Sample records for off-site produced energy

  1. Table 1c. Off-Site Produced Energy (Site Energy)For Selected Industries,

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 1773 January1998, and

  2. OFF-SITE S

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourthN V O 1 8 7 +New York, New6 O E2 54FORS e

  3. Recommendation 222: Recommendations on Additional Off-site Groundwater...

    Office of Environmental Management (EM)

    2: Recommendations on Additional Off-site Groundwater Migration Studies Recommendation 222: Recommendations on Additional Off-site Groundwater Migration Studies ORSSAB recommends...

  4. Off-site Intensive Operational Period

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeeding accessSpeedingOctober 1996 - September 2001 The rates BPA2Odds and2

  5. LHCb: The LHCb off-Site HLT Farm Demonstration

    E-Print Network [OSTI]

    Liu, Guoming

    2012-01-01T23:59:59.000Z

    The LHCb High Level Trigger (HLT) farm consists of about 1300 nodes, which are housed in the underground server room of the experiment point. Due to the constraints of the power supply and cooling system, it is difficult to install more servers in this room for the future. Off-site computing farm is a solution to enlarge the computing capacity. In this paper, we will demonstrate the LHCb off-site HLT farm which locate in the CERN computing center. Since we use private IP addresses for the HLT farm, we would need virtual private network (VPN) to bridge both sites. There are two kinds of traffic in the event builder: control traffic for the control and monitoring of the farm and the Data Acquisition (DAQ) traffic. We adopt IP tunnel for the control traffic and Network Address Translate (NAT) for the DAQ traffic. The performance of the off-site farm have been tested and compared with the on-site farm. The effect of the network latency has been studied. To employ a large off-site farm, one of the potential bottle...

  6. EIS-0426: Site-Wide Environmental Impact Statement for Continued Operation of the Department of Energy / National Nuclear Security Administration Nevada National Security Site and Off-Site Locations in the State of Nevada

    Broader source: Energy.gov [DOE]

    This Site-Wide EIS evaluates the potential environmental impacts of proposed alternatives for continued management and operation of the Nevada National Security Site (NNSS) (formerly known as the Nevada Test Site) and other U.S. Department of Energy/National Nuclear Security Administration (DOE/NNSA)-managed sites in Nevada.

  7. Behavioral Aspects in Simulating the Future US Building Energy Demand

    E-Print Network [OSTI]

    Stadler, Michael

    2011-01-01T23:59:59.000Z

    Importance Total off- site energy demand (2030) 20% decreaseImportance Total off-site energy demand (2030) 20% decreaseImportance Total off-site energy demand (2030) 20% decrease

  8. Pollution Prevention Plan for the Y-12 Analytical Chemistry Organization Off-Site Union Valley Facility

    SciTech Connect (OSTI)

    Jackson, J. G.

    2010-03-01T23:59:59.000Z

    The Y-12 Analytical Chemistry Organization (ACO) Off-Site Union Valley Facility (Union Valley Facility) is managed by Babcock and Wilcox Technical Services Y-12, L.L.C. (B and W Y-12) through the Y-12 National Security Complex organization. Accordingly, the Y-12 Pollution Prevention Program encompasses the operations conducted at the Union Valley Facility. The Y-12 Program is designed to fully comply with state, federal and U.S. Department of Energy (DOE) requirements concerning waste minimization/pollution prevention as documented in the Y-12 Pollution Prevention Program Plan. The Program is formulated to reduce the generation and toxicity of all Y-12 wastes in all media, including those wastes generated by the Union Valley Facility operations. All regulatory and DOE requirements are met by the Y-12 Program Plan.

  9. Testa Produce | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <Maintained ByManagement IncDrillbe niceOpen EnergyTerraPass

  10. Method for producing chemical energy

    DOE Patents [OSTI]

    Jorgensen, Betty S.; Danen, Wayne C.

    2004-09-21T23:59:59.000Z

    Fluoroalkylsilane-coated metal particles having a central metal core, a buffer layer surrounding the core, and a fluoroalkylsilane layer attached to the buffer layer are prepared by combining a chemically reactive fluoroalkylsilane compound with an oxide coated metal particle having a hydroxylated surface. The resulting fluoroalkylsilane layer that coats the particles provides them with excellent resistance to aging. The particles can be blended with oxidant particles to form energetic powder that releases chemical energy when the buffer layer is physically disrupted so that the reductant metal core can react with the oxidant.

  11. Isotopic constraints on off-site migration of landfill CH{sub 4}

    SciTech Connect (OSTI)

    Desrocher, S.; Lollar, B.S. [Univ. of Toronto, Ontario (Canada). Dept. of Geology

    1998-09-01T23:59:59.000Z

    Occurrences of CH{sub 4} in residential areas in the vicinity of the Beare Road landfill, Toronto, Canada, have raised public concern about potential off-site migration of CH{sub 4} from the landfill site. Carbon isotopic analysis of dissolved and gas phase CH{sub 4} at the Beare Road site, however, indicates that CH{sub 4} in the ground water systems in the vicinity of the landfill is related to naturally occurring microbial methanogenesis within these geologic units, rather than to contamination by landfill CH{sub 4}. CH{sub 4} gas in the landfill and landfill cover has {delta}{sup 13}C values typical of microbially produced gas. Concentrations of CH{sub 4} found in deep ground water in the Scarborough, Don, and Whitby Formations underlying the landfill are isotopically distinct from the landfill gases. They are isotopically and compositionally similar, however, to naturally occurring microbial CH{sub 4} identified in organic-rich glacial deposits throughout Ontario. The lack of any significant CH{sub 4} concentrations or concentration gradients in the upper tin zone between the landfill and the deep ground water aquifer is further evidence that no transport between the landfill and deep ground water is occurring.

  12. Performance profiles of major energy producers 1994

    SciTech Connect (OSTI)

    NONE

    1996-02-01T23:59:59.000Z

    Performance Profiles of Major Energy Producers 1994 is the eighteenth annual report of the Energy Information Administration`s (EIA) Financial Reporting System (FRS). The report examines financial and operating developments in energy markets, with particular reference to the 24 major U.S. energy companies required to report annually on Form EIA-28. Financial information is reported by major lines of business, including oil and gas production, petroleum refining and marketing, other energy operations, and nonenergy businesses. Financial and operating results are presented in the context of energy market developments with a view toward identifying changing corporate strategies and measuring the performance of ongoing operations both in the United States and abroad.

  13. Performance Profiles of Major Energy Producers

    Reports and Publications (EIA)

    2011-01-01T23:59:59.000Z

    The information and analyses in Performance Profiles of Major Energy Producers is intended to provide a critical review, and promote an understanding, of the possible motivations and apparent consequences of investment decisions made by some of the largest corporations in the energy industry.

  14. Off Site University Research (OSUR) | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Astrophysics One ofSpeeding access toSpeedingInnovation

  15. Sounds energetic: the radio producer's energy minibook

    SciTech Connect (OSTI)

    Not Available

    1980-12-01T23:59:59.000Z

    The Minibook will be expanded into the final Radio Producer's Energy Sourcebook. Radio producers and broadcasters are asked to contribute ideas for presenting energy knowledge to the public and to be included in the Sourcebook. Chapter One presents a case study suggesting programming and promotion ideas and sample scripts for a radio campaign that revolves around no-cost or low-cost steps listeners can take to increase their home energy efficiency and save money. A variety of other energy topics and suggestions on ways to approach them are addressed in Chapter Two. Chapter Three contains energy directories for Baltimore, Philadelphia, Pittsburg, and Washington, DC. The directories will be expanded in the Sourcebook and will consist of a selection of local public and private sector energy-related organizations and list local experts and organizations and the best Federal, state, and local government programs that can provide consumers and citizens groups with information, technical assistance, and financial support. (MCW)

  16. How Much Energy Does Your State Produce? | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    How Much Energy Does Your State Produce? November 10, 2014 - 2:52pm Addthis Energy Production in Trillion Btu: 2012 Click on each state to learn more about how much energy it...

  17. Performance profiles of major energy producers 1989

    SciTech Connect (OSTI)

    Not Available

    1991-01-23T23:59:59.000Z

    Performance Profiles of Major Energy Producers 1989 is the thirteenth annual report of the Energy Information Administration's (EIA) Financial Reporting System (FRS). The report examines financial and operating developments, with particular reference to the 23 major energy companies (the FRS companies'') required to report annually on Form EIA-28. Financial information is reported by major lines of business including oil and gas production, petroleum refining and marketing, and other energy operations. Domestic and international operations are examined separately in this report. It also traces key developments affecting the financial performance of major energy companies in 1989, as well as review of important trends.

  18. Recommendation 222: Recommendations on Additional Off-site Groundwater

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR - TProcuringDepartment

  19. Off-Site Electronic Access | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding access to scienceScientificObservation of aObservingOff-Grid

  20. Performance profiles of major energy producers 1993

    SciTech Connect (OSTI)

    NONE

    1995-01-01T23:59:59.000Z

    Performance Profiles of Major Energy Producers 1993 is the seventeenth annual report of the Energy Information Administration`s (EIA) Financial Reporting System (FRS). The report examines financial and operating developments in energy markets, with particular reference to the 25 major US energy companies required to report annually on Form EIA-28. Financial information is reported by major liens of business, including oil and gas production, petroleum refining and marketing, other energy operations, and nonenergy businesses. Financial and operating results are presented in the context of energy market developments with a view toward identifying changing corporate strategies and measuring the performance of ongoing operations both in the US and abroad. This year`s report analyzes financial and operating developments for 1993 (Part 1: Developments in 1993) and also reviews key developments during the 20 years following the Arab Oil Embargo of 1973--1974 (Part 2: Major Energy Company Strategies Since the Arab Oil Embargo). 49 figs., 104 tabs.

  1. Performance profiles of major energy producers 1996

    SciTech Connect (OSTI)

    NONE

    1998-01-01T23:59:59.000Z

    This publication examines developments in the operations of the major US e energy-producing companies on a corporate level, by major line of business, by major function within each line of business, and by geographic area. In 1996, 24 companies filed Form EIA-28. The analysis and data presented in this report represents the operations of the Financial Reporting System companies in the context of their worldwide operations and in the context of the major energy markets which they serve. Both energy and nonenergy developments of these companies are analyzed. Although the focus is on developments in 1996, important trends prior to that time are also featured. Sections address energy markets in 1996; key financial developments; oil and gas exploration, development, and production; downstream petroleum in 1996; coal and alternative energy; and foreign direct investment in US energy. 30 figs., 104 tabs.

  2. COLLECTlOWo OF CORRESPONDENCE AND : L-LWIJSCRIPT Shelved off-site

    E-Print Network [OSTI]

    Salzman, Daniel

    COLLECTlOWo OF CORRESPONDENCE AND : L-LWIJSCRIPT Shelved off-site N.,n3 OF COLLECTION i Robert organized; CCWDITION: (give number of vols«, boxes, or shelves) Bound: Boxad: S5 Stored: LOCATION: (Library Marxism Radio "12 Case Press Comment Shelved off-sfte' Box 6 Minor, B-cbert: "To tell the truth" o

  3. Performance profiles of major energy producers 1992

    SciTech Connect (OSTI)

    Not Available

    1994-01-13T23:59:59.000Z

    Performance Profiles of Major Energy Producers 1992 is the sixteenth annual report of the Energy Information Administration`s (EIA) Financial Reporting System (FRS). The report examines financial and operating developments, with particular reference to the 25 major energy companies (the FRS companies) required to report annually on Form EIA-28. Financial information is reported by major lines of business, including oil and gas production, petroleum refining and marketing, and other energy operations. Domestic and international operations are examined separately in this report. The data are presented in the context of key energy market developments with a view toward identifying changing strategies of corporate development and measuring the apparent success of current ongoing operations.

  4. New policy imperatives for energy producers

    SciTech Connect (OSTI)

    El Mallakh, R.; El Mallakh, D.H. (eds.)

    1980-01-01T23:59:59.000Z

    Conferences sponsored by the International Research Center for Energy and Economic Development are organized toward increasing the understanding of the multifaceted problems in energy - economic, technical, and political - that confront not just the consuming industrial powers but the developing OPEC and non-OPEC producers and, in particular, the Third World countries whose plight is extreme. All types were represented at this 6th conference, and the 21 papers mirror the diversity of ideas and, at the same time, the very real areas where cooperation and coordination are clearly both possible and desirable. A separate abstract was prepared for each paper for Energy Abstracts for Policy Analysis (EAPA); one abstract was selected for Energy Research Abstracts (ERA).

  5. Geothermal Energy Production with Co-produced and Geopressured...

    Energy Savers [EERE]

    Geothermal Energy Production with Co-produced and Geopressured Resources (Fact Sheet), Geothermal Technologies Program (GTP) Geothermal Energy Production with Co-produced and...

  6. ITP Steel: Theoretical Minimum Energies to Produce Steel for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Theoretical Minimum Energies to Produce Steel for Selected Conditions, March 2000 ITP Steel: Theoretical Minimum Energies to Produce Steel for Selected Conditions, March 2000...

  7. Performance profiles of major energy producers, 1997

    SciTech Connect (OSTI)

    NONE

    1999-01-01T23:59:59.000Z

    The energy industry generally and petroleum and natural gas operations in particular are frequently reacting to a variety of unsettling forces. Falling oil prices, economic upswings, currency devaluations, increasingly rigorous environmental quality standards, deregulation of electricity markets, and continued advances in exploration and production technology were among the challenges and opportunities to the industry in 1997. To analyze the extent to which these and other developments have affected energy industry financial and operating performance, strategies, and industry structure, the Energy Information Administration (EIA) maintains the Financial Reporting Systems (FRS). Through Form EIA-28, major US energy companies annually report to the FRS. Financial and operating information is reported by major lines of business, including oil and gas production (upstream), petroleum refining and marketing (downstream), other energy operations, and nonenergy business. Performance Profiles of Major Producers 1997 examines the interplays of energy markets, companies` strategies, and government policies (in 1997 and in historical context) that gave rise to the results given here. The report also analyzes other key aspects of energy company financial performance as seen through the multifaceted lens provided by the FRS data and complementary data for industry overall. 41 figs., 77 tabs.

  8. Low-level radioactive waste management: transitioning to off-site disposal at Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Dorries, Alison M [Los Alamos National Laboratory

    2010-11-09T23:59:59.000Z

    Facing the closure of nearly all on-site management and disposal capability for low-level radioactive waste (LLW), Los Alamos National Laboratory (LANL) is making ready to ship the majority of LLW off-site. In order to ship off-site, waste must meet the Treatment, Storage, and Disposal Facility's (TSDF) Waste Acceptance Criteria (WAC). In preparation, LANL's waste management organization must ensure LANL waste generators characterize and package waste compliantly and waste characterization documentation is complete and accurate. Key challenges that must be addressed to successfully make the shift to off-site disposal of LLW include improving the detail, accuracy, and quality of process knowledge (PK) and acceptable knowledge (AK) documentation, training waste generators and waste management staff on the higher standard of data quality and expectations, improved WAC compliance for off-site facilities, and enhanced quality assurance throughout the process. Certification of LANL generators will allow direct off-site shipping of LLW from their facilities.

  9. Spent nuclear fuel characterization for a bounding reference assembly for the receiving basin for off-site fuel

    SciTech Connect (OSTI)

    Kahook, S.D.; Garrett, R.L.; Canas, L.R.; Beckum, M.J. [Westinghouse Savannah River, Aiken, SC (United States)

    1995-07-01T23:59:59.000Z

    The Basis for Interim Operation (BIO) for the Receiving Basin for Off-Site Fuel (RBOF) facility at the Department of Energy (DOE) Savannah River Site (SRS) nuclear materials production complex, developed in accordance with draft DOE-STD-0019-93, required a hazard categorization for the safety analysis section as outlined in DOE-STD-1027-92. The RBOF facility was thus established as a Category-2 facility (having potential for significant on-site consequences from a radiological release) as defined in DOE 5480.23. Given the wide diversity of spent nuclear fuel stored in the RBOF facility, which made a detailed assessment of the total nuclear inventory virtually impossible, the categorization required a conservative calculation based on the concept of a hypothetical, bounding reference fuel assembly integrated over the total capacity of the facility. This scheme not only was simple but also precluded a potential delay in the completion of the BIO.

  10. Costs for off-site disposal of nonhazardous oil field wastes: Salt caverns versus other disposal methods

    SciTech Connect (OSTI)

    Veil, J.A.

    1997-09-01T23:59:59.000Z

    According to an American Petroleum Institute production waste survey reported on by P.G. Wakim in 1987 and 1988, the exploration and production segment of the US oil and gas industry generated more than 360 million barrels (bbl) of drilling wastes, more than 20 billion bbl of produced water, and nearly 12 million bbl of associated wastes in 1985. Current exploration and production activities are believed to be generating comparable quantities of these oil field wastes. Wakim estimates that 28% of drilling wastes, less than 2% of produced water, and 52% of associated wastes are disposed of in off-site commercial facilities. In recent years, interest in disposing of oil field wastes in solution-mined salt caverns has been growing. This report provides information on the availability of commercial disposal companies in oil-and gas-producing states, the treatment and disposal methods they employ, and the amounts they charge. It also compares cavern disposal costs with the costs of other forms of waste disposal.

  11. The valuation of off-site ecosystem service ows: Deforestation, erosion and the amenity value of lakes in Prescott, Arizona

    E-Print Network [OSTI]

    Analysis The valuation of off-site ecosystem service ows: Deforestation, erosion and the amenity service-based strategy for managing public lands and, to support this, the development of the methods

  12. Exhibit G Off-site Moderate Risk Cloud Computing Services (Rev 0, 2/27/2014) P.R. No. * Date*

    E-Print Network [OSTI]

    Exhibit G Off-site Moderate Risk Cloud Computing Services (Rev 0, 2/27/2014) P.R. No. * Date* Subcontract No. or PO No. * 1 EXHIBIT G OFF-SITE MODERATE RISK CLOUD COMPUTING SERVICES SECURITY REQUIREMENTS Clauses Incorporated By Reference #12;Exhibit G Off-site Moderate Risk Cloud Computing Services (Rev 0, 2

  13. Enforcement Guidance Supplement 98-02: DOE Enforcement Activities where Off-site Transportation Issues are also Present.

    Broader source: Energy.gov [DOE]

    Recently several questions have arisen regarding the scope of Price-Anderson enforcement when transportation issues are directly or indirectly involved in an incident. These questions can be separated into two areas, (1) transportation issues that involve on-site transportation typically not regulated by the Department of Transportation (DOT), and (2) transportation issues that involve off-site transportation. This guidance addresses off-site transportation that is regulated by DOT and other state and federal agencies.

  14. Energy footprint of Locally Produced Ethanol 

    E-Print Network [OSTI]

    Chiatula, Ebelechukwu

    2011-11-24T23:59:59.000Z

    The aim of this study was to conduct a lifecycle wide analysis of the direct and indirect energy inputs and outputs flowing through a bioethanol pathway in Kenya using the life cycle energy assessment technique and energy performance indicators...

  15. Clean Energy Producing and Exporting Countries 

    E-Print Network [OSTI]

    Atighetchi, K.

    2007-01-01T23:59:59.000Z

    fitting structure are being investigated. The model developed will be presented to various Natural Gas producing countries such as Iran, Iraq, Russia, and Saudi to name a few and will ultimately be set up the same way that OPEC was....

  16. Midwest Biodiesel Producers LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio:Menomonee| OpenMickeyDelaware: EnergyMidnight PointMidway,

  17. Experiments with Wind to Produce Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist. Category UC-l 1,Energy ConsumersExperimental TestNew Nat

  18. EA-1924: Consolidation and Relocation of Lawrence Berkeley National Laboratory (LBNL) OffSite Research Programs to a New Off-Site Location that also Allows for Future Growth, San Francisco East Bay Area, California

    Broader source: Energy.gov [DOE]

    This EA will evaluate the potential environmental impacts of a proposal to consolidate and relocate LBNL research programs that are currently in leased off-site buildings at various locations around the San Francisco East Bay Area in California, to a new single location that also provides room for future growth of LBNL research programs.

  19. "Goodbye Doesn’t Mean Forever:" Selection Strategies for the Transfer of Slavic to Off-Site Remote Storage

    E-Print Network [OSTI]

    Giullian, Jon C.

    2007-01-01T23:59:59.000Z

    to the storage crisis, several of the nation’s top research libraries have constructed off-site, high-density shelving facilities. This paper first summarizes the discussion about the nature and function of these facilities. The paper goes on to document a case...

  20. Performance profiles of major energy producers 1995, January 1997

    SciTech Connect (OSTI)

    NONE

    1997-02-01T23:59:59.000Z

    This publication examines developments in the operations of the major U.S. energy-producing companies on a corporate level, by major line of business, by major function within each line of business, and by geographic area.

  1. Idaho Habitat Evaluation for Off-Site Mitigation Record : Annual Report 1987.

    SciTech Connect (OSTI)

    Petrosky, Charles E.; Holubetz, Terry B. (Idaho Dept. of Fish and Game, Boise, ID (USA)

    1988-04-01T23:59:59.000Z

    The Idaho Department of Fish and Game has been monitoring and evaluating existing and proposed habitat improvement projects for steelhead (Salmo gairdneri) and chinook salmon (Oncorhynchus tshawytscha) in the Clearwater and Salmon River drainages over the last four years. Projects included in the evaluation are funded by, or proposed for funding by, the Bonneville Power Administration (BPA) under the Northwest Power Planning Act as off-site mitigation for downstream hydropower development on the Snake and Columbia rivers. A mitigation record is being developed to use increased smolt production at full seeding as the best measure of benefit from a habitat enhancement project. Determination of full benefit from a project depends on presence of adequate numbers of fish to document actual increases in fish production. The depressed nature of upriver anadromous stocks have precluded attainment of full benefit of any habitat project in Idaho. Partial benefit will be credited to the mitigation record in the interim period of run restoration. According to the BPA Work Plan, project implementors have the primary responsibility for measuring physical habitat and estimating habitat change. To date, Idaho habitat projects have been implemented primarily by the US Forest Service (USFS). The Shoshone-Bannock Tribes (SBT) have sponsored three projects (Bear Valley Mine, Yankee Fork, and the proposed East Fork Salmon River projects). IDFG implemented two barrier-removal projects (Johnson Creek and Boulder Creek) that the USFS was unable to sponsor at that time. The role of IDFG in physical habitat monitoring is primarily to link habitat quality and habitat change to changes in actual, or potential, fish production. Individual papers were processed separately for the data base.

  2. Idaho Habitat Evaluation for Off-Site Mitigation Record : Annual Report 1985.

    SciTech Connect (OSTI)

    Petrosky, Charles E.; Holubetz, Terry B.

    1986-04-01T23:59:59.000Z

    Evaluation approaches to document a record of credit for mitigation were developed in 1984-1985 for most of the habitat projects. Restoration of upriver anadromous fish runs through increased passage survival at main stem Columbia and Snake River dams is essential to the establishment of an off-site mitigation record, as well as to the success of the entire Fish and Wildlife program. The mitigation record is being developed to use increased smolt production (i.e., yield) at full-seeding as the basic measure of benefit from a habitat project. The IDFG evaluation approach consists of three basic, integrated levels: general monitoring, standing crop evaluations, and intensive studies. Annual general monitoring of anadromous fish densities in a small number of sections for each project will be used to follow population trends and define full-seeding levels. For most projects, smolt production will be estimated indirectly from standing crop estimates by factoring appropriate survival rates from parr to smolt stages. Intensive studies in a few key production streams will be initiated to determine these appropriate survival rates and provide other basic biological information that is needed for evaluation of the Fish and Wildlife program. A common physical habitat and fish population data base is being developed for every BPA habitat project in Idaho to be integrated at each level of evaluation. Compatibility of data is also needed between Idaho and other agencies and tribes in the Columbia River basin. No final determination of mitigation credit for any Idaho habitat enhancement project has been attainable to date.

  3. Theoretical Minimum Energies to Produce Steel for Selected Conditions

    SciTech Connect (OSTI)

    Fruehan, R.J.; Fortini, O.; Paxton, H.W.; Brindle, R.

    2000-05-01T23:59:59.000Z

    The energy used to produce liquid steel in today's integrated and electric arc furnace (EAF) facilities is significantly higher than the theoretical minimum energy requirements. This study presents the absolute minimum energy required to produce steel from ore and mixtures of scrap and scrap alternatives. Additional cases in which the assumptions are changed to more closely approximate actual operating conditions are also analyzed. The results, summarized in Table E-1, should give insight into the theoretical and practical potentials for reducing steelmaking energy requirements. The energy values have also been converted to carbon dioxide (CO{sub 2}) emissions in order to indicate the potential for reduction in emissions of this greenhouse gas (Table E-2). The study showed that increasing scrap melting has the largest impact on energy consumption. However, scrap should be viewed as having ''invested'' energy since at one time it was produced by reducing ore. Increasing scrap melting in the BOF mayor may not decrease energy if the ''invested'' energy in scrap is considered.

  4. How Much Energy Does Each State Produce? | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want toworldPowerHome| DepartmentPumpHome OfficeConsume? HowMuch

  5. Association of Renewable Energy Producers Spain | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcatAntrimArkansasAshford,Asotin County,ResourceSpain Jump to:

  6. Midwest Ethanol Producers Inc MEPI | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio:Menomonee| OpenMickeyDelaware: EnergyMidnightProducers Inc MEPI

  7. Energy Spread Reduction of Electron Beams Produced via Laser Wake

    SciTech Connect (OSTI)

    Pollock, B

    2012-03-19T23:59:59.000Z

    Laser wakefield acceleration of electrons holds great promise for producing ultra-compact stages of GeV scale, high quality electron beams for applications such as x-ray free electron lasers and high energy colliders. Ultra-high intensity laser pulses can be self-guided by relativistic plasma waves over tens of vacuum diffraction lengths, to give >1 GeV energy in cm-scale low density plasma using ionization-induced injection to inject charge into the wake at low densities. This thesis describes a series of experiments which investigates the physics of LWFA in the self-guided blowout regime. Beginning with high density gas jet experiments the scaling of the LWFA-produced electron beam energy with plasma electron density is found to be in excellent agreement with both phenomenological theory and with 3-D PIC simulations. It is also determined that self-trapping of background electrons into the wake exhibits a threshold as a function of the electron density, and at the densities required to produce electron beams with energies exceeding 1 GeV a different mechanism is required to trap charge into low density wakes. By introducing small concentrations of high-Z gas to the nominal He background the ionization-induced injection mechanism is enabled. Electron trapping is observed at densities as low as 1.3 x 10{sup 18} cm{sup -3} in a gas cell target, and 1.45 GeV electrons are demonstrated for the first time from LWFA. This is currently the highest electron energy ever produced from LWFA. The ionization-induced trapping mechanism is also shown to generate quasi-continuous electron beam energies, which is undesirable for accelerator applications. By limiting the region over which ionization-induced trapping occurs, the energy spread of the electron beams can be controlled. The development of a novel two-stage gas cell target provides the capability to tailor the gas composition in the longitudinal direction, and confine the trapping process to occur only in a limited, defined region. Using this technique a 460 MeV electron beam was produced with an energy spread of 5%. This technique is directly scalable to multi-GeV electron beam generation with sub-percent energy spreads.

  8. How Much Energy Does Your State Produce? | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 RussianBy: Thomas P. D'Agostino,GlenLearningDepartmentDistributedWant to

  9. How Much Energy Does Each State Produce? | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of Blythe Solar PowerCommercialEnergy Star| DepartmentHowHow Much Do

  10. Learn how to develop your own net energy producing, alternative energy home.

    E-Print Network [OSTI]

    Schladow, S. Geoffrey

    Learn how to develop your own net energy producing, alternative energy home. The program consists of images and description of the development of the Alternative Energy Program at SNC from 1971 lower utility bills as well as improving home comfort. Ben Solomon is a Professor of Alternative Energy

  11. Financial News for Major Energy Producers, Third Quarter 2010

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.Gas Proved Reserves,Light-DutyProducers, Third

  12. Financial News for Major Energy Producers, Third Quarter 2010

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.Gas Proved Reserves,Light-DutyProducers,

  13. H FINAL REPORT OF OFF-SITE SURVEILLANCE FOR THE FAULTLESS EVENT,

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling CorpNewCF INDUSTRIES,L? . -. .- *'

  14. OFF-SITE ENVIRONMENTAL MONITORING REPORT F O R THE NEVADA TEST SITE

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourthN V O 1 8 7 +New York, New6 O E2 54

  15. OFF-SITE ENVIRONMENTAL MONITORING REPORT FOR THE NEVADA TEST SITE

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourthN V O 1 8 7 +New York, New6 O E2 54FOR THE

  16. OFF-SITE RADIOLOGICAL SAFETY PROGRAM FOR PROJECT RULISON FLARING, PHASE I11

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourthN V O 1 8 7 +New York, New6 O E2 54FOR

  17. OFF-SITE SURVEILLANCE ACTIVITIES OF TFE SOUTHWESTERN RADIOLOG1 CAL BEALTH LABORATORY

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourthN V O 1 8 7 +New York, New6 O E2 54FORS

  18. COT"IPREITENS IVE RADIOLOGICAL SURVEY OFF-SITE PROPERTY P NIAGARA FALIS STORAGE SITE

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourthNrr-osams ADMIN RCDBaseline t-)

  19. I COMPRE}IENSIVE RADIOLOGICAI SURVEY OFF-SITE PROPERTY N,-NORTS

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourthNrr-osams ADMIN551 - g 76 IA//) ofim

  20. OFermilab OFF-SITE SHORT-TERM HOUSING-2013--2014 Housing Office/Aspen East

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project TapsDOERecoveryNuclearLifeMealsOFermilab

  1. All Hands Program Review- Off-site | MIT-Harvard Center for Excitonics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973ManagedStrategic|Aljazeera story on rare

  2. All Hands Program Review Off-site | MIT-Harvard Center for Excitonics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP RelatedCellulase C. bescii CelA,Portal 09,184

  3. Simulation of neutrons produced by high-energy muons underground

    E-Print Network [OSTI]

    A. Lindote; H. M. Araujo; V. A. Kudryavtsev; M. Robinson

    2009-02-12T23:59:59.000Z

    This article describes the Monte Carlo simulation used to interpret the measurement of the muon-induced neutron flux in the Boulby Underground Laboratory (North Yorkshire, UK), recently performed using a large scintillator veto deployed around the ZEPLIN-II WIMP detector. Version 8.2 of the GEANT4 toolkit was used after relevant benchmarking and validation of neutron production models. In the direct comparison between Monte Carlo and experimental data, we find that the simulation produces a 1.8 times higher neutron rate, which we interpret as over-production in lead by GEANT4. The dominance of this material in neutron production allows us to estimate the absolute neutron yield in lead as (1.31 +/- 0.06) x 10^(-3) neutrons/muon/(g/cm^2) for a mean muon energy of 260 GeV. Simulated nuclear recoils due to muon-induced neutrons in the ZEPLIN-II target volume (~1 year exposure) showed that, although a small rate of events is expected from this source of background in the energy range of interest for dark matter searches, no event survives an anti-coincidence cut with the veto.

  4. From Processing Juice to Producing Biofuels | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    From Processing Juice to Producing Biofuels From Processing Juice to Producing Biofuels June 25, 2010 - 4:00pm Addthis Lindsay Gsell INEOS Bio -- one of the 17 global companies of...

  5. Geothermal Energy Production with Co-produced and Geopressured Resources (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01T23:59:59.000Z

    This fact sheet provides an overview of geothermal energy production using co-produced and geopressured resources.

  6. Wing Wave: Feasible, Alternative, Renewable, Electrical Energy Producing Ocean Floor System

    E-Print Network [OSTI]

    Wood, Stephen L.

    Wing Wave: Feasible, Alternative, Renewable, Electrical Energy Producing Ocean Floor System Mark, alternative energy system to convert the circular motion of ocean waves as they propagate through the sea and feasible alternative, renewable, electrical energy producing subsea system. Index Terms--ocean energy, wave

  7. How is shale gas produced? | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov.Energy02.pdf7 OPAM Flash2011-37Energy HighlightsCarbonEnergyHow is shale

  8. Community Development Using Solar Energy to Produce Electricity for Ohioans

    E-Print Network [OSTI]

    Eric Romich

    Because it is a virtually unlimited, clean, and renewable resource, the sun has the potential to provide an important source of energy to help power our way of life. Interest in solar energy is growing among

  9. Timken Producing Parts for Wind Turbines | Department of Energy

    Energy Savers [EERE]

    at businesses around the state. | File photo Concrete Company Aims Higher for More Wind Energy Boston's Wind Technology Testing Center, funded in part with Recovery Act...

  10. Energy Department Announces $10 Million for Technologies to Produce...

    Broader source: Energy.gov (indexed) [DOE]

    and national laboratory partners on a balanced portfolio of research in biomass feedstocks and conversion technologies. Addthis Related Articles Energy Department...

  11. Calpine: America's largest geothermal energy producer | Department of

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want toworldPower 2010 1AAcquisition »Department link toEnergy

  12. Clean Hydrogen Producers Ltd CHP | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergy Offshore Place:Wind EnergyCielo Wind Power JumpCleanLtd

  13. The economic potential of producing energy from agricultural biomass

    E-Print Network [OSTI]

    Jerko, Christine

    1996-01-01T23:59:59.000Z

    production. The model determined the optimal mix of corn and energy crops to meet the biomass feedstock goals for energies. The resultant model appraises the effects of increasing biomass feedstocks for the years 1990, 2000, 2010, and 2020. The results show...

  14. A US Strategy to Explore the Science and Technology of Energy-Producing Plasmas

    E-Print Network [OSTI]

    1 A US Strategy to Explore the Science and Technology of Energy-Producing Plasmas Discussion Draft strategy to explore the science and technology of energy-producing plasmas must change in the post September 16, 1997 Introduction Last year, the Department of Energy redirected the fusion program from

  15. Geothermal Energy Production with Co-produced and Geopressured Resources

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To: Congestion StudyForecasting.Energy InDOE Geothermal

  16. USA Biomass Power Producers Alliance | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global Energy LLC Place: Dallas,UGIURDB SchemaNealState Climate

  17. Thamna Bio power and Organic Producers Company TBPOPC | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with formSoutheasternInformationPolicy | Open EnergyInformation Thamna

  18. Union Helps Produce Women Workers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to find air leaks, much like the equipment used here by an NREL worker. | File photo Finding a Career in Energy Efficiency Training Changing Face of West Virginia's Workforce...

  19. The economic potential of producing energy from agricultural biomass 

    E-Print Network [OSTI]

    Jerko, Christine

    1996-01-01T23:59:59.000Z

    Agricultural biomass is a substitute for fossil fuels, which could provide a sustained energy feedstock and possibly reduce further accumulations of greenhouse gases. However, these feedstocks currently face a market dominated by low cost fossil...

  20. Sandia Energy - Sandia Magnetized Fusion Technique Produces Significant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757Kelley RuehlReportPeterWave-Energyto Share

  1. ASEM Green Independent Power Producers Network | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindey Wind6:00-06:00 U.S.ratios inAS 42.05, AlaskaASEM Green

  2. Geothermal Energy Production with Co-produced and Geopressured Resources

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), Geothermal Technologies Program (GTP) | Department of Energy

  3. Method for producing microchannels in drawn material - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand Retrievals from aRodMIT-HarvardEnergyMethod for

  4. Co-Produced Geothermal Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CER esDatasetCityFund

  5. Montana Produced Water General Permit - Example Authorization | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast AsiaAir| OpenUse

  6. United Wisconsin Grain Producers UWGP | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga, IndianaTurtleCooperative Place: Beaver RedirectResponses

  7. ITP Steel: Theoretical Minimum Energies to Produce Steel for Selected

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),Energy Petroleum Technology Vision 2020 ITPandSteelConditions,

  8. Producing Linear Alpha Olefins From Biomass - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.70 Hg Mercury 35 BrProcurement by

  9. Process for producing carbon foams for energy storage devices

    DOE Patents [OSTI]

    Kaschmitter, J.L.; Mayer, S.T.; Pekala, R.W.

    1998-08-04T23:59:59.000Z

    A high energy density capacitor incorporating a variety of carbon foam electrodes is described. The foams, derived from the pyrolysis of resorcinol-formaldehyde and related polymers, are high density (0.1 g/cc--1.0 g/cc) electrically conductive and have high surface areas (400 m{sup 2}/g--1,000 m{sup 2}/g). Capacitances on the order of several tens of farad per gram of electrode are achieved. 9 figs.

  10. Process for producing carbon foams for energy storage devices

    DOE Patents [OSTI]

    Kaschmitter, James L. (Pleasanton, CA); Mayer, Steven T. (San Leandro, CA); Pekala, Richard W. (Pleasant Hill, CA)

    1998-01-01T23:59:59.000Z

    A high energy density capacitor incorporating a variety of carbon foam electrodes is described. The foams, derived from the pyrolysis of resorcinol-formaldehyde and related polymers, are high density (0.1 g/cc-1.0 g/cc) electrically conductive and have high surface areas (400 m.sup.2 /g-1000 m.sup.2 /g). Capacitances on the order of several tens of farad per gram of electrode are achieved.

  11. Energy Department Announces $10 Million for Technologies to Produce

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13,Statement | DepartmentBlog Energy Blog RSSLighting R&DAdvanced

  12. Energy Department Announces $12 Million for Technologies to Produce

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13,Statement | DepartmentBlog Energy Blog RSSLightingSystemsRenewable

  13. High capacity adsorption media and method of producing - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) Harmonicbet WhenHiggs BosonAccurate knowledge ofHIGH

  14. High capacity adsorption media and method of producing - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) Harmonicbet WhenHiggs BosonAccurate knowledge

  15. Calpine: America's largest geothermal energy producer | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platformBuilding RemovalCSS Letter -September 16,DOECalifornia:Energy

  16. Produced Water R&D | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR - TProcuring Solar for Federal Facilities Procuring Solar

  17. Producing Clean, Renewable Diesel from Biomass | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR - TProcuring Solar for Federal Facilities Procuring

  18. Producing Natural Gas From Shale | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR - TProcuring Solar for Federal Facilities ProcuringNatural

  19. Carbon Films Produced from Ionic Liquid Precursors - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o . C l a r8.05CarBen

  20. Biofuel-Producing Lactobacillus Strain - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find Find More Like ThisBioenergyBiofuel Research

  1. Microbes Produce High Yields of Fatty Alcohols From Glucose - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand Retrievals fromprocess used in miningMicroBooNEThru 2009Innovation

  2. Emerging Technologies in Wood Energy Wood can already be used to produce heat and

    E-Print Network [OSTI]

    established technologies of District Energy and Combined Heat and Power plants. Using wood to makeEmerging Technologies in Wood Energy Wood can already be used to produce heat and electricity using such as flooring and siding. In Europe, torrefaction has been explored to produce an improved wood pellet

  3. Concurrent Optimization of Consumer's Electrical Energy Bill and Producer's Power Generation Cost under a Dynamic Pricing

    E-Print Network [OSTI]

    Pedram, Massoud

    grid technologies. This is a particularly interesting problem with the use of dynamic energy pricing method to solve this problem is dynamic energy pricing [2]-[10]. Dynamic changes in energy prices provide the customers' peak-hour demands. So, dynamic energy pricing can benefit both the consumer and the producer

  4. Submitted for Publication to SOLAR ENERGY PRODUCING SATELLITE-DERIVED IRRADIANCES IN COMPLEX ARID TERRAIN

    E-Print Network [OSTI]

    Perez, Richard R.

    Submitted for Publication to SOLAR ENERGY PRODUCING SATELLITE-DERIVED IRRADIANCES IN COMPLEX ARID spectrum. #12;Submitted for Publication to SOLAR ENERGY In its simplest description the model amounts wavelengths in the visible spectral range (0.55-0.75 µm) corresponding to the peak of the solar radiation

  5. The Off-Site Plowshare and Vela Uniform Programs: Assessing Potential Environmental Liabilities through an Examination of Proposed Nuclear Projects,High Explosive Experiments, and High Explosive Construction Activities Volume 2 of 3

    SciTech Connect (OSTI)

    Beck Colleen M.,Edwards Susan R.,King Maureen L.

    2011-09-01T23:59:59.000Z

    This document presents the results of nearly six years (2002-2008) of historical research and field studies concerned with evaluating potential environmental liabilities associated with U.S. Atomic Energy Commission projects from the Plowshare and Vela Uniform Programs. The Plowshare Program's primary purpose was to develop peaceful uses for nuclear explosives. The Vela Uniform Program focused on improving the capability of detecting, monitoring and identifying underground nuclear detonations. As a result of the Project Chariot site restoration efforts in the early 1990s, there were concerns that there might be other project locations with potential environmental liabilities. The Desert Research Institute conducted archival research to identify projects, an analysis of project field activities, and completed field studies at locations where substantial fieldwork had been undertaken for the projects. Although the Plowshare and Vela Uniform nuclear projects are well known, the projects that are included in this research are relatively unknown. They are proposed nuclear projects that were not executed, proposed and executed high explosive experiments, and proposed and executed high explosive construction activities off the Nevada Test Site. The research identified 170 Plowshare and Vela Uniform off-site projects and many of these had little or no field activity associated with them. However, there were 27 projects that merited further investigation and field studies were conducted at 15 locations.

  6. The Off-Site Plowshare and Vela Uniform Programs: Assessing Potential Environmental Liabilities through an Examination of Proposed Nuclear Projects,High Explosive Experiments, and High Explosive Construction Activities Volume 3 of 3

    SciTech Connect (OSTI)

    Beck Colleen M.,Edwards Susan R.,King Maureen L.

    2011-09-01T23:59:59.000Z

    This document presents the results of nearly six years (2002-2008) of historical research and field studies concerned with evaluating potential environmental liabilities associated with U.S. Atomic Energy Commission projects from the Plowshare and Vela Uniform Programs. The Plowshare Program's primary purpose was to develop peaceful uses for nuclear explosives. The Vela Uniform Program focused on improving the capability of detecting, monitoring and identifying underground nuclear detonations. As a result of the Project Chariot site restoration efforts in the early 1990s, there were concerns that there might be other project locations with potential environmental liabilities. The Desert Research Institute conducted archival research to identify projects, an analysis of project field activities, and completed field studies at locations where substantial fieldwork had been undertaken for the projects. Although the Plowshare and Vela Uniform nuclear projects are well known, the projects that are included in this research are relatively unknown. They are proposed nuclear projects that were not executed, proposed and executed high explosive experiments, and proposed and executed high explosive construction activities off the Nevada Test Site. The research identified 170 Plowshare and Vela Uniform off-site projects and many of these had little or no field activity associated with them. However, there were 27 projects that merited further investigation and field studies were conducted at 15 locations.

  7. The Off-Site Plowshare and Vela Uniform Programs: Assessing Potential Environmental Liabilities through an Examination of Proposed Nuclear Projects,High Explosive Experiments, and High Explosive Construction Activities Volume 1 of 3

    SciTech Connect (OSTI)

    Beck Colleen M,Edwards Susan R.,King Maureen L.

    2011-09-01T23:59:59.000Z

    This document presents the results of nearly six years (2002-2008) of historical research and field studies concerned with evaluating potential environmental liabilities associated with U.S. Atomic Energy Commission projects from the Plowshare and Vela Uniform Programs. The Plowshare Program's primary purpose was to develop peaceful uses for nuclear explosives. The Vela Uniform Program focused on improving the capability of detecting, monitoring and identifying underground nuclear detonations. As a result of the Project Chariot site restoration efforts in the early 1990s, there were concerns that there might be other project locations with potential environmental liabilities. The Desert Research Institute conducted archival research to identify projects, an analysis of project field activities, and completed field studies at locations where substantial fieldwork had been undertaken for the projects. Although the Plowshare and Vela Uniform nuclear projects are well known, the projects that are included in this research are relatively unknown. They are proposed nuclear projects that were not executed, proposed and executed high explosive experiments, and proposed and executed high explosive construction activities off the Nevada Test Site. The research identified 170 Plowshare and Vela Uniform off-site projects and many of these had little or no field activity associated with them. However, there were 27 projects that merited further investigation and field studies were conducted at 15 locations.

  8. Minimizing Wind Power Producer's Balancing Costs Using Electrochemical Energy Storage: Preprint

    SciTech Connect (OSTI)

    Miettinen, J.; Tikka, V.; Lassila, J.; Partanen, J.; Hodge, B. M.

    2014-08-01T23:59:59.000Z

    This paper examines how electrochemical energy storage can be used to decrease the balancing costs of a wind power producer in the Nordic market. Because electrochemical energy storage is developing in both technological and financial terms, a sensitivity analysis was carried out for the most important variables in the wind-storage hybrid system. The system was studied from a wind power producer's point of view. The main result is that there are no technical limitations to using storage for reducing the balancing costs. However, in terms of economic feasibility, installing hybrid wind-storage systems such as the one studied in this paper faces challenges in both the short and long terms.

  9. Method for producing through extrusion an anisotropic magnet with high energy product

    DOE Patents [OSTI]

    Chandhok, Vijay K.

    2004-09-07T23:59:59.000Z

    A method for producing an anisotropic magnet with high energy product through extrusion and, more specifically, by placing a particle charge of a composition from the which magnet is to be produced in a noncircular container, heating the container and particle charge and extruding the container and particle charge through a noncircular extrusion die in such a manner that one of the cross-sectional axes or dimension of the container and particle charge is held substantially constant during the extrusion to compact the particle charge to substantially full density by mechanical deformation produced during the extrusion to achieve a magnet with anisotropic magnetic properties along the axes or dimension thereof and, more specifically, a high energy product along the transverse of the smallest cross-sectional dimension of the extruded magnet.

  10. Ris Energy Report 2 Biodiesel is produced from vegetable oils that have been

    E-Print Network [OSTI]

    6.2 Risø Energy Report 2 Biodiesel is produced from vegetable oils that have been chemically (canola) oil with methanol. Biodiesel can be burned directly in diesel engines. Robert Diesel himself, but it was not until the oil crisis of the 1970s that biofuels attracted serious interest. Biodiesel is reported

  11. Abstract: Wind Energy Conversion Systems (WECS) produce fluctuating output power, which may cause voltage fluctuations and

    E-Print Network [OSTI]

    Gross, George

    : An approach to model the solar cell system with coupled multi-physics equations (photovoltaic, electrothermalAbstract: Wind Energy Conversion Systems (WECS) produce fluctuating output power, which may cause in a network of any size can be performed. An algorithm for flicker measurement in the frequency do- main

  12. Large-Scale Renewable Energy Producers Property Tax Abatement (Nevada State Office of Energy)

    Broader source: Energy.gov [DOE]

    New or expanded businesses in Nevada may apply to the Director of the State Office of Energy for a property tax abatement of up to 55% for up to 20 years for real and personal property used to...

  13. Sol-Char: Producing Char from Waste using Solar Energy - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9MorganYou areInnovation Portal

  14. Country analysis briefs: 1994. Profiles of major world energy producers, consumers, and transport centers

    SciTech Connect (OSTI)

    NONE

    1995-05-01T23:59:59.000Z

    Country Analysis Briefs: 1994 is a compilation of country profiles prepared by the Energy Markets and Contingency Information Division (EMCID) of the Office of Energy Markets and End Use. EMCID maintains Country Analysis Briefs (CABs) for specific countries or geographical areas that are important to world energy markets. As a general rule, CABs are prepared for all members of the Organization of Petroleum Exporting Countries (OPEC), major non-OPEC oil producers (i.e., the North Sea, Russia), major energy transit areas (i.e., Ukraine), and other areas of current interest to energy analysts and policy makers. As of January 1995, EMCID maintained over 40 CABs, updated on an annual schedule and subject to revision as events warrant. This report includes 25 CABs updated during 1994. All CABs contain a profile section, a map showing the country`s location, and a narrative section. The profile section includes outlines of the country`s economy, energy sector, and environment. The narrative provides further information and discussion of these topics. Some CABs also include a detailed map displaying locations of major oil and gas fields, pipelines, ports, etc. These maps were created as a result of special individual requests and so are not typically a standard feature of the CABs. They are presented here wherever available as a supplement to the information contained in the CABs.

  15. Report John Porter, Robert Costanza, Harpinder Sandhu, Lene Sigsgaard and Steve Wratten The Value of Producing Food, Energy, and

    E-Print Network [OSTI]

    Vermont, University of

    of Producing Food, Energy, and Ecosystem Services within an Agro- Ecosystem Agricultural ecosystems produce compared with conventional agriculture, and require markedly less fossil-based inputs. Extrapolated diverse have low inputs, and provide a suite of ES. We describe a novel combined food and energy (CFE

  16. Terrestrial gamma ray flashes with energies up to 100 MeV produced by nonequilibrium acceleration of electrons

    E-Print Network [OSTI]

    Pasko, Victor

    . Introduction [2] Terrestrial gamma-ray flashes (TGFs) are bursts of high-energy photons originating fromTerrestrial gamma ray flashes with energies up to 100 MeV produced by nonequilibrium accelerationV) of terrestrial gamma-ray flashes (TGFs). This analysis provides the first direct evidence that TGFs are produced

  17. Enhancing the energy of terahertz radiation from plasma produced by intense femtosecond laser pulses

    SciTech Connect (OSTI)

    Jahangiri, Fazel [Advanced Research Center for Beam Science, ICR, Kyoto University, Kyoto (Japan) [Advanced Research Center for Beam Science, ICR, Kyoto University, Kyoto (Japan); Laser and Plasma Research Institute, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Hashida, Masaki; Tokita, Shigeki; Sakabe, Shuji [Advanced Research Center for Beam Science, ICR, Kyoto University, Kyoto (Japan) [Advanced Research Center for Beam Science, ICR, Kyoto University, Kyoto (Japan); Department of Physics, GSS, Kyoto University, Kyoto (Japan); Nagashima, Takeshi; Hangyo, Masanori [Department of Physics, GSS, Kyoto University, Kyoto (Japan) [Department of Physics, GSS, Kyoto University, Kyoto (Japan); Institute of Laser Engineering, Osaka University, Osaka (Japan)

    2013-05-13T23:59:59.000Z

    Terahertz (THz) radiation from atomic clusters illuminated by intense femtosecond laser pulses is investigated. By studying the angular distribution, polarization properties and energy dependence of THz waves, we aim to obtain a proper understanding of the mechanism of THz generation. The properties of THz waves measured in this study differ from those predicted by previously proposed mechanisms. To interpret these properties qualitatively, we propose that the radiation is generated by time-varying quadrupoles, which are produced by the ponderomotive force of the laser pulse.

  18. X-Ray Energy Responses of Silicon Tomography Detectors Irradiated with Fusion Produced Neutrons

    SciTech Connect (OSTI)

    Kohagura, J. [Plasma Research Centre, University of Tsukuba (Japan); Cho, T. [Plasma Research Centre, University of Tsukuba (Japan); Hirata, M. [Plasma Research Centre, University of Tsukuba (Japan); Numakura, T. [Plasma Research Centre, University of Tsukuba (Japan); Yokoyama, N. [Plasma Research Centre, University of Tsukuba (Japan); Fukai, T. [Plasma Research Centre, University of Tsukuba (Japan); Tomii, Y. [Plasma Research Centre, University of Tsukuba (Japan); Tokioka, S. [Plasma Research Centre, University of Tsukuba (Japan); Miyake, Y. [Plasma Research Centre, University of Tsukuba (Japan); Kiminami, S. [Plasma Research Centre, University of Tsukuba (Japan); Shimizu, K. [Plasma Research Centre, University of Tsukuba (Japan); Miyoshi, S. [Plasma Research Centre, University of Tsukuba (Japan); Hirano, K. [High Energy Accelerator Research Organization (Japan); Yoshida, M. [Japan Atomic Energy Research Institute (Japan); Yamauchi, M. [Japan Atomic Energy Research Institute (Japan); Kondoh, T. [Japan Atomic Energy Research Institute (Japan); Nishitani, T. [Japan Atomic Energy Research Institute (Japan)

    2005-01-15T23:59:59.000Z

    In order to clarify the effects of fusion-produced neutron irradiation on silicon semiconductor x-ray detectors, the x-ray energy responses of both n- and p-type silicon tomography detectors used in the Joint European Torus (JET) tokamak (n-type) and the GAMMA 10 tandem mirror (p-type) are studied using synchrotron radiation at the Photon Factory of the National Laboratory for High Energy Accelerator Research Organization (KEK). The fusion neutronics source (FNS) of Japan Atomic Energy Research Institute (JAERI) is employed as well-calibrated D-T neutron source with fluences from 10{sup 13} to 10{sup 15} neutrons/cm{sup 2} onto these semiconductor detectors. Different fluence dependence is found between these two types of detectors; that is, (i) for the n-type detector, the recovery of the degraded response is found after the neutron exposure beyond around 10{sup 13} neutrons/cm{sup 2} onto the detector. A further finding is followed as a 're-degradation' by a neutron irradiation level over about 10{sup 14} neutrons/cm{sup 2}. On the other hand, (ii) the energy response of the p-type detector shows only a gradual decrease with increasing neutron fluences. These properties are interpreted by our proposed theory on semiconductor x-ray responses in terms of the effects of neutrons on the effective doping concentration and the diffusion length of a semiconductor detector.

  19. Charged-particle acceleration and energy loss in laser-produced plasmas D. G. Hicks,a)

    E-Print Network [OSTI]

    Charged-particle acceleration and energy loss in laser-produced plasmas D. G. Hicks,a) C. K. Li, F, particle energy shifts were dominated by acceleration effects. Using a simple model for the accelerating T. R. Boehly et al., Opt. Commun. 133, 495 1997 . Comparing the energy shifts of four particle types

  20. Micro-cone targets for producing high energy and low divergence particle beams

    DOE Patents [OSTI]

    Le Galloudec, Nathalie

    2013-09-10T23:59:59.000Z

    The present invention relates to micro-cone targets for producing high energy and low divergence particle beams. In one embodiment, the micro-cone target includes a substantially cone-shaped body including an outer surface, an inner surface, a generally flat and round, open-ended base, and a tip defining an apex. The cone-shaped body tapers along its length from the generally flat and round, open-ended base to the tip defining the apex. In addition, the outer surface and the inner surface connect the base to the tip, and the tip curves inwardly to define an outer surface that is concave, which is bounded by a rim formed at a juncture where the outer surface meets the tip.

  1. Environmental aspects of alternative wet technologies for producing energy/fuel from peat. Final report

    SciTech Connect (OSTI)

    Smith, R.T.

    1981-05-01T23:59:59.000Z

    Peat in situ contains up to 90% moisture, with about 50% of this moisture trapped as a colloidal gel. This colloidal moisture cannot be removed by conventional dewatering methods (filter presses, etc.) and must be removed by thermal drying, solvent extraction, or solar drying before the peat can be utilized as a fuel feedstock for direct combustion or gasification. To circumvent the drying problem, alternative technologies such as wet oxidation, wet carbonization, and biogasification are possible for producing energy or enhanced fuel from peat. This report describes these three alternative technologies, calculates material balances for given raw peat feed rates of 1000 tph, and evaluates the environmental consequences of all process effluent discharges. Wastewater discharges represent the most significant effluent due to the relatively large quantities of water removed during processing. Treated process water returned to the harvested bog may force in situ, acidic bog water into recieving streams, disrupting local aquatic ecosystems.

  2. Limits of complete equilibration of fragments produced in central Au on Au collisions at intermediate energies

    E-Print Network [OSTI]

    W. Neubert; A. S. Botvina

    2003-04-29T23:59:59.000Z

    Experimental data related to fragment production in central Au on Au collisions were analyzed in the framework of a modified statistical model which considers cluster production both prior and at the equilibrated stage. The analysis provides limits to the number of nucleons and to the temperature of the equilibrated source. The rather moderate temperatures obtained from experimental double-yield ratios of d,t,3He and 4He are in agreement with the model calculations. A phenomenological relation was established between the collective flow and the chemical temperature in these reactions. It was shown that dynamical mechanisms of fragment production, e.g. coalescence, dominate at high energies. It is demonstrated that coalescence may be consistent with chemical equilibrium between the produced fragments. The different meaning of chemical and kinetic temperatures is discussed.

  3. Fuel-Cycle Fossil Energy Use and Greenhouse Gas Emissions of Fuel Ethanol Produced from U.S. Midwest Corn

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    #12;Fuel-Cycle Fossil Energy Use and Greenhouse Gas Emissions of Fuel Ethanol Produced from U on a mass emission per travel mile basis, the corn-to-ethanol fuel cycle for Midwest-produced ethanol% of total domestic ethanol production. That is, while the model still covers all alternative fuels and five

  4. Laser wavelength effects on the charge state resolved ion energy distributions from laser-produced Sn plasma

    E-Print Network [OSTI]

    Najmabadi, Farrokh

    Laser wavelength effects on the charge state resolved ion energy distributions from laser of laser wavelength on the charge state resolved ion energy distributions from laser-produced Sn plasma freely expanding into vacuum are investigated. Planar Sn targets are irradiated at laser wavelengths

  5. Energy Comparison Vacuum Producing Equipment - Mechanical Vacuum Pumps vs. Steam Ejectors 

    E-Print Network [OSTI]

    Foisy, E. C.; Munkittrick, M. T.

    1982-01-01T23:59:59.000Z

    increasing cost of fuel to produce steam, it has become apparent that considerable savings in operating costs and reduction in thermal or water pollution can be achieved by replacing steam ejectors with mechanical vacuum pumps. The liquid ring (sometimes...

  6. Tapping the Molecular Potential of Microalgae to Produce Biomass (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    SciTech Connect (OSTI)

    Sayre, Richard [LANL] [LANL

    2012-03-22T23:59:59.000Z

    Richard Sayre, from Los Alamos National Laboratory, presents a talk titled "Tapping the Molecular Potential of Microalgae to Produce Biomass" at the JGI 7th Annual Users Meeting: Genomics of Energy & Environment Meeting on March 22, 2012 in Walnut Creek, California.

  7. Tapping the Molecular Potential of Microalgae to Produce Biomass (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    ScienceCinema (OSTI)

    Sayre, Richard [LANL

    2013-01-22T23:59:59.000Z

    Richard Sayre, from Los Alamos National Laboratory, presents a talk titled "Tapping the Molecular Potential of Microalgae to Produce Biomass" at the JGI 7th Annual Users Meeting: Genomics of Energy & Environment Meeting on March 22, 2012 in Walnut Creek, California.

  8. Producing methane from electrical current generated using renewable energy sources using

    E-Print Network [OSTI]

    where WW flows into the ocean · Waste Heat Energy ­ 500 GW from industrial waste heat ­ 1000 GW from

  9. Wind Energy Could Produce 20 Percent of U.S. Electricity By 2030 |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartment of EnergyThe U.S. DepartmentEnergyWilliam E.Much as 40%

  10. Fuel-producing Geobacter receives support from new research May 3rd, 2010 in Technology / Energy

    E-Print Network [OSTI]

    Lovley, Derek

    genetically modified the Geobacter bacterium so that it acts like a reverse fuel cell, using electricity electricity, Geobacter could be used as a microbial fuel cell, converting organic waste matter - includingFuel-producing Geobacter receives support from new research grant May 3rd, 2010 in Technology

  11. A reverse osmosis treatment process for produced water: optimization, process control, and renewable energy application

    E-Print Network [OSTI]

    Mareth, Brett

    2009-06-02T23:59:59.000Z

    resources (wind and solar) are analyzed as potential power sources for the process, and an overview of reverse osmosis membrane fouling is presented. A computer model of the process was created using a dynamic simulator, Aspen Dynamics, to determine energy...

  12. A reverse osmosis treatment process for produced water: optimization, process control, and renewable energy application 

    E-Print Network [OSTI]

    Mareth, Brett

    2009-06-02T23:59:59.000Z

    resources (wind and solar) are analyzed as potential power sources for the process, and an overview of reverse osmosis membrane fouling is presented. A computer model of the process was created using a dynamic simulator, Aspen Dynamics, to determine energy...

  13. Traveling-wave laser-produced-plasma energy source for photoionization laser pumping and lasers incorporating said

    DOE Patents [OSTI]

    Sher, Mark H. (Los Altos, CA); Macklin, John J. (Stanford, CA); Harris, Stephen E. (Palo Alto, CA)

    1989-09-26T23:59:59.000Z

    A traveling-wave, laser-produced-plasma, energy source used to obtain single-pass gain saturation of a photoionization pumped laser. A cylindrical lens is used to focus a pump laser beam to a long line on a target. Grooves are cut in the target to present a surface near normal to the incident beam and to reduce the area, and hence increase the intensity and efficiency, of plasma formation.

  14. Effect of supplemental fat in high-energy rations on hot-weather performance of producing dairy cows

    E-Print Network [OSTI]

    Harris, Ralph R.

    1959-01-01T23:59:59.000Z

    A A M CuLLEfec OF TEXAS EFFECT OF SUPPLEMENTAL FAT 19 HIGH-ENERGY RATIONS 01 HOV-VSATHBB PERFORMANCE OF PRODUCING DAIRY COWS Sjr RALPH R. HARRIS4 0 ? A Dissertation Salmitted to the Graduate School of the Agricultural and Meohanioal College... Daily Minimum and Maximum Air Temperature 9 Summer Trial, 1937............... * ............ . ? . 38 4# Butterfat Data, Continuous Trial ? ? ? ? ? ? ? ? ? ? * , , 49 5* Solids-Not-Fat Data, Continuous Trial. ? ? ? ? ? ? ? ? ? , 50 6 . Milk...

  15. Sponsors of CIEEDAC: Environment Canada, Natural Resources Canada, Canadian Industry Program for Energy Conservation, Aluminium Industry Association, Canadian Chemical Producers' Association, Canadian Electricity

    E-Print Network [OSTI]

    for Energy Conservation, Aluminium Industry Association, Canadian Chemical Producers' Association, Canadian Data: Canadian Iron and Steel and Ferro-Alloy Manufacturing Industries, published by CIEEDAC annually

  16. Wind Energy Could Produce 20 Percent of U.S. Electricity By 2030 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric VehicleCenters | Department ofofto PurchaseApril 16,WhoWhy3Department of

  17. Water + Sun = Energy EMSL users created a novel method to produce a

    E-Print Network [OSTI]

    range of research areas, including catalysis, fuel cells, energy storage, subsurface science and health implications for better understanding how to tailor TiO2 -thin films for optimal performance in various to operate at optimal resolution. The wing's design eliminates or reduces to a minimum the vibrations

  18. Geothermal Energy Production with Co-produced and Geopressured Resources (Fact Sheet), Geothermal Technologies Program (GTP)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), Geothermal Technologies Program (GTP) | Department of

  19. New Process for Producing Styrene Cuts Costs, Saves Energy, and Reduces Greenhouse Gas Emissions

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in Many DevilsForumEngines | Department ofUniversal

  20. Radiological and Environmental Monitoring at the Clean Slate I and III Sites, Tonopah Test Range, Nevada, With Emphasis on the Implications for Off-site Transport

    SciTech Connect (OSTI)

    Mizell, Steve A [DRI; Etyemezian, Vic [DRI; McCurdy, Greg [DRI; Nikolich, George [DRI; Shadel, Craig [DRI; Miller, Julianne J [DRI

    2014-09-01T23:59:59.000Z

    In 1963, the U.S. Department of Energy (DOE) (formerly the Atomic Energy Commission [AEC]) implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range [NAFR]). Operation Roller Coaster consisted of four tests in which chemical explosions were detonated in the presence of nuclear devices to assess the dispersal of radionuclides and evaluate the effectiveness of storage structures to contain the ejected radionuclides. These tests resulted in the dispersal of plutonium over the ground surface downwind of the test ground zero (GZ). Three tests—Clean Slate I, II, and III—were conducted on the TTR in Cactus Flat. The fourth, Double Tracks, was conducted in Stonewall Flat on the NTTR. The Desert Research Institute (DRI) installed two monitoring stations in 2008, Station 400 at the Sandia National Laboratories (SNL) Range Operations Center (ROC) and Station 401 at Clean Slate III. Station 402 was installed at Clean Slate I in 2011 to measure radiological, meteorological, and dust conditions. The monitoring activity was implemented to determine if radionuclide contamination in the soil at the Clean Slate sites was being transported beyond the contamination area boundaries. Some of the data collected also permits comparison of radiological exposure at the TTR monitoring stations to conditions observed at Community Environmental Monitoring Program (CEMP) stations around the NTTR. Annual average gross alpha values from the TTR monitoring stations are higher than values from the surrounding CEMP stations. Annual average gross beta values from the TTR monitoring stations are generally lower than values observed for the surrounding CEMP stations. This may be due to use of sample filters with larger pore space because when glass-fiber filters began to be used at TTR Station 400, gross beta values increased. Gamma spectroscopy typically identified only naturally occurring radionuclides. The radionuclides cesium-134 and -137 were identified in only two samples at each station collected in the weeks following the destruction of the nuclear power reactor in Fukushima, Japan, on March 11, 2011. Observed gamma energy values never exceeded the local background by more than 4 ?R/h. The higher observed gamma values were coincident with wind from any of the cardinal directions, which suggests that there is no significant transport from the Clean Slate contamination areas. Annual average daily gamma values at the TTR stations are higher than at the surrounding CEMP stations, but they are equivalent to or just slightly higher than the background estimates made at locations at equivalent elevations, such as Denver, Colorado. Winds in excess of approximately 15 mph begin to resuspend soil particles and create dust, but dust generation is also affected by soil temperature, relative humidity, and soil water content. Power curves provide good predictive equations for dust concentration as a function of wind speed. However, winds in the highest wind speed category occur infrequently. iii

  1. NREL Produces Ethylene via Photosynthesis (Fact Sheet), Highlights in Science, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency Visit | National Nuclear 1Environmentally friendly

  2. Fact sheet produced by the U.S. Department of Energy describing hydrogen safety.

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in RepresentativeDepartment ofDepartmentLastSodium-BetaDepartment ofWindStorage

  3. New Process for Producing Styrene Cuts Costs, Saves Energy, and Reduces

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEW HAMPSHIREof EnergyBulbs | Department ofofWinsofPerspective on

  4. Rural Alaska Coal Bed Methane: Application of New Technologies to Explore and Produce Energy

    SciTech Connect (OSTI)

    David O. Ogbe; Shirish L. Patil; Doug Reynolds

    2005-06-30T23:59:59.000Z

    The Petroleum Development Laboratory, University of Alaska Fairbanks prepared this report. The US Department of Energy NETL sponsored this project through the Arctic Energy Technology Development Laboratory (AETDL) of the University of Alaska Fairbanks. The financial support of the AETDL is gratefully acknowledged. We also acknowledge the co-operation from the other investigators, including James G. Clough of the State of Alaska Department of Natural Resources, Division of Geological and Geophysical Surveys; Art Clark, Charles Barker and Ed Weeks of the USGS; Beth Mclean and Robert Fisk of the Bureau of Land Management. James Ferguson and David Ogbe carried out the pre-drilling economic analysis, and Doug Reynolds conducted post drilling economic analysis. We also acknowledge the support received from Eric Opstad of Elko International, LLC; Anchorage, Alaska who provided a comprehensive AFE (Authorization for Expenditure) for pilot well drilling and completion at Fort Yukon. This report was prepared by David Ogbe, Shirish Patil, Doug Reynolds, and Santanu Khataniar of the University of Alaska Fairbanks, and James Clough of the Alaska Division of Geological and Geophysical Survey. The following research assistants, Kanhaiyalal Patel, Amy Rodman, and Michael Olaniran worked on this project.

  5. Industrial Productivity Assessment Or One of the Best Ways to Save Energy is to Find Ways to Produce More Product!

    E-Print Network [OSTI]

    Welch, D.

    The success of an energy program is often judged by measuring the change in energy consumption over time. It can be argued that a more valid method would measure the change in energy consumption per pound (or other unit) of product since this takes...

  6. Symmetry energy and the isoscaling properties of the fragments produced in $^{40}$Ar, $^{40}$Ca + $^{58}$Fe, $^{58}$Ni reactions at 25 $-$ 53 MeV/nucleon

    E-Print Network [OSTI]

    J. Iglio; D. V. Shetty; S. J. Yennello; G. A. Souliotis; M. Jandel; A. Keksis; S. Soisson; B. Stein; S. Wuenschel; A. S. Botvina

    2005-12-07T23:59:59.000Z

    The symmetry energy and the isoscaling properties of the fragments produced in the multifragmentation of $^{40}$Ar, $^{40}$Ca + $^{58}$Fe, $^{58}$Ni reactions at 25 - 53 MeV/nucleon were investigated within the framework of statistical multifragmentation model. The isoscaling parameters $\\alpha$, from the primary (hot) and secondary (cold) fragment yield distributions, were studied as a function of excitation energy, isospin (neutron-to-proton asymmetry) and fragment symmetry energy. It is observed that the isoscaling parameter $\\alpha$ decreases with increasing excitation energy and decreasing symmetry energy. The parameter $\\alpha$ is also observed to increase with increasing difference in the isospin of the fragmenting system. The sequential decay of the primary fragments into secondary fragments, when studied as a function of excitation energy and isospin of the fragmenting system, show very little influence on the isoscaling parameter. The symmetry energy however, has a strong influence on the isospin properties of the hot fragments. The experimentally observed scaling parameters can be explained by symmetry energy that is significantly lower than that for the ground state nuclei near saturation density. The results indicate that the properties of hot nuclei at excitation energies, densities and isospin away from the normal ground state nuclei could be significantly different.

  7. Low-energy x-ray and electron physics and applications to diagnostics development for laser-produced plasma research. Final report, April 30, 1980-April 29, 1981

    SciTech Connect (OSTI)

    Henke, B.L.

    1981-08-01T23:59:59.000Z

    This final report describes a collaborative extension of an ongoing research program in low-energy x-ray and electron physics into particular areas of immediate need for the diagnostics of plasmas as involved in laser-produced fusion research. It has been for the continued support for one year of a post-doctoral research associate and for three student research assistants who have been applied to the following specific efforts: (1) the continuation of our research on the absolute characterization of x-ray photocathode systems for the 0.1 to 10 keV photon energy region. The research results were applied collaboratively to the design, construction and calibration of photocathodes for time-resolved detection with the XRD and the streak and framing cameras; (2) the design, construction and absolute calibration of optimized, bolt-on spectrographs for the absolute measurement of laser-produced plasma spectra.

  8. A Langmuir Probe Diagnostic for Use in Inhomogeneous, Time-Varying Plasmas Produced by High-Energy Laser Ablation

    SciTech Connect (OSTI)

    Patterson, J R; Emig, J A; Fournier, K B; Jenkins, P P; Trautz, K M; Seiler, S W; Davis, J F

    2012-05-01T23:59:59.000Z

    Langmuir probes (LP) are used extensively to characterize plasma environments produced by radio frequency, pulsed plasma thrusters, and laser ablation. We discuss here the development of a LP diagnostic to examine high-density, high-temperature inhomogeneous plasmas such as those that can be created at the University of Rochester's Laboratory for Laser Energetics OMEGA facility. We have configured our diagnostic to examine the velocity of the plasma expanding from the target. We observe velocities of approximately 16-17 cm/{micro}s, with individual LP currents displaying complex structures, perhaps due to the multiple atomic species and ionization states that exist.

  9. Table 10. Major U.S. Coal Producers, 2013 U.S. Energy Information Administration | Annual Coal Report 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14TableConference |6:Welcome toU.S.Major U.S. Coal

  10. Oak Ridge Health Studies Phase 1 report, Volume 2: Part A, Dose Reconstruction Feasibility Study. Tasks 1 and 2, A summary of historical activities on the Oak Ridge Reservation with emphasis on information concerning off-site emissions of hazardous materials

    SciTech Connect (OSTI)

    Bruce, G.M.; Buddenbaum, J.E.; Lamb, J.K.; Widner, T.E.

    1993-09-01T23:59:59.000Z

    The Phase I feasibility study has focused on determining the availability of information for estimating exposures of the public to chemicals and radionuclides released as a result of historical operation of the facilities at the Oak Ridge Reservation (ORR). The estimation of such past exposures is frequently called dose reconstruction. The initial project tasks, Tasks 1 and 2 were designed to identify and collect information that documents the history of activities at the ORR that resulted in the release of contamination and to characterize the availability of data that could be used to estimate the magnitude of the contaminant releases or public exposures. A history of operations that are likely to have generated off-site releases has been documented as a result of Task 1 activities. The activities required to perform this task involved the extensive review of historical operation records and interviews with present and past employees as well as other knowledgeable individuals. The investigation process is documented in this report. The Task 1 investigations have led to the documentation of an overview of the activities that have taken place at each of the major complexes, including routine operations, waste management practices, special projects, and accidents and incidents. Historical activities that appear to warrant the highest priority in any further investigations were identified based on their likely association with off-site emissions of hazardous materials as indicated by the documentation reviewed or information obtained in interviews.

  11. Flue-gas carbon capture on carbonaceous sorbents: Toward a low-cost multifunctional Carbon Filter for 'Green' energy producers

    SciTech Connect (OSTI)

    Radosz, M.; Hu, X.D.; Krutkramelis, K.; Shen, Y.Q. [University of Wyoming, Laramie, WY (United States)

    2008-05-15T23:59:59.000Z

    A low-pressure Carbon Filter Process (patent pending) is proposed to capture carbon dioxide (CO{sub 2}) from flue gas. This filter is filled with a low-cost carbonaceous sorbent, such as activated carbon or charcoal, which has a high affinity (and, hence, high capacity) to CO{sub 2} but not to nitrogen (N{sub 2}). This, in turn, leads to a high CO{sub 2}/N{sub 2} selectivity, especially at low pressures. The Carbon Filter Process proposed in this work can recover at least 90% of flue-gas CO{sub 2} of 90%+ purity at a fraction of the cost normally associated with the conventional amine absorption process. The Carbon Filter Process requires neither expensive materials nor flue-gas compression or refrigeration, and it is easy to heat integrate with an existing or grassroots power plant without affecting the cost of the produced electricity too much. An abundant supply of low-cost CO{sub 2} from electricity producers is good news for enhanced oil recovery (EOR) and enhanced coal-bed methane recovery (ECBMR) operators, because it will lead to higher oil and gas recovery rates in an environmentally sensitive manner. A CO{sub 2}-rich mixture that contains some nitrogen is much less expensive to separate from flue-gas than pure CO{sub 2}; therefore, mixed CO{sub 2}/N{sub 2}-EOR and CO{sub 2}/N{sub 2}-ECBMR methods are proposed to maximize the overall carbon capture and utilization efficiency.

  12. NREL Shows How Cyanobacteria Build Hydrogen-Producing Enzyme (Fact Sheet), Highlights in Science, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency Visit | National Nuclear 1EnvironmentallyStudy

  13. Rabi Waves and Peculiarities of Raman Scattering in Carbon Nanotubes, Produced by High Energy Ion Beam Modification of Diamond Single Crystals

    E-Print Network [OSTI]

    Dmitry Yearchuck; Alla Dovlatova

    2011-03-06T23:59:59.000Z

    QED-model for multichain coupled qubit system, proposed in \\cite{Part1}, was confirmed by Raman scattering studies of carbon zigzag-shaped nanotubes, produced by high energy ion beam modification of natural diamond single crystals. New quantum optics phenomenon - Rabi waves - has been experimentally identified for the first time. Raman spectra in perfect quasi-1D carbon nanotubes are quite different in comparison with well known Raman spectra in 2D carbon nanotubes of larger diameter. They characterized by vibronic mode of Su-Schriffer-Heeger $\\sigma$-polaron lattice and its revival part in frequency representation, which is the consequence of Rabi wave packet formation.

  14. Supporting Data-Producing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructure ofIndustrialSupporting Data-Producing Facilities and

  15. Beam-energy and system-size dependence of the space-time extent of the pion emission source produced in heavy ion collisions

    E-Print Network [OSTI]

    A. Adare; S. Afanasiev; C. Aidala; N. N. Ajitanand; Y. Akiba; R. Akimoto; H. Al-Bataineh; H. Al-Ta'ani; J. Alexander; M. Alfred; A. Angerami; K. Aoki; N. Apadula; L. Aphecetche; Y. Aramaki; R. Armendariz; S. H. Aronson; J. Asai; H. Asano; E. C. Aschenauer; E. T. Atomssa; R. Averbeck; T. C. Awes; B. Azmoun; V. Babintsev; M. Bai; G. Baksay; L. Baksay; A. Baldisseri; N. S. Bandara; B. Bannier; K. N. Barish; P. D. Barnes; B. Bassalleck; A. T. Basye; S. Bathe; S. Batsouli; V. Baublis; C. Baumann; S. Baumgart; A. Bazilevsky; M. Beaumier; S. Beckman; S. Belikov; R. Belmont; R. Bennett; A. Berdnikov; Y. Berdnikov; A. A. Bickley; X. Bing; D. Black; D. S. Blau; J. G. Boissevain; J. S. Bok; H. Borel; K. Boyle; M. L. Brooks; J. Bryslawskyj; H. Buesching; V. Bumazhnov; G. Bunce; S. Butsyk; C. M. Camacho; S. Campbell; P. Castera; B. S. Chang; J. -L. Charvet; C. -H. Chen; S. Chernichenko; C. Y. Chi; J. Chiba; M. Chiu; I. J. Choi; J. B. Choi; S. Choi; R. K. Choudhury; P. Christiansen; T. Chujo; P. Chung; A. Churyn; O. Chvala; V. Cianciolo; Z. Citron; C. R. Cleven; B. A. Cole; M. P. Comets; M. Connors; P. Constantin; M. Csanád; T. Csörg?; T. Dahms; S. Dairaku; I. Danchev; K. Das; A. Datta; M. S. Daugherity; G. David; M. B. Deaton; K. DeBlasio; K. Dehmelt; H. Delagrange; A. Denisov; D. d'Enterria; A. Deshpande; E. J. Desmond; K. V. Dharmawardane; O. Dietzsch; L. Ding; A. Dion; J. H. Do; M. Donadelli; O. Drapier; A. Drees; K. A. Drees; A. K. Dubey; J. M. Durham; A. Durum; D. Dutta; V. Dzhordzhadze; L. D'Orazio; S. Edwards; Y. V. Efremenko; J. Egdemir; F. Ellinghaus; W. S. Emam; T. Engelmore; A. Enokizono; H. En'yo; S. Esumi; K. O. Eyser; B. Fadem; N. Feege; D. E. Fields; M. Finger; M. Finger; \\, Jr.; F. Fleuret; S. L. Fokin; Z. Fraenkel; J. E. Frantz; A. Franz; A. D. Frawley; K. Fujiwara; Y. Fukao; T. Fusayasu; S. Gadrat; K. Gainey; C. Gal; P. Gallus; P. Garg; A. Garishvili; I. Garishvili; H. Ge; F. Giordano; A. Glenn; H. Gong; X. Gong; M. Gonin; J. Gosset; Y. Goto; R. Granier de Cassagnac; N. Grau; S. V. Greene; M. Grosse Perdekamp; Y. Gu; T. Gunji; L. Guo; H. Guragain; H. -Å. Gustafsson; T. Hachiya; A. Hadj Henni; C. Haegemann; J. S. Haggerty; K. I. Hahn; H. Hamagaki; J. Hamblen; R. Han; S. Y. Han; J. Hanks; H. Harada; E. P. Hartouni; K. Haruna; S. Hasegawa; K. Hashimoto; E. Haslum; R. Hayano; X. He; M. Heffner; T. K. Hemmick; T. Hester; H. Hiejima; J. C. Hill; R. Hobbs; M. Hohlmann; R. S. Hollis; W. Holzmann; K. Homma; B. Hong; T. Horaguchi; Y. Hori; D. Hornback; T. Hoshino; J. Huang; S. Huang; T. Ichihara; R. Ichimiya; J. Ide; H. Iinuma; Y. Ikeda; K. Imai; Y. Imazu; J. Imrek; M. Inaba; Y. Inoue; A. Iordanova; D. Isenhower; L. Isenhower; M. Ishihara; T. Isobe; M. Issah; A. Isupov; D. Ivanischev; D. Ivanishchev; B. V. Jacak; M. Javani; S. J. Jeon; M. Jezghani; J. Jia; X. Jiang; J. Jin; O. Jinnouchi; B. M. Johnson; E. Joo; K. S. Joo; D. Jouan; D. S. Jumper; F. Kajihara; S. Kametani; N. Kamihara; J. Kamin; M. Kaneta; S. Kaneti; B. H. Kang; J. H. Kang; J. S. Kang; H. Kanou; J. Kapustinsky; K. Karatsu; M. Kasai; D. Kawall; M. Kawashima; A. V. Kazantsev; T. Kempel; J. A. Key; V. Khachatryan; A. Khanzadeev; K. Kihara; K. M. Kijima; J. Kikuchi; B. I. Kim; C. Kim; D. H. Kim; D. J. Kim; E. Kim; E. -J. Kim; H. -J. Kim; H. J. Kim; K. -B. Kim; M. Kim; S. H. Kim; Y. -J. Kim; Y. K. Kim; E. Kinney; K. Kiriluk; Á. Kiss; E. Kistenev; A. Kiyomichi; J. Klatsky; J. Klay; C. Klein-Boesing; D. Kleinjan; P. Kline; T. Koblesky; L. Kochenda; V. Kochetkov; M. Kofarago; Y. Komatsu; B. Komkov; M. Konno; J. Koster; D. Kotchetkov; D. Kotov; A. Kozlov; A. Král; A. Kravitz; F. Krizek; J. Kubart; G. J. Kunde; N. Kurihara; K. Kurita; M. Kurosawa; M. J. Kweon; Y. Kwon; G. S. Kyle; R. Lacey; Y. S. Lai; J. G. Lajoie; A. Lebedev; B. Lee; D. M. Lee; J. Lee; K. Lee; K. B. Lee; K. S. Lee; M. K. Lee; S. H. Lee; S. R. Lee; T. Lee; M. J. Leitch; M. A. L. Leite; M. Leitgab; E. Leitner; B. Lenzi; B. Lewis; X. Li; P. Liebing; S. H. Lim; L. A. Linden Levy; T. Liška; A. Litvinenko; H. Liu; M. X. Liu; B. Love; R. Luechtenborg; D. Lynch; C. F. Maguire; Y. I. Makdisi; M. Makek; A. Malakhov; M. D. Malik; A. Manion; V. I. Manko; E. Mannel; Y. Mao; L. Mašek; H. Masui; S. Masumoto; F. Matathias; M. McCumber; P. L. McGaughey; D. McGlinchey; C. McKinney; N. Means; A. Meles; M. Mendoza; B. Meredith; Y. Miake; T. Mibe; A. C. Mignerey; P. Mikeš; K. Miki; A. J. Miller; T. E. Miller; A. Milov; S. Mioduszewski; D. K. Mishra; M. Mishra; J. T. Mitchell; M. Mitrovski; Y. Miyachi; S. Miyasaka; S. Mizuno; A. K. Mohanty; P. Montuenga; H. J. Moon; T. Moon; Y. Morino; A. Morreale; D. P. Morrison; S. Motschwiller; T. V. Moukhanova; D. Mukhopadhyay; T. Murakami; J. Murata; A. Mwai; T. Nagae; S. Nagamiya; Y. Nagata; J. L. Nagle; M. Naglis; M. I. Nagy; I. Nakagawa; H. Nakagomi; Y. Nakamiya; K. R. Nakamura; T. Nakamura; K. Nakano; C. Nattrass; A. Nederlof; P. K. Netrakanti; J. Newby

    2014-10-09T23:59:59.000Z

    Two-pion interferometry measurements are used to extract the Gaussian radii $R_{{\\rm out}}$, $R_{{\\rm side}}$, and $R_{{\\rm long}}$, of the pion emission sources produced in Cu$+$Cu and Au$+$Au collisions at several beam collision energies $\\sqrt{s_{_{NN}}}$ at PHENIX. The extracted radii, which are compared to recent STAR and ALICE data, show characteristic scaling patterns as a function of the initial transverse size $\\bar{R}$ of the collision systems and the transverse mass $m_T$ of the emitted pion pairs, consistent with hydrodynamiclike expansion. Specific combinations of the three-dimensional radii that are sensitive to the medium expansion velocity and lifetime, and the pion emission time duration show nonmonotonic $\\sqrt{s_{_{NN}}}$ dependencies. The nonmonotonic behaviors exhibited by these quantities point to a softening of the equation of state that may coincide with the critical end point in the phase diagram for nuclear matter.

  16. Largest Producer of Steel Products in the United States Achieves Significant Energy Savings at its Minntac Plant; Industrial Technologies Program (ITP) Save Energy Now (SEN) Case Study (Brochure)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PM toLEDControlDepartment ofDepartmentLocated at

  17. Method of producing molybdenum-99

    DOE Patents [OSTI]

    Pitcher, Eric John

    2013-05-28T23:59:59.000Z

    Method of producing molybdenum-99, comprising accelerating ions by means of an accelerator; directing the ions onto a metal target so as to generate neutrons having an energy of greater than 10 MeV; directing the neutrons through a converter material comprising techentium-99 to produce a mixture comprising molybdenum-99; and, chemically extracting the molybdenum-99 from the mixture.

  18. The use of real-time off-site observations as a methodology for increasing forecast skill in prediction of large wind power ramps one or more hours ahead of their impact on a wind plant.

    SciTech Connect (OSTI)

    Martin Wilde, Principal Investigator

    2012-12-31T23:59:59.000Z

    ABSTRACT Application of Real-Time Offsite Measurements in Improved Short-Term Wind Ramp Prediction Skill Improved forecasting performance immediately preceding wind ramp events is of preeminent concern to most wind energy companies, system operators, and balancing authorities. The value of near real-time hub height-level wind data and more general meteorological measurements to short-term wind power forecasting is well understood. For some sites, access to onsite measured wind data - even historical - can reduce forecast error in the short-range to medium-range horizons by as much as 50%. Unfortunately, valuable free-stream wind measurements at tall tower are not typically available at most wind plants, thereby forcing wind forecasters to rely upon wind measurements below hub height and/or turbine nacelle anemometry. Free-stream measurements can be appropriately scaled to hub-height levels, using existing empirically-derived relationships that account for surface roughness and turbulence. But there is large uncertainty in these relationships for a given time of day and state of the boundary layer. Alternatively, forecasts can rely entirely on turbine anemometry measurements, though such measurements are themselves subject to wake effects that are not stationary. The void in free-stream hub-height level measurements of wind can be filled by remote sensing (e.g., sodar, lidar, and radar). However, the expense of such equipment may not be sustainable. There is a growing market for traditional anemometry on tall tower networks, maintained by third parties to the forecasting process (i.e., independent of forecasters and the forecast users). This study examines the value of offsite tall-tower data from the WINDataNOW Technology network for short-horizon wind power predictions at a wind farm in northern Montana. The presentation shall describe successful physical and statistical techniques for its application and the practicality of its application in an operational setting. It shall be demonstrated that when used properly, the real-time offsite measurements materially improve wind ramp capture and prediction statistics, when compared to traditional wind forecasting techniques and to a simple persistence model.

  19. Produce syngas for methanol

    SciTech Connect (OSTI)

    Farina, G.L. (Foster Wheeler International Corp., Milan (IT))

    1992-03-01T23:59:59.000Z

    Combined reforming, in which an oxygen reforming reactor is added downstream from a conventional tubular reactor to produce syngas for methanol, achieves a substantial reduction in energy consumption with the least impact on the environment. This paper reports that the advantages of this process scheme are as follows: 8% to 10% reduction in the consumption of natural gas per ton of methanol, The size of the primary reformer is reduced, Reduction of syngas compression requirement due to increased syngas pressure, Reduced steam consumption, Production of syngas with the stoichiometric composition required by methanol synthesis. Synthesis gases for the production of methanol and synfuels are basically mixtures of hydrogen and carbon oxides. They have been produced from natural gas by steam reforming, autothermal reforming and noncatalytic partial oxidation.

  20. Opportunity Evaluation and Implementation: Providing Strategic Energy Solutions through Thoughtful Planning and Practical Know-How to Produce Groundbreaking Results (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-10-01T23:59:59.000Z

    The National Renewable Energy Laboratory (NREL) is the U.S. Department of Energy's (DOE's) only national laboratory focused on renewable energy and energy efficiency. For more than 35 years, our energy research, development, analysis, commercialization, and deployment work with public and private sector partners around the world has catalyzed the expansion of global clean energy solutions.

  1. Brad Hanson, UC Davis 1 OFF-SITE MOVEMENT OF

    E-Print Network [OSTI]

    Hanson, Brad

    conditions Herbicide Availability AIRKH WATERWATER Henry's Law Constant - Related to solid:gas phase shoulders, fence rows, lawn/landscape) Individual plants Any herbicide that misses or moves from) but normalized for carbon content Rules of Thumb Henry's Law Constant (KH) Lower value = product tends toward

  2. Biomass Producer or Collector Tax Credit (Oregon)

    Broader source: Energy.gov [DOE]

     The Oregon Department of Energy provides a tax credit for agricultural producers or collectors of biomass.  The credit can be used for eligible biomass used to produce biofuel; biomass used in...

  3. Development of a Transient Heat and Mass Transfer Model of Residential Attics to Predict Energy Savings Produced by the Use of Radiant Barriers

    E-Print Network [OSTI]

    Medina, M. A.

    A transient heat and mass transfer model was developed to predict ceiling heat gain/loss through the attic space in residences and to accurately estimate savings in cooling and heating loads produced by the use of radiant barriers. The model...

  4. First waste-to-energy power station put into operation in Vietnam has successfully produced electricity from household and industrial waste as a

    E-Print Network [OSTI]

    Columbia University

    electricity from household and industrial waste as a newly-generated power supply has come online, its average cost per watt would be about half the price of electricity produced by other plants with the national electricity grid. On Wednesday, August 3, the Ho Chi Minh City Urban Environment Management

  5. active oil producing: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    were investigated and the evolution of oil-producing structures 14 Ris Energy Report 2 Biodiesel is produced from vegetable oils that have been Multidisciplinary Databases and...

  6. Abstract--The inherent many-to-one flow of traffic in Wireless Sensor Networks produces a skewed distribution of energy

    E-Print Network [OSTI]

    Radha, Hayder

    approaches aimed at balancing the consumption of energy in wireless networks are based on a linear distribution of energy consumption rates leading to the early demise of those sensors that are critical) it puts forward a new understanding of sensor network lifetime based on statistical measures, mean

  7. Sponsors of CIEEDAC: Environment Canada Natural Resources Canada, Canadian Industry Program for Energy Conservation, Aluminium Industry Association, Canadian Chemical Producers' Association, Canadian Electricity

    E-Print Network [OSTI]

    of making more transparent data available to the public; · initiating the historical GHG emissions review ++ ­ + Prices + ­ + Crude oil -use Energy Data and Analysis Centre Simon Fraser University, Burnaby, BC February, 2008 #12;GHG Emissions

  8. Number of Producing Gas Wells

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(Million Barrels)21 4.65per9 0 1 2 3 4 5Producing Gas

  9. alternative splicing produces: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Feasible, Alternative, Renewable, Electrical Energy Producing Ocean Floor System Mark, alternative energy system to convert the circular motion of ocean waves as they propagate...

  10. Energy-Saving Melting and Revert Reduction Technology (E-SMARRT): Lost Foam Thin Wall - Feasibility of Producing Lost Foam Castings in Aluminum and Magnesium Based Alloys

    SciTech Connect (OSTI)

    Fasoyinu, Yemi [CanmetMATERIALS] [CanmetMATERIALS; Griffin, John A. [University of Alabama - Birmingham] [University of Alabama - Birmingham

    2014-03-31T23:59:59.000Z

    With the increased emphasis on vehicle weight reduction, production of near-net shape components by lost foam casting will make significant inroad into the next-generation of engineering component designs. The lost foam casting process is a cost effective method for producing complex castings using an expandable polystyrene pattern and un-bonded sand. The use of un-bonded molding media in the lost foam process will impose less constraint on the solidifying casting, making hot tearing less prevalent. This is especially true in Al-Mg and Al-Cu alloy systems that are prone to hot tearing when poured in rigid molds partially due to their long freezing range. Some of the unique advantages of using the lost foam casting process are closer dimensional tolerance, higher casting yield, and the elimination of sand cores and binders. Most of the aluminum alloys poured using the lost foam process are based on the Al-Si system. Very limited research work has been performed with Al-Mg and Al-Cu type alloys. With the increased emphasis on vehicle weight reduction, and given the high-strength-to-weight-ratio of magnesium, significant weight savings can be achieved by casting thin-wall (? 3 mm) engineering components from both aluminum- and magnesium-base alloys.

  11. The Challenge Domestic solar panels produce electricity

    E-Print Network [OSTI]

    Crowther, Paul

    Sheffield Science Gateway. The Challenge Domestic solar panels produce electricity for homes materials to a wide range of optoelectronic devices, including solar panels. This project was one of 10 of renewable energy generated by solar panels. As a country with ambitious targets for renewable energy at both

  12. Assignment 2 Organizing and Producing Data

    E-Print Network [OSTI]

    Watkins, Joseph C.

    ). They are commonly used in calculations relating to the energy consumption required to heat buildings. We will use-weather-dependent consumption is the amount of energy used when none is devoted to heating. Estimate this using the regressionAssignment 2 Organizing and Producing Data Math 363 September 19, 2013 1. The life span in days

  13. Assignment 2 Organizing and Producing Data

    E-Print Network [OSTI]

    Watkins, Joseph C.

    ). They are commonly used in calculations relating to the energy consumption required to heat buildings. We will use-weather-dependent consumption is the amount of energy used when none is devoted to heating. Estimate this using the regressionAssignment 2 Organizing and Producing Data Math 363 February 6, 2014 1. The life span in days of 88

  14. Method for producing hydrogen

    SciTech Connect (OSTI)

    Preston, J.L.

    1980-02-26T23:59:59.000Z

    In a method for producing high quality hydrogen, the carbon monoxide level of a hydrogen stream which also contains hydrogen sulfide is shifted in a bed of iron oxide shift catalyst to a desired low level of carbon monoxide using less catalyst than the minimum amount of catalyst which would otherwise be required if there were no hydrogen sulfide in the gas stream. Under normal operating conditions the presence of even relatively small amounts of hydrogen sulfide can double the activity of the catalyst such that much less catalyst may be used to do the same job.

  15. Radiological considerations in the operation of the low-energy undulator test line (LEUTL).

    SciTech Connect (OSTI)

    Moe, H.J.

    1998-11-11T23:59:59.000Z

    The Low-Energy Undulator Test Line (LEUTL) is a facility that uses the existing APS linac to accelerate electrons up to an energy of 700 MeV. These electrons are transported through the Pm into a portion of the booster synchrotrons and on into the LEUTL main enclosure (MIL 97). Figure 1 shows the layout of the LEUTL building, which consists of an earth-benned concrete enclosure and an end-station building. The concrete enclosure houses the electron beamline, test undulator, and beam dump. This facility is about 51 m long and 3.66 m wide. Technical components and diagnostics for characterizing the undulator light are found in the end station. This building has about 111 m{sup 2} of floor space. This note deals with the radiological considerations of operations using electrons up to 700 MeV and at power levels up to the safety envelope of 1 kW. Previous radiological considerations for electron and positron operations in the linac, PAR, and synchrotrons have been addressed else-where (MOE 93a, 93b, and 93c). Much of the methodology discussed in the previous writeups, as well as in MOE 94, has been used in the computations in this note. The radiological aspects that are addressed include the following: prompt secondary radiation (bremsstrahlung, giant resonance neutrons, medium- and high-energy neutrons) produced by electrons interacting in a beam stop or in component structures; skyshine radiation, which produces a radiation field in nearby areas and at the nearest off-site location; radioactive gases produced by neutron irradiation of air in the vicinity of a particle loss site; noxious gases (ozone and others) produced in air by the escaping bremsstrahlung radiation that results from absorbing particles in the components; activation of the LEUTL components that results in a residual radiation field in the vicinity of these materials following shutdown; potential activation of water used for cooling the magnets and other purposes in the tunnel; and evaluation of the radiation fields due to escaping gas bremsstrahlung. Estimated dose rates have been computed or scaled (in the case of 400 MeV electrons) outside of the bermed tunnel, in Building 412, and in the Klystron Gallery for several modes of operation, including potential safety envelope beam power, normal beam power and MCI (maximum credible incident) conditions. Radiological aspects of shielding changes to the synchrotrons and their effect upon operations are addressed in MOE 97. No change in the safety envelope for synchrotrons operation was warranted.

  16. System for treating produced water

    DOE Patents [OSTI]

    Sullivan, Enid J. (Los Alamos, NM); Katz, Lynn (Austin, TX); Kinney, Kerry (Austin, TX); Bowman, Robert S. (Lemitar, NM); Kwon, Soondong (Kyungbuk, KR)

    2010-08-03T23:59:59.000Z

    A system and method were used to treat produced water. Field-testing demonstrated the removal of contaminants from produced water from oil and gas wells.

  17. Process for producing ethanol

    SciTech Connect (OSTI)

    Lantero, O.J.; Fish, J.J.

    1993-07-27T23:59:59.000Z

    A process is described for producing ethanol from raw materials containing a high dry solid mash level having fermentable sugars or constituents which can be converted into sugars, comprising the steps of: (a) liquefaction of the raw materials in the presence of an alpha amylase to obtain liquefied mash; (b) saccharification of the liquefied mash in the presence of a glucoamylase to obtain hydrolysed starch and sugars; (c) fermentation of the hydrolysed starch and sugars by yeast to obtain ethanol; and (d) recovering the obtained ethanol, wherein an acid fungal protease is introduced to the liquefied mash during the saccharification and/or to the hydrolysed starch and sugars during the fermentation, thereby increasing the rate of production of ethanol as compared to a substantially similar process conducted without the introduction of the protease.

  18. Sandia National Laboratories: wind turbines produce rated power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wind turbines produce rated power Increasing the Scaled Wind Farm Technology Facility's Power Production On April 7, 2014, in Energy, Facilities, News, News & Events, Partnership,...

  19. Coal-Producing Region

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccessAlamosCharacterization2Climate, OceanPublicationandCoal Coal.

  20. District Energy Technologies | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Energy Technologies District Energy Technologies District energy systems produce steam, hot water, or chilled water at a central plant. Then they pipe the energy to...

  1. Table of Contents Producing Hydrogen................1

    E-Print Network [OSTI]

    , hydrogen produced from fossil fuels (like natural gas) can help to build early markets and infrastructure Natural Gas Reforming ....................8 Bio-Derived Liquids Reforming...........................9 Coal, nitrogen oxides). Economic Vitality The United States can secure a share of future global energy markets

  2. Producing Quail for Home Consumption

    E-Print Network [OSTI]

    Thornberry, Fredrick D.

    1998-08-21T23:59:59.000Z

    Hobby and backyard producers are becoming interested in producing quail for home consumption. This publication gives tips on housing and brooding, nutrition, lighting, cannibalism, health and slaughter. It includes three recipes....

  3. California Energy Commission

    Office of Environmental Management (EM)

    California Energy Commission Quadrennial Water Review Comments - June 19, 2014 Water-Energy Nexus Water and energy systems are inextricably linked -- producing energy uses large...

  4. Produced Water Management and Beneficial Use

    SciTech Connect (OSTI)

    Terry Brown; Carol Frost; Thomas Hayes; Leo Heath; Drew Johnson; David Lopez; Demian Saffer; Michael Urynowicz; John Wheaton; Mark Zoback

    2007-10-31T23:59:59.000Z

    Large quantities of water are associated with the production of coalbed methane (CBM) in the Powder River Basin (PRB) of Wyoming. The chemistry of co-produced water often makes it unsuitable for subsequent uses such as irrigated agriculture. However, co-produced waters have substantial potential for a variety of beneficial uses. Achieving this potential requires the development of appropriate water management strategies. There are several unique characteristics of co-produced water that make development of such management strategies a challenge. The production of CBM water follows an inverse pattern compared to traditional wells. CBM wells need to maintain low reservoir pressures to promote gas production. This need renders the reinjection of co-produced waters counterproductive. The unique water chemistry of co-produced water can reduce soil permeability, making surface disposal difficult. Unlike traditional petroleum operations where co-produced water is an undesirable by-product, co-produced water in the PRB often is potable, making it a highly valued resource in arid western states. This research project developed and evaluated a number of water management options potentially available to CBM operators. These options, which focus on cost-effective and environmentally-sound practices, fall into five topic areas: Minimization of Produced Water, Surface Disposal, Beneficial Use, Disposal by Injection and Water Treatment. The research project was managed by the Colorado Energy Research Institute (CERI) at the Colorado School of Mines (CSM) and involved personnel located at CERI, CSM, Stanford University, Pennsylvania State University, the University of Wyoming, the Argonne National Laboratory, the Gas Technology Institute, the Montana Bureau of Mining and Geology and PVES Inc., a private firm.

  5. Statkraft is Europe's largest generator of renewable energy and is the leading power company in Norway. The company owns, produces and develops hydropower, wind power, gas-fired power and

    E-Print Network [OSTI]

    Morik, Katharina

    Statkraft is Europe's largest generator of renewable energy and is the leading power company countries. For our office in Düsseldorf we are currently looking to hire a System Manager Renewable Energy. Share our passion for renewable energy and be a part of tomorrow's energy world. Your department

  6. Method of producing submicron size particles and product produced thereby

    DOE Patents [OSTI]

    Bourne, R.S.; Eichman, C.C.; Welbon, W.W.

    1988-05-11T23:59:59.000Z

    Submicron size particles are produced by using a sputtering process to deposit particles into a liquid. The liquid is processed to recover the particles therefrom, and the particles have sizes in the range of twenty to two hundred Angstroms. Either metallic or non-metallic particles can be produced, and the metallic particles can be used in ''metallic inks.'' 4 figs.

  7. Produced Water Treatment Using Microbial Fuel Cell Technology

    SciTech Connect (OSTI)

    Borole, A. P.; Campbell, R. [Campbell Applied Physics

    2011-05-20T23:59:59.000Z

    ORNL has developed a treatment for produced water using a combination of microbial fuel cells and electrosorption. A collaboration between Campbell Applied Physics and ORNL was initiated to further investigate development of the technology and apply it to treatment of field produced water. The project successfully demonstrated the potential of microbial fuel cells to generate electricity from organics in produced water. A steady voltage was continuously generated for several days using the system developed in this study. In addition to the extraction of electrical energy from the organic contaminants, use of the energy at the representative voltage was demonstrated for salts removal or desalination of the produced water. Thus, the technology has potential to remove organic as well as ionic contaminants with minimal energy input using this technology. This is a novel energy-efficient method to treat produced water. Funding to test the technology at larger scale is being pursued to enable application development.

  8. Apparatus for producing voltage and current pulses

    DOE Patents [OSTI]

    Kirbie, Hugh (Los Alamos, NM); Dale, Gregory E. (Los Alamos, NM)

    2010-12-21T23:59:59.000Z

    An apparatus having one or more modular stages for producing voltage and current pulses. Each module includes a diode charging means to charge a capacitive means that stores energy. One or more charging impedance means are connected to the diode charging means to provide a return current pathway. A solid-state switch discharge means, with current interruption capability, is connected to the capacitive means to discharge stored energy. Finally, a control means is provided to command the switching action of the solid-state switch discharge means.

  9. Air bubbles clean produced water for reinjection

    SciTech Connect (OSTI)

    Michnick, M.J. [Univ. of Kansas, Lawrence, KS (United States)

    1995-12-31T23:59:59.000Z

    The reuse of produced water in a waterflood may be hazardous to the health and wealth of the reservoir. Disposal of produced water and finding a new source of water for a waterflood can double your costs. Air flotation is being tested to rehabilitate produced water on a lease in eastern Kansas. The use of air flotation in the oil field is at least forty years old. However, many operators are reluctant to spend the capital for surface equipment to assure a supply of good quality water for their waterflood operation. Before the installation of the air flotation unit only the produced water was filtered through a 75-micron bag and the filter water was then added to the make-up water. Seventy-five micron cartridge filters were used at the wellhead. Both the plant and wellhead filters required frequent replacement. Injection wells averaged more than one cleaning and acidization per year. Since installation of the air flotation unit, the combined produced and makeup water is passed through either a 25-or 10-micron bag filter in the plant and a 10-micron cartridge at the wellhead. The results of the test being conducted by an independent oil operator show a reduction in the cost for the water injection system. This study is part of the Department of Energy Class I PONS with independent oil operators.

  10. EA-1061: Final Environmental Assessment | Department of Energy

    Office of Environmental Management (EM)

    61: Final Environmental Assessment EA-1061: Final Environmental Assessment The Off-site Volume Reduction of Low-level Radioactive Waste From the Savannah River Site This EA...

  11. Glass produced by underground nuclear explosions. [Rainier

    SciTech Connect (OSTI)

    Schwartz, L.; Piwinskii, A.; Ryerson, F.; Tewes, H.; Beiriger, W.

    1983-01-01T23:59:59.000Z

    Detonation of an underground nuclear explosive produces a strong shock wave which propagates spherically outward, vaporizing the explosive and nearby rock and melting, the surrounding rock. The vaporized material expands adiabatically, forming a cavity. As the energy is dissipated during the cavity formation process, the explosive and rock debris condense and mix with the melted rock. The melt flows to the bottom of the cavity where it is quenched by fractured rock fragments falling from above as the cavity collapses. Measurements indicate that about 740 tonnes of rock and/or soil are melted for every kiloton (10/sup 12/ calories) of explosive energy, or about 25% of the explosive energy goes to melting rock. The resulting glass composition reflects the composition of the unaltered rock with explosive debris. The appearance ranges from white pumice to dense, dark lava. The bulk composition and color vary with the amount of explosive iron incorporated into the glass. The refractory explosion products are mixed with the solidified melt, although the degree of mixing is variable. Electron microprobe studies of glasses produced by Rainier in welded tuff have produced the following results: glasses are dehydrated relative to the host media, glasses are extremely heterogeneous on a 20 ..mu..m scale, a ubiquitous feature is the presence of dark marble-cake regions in the glass, which were locally enriched in iron and may be related to the debris, optically amorphous regions provide evidence of shock melting, only limited major element redistribution and homogenization occur within the cavity.

  12. Optimal Bidding Strategies for Wind Power Producers with Meteorological Forecasts

    E-Print Network [OSTI]

    Giannitrapani, Antonello

    bid is computed by exploiting the forecast energy price for the day ahead market, the historical wind renewable energy resources, such as wind and photovoltaic, has grown rapidly. It is well known the problem of optimizing energy bids for an independent Wind Power Producer (WPP) taking part

  13. Microorganisms for producing organic acids

    DOE Patents [OSTI]

    Pfleger, Brian Frederick; Begemann, Matthew Brett

    2014-09-30T23:59:59.000Z

    Organic acid-producing microorganisms and methods of using same. The organic acid-producing microorganisms comprise modifications that reduce or ablate AcsA activity or AcsA homolog activity. The modifications increase tolerance of the microorganisms to such organic acids as 3-hydroxypropionic acid, acrylic acid, propionic acid, lactic acid, and others. Further modifications to the microorganisms increase production of such organic acids as 3-hydroxypropionic acid, lactate, and others. Methods of producing such organic acids as 3-hydroxypropionic acid, lactate, and others with the modified microorganisms are provided. Methods of using acsA or homologs thereof as counter-selectable markers are also provided.

  14. Methods of producing cesium-131

    SciTech Connect (OSTI)

    Meikrantz, David H; Snyder, John R

    2012-09-18T23:59:59.000Z

    Methods of producing cesium-131. The method comprises dissolving at least one non-irradiated barium source in water or a nitric acid solution to produce a barium target solution. The barium target solution is irradiated with neutron radiation to produce cesium-131, which is removed from the barium target solution. The cesium-131 is complexed with a calixarene compound to separate the cesium-131 from the barium target solution. A liquid:liquid extraction device or extraction column is used to separate the cesium-131 from the barium target solution.

  15. Cellulase producing microorganism ATCC 55702

    DOE Patents [OSTI]

    Dees, H. Craig (Lenoir City, TN)

    1997-01-01T23:59:59.000Z

    Bacteria which produce large amounts of cellulase--containing cell-free fermentate have been identified. The original bacterium (ATCC 55703) was genetically altered using nitrosoguanidine (MNNG) treatment to produce the enhanced cellulase producing bacterium (ATCC 55702), which was identified through replicate plating. ATCC 55702 has improved characteristics and qualifies for the degradation of cellulosic waste materials for fuel production, food processing, textile processing, and other industrial applications. ATCC 55702 is an improved bacterial host for genetic manipulations using recombinant DNA techniques, and is less likely to destroy genetic manipulations using standard mutagenesis techniques.

  16. Cellulase producing microorganism ATCC 55702

    DOE Patents [OSTI]

    Dees, H.C.

    1997-12-30T23:59:59.000Z

    Bacteria which produce large amounts of cellulase--containing cell-free fermentate have been identified. The original bacterium (ATCC 55703) was genetically altered using nitrosoguanidine (MNNG) treatment to produce the enhanced cellulase producing bacterium (ATCC 55702), which was identified through replicate plating. ATCC 55702 has improved characteristics and qualifies for the degradation of cellulosic waste materials for fuel production, food processing, textile processing, and other industrial applications. ATCC 55702 is an improved bacterial host for genetic manipulations using recombinant DNA techniques, and is less likely to destroy genetic manipulations using standard mutagenesis techniques. 5 figs.

  17. Methods of producing transportation fuel

    DOE Patents [OSTI]

    Nair, Vijay (Katy, TX); Roes, Augustinus Wilhelmus Maria (Houston, TX); Cherrillo, Ralph Anthony (Houston, TX); Bauldreay, Joanna M. (Chester, GB)

    2011-12-27T23:59:59.000Z

    Systems, methods, and heaters for treating a subsurface formation are described herein. At least one method for producing transportation fuel is described herein. The method for producing transportation fuel may include providing formation fluid having a boiling range distribution between -5.degree. C. and 350.degree. C. from a subsurface in situ heat treatment process to a subsurface treatment facility. A liquid stream may be separated from the formation fluid. The separated liquid stream may be hydrotreated and then distilled to produce a distilled stream having a boiling range distribution between 150.degree. C. and 350.degree. C. The distilled liquid stream may be combined with one or more additives to produce transportation fuel.

  18. aspergillus ochraceus produced: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    source of energy like wind. In this project by using a small fan blade, electric power is produced by utilizing the drag force of the wind in a moving vehicle. This project...

  19. anaerobic ethanol producer: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    attractive to both male and female M. sutor beetles Hanks, Lawrence M. 4 Fuel-Cycle Fossil Energy Use and Greenhouse Gas Emissions of Fuel Ethanol Produced from U.S. Midwest...

  20. Water and Energy Interactions

    E-Print Network [OSTI]

    McMahon, James E.

    2013-01-01T23:59:59.000Z

    DOE). 2008. Fossil Energy: Coal Mining and Transportation.aspects of generating energy from coal. Land reclamation andthat required for producing energy from coal. Traditionally,

  1. Water management technologies used by Marcellus Shale Gas Producers.

    SciTech Connect (OSTI)

    Veil, J. A.; Environmental Science Division

    2010-07-30T23:59:59.000Z

    Natural gas represents an important energy source for the United States. According to the U.S. Department of Energy's (DOE's) Energy Information Administration (EIA), about 22% of the country's energy needs are provided by natural gas. Historically, natural gas was produced from conventional vertical wells drilled into porous hydrocarbon-containing formations. During the past decade, operators have increasingly looked to other unconventional sources of natural gas, such as coal bed methane, tight gas sands, and gas shales.

  2. Method of producing .sup.67 Cu

    DOE Patents [OSTI]

    O'Brien, Jr., Harold A. (Los Alamos, NM); Barnes, John W. (Los Alamos, NM); Taylor, Wayne A. (Los Alamos, NM); Thomas, Kenneth E. (Los Alamos, NM); Bentley, Glenn E. (Los Alamos, NM)

    1984-01-01T23:59:59.000Z

    A method of producing carrier-free .sup.67 Cu by proton spallation combined with subsequent chemical separation and purification is disclosed. A target consisting essentially of pressed zinc oxide is irradiated with a high energy, high current proton beam to produce a variety of spallogenic nuclides, including .sup.67 Cu and other copper isotopes. The irradiated target is dissolved in a concentrated acid solution to which a palladium salt is added. In accordance with the preferred method, the spallogenic copper is twice coprecipitated with palladium, once with metallic zinc as the precipitating agent and once with hydrogen sulfide as the precipitating agent. The palladium/copper precipitate is then dissolved in an acid solution and the copper is separated from the palladium by liquid chromatography on an anion exchange resin.

  3. Sitewide Environmental Assessment for the National Renewable Energy Laboratory, Golden, Colorado

    SciTech Connect (OSTI)

    Not Available

    1993-05-04T23:59:59.000Z

    The Solar Energy Research, Development, and Demonstration Act of 1974 authorized a federal program to develop solar energy as a viable source of the nation`s future energy needs. Under this authority, the National Renewable Energy Laboratory (NREL) was created as a laboratory of the Department of Energy (DOE) to research a number of renewable energy possibilities. The laboratory conducts its operations both in government-owned facilities on the NREL South Table Mountain (STM) Site near Golden, Colorado, and in a number of leased facilities, particularly the Denver West Office Park. NREL operations include research in energy technologies, and other areas of national environmental and energy technology interest. Examples of these technologies include electricity from sunlight with solar cells (photovoltaics); energy from wind (windmills or wind turbines); conversion of plants and plant products (biomass) into liquid fuels (ethanol and methanol); heat from the sun (solar thermal) in place of wood, oil, gas, coal and other forms of heating; and solar buildings. NREL proposes to continue and expand the present R&D efforts in C&R energy by making infrastructure improvements and constructing facilities to eventually consolidate the R&D and associated support activities at its STM Site. In addition, it is proposed that operations continue in current leased space at the present levels of activity until site development is complete. The construction schedule proposed is designed to develop the site as rapidly as possible, dependent on Congressional funding, to accommodate not only the existing R&D that is being conducted in leased facilities off-site but to also allow for the 20-year projected growth. Impacts from operations currently conducted off-site are quantified and added to the cumulative impacts of the STM site. This environmental assessment provides information to determine the severity of impacts on the environment from the proposed action.

  4. Current Producers of Developed Grasses Producers Contact Phone Number

    E-Print Network [OSTI]

    Rod 979-543-0121 Trinity Turf Nursery* Doug O'Conner 800-290-8873 Wharton Turfgrass Jimmy Kocurek 979 Turfgrass Jimmy Kocurek 979-532-4340 Wittig Grass Farms Allan Wittig 979-657-4496 Diamond Producers Contact Turfgrass Jimmy Kocurek 979-532-4340 Winstead Turf Farms* (AR, MS, TN) Bobby Winstead 800-624-8873 Wittig

  5. Producing and Detecting Correlated atoms

    E-Print Network [OSTI]

    Christoph I. Westbrook; Martijn Schellekens; Aurélien Perrin; Valentina Krachmalnicoff; Jose Carlos Viana Gomes; Jean-Baptiste Trebbia; Jérôme Estève; Hong Chang; Isabelle Bouchoule; Denis Boiron; Alain Aspect; Tom Jeltes; John McNamara; Wim Hogervorst; Wim Vassen

    2006-09-04T23:59:59.000Z

    We discuss experiments to produce and detect atom correlations in a degenerate or nearly degenerate gas of neutral atoms. First we treat the atomic analog of the celebrated Hanbury Brown Twiss experiment, in which atom correlations result simply from interference effects without any atom interactions.We have performed this experiment for both bosons and fermions. Next we show how atom interactions produce correlated atoms using the atomic analog of spontaneous four-wavemixing. Finally, we briefly mention experiments on a one dimensional gas on an atom chip in which correlation effects due to both interference and interactions have been observed.

  6. Search results | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    4 of 4 results. Article Solar Energy Technology Basics Solar energy technologies produce electricity from the energy of the sun. Small solar energy systems can provide electricity...

  7. Off-site consequences of radiological accidents: methods, costs and schedules for decontamination

    SciTech Connect (OSTI)

    Tawil, J.J.; Bold, F.C.; Harrer, B.J.; Currie, J.W.

    1985-08-01T23:59:59.000Z

    This report documents a data base and a computer program for conducting a decontamination analysis of a large, radiologically contaminated area. The data base, which was compiled largely through interviews with knowledgeable persons both in the public and private sectors, consists of the costs, physical inputs, rates and contaminant removal efficiencies of a large number of decontamination procedures. The computer program utilizes this data base along with information specific to the contaminated site to provide detailed information that includes the least costly method for effectively decontaminating each surface at the site, various types of property losses associated with the contamination, the time at which each subarea within the site should be decontaminated to minimize these property losses, the quantity of various types of labor and equipment necessary to complete the decontamination, dose to radiation workers, the costs for surveying and monitoring activities, and the disposal costs associated with radiological waste generated during cleanup. The program and data base are demonstrated with a decontamination analysis of a hypothetical site. 39 refs., 24 figs., 155 tabs.

  8. EIS-0243: Nevada Test Site and Off-Site Locations in the State of Nevada

    Broader source: Energy.gov [DOE]

    This EIS evaluates the potential environmental impacts of the management of low-level waste (LLW) at all sites and continue, to the extent practicable, disposal of on- site LLW at the Idaho...

  9. Additive manufacturing method of producing

    E-Print Network [OSTI]

    Painter, Kevin

    Additive manufacturing method of producing silver or copper tracks on polyimide film Problem/stripping) using an additive process support by a novel bio- degradable photo-initiator package. technology. Building on previous work by Hoyd- Gigg Ng et al. [1,2], Heriot-Watt has developed an additive film

  10. Process for producing chalcogenide semiconductors

    DOE Patents [OSTI]

    Noufi, R.; Chen, Y.W.

    1985-04-30T23:59:59.000Z

    A process for producing chalcogenide semiconductor material is disclosed. The process includes forming a base metal layer and then contacting this layer with a solution having a low pH and containing ions from at least one chalcogen to chalcogenize the layer and form the chalcogenide semiconductor material.

  11. Process for producing chalcogenide semiconductors

    DOE Patents [OSTI]

    Noufi, Rommel (Westminster, CO); Chen, Yih-Wen (Omaha, NE)

    1987-01-01T23:59:59.000Z

    A process for producing chalcogenide semiconductor material is disclosed. The process includes forming a base metal layer and then contacting this layer with a solution having a low pH and containing ions from at least one chalcogen to chalcogenize the layer and form the chalcogenide semiconductor material.

  12. Electrically Conductive Bacterial Nanowires Produced by Shewanella...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conductive Bacterial Nanowires Produced by Shewanella Oneidensis Strain MR-1 and Other Microorganisms . Electrically Conductive Bacterial Nanowires Produced by Shewanella...

  13. Method for producing carbon nanotubes

    DOE Patents [OSTI]

    Phillips, Jonathan (Santa Fe, NM); Perry, William L. (Jemez Springs, NM); Chen, Chun-Ku (Albuquerque, NM)

    2006-02-14T23:59:59.000Z

    Method for producing carbon nanotubes. Carbon nanotubes were prepared using a low power, atmospheric pressure, microwave-generated plasma torch system. After generating carbon monoxide microwave plasma, a flow of carbon monoxide was directed first through a bed of metal particles/glass beads and then along the outer surface of a ceramic tube located in the plasma. As a flow of argon was introduced into the plasma through the ceramic tube, ropes of entangled carbon nanotubes, attached to the surface of the tube, were produced. Of these, longer ropes formed on the surface portion of the tube located in the center of the plasma. Transmission electron micrographs of individual nanotubes revealed that many were single-walled.

  14. Process for producing advanced ceramics

    DOE Patents [OSTI]

    Kwong, Kyei-Sing (Tuscaloosa, AL)

    1996-01-01T23:59:59.000Z

    A process for the synthesis of homogeneous advanced ceramics such as SiC+AlN, SiAlON, SiC+Al.sub.2 O.sub.3, and Si.sub.3 N.sub.4 +AlN from natural clays such as kaolin, halloysite and montmorillonite by an intercalation and heat treatment method. Included are the steps of refining clays, intercalating organic compounds into the layered structure of clays, drying the intercalated mixture, firing the treated atmospheres and grinding the loosely agglomerated structure. Advanced ceramics produced by this procedure have the advantages of homogeneity, cost effectiveness, simplicity of manufacture, ease of grind and a short process time. Advanced ceramics produced by this process can be used for refractory, wear part and structure ceramics.

  15. Method for producing monodisperse aerosols

    DOE Patents [OSTI]

    Ortiz, Lawrence W. (Los Alamos, NM); Soderholm, Sidney C. (Pittsford, NY)

    1990-01-01T23:59:59.000Z

    An aerosol generator is described which is capable of producing a monodisperse aerosol within narrow limits utilizing an aqueous solution capable of providing a high population of seed nuclei and an organic solution having a low vapor pressure. The two solutions are cold nebulized, mixed, vaporized, and cooled. During cooling, particles of the organic vapor condense onto the excess seed nuclei, and grow to a uniform particle size.

  16. Method for producing hydrophobic aerogels

    SciTech Connect (OSTI)

    Hrubesh, Lawrence W. (Pleasanton, CA); Poco, John F. (Livermore, CA); Coronado, Paul R. (Livermore, CA)

    1999-01-01T23:59:59.000Z

    A method for treating a dried monolithic aerogel containing non-dispersed particles, with an organometallic surface modifying agent to produce hydrophobic aerogels. The dried, porous hydrophobic aerogels contain a protective layer of alkyl groups, such as methyl groups, on the modified surfaces of the pores of the aerogel. The alkyl groups at the aerogel surface typically contain at least one carbon-metal bond per group.

  17. Method for producing hydrophobic aerogels

    SciTech Connect (OSTI)

    Hrubesh, L.W.; Poco, J.F.; Coronado, P.R.

    1999-12-21T23:59:59.000Z

    A method is described for treating a dried monolithic aerogel containing non-dispersed particles, with an organometallic surface modifying agent to produce hydrophobic aerogels. The dried, porous hydrophobic aerogels contain a protective layer of alkyl groups, such as methyl groups, on the modified surfaces of the pores of the aerogel. The alkyl groups at the aerogel surface typically contain at least one carbon-metal bond per group.

  18. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    biogas from Orange County Sanitation District's wastewater treatment plant to produce hydrogen, heat and power. | Photo courtesy of the Energy Department. Fueling the Next...

  19. Renewable Energy Systems | Clean Energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Energy Systems SHARE Renewable Energy Systems Develop methods and models, conduct analyses and produce tools that address the potential and sustainability of biomass...

  20. The Social Complexity of Renewable Energy Production in the Countryside

    E-Print Network [OSTI]

    Kunze, Conrad; Busch, Henner

    2011-01-01T23:59:59.000Z

    produced renewable energy (wind, sun, water, biomass/gas).park. Renewable heat energy is usually produced in biomassrenewable local producers (wind-turbines, solar panels, water- turbines, biomass,

  1. U.S. DEPARTMENT OF ENERGY EERE PROJECT 'dfu'lAGEMENT CENTER

    Broader source: Energy.gov (indexed) [DOE]

    limestone chips and would be disposed of off site, adhering to Iowa Department of Natural Resources (IDNR) regulations. U .S. Environmental Protection Agency ( EPA) determined the...

  2. Method for producing viscous hydrocarbons

    DOE Patents [OSTI]

    Poston, Robert S. (Winter Park, FL)

    1982-01-01T23:59:59.000Z

    A method for recovering viscous hydrocarbons and synthetic fuels from a subterranean formation by drilling a well bore through the formation and completing the well by cementing a casing means in the upper part of the pay zone. The well is completed as an open hole completion and a superheated thermal vapor stream comprised of steam and combustion gases is injected into the lower part of the pay zone. The combustion gases migrate to the top of the pay zone and form a gas cap which provides formation pressure to produce the viscous hydrocarbons and synthetic fuels.

  3. Producing biofuels using polyketide synthases

    DOE Patents [OSTI]

    Katz, Leonard; Fortman, Jeffrey L; Keasling, Jay D

    2013-04-16T23:59:59.000Z

    The present invention provides for a non-naturally occurring polyketide synthase (PKS) capable of synthesizing a carboxylic acid or a lactone, and a composition such that a carboxylic acid or lactone is included. The carboxylic acid or lactone, or derivative thereof, is useful as a biofuel. The present invention also provides for a recombinant nucleic acid or vector that encodes such a PKS, and host cells which also have such a recombinant nucleic acid or vector. The present invention also provides for a method of producing such carboxylic acids or lactones using such a PKS.

  4. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContractElectron-StateEnergy /newsroom/_assets/images/energy-icon.png Energy

  5. Diagnosis of Effectiveness of HVAC System and Energy Performance of Osaka-Gas Building through Retro-Commissioning Part 2 Handling the Data Produced by BEMS and Some Results of Analyses

    E-Print Network [OSTI]

    Yamaha, M.; Ando,T.

    2014-01-01T23:59:59.000Z

    . Operation patterns of heat source plants vary from 2003 to 2012 according to change in plant’s operational strategy. 90 percent of primary energy was consumed by generators and chillers. Since the plant is run by combined heat and power system, waste... heat from the generators is recovered and used for chillers. The efficiency of the generators had been kept around 0.35 which was almost same as specification of the machines. The efficiency of the entire system, however, was decreased, especially...

  6. UF Calendar Produced by the

    E-Print Network [OSTI]

    Pilyugin, Sergei S.

    Cracker House to further the field of solar energy and inspire solutions for sustainable living disciplines, will compete in Madrid this June in 10 categories that include solar power, innovation us on Twitter. RayCarson Note This Solar home to compete internationally The University of Florida

  7. Characterization of uraninite nanoparticles produced by Shewanella...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    uraninite nanoparticles produced by Shewanella oneidensis MR-1 . Characterization of uraninite nanoparticles produced by Shewanella oneidensis MR-1 . Abstract: The reduction of...

  8. Transition Metal Dopants Essential for Producing Ferromagnetism...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Metal Dopants Essential for Producing Ferromagnetism in Metal Oxide Nanoparticles. Transition Metal Dopants Essential for Producing Ferromagnetism in Metal Oxide Nanoparticles....

  9. Evaluating environmental consequences of producing herbaceous crops for bioenergy

    SciTech Connect (OSTI)

    McLaughlin, S.B.

    1995-12-31T23:59:59.000Z

    The environmental costs and benefits of producing bioenergy crops can be measured both in kterms of the relative effects on soil, water, and wildlife habitat quality of replacing alternate cropping systems with the designated bioenergy system, and in terms of the quality and amount of energy that is produced per unit of energy expended. While many forms of herbaceous and woody energy crops will likely contribute to future biofuels systems, The Dept. of Energy`s Biofuels Feedstock Development Program (BFDP), has chosen to focus its primary herbaceous crops research emphasis on a perennial grass species, switchgrass (Panicum virgatum), as a bioenergy candidate. This choice was based on its high yields, high nutrient use efficiency, and wide geographic distribution, and also on its poistive environmental attributes. The latter include its positive effects on soil quality and stabiity, its cover value for wildlife, and the lower inputs of enerty, water, and agrochemicals required per unit of energy produced. A comparison of the energy budgets for corn, which is the primary current source of bioethanol, and switchgrass reveals that the efficiency of energy production for a perennial grass system can exceed that for an energy intensive annual row crop by as much as 15 times. In additions reductions in CO{sub 2} emission, tied to the energetic efficiency of producing transportation fuels, are very efficient with grasses. Calculated carbon sequestration rates may exceed those of annual crops by as much as 20--30 times, due in part to carbon storage in the soil. These differences have major implications for both the rate and efficiency with which fossil energy sources can be replaced with cleaner burning biofuels.

  10. Methods for producing secreted polypeptides

    DOE Patents [OSTI]

    Maiyuran, Suchindra (Gold River, CA); Fidantsef, Ana (Davis, CA); Brody, Howard (Davis, CA)

    2008-07-01T23:59:59.000Z

    The present invention relates to methods for producing a polypeptide, comprising: (a) cultivating a fungal host cell in a medium conducive for the production of the polypeptide, wherein the fungal host cell comprises a nucleic acid construct comprising a first nucleotide sequence encoding a signal peptide operably linked to a second nucleotide sequence encoding the polypeptide, wherein the first nucleotide sequence is foreign to the second nucleotide sequence and the 3' end of the first nucleotide sequence is immediately upstream of the initiator codon of the second nucleotide sequence. The present invention also relates to the isolated signal peptide sequences and to constructs, vectors, and fungal host cells comprising the signal peptide sequences operably linked to nucleotide sequences encoding polypeptides.

  11. Plasma treatment for producing electron emitters

    DOE Patents [OSTI]

    Coates, Don Mayo (Santa Fe, NM); Walter, Kevin Carl (Los Alamos, NM)

    2001-01-01T23:59:59.000Z

    Plasma treatment for producing carbonaceous field emission electron emitters is disclosed. A plasma of ions is generated in a closed chamber and used to surround the exposed surface of a carbonaceous material. A voltage is applied to an electrode that is in contact with the carbonaceous material. This voltage has a negative potential relative to a second electrode in the chamber and serves to accelerate the ions toward the carbonaceous material and provide an ion energy sufficient to etch the exposed surface of the carbonaceous material but not sufficient to result in the implantation of the ions within the carbonaceous material. Preferably, the ions used are those of an inert gas or an inert gas with a small amount of added nitrogen.

  12. Rocky Mountain Basins Produced Water Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Historical records for produced water data were collected from multiple sources, including Amoco, British Petroleum, Anadarko Petroleum Corporation, United States Geological Survey (USGS), Wyoming Oil and Gas Commission (WOGC), Denver Earth Resources Library (DERL), Bill Barrett Corporation, Stone Energy, and other operators. In addition, 86 new samples were collected during the summers of 2003 and 2004 from the following areas: Waltman-Cave Gulch, Pinedale, Tablerock and Wild Rose. Samples were tested for standard seven component "Stiff analyses", and strontium and oxygen isotopes. 16,035 analyses were winnowed to 8028 unique records for 3276 wells after a data screening process was completed. [Copied from the Readme document in the zipped file available at http://www.netl.doe.gov/technologies/oil-gas/Software/database.html] Save the Zipped file to your PC. When opened, it will contain four versions of the database: ACCESS, EXCEL, DBF, and CSV formats. The information consists of detailed water analyses from basins in the Rocky Mountain region.

  13. Intense ultraviolet perturbations on aquatic primary producers

    E-Print Network [OSTI]

    Guimarais, Mayrene; Horvath, Jorge

    2010-01-01T23:59:59.000Z

    During the last decade, the hypothesis that one or more biodiversity drops in the Phanerozoic eon, evident in the geological record, might have been caused by the most powerful kind of stellar explosion so far known (Gamma Ray Bursts) has been discussed in several works. These stellar explosions could have left an imprint in the biological evolution on Earth and in other habitable planets. In this work we calculate the short-term lethality that a GRB would produce in the aquatic primary producers on Earth. This effect on life appears as a result of ultraviolet (UV) re-transmission in the atmosphere of a fraction of the gamma energy, resulting in an intense UV flash capable of penetrating ~ tens of meters in the water column in the ocean. We focus on the action of the UV flash on phytoplankton, as they are the main contributors to global aquatic primary productivity. Our results suggest that the UV flash could cause an hemispheric reduction of phytoplankton biomass in the upper mixed layer of the World Ocean o...

  14. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasRelease Date:researchEmerging ThreatsEmployment Openings

  15. Measurement of the front back asymmetry in top-antitop quark pairs produced in proton-antiproton collisions at center of mass energy = 1.96 TeV

    SciTech Connect (OSTI)

    Schwarz, Thomas A.; /Michigan U.

    2006-01-01T23:59:59.000Z

    Quarks, along with leptons and force carrying particles, are predicted by the Standard Model to be the fundamental constituents of nature. In distinction from the leptons, the quarks interact strongly through the chromodynamic force and are bound together within the hadrons. The familiar proton and neutron are bound states of the light ''up'' and ''down'' quarks. The most massive quark by far, the ''top'' quark, was discovered by the CDF and D0 experiments in March, 1995. The new quark was observed in p{bar p} collisions at 1.8 TeV at the Fermilab Tevatron. The mass of the top quark was measured to be 176 {+-} 13 GeV/c{sup 2} and the cross section 6.8{sub -2.4}{sup +3.6} pb. It is the Q = 2/3, T{sub 3} = +1/2 member of the third generation weak-isospin doublet along with the bottom quark. The top quark is the final Standard Model quark to be discovered. Along with whatever is responsible for electroweak symmetry breaking, top quark physics is considered one of the least understood sectors of the Standard Model and represents a front line of our understanding of particle physics. Currently, the only direct measurements of top quark properties come from the CDF and D0 experiments observing p{bar p} collisions at the Tevatron. Top quark production at the Tevatron is almost exclusively by quark-antiquark annihilation, q{bar q} {yields} t{bar t} (85%), and gluon fusion, gg {yields} t{bar t} (15%), mediated by the strong force. The theoretical cross-section for this process is {sigma}{sub t{bar t}} = 6.7 {+-} 0.8 pb for m{sub t} = 175 GeV/c{sup 2}. Top quarks can also be produced at the Tevatron via q{bar b}{prime} {yields} tb and qg {yields} q{prime}tb through the weak interaction. The cross section for these processes is lower (3pb) and the signal is much more difficult to isolate as backgrounds are much higher. The top quark is predicted to decay almost exclusively into a W-boson and a bottom quark (t {yields} Wb). The total decay width t {yields} Wb is {Lambda} = 1.50 GeV. This corresponds to an incredibly short lifetime of 0.5 x 10{sup -24} seconds. This happens so quickly that hadronization and bound states do not take place, which leads to the interesting consequence that the top quark spin information is passed to the decay products.

  16. Method for Producing Flame Retardant Porous Products and Products Produced Thereby

    DOE Patents [OSTI]

    Salyer, Ival O. (Dayton, OH)

    1998-08-04T23:59:59.000Z

    A method for fire retarding porous products used for thermal energy storage and products produced thereby is provided. The method includes treating the surface of the phase change material-containing porous products with a urea fire-retarding agent. Upon exposure to a flame, the urea forms an adduct with the phase change material which will not sustain combustion (is self-extinguishing) in air. No halogens or metal oxides are contained in the fire retardant, so no potentially noxious halide smoke or fumes are emitted if the product is continuously exposed to a flame.

  17. Method for producing flame retardant porous products and products produced thereby

    DOE Patents [OSTI]

    Salyer, I.O.

    1998-08-04T23:59:59.000Z

    A method for fire retarding porous products used for thermal energy storage and products produced thereby is provided. The method includes treating the surface of the phase change material-containing porous products with a urea fire-retarding agent. Upon exposure to a flame, the urea forms an adduct with the phase change material which will not sustain combustion (is self-extinguishing) in air. No halogens or metal oxides are contained in the fire retardant, so no potentially noxious halide smoke or fumes are emitted if the product is continuously exposed to a flame. 1 fig.

  18. Method for producing flame retardant porous products and products produced thereby

    DOE Patents [OSTI]

    Salyer, Ival O. (Dayton, OH)

    1998-08-04T23:59:59.000Z

    A method for fire retarding porous products used for thermal energy storage and products produced thereby is provided. The method includes treating the surface of the phase change material-containing porous products with a urea fire-retarding agent. Upon exposure to a flame, the urea forms an adduct with the phase change material which will not sustain combustion (is self-extinguishing) in air. No halogens or metal oxides are contained in the fire retardant, so no potentially noxious halide smoke or fumes are emitted if the product is continuously exposed to a flame.

  19. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Basics Solar energy technologies produce electricity from the energy of the sun. Small solar energy systems can provide electricity for homes, businesses, and remote...

  20. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    results Enter terms Search Showing 1 - 1 of 1 result. Article Solar Energy Technology Basics Solar energy technologies produce electricity from the energy of the sun. Small solar...

  1. Exploring Dark Energy with SNAP

    E-Print Network [OSTI]

    Aldering, G.

    2009-01-01T23:59:59.000Z

    weak lensing survey. The planned dark energy program forthe Joint Dark Energy Mission (JDEM) will produce a treasureLBNL- 58276 Exploring Dark Energy with SNAP G. Aldering

  2. Energy

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling CorpNew 1325.8.Enaineer;/:4,4 (; ...) "..

  3. A new method for producing molybdenum-99 without the

    E-Print Network [OSTI]

    Langendoen, Koen

    worldwide can produce it. When one or more of these facilities shut down for repair or maintenance molybdenum-99. Recoil energy Naturally occurring molybdenum is extracted relatively easily from mines availability. Moreover, the new process is cleaner and safer. Chemical separation of Molybdenum Ref. TU Delft

  4. SUSTAINABLE PRODUCE DEVELOPMENT TRADESHOW Saturday, December 15, 2007

    E-Print Network [OSTI]

    Agogino, Alice M.

    SUSTAINABLE PRODUCE DEVELOPMENT TRADESHOW Saturday, December 15, 2007 Hearst Mining Building presentations of the students in "Sustainable Product Development." (2-3:45 pm presentations; 3:45-4:45 pm-the-go · Treading Lightly: Style & Sustainability for Pets · CARES: Community Assessment of Renewable Energy

  5. THE POSSIBILITY OF PRODUCING THERMONUCLEAR REACTIONS IN A GASEOUS DISCHARGE*

    E-Print Network [OSTI]

    THE POSSIBILITY OF PRODUCING THERMONUCLEAR REACTIONS IN A GASEOUS DISCHARGE* I.V. Kurchatov of the energy of thermonuclear reactions. Physicists the world over are attracted by the extraordinarily interest- ing and very difficult task of controlling thermonuclear reactiom. Investigations in this field

  6. The Metro Map Problem Existing metro maps, produced by professional

    E-Print Network [OSTI]

    Hong,Seokhee

    optimization methods to find a minimal energy state 20 Force directed method for metro map visualization artists, are excellent examples of network visualization Can we produce good metro maps automatically Virtual Environments Case Study - Stock Market MS-Guidelines MS-Process MS-Taxonomy Software Engineering

  7. ENERGY

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory Board Contributions EMEM RecoveryManagement'sJuneAprilEMS U.S.

  8. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEAWater UseCElizabethTwoJaniceEnerG2Energetics of Hydrogen .M

  9. New Process for Producing Styrene Cuts Costs, Saves Energy, and...

    Broader source: Energy.gov (indexed) [DOE]

    Fact sheet about Exelus Inc. from the Small Business Innovation Research Program. exeluscasestudy.pdf More Documents & Publications CX-004128: Categorical Exclusion Determination...

  10. Energy Department Announces $12 Million for Technologies to Produce...

    Broader source: Energy.gov (indexed) [DOE]

    and national laboratory partners on a balanced portfolio of research in biomass feedstocks and conversion technologies. Addthis Related Articles DOE Offers 12 Million for...

  11. Method of producing nano-scaled inorganic platelets

    DOE Patents [OSTI]

    Zhamu, Aruna; Jang, Bor Z.

    2012-11-13T23:59:59.000Z

    The present invention provides a method of exfoliating a layered material (e.g., transition metal dichalcogenide) to produce nano-scaled platelets having a thickness smaller than 100 nm, typically smaller than 10 nm. The method comprises (a) dispersing particles of a non-graphite laminar compound in a liquid medium containing therein a surfactant or dispersing agent to obtain a stable suspension or slurry; and (b) exposing the suspension or slurry to ultrasonic waves at an energy level for a sufficient length of time to produce separated nano-scaled platelets. The nano-scaled platelets are candidate reinforcement fillers for polymer nanocomposites.

  12. Process for producing ethanol from syngas

    DOE Patents [OSTI]

    Krause, Theodore R; Rathke, Jerome W; Chen, Michael J

    2013-05-14T23:59:59.000Z

    The invention provides a method for producing ethanol, the method comprising establishing an atmosphere containing methanol forming catalyst and ethanol forming catalyst; injecting syngas into the atmosphere at a temperature and for a time sufficient to produce methanol; and contacting the produced methanol with additional syngas at a temperature and for a time sufficient to produce ethanol. The invention also provides an integrated system for producing methanol and ethanol from syngas, the system comprising an atmosphere isolated from the ambient environment; a first catalyst to produce methanol from syngas wherein the first catalyst resides in the atmosphere; a second catalyst to product ethanol from methanol and syngas, wherein the second catalyst resides in the atmosphere; a conduit for introducing syngas to the atmosphere; and a device for removing ethanol from the atmosphere. The exothermicity of the method and system obviates the need for input of additional heat from outside the atmosphere.

  13. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    has one. January 12, 2010 Maryland Small Business Helping Lower Solar Costs Though panels can produce mounds of energy savings over a long period of time, the expense of...

  14. Sandia National Laboratories: produce and deliver hydrogen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    produce and deliver hydrogen High-Efficiency Solar Thermochemical Reactor for Hydrogen Production On July 9, 2014, in Center for Infrastructure Research and Innovation (CIRI),...

  15. Energy Resource Library | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    The library includes links to more than 85 topically relevant publications, websites, videos, and more produced by the Office of Indian Energy and external organizations. The...

  16. Confined Thermal Multicharged Ions Produced by Synchrotron Radiation

    E-Print Network [OSTI]

    Church, David A.; Kravis, S. D.; Sellin, I. A.; Levin, J. C.; Short, R. T.; Meron, M.; Johnson, B. M.; Jones, K. W.

    1987-01-01T23:59:59.000Z

    energy transfer. We have used the "white" radiation on the X- 26C beam line of the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory to generate multicharged argon ions in a Penning ion trap, using pro- posed methods designed... M. Meron, B. M. Johnson, and K. W. Jones Brookhaven National Laboratory, Upton, New York 11973 (Received 2 April 1987) Synchrotron x rays have been used to produce a confined multicharged ion gas near room tem- perature. Comparison of charge...

  17. Producing microchannels using graduated diffusion bonding of a stack of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.70 Hg Mercury 35 BrProcurement byProducing Natural Gas

  18. Method for producing microporous metal bodies

    DOE Patents [OSTI]

    Danko, Joseph C. (Danville, CA)

    1982-01-01T23:59:59.000Z

    Tungsten is vapor-deposited by hydrogen reduction of tungsten hexafluoride (WF.sub.6) to produce a tungsten body having from 40 to 100 ppm fluorine. The tungsten is then heated under vacuum to produce grain boundary porosity for a sufficient period of time to allow the pores along the grain boundaries to become interconnected.

  19. PRODUCER -SCROUNGER GAME n-Person Game

    E-Print Network [OSTI]

    Caraco, Thomas

    size, ESS frequency of scrounging Assumptions of Producer-Scrounger Game Fix group (or population size Producer invades Scrounger n-Person Game with ESS q* : 0 ESS ** q P q S dq dW dq dW ESS frequency of scrounger

  20. Farm Credit Canada Energy Loan (Canada)

    Broader source: Energy.gov [DOE]

    The Energy Loan helps Canadian producers or agri-business owners considering renewable energy purchase and install on-farm energy sources, such as:

  1. Ute Tribe Energy Conference & Expo

    Office of Energy Efficiency and Renewable Energy (EERE)

    An international gathering of energy producing Tribes, governments and companies envisioning a path forward towards a more sustainable future.

  2. Renewable Energy | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Energy Accelerating the transition to alternative energy sources requires significant improvement in materials, chemicals, processes, and devices. To produce more...

  3. Spectral optical properties of selected photosynthetic microalgae producing biofuels

    E-Print Network [OSTI]

    Lee, Euntaek; Heng, Ri-Liang; Pilon, Laurent

    2013-01-01T23:59:59.000Z

    Photosynthetic Microalgae Producing Biofuels Euntaek Lee,Photosyn- thetic Microalgae Producing Biofuels”, Journal of

  4. Essays on the Economics of Environmental Issues: The Environmental Kuznets Curve to Optimal Energy Portfolios

    E-Print Network [OSTI]

    Meininger, Aaron G.

    2012-01-01T23:59:59.000Z

    hydro, nuclear, and coal energy production. The portfoliosused to produce that energy; coal, natural gas, crude oil,gas relative to coal in producing energy, there remains a

  5. Experimental and Analytical Studies on Pyroelectric Waste Heat Energy Conversion

    E-Print Network [OSTI]

    Lee, Felix

    2012-01-01T23:59:59.000Z

    List of Figures Flow chart of the energy produced, used, andrising Figure 1.1: Flow chart of the energy produced, used,

  6. Coal seam natural gas producing areas (Louisiana)

    Broader source: Energy.gov [DOE]

    In order to prevent waste and to avoid the drilling of unnecessary wells and to encourage the development of coal seam natural gas producing areas in Louisiana, the commissioner of conservation is...

  7. Producing X-rays at the APS

    ScienceCinema (OSTI)

    None

    2013-04-19T23:59:59.000Z

    An introduction and overview of the Advanced Photon Source at Argonne National Laboratory, the technology that produces the brightest X-ray beams in the Western Hemisphere, and the research carried out by scientists using those X-rays.

  8. Methods of producing compounds from plant materials

    DOE Patents [OSTI]

    Werpy, Todd A. (West Richland, WA); Schmidt, Andrew J. (Richland, WA); Frye, Jr., John G. (Richland, WA); Zacher, Alan H. (Kennewick, WA), Franz; James A. (Kennewick, WA), Alnajjar; Mikhail S. (Richland, WA), Neuenschwander; Gary G. (Burbank, WA), Alderson; Eric V. (Kennewick, WA), Orth; Rick J. (Kennewick, WA), Abbas; Charles A. (Champaign, IL), Beery; Kyle E. (Decatur, IL), Rammelsberg; Anne M. (Decatur, IL), Kim; Catherine J. (Decatur, IL)

    2010-01-26T23:59:59.000Z

    The invention includes methods of processing plant material by adding water to form a mixture, heating the mixture, and separating a liquid component from a solid-comprising component. At least one of the liquid component and the solid-comprising component undergoes additional processing. Processing of the solid-comprising component produces oils, and processing of the liquid component produces one or more of glycerol, ethylene glycol, lactic acid and propylene glycol. The invention includes a process of forming glycerol, ethylene glycol, lactic acid and propylene glycol from plant matter by adding water, heating and filtering the plant matter. The filtrate containing starch, starch fragments, hemicellulose and fragments of hemicellulose is treated to form linear poly-alcohols which are then cleaved to produce one or more of glycerol, ethylene glycol, lactic acid and propylene glycol. The invention also includes a method of producing free and/or complexed sterols and stanols from plant material.

  9. Methods of producing compounds from plant material

    DOE Patents [OSTI]

    Werpy, Todd A.; Schmidt, Andrew J.; Frye, Jr., John G.; Zacher, Alan H.; Franz, James A.; Alnajjar, Mikhail S.; Neuenschwander, Gary G.; Alderson, Eric V.; Orth, Rick J.; Abbas, Charles A.; Beery, Kyle E.; Rammelsberg, Anne M.; Kim, Catherine J.

    2006-01-03T23:59:59.000Z

    The invention includes methods of processing plant material by adding water to form a mixture, heating the mixture, and separating a liquid component from a solid-comprising component. At least one of the liquid component and the solid-comprising component undergoes additional processing. Processing of the solid-comprising component produces oils, and processing of the liquid component produces one or more of glycerol, ethylene glycol, lactic acid and propylene glycol. The invention includes a process of forming glycerol, ethylene glycol, lactic acid and propylene glycol from plant matter by adding water, heating and filtering the plant matter. The filtrate containing starch, starch fragments, hemicellulose and fragments of hemicellulose is treated to form linear poly-alcohols which are then cleaved to produce one or more of glycerol, ethylene glycol, lactic acid and propylene glycol. The invention also includes a method of producing free and/or complexed sterols and stanols from plant material.

  10. Methods and systems for producing syngas

    DOE Patents [OSTI]

    Hawkes, Grant L; O'Brien, James E; Stoots, Carl M; Herring, J. Stephen; McKellar, Michael G; Wood, Richard A; Carrington, Robert A; Boardman, Richard D

    2013-02-05T23:59:59.000Z

    Methods and systems are provided for producing syngas utilizing heat from thermochemical conversion of a carbonaceous fuel to support decomposition of at least one of water and carbon dioxide using one or more solid-oxide electrolysis cells. Simultaneous decomposition of carbon dioxide and water or steam by one or more solid-oxide electrolysis cells may be employed to produce hydrogen and carbon monoxide. A portion of oxygen produced from at least one of water and carbon dioxide using one or more solid-oxide electrolysis cells is fed at a controlled flow rate in a gasifier or combustor to oxidize the carbonaceous fuel to control the carbon dioxide to carbon monoxide ratio produced.

  11. Producing tritium in a homogenous reactor

    DOE Patents [OSTI]

    Cawley, William E. (Richland, WA)

    1985-01-01T23:59:59.000Z

    A method and apparatus are described for the joint production and separation of tritium. Tritium is produced in an aqueous homogenous reactor and heat from the nuclear reaction is used to distill tritium from the lower isotopes of hydrogen.

  12. Texas producers attitudes on agricultural policy issues

    E-Print Network [OSTI]

    Ewell, Frank David

    1977-01-01T23:59:59.000Z

    !!is Chapter dealing with income qroups producers were oiv. :: ', 'o: . '1 thr. ?e ?"', th less $25, 000 gross income, {2) those with gr! '. . . ; ". -', 525, 000 cross into!te, but less than $100, 000, and {3) +hose with gros. 'nrome greater than $100, 000... of export embargoes, (3) Producer promotional and advertising programs, (4) Land use and problems connected with the urbanization of rural lands, (5) Who should receive food stamps and questions concerning the usefulness of the program itself, (6...

  13. Method for producing ceramic-glass-ceramic seals by microwave heating

    DOE Patents [OSTI]

    Blake, Rodger D. (Santa Fe, NM); Meek, Thomas T. (Los Alamos, NM)

    1986-01-01T23:59:59.000Z

    Method for producing a ceramic-glass-ceramic seal by the use of microwave energy, and a sealing mixture which comprises a glass sealing material, a coupling agent, and an oxidizer. The seal produced exhibits greater strength due to its different microstructure. Sodium nitrate is the most preferred oxidizer.

  14. Optical microplates for high-throughput screening of photosynthesis in lipid-producing algae{,

    E-Print Network [OSTI]

    Basu, Amar S.

    Optical microplates for high-throughput screening of photosynthesis in lipid- producing algae-producing algae of interest in 2nd generation biofuels. By conducting 96 experiments in parallel, photoirradiance the study of photosynthesis in algae. Societal challenges in energy sustainability have renewed interest

  15. www.ext.vt.edu Produced by Communications and Marketing, College of Agriculture and Life Sciences,

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    www.ext.vt.edu Produced by Communications and Marketing, College of Agriculture and Life Sciences if it has the appearance of nor- mal milk. Milk containing visual signs of yellow mate- rial (pus), clots). In colder climates, producers may want to increase the fat level to 20% or higher for adequate energy intake

  16. Geothermal Heat Pumps Produce Dramatic Savings 

    E-Print Network [OSTI]

    Niess, R. C.

    1983-01-01T23:59:59.000Z

    applications. One approach now expanding the direct use of geothermal energy is coupling this energy resource with high temperature, industrial-type water-to water heat pumps. Such systems can tap geothermal energy in 50 F to 120 F water, normally available...

  17. Geothermal Heat Pumps Produce Dramatic Savings

    E-Print Network [OSTI]

    Niess, R. C.

    1983-01-01T23:59:59.000Z

    applications. One approach now expanding the direct use of geothermal energy is coupling this energy resource with high temperature, industrial-type water-to water heat pumps. Such systems can tap geothermal energy in 50 F to 120 F water, normally available...

  18. Renewable Energy Standard

    Broader source: Energy.gov [DOE]

    Rhode Island's Renewable Energy Standard (RES), established in June 2004, requires the state's retail electricity providers -- including non-regulated power producers and distribution companies --...

  19. Statement of position of the United States Department of Energy in the matter of proposed rulemaking on the storage and disposal of nuclear waste (waste confidence rulemaking)

    SciTech Connect (OSTI)

    None

    1980-04-15T23:59:59.000Z

    Purpose of this proceeding is to assess generically the degree of assurance that the radioactive waste can be safely disposed of, to determine when such disposal or off-site storage will be available, and to determine whether wastes can be safely stored on-site past license expiration until off-site disposal/storage is available. (DLC)

  20. ANAEROBIC BIOLOGICAL TREATMENT OF PRODUCED WATER

    SciTech Connect (OSTI)

    John R. Gallagher

    2001-07-31T23:59:59.000Z

    During the production of oil and gas, large amounts of water are brought to the surface and must be disposed of in an environmentally sensitive manner. This is an especially difficult problem in offshore production facilities where space is a major constraint. The chief regulatory criterion for produced water is oil and grease. Most facilities have little trouble meeting this criterion using conventional oil-water separation technologies. However, some operations have significant amounts of naphthenic acids in the water that behave as oil and grease but are not well removed by conventional technologies. Aerobic biological treatment of naphthenic acids in simulated-produced water has been demonstrated by others; however, the system was easily overloaded by the large amounts of low-molecular-weight organic acids often found in produced waters. The objective of this research was to determine the ability of an anaerobic biological system to treat these organic acids in a simulated produced water and to examine the potential for biodegradation of the naphthenic acids in the anaerobic environment. A small fixed-film anaerobic biological reactor was constructed and adapted to treat a simulated produced water. The bioreactor was tubular, with a low-density porous glass packing material. The inocula to the reactor was sediment from a produced-water holding pond from a municipal anaerobic digester and two salt-loving methanogenic bacteria. During start-up, the feed to the reactor contained glucose as well as typical produced-water components. When glucose was used, rapid gas production was observed. However, when glucose was eliminated and the major organic component was acetate, little gas was generated. Methane production from acetate may have been inhibited by the high salt concentrations, by sulfide, or because of the lack, despite seeding, of microbes capable of converting acetate to methane. Toluene, a minor component of the produced water (0.1 g/L) was removed in the reactor. Batch tests were conducted to examine naphthenic acid biodegradability under several conditions. The conditions used were seed from the anaerobic reactor, wetland sediments under aerobic and anaerobic conditions, and a sterile control. The naphthenic acid was from a commercial source isolated from Gulf Coast petroleum as was dosed at 2 mg/mL. The incubations were for 30 days at 30 C. The results showed that the naphthenic acids were not biodegraded under anaerobic conditions, but were degraded under aerobic conditions. Despite poor performance of the anaerobic reactor, it remains likely that anaerobic treatment of acetate, toluene, and, potentially, other produced-water components is feasible.

  1. Long-laser-pulse method of producing thin films

    DOE Patents [OSTI]

    Balooch, Mehdi (Berkeley, CA); Olander, Donald K. (Berkeley, CA); Russo, Richard E. (Walnut Creek, CA)

    1991-01-01T23:59:59.000Z

    A method of depositing thin films by means of laser vaporization employs a long-pulse laser (Nd-glass of about one millisecond duration) with a peak power density typically in the range 10.sup.5 -10.sup.6 W/cm.sup.2. The method may be used to produce high T.sub.c superconducting films of perovskite material. In one embodiment, a few hundred nanometers thick film of YBa.sub.2 Cu.sub.3 O.sub.7-x is produced on a SrTiO.sub.3 crystal substrate in one or two pulses. In situ-recrystallization and post-annealing, both at elevated temperature and in the presence of an oxidizing agen The invention described herein arose in the course of, or under, Contract No. DE-C03-76SF0098 between the United States Department of Energy and the University of California.

  2. Method of producing gaseous products using a downflow reactor

    DOE Patents [OSTI]

    Cortright, Randy D; Rozmiarek, Robert T; Hornemann, Charles C

    2014-09-16T23:59:59.000Z

    Reactor systems and methods are provided for the catalytic conversion of liquid feedstocks to synthesis gases and other noncondensable gaseous products. The reactor systems include a heat exchange reactor configured to allow the liquid feedstock and gas product to flow concurrently in a downflow direction. The reactor systems and methods are particularly useful for producing hydrogen and light hydrocarbons from biomass-derived oxygenated hydrocarbons using aqueous phase reforming. The generated gases may find used as a fuel source for energy generation via PEM fuel cells, solid-oxide fuel cells, internal combustion engines, or gas turbine gensets, or used in other chemical processes to produce additional products. The gaseous products may also be collected for later use or distribution.

  3. Analyzing the flexibility of inclusionary zoning : should affordable units be built on-site or off-site?

    E-Print Network [OSTI]

    Alonso, Rachel (Rachel Margaret)

    2012-01-01T23:59:59.000Z

    Inclusionarv zoning (IZ), a strategy first adopted by municipalities in the 1970S to create affordable housing, requires private developers of market-rate residential projects to set-aside a certain percentage of units as ...

  4. Enforcement Guidance Supplement 98-02: DOE Enforcement Activities where Off-site Transportation Issues are also Present

    Broader source: Energy.gov [DOE]

    Section 1.3 of the Operational Procedures for Enforcement, published in June 1998, provides the opportunity to the Office of Enforcement and Investigation to issue clarifying guidance from time to...

  5. Carbene reactions produced by recoil excitation methods 

    E-Print Network [OSTI]

    Lowery, Kirby

    1968-01-01T23:59:59.000Z

    ~ CTC1 + HC1 (2) The CTC1 once formed was shown to react with olefins to produce tri- tium-labeled chlorocyclopropanes. For instance, in the case of CTC1 reacting with ethylene, monochlorocyclopropane-t is formed as shown: /6, CTC1 + H O'=CH2 ~ H2C...) Ma&or Subject 1968 (year) Che !is try CARBENE REACTIONS PRODUCED BY RECOIL EXCITATION METHODS A Thesis by Kirby Lowery, Jr. Approved as to style and content by: (Head of Department) (Memb er ) (iMember ) (Member) (iM err:b e r ) (Member...

  6. Methods for producing reinforced carbon nanotubes

    DOE Patents [OSTI]

    Ren, Zhifen (Newton, MA); Wen, Jian Guo (Newton, MA); Lao, Jing Y. (Chestnut Hill, MA); Li, Wenzhi (Brookline, MA)

    2008-10-28T23:59:59.000Z

    Methods for producing reinforced carbon nanotubes having a plurality of microparticulate carbide or oxide materials formed substantially on the surface of such reinforced carbon nanotubes composite materials are disclosed. In particular, the present invention provides reinforced carbon nanotubes (CNTs) having a plurality of boron carbide nanolumps formed substantially on a surface of the reinforced CNTs that provide a reinforcing effect on CNTs, enabling their use as effective reinforcing fillers for matrix materials to give high-strength composites. The present invention also provides methods for producing such carbide reinforced CNTs.

  7. Solid fuel volatilization to produce synthesis gas

    DOE Patents [OSTI]

    Schmidt, Lanny D.; Dauenhauer, Paul J.; Degenstein, Nick J.; Dreyer, Brandon J.; Colby, Joshua L.

    2014-07-29T23:59:59.000Z

    A method comprising contacting a carbon and hydrogen-containing solid fuel and a metal-based catalyst in the presence of oxygen to produce hydrogen gas and carbon monoxide gas, wherein the contacting occurs at a temperature sufficiently high to prevent char formation in an amount capable of stopping production of the hydrogen gas and the carbon monoxide gas is provided. In one embodiment, the metal-based catalyst comprises a rhodium-cerium catalyst. Embodiments further include a system for producing syngas. The systems and methods described herein provide shorter residence time and high selectivity for hydrogen and carbon monoxide.

  8. Channeling problem for charged particles produced by confining environment

    SciTech Connect (OSTI)

    Chuluunbaatar, O.; Gusev, A. A. [Joint Institute for Nuclear Research (Russian Federation); Derbov, V. L. [Saratov State University (Russian Federation); Krassovitskiy, P. M. [Institute of Nuclear Physics (Kazakhstan); Vinitsky, S. I. [Joint Institute for Nuclear Research (Russian Federation)

    2009-05-15T23:59:59.000Z

    Channeling problem produced by confining environment that leads to resonance scattering of charged particles via quasistationary states imbedded in the continuum is examined. Nonmonotonic dependence of physical parameters on collision energy and/or confining environment due to resonance transmission and total reflection effects is confirmed that can increase the rate of recombination processes. The reduction of the model for two identical charged ions to a boundary problem is considered together with the asymptotic behavior of the solution in the vicinity of pair-collision point and the results of R-matrix calculations. Tentative estimations of the enhancement factor and the total reflection effect are discussed.

  9. Electric Power Produced from Nuclear Reactor | National Nuclear Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEAWater Use Goal 4:Administration Electric Power Produced

  10. Sandia National Laboratories: producing advanced biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    advanced biofuels Sandia Video Featured by DOE Bioenergy Technologies Office On December 10, 2014, in Biofuels, Biomass, Capabilities, Energy, Facilities, JBEI, News, News &...

  11. Metrics for a Sustainable Produced By

    E-Print Network [OSTI]

    Levinson, David M.

    Metrics for a Sustainable EcoVillage #12;2 Produced By: Nam Nguyen Master of Urban and Regional Project Manager Project for Pride in Living (PPL) Jeffrey Skrenes Housing Director Hawthorne Neighborhood Council Photo source: Unless otherwise noted, photos are provided by People for Pride in Living

  12. New techniques for producing thin boron films

    SciTech Connect (OSTI)

    Thomas, G.E.

    1988-01-01T23:59:59.000Z

    A review will be presented of methods for producing thin boron films using an electron gun. Previous papers have had the problem of spattering of the boron source during the evaporation. Methods for reducing this problem will also be presented. 12 refs., 4 figs.

  13. Delivery of Hydrogen Produced from Natural Gas

    E-Print Network [OSTI]

    for transportation and stationary power. DOE Milestone #12;Hydrogen Delivery Options · Gaseous hydrogen - Pipelines, corrosion Gaseous hydrogen pipeline delivery program would share similar technology R&D areasDelivery of Hydrogen Produced from Natural Gas Christopher Freitas Office of Natural Gas

  14. Producing dicarboxylic acids using polyketide synthases

    DOE Patents [OSTI]

    Katz, Leonard; Fortman, Jeffrey L; Keasling, Jay D

    2013-10-29T23:59:59.000Z

    The present invention provides for a polyketide synthase (PKS) capable of synthesizing a dicarboxylic acid (diacid). Such diacids include diketide-diacids and triketide-diacids. The invention includes recombinant nucleic acid encoding the PKS, and host cells comprising the PKS. The invention also includes methods for producing the diacids.

  15. Why does gravitational radiation produce vorticity?

    E-Print Network [OSTI]

    L. Herrera; W. Barreto; J. Carot; A. Di Prisco

    2007-03-26T23:59:59.000Z

    We calculate the vorticity of world--lines of observers at rest in a Bondi--Sachs frame, produced by gravitational radiation, in a general Sachs metric. We claim that such an effect is related to the super--Poynting vector, in a similar way as the existence of the electromagnetic Poynting vector is related to the vorticity in stationary electrovacum spacetimes.

  16. Spectral optical properties of selected photosynthetic microalgae producing biofuels

    E-Print Network [OSTI]

    Lee, Euntaek; Heng, Ri-Liang; Pilon, Laurent

    2013-01-01T23:59:59.000Z

    Biochemical composition of microalgae from the green algalof Selected Photosynthetic Microalgae Producing Biofuelsof Selected Photosyn- thetic Microalgae Producing Biofuels”,

  17. Beneficial Reuse of San Ardo Produced Water

    SciTech Connect (OSTI)

    Robert A. Liske

    2006-07-31T23:59:59.000Z

    This DOE funded study was performed to evaluate the potential for treatment and beneficial reuse of produced water from the San Ardo oilfield in Monterey County, CA. The potential benefits of a successful full-scale implementation of this project include improvements in oil production efficiency and additional recoverable oil reserves as well as the addition of a new reclaimed water resource. The overall project was conducted in two Phases. Phase I identified and evaluated potential end uses for the treated produced water, established treated water quality objectives, reviewed regulations related to treatment, transport, storage and use of the treated produced water, and investigated various water treatment technology options. Phase II involved the construction and operation of a small-scale water treatment pilot facility to evaluate the process's performance on produced water from the San Ardo oilfield. Cost estimates for a potential full-scale facility were also developed. Potential end uses identified for the treated water include (1) agricultural use near the oilfield, (2) use by Monterey County Water Resources Agency (MCWRA) for the Salinas Valley Water Project or Castroville Seawater Intrusion Project, (3) industrial or power plant use in King City, and (4) use for wetlands creation in the Salinas Basin. All of these uses were found to have major obstacles that prevent full-scale implementation. An additional option for potential reuse of the treated produced water was subsequently identified. That option involves using the treated produced water to recharge groundwater in the vicinity of the oil field. The recharge option may avoid the limitations that the other reuse options face. The water treatment pilot process utilized: (1) warm precipitation softening to remove hardness and silica, (2) evaporative cooling to meet downstream temperature limitations and facilitate removal of ammonia, and (3) reverse osmosis (RO) for removal of dissolved salts, boron, and organics. Pilot study results indicate that produced water from the San Ardo oilfield can be treated to meet project water quality goals. Approximately 600 mg/l of caustic and 100 mg/l magnesium dosing were required to meet the hardness and silica goals in the warm softening unit. Approximately 30% of the ammonia was removed in the cooling tower; additional ammonia could be removed by ion exchange or other methods if necessary. A brackish water reverse osmosis membrane was effective in removing total dissolved solids and organics at all pH levels evaluated; however, the boron treatment objective was only achieved at a pH of 10.5 and above.

  18. Characterization of aerosols produced by surgical procedures

    SciTech Connect (OSTI)

    Yeh, H.C.; Muggenburg, B.A.; Lundgren, D.L.; Guilmette, R.A.; Snipes, M.B.; Jones, R.K. [Inhalation Toxicology Research Institute, Albuquerque, NM (United States); Turner, R.S. [Lovelace Health Systems, Albuquerque, NM (United States)

    1994-07-01T23:59:59.000Z

    In many surgeries, especially orthopedic procedures, power tools such as saws and drills are used. These tools may produce aerosolized blood and other biological material from bone and soft tissues. Surgical lasers and electrocautery tools can also produce aerosols when tissues are vaporized and condensed. Studies have been reported in the literature concerning production of aerosols during surgery, and some of these aerosols may contain infectious material. Garden et al. (1988) reported the presence of papilloma virus DNA in the fumes produced from laser surgery, but the infectivity of the aerosol was not assessed. Moon and Nininger (1989) measured the size distribution and production rate of emissions from laser surgery and found that particles were generally less than 0.5 {mu}m diameter. More recently there has been concern expressed over the production of aerosolized blood during surgical procedures that require power tools. In an in vitro study, the production of an aerosol containing the human immunodeficiency virus (HIV) was reported when power tools were used to cut tissues with blood infected with HIV. Another study measured the size distribution of blood aerosols produced by surgical power tools and found blood-containing particles in a number of size ranges. Health care workers are anxious and concerned about whether surgically produced aerosols are inspirable and can contain viable pathogens such as HIV. Other pathogens such as hepatitis B virus (HBV) are also of concern. The Occupational Safety and Health funded a project at the National Institute for Inhalation Toxicology Research Institute to assess the extent of aerosolization of blood and other tissues during surgical procedures. This document reports details of the experimental and sampling approach, methods, analyses, and results on potential production of blood-associated aerosols from surgical procedures in the laboratory and in the hospital surgical suite.

  19. Enhancing extreme ultraviolet photons emission in laser produced plasmas for advanced lithography

    E-Print Network [OSTI]

    Harilal, S. S.

    subjected to laser beam energy with different intensities and laser wavelength to dual-beam lasers, i of vapor expansion rate, which can be produced as a result of droplet heating by pre-pulse laser energy, and the remaining part of the laser heats the plasma instead of inter- acting with the target. For obtaining

  20. Effects of plasma spatial profile on conversion efficiency of laser-produced plasma

    E-Print Network [OSTI]

    Harilal, S. S.

    -produced plasma DPP , and hybrid devices need to be optimized to achieve sufficient brightness with mini- mum the main laser pulse.8­10 The optimization of target geometry for efficient laser energy absorption to be developed using the High Energy Interac- tion with General Heterogeneous Target Systems HEIGHTS computer

  1. Net Zero Energy Installations (Presentation)

    SciTech Connect (OSTI)

    Booth, S.

    2012-05-01T23:59:59.000Z

    A net zero energy installation (NZEI) is one that produces as much energy from on-site renewable sources as it consumes. NZEI assessment provides a systematic approach to energy projects.

  2. Sustainable EnergiesSustainable Energies & Their Environmental Impacts& Their Environmental Impacts

    E-Print Network [OSTI]

    Budker, Dmitry

    ? Hydroelectricity: Regional dependent Solar Energy: Technological dependent #12;Environmental Impacts of Solar Energy non-Recyclable waste produced #12;Environmental Impacts of Solar Energy Silicon tetrachlorideSustainable EnergiesSustainable Energies & Their Environmental Impacts& Their Environmental Impacts

  3. Method for producing catalysis from coal

    DOE Patents [OSTI]

    Farcasiu, Malvina (Pittsburgh, PA); Derbyshire, Frank (Lexington, KY); Kaufman, Phillip B. (Library, PA); Jagtoyen, Marit (Lexington, KY)

    1998-01-01T23:59:59.000Z

    A method for producing catalysts from coal is provided comprising mixing an aqueous alkali solution with the coal, heating the aqueous mixture to treat the coal, drying the now-heated aqueous mixture, reheating the mixture to form carbonized material, cooling the mixture, removing excess alkali from the carbonized material, and recovering the carbonized material, wherein the entire process is carried out in controlled atmospheres, and the carbonized material is a hydrocracking or hydrodehalogenation catalyst for liquid phase reactions. The invention also provides for a one-step method for producing catalysts from coal comprising mixing an aqueous alkali solution with the coal to create a mixture, heating the aqueous mixture from an ambient temperature to a predetermined temperature at a predetermined rate, cooling the mixture, and washing the mixture to remove excess alkali from the treated and carbonized material, wherein the entire process is carried out in a controlled atmosphere.

  4. Method for producing catalysts from coal

    DOE Patents [OSTI]

    Farcasiu, M.; Derbyshire, F.; Kaufman, P.B.; Jagtoyen, M.

    1998-02-24T23:59:59.000Z

    A method for producing catalysts from coal is provided comprising mixing an aqueous alkali solution with the coal, heating the aqueous mixture to treat the coal, drying the now-heated aqueous mixture, reheating the mixture to form carbonized material, cooling the mixture, removing excess alkali from the carbonized material, and recovering the carbonized material, wherein the entire process is carried out in controlled atmospheres, and the carbonized material is a hydrocracking or hydrodehalogenation catalyst for liquid phase reactions. The invention also provides for a one-step method for producing catalysts from coal comprising mixing an aqueous alkali solution with the coal to create a mixture, heating the aqueous mixture from an ambient temperature to a predetermined temperature at a predetermined rate, cooling the mixture, and washing the mixture to remove excess alkali from the treated and carbonized material, wherein the entire process is carried out in a controlled atmosphere. 1 fig.

  5. Method for producing highly reflective metal surfaces

    DOE Patents [OSTI]

    Arnold, J.B.; Steger, P.J.; Wright, R.R.

    1982-03-04T23:59:59.000Z

    The invention is a novel method for producing mirror surfaces which are extremely smooth and which have high optical reflectivity. The method includes depositing, by electrolysis, an amorphous layer of nickel on an article and then diamond-machining the resulting nickel surface to increase its smoothness and reflectivity. The machined nickel surface then is passivated with respect to the formation of bonds with electrodeposited nickel. Nickel then is electrodeposited on the passivated surface to form a layer of electroplated nickel whose inside surface is a replica of the passivated surface. The mandrel then may be-re-passivated and provided with a layer of electrodeposited nickel, which is then recovered from the mandrel providing a second replica. The mandrel can be so re-used to provide many such replicas. As compared with producing each mirror-finished article by plating and diamond-machining, the new method is faster and less expensive.

  6. Membrane Technology for Produced Water in Lea County

    SciTech Connect (OSTI)

    Cecilia Nelson; Ashok Ghosh

    2011-06-30T23:59:59.000Z

    Southeastern New Mexico (SENM) is rich in mineral resources, including oil and gas. Produced water is a byproduct from oil and gas recovery operations. SENM generates approximately 400 million barrels per year of produced water with total dissolved solids (TDS) as high as ~ 200,000 ppm. Typically, produced water is disposed of by transporting it to injection wells or disposal ponds, costing around $1.2 billion per year with an estimated use of 0.3 million barrels of transportation fuel. New Mexico ranks first among U.S. states in potash production. Nationally, more than 85% of all potash produced comes from the Carlsbad potash district in SENM. Potash manufacturing processes use large quantities of water, including fresh water, for solution mining. If the produced water from oilfield operations can be treated and used economically in the potash industry, it will provide a beneficial use for the produced water as well as preserve valuable water resources in an area where fresh water is scarce. The goal of this current research was to develop a prototype desalination system that economically treats produced water from oil and/or natural gas operations for the beneficial use of industries located in southeastern New Mexico. Up until now, most water cleaning technologies have been developed for treating water with much lower quantities of TDS. Seawater with TDS of around 30,000 ppm is the highest concentration that has been seriously studied by researchers. Reverse osmosis (RO) technology is widely used; however the cost remains high due to high-energy consumption. Higher water fluxes and recoveries are possible with a properly designed Forward Osmosis (FO) process as large driving forces can be induced with properly chosen membranes and draw solution. Membrane fouling and breakdown is a frequent and costly problem that drives the cost of desalination very high. The technology developed by New Mexico Tech (NMT) researchers not only protects the membrane, but has also proven to generate higher water flux, based on the series of experiments conducted. Laboratory tests at NMT demonstrated that an unprecedented water flux of 1300 l/m2/hr (where typical flux is on the order of 0-3 l/m{sup 2}/hr) can be achieved from a properly designed membrane module. The patent pending NMT system, which was designed and developed at NMT was successful in reducing the possibility for concentration polarization and thereby increasing the permeate water flux, while still maintaining a high salt rejection rate of 96% or greater. For feed solutions having a dissolved contaminant concentration greater than 10,000 ppm, preliminary economic analysis demonstrates that a well-designed FO process will outperform an RO process. Most produced water generated in SENM has TDS higher than 10,000 ppm. Therefore, it is logical to use FO to desalinate the water. Since the issues associated with concentration polarization has only recently been solved by our mechanically enhanced membrane module, the level of system maturity is not at the same level as that for RO. Our efforts going forward will be directed at taking the technology to a higher level of system maturity. With the superior cost effectiveness for FO, it is imperative that this technology reach a point that is competitive with RO in order to meet the expanding need for water for industries in SENM. NMT seeks to demonstrate the greater cost effectiveness by proving the process through a scaled up model. To ensure success, NMT feels it is important to demonstrate this technology in a larger system, (~ 100,000 GPD), before venturing to the commercial scale. This will build confidence in the process with the commercial sector. In addition, it will be possible to develop some of the operational processes around renewable energy sources for the scaled up model. This will further lower the operating costs and enhance the environmentally clean aspect of the process.

  7. Method and apparatus for producing cryogenic targets

    DOE Patents [OSTI]

    Murphy, J.T.; Miller, J.R.

    1984-08-07T23:59:59.000Z

    An improved method and apparatus are given for producing cryogenic inertially driven fusion targets in the fast isothermal freezing (FIF) method. Improved coupling efficiency and greater availability of volume near the target for diagnostic purposes and for fusion driver beam propagation result. Other embodiments include a new electrical switch and a new explosive detonator, all embodiments making use of a purposeful heating by means of optical fibers. 6 figs.

  8. Process for producing furan from furfural aldehyde

    DOE Patents [OSTI]

    Diebold, J.P.; Evans, R.J.

    1987-04-06T23:59:59.000Z

    A process of producing furan and derivatives thereof as disclosed. The process includes generating furfural aldehyde vapors and then passing those vapors over a zeolite catalyst at a temperature and for a residence time effective to decarbonylate the furfural aldehydes to form furans and derivatives thereof. The resultant furan vapors and derivatives are then separated. In a preferred form, the furfural aldehyde vapors are generated during the process of converting biomass materials to liquid and gaseous fuels.

  9. Method and apparatus for producing cryogenic targets

    DOE Patents [OSTI]

    Murphy, James T. (Los Alamos, NM); Miller, John R. (Penfield, NY)

    1984-01-01T23:59:59.000Z

    An improved method and apparatus are given for producing cryogenic inertially driven fusion targets in the fast isothermal freezing (FIF) method. Improved coupling efficiency and greater availability of volume near the target for diagnostic purposes and for fusion driver beam propagation result. Other embodiments include a new electrical switch and a new explosive detonator, all embodiments making use of a purposeful heating by means of optical fibers.

  10. Method of producing microchannel and nanochannel articles

    DOE Patents [OSTI]

    D'Urso, Brian R.

    2010-05-04T23:59:59.000Z

    A method of making an article having channels therethrough includes the steps of: providing a ductile structure defining at least one macro-channel, the macro-channel containing a salt; drawing the ductile structure in the axial direction of the at least one macro-channel to reduce diameter of the macro-channel; and contacting the salt with a solvent to dissolve the salt to produce an article having at least one microchannel.

  11. Beneficial Reuse of San Ardo Produced Water

    SciTech Connect (OSTI)

    Robert A. Liske

    2003-09-26T23:59:59.000Z

    This report summarizes the work performed from 1 April 2003 to 30 September 2003 and recommends the tasks to be performed during Phase II (Pilot Evaluation). During this period discussions were held with various water agencies regarding use of the treated produced water either directly or indirectly through a water trading arrangement. In particular, several discussions were held with Monterey County Water Resources Agency, that has been charged with the long-term management and preservation of water resources in Monterey County. The Agency is very supportive of the program. However, they would like to see water quality/cost estimate data for the treated produced water from the pilot study prior to evaluating water use/water trade options. The agency sent a letter encouraging the project team to perform the pilot study to evaluate feasibility of the project. In addition, the regulations related to use of the treated water for various applications were updated during this period. Finally, the work plan, health and safety plan and sample analyses plan for performing pilot study to treat the oilfield produced water were developed during this period.

  12. ITP Mining: Energy and Environmental Profile of the U.S. Mining...

    Broader source: Energy.gov (indexed) [DOE]

    the bars are called dor. In most cases, the metal is then sent to an off-site refinery. Most operations using zinc precipitation in the United States use some variation of...

  13. Indirect measurement of sin[superscript 2]?[subscript W] (or M[subscript W) using ?[superscript +]?[superscript ?] pairs from ?*/Z bosons produced in p[bar over p] collisions at a center-of-momentum energy of 1.96 TeV

    E-Print Network [OSTI]

    Goncharov, Maxim

    Drell-Yan lepton pairs are produced in the process p[bar over p] ? ?[superscript +]?[superscript ?] + X through an intermediate ?[superscript ?]/Zboson. The forward-backward asymmetry in the polar-angle distribution of the ...

  14. Method of producing a cellulase-containing cell-free fermentate produced from microorganism ATCC 55702

    DOE Patents [OSTI]

    Dees, H.C.

    1998-05-26T23:59:59.000Z

    Bacteria which produce large amounts of cellulose-containing cell-free fermentate have been identified. The original bacterium (ATCC 55703) was genetically altered using nitrosoguanidine (MNNG) treatment to produce the enhanced cellulase producing bacterium (ATCC 55702), which was identified through replicate plating. ATCC 55702 has improved characteristics and qualities for the degradation of cellulosic waste materials for fuel production, food processing, textile processing, and other industrial applications. ATCC 55702 is an improved bacterial host for genetic manipulations using recombinant DNA techniques, and is less likely to destroy genetic manipulations using standard mutagenesis techniques. 5 figs.

  15. Method of producing a cellulase-containing cell-free fermentate produced from microorganism ATCC 55702

    DOE Patents [OSTI]

    Dees, H. Craig (Lenoir City, TN)

    1998-01-01T23:59:59.000Z

    Bacteria which produce large amounts of cellulose-containing cell-free fermentate have been identified. The original bacterium (ATCC 55703) was genetically altered using nitrosoguanidine (MNNG) treatment to produce the enhanced cellulase producing bacterium (ATCC 55702), which was identified through replicate plating. ATCC 55702 has improved characteristics and qualities for the degradation of cellulosic waste materials for fuel production, food processing, textile processing, and other industrial applications. ATCC 55702 is an improved bacterial host for genetic manipulations using recombinant DNA techniques, and is less likely to destroy genetic manipulations using standard mutagenesis techniques.

  16. Method for producing nanostructured metal-oxides

    DOE Patents [OSTI]

    Tillotson, Thomas M.; Simpson, Randall L.; Hrubesh, Lawrence W.; Gash, Alexander

    2006-01-17T23:59:59.000Z

    A synthetic route for producing nanostructure metal-oxide-based materials using sol-gel processing. This procedure employs the use of stable and inexpensive hydrated-metal inorganic salts and environmentally friendly solvents such as water and ethanol. The synthesis involves the dissolution of the metal salt in a solvent followed by the addition of a proton scavenger, which induces gel formation in a timely manner. Both critical point (supercritical extraction) and atmospheric (low temperature evaporation) drying may be employed to produce monolithic aerogels and xerogels, respectively. Using this method synthesis of metal-oxide nanostructured materials have been carried out using inorganic salts, such as of Fe3+, Cr3+, Al3+, Ga3+, In3+, Hf4+, Sn4+, Zr4+, Nb5+, W6+, Pr3+, Er3+, Nd3+, Ce3+, U3+ and Y3+. The process is general and nanostructured metal-oxides from the following elements of the periodic table can be made: Groups 2 through 13, part of Group 14 (germanium, tin, lead), part of Group 15 (antimony, bismuth), part of Group 16 (polonium), and the lanthanides and actinides. The sol-gel processing allows for the addition of insoluble materials (e.g., metals or polymers) to the viscous sol, just before gelation, to produce a uniformly distributed nanocomposites upon gelation. As an example, energetic nanocomposites of FexOy gel with distributed Al metal are readily made. The compositions are stable, safe, and can be readily ignited to thermitic reaction.

  17. Method for producing metal oxide nanoparticles

    DOE Patents [OSTI]

    Phillips, Jonathan (Santa Fe, NM); Mendoza, Daniel (Santa Fe, NM); Chen, Chun-Ku (Albuquerque, NM)

    2008-04-15T23:59:59.000Z

    Method for producing metal oxide nanoparticles. The method includes generating an aerosol of solid metallic microparticles, generating plasma with a plasma hot zone at a temperature sufficiently high to vaporize the microparticles into metal vapor, and directing the aerosol into the hot zone of the plasma. The microparticles vaporize in the hot zone into metal vapor. The metal vapor is directed away from the hot zone and into the cooler plasma afterglow where it oxidizes, cools and condenses to form solid metal oxide nanoparticles.

  18. Process for producing phenolic compounds from lignins

    DOE Patents [OSTI]

    Agblevor, F.A.

    1998-09-15T23:59:59.000Z

    A process is described for the production of low molecular weight phenolic compounds from lignins through the pyrolysis of the lignins in the presence of a strong base. In a preferred embodiment, potassium hydroxide is present in an amount of from about 0.1% to about 5% by weight, the pyrolysis temperature is from about 400 C to about 600 C at atmospheric pressure, and the time period for substantial completion of the reaction is from about 1--3 minutes. Examples of low molecular weight phenolic compounds produced include methoxyphenols, non-methoxylated phenols, and mixtures thereof. 16 figs.

  19. Method of producing .beta.-spodumene bodies

    DOE Patents [OSTI]

    Chyung, Kenneth (Painted Post, NY); Day, J. Paul (Big Flats, NY); Holleran, Louis M. (Big Flats, NY); Olszewski, Anthony R. (Bath, NY)

    1999-01-01T23:59:59.000Z

    Beta-spodumene bodies and method of preparing the bodies that involves providing a uniform plastic batch of inorganic raw materials, organic binder, and vehicle, wherein the inorganic raw materials are composed of, in percent by weight, about 75% to 95% minerals, and about 5% to 25% glass. The batch is formed into a green body that is fired to produce a body composed substantially of beta-spodumene, and having a thermal expansion coefficient of <10.times.10.sup.-7 /.degree.C.(0-800.degree. C.), and a strength of .gtoreq.4 Ksi.

  20. High ethanol producing derivatives of Thermoanaerobacter ethanolicus

    DOE Patents [OSTI]

    Ljungdahl, Lars G. (Athens, GA); Carriera, Laura H. (Athens, GA)

    1983-01-01T23:59:59.000Z

    Derivatives of the newly discovered microorganism Thermoanaerobacter ethanolicus which under anaerobic and thermophilic conditions continuously ferment substrates such as starch, cellobiose, glucose, xylose and other sugars to produce recoverable amounts of ethanol solving the problem of fermentations yielding low concentrations of ethanol using the parent strain of the microorganism Thermoanaerobacter ethanolicus are disclosed. These new derivatives are ethanol tolerant up to 10% (v/v) ethanol during fermentation. The process includes the use of an aqueous fermentation medium, containing the substrate at a substrate concentration greater than 1% (w/v).

  1. Method for producing titanium aluminide weld rod

    DOE Patents [OSTI]

    Hansen, Jeffrey S. (Corvallis, OR); Turner, Paul C. (Albany, OR); Argetsinger, Edward R. (Albany, OR)

    1995-01-01T23:59:59.000Z

    A process for producing titanium aluminide weld rod comprising: attaching one end of a metal tube to a vacuum line; placing a means between said vacuum line and a junction of the metal tube to prevent powder from entering the vacuum line; inducing a vacuum within the tube; placing a mixture of titanium and aluminum powder in the tube and employing means to impact the powder in the tube to a filled tube; heating the tube in the vacuum at a temperature sufficient to initiate a high-temperature synthesis (SHS) reaction between the titanium and aluminum; and lowering the temperature to ambient temperature to obtain a intermetallic titanium aluminide alloy weld rod.

  2. High ethanol producing derivatives of Thermoanaerobacter ethanolicus

    DOE Patents [OSTI]

    Ljungdahl, L.G.; Carriera, L.H.

    1983-05-24T23:59:59.000Z

    Derivatives of the newly discovered microorganism Thermoanaerobacter ethanolicus which under anaerobic and thermophilic conditions continuously ferment substrates such as starch, cellobiose, glucose, xylose and other sugars to produce recoverable amounts of ethanol solving the problem of fermentations yielding low concentrations of ethanol using the parent strain of the microorganism Thermoanaerobacter ethanolicus are disclosed. These new derivatives are ethanol tolerant up to 10% (v/v) ethanol during fermentation. The process includes the use of an aqueous fermentation medium, containing the substrate at a substrate concentration greater than 1% (w/v).

  3. Carbene reactions produced by recoil excitation methods

    E-Print Network [OSTI]

    Lowery, Kirby

    1968-01-01T23:59:59.000Z

    of a very electronegative fluorine atom and a double bond with high electron density. In the case of its trans- counterpart, these rwo effects roughly cancel out each other due to its more balanced geom- Sample No Gas Pressure cm Hg TkRK I I I...) (month) 1968 (year) ABSTRACT Carbene Reactions Produced by Recoil Excitation Methods. (August 1968) Kirby Lowery, Jr. , B. S. , Stephen F. Austin State College; Directed by: Dr. Yi-Noo Tang Using the separation technique of radio-gas chromatography...

  4. Cathode for aluminum producing electrolytic cell

    DOE Patents [OSTI]

    Brown, Craig W.

    2004-04-13T23:59:59.000Z

    A method of producing aluminum in an electrolytic cell comprising the steps of providing an anode in a cell, preferably a non-reactive anode, and also providing a cathode in the cell, the cathode comprised of a base material having low electrical conductivity reactive with molten aluminum to provide a highly electrically conductive layer on the base material. Electric current is passed from the anode to the cathode and alumina is reduced and aluminum is deposited at the cathode. The cathode base material is selected from boron carbide, and zirconium oxide.

  5. Geothermal energy

    SciTech Connect (OSTI)

    Renner, J.L. [Idaho National Engineering Laboratory, Idaho Fall, ID (United States); Reed, M.J. [Dept. of Energy, Washington, DC (United States)

    1993-12-31T23:59:59.000Z

    Use of geothermal energy (heat from the earth) has a small impact on the environmental relative to other energy sources; avoiding the problems of acid rain and greenhouse emissions. Geothermal resources have been utilized for centuries. US electrical generation began at The Geysers, California in 1960 and is now about 2300 MW. The direct use of geothermal heat for industrial processes and space conditioning in the US is about 1700 MW of thermal energy. Electrical production occurs in the western US and direct uses are found throughout the US. Typical geothermal power plants produce less than 5% of the CO{sub 2} released by fossil plants. Geothermal plants can now be configured so that no gaseous emissions are released. Sulfurous gases are effectively removed by existing scrubber technology. Potentially hazardous elements produced in geothermal brines are injected back into the producing reservoir. Land use for geothermal wells, pipelines, and power plants is small compared to land use for other extractive energy sources like oil, gas, coal, and nuclear. Per megawatt produced, geothermal uses less than one eighth the land that is used by a typical coal mine and power plant system. Geothermal development sites often co-exist with agricultural land uses like crop production or grazing.

  6. Method of producing particulate-reinforced composites and composties produced thereby

    DOE Patents [OSTI]

    Han, Qingyou; Liu, Zhiwei

    2013-12-24T23:59:59.000Z

    A process for producing particle-reinforced composite materials through utilization of an in situ reaction to produce a uniform dispersion of a fine particulate reinforcement phase. The process includes forming a melt of a first material, and then introducing particles of a second material into the melt and subjecting the melt to high-intenisty acoustic vibration. A chemical reaction initiates between the first and second materials to produce reaction products in the melt. The reaciton products comprise a solide particulate phase, and the high-intensity acoustic vibration fragments and/or separates the reaction products into solid particles that are dispersed in the melt and are smaller than the particles of the second material. Also encompassed are particles-reinforced composite materials produced by such a process.

  7. MICHIGAN IS #1 ORGANIC DRY BEAN PRODUCER Black beans #1 class produced

    E-Print Network [OSTI]

    #12;MICHIGAN IS #1 ORGANIC DRY BEAN PRODUCER ¢ Black beans #1 class produced ¢ Need to maximize Lansing, MI) ¢ Split plot design Main plot= Cover crop (4) Sub-plot= Bean variety (4) IMPACT OF COVER CROPS ON ORGANIC DRY BEANS #12;2010 2011 J F M A M J J A S O N D J F M A M J J A S O N D Clover Radish

  8. Sensors, Controls, and Transactive Energy Research | Department...

    Energy Savers [EERE]

    40% of the primary energy (74% of the electricity) produced in the United States, and commercial buildings account for 46% percent of total building energy consumption. Over...

  9. Products Produced in Countries Other Than Iran

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14Table 4.April 25, 2013 Independent Statistics

  10. Project Management Plan - Small Producers Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.70 Hg MercuryProject Final Report:Project ManagementRPSEA

  11. Method for producing and treating coal gases

    DOE Patents [OSTI]

    Calderon, Albert (P.O. Box 126, Bowling Green, OH 43402)

    1990-01-01T23:59:59.000Z

    A method of generating a de-sulphurized volatile matter and a relatively low Btu gas includes the initial step of pyrolyzing coal to produce volatile matter and a char. The volatile matter is fed to a first de-sulphurizer containing a de-sulphurizing agent to remove sulphur therefrom. At the same time, the char is gasified to produce a relatively low Btu gas. The low Btu gas is fed to a second de-sulphurizer containing the de-sulphurizing agent to remove sulphur therefrom. A regenerator is provided for removing sulphur from the de-sulphurizing agent. Portions of the de-sulphurizing agent are moved among the first de-sulphurizer, the second de-sulphurizer, and the regenerator such that the regenerator regenerates the de-sulphurizing agent. Preferably, the portions of the de-sulphurizing agent are moved from the second de-sulphurizer to the first de-sulphurizer, from the first de-sulphurizer to the regenerator, and from the regenerator to the second de-sulphurizer.

  12. Trip Report-Produced-Water Field Testing

    SciTech Connect (OSTI)

    Sullivan, Enid J. [Los Alamos National Laboratory

    2012-05-25T23:59:59.000Z

    Los Alamos National Laboratory (LANL) conducted field testing of a produced-water pretreatment apparatus with assistance from faculty at the Texas A&M University (TAMU) protein separation sciences laboratory located on the TAMU main campus. The following report details all of the logistics surrounding the testing. The purpose of the test was to use a new, commercially-available filter media housing containing modified zeolite (surfactant-modified zeolite or SMZ) porous medium for use in pretreatment of oil and gas produced water (PW) and frac-flowback waters. The SMZ was tested previously in October, 2010 in a lab-constructed configuration ('old multicolumn system'), and performed well for removal of benzene, toluene, ethylbenzene, and xylenes (BTEX) from PW. However, a less-expensive, modular configuration is needed for field use. A modular system will allow the field operator to add or subtract SMZ filters as needed to accommodate site specific conditions, and to swap out used filters easily in a multi-unit system. This test demonstrated the use of a commercial filter housing with a simple flow modification and packed with SMZ for removing BTEX from a PW source in College Station, Texas. The system will be tested in June 2012 at a field site in Pennsylvania for treating frac-flowback waters. The goals of this test are: (1) to determine sorption efficiency of BTEX in the new configuration; and (2) to observe the range of flow rates, backpressures, and total volume treated at a given flow rate.

  13. The Social Complexity of Renewable Energy Production in the Countryside

    E-Print Network [OSTI]

    Kunze, Conrad; Busch, Henner

    2011-01-01T23:59:59.000Z

    produced renewable energy (wind, sun, water, biomass/gas).locally produced energy from wind, sun, or water poweredsource. “Wind and Sun won´t send an energy bill” as a

  14. PERSPECTIVE Fertile forests produce biomass more efficiently

    E-Print Network [OSTI]

    Malhi, Yadvinder

    ; Enquist et al. 2007; Van Oijen et al. 2010). The remaining carbon ­ termed net primary production (NPP into autotrophic respiration (Ra) and NPP would reflect the interdependence of respiration and photosynthesis to provide the energy required for construction of complex compounds such as carbon skeletons for protein

  15. New technology for the independent producer

    SciTech Connect (OSTI)

    Not Available

    1993-07-01T23:59:59.000Z

    This technology transfer conference consisted of the following six sessions: reservoir characterization; drilling, testing and completion; enhanced oil recovery; 3-d seismic and amplitude variation with offset (AVO); biotechnology for field applications; and well logging technology. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  16. Particulate Produced from Advanced Combustion Operation in a...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Produced from Advanced Combustion Operation in a Compression Ignition Engine Particulate Produced from Advanced Combustion Operation in a Compression Ignition Engine Determine...

  17. Isotope production facility produces cancer-fighting actinium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cancer therapy gets a boost from new isotope Isotope production facility produces cancer-fighting actinium A new medical isotope project shows promise for rapidly producing major...

  18. Spectral optical properties of selected photosynthetic microalgae producing biofuels

    E-Print Network [OSTI]

    Lee, Euntaek; Heng, Ri-Liang; Pilon, Laurent

    2013-01-01T23:59:59.000Z

    Microalgae Producing Biofuels Euntaek Lee, Ri-Liang Heng,Microalgae Producing Biofuels”, Journal of Quantitativeconverted into liquid biofuels [50–53]. On the other hand,

  19. Particulate Produced from Advanced Combustion Operation in a...

    Broader source: Energy.gov (indexed) [DOE]

    Produced From Advanced Combustion Operation in a Compression Ignition Engine P-1 Particulate Produced From Advanced Combustion Operation in a Compression Ignition Engine P-1...

  20. Analysis of Petroleum Technology Advances Through Applied Research by Independent Oil Producers

    SciTech Connect (OSTI)

    Brashear, Jerry P.; North, Walter B.; Thomas Charles P.; Becker, Alan B.; Faulder, David D.

    2000-01-12T23:59:59.000Z

    Petroleum Technology Advances Through Applied Research by Independent Oil Producers is a program of the National Oil Research Program, U.S. Department of Energy. Between 1995 and 1998, the program competitively selected and cost-shared twenty-two projects with small producers. The purpose was to involve small independent producers in testing technologies of interest to them that would advance (directly or indirectly) one or more of four national program objectives: (1) Extend the productive life of reservoirs; (2) Increase production and/or reserves; (3) Improve environmental performance; and (4) Broaden the exchange of technology information.

  1. System and method for producing metallic iron

    DOE Patents [OSTI]

    Bleifuss, Rodney L; Englund, David J; Iwasaki, Iwao; Fosnacht, Donald R; Brandon, Mark M; True, Bradford G

    2013-09-17T23:59:59.000Z

    A hearth furnace for producing metallic iron material has a furnace housing having a drying/preheat zone, a conversion zone, a fusion zone, and optionally a cooling zone, the conversion zone is between the drying/preheat zone and the fusion zone. A moving hearth is positioned within the furnace housing. A hood or separation barrier within at least a portion of the conversion zone, fusion zone or both separates the fusion zone into an upper region and a lower region with the lower region adjacent the hearth and the upper region adjacent the lower region and spaced from the hearth. An injector introduces a gaseous reductant into the lower region adjacent the hearth. A combustion region may be formed above the hood or separation barrier.

  2. Superheater Corrosion Produced By Biomass Fuels

    SciTech Connect (OSTI)

    Sharp, William (Sandy) [SharpConsultant] [SharpConsultant; Singbeil, Douglas [FPInnovations] [FPInnovations; Keiser, James R [ORNL] [ORNL

    2012-01-01T23:59:59.000Z

    About 90% of the world's bioenergy is produced by burning renewable biomass fuels. Low-cost biomass fuels such as agricultural wastes typically contain more alkali metals and chlorine than conventional fuels. Although the efficiency of a boiler's steam cycle can be increased by raising its maximum steam temperature, alkali metals and chlorine released in biofuel boilers cause accelerated corrosion and fouling at high superheater steam temperatures. Most alloys that resist high temperature corrosion protect themselves with a surface layer of Cr{sub 2}O{sub 3}. However, this Cr{sub 2}O{sub 3} can be fluxed away by reactions that form alkali chromates or volatilized as chromic acid. This paper reviews recent research on superheater corrosion mechanisms and superheater alloy performance in biomass boilers firing black liquor, biomass fuels, blends of biomass with fossil fuels and municipal waste.

  3. System and method for producing metallic iron

    DOE Patents [OSTI]

    Bleifuss, Rodney L. (Grand Rapids, MN); Englund, David J. (Bovey, MN); Iwasaki, Iwao (Grand Rapids, MN); Fosnacht, Donald R. (Hermantown, MN); Brandon, Mark M. (Charlotte, NC); True, Bradford G. (Charlotte, NC)

    2012-01-17T23:59:59.000Z

    A hearth furnace 10 for producing metallic iron material has a furnace housing 11 having a drying/preheat zone 12, a conversion zone 13, a fusion zone 14, and optionally a cooling zone 15, the conversion zone 13 is between the drying/preheat zone 12 and the fusion zone 14. A moving hearth 20 is positioned within the furnace housing 11. A hood or separation barrier 30 within at least a portion of the conversion zone 13, fusion zone 14 or both separates the fusion zone 14 into an upper region and a lower region with the lower region adjacent the hearth 20 and the upper region adjacent the lower region and spaced from the hearth 20. An injector introduces a gaseous reductant into the lower region adjacent the hearth 20. A combustion region may be formed above the hood or separation barrier.

  4. Method of producing improved microstructure and properties for ceramic superconductors

    DOE Patents [OSTI]

    Singh, Jitendra P. (Naperville, IL); Guttschow, Rob A. (Bloomington, IL); Dusek, Joseph T. (Lombard, IL); Poeppel, Roger B. (Glen Ellyn, IL)

    1996-01-01T23:59:59.000Z

    A ceramic superconductor is produced by close control of oxygen partial pressure during sintering of the material. The resulting microstructure of YBa.sub.2 Cu.sub.3 O.sub.x indicates that sintering kinetics are enhanced at reduced p(O.sub.2). The density of specimens sintered at 910.degree. C. increased from 79 to 94% theoretical when p(O.sub.2) was decreased from 0.1 to 0.0001 MPa. The increase in density with decrease in p(O.sub.2) derives from enhanced sintering kinetics, due to increased defect concentration and decreased activation energy of the rate-controlling species undergoing diffusion. Sintering at 910.degree. C. resulted in a fine-grain microstructure, with an average grain size of approximately 4 .mu.m. Such a microstructure results in reduced microcracking, strengths as high as 191 MPa and high critical current density capacity.

  5. Method of producing improved microstructure and properties for ceramic superconductors

    DOE Patents [OSTI]

    Singh, J.P.; Guttschow, R.A.; Dusek, J.T.; Poeppel, R.B.

    1996-06-11T23:59:59.000Z

    A ceramic superconductor is produced by close control of oxygen partial pressure during sintering of the material. The resulting microstructure of YBa{sub 2}Cu{sub 3}O{sub x} indicates that sintering kinetics are enhanced at reduced p(O{sub 2}). The density of specimens sintered at 910 C increased from 79 to 94% theoretical when p(O{sub 2}) was decreased from 0.1 to 0.0001 MPa. The increase in density with decrease in p(O{sub 2}) derives from enhanced sintering kinetics, due to increased defect concentration and decreased activation energy of the rate-controlling species undergoing diffusion. Sintering at 910 C resulted in a fine-grain microstructure, with an average grain size of approximately 4 {micro}m. Such a microstructure results in reduced microcracking, strengths as high as 191 MPa and high critical current density capacity. 20 figs.

  6. Shear exfoliation in liquids : a promising way to produce graphene.

    E-Print Network [OSTI]

    Mougeot, Maxime

    2014-01-01T23:59:59.000Z

    My initial project was to install and test a new spectrometer for the solid state physics group. However, due to a delay in the construction of the new photoluminescence laboratory this project had to be abandoned. Graphene is a one atom thick 2D material that presents remarkable physical properties whose applications are very promising. However, the current means of production present several limitations. They are costly in terms of energy consumption and yields are ridiculously low. Thus, to progress from the laboratory to industrial production it will be necessary to find a method to produce large quantities of defect graphene. In April 2014, a paper \\cite{graphene_shear} came out in \\emph{Nature Material} demonstrating that shear exfoliation in liquids would be a scalable way to produce defect-free grahene. The aim of my project was to test this new method by trying to reproduce some of the results published in this article. It involved the setting up of the experiment, the production of samples and fin...

  7. Economical utilization of natural gas to produce synthetic petroleum liquids

    SciTech Connect (OSTI)

    Agee, K.L.; Agee, M.A. [Syntroleum Corp., Tulsa, OK (United States); Willingham, F.Y.; Trepper, E.L. [Bateman Engineering, Inc., Denver, CO (United States)

    1996-12-31T23:59:59.000Z

    A new process for converting pipeline quality or subquality natural gas into liquid fuels and other petroleum products is described. The technology, developed by Syntroleum Corporation, utilizes autothermal reforming with air to produce a nitrogen-diluted synthesis gas having a near ideal ratio for converting into synthetic hydrocarbons via Fischer-Tropsch (F-T) synthesis. A proprietary F-T catalyst system, designed to operate in a nitrogen-diluted atmosphere, achieves conversion rates comparable to conventional F-T processes without the need for recycle and the associated recompression equipment. This results in potential plant capital costs low enough to make conversion of remote and or subquality gas into synthetic fuels economical, based on current oil prices. The process is energy self-sufficient and compact enough to be constructed in 5,000 to 10,000 b/d plants on floating or platform facilities to utilize offshore gas reserves. The liquid fuels produced by the process are free of sulfur and aromatics. The process has been demonstrated at pilot-scale. Numerous engineering studies and cost estimates have been conducted to provide the information needed for economic evaluation and confident scale-up. This paper also outlines improvements to the process currently under development and how the process presents new opportunities for gas processors.

  8. Producing liquid fuels from coal: prospects and policy issues

    SciTech Connect (OSTI)

    James T. Bartis; Frank Camm; David S. Ortiz

    2008-07-01T23:59:59.000Z

    The increase in world oil prices since 2003 has prompted renewed interest in producing and using liquid fuels from unconventional resources, such as biomass, oil shale, and coal. This book focuses on issues and options associated with establishing a commercial coal-to-liquids (CTL) industry within the United States. It describes the technical status, costs, and performance of methods that are available for producing liquids from coal; the key energy and environmental policy issues associated with CTL development; the impediments to early commercial experience; and the efficacy of alternative federal incentives in promoting early commercial experience. Because coal is not the only near-term option for meeting liquid-fuel needs, this book also briefly reviews the benefits and limitations of other approaches, including the development of oil shale resources, the further development of biomass resources, and increasing dependence on imported petroleum. A companion document provides a detailed description of incentive packages that the federal government could offer to encourage private-sector investors to pursue early CTL production experience while reducing the probability of bad outcomes and limiting the costs that might be required to motivate those investors. (See Rand Technical Report TR586, Camm, Bartis, and Bushman, 2008.) 114 refs., 2 figs., 16 tabs., 3 apps.

  9. Hydrogen ions produced by plasma-assisted catalytic ionization using nickel grid

    SciTech Connect (OSTI)

    Oohara, W.; Kawata, K.; Hibino, T. [Department of Electronic Device Engineering, Yamaguchi University, Ube 755-8611 (Japan)] [Department of Electronic Device Engineering, Yamaguchi University, Ube 755-8611 (Japan)

    2013-06-15T23:59:59.000Z

    Positive and negative hydrogen ions are produced by plasma-assisted catalytic ionization using a nickel grid, where the irradiation current density of positive ions onto the grid can be controlled by the discharge power. The irradiation energy can be controlled by both the grid potential and the discharge plasma potential. Extraction properties and energy distributions of positive and negative ions produced in the cases of using the grid and a porous nickel plate are compared. Two production mechanisms of negative ions are found in the process of plasma-assisted catalytic ionization.

  10. ITP Industrial Distributed Energy: National Account Energy Alliance...

    Broader source: Energy.gov (indexed) [DOE]

    DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via the U.S. Department of Energy (DOE) Information Bridge. Web site http:...

  11. USDA Energy Audit and Renewable Energy Development Assistance Grants

    Broader source: Energy.gov [DOE]

    The USDA Rural Business Cooperative-Service Agency, under the Rural Energy for America Program, is accepting applications for Energy Audit and Renewable Energy Development Assistance (REDA) grants to establish programs to assist agricultural producers and rural small businesses with evaluating energy efficiency and the potential to incorporate renewable energy technologies into their operations.

  12. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in plant sugars can be fermented to produce ethanol. Finally, the reasons for using ethanol as a fuel are discussed. http:energy.goveereeducationdownloads...

  13. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar) (4 Activities) Concentrated sunlight is a versatile and high-quality form of energy with several potential applications besides producing heat and electricity. Today,...

  14. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Basics Biomass is an energy resource derived from organic matter, which includes wood, agricultural waste, and other living-cell material that can be burned to produce heat...

  15. Sandia National Laboratories: Solar Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    heat can also be efficiently and cheaply stored to produce electricity when the sun ... Solar Energy On February 3, 2011, in Solar Programs Photovoltaics Concentrating Solar...

  16. Management of produced water in oil and gas operations 

    E-Print Network [OSTI]

    Patel, Chirag V.

    2005-02-17T23:59:59.000Z

    Produced water handling has been an issue of concern for oil and gas producers as it is one of the major factors that cause abandonment of the producing well. The development of effective produced water management strategies poses a big challenge...

  17. Hydrogenase mimic produces hydrogen under the light

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)Hydrogen Storage in Carbon

  18. 2013 Non-Utility Power Producers- Customers

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 N Y M E2003 Detailed35

  19. 2013 Non-Utility Power Producers- Revenue

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 N Y M E2003 Detailed35Revenue

  20. 2013 Non-Utility Power Producers- Sales

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 N Y M E2003

  1. Scientists produce transparent, light-harvesting material

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter PrincipalfuelTorus ExperimentScientists ignite

  2. US ITER toroidal field coil conductor produc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulence may bedieselsummer gasoline price0 UPCNational ITER

  3. Number of Producing Gas Wells (Summary)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto ChinaThousandDecade Year-0 Year-1(Million1. CapacityCount) Data

  4. Microfluidically Produced Polymeric Microfibers | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand Retrievals fromprocess used

  5. Process for producing large grain cadmium telluride

    DOE Patents [OSTI]

    Hasoon, F.S.; Nelson, A.J.

    1996-01-16T23:59:59.000Z

    A process is described for producing a cadmium telluride polycrystalline film having grain sizes greater than about 20 {micro}m. The process comprises providing a substrate upon which cadmium telluride can be deposited and placing that substrate within a vacuum chamber containing a cadmium telluride effusion cell. A polycrystalline film is then deposited on the substrate through the steps of evacuating the vacuum chamber to a pressure of at least 10{sup {minus}6} torr.; heating the effusion cell to a temperature whereat the cell releases stoichiometric amounts of cadmium telluride usable as a molecular beam source for growth of grains on the substrate; heating the substrate to a temperature whereat a stoichiometric film of cadmium telluride can be deposited; and releasing cadmium telluride from the effusion cell for deposition as a film on the substrate. The substrate then is placed in a furnace having an inert gas atmosphere and heated for a sufficient period of time at an annealing temperature whereat cadmium telluride grains on the substrate grow to sizes greater than about 20 {micro}m.

  6. Method for producing ceramic particles and agglomerates

    DOE Patents [OSTI]

    Phillips, Jonathan (Santa Fe, NM); Gleiman, Seth S. (Santa Fe, NM); Chen, Chun-Ku (Albuquerque, NM)

    2001-01-01T23:59:59.000Z

    A method for generating spherical and irregularly shaped dense particles of ceramic oxides having a controlled particle size and particle size distribution. An aerosol containing precursor particles of oxide ceramics is directed into a plasma. As the particles flow through the hot zone of the plasma, they melt, collide, and join to form larger particles. If these larger particles remain in the hot zone, they continue melting and acquire a spherical shape that is retained after they exit the hot zone, cool down, and solidify. If they exit the hot zone before melting completely, their irregular shape persists and agglomerates are produced. The size and size distribution of the dense product particles can be controlled by adjusting several parameters, the most important in the case of powder precursors appears to be the density of powder in the aerosol stream that enters the plasma hot zone. This suggests that particle collision rate is responsible for determining ultimate size of the resulting sphere or agglomerate. Other parameters, particularly the gas flow rates and the microwave power, are also adjusted to control the particle size distribution.

  7. Risoe International Energy conference, May 2003 New Energy, new hazard ?New Energy, new hazard ?

    E-Print Network [OSTI]

    renewable (oil, natural gas, coal,...) " Increasingly worrying ecological issues with these energy sources, - global : green house effect - local : city pollution " Fossil fuel dependant economy, - few producing

  8. Decoherence, entanglement decay, and equilibration produced by chaotic environments

    E-Print Network [OSTI]

    Gabriela Barreto Lemos; Fabricio Toscano

    2011-08-19T23:59:59.000Z

    We investigate decoherence in quantum systems coupled via dephasing-type interactions to an arbitrary environment with chaotic underlying classical dynamics. The coherences of the reduced state of the central system written in the preferential energy eigenbasis are quantum Loschmidt echoes, which in the strong coupling regime are characterized at long times scales by fluctuations around a constant mean value. We show that due to the chaotic dynamics of the environment, the mean value and the width of the Loschmidt echo fluctuations are inversely proportional to the quantity we define as the effective Hilbert space dimension of the environment, which in general is smaller than the dimension of the entire available Hilbert space. Nevertheless, in the semiclassical regime this effective Hilbert space dimension is in general large, in which case even a chaotic environment with few degrees of freedom produces decoherence without revivals. Moreover we show that in this regime the environment leads the central system to equilibrate to the time average of its reduced density matrix, which corresponds to a diagonal state in the preferential energy eigenbasis. For the case of two uncoupled, initially entangled central systems that interact with identical local quantum environments with chaotic underlying classical dynamics, we show that in the semiclassical limit the equilibration state is arbitrarily close to a separable state. We confirm our results with numerical simulations in which the environment is modeled by the quantum kicked rotor in the chaotic regime.

  9. Office of Energy Efficiency and Renewable Energy U.S. Department of Energy Page 1

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    Office of Energy Efficiency and Renewable Energy U.S. Department of Energy ­ Page 1 Argonne greenhouse gas emissions. In terms of key energy and environmental benefits, cornstarch ethanol comes out. This figure illustrates the energy inputs used to produce and deliver a million British Thermal Units (Btu

  10. The Pacific Northwest National Laboratory delivers financially attractive systems that use biomass to produce industrial and consumer products.

    E-Print Network [OSTI]

    of renewable biomass resources. A New Approach to Biomass #12;To create new uses for agricultural products biomass to produce industrial and consumer products. While biomass holds potential for a ready supply of renewable energy, the primary success factor for this resource--the ability to profitably produce products

  11. Over time, energy has come to mean many things to us. In physical science, energy means the ability to do work. Work means a change in position,

    E-Print Network [OSTI]

    Gunawardena, Arunika

    evaporates water into steam, which produces mechanical energy as it moves through turbines. The turbines spin

  12. NREL Creates New Pathways for Producing Biofuels and Acids from Cyanobacteria (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-10-01T23:59:59.000Z

    Cyanobacteria use photosynthesis to convert carbon dioxide into glycogen, a carbohydrate that is stored in the cells as an energy source. However, researchers at the National Renewable Energy Laboratory (NREL) have discovered that this photosynthesis can be redirected to produce lipids and valuable organic acids. The research could yield a new source of biofuels, because the lipids can potentially be extracted from the bacteria and converted into biodiesel.

  13. NM WAIDS: A PRODUCED WATER QUALITY AND INFRASTRUCTURE GIS DATABASE FOR NEW MEXICO OIL PRODUCERS

    SciTech Connect (OSTI)

    Martha Cather; Robert Lee; Ibrahim Gundiler; Andrew Sung; Naomi Davidson; Ajeet Kumar Reddy; Mingzhen Wei

    2003-04-01T23:59:59.000Z

    The New Mexico Water and Infrastructure Data System (NM WAIDS) seeks to alleviate a number of produced water-related issues in southeast New Mexico. The project calls for the design and implementation of a Geographical Information System (GIS) and integral tools that will provide operators and regulators with necessary data and useful information to help them make management and regulatory decisions. The major components of this system are: (1) databases on produced water quality, cultural and groundwater data, oil pipeline and infrastructure data, and corrosion information, (2) a web site capable of displaying produced water and infrastructure data in a GIS or accessing some of the data by text-based queries, (3) a fuzzy logic-based, site risk assessment tool that can be used to assess the seriousness of a spill of produced water, and (4) a corrosion management toolkit that will provide operators with data and information on produced waters that will aid them in deciding how to address corrosion issues. The various parts of NM WAIDS will be integrated into a website with a user-friendly interface that will provide access to previously difficult-to-obtain data and information. Primary attention during the first six months of this project has been focused on creating the water quality databases for produced water and surface water, along with collection of corrosion information and building parts of the corrosion toolkit. Work on the project to date includes: (1) Creation of a water quality database for produced water analyses. The database was compiled from a variety of sources and currently has over 4000 entries for southeast New Mexico. (2) Creation of a web-based data entry system for the water quality database. This system allows a user to view, enter, or edit data from a web page rather than having to directly access the database. (3) Creation of a semi-automated data capturing system for use with standard water quality analysis forms. This system improves the accuracy and speed of water quality data entry. (4) Acquisition of ground water data from the New Mexico State Engineer's office, including chloride content and TDS (Total Dissolved Solids) for over 30,000 data points in southeast New Mexico. (5) Creation of a web-based scale prediction tool, again with a web-based interface, that uses two common scaling indices (Stiff-Davis and Oddo-Thomson) to predict the likelihood of scaling. This prediction tool can either run from user input data, or the user can select samples from the water analysis database. (6) Creation of depth-to-groundwater maps for the study area. (7) Analysis of water quality data by formation. (8) Continuation of efforts to collect produced water quality information from operators in the southeast New Mexico area. (9) Qualitative assessment of produced water from various formations regarding corrosivity. (10) Efforts at corrosion education in the region through operator visits. Future work on this project will include: (11) Development of an integrated web and GIS interface for all the information collected in this effort. (12) Continued development of a fuzzy logic spill risk assessment tool that was initially developed prior to this project. Improvements will include addition of parameters found to be significant in determining the impact of a brine spill at a specific site. (13) Cleanup and integration of water quality databases. (14) Compilation of both hard copy and online corrosion toolkit material.

  14. NM WAIDS: A PRODUCED WATER QUALITY AND INFRASTRUCTURE GIS DATABASE FOR NEW MEXICO OIL PRODUCERS

    SciTech Connect (OSTI)

    Martha Cather; Robert Lee; Ibrahim Gundiler; Andrew Sung

    2003-09-24T23:59:59.000Z

    The New Mexico Water and Infrastructure Data System (NM WAIDS) seeks to alleviate a number of produced water-related issues in southeast New Mexico. The project calls for the design and implementation of a Geographical Information System (GIS) and integral tools that will provide operators and regulators with necessary data and useful information to help them make management and regulatory decisions. The major components of this system are: (1) Databases on produced water quality, cultural and groundwater data, oil pipeline and infrastructure data, and corrosion information. (2) A web site capable of displaying produced water and infrastructure data in a GIS or accessing some of the data by text-based queries. (3) A fuzzy logic-based, site risk assessment tool that can be used to assess the seriousness of a spill of produced water. (4) A corrosion management toolkit that will provide operators with data and information on produced waters that will aid them in deciding how to address corrosion issues. The various parts of NM WAIDS will be integrated into a website with a user-friendly interface that will provide access to previously difficult-to-obtain data and information. Primary attention during the first six months of this project was focused on creating the water quality databases for produced water and surface water, along with collecting of corrosion information and building parts of the corrosion toolkit. Work on the project to date includes: (1) Creation of a water quality database for produced water analyses. The database was compiled from a variety of sources and currently has over 7000 entries for New Mexico. (2) Creation of a web-based data entry system for the water quality database. This system allows a user to view, enter, or edit data from a web page rather than having to directly access the database. (3) Creation of a semi-automated data capturing system for use with standard water quality analysis forms. This system improves the accuracy and speed of water quality data entry. (4) Acquisition of ground water data from the New Mexico State Engineer's office, including chloride content and TDS (Total Dissolved Solids) for over 30,000 data points in southeast New Mexico. (5) Creation of a web-based scale prediction tool, again with a web-based interface, that uses two common scaling indices to predict the likelihood of scaling. This prediction tool can either run from user input data, or the user can select samples from the water analysis database. (6) Creation of depth-to-groundwater maps for the study area. (7) Analysis of water quality data by formation. (8) Continuation of efforts to collect produced water quality information from operators in the southeast New Mexico area. (9) Qualitative assessment of produced water from various formations regarding corrosivity. (10) Efforts at corrosion education in the region through operator visits. Future work on this project will include: (1) Development of an integrated web and GIS interface for all the information collected in this effort. (2) Continued development of a fuzzy logic spill risk assessment tool that was initially developed prior to this project. Improvements will include addition of parameters found to be significant in determining the impact of a brine spill at a specific site. (3) Compilation of both hard copy and online corrosion toolkit material.

  15. Sandia National Laboratories: Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capabilities Solar power and other sources of renewable energy can help combat global warming but they have a draw-back: they don't produce energy as predictably as generating...

  16. Clean Energy Tax Credit (Maryland)

    Broader source: Energy.gov [DOE]

    The Clean Energy Tax Credit is 0.85 cents for each kilowatt hour of electricity sold that was produced from a Maryland qualified energy resource during the 5-year period specified in the initial...

  17. Methods for producing partially digested restriction DNA fragments and for producing a partially modified PCR product

    DOE Patents [OSTI]

    Wong, Kwong-Kwok (Richland, WA)

    2000-01-01T23:59:59.000Z

    The present invention is an improved method of making a partially modified PCR product from a DNA fragment with a polymerase chain reaction (PCR). In a standard PCR process, the DNA fragment is combined with starting deoxynucleoside triphosphates, a primer, a buffer and a DNA polymerase in a PCR mixture. The PCR mixture is then reacted in the PCR producing copies of the DNA fragment. The improvement of the present invention is adding an amount of a modifier at any step prior to completion of the PCR process thereby randomly and partially modifying the copies of the DNA fragment as a partially modified PCR product. The partially modified PCR product may then be digested with an enzyme that cuts the partially modified PCR product at unmodified sites thereby producing an array of DNA restriction fragments.

  18. The Promise and Challenge of Producing Biofuel Feedstocks: An Ecological Perspective (2010 JGI User Meeting)

    ScienceCinema (OSTI)

    DeLucia, Evan

    2011-04-26T23:59:59.000Z

    Evan DeLucia of the University of Illinois at Urbana-Champaign and the Energy Biosciences Institute talks about "The Promise and Challenge of Producing Biofuel Feedstocks: An Ecological Perspective" on March 25, 2010 at the 5th Annual DOE JGI User Meeting

  19. Electricity-producing heating apparatus utilizing a turbine generator in a semi-closed brayton cycle

    DOE Patents [OSTI]

    Labinov, Solomon D.; Christian, Jeffrey E.

    2003-10-07T23:59:59.000Z

    The present invention provides apparatus and methods for producing both heat and electrical energy by burning fuels in a stove or boiler using a novel arrangement of a surface heat exchanger and microturbine-powered generator and novel surface heat exchanger. The equipment is particularly suited for use in rural and relatively undeveloped areas, especially in cold regions and highlands.

  20. Combined Cryo and Room-Temperature Ball Milling to Produce Ultrafine Halide Crystallites

    E-Print Network [OSTI]

    Srivastava, Kumar Vaibhav

    Combined Cryo and Room-Temperature Ball Milling to Produce Ultrafine Halide Crystallites AKASH milling at cryogenic temperature as well as room temperature (RT) has been carried out to prepare out in a high-energy ball mill, and it involves repeated deformation, cold-welding, fractur- ing

  1. www.ext.vt.edu Produced by Communications and Marketing, College of Agriculture and Life Sciences,

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    with other elements because it is very stable. Thus, a substantial input of energy is required to break the N1 www.ext.vt.edu Produced by Communications and Marketing, College of Agriculture and Life Sciences University, Virginia State University, and the U.S. Department of Agriculture cooperating. Edwin J. Jones

  2. A note on super-hedging for investor-producers Adrien Nguyen Huu

    E-Print Network [OSTI]

    Boyer, Edmond

    -Dauphine and Finance for Energy Market Research Centre Paris, France nguyen@ceremade.dauphine.fr February 29, 2012 assets into others by means of a production system, in order to price and hedge derivatives on produced on the electricity spot price and can trade commodities which are inputs for his system. This extends the essential

  3. innovati nNREL Produces Highly Efficient, Wide-Bandgap, Thin-Film Solar Cells

    E-Print Network [OSTI]

    . Low-bandgap cells can lose 25% of their power output and efficiency ratings as solar cell operating energy output than a low-bandgap cell with the same wattage or power rating. NREL is a nationalinnovati nNREL Produces Highly Efficient, Wide-Bandgap, Thin-Film Solar Cells Researchers

  4. On the heat flux and entropy produced by thermal fluctuations S. Ciliberto1

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    by an elastic force. Our results set strong constrains on the energy exchanged between coupled nano-systems held kept at different temperatures and coupled by an elastic force [13, 19]. Thus it gives more insight into the properties of the heat flux produced by mechanical coupling, in the famous Feymann ratchet [22­24] widely

  5. Neural-Network based Sensitivity Analysis for Injector-Producer Relationship Identification

    E-Print Network [OSTI]

    Shahabi, Cyrus

    at the 2008 SPE Intelligent Energy Conference and Exhibition held in Amsterdam, The Netherlands, 25 reproduction, distribution, or storage of any part of this paper without the written consent of the Society typically estimated by the field engineers. 1. Introduction Forecasting injector-producer relationships

  6. June 2011 Natural Gas and Produced Water Sampling at the Gasbuggy, New Mexico, Site

    SciTech Connect (OSTI)

    None

    2011-10-01T23:59:59.000Z

    Annual natural gas and produced water monitoring was conducted for gas wells adjacent to Section 36, where the Gasbuggy test was conducted, in accordance with the draft Long-Term Surveillance and Maintenance Plan for the Gasbuggy Site, Rio Arriba County, New Mexico. Sampling and analysis were conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PLN/S04351, continually updated). Natural gas samples were collected for tritium and carbon-14 analyses. Produced water samples were collected and analyzed for tritium, gamma-emitting radionuclides (by high-resolution gamma spectrometry), gross alpha, and gross beta. A duplicate produced water sample was collected from well 30-039-21743. Produced water samples were not collected at locations 30-039-30161 and 30-039-21744 because of the lack of water. Samples were not collected from location 30-039-29988 because the well was shut-in.

  7. Hydrotreating Pyrolytic Lignin to Produce a Refinery Feedstock (Poster)

    SciTech Connect (OSTI)

    French, R. J.

    2013-09-01T23:59:59.000Z

    Fast pyrolysis of biomass followed by water separation to produce pyrolytic lignin and hydrotreating of the lignin could be used to produce a stable volatile low-oxygen intermediate liquid. Such a liquid could be converted into a finished motor-fuel in a refinery, taking advantage of the existing infrastructure and economies of scale of refineries. Hydrotreating just the lignin would consume less hydrogen while preserving about half of the energy of the original oil. The aqueous by-products could be reformed to produce the needed hydrogen and would contain much of the unwanted acids and unstable oxygenates. To assess such intermediate liquids, several pyrolytic lignins were prepared by mixing pyrolysis oil with water at 1:1 and 3:1 ratios. The carboxylic acidity in the pyrolytic lignin was reduced to 24 and 10 mg-KOH/g-lignin compared to 81 in the whole oil. These lignins were hydrotreated using Ni-Mo(S)/alumina, Pt/char, or Pd/C(activated) in a semi-batch 1 L stirred autoclave. The oil was stabilized under hydrogen at 150-280 degrees C, then water and light organics were removed by partial depressurization. Hydrodeoxygenation was then performed at 340-400 degrees C. Total pressure was controlled at 70 or 170 bar with hydrogen gas. Organic liquid yields of 39-56% were obtained. For many experiments the organic oxygen content was <7%, acidity was < 7 mg-KOH/g-oil, the volatility was greater than or equal to 94% and, on a carbon basis, the total yield of organic products miscible in hydrocarbons at a 1:10 ratio was over 50%. These properties are probably acceptable to a refinery.The residual liquids left in the reactor at the end of the experiment comprised 60-85% of the organic-phase product while the rest was condensate. 13C-NMR of the residual liquids showed that they were 50-80% aliphatic. 13C-NMR coupled with GC-MS identified phenolic compounds as the main oxygenates in most residual liquids.

  8. ANALYSIS OF METHANE PRODUCING COMMUNITIES WITHIN UNDERGROUND COAL BEDS

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    ANALYSIS OF METHANE PRODUCING COMMUNITIES WITHIN UNDERGROUND COAL BEDS by Elliott Paul Barnhart.........................................................................................8 Coal and Metabolite Enrichment Studies ..................................................................................14 Ability of the Consortium to Produce Methane from Coal and Metabolites ................16

  9. Influences of climate on aflatoxin producing fungi and aflatoxin contamination

    E-Print Network [OSTI]

    Cotty, Peter J.

    Influences of climate on aflatoxin producing fungi and aflatoxin contamination Peter J. Cotty a human exposure, crop contamination with aflatoxins causes significant economic loss for producers, marketers, and processors of diverse susceptible crops. Aflatoxin contamination occurs when specific fungi

  10. Reaction of Aluminum with Water to Produce Hydrogen: A Study...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Produce Hydrogen: A Study of Issues Related to the Use of Aluminum for On-Board Vehicular Hydrogen Storage. Version 2, 2010. Reaction of Aluminum with Water to Produce Hydrogen: A...

  11. Multi-echelon inventory optimization for fresh produce

    E-Print Network [OSTI]

    Limvorasak, Saran

    2013-01-01T23:59:59.000Z

    For fresh produce, the product freshness is a key value to end consumers. Retailers try to maximize product freshness at retail stores while maintaining high product availability. Fresh produce that is close to the end of ...

  12. Ion emission and expansion in laser-produced tin plasma

    E-Print Network [OSTI]

    Burdt, Russell Allen

    2011-01-01T23:59:59.000Z

    scale length laser-produced tin plasmas, PhD dissertation,and Expansion in Laser-Produced Tin Plasma A dissertationof a CO 2 laser pulse with tin-based plasma for an extreme

  13. SABIC's Carbon Fiber-Reinforced Material used to Produce the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SABIC's Carbon Fiber-Reinforced Material used to Produce the World's First 3D-Printed Vehicle at IMTS 2014 SABIC's Carbon Fiber-Reinforced Material used to Produce the World's...

  14. alloy surfaces produced: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    includes the production of the mold. Let us look at an example: To produce a curved glass-fibre reinforced con- crete panel, a mold is produced from styrofoam. The cheapest way of...

  15. affected surface produced: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    includes the production of the mold. Let us look at an example: To produce a curved glass-fibre reinforced con- crete panel, a mold is produced from styrofoam. The cheapest way of...

  16. Clean Energy Manufacturing Incentive Grant Program

    Broader source: Energy.gov [DOE]

    "Clean energy manufacturer" is defined as a biofuel producer, a manufacturer of renewable energy or nuclear equipment/products, or "products used for energy conservation, storage, or grid efficie...

  17. Modelling the UK perennial energy crop market 

    E-Print Network [OSTI]

    Alexander, Peter Mark William

    2014-11-27T23:59:59.000Z

    Biomass produced from perennial energy crops, Miscanthus and willow or poplar grown as short-rotation coppice, is expected to contribute to UK renewable energy targets and reduce the carbon intensity of energy production. ...

  18. Modified Fresnel zone plates that produce sharp Gaussian focal spots

    E-Print Network [OSTI]

    Jahns, Jürgen

    Modified Fresnel zone plates that produce sharp Gaussian focal spots Qing Cao and Ju¨rgen Jahns Fresnel zone plate that can produce an approximate Gaussian focal spot is proposed for the focusing of 7.7 nm can be produced by a modified Fresnel zone plate with a minimum structure size of 30 nm

  19. Lift producing device exhibiting low drag and reduced ventilation potential and method for producing the same

    DOE Patents [OSTI]

    Caldwell, Richard A. (115 Wimico Dr., Indian Harbour Beach, FL 32937)

    1991-01-01T23:59:59.000Z

    A lift producing device is disclosed which is adapted to be connected to a vehicle to provide lift to the vehicle when the vehicle is moved relative to a first fluid medium having a first density and viscosity and being in contact with a second fluid medium adjacent the vehicle. The second fluid medium has a second fluid density which is different from the first fluid density. The lift producing device comprises opposed first and second major surfaces joined at a longitudinally extending leading edge and at a longitudinally extending trailing edge, with at least a portion of the longitudinally extending leading edge being spaced from the longitudinally extending trailing edge by a predetermined mean chord length. When the vehicle is moved relative to the first fluid medium at a velocity within a range of predetermined velocities, with each of the velocities having a direction inclined from a plane extending through the leading edge and the trailing edge within a predetermined angular range, a region of high pressure is generated in the first fluid medium adjacent the first major surface and a region of low pressure is generated in the first fluid medium adjacent the second major surface. The lift producing device has a cross-sectional shape which will generate a pressure distribution around the device when the vehicle is moved relative to the first fluid medium at a velocity within the range of predetermined velocities such that the first fluid medium exhibits attached laminar flow along the device for a portion of the predetermined mean chord length from the leading edge to the trailing edge and will neither form a laminar separation bubble adjacent the second major surface of the device, nor exhibit turbulent separation adjacent the second major surface for substantially all of the predetermined mean chord length from the leading edge to the trailing edge. The portion along which attached laminar flow is maintained is the longest portion which will still fulfill the flow separation requirements. A method for producing the foil is also disclosed.

  20. USDA Renewable Energy Systems and Energy Efficiency Improvement Grants

    Broader source: Energy.gov [DOE]

    USDA's Rural Business Cooperative-Service Agency, under the Rural Energy for America Program, is accepting applications for Renewable Energy Systems and Energy Efficiency Improvement grants of $20,000 or less to establish programs to assist agricultural producers and rural small businesses with evaluating the potential to incorporate renewable energy technologies into their operations.

  1. Invasive plant species as potential bioenergy producers and carbon contributors.

    SciTech Connect (OSTI)

    Young, S.; Gopalakrishnan, G.; Keshwani, D. (Energy Systems); (Univ. of Nebraska)

    2011-03-01T23:59:59.000Z

    Current cellulosic bioenergy sources in the United States are being investigated in an effort to reduce dependence on foreign oil and the associated risks to national security and climate change (Koh and Ghazoul 2008; Demirbas 2007; Berndes et al. 2003). Multiple sources of renewable plant-based material have been identified and include agricultural and forestry residues, municipal solid waste, industrial waste, and specifically grown bioenergy crops (Demirbas et al. 2009; Gronowska et al. 2009). These sources are most commonly converted to energy through direct burning, conversion to gas, or conversion to ethanol. Annual crops, such as corn (Zea Mays L.) and sorghum grain, can be converted to ethanol through fermentation, while soybean and canola are transformed into fatty acid methyl esters (biodiesel) by reaction with an alcohol (Demirbas 2007). Perennial grasses are one of the more viable sources for bioenergy due to their continuous growth habit, noncrop status, and multiple use products (Lewandowski el al. 2003). In addition, a few perennial grass species have very high water and nutrient use efficiencies producing large quantities of biomass on an annual basis (Dohleman et al. 2009; Grantz and Vu 2009).

  2. A new device that produces and collects multiple electrons per photon could yield inexpensive, high-efficiency

    E-Print Network [OSTI]

    A new device that produces and collects multiple electrons per photon could yield inexpensive, high electron-hole pair) per absorbed high-energy photon, and this device definitively demonstrates-efficiency photovoltaics. A new device developed through research at the National Renewable Energy Laboratory (NREL

  3. Using an Occupant Energy Index for Achieving Zero Energy Homes

    E-Print Network [OSTI]

    Dean, B.; Gamble, D.; Kaiser, D.; Meisegeier, D.

    2006-01-01T23:59:59.000Z

    the concept of the Occupant Energy Index. The Occupant Energy Index, a scale of 0 to 100, defines the full spectrum of influence that occupant behavior can have on the energy consumption of a home. A home designed to consume zero energy using... in the country, but also produces power onsite. How much might energy consumption increase when occupants return to this home? Past research has demonstrated that occupant behavior can have dramatic impacts on energy consumption. Maintained interior...

  4. EAF steel producers and the K061 dilemma

    SciTech Connect (OSTI)

    Prichard, L.C.

    1995-12-31T23:59:59.000Z

    The scrap based steel producers in the United States generate an estimated 650,000 tons of electric arc furnace (EAF) dust annually which is classified as hazardous waste, K061. These scrap based producers commonly referred to as mini-mills represented 39% of the steel produced in 1994. Based upon the EAF plants being installed or planned today, it is a reasonable projection to anticipate 50% of the steel produced in the United States will be by EAF`S. Using a straight line projection of percent of steel produced to tonnage of EAF dust generated, this will result in 833,000 tons of dust being generated upon the completion of these new EAF producing plants, presumably by the year 2000. Because the United States is a capitalistic economy, a steel producer is in business to make a profit therefore dust management becomes a very important variable in the cost of making steel.

  5. Evolution of laser-produced Sn extreme ultraviolet source diameter for high-brightness source

    SciTech Connect (OSTI)

    Roy, Amitava, E-mail: roy@fzu.cz, E-mail: aroy@barc.gov.in [Department of Advanced Interdisciplinary Sciences, Center for Optical Research and Education (CORE), Utsunomiya University, Utsunomiya, Tochigi 321-8585 (Japan); HiLASE Centre, Institute of Physics ASCR, v.v.i., Za Radnicí 828, 25241 Dolní B?ežany (Czech Republic); Arai, Goki; Hara, Hiroyuki; Higashiguchi, Takeshi, E-mail: higashi@cc.utsunomiya-u.ac.jp [Department of Advanced Interdisciplinary Sciences, Center for Optical Research and Education (CORE), Utsunomiya University, Utsunomiya, Tochigi 321-8585 (Japan); Ohashi, Hayato [Graduate School of Science and Engineering for Research, University of Toyama, Toyama, Toyama 930-8555 (Japan); Sunahara, Atsushi [Institute for Laser Technology, 2-6 Yamada-oka, Suita, Osaka 565-0871 (Japan); Li, Bowen [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Dunne, Padraig; O'Sullivan, Gerry [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Miura, Taisuke; Mocek, Tomas; Endo, Akira [HiLASE Centre, Institute of Physics ASCR, v.v.i., Za Radnicí 828, 25241 Dolní B?ežany (Czech Republic)

    2014-08-18T23:59:59.000Z

    We have investigated the effect of irradiation of solid Sn targets with laser pulses of sub-ns duration and sub-mJ energy on the diameter of the extreme ultraviolet (EUV) emitting region and source conversion efficiency. It was found that an in-band EUV source diameter as low as 18??m was produced due to the short scale length of a plasma produced by a sub-ns laser. Most of the EUV emission occurs in a narrow region with a plasma density close to the critical density value. Such EUV sources are suitable for high brightness and high repetition rate metrology applications.

  6. A Non-Aqueous Reduction Process for Purifying 153Gd Produced in Natural Europium Targets

    SciTech Connect (OSTI)

    Johnsen, Amanda M.; Soderquist, Chuck Z.; McNamara, Bruce K.; Fisher, Darrell R.

    2013-08-01T23:59:59.000Z

    Gadolinium-153 is a low-energy gamma-emitter used in nuclear medicine imaging quality assurance. Produced in nuclear reactors using natural Eu2O3 targets, 153Gd is radiochemically separated from europium isotopes by europium reduction. However, conventional aqueous europium reduction produces hydrogen gas, a flammability hazard in radiological hot cells. We altered the traditional reduction method, using methanol as the process solvent to nearly eliminate hydrogen gas production. This new, non-aqueous reduction process demonstrates greater than 98% europium removal and gadolinium yields of 90%.

  7. The water consumption of energy production: an international comparison

    E-Print Network [OSTI]

    Marks, David H.

    Producing energy resources requires significant quantities of fresh water. As an energy sector changes or expands, the mix of technologies deployed to produce fuels and electricity determines the associated burden on ...

  8. Apparatus and method for extracting power from energetic ions produced in nuclear fusion

    SciTech Connect (OSTI)

    Fisch, N.J.; Rax, J.M.

    1993-12-31T23:59:59.000Z

    This invention is comprised of an apparatus and method of extracting power from energetic ions produced by nuclear fusion in a toroidal plasma to enhance respectively the toroidal plasma current and fusion reactivity. By injecting waves of predetermined frequency and phase traveling substantially in a selected poloidal direction within the plasma, the energetic ions become diffused in energy and space such that the energetic ions lose energy and amplify the waves. The amplified waves are further adapted to travel substantially in a selected toroidal direction to increase preferentially the energy of electrons traveling in one toroidal direction which, in turn, enhances or generates a toroidal plasma current. In an further adaptation, the amplified waves can be made to preferentially increase the energy of fuel ions within the plasma to enhance the fusion reactivity of the fuel ions. The described direct, or in situ, conversion of the energetic ion energy provides an efficient and economical means of delivering power to a fusion reactor.

  9. Apparatus and method for extracting power from energetic ions produced in nuclear fusion

    DOE Patents [OSTI]

    Fisch, N.J.; Rax, J.M.

    1994-12-20T23:59:59.000Z

    An apparatus and method of extracting power from energetic ions produced by nuclear fusion in a toroidal plasma to enhance respectively the toroidal plasma current and fusion reactivity. By injecting waves of predetermined frequency and phase traveling substantially in a selected poloidal direction within the plasma, the energetic ions become diffused in energy and space such that the energetic ions lose energy and amplify the waves. The amplified waves are further adapted to travel substantially in a selected toroidal direction to increase preferentially the energy of electrons traveling in one toroidal direction which, in turn, enhances or generates a toroidal plasma current. In an further adaptation, the amplified waves can be made to preferentially increase the energy of fuel ions within the plasma to enhance the fusion reactivity of the fuel ions. The described direct, or in situ, conversion of the energetic ion energy provides an efficient and economical means of delivering power to a fusion reactor. 4 figures.

  10. Apparatus and method for extracting power from energetic ions produced in nuclear fusion

    DOE Patents [OSTI]

    Fisch, Nathaniel J. (Princeton, NJ); Rax, Jean M. (Paris, FR)

    1994-01-01T23:59:59.000Z

    An apparatus and method of extracting power from energetic ions produced by nuclear fusion in a toroidal plasma to enhance respectively the toroidal plasma current and fusion reactivity. By injecting waves of predetermined frequency and phase traveling substantially in a selected poloidal direction within the plasma, the energetic ions become diffused in energy and space such that the energetic ions lose energy and amplify the waves. The amplified waves are further adapted to travel substantially in a selected toroidal direction to increase preferentially the energy of electrons traveling in one toroidal direction which, in turn, enhances or generates a toroidal plasma current. In an further adaptation, the amplified waves can be made to preferentially increase the energy of fuel ions within the plasma to enhance the fusion reactivity of the fuel ions. The described direct, or in situ, conversion of the energetic ion energy provides an efficient and economical means of delivering power to a fusion reactor.

  11. Method of producing Pb-stabilized superconductor precursors and method of producing superconductor articles therefrom

    DOE Patents [OSTI]

    Kroeger, D.M.; Hsu, H.S.; Brynestad, J.

    1995-03-07T23:59:59.000Z

    Metal oxide superconductor powder precursors are prepared in an aerosol pyrolysis process. A solution of the metal cations is introduced into a furnace at 600--1,000 C for 0.1 to 60 seconds. The process produces micron to submicron size powders without the usual loss of the lead stabilizer. The resulting powders have a narrow particle size distribution, a small grain size, and are readily converted to a superconducting composition upon subsequent heat treatment. The precursors are placed in a metal body deformed to form a wire or tape and heated to form a superconducting article. The fine powders permit a substantial reduction in heat treatment time, thus enabling a continuous processing of the powders into superconducting wire, tape or multifilamentary articles by the powder-in-tube process. 3 figs.

  12. Method of producing Pb-stabilized superconductor precursors and method of producing superconductor articles therefrom

    DOE Patents [OSTI]

    Kroeger, Donald M. (Knoxville, TN); Hsu, Huey S. (Knoxville, TN); Brynestad, Jorulf (Oak Ridge, TN)

    1995-01-01T23:59:59.000Z

    Metal oxide superconductor powder precursors are prepared in an aerosol pyrolysis process. A solution of the metal cations is introduced into a furnace at 600.degree.-1000.degree. C. for 0.1 to 60 seconds. The process produces micron to submicron size powders without the usual loss of the lead stabilizer. The resulting powders have a narrow particle size distribution, a small grain size, and are readily converted to a superconducting composition upon subsequent heat treatment. The precursors are placed in a metal body deformed to form a wire or tape and heated to form a superconducting article. The fine powders permit a substantial reduction in heat treatment time, thus enabling a continuous processing of the powders into superconducting wire, tape or multifilamentary articles by the powder-in-tube process.

  13. Searching for the Optimal Mix of Solar and Efficiency in Zero Net Energy Buildings: Preprint

    SciTech Connect (OSTI)

    Horowitz, S.; Christensen, C.; Anderson, R.

    2008-08-01T23:59:59.000Z

    Zero net energy buildings employ efficiency to reduce energy consumption and solar technologies to produce as much energy on site as is consumed on an annual basis.

  14. Department of Energy Releases Vision & Framework for the U.S...

    Office of Environmental Management (EM)

    hydrogen, carbon sequestration, renewable energy sources, and advanced nuclear and fusion energy, have the potential to transform the way energy is produced and consumed....

  15. Energy efficiency, innovation, and job creation in California

    E-Print Network [OSTI]

    Roland-Holst, David

    2008-01-01T23:59:59.000Z

    costs can create energy savings for both business andcost of energy, producing a number of substantial benefits for California businesses and

  16. Treasury, Energy Announce More Than $2 Billion in Recovery Act...

    Office of Environmental Management (EM)

    types of energy equipment. Qualifying manufactures will produce solar, wind, and geothermal energy equipment; fuel cells, microturbines, and batteries; electric cars;...

  17. Renewing America's Nuclear Power Partnership for Energy Security...

    Office of Environmental Management (EM)

    involved. And, we certainly have challenges before us: rapidly growing global demand for energy, high prices, and an urgent need to produce and use energy in ways that...

  18. Electric Potential Near The Extraction Region In Negative Ion Sources With Surface Produced Negative Ions

    SciTech Connect (OSTI)

    Fukano, A. [Monozukuri Department, Tokyo Metropolitan College of Industrial Technology, 1-10-40 Higashi-Ohi, Shinagawa-ku, Tokyo 140-0011 (Japan); Hatayama, A. [Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kouhoku-ku, Yokohama 223-8522 (Japan)

    2011-09-26T23:59:59.000Z

    The potential distribution near the extraction region in negative ion sources for the plasma with the surface produced negative ions is studied analytically. The potential is derived analytically by using a plasma-sheath equation, where negative ions produced on the Plasma Grid (PG) surface are considered in addition to positive ions and electrons. A negative potential peak is formed in the sheath region near the PG surface for the case of strong surface production of negative ions or for low energy negative ions. Negative ions are reflected by the negative potential peak near the PG and returned to the PG surface. This reflection mechanism by the negative potential peak possibly becomes a factor in negative ion extraction. It is also indicated that the potential difference between the plasma region and the wall decreases by the surface produced negative ions. This also has the possibility to contribute to the negative ion extraction.

  19. July 2010 Natural Gas and Produced Water Sampling at the Gasbuggy, New Mexico, Site

    SciTech Connect (OSTI)

    None

    2011-01-01T23:59:59.000Z

    Annual natural gas and produced water monitoring was conducted for gas wells adjacent to Section 36, where the Gasbuggy test was conducted, in accordance with the draft Long-Term Surveillance and Maintenance Plan for the Gasbuggy Site, Rio Arriba County, New Mexico. Sampling and analysis was conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites. (LMS/PLN/S04351, continually updated). Natural gas samples were collected for tritium and carbon-14 analysis. Produced water samples were collected and analyzed for tritium, gamma-emitting radionuclides (by high-resolution gamma spectrometry), gross alpha, and gross beta. An additional water sample was collected from well 29-6 Water Hole for analysis of tritium and gamma-emitting radionuclides. A duplicate produced water sample was collected from well 30-039-21743.

  20. acinetobacter baumannii producing: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    part of this thesis, the objective is to identify optimal bidding strategies in the wholesale electricity market. We consider asymmetric producers submitting bids to a system...

  1. adrenal pheochromocytoma producing: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    part of this thesis, the objective is to identify optimal bidding strategies in the wholesale electricity market. We consider asymmetric producers submitting bids to a system...

  2. Graphene Produces More Efficient Charge Transport Inside an Organic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Graphene Produces More Efficient Charge Transport Inside an Organic Semiconductor Graphene, a two dimensional semi-metal made of sp 2 hybridized carbon, is an outstanding material...

  3. Lattice Distortions and Oxygen Vacancies Produced in Au+-Irradiated...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the efficiency of solid oxide fuel cells can be improved. Citation: Edmondson PD, WJ Weber, F Namavar, and Y Zhang.2011."Lattice Distortions and Oxygen Vacancies Produced in...

  4. Compositions produced using an in situ heat treatment process

    DOE Patents [OSTI]

    Roes, Augustinus Wilhelmus Maria; Nair, Vijay; Munsterman, Erwin Hunh; Van Bergen, Petrus Franciscus; Van Den Berg, Franciscus Gondulfus Antonius

    2013-05-28T23:59:59.000Z

    Methods for treating a subsurface formation and compositions produced therefrom are described herein. At least one method for producing hydrocarbons from a subsurface formation includes providing heat to the subsurface formation using an in situ heat treatment process. One or more formation particles may be formed during heating of the subsurface formation. Fluid that includes hydrocarbons and the formation particles may be produced from the subsurface formation. The formation particles in the produced fluid may include cenospheres and have an average particle size of at least 0.5 micrometers.

  5. Graphene Produces More Efficient Charge Transport Inside an Organic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Graphene Produces More Efficient Charge Transport Inside an Organic Semiconductor Friday, January 30, 2015 Graphene, a two dimensional semi-metal made of sp2 hybridized carbon, is...

  6. From Producer Innovation to User and Open Collaborative Innovation

    E-Print Network [OSTI]

    Baldwin, Carliss

    In this paper we assess the economic viability of innovation by producers relative to two increasingly important alternative models: innovations by single user individuals or firms, and

  7. Biochar Produced from Anaerobically Digested Fiber Reduces Phosphorus...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lagoons. Abstract: This study evaluated the use of biochar produced from anaerobic digester dairy fiber (ADF) to sequester phosphorus (P) from dairy lagoons. The ADF was...

  8. Development of biomass gasification to produce substitute fuels

    SciTech Connect (OSTI)

    Evans, R.J.; Knight, R.A.; Onischak, M.; Babu, S.P.

    1988-03-01T23:59:59.000Z

    The development of an efficient pressurized, medium-Btu steam-oxygen-blown fluidized-bed biomass gasification process was conducted. The overall program included initial stages of design-support research before the 12-ton-per-day (TPD) process research unit (PRU) was built. These stages involved the characterization of test-specific biomass species and the characteristics and limits of fluidization control. Also obtained for the design of the adiabatic PRU was information from studies with bench-scale equipment on the rapid rates of biomass devolatilization and on kinetics of the rate-controlling step of biomass char and steam gasification. The development program culminated with the sucessful operation of the PRU through 19 parametric-variation tests and extended steady-state process-proving tests. the program investigated the effect of gasifier temperature, pressure, biomass throughput rate, steam-to-biomass ratio, type of feedstock, feedstock moisture, and fludized-bed height on gasification performance. A long-duration gasification test of 3 days steady-state operation was conducted with the whole tree chips to indentify long-term effects of fluidized process conditions; to establish gasifier material and energy balances; to determine the possible breakthrough of low concentration organic species; and to evaluate the mechanical performance of the system components. Results indicate that the pressurized fludizied-bed process, can achieve carbon conversions of about 95% with cold gas thermal efficiences about 75% and with low and tar production. New information was collected on the oil and tar fraction, which relate to the process operating conditions and feedstock type. The different feedstocks studied were very similar in elemental compositions, and produced similar product gas compositions, but each has a different distribution and character of the oil and tar fractions. 11 refs., 45 figs., 18 tabs.

  9. Small Wind Electric Systems: A Guide Produced for the Tennessee Valley Authority (Revised) (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2009-06-01T23:59:59.000Z

    Small Wind Electric Systems: A Guide Produced for the Tennessee Valley Authority provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a regional wind resource map and a list of incentives and contacts for more information.

  10. Standoff detection of hidden objects using backscattered ultra-intense laser-produced x-rays

    SciTech Connect (OSTI)

    Kuwabara, H. [IHI Corporation, 1, Shin-Nakahara-cho, Isogo-ku, Yokohama 235-8501 (Japan)] [IHI Corporation, 1, Shin-Nakahara-cho, Isogo-ku, Yokohama 235-8501 (Japan); Mori, Y.; Kitagawa, Y. [The Graduate School for the Creation of New Photonics Industries, 1955-1 Kurematsucho, Nishiku, Hamamatsu, Shizuoka 431-1202 (Japan)] [The Graduate School for the Creation of New Photonics Industries, 1955-1 Kurematsucho, Nishiku, Hamamatsu, Shizuoka 431-1202 (Japan)

    2013-08-28T23:59:59.000Z

    Ultra-intense laser-produced sub-ps X-ray pulses can detect backscattered signals from objects hidden in aluminium containers. Coincident measurements using primary X-rays enable differentiation among acrylic, copper, and lead blocks inside the container. Backscattering reveals the shapes of the objects, while their material composition can be identified from the modification methods of the energy spectra of backscattered X-ray beams. This achievement is an important step toward more effective homeland security.

  11. High-throughput detection of ethanol-producing cyanobacteria in a microdroplet platform

    E-Print Network [OSTI]

    Abalde-Cela, Sara; Gould, Anna; Liu, Xin; Kazamia, Elena; Smith, Alison G.; Abell, Chris

    2015-03-17T23:59:59.000Z

    crops such as maize or sugar cane [2]. In particular, bioethanol is emerging as one of the most promising non-fossil energy resources, due to its abil- ity to be a ‘drop-in’ fuel mixed with gasoline (petrol). However, bioethanol production from sugars... obtained from arable crops requires high land areas to meet the energy requirements and so competes with land for food production. As a consequence, the need for alternative bioethanol producers is a critical issue in the biofuel field [3,4]. Microalgae...

  12. Comparative genomics of citric-acid producing Aspergillus niger ATCC 1015 versus enzyme-producing CBS 513.88

    E-Print Network [OSTI]

    Grigoriev, Igor V.

    2011-01-01T23:59:59.000Z

    expression  profiles.   Mol.   Genet.   Genomics  279: Comparative genomics of citric-acid producing Aspergillus2006.  Aspergillus niger genomics: past, present and into 

  13. Florida Project Produces Nation's First Cellulosic Ethanol at...

    Energy Savers [EERE]

    innovative technologies that will help diversify our energy portfolio, reduce carbon pollution and lead to tomorrow's energy breakthroughs." As the President's Climate Action Plan...

  14. The Key Coal Producers ONLINE SUPPORTING MATERIALS to

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    The Key Coal Producers ONLINE SUPPORTING MATERIALS to A Global Coal Production Forecast with Multi's most important coal-producing area is North-Central China. The provinces of Inner Mongolia, Ningxia, Shaanxi and Shanxi together accounted for 83 percent of China's proven coal reserves in 2000, and Shanxi

  15. Magnetic minerals produced by magnetotactic bacteria Balzs Arat1

    E-Print Network [OSTI]

    Dunin-Borkowski, Rafal E.

    Magnetic minerals produced by magnetotactic bacteria Balázs Arató1 , Mihály Pósfai1 and Rafal E-controlled mineralization Abstract. Magnetotactic bacteria produce intracellular magnetic minerals that have distinct for studying the biological membrane around the mineral grains. Our goals were to deduce the possible growth

  16. UNL Researchers Determine Costs of Producing Switchgrass for Ethanol

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    UNL Researchers Determine Costs of Producing Switchgrass for Ethanol By Sandi Alswager Karstens, IANR News Service On-farm cost of producing switchgrass for cellulosic ethanol averages about $60 per ethanol from switchgrass because that industry is not really born yet." Researchers offered a speculative

  17. Method of producing adherent metal oxide coatings on metallic surfaces

    DOE Patents [OSTI]

    Lane, Michael H. (Clifton Park, NY); Varrin, Jr., Robert D. (McLean, VA)

    2001-01-01T23:59:59.000Z

    Provided is a process of producing an adherent synthetic corrosion product (sludge) coating on metallic surfaces. The method involves a chemical reaction between a dry solid powder mixture of at least one reactive metal oxide with orthophosphoric acid to produce a coating in which the particles are bound together and the matrix is adherent to the metallic surface.

  18. Methods and apparatus for producing and storing positrons and protons

    DOE Patents [OSTI]

    Akers, Douglas W. (Idaho Falls, ID)

    2010-07-06T23:59:59.000Z

    Apparatus for producing and storing positrons may include a trap that defines an interior chamber therein and that contains an electric field and a magnetic field. The trap may further include a source material that includes atoms that, when activated by photon bombardment, become positron emitters to produce positrons. The trap may also include a moderator positioned adjacent the source material. A photon source is positioned adjacent the trap so that photons produced by the photon source bombard the source material to produce the positron emitters. Positrons from the positron emitters and moderated positrons from the moderator are confined within the interior chamber of the trap by the electric and magnetic fields. Apparatus for producing and storing protons are also disclosed.

  19. Education Toolbox Search | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    resources can use the oceans to produce energy. We are familiar with the large hydroelectric dams that dot our nation, creating large reservoirs and flooding millions of acres...

  20. How Fuel Cells Work | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    30 likes How Fuel Cells Work Fuel cells produce electrical power without any combustion and operate on fuels like hydrogen, natural gas and propane. This clean energy technology...

  1. On Farm Energy Efficiency and Production Grants

    Broader source: Energy.gov [DOE]

    Under the County Agricultural Investment Program (CAIP), the Office of Agricultural Policy (OAP) offers grants for farms that incorporate energy efficiency into their operations, produce...

  2. U.S. Energy Information Administration (EIA)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    (Figure 10). The projected growth in energy imports is moderated by increased use of biofuels (much of which are produced domestically), demand reductions resulting from the...

  3. Overview of Existing Wind Energy Ordinances

    Broader source: Energy.gov (indexed) [DOE]

    the steady sound level that, over 10-minute measurement periods, would produce the same energy equivalence as the fluctuating sound level actually occurring. 3) Low-frequency...

  4. Panasonic Corporation Energy Company formerly Matsushita Battery...

    Open Energy Info (EERE)

    to: navigation, search Name: Panasonic Corporation Energy Company (formerly Matsushita Battery Industrial Co) Place: Moriguchi, Osaka, Japan Zip: 570-8511 Product: Producer of...

  5. Timeline of Events: 2010 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    manufacturers will produce solar, wind, and geothermal energy equipment; fuel cells, microturbines, and batteries; electric cars; electric grids to support the...

  6. Education Toolbox Search | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    understanding-earths-energy-sources Download Mini Rockets Groups of students produce hydrogen and oxygen gas. Using pipette mini rockets, students investigate which mixture of...

  7. Moorhead Public Service Utility- Renewable Energy Incentive

    Broader source: Energy.gov [DOE]

    Moorhead Public Service (MPS) offers rebates for qualifying electricity producing solar or wind renewable energy systems. Wind rebates are not availble to residential customers. Rebates are for up...

  8. Education Toolbox Search | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    energy.goveereeducationdownloadsbuild-pizza-box-solar-oven-0 Download Creating Biodiesel & Mitigating Waste Safety practices for handling the materials involved in producing...

  9. Dr. Rene Pecnik Energy Technology Section, Process and Energy Department,

    E-Print Network [OSTI]

    Lindken, Ralph

    Dr. Rene Pecnik Energy Technology Section, Process and Energy Department, Delft University of Technology, Delft, The Netherlands Phone: +31 15 27 89153 Email: r.pecnik@tudelft.nl Fluid dynamics of next generation power cycles More than 80% of the world electricity is produced from thermal energy via

  10. PROJECTS FROM FEDERAL REGION IX DEPARTMENT OF ENERGY APPROPRIATE ENERGY TECHNOLOGY PROGRAM PART II

    E-Print Network [OSTI]

    Case, C.W.

    2012-01-01T23:59:59.000Z

    producing 258 million Btu annually. Over a lifetimewill produce about 2.58 billion Btu. REFERENCES Case, C.W. ,will provide 8.9 million Btu of energy :::nnual or about of

  11. Introduction to Fusion Energy Jerry Hughes

    E-Print Network [OSTI]

    Introduction to Fusion Energy Jerry Hughes IAP @ PSFC January 8, 2013 Acknowledgments: Catherine) a practical energy source on earth 2 mcE #12;Fusion is a form of nuclear energy · A huge amount of energy;Terrestrial energy sources have their origin in the nuclear fusion reactions of stars Supernova produces

  12. CONTROL OF HAZARDOUS ENERGY 12.A GENERAL

    E-Print Network [OSTI]

    US Army Corps of Engineers

    EM 385-1-1 XX Jun 13 12-1 SECTION 12 CONTROL OF HAZARDOUS ENERGY 12.A GENERAL 12.A.01 When working on or near any system that produces, uses, or stores hazardous energy, a hazardous energy control program (HECP) is required see 12.B. Hazardous energy is any energy, including but not limited to mechanical (e

  13. When fish die, bacteria or the enzymes they produce invade the flesh of fish. This process produces toxic

    E-Print Network [OSTI]

    Michel, Howard E.

    ABSTRACT When fish die, bacteria or the enzymes they produce invade the flesh of fish. This process produces toxic compounds in the fish and the fish becomes spoiled. Fourier Transform Infrared spectroscopy neural network (ANN) for the development of an ANN based FT-IR Screening System for fish

  14. Producing a trimethylpentanoic acid using hybrid polyketide synthases

    DOE Patents [OSTI]

    Katz, Leonard; Fortman, Jeffrey L; Keasling, Jay D

    2014-10-07T23:59:59.000Z

    The present invention provides for a polyketide synthase (PKS) capable of synthesizing trimethylpentanoic acid. The present invention also provides for a host cell comprising the PKS and when cultured produces the trimethylpentanoic acid. The present invention also provides for a method of producing the trimethylpentanoic acid, comprising: providing a host cell of the present invention, and culturing said host cell in a suitable culture medium such that the trimethylpentanoic acid is produced, optionally isolating the trimethylpentanoic acid, and optionally, reducing the isolated trimethylpentanoic acid into a trimethylpentanol or an iso-octane.

  15. Compositions produced using an in situ heat treatment process

    DOE Patents [OSTI]

    Roes, Augustinus Wilhelmus Maria (Houston, TX); Nair, Vijay (Katy, TX); Munsterman, Erwin Henh (Amsterdam, NL); Van Bergen, Petrus Franciscus (Amsterdam, NL); Van Den Berg, Franciscus Gondulfus Antonius (Amsterdam, NL)

    2009-10-20T23:59:59.000Z

    Systems, methods, and heaters for treating a subsurface formation are described herein. At least one method for producing hydrocarbons from a subsurface formation includes providing heat to the subsurface formation using an in situ heat treatment process. One or more formation particles may be formed during heating of the subsurface formation. Fluid that includes hydrocarbons and the formation particles may be produced from the subsurface formation. The formation particles in the produced fluid may include cenospheres and have an average particle size of at least 0.5 micrometers.

  16. Applications Received by DOE/FE to Export Domestically Produced...

    Broader source: Energy.gov (indexed) [DOE]

    Applications Received by DOEFE to Export Domestically Produced LNG from the Lower-48 States (as of March 5, 2014) All Changes Since February 11, 2014 Update Are In Red 1 Company...

  17. ORIGINAL ARTICLE Characterization of the cellulolytic and hydrogen-producing

    E-Print Network [OSTI]

    or acid rain (Nath and Das 2004). Moreover, H2 can be produced biologically from renew- able resources this efficiently through physicochemical techniques such as steam explo- sion and dilute-acid pretreatment, as well

  18. Using Virtual Teamwork to Produce an Information Technology Magazine

    E-Print Network [OSTI]

    Berkley, Travis J.

    2006-05-19T23:59:59.000Z

    The fast paced world of Information Technology is constantly changing. News magazines are one frequently used resource in the never-ending battle to stay current. While it takes a large company to produce a nationally-recognized ...

  19. USDA Webinar: Value-Added Producer Grants for Tribal Entities

    Broader source: Energy.gov [DOE]

    Sponsored by the U.S. Department of Agriculture (USDA) Rural Development, this tribal-specific training will provide an overview of the FY14 Funding Opportunity and the Value-Added Producer Grants ...

  20. Micro-mechanical logic for field produceable gate arrays

    E-Print Network [OSTI]

    Prakash, Manu

    2005-01-01T23:59:59.000Z

    A paradigm of micro-mechanical gates for field produceable logic is explored. A desktop manufacturing system is sought after which is capable of printing functional logic devices in the field. A logic scheme which induces ...

  1. Scientists propose a solution to a critical barrier to producing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientists propose a solution to a critical barrier to producing fusion By John Greenwald April 23, 2012 Tweet Widget Google Plus One Share on Facebook From left: physicists Luis...

  2. Treating and Reusing Produced Water | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Researchers at OGTC Seek Sustainable Produced Water Management Solutions Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to...

  3. RPSEA Final Report Small Producers Program Development Strategies...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    have increased the reservoir pressure and improved oil recovery. The South Kilgore Unit and the South Pilot area are two of the best producing areas in the ETOF in the last 10...

  4. DOE Seeks Industry Proposals for Feasibility Study to Produce...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Plants DOE Seeks Industry Proposals for Feasibility Study to Produce Greenhouse Gas-Free Hydrogen at Existing Nuclear Power Plants April 13, 2006 - 10:19am Addthis...

  5. SaskPower Small Power Producers Program (Saskatchewan, Canada)

    Broader source: Energy.gov [DOE]

    The Small Power Producers Program accommodates customers who wish to generate up to 100 kilowatts (kW) of electricity for the purpose of offsetting power that would otherwise be purchased from...

  6. Tearing Graphene Sheets From Adhesive Substrates Produces Tapered Nanoribbons

    E-Print Network [OSTI]

    Entekhabi, Dara

    Thin films Tearing Graphene Sheets From Adhesive Substrates Produces Tapered Nanoribbons Dipanjan Sen, Kostya S. Novoselov, Pedro M. Reis, and Markus J. Buehler* Graphene is a truly two- film materials have been studied extensively, the key mechanical properties of graphene

  7. Reactive binders for metal parts produced by Three Dimensional Printing

    E-Print Network [OSTI]

    Yoo, Helen Jean

    1997-01-01T23:59:59.000Z

    Three Dimensional Printing (3DP) is a solid free form fabrication process which enables the construction of parts directly from computer-aided design (CAD) models. In the current process, metal parts are produced by printing ...

  8. New Methane-Producing Microbe Found in Thawing Permafrost | U...

    Office of Science (SC) Website

    the metabolic pathway for methanogenesis, the process by which microbes consume hydrogen and CO2 and produce CH4. Measurements of CH4 flux at the thawing permafrost site and...

  9. The energy quandary

    SciTech Connect (OSTI)

    LePori, W.A. (Texas A and M Univ., College Station (United States))

    1991-03-01T23:59:59.000Z

    As the war in the Middle East draws attention to energy needs, agricultural engineers will have the opportunity to contribute to a rational energy use policy. Even before the war, changes were occurring that pointed to the need for reviewing energy use in agriculture. A new consciousness of environmental problems is arising in the US. Many changes such as recycling, new pesticide regulations, more stringent air and water quality standards, new food quality standards, and others will directly impact energy use within the food and fiber producing industries. Energy issues should be addressed simultaneously with environmental issues. In the past, agricultural engineers have responded and provided significant contributions to help assure agriculture's energy needs. Their participation and input is again vital to assure availability of adequate energy for agriculture and development of energy resources from agriculture.

  10. Confined Thermal Multicharged Ions Produced by Synchrotron Radiation 

    E-Print Network [OSTI]

    Church, David A.; Kravis, S. D.; Sellin, I. A.; Levin, J. C.; Short, R. T.; Meron, M.; Johnson, B. M.; Jones, K. W.

    1987-01-01T23:59:59.000Z

    of the accelerated schedule publication is not delayed for receipt of corrections unless requested by the author or noted by the editor Confined thermal multlcharged lons produced by synchrotron radiation D. A. Church and S. D. Kravis Physics Department, Texas... M. Meron, B. M. Johnson, and K. W. Jones Brookhaven National Laboratory, Upton, New York 11973 (Received 2 April 1987) Synchrotron x rays have been used to produce a confined multicharged ion gas near room tem- perature. Comparison of charge-state-number...

  11. Process for producing peracids from aliphatic hydroxy carboxylic acids

    DOE Patents [OSTI]

    Chum, H.L.; Palasz, P.D.; Ratcliff, M.A.

    1984-12-20T23:59:59.000Z

    A process is described for producing peracids from lactic acid-containing solutions derived from biomass processing systems. It consists of adjusting the pH of the solution to about 8 to 9 and removing alkaline residue fractions therefrom to form a solution comprised substantially of lower aliphatic hydroxy acids. The solution is oxidized to produce volatile lower aliphatic aldehydes. The aldehydes are removed as they are generated and converted to peracids.

  12. Analysis of alternative marketing organizations for improving rice producer income

    E-Print Network [OSTI]

    Guillot, Patrick Dale

    1975-01-01T23:59:59.000Z

    of Depart nt) (Member) (Member) (Member) (Member) December 1975 ABSTRACT Analysis of Alternative Marketing Organizations for Improving Rice Producer income. (December 1975) Patrick Dale Guillot, B. S. , Louisiana State University Chairman of Advisory... of the Blue Ribbon Rice Mills, Inc. This gives ARI milling and storage facilities. Also, AGA has acquired control and ownership of the MGC facilities. Both of these actions are definite moves toward a fully integrated and producer operated organization...

  13. Method for producing hydrogen and oxygen by use of algae

    DOE Patents [OSTI]

    Greenbaum, Elias (Oak Ridge, TN)

    1984-01-01T23:59:59.000Z

    Efficiency of process for producing H.sub.2 by subjecting algae in an aqueous phase to light irradiation is increased by culturing algae which has been bleached during a first period of irradiation in a culture medium in an aerobic atmosphere until it has regained color and then subjecting this algae to a second period of irradiation wherein hydrogen is produced at an enhanced rate.

  14. Method for producing hydrogen and oxygen by use of algae

    DOE Patents [OSTI]

    Greenbaum, E.

    1982-06-16T23:59:59.000Z

    Efficiency of process for producing H/sub 2/ by subjecting algae in an aqueous phase to light irradiation is increased by culturing algae which has been bleached during a first period of irradiation in a culture medium in an aerobic atmosphere until it has regained color and then subjecting this algae to a second period of irradiation wherein hydrogen is produced at an enhanced rate.

  15. Produced water radionuclide hazard/risk assessment, Phase 1

    SciTech Connect (OSTI)

    Hamilton, L.D.; Meinhold, A.F.; Nagy, J.

    1991-06-01T23:59:59.000Z

    Petroleum production may be accompanied by the production of saline water, called ``produced water.`` Produced water discharged into freshwater streams, estuaries, coastal and outer continental shelf waters can contained enhanced levels of radium isotopes. This document reports on the first phase of a study to estimate the risk to human health and the environment from radium discharged in produced water. The study involved five major steps: (1) evaluate the usefulness of available produced water outfall data for developing estimates of radium environmental concentrations; (2) review the literature on the bioaccumulation of radium by aquatic organism; (3) review the literature on the effects of radiation on aquatic organisms; (4) review the information available concerning the human health risks associated with exposure to Ra-226 and Ra-228 and (5) perform a conservative, screening-level assessment of the health and environmental risks posed by Ra-226 and Ra-228 discharged in produced waters. A screening-level analysis was performed to determine whether radium discharged to coastal Louisiana in produced waters presents potential health or environmental risks requiring further study. This conservative assessment suggested that no detectable impact on populations of fish, molluscs or crustaceans from radium discharged in produced waters is likely. The analysis also suggested that there is a potential for risk were an individual to ingest a large amount of seafood harvested near a produced water discharge point over a lifetime. The number of excess cancers predicted per year under a conservative scenario is comparable to those expected to result from background concentrations of radium.

  16. Produced water radionuclide hazard/risk assessment, Phase 1

    SciTech Connect (OSTI)

    Hamilton, L.D.; Meinhold, A.F.; Nagy, J.

    1991-06-01T23:59:59.000Z

    Petroleum production may be accompanied by the production of saline water, called produced water.'' Produced water discharged into freshwater streams, estuaries, coastal and outer continental shelf waters can contained enhanced levels of radium isotopes. This document reports on the first phase of a study to estimate the risk to human health and the environment from radium discharged in produced water. The study involved five major steps: (1) evaluate the usefulness of available produced water outfall data for developing estimates of radium environmental concentrations; (2) review the literature on the bioaccumulation of radium by aquatic organism; (3) review the literature on the effects of radiation on aquatic organisms; (4) review the information available concerning the human health risks associated with exposure to Ra-226 and Ra-228 and (5) perform a conservative, screening-level assessment of the health and environmental risks posed by Ra-226 and Ra-228 discharged in produced waters. A screening-level analysis was performed to determine whether radium discharged to coastal Louisiana in produced waters presents potential health or environmental risks requiring further study. This conservative assessment suggested that no detectable impact on populations of fish, molluscs or crustaceans from radium discharged in produced waters is likely. The analysis also suggested that there is a potential for risk were an individual to ingest a large amount of seafood harvested near a produced water discharge point over a lifetime. The number of excess cancers predicted per year under a conservative scenario is comparable to those expected to result from background concentrations of radium.

  17. Energy Assessment Protocol for Glass Furnaces

    E-Print Network [OSTI]

    Plodinec, M. J.; Kauffman, B. M.; Norton, O. P.; Richards, C.; Connors, J.; Wishnick, D.

    2005-01-01T23:59:59.000Z

    The Department of Energy funded development of a methodology that could be used by glass producers to increase furnace efficiency, and that could serve as a model for other energy-intensive industries. Accordingly, a team comprising PPG Industries...

  18. Energy Philosophy in Prospective Petrochemical Projects 

    E-Print Network [OSTI]

    Wallsgrove, C.

    1994-01-01T23:59:59.000Z

    The process design of large, highly integrated and energy-efficient petrochemical plants will depend significantly on the local energy market. The pricing, availability and possible offtakers for steam, power and fuel consumed and produced...

  19. Max Baumhefner & Ed Pike, Co-Authors Andreas Klugescheid, Contributing Author

    E-Print Network [OSTI]

    California at Davis, University of

    Federal, international government agencies Universities 2 Background Mission:Energy Solutions' mission and customers served: Energy utilities Water utilities Private sector State, local government agencies Integrating variable renewable resources On-site renewables Off-site renewables Renewable Energy

  20. Energy 101: Energy Efficient Data Centers

    ScienceCinema (OSTI)

    None

    2013-05-29T23:59:59.000Z

    Data centers provide mission-critical computing functions vital to the daily operation of top U.S. economic, scientific, and technological organizations. These data centers consume large amounts of energy to run and maintain their computer systems, servers, and associated high-performance components?up to 3% of all U.S. electricity powers data centers. And as more information comes online, data centers will consume even more energy. Data centers can become more energy efficient by incorporating features like power-saving "stand-by" modes, energy monitoring software, and efficient cooling systems instead of energy-intensive air conditioners. These and other efficiency improvements to data centers can produce significant energy savings, reduce the load on the electric grid, and help protect the nation by increasing the reliability of critical computer operations.

  1. Energy Realpolitik: Towards a Sustainable Energy Strategy

    E-Print Network [OSTI]

    Schroeder, W Udo

    2008-01-01T23:59:59.000Z

    A long-term strategy based on existing technological, ecological, economical, and geopolitical realities is urgently needed to develop a sustainable energy economy, which should be designed with adaptability to unpredicted changes in any of these aspects. While only a highly diverse energy portfolio and conservation can ultimately guarantee optimum sustainability, based on a comparison of current primary energy generation methods, it is argued that future energy strategy has to rely heavily on expanded coal and nuclear energy sectors. A comparison of relative potentials, merits and risks associated with fossil-fuel, renewable, and nuclear technologies suggests that the balance of technologies should be shifted in favor of new-generation, safe nuclear methods to produce electricity, while clean-coal plants should be assigned to transportation fuel. Novel nuclear technologies exploit fission of uranium and thorium as primary energy sources with fast-spectrum and transmutation (burner) reactors. A closed fuel cy...

  2. U.S. Department of Energy Grand Junction Projects Office site environmental report for calendar year 1995

    SciTech Connect (OSTI)

    NONE

    1996-05-01T23:59:59.000Z

    This report presents information pertaining to environmental activities conducted during calendar year 1995 at the US Department of Energy (DOE) Grand Junction Projects Office (GJPO) facility in Grand Junction, Colorado. Environmental activities conducted at the GJPO facility during 1995 were associated with mixed-waste treatment, site remediation, off-site dose modeling, and radiological and nonradiological monitoring. As part of the GJPO Mixed-Waste Treatment Program, on-site treatability studies were conducted in 1995 that made use of pilot-scale evaporative-oxidation and thermal-desorption units and bench-scale stabilization. DOE-GJPO used some of its own mixed-waste as well as samples received from other DOE sites for these treatability studies. These studies are expected to conclude in 1996. Removal of radiologically contaminated materials from GJPO facility buildings was conducted under the provisions of the Grand Junction Projects Office Remedial Action Project. Remediation activities included the removal of 394 metric tons of contaminated material from Buildings 18 and 28 and revegetation activities on the GJPO site; remediation was conducted in compliance with applicable permits.

  3. NRG Energy, Inc. (BrightSource) | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    jobs. Impact When completed in late 2013, Ivanpah will nearly double the amount of solar thermal energy produced in the U.S. in previous years. By harnessing the Mojave Desert's...

  4. Energy Matters, September/October 1999

    SciTech Connect (OSTI)

    NONE

    1999-09-13T23:59:59.000Z

    Energy Matters is a quarterly newsletter to update partners on Motor Challenge progress. This issue includes these topics: small town plastics manufacturer produces big local energy and cost savings; technical advances improve industrial energy efficiency; energy service companies: cost-savings partners for industry; choosing the right energy service company to prove the value of motor upgrades projects; energy assets: tapping the hidden value; steam workshops promote energy efficiency; performance optimization tips.

  5. Matter & Energy Solar Energy

    E-Print Network [OSTI]

    Rogers, John A.

    See Also: Matter & Energy Solar Energy· Electronics· Materials Science· Earth & Climate Energy at the University of Illinois, the future of solar energy just got brighter. Although silicon is the industry Electronics Over 1.2 Million Electronics Parts, Components and Equipment. www.AlliedElec.com solar energy

  6. Energy Efficiency & Renewable Energy

    E-Print Network [OSTI]

    Federal buildings which begin the planning process by 2020 to achieve zero-net energy by 2030 PotentialEnergy Efficiency & Renewable Energy Overview of Hydrogen and Fuel Cell Activities Dr. Sunita of Energy Military Energy and Alternative Fuels Conference March 17-18, 2010 San Diego, CA #12;2 1. Overview

  7. Midwest Renewable Energy Corporation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio:Menomonee| OpenMickeyDelaware: EnergyMidnightProducers

  8. Midwest Renewable Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio:Menomonee| OpenMickeyDelaware: EnergyMidnightProducersLLC Place:

  9. Midwest Wind Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio:Menomonee| OpenMickeyDelaware: EnergyMidnightProducersLLCMidwest

  10. Energy Equipment Property Tax Exemption

    Broader source: Energy.gov [DOE]

    A "solar energy device" for the purpose of this incentive is defined as "a system or series of mechanisms designed primarily to provide heating, to provide cooling, to produce electrical power, to...

  11. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    can use the oceans to produce energy. We are familiar with the large hydroelectric dams that dot our nation, creating large reservoirs and flooding millions of acres of land....

  12. Energy Engineering and Systems Analysis

    E-Print Network [OSTI]

    Kemner, Ken

    , energy is produced by the nuclear fission process in which uranium atoms are split into two major atoms to shutdown the fission process. Heat Production and Removal and Power Production The heat produced during reactor operation is removed by a flowing coolant, e.g. water, and the heat is then converted

  13. Opportunity Analysis for Recovering Energy from Industrial Waste Heat and Emissions

    SciTech Connect (OSTI)

    Viswanathan, Vish V.; Davies, Richard W.; Holbery, Jim D.

    2006-04-01T23:59:59.000Z

    United States industry consumed 32.5 Quads (34,300 PJ) of energy during 2003, which was 33.1% of total U.S. energy consumption (EIA 2003 Annual Energy Review). The U.S. industrial complex yields valuable goods and products. Through its manufacturing processes as well as its abundant energy consumption, it supports a multi-trillion dollar contribution to the gross domestic product and provides millions of jobs in the U.S. each year. Industry also yields waste products directly through its manufacturing processes and indirectly through its energy consumption. These waste products come in two forms, chemical and thermal. Both forms of waste have residual energy values that are not routinely recovered. Recovering and reusing these waste products may represent a significant opportunity to improve the energy efficiency of the U.S. industrial complex. This report was prepared for the U.S. Department of Energy Industrial Technologies Program (DOE-ITP). It analyzes the opportunity to recover chemical emissions and thermal emissions from U.S. industry. It also analyzes the barriers and pathways to more effectively capitalize on these opportunities. A primary part of this analysis was to characterize the quantity and energy value of the emissions. For example, in 2001, the industrial sector emitted 19% of the U.S. greenhouse gases (GHG) through its industrial processes and emitted 11% of GHG through electricity purchased from off-site utilities. Therefore, industry (not including agriculture) was directly and indirectly responsible for emitting 30% of the U.S. GHG. These emissions were mainly comprised of carbon dioxide (CO2), but also contained a wide-variety of CH4 (methane), CO (carbon monoxide), H2 (hydrogen), NMVOC (non-methane volatile organic compound), and other chemicals. As part of this study, we conducted a survey of publicly available literature to determine the amount of energy embedded in the emissions and to identify technology opportunities to capture and reuse this energy. As shown in Table E-1, non-CO2 GHG emissions from U.S. industry were identified as having 2180 peta joules (PJ) or 2 Quads (quadrillion Btu) of residual chemical fuel value. Since landfills are not traditionally considered industrial organizations, the industry component of these emissions had a value of 1480 PJ or 1.4 Quads. This represents approximately 4.3% of the total energy used in the United States Industry.

  14. Sectoral trends in global energy use and greenhouse gas emissions

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    produced. Primary energy associated with coal products wasUse EJ China Residential Energy Use Gas Coal Oil Biomass GasUse EJ China Residential Energy Use Gas Coal Oil Gas Biomass

  15. Acceptance of Soil from Off Site Sources In order to guard against receiving contaminated soils to used as fill material on campus,

    E-Print Network [OSTI]

    de Lijser, Peter

    regulations governing the remediation of site, and hazardous chemical disposal. Local Oversight Program Agency basic information for determining if there has been a release of a hazardous substance that present specifications. Because most sites requiring fill material are located in or near urban areas, the fill materials

  16. Radiological Characterization Technical Report on Californium-252 Sealed Source Transuranic Debris Waste for the Off-Site Source Recovery Project at Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Feldman, Alexander [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-04-24T23:59:59.000Z

    This document describes the development and approach for the radiological characterization of Cf-252 sealed sources for shipment to the Waste Isolation Pilot Plant. The report combines information on the nuclear material content of each individual source (mass or activity and date of manufacture) with information and data on the radionuclide distributions within the originating nuclear material. This approach allows for complete and accurate characterization of the waste container without the need to take additional measurements. The radionuclide uncertainties, developed from acceptable knowledge (AK) information regarding the source material, are applied to the summed activities in the drum. The AK information used in the characterization of Cf-252 sealed sources has been qualified by the peer review process, which has been reviewed and accepted by the Environmental Protection Agency.

  17. DOE's Early Investment in Shale Gas Technology Producing Results Today |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. DepartmentEnergyBoilersPlantof EnergyEnergyDepartmentFY

  18. Method of producing exfoliated graphite, flexible graphite, and nano-scaled graphene platelets

    DOE Patents [OSTI]

    Zhamu, Aruna (Centerville, OH); Shi, Jinjun (Columbus, OH); Guo, Jiusheng (Centerville, OH); Jang, Bor Z. (Centerville, OH)

    2010-11-02T23:59:59.000Z

    The present invention provides a method of exfoliating a layered material (e.g., graphite and graphite oxide) to produce nano-scaled platelets having a thickness smaller than 100 nm, typically smaller than 10 nm. The method comprises (a) dispersing particles of graphite, graphite oxide, or a non-graphite laminar compound in a liquid medium containing therein a surfactant or dispersing agent to obtain a stable suspension or slurry; and (b) exposing the suspension or slurry to ultrasonic waves at an energy level for a sufficient length of time to produce separated nano-scaled platelets. The nano-scaled platelets are candidate reinforcement fillers for polymer nanocomposites. Nano-scaled graphene platelets are much lower-cost alternatives to carbon nano-tubes or carbon nano-fibers.

  19. Proton radiography of magnetic field produced by ultra-intense laser irradiating capacity-coil target

    E-Print Network [OSTI]

    Wang, W W; Chen, J; Cai, H B; He, S K; Zhou, W M; Shan, L Q; Lu, F; Wu, Y C; Hong, W; Liu, D X; Bi, B; Zhang, F; Xue, F B; Li, B Y; Zhang, B; He, Y L; He, W; Jiao, J L; Dong, K G; Zhang, F Q; Deng, Z G; Zhang, Z M; Cui, B; Han, D; Zhou, K N; Wang, X D; Zhao, Z Q; Cao, L F; Zhang, B H; He, X T; Gu, Y Q

    2014-01-01T23:59:59.000Z

    Ultra-intense ultra-short laser is firstly used to irradiate the capacity-coil target to generate magnetic field. The spatial structure and temporal evolution of huge magnetic fields were studied with time-gated proton radiography method. A magnetic flux density of 40T was measured by comparing the proton deflection and particle track simulations. Although the laser pulse duration is only 30fs, the generated magnetic field can last for over 100 picoseconds. The energy conversion efficiency from laser to magnetic field can reach as high as ~20%. The results indicate that tens of tesla (T) magnetic field could be produced in many ultra intense laser facilities around the world, and higher magnetic field could be produced by picosecond lasers.

  20. Recycling produced water for algal cultivation for biofuels

    SciTech Connect (OSTI)

    Neal, Justin N. [Los Alamos National Laboratory; Sullivan, Enid J. [Los Alamos National Laboratory; Dean, Cynthia A. [Los Alamos National Laboratory; Steichen, Seth A. [Los Alamos National Laboratory

    2012-08-09T23:59:59.000Z

    Algal growth demands a continuous source of water of appropriate salinity and nutritional content. Fresh water sources are scarce in the deserts of the Southwestern United States, hence, salt water algae species are being investigated as a renewable biofuel source. The use of produced water from oil wells (PW) could offset the demand for fresh water in cultivation. Produced water can contain various concentrations of dissolved solids, metals and organic contaminants and often requires treatment beyond oil/water separation to make it suitable for algae cultivation. The produced water used in this study was taken from an oil well in Jal, New Mexico. An F/2-Si (minus silica) growth media commonly used to cultivate Nannochloropsis salina 1776 (NS 1776) was prepared using the produced water (F/2-Si PW) taking into account the metals and salts already present in the water. NS 1776 was seeded into a bioreactor containing 5L of the (F/2-Si PW) media. After eleven days the optical density at 750 nm (an indicator of algal growth) increased from 0 to 2.52. These results indicate algae are able to grow, though inhibited when compared with non-PW media, in the complex chemical conditions found in produced water. Savings from using nutrients present in the PW, such as P, K, and HCO{sub 3}{sup -}, results in a 44.38% cost savings over fresh water to mix the F/2-Si media.