well as operational), and it greatly enhances the technical capability to address this national problem. The next phase of the work will include (1) full capability demonstration of the EPAS, especially for data fusion, carbon storage system optimization, and process optimization of CO{sub 2} injection, and (2) application of the EPAS to actual carbon storage systems.

  16. ORO Office Safeguards and Security Clearance Tracking System...

    Energy Savers [EERE]

    Office Safeguards and Security Clearance Tracking System and Visitor Control System PIA, Oak Ridge Operations Office ORO Office Safeguards and Security Clearance Tracking System...

  17. NA GC - Office of General Counsel | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    Blog Home About Us Our Operations Management and Budget Office of Civil Rights Workforce Statistics NA GC - Office of General Counsel NA GC - Office of General Counsel...

  18. NA 1 - Immediate Office of the Administrator | National Nuclear...

    National Nuclear Security Administration (NNSA)

    Us Our Operations Management and Budget Office of Civil Rights Workforce Statistics NA 1 - Immediate Office of the Administrator NA 1 - Immediate Office of the...

  19. Kansas City Field Office | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Us Our Operations Management and Budget Office of Civil Rights Workforce Statistics Kansas City Field Office Kansas City Field Office FY15 Semi Annual Report FY14...

  20. Los Alamos Field Office | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Us Our Operations Management and Budget Office of Civil Rights Workforce Statistics Los Alamos Field Office Los Alamos Field Office FY15 Semi Annual Report FY14 Year...

  1. Savannah River Field Office | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Us Our Operations Management and Budget Office of Civil Rights Workforce Statistics Savannah River Field Office Savannah River Field Office FY15 Semi Annual Report...

  2. 2013 Annual Workforce Analysis and Staffing Plan Report - Office...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2013 Annual Workforce Analysis and Staffing Plan Report - Office of Science Chicago Office 2013 Annual Workforce Analysis and Staffing Plan Report - Office of Science Chicago...

  3. Office of Institutional Assurance - OIA Web Files OIA Web Files

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Berkeley Lab mastheads Berkeley Lab US DOE A-Z Index Phone Book Careers Search Office of Institutional Assurance About the Office of Institutional Assurance (OIA) Office of...

  4. 2014 DOE Vehicle Technologies Office Annual Merit Review | Department...

    Energy Savers [EERE]

    DOE Vehicle Technologies Office Annual Merit Review 2014 DOE Vehicle Technologies Office Annual Merit Review The 2014 U.S. Department of Energy (DOE) Fuel Cell Technologies Office...

  5. MARVIN S. FERTEL President and Chief Executive Officer

    Broader source: Energy.gov (indexed) [DOE]

    Energy The Honorable David Huizenga, Office of Environmental Management Mr. James Owendoff, Office of Environmental Management Mr. A. David Henderson, Office of Uranium...

  6. Fuel Cell Technologies Office Newsletter: May 2015 | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cell Technologies Office Newsletter: May 2015 Fuel Cell Technologies Office Newsletter: May 2015 The May 2015 issue of the Fuel Cell Technologies Office (FCTO) newsletter includes...

  7. After-hours Power Status of Office Equipment and Inventory of Miscellaneous Plug-load Equipment

    SciTech Connect (OSTI)

    Roberson, Judy A.; Webber, Carrie A.; McWhinney, Marla C.; Brown, Richard E.; Pinckard, Margaret J.; Busch, John F.

    2004-01-22T23:59:59.000Z

    This research was conducted in support of two branches of the EPA ENERGY STAR program, whose overall goal is to reduce, through voluntary market-based means, the amount of carbon dioxide emitted in the U.S. The primary objective was to collect data for the ENERGY STAR Office Equipment program on the after-hours power state of computers, monitors, printers, copiers, scanners, fax machines, and multi-function devices. We also collected data for the ENERGY STAR Commercial Buildings branch on the types and amounts of ''miscellaneous'' plug-load equipment, a significant and growing end use that is not usually accounted for by building energy managers. This data set is the first of its kind that we know of, and is an important first step in characterizing miscellaneous plug loads in commercial buildings. The main purpose of this study is to supplement and update previous data we collected on the extent to which electronic office equipment is turned off or automatically enters a low power state when not in active use. In addition, it provides data on numbers and types of office equipment, and helps identify trends in office equipment usage patterns. These data improve our estimates of typical unit energy consumption and savings for each equipment type, and enables the ENERGY STAR Office Equipment program to focus future effort on products with the highest energy savings potential. This study expands our previous sample of office buildings in California and Washington DC to include education and health care facilities, and buildings in other states. We report data from twelve commercial buildings in California, Georgia, and Pennsylvania: two health care buildings, two large offices (> 500 employees each), three medium offices (50-500 employees), four education buildings, and one ''small office'' that is actually an aggregate of five small businesses. Two buildings are in the San Francisco Bay area of California, five are in Pittsburgh, Pennsylvania, and five are in Atlanta, Georgia.

  8. Bryant university Office of Admission

    E-Print Network [OSTI]

    Blais, Brian

    Bryant university Office of Admission Transfer Commitment Deposit Form Student Name _____________________________________________________________________________________________ ____ I plan to enroll at Bryant University. My $800 non-refundable commitment deposit is enclosed. ____ I plan to reside on campus. ____ I do not plan to reside on campus. ____ I do not plan to attend Bryant

  9. Data Protection Office October 2010

    E-Print Network [OSTI]

    Mottram, Nigel

    Data Protection Office October 2010 AUTHORISATION FORM FOR DATA PROCESSING BY STUDENTS This form should be completed where students are processing personal data for research or study purposes. In order to meet the requirements of the Data Protection Act 1998 and ensure the personal data is being processed

  10. E. ALLAN LIND Office Address

    E-Print Network [OSTI]

    Reif, John H.

    E. ALLAN LIND Office Address Fuqua School of Business Box 90120 Duke University Durham, NC 27708 tel. +1-919-660-7849 or +1-919-724-1130; e-mail: Allan.Lind@duke.edu Personal Information: Born: April, Paris, France. Book: Lind, E. A., and Tyler, T. R. (1988). The social psychology of procedural justice

  11. Residential & Business Services Director's Office

    E-Print Network [OSTI]

    Brierley, Andrew

    Residential & Business Services Director's Office Butts Wynd, North Street, St Andrews, Fife, KY16 by students for students are an integral part of student life and intrinsic to the student residential the residential environment. However, experience tells us that events require careful planning and organisation

  12. commercializaTion office Agriculture

    E-Print Network [OSTI]

    Arnold, Jonathan

    Technology commercializaTion office Agriculture ·Biotechnology ·Blueberries ·Cotton ·Forages Utilization, Renewable Energy ·Algalbiofuels ·Biodiesel ·Biomassengineering ·Biomasspre,skincare,andwoundhealing ·Vaccines Information Technology ·Bioinformaticstools ·Imagerenderingandenhancement ·3

  13. Office: ITO PE/Project

    E-Print Network [OSTI]

    Mills, Kevin

    Mgr.: Mills/Swinson PAD No.: Smart Spaces Moving Through Smart Spaces "city-wide appliances" "in1 DARPA Office: ITO PE/Project: Pgm No.: Pgm Mgr.: Mills/Swinson PAD No.: Smart Spaces Personal Information Projection · Develop techniques for projecting personal information from cyberspace into smart

  14. Engineering Office of Undergraduate Admissions

    E-Print Network [OSTI]

    Yang, Junfeng

    -neutral Torus 2 Climate Change 4 Combustion and Catalysis Laboratory #12;3 Columbia Engineering is believingColumbia Engineering Plus Office of Undergraduate Admissions Columbia University 212 Hamilton Hall 3 4 5 6 Aerial view of Columbia campus with Columbia Engineering-affiliated buildings highlighted

  15. Optimize carbon dioxide sequestration, enhance oil recovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding access toTest andOptimize carbon dioxide sequestration, enhance oil

  16. Sandia Energy - Carbon Capture & Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatings Initiated at PNNL's Sequim BayCapture Home Carbon Capture

  17. CFTF | Carbon Fiber Technology Facility | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o . C l a r k C o'IUHopper3 Environmental P.Carbon

  18. Carbon Storage Newsletter | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o . C l aNanocomposites, and DevicesCarbon Storage

  19. 2014 Carbon Storage | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruary 2004AugustAprilJanuaryDecember 20144 AuditCarbon

  20. Finance and Enterprises Office February 2014

    E-Print Network [OSTI]

    Tam, Vincent W. L.

    Finance and Enterprises Office February 2014 Office Management Student matters Insurance HKU SPACE Planning & Management Associate Director of Finance ----------------------------------- Antony Hui Associate Director of Finance ----------------------------------- Edmund Li Assistant Director of Finance