National Library of Energy BETA

Sample records for off-site produced energy

  1. Table 1c. Off-Site Produced Energy (Site Energy)For Selected...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    c Page Last Modified: May 2010 Table 1c. Off-Site Produced Energy (Site Energy) for Selected Industries, 1998, 2002 and 2006 (Trillion Btu) MECS Survey Years NAICS Subsector and...

  2. OFF-SITE S

    Office of Legacy Management (LM)

    S e T B ~ I L L ~ C E ACTIVITIES OF THE NATIONAL E N V I R O N M E N T A L R E S E A R C H CENTER from July through December 197C / t i o n a l Environmental Research Centeq U. S. ~ ~ I R O N M E L S T P ~ TR~ECTIQN AGENCY e Unders tancling No. 23 (26-1)-539 for the U. S o ATOMIC ENERGY COlQ4ISSION OFF-SITE SURVEILLANCE ACTIVITIES OF THE NATIONAL E N V I R O N M E N T A L RESEARCH CENTER from July through December 197C by Monitoring Operations Laboratory National Environmental Research Center U.

  3. Recommendation 222: Recommendations on Additional Off-site Groundwater

    Office of Environmental Management (EM)

    Migration Studies | Department of Energy 2: Recommendations on Additional Off-site Groundwater Migration Studies Recommendation 222: Recommendations on Additional Off-site Groundwater Migration Studies ORSSAB recommends that DOE proceed with an off-site groundwater quality assessment project and that DOE secure additional baseline funding for analysis to further understanding of potential migration and effects on off-site receptors. PDF icon Recommendation 222 PDF icon Response to

  4. Paducah Site Modernizes Equipment to Treat Off-Site Groundwater

    Energy Savers [EERE]

    Contamination | Department of Energy Paducah Site Modernizes Equipment to Treat Off-Site Groundwater Contamination Paducah Site Modernizes Equipment to Treat Off-Site Groundwater Contamination February 25, 2016 - 12:15pm Addthis New groundwater contamination treatment equipment sits outside the C-612 Northwest Pump-and-Treat facility. New groundwater contamination treatment equipment sits outside the C-612 Northwest Pump-and-Treat facility. A computer-modeled illustration shows the off-site

  5. Recommendation 222: Recommendations on Additional Off-site Groundwater...

    Office of Environmental Management (EM)

    2: Recommendations on Additional Off-site Groundwater Migration Studies Recommendation 222: Recommendations on Additional Off-site Groundwater Migration Studies ORSSAB recommends...

  6. Off-site Intensive Operational Period

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 ARM Participating in Off-site Intensive Operational Period The ARM Program is playing a role in the Cirrus Regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment (CRYSTAL-FACE) intensive operational period (IOP), under way through July in South Florida. The objective of CRYSTAL-FACE is to investigate the physical properties and formation processes of tropical cirrus clouds. The ARM Program has deployed a suite of ground-based instruments in Florida for CRYSTAL-FACE

  7. SWKHL-&Slr OFF-SITE SURVEILLANCE ACTIVITIES OF THE SOUTHWESTERN RADIOLOGICAL HEALTH LABORATORY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SWKHL-&Slr OFF-SITE SURVEILLANCE ACTIVITIES OF THE SOUTHWESTERN RADIOLOGICAL HEALTH LABORATORY from January through June 1968 bY Environmental Surveillance Western Environmental Research Laboratory ENVIRONMENTAL PROTECTION AGENCY . Published January 1972 This surveillance performed under a Memorandum of Understanding (No. SF 54 373) for the U. S. ATOMIC ENERGY COMMISSION SWRKL-81r OFF-SITE SURVEILLANCE ACTIVITIES OF THE SOUTHWESTERN RADIOLOGICAL HEALTH LABORATORY from January through June

  8. SWRHL-108r OFF-SITE SURVEILLANCE ACTIVITIES OF THE SOUTHWESTERN RADIOLOGICAL HEALTH LABORATORY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    gyg?- SWRHL-108r OFF-SITE SURVEILLANCE ACTIVITIES OF THE SOUTHWESTERN RADIOLOGICAL HEALTH LABORATORY from January through June 1970 Environmental Surveillance Western Environmental Research Laboratory ENVIRONMENTAL PROTECTION AGENCY Published August 1972 This surveillance performed under a Memorandum of Understanding (No. SF 54 373) for the U.S. ATOMIC ENERGY COMMISSION -- SWRH?-108r OFF-SITE SURVEILLANCE ACTIVITIES OF THE SOUTHWESTERN RADIOLOGICAL HEALTH LABORATORY from January through June

  9. SWRHL-47r OFF-SITE SURVEILLANCE ACTIVITIES OF THE SOUTHWESTERN RADIOLOGICAL HEALTH LABORATORY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    47r OFF-SITE SURVEILLANCE ACTIVITIES OF THE SOUTHWESTERN RADIOLOGICAL HEALTH LABORATORY from January through June 1967 bY Environmental Surveillance Southwestern Radiological Health Laboratory U. S. Department of Health, Education, and Welfare' Public Health Service Environmental Health Service March 1970 This surveillance performed under a Memorandum of Understanding (No. SF 54 373) for the U. S. MOMIC ENERGY COMMISSION SWRHL-47r OFF -SITE SURVEILLANCE ACTIVITIES OF THE SOU IHWESTERN

  10. OFF-SITE SURVEILLANCE ACTIVITIES 0" THE SOUTHWESTERN RADIOLOGICAL HEALTH LABORATORY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    977 7 OFF-SITE SURVEILLANCE ACTIVITIES 0" THE SOUTHWESTERN RADIOLOGICAL HEALTH LABORATORY from January through June 1969 Environmental Surveillance Southwestern Radiological Health Laboratory ENVIRONMENTAL PROTECTION AGENCY February 1971 This surveillance performed under a Memorandum of Understanding (No. SF 54 373) for the U. S. ATOMIC ENERGY COMMISSION -- SWRHL-97r pf' SWRHL-97r OFF-SITE SURVEILLANCE ACTIVITIES OF THE SOUTHWESTERN RADIOLOGICAL HEALTH LABORATORY from January through June

  11. NERC-LV-539-17 OFF-SITE SURVEILLANCE ACTIVXTPES OF Tm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 OFF-SITE SURVEILLANCE ACTIVXTPES OF Tm c? NATIONAL ENVIR0NMENTA.L RESEARCH CENT.ER from July through December 197C A *: l p- by o&toring '"'a~ Operations Laboratov ..%)qr- i wtional Environmental Research Cen& ,& 0 U. S. ENVIRONMENTAL ?l%TECTION AGENCY - l l . .-.-w ._- .-- -- This work perfbrmed unde>T Memorandum of Understanding No. AT(26-l)-539 for the U. So ATOMIC ENERGY COlQ4ISSION l NERC-LV-539-17 OFF-SITE SURVEILLANCE ACTIVITIES OF THE NATIONAL ENVIRONMEN'Q!L

  12. Off-site Lodging (short-term) | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Off-site Lodging (short-term): Extended Stay America external link 2345 Sokol Court, Darien, IL (For special Argonne rates call 630-985-4708) Oakwood Apartments external link...

  13. H FINAL REPORT OF OFF-SITE SURVEILLANCE FOR THE FAULTLESS EVENT,

    Office of Legacy Management (LM)

    WRHL-Slr i, ' H FINAL REPORT OF OFF-SITE SURVEILLANCE FOR THE FAULTLESS EVENT, January 19. 1968 by the Southwe stern Radiological Health Laboratory Department of Health, Education. and Welfare Public Health Service Consume r Protection and Environmental Health Service April 1969 This surveillance perforrned under a Memorandum of Understanding (No. SF 54 373) for the U. S. ATOMIC ENERGY COMMISSION LEGAL NOTICE This report was prepared as an account of Government sponsored work. Neither the United

  14. OFF-SITE SURVEILLANCE ACTIVITIES bF TFE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bF TFE \ !":! iri SOUTHWESTERN RbIOLQGICAL HEALTH LABORATORY \/ from July throtigh December 1969 Environmental-Surveillance Southwestern Radiological Health Laboratory ENVIROh'MENTAL PROTECTION AGEKCY February 1971 This surveillance pe.rfonned under a Memorandum of Understanding (No. SF 54 373) for the U. S. ATOMIC EKERGY COMXISSION SWRHL-98r OFF-SITE SURVEILLANCE ACTIVITIES OF THE SOUTHWESTERN RADIOLOGICAL HEALTH LABORATORY from July through December 1969 by Environmental Surveillance

  15. EMSL-LV-0539-18 I OFF-SITE ENVIRONMENTAL MONITORING REPORT FOR THE NEVADA TEST SITE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    18 I OFF-SITE ENVIRONMENTAL MONITORING REPORT FOR THE NEVADA TEST SITE AND OTHER TEST AREAS USED FOR UNDERGROUND NUCLEAR DETONATIONS January through December 1977 Monitoring Operations Division Environmental Monitoring and Support Laboratory U.S. ENVIRONMENTAL PROTECTION AGENCY Las Vegas, Nevada 89114 July 1978 This work performed under a Memorandum of Understanding No. EY-76-A-08-0539 .for the U.S. DEPARTMENT OF ENERGY EMSL-LV-0539-18 OFF-SITE ENVIRONMENTAL MONITORING REPORT FOR THE NEVADA TEST

  16. EIS-0426: Site-Wide Environmental Impact Statement for Continued Operation of the Department of Energy / National Nuclear Security Administration Nevada National Security Site and Off-Site Locations in the State of Nevada

    Broader source: Energy.gov [DOE]

    This Site-Wide EIS evaluates the potential environmental impacts of proposed alternatives for continued management and operation of the Nevada National Security Site (NNSS) (formerly known as the Nevada Test Site) and other U.S. Department of Energy/National Nuclear Security Administration (DOE/NNSA)-managed sites in Nevada.

  17. EA-1061: The Off-site Volume Reduction of Low-level Radioactive Waste From the Savannah River Site, Aiken, South Carolina

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal for off-site volume reduction of low-level radioactive wastes generated at the U.S. Department of Energy's Savannah River Site located...

  18. Supplemental information related to risk assessment for the off-site transportation of low-level waste for the U.S. Department of Energy waste management programmatic environmental impact statement

    SciTech Connect (OSTI)

    Monette, F.A.; Biwer, B.M.; LePoire, D.J.; Chen, S.Y. [Argonne National Lab., IL (United States). Environmental Assessment Div.

    1996-12-01

    This report presents supplemental information to support the human health risk assessment conducted for the transportation of low-level waste (LLW) in support of the US Department of Energy Waste Management Programmatic Environmental Impact Statement (WM PEIS). Detailed descriptions of the transportation health risk assessment method and results of the assessment are presented in Appendix E of the WM PEIS and are not repeated in this report. This report presents additional information that is not presented in Appendix E but that was needed to conduct the transportation risk assessment for Waste Management (WM) LLW. Included are definition of the LLW alternatives considered in the WM PEIS, data related to the inventory and to the physical and radiological characteristics of WM LLW, an overview of the risk assessment method, and detailed results of the assessment for each WM LLW alternative considered.

  19. Final environmental assessment for off-site transportation of low-level waste from four California sites under the management of the U.S. Department of Energy Oakland Operations Office

    SciTech Connect (OSTI)

    NONE

    1997-10-01

    The Department of Energy Oakland Operations Office (DOE/OAK) manages sites within California that generate Low Level Waste (LLW) in the course or routine site operations. It is the preference of the DOE to dispose of LLW at federally owned and DOE-operated disposal facilities; however, in some circumstances DOE Headquarters has determined that disposal at commercial facilities is appropriate, as long as the facility meets all regulatory requirements for the acceptance and disposal of LLW, including the passage of a DOE audit to determine the adequacy of the disposal site. The DOE would like to ship LLW from four DOE/OAK sites in California which generate LLW, to NRC-licensed commercial nuclear waste disposal facilities such as Envirocare in Clive, Utah and Chem Nuclear in Barnwell, South Carolina. Transportation impacts for shipment of LLW and MLLW from DOE Oakland sites to other DOE sites was included in the impacts identified in the Department`s Waste Management Programmatic Environmental Impact Statement (WM-PEIS), published in May, 1997, and determined to be low. The low impacts for shipment to commercial sites identified herein is consistent with the WM-PEIS results.

  20. OFF-SITE ENVIRONMENTAL MONITORING REPORT F O R THE NEVADA TEST SITE

    Office of Legacy Management (LM)

    F O R THE NEVADA TEST SITE ' i A N D OTHER TEST AREAS USED FOR UNDERGROUND NUCLEAR DETONATIONS January through December 1978 Nuclear Radiation Assessment D i v i s i o n Environmental Monitoring Systems Laboratory U.S. ENVIRONMENTAL PROTECTION AGENCY Las Vegas, Nevada 89114 October 1979 This work performed under a Memorandum o f Understanding No. EY-76-A-08-0539 for t h e U.S. DEPARTMENT O F ENERGY OFF-SITE ENVIRONMENTAL MONITORING REPORT F O R THE NEVADA TEST SITE A N D OTHER TEST AREAS USED F

  1. How Much Energy Does Each State Produce? | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Does Each State Produce? How Much Energy Does Each State Produce? Energy Production in Trillion Btu: 2012 Click on each state to learn more about how much energy it produces Source: EIA State Energy Data Systems

  2. Association of Renewable Energy Producers Spain | Open Energy...

    Open Energy Info (EERE)

    Renewable Energy Producers Spain Jump to: navigation, search Name: Association of Renewable Energy Producers (Spain) Place: Barcelona, Spain Zip: 8008 Sector: Renewable Energy...

  3. COT"IPREITENS IVE RADIOLOGICAL SURVEY OFF-SITE PROPERTY P NIAGARA FALIS STORAGE SITE

    Office of Legacy Management (LM)

    COT"IPREITENS IVE RADIOLOGICAL SURVEY OFF-SITE PROPERTY P NIAGARA FALIS STORAGE SITE LEWISTON, NEW YORK Prepared for U.S. DePartment of EnergY as part of the Formerly Utilized Sites - Remedial ActLon Program J . D . B e r g e r P r o j e c t S t a f f J. Burden* w.L. Smlth* R.D. Condra T.J. Sowell J.S . Epler* G.M. S tePhens P.Iil. Frame L.B. Taus* W . 0 . H e l t o n C . F . W e a v e r R . C . G o s s l e e B . S . Z a c h a r e k d I I Prepared bY Radiological Slte Assessoent Progran

  4. How Much Energy Does Your State Produce? | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Does Your State Produce? How Much Energy Does Your State Produce? November 10, 2014 - 2:52pm Addthis Energy Production in Trillion Btu: 2012 Click on each state to learn more about how much energy it produces Source: EIA State Energy Data Systems Daniel Wood Daniel Wood Data Visualization and Cartographic Specialist, Office of Public Affairs More Energy Maps Interested in learning more about national energy trends? Learn how much you spend on energy and how much energy you consume. Here

  5. Method for producing chemical energy

    DOE Patents [OSTI]

    Jorgensen, Betty S.; Danen, Wayne C.

    2004-09-21

    Fluoroalkylsilane-coated metal particles having a central metal core, a buffer layer surrounding the core, and a fluoroalkylsilane layer attached to the buffer layer are prepared by combining a chemically reactive fluoroalkylsilane compound with an oxide coated metal particle having a hydroxylated surface. The resulting fluoroalkylsilane layer that coats the particles provides them with excellent resistance to aging. The particles can be blended with oxidant particles to form energetic powder that releases chemical energy when the buffer layer is physically disrupted so that the reductant metal core can react with the oxidant.

  6. Experiments with Wind to Produce Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nat EXPERIMENTS WITH WIND TO PRODUCE ENERGY Curriculum: Wind Power (simple machines, weather/climatology, aerodynamics, leverage, mechanics, atmospheric pressure, and energy resources/transformations) Grade Level: K-5 Small groups (3 to 4) Time: Constructing equipment needed in these activities varies based on student ability levels. Activities can be done in 1 or 2 class periods. Summary: There are five activities. The first activity demonstrates wind as energy, and that energy causes

  7. Performance profiles of major energy producers 1994

    SciTech Connect (OSTI)

    1996-02-01

    Performance Profiles of Major Energy Producers 1994 is the eighteenth annual report of the Energy Information Administration`s (EIA) Financial Reporting System (FRS). The report examines financial and operating developments in energy markets, with particular reference to the 24 major U.S. energy companies required to report annually on Form EIA-28. Financial information is reported by major lines of business, including oil and gas production, petroleum refining and marketing, other energy operations, and nonenergy businesses. Financial and operating results are presented in the context of energy market developments with a view toward identifying changing corporate strategies and measuring the performance of ongoing operations both in the United States and abroad.

  8. Performance Profiles of Major Energy Producers

    Reports and Publications (EIA)

    2011-01-01

    The information and analyses in Performance Profiles of Major Energy Producers is intended to provide a critical review, and promote an understanding, of the possible motivations and apparent consequences of investment decisions made by some of the largest corporations in the energy industry.

  9. Performance profiles of major energy producers 1989

    SciTech Connect (OSTI)

    Not Available

    1991-01-23

    Performance Profiles of Major Energy Producers 1989 is the thirteenth annual report of the Energy Information Administration's (EIA) Financial Reporting System (FRS). The report examines financial and operating developments, with particular reference to the 23 major energy companies (the FRS companies'') required to report annually on Form EIA-28. Financial information is reported by major lines of business including oil and gas production, petroleum refining and marketing, and other energy operations. Domestic and international operations are examined separately in this report. It also traces key developments affecting the financial performance of major energy companies in 1989, as well as review of important trends.

  10. Performance profiles of major energy producers 1993

    SciTech Connect (OSTI)

    1995-01-01

    Performance Profiles of Major Energy Producers 1993 is the seventeenth annual report of the Energy Information Administration`s (EIA) Financial Reporting System (FRS). The report examines financial and operating developments in energy markets, with particular reference to the 25 major US energy companies required to report annually on Form EIA-28. Financial information is reported by major liens of business, including oil and gas production, petroleum refining and marketing, other energy operations, and nonenergy businesses. Financial and operating results are presented in the context of energy market developments with a view toward identifying changing corporate strategies and measuring the performance of ongoing operations both in the US and abroad. This year`s report analyzes financial and operating developments for 1993 (Part 1: Developments in 1993) and also reviews key developments during the 20 years following the Arab Oil Embargo of 1973--1974 (Part 2: Major Energy Company Strategies Since the Arab Oil Embargo). 49 figs., 104 tabs.

  11. Performance profiles of major energy producers 1996

    SciTech Connect (OSTI)

    1998-01-01

    This publication examines developments in the operations of the major US e energy-producing companies on a corporate level, by major line of business, by major function within each line of business, and by geographic area. In 1996, 24 companies filed Form EIA-28. The analysis and data presented in this report represents the operations of the Financial Reporting System companies in the context of their worldwide operations and in the context of the major energy markets which they serve. Both energy and nonenergy developments of these companies are analyzed. Although the focus is on developments in 1996, important trends prior to that time are also featured. Sections address energy markets in 1996; key financial developments; oil and gas exploration, development, and production; downstream petroleum in 1996; coal and alternative energy; and foreign direct investment in US energy. 30 figs., 104 tabs.

  12. Performance profiles of major energy producers 1992

    SciTech Connect (OSTI)

    Not Available

    1994-01-13

    Performance Profiles of Major Energy Producers 1992 is the sixteenth annual report of the Energy Information Administration`s (EIA) Financial Reporting System (FRS). The report examines financial and operating developments, with particular reference to the 25 major energy companies (the FRS companies) required to report annually on Form EIA-28. Financial information is reported by major lines of business, including oil and gas production, petroleum refining and marketing, and other energy operations. Domestic and international operations are examined separately in this report. The data are presented in the context of key energy market developments with a view toward identifying changing strategies of corporate development and measuring the apparent success of current ongoing operations.

  13. Performance profiles of major energy producers, 1997

    SciTech Connect (OSTI)

    1999-01-01

    The energy industry generally and petroleum and natural gas operations in particular are frequently reacting to a variety of unsettling forces. Falling oil prices, economic upswings, currency devaluations, increasingly rigorous environmental quality standards, deregulation of electricity markets, and continued advances in exploration and production technology were among the challenges and opportunities to the industry in 1997. To analyze the extent to which these and other developments have affected energy industry financial and operating performance, strategies, and industry structure, the Energy Information Administration (EIA) maintains the Financial Reporting Systems (FRS). Through Form EIA-28, major US energy companies annually report to the FRS. Financial and operating information is reported by major lines of business, including oil and gas production (upstream), petroleum refining and marketing (downstream), other energy operations, and nonenergy business. Performance Profiles of Major Producers 1997 examines the interplays of energy markets, companies` strategies, and government policies (in 1997 and in historical context) that gave rise to the results given here. The report also analyzes other key aspects of energy company financial performance as seen through the multifaceted lens provided by the FRS data and complementary data for industry overall. 41 figs., 77 tabs.

  14. Midwest Biodiesel Producers LLC | Open Energy Information

    Open Energy Info (EERE)

    Biodiesel Producers LLC Jump to: navigation, search Name: Midwest Biodiesel Producers LLC Place: Alexandria, South Dakota Zip: 57311 Product: South Dakota-based biodiesel producer....

  15. OFF-SITE SURVEILLANCE ACTIVITIES OF TFE SOUTHWESTERN RADIOLOG1 CAL BEALTH LABORATORY

    Office of Legacy Management (LM)

    SURVEILLANCE ACTIVITIES OF TFE SOUTHWESTERN RADIOLOG1 CAL BEALTH LABORATORY from July through December 1969 - by Environmental Surveillance Southwestern Radiological Health Laboratory ENVIROhMENTAL PROTECTION AGEXCI' February 1971 This surveillance performed under a Xenorandum of Understanding (No. SF 54 373) for the U. S . ATOMIC %I.;Ei?GY COMXESSION OFF-SITE SURVEILLANCE ACTIVITIES OF TRE SQUTmJESTERN RADIOLOGICAL HEALTH LABORATORY from July through December 1969 by Environmental Surveillance

  16. Low-level radioactive waste management: transitioning to off-site disposal at Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Dorries, Alison M

    2010-11-09

    Facing the closure of nearly all on-site management and disposal capability for low-level radioactive waste (LLW), Los Alamos National Laboratory (LANL) is making ready to ship the majority of LLW off-site. In order to ship off-site, waste must meet the Treatment, Storage, and Disposal Facility's (TSDF) Waste Acceptance Criteria (WAC). In preparation, LANL's waste management organization must ensure LANL waste generators characterize and package waste compliantly and waste characterization documentation is complete and accurate. Key challenges that must be addressed to successfully make the shift to off-site disposal of LLW include improving the detail, accuracy, and quality of process knowledge (PK) and acceptable knowledge (AK) documentation, training waste generators and waste management staff on the higher standard of data quality and expectations, improved WAC compliance for off-site facilities, and enhanced quality assurance throughout the process. Certification of LANL generators will allow direct off-site shipping of LLW from their facilities.

  17. ASEM Green Independent Power Producers Network | Open Energy...

    Open Energy Info (EERE)

    ASEM Green Independent Power Producers Network Jump to: navigation, search Name: ASEM Green Independent Power Producers Network Place: Germany Sector: Renewable Energy Product: A...

  18. Energy Department Announces $12 Million for Technologies to Produce...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Announces 12 Million for Technologies to Produce Renewable Carbon Fiber from Biomass Energy Department Announces 12 Million for Technologies to Produce Renewable Carbon Fiber ...

  19. Energy Department Announces $10 Million for Technologies to Produce...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies to Produce Advanced Biofuel Products from Biomass Energy Department Announces 10 Million for Technologies to Produce Advanced Biofuel Products from Biomass April 15, ...

  20. Costs for off-site disposal of nonhazardous oil field wastes: Salt caverns versus other disposal methods

    SciTech Connect (OSTI)

    Veil, J.A.

    1997-09-01

    According to an American Petroleum Institute production waste survey reported on by P.G. Wakim in 1987 and 1988, the exploration and production segment of the US oil and gas industry generated more than 360 million barrels (bbl) of drilling wastes, more than 20 billion bbl of produced water, and nearly 12 million bbl of associated wastes in 1985. Current exploration and production activities are believed to be generating comparable quantities of these oil field wastes. Wakim estimates that 28% of drilling wastes, less than 2% of produced water, and 52% of associated wastes are disposed of in off-site commercial facilities. In recent years, interest in disposing of oil field wastes in solution-mined salt caverns has been growing. This report provides information on the availability of commercial disposal companies in oil-and gas-producing states, the treatment and disposal methods they employ, and the amounts they charge. It also compares cavern disposal costs with the costs of other forms of waste disposal.

  1. ITP Steel: Theoretical Minimum Energies to Produce Steel for Selected

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conditions, March 2000 | Department of Energy Theoretical Minimum Energies to Produce Steel for Selected Conditions, March 2000 ITP Steel: Theoretical Minimum Energies to Produce Steel for Selected Conditions, March 2000 PDF icon theoretical_minimum_energies.pdf More Documents & Publications Ironmaking Process Alternatives Screening Study ITP Steel: Steel Industry Marginal Opportunity Study September 2005 ITP Steel: Steel Industry Energy Bandwidth Stu

  2. Enforcement Guidance Supplement 98-02: DOE Enforcement Activities where Off-site Transportation Issues are also Present.

    Broader source: Energy.gov [DOE]

    Recently several questions have arisen regarding the scope of Price-Anderson enforcement when transportation issues are directly or indirectly involved in an incident. These questions can be separated into two areas, (1) transportation issues that involve on-site transportation typically not regulated by the Department of Transportation (DOT), and (2) transportation issues that involve off-site transportation. This guidance addresses off-site transportation that is regulated by DOT and other state and federal agencies.

  3. Geothermal Energy Production with Co-produced and Geopressured Resources

    Office of Environmental Management (EM)

    (Fact Sheet), Geothermal Technologies Program (GTP) | Department of Energy Energy Production with Co-produced and Geopressured Resources (Fact Sheet), Geothermal Technologies Program (GTP) Geothermal Energy Production with Co-produced and Geopressured Resources (Fact Sheet), Geothermal Technologies Program (GTP) This fact sheet provides an overview of geothermal energy production using co-produced and geopressured resources. PDF icon low_temp_copro_fs.pdf More Documents & Publications

  4. EMSL-LV-539-12 EMSL-LV-0539-12 OFF-SITE ENVXRDNMENTAL MONITORING REPORT FOR THE NEVADA TEST SITE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    12 EMSL-LV-0539-12 OFF-SITE ENVXRDNMENTAL MONITORING REPORT FOR THE NEVADA TEST SITE AND &HER TEST AREAS USED FOR UNDERGROUND NUCLEAR DETONATIONS January through December 1936 Monitoring Operations Division Environmental Monitoring and Support Laboratory U.S. ENVIRONMENTAL PROTECTION AGENCY Las Vegas, Nevada 89114 May 1977 This work performed under a Memorandum of Understanding No. EX-76-A-08-0539 for the U.S. ENERGY RESRARCB & DEVELOPMENT ADMINISTRATION EMSL-LV-539-12 EMSL-LV-0539-12

  5. Fossil fuel is king with energy producers

    SciTech Connect (OSTI)

    Hansen, T.

    1996-11-01

    Worldwide energy consumption is expected to double today`s levels by 2020, according to the World Energy Council. As diverse energy needs develop, fossil fuels are expected to continue to be the major source for power generation throughout the world. In the United States, utility deregulation is making low-cost fuel and power plant efficiency more important than ever. Electricity generators see both natural gas and coal as the fuels that will allow them to best meet the nation`s future energy needs. Coal will see less increase in its share of electricity generation than natural gas due to the costs associated with meeting the Clean Air Act Amendments` (CAAA) requirements. According to Organizations for Economic Cooperation Development, coal in both the United States and Europe will experience a 12 percent growth by 2010. Even with this somewhat slow growth, coal will remain the nation`s number one fuel for electricity generation well into the next century.

  6. Theoretical minimum energies to produce steel for selected conditions

    SciTech Connect (OSTI)

    Fruehan, R. J.; Fortini, O.; Paxton, H. W.; Brindle, R.

    2000-03-01

    An ITP study has determined the theoretical minimum energy requirements for producing steel from ore, scrap, and direct reduced iron. Dr. Richard Fruehan's report, Theoretical Minimum Energies to Produce Steel for Selected Conditions, provides insight into the potential energy savings (and associated reductions in carbon dioxide emissions) for ironmaking, steelmaking, and rolling processes (PDF459 KB).

  7. Calpine: America's largest geothermal energy producer | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Calpine: America's largest geothermal energy producer Calpine: America's largest geothermal energy producer October 6, 2010 - 12:37pm Addthis Calpine operates 15 plants at The Geysers in northwest California, which generate enough clean energy daily to power a city the size of San Francisco.| Photo Courtesy of Calpine Calpine operates 15 plants at The Geysers in northwest California, which generate enough clean energy daily to power a city the size of San Francisco.| Photo Courtesy of

  8. Geothermal Energy Production with Co-produced and Geopressured...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Geopressured Resources (Fact Sheet), Geothermal Technologies Program (GTP) Geothermal Energy Production with Co-produced and Geopressured Resources (Fact Sheet),...

  9. EA-1924: Consolidation and Relocation of Lawrence Berkeley National Laboratory (LBNL) OffSite Research Programs to a New Off-Site Location that also Allows for Future Growth, San Francisco East Bay Area, California

    Broader source: Energy.gov [DOE]

    This EA will evaluate the potential environmental impacts of a proposal to consolidate and relocate LBNL research programs that are currently in leased off-site buildings at various locations around the San Francisco East Bay Area in California, to a new single location that also provides room for future growth of LBNL research programs.

  10. Analysis of loss of off-site power ATWS in VVER-440 concept

    SciTech Connect (OSTI)

    Hoeppner, G.; Siltanen, P.; Kotro, J.

    1987-01-01

    During 1985 the Finnish state-owned utility Imatran Voima Oy signed a work order with Gesellschaft fuer Reaktorsicherheit mbH of the Federal Republic of Germany (GRS) for the analysis of abnormal transients in a pressurized water reactor (PWR) concept based on a Soviet design. The results of these calculations were intended to be introduced into the licensing process and to support a decision to build such a nuclear power station. A computer model was constructed of the VVER-440 concept, a 500-MW(electric) PWR designed in the USSR and modified for Finland. The ALMOD4 code, developed at GRS, was used for the investigation. The ALMOD4 code is a fast running code for the analysis of operational and abnormal transients in PWRs. Input data were set up to calculate anticipated transients without scram, most notably the loss of off-site power case. One-dimensional neutron kinetics was used to correctly model the neutronics feedback of axially distributed moderator density and fuel temperature in a changing axial power profile. Interlocking signals and the engineered safety systems were modeled to assess the overall systems response to this abnormal transient. Special analytical problems were encountered since a detailed and verified model of the steam generator (SG) with horizontally positioned heat exchanger tubes was not available. Therefore, two bounding calculations were performed with different SG models.

  11. I COMPRE}IENSIVE RADIOLOGICAI SURVEY OFF-SITE PROPERTY N,-NORTS

    Office of Legacy Management (LM)

    COMPRE}IENSIVE RADIOLOGICAI SURVEY OFF-SITE PROPERTY N,-NORTS NIAGARA FALLS STORAGE SITE LE'l,f ISTON ' NE'l^l YORK P r e p a r e d f o r U . S . D e p a t t m e n t o f E a e r g Y a s p a r t o f t h e F o r m e r l y U t i l i z e d S i t e s - - R e r n e d i a l A c t i o n P r o g r a m J . D . B e r g e r P r o j e c t S t a f f A . J . B o e r n e r W . 0 . E e l t o n R . D " C o n d r a T . J . S o w e l l P . W . F r a m e C . F . W e a v e r R . C . G o s s l e e B . S . Z a c h

  12. Energy Department Announces $10 Million for Technologies to Produce

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Biofuel Products from Biomass | Department of Energy Technologies to Produce Advanced Biofuel Products from Biomass Energy Department Announces $10 Million for Technologies to Produce Advanced Biofuel Products from Biomass April 15, 2014 - 12:44pm Addthis The Energy Department today announced up to $10 million in funding to advance the production of advanced biofuels, substitutes for petroleum-based feedstocks, and bioproducts made from renewable, non-food-based biomass, such as

  13. Energy Department Announces $12 Million for Technologies to Produce

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Carbon Fiber from Biomass | Department of Energy Announces $12 Million for Technologies to Produce Renewable Carbon Fiber from Biomass Energy Department Announces $12 Million for Technologies to Produce Renewable Carbon Fiber from Biomass February 3, 2014 - 11:34am Addthis The Energy Department today announced up to $12 million in funding to advance the production of cost-competitive, high-performance carbon fiber material from renewable non-food-based feedstocks such as

  14. Method for producing microchannels in drawn material - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal 638,182 Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories Find More Like This Return to Search Method for producing

  15. Performance profiles of major energy producers 1995, January 1997

    SciTech Connect (OSTI)

    1997-02-01

    This publication examines developments in the operations of the major U.S. energy-producing companies on a corporate level, by major line of business, by major function within each line of business, and by geographic area.

  16. How Much Energy Does Your State Produce? | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    but energy production is tied more directly to the location of raw materials. consumption.png As a result, some states have a net surplus of energy while others have a net...

  17. Producing a High Impact Technology | Department of Energy

    Energy Savers [EERE]

    Producing a High Impact Technology Producing a High Impact Technology November 3, 2015 - 2:43pm Addthis Amy Jiron Amy Jiron Technology Manager, Building Technologies Office The spectrum of commercial building efficiency technologies is large. Opportunities to save cost and energy diverge across market sectors, types, by systems and application, based on programming and occupant behavior and organizational mission. Fortunately, the Commercial Buildings Energy Consumption Survey (CBECS) provides a

  18. Theoretical Minimum Energies to Produce Steel for Selected Conditions

    SciTech Connect (OSTI)

    Fruehan, R.J.; Fortini, O.; Paxton, H.W.; Brindle, R.

    2000-05-01

    The energy used to produce liquid steel in today's integrated and electric arc furnace (EAF) facilities is significantly higher than the theoretical minimum energy requirements. This study presents the absolute minimum energy required to produce steel from ore and mixtures of scrap and scrap alternatives. Additional cases in which the assumptions are changed to more closely approximate actual operating conditions are also analyzed. The results, summarized in Table E-1, should give insight into the theoretical and practical potentials for reducing steelmaking energy requirements. The energy values have also been converted to carbon dioxide (CO{sub 2}) emissions in order to indicate the potential for reduction in emissions of this greenhouse gas (Table E-2). The study showed that increasing scrap melting has the largest impact on energy consumption. However, scrap should be viewed as having ''invested'' energy since at one time it was produced by reducing ore. Increasing scrap melting in the BOF mayor may not decrease energy if the ''invested'' energy in scrap is considered.

  19. Carbon Films Produced from Ionic Liquid Precursors - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Carbon Films Produced from Ionic Liquid Precursors Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing SummaryResearchers at ORNL have invented a more effective method of preparing thin carbons films, a material that has become increasing important to the development of energy-saving storage batteries. Using this new method, it is possible to produce a very resilient, thermally stable porous carbon film characterized by a highly ordered arrangement of

  20. Producing Clean, Renewable Diesel from Biomass | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean, Renewable Diesel from Biomass Producing Clean, Renewable Diesel from Biomass November 30, 2011 - 12:08pm Addthis ThermoChem Recovery International's process demonstration unit -- where wood waste and forest residue is converted into renewable fuel. | Courtesy of TRI. ThermoChem Recovery International's process demonstration unit -- where wood waste and forest residue is converted into renewable fuel. | Courtesy of TRI. Paul Bryan Biomass Program Manager, Office of Energy Efficiency &

  1. Sol-Char: Producing Char from Waste using Solar Energy - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sol-Char: Producing Char from Waste using Solar Energy ... Current waterless toilets - such as dry pit latrines, ... Solar-driven thermal toilet with biochar production (video). ...

  2. United Wisconsin Grain Producers UWGP | Open Energy Information

    Open Energy Info (EERE)

    Name: United Wisconsin Grain Producers (UWGP) Place: Friesland, Wisconsin Product: Bioethanol producer using corn as feedstock References: United Wisconsin Grain Producers...

  3. OFF-SITE ENVIRONMENTAL MONITORING REPORT FOR THE NEVADA TEST SITE

    Office of Legacy Management (LM)

    FOR THE NEVADA TEST SITE AND OTHER TEST AREAS USED FOR UNDERGROUND NUCLEAR DETONATIONS January through December 1977 Monitoring Operations Division Environmental Monitoring and Support Laboratory U.S. ENVIRONMENTAL PROTECTION AGENCY Las Vegas, Nevada 89114 July 1978 This work performed under a Memorandum of Understanding No. EY-76-A-08-0539 for the U.S. DEPARTMENT OF ENERGY O F F - S I T E ENVIRONMENTAL MONITORING REPORT FOR THE NEVADA T E S T S I T E AND OTHER T E S T AREAS USED F O R

  4. OFF-SITE RADIOLOGICAL SAFETY PROGRAM FOR PROJECT RULISON FLARING, PHASE I11

    Office of Legacy Management (LM)

    RADIOLOGICAL SAFETY PROGRAM FOR PROJECT RULISON FLARING, PHASE I11 F i.EMSL-LV-539-8 c by Monitoring Operations D i v i s i o n Environmental M o n i t o r i n g and Support Laboratory U. S. ENVIRONMENTAL PROTECTION AGENCY Las Vegas, Nevada Published November 1976 T h i s s u r v e i 1 lance performed under a Memorandum o f Understanding No. AT( 26-1 )-539 f o r t h e U. S. ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION , I 1 DISCLAIMER T h i s report was prepared a s a n account of work

  5. How is shale gas produced? | Department of Energy

    Energy Savers [EERE]

    How is shale gas produced? How is shale gas produced? PDF icon How is shale gas produced? More Documents & Publications Natural Gas from Shale: Questions and Answers Shale Gas Glossary Shale Gas Development Challenges: Fracture Fluids

  6. Co-Produced Geothermal Systems | Open Energy Information

    Open Energy Info (EERE)

    Geothermal System: Co-Produced water is the water that is produced as a by-product during oil and gas production. If there is enough water produced at a high enough temperature...

  7. USA Biomass Power Producers Alliance | Open Energy Information

    Open Energy Info (EERE)

    Biomass Power Producers Alliance Jump to: navigation, search Name: USA Biomass Power Producers Alliance Place: Sacramento, California Sector: Biomass Product: National trade...

  8. Midwest Ethanol Producers Inc MEPI | Open Energy Information

    Open Energy Info (EERE)

    Ethanol Producers Inc MEPI Jump to: navigation, search Name: Midwest Ethanol Producers Inc (MEPI) Place: O'Neill, Nebraska Zip: 68763 Product: Focused on ethanol production....

  9. Clean Hydrogen Producers Ltd CHP | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Producers Ltd CHP Jump to: navigation, search Name: Clean Hydrogen Producers Ltd (CHP) Place: Geneva, Switzerland Zip: 1209 Sector: Hydro, Hydrogen, Solar Product: Swiss...

  10. Biofuel-Producing Lactobacillus Strain - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biofuel-Producing Lactobacillus Strain Great Lakes Bioenergy Research Center Contact GLBRC ... microorganisms typically considered for biofuel production, like Saccharomyces ...

  11. Producing Linear Alpha Olefins From Biomass - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Producing Linear Alpha Olefins From Biomass Great Lakes Bioenergy Research Center Contact GLBRC About This Technology Technology Marketing Summary Linear alpha olefins (LAOs) are...

  12. Energy Department Announces $12 Million for Technologies to Produce...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    residues and woody biomass. Carbon fiber derived from biomass may be less costly to manufacture and offer greater environmental benefits than traditional carbon fiber produced...

  13. Produced Water R&D | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Shale Gas » Produced Water R&D Produced Water R&D Developed as a result of lessons learned from the NETL funded demonstration project, the Altela 600 water treatment system (shown above) treats about 25,000 gallons per day of produced and flowback water from hydraulic fracturing. [Photo courtesy of Altela Inc.] Developed as a result of lessons learned from the NETL funded demonstration project, the Altela 600 water treatment system (shown above) treats about 25,000 gallons per day of

  14. Microbes Produce High Yields of Fatty Alcohols From Glucose - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Microbes Produce High Yields of Fatty Alcohols From Glucose Great Lakes Bioenergy Research Center Contact GLBRC About This Technology Technology Marketing Summary Fatty alcohols are used in detergents, emulsifiers, lubricants and personal care items. More than 1.3 million tons of fatty alcohols are used worldwide each year, representing a $3 billion market. Currently, fatty alcohols are produced either through the processing of natural fats and oils or from petrochemicals.

  15. Producing Natural Gas From Shale | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Christopher A. Smith Christopher A. Smith Assistant Secretary for Fossil Energy What does this mean for me? By 2035, EIA projects that shale gas production will rise to 13.6 ...

  16. Financial News for Major Energy Producers, Third Quarter 2010

    Gasoline and Diesel Fuel Update (EIA)

    Producers, Third Quarter 2010 Release Date: January 5, 2011 Next Release Date: To Be Determined Report Sections: Corporate and Petroleum Net Income Worldwide Oil and Gas Production Operations Worldwide Refining/Marketing Operations Worldwide Petroleum Capital Expenditures Worldwide Downstream Natural Gas and Power, and Chemicals Operations Supplemental Figures Supplemental Tables Download this Report: Full Report in PDF-Format Past Issues in PDF-Format Additional Information FRS Home Financial

  17. Sol-Char: Producing Char from Waste using Solar Energy

    Energy Innovation Portal (Marketing Summaries) [EERE]

    2014-01-08

    A recent “Reinvent the Toilet Challenge” put forth by the Bill & Melinda Gates Foundation called for researchers to develop sanitation solutions that are affordable and desirable to use, render fecal waste harmless within a short time-span, are self-contained without the need for flush water or electricity, and produce valuable end products. Current waterless toilets – such as dry pit latrines, ventilated improved pit (VIP) latrines, and composting toilets – fall...

  18. Process for producing carbon foams for energy storage devices

    DOE Patents [OSTI]

    Kaschmitter, J.L.; Mayer, S.T.; Pekala, R.W.

    1998-08-04

    A high energy density capacitor incorporating a variety of carbon foam electrodes is described. The foams, derived from the pyrolysis of resorcinol-formaldehyde and related polymers, are high density (0.1 g/cc--1.0 g/cc) electrically conductive and have high surface areas (400 m{sup 2}/g--1,000 m{sup 2}/g). Capacitances on the order of several tens of farad per gram of electrode are achieved. 9 figs.

  19. Process for producing carbon foams for energy storage devices

    DOE Patents [OSTI]

    Kaschmitter, James L.; Mayer, Steven T.; Pekala, Richard W.

    1998-01-01

    A high energy density capacitor incorporating a variety of carbon foam electrodes is described. The foams, derived from the pyrolysis of resorcinol-formaldehyde and related polymers, are high density (0.1 g/cc-1.0 g/cc) electrically conductive and have high surface areas (400 m.sup.2 /g-1000 m.sup.2 /g). Capacitances on the order of several tens of farad per gram of electrode are achieved.

  20. Wind Energy Could Produce 20 Percent of U.S. Electricity By 2030 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Energy Could Produce 20 Percent of U.S. Electricity By 2030 Wind Energy Could Produce 20 Percent of U.S. Electricity By 2030 May 12, 2008 - 11:30am Addthis DOE Report Analyzes U.S. Wind Resources, Technology Requirements, and Manufacturing, Siting and Transmission Hurdles to Increasing the Use of Clean and Sustainable Wind Power WASHINGTON, DC - The U.S Department of Energy (DOE) today released a first-of-its kind report that examines the technical feasibility of

  1. The Off-Site Plowshare and Vela Uniform Programs: Assessing Potential Environmental Liabilities through an Examination of Proposed Nuclear Projects,High Explosive Experiments, and High Explosive Construction Activities Volume 3 of 3

    SciTech Connect (OSTI)

    Beck Colleen M.,Edwards Susan R.,King Maureen L.

    2011-09-01

    This document presents the results of nearly six years (2002-2008) of historical research and field studies concerned with evaluating potential environmental liabilities associated with U.S. Atomic Energy Commission projects from the Plowshare and Vela Uniform Programs. The Plowshare Program's primary purpose was to develop peaceful uses for nuclear explosives. The Vela Uniform Program focused on improving the capability of detecting, monitoring and identifying underground nuclear detonations. As a result of the Project Chariot site restoration efforts in the early 1990s, there were concerns that there might be other project locations with potential environmental liabilities. The Desert Research Institute conducted archival research to identify projects, an analysis of project field activities, and completed field studies at locations where substantial fieldwork had been undertaken for the projects. Although the Plowshare and Vela Uniform nuclear projects are well known, the projects that are included in this research are relatively unknown. They are proposed nuclear projects that were not executed, proposed and executed high explosive experiments, and proposed and executed high explosive construction activities off the Nevada Test Site. The research identified 170 Plowshare and Vela Uniform off-site projects and many of these had little or no field activity associated with them. However, there were 27 projects that merited further investigation and field studies were conducted at 15 locations.

  2. The Off-Site Plowshare and Vela Uniform Programs: Assessing Potential Environmental Liabilities through an Examination of Proposed Nuclear Projects,High Explosive Experiments, and High Explosive Construction Activities Volume 2 of 3

    SciTech Connect (OSTI)

    Beck Colleen M.,Edwards Susan R.,King Maureen L.

    2011-09-01

    This document presents the results of nearly six years (2002-2008) of historical research and field studies concerned with evaluating potential environmental liabilities associated with U.S. Atomic Energy Commission projects from the Plowshare and Vela Uniform Programs. The Plowshare Program's primary purpose was to develop peaceful uses for nuclear explosives. The Vela Uniform Program focused on improving the capability of detecting, monitoring and identifying underground nuclear detonations. As a result of the Project Chariot site restoration efforts in the early 1990s, there were concerns that there might be other project locations with potential environmental liabilities. The Desert Research Institute conducted archival research to identify projects, an analysis of project field activities, and completed field studies at locations where substantial fieldwork had been undertaken for the projects. Although the Plowshare and Vela Uniform nuclear projects are well known, the projects that are included in this research are relatively unknown. They are proposed nuclear projects that were not executed, proposed and executed high explosive experiments, and proposed and executed high explosive construction activities off the Nevada Test Site. The research identified 170 Plowshare and Vela Uniform off-site projects and many of these had little or no field activity associated with them. However, there were 27 projects that merited further investigation and field studies were conducted at 15 locations.

  3. The Off-Site Plowshare and Vela Uniform Programs: Assessing Potential Environmental Liabilities through an Examination of Proposed Nuclear Projects,High Explosive Experiments, and High Explosive Construction Activities Volume 1 of 3

    SciTech Connect (OSTI)

    Beck Colleen M,Edwards Susan R.,King Maureen L.

    2011-09-01

    This document presents the results of nearly six years (2002-2008) of historical research and field studies concerned with evaluating potential environmental liabilities associated with U.S. Atomic Energy Commission projects from the Plowshare and Vela Uniform Programs. The Plowshare Program's primary purpose was to develop peaceful uses for nuclear explosives. The Vela Uniform Program focused on improving the capability of detecting, monitoring and identifying underground nuclear detonations. As a result of the Project Chariot site restoration efforts in the early 1990s, there were concerns that there might be other project locations with potential environmental liabilities. The Desert Research Institute conducted archival research to identify projects, an analysis of project field activities, and completed field studies at locations where substantial fieldwork had been undertaken for the projects. Although the Plowshare and Vela Uniform nuclear projects are well known, the projects that are included in this research are relatively unknown. They are proposed nuclear projects that were not executed, proposed and executed high explosive experiments, and proposed and executed high explosive construction activities off the Nevada Test Site. The research identified 170 Plowshare and Vela Uniform off-site projects and many of these had little or no field activity associated with them. However, there were 27 projects that merited further investigation and field studies were conducted at 15 locations.

  4. Minimizing Wind Power Producer's Balancing Costs Using Electrochemical Energy Storage: Preprint

    SciTech Connect (OSTI)

    Miettinen, J.; Tikka, V.; Lassila, J.; Partanen, J.; Hodge, B. M.

    2014-08-01

    This paper examines how electrochemical energy storage can be used to decrease the balancing costs of a wind power producer in the Nordic market. Because electrochemical energy storage is developing in both technological and financial terms, a sensitivity analysis was carried out for the most important variables in the wind-storage hybrid system. The system was studied from a wind power producer's point of view. The main result is that there are no technical limitations to using storage for reducing the balancing costs. However, in terms of economic feasibility, installing hybrid wind-storage systems such as the one studied in this paper faces challenges in both the short and long terms.

  5. Geothermal Energy Production with Co-produced and Geopressured Resources (Fact Sheet), Geothermal Technologies Program (GTP)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PIX17507 The U.S. Department of Energy's (DOE) Geothermal Technologies Program (GTP), with support from DOE's national laboratories, conducts research, development, and demonstration projects throughout the United States on co-produced and geopressured geothermal energy resources. The American Recovery and Reinvestment Act of 2009 expanded GTP's demonstration work into geopressured fields and geothermal co-production from oil and natural gas fields. GTP supports demonstrations of these

  6. Method for producing through extrusion an anisotropic magnet with high energy product

    DOE Patents [OSTI]

    Chandhok, Vijay K.

    2004-09-07

    A method for producing an anisotropic magnet with high energy product through extrusion and, more specifically, by placing a particle charge of a composition from the which magnet is to be produced in a noncircular container, heating the container and particle charge and extruding the container and particle charge through a noncircular extrusion die in such a manner that one of the cross-sectional axes or dimension of the container and particle charge is held substantially constant during the extrusion to compact the particle charge to substantially full density by mechanical deformation produced during the extrusion to achieve a magnet with anisotropic magnetic properties along the axes or dimension thereof and, more specifically, a high energy product along the transverse of the smallest cross-sectional dimension of the extruded magnet.

  7. Table A13. Total Consumption of Offsite-Produced Energy for Heat, Power, and

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Total Consumption of Offsite-Produced Energy for Heat, Power, and" " Electricity Generation by Census Region and Economic Characteristics of the" " Establishment, 1991" " (Estimates in Btu or Physical Units)" ,,,,,,,,"Coke" " "," "," ","Residual","Distillate","Natural Gas(d)"," ","Coal","and Breeze"," ","RSE" "

  8. Table A32. Total Consumption of Offsite-Produced Energy for Heat, Power, and

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption of Offsite-Produced Energy for Heat, Power, and" " Electricity Generation by Value of Shipment Categories, Industry Group, and" " Selected Industries, 1991" " (Estimates in Trillion Btu)" ,,,,"Value of Shipments and Receipts(b)" ,,,," (million dollars)" ,," ","-","-","-","-","-","-","RSE" ," "," ","

  9. Country analysis briefs: 1994. Profiles of major world energy producers, consumers, and transport centers

    SciTech Connect (OSTI)

    1995-05-01

    Country Analysis Briefs: 1994 is a compilation of country profiles prepared by the Energy Markets and Contingency Information Division (EMCID) of the Office of Energy Markets and End Use. EMCID maintains Country Analysis Briefs (CABs) for specific countries or geographical areas that are important to world energy markets. As a general rule, CABs are prepared for all members of the Organization of Petroleum Exporting Countries (OPEC), major non-OPEC oil producers (i.e., the North Sea, Russia), major energy transit areas (i.e., Ukraine), and other areas of current interest to energy analysts and policy makers. As of January 1995, EMCID maintained over 40 CABs, updated on an annual schedule and subject to revision as events warrant. This report includes 25 CABs updated during 1994. All CABs contain a profile section, a map showing the country`s location, and a narrative section. The profile section includes outlines of the country`s economy, energy sector, and environment. The narrative provides further information and discussion of these topics. Some CABs also include a detailed map displaying locations of major oil and gas fields, pipelines, ports, etc. These maps were created as a result of special individual requests and so are not typically a standard feature of the CABs. They are presented here wherever available as a supplement to the information contained in the CABs.

  10. Enhancing the energy of terahertz radiation from plasma produced by intense femtosecond laser pulses

    SciTech Connect (OSTI)

    Jahangiri, Fazel; Laser and Plasma Research Institute, Shahid Beheshti University, Tehran ; Hashida, Masaki; Tokita, Shigeki; Sakabe, Shuji; Department of Physics, GSS, Kyoto University, Kyoto ; Nagashima, Takeshi; Hangyo, Masanori; Institute of Laser Engineering, Osaka University, Osaka

    2013-05-13

    Terahertz (THz) radiation from atomic clusters illuminated by intense femtosecond laser pulses is investigated. By studying the angular distribution, polarization properties and energy dependence of THz waves, we aim to obtain a proper understanding of the mechanism of THz generation. The properties of THz waves measured in this study differ from those predicted by previously proposed mechanisms. To interpret these properties qualitatively, we propose that the radiation is generated by time-varying quadrupoles, which are produced by the ponderomotive force of the laser pulse.

  11. DOE - Fossil Energy: Soap, Bugs and Other Ways to Produce Oil

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4-Advanced Oil Recovery An Energy Lesson Looking Down an Oil Well Looking Down an Oil Well Soap, Bugs and Other Ways to Produce Oil Remember the oil spilled on the garage floor in the previous page? Washing it with water would only remove some of the oil. There would still be a black, oily stain on the floor. How would you get that oil up? You would probably add some soap to the water — perhaps some detergent that you use in a washing machine. That would help wash away a little more of the oil.

  12. X-Ray Energy Responses of Silicon Tomography Detectors Irradiated with Fusion Produced Neutrons

    SciTech Connect (OSTI)

    Kohagura, J. [Plasma Research Centre, University of Tsukuba (Japan); Cho, T. [Plasma Research Centre, University of Tsukuba (Japan); Hirata, M. [Plasma Research Centre, University of Tsukuba (Japan); Numakura, T. [Plasma Research Centre, University of Tsukuba (Japan); Yokoyama, N. [Plasma Research Centre, University of Tsukuba (Japan); Fukai, T. [Plasma Research Centre, University of Tsukuba (Japan); Tomii, Y. [Plasma Research Centre, University of Tsukuba (Japan); Tokioka, S. [Plasma Research Centre, University of Tsukuba (Japan); Miyake, Y. [Plasma Research Centre, University of Tsukuba (Japan); Kiminami, S. [Plasma Research Centre, University of Tsukuba (Japan); Shimizu, K. [Plasma Research Centre, University of Tsukuba (Japan); Miyoshi, S. [Plasma Research Centre, University of Tsukuba (Japan); Hirano, K. [High Energy Accelerator Research Organization (Japan); Yoshida, M. [Japan Atomic Energy Research Institute (Japan); Yamauchi, M. [Japan Atomic Energy Research Institute (Japan); Kondoh, T. [Japan Atomic Energy Research Institute (Japan); Nishitani, T. [Japan Atomic Energy Research Institute (Japan)

    2005-01-15

    In order to clarify the effects of fusion-produced neutron irradiation on silicon semiconductor x-ray detectors, the x-ray energy responses of both n- and p-type silicon tomography detectors used in the Joint European Torus (JET) tokamak (n-type) and the GAMMA 10 tandem mirror (p-type) are studied using synchrotron radiation at the Photon Factory of the National Laboratory for High Energy Accelerator Research Organization (KEK). The fusion neutronics source (FNS) of Japan Atomic Energy Research Institute (JAERI) is employed as well-calibrated D-T neutron source with fluences from 10{sup 13} to 10{sup 15} neutrons/cm{sup 2} onto these semiconductor detectors. Different fluence dependence is found between these two types of detectors; that is, (i) for the n-type detector, the recovery of the degraded response is found after the neutron exposure beyond around 10{sup 13} neutrons/cm{sup 2} onto the detector. A further finding is followed as a 're-degradation' by a neutron irradiation level over about 10{sup 14} neutrons/cm{sup 2}. On the other hand, (ii) the energy response of the p-type detector shows only a gradual decrease with increasing neutron fluences. These properties are interpreted by our proposed theory on semiconductor x-ray responses in terms of the effects of neutrons on the effective doping concentration and the diffusion length of a semiconductor detector.

  13. Table 10. Major U.S. Coal Producers, 2013 U.S. Energy Information Administration | Annual Coal Report 2013

    Gasoline and Diesel Fuel Update (EIA)

    Major U.S. Coal Producers, 2013 U.S. Energy Information Administration | Annual Coal Report 2013 Table 10. Major U.S. Coal Producers, 2013 U.S. Energy Information Administration | Annual Coal Report 2013 Rank Controlling Company Name Production (thousand short tons) Percent of Total Production 1 Peabody Energy Corp 183,275 18.6 2 Arch Coal Inc 130,235 13.2 3 Cloud Peak Energy 85,694 8.7 4 Alpha Natural Resources LLC 84,937 8.6 5 Rio Tinto Group 61,899 6.3 6 Murray Energy Corp 58,522 5.9 7

  14. Steam-reforming of fossil fuels and wastes to produce energy and chemicals without greenhouse gases

    SciTech Connect (OSTI)

    Galloway, T.R.

    1998-07-01

    Worldwide concern has demanded a re-examination of the energy- and chemical-producing plants that use fossil fuel sources and release large quantities of greenhouse gases. Plant retrofits with steam-reformer/gasifiers will increase plant efficiencies, improve economics and avoid releasing troublesome amounts of greenhouse gases, such as carbon dioxide. In this paper, the authors describe and illustrate the several new steam-reforming/gasification plants that are processing waste streams and fossil fuels. These plants range in size from 1 ton/day to 2,000 tons/day. They are commercial and economically successful. These new concepts can be used to both upgrade fossil plants for improved economics while eliminating the release of greenhouse gases. By aggressively retrofitting old coal plants and sequestering CO{sub 2}, a 15% reduction in 1990 CO{sub 2} emissions can be met by the US by 2010.

  15. Environmental aspects of alternative wet technologies for producing energy/fuel from peat. Final report

    SciTech Connect (OSTI)

    Smith, R.T.

    1981-05-01

    Peat in situ contains up to 90% moisture, with about 50% of this moisture trapped as a colloidal gel. This colloidal moisture cannot be removed by conventional dewatering methods (filter presses, etc.) and must be removed by thermal drying, solvent extraction, or solar drying before the peat can be utilized as a fuel feedstock for direct combustion or gasification. To circumvent the drying problem, alternative technologies such as wet oxidation, wet carbonization, and biogasification are possible for producing energy or enhanced fuel from peat. This report describes these three alternative technologies, calculates material balances for given raw peat feed rates of 1000 tph, and evaluates the environmental consequences of all process effluent discharges. Wastewater discharges represent the most significant effluent due to the relatively large quantities of water removed during processing. Treated process water returned to the harvested bog may force in situ, acidic bog water into recieving streams, disrupting local aquatic ecosystems.

  16. Micro-cone targets for producing high energy and low divergence particle beams

    DOE Patents [OSTI]

    Le Galloudec, Nathalie

    2013-09-10

    The present invention relates to micro-cone targets for producing high energy and low divergence particle beams. In one embodiment, the micro-cone target includes a substantially cone-shaped body including an outer surface, an inner surface, a generally flat and round, open-ended base, and a tip defining an apex. The cone-shaped body tapers along its length from the generally flat and round, open-ended base to the tip defining the apex. In addition, the outer surface and the inner surface connect the base to the tip, and the tip curves inwardly to define an outer surface that is concave, which is bounded by a rim formed at a juncture where the outer surface meets the tip.

  17. Energy Department Selects Five Projects in First Step to Produce Fresh Water from CO2 Storage Sites

    Broader source: Energy.gov [DOE]

    Today, the Department of Energy announced the selection of five projects that will study the feasibility of using salty water – or brine – from carbon dioxide (CO2) storage sites to produce fresh water.

  18. Largest Producer of Steel Products in the United States Achieves Significant Energy Savings at its Minntac Plant; Industrial Technologies Program (ITP) Save Energy Now (SEN) Case Study (Brochure)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Located at Mt. Iron on the Mesabi Iron Range in northern Minnesota, the U. S. Steel Minntac plant produces approxi- mately 14.5 million tons of taconite pellets annually. Largest Producer of Steel Products in the United States Achieves Significant Energy Savings at its Minntac Plant U. S. Steel's Taconite Pellet Manufacturing Facility Improves Process Heating Efficiency and Rejuvenates Energy Savings Strategy Following Save Energy Now Assessment Industrial Technologies Program Case Study

  19. Magnetic reconnection in high-energy-density laser-produced plasmas

    SciTech Connect (OSTI)

    Fox, W.; Bhattacharjee, A.; Germaschewski, K.

    2012-05-15

    Recently, novel experiments on magnetic reconnection have been conducted in laser-produced plasmas in a high-energy-density regime. Individual plasma bubbles self-generate toroidal, mega-gauss-scale magnetic fields through the Biermann battery effect. When multiple bubbles are created at small separation, they expand into one another, driving reconnection of this field. Reconnection in the experiments was reported to be much faster than allowed by both Sweet-Parker, and even Hall-MHD theories, when normalized to the nominal magnetic fields self-generated by single bubbles. Through particle-in-cell simulations (both with and without a binary collision operator), we model the bubble interaction at parameters and geometry relevant to the experiments. This paper discusses in detail the reconnection regime of the laser-driven experiments and reports the qualitative features of simulations. We find substantial flux-pileup effects, which boost the relevant magnetic field for reconnection in the current sheet. When this is accounted for, the normalized reconnection rates are much more in line with standard two-fluid theory of reconnection. At the largest system sizes, we additionally find that the current sheet is prone to breakup into plasmoids.

  20. Tapping the Molecular Potential of Microalgae to Produce Biomass (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    ScienceCinema (OSTI)

    Sayre, Richard [LANL

    2013-01-22

    Richard Sayre, from Los Alamos National Laboratory, presents a talk titled "Tapping the Molecular Potential of Microalgae to Produce Biomass" at the JGI 7th Annual Users Meeting: Genomics of Energy & Environment Meeting on March 22, 2012 in Walnut Creek, California.

  1. Tapping the Molecular Potential of Microalgae to Produce Biomass (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    SciTech Connect (OSTI)

    Sayre, Richard [LANL] [LANL

    2012-03-22

    Richard Sayre, from Los Alamos National Laboratory, presents a talk titled "Tapping the Molecular Potential of Microalgae to Produce Biomass" at the JGI 7th Annual Users Meeting: Genomics of Energy & Environment Meeting on March 22, 2012 in Walnut Creek, California.

  2. Energy and frequency dependence of the alpha particle redistribution produced by internal kink modes

    SciTech Connect (OSTI)

    Farengo, R.; Ferrari, H. E.; Garcia-Martinez, P. L.; Firpo, M.-C.; Ettoumi, W.; Lifschitz, A. F.

    2014-08-15

    The redistribution of alpha particles due to internal kink modes is studied. The exact particle trajectories in the total fields, equilibrium plus perturbation, are calculated. The equilibrium has circular cross section and the plasma parameters are similar to those expected in ITER. The alpha particles are initially distributed according to a slowing down distribution function and have energies between 18?keV and 3.5?MeV. The (1, 1), (2, 2), and (2, 1) modes are included and the effect of changing their amplitude and frequency is studied. When only the (1, 1) mode is included, the spreading of high energy (E?1?MeV) alpha particles increases slowly with the energy and mode frequency. At lower energies, the redistribution is more sensitive to the mode frequency and particle energy. When a (2, 1) mode is added, the spreading increases significantly and particles can reach the edge of the plasma. Trapped particles are the most affected and the redistribution parameter can have maxima above 1?MeV, depending on the mode frequency. These results can have important implications for ash removal.

  3. High Yield Method to Produce LGO from Biomass - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Yield Method to Produce LGO from Biomass Great Lakes Bioenergy Research Center Contact GLBRC About This Technology Technology Marketing Summary Levoglucosenone (LGO) is a highly dehydrated sugar typically derived from cellulose. It is an important, non-petroleum building block chemical with potential uses in a wide range of industrial processes. For example, it can be converted to 1,6-hexanediol to be utilized in the production of polyurethanes and polyesters. Conventionally, LGO is derived

  4. Traveling-wave laser-produced-plasma energy source for photoionization laser pumping and lasers incorporating said

    DOE Patents [OSTI]

    Sher, Mark H. (Los Altos, CA); Macklin, John J. (Stanford, CA); Harris, Stephen E. (Palo Alto, CA)

    1989-09-26

    A traveling-wave, laser-produced-plasma, energy source used to obtain single-pass gain saturation of a photoionization pumped laser. A cylindrical lens is used to focus a pump laser beam to a long line on a target. Grooves are cut in the target to present a surface near normal to the incident beam and to reduce the area, and hence increase the intensity and efficiency, of plasma formation.

  5. Fact sheet produced by the U.S. Department of Energy describing hydrogen safety.

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage Developing safe, reliable, compact, and cost-effective hydrogen stor- age technologies is one of the most technically challenging barriers to the widespread use of hydrogen as a form of energy. To be competitive with conventional vehicles, hydrogen- powered cars must be able to travel more than 300 mi between fills. This is a challenging goal because hydrogen has physical characteristics that make it difficult to store in large quantities without taking up a significant amount of space.

  6. Radiological and Environmental Monitoring at the Clean Slate I and III Sites, Tonopah Test Range, Nevada, With Emphasis on the Implications for Off-site Transport

    SciTech Connect (OSTI)

    Mizell, Steve A; Etyemezian, Vic; McCurdy, Greg; Nikolich, George; Shadel, Craig; Miller, Julianne J

    2014-09-01

    In 1963, the U.S. Department of Energy (DOE) (formerly the Atomic Energy Commission [AEC]) implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range [NAFR]). Operation Roller Coaster consisted of four tests in which chemical explosions were detonated in the presence of nuclear devices to assess the dispersal of radionuclides and evaluate the effectiveness of storage structures to contain the ejected radionuclides. These tests resulted in the dispersal of plutonium over the ground surface downwind of the test ground zero (GZ). Three tests—Clean Slate I, II, and III—were conducted on the TTR in Cactus Flat. The fourth, Double Tracks, was conducted in Stonewall Flat on the NTTR. The Desert Research Institute (DRI) installed two monitoring stations in 2008, Station 400 at the Sandia National Laboratories (SNL) Range Operations Center (ROC) and Station 401 at Clean Slate III. Station 402 was installed at Clean Slate I in 2011 to measure radiological, meteorological, and dust conditions. The monitoring activity was implemented to determine if radionuclide contamination in the soil at the Clean Slate sites was being transported beyond the contamination area boundaries. Some of the data collected also permits comparison of radiological exposure at the TTR monitoring stations to conditions observed at Community Environmental Monitoring Program (CEMP) stations around the NTTR. Annual average gross alpha values from the TTR monitoring stations are higher than values from the surrounding CEMP stations. Annual average gross beta values from the TTR monitoring stations are generally lower than values observed for the surrounding CEMP stations. This may be due to use of sample filters with larger pore space because when glass-fiber filters began to be used at TTR Station 400, gross beta values increased. Gamma spectroscopy typically identified only naturally occurring radionuclides. The radionuclides cesium-134 and -137 were identified in only two samples at each station collected in the weeks following the destruction of the nuclear power reactor in Fukushima, Japan, on March 11, 2011. Observed gamma energy values never exceeded the local background by more than 4 μR/h. The higher observed gamma values were coincident with wind from any of the cardinal directions, which suggests that there is no significant transport from the Clean Slate contamination areas. Annual average daily gamma values at the TTR stations are higher than at the surrounding CEMP stations, but they are equivalent to or just slightly higher than the background estimates made at locations at equivalent elevations, such as Denver, Colorado. Winds in excess of approximately 15 mph begin to resuspend soil particles and create dust, but dust generation is also affected by soil temperature, relative humidity, and soil water content. Power curves provide good predictive equations for dust concentration as a function of wind speed. However, winds in the highest wind speed category occur infrequently. iii

  7. Final environmental impact statement for the Nevada Test Site and off-site locations in the state of Nevada: Mitigation action plan

    SciTech Connect (OSTI)

    1997-02-01

    The DOE Notice of Availability for this environmental impact statement was published in the Federal Register on Friday, October 18, 1996 (61 FR 54437). The final environmental impact statement identifies potential adverse effects resulting from the four use alternatives evaluated and discusses measures that DOE considered for the mitigation of these potential adverse effects. The Secretary of Energy signed the Record of Decision on the management and operation of the Nevada Test Site and other DOE sites in the state of Nevada on December 9, 1996. These decisions will result in the continuation of the multipurpose, multi-program use of the Nevada Test Site, under which DOE will pursue a further diversification of interagency, private industry, and public-education uses while meeting its Defense Program, Waste Management, and Environmental Restoration mission requirements at the Nevada Test Site and other Nevada sites, including the Tonopah Test Range, the Project Shoal Site, the Central Nevada Test Area, and on the Nellis Air Force Range Complex. The Record of Decision also identifies specific mitigation actions beyond the routine day-to-day physical and administrative controls needed for implementation of the decisions. These specific mitigation actions are focused on the transportation of waste and on groundwater availability. This Mitigation Action Plan elaborates on these mitigation commitments.

  8. Rural Alaska Coal Bed Methane: Application of New Technologies to Explore and Produce Energy

    SciTech Connect (OSTI)

    David O. Ogbe; Shirish L. Patil; Doug Reynolds

    2005-06-30

    The Petroleum Development Laboratory, University of Alaska Fairbanks prepared this report. The US Department of Energy NETL sponsored this project through the Arctic Energy Technology Development Laboratory (AETDL) of the University of Alaska Fairbanks. The financial support of the AETDL is gratefully acknowledged. We also acknowledge the co-operation from the other investigators, including James G. Clough of the State of Alaska Department of Natural Resources, Division of Geological and Geophysical Surveys; Art Clark, Charles Barker and Ed Weeks of the USGS; Beth Mclean and Robert Fisk of the Bureau of Land Management. James Ferguson and David Ogbe carried out the pre-drilling economic analysis, and Doug Reynolds conducted post drilling economic analysis. We also acknowledge the support received from Eric Opstad of Elko International, LLC; Anchorage, Alaska who provided a comprehensive AFE (Authorization for Expenditure) for pilot well drilling and completion at Fort Yukon. This report was prepared by David Ogbe, Shirish Patil, Doug Reynolds, and Santanu Khataniar of the University of Alaska Fairbanks, and James Clough of the Alaska Division of Geological and Geophysical Survey. The following research assistants, Kanhaiyalal Patel, Amy Rodman, and Michael Olaniran worked on this project.

  9. Well-to-wheels Analysis of Energy Use and Greenhouse Gas Emissions of Hydrogen Produced with Nuclear Energy

    SciTech Connect (OSTI)

    Wu, Ye; Wang, Michael Q.; Vyas, Anant D.; Wade, David C.; Taiwo, Temitope A.

    2004-07-01

    A fuel-cycle model-called the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model-has been developed at Argonne National Laboratory to evaluate well-to-wheels (WTW) energy and emission impacts of motor vehicle technologies fueled with various transportation fuels. The GREET model contains various hydrogen (H{sub 2}) production pathways for fuel-cell vehicles (FCVs) applications. In this effort, the GREET model was expanded to include four nuclear H{sub 2} production pathways: (1) H{sub 2} production at refueling stations via electrolysis using Light Water Reactor (LWR)-generated electricity; (2) H{sub 2} production in central plants via thermo-chemical water cracking using steam from High Temperature Gas cooled Reactor (HTGR); (3) H{sub 2} production in central plants via high-temperature electrolysis using HTGR-generated electricity and steam; and (4) H{sub 2} production at refueling stations via electrolysis using HTGR-generated electricity The WTW analysis of these four options include these stages: uranium ore mining and milling; uranium ore transportation; uranium conversion; uranium enrichment; uranium fuel fabrication; uranium fuel transportation; electricity or H{sub 2} production in nuclear power plants; H{sub 2} transportation; H{sub 2} compression; and H{sub 2} FCVs operation. Due to large differences in electricity requirements for uranium fuel enrichment between gas diffusion and centrifuge technologies, two scenarios were designed for uranium enrichment: (1) 55% of fuel enriched through gaseous diffusion technology and 45% through centrifuge technology (the current technology split for U.S. civilian nuclear power plants); and (2) 100% fuel enrichment using the centrifuge technology (a future trend). Our well-to-pump (WTP) results show that significant reductions in fossil energy use and greenhouse gas (GHG) emissions are achieved by nuclear-based H{sub 2} compared to natural gas-based H{sub 2} production via steam methane reforming for a unit of H{sub 2} delivered at refueling stations. In particular, 73-98% of GHG emissions and 81- 99% of fossil energy use are reduced by nuclear-based H{sub 2} relative to natural gas-based H{sub 2}, depending on the uranium enrichment technology and type of nuclear reactor used. When H{sub 2} is applied to FCVs, the WTW results also show large benefit in reducing fossil energy use and GHG emissions. (authors)

  10. R-matrix description of particle energy spectra produced by low-energy 3H + 3H reactions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Brune, C. R.; Caggiano, J. A.; Sayre, D. B.; Bacher, A. D.; Hale, G. M.; Paris, M. W.

    2015-07-20

    An R-matrix model for three-body final states is presented and applied to a recent measurement of the neutron energy spectrum from the 3H + 3H→ 2n + α reaction. The calculation includes the n alpha and n n interactions in the final state, angular momentum conservation, antisymmetrization, and the interference between different channels. A good fit to the measured spectrum is obtained, where clear evidence for the 5He ground state is observed. The model is also used to predict the alpha-particle spectrum from 3H + 3H as well as particle spectra from 3He + 3He. The R-matrix approach presented heremore » is very general, and can be adapted to a wide variety of problems with three-body final states.« less

  11. Conceptual design of an open-cycle ocean thermal energy conversion net power-producing experiment (OC-OTEC NPPE)

    SciTech Connect (OSTI)

    Bharathan, D.; Green, H.J.; Link, H.F.; Parsons, B.K.; Parsons, J.M.; Zangrando, F.

    1990-07-01

    This report describes the conceptual design of an experiment to investigate heat and mass transfer and to assess the viability of open-cycle ocean thermal energy conversion (OC-OTEC). The experiment will be developed in two stages, the Heat- and Mass-Transfer Experimental Apparatus (HMTEA) and the Net Power-Producing Experiment (NPPE). The goal for the HMTEA is to test heat exchangers. The goal for the NPPE is to experimentally verify OC-OTEC's feasibility by installing a turbine and testing the power-generating system. The design effort met the goals of both the HMTEA and the NPPE, and duplication of hardware was minimal. The choices made for the design resource water flow rates are consistent with the availability of cold and warm seawater as a result of the seawater systems upgrade carried out by the US Department of Energy (DOE), the state of Hawaii, and the Pacific International Center for High Technology Research. The choices regarding configuration of the system were made based on projected performance, degree of technical risk, schedule, and cost. The cost for the future phase of the design and the development of the HMTEA/NPPE is consistent with the projected future program funding levels. The HMTEA and NPPE were designed cooperatively by PICHTR, Argonne National Laboratory, and Solar Energy Research Institute under the guidance of DOE. The experiment will be located at the DOE's Seacoast Test Facility at the Natural Energy Laboratory of Hawaii, Kailua-Kona, Hawaii. 71 refs., 41 figs., 34 tabs.

  12. polymers produced by nature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    polymers produced by nature - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  13. DEPARTMENT OF ENERGY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    S0-01-P DEPARTMENT OF ENERGY NATIONAL NUCLEAR SECURITY ADMINISTRATION Draft Site-Wide Environmental Impact Statement for the Continued Operation of the Department of EnergylNational Nuclear Security Administration Nevada National Security Site and Off-Site Locations in the State of Nevada AGENCY: National Nuclear Security Administration, U.S. Department of Energy. ACTION: Notice of availability and public hearings. SUMMARY: The National Nuclear Security Administration (NNSA), a separately

  14. EIS-0426: Record of Decision | Department of Energy

    Energy Savers [EERE]

    6: Record of Decision EIS-0426: Record of Decision DOE/NNSA is issuing this Record of Decision (ROD) for the continued management, operation, and activities of the Nevada National Security Site (NNSS) and Off-Site Locations in the State of Nevada pursuant to the Final Site-Wide Environmental Impact Statement for the Continued Operation of the Department of Energy/National Nuclear Security Administration Nevada National Security Site and Off-Site Locations in the State of Nevada, DOE/EIS-0426

  15. Largest Producer of Steel Products in the United States Achieves Significant Energy Savings at its Minntac Plant

    SciTech Connect (OSTI)

    2008-09-01

    The U. S. Steel Minntac plant in Mt. Iron, MN, achieved annual savings of $760,000 and 95,000 MMBtu after receiving a DOE Save Energy Now energy assessment and implementing recommendations to improve the efficiency of its process heating system.

  16. hydrogen is produced by electrolysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hydrogen is produced by electrolysis - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management

  17. Translational and internal energy distributions of methyl and hydroxyl radicals produced by 157 nm photodissociation of amorphous solid methanol

    SciTech Connect (OSTI)

    Hama, Tetsuya; Yokoyama, Masaaki; Yabushita, Akihiro; Kawasaki, Masahiro; Wickramasinghe, Piyumie; Guo Wei; Loock, Hans-Peter; Ashfold, Michael N. R.; Western, Colin M.

    2009-12-14

    Methanol is typically observed within water-rich interstellar ices and is a source of interstellar organic species. Following the 157 nm photoexcitation of solid methanol at 90 K, desorbed CH{sub 3}(v=0) and OH(v=0,1) radicals have been observed in situ, near the solid surface, using resonance-enhanced multiphoton ionization (REMPI) detection methods. Time-of-flight and rotationally resolved REMPI spectra of the desorbed species were measured, and the respective fragment internal energy and kinetic energy distributions were obtained. Photoproduction mechanisms for CH{sub 3} and OH radicals from solid methanol are discussed. The formation of O({sup 1}D and {sup 3}P) atoms and H{sub 2}O was investigated, but the yield of these species was found to be negligible. CH{sub 3} products arising following the photoexcitation of water-methanol mixed ice showed similar kinetic and internal energy distributions to those from neat methanol ice.

  18. Investigation Of Plasma Produced By High-Energy Low-Intensity Laser Pulses For Implantation Of Ge Ions Into Si And Sio2 Substrates

    SciTech Connect (OSTI)

    Rosinski, M.; Wolowski, J.; Badziak, J.; Parys, P.; Boody, F. P.; Gammino, S.; Krasa, J.; Laska, L.; Pfeifer, M.; Rohlena, K.; Ullschmied, J.; Mezzasalma, A.; Torrisi, L.

    2006-01-15

    The development of implantation techniques requires investigation of laser plasma as a potential source of multiply charged ions. The laser ion source delivers ions with kinetic energy and a charge state dependent on the irradiated target material and the parameters of the laser radiation used. By the focusing the laser beam on the solid target the higher current densities of ions than by using other currently available ion sources can be produced. The crucial issue for efficiency of the ion implantation technology is selection of proper laser beam characteristics. Implantation of different kinds of laser-produced ions into metals and organic materials were performed recently at the PALS Research Center in Prague, in cooperative experiments using 0.4-ns iodine laser pulses having energies up to 750 J at wavelength of 1315 nm or up to 250 J at wavelength of 438 nm. In this contribution we describe the characterization and optimization of laser-produced Ge ion streams as well as analysis of the direct implantation of these ions into Si and SiO2 substrates. The Ge target was irradiated with the use of laser pulses of energy up to 50 J at radiation intensities of {approx}1011 W/cm2 and {approx}2'1013 W/cm2. The implanted samples were placed along the target normal at distances of 17, 31 and 83 cm from the target surface. The ion stream parameters were measured using the time-of-fight method. The depth of ion implantation was determined by the Rutherford backscattering method (RBS). The maximum depth of implantation of Ge ions was {approx}450 nm. These investigations were carried out for optimization of low and medium energy laser-generated Ge ion streams, suitable for specific implantation technique, namely for fabrication of semiconductor nanostructures within the SRAP 'SEMINANO' project.

  19. Oak Ridge Health Studies Phase 1 report, Volume 2: Part A, Dose Reconstruction Feasibility Study. Tasks 1 and 2, A summary of historical activities on the Oak Ridge Reservation with emphasis on information concerning off-site emissions of hazardous materials

    SciTech Connect (OSTI)

    Bruce, G.M.; Buddenbaum, J.E.; Lamb, J.K.; Widner, T.E.

    1993-09-01

    The Phase I feasibility study has focused on determining the availability of information for estimating exposures of the public to chemicals and radionuclides released as a result of historical operation of the facilities at the Oak Ridge Reservation (ORR). The estimation of such past exposures is frequently called dose reconstruction. The initial project tasks, Tasks 1 and 2 were designed to identify and collect information that documents the history of activities at the ORR that resulted in the release of contamination and to characterize the availability of data that could be used to estimate the magnitude of the contaminant releases or public exposures. A history of operations that are likely to have generated off-site releases has been documented as a result of Task 1 activities. The activities required to perform this task involved the extensive review of historical operation records and interviews with present and past employees as well as other knowledgeable individuals. The investigation process is documented in this report. The Task 1 investigations have led to the documentation of an overview of the activities that have taken place at each of the major complexes, including routine operations, waste management practices, special projects, and accidents and incidents. Historical activities that appear to warrant the highest priority in any further investigations were identified based on their likely association with off-site emissions of hazardous materials as indicated by the documentation reviewed or information obtained in interviews.

  20. Fermi LAT Observation of Diffuse Gamma-Rays Produced through Interactions Between Local Interstellar Matter and High Energy Cosmic Rays

    SciTech Connect (OSTI)

    Abdo, A.A.; Ackermann, M.; Ajello, M.; Atwood, W.B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Baughman, B.M.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Bloom, E.D.; Bonamente, E.; Borgland, A.W.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Burnett, T.H.; /more authors..

    2012-03-30

    Observations by the Large Area Telescope (LAT) on the Fermi mission of diffuse {gamma}-rays in a mid-latitude region in the third quadrant (Galactic longitude l from 200{sup o} to 260{sup o} and latitude |b| from 22{sup o} to 60{sup o}) are reported. The region contains no known large molecular cloud and most of the atomic hydrogen is within 1 kpc of the solar system. The contributions of {gamma}-ray point sources and inverse Compton scattering are estimated and subtracted. The residual {gamma}-ray intensity exhibits a linear correlation with the atomic gas column density in energy from 100 MeV to 10 GeV. The measured integrated {gamma}-ray emissivity is (1.63 {+-} 0.05) x 10{sup -26} photons s{sup -1}sr{sup -1} H-atom{sup -1} and (0.66 {+-} 0.02) x 10{sup -26} photons s{sup -1}sr{sup -1} H-atom{sup -1} above 100 MeV and above 300 MeV, respectively, with an additional systematic error of {approx}10%. The differential emissivity from 100 MeV to 10 GeV agrees with calculations based on cosmic ray spectra consistent with those directly measured, at the 10% level. The results obtained indicate that cosmic ray nuclei spectra within 1 kpc from the solar system in regions studied are close to the local interstellar spectra inferred from direct measurements at the Earth within {approx}10%.

  1. A proposed design and fabrication of lenses and mirrors from a set of spherical rings that produce desired energy distributions for solar energy applications

    SciTech Connect (OSTI)

    Gonzalez-Garcia, Jorge; Vazquez-Montiel, Sergio; Santiago-Alvarado, Agustin; Cordero-Davila, Alberto; Castro-Gonzalez, Graciela

    2009-12-15

    The amount of energy contained in the solar aureole affects the performance of solar systems. Solar optical systems are, therefore, dependent on the characteristics of the shape of the sun in a specific geographical location. For this reason, the present study proposes the design of solid lenses and mirrors modelled from a set of concentric spherical rings that give a desired distribution of energy in the focal plane. One hundred spherical rings, whose optimum curvature radius values were calculated by Genetic Algorithms, were employed in the modelling process. The study also proposes a design of a petal tool to polish lens and mirror surfaces. (author)

  2. Testa Produce | Open Energy Information

    Open Energy Info (EERE)

    mW 7.5e-4 GW Number of Units 1 Commercial Online Date 2011 Wind Turbine Manufacturer Aeronautica References AWEA1 Loading map... "minzoom":false,"mappingservice":"googlemaps3","...

  3. NREL: Energy Executive Leadership Academy - Leadership Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Program NREL's Executive Energy Leadership Program provides an in-depth training experience for community and industry leaders conducted over four multi-day sessions from June through September. The classroom experience includes lectures and overviews by technology experts, laboratory tours, and off-site field trips. Course content includes overviews of technologies, market assessments, analytical tools, and financial information. Briefings by technology experts, tours of research laboratories,

  4. Audit Report: IG-0568 | Department of Energy

    Energy Savers [EERE]

    8 Audit Report: IG-0568 September 13, 2002 Remote Access To Unclassified Information Systems Like most private sector and government organizations, the Department of Energy has an aggressive program to provide its Federal and contractor personnel with the ability to remotely access a number of unclassified information systems. Such access allows travelers, telecommuters and those who occasionally work off-site to more easily perform businessrelated functions from remote locations. Personnel are

  5. The use of real-time off-site observations as a methodology for increasing forecast skill in prediction of large wind power ramps one or more hours ahead of their impact on a wind plant.

    SciTech Connect (OSTI)

    Martin Wilde, Principal Investigator

    2012-12-31

    ABSTRACT Application of Real-Time Offsite Measurements in Improved Short-Term Wind Ramp Prediction Skill Improved forecasting performance immediately preceding wind ramp events is of preeminent concern to most wind energy companies, system operators, and balancing authorities. The value of near real-time hub height-level wind data and more general meteorological measurements to short-term wind power forecasting is well understood. For some sites, access to onsite measured wind data - even historical - can reduce forecast error in the short-range to medium-range horizons by as much as 50%. Unfortunately, valuable free-stream wind measurements at tall tower are not typically available at most wind plants, thereby forcing wind forecasters to rely upon wind measurements below hub height and/or turbine nacelle anemometry. Free-stream measurements can be appropriately scaled to hub-height levels, using existing empirically-derived relationships that account for surface roughness and turbulence. But there is large uncertainty in these relationships for a given time of day and state of the boundary layer. Alternatively, forecasts can rely entirely on turbine anemometry measurements, though such measurements are themselves subject to wake effects that are not stationary. The void in free-stream hub-height level measurements of wind can be filled by remote sensing (e.g., sodar, lidar, and radar). However, the expense of such equipment may not be sustainable. There is a growing market for traditional anemometry on tall tower networks, maintained by third parties to the forecasting process (i.e., independent of forecasters and the forecast users). This study examines the value of offsite tall-tower data from the WINDataNOW Technology network for short-horizon wind power predictions at a wind farm in northern Montana. The presentation shall describe successful physical and statistical techniques for its application and the practicality of its application in an operational setting. It shall be demonstrated that when used properly, the real-time offsite measurements materially improve wind ramp capture and prediction statistics, when compared to traditional wind forecasting techniques and to a simple persistence model.

  6. Opportunity Evaluation and Implementation: Providing Strategic Energy Solutions through Thoughtful Planning and Practical Know-How to Produce Groundbreaking Results (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-10-01

    The National Renewable Energy Laboratory (NREL) is the U.S. Department of Energy's (DOE's) only national laboratory focused on renewable energy and energy efficiency. For more than 35 years, our energy research, development, analysis, commercialization, and deployment work with public and private sector partners around the world has catalyzed the expansion of global clean energy solutions.

  7. OFF-SITE SURVEILLANCE ACTIVITIES OF SOUTHWESTERN RADIOLOGICAL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... ranch house. 29 Based on assumptions in FRC Report NO. 5, a peak concentration of 100 ... 16 mrad to an infant's thyroid. Since the FRC assumptions are based on fresh feeding ...

  8. SWRHL-37~ OFF-SITE SURVEILLANCE ACTIVITIES OF THE SOUTHWESTERN...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Test Site operations, which exceeded the guides established by the AEC andor recommended by the FRC and the NCRP. 42 APPENDIX A Milk sample results for the six-months period. ...

  9. Off Site University Research (OSUR) | Princeton Plasma Physics...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    universities in various areas of plasma and fusion science. These areas include: plasma theory and simulation; plasma experiments; plasma diagnostics; undergraduate plasma...

  10. Method of producing molybdenum-99

    DOE Patents [OSTI]

    Pitcher, Eric John

    2013-05-28

    Method of producing molybdenum-99, comprising accelerating ions by means of an accelerator; directing the ions onto a metal target so as to generate neutrons having an energy of greater than 10 MeV; directing the neutrons through a converter material comprising techentium-99 to produce a mixture comprising molybdenum-99; and, chemically extracting the molybdenum-99 from the mixture.

  11. EIS-0109: Final Environmental Impact Statement | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9: Final Environmental Impact Statement EIS-0109: Final Environmental Impact Statement Long-Term Management of the Existing Radioactive Wastes and Residues at the Niagara Falls Storage Site The U.S. Department of Energy developed this statement to evaluate the environmental impacts of several alternatives for management and control of the radioactive wastes and residues at the Niagara Falls Storage Site, including a no action alternative, an alternative to manage wastes on site, and two off-site

  12. EIS-0426: Final Environmental Impact Statement | Department of Energy

    Office of Environmental Management (EM)

    Final Environmental Impact Statement EIS-0426: Final Environmental Impact Statement This Site-Wide Environmental Impact Statement for the Continued Operation of the Department of Energy/National Nuclear Security Administration Nevada National Security Site and Off-Site Locations in the State of Nevada (NNSS SWEIS) analyzed the potential environmental impacts of proposed alternatives for continued management and operation of the Nevada National Security Site (NNSS) (formerly known as the Nevada

  13. JMB Energie | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: JMB Energie Place: Marseilles, France Sector: Solar, Wind energy Product: JMB Energie is producer of green energy primarily through the...

  14. Modeling energy dependence of the inner-shell x-ray emission produced by femtosecond-pulse laser irradiation of xenon clusters

    SciTech Connect (OSTI)

    Colgan, James P

    2008-01-01

    We employ the Los Alamos suite of atomic physics codes to model the inner-shell x-ray emission spectrum of xenon and compare results with those obtained via high-resolution x-ray spectroscopy of xenon clusters irradiated by 30 fs Ti:Sa laser pulses. We find that the commonly employed configuration average approximation breaks down and significant spin-orbit splitting necessitates a detailed level accounting. Additionally, we reproduce an interesting spectral trend for a series of experimental spectra taken with varying pulse energy for fixed pulse duration. To simulate the experimental measurements at increasing beam energies, we find that spectral modeling requires an increased hot electron fraction, but decreased atomic density and bulk electron temperature. We believe these latter conditions to be a result of partial cluster destruction due to the increased energy in the laser prepulse.

  15. Audit Report: WR-B-00-01 | Department of Energy

    Energy Savers [EERE]

    1 Audit Report: WR-B-00-01 November 23, 1999 Analytical Laboratory Capabilities at the Hanford Site The Department of Energy (DOE) Richland Operations Office (Richland) was responsible for environmental restoration and waste management programs at the Hanford Site (Site). In support of these activities Site contractors used both on- and off-site analytical laboratory services. The objective of this audit was to determine if Richland had made the best use of the capabilities of the on-site

  16. Thermo-fluid dynamic design study of single and double-inflow radial and single-stage axial steam turbines for open-cycle thermal energy conversion net power-producing experiment facility in Hawaii

    SciTech Connect (OSTI)

    Schlbeiri, T. . Dept. of Mechanical Engineering)

    1990-03-01

    The results of the study of the optimum thermo-fluid dynamic design concept are presented for turbine units operating within the open-cycle ocean thermal energy conversion (OC-OTEC) systems. The concept is applied to the first OC-OTEC net power producing experiment (NPPE) facility to be installed at Hawaii's natural energy laboratory. Detailed efficiency and performance calculations were performed for the radial turbine design concept with single and double-inflow arrangements. To complete the study, the calculation results for a single-stage axial steam turbine design are also presented. In contrast to the axial flow design with a relatively low unit efficiency, higher efficiency was achieved for single-inflow turbines. Highest efficiency was calculated for a double-inflow radial design, which opens new perspectives for energy generation from OC-OTEC systems.

  17. Energy-Saving Melting and Revert Reduction Technology (E-SMARRT): Lost Foam Thin Wall - Feasibility of Producing Lost Foam Castings in Aluminum and Magnesium Based Alloys

    SciTech Connect (OSTI)

    Fasoyinu, Yemi; Griffin, John A.

    2014-03-31

    With the increased emphasis on vehicle weight reduction, production of near-net shape components by lost foam casting will make significant inroad into the next-generation of engineering component designs. The lost foam casting process is a cost effective method for producing complex castings using an expandable polystyrene pattern and un-bonded sand. The use of un-bonded molding media in the lost foam process will impose less constraint on the solidifying casting, making hot tearing less prevalent. This is especially true in Al-Mg and Al-Cu alloy systems that are prone to hot tearing when poured in rigid molds partially due to their long freezing range. Some of the unique advantages of using the lost foam casting process are closer dimensional tolerance, higher casting yield, and the elimination of sand cores and binders. Most of the aluminum alloys poured using the lost foam process are based on the Al-Si system. Very limited research work has been performed with Al-Mg and Al-Cu type alloys. With the increased emphasis on vehicle weight reduction, and given the high-strength-to-weight-ratio of magnesium, significant weight savings can be achieved by casting thin-wall (? 3 mm) engineering components from both aluminum- and magnesium-base alloys.

  18. Method of producing hydrogen

    DOE Patents [OSTI]

    Bingham, Dennis N.; Klingler, Kerry M.; Wilding, Bruce M.; Zollinger, William T.

    2006-12-26

    A method of producing hydrogen is disclosed and which includes providing a first composition; providing a second composition; reacting the first and second compositions together to produce a chemical hydride; providing a liquid and reacting the chemical hydride with the liquid in a manner to produce a high pressure hydrogen gas and a byproduct which includes the first composition; and reusing the first composition formed as a byproduct in a subsequent chemical reaction to form additional chemical hydride.

  19. From Gasoline to Grassoline: Microbes Produce Fuels Directly from Biomass

    DOE R&D Accomplishments [OSTI]

    Yarris, Lynn

    2011-03-28

    A microbe that can produce an advanced biofuel directly from biomass was developed by researchers with the U.S. Department of Energy's Joint BioEnergy Institute.

  20. ENECO Energie | Open Energy Information

    Open Energy Info (EERE)

    Place: Rotterdam, Netherlands Zip: 3000 CL Sector: Biomass, Renewable Energy, Solar, Wind energy Product: Dutch-based energy company that transports, produces, trades and sells...

  1. Coal markets squeeze producers

    SciTech Connect (OSTI)

    Ryan, M.

    2005-12-01

    Supply/demand fundamentals seem poised to keep prices of competing fossil fuels high, which could cushion coal prices, but increased mining and transportation costs may squeeze producer profits. Are markets ready for more volatility?

  2. Ex Parte Communications- Uranium Producers of America

    Broader source: Energy.gov [DOE]

    On Thursday, February 12, 2015, representatives from the Uranium  Producers  of America (UPA) met with the Department of Energy (DOE) officials to discuss the management of the federal excess...

  3. Method for producing high energy electroluminescent devices

    DOE Patents [OSTI]

    Meyerson, Bernard S. (Yorktown Heights, NY); Scott, Bruce A. (Pleasantville, NY); Wolford, Jr., Donald J. (Croton-on-Hudson, NY)

    1992-09-29

    A method is described for fabricating electroluminescent devices exhibiting visible electroluminescence at room temperature, where the devices include at least one doped layer of amorphous hydrogenated silicon (a-Si:H). The a-Si:H layer is deposited on a substrate by homogeneous chemical vapor deposition (H-CVD) in which the substrate is held at a temperature lower than about 200.degree. C. and the a-Si:H layer is doped in-situ during deposition, the amount of hydrogen incorporated in the deposited layer being 12-50 atomic percent. The bandgap of the a-Si:H layer is between 1.6 and 2.6 eV, and in preferrable embodiments is between 2.0 and 2.6 eV. The conductivity of the a-Si:H layer is chosen in accordance with device requirements, and can be 10.sup.16 -10.sup.19 carriers/cm.sup.2. The bandgap of the a-Si:H layer depends at least in part on the temperature of the substrate on which the layer is deposited, and can be "tuned" by changing the substrate temperature.

  4. International Standards & Policy Development | National Nuclear...

    National Nuclear Security Administration (NNSA)

    and Nuclear Facilities off site link to better reflect the threat environment. NNSA also led the international effort to revise the International Atomic Energy Agency's off site...

  5. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  6. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  7. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  8. UNITED STATES ATOMIC ENERGY COMMISSION OAK RIDGE OPERATIONS

    Office of Legacy Management (LM)

    AL, 3 UNITED STATES ATOMIC ENERGY COMMISSION OAK RIDGE OPERATIONS CINCINNATI AREA P. 0. BOX 39198, CINCINNATI 39, OHIO IN REPLY REFER TO: 0:OJT --r.LAal Cl E:c Mr. J. H. Noyes, Plant Manager National Lead Company of Ohio P. 0. Box 39158 Cincinnati 39, Ohio Subject: HOT TENSILE TESTS OF URANIUM - SOUTHERN RESEARCH INSTITUTE Dear Mr. Noyee: I / Reference is made to your letter of May 17, 1962, on the above subject. Approval is granted for the off-site movement of up to 300 pounds of normal uranium

  9. EIS-0243: Record of Decision (December 1996) | Department of Energy

    Office of Environmental Management (EM)

    : Record of Decision (December 1996) EIS-0243: Record of Decision (December 1996) Environmental Impact Statement for the Nevada Test Site and Off-Site Locations in the State of Nevada The Department of Energy (DOE) is issuing this Record of Decision on the management and operation of the Nevada Test Site and other DOE sites in the State of Nevada. This Record of Decision is based on the information and analysis contained in the Final Environmental Impact Statement for the Nevada Test Site and

  10. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    national energy security by developing energy sources with limited impacts on environment improving efficiency and reliability of nation's energy infrastructure Research...

  11. Process for producing silicon

    DOE Patents [OSTI]

    Olson, Jerry M. (Lakewood, CO); Carleton, Karen L. (Boulder, CO)

    1984-01-01

    A process for producing silicon includes forming an alloy of copper and silicon and positioning the alloy in a dried, molten salt electrolyte to form a solid anode structure therein. An electrically conductive cathode is placed in the electrolyte for plating silicon thereon. The electrolyte is then purified to remove dissolved oxides. Finally, an electrical potential is applied between the anode and cathode in an amount sufficient to form substantially pure silicon on the cathode in the form of substantially dense, coherent deposits.

  12. Method of producing imines

    DOE Patents [OSTI]

    Sithambaram, Shanthakumar (Storrs, CT); Son, Young-Chan (Storrs, CT); Suib, Steven L. (Storrs, CT)

    2008-04-08

    A method for forming an imine comprises reacting a first reactant comprising a hydroxyl functionality, a carbonyl functionality, or both a hydroxyl functionality and a carbonyl functionality with a second reactant having an amine functionality in the presence of ordered porous manganese-based octahedral molecular sieves and an oxygen containing gas at a temperature and for a time sufficient for the imine to be produced.

  13. Process for producing silicon

    DOE Patents [OSTI]

    Olson, J.M.; Carleton, K.L.

    1982-06-10

    A process of producing silicon includes forming an alloy of copper and silicon and positioning the alloy in a dried, molten salt electrolyte to form a solid anode structure therein. An electrically conductive cathode is placed in the electrolyte for plating silicon thereon. The electrolyte is then purified to remove dissolved oxides. Finally, an electrical potential is applied between the anode and cathode in an amount sufficient to form substantially pure silicon on the cathode in the form of substantially dense, coherent deposits.

  14. Safety evaluation report related to the Department of Energy`s proposal for the irradiation of lead test assemblies containing tritium-producing burnable absorber rods in commercial light-water reactors. Project Number 697

    SciTech Connect (OSTI)

    1997-05-01

    The NRC staff has reviewed a report, submitted by DOE to determine whether the use of a commercial light-water reactor (CLWR) to irradiate a limited number of tritium-producing burnable absorber rods (TPBARs) in lead test assemblies (LTAs) raises generic issues involving an unreviewed safety question. The staff has prepared this safety evaluation to address the acceptability of these LTAs in accordance with the provision of 10 CFR 50.59 without NRC licensing action. As summarized in Section 10 of this safety evaluation, the staff has identified issues that require NRC review. The staff has also identified a number of areas in which an individual licensee undertaking irradiation of TPBAR LTAs will have to supplement the information in the DOE report before the staff can determine whether the proposed irradiation is acceptable at a particular facility. The staff concludes that a licensee undertaking irradiation of TPBAR LTAs in a CLWR will have to submit an application for amendment to its facility operating license before inserting the LTAs into the reactor.

  15. ENERGY

    Office of Environmental Management (EM)

    U.S. Department of ENERGY Department of Energy Quadrennial Technology Review-2015 Framing Document http://energy.gov/qtr 2015-01-13 Page 2 The United States faces serious energy-linked challenges as well as substantial energy opportunities. Disruptions, both natural and man-made, threaten our aging energy infrastructure; global patterns of energy use are changing our climate; and our nation's dependence on foreign sources of energy comes at a significant cost to our economy. We need clean,

  16. New Energy | Open Energy Information

    Open Energy Info (EERE)

    New Energy Place: Ascurra, Santa Catarina, Brazil Product: Pellets and brikettes producer company located in Santa Catarina. References: New Energy1 This article is a stub. You...

  17. Cleanstar Energy | Open Energy Information

    Open Energy Info (EERE)

    Energy Jump to: navigation, search Name: Cleanstar Energy Place: India Sector: Biofuels Product: CleanStar is biofuels research and producer in land that is not appropriate...

  18. Produce diesel from gas

    SciTech Connect (OSTI)

    Singleton, A.H.; Regier, S.

    1983-05-01

    The Gulf Badger process converts natural gas directly to hydrocarbon liquids by a catalytic chemical route. Fischer-Tropsch process--which is a carbon monoxide polymerization/ hydrogenation process--is used. Because the process is exothermal, heat removal by either tubular fixed bed, fluidized bed, or slurry are considered. A wax build up of high molecular weight material is removed by hydro-stripping two-bed system. The demonstration plant flow diagram shows the process to be: natural gas is compressed, recycled with CO/sub 2/, sulfur is removed in a zinc oxide drum, CO is removed in amine scrubbers, H/sub 2//CO ratio is adjusted to produce a hydrogen rich stream, and stabilization and distribution follow. A monitoring system using computers is part of the demonstration unit.

  19. Coal-Producing Region

    Gasoline and Diesel Fuel Update (EIA)

    . Coal Production by State (thousand short tons) Year to Date Coal-Producing Region and State July - September 2015 April - June 2015 July - September 2014 2015 2014 Percent Change Alabama 3,192 3,504 4,331 10,718 12,345 -13.2 Alaska 255 345 372 866 1,178 -26.5 Arizona 1,762 1,912 2,165 5,429 5,979 -9.2 Arkansas 26 27 18 74 58 27.4 Colorado 5,123 5,078 6,574 15,464 18,367 -15.8 Illinois 13,967 13,360 14,816 44,105 42,575 3.6 Indiana 9,124 8,577 9,805 27,164 29,328 -7.4 Kansas 42 49 5 144 16 NM

  20. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy /newsroom/_assets/images/energy-icon.png Energy Research into alternative forms of energy, and improving and securing the power grid, is a major national security imperative. Health Space Computing Energy Earth Materials Science Technology The Lab All The Grid Modernization Initiative represents a comprehensive DOE effort to help shape the future of our nation's grid and solve the challenges of integrating conventional and renewable sources with energy storage and smart buildings. Los

  1. System for treating produced water

    DOE Patents [OSTI]

    Sullivan, Enid J. (Los Alamos, NM); Katz, Lynn (Austin, TX); Kinney, Kerry (Austin, TX); Bowman, Robert S. (Lemitar, NM); Kwon, Soondong (Kyungbuk, KR)

    2010-08-03

    A system and method were used to treat produced water. Field-testing demonstrated the removal of contaminants from produced water from oil and gas wells.

  2. Table 4. Biodiesel producers and production capacity by state...

    U.S. Energy Information Administration (EIA) Indexed Site

    Biodiesel producers and production capacity by state, December 2015" "State","Number of ... Administration, Form EIA-22M ""Monthly Biodiesel Production Survey""" "U.S. Energy ...

  3. NREL Produces Ethylene via Photosynthesis (Fact Sheet), Highlights...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the National Renewable Energy Laboratory (NREL) have demonstrated a new way to use photosynthesis to produce ethylene. NREL scientists introduced a gene for ethylene forming enzyme...

  4. Engineering microbes to produce biofuels

    SciTech Connect (OSTI)

    Wackett, LP

    2011-06-01

    The current biofuels landscape is chaotic. It is controlled by the rules imposed by economic forces and driven by the necessity of finding new sources of energy, particularly motor fuels. The need is bringing forth great creativity in uncovering new candidate fuel molecules that can be made via metabolic engineering. These next generation fuels include long-chain alcohols, terpenoid hydrocarbons, and diesel-length alkanes. Renewable fuels contain carbon derived from carbon dioxide. The carbon dioxide is derived directly by a photosynthetic fuel-producing organism(s) or via intermediary biomass polymers that were previously derived from carbon dioxide. To use the latter economically, biomass depolymerization processes must improve and this is a very active area of research. There are competitive approaches with some groups using enzyme based methods and others using chemical catalysts. With the former, feedstock and end-product toxicity loom as major problems. Advances chiefly rest on the ability to manipulate biological systems. Computational and modular construction approaches are key. For example, novel metabolic networks have been constructed to make long-chain alcohols and hydrocarbons that have superior fuel properties over ethanol. A particularly exciting approach is to implement a direct utilization of solar energy to make a usable fuel. A number of approaches use the components of current biological systems, but re-engineer them for more direct, efficient production of fuels.

  5. Sales of Fossil Fuels Produced from Federal and Indian Lands...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    of Energy Washington, DC 20585 U.S. Energy Information Administration | Sales of Fossil Fuels Produced on Federal and Indian Lands, FY 2003 through FY 2012 ii This report...

  6. European Energy A S | Open Energy Information

    Open Energy Info (EERE)

    Denmark Sector: Renewable Energy, Solar, Wind energy Product: Denmark-based independent power producer group specializing in renewable energy. The firm's main focus is on the...

  7. Apollo Energy Systems Inc | Open Energy Information

    Open Energy Info (EERE)

    Apollo Energy Systems Inc Place: Pompano Beach, Florida Zip: FLA 33069 Sector: Hydro, Hydrogen, Renewable Energy Product: Apollo Energy Systems is a developer, producer, marketor...

  8. NREL Refinery Process Shows Increased Effectiveness of Producing Ethanol

    Office of Environmental Management (EM)

    from Algae | Department of Energy NREL Refinery Process Shows Increased Effectiveness of Producing Ethanol from Algae NREL Refinery Process Shows Increased Effectiveness of Producing Ethanol from Algae February 11, 2016 - 5:07pm Addthis A new biorefinery process developed by scientists at the Energy Department's National Renewable Energy Laboratory (NREL) with funding from the U.S. Department of Energy's Bioenergy Technologies Office (BETO) has proven to be significantly more effective at

  9. Methods for producing complex films, and films produced thereby

    DOE Patents [OSTI]

    Duty, Chad E.; Bennett, Charlee J. C.; Moon, Ji -Won; Phelps, Tommy J.; Blue, Craig A.; Dai, Quanqin; Hu, Michael Z.; Ivanov, Ilia N.; Jellison, Jr., Gerald E.; Love, Lonnie J.; Ott, Ronald D.; Parish, Chad M.; Walker, Steven

    2015-11-24

    A method for producing a film, the method comprising melting a layer of precursor particles on a substrate until at least a portion of the melted particles are planarized and merged to produce the film. The invention is also directed to a method for producing a photovoltaic film, the method comprising depositing particles having a photovoltaic or other property onto a substrate, and affixing the particles to the substrate, wherein the particles may or may not be subsequently melted. Also described herein are films produced by these methods, methods for producing a patterned film on a substrate, and methods for producing a multilayer structure.

  10. Future is new focus at energy department`s Rocky Flats facility

    SciTech Connect (OSTI)

    Lobsenz, G.

    1993-11-12

    After several years of intensive effort to address radioactive pollution threatening nearby communities, officials at the Energy Department`s Rocky Flats plant now are turning their attention to the site`s plutonium buildings and finding a cleanup challenge of equally daunting proportions. Containing and mopping up off-site soil and water contamination remains the first priority at the Colorado facility, but site environmental managers say the huge volumes of plutonium and associated radioactive waste stored in Rocky Flats` aging building pose increasingly urgent safety concerns.

  11. Chapter 7 - Advancing Systems and Technologies to Produce Cleaner Fuels |

    Office of Environmental Management (EM)

    Department of Energy 7 - Advancing Systems and Technologies to Produce Cleaner Fuels Chapter 7 - Advancing Systems and Technologies to Produce Cleaner Fuels Chapter 7 - Advancing Systems and Technologies to Produce Cleaner Fuels Fuels play a critical role throughout our economy. In 2013, fuels directly supplied about 99% of the energy needed by our national transportation system, 66% of that needed to generate our electricity, 68% of that needed by our industry, and 27% of that needed by our

  12. Energy

    Office of Legacy Management (LM)

    ..) ".. _,; ,' . ' , ,; Depar?.me.nt ,of.' Energy Washington; DC 20585 : . ' , - $$ o"\ ' ~' ,' DEC ?;$ ;y4,,, ~ ' .~ The Honorable John Kalwitz , 200 E. Wells Street Milwaukee, W~isconsin 53202, . . i :. Dear,Mayor 'Kalwitz: " . " Secretary of Energy Hazel' O'Leary has announceha new,approach 'to,openness in " the Department of Ene~rgy (DOE) and its communications with'the public. In -. support of~this initiative, we areipleased to forward the enclosed information

  13. Asjabiz | Open Energy Information

    Open Energy Info (EERE)

    search Name: Asjabiz Place: Rivoli (TO), Italy Zip: 10098 Sector: Biomass, Renewable Energy, Wind energy Product: Asja.biz is an international group that produces electric energy...

  14. NREL Scientists Report First Solar Cell Producing More Electrons In

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photocurrent Than Solar Photons Entering Cell - News Releases | NREL Scientists Report First Solar Cell Producing More Electrons In Photocurrent Than Solar Photons Entering Cell December 15, 2011 Researchers from the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) have reported the first solar cell that produces a photocurrent that has an external quantum efficiency greater than 100 percent when photoexcited with photons from the high energy region of the solar

  15. Florida Project Produces Nation's First Cellulosic Ethanol at

    Office of Environmental Management (EM)

    Commercial-Scale | Department of Energy Florida Project Produces Nation's First Cellulosic Ethanol at Commercial-Scale Florida Project Produces Nation's First Cellulosic Ethanol at Commercial-Scale July 31, 2013 - 1:37pm Addthis News Media Contact (202) 586-4940 WASHINGTON - The Energy Department today recognized the nation's first commercial-scale cellulosic ethanol production at INEOS Bio's Indian River BioEnergy Center in Vero Beach, Florida. Developed through a joint venture between

  16. DOE's Early Investment in Shale Gas Technology Producing Results Today |

    Office of Environmental Management (EM)

    Department of Energy Early Investment in Shale Gas Technology Producing Results Today DOE's Early Investment in Shale Gas Technology Producing Results Today February 2, 2011 - 12:00pm Addthis Washington, DC - A $92 million research investment in the 1970s by the U.S. Department of Energy (DOE) is today being credited with technological contributions that have stimulated development of domestic natural gas from shales. The result: more U.S. jobs, increased energy security, and higher revenues

  17. Apparatus for producing voltage and current pulses

    DOE Patents [OSTI]

    Kirbie, Hugh (Los Alamos, NM); Dale, Gregory E. (Los Alamos, NM)

    2010-12-21

    An apparatus having one or more modular stages for producing voltage and current pulses. Each module includes a diode charging means to charge a capacitive means that stores energy. One or more charging impedance means are connected to the diode charging means to provide a return current pathway. A solid-state switch discharge means, with current interruption capability, is connected to the capacitive means to discharge stored energy. Finally, a control means is provided to command the switching action of the solid-state switch discharge means.

  18. Produced Water Management and Beneficial Use

    SciTech Connect (OSTI)

    Terry Brown; Carol Frost; Thomas Hayes; Leo Heath; Drew Johnson; David Lopez; Demian Saffer; Michael Urynowicz; John Wheaton; Mark Zoback

    2007-10-31

    Large quantities of water are associated with the production of coalbed methane (CBM) in the Powder River Basin (PRB) of Wyoming. The chemistry of co-produced water often makes it unsuitable for subsequent uses such as irrigated agriculture. However, co-produced waters have substantial potential for a variety of beneficial uses. Achieving this potential requires the development of appropriate water management strategies. There are several unique characteristics of co-produced water that make development of such management strategies a challenge. The production of CBM water follows an inverse pattern compared to traditional wells. CBM wells need to maintain low reservoir pressures to promote gas production. This need renders the reinjection of co-produced waters counterproductive. The unique water chemistry of co-produced water can reduce soil permeability, making surface disposal difficult. Unlike traditional petroleum operations where co-produced water is an undesirable by-product, co-produced water in the PRB often is potable, making it a highly valued resource in arid western states. This research project developed and evaluated a number of water management options potentially available to CBM operators. These options, which focus on cost-effective and environmentally-sound practices, fall into five topic areas: Minimization of Produced Water, Surface Disposal, Beneficial Use, Disposal by Injection and Water Treatment. The research project was managed by the Colorado Energy Research Institute (CERI) at the Colorado School of Mines (CSM) and involved personnel located at CERI, CSM, Stanford University, Pennsylvania State University, the University of Wyoming, the Argonne National Laboratory, the Gas Technology Institute, the Montana Bureau of Mining and Geology and PVES Inc., a private firm.

  19. Method of producing submicron size particles and product produced thereby

    DOE Patents [OSTI]

    Bourne, R.S.; Eichman, C.C.; Welbon, W.W.

    1988-05-11

    Submicron size particles are produced by using a sputtering process to deposit particles into a liquid. The liquid is processed to recover the particles therefrom, and the particles have sizes in the range of twenty to two hundred Angstroms. Either metallic or non-metallic particles can be produced, and the metallic particles can be used in ''metallic inks.'' 4 figs.

  20. Produced Water Treatment Using Microbial Fuel Cell Technology

    SciTech Connect (OSTI)

    Borole, A. P.; Campbell, R.

    2011-05-20

    ORNL has developed a treatment for produced water using a combination of microbial fuel cells and electrosorption. A collaboration between Campbell Applied Physics and ORNL was initiated to further investigate development of the technology and apply it to treatment of field produced water. The project successfully demonstrated the potential of microbial fuel cells to generate electricity from organics in produced water. A steady voltage was continuously generated for several days using the system developed in this study. In addition to the extraction of electrical energy from the organic contaminants, use of the energy at the representative voltage was demonstrated for salts removal or desalination of the produced water. Thus, the technology has potential to remove organic as well as ionic contaminants with minimal energy input using this technology. This is a novel energy-efficient method to treat produced water. Funding to test the technology at larger scale is being pursued to enable application development.

  1. Scientists produce transparent, light-harvesting material

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transparent, light-harvesting material Scientists produce transparent, light-harvesting material The material could be used in development of transparent solar panels. November 3, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a

  2. Energy

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    M onthly Energy Re< view Ila A a m 0 II 8 IIIW *g U In this issue: New data on nuclear electricity in Eastern Europe (Table 10.4) 9'Ij a - Ordering Information This publication...

  3. Energy Production Over the Years | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Production Over the Years Energy Production Over the Years US Energy Production Through the Years Click on each state to learn more about how much energy it produces Pick an energy source Total Energy Produced Coal Crude Oil Natural Gas Total Renewable Energy Non-Biofuel Renewable Energy Biofuels Nuclear Power Source: EIA State Energy Data Systems

  4. Method for producing a borohydride

    DOE Patents [OSTI]

    Kong, Peter C.

    2010-06-22

    A method for producing a borohydride is described that includes the steps of providing a source of borate; providing a material that chemically reduces the source of the borate to produce a borohydride; and reacting the source of the borate and the material by supplying heat at a temperature that substantially effects the production of the borohydride.

  5. Method for producing a borohydride

    DOE Patents [OSTI]

    Kong, Peter C. (Idaho Falls, ID)

    2008-09-02

    A method for producing a borohydride is described and which includes the steps of providing a source of borate; providing a material which chemically reduces the source of the borate to produce a borohydride; and reacting the source of borate and the material by supplying heat at a temperature which substantially effects the production of the borohydride.

  6. Off-Site Radiation Exposure Review Project: Phase 2 soils program

    SciTech Connect (OSTI)

    McArthur, R.D.; Miller, F.L. Jr.

    1989-12-01

    To help estimate population doses of radiation from fallout originating at the Nevada Test Site, soil samples were collected throughout the western United States. Each sample was prepared by drying and ball-milling, then analyzed by gamma-spectrometry to determine the amount of {sup 137}Cs it contained. Most samples were also analyzed by chemical separation and alpha-spectrometry to determine {sup 239 + 240}Pu and by isotope mass spectroscopy to determine the ratios of {sup 240}Pu to {sup 239}Pu and {sup 241}Pu to {sup 239}Pu. The total inventories of cesium and plutonium at 171 sites were computed from the results. This report describes the sample collection, processing, and analysis, presents the analytical results, and assesses the quality of the data. 10 refs., 9 figs., 12 tabs.

  7. Off-Site Waste Certification Guidance and NNSSWAC Compliance Rev 1.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

  8. SWRHL-38r OFF-SITE-SURVEILLANCE ACTIVITIES OF THE SOUTHWESTERN...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... large yield and ground motion was anticipated as far as 75 miles frc,m ground zero. ... by the AEC andor recommended by the FRC and the NCRP. APPENDIX A i Milk sample ...

  9. SWRHL-22r OFF-SITE SURVEILLANCE ACTIVITIES OF THE SOUTHWESTERN...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... which ex- ceeded the1 guides established by the AEC andor recommended by the FRC and th& NCRP. APPENDIX I ROUTINE MILK SAMPLING RESULTS Note: ND on the following pages ...

  10. EIS-0243: Nevada Test Site and Off-Site Locations in the State of Nevada

    Broader source: Energy.gov [DOE]

    This EIS evaluates the potential environmental impacts of the management of low-level waste (LLW) at all sites and continue, to the extent practicable, disposal of on- site LLW at the Idaho...

  11. OFermilab OFF-SITE SHORT-TERM HOUSING-2013--2014 Housing Office...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    regarding availability and current prices. Fermi National Accelerator Laboratory I Kirk Road and Pine Street I P.O. Box 500 I Batavia. IL 60510 I 630.840.3000 I www.fnal.gov I...

  12. Radiant Energy | Open Energy Information

    Open Energy Info (EERE)

    is an independent energy producer which develops and owns solar, geothermal, and hydroelectric generating assets. Coordinates: 28.967394, -98.478862 Show Map Loading map......

  13. Nu Energie | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Nu-Energie Place: Blountville, Tennessee Product: Biodiesel producer which develops biodiesel production facility. Coordinates: 36.532994,...

  14. Sitewide Environmental Assessment for the National Renewable Energy Laboratory, Golden, Colorado

    SciTech Connect (OSTI)

    Not Available

    1993-05-04

    The Solar Energy Research, Development, and Demonstration Act of 1974 authorized a federal program to develop solar energy as a viable source of the nation`s future energy needs. Under this authority, the National Renewable Energy Laboratory (NREL) was created as a laboratory of the Department of Energy (DOE) to research a number of renewable energy possibilities. The laboratory conducts its operations both in government-owned facilities on the NREL South Table Mountain (STM) Site near Golden, Colorado, and in a number of leased facilities, particularly the Denver West Office Park. NREL operations include research in energy technologies, and other areas of national environmental and energy technology interest. Examples of these technologies include electricity from sunlight with solar cells (photovoltaics); energy from wind (windmills or wind turbines); conversion of plants and plant products (biomass) into liquid fuels (ethanol and methanol); heat from the sun (solar thermal) in place of wood, oil, gas, coal and other forms of heating; and solar buildings. NREL proposes to continue and expand the present R&D efforts in C&R energy by making infrastructure improvements and constructing facilities to eventually consolidate the R&D and associated support activities at its STM Site. In addition, it is proposed that operations continue in current leased space at the present levels of activity until site development is complete. The construction schedule proposed is designed to develop the site as rapidly as possible, dependent on Congressional funding, to accommodate not only the existing R&D that is being conducted in leased facilities off-site but to also allow for the 20-year projected growth. Impacts from operations currently conducted off-site are quantified and added to the cumulative impacts of the STM site. This environmental assessment provides information to determine the severity of impacts on the environment from the proposed action.

  15. Cellulase producing microorganism ATCC 55702

    DOE Patents [OSTI]

    Dees, H.C.

    1997-12-30

    Bacteria which produce large amounts of cellulase--containing cell-free fermentate have been identified. The original bacterium (ATCC 55703) was genetically altered using nitrosoguanidine (MNNG) treatment to produce the enhanced cellulase producing bacterium (ATCC 55702), which was identified through replicate plating. ATCC 55702 has improved characteristics and qualifies for the degradation of cellulosic waste materials for fuel production, food processing, textile processing, and other industrial applications. ATCC 55702 is an improved bacterial host for genetic manipulations using recombinant DNA techniques, and is less likely to destroy genetic manipulations using standard mutagenesis techniques. 5 figs.

  16. Cellulase producing microorganism ATCC 55702

    DOE Patents [OSTI]

    Dees, H. Craig (Lenoir City, TN)

    1997-01-01

    Bacteria which produce large amounts of cellulase--containing cell-free fermentate have been identified. The original bacterium (ATCC 55703) was genetically altered using nitrosoguanidine (MNNG) treatment to produce the enhanced cellulase producing bacterium (ATCC 55702), which was identified through replicate plating. ATCC 55702 has improved characteristics and qualifies for the degradation of cellulosic waste materials for fuel production, food processing, textile processing, and other industrial applications. ATCC 55702 is an improved bacterial host for genetic manipulations using recombinant DNA techniques, and is less likely to destroy genetic manipulations using standard mutagenesis techniques.

  17. Microorganisms for producing organic acids

    DOE Patents [OSTI]

    Pfleger, Brian Frederick; Begemann, Matthew Brett

    2014-09-30

    Organic acid-producing microorganisms and methods of using same. The organic acid-producing microorganisms comprise modifications that reduce or ablate AcsA activity or AcsA homolog activity. The modifications increase tolerance of the microorganisms to such organic acids as 3-hydroxypropionic acid, acrylic acid, propionic acid, lactic acid, and others. Further modifications to the microorganisms increase production of such organic acids as 3-hydroxypropionic acid, lactate, and others. Methods of producing such organic acids as 3-hydroxypropionic acid, lactate, and others with the modified microorganisms are provided. Methods of using acsA or homologs thereof as counter-selectable markers are also provided.

  18. Methods of producing cesium-131

    DOE Patents [OSTI]

    Meikrantz, David H; Snyder, John R

    2012-09-18

    Methods of producing cesium-131. The method comprises dissolving at least one non-irradiated barium source in water or a nitric acid solution to produce a barium target solution. The barium target solution is irradiated with neutron radiation to produce cesium-131, which is removed from the barium target solution. The cesium-131 is complexed with a calixarene compound to separate the cesium-131 from the barium target solution. A liquid:liquid extraction device or extraction column is used to separate the cesium-131 from the barium target solution.

  19. Adkins Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    search Name: Adkins Energy LLC Place: Illinois Product: Cooperative producing bioethanol in Illinois References: Adkins Energy LLC1 This article is a stub. You can help...

  20. Granite Falls Energy | Open Energy Information

    Open Energy Info (EERE)

    Name: Granite Falls Energy Place: Granite Falls, Minnesota Zip: 56241 Product: Bioethanol producer using corn as feedstock References: Granite Falls Energy1 This article is...

  1. Blue Sky Optimum Energy | Open Energy Information

    Open Energy Info (EERE)

    Optimum Energy Jump to: navigation, search Name: Blue Sky Optimum Energy Place: Buffalo, New York Product: Blue Sky offers a processing system to produce biodiesel at a cheaper...

  2. Central Iowa Energy | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name: Central Iowa Energy Place: Newton, Iowa Zip: 50208 Product: Biodiesel producers in Newton, Iowa. References: Central Iowa Energy1 This article is a...

  3. Agri Energy Inc | Open Energy Information

    Open Energy Info (EERE)

    search Name: Agri-Energy Inc Place: Nashville, Tennessee Zip: 37201 Product: Biodiesel producer, located in Nashville, Tennessee. References: Agri-Energy Inc1 This...

  4. Forbes Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    Forbes Energy, LLC. Place: Newport, Rhode Island Zip: 2840 Sector: Renewable Energy Product: Rhode Island-based firm that has developed a model for producing renewable, sustainable...

  5. Shenyu New Energy | Open Energy Information

    Open Energy Info (EERE)

    British Virgin Islands-based parent company of Yunnan Shenyu New Energy, a biological research and development company and biofuel producer. References: Shenyu New Energy1...

  6. Sacramento, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Municipal Utility District SMUD Sierra Nevada Solar USA Biomass Power Producers Alliance Vanir Energy LLC Western Renewable Energy Generation Information System Wineagle...

  7. Point Bio Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    Point Bio Energy LLC Jump to: navigation, search Name: Point Bio Energy LLC Place: La Pointe, Wisconsin Product: Wisconsin-based wood fuel pellet producer. References: Point Bio...

  8. Greentech Energy Systems | Open Energy Information

    Open Energy Info (EERE)

    Systems Place: Denmark Product: The company aims to develop, own or partly own energy plants, which produce electricity on the basis of sustainable energy forms. References:...

  9. Indeck Energy Services | Open Energy Information

    Open Energy Info (EERE)

    60089 Sector: Biofuels, Biomass, Renewable Energy Product: Illinois-based independent power producer that develops, owns, and operates conventional and renewable energy projects,...

  10. JSW Energy Ltd | Open Energy Information

    Open Energy Info (EERE)

    India Zip: 560001 Sector: Solar, Wind energy Product: Bangalore-based independent power producer looking to diversify in solar and wind energy. Coordinates: 12.97092,...

  11. Natural Fuel Energy Inc | Open Energy Information

    Open Energy Info (EERE)

    Fuel Energy Inc Jump to: navigation, search Name: Natural Fuel & Energy Inc Place: Boston, Massachusetts Zip: 2100 Product: Boston - based biodiesel producer that operates a...

  12. Paquin Energy and Fuel | Open Energy Information

    Open Energy Info (EERE)

    Paquin Energy and Fuel Jump to: navigation, search Name: Paquin Energy and Fuel Place: Keller, Texas Product: Biodiesel producer based in Texas Coordinates: 48.081785,...

  13. Clean Energy Technologies | Open Energy Information

    Open Energy Info (EERE)

    Technologies Jump to: navigation, search Name: Clean Energy Technologies Place: Overland Park, Kansas Sector: Renewable Energy Product: Producer of ethanol and other renewable...

  14. Smiling Earth Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    Earth Energy LLC Place: Bakersfield, California Zip: 93314 Product: California based biodiesel producer and project developer. References: Smiling Earth Energy LLC1 This...

  15. Gushan Environmental Energy Ltd | Open Energy Information

    Open Energy Info (EERE)

    Name: Gushan Environmental Energy Ltd Place: Fuzhou, Fujian Province, China Product: Biodiesel Producer References: Gushan Environmental Energy Ltd1 This article is a stub....

  16. Bio Energy Systems LLC | Open Energy Information

    Open Energy Info (EERE)

    search Name: Bio-Energy Systems LLC Place: san Anselmo, California Zip: 94960 Product: Biodiesel producer in Vallejo, California. References: Bio-Energy Systems LLC1 This...

  17. Energy Merchant Marketing EMM | Open Energy Information

    Open Energy Info (EERE)

    Name: Energy Merchant Marketing (EMM) Place: New York, New York Zip: 10022 Product: Biodiesel producer. References: Energy Merchant Marketing (EMM)1 This article is a stub....

  18. Archimede Solar Energy Srl | Open Energy Information

    Open Energy Info (EERE)

    Archimede Solar Energy Srl Jump to: navigation, search Name: Archimede Solar Energy Srl Place: Massa Martana, Italy Zip: 6056 Sector: Solar Product: Italy-based producer of...

  19. East Kansas Agri Energy | Open Energy Information

    Open Energy Info (EERE)

    Kansas Agri Energy Jump to: navigation, search Name: East Kansas Agri-Energy Place: Garnett, Kansas Zip: 66032 Product: Dry-mill bioethanol producer Coordinates: 32.609607,...

  20. Water management technologies used by Marcellus Shale Gas Producers.

    SciTech Connect (OSTI)

    Veil, J. A.; Environmental Science Division

    2010-07-30

    Natural gas represents an important energy source for the United States. According to the U.S. Department of Energy's (DOE's) Energy Information Administration (EIA), about 22% of the country's energy needs are provided by natural gas. Historically, natural gas was produced from conventional vertical wells drilled into porous hydrocarbon-containing formations. During the past decade, operators have increasingly looked to other unconventional sources of natural gas, such as coal bed methane, tight gas sands, and gas shales.

  1. Neutrons Reveal New Electrocatalyst Family for Producing Hydrogen Fuel |

    Office of Science (SC) Website

    U.S. DOE Office of Science (SC) Neutrons Reveal New Electrocatalyst Family for Producing Hydrogen Fuel Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: Email Us More

  2. Ecomed Energy | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Ecomed Energy Place: Barcelona, Spain Product: Biodiesel producer References: Ecomed Energy1 This article is a stub. You can help OpenEI by...

  3. Methods of producing transportation fuel

    DOE Patents [OSTI]

    Nair, Vijay; Roes, Augustinus Wilhelmus Maria; Cherrillo, Ralph Anthony; Bauldreay, Joanna M.

    2011-12-27

    Systems, methods, and heaters for treating a subsurface formation are described herein. At least one method for producing transportation fuel is described herein. The method for producing transportation fuel may include providing formation fluid having a boiling range distribution between -5.degree. C. and 350.degree. C. from a subsurface in situ heat treatment process to a subsurface treatment facility. A liquid stream may be separated from the formation fluid. The separated liquid stream may be hydrotreated and then distilled to produce a distilled stream having a boiling range distribution between 150.degree. C. and 350.degree. C. The distilled liquid stream may be combined with one or more additives to produce transportation fuel.

  4. Innovative Wave Power Device Starts Producing Clean Power in Hawaii |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy Wave Power Device Starts Producing Clean Power in Hawaii Innovative Wave Power Device Starts Producing Clean Power in Hawaii July 6, 2015 - 6:31pm Addthis With support from the Energy Department and the U.S. Navy, a prototype wave energy device has advanced successfully from initial concept to grid-connected, open-sea pilot testing. The device, called Azura, was recently launched and installed in a 30-meter test berth at the Navy's Wave Energy Test Site (WETS) in Kaneohe

  5. Directed Evolution of Microbe Producing Biofuels Using in Vivo

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transcription Factor Based Biosensors - Energy Innovation Portal Directed Evolution of Microbe Producing Biofuels Using in Vivo Transcription Factor Based Biosensors Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing SummaryResearchers at the Joint BioEnergy Institute (JBEI) have invented a method of using transcription factors expressed in vivo to evolve, screen, and select for microorganisms producing an intracellular small molecule of interest,

  6. NREL Produces Ethylene via Photosynthesis - News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Produces Ethylene via Photosynthesis Environmentally-friendly process offers intriguing alternative to fossil-fuel based ethylene for chemicals and transportation fuels September 25, 2012 Scientists at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) have demonstrated a better way to use photosynthesis to produce ethylene, a breakthrough that could change the way materials, chemicals, and transportation fuels are made, and help clean the air. NREL scientists introduced

  7. Chapter 7: Advancing Systems and Technologies to Produce Cleaner Fuels

    Office of Environmental Management (EM)

    7: Advancing Systems and Technologies to Produce Cleaner Fuels September 2015 Quadrennial Technology Review 7 Advancing Systems and Technologies to Produce Cleaner Fuels Issues and RDD&D Opportunities  Fossil fuels account for 82% of total U.S. primary energy use.  Each fuel has strengths and weaknesses in relation to energy security, economic competitiveness, and environmental responsibility identified in Chapter 1.  Low-cost fuels can contribute to economic prosperity. Oil and gas

  8. Omniwatt | Open Energy Information

    Open Energy Info (EERE)

    search Name: Omniwatt Place: Germany Product: Omniwatt is an independent, decentralized power producer, applying technologies that produce energy from fuel-less resources....

  9. Methods for Post Irradiation Examination of Tritium Producing Burnable

    Office of Environmental Management (EM)

    Absorber Rods | Department of Energy for Post Irradiation Examination of Tritium Producing Burnable Absorber Rods Methods for Post Irradiation Examination of Tritium Producing Burnable Absorber Rods Presentation from the 32nd Tritium Focus Group Meeting held in Germantown, Maryland on April 23-25, 2013. PDF icon Methods for Post Irradiation Examination of Tritium Producing Burnable Absorber Rods More Documents & Publications Design and Fabrication of In-Reactor Experiment to Measure

  10. Producing Beneficial Materials from Biomass and Biodiesel Byproducts -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Producing Beneficial Materials from Biomass and Biodiesel Byproducts Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing SummaryResearchers at Berkeley Lab have created a process to produce olefins from polyols that may be biomass derived. The team is also the first to introduce a method of producing high purity allyl alcohol at a large scale by

  11. Cost-Effective Enzyme for Producing Biofuels from Cellulosic Biomass -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Cost-Effective Enzyme for Producing Biofuels from Cellulosic Biomass Inventors: Ming Woei Lau, Bruce Dale Great Lakes Bioenergy Research Center Contact GLBRC About This Technology Technology Marketing SummaryProducing biofuels from cellulosic materials, such as corn stalks, wood chips, and other biomass, requires the use of enzymes to degrade the cellulosic biomass into its molecular components. The cost to produce these enzymes is high, a factor contributing to the

  12. Method of producing .sup.67 Cu

    DOE Patents [OSTI]

    O'Brien, Jr., Harold A. (Los Alamos, NM); Barnes, John W. (Los Alamos, NM); Taylor, Wayne A. (Los Alamos, NM); Thomas, Kenneth E. (Los Alamos, NM); Bentley, Glenn E. (Los Alamos, NM)

    1984-01-01

    A method of producing carrier-free .sup.67 Cu by proton spallation combined with subsequent chemical separation and purification is disclosed. A target consisting essentially of pressed zinc oxide is irradiated with a high energy, high current proton beam to produce a variety of spallogenic nuclides, including .sup.67 Cu and other copper isotopes. The irradiated target is dissolved in a concentrated acid solution to which a palladium salt is added. In accordance with the preferred method, the spallogenic copper is twice coprecipitated with palladium, once with metallic zinc as the precipitating agent and once with hydrogen sulfide as the precipitating agent. The palladium/copper precipitate is then dissolved in an acid solution and the copper is separated from the palladium by liquid chromatography on an anion exchange resin.

  13. Characterization of Soluble Organics in Produced Water

    SciTech Connect (OSTI)

    Bostick, D.T.

    2002-01-16

    Soluble organics in produced water and refinery effluents represent treatment problems for the petroleum industry. Neither the chemistry involved in the production of soluble organics nor the impact of these chemicals on total effluent toxicity is well understood. The U.S. Department of Energy provides funding for Oak Ridge National Laboratory (ORNL) to support a collaborative project with Shell, Chevron, Phillips, and Statoil entitled ''Petroleum and Environmental Research Forum project (PERF 9844: Manage Water-Soluble Organics in Produced Water''). The goal of this project, which involves characterization and evaluation of these water-soluble compounds, is aimed at reducing the future production of such contaminants. To determine the effect that various drilling conditions might have on water-soluble organics (WSO) content in produced water, a simulated brine water containing the principal inorganic components normally found in Gulf of Mexico (GOM) brine sources was prepared. The GOM simulant was then contacted with as-received crude oil from a deep well site to study the effects of water cut, produced-water pH, salinity, pressure, temperature, and crude oil sources on the type and content of the WSO in produced water. The identities of individual semivolatile organic compounds (SVOCs) were determined in all as-received crude and actual produced water samples using standard USEPA Method (8270C) protocol. These analyses were supplemented with the more general measurements of total petroleum hydrocarbon (TPH) content in the gas (C{sub 6}-C{sub 10}), diesel (C{sub 10}-C{sub 20}), and oil (C{sub 20}-C{sub 28}) carbon ranges as determined by both gas chromatographic (GC) and infrared (IR) analyses. An open liquid chromatographic procedure was also used to differentiate the saturated hydrocarbon, aromatic hydrocarbon, and polar components within the extractable TPH. Inorganic constituents in the produced water were analyzed by ion-selective electrodes and inductively coupled plasma (ICP)-atomic emission spectrometry (AES). The WSO found in produced water samples was primarily polar in nature and distributed between the low and midrange carbon ranges. Typical levels of total extractable material (TEM) was about 20 mg/L; that associated with the aromatic fraction was present at 0.2 mg/L and that in the saturated hydrocarbon fraction was present at less than 0.02 mg/L. Formic, acetic, and propionic acids were also found in the produced water, occurring at a total concentration of 30 mg/L. It was estimated that the presence of 30 mg/L organic acids would artificially overstate TEM content by 2 mg/L. Of the five tested parameters, the factor that most controlled the total WSO in produced water was that of aqueous phase pH. Beyond a value of pH7 significant quantities of C{sub 10}-C{sub 20} range material become markedly soluble as they deprotonate in a basic aqueous phase. Both the absolute and relative volumes of GOM brine and crude additionally affected total WSO. Produced water appeared to reach a saturation level of WSO at a.50% water/oil ratio. Pressure slightly enhanced WSO by increasing the relative quantity of C{sub 6}-C{sub 10} range material. Temperature primarily altered the relative ratio of carbon ranges within the WSO without significantly elevating the total WSO in the GOM brine. Salinity had the least affect on the chemical character or the carbon size of WSO in produced water.

  14. Producing usable fuel from municipal solid waste

    SciTech Connect (OSTI)

    Ohlsson, O.O.

    1995-03-01

    Refuse disposal is a matter of increasing concern for municipalities and state governments. As existing land-fills become filled to capacity, and new landfills become more costly to site, it has become critical to develop alternative disposal methods. Some of the refuse that is presently being landfilled has the potential to provide considerable quantities of energy and thereby replace conventional fossil fuels. Another environmental concern is the problem of the emissions associated with combustion of traditional fossil fuels. The Clean Air Act Amendments of 1990 significantly restrict the level of sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) emissions permissible as effluent from combustion facilities. To address both of these concerns, Argonne National Laboratory, under sponsorship of the U.S. Department of Energy (DOE), has developed a means of producing fuel from municipal solid waste that can be co-fired with coal to supplement coal supplies and reduce problematic emissions.

  15. Process for producing chalcogenide semiconductors

    DOE Patents [OSTI]

    Noufi, Rommel (Westminster, CO); Chen, Yih-Wen (Omaha, NE)

    1987-01-01

    A process for producing chalcogenide semiconductor material is disclosed. The process includes forming a base metal layer and then contacting this layer with a solution having a low pH and containing ions from at least one chalcogen to chalcogenize the layer and form the chalcogenide semiconductor material.

  16. Process for producing chalcogenide semiconductors

    DOE Patents [OSTI]

    Noufi, R.; Chen, Y.W.

    1985-04-30

    A process for producing chalcogenide semiconductor material is disclosed. The process includes forming a base metal layer and then contacting this layer with a solution having a low pH and containing ions from at least one chalcogen to chalcogenize the layer and form the chalcogenide semiconductor material.

  17. Fujian Zhongde Energy Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Fujian Zhongde Energy Co Ltd Place: Fujian Province, China Product: China-based biodiesel producer. Wholly-owned subsidiary of China Clean Energy References: Fujian Zhongde Energy...

  18. Energy Department Announces Launch of Energy Innovation Hub for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Launch of Energy Innovation Hub for Critical Materials Research Energy Department Announces ... Our success will be crucial to ensuring we can continue producing the advanced energy ...

  19. Search for the Higgs boson in events with missing transverse energy and b quark jets produced in proton-antiproton collisions at s**(1/2)=1.96 TeV

    SciTech Connect (OSTI)

    Aaltonen, T.; Adelman, J.; Akimoto, T.; Albrow, M.G.; Alvarez Gonzalez, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Aoki, M.; /Illinois U., Urbana /Fermilab

    2008-02-01

    We search for the standard model Higgs boson produced in association with an electroweak vector boson in events with no identified charged leptons, large imbalance in transverse momentum, and two jets where at least one contains a secondary vertex consistent with the decay of b hadrons. We use {approx}1 fb{sup -1} integrated luminosity of p{bar p} collisions at {radical}s = 1.96 TeV recorded by the CDF II experiment at the Tevatron. We find 268 (16) single (double) b-tagged candidate events, where 248 {+-} 43 (14.4 {+-} 2.7) are expected from standard model background processes. We place 95% confidence level upper limits on the Higgs boson production cross section for several Higgs boson masses ranging from 110 GeV/c{sup 2} to 140 GeV/c{sup 2}. For a mass of 115 GeV/c{sup 2} the observed (expected) limit is 20.4 (14.2) times the standard model prediction.

  20. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    results Enter terms Search Showing 1 - 4 of 4 results. Article Solar Energy Technology Basics Solar energy technologies produce electricity from the energy of the sun. Small solar...

  1. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enter terms Search Showing 71 - 80 of 74 results. Article Solar Energy Technology Basics Solar energy technologies produce electricity from the energy of the sun. Small solar...

  2. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    results Enter terms Search Showing 1 - 1 of 1 result. Article Solar Energy Technology Basics Solar energy technologies produce electricity from the energy of the sun. Small solar...

  3. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Sources Search results Search results Enter terms Search Showing 1 - 1 of 1 result. Article Solar Energy Technology Basics Solar energy technologies produce electricity...

  4. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Basics Solar energy technologies produce electricity from the energy of the sun. Small solar energy systems can provide electricity for homes, businesses, and remote...

  5. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Sources Search results Search results Enter terms Search Showing 1 - 4 of 4 results. Article Solar Energy Technology Basics Solar energy technologies produce electricity...

  6. NREL: Energy Analysis - Partnerships

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    resources in advancing the understanding of energy efficiency and renewable energy technologies. We also co-produce publications with many of these groups. Current partnerships...

  7. Aerowatt | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name: Aerowatt Place: Ingre, France Zip: 45140 Sector: Solar, Wind energy Product: A France-based integrated wind and solar energy producer. Coordinates:...

  8. Solarfin | Open Energy Information

    Open Energy Info (EERE)

    Portugal Zip: 2790-072 Sector: Renewable Energy Product: Portugal-based independent power producer of renewable energy in the Mediterranean region. References: Solarfin1 This...

  9. Biossence | Open Energy Information

    Open Energy Info (EERE)

    Energy Product: Biossence was established in 2006 to develop and deliver flagship waste to energy projects producing renewable power. References: Biossence1 This article...

  10. Autogenic pressure reactors provide simple, rapid means of producing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    battery materials - Energy Innovation Portal Energy Storage Energy Storage Advanced Materials Advanced Materials Find More Like This Return to Search Autogenic pressure reactors provide simple, rapid means of producing battery materials Argonne National Laboratory Contact ANL About This Technology Spherical carbon particles prepared in an autogenic reaction Spherical carbon particles prepared in an autogenic reaction Technology Marketing Summary Rechargeable lithium-ion batteries have become

  11. Process for producing advanced ceramics

    DOE Patents [OSTI]

    Kwong, Kyei-Sing (Tuscaloosa, AL)

    1996-01-01

    A process for the synthesis of homogeneous advanced ceramics such as SiC+AlN, SiAlON, SiC+Al.sub.2 O.sub.3, and Si.sub.3 N.sub.4 +AlN from natural clays such as kaolin, halloysite and montmorillonite by an intercalation and heat treatment method. Included are the steps of refining clays, intercalating organic compounds into the layered structure of clays, drying the intercalated mixture, firing the treated atmospheres and grinding the loosely agglomerated structure. Advanced ceramics produced by this procedure have the advantages of homogeneity, cost effectiveness, simplicity of manufacture, ease of grind and a short process time. Advanced ceramics produced by this process can be used for refractory, wear part and structure ceramics.

  12. Method for producing carbon nanotubes

    DOE Patents [OSTI]

    Phillips, Jonathan; Perry, William L.; Chen, Chun-Ku

    2006-02-14

    Method for producing carbon nanotubes. Carbon nanotubes were prepared using a low power, atmospheric pressure, microwave-generated plasma torch system. After generating carbon monoxide microwave plasma, a flow of carbon monoxide was directed first through a bed of metal particles/glass beads and then along the outer surface of a ceramic tube located in the plasma. As a flow of argon was introduced into the plasma through the ceramic tube, ropes of entangled carbon nanotubes, attached to the surface of the tube, were produced. Of these, longer ropes formed on the surface portion of the tube located in the center of the plasma. Transmission electron micrographs of individual nanotubes revealed that many were single-walled.

  13. Method of producing cyclohexasilane compounds

    DOE Patents [OSTI]

    Elangovan, Arumugasamy; Anderson, Kenneth; Boudjouk, Philip R; Schulz, Douglas L

    2015-03-10

    A method of preparing a cyclohexasilane compound from trichlorosilane is provided. The method includes contacting trichlorosilane with a reagent composition to produce a compound containing a tetradecahalocyclohexasilane dianion, such as a tetradecachlorocyclohexasilane dianion. The reagent composition typically includes (a) tertiary polyamine ligand; and (b) a deprotonating reagent, such as a tertiary amine having a pKa of at least about 10.5. Methods of converting the tetradecahalocyclohexasilane dianion-containing compound to cyclohexasilane or a dodecaorganocyclohexasilane are also provided.

  14. Method for producing hydrophobic aerogels

    DOE Patents [OSTI]

    Hrubesh, Lawrence W. (Pleasanton, CA); Poco, John F. (Livermore, CA); Coronado, Paul R. (Livermore, CA)

    1999-01-01

    A method for treating a dried monolithic aerogel containing non-dispersed particles, with an organometallic surface modifying agent to produce hydrophobic aerogels. The dried, porous hydrophobic aerogels contain a protective layer of alkyl groups, such as methyl groups, on the modified surfaces of the pores of the aerogel. The alkyl groups at the aerogel surface typically contain at least one carbon-metal bond per group.

  15. Method for producing hydrophobic aerogels

    SciTech Connect (OSTI)

    Hrubesh, L.W.; Poco, J.F.; Coronado, P.R.

    1999-12-21

    A method is described for treating a dried monolithic aerogel containing non-dispersed particles, with an organometallic surface modifying agent to produce hydrophobic aerogels. The dried, porous hydrophobic aerogels contain a protective layer of alkyl groups, such as methyl groups, on the modified surfaces of the pores of the aerogel. The alkyl groups at the aerogel surface typically contain at least one carbon-metal bond per group.

  16. Method for producing metallic microparticles

    DOE Patents [OSTI]

    Phillips, Jonathan; Perry, William L.; Kroenke, William J.

    2004-06-29

    Method for producing metallic particles. The method converts metallic nanoparticles into larger, spherical metallic particles. An aerosol of solid metallic nanoparticles and a non-oxidizing plasma having a portion sufficiently hot to melt the nanoparticles are generated. The aerosol is directed into the plasma where the metallic nanoparticles melt, collide, join, and spheroidize. The molten spherical metallic particles are directed away from the plasma and enter the afterglow where they cool and solidify.

  17. Method for producing metallic nanoparticles

    DOE Patents [OSTI]

    Phillips, Jonathan; Perry, William L.; Kroenke, William J.

    2004-02-10

    Method for producing metallic nanoparticles. The method includes generating an aerosol of solid metallic microparticles, generating non-oxidizing plasma with a plasma hot zone at a temperature sufficiently high to vaporize the microparticles into metal vapor, and directing the aerosol into the hot zone of the plasma. The microparticles vaporize in the hot zone to metal vapor. The metal vapor is directed away from the hot zone and to the plasma afterglow where it cools and condenses to form solid metallic nanoparticles.

  18. Fish Producers Aquaculture Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Fish Producers Aquaculture Low Temperature Geothermal Facility Facility Fish Producers...

  19. Southern Iowa Bio Energy | Open Energy Information

    Open Energy Info (EERE)

    Bio Energy Jump to: navigation, search Name: Southern Iowa Bio-Energy Place: Leon, Iowa Zip: 50144 Product: Biodiesel producer based in Iowa References: Southern Iowa Bio-Energy1...

  20. C4 Energie | Open Energy Information

    Open Energy Info (EERE)

    C4 Energie Jump to: navigation, search Name: C4 Energie Place: Germany Product: German biogas producer. References: C4 Energie1 This article is a stub. You can help OpenEI by...

  1. Renewable Energy Technology Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy Technology Basics Renewable Energy Technology Basics Renewable energy technologies produce sustainable, clean energy from sources such as the sun, the wind, plants, and water. According to the Energy Information Administration, in 2007, renewable sources of energy accounted for about 7% of total energy consumption and 9.4% of total electricity generation in the United States. Renewable energy technologies have the potential to strengthen our nation's energy security, improve

  2. Fatty acid-producing hosts

    DOE Patents [OSTI]

    Pfleger, Brian F; Lennen, Rebecca M

    2013-12-31

    Described are hosts for overproducing a fatty acid product such as a fatty acid. The hosts include an exogenous nucleic acid encoding a thioesterase and, optionally, an exogenous nucleic acid encoding an acetyl-CoA carboxylase, wherein an acyl-CoA synthetase in the hosts are functionally delected. The hosts prefereably include the nucleic acid encoding the thioesterase at an intermediate copy number. The hosts are preferably recominantly stable and growth-competent at 37.degree. C. Methods of producing a fatty acid product comprising culturing such hosts at 37.degree. C. are also described.

  3. Method for producing a tube

    DOE Patents [OSTI]

    Peterson, Kenneth A. (Albuquerque, NM); Rohde, Steven B. (Corrales, NM); Pfeifer, Kent B. (Los Lunas, NM); Turner, Timothy S. (Rio Rancho, NM)

    2007-01-02

    A method is described for producing tubular substrates having parallel spaced concentric rings of electrical conductors that can be used as the drift tube of an Ion Mobility Spectrometer (IMS). The invention comprises providing electrodes on the inside of a tube that are electrically connected to the outside of the tube through conductors that extend between adjacent plies of substrate that are combined to form the tube. Tubular substrates are formed from flexible polymeric printed wiring board materials, ceramic materials and material compositions of glass and ceramic, commonly known as Low Temperature Co-Fired Ceramic (LTCC). The adjacent plies are sealed together around the electrode.

  4. Producing biofuels using polyketide synthases

    DOE Patents [OSTI]

    Katz, Leonard; Fortman, Jeffrey L; Keasling, Jay D

    2013-04-16

    The present invention provides for a non-naturally occurring polyketide synthase (PKS) capable of synthesizing a carboxylic acid or a lactone, and a composition such that a carboxylic acid or lactone is included. The carboxylic acid or lactone, or derivative thereof, is useful as a biofuel. The present invention also provides for a recombinant nucleic acid or vector that encodes such a PKS, and host cells which also have such a recombinant nucleic acid or vector. The present invention also provides for a method of producing such carboxylic acids or lactones using such a PKS.

  5. Method for producing viscous hydrocarbons

    DOE Patents [OSTI]

    Poston, Robert S. (Winter Park, FL)

    1982-01-01

    A method for recovering viscous hydrocarbons and synthetic fuels from a subterranean formation by drilling a well bore through the formation and completing the well by cementing a casing means in the upper part of the pay zone. The well is completed as an open hole completion and a superheated thermal vapor stream comprised of steam and combustion gases is injected into the lower part of the pay zone. The combustion gases migrate to the top of the pay zone and form a gas cap which provides formation pressure to produce the viscous hydrocarbons and synthetic fuels.

  6. Wind Energy Resource Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Resource Basics Wind Energy Resource Basics July 30, 2013 - 3:11pm Addthis Wind energy can be produced anywhere in the world where the wind blows with a strong and consistent force. Windier locations produce more energy, which lowers the cost of producing electricity. Moderate to excellent wind resources are found in most regions of the United States and off the nation's coasts in many areas. Wind resource maps available through the Wind Program can help individuals, communities, and

  7. Record of Decision (ROD) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Management December 13, 1996 EIS-0243: Record of Decision (December 1996) Environmental Impact Statement for the Nevada Test Site and Off-Site Locations in the State of Nevada...

  8. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    to include geothermal energy producers under this method of taxation. Under these policies, commercial wind operators and geothermal energy producers, excluding those...

  9. Method of producing metallic materials

    DOE Patents [OSTI]

    Branagan, Daniel J.

    2004-02-10

    The invention includes a method of producing a hard metallic material by forming a mixture containing at least 55% iron and at least one of B, C, Si and P. The mixture is formed into an alloy and cooled to form a metallic material having a hardness greater than about 9.2 GPa. The invention includes a method of forming a wire by combining a metal strip and a powder. The strip and the powder are rolled to form a wire containing at least 55% iron and from 2-7 additional elements including at least one of C, Si and B. The invention also includes a method of forming a hardened surface on a substrate by processing a solid mass to form a powder, applying the powder to a surface to form a layer containing metallic glass, and converting the glass to a crystalline material having a nanocrystalline grain size.

  10. Methods for producing secreted polypeptides

    DOE Patents [OSTI]

    Maiyuran, Suchindra; Fidantsef, Ana; Brody, Howard

    2008-07-01

    The present invention relates to methods for producing a polypeptide, comprising: (a) cultivating a fungal host cell in a medium conducive for the production of the polypeptide, wherein the fungal host cell comprises a nucleic acid construct comprising a first nucleotide sequence encoding a signal peptide operably linked to a second nucleotide sequence encoding the polypeptide, wherein the first nucleotide sequence is foreign to the second nucleotide sequence and the 3' end of the first nucleotide sequence is immediately upstream of the initiator codon of the second nucleotide sequence. The present invention also relates to the isolated signal peptide sequences and to constructs, vectors, and fungal host cells comprising the signal peptide sequences operably linked to nucleotide sequences encoding polypeptides.

  11. Number of Producing Gas Wells

    U.S. Energy Information Administration (EIA) Indexed Site

    Producing Gas Wells Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Area 2009 2010 2011 2012 2013 2014 View History U.S. 493,100 487,627 514,637 482,822 484,994 514,786 1989-2014 Alabama 6,913 7,026 7,063 6,327 6,165 6,118 1989-2014 Alaska 261 269 277 185 159 170 1989-2014 Arizona 6 5 5 5 5 5 1989-2014 Arkansas 6,314 7,397 8,388 8,538 9,843 10,150 1989-2014 California 1,643 1,580 1,308 1,423 1,335 1,118 1989-2014

  12. Method for producing high quality thin layer films on substrates

    DOE Patents [OSTI]

    Strongin, M.; Ruckman, M.; Strongin, D.

    1994-04-26

    A method for producing high quality, thin layer films of inorganic compounds upon the surface of a substrate is disclosed. The method involves condensing a mixture of preselected molecular precursors on the surface of a substrate and subsequently inducing the formation of reactive species using high energy photon or charged particle irradiation. The reactive species react with one another to produce a film of the desired compound upon the surface of the substrate. 4 figures.

  13. FINDING TRACERS FOR SUPERNOVA PRODUCED {sup 26}Al (Journal Article) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect FINDING TRACERS FOR SUPERNOVA PRODUCED {sup 26}Al Citation Details In-Document Search Title: FINDING TRACERS FOR SUPERNOVA PRODUCED {sup 26}Al We consider the cospatial production of elements in supernova explosions to find observationally detectable proxies for enhancement of {sup 26}Al in supernova ejecta and stellar systems. Using four progenitors, we explore a range of one-dimensional explosions at different energies and an asymmetric three-dimensional explosion. We find

  14. Valuable Chemical Produced from Renewables Instead of Petroleum |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Valuable Chemical Produced from Renewables Instead of Petroleum Valuable Chemical Produced from Renewables Instead of Petroleum March 11, 2015 - 11:04am Addthis Fermenter used in the scale-up of malonic acid.| Photo courtesy of Roy Kaltschmidt/Berkeley Lab Fermenter used in the scale-up of malonic acid.| Photo courtesy of Roy Kaltschmidt/Berkeley Lab Researchers at Lygos, Inc., an industrial biotechnology company, achieved a critical breakthrough in the cleaner

  15. Co-cultured Synechococcus and Shewanella Produce Hydrocarbons without

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cellulosic Feedstock - Energy Innovation Portal Co-cultured Synechococcus and Shewanella Produce Hydrocarbons without Cellulosic Feedstock DOE Grant Recipients University of Minnesota Contact University of Minnesota About This Technology <span id="Caption"><span id="ctl00_MainContentHolder_zoomimage_defaultCaption">Shewanella Oneidensis naturally produces hydrocarbons without cellulosic feedstock.</span></span> Shewanella Oneidensis naturally

  16. Method for producing high quality thin layer films on substrates

    DOE Patents [OSTI]

    Strongin, Myron (Center Moriches, NY); Ruckman, Mark (Middle Island, NY); Strongin, Daniel (Port Jefferson, NY)

    1994-01-01

    A method for producing high quality, thin layer films of inorganic compounds upon the surface of a substrate is disclosed. The method involves condensing a mixture of preselected molecular precursors on the surface of a substrate and subsequently inducing the formation of reactive species using high energy photon or charged particle irradiation. The reactive species react with one another to produce a film of the desired compound upon the surface of the substrate.

  17. California: Agricultural Residues Produce Renewable Fuel | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Agricultural Residues Produce Renewable Fuel California: Agricultural Residues Produce Renewable Fuel April 18, 2013 - 12:00am Addthis Logos Technologies and EERE partnered with EdeniQ of Visalia, California, to construct a pilot plant that processes 1.2 tons per day of agricultural residues, such as corn stover (leaves and stalks), as well as other California-sourced indigenous, nonfood feedstock sources (wood chips and switchgrass). The project has completed 1,500 hours of

  18. City in Colorado Fueling Vehicles with Gas Produced from Wastewater

    Office of Environmental Management (EM)

    Treatment Facility | Department of Energy City in Colorado Fueling Vehicles with Gas Produced from Wastewater Treatment Facility City in Colorado Fueling Vehicles with Gas Produced from Wastewater Treatment Facility April 29, 2015 - 6:05pm Addthis Grand Junction's CNG station fuels the city's fleets and county buses and is available to fuel public vehicles as well. Pictured above, a Grand Valley Transit bus is preparing to refuel. Grand Junction's CNG station fuels the city's fleets and

  19. EERE Success Story-California: Agricultural Residues Produce Renewable

    Office of Environmental Management (EM)

    Fuel | Department of Energy Agricultural Residues Produce Renewable Fuel EERE Success Story-California: Agricultural Residues Produce Renewable Fuel April 18, 2013 - 12:00am Addthis Logos Technologies and EERE partnered with EdeniQ of Visalia, California, to construct a pilot plant that processes 1.2 tons per day of agricultural residues, such as corn stover (leaves and stalks), as well as other California-sourced indigenous, nonfood feedstock sources (wood chips and switchgrass). The

  20. Rocky Mountain Basins Produced Water Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Historical records for produced water data were collected from multiple sources, including Amoco, British Petroleum, Anadarko Petroleum Corporation, United States Geological Survey (USGS), Wyoming Oil and Gas Commission (WOGC), Denver Earth Resources Library (DERL), Bill Barrett Corporation, Stone Energy, and other operators. In addition, 86 new samples were collected during the summers of 2003 and 2004 from the following areas: Waltman-Cave Gulch, Pinedale, Tablerock and Wild Rose. Samples were tested for standard seven component "Stiff analyses", and strontium and oxygen isotopes. 16,035 analyses were winnowed to 8028 unique records for 3276 wells after a data screening process was completed. [Copied from the Readme document in the zipped file available at http://www.netl.doe.gov/technologies/oil-gas/Software/database.html] Save the Zipped file to your PC. When opened, it will contain four versions of the database: ACCESS, EXCEL, DBF, and CSV formats. The information consists of detailed water analyses from basins in the Rocky Mountain region.

  1. Plasma treatment for producing electron emitters

    DOE Patents [OSTI]

    Coates, Don Mayo (Santa Fe, NM); Walter, Kevin Carl (Los Alamos, NM)

    2001-01-01

    Plasma treatment for producing carbonaceous field emission electron emitters is disclosed. A plasma of ions is generated in a closed chamber and used to surround the exposed surface of a carbonaceous material. A voltage is applied to an electrode that is in contact with the carbonaceous material. This voltage has a negative potential relative to a second electrode in the chamber and serves to accelerate the ions toward the carbonaceous material and provide an ion energy sufficient to etch the exposed surface of the carbonaceous material but not sufficient to result in the implantation of the ions within the carbonaceous material. Preferably, the ions used are those of an inert gas or an inert gas with a small amount of added nitrogen.

  2. NREL Updates Survey of Advanced Biofuel Producers in the United States |

    Energy Savers [EERE]

    Department of Energy Updates Survey of Advanced Biofuel Producers in the United States NREL Updates Survey of Advanced Biofuel Producers in the United States March 16, 2016 - 2:23pm Addthis The National Renewable Energy Laboratory (NREL) updated its annual survey of U.S. non-starch ethanol and renewable hydrocarbon biofuels producers. The survey report, titled 2015 Survey of Non-Starch Ethanol and Renewable Hydrocarbon Biofuels Producers, documents important changes (e.g., biorefinery

  3. Spotlight on Austin, Texas: Best Offer Ever Produces Upgrades in Record

    Energy Savers [EERE]

    Time | Department of Energy Best Offer Ever Produces Upgrades in Record Time Spotlight on Austin, Texas: Best Offer Ever Produces Upgrades in Record Time Spotlight on Austin, Texas: Best Offer Ever Produces Upgrades in Record Time, as posted on the U.S. Department of Energy's Better Buildings Neighborhood Program website. PDF icon Spotlight on Austin, Texas More Documents & Publications Spotlight on Austin, Texas: Best Offer Ever Produces 564 Upgrades in Record Time Spotlight on Austin,

  4. Zero Energy Buildings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial Buildings » Zero Energy Buildings Zero Energy Buildings Zero Energy Buildings Zero energy buildings combine energy efficiency and renewable energy generation to consume only as much energy as can be produced onsite through renewable resources over a specified time period. Achieving zero energy is an ambitious yet increasingly achievable goal that is gaining momentum across geographic regions and markets. Private commercial property owners have a growing interest in developing zero

  5. Solar Energy Technology Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy » Solar Energy Technology Basics Solar Energy Technology Basics August 16, 2013 - 4:37pm Addthis Solar energy technologies produce electricity from the energy of the sun. Small solar energy systems can provide electricity for homes, businesses, and remote power needs. Larger solar energy systems provide more electricity for contribution to the electric power system. Learn more about: Photovoltaics Concentrating Solar Power Solar Energy Resources Or learn about the latest solar

  6. New Ways to Produce Geothermal Power at Lower Temperatures | Department of

    Energy Savers [EERE]

    Energy Ways to Produce Geothermal Power at Lower Temperatures New Ways to Produce Geothermal Power at Lower Temperatures April 15, 2013 - 2:13pm Addthis Note: This article appeared in the April 2013 issue of Power Engineering magazine. By Tim Reinhardt, physical scientist, DOE's Geothermal Technologies Office Investments by the U.S. Department of Energy (DOE) are helping to produce geothermal power at increasingly lower temperatures. While traditional geothermal energy relies on geologically

  7. Method for Producing Flame Retardant Porous Products and Products Produced Thereby

    DOE Patents [OSTI]

    Salyer, Ival O. (Dayton, OH)

    1998-08-04

    A method for fire retarding porous products used for thermal energy storage and products produced thereby is provided. The method includes treating the surface of the phase change material-containing porous products with a urea fire-retarding agent. Upon exposure to a flame, the urea forms an adduct with the phase change material which will not sustain combustion (is self-extinguishing) in air. No halogens or metal oxides are contained in the fire retardant, so no potentially noxious halide smoke or fumes are emitted if the product is continuously exposed to a flame.

  8. Method for producing flame retardant porous products and products produced thereby

    DOE Patents [OSTI]

    Salyer, Ival O. (Dayton, OH)

    1998-08-04

    A method for fire retarding porous products used for thermal energy storage and products produced thereby is provided. The method includes treating the surface of the phase change material-containing porous products with a urea fire-retarding agent. Upon exposure to a flame, the urea forms an adduct with the phase change material which will not sustain combustion (is self-extinguishing) in air. No halogens or metal oxides are contained in the fire retardant, so no potentially noxious halide smoke or fumes are emitted if the product is continuously exposed to a flame.

  9. Method for producing flame retardant porous products and products produced thereby

    DOE Patents [OSTI]

    Salyer, I.O.

    1998-08-04

    A method for fire retarding porous products used for thermal energy storage and products produced thereby is provided. The method includes treating the surface of the phase change material-containing porous products with a urea fire-retarding agent. Upon exposure to a flame, the urea forms an adduct with the phase change material which will not sustain combustion (is self-extinguishing) in air. No halogens or metal oxides are contained in the fire retardant, so no potentially noxious halide smoke or fumes are emitted if the product is continuously exposed to a flame. 1 fig.

  10. Energy Videos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Videos Energy

  11. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    include wind, solar, biomass, landfill gas, anaerobic digestion, hydroelectricity, and geothermal energy. Facilities must use renewable energy to produce electricity......

  12. Producing microchannels using graduated diffusion bonding of a stack of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    precision machined foils or sheets (laminates) to make a micro-channel reactor - Energy Innovation Portal Advanced Materials Advanced Materials Find More Like This Return to Search Producing microchannels using graduated diffusion bonding of a stack of precision machined foils or sheets (laminates) to make a micro-channel reactor A novel multi-step process for the diffusion bonding of laminates National Energy Technology Laboratory Contact NETL About This Technology Publications: PDF

  13. New Process Helps Overcome Obstacles to Produce Renewable Fuels and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemicals - News Releases | NREL New Process Helps Overcome Obstacles to Produce Renewable Fuels and Chemicals Lignin Valorization Study Published in Proceedings of the National Academy of Sciences August 20, 2014 There's an old saying in the biofuels industry: "You can make anything from lignin except money." But now, a new study may pave the way to challenging that adage. The study from the Energy Department's National Renewable Energy Laboratory (NREL) demonstrates a concept

  14. Sandia Energy - Sandia Magnetized Fusion Technique Produces Significan...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    an automobile's cylinders firing. Sandia researchers Paul Schmit, left, and Patrick Knapp discuss equations and graphs that describe aspects of Sandia's Z Machine. (Photo by...

  15. ITP Steel: Theoretical Minimum Energies to Produce Steel for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    March 2000 PDF icon theoreticalminimumenergies.pdf More Documents & Publications Ironmaking Process Alternatives Screening Study ITP Steel: Steel Industry Marginal Opportunity...

  16. Energy Department Selects Five Projects in First Step to Produce...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and the flow of CO2 - also known as a plume steering- brine can be extracted from the formation at specific points, where fresh water can be separated in a process known as...

  17. Energy Department Selects Five Projects in First Step to Produce...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... and transportation; develop monitoring and water injectionproduction strategies for measuring and controlling the subsurface reservoir pressure and plume; and prepare a ...

  18. Financial News for Major Energy Producers, Third Quarter 2010

    Gasoline and Diesel Fuel Update (EIA)

    Company Earnings Press Release Company Web Site Alon USA Earnings Press Release Company Web Site Anadarko Petroleum Corporation Earnings Press Release Company Web Site Apache ...

  19. Timken Producing Parts for Wind Turbines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... certifications to manage various computer-aided processes and equipment. "We engineer, ... "Each company has a particular design based on performance and environmental ...

  20. Household Vehicles Energy Consumption 1991

    U.S. Energy Information Administration (EIA) Indexed Site

    selected tabulations were produced using two different software programs, Table Producing Language (TPL) and Statistical Analysis System (SAS). Energy Information Administration...

  1. Energy 101: Geothermal Energy | Department of Energy

    Office of Environmental Management (EM)

    Geothermal Energy Energy 101: Geothermal Energy

  2. Energy Resource Library | Department of Energy

    Energy Savers [EERE]

    Education & Training » Energy Resource Library Energy Resource Library The U.S. Department of Energy (DOE) Office of Indian Energy resource library provides links to helpful resources for tribes on energy project development and financing on tribal lands. The library includes links to topically relevant publications, websites, videos, and more produced by the Office of Indian Energy and external organizations. The resources are specifically focused on energy topics that help promote tribal

  3. Energy Resource Library | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Resource Library Energy Resource Library The Office of Indian Energy resource library provides links to helpful resources for Tribes on energy project development and financing in Indian Country. The library includes links to more than 85 topically relevant publications, websites, videos, and more produced by the Office of Indian Energy and external organizations. The resources are specifically focused on energy topics that help promote Indian tribal energy development, efficiency, and

  4. Glacial Lakes Energy | Open Energy Information

    Open Energy Info (EERE)

    search Name: Glacial Lakes Energy Place: Watertown, South Dakota Zip: 57201 Product: Bioethanol producer using corn as feedstock Coordinates: 43.197366, -88.720469 Show Map...

  5. Lincolnway Energy Coop | Open Energy Information

    Open Energy Info (EERE)

    search Name: Lincolnway Energy Coop Place: Nevada, Iowa Zip: 50201-7962 Product: Bioethanol producer using corn as feedstock. Coordinates: 38.502048, -117.022583 Show Map...

  6. Commonwealth AgriEnergy | Open Energy Information

    Open Energy Info (EERE)

    Name: Commonwealth AgriEnergy Place: Hopkinsville, Kentucky Zip: 42241 Product: Bioethanol producer using corn as feedstock Coordinates: 36.867275, -87.487699 Show Map...

  7. Western Plains Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    search Name: Western Plains Energy LLC Place: Oakley, Kansas Zip: 67748 Product: Bioethanol producer using corn as feedstock Coordinates: 40.714855, -111.298899 Show Map...

  8. Rational Energies LLC | Open Energy Information

    Open Energy Info (EERE)

    Minnesota-based development-stage company formed to produce and market renewable diesel made from waste feedstocks. References: Rational Energies LLC1 This article is a...

  9. Maple River Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    Energy, LLC Place: Galva, Iowa Zip: 51020 Product: US-based company that produces biodiesel by processing soybeans at its plant situated in Galva, Iowa. Coordinates:...

  10. Tianjin STL Energy Technology | Open Energy Information

    Open Energy Info (EERE)

    Place: China Product: Tianjin based cathode materials researcher and producer for Lithium secondary batteries. References: Tianjin STL Energy Technology1 This article is a...

  11. Sun Energy Group LLC | Open Energy Information

    Open Energy Info (EERE)

    company that is developing a project in New Orleans to produce electricity from trash via plasma gasification. References: Sun Energy Group LLC1 This article is a stub....

  12. W2 Energy Inc | Open Energy Information

    Open Energy Info (EERE)

    Biomass Product: Nevada-based business that produces liquid fuels (diesel, gasoline, methanol, butanol) from biomass, waste and coal feedstock. References: W2 Energy Inc1...

  13. Aventine Renewable Energy Holdings | Open Energy Information

    Open Energy Info (EERE)

    Holdings Jump to: navigation, search Name: Aventine Renewable Energy Holdings Place: Pekin, Illinois Zip: 61555-0010 Product: Illinois-based producer and marketer of ethanol in the...

  14. Aventine Renewable Energy Inc | Open Energy Information

    Open Energy Info (EERE)

    Inc Jump to: navigation, search Name: Aventine Renewable Energy Inc Place: Pekin, Illinois Zip: 61555-0010 Product: Producer and marketer of ethanol. Coordinates: 47.790615,...

  15. Biofuel Energy Corporation | Open Energy Information

    Open Energy Info (EERE)

    Biofuel Energy Corporation Address: 1600 Broadway Place: Denver, Colorado Zip: 80202 Region: Rockies Area Sector: Biofuels Product: Ethanol producer Website: bfenergy.com...

  16. Green Star Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    LLC Jump to: navigation, search Name: Green Star Energy LLC Place: Houston, Texas Zip: 77002 Product: Houston-based producer of sugar cane processed ethanol, with additional...

  17. Argent Energy UK Ltd | Open Energy Information

    Open Energy Info (EERE)

    Motherwell, Scotland, United Kingdom Zip: ML1 5FA Product: Motherwell-based waste-to-energy biodiesel producer that has an operational plant in Scotland. Coordinates:...

  18. Royal Energy Limited REL | Open Energy Information

    Open Energy Info (EERE)

    (REL) Place: Mumbai, Maharashtra, India Zip: 400 016 Product: Mumbai-based ethanol and biodiesel producer. References: Royal Energy Limited (REL)1 This article is a stub. You...

  19. Mobile Energy Products Inc | Open Energy Information

    Open Energy Info (EERE)

    Name: Mobile Energy Products Inc Place: Colorado Springs, Colorado Sector: Hydro, Hydrogen Product: Manufacturing subsidiary, which produces nickel sintered plaque for...

  20. CalEnergy Generation | Open Energy Information

    Open Energy Info (EERE)

    electric power and steam-producing facilities in the United States and the Philippines. Worldwide, CalEnergy Generation focuses on growth through acquisition and fuel source...

  1. Inland Pacific Energy Center | Open Energy Information

    Open Energy Info (EERE)

    search Name: Inland Pacific Energy Center Place: Stanfield, Oregon Sector: Biofuels Product: Biofuels producer currently developing a portfolio of ethanol and biodiesel...

  2. Energy Internet

    Broader source: Energy.gov [DOE]

    Energy Internet is commercializing a software platform for decentralized scheduling of energy-producing or consuming assets on the electricity grid. This scalable system will revolutionize the control of distributed solar generation, electric vehicle charging, intelligent appliances and other smart grid technologies.

  3. Energy Information Administration - Energy Efficiency-Table 3...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Energy Efficiency > Iron and Steel Manufacturing Energy, 1998 and 2002 > Table 3 Page Last Modified: June 2010 Table 3. Offsite-Produced Fuel Consumption, 1998, 2002, and 2006...

  4. Jiangsu Wende New Energy Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Jiangsu Wende New Energy Co Ltd Place: Yangzhong, Jiangsu Province, China Sector: Wind energy Product: Yangzhong-based producer of wind turbines. References: Jiangsu Wende New...

  5. Xinjiang Guanghui New Energy Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    New Energy Co Ltd Place: Xinjiang Autonomous Region, China Product: China-based biofuel producer. References: Xinjiang Guanghui New Energy Co Ltd1 This article is a stub....

  6. GATE Global Alternative Energy Holding AG | Open Energy Information

    Open Energy Info (EERE)

    Energy Holding AG Place: Wrzburg, Bavaria, Germany Zip: 97080 Product: Germany-based biodiesel producer. References: GATE Global Alternative Energy Holding AG1 This article...

  7. Zhuhai Oil Energy Science and Technology | Open Energy Information

    Open Energy Info (EERE)

    it. Zhuhai Oil Energy Science and Technology is a company based in Zhuhai, China. Zhuai Oil Energy produces biofuels and recently increased its production capacity to 60 metric...

  8. Agri Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    Name: Agri-Energy LLC Place: Luverne, Minnesota Zip: 56156 Product: Corn trader and bioethanol producer. References: Agri-Energy LLC1 This article is a stub. You can help OpenEI...

  9. Western NY Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    search Name: Western NY Energy LLC Place: Mount Morris, New York Zip: 14510 Product: Bioethanol producer. References: Western NY Energy LLC1 This article is a stub. You can help...

  10. Western Iowa Energy | Open Energy Information

    Open Energy Info (EERE)

    Western Iowa Energy Place: Iowa Product: Biodiesel producer which raised USD 22m from Iowa residents to construct a further plant at Wall Lake. References: Western Iowa Energy1...

  11. Indian Energy Ltd | Open Energy Information

    Open Energy Info (EERE)

    Kingdom Zip: W1S 1JY Sector: Wind energy Product: Guernsey-based AIM listed independent power producer with focus on wind project development. References: Indian Energy Ltd.1...

  12. R3 Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    R3 Energy LLC Jump to: navigation, search Name: R3 Energy LLC Place: Topeka, Kansas Zip: 66604 Product: Kansas-based biodiesel producer. Coordinates: 39.049285, -95.671184 Show...

  13. P Energy SAS | Open Energy Information

    Open Energy Info (EERE)

    Energy SAS Jump to: navigation, search Name: P.Energy SAS Place: Padova, Italy Product: Produces complete assembly lines for PV modules. Coordinates: 45.409285, 11.872849 Show...

  14. Community Energy Inc | Open Energy Information

    Open Energy Info (EERE)

    energy Product: CEI develops and invests in wind farms and solar farms in North East USA. It also markets the electricity it produces under the brand "NewWind Energy" to...

  15. California Energy Commission

    Broader source: Energy.gov (indexed) [DOE]

    California Energy Commission Quadrennial Water Review Comments - June 19, 2014 Water-Energy Nexus Water and energy systems are inextricably linked -- producing energy uses large quantities of water, and treating, transporting and heating water consumes large amounts of energy. Water delivery and wastewater treatment systems are among the largest consumers of energy in the nation. Reducing water use translates into direct energy savings. Since the California Energy Commission issued its landmark

  16. Fossil Energy | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    fossil energy. Sales of Fossil Fuels Produced from Federal and Indian Lands, FY 2003 through FY 2011 This paper provides updated summary information regarding fossil fuel production on federal and Indian lands. It includes the U.S. Energy Information Administration's (EIA) best estimates of fossil fuel sales from production on federal and Indian lands for fiscal years (fy) 2003 through 2011. Source: EIA.

  17. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    "Clean energy manufacturer" is defined as a biofuel producer, a manufacturer of renewable energy or nuclear equipmentproducts, or "products used for energy conservation, storage,...

  18. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Clean Energy Manufacturing Incentive Grant Program "Clean energy manufacturer" is defined as a biofuel producer, a manufacturer of renewable energy or nuclear equipmentproducts,...

  19. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    energy efficiency measures. Included in the standard is a Portfolio Energy Credit (PEC) trading program. Beginning January 1, 2003, Nevada's renewable energy producers can earn...

  20. Energy Intensity Indicators: Electricity Generation Energy Intensity |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Electricity Generation Energy Intensity Energy Intensity Indicators: Electricity Generation Energy Intensity A kilowatt-hour (kWh) of electric energy delivered to the final user has an energy equivalent to 3,412 British thermal units (Btu). Figure E1, below, tracks how much energy was used by the various categories of electricity generators to produce a kWh of electricity (i.e., the heat rate). As shown in the figure, in 1950, central power plants producing only

  1. Renewable Energy | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Energy Accelerating the transition to alternative energy sources requires significant improvement in materials, chemicals, processes, and devices. To produce more ...

  2. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Article Search results Search results Enter terms Search Showing 1 - 1 of 1 result. Article Solar Energy Technology Basics Solar energy technologies produce electricity from the...

  3. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Article Search results Search results Enter terms Search Showing 1 - 4 of 4 results. Article Solar Energy Technology Basics Solar energy technologies produce electricity from...

  4. Renewable Energy Sales Tax Exemption

    Broader source: Energy.gov [DOE]

    Eligible renewable resources include wind, solar, biomass, landfill gas, anaerobic digestion, hydroelectricity, and geothermal energy. Facilities must use renewable energy to produce electricity...

  5. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the chemical energy in plant sugars can be fermented to produce ethanol. Finally, the reasons for using ethanol as a fuel are discussed. http:energy.goveereeducation...

  6. Nexant Inc | Open Energy Information

    Open Energy Info (EERE)

    and management consulting services to electric utilities, energy producers, petroleum and chemical companies, governments, and energy end-users worldwide. References: Nexant,...

  7. Schneider Electric | Open Energy Information

    Open Energy Info (EERE)

    Renewable Energy Product: France-based, firm focused on electrical distribution, automation and control. The firm produces automated components for renewable energy systems....

  8. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Search results Search results Enter terms Search Showing 1 - 1 of 1 result. Article Solar Energy Technology Basics Solar energy technologies produce electricity from the...

  9. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewables Search results Search results Enter terms Search Showing 1 - 4 of 4 results. Article Solar Energy Technology Basics Solar energy technologies produce electricity from...

  10. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    how the chemical energy in plant sugars can be fermented to produce ethanol. Finally, the reasons for using ethanol as a fuel are discussed. http:energy.goveereeducation...

  11. Wind turbine | Open Energy Information

    Open Energy Info (EERE)

    turbine Jump to: navigation, search Dictionary.png Wind turbine: A machine that converts wind energy to mechanical energy; typically connected to a generator to produce...

  12. The Future of Atomic Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The piles operated at Eanford for the synthesis of plutonium produce energy in amounts comparable to that of the largest hydro- electric plants. The energy that is produced in the ...

  13. NextEra Energy Resources formerly FPL Energy LLC | Open Energy...

    Open Energy Info (EERE)

    Independent Power Producer active in wind, solar, hydroelectric, natural gas and nuclear References: NextEra Energy Resources (formerly FPL Energy LLC)1 This article is a...

  14. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    eereeducationdownloadsexploration-wind-energy-wind-turbines Download Creating Biodiesel & Mitigating Waste Safety practices for handling the materials involved in producing...

  15. Ute Tribe Energy Conference & Expo

    Broader source: Energy.gov [DOE]

    An international gathering of energy producing Tribes, governments and companies envisioning a path forward towards a more sustainable future.

  16. Method of producing nano-scaled inorganic platelets

    DOE Patents [OSTI]

    Zhamu, Aruna; Jang, Bor Z.

    2012-11-13

    The present invention provides a method of exfoliating a layered material (e.g., transition metal dichalcogenide) to produce nano-scaled platelets having a thickness smaller than 100 nm, typically smaller than 10 nm. The method comprises (a) dispersing particles of a non-graphite laminar compound in a liquid medium containing therein a surfactant or dispersing agent to obtain a stable suspension or slurry; and (b) exposing the suspension or slurry to ultrasonic waves at an energy level for a sufficient length of time to produce separated nano-scaled platelets. The nano-scaled platelets are candidate reinforcement fillers for polymer nanocomposites.

  17. Research Portfolio Report Small Producers: Operations/Improved Recovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Small Producers: Operations/Improved Recovery Cover image: Drill rigs and pump jacks are some typical tools used in natural gas and oil opera- tions and for improved recovery Research Portfolio Report Small Producers: Operations/Improved Recovery DOE/NETL-2015/1698 Prepared by: Mari Nichols-Haining and Christine Rueter KeyLogic Systems, Inc. National Energy Technology Laboratory (NETL) Contact: James Ammer james.ammer@netl.doe.gov Contract DE-FE0004003 Activity 4003.200.03 DISCLAIMER This report

  18. EM's Liquid Waste Contractor Produces $21 Million in Savings with

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    'Lean' System | Department of Energy Liquid Waste Contractor Produces $21 Million in Savings with 'Lean' System EM's Liquid Waste Contractor Produces $21 Million in Savings with 'Lean' System April 29, 2015 - 12:00pm Addthis SRR employees work through the Lean process. SRR employees work through the Lean process. “At the end of the waste disposition path, these mega-facilities allow us to give the decontaminated salt solution a safe, final destination,” DOE-Savannah River Waste

  19. Fact #600: December 7, 2009 China Produced More Vehicles than the U.S. in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2008 | Department of Energy 0: December 7, 2009 China Produced More Vehicles than the U.S. in 2008 Fact #600: December 7, 2009 China Produced More Vehicles than the U.S. in 2008 In 1980, the U.S. produced 56 times more vehicles than China. China's vehicle production has been growing since then, while U.S. vehicle production was hit hard in the recent economic downturn. In the year 2008, China produced 9.5 million vehicles, while the U.S. produced 8.7 million vehicles. Vehicles Produced in

  20. NETL Collaborates with Partners to Produce Global Outlook on Natural Gas

    Office of Environmental Management (EM)

    Hydrates | Department of Energy NETL Collaborates with Partners to Produce Global Outlook on Natural Gas Hydrates NETL Collaborates with Partners to Produce Global Outlook on Natural Gas Hydrates March 17, 2015 - 10:53am Addthis Researchers at the Office of Fossil Energy's National Energy Technology Laboratory (NETL) were part of an international team, including the United Nations Environmental Programme (UNEP), that contributed to a newly released report explaining the prospect of gas

  1. Produced water volumes and management practices in the United States.

    SciTech Connect (OSTI)

    Clark, C. E.; Veil, J. A.

    2009-09-01

    Produced water volume generation and management in the United States are not well characterized at a national level. The U.S. Department of Energy (DOE) asked Argonne National Laboratory to compile data on produced water associated with oil and gas production to better understand the production volumes and management of this water. The purpose of this report is to improve understanding of produced water by providing detailed information on the volume of produced water generated in the United States and the ways in which produced water is disposed or reused. As the demand for fresh water resources increases, with no concomitant increase in surface or ground water supplies, alternate water sources, like produced water, may play an important role. Produced water is water from underground formations that is brought to the surface during oil or gas production. Because the water has been in contact with hydrocarbon-bearing formations, it contains some of the chemical characteristics of the formations and the hydrocarbons. It may include water from the reservoir, water previously injected into the formation, and any chemicals added during the production processes. The physical and chemical properties of produced water vary considerably depending on the geographic location of the field, the geologic formation, and the type of hydrocarbon product being produced. Produced water properties and volume also vary throughout the lifetime of a reservoir. Produced water is the largest volume by-product or waste stream associated with oil and gas exploration and production. Previous national produced water volume estimates are in the range of 15 to 20 billion barrels (bbl; 1 bbl = 42 U.S. gallons) generated each year in the United States (API 1988, 2000; Veil et al. 2004). However, the details on generation and management of produced water are not well understood on a national scale. Argonne National Laboratory developed detailed national-level information on the volume of produced water generated in the United States and the manner in which produced water is managed. This report presents an overview of produced water, summarizes the study, and presents results from the study at both the national level and the state level. Chapter 2 presents background information on produced water, describing its chemical and physical characteristics, where it is produced, and the potential impacts of produced water to the environment and to oil and gas operations. A review of relevant literature is also included. Chapter 3 describes the methods used to collect information, including outreach efforts to state oil and gas agencies and related federal programs. Because of the inconsistency in the level of detail provided by various state agencies, the approaches and assumptions used to extrapolate data values are also discussed. In Chapter 4, the data are presented, and national trends and observations are discussed. Chapter 5 presents detailed results for each state, while Chapter 6 presents results from federal sources for oil and gas production (i.e., offshore, onshore, and tribal lands). Chapter 7 summarizes the study and presents conclusions.

  2. Prysmian | Open Energy Information

    Open Energy Info (EERE)

    search Name: Prysmian Place: Milan, Italy Zip: 20126 Product: Milan-based producer of high-technology cables and systems for energy and telecommunications. The firm also...

  3. Enersud | Open Energy Information

    Open Energy Info (EERE)

    Enersud Jump to: navigation, search Name: Enersud Place: So Gonalo RJ, Brazil Sector: Wind energy Product: Enersud provides micro-wind generators that produce 250 -1000...

  4. Bioenergy | Open Energy Information

    Open Energy Info (EERE)

    Bioenergy Jump to: navigation, search Dictionary.png Bioenergy: Energy produced from organic materials from plants or animals. Other definitions:Wikipedia Reegle 1 This article...

  5. Econar | Open Energy Information

    Open Energy Info (EERE)

    Zip: 55330 Sector: Geothermal energy Product: Econar produces GeoSource geothermal heat pumps, specializing in "ColdClimate" heat pumps. References: Econar1 This article is a...

  6. Eletrovento | Open Energy Information

    Open Energy Info (EERE)

    Eletrovento Jump to: navigation, search Name: Eletrovento Place: Campinas, Brazil Zip: 13082 780 Sector: Wind energy Product: Produces and installs 500W, 2KW, and 5KW wind...

  7. Process for producing ethanol from syngas

    DOE Patents [OSTI]

    Krause, Theodore R; Rathke, Jerome W; Chen, Michael J

    2013-05-14

    The invention provides a method for producing ethanol, the method comprising establishing an atmosphere containing methanol forming catalyst and ethanol forming catalyst; injecting syngas into the atmosphere at a temperature and for a time sufficient to produce methanol; and contacting the produced methanol with additional syngas at a temperature and for a time sufficient to produce ethanol. The invention also provides an integrated system for producing methanol and ethanol from syngas, the system comprising an atmosphere isolated from the ambient environment; a first catalyst to produce methanol from syngas wherein the first catalyst resides in the atmosphere; a second catalyst to product ethanol from methanol and syngas, wherein the second catalyst resides in the atmosphere; a conduit for introducing syngas to the atmosphere; and a device for removing ethanol from the atmosphere. The exothermicity of the method and system obviates the need for input of additional heat from outside the atmosphere.

  8. Nuclear Physics Accelerator Technology Yields New Process for Producing

    Office of Science (SC) Website

    Boron-Nitride Nanotubes | U.S. DOE Office of Science (SC) Nuclear Physics Accelerator Technology Yields New Process for Producing Boron-Nitride Nanotubes Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301)

  9. Method to Produce Highly Digestible, Pretreated Lignocellulosic Biomass

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Using Anhydrous Liquid Ammonia - Energy Innovation Portal Method to Produce Highly Digestible, Pretreated Lignocellulosic Biomass Using Anhydrous Liquid Ammonia Inventors: Shishir Chundawat, Leonardo Sousa, Albert Cheh, Venkatesh Balan, Bruce Dale Great Lakes Bioenergy Research Center Contact GLBRC About This Technology Technology Marketing SummaryIn the continuing push to develop alternative fuels, bioethanol is clearly a viable option. However, if it is to become a truly economical

  10. California: Agricultural Residues Produce Renewable Fuel | Department...

    Broader source: Energy.gov (indexed) [DOE]

    technology is expected to produce biofuel that reduces greenhouse gas emissions by 80% compared to fossil fuel and help make California a leader in advanced biofuel production. ...

  11. Fracture characteristics and their relationships to producing...

    Open Energy Info (EERE)

    characteristics and their relationships to producing zones in deep wells, Raft River geothermal area Jump to: navigation, search OpenEI Reference LibraryAdd to library Book:...

  12. Stable, fertile, high polyhydroxyalkanoate producing plants and methods of producing them

    DOE Patents [OSTI]

    Bohmert-Tatarev, Karen; McAvoy, Susan; Peoples, Oliver P.; Snell, Kristi D.

    2015-08-04

    Transgenic plants that produce high levels of polyhydroxybutyrate and methods of producing them are provided. In a preferred embodiment the transgenic plants are produced using plastid transformation technologies and utilize genes which are codon optimized. Stably transformed plants able to produce greater than 10% dwt PHS in tissues are also provided.

  13. Enforcement Guidance Supplement 98-02: DOE Enforcement Activities where Off-site Transportation Issues are also Present

    Broader source: Energy.gov [DOE]

    Section 1.3 of the Operational Procedures for Enforcement, published in June 1998, provides the opportunity to the Office of Enforcement and Investigation to issue clarifying guidance from time to...

  14. Sandia Energy - Energy Surety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy, Energy Assurance, Energy Surety, Grid Integration, Infrastructure Security, Microgrid, News, News & Events, Renewable Energy, Systems Analysis, Systems Engineering,...

  15. Sandia Energy - Energy Assurance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy, Energy Assurance, Energy Surety, Grid Integration, Infrastructure Security, Microgrid, News, News & Events, Renewable Energy, Systems Analysis, Systems Engineering,...

  16. Low Temperature Geothermal Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Temperature Geothermal Energy Low Temperature Geothermal Energy Presented at the Technology Planning Workshop for Low-Temperature, Coproduced, and Geopressured Geothermal Energy, July 13-14, 2010, Golden, Colorado PDF icon 20100713_lowtemp_blackwell.pdf More Documents & Publications Geothermal Energy Production with Co-produced and Geopressured Resources (Fact Sheet), Geothermal Technologies Program (GTP) AAPG Low-Temperature Webinar Power Plays: Geothermal Energy In Oil and Gas Field

  17. Wind Energy Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Resources » Wind Energy Basics Wind Energy Basics Wind Energy Basics Once called windmills, the technology used to harness the power of wind has advanced significantly over the past ten years, with the United States increasing its wind power capacity 30% year over year. Wind turbines, as they are now called, collect and convert the kinetic energy that wind produces into electricity to help power the grid. Wind energy is actually a byproduct of the sun. The sun's uneven heating of

  18. Net Zero Energy Installations (Presentation)

    SciTech Connect (OSTI)

    Booth, S.

    2012-05-01

    A net zero energy installation (NZEI) is one that produces as much energy from on-site renewable sources as it consumes. NZEI assessment provides a systematic approach to energy projects.

  19. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of light energy into chemical energy via photosynthesis. It then goes on to show how the chemical energy in plant sugars can be fermented to produce ethanol. Finally, the reasons...

  20. Fact #781: May 27, 2013 Top Ten Natural Gas Producing Countries |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 1: May 27, 2013 Top Ten Natural Gas Producing Countries Fact #781: May 27, 2013 Top Ten Natural Gas Producing Countries In 2011, Russia and the United States were by far the top natural gas producing countries, with more than four times that of Iran, the third largest producer of natural gas. Although Russia and the United States produced nearly the same amount of natural gas, Russia has far greater conventional natural gas reserves than the United States based on 2011

  1. Producing X-rays at the APS

    ScienceCinema (OSTI)

    None

    2013-04-19

    An introduction and overview of the Advanced Photon Source at Argonne National Laboratory, the technology that produces the brightest X-ray beams in the Western Hemisphere, and the research carried out by scientists using those X-rays.

  2. Methods and systems for producing syngas

    DOE Patents [OSTI]

    Hawkes, Grant L; O'Brien, James E; Stoots, Carl M; Herring, J. Stephen; McKellar, Michael G; Wood, Richard A; Carrington, Robert A; Boardman, Richard D

    2013-02-05

    Methods and systems are provided for producing syngas utilizing heat from thermochemical conversion of a carbonaceous fuel to support decomposition of at least one of water and carbon dioxide using one or more solid-oxide electrolysis cells. Simultaneous decomposition of carbon dioxide and water or steam by one or more solid-oxide electrolysis cells may be employed to produce hydrogen and carbon monoxide. A portion of oxygen produced from at least one of water and carbon dioxide using one or more solid-oxide electrolysis cells is fed at a controlled flow rate in a gasifier or combustor to oxidize the carbonaceous fuel to control the carbon dioxide to carbon monoxide ratio produced.

  3. Methods of producing compounds from plant material

    DOE Patents [OSTI]

    Werpy, Todd A.; Schmidt, Andrew J.; Frye, Jr., John G.; Zacher, Alan H.; Franz, James A.; Alnajjar, Mikhail S.; Neuenschwander, Gary G.; Alderson, Eric V.; Orth, Rick J.; Abbas, Charles A.; Beery, Kyle E.; Rammelsberg, Anne M.; Kim, Catherine J.

    2006-01-03

    The invention includes methods of processing plant material by adding water to form a mixture, heating the mixture, and separating a liquid component from a solid-comprising component. At least one of the liquid component and the solid-comprising component undergoes additional processing. Processing of the solid-comprising component produces oils, and processing of the liquid component produces one or more of glycerol, ethylene glycol, lactic acid and propylene glycol. The invention includes a process of forming glycerol, ethylene glycol, lactic acid and propylene glycol from plant matter by adding water, heating and filtering the plant matter. The filtrate containing starch, starch fragments, hemicellulose and fragments of hemicellulose is treated to form linear poly-alcohols which are then cleaved to produce one or more of glycerol, ethylene glycol, lactic acid and propylene glycol. The invention also includes a method of producing free and/or complexed sterols and stanols from plant material.

  4. Methods of producing compounds from plant materials

    DOE Patents [OSTI]

    Werpy, Todd A. (West Richland, WA); Schmidt, Andrew J. (Richland, WA); Frye, Jr., John G. (Richland, WA); Zacher, Alan H. (Kennewick, WA), Franz; James A. (Kennewick, WA), Alnajjar; Mikhail S. (Richland, WA), Neuenschwander; Gary G. (Burbank, WA), Alderson; Eric V. (Kennewick, WA), Orth; Rick J. (Kennewick, WA), Abbas; Charles A. (Champaign, IL), Beery; Kyle E. (Decatur, IL), Rammelsberg; Anne M. (Decatur, IL), Kim; Catherine J. (Decatur, IL)

    2010-01-26

    The invention includes methods of processing plant material by adding water to form a mixture, heating the mixture, and separating a liquid component from a solid-comprising component. At least one of the liquid component and the solid-comprising component undergoes additional processing. Processing of the solid-comprising component produces oils, and processing of the liquid component produces one or more of glycerol, ethylene glycol, lactic acid and propylene glycol. The invention includes a process of forming glycerol, ethylene glycol, lactic acid and propylene glycol from plant matter by adding water, heating and filtering the plant matter. The filtrate containing starch, starch fragments, hemicellulose and fragments of hemicellulose is treated to form linear poly-alcohols which are then cleaved to produce one or more of glycerol, ethylene glycol, lactic acid and propylene glycol. The invention also includes a method of producing free and/or complexed sterols and stanols from plant material.

  5. Microhydropower Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy » Hydropower » Microhydropower Basics Microhydropower Basics August 15, 2013 - 3:09pm Addthis Microhydropower systems are small hydroelectric power systems of less than 100 kilowatts (kW) used to produce mechanical energy or electricity for farms, ranches, homes, and villages. How a Microhydropower System Works All hydropower systems use the energy of flowing water to produce electricity or mechanical energy. Although there are several ways to harness moving water to produce

  6. Sales of Fossil Fuels Produced from Federal and Indian Lands, FY 2003 through FY 2011

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sales of Fossil Fuels Produced from Federal and Indian Lands, FY 2003 through FY 2011 March 2012 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Sales of Fossil Fuels Produced on Federal and Indian Lands, FY 2003 through FY 2011 i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data,

  7. Finding of No Significant Impact for the Storage of Tritium-Producing...

    Broader source: Energy.gov (indexed) [DOE]

    for the Storage of Tritium-Producing Burnable Absorber Rods in K-Area Transfer Bay at the Savannah River Site Agency: U.S. Department of Energy (DOE) Action: Finding of No...

  8. PEPPo: Using a Polarized Electron Beam to Produce Polarized Positrons

    SciTech Connect (OSTI)

    Adeyemi, Adeleke H.

    2015-09-01

    Polarized positron beams have been identified as either an essential or a significant ingredient for the experimental program of both the present and next generation of lepton accelerators (JLab, Super KEK B, ILC, CLIC). An experiment demonstrating a new method for producing polarized positrons has been performed at the Continuous Electron Beam Accelerator Facility at Jefferson Lab. The PEPPo (Polarized Electrons for Polarized Positrons) concept relies on the production of polarized e-/e+ pairs from the bremsstrahlung radiation of a longitudinally polarized electron beam interacting within a high Z conversion target. PEPPo demonstrated the effective transfer of spin-polarization of an 8.2 MeV/c polarized (P~85%) electron beam to positrons produced in varying thickness tungsten production targets, and collected and measured in the range of 3.1 to 6.2 MeV/c. In comparison to other methods this technique reveals a new pathway for producing either high energy or thermal polarized positron beams using a relatively low polarized electron beam energy (~10MeV) .This presentation will describe the PEPPo concept, the motivations of the experiment and high positron polarization achieved.

  9. The Availability and Price of Petroleum and Petroleum Products Produced in Countries Other Than Iran

    Gasoline and Diesel Fuel Update (EIA)

    Availability and Price of Petroleum and Petroleum Products Produced in Countries Other Than Iran February 9, 2016 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 Number 25 in a series of reports required by section 1245(d)(4)(A) of the National Defense Authorization Act for Fiscal Year 2012 February 2016 U.S. Energy Information Administration | Availability and Price of Petroleum and Petroleum Products Produced in Countries Other Than Iran 1 Table

  10. Chevron and NREL to Collaborate on Research to Produce Transportation Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    using Algae - News Releases | NREL Chevron and NREL to Collaborate on Research to Produce Transportation Fuels using Algae Joint effort to identify and develop algae strains for feedstock in next-generation biofuels October 31, 2007 Chevron Corporation (NYSE: CVX) and the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) announced today that they have entered into a collaborative research and development agreement to study and advance technology to produce liquid

  11. Electric Power Generation from Co-Produced and Other Oil Field Fluids |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Electric Power Generation from Co-Produced and Other Oil Field Fluids Electric Power Generation from Co-Produced and Other Oil Field Fluids Co-produced and low-temperature demonstration projects presentation at the 2013 peer review meeting held in Denver, Colorado. PDF icon coproduced_demoprojects_peerreview2013.pdf More Documents & Publications Chena Hot Springs Resort - Electric Power Generation Using Geothermal Fluid Coproduced from Oil and/or Gas Wells Electrical

  12. Spotlight on Austin, Texas: Best Offer Ever Produces 564 Upgrades in Record

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Time | Department of Energy Spotlight on Austin, Texas: Best Offer Ever Produces 564 Upgrades in Record Time Spotlight on Austin, Texas: Best Offer Ever Produces 564 Upgrades in Record Time This Better Buildings case study from April 2011 focuses on grantee partner Austin. PDF icon Spotlight on Austin, Texas More Documents & Publications Spotlight on Austin, Texas: Best Offer Ever Produces Upgrades in Record Time Spotlight on Austin, Texas: Let Your Contractor Be Your Guide for Big

  13. Sodium nitrate containing mixture for producing ceramic-glass-ceramic seal by microwave heating

    DOE Patents [OSTI]

    Blake, R.D.; Meek, T.T.

    1984-10-10

    A mixture for, and method of using such a mixture, for producing a ceramic-glass-ceramic seal by the use of microwave energy are disclosed, wherein the mixture comprises a glass sealing material, a coupling agent, and an oxidizer. The seal produced exhibits greater strength due to its different microstructure. Sodium nitrate is the most preferred oxidizer.

  14. Method for producing ceramic-glass-ceramic seals by microwave heating

    DOE Patents [OSTI]

    Blake, Rodger D. (Santa Fe, NM); Meek, Thomas T. (Los Alamos, NM)

    1986-01-01

    Method for producing a ceramic-glass-ceramic seal by the use of microwave energy, and a sealing mixture which comprises a glass sealing material, a coupling agent, and an oxidizer. The seal produced exhibits greater strength due to its different microstructure. Sodium nitrate is the most preferred oxidizer.

  15. Evaluation of processes for producing gasoline from wood. Final report

    SciTech Connect (OSTI)

    1980-05-01

    Three processes for producing gasoline from wood by pyrolysis have been investigated. Technical and economic comparisons among the processes have been made, based on a hypothetical common plant size of 2000 tons per day green wood chip feedstock. In order to consider the entire fuel production process, the energy and cost inputs for producing and delivering the feedstock were included in the analysis. In addition, perspective has been provided by comparisons of the wood-to-gasoline technologies with other similar systems, including coal-to-methanol and various biomass-to-alcohol systems. Based on several assumptions that were required because of the candidate processes' information gaps, comparisons of energy efficiency were made. Several descriptors of energy efficiency were used, but all showed that methanol production from wood, with or without subsequent processing by the Mobil route to gasoline, appears most promising. It must be emphasized, however, that the critical wood-to-methanol system remains conceptual. Another observation was that the ethanol production systems appear inferior to the wood-to-gasoline processes. Each of the processes investigated requires further research and development to answer the questions about their potential contributions confidently. The processes each have so many unknowns that it appears unwise to pursue any one while abandoning the others.

  16. Rural Energy for America Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy for America Program Rural Energy for America Program The Rural Energy for America Program (REAP) provides financial assistance to agricultural producers and rural small businesses in rural America to purchase, install, and construct renewable energy systems; to make energy efficiency improvements to non-residential buildings and facilities; to use renewable technologies that reduce energy consumption; and to participate in energy audits and renewable energy development assistance. Partner

  17. Method of producing gaseous products using a downflow reactor

    DOE Patents [OSTI]

    Cortright, Randy D; Rozmiarek, Robert T; Hornemann, Charles C

    2014-09-16

    Reactor systems and methods are provided for the catalytic conversion of liquid feedstocks to synthesis gases and other noncondensable gaseous products. The reactor systems include a heat exchange reactor configured to allow the liquid feedstock and gas product to flow concurrently in a downflow direction. The reactor systems and methods are particularly useful for producing hydrogen and light hydrocarbons from biomass-derived oxygenated hydrocarbons using aqueous phase reforming. The generated gases may find used as a fuel source for energy generation via PEM fuel cells, solid-oxide fuel cells, internal combustion engines, or gas turbine gensets, or used in other chemical processes to produce additional products. The gaseous products may also be collected for later use or distribution.

  18. Long-laser-pulse method of producing thin films

    DOE Patents [OSTI]

    Balooch, Mehdi (Berkeley, CA); Olander, Donald K. (Berkeley, CA); Russo, Richard E. (Walnut Creek, CA)

    1991-01-01

    A method of depositing thin films by means of laser vaporization employs a long-pulse laser (Nd-glass of about one millisecond duration) with a peak power density typically in the range 10.sup.5 -10.sup.6 W/cm.sup.2. The method may be used to produce high T.sub.c superconducting films of perovskite material. In one embodiment, a few hundred nanometers thick film of YBa.sub.2 Cu.sub.3 O.sub.7-x is produced on a SrTiO.sub.3 crystal substrate in one or two pulses. In situ-recrystallization and post-annealing, both at elevated temperature and in the presence of an oxidizing agen The invention described herein arose in the course of, or under, Contract No. DE-C03-76SF0098 between the United States Department of Energy and the University of California.

  19. ANAEROBIC BIOLOGICAL TREATMENT OF PRODUCED WATER

    SciTech Connect (OSTI)

    John R. Gallagher

    2001-07-31

    During the production of oil and gas, large amounts of water are brought to the surface and must be disposed of in an environmentally sensitive manner. This is an especially difficult problem in offshore production facilities where space is a major constraint. The chief regulatory criterion for produced water is oil and grease. Most facilities have little trouble meeting this criterion using conventional oil-water separation technologies. However, some operations have significant amounts of naphthenic acids in the water that behave as oil and grease but are not well removed by conventional technologies. Aerobic biological treatment of naphthenic acids in simulated-produced water has been demonstrated by others; however, the system was easily overloaded by the large amounts of low-molecular-weight organic acids often found in produced waters. The objective of this research was to determine the ability of an anaerobic biological system to treat these organic acids in a simulated produced water and to examine the potential for biodegradation of the naphthenic acids in the anaerobic environment. A small fixed-film anaerobic biological reactor was constructed and adapted to treat a simulated produced water. The bioreactor was tubular, with a low-density porous glass packing material. The inocula to the reactor was sediment from a produced-water holding pond from a municipal anaerobic digester and two salt-loving methanogenic bacteria. During start-up, the feed to the reactor contained glucose as well as typical produced-water components. When glucose was used, rapid gas production was observed. However, when glucose was eliminated and the major organic component was acetate, little gas was generated. Methane production from acetate may have been inhibited by the high salt concentrations, by sulfide, or because of the lack, despite seeding, of microbes capable of converting acetate to methane. Toluene, a minor component of the produced water (0.1 g/L) was removed in the reactor. Batch tests were conducted to examine naphthenic acid biodegradability under several conditions. The conditions used were seed from the anaerobic reactor, wetland sediments under aerobic and anaerobic conditions, and a sterile control. The naphthenic acid was from a commercial source isolated from Gulf Coast petroleum as was dosed at 2 mg/mL. The incubations were for 30 days at 30 C. The results showed that the naphthenic acids were not biodegraded under anaerobic conditions, but were degraded under aerobic conditions. Despite poor performance of the anaerobic reactor, it remains likely that anaerobic treatment of acetate, toluene, and, potentially, other produced-water components is feasible.

  20. Statement of position of the United States Department of Energy in the matter of proposed rulemaking on the storage and disposal of nuclear waste (waste confidence rulemaking)

    SciTech Connect (OSTI)

    1980-04-15

    Purpose of this proceeding is to assess generically the degree of assurance that the radioactive waste can be safely disposed of, to determine when such disposal or off-site storage will be available, and to determine whether wastes can be safely stored on-site past license expiration until off-site disposal/storage is available. (DLC)

  1. Ultra-Efficient Home Design | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    energy technologies to produce as much energy as they consume. Credit: Kenneth Kelly, NREL. All Kaupuni Village homes in Oahu, Hawaii, incorporate energy efficiency and...

  2. Methods for producing reinforced carbon nanotubes

    DOE Patents [OSTI]

    Ren, Zhifen (Newton, MA); Wen, Jian Guo (Newton, MA); Lao, Jing Y. (Chestnut Hill, MA); Li, Wenzhi (Brookline, MA)

    2008-10-28

    Methods for producing reinforced carbon nanotubes having a plurality of microparticulate carbide or oxide materials formed substantially on the surface of such reinforced carbon nanotubes composite materials are disclosed. In particular, the present invention provides reinforced carbon nanotubes (CNTs) having a plurality of boron carbide nanolumps formed substantially on a surface of the reinforced CNTs that provide a reinforcing effect on CNTs, enabling their use as effective reinforcing fillers for matrix materials to give high-strength composites. The present invention also provides methods for producing such carbide reinforced CNTs.

  3. Method of producing a high pressure gas

    DOE Patents [OSTI]

    Bingham, Dennis N.; Klingler, Kerry M.; Zollinger, William T.

    2006-07-18

    A method of producing a high pressure gas is disclosed and which includes providing a container; supplying the container with a liquid such as water; increasing the pressure of the liquid within the container; supplying a reactant composition such as a chemical hydride to the liquid under pressure in the container and which chemically reacts with the liquid to produce a resulting high pressure gas such as hydrogen at a pressure of greater than about 100 pounds per square inch of pressure; and drawing the resulting high pressure gas from the container.

  4. Solid fuel volatilization to produce synthesis gas

    DOE Patents [OSTI]

    Schmidt, Lanny D.; Dauenhauer, Paul J.; Degenstein, Nick J.; Dreyer, Brandon J.; Colby, Joshua L.

    2014-07-29

    A method comprising contacting a carbon and hydrogen-containing solid fuel and a metal-based catalyst in the presence of oxygen to produce hydrogen gas and carbon monoxide gas, wherein the contacting occurs at a temperature sufficiently high to prevent char formation in an amount capable of stopping production of the hydrogen gas and the carbon monoxide gas is provided. In one embodiment, the metal-based catalyst comprises a rhodium-cerium catalyst. Embodiments further include a system for producing syngas. The systems and methods described herein provide shorter residence time and high selectivity for hydrogen and carbon monoxide.

  5. Method for producing small hollow spheres

    DOE Patents [OSTI]

    Hendricks, C.D.

    1979-01-09

    Method is disclosed for producing small hollow spheres of glass, metal or plastic, wherein the sphere material is mixed with or contains as part of the composition a blowing agent which decomposes at high temperature (T [approx gt] 600 C). As the temperature is quickly raised, the blowing agent decomposes and the resulting gas expands from within, thus forming a hollow sphere of controllable thickness. The thus produced hollow spheres (20 to 10[sup 3] [mu]m) have a variety of application, and are particularly useful in the fabrication of targets for laser implosion such as neutron sources, laser fusion physics studies, and laser initiated fusion power plants. 1 fig.

  6. Method for producing small hollow spheres

    DOE Patents [OSTI]

    Hendricks, Charles D. [Livermore, CA

    1979-01-09

    Method for producing small hollow spheres of glass, metal or plastic, wherein the sphere material is mixed with or contains as part of the composition a blowing agent which decomposes at high temperature (T .gtorsim. 600.degree. C). As the temperature is quickly raised, the blowing agent decomposes and the resulting gas expands from within, thus forming a hollow sphere of controllable thickness. The thus produced hollow spheres (20 to 10.sup.3 .mu.m) have a variety of application, and are particularly useful in the fabrication of targets for laser implosion such as neutron sources, laser fusion physics studies, and laser initiated fusion power plants.

  7. Fast Magnetic Reconnection in Laser-Produced Plasma Bubbles

    SciTech Connect (OSTI)

    Fox, W.; Bhattacharjee, A.; Germaschewski, K.

    2011-05-27

    Recent experiments have observed magnetic reconnection in high-energy-density, laser-produced plasma bubbles, with reconnection rates observed to be much higher than can be explained by classical theory. Based on fully kinetic particle simulations we find that fast reconnection in these strongly driven systems can be explained by magnetic flux pileup at the shoulder of the current sheet and subsequent fast reconnection via two-fluid, collisionless mechanisms. In the strong drive regime with two-fluid effects, we find that the ultimate reconnection time is insensitive to the nominal system Alfven time.

  8. Channeling problem for charged particles produced by confining environment

    SciTech Connect (OSTI)

    Chuluunbaatar, O.; Gusev, A. A.; Derbov, V. L.; Krassovitskiy, P. M.; Vinitsky, S. I.

    2009-05-15

    Channeling problem produced by confining environment that leads to resonance scattering of charged particles via quasistationary states imbedded in the continuum is examined. Nonmonotonic dependence of physical parameters on collision energy and/or confining environment due to resonance transmission and total reflection effects is confirmed that can increase the rate of recombination processes. The reduction of the model for two identical charged ions to a boundary problem is considered together with the asymptotic behavior of the solution in the vicinity of pair-collision point and the results of R-matrix calculations. Tentative estimations of the enhancement factor and the total reflection effect are discussed.

  9. Table 4.1 Offsite-Produced Fuel Consumption, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Offsite-Produced Fuel Consumption, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Residual Distillate Natural Gas(d) LPG and Coal and Breeze NAICS Total Electricity(b) Fuel Oil Fuel Oil(c) (billion NGL(e) (million (million Other(f) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 1,113 75,673 2 4

  10. Table 4.2 Offsite-Produced Fuel Consumption, 2010

    U.S. Energy Information Administration (EIA) Indexed Site

    4.2 Offsite-Produced Fuel Consumption, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Trillion Btu. NAICS Residual Distillate LPG and Coke Code(a) Subsector and Industry Total Electricity(b) Fuel Oil Fuel Oil(c) Natural Gas(d) NGL(e) Coal and Breeze Other(f) Total United States 311 Food 1,113 258 12 22 579 5 182 2 54 3112 Grain and Oilseed Milling 346 57 * 1 121 * 126 0 41 311221 Wet Corn Milling 214 26 * * 53 * 110 0 25 31131 Sugar Manufacturing 72 4 1

  11. Table 4.3 Offsite-Produced Fuel Consumption, 2002

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Offsite-Produced Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," ","RSE"

  12. Table 4.3 Offsite-Produced Fuel Consumption, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Offsite-Produced Fuel Consumption, 2010; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes; Column: Energy Sources; Unit: Trillion Btu. Economic Residual Distillate Natural LPG and Coke and Characteristic(a) Total Electricity(b) Fuel Oil Fuel Oil(c) Gas(d) NGL(e) Coal Breeze Other(f) Total United States Value of Shipments and Receipts (million dollars) Under 20 1,038 314 6 53 445 14 25 Q 181 20-49 918 296 11 19 381 10 97 5 97 50-99 1,018 308 7 13 440 5 130 6 110

  13. Energy Information Administration (EIA)- Manufacturing Energy Consumption

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Survey (MECS) Steel Analysis Brief Chemical Industry Analysis Brief Change Topic: Steel | Chemical JUMP TO: Introduction | Energy Consumption | Energy Expenditures | Producer Prices and Production | Energy Intensity | Energy Management Activities | Fuel Switching Capacity Introduction The chemical industries are a cornerstone of the U.S. economy, converting raw materials such as oil, natural gas, air, water, metals, and minerals into thousands of various products. Chemicals are key materials

  14. Energy Information Administration (EIA)- Manufacturing Energy Consumption

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Survey (MECS) Steel Analysis Brief Steel Industry Analysis Brief Change Topic: Steel | Chemical JUMP TO: Introduction | Energy Consumption | Energy Expenditures | Producer Prices and Production | Energy Intensity | Energy Management Activities Introduction The steel industry is critical to the U.S. economy. Steel is the material of choice for many elements of construction, transportation, manufacturing, and a variety of consumer products. It is the backbone of bridges, skyscrapers,

  15. Clean Energy Manufacturing Reports | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reports Clean Energy Manufacturing Reports The Clean Energy Manufacturing Initiative develops competitiveness analysis and strategies that inform R&D investments and other efforts needed to address key barriers to growing U.S. clean energy manufacturing competitiveness. This unprecedented competitiveness analysis evaluates the costs of producing clean energy products in the U.S. compared to competitor nations to understand factory location decisions and identify key drivers to U.S. clean

  16. Sorgenia SpA | Open Energy Information

    Open Energy Info (EERE)

    Services Product: Sorgenia produces electricity from both renewable energy sources and natural gas. It also buys and sells electricity and gas in the market and provides energy...

  17. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Manufacturing Incentive Grant Program "Clean energy manufacturer" is defined as a biofuel producer, a manufacturer of renewable energy or nuclear equipmentproducts, or...

  18. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    and non-residential systems, the exemption applies to solar-energy systems that utilize solar radiation to produce energy designed to provide heating, cooling, hot water and...

  19. RENEWABLE ENERGY AND ENVIRONMENTAL SUSTAINABILITY USING BIOMASS FROM DAIRY AND BEEF ANIMAL PRODUCTION

    SciTech Connect (OSTI)

    Sweeten, John M; Annamalai, Kalyan; Auvermann, Brent; Mukhtar, Saqib; Capareda, Sergio C.; Engler, Cady; Harman, Wyatte; Reddy, J N; DeOtte, Robert; Parker, David B.; Stewart, B. A.

    2012-05-03

    The Texas Panhandle is regarded as the "Cattle Feeding Capital of the World", producing 42% of the fed beef cattle in the United States within a 200-mile radius of Amarillo generating more than 5 million tons of feedlot manure/year. Apart from feedlots, the Bosque River Region in Erath County, just north of Waco, Texas with about 110,000 dairy cattle in over 250 dairies, produces 1.8 million tons of manure biomass (excreted plus bedding) per year. While the feedlot manure has been used extensively for irrigated and dry land crop production, most dairies, as well as other concentrated animal feeding operations (CAFO's), the dairy farms utilize large lagoon areas to store wet animal biomass. Water runoff from these lagoons has been held responsible for the increased concentration of phosphorus and other contaminates in the Bosque River which drains into Lake Waco -- the primary source of potable water for Waco's 108,500 people. The concentrated animal feeding operations may lead to land, water, and air pollution if waste handling systems and storage and treatment structures are not properly managed. Manure-based biomass (MBB) has the potential to be a source of green energy at large coal-fired power plants and on smaller-scale combustion systems at or near confined animal feeding operations. Although MBB particularly cattle biomass (CB) is a low quality fuel with an inferior heat value compared to coal and other fossil fuels, the concentration of it at large animal feeding operations can make it a viable source of fuel. The overall objective of this interdisciplinary proposal is to develop environmentally benign technologies to convert low-value inventories of dairy and beef cattle biomass into renewable energy. Current research expands the suite of technologies by which cattle biomass (CB: manure, and premature mortalities) could serve as a renewable alternative to fossil fuel. The work falls into two broad categories of research and development. Category 1 -- Renewable Energy Conversion. This category addressed mostly in volume I involves developing. Thermo-chemical conversion technologies including cofiring with coal, reburn to reduce nitrogen oxide (NO, N2O, NOx, etc.) and Hg emissions and gasification to produce low-BTU gas for on-site power production in order to extract energy from waste streams or renewable resources. Category 2 -- Biomass Resource Technology. This category, addressed mostly in Volume II, deals with the efficient and cost-effective use of CB as a renewable energy source (e.g. through and via aqueous-phase, anaerobic digestion or biological gasification). The investigators formed an industrial advisory panel consisting fuel producers (feedlots and dairy farms) and fuel users (utilities), periodically met with them, and presented the research results; apart from serving as dissemination forum, the PIs used their critique to re-direct the research within the scope of the tasks. The final report for the 5 to 7 year project performed by an interdisciplinary team of 9 professors is arranged in three volumes: Vol. I (edited by Kalyan Annamalai) addressing thermo-chemical conversion and direct combustion under Category 1 and Vol. II and Vol. III ( edited by J M Sweeten) addressing biomass resource Technology under Category 2. Various tasks and sub-tasks addressed in Volume I were performed by the Department of Mechanical Engineering (a part of TEES; see Volume I), while other tasks and sub-tasks addressed in Volume II and IIII were conducted by Texas AgriLife Research at Amarillo; the TAMU Biological & Agricultural Engineering Department (BAEN) College Station; and West Texas A&M University (WTAMU) (Volumes II and III). The three volume report covers the following results: fuel properties of low ash and high ash CB (particularly DB) and MB (mortality biomass and coals, non-intrusive visible infrared (NVIR) spectroscopy techniques for ash determination, dairy energy use surveys at 14 dairies in Texas and California, cofiring of low quality CB with high quality coal, emission results and ash fouling behavior, using CB as reburn fuel for NOx and Hg reduction, gasification of fuels to produce low quality gases, modeling of reburn, pilot scale test results, synthesis of engineering characterization, geographical mapping, a transportation cost study to determine potential handling and transportation systems for co-firing with coal at regional coal-fired power plants, software analyses for the design of off-site manure, pre-processing and storage systems for a typical dairy farm or beef cattle feedlot, recursive production functions/systems models for both cattle feedlots, systems modeling, stocks and flows of energy involved in the CAFO system, feedback from an Industry Advisory Committee (IAC) to the investigators on project direction and task emphasis and economics of using CB as cofiring and reburn fuel.

  20. RENEWABLE ENERGY AND ENVIRONMENTAL SUSTAINABILITY USING BIOMASS FROM DAIRY AND BEEF ANIMAL PRODUCTION

    SciTech Connect (OSTI)

    Kalyan Annamalai, John M. Sweeten, Brent W. Auvermann, Saqib Mukhtar, Sergio Caperada Cady R. Engler, Wyatte Harman Reddy JN Robert Deotte

    2012-05-03

    The Texas Panhandle is regarded as the 'Cattle Feeding Capital of the World', producing 42% of the fed beef cattle in the United States within a 200-mile radius of Amarillo generating more than 5 million tons of feedlot manure/year. Apart from feedlots, the Bosque River Region in Erath County, just north of Waco, Texas with about 110,000 dairy cattle in over 250 dairies, produces 1.8 million tons of manure biomass (excreted plus bedding) per year. While the feedlot manure has been used extensively for irrigated and dry land crop production, most dairies, as well as other concentrated animal feeding operations (CAFO's), the dairy farms utilize large lagoon areas to store wet animal biomass. Water runoff from these lagoons has been held responsible for the increased concentration of phosphorus and other contaminates in the Bosque River which drains into Lake Waco - the primary source of potable water for Waco's 108,500 people. The concentrated animal feeding operations may lead to land, water, and air pollution if waste handling systems and storage and treatment structures are not properly managed. Manure-based biomass (MBB) has the potential to be a source of green energy at large coal-fired power plants and on smaller-scale combustion systems at or near confined animal feeding operations. Although MBB particularly cattle biomass (CB) is a low quality fuel with an inferior heat value compared to coal and other fossil fuels, the concentration of it at large animal feeding operations can make it a viable source of fuel. The overall objective of this interdisciplinary proposal is to develop environmentally benign technologies to convert low-value inventories of dairy and beef cattle biomass into renewable energy. Current research expands the suite of technologies by which cattle biomass (CB: manure, and premature mortalities) could serve as a renewable alternative to fossil fuel. The work falls into two broad categories of research and development. Category 1 - Renewable Energy Conversion. This category addressed mostly in volume I involves developing. Thermo-chemical conversion technologies including cofiring with coal, reburn to reduce nitrogen oxide (NO, N2O, NOx, etc.) and Hg emissions and gasification to produce low-BTU gas for on-site power production in order to extract energy from waste streams or renewable resources. Category 2 - Biomass Resource Technology. This category, addressed mostly in Volume II, deals with the efficient and cost-effective use of CB as a renewable energy source (e.g. through and via aqueous-phase, anaerobic digestion or biological gasification). The investigators formed an industrial advisory panel consisting fuel producers (feedlots and dairy farms) and fuel users (utilities), periodically met with them, and presented the research results; apart from serving as dissemination forum, the PIs used their critique to red-direct the research within the scope of the tasks. The final report for the 5 to 7 year project performed by an interdisciplinary team of 9 professors is arranged in three volumes: Vol. I (edited by Kalyan Annamalai) addressing thermo-chemical conversion and direct combustion under Category 1 and Vol. II and Vol. III ( edited by J M Sweeten) addressing biomass resource Technology under Category 2. Various tasks and sub-tasks addressed in Volume I were performed by the Department of Mechanical Engineering (a part of TEES; see Volume I), while other tasks and sub-tasks addressed in Volume II and IIII were conducted by Texas AgriLife Research at Amarillo; the TAMU Biological and Agricultural Engineering Department (BAEN) College Station; and West Texas A and M University (WTAMU) (Volumes II and III). The three volume report covers the following results: fuel properties of low ash and high ash CB (particularly DB) and MB (mortality biomass) and coals, non-intrusive visible infrared (NVIR) spectroscopy techniques for ash determination, dairy energy use surveys at 14 dairies in Texas and California, cofiring of low quality CB with high quality coal, emission results and ash fouling behavior, using CB as reburn fuel for NOx and Hg reduction, gasification of fuels to produce low quality gases, modeling of reburn, pilot scale test results, synthesis of engineering characterization, geographical mapping, a transportation cost study to determine potential handling and transportation systems for co-firing with coal at regional coal-fired power plants, software analyses for the design of off-site manure, pre-processing and storage systems for a typical dairy farm or beef cattle feedlot, recursive production functions/systems models for both cattle feedlots, systems modeling, stocks and flows of energy involved in the CAFO system, feedback from an Industry Advisory Committee (IAC) to the investigators on project direction and task emphasis and economics of using CB as cofiring and reburn fuel.

  1. RENEWABLE ENERGY AND ENVIRONMENTAL SUSTAINABILITY USING BIOMASS FROM DAIRY AND BEEF ANIMAL PRODUCTION

    SciTech Connect (OSTI)

    Sweeten, John; Annamalai, Kalyan; Auvermann, Brent; Mukhtar, Saqib; Capareda, Sergio C; Engler, Cady; Harman, Wyatte; Reddy, J N; DeOtte, Robert; Parker, David B; Stewart, B A

    2012-05-02

    The Texas Panhandle is regarded as the "Cattle Feeding Capital of the World", producing 42% of the fed beef cattle in the United States within a 200-mile radius of Amarillo generating more than 5 million tons of feedlot manure /year. Apart from feedlots, the Bosque River Region in Erath County, just north of Waco, Texas with about 110,000 dairy cattle in over 250 dairies, produces 1.8 million tons of manure biomass (excreted plus bedding) per year. While the feedlot manure has been used extensively for irrigated and dry land crop production, most dairies, as well as other concentrated animal feeding operations (CAFO's), the dairy farms utilize large lagoon areas to store wet animal biomass. Water runoff from these lagoons has been held responsible for the increased concentration of phosphorus and other contaminates in the Bosque River which drains into Lake Waco—the primary source of potable water for Waco's 108,500 people. The concentrated animal feeding operations may lead to land, water, and air pollution if waste handling systems and storage and treatment structures are not properly managed. Manure-based biomass (MBB) has the potential to be a source of green energy at large coal-fired power plants and on smaller-scale combustion systems at or near confined animal feeding operations. Although MBB particularly cattle biomass (CB) is a low quality fuel with an inferior heat value compared to coal and other fossil fuels, the concentration of it at large animal feeding operations can make it a viable source of fuel. The overall objective of this interdisciplinary proposal is to develop environmentally benign technologies to convert low-value inventories of dairy and beef cattle biomass into renewable energy. Current research expands the suite of technologies by which cattle biomass (CB: manure, and premature mortalities) could serve as a renewable alternative to fossil fuel. The work falls into two broad categories of research and development. Category 1 – Renewable Energy Conversion. This category addressed mostly in volume I involves developing. Thermo-chemical conversion technologies including cofiring with coal, reburn to reduce nitrogen oxide (NO, N2O, NOx, etc.) and Hg emissions and gasification to produce low-BTU gas for on-site power production in order to extract energy from waste streams or renewable resources. Category 2 – Biomass Resource Technology. This category, addressed mostly in Volume II, deals with the efficient and cost-effective use of CB as a renewable energy source (e.g. through and via aqueous-phase, anaerobic digestion or biological gasification). The investigators formed an industrial advisory panel consisting fuel producers (feedlots and dairy farms) and fuel users (utilities), periodically met with them, and presented the research results; apart from serving as dissemination forum, the PIs used their critique to red-direct the research within the scope of the tasks. The final report for the 5 to 7 year project performed by an interdisciplinary team of 9 professors is arranged in three volumes: Vol. I (edited by Kalyan Annamalai) addressing thermo-chemical conversion and direct combustion under Category 1 and Vol. II and Vol. III ( edited by J M Sweeten) addressing biomass resource Technology under Category 2. Various tasks and sub-tasks addressed in Volume I were performed by the Department of Mechanical Engineering (a part of TEES; see Volume I), while other tasks and sub-tasks addressed in Volume II and IIII were conducted by Texas AgriLife Research at Amarillo; the TAMU Biological & Agricultural Engineering Department (BAEN) College Station; and West Texas A&M University (WTAMU) (Volumes II and III). The three volume report covers the following results: fuel properties of low ash and high ash CB (particularly DB) and MB (mortality biomass and coals, non-intrusive visible infrared (NVIR) spectroscopy techniques for ash determination, dairy energy use surveys at 14 dairies in Texas and California, cofiring of low quality CB with high quality coal, emission results and ash fouling behavior, using CB as reburn fuel for NOx and Hg reduction, gasification of fuels to produce low quality gases, modeling of reburn, pilot scale test results, synthesis of engineering characterization, geographical mapping, a transportation cost study to determine potential handling and transportation systems for co-firing with coal at regional coal-fired power plants, software analyses for the design of off-site manure, pre-processing and storage systems for a typical dairy farm or beef cattle feedlot, recursive production functions/systems models for both cattle feedlots, systems modeling, stocks and flows of energy involved in the CAFO system, feedback from an Industry Advisory Committee (IAC) to the investigators on project direction and task emphasis and economics of using CB as cofiring and reburn fuel.

  2. Second Phase of Innovative Technology Project to Capture CO2, Produce

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuels Launched in Ohio | Department of Energy Second Phase of Innovative Technology Project to Capture CO2, Produce Biofuels Launched in Ohio Second Phase of Innovative Technology Project to Capture CO2, Produce Biofuels Launched in Ohio August 9, 2012 - 1:00pm Addthis Washington, DC - A novel method to capture carbon dioxide (CO2) from flue gas and produce biofuels has been formally launched in the second phase of a Department of Energy (DOE) project at a nursery in Ohio. Successful

  3. Sandia Energy - Energy Surety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Systems, Energy Surety, Grid Integration, Infrastructure Security, Microgrid, Modeling & Analysis, News, News & Events, Partnership, Renewable Energy, SMART...

  4. USDA Energy Audit and Renewable Energy Development Assistance Grants

    Broader source: Energy.gov [DOE]

    The USDA Rural Business Cooperative-Service Agency, under the Rural Energy for America Program, is accepting applications for Energy Audit and Renewable Energy Development Assistance (REDA) grants to establish programs to assist agricultural producers and rural small businesses with evaluating energy efficiency and the potential to incorporate renewable energy technologies into their operations.

  5. Sundial Energy Inc | Open Energy Information

    Open Energy Info (EERE)

    a-Si laminates with MasterCraft metals to produce products for building-integrated photovoltaics (BIPV). References: Sundial Energy Inc1 This article is a stub. You can help...

  6. Bio Oils Energy | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name: Bio-Oils Energy Place: Madrid, Spain Zip: 28010 Sector: Biofuels Product: Madrid-based biofuels producer with plans to build a 500-tonne plant in...

  7. Midwest Renewable Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    Renewable Energy LLC Place: Sutherland, Nebraska Zip: 69165 Product: 25mmgy (94.6m litrey) ethanol producer. Coordinates: 37.19651, -77.561418 Show Map Loading map......

  8. National Renewable Energy Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RENEWABLE ENERGY AND ENERGY EFFICIENCY SCIENCE PROJECTS 1 SCIENCE PROECTS IN RENEWABLE ENERGY AND ENERGY EFFICIENCY A guide for Secondary School Teachers Authors and Acknowledgements: This second edition was produced at the National Renewable Energy Laboratory (NREL), through the laboratory's Office of Education Programs, under the leadership of the Manager, Dr. Cynthia Howell and guidance of the Program Coordinators, Matt Kuhn and Linda Lung. The contents are the result of contributions by a

  9. Producing dicarboxylic acids using polyketide synthases

    DOE Patents [OSTI]

    Katz, Leonard; Fortman, Jeffrey L.; Keasling, Jay D.

    2015-05-26

    The present invention provides for a polyketide synthase (PKS) capable of synthesizing a dicarboxylic acid (diacid). Such diacids include diketide-diacids and triketide-diacids. The invention includes recombinant nucleic acid encoding the PKS, and host cells comprising the PKS. The invention also includes methods for producing the diacids.

  10. Adaptive control system for gas producing wells

    SciTech Connect (OSTI)

    Fedor, Pashchenko; Sergey, Gulyaev; Alexander, Pashchenko

    2015-03-10

    Optimal adaptive automatic control system for gas producing wells cluster is proposed intended for solving the problem of stabilization of the output gas pressure in the cluster at conditions of changing gas flow rate and changing parameters of the wells themselves, providing the maximum high resource of hardware elements of automation.

  11. Producing dicarboxylic acids using polyketide synthases

    DOE Patents [OSTI]

    Katz, Leonard; Fortman, Jeffrey L; Keasling, Jay D

    2013-10-29

    The present invention provides for a polyketide synthase (PKS) capable of synthesizing a dicarboxylic acid (diacid). Such diacids include diketide-diacids and triketide-diacids. The invention includes recombinant nucleic acid encoding the PKS, and host cells comprising the PKS. The invention also includes methods for producing the diacids.

  12. Method of producing a chemical hydride

    DOE Patents [OSTI]

    Klingler, Kerry M.; Zollinger, William T.; Wilding, Bruce M.; Bingham, Dennis N.; Wendt, Kraig M.

    2007-11-13

    A method of producing a chemical hydride is described and which includes selecting a composition having chemical bonds and which is capable of forming a chemical hydride; providing a source of a hydrocarbon; and reacting the composition with the source of the hydrocarbon to generate a chemical hydride.

  13. Methods of producing continuous boron carbide fibers

    DOE Patents [OSTI]

    Garnier, John E.; Griffith, George W.

    2015-12-01

    Methods of producing continuous boron carbide fibers. The method comprises reacting a continuous carbon fiber material and a boron oxide gas within a temperature range of from approximately 1400.degree. C. to approximately 2200.degree. C. Continuous boron carbide fibers, continuous fibers comprising boron carbide, and articles including at least a boron carbide coating are also disclosed.

  14. Sandia Energy Energy Assurance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE International Energy Storage Database Has Logged 420 Energy Storage Projects Worldwide with 123 GW of Installed Capacity http:energy.sandia.govdoe-international-energy-stora...

  15. Beneficial Reuse of San Ardo Produced Water

    SciTech Connect (OSTI)

    Robert A. Liske

    2006-07-31

    This DOE funded study was performed to evaluate the potential for treatment and beneficial reuse of produced water from the San Ardo oilfield in Monterey County, CA. The potential benefits of a successful full-scale implementation of this project include improvements in oil production efficiency and additional recoverable oil reserves as well as the addition of a new reclaimed water resource. The overall project was conducted in two Phases. Phase I identified and evaluated potential end uses for the treated produced water, established treated water quality objectives, reviewed regulations related to treatment, transport, storage and use of the treated produced water, and investigated various water treatment technology options. Phase II involved the construction and operation of a small-scale water treatment pilot facility to evaluate the process's performance on produced water from the San Ardo oilfield. Cost estimates for a potential full-scale facility were also developed. Potential end uses identified for the treated water include (1) agricultural use near the oilfield, (2) use by Monterey County Water Resources Agency (MCWRA) for the Salinas Valley Water Project or Castroville Seawater Intrusion Project, (3) industrial or power plant use in King City, and (4) use for wetlands creation in the Salinas Basin. All of these uses were found to have major obstacles that prevent full-scale implementation. An additional option for potential reuse of the treated produced water was subsequently identified. That option involves using the treated produced water to recharge groundwater in the vicinity of the oil field. The recharge option may avoid the limitations that the other reuse options face. The water treatment pilot process utilized: (1) warm precipitation softening to remove hardness and silica, (2) evaporative cooling to meet downstream temperature limitations and facilitate removal of ammonia, and (3) reverse osmosis (RO) for removal of dissolved salts, boron, and organics. Pilot study results indicate that produced water from the San Ardo oilfield can be treated to meet project water quality goals. Approximately 600 mg/l of caustic and 100 mg/l magnesium dosing were required to meet the hardness and silica goals in the warm softening unit. Approximately 30% of the ammonia was removed in the cooling tower; additional ammonia could be removed by ion exchange or other methods if necessary. A brackish water reverse osmosis membrane was effective in removing total dissolved solids and organics at all pH levels evaluated; however, the boron treatment objective was only achieved at a pH of 10.5 and above.

  16. Biomass Producer or Collector Tax Credit

    Broader source: Energy.gov [DOE]

    The Oregon Department of Energy (ODOE) has issued final rules regarding an increase in the application fee for this tax credit. The new fee is $100 plus 3.8 percent of the tax credit amount ...

  17. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    that utilize solar radiation to produce energy designed to provide heating, cooling, hot water andor... Eligibility: Commercial, Industrial, Residential, Multifamily...

  18. Harnessing Solar Energy at Home | Department of Energy

    Energy Savers [EERE]

    Harnessing Solar Energy at Home Harnessing Solar Energy at Home October 1, 2014 - 12:37pm Q&A What do you want to know about solar energy at home? Tell Us Addthis Solar panels are a great way to produce clean energy at home! | Photo courtesy of Stefano Paltera, U.S. Department of Energy. Solar panels are a great way to produce clean energy at home! | Photo courtesy of Stefano Paltera, U.S. Department of Energy. Paige Terlip Paige Terlip Former Communicator, National Renewable Energy

  19. NRELs Clean Energy Policy Analyses Project: 2009 U.S. State...

    Broader source: Energy.gov (indexed) [DOE]

    NREL's Clean Energy Policy Analyses Project: 2009 U.S. State Clean Energy Data Book OCTOBER 2010 Energy Efficiency & Renewable Energy Acknowledgments This report was produced by ...

  20. Some new schemes for producing high-accuracy elliptical X-ray mirrors by elastic bending

    SciTech Connect (OSTI)

    Padmore, H.A.; Howells, M.R.; Irick, S.; Renner, T.; Sandler, R.; Koo, Y.-M.

    1996-08-01

    Although x-ray micro-foci can be produced by a variety of diffractive methods, grazing incidence mirrors are the only route to an achromatic focus. In this paper we describe our efforts to produce elliptically shaped mirrors with the very high figure accuracy necessary for producing a micro-focus. The motivation for this work is provided by the need to produce achromatic foci for a range of applications ranging from tunable micro-focus x-ray photoelectron spectroscopy ({mu}-XPS) at soft x-ray energies to micro-focus white beam x-ray diffraction ({mu}-XRD) at hard x-ray energies. We describe the methodology of beam bending, a practical example of a system we have produced for {mu}-XRD, and results demonstrating the production of a surface with micro-radian figure accuracy.

  1. Carbon Pollution Being Captured, Stored and Used to Produce More Domestic

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oil | Department of Energy Carbon Pollution Being Captured, Stored and Used to Produce More Domestic Oil Carbon Pollution Being Captured, Stored and Used to Produce More Domestic Oil May 10, 2013 - 11:38am Addthis Learn more about how the Office of Fossil Energy's carbon capture, utilization and storage program is benefiting the economy and the environment. Christopher A. Smith Christopher A. Smith Assistant Secretary for Fossil Energy What does this project do? More than 90% of the CO2 at

  2. Department of Energy Awards $156 Million for Groundbreaking Energy Research

    Energy Savers [EERE]

    Projects | Department of Energy 6 Million for Groundbreaking Energy Research Projects Department of Energy Awards $156 Million for Groundbreaking Energy Research Projects September 29, 2011 - 1:19pm Addthis Washington, D.C. - Arun Majumdar, Director of the Department of Energy's Advanced Research Projects Agency-Energy (ARPA-E), today announced 60 cutting-edge research projects aimed at dramatically improving how the U.S. produces and uses energy. With $156 million from the Fiscal Year 2011

  3. Department of Energy Awards $92 Million for Groundbreaking Energy Research

    Energy Savers [EERE]

    Projects | Department of Energy 92 Million for Groundbreaking Energy Research Projects Department of Energy Awards $92 Million for Groundbreaking Energy Research Projects July 12, 2010 - 12:00am Addthis Washington, D.C. - U.S. Secretary of Energy Steven Chu today announced 43 cutting-edge research projects that aim to dramatically improve how the U.S. uses and produces energy. Funded with $92 million from the American Recovery and Reinvestment Act through the Department of Energy's Advanced

  4. A Common Definition for Zero Energy Buildings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Common Definition for Zero Energy Buildings A Common Definition for Zero Energy Buildings Thousands of project teams throughout the country seek to push the envelope and develop zero energy buildings. Generally speaking, a zero energy building produces enough renewable energy to meet its own annual energy consumption requirements, thereby reducing the use of non-renewable energy in the building sector. This definition also applies to campuses, portfolios, and communities. In addition to

  5. Method for producing highly reflective metal surfaces

    DOE Patents [OSTI]

    Arnold, J.B.; Steger, P.J.; Wright, R.R.

    1982-03-04

    The invention is a novel method for producing mirror surfaces which are extremely smooth and which have high optical reflectivity. The method includes depositing, by electrolysis, an amorphous layer of nickel on an article and then diamond-machining the resulting nickel surface to increase its smoothness and reflectivity. The machined nickel surface then is passivated with respect to the formation of bonds with electrodeposited nickel. Nickel then is electrodeposited on the passivated surface to form a layer of electroplated nickel whose inside surface is a replica of the passivated surface. The mandrel then may be-re-passivated and provided with a layer of electrodeposited nickel, which is then recovered from the mandrel providing a second replica. The mandrel can be so re-used to provide many such replicas. As compared with producing each mirror-finished article by plating and diamond-machining, the new method is faster and less expensive.

  6. Method for producing catalysts from coal

    DOE Patents [OSTI]

    Farcasiu, M.; Derbyshire, F.; Kaufman, P.B.; Jagtoyen, M.

    1998-02-24

    A method for producing catalysts from coal is provided comprising mixing an aqueous alkali solution with the coal, heating the aqueous mixture to treat the coal, drying the now-heated aqueous mixture, reheating the mixture to form carbonized material, cooling the mixture, removing excess alkali from the carbonized material, and recovering the carbonized material, wherein the entire process is carried out in controlled atmospheres, and the carbonized material is a hydrocracking or hydrodehalogenation catalyst for liquid phase reactions. The invention also provides for a one-step method for producing catalysts from coal comprising mixing an aqueous alkali solution with the coal to create a mixture, heating the aqueous mixture from an ambient temperature to a predetermined temperature at a predetermined rate, cooling the mixture, and washing the mixture to remove excess alkali from the treated and carbonized material, wherein the entire process is carried out in a controlled atmosphere. 1 fig.

  7. Method for producing catalysis from coal

    DOE Patents [OSTI]

    Farcasiu, Malvina (Pittsburgh, PA); Derbyshire, Frank (Lexington, KY); Kaufman, Phillip B. (Library, PA); Jagtoyen, Marit (Lexington, KY)

    1998-01-01

    A method for producing catalysts from coal is provided comprising mixing an aqueous alkali solution with the coal, heating the aqueous mixture to treat the coal, drying the now-heated aqueous mixture, reheating the mixture to form carbonized material, cooling the mixture, removing excess alkali from the carbonized material, and recovering the carbonized material, wherein the entire process is carried out in controlled atmospheres, and the carbonized material is a hydrocracking or hydrodehalogenation catalyst for liquid phase reactions. The invention also provides for a one-step method for producing catalysts from coal comprising mixing an aqueous alkali solution with the coal to create a mixture, heating the aqueous mixture from an ambient temperature to a predetermined temperature at a predetermined rate, cooling the mixture, and washing the mixture to remove excess alkali from the treated and carbonized material, wherein the entire process is carried out in a controlled atmosphere.

  8. PROCESS FOR PRODUCING ALKYL ORTHOPHOSPHORIC ACID EXTRACTANTS

    DOE Patents [OSTI]

    Grinstead, R.R.

    1962-01-23

    A process is given for producing superior alkyl orthophosphoric acid extractants for use in solvent extraction methods to recover and purify various metals such as uranium and vanadium. The process comprises slurrying P/sub 2/O/ sub 5/ in a solvent diluent such as kerosene, benzene, isopropyl ether, and the like. An alipbatic alcohol having from nine to seventeen carbon atoms, and w- hcrein ihc OH group is situated inward of the terminal carbon atoms, is added to the slurry while the reaction temperature is mainiained below 60 deg C. The alcohol is added in the mole ratio of about 2 to l, alcohol to P/sub 2/O/sub 5/. A pyrophosphate reaotion product is formed in the slurry-alcohol mixture. Subsequently, the pyrophosphate reaction product is hydrolyzed with dilute mineral acid to produce the desired alkyl orthophosphoric aeid extractant. The extraetant may then be separated and utilized in metal-recovery, solvent- extraction processes. (AEC)

  9. Method of producing silicon carbide articles

    DOE Patents [OSTI]

    Milewski, John V. (Los Alamos, NM)

    1985-01-01

    A method of producing articles comprising reaction-bonded silicon carbide (SiC) and graphite (and/or carbon) is given. The process converts the graphite (and/or carbon) in situ to SiC, thus providing the capability of economically obtaining articles made up wholly or partially of SiC having any size and shape in which graphite (and/or carbon) can be found or made. When the produced articles are made of an inner graphite (and/or carbon) substrate to which SiC is reaction bonded, these articles distinguish SiC-coated graphite articles found in the prior art by the feature of a strong bond having a gradual (as opposed to a sharply defined) interface which extends over a distance of mils. A method for forming SiC whisker-reinforced ceramic matrices is also given. The whisker-reinforced articles comprise SiC whiskers which substantially retain their structural integrity.

  10. Process for producing furan from furfural aldehyde

    DOE Patents [OSTI]

    Diebold, J.P.; Evans, R.J.

    1987-04-06

    A process of producing furan and derivatives thereof as disclosed. The process includes generating furfural aldehyde vapors and then passing those vapors over a zeolite catalyst at a temperature and for a residence time effective to decarbonylate the furfural aldehydes to form furans and derivatives thereof. The resultant furan vapors and derivatives are then separated. In a preferred form, the furfural aldehyde vapors are generated during the process of converting biomass materials to liquid and gaseous fuels.

  11. Method and apparatus for producing cryogenic targets

    DOE Patents [OSTI]

    Murphy, James T. (Los Alamos, NM); Miller, John R. (Penfield, NY)

    1984-01-01

    An improved method and apparatus are given for producing cryogenic inertially driven fusion targets in the fast isothermal freezing (FIF) method. Improved coupling efficiency and greater availability of volume near the target for diagnostic purposes and for fusion driver beam propagation result. Other embodiments include a new electrical switch and a new explosive detonator, all embodiments making use of a purposeful heating by means of optical fibers.

  12. Process for producing furan from furfural aldehyde

    DOE Patents [OSTI]

    Diebold, James P. (Lakewood, CO); Evans, Robert J. (Lakewood, CO)

    1988-01-01

    A process of producing furan and derivatives thereof is disclosed. The process includes generating furfural aldehyde vapors and then passing those vapors over a zeolite catalyst at a temperature and for a residence time effective to decarbonylate the furfural aldehydes to form furans and derivatives thereof. The resultant furan vapors and derivatives are then separated. In a preferred form, the furfural aldehyde vapors are generated during the process of converting biomass materials to liquid and gaseous fuels.

  13. Method and apparatus for producing cryogenic targets

    SciTech Connect (OSTI)

    Murphy, J.T.; Miller, J.R.

    1981-08-28

    An improved method and apparatus are given for producing cryogenic inertially driven fusion targets in the fast isothermal freezing (FIF) method. Improved coupling efficiency and greater availability of volume near the target for diagnostic purposes and for fusion driver beam propagation result. Other embodiments include a new electrical switch and a new explosive detonator, all embodiments making use of a purposeful heating by means of optical fibers.

  14. Method of producing microchannel and nanochannel articles

    DOE Patents [OSTI]

    D'Urso, Brian R.

    2010-05-04

    A method of making an article having channels therethrough includes the steps of: providing a ductile structure defining at least one macro-channel, the macro-channel containing a salt; drawing the ductile structure in the axial direction of the at least one macro-channel to reduce diameter of the macro-channel; and contacting the salt with a solvent to dissolve the salt to produce an article having at least one microchannel.

  15. Hydrogenase mimic produces hydrogen under the light

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Objective The Science Center Publications Graduate Research opportunities Undergraduate research opportunities EFRC-501 graduate class Seminar schedules Center News Research Highlights Center Research News Media about Center Center Video Library Bisfuel Picture Gallery Hydrogenase mimic produces hydrogen under the light 24 Jan 2013 Researchers from the laboratory of Giovanna Ghirlanda working on Subtask 3 (Fuel Production Complex) have achieved the synthesis of a peptide-based hydrogenase mimic

  16. Method and apparatus for producing cryogenic targets

    DOE Patents [OSTI]

    Murphy, J.T.; Miller, J.R.

    1984-08-07

    An improved method and apparatus are given for producing cryogenic inertially driven fusion targets in the fast isothermal freezing (FIF) method. Improved coupling efficiency and greater availability of volume near the target for diagnostic purposes and for fusion driver beam propagation result. Other embodiments include a new electrical switch and a new explosive detonator, all embodiments making use of a purposeful heating by means of optical fibers. 6 figs.

  17. Phoenix Renewable Energy Phoenix Biomass | Open Energy Information

    Open Energy Info (EERE)

    Phoenix Biomass Jump to: navigation, search Name: Phoenix Renewable Energy (Phoenix Biomass) Place: Hot Springs, Arkansas Product: Arkansas-based pellet producer References:...

  18. Hainan Zhonghai New Energy Exploitation Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Hainan Province, China Zip: 570105 Product: China-based biodiesel producer and jatropha developer. References: Hainan Zhonghai New Energy Exploitation Co. Ltd.1 This...

  19. Tianjin Huaneng Energy Equipment Company | Open Energy Information

    Open Energy Info (EERE)

    Tianjin, Tianjin Municipality, China Zip: 301900 Product: Focused on producing energy saving boilers and radiator equipment. Coordinates: 39.231831, 117.878502 Show Map...

  20. Energy Department Authorizes Cameron LNG and Carib Energy to...

    Broader source: Energy.gov (indexed) [DOE]

    the final authorization to Cameron LNG, LLC (Cameron) and Carib Energy LLC (Carib) to export domestically produced liquefied natural gas (LNG) to countries that do not have a ...

  1. Energy Innovation Group EIG Ltd | Open Energy Information

    Open Energy Info (EERE)

    Place: Cheonan-city, Korea (Republic) Product: Korea-based developer and producer of lithium polymer batteries. References: Energy Innovation Group (EIG Ltd.)1 This article is...

  2. Xi an Safty Energy Technology Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Safty Energy Technology Co., Ltd. Place: China Product: China-based producer of Lithium Ion Polymer batteries for several applications including Radio Controlled toys....

  3. Diversified Energy Company LLC Denco | Open Energy Information

    Open Energy Info (EERE)

    Diversified Energy Company, LLC (Denco) Place: Minnesota Zip: MN 56267 Product: An ethanol producer and distributor in Minnesota whose principle asset is the ethanol production...

  4. Xinjiang Guanghui Energy Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    China Product: A wholly owned subsidiary of Xinjiang Huineng Group in producing biofuel. References: Xinjiang Guanghui Energy Co Ltd1 This article is a stub. You can help...

  5. Shenzhen New Energy Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    518081 Product: A professional company engaged in sunlight producing power and as such new energy application technology and product development, manufacturing and sales....

  6. PowerSHIFT Energy Company Inc | Open Energy Information

    Open Energy Info (EERE)

    search Name: PowerSHIFT Energy Company Inc Place: Casper, Wyoming Zip: 82605 Sector: Biofuels Product: Wyoming-based biofuels producer. Coordinates: 42.850095, -106.327734...

  7. Solargenix Energy LLC formerly Duke Solar | Open Energy Information

    Open Energy Info (EERE)

    develops projects using a STEGS parabolic trough system, and also produces solar passive water heating systems. References: Solargenix Energy LLC (formerly Duke Solar)1 This...

  8. Beneficial Reuse of San Ardo Produced Water

    SciTech Connect (OSTI)

    Robert A. Liske

    2003-09-26

    This report summarizes the work performed from 1 April 2003 to 30 September 2003 and recommends the tasks to be performed during Phase II (Pilot Evaluation). During this period discussions were held with various water agencies regarding use of the treated produced water either directly or indirectly through a water trading arrangement. In particular, several discussions were held with Monterey County Water Resources Agency, that has been charged with the long-term management and preservation of water resources in Monterey County. The Agency is very supportive of the program. However, they would like to see water quality/cost estimate data for the treated produced water from the pilot study prior to evaluating water use/water trade options. The agency sent a letter encouraging the project team to perform the pilot study to evaluate feasibility of the project. In addition, the regulations related to use of the treated water for various applications were updated during this period. Finally, the work plan, health and safety plan and sample analyses plan for performing pilot study to treat the oilfield produced water were developed during this period.

  9. Membrane Technology for Produced Water in Lea County

    SciTech Connect (OSTI)

    Cecilia Nelson; Ashok Ghosh

    2011-06-30

    Southeastern New Mexico (SENM) is rich in mineral resources, including oil and gas. Produced water is a byproduct from oil and gas recovery operations. SENM generates approximately 400 million barrels per year of produced water with total dissolved solids (TDS) as high as ~ 200,000 ppm. Typically, produced water is disposed of by transporting it to injection wells or disposal ponds, costing around $1.2 billion per year with an estimated use of 0.3 million barrels of transportation fuel. New Mexico ranks first among U.S. states in potash production. Nationally, more than 85% of all potash produced comes from the Carlsbad potash district in SENM. Potash manufacturing processes use large quantities of water, including fresh water, for solution mining. If the produced water from oilfield operations can be treated and used economically in the potash industry, it will provide a beneficial use for the produced water as well as preserve valuable water resources in an area where fresh water is scarce. The goal of this current research was to develop a prototype desalination system that economically treats produced water from oil and/or natural gas operations for the beneficial use of industries located in southeastern New Mexico. Up until now, most water cleaning technologies have been developed for treating water with much lower quantities of TDS. Seawater with TDS of around 30,000 ppm is the highest concentration that has been seriously studied by researchers. Reverse osmosis (RO) technology is widely used; however the cost remains high due to high-energy consumption. Higher water fluxes and recoveries are possible with a properly designed Forward Osmosis (FO) process as large driving forces can be induced with properly chosen membranes and draw solution. Membrane fouling and breakdown is a frequent and costly problem that drives the cost of desalination very high. The technology developed by New Mexico Tech (NMT) researchers not only protects the membrane, but has also proven to generate higher water flux, based on the series of experiments conducted. Laboratory tests at NMT demonstrated that an unprecedented water flux of 1300 l/m2/hr (where typical flux is on the order of 0-3 l/m{sup 2}/hr) can be achieved from a properly designed membrane module. The patent pending NMT system, which was designed and developed at NMT was successful in reducing the possibility for concentration polarization and thereby increasing the permeate water flux, while still maintaining a high salt rejection rate of 96% or greater. For feed solutions having a dissolved contaminant concentration greater than 10,000 ppm, preliminary economic analysis demonstrates that a well-designed FO process will outperform an RO process. Most produced water generated in SENM has TDS higher than 10,000 ppm. Therefore, it is logical to use FO to desalinate the water. Since the issues associated with concentration polarization has only recently been solved by our mechanically enhanced membrane module, the level of system maturity is not at the same level as that for RO. Our efforts going forward will be directed at taking the technology to a higher level of system maturity. With the superior cost effectiveness for FO, it is imperative that this technology reach a point that is competitive with RO in order to meet the expanding need for water for industries in SENM. NMT seeks to demonstrate the greater cost effectiveness by proving the process through a scaled up model. To ensure success, NMT feels it is important to demonstrate this technology in a larger system, (~ 100,000 GPD), before venturing to the commercial scale. This will build confidence in the process with the commercial sector. In addition, it will be possible to develop some of the operational processes around renewable energy sources for the scaled up model. This will further lower the operating costs and enhance the environmentally clean aspect of the process.

  10. 2014 Non-Utility Power Producers- Revenue

    Gasoline and Diesel Fuel Update (EIA)

    Revenue (Data from form EIA-861U) Entity State Ownership Residential Commercial Industrial Transportation Total Constellation NewEnergy, Inc AZ Non_Utility 0 296 0 0 296 Constellation NewEnergy, Inc AZ Non_Utility 0 256 0 0 256 Constellation Solar Arizona LLC AZ Non_Utility 0 774 0 0 774 Main Street Power AZ Non_Utility 0 533 0 0 533 Main Street Power AZ Non_Utility 0 265 0 0 265 Main Street Power AZ Non_Utility 0 165 0 0 165 Solar Star Arizona II LLC AZ Non_Utility 0 638 0 0 638 Solar Star

  11. U.S. Energy Production Through the Years | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production Through the Years U.S. Energy Production Through the Years December 10, 2014 - 1:00pm Addthis US Energy Production Through the Years Click on each state to learn more about how much energy it produces Pick an energy source Total Energy Produced Coal Crude Oil Natural Gas Total Renewable Energy Non-Biofuel Renewable Energy Biofuels Nuclear Power Source: EIA State Energy Data Systems Daniel Wood Daniel Wood Data Visualization and Cartographic Specialist, Office of Public Affairs More

  12. Energy-Efficient Melting and Direct Delivery of High Quality Molten Aluminum

    SciTech Connect (OSTI)

    None

    2009-05-01

    This factsheet describes a research project whose main objective is demonstrating a technology that will eliminate melting and holding furnaces at the casting cell and move these operations to centralized and optimized off-site facilities.

  13. Spanish Power | Open Energy Information

    Open Energy Info (EERE)

    Power Jump to: navigation, search Name: Spanish Power Place: Madrid, Spain Zip: 28014 Sector: Solar, Wind energy Product: Madrid-based electricity producer and distributor active...

  14. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    or by examining the volume of gas produced by each type of fuel. http:energy.goveereeducationdownloadsinvestigating-and-using-biomass-gases Download Photosynthesis and...

  15. Iberdrola SA | Open Energy Information

    Open Energy Info (EERE)

    natural gas. Producer of renewable energy power through mini-hydro, wind, solar and nuclear power. Coordinates: 43.26865, -2.946119 Show Map Loading map......

  16. SGTE Power | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name: SGTE Power Place: Le Mans, France Sector: Solar Product: France-based producer of a wide variety of energy management products. These include...

  17. Solaire France | Open Energy Information

    Open Energy Info (EERE)

    France Jump to: navigation, search Name: Solaire France Place: France Sector: Solar Product: Its current activities focus on the industrial use of solar energy to produce electric...

  18. Wobben Windpower | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Wobben Windpower Place: Sorocaba, Sao Paulo, Brazil Zip: Cep 18087-149 Sector: Wind energy Product: Brazil based wind turbine producer...

  19. Etrion Corporation | Open Energy Information

    Open Energy Info (EERE)

    search Name: Etrion Corporation Place: Geneva, Switzerland Zip: 1207 Sector: Solar, Wind energy Product: Geneva-based power producer, developing and building large scale solar...

  20. Hexatronic Inc | Open Energy Information

    Open Energy Info (EERE)

    Solar, Wind energy Product: Hexatronic produces power electronics for independent wind, solar, and hybrid systems, grid connected or autonomous, up to 2MW. References: Hexatronic...

  1. Biolins Energia | Open Energy Information

    Open Energy Info (EERE)

    Biolins Energia Jump to: navigation, search Name: Biolins Energia Place: Lins, Sao Paulo, Brazil Sector: Biomass Product: Sao Paulo-based biomass energy producer, part of Grupo...

  2. Boundless Corporation | Open Energy Information

    Open Energy Info (EERE)

    Zip: 80303 Region: Rockies Area Sector: Efficiency Product: Develops and produces energy storage technology Website: www.boundlesscorporation.com Coordinates: 40.015767,...

  3. Principle Power | Open Energy Information

    Open Energy Info (EERE)

    Zip: 94120 Sector: Renewable Energy Product: Principle Power is a global independent power producer committed to delivering green, sustainable products through financing and...

  4. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar) (4 Activities) Concentrated sunlight is a versatile and high-quality form of energy with several potential applications besides producing heat and electricity. Today,...

  5. LGC Skyrota | Open Energy Information

    Open Energy Info (EERE)

    Wind energy Product: Northern Ireland-based producer of small wind turbines and maintenance company for large turbines. References: LGC Skyrota1 This article is a stub. You...

  6. Viryd Technologies | Open Energy Information

    Open Energy Info (EERE)

    Wind Turbines consistently produce more usable energy at a lower cost, with greater reliability. References "Viryd Technologies" Retrieved from "http:en.openei.orgw...

  7. Perma Works | Open Energy Information

    Open Energy Info (EERE)

    Mexico Zip: 87123 Sector: Geothermal energy Product: A company that focuses on producing enhanced geothermal systems through providing electronics and software. Coordinates:...

  8. Grupo Servtec | Open Energy Information

    Open Energy Info (EERE)

    Servtec Jump to: navigation, search Name: Grupo Servtec Place: Sao Paulo, Sao Paulo, Brazil Product: Sao Paulo based project developer and independent energy producer. References:...

  9. Grupo Moema | Open Energy Information

    Open Energy Info (EERE)

    Moema Jump to: navigation, search Name: Grupo Moema Place: Orindiva, Sao Paulo, Brazil Product: Sao Paulo based ethanol and energy producer. Coordinates: -20.17358,...

  10. Grupo Naoum | Open Energy Information

    Open Energy Info (EERE)

    Naoum Jump to: navigation, search Name: Grupo Naoum Place: Anapolis, Goias, Brazil Product: Goias-based bioethanol and energy producer company. Coordinates: -16.328664,...

  11. MidMissouri Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    search Name: MidMissouri Energy LLC Place: Malta Bend, Missouri Zip: 65339 Product: Bioethanol producer using corn as feedstock. References: MidMissouri Energy LLC1 This article...

  12. Gen X Energy Group Inc | Open Energy Information

    Open Energy Info (EERE)

    X Energy Group Inc Jump to: navigation, search Name: Gen-X Energy Group, Inc. Place: Burbank, Washington State Zip: 99323 Product: Gen-X can produce 56.85mLpa (15m gallons) of...

  13. Four Rivers BioEnergy | Open Energy Information

    Open Energy Info (EERE)

    BioEnergy Jump to: navigation, search Name: Four Rivers BioEnergy Place: Calvert City, Kentucky Zip: 42029 Product: Kentucky-based ethanol and biodiesel producer, which is...

  14. Sri Vel Bio Diesel Energy Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    Vel Bio Diesel Energy Pvt Ltd Jump to: navigation, search Name: Sri Vel Bio Diesel Energy Pvt Ltd Place: Chennai, Tamil Nadu, India Zip: 600 083 Product: Focused on producing...

  15. AxunTek Solar Energy | Open Energy Information

    Open Energy Info (EERE)

    AxunTek Solar Energy Jump to: navigation, search Name: AxunTek Solar Energy Place: Taiwan Sector: Solar Product: Taiwan-based CIGS thin film solar cell producer. References:...

  16. ReEnergy Electric REE | Open Energy Information

    Open Energy Info (EERE)

    REE Place: China Sector: Wind energy Product: China-based developer and producer of pitch control systems for wind turbines. References: ReEnergy Electric REE1 This article...

  17. New technology for the independent producer

    SciTech Connect (OSTI)

    Not Available

    1993-07-01

    This technology transfer conference consisted of the following six sessions: reservoir characterization; drilling, testing and completion; enhanced oil recovery; 3-d seismic and amplitude variation with offset (AVO); biotechnology for field applications; and well logging technology. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  18. Method for producing nanostructured metal-oxides

    DOE Patents [OSTI]

    Tillotson, Thomas M.; Simpson, Randall L.; Hrubesh, Lawrence W.; Gash, Alexander

    2006-01-17

    A synthetic route for producing nanostructure metal-oxide-based materials using sol-gel processing. This procedure employs the use of stable and inexpensive hydrated-metal inorganic salts and environmentally friendly solvents such as water and ethanol. The synthesis involves the dissolution of the metal salt in a solvent followed by the addition of a proton scavenger, which induces gel formation in a timely manner. Both critical point (supercritical extraction) and atmospheric (low temperature evaporation) drying may be employed to produce monolithic aerogels and xerogels, respectively. Using this method synthesis of metal-oxide nanostructured materials have been carried out using inorganic salts, such as of Fe.sup.3+, Cr.sup.3+, Al.sup.3+, Ga.sup.3+, In.sup.3+, Hf.sup.4+, Sn.sup.4+, Zr.sup.4+, Nb.sup.5+, W.sup.6+, Pr.sup.3+, Er.sup.3+, Nd.sup.3+, Ce.sup.3+, U.sup.3+ and Y.sup.3+. The process is general and nanostructured metal-oxides from the following elements of the periodic table can be made: Groups 2 through 13, part of Group 14 (germanium, tin, lead), part of Group 15 (antimony, bismuth), part of Group 16 (polonium), and the lanthanides and actinides. The sol-gel processing allows for the addition of insoluble materials (e.g., metals or polymers) to the viscous sol, just before gelation, to produce a uniformly distributed nanocomposites upon gelation. As an example, energetic nanocomposites of Fe.sub.xO.sub.y gel with distributed Al metal are readily made. The compositions are stable, safe, and can be readily ignited to thermitic reaction.

  19. Method for producing metal oxide nanoparticles

    DOE Patents [OSTI]

    Phillips, Jonathan (Santa Fe, NM); Mendoza, Daniel (Santa Fe, NM); Chen, Chun-Ku (Albuquerque, NM)

    2008-04-15

    Method for producing metal oxide nanoparticles. The method includes generating an aerosol of solid metallic microparticles, generating plasma with a plasma hot zone at a temperature sufficiently high to vaporize the microparticles into metal vapor, and directing the aerosol into the hot zone of the plasma. The microparticles vaporize in the hot zone into metal vapor. The metal vapor is directed away from the hot zone and into the cooler plasma afterglow where it oxidizes, cools and condenses to form solid metal oxide nanoparticles.

  20. Process for producing phenolic compounds from lignins

    DOE Patents [OSTI]

    Agblevor, Foster A. (Lakewood, CO)

    1998-01-01

    A process for the production of low molecular weight phenolic compounds from lignins through the pyrolysis of the lignins in the presence of a strong base. In a preferred embodiment, potassium hydroxide is present in an amount of from about 0.1% to about 5% by weight, the pyrolysis temperature is from about 400.degree. C. to about 600.degree. C. at atmospheric pressure, and the time period for substantial completion of the reaction is from about 1-3 minutes. Examples of low molecular weight phenolic compounds produced include methoxyphenols, non-methoxylated phenols, and mixtures thereof.