Powered by Deep Web Technologies
Note: This page contains sample records for the topic "off-grid photovoltaics pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

COMPRESSED-AIR ENERGY STORAGE SYSTEMS FOR STAND-ALONE OFF-GRID PHOTOVOLTAIC MODULES  

E-Print Network [OSTI]

COMPRESSED-AIR ENERGY STORAGE SYSTEMS FOR STAND-ALONE OFF-GRID PHOTOVOLTAIC MODULES Dominique materials, flywheels, pumped hydro (PH), superconducting magnetic energy storage (SMES) and compressed air-grid alternative to the large-scale compressed air energy storage systems we propose to examine the viability

Deymier, Pierre

2

A GUIDE TO PHOTOVOLTAIC (PV) SYSTEM DESIGN AND INSTALLATION  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION A GUIDE TO PHOTOVOLTAIC (PV) SYSTEM DESIGN AND INSTALLATION JUNE 2001 TO PHOTOVOLTAIC (PV) SYSTEM DESIGN AND INSTALLATION Prepared for: California Energy Commission Energy Technology installing photovoltaic (PV) systems under the Emerging Renewables Buydown Program. This is the first

3

NREL: Photovoltaics Research - PV News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn F. Geisz, Ph.D. Principal ScientistOutdoor TestPV

4

EPJ Photovoltaics 2, 20301 (2011) www.epj-pv.org  

E-Print Network [OSTI]

EPJ Photovoltaics 2, 20301 (2011) www.epj-pv.org DOI: 10.1051/epjpv/2011001 c Owned by the authors, published by EDP Sciences, 2011 EPJ PhotovoltaicsEPJ Photovoltaics Geometrical optimization and electrical online: 1 April 2011 Abstract This article investigates the optimal efficiency of a photovoltaic system

Paris-Sud XI, Université de

2011-01-01T23:59:59.000Z

5

www.iaei.org November . December 2014 IAEI NEWS 1110 IAEI NEWS November . December 2014 www.iaei.org PERSPECTIVES ON PV |  

E-Print Network [OSTI]

1500 volts. And, standalone, off grid PV systems and utility- interactive PV systems with battery.iaei.org PERSPECTIVES ON PV | Safety First -- for the Inspector Photovoltaic (PV) power systems are generally in and local code requirements. A thorough inspection of a PV system will ensure that those requirements have

Johnson, Eric E.

6

The Falling Price of Utility-Scale Solar Photovoltaic (PV) Projects...  

Office of Environmental Management (EM)

Solar Photovoltaic (PV) Projects The Falling Price of Utility-Scale Solar Photovoltaic (PV) Projects Data courtesy of National Renewable Energy Lab. Chart by Daniel Wood. View...

7

Photovoltaic (PV) Pricing Trends: Historical, Recent, and Near-Term  

E-Print Network [OSTI]

Photovoltaic (PV) Pricing Trends: Historical, Recent, and Near-Term Projections November 2012 #12;Photovoltaic (PV) Pricing Trends: Historical, Recent, and Near-Term Projections David Feldman1 , Galen Barbose2 , Robert Margolis1 , Ryan Wiser2 , NaĂŻm Darghouth2 , and Alan Goodrich1 1 National Renewable Energy

8

Comparison Between TRNSYS Software Simulation and PV F-Chart Program on Photovoltaic System  

E-Print Network [OSTI]

This report covers the comparisons of Photovoltaic System by TRNSYS simulation and PV F-Chart program to test TRNSYS simulation accuracy. The report starts with the Photovoltaic (PV) (PV) System introduction in Section one which is followed...

Haberl, J. S.; Baltazar, J. C.; Mao, C.

2012-01-01T23:59:59.000Z

9

Energizing the Next Generation with Photovoltaics Following the lead of Russian colleagues, photovoltaic (PV)  

E-Print Network [OSTI]

Energizing the Next Generation with Photovoltaics ABSTRACT Following the lead of Russian colleagues, photovoltaic (PV) lab kits are being built and experiments and curricula are being developed for use of these kits. This Photovoltaic Sci- ence Experiments and Curriculum (PSEC) is being tested in local high

Oregon, University of

10

Solar Photovoltaics development -Status and perspectives  

E-Print Network [OSTI]

Solar Photovoltaics development - Status and perspectives Jørgen Fenhann Risø National Laboratory for the development of solar photovoltaics, contributing to the Macro Task E1 on production cost for fusion.S. with 53 MWp followed by Japan and EU. Until now off-grid installation have dominated the solar PV market

11

Product Quality Assurance for Off-Grid Lighting in Africa  

SciTech Connect (OSTI)

Although the emergence of markets for high efficiency off-grid lighting technologies holds promise, realizing the potential of this opportunity on a long-term, sustainable basis requires careful attention to issues of product quality, consumer protection, and the potential for significant 'market spoiling', in anticipation of increases of sales of low cost, low performance off-grid lighting products. The goal of the Lighting Africa quality assurance workshop was to articulate strategies to mitigate the dangers of market spoiling and to explore ways to protect consumers from misleading advertising for sales of inferior, off-grid lighting products in the context of Lighting Africa's overarching objective to support the industry in developing a robust off-grid lighting market in Africa. The workshop resulted in the identification of two strategic approaches for meeting Lighting Africa quality assurance programmatic needs. The first strategy is intended to meet a short-term programmatic need for quality associated with requests for lighting products by bulk procurement agents, such as in a World Bank-financed project. The development of procurement specifications and test procedures that could be used in a quality/usability screening method in order to provide guidance for forthcoming large volume purchases emerged as the best solution to meet this need. Such approaches are used in World Bank-financed solar home systems (SHSs) projects in Bangladesh, Sri Lanka, and China, among others. However, unlike the SHSs which have multiple balance-of-system (BOS) components warranting the need for an array of specifications for individual components, stand alone lighting systems require specifications that are amenable to individual light points. To test this approach, Lighting Africa elected to use the technical specifications issued by the Photovoltaic Global Approval Program for solar lanterns that use CFL bulbs (PVRS11A) as the basis of qualifying such products. A contract has been competitively awarded to the Global Approval Program for Photovoltaics (PV GAP) under the Lighting Africa Program to select and test ten solar lantern product models. Lantern selection will be determined based on a number of criteria, among them, the ability to provide a daily duty cycle of at least 3 hours of light, the number of days of autonomy of battery, the volume of sales (especially in Africa), and whether or not the manufacturing facility is ISO 9000 certified. Those that are confirmed as meeting the specifications may be eligible to receive a PVGAP quality seal. The work is being carried out in partnership with the Photovoltaic and Wind Quality Test Center in Beijing, China and TUV Rhineland in Koeln, Germany. As off-grid LED-based stand-alone lighting products is in a nascent stage of development compared to CFL-based lanterns, Lighting Africa will support the development of a 'Quality Screening' approach to selecting LED lighting, in order not to delay consumers benefiting from such advances. The screening methodology could be used by procurement agencies to qualify LED lighting products for bulk or programmatic procurements. The main elements of this work comprises of developing a procurement specification and test procedure for undertaking a 'quick' quality/usability screening to be used for procuring LED lights and to test up to 30 LED-based lights to screen products that meet the requirement. The second strategy is intended to meet a longer-term need associated with creating a self-sustaining product quality assurance program that will effectively protect the African consumer, prevent significant market spoiling, adapt with expected technological advancements over the long-term--in other words, give consumers the ability to detect quality products and the information needed to find products that meet their specific needs from among the myriad of lighting products that become available commercially. Workshop discussions and the discussions evolving from the workshop led the Lighting Africa team to opt for an approach similar to that of th

World Bank; Mills, Evan; Mills, Evan

2008-07-13T23:59:59.000Z

12

Step-Stress Accelerated Degradation Testing (SSADT) for Photovoltaic (PV) Devices and Cells (Presentation)  

SciTech Connect (OSTI)

Presentation on step-stress accelerated degradation testing (SSADT) for photovoltaics (PV). Developed are a step-stress degradation test (SSADT) for PV reliability tests and a lifetime prediction model for PV products.

Lee, J.; Elmore, R.; Suh, C.; Jones, W.

2010-10-01T23:59:59.000Z

13

Interline Photovoltaic (I-PV) power system - A novel concept of power flow control and management  

E-Print Network [OSTI]

This paper presents a new system configuration for a large-scale Photovoltaic (PV) power system with multi-line transmission/distribution networks. A PV power plant is reconfigured in a way that two adjacent power system ...

Khadkikar, Vinod

14

Interline photovoltaic (I-PV) power plants for voltage unbalance compensation  

E-Print Network [OSTI]

This paper proposes a stationary-frame control method for voltage unbalance compensation using Interline Photovoltaic (I-PV) power system. I-PV power systems are controlled to compensate voltage unbalance autonomously. The ...

Moawwad, Ahmed

15

Embodied Energy and Off-Grid Lighting  

E-Print Network [OSTI]

as a point of comparison with LED lighting product embodieda fairer comparison between off- grid LED lighting and other

Alstone, Peter

2012-01-01T23:59:59.000Z

16

PV Grounding Sponsored by the Photovoltaic Systems Assistance Center, Sandia National Laboratories  

E-Print Network [OSTI]

PV Grounding Continued John Wiles Sponsored by the Photovoltaic Systems Assistance Center, Sandia methods will be covered. The subject is quite complex. Grounding photovoltaic (PV) systems with both AC-grounding conductors in other DC circuits and in AC circuits are sized according to Table 250.122 in the NEC

Johnson, Eric E.

17

The inverter is a major component of photovoltaic (PV) systems either autonomous or grid connected. It affects the  

E-Print Network [OSTI]

and a variety of photovoltaic modules. The PV systems range in size from 2.5 to 3.6 kilowatts. The purposeABSTRACT The inverter is a major component of photovoltaic (PV) systems either autonomous or grid. INTRODUCTION For any grid tied photovoltaic (PV) system, the inverter is the essential piece of equipment

Oregon, University of

18

Lessons Learned from the Photovoltaic Manufacturing Technology/PV Manufacturing R&D and Thin Film PV Partnership Projects  

SciTech Connect (OSTI)

As the U.S. Department of Energy's (DOE's) Solar Energy Technologies Program initiates new cost-shared solar energy R&D under the Solar America Initiative (SAI), it is useful to analyze the experience gained from cost-shared R&D projects that have been funded through the program to date. This report summarizes lessons learned from two DOE-sponsored photovoltaic (PV) projects: the Photovoltaic Manufacturing Technology/PV Manufacturing R&D (PVMaT/PVMR&D) project and the Thin-Film PV Partnership project. During the past 10-15 years, these two projects have invested roughly $330 million of government resources in cost-shared R&D and leveraged another $190 million in private-sector PV R&D investments. Following a description of key findings and brief descriptions of the PVMaT/PVMR&D and Thin-Film PV Partnership projects, this report presents lessons learned from the projects.

Margolis, R.; Mitchell, R.; Zweibel, K.

2006-09-01T23:59:59.000Z

19

Final Technical Report - Photovoltaics for You (PV4You) Program  

SciTech Connect (OSTI)

In September 2000, the Interstate Renewable Energy Council (IREC) began its 5-year work on contract # DE-FGO3-00SF22116, the Photovoltaics for You (PV4You) Project. The objective was to develop and distribute information on photovoltaics and to educate key stakeholder groups including state government agencies, local government offices, consumer representative agencies, school officials and students, and Million Solar Roofs Partnerships. In addition, the project was to identify barriers to the deployment of photovoltaics and implement strategies to overcome them. Information dissemination and education was accomplished by publishing newsletters; creating a base of information, guides, and models on the www.irecusa.org and the www.millionsolarroofs.org web sites; convening workshops and seminars; engaging multiple stakeholders; and widening the solar network to include new consumers and decision makers. Two major web sites were maintained throughout the project cycle. The www.irecusa.org web site housed dedicated pages for Connecting to the Grid, Schools Going Solar, Community Outreach, and Certification & Training. The www.millionsolarroofs.org web site was created to serve the MSR Partnerships with news, interviews, key documents, and resource material. Through the course of this grant, the Interstate Renewable Energy Council has been supporting the Department of Energy?s solar energy program goals by providing the Department with expertise services for their network of city, state, and community stakeholders. IREC has been the leading force at the state and federal levels regarding net metering and interconnection policy for photovoltaic systems. The principal goal and benefit of the interconnection and net metering work is to lower both barriers and cost for the installation of PV. IREC typically plays a leadership role among small generator stakeholders and has come to be relied upon for its expertise by industry and regulators. IREC also took a leadership position in developing quality and competency standards for solar professionals and for training programs ? critical components to bring the solar industry into step with other recognized craft labor forces. IREC?s objective was to provide consumer assurances and assist the states and the solar industry in building a strong and qualified workforce. IREC?s Schools Going Solar Clearinghouse provided channels of information to educate students, teachers, parents and the community at large about the benefits of solar energy. Solar school projects enhance science and math education while creating an initial entry market for domestic PV. And, IREC?s community and outreach network got the right information out to capture the interest and met the needs of different audiences and reached groups that weren?t traditionally part of the solar community. IREC?s PV4You project was effective because it resulted in reduced costs through easier interconnection and better net metering agreements and by raising the competency standards for solar practitioners. The project provided ways to eliminate barriers and constraints by providing technical assistance, offering model agreements based on industry consensus that were used by state and local decision makers. And, the project increased public acceptance by providing information, news and guidelines for different audiences.

Weissman, J.M.; Sherwood, L.; Pulaski, J.; Cook, C.; Kalland, S.; Haynes, J.

2005-08-14T23:59:59.000Z

20

New York City- Property Tax Abatement for Photovoltaic (PV) Equipment Expenditures  

Broader source: Energy.gov [DOE]

In August 2008 the State of New York enacted legislation allowing a property tax abatement for photovoltaic (PV) system expenditures made on buildings located in cities with a population of 1...

Note: This page contains sample records for the topic "off-grid photovoltaics pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Solar Photovoltaic Economic Development: Building and Growing a Local PV Industry, August 2011 (Book)  

SciTech Connect (OSTI)

The U.S. photovoltaic (PV) industry is forecast to grow, and it represents an opportunity for economic development and job creation in communities throughout the United States. This report helps U.S. cities evaluate economic opportunities in the PV industry. It serves as a guide for local economic development offices in evaluating their community?s competitiveness in the solar PV industry, assessing the viability of solar PV development goals, and developing strategies for recruiting and retaining PV companies to their areas.

Not Available

2011-08-01T23:59:59.000Z

22

High Penetration of Photovoltaic (PV) Systems into the Distribution Grid, Workshop Report, February 24-25, 2009  

SciTech Connect (OSTI)

Outcomes from the EERE Solar Energy Technologies Program workshop on high penetration of photovoltaic (PV) systems into the distribution grid, Feb. 24-25, 2009, Ontario, Calif.

Not Available

2009-06-01T23:59:59.000Z

23

NREL: Photovoltaics Research - NREL Releases User Guide for PV...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

firing signals, or other events in the power electronics domain. Printable Version Photovoltaics Research Home Silicon Polycrystalline Thin Films Multijunctions New Materials,...

24

Photovoltaic Performance and Reliability Database: A Gateway to Experimental Data Monitoring Projects for PV at the Florida Solar Energy Center  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

This site is the gateway to experimental data monitoring projects for photovoltaic (PV) at the Florida Solar Energy Center. The website and the database were designed to facilitate and standardize the processes for archiving, analyzing and accessing data collected from dozens of operational PV systems and test facilities monitored by FSEC's Photovoltaics and Distributed Generation Division. [copied from http://www.fsec.ucf.edu/en/research/photovoltaics/data_monitoring/index.htm

25

ENERGY-10 PV: Photovoltaics, A New Capability (Preprint)  

SciTech Connect (OSTI)

This is one of two companion papers that describe the ENERGY-10 PV design-tool computer simulation program. The other paper is titled ''Hourly Simulation of Grid-Connected PV Systems Using Realistic Building Loads.'' While this paper focuses on the implementation method, the companion paper focuses on the PV aspects of the program. The case study in this paper is a residential building application, whereas the case study in the companion paper is a commercial application with an entirely different building load characteristic. Together, they provide a balanced view.

Balcomb, J.D.; Hayter, S.J. (National Renewable Energy Laboratory); Weaver, N.L. (InterWeaver Consulting)

2001-02-16T23:59:59.000Z

26

Stand-alone photovoltaic (PV) powered electrochromic window  

DOE Patents [OSTI]

A variable transmittance double pane window includes an electrochromic material that has been deposited on one pane of the window in conjunction with an array of photovoltaic cells deposited along an edge of the pane to produce the required electric power necessary to vary the effective transmittance of the window. A battery is placed in a parallel fashion to the array of photovoltaic cells to allow the user the ability to manually override the system when a desired transmittance is desired.

Benson, David K. (Golden, CO); Crandall, Richard S. (Boulder, CO); Deb, Satyendra K. (Boulder, CO); Stone, Jack L. (Lakewood, CO)

1995-01-01T23:59:59.000Z

27

Stand-alone photovoltaic (PV) powered electrochromic window  

DOE Patents [OSTI]

A variable transmittance double pane window includes an electrochromic material that has been deposited on one pane of the window in conjunction with an array of photovoltaic cells deposited along an edge of the pane to produce the required electric power necessary to vary the effective transmittance of the window. A battery is placed in a parallel fashion to the array of photovoltaic cells to allow the user the ability to manually override the system when a desired transmittance is desired. 11 figures.

Benson, D.K.; Crandall, R.S.; Deb, S.K.; Stone, J.L.

1995-01-24T23:59:59.000Z

28

Photovoltaics  

Broader source: Energy.gov [DOE]

The SunShot Initiative aggressively supports development of low-cost, high-efficiency photovoltaic (PV) technologies in order to to make solar electricity cost-competitive with other sources of energy by 2020.

29

Abstract--Current grid standards seem to largely require low power (e.g. several kilowatts) single-phase photovoltaic (PV)  

E-Print Network [OSTI]

--Grid requirements; photovoltaic systems; low voltage ride through; ancillary services; grid support; reliability I-phase photovoltaic (PV) systems to operate at unity power factor with maximum power point tracking, and disconnect. INTRODUCTION Due to the declining photovoltaic (PV) module price and the strong feed-in tariff policies

Berning, Torsten

30

Hybrid photovoltaic/thermal (PV/T) solar systems simulation with Simulink/Matlab  

SciTech Connect (OSTI)

The purpose of this work consists in thermodynamic modeling of hybrid photovoltaic-thermal (PV/T) solar systems, pursuing a modular strategy approach provided by Simulink/Matlab. PV/T solar systems are a recently emerging solar technology that allows for the simultaneous conversion of solar energy into both electricity and heat. This type of technology present some interesting advantages over the conventional ''side-by-side'' thermal and PV solar systems, such as higher combined electrical/thermal energy outputs per unit area, and a more uniform and aesthetical pleasant roof area. Despite the fact that early research on PV/T systems can be traced back to the seventies, only recently it has gained a renewed impetus. In this work, parametric studies and annual transient simulations of PV/T systems are undertaken in Simulink/Matlab. The obtained results show an average annual solar fraction of 67%, and a global overall efficiency of 24% (i.e. 15% thermal and 9% electrical), for a typical four-person single-family residence in Lisbon, with p-Si cells, and a collector area of 6 m{sup 2}. A sensitivity analysis performed on the PV/T collector suggests that the most important variable that should be addressed to improve thermal performance is the photovoltaic (PV) module emittance. Based on those results, some additional improvements are proposed, such as the use of vacuum, or a noble gas at low-pressure, to allow for the removal of PV cells encapsulation without air oxidation and degradation, and thus reducing the PV module emittance. Preliminary results show that this option allows for an 8% increase on optical thermal efficiency, and a substantial reduction of thermal losses, suggesting the possibility of working at higher fluid temperatures. The higher working temperatures negative effect in electrical efficiency was negligible, due to compensation by improved optical properties. The simulation results are compared with experimental data obtained from other authors and perform reasonably well. The Simulink modeling platform has been mainly used worldwide on simulation of control systems, digital signal processing and electric circuits, but there are very few examples of application to solar energy systems modeling. This work uses the modular environment of Simulink/Matlab to model individual PV/T system components, and to assemble the entire installation layout. The results show that the modular approach strategy provided by Matlab/Simulink environment is applicable to solar systems modeling, providing good code scalability, faster developing time, and simpler integration with external computational tools, when compared with traditional imperative-oriented programming languages. (author)

da Silva, R.M.; Fernandes, J.L.M. [Department of Mechanical Engineering, Instituto Superior Tecnico, Lisbon (Portugal)

2010-12-15T23:59:59.000Z

31

Sandia National Laboratories: Photovoltaic Regional Testing Center (PV RTC)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik SpoerkeSolar Regional Test Center in Vermont AchievesPhotovoltaic Regional

32

Embodied Energy and Off-Grid Lighting  

SciTech Connect (OSTI)

The greenhouse gas (GHG) emissions from fuel-based lighting are substantial given the paltry levels of lighting service provided to users, leading to a great opportunity for GHG mitigation byencouraging the switch from fuel-based to rechargeable LED lighting. However, as with most new energy technology, switching to efficient lighting requires an up-front investment of energy(and GHGs) embedded in the manufacture of replacement components. We studied a population of off-grid lighting users in 2008-2009 in Kenya who were given the opportunity to adopt LEDlighting. Based on their use patterns with the LED lights and the levels of kerosene offset we observed, we found that the embodied energy of the LED lamp was"paid for" in only one month for grid charged products and two months for solar charged products. Furthermore, the energyreturn-on investment-ratio (energy produced or offset over the product's service life divided by energy embedded) for off-grid LED lighting ranges from 12 to 24, which is on par with on-gridsolar and large-scale wind energy. We also found that the energy embodied in the manufacture of a typical hurricane lantern is about one-half to one-sixth of that embodied in the particular LEDlights that we evaluated, indicating that the energy payback time would be moderately faster if LEDs ultimately displace the production of kerosene lanterns. As LED products improve, weanticipate longer service lives and more successful displacement of kerosene lighting, both of which will speed the already rapid recovery of embodied energy in these products. Our studyprovides a detailed appendix with embodied energy values for a variety of components used to construct off-grid LED lighting, which can be used to analyze other products.

Alstone, Peter; Mills, Evan; Jacobson, Arne

2011-01-25T23:59:59.000Z

33

Abstract--Layout of the conductor material in the dc bus of a photovoltaic (PV) array to lower first cost and ohmic losses is  

E-Print Network [OSTI]

its operating economy by reducing installed cost and ohmic losses. Index Terms--Photovoltaic systemsAbstract--Layout of the conductor material in the dc bus of a photovoltaic (PV) array to lower first cost and ohmic losses is reviewed. Six PV materials are characterized for their voltage swings

King, Roger

34

Abstract--Traditionally, importance of efficiency is valued highest for PV (Photovoltaic) inverters. The driving factors are  

E-Print Network [OSTI]

Abstract--Traditionally, importance of efficiency is valued highest for PV (Photovoltaic) inverters to the market due to practical considerations of manufacturers and customers (agency norms, EMI, reliability etc made to gain every fraction of efficiency, in order to sustain in the market. B. Reliability Once

Paderborn, Universität

35

Yolo County, California, made history in July when officials installed a 1 MW solar photovoltaic (PV) project to supply power  

E-Print Network [OSTI]

Yolo County, California, made history in July when officials installed a 1 MW solar photovoltaic both buildings in Woodland, California, for the 1 MW ground-mounted solar PV system. Energy Analysis by examining the feasibility of installing a solar system, according to information provided by Ray Groom

36

Simulation of Off-Grid, Off-Pipe, Single-Family Detached Residences in US Climates  

E-Print Network [OSTI]

system type (wind, PV or hybrid), the capacity of electricity generating and storage systems were determined to meet/exceed the electricity use for days with inadequate solar radiation and wind. For locations with the potential of solar power...SimBuild 2008 Third National Conference of IBPSA-USA Berkeley, California July 30 ? August 1, 2008 116 SIMULATION OF OFF-GRID, OFF-PIPE, SINGLE-FAMILY DETACHED RESIDENCES IN U.S. CLIMATES Mini Malhotra1, Jeff Haberl2 1Research Assistant...

Malhotra, M.; Haberl, J.

37

Measured Off-Grid LED Lighting System Performance  

E-Print Network [OSTI]

The Specter of Fuel-Based Lighting," Science 308:1263-1264.Mills. 2008. "Solid-State Lighting on a Shoestring Budget:The Economics of Off-Grid Lighting for Small Businesses in

Granderson, Jessica

2009-01-01T23:59:59.000Z

38

Electricity Rate Structures and the Economics of Solar PV: Could Mandatory Time-of-Use Rates Undermine California’s Solar Photovoltaic Subsidies?  

E-Print Network [OSTI]

is the “soiling” e?ect: dirty solar panels absorb less solarinstalling solar photovoltaic panels at their homes orStudies of solar PV production over a panel’s lifetime

Borenstein, Severin

2007-01-01T23:59:59.000Z

39

Sandia National Laboratories: Photovoltaic Regional Testing Center...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Grid Integration, Modeling, Modeling & Analysis, News, News & Events, Partnership, Photovoltaic, Photovoltaic Regional Testing Center (PV RTC), Photovoltaic Systems Evaluation...

40

Presented at the 21st European Photovoltaic Solar Energy Conference, Dresden,Germany, 4-8 September 2006 ENVIRONMENTAL IMPACTS OF PV ELECTRICITY GENERATION -  

E-Print Network [OSTI]

2006 ENVIRONMENTAL IMPACTS OF PV ELECTRICITY GENERATION - A CRITICAL COMPARISON OF ENERGY SUPPLY, NY 11973, USA ABSTRACT: An overview is given of the environmental impacts of different PV in the assessment of environmental impacts from photovoltaic systems. In this paper we will give an overview

Note: This page contains sample records for the topic "off-grid photovoltaics pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Building opportunities for photovoltaics in the U.S. Final report [PV BONUS  

SciTech Connect (OSTI)

The objective of the North Carolina's PV Bonus Team was to develop and demonstrate a commercially viable, building-integrated, photovoltaic system that, in addition to providing electricity, would capture and effectively utilize the thermal energy produced by the photovoltaic array. This project objective was successfully achieved by designing, testing, constructing, and monitoring two roof integrated photovoltaic systems--one on a Applebee's Restaurant in Salisbury, North Carolina and the second on a Central Carolina Bank in Bessemer City, North Carolina. The goal of Innovative Design is to now use these successful demonstrations to facilitate entry of building integrated, pv/thermal systems into the marketplace. The strategy was to develop the two systems that could be utilized in future applications. Both systems were designed and then constructed at the North Carolina Solar Center at North Carolina State University. After extensive testing at the North Carolina Solar Center, the systems were moved to the actual construction sites and implemented. The Applebee's Restaurant system was designed to substitute for the roof assembly of a low sloping, south-facing sunspace roof that typically incorporated clay tile. After monitoring the installed system for one year it was determined that the 1.2 kilowatt (peak) system produces an average peak reduction of 1 kilowatt (rated peak is 1.7 kiloWatts), saves 1,529 kilowatt-hours of electricity, and offsets 11,776 kilowatt-hours of thermal energy savings used to pre-heat water. A DC fan connected directly to eight of the thirty-two amorphous modules moves air through air passages mounted on the backside of the modules and into a closed loop duct system to a heat exchanger. This heat exchanger is, in turn, connected to a pre-heat hot water tank that is used to heat the water for the restaurant. The Central Carolina Bank system was designed to substitute for the roof assembly of the drive-in window area of the bank. The design featured a triangulated truss that incorporated ten crystalline photovoltaic modules on one side of the truss and a reflective panel on the opposite side. The system used a utility interactive, programmable inverter and a 18.9 kilowatt-hour battery bank. The system is designed so that a DC fan, connected to one of the modules, forces ambient air across the back side of the modules. In the summer this heat is vented to the outside but in the winter this heated, fresh air is introduced into the building as ventilation air. Like the Applebee's system, the design allowed the entire roof assembly to be constructed off-site, tested, and then shipped to the site in pie-assembled, large components. During the first full year of operation, the 2.2 kilowatt (rated peak is 2.7 kilowatts) system contributed to an average peak reduction of .9 kilowatts. The system, as designed, saves 2,576 kilowatt-hours of electricity and offsets 3,473 kilowatt hours (of a potential thermal benefit of 10,172 collected kWhs) of thermal energy savings that is used as fresh air make-up in the colder months. This report is a summary of their conclusions.

Michael Nicklas

1999-09-08T23:59:59.000Z

42

NREL PV AR&D 11th review meeting, May 13--15, 1992, Denver Marriott City Center, Denver, Colorado. Photovoltaic Advanced Research and Development Project  

SciTech Connect (OSTI)

This is a collection of abstracts from papers presented at the National Renewable Energy Laboratory (NREL) Photovoltaic (PV) research and development review meeting held May 1992. Subject areas covered include solar cell and solar module manufacturing and development, materials, polycrystalline thin films, applications, amorphous silicon, solar cell performance and testing, crystalline silicon and other photovoltaic and safety perspectives. (GHH)

Not Available

1992-06-01T23:59:59.000Z

43

A Wavelet-Based Variability Model (WVM) for Solar PV Power Plants  

E-Print Network [OSTI]

simulating solar photovoltaic (PV) power plant output givenfor simulating the power output of a solar photovoltaic (PV)

Lave, Matthew; Kleissl, Jan; Stein, Joshua S

2013-01-01T23:59:59.000Z

44

Off-grid Energy in Rural India: Policy Recommendations for  

E-Print Network [OSTI]

. Lacayo Advisor: Prof. Denise Mauzerall WWS Undergraduate Task Force: Energy for Sustainable DevelopmentLacayo 1 Off-grid Energy in Rural India: Policy Recommendations for Effective UN Projects Antonio I Abstract Rural areas in developing countries suffer significantly from energy scarcity, forcing people

Mauzerall, Denise

45

Photovoltaics Life Cycle Analysis  

E-Print Network [OSTI]

1 Photovoltaics Life Cycle Analysis Vasilis Fthenakis Center of Life Cycle Analysis Earth & Environmental Engineering Department Columbia University and National Photovoltaic (PV) EHS Research Center (air, water, solid) M, Q E PV array Photovoltaic modules Balance of System (BOS) (Inverters

46

Keywords: Photovoltaic System, fault-tolerance, recon-figurable PV panel  

E-Print Network [OSTI]

plants, and satellites. The output power of a PV cell (also called solar cell) is dependent on the solar: naehyuck@elpl.snu.ac.kr). output power of a PV cell increases as solar irradiance increases and temperature irradiance level and temperature. Figure 1 shows PV cell output current-voltage and power

Pedram, Massoud

47

Market Trial: Selling Off-Grid Lighting Products in Rural Kenya  

E-Print Network [OSTI]

2007) “The Off-Grid Lighting Market in Western Kenya: LEDMills (2008) “Solid-State Lighting on a Shoestring Budget:The Economics of Off-Grid Lighting for Small Business in

Tracy, Jennifer

2012-01-01T23:59:59.000Z

48

Market Trial: Selling Off-Grid Lighting Products in Rural Kenya  

SciTech Connect (OSTI)

In this study, we performed a market trial of off-grid LED lighting products in Maai Mahiu, arural Kenyan town. Our goals were to assess consumer demand and consumer preferences with respect to off-grid lighting systems and to gain feedback from off-grid lighting users at the point of purchase and after they have used to products for some time.

Tracy, Jennifer; Alstone, Peter; Jacobson, Arne; Mills, Evan

2010-06-21T23:59:59.000Z

49

Learning by doing: The evolution of state support for photovoltaics  

E-Print Network [OSTI]

of State Support for Photovoltaics Mark Bolinger and Ryantarget the installation of photovoltaics (PV) in one way orwidespread popularity of photovoltaics (PV), along with its

Bolinger, Mark; Wiser, Ryan

2003-01-01T23:59:59.000Z

50

World Renewable Energy Congress 2011 Sweden Photovoltaic Technology (PV) 8-11 May 2011, Linkping, Sweden  

E-Print Network [OSTI]

or (2) wood supports, and mobile structures with (3) single-axis trackers or (4) dual-axis trackers performance. Mobile PV installations with dual-axis trackers show the largest impact potential on ecosystem installations 1. Introduction PV systems deployment and solar energy use are developing rapidly in Europe

Paris-Sud XI, Université de

51

Japan's Solar Photovoltaic (PV) Market: An Analysis of Residential System Prices (Presentation)  

SciTech Connect (OSTI)

This presentation summarizes market and policy factors influencing residential solar photovoltaic system prices in Japan, and compares these factors to related developments in the United States.

James, T.

2014-03-01T23:59:59.000Z

52

Residential, Commercial, and Utility-Scale Photovoltaic (PV) System Prices in the United States: Current Drivers and Cost-Reduction Opportunities  

SciTech Connect (OSTI)

The price of photovoltaic (PV) systems in the United States (i.e., the cost to the system owner) has dropped precipitously in recent years, led by substantial reductions in global PV module prices. However, system cost reductions are not necessarily realized or realized in a timely manner by many customers. Many reasons exist for the apparent disconnects between installation costs, component prices, and system prices; most notable is the impact of fair market value considerations on system prices. To guide policy and research and development strategy decisions, it is necessary to develop a granular perspective on the factors that underlie PV system prices and to eliminate subjective pricing parameters. This report's analysis of the overnight capital costs (cash purchase) paid for PV systems attempts to establish an objective methodology that most closely approximates the book value of PV system assets.

Goodrich, A.; James, T.; Woodhouse, M.

2012-02-01T23:59:59.000Z

53

Benchmarking Non-Hardware Balance of System (Soft) Costs for U.S. Photovoltaic Systems Using a Data-Driven Analysis from PV Installer Survey Results  

SciTech Connect (OSTI)

This report presents results from the first U.S. Department of Energy (DOE) sponsored, bottom-up data-collection and analysis of non-hardware balance-of-system costs--often referred to as 'business process' or 'soft' costs--for residential and commercial photovoltaic (PV) systems.

Ardani, K.; Barbose, G.; Margolis, R.; Wiser, R.; Feldman, D.; Ong, S.

2012-11-01T23:59:59.000Z

54

Photovoltaic Cell Structure Basics  

Broader source: Energy.gov [DOE]

The actual structural design of a photovoltaic (PV), or solar cell, depends on the limitations of the material used in the PV cell.

55

Photovoltaic Resources and Technologies  

Broader source: Energy.gov [DOE]

This page provides a brief overview of photovoltaic (PV) technologies supplemented by specific information to apply PV within the Federal sector.

56

Energy 101: Solar PV  

SciTech Connect (OSTI)

Solar photovoltaic (PV) systems can generate clean, cost-effective power anywhere the sun shines. This video shows how a PV panel converts the energy of the sun into renewable electricity to power homes and businesses.

None

2011-01-01T23:59:59.000Z

57

Energy 101: Solar PV  

ScienceCinema (OSTI)

Solar photovoltaic (PV) systems can generate clean, cost-effective power anywhere the sun shines. This video shows how a PV panel converts the energy of the sun into renewable electricity to power homes and businesses.

None

2013-05-29T23:59:59.000Z

58

Energy 101: Solar PV | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Solar PV Energy 101: Solar PV Addthis Description Solar photovoltaic (PV) systems can generate clean, cost-effective power anywhere the sun shines. This video shows how a PV panel...

59

PV Incentive Program  

Broader source: Energy.gov [DOE]

The New York State Energy Research and Development Authority (NYSERDA) provides an incentive eligible installers for the installation of approved, grid-connected photovoltaic (PV) systems. The base...

60

Efficient Power Converters for PV Arrays : Scalable Submodule Power Conversion for Utility-Scale Photovoltaics  

SciTech Connect (OSTI)

Solar ADEPT Project: SolarBridge is developing a new power conversion technique to improve the energy output of PV power plants. This new technique is specifically aimed at large plants where many solar panels are connected together. SolarBridge is correcting for the inefficiencies that occur when two solar panels that encounter different amounts of sun are connected together. In most conventional PV system, the weakest panel limits the energy production of the entire system. That’s because all of the energy collected by the PV system feeds into a single collection point where a central inverter then converts it into useable energy for the grid. SolarBridge has found a more efficient and cost-effective way to convert solar energy, correcting these power differences before they reach the grid.

None

2012-02-23T23:59:59.000Z

Note: This page contains sample records for the topic "off-grid photovoltaics pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Photovoltaic (PV) Pricing Trends: Historical, Recent, and Near-Term Projections  

SciTech Connect (OSTI)

This report helps to clarify the confusion surrounding different estimates of system pricing by distinguishing between past, current, and near-term projected estimates. It also discusses the different methodologies and factors that impact the estimated price of a PV system, such as system size, location, technology, and reporting methods.These factors, including timing, can have a significant impact on system pricing.

Feldman, D.; Barbose, G.; Margolis, R.; Wiser, R.; Darghouth, N.; Goodrich, A.

2012-11-01T23:59:59.000Z

62

Accurate economic analysis of photovoltaic (PV) systems performance over the system lifetime requires knowledge  

E-Print Network [OSTI]

modules will work over long periods. Nine years of PV data at Ashland, Oregon are used to determine and meteorological measurements. 1. INTRODUCTION As the solar industry matures, more and more emphasis is being. The benefits, costs, and design of the feed-in tariffs require knowledge of system output over time. Second

Oregon, University of

63

Understanding Variability and Uncertainty of Photovoltaics for Integration with the Electric Power System  

E-Print Network [OSTI]

variability of photovoltaic (PV) plants to avoid unnecessaryhowever, occurs within PV plants. The degree of smoothingof photovoltaic (PV) plants. The workshop brought together

Mills, Andrew

2010-01-01T23:59:59.000Z

64

U.S. Residential Photovoltaic (PV) System Prices, Q4 2013 Benchmarks: Cash Purchase, Fair Market Value, and Prepaid Lease Transaction Prices  

SciTech Connect (OSTI)

The price of photovoltaic (PV) systems in the United States (i.e., the cost to the system owner) has dropped precipitously in recent years, led by substantial reductions in global PV module prices. This report provides a Q4 2013 update for residential PV systems, based on an objective methodology that closely approximates the book value of a PV system. Several cases are benchmarked to represent common variation in business models, labor rates, and module choice. We estimate a weighted-average cash purchase price of $3.29/W for modeled standard-efficiency, polycrystalline-silicon residential PV systems installed in the United States. This is a 46% decline from the 2013-dollar-adjusted price reported in the Q4 2010 benchmark report. In addition, this report frames the cash purchase price in the context of key price metrics relevant to the continually evolving landscape of third-party-owned PV systems by benchmarking the minimum sustainable lease price and the fair market value of residential PV systems.

Davidson, C.; James, T. L.; Margolis, R.; Fu, R.; Feldman, D.

2014-10-01T23:59:59.000Z

65

An Analysis of the Effects of Photovoltaic Energy Systems on Residential Selling Prices in California.  

E-Print Network [OSTI]

Effects of Residential Photovoltaic Energy Systems on Homeof homes with existing photovoltaic (PV) energy systems havegrid-connected solar photovoltaic (PV) energy systems were

Cappers, Peter

2012-01-01T23:59:59.000Z

66

Residential Photovoltaic Energy Systems in California: The Effect on Home Sales Prices  

E-Print Network [OSTI]

Residential Photovoltaic Energy Systems in California: Thethe marginal impacts of photovoltaic (PV) energy systems ons largest market for photovoltaic solar (PV), with nearly

Hoen, Ben

2013-01-01T23:59:59.000Z

67

3-Port Single-Stage PV & Battery Converter Improves Efficiency and Cost in Combined PV/Battery Systems  

SciTech Connect (OSTI)

Due to impressive cost reductions in recent years, photovoltaic (PV) generation is now able to produce electricity at highly competitive prices, but PV’s inherent intermittency reduces the potential value of this energy. The integration of battery storage with PV will be transformational by increasing the value of solar. Utility scale systems will benefit by firming intermittency including PV ramp smoothing, grid support and load shifting, allowing PV to compete directly with conventional generation. For distributed grid-tied PV adding storage will reduce peak demand utility charges, as well as providing backup power during power grid failures. The largest long term impact of combined PV and battery systems may be for delivering reliable off-grid power to the billions of individuals globally without access to conventional power grids, or for billions more that suffer from daily power outages. PV module costs no longer dominate installed PV system costs. Balance-of-System (BOS) costs including the PV inverter and installation now contribute the majority of installed system costs. Battery costs are also dropping faster than installation and battery power converter systems. In each of these separate systems power converters have become a bottleneck for efficiency, cost and reliability. These bottlenecks are compounded in hybrid power conversion systems that combine separate PV and battery converters. Hybrid power conversion systems have required multiple power converters hardware units and multiple power conversion steps adding to efficiency losses, product and installation costs, and reliability issues. Ideal Power Converters has developed and patented a completely new theory of operation for electronic power converters using its indirect EnergyPacket Switching™ topology. It has established successful power converter products for both PV and battery systems, and its 3-Port Hybrid Converter is the first product to exploit the topology’s capability for the industry’s first single-stage multi-port hybrid power converter. This unique low cost approach eliminates the hybrid power conversion bottlenecks when integrating batteries into PV systems. As result this product will significantly accelerate market adoption of these systems.

Bundschuh, Paul [Ideal Power

2013-03-23T23:59:59.000Z

68

IEEE JOURNAL OF PHOTOVOLTAICS 1 Optimal Dispatch of Residential Photovoltaic  

E-Print Network [OSTI]

IEEE JOURNAL OF PHOTOVOLTAICS 1 Optimal Dispatch of Residential Photovoltaic Inverters Under of existing low- voltage distribution systems with high photovoltaic (PV) gen- eration have focused relaxation techniques. Index Terms--Distribution networks, microgrids, photovoltaic systems, inverter control

Giannakis, Georgios

69

Energy dispatch schedule optimization and cost benefit analysis for grid-connected, photovoltaic-battery storage systems  

E-Print Network [OSTI]

photovoltaic-battery storage system (PV+ system). The LPrate). Eq. 1 minimizes net PV+ battery system power output (photovoltaic-battery storage system (PV+ system). The

Nottrott, A.; Kleissl, J.; Washom, B.

2013-01-01T23:59:59.000Z

70

Building-integrated photovoltaics (BIPV): Analysis and US market potential. Final report  

SciTech Connect (OSTI)

Arthur D. Little, Inc., in conjunction with Solar Design Associates, conducted a study for the US Department of Energy (DOE), Office of Building Technologies (OBT) to determine the market potential for grid-connected, building-integrated photovoltaics (BIPV). This study defines BIPV as two types of applications: (1) where the PV modules are an integral part of the building, often serving as the exterior weathering skin; and (2) the PV modules are mounted on the existing building exterior. Both of these systems are fully integrated with the energy usage of the building and have potential for significant market penetration in the US. Off-grid building applications also offer a near-term market for BIPV, but are not included in the scope of this study.

Frantzis, L.; Friedman, D.; Hill, S.; Teagan, P. [Little (Arthur D.), Inc., Cambridge, MA (United States); Strong, S.; Strong, M. [Solar Design Associates, Harvard, MA (United States)

1995-02-01T23:59:59.000Z

71

Reference module selection criteria for accurate testing of photovoltaic (PV) panels  

SciTech Connect (OSTI)

It is shown that for accurate testing of PV panels the correct selection of reference modules is important. A detailed description of the test methodology is given. Three different types of reference modules, having different I{sub SC} (short circuit current) and power (in Wp) have been used for this study. These reference modules have been calibrated from NREL. It has been found that for accurate testing, both I{sub SC} and power of the reference module must be either similar or exceed to that of modules under test. In case corresponding values of the test modules are less than a particular limit, the measurements may not be accurate. The experimental results obtained have been modeled by using simple equivalent circuit model and associated I-V equations. (author)

Roy, J.N.; Gariki, Govardhan Rao; Nagalakhsmi, V. [Solar Semiconductor Pvt. Ltd., Banjara Hills, Hyderabad (India)

2010-01-15T23:59:59.000Z

72

Measured Off-Grid LED Lighting System Performance  

SciTech Connect (OSTI)

This report is a product of our ongoing effort to support the development of high-quality yet affordable products for off-grid lighting in the developing world that have good potential to succeed in the market. The effort includes work to develop low-cost testing procedures, to identify useful performance metrics, and to facilitate the development of industry standards and product rating protocols. We conducted laboratory testing of nine distinct product lines. In some cases we also tested multiple generations of a single product line and/or operating modes for a product. The resultsare summarized in Table 1. We found that power consumption and light output varied by nearly a factor of 12, with efficacy varying by a factor of more than six. Of particular note, overall luminous efficacy varied from 8.2 to 53.1 lumens per watt. Color quality indices variedmaterially, especially for correlated color temperature. Maximum illuminance, beamcandlepower, and luminance varied by 8x, 32x, and 61x respectively, suggesting considerable differences among products in terms of service levels and visual comfort. Glare varied by1.4x, and was above acceptable thresholds in most cases. Optical losses play a role in overall performance, varying by a factor of 3.2 and ranging as high as 24percent. These findings collectively indicate considerable potential for improved product design.

Granderson, Jessica; Galvin, James; Bolotov, Dmitriy; Clear, Robert; Jacobson, Arne; Mills, Evan

2008-12-18T23:59:59.000Z

73

Solid-State Lighting on a Shoestring Budget: The Economics of Off-Grid Lighting for Small Businesses in Kenya  

E-Print Network [OSTI]

Report #3 Solid-State Lighting on a Shoestring Budget:The Economics of Off-Grid Lighting for Small Businesses inProject includes an Off-Grid Lighting Technology Assessment

Radecsky, Kristen

2009-01-01T23:59:59.000Z

74

Sandia National Laboratories: PV Contacts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bruce King 505.284.6571 bhking at sandia.gov Tagged with: Energy * photovoltaic * Photovoltaics * PV * Renewable Energy * SAND 2011-4654W * Solar Energy * Solar Research Comments...

75

Performance Analysis of Off-Grid Micro WECS in Harsh  

E-Print Network [OSTI]

SWITCHGEAR & ELECTRONICS PHOTOVOLTAIC ARRAY WIND TURBINES MICROWAVE RELAY TOWER Not to scale microwave transmission · not wind power or solar · Whisper 100 turbines · 900 Watt 7ft diameter 3 blades locations · Varying wind turbine types · Forensic analysis of failed units · Why and how failure occurred

Bruneau, Steve

76

Soiling losses for solar photovoltaic systems in California  

E-Print Network [OSTI]

on Large Grid-Connected Photovoltaic Systems in Californiaof Dust on Solar Photovoltaic (PV) Performance: Researchclimatology in design of photovoltaic systems. In: Markvart

Mejia, Felipe A; Kleissl, Jan

2013-01-01T23:59:59.000Z

77

Statistical Methods for Enhanced Metrology in Semiconductor/Photovoltaic Manufacturing  

E-Print Network [OSTI]

and Simulation of Photovoltaic Arrays. ” IEEE Trans. PowerSolar Cell Variability Photovoltaic (PV) cells manufacturedmodeling method for photovoltaic cells. ” in Proc. IEEE 35th

Zeng, Dekong

2012-01-01T23:59:59.000Z

78

Statistical Methods for Enhanced Metrology in Semiconductor/Photovoltaic Manufacturing  

E-Print Network [OSTI]

modeling method for photovoltaic cells. ” in Proc. IEEE 35thlosses in solar photovoltaic cell networks. ” Energy 32:Cell Variability Photovoltaic (PV) cells manufactured with

Zeng, Dekong

2012-01-01T23:59:59.000Z

79

The Market Value and Cost of Solar Photovoltaic Electricity Production  

E-Print Network [OSTI]

Production of Solar Photovoltaic Cells”, Center for theconcerns is solar photovoltaic cells (PVs), which captureProduction of Solar Photovoltaic Cells Solar PV cells

Borenstein, Severin

2008-01-01T23:59:59.000Z

80

Tariffs Can Be Structured to Encourage Photovoltaic Energy  

E-Print Network [OSTI]

Be Structured to Encourage Photovoltaic Energy Ryan Wiser,of customer-sited photovoltaic (PV) systems. Though theseEconomics of Commercial Photovoltaic Systems in California,

Wiser, Ryan

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "off-grid photovoltaics pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Photovoltaics: New opportunities for utilities  

SciTech Connect (OSTI)

This publication presents information on photovoltaics. The following topics are discussed: Residential Photovoltaics: The New England Experience Builds Confidence in PV; Austin's 300-kW Photovoltaic Power Station: Evaluating the Breakeven Costs; Residential Photovoltaics: The Lessons Learned; Photovoltaics for Electric Utility Use; Least-Cost Planning: The Environmental Link; Photovoltaics in the Distribution System; Photovoltaic Systems for the Rural Consumer; The Issues of Utility-Intertied Photovoltaics; and Photovoltaics for Large-Scale Use: Costs Ready to Drop Again.

Not Available

1991-07-01T23:59:59.000Z

82

Stabilized PV system  

DOE Patents [OSTI]

A stabilized PV system comprises an array of photovoltaic (PV) assemblies mounted to a support surface. Each PV assembly comprises a PV module and a support assembly securing the PV module to a position overlying the support surface. The array of modules is circumscribed by a continuous, belt-like perimeter assembly. Cross strapping, extending above, below or through the array, or some combination of above, below and through the array, secures a first position along the perimeter assembly to at least a second position along the perimeter assembly thereby stabilizing the array against wind uplift forces. The first and second positions may be on opposite sides on the array.

Dinwoodie, Thomas L. (Piedmont, CA)

2002-12-17T23:59:59.000Z

83

Photovoltaic Cell Performance Basics  

Broader source: Energy.gov [DOE]

Photovoltaic (PV), or solar cells use the energy in sunlight to produce electricity. However, the amount of electricity produced depends on the quality of the light available and the performance of the PV cell.

84

National Laboratory Photovoltaics Research  

Broader source: Energy.gov [DOE]

DOE supports photovoltaic (PV) research and development and facilities at its national laboratories to accelerate progress toward achieving the SunShot Initiative's technological and economic...

85

On-grid PV implementation program. Phase I report, August 1994--January 1995  

SciTech Connect (OSTI)

Southern California Edison Company (Edison) is finalizing a Cooperative Agreement with the U.S. Department of Energy (DOE) to develop high value On-Grid applications for electricity from Photovoltaics (PV). Edison`s efforts are the result of Edison`s long-standing commitment to the pursuit of Renewable Energy. Edison has been a world leader in the development and use of PV. As the technology becomes more commercial, Edison has been actively seeking more applications for PV. After strenuous effort, Edison has now received approval to offer off-grid PV packages within its service territory. In addition, Edison has been very interested in finding high-value on-grid PV applications that may have the potential to become cost effective as PV applications increase and prices decline. Such high-value applications at Edison and other utilities will accelerate the price reductions, which in turn will increase the number of cost-effective applications, driving towards a market competitive with traditional sources of energy. Edison`s efforts build upon the work done by Pacific Gas & Electric (PG&E) at their Kerman substation, but goes much further than that effort. Edison submitted its original proposal to the DOE on June 30, 1993. A revised proposal was submitted on February 1, 1994, in response to a letter from the DOE`s Director of Solar Energy, Robert H. Annan. In a letter dated March 30, 1994, from Paul K. Kearns, Head of Contracting Activity for the DOE`s Golden Field Office, the DOE conditionally approved certain pre-award contract costs. The Cooperative Agreement with DOE was executed on August 16, 1994.

NONE

1994-11-29T23:59:59.000Z

86

Lessons Learned from the Photovoltaic Manufacturing Technology/PV Manufacturing R&D and Thin-Film PV Partnership Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6, 2011 LawrenceE C H NLenslessPhotovoltaic

87

OFF-GRID RENEWABLE ENERGY OPTIONS FOR RURAL ELECTRIFICATION IN WESTERN CHINA  

E-Print Network [OSTI]

OFF-GRID RENEWABLE ENERGY OPTIONS FOR RURAL ELECTRIFICATION IN WESTERN CHINA by the Center in the field of renewable energy utilization in rural areas. John Byrne Director, CEEP #12;iii TABLE..............................................................................................................2 1.4 Renewable Energy and Rural Electrification: A Conceptual Understanding............3 2. PROFILE

Delaware, University of

88

Micro Hydro Power: Promising Solution for Off-grid Renewable Energy Source  

E-Print Network [OSTI]

Abstract — Micro hydro current power plant studies to date have aimed at finding feasible solution of its realistic implementation to the different parts of the world.This paper will briefly review the micro hydro current power plant?s prospect as a possible off grid source of renewable energy.

Md Tanbhir Hoq; Nawshad U. A; Md. N. Islam; Md. K. Syfullah; Raiyan Rahman

89

Electricity Rate Structures and the Economics of Solar PV: Could Mandatory Time-of-Use Rates Undermine California’s Solar Photovoltaic Subsidies?  

E-Print Network [OSTI]

the Twenty- Sixth IEEE Photovoltaic Specialists Conference,T. and R. Margolis. “Are Photovoltaic Systems Worth More toLarge Grid- Connected Photovoltaic Systems in California and

Borenstein, Severin

2007-01-01T23:59:59.000Z

90

City of Sunset Valley- PV Rebate Program  

Broader source: Energy.gov [DOE]

The City of Sunset Valley offers rebates to local homeowners who install photovoltaic (PV) systems on their properties. The local rebate acts as an add-on to the PV rebates that are offered by...

91

Spectroscopy of Photovoltaic Materials: Charge-Transfer Complexes and Titanium Dioxide  

E-Print Network [OSTI]

RIVERSIDE Spectroscopy of Photovoltaic Materials: Charge-DISSERTATION Spectroscopy of Photovoltaic Materials: Charge-function of photovoltaic (PV) and photocatalytic (PC)

Dillon, Robert

2013-01-01T23:59:59.000Z

92

Do Photovoltaic Energy Systems Effect Residential Selling Prices? Results from a California Statewide Investigation.  

E-Print Network [OSTI]

DO PHOTOVOLTAIC ENERGY SYSTEMS AFFECT RESIDENTIAL SELLINGopportunity employer. DO PHOTOVOLTAIC ENERGY SYSTEMS AFFECTin the U.S. have sold with photovoltaic (PV) energy systems

Hoen, Ben

2012-01-01T23:59:59.000Z

93

Lassen Municipal Utility District- PV Rebate Program  

Broader source: Energy.gov [DOE]

Lassen Municipal Utility District (LMUD) is providing incentives for its customers to purchase solar electric photovoltaic (PV) systems. Rebate levels will decrease annually over the life of the...

94

Lodi Electric Utility- PV Rebate Program  

Broader source: Energy.gov [DOE]

Lodi Electric Utility offers rebates to its residential, commercial, industrial and municipal customers who install photovoltaic (PV) systems. The rebate program is funded with approximately $6...

95

CPS Energy- Solar PV Rebate Program  

Broader source: Energy.gov [DOE]

CPS Energy, San Antonio's municipal utility, offers rebates to customers who install solar photovoltaic (PV) systems on their homes, schools, or businesses. There are four rebate "tiers" available...

96

Photon management in thermal and solar photovoltaics  

E-Print Network [OSTI]

Photovoltaics is a technology that directly converts photon energy into electrical energy. Depending on the photon source, photovoltaic systems can be categorized into two groups: solar photovoltaics (PV) and thermophotovoltaics ...

Hu, Lu

2008-01-01T23:59:59.000Z

97

A lightweight inverter for off-grid and grid-connected systems  

SciTech Connect (OSTI)

This paper presents a novel bi-directional power processing topology particularly suitable as an inverter for both grid and off-grid alternative energy systems. All semiconductor devices are soft-switched, thereby allowing higher switching frequencies, improving efficiency, and reducing electromagnetic interference (EMI). The topology may utilize a small, light-weight, and inexpensive high-frequency transformer. Experimental results of a 1 kW bi-directional dc-dc converter are presented.

Barone, F. [Univ. of New South Wales, Sydney, New South Wales (Australia). Centre for Photovoltaic Devices and Systems

1994-12-31T23:59:59.000Z

98

Introduction to off grid energy options for RE systems | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories on climate compatibleInformation off grid energy options for RE

99

A Wavelet-Based Variability Model (WVM) for Solar PV Power Plants  

E-Print Network [OSTI]

Model (WVM) for Solar PV Power Plants Matthew Lave, Jansolar photovoltaic (PV) power plant output given a singleproduce a simulated power plant output. The WVM is validated

Lave, Matthew; Kleissl, Jan; Stein, Joshua S

2013-01-01T23:59:59.000Z

100

Breakthrough: micro-electronic photovoltaics  

SciTech Connect (OSTI)

Sandia developed tiny glitter-sized photovoltaic (PV) cells that could revolutionize solar energy collection. The crystalline silicon micro-PV cells will be cheaper and have greater efficiencies than current PV collectors. Micro-PV cells require relatively little material to form well-controlled, highly efficient devices. Cell fabrication uses common microelectric and micro-electromechanical systems (MEMS) techniques.

Okandan, Murat; Gupta, Vipin

2012-04-23T23:59:59.000Z

Note: This page contains sample records for the topic "off-grid photovoltaics pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Breakthrough: micro-electronic photovoltaics  

ScienceCinema (OSTI)

Sandia developed tiny glitter-sized photovoltaic (PV) cells that could revolutionize solar energy collection. The crystalline silicon micro-PV cells will be cheaper and have greater efficiencies than current PV collectors. Micro-PV cells require relatively little material to form well-controlled, highly efficient devices. Cell fabrication uses common microelectric and micro-electromechanical systems (MEMS) techniques.

Okandan, Murat; Gupta, Vipin

2014-06-23T23:59:59.000Z

102

Photovoltaic Array Condition Monitoring Based on Online Regression of Performance Model  

E-Print Network [OSTI]

Photovoltaic Array Condition Monitoring Based on Online Regression of Performance Model Sergiu Abstract -- Photovoltaic (PV) system performance can be degraded by a series of factors affecting the PV monitoring, fault detection, performance model, photovoltaic systems, regression analysis. I. INTRODUCTION

Teodorescu, Remus

103

Energy dispatch schedule optimization and cost benefit analysis for grid-connected, photovoltaic-battery storage systems  

E-Print Network [OSTI]

photovoltaic systems with battery storages control based onconnected, photovoltaic-battery storage systems A. Nottrott,combined photovoltaic-battery storage system (PV+ system).

Nottrott, A.; Kleissl, J.; Washom, B.

2013-01-01T23:59:59.000Z

104

Photovoltaics for Residential Buildings Webinar  

Broader source: Energy.gov [DOE]

A webinar by National Renewable Energy Laboratory (NREL) Senior Engineer Otto VanGeet on using solar photovoltaic (PV) systems to provide electricity for homes.

105

U.S. Aims for Zero-Energy: Support for PV on New Homes  

E-Print Network [OSTI]

Investigation of Photovoltaic Cost Trends in California. ”photovoltaic (PV) adoption, new homes have a number of attractive attributes. Homebuyers can easily roll the cost

Barbose, Galen; Wiser, Ryan; Bolinger, Mark

2006-01-01T23:59:59.000Z

106

Solar For Schools: A Case Study in Identifying and Implementing Solar Photovoltaic (PV) Projects in Three California School Districts: Preprint  

SciTech Connect (OSTI)

The Department of Energy's (DOE) Solar America Showcase program seeks to accelerate demand for solar technologies among key end use market sectors. As part of this activity the DOE provides Technical Assistance through its national laboratories to large-scale, high-visibility solar installation projects. The Solar Schools Assessment and Implementation Project (SSAIP) in the San Francisco Bay area was selected for a 2009 DOE Solar American Showcase award. SSAIP was formed through the efforts of the nonprofit Sequoia Foundation and includes three school districts: Berkeley, West Contra Costa, and Oakland Unified School Districts. This paper summarizes the technical assistance efforts that resulted from this technical assistance support. It serves as a case study and reference document detailing the steps and processes that could be used to successfully identify, fund, and implement solar PV projects in school districts across the country.

Kandt, A.

2011-04-01T23:59:59.000Z

107

Considerations for PV Site Surveys  

E-Print Network [OSTI]

and building codes determine how a solar-electric (photovoltaic; PV) system is installed. A site survey- grid system, if solar energy is not collected, then the electrical loads may not be supported withoutConsiderations for PV Site Surveys John Wiles Sponsored by the U.S. Department of Energy this loss

Johnson, Eric E.

108

Off-Grid or Stand-Alone Renewable Energy Systems | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehicles »Exchange VisitorsforDepartment ofNo Fear Act Data NoOakOff-Grid

109

Analysis and Design of Smart PV Module  

E-Print Network [OSTI]

This thesis explores the design of a smart photovoltaic (PV) module- a PV module in which PV cells in close proximity are electrically grouped to form a pixel and are connected to dc-dc converter blocks which reside embedded in the back pane...

Mazumdar, Poornima

2012-12-10T23:59:59.000Z

110

Multi-level converters for three-phase photovoltaic applications  

E-Print Network [OSTI]

Multi-level converters for three-phase photovoltaic applications Renato M. Nakagomi, Ye Zhao, Brad a switching matrix device and photovoltaic (PV) panels. The approach is based on the dynamic reconfiguration photovoltaic PV panels. The number of PV panels that are connected to the load can be altered using dynamic

Lehman, Brad

111

CMOS Photovoltaic-cell Layout Configurations for Harvesting Microsystems  

E-Print Network [OSTI]

, and radiation, photovoltaic (PV) systems are appealing options. Still, chip-sized CMOS PV cells produce only exhaustible reservoirs of energy [2]. And of these, photovoltaic (PV) systems that draw energy from solar and the converter, which is why raising system efficiency SYS is so important. Fig. 1. Photovoltaic energy

Rincon-Mora, Gabriel A.

112

European Photovoltaic Solar Energy Conference, Hamburg, Germany, 21-24 September 2009, 4CO.2.3 Quantitative analysis of PV-modules by electroluminescence images for  

E-Print Network [OSTI]

the PV module series resistance. We call this method "voltage imaging of the PV module" (VIM to our VIM approach. Keywords: PV module, electroluminescence 1. Introduction In recent years imaging as disruptions of the electrical interconnectors [7, 8, 9]. In this work, we apply the VIM approach presented

113

EELE408 Photovoltaics Lecture 17 Photovoltaic Modules  

E-Print Network [OSTI]

1 EELE408 Photovoltaics Lecture 17 Photovoltaic Modules Dr. Todd J. Kaiser tjkaiser to temperature effects and other non ideal conditions · Allows for voltage drops across other PV system components · Requires 15 V to charge a 12 V battery 10 Module Current · Depends primarily on size of solar

Kaiser, Todd J.

114

Outlier Detection Rules for Fault Detection in Solar Photovoltaic Arrays  

E-Print Network [OSTI]

Abstract-- Solar photovoltaic (PV) arrays are unique power sources that may have uncleared fault current of solar photovoltaic (PV) systems. Different from traditional power sources, solar PV array is unique devices (OCPD). This may be caused by non-linear output characteristics of solar PV arrays, low irradiance

Lehman, Brad

115

Photovoltaic Research Facilities  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy (DOE) funds photovoltaic (PV) research and development (R&D) at its national laboratory facilities located throughout the country. To encourage further innovation,...

116

Crystalline Silicon Photovoltaics Research  

Broader source: Energy.gov [DOE]

DOE supports crystalline silicon photovoltaic (PV) research and development efforts that lead to market-ready technologies. Below are a list of the projects, summary of the benefits, and discussion...

117

Photovoltaic Subcontract Program  

SciTech Connect (OSTI)

This report summarizes the fiscal year (FY) 1992 progress of the subcontracted photovoltaic (PV) research and development (R D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL)-formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Crystalline Materials and Advanced Concepts project, the Polycrystalline Thin Films project, Amorphous Silicon Research project, the Photovoltaic Manufacturing Technology (PVMaT) project, PV Module and System Performance and Engineering project, and the PV Analysis and Applications Development project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1992, and future research directions.

Not Available

1993-03-01T23:59:59.000Z

118

Sustainability of Large Deployment of Photovoltaics: Environmental & Grid Integration Research  

E-Print Network [OSTI]

1 Sustainability of Large Deployment of Photovoltaics: Environmental & Grid Integration Research Sustainability of Large Deployment of Photovoltaics: Environmental & Grid Integration Research www Photovoltaics Environmental Research Center Brookhaven National Laboratory #12;2 Source: PV Market Outlook

Ohta, Shigemi

119

Photovoltaic Lifetime & Degradation Science Statistical Pathway Development: Acrylic Degradation  

E-Print Network [OSTI]

Photovoltaic Lifetime & Degradation Science Statistical Pathway Development: Acrylic Degradation, USA ABSTRACT In order to optimize and extend the life of photovoltaics (PV) modules, scientific photovoltaics. The statisti- cally significant relationships were investigated using lifetime and degradation

Rollins, Andrew M.

120

Degradation Pathway Models for Photovoltaics Module Lifetime Performance  

E-Print Network [OSTI]

Degradation Pathway Models for Photovoltaics Module Lifetime Performance Nicholas R. Wheeler, Laura data from Underwriter Labs, featuring measurements taken on 18 identical photovoltaic (PV) modules in modules and their effects on module performance over lifetime. Index Terms--photovoltaics, statistical

Rollins, Andrew M.

Note: This page contains sample records for the topic "off-grid photovoltaics pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Novel Control and Harmonics Impact of PV Solar Farms.  

E-Print Network [OSTI]

??This thesis presents a novel application of Photovoltaic (PV) solar system inverter, both during night and day, as a dynamic reactive power compensator STATCOM. This… (more)

Das, Byomakesh

2012-01-01T23:59:59.000Z

122

Large-scale Solar PV Investment Planning Studies.  

E-Print Network [OSTI]

??In the pursuit of a cleaner and sustainable environment, solar photovoltaic (PV) power has been established as the fastest growing alternative energy source in the… (more)

Muneer, Wajid

2011-01-01T23:59:59.000Z

123

Study on PID Resistance of HIT PV Modules  

Broader source: Energy.gov (indexed) [DOE]

2013 Photovoltaic Module Reliability Workshop NREL, Golden, CO February 26-27, 2013 Study on PID resistance of HIT PV modules Tasuku Ishiguro 1 , Hiroshi Kanno 1 , Mikio...

124

Comparison of Pyranometers vs. PV Reference Cells for Evaluation of PV Array Performance  

SciTech Connect (OSTI)

As the photovoltaics (PV) industry has grown, the need for accurately monitoring the solar resource of PV power plants has increased. Historically, the PV industry has relied on thermopile pyranometers for irradiance measurements, and a large body of historical irradiance data taken with pyranometers exists. However, interest in PV reference devices is increasing. In this paper, we discuss why PV reference devices are better suited for PV applications, and estimate the typical uncertainties in irradiance measurements made with both pyranometers and PV reference devices. We assert that the quantity of interest in monitoring a PV power plant is the equivalent irradiance under the IEC 60904-3 reference solar spectrum that would produce the same electrical response in the PV array as the incident solar radiation. For PV-plant monitoring applications, we find the uncertainties in irradiance measurements of this type to be on the order of +/-5% for thermopile pyranometers and +/-2.4% for PV reference devices.

Dunn, L.; Gostein, M.; Emery, K.

2012-09-01T23:59:59.000Z

125

Practical Roadmap and Limits to Nanostructured Photovoltaics  

E-Print Network [OSTI]

The significant research interest in the engineering of photovoltaic (PV) structures at the nanoscale is directed toward enabling reductions in PV module fabrication and installation costs as well as improving cell power ...

Lunt, Richard R.

126

GreyStone Power- Photovoltaic Rebate Program  

Broader source: Energy.gov [DOE]

GreyStone Power, an electricity cooperative in Georgia, offers a rebate for solar photovoltaic (PV) systems to members. The one-time rebate is offered for PV installations that are interconnected...

127

Photovoltaics (Fact Sheet)  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) works with industry, academia, national laboratories, and other government agencies to advance solar photovoltaics (PV) domestically. The SunShot Initiative aims to achieve widespread, unsubsidized cost-competitiveness through an applied research and development (R&D) portfolio spanning PV materials, devices, and manufacturing technologies.

Not Available

2012-11-01T23:59:59.000Z

128

Photovoltaics (Fact Sheet)  

SciTech Connect (OSTI)

DOE works with national labs, academia, and industry to support the domestic photovoltaics (PV) industry and research enterprise. SunShot aims to achieve widespread, unsubsidized cost-competitiveness through an applied research and development (R&D) portfolio spanning PV materials, devices, and manufacturing technologies.

Not Available

2011-10-01T23:59:59.000Z

129

PHOTOVOLTAICS AND COMMERCIAL BUILDINGS--  

E-Print Network [OSTI]

management of electricity demand. · PV applications are now being integrated directly into building roofs, Valuation of Demand-Side Commercial PV Systems in the United States, we sought to measure the costPHOTOVOLTAICS AND COMMERCIAL BUILDINGS-- A NATURAL MATCH A study highlighting strategic

Perez, Richard R.

130

Photovoltaic energy program overview: Fiscal year 1994  

SciTech Connect (OSTI)

This is the 1994 overview for the Photovoltaic Energy Program. The topics of this overview include cooperative research projects to improve PV systems and develop pre-commercial prototypes of new PV products, expanding understanding of the fundamental mechanisms governing the formation and performance of PV materials, and helping US industry enhance its leadership position in the PV market.

NONE

1995-03-01T23:59:59.000Z

131

Solar energy potential atlas for planning energy system off-grid electrification in the Republic of Djibouti  

E-Print Network [OSTI]

1 Solar energy potential atlas for planning energy system off-grid electrification in the Republic solar resource can therefore be an interesting mean to produce energy where it is consumed. The aimWh/m². Furthermore, the solar radiation reaching Djibouti corresponded to 20 000 times the total yearly energy

Boyer, Edmond

132

Sandia National Laboratories: Photovoltaic Systems Research ...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

845-9015 rdrobin@sandia.gov Publications available at: pvsac@sandia.gov Websites Photovoltaics energy.sandia.gov www.eere.energy.gov Tagged with: Energy * Photovoltaics * PV *...

133

Photovoltaic Technology Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

and devices convert sunlight into electrical energy, and PV cells are commonly known as solar cells. Photovoltaics can literally be translated as light-electricity. First used in...

134

Flat-Plate Photovoltaic Module Basics  

Broader source: Energy.gov [DOE]

Flat-plate photovoltaic (PV) modules are made of several components, including the front surface materials, encapsulant, rear surface, and frame.

135

City of Lompoc Utilities- PV Rebate Program  

Broader source: Energy.gov [DOE]

City of Lompoc Utilities provides rebates to its electric customers who purchase and install photovoltaic (PV) systems. The rebate is $2.00 per watt-AC. The incentive amount may not exceed 50% the...

136

Austin Energy- Residential Solar PV Rebate Program  

Broader source: Energy.gov [DOE]

Austin Energy's Solar Rebate Program offers a $1.50 per watt incentive to eligible residential who install photovoltaic (PV) systems on their homes. Rebates are limited to $15,000 per home...

137

Austin Energy- Commercial PV Incentive Program  

Broader source: Energy.gov [DOE]

Austin Energy, a municipal utility, offers a production incentive to its commercial and multi-family residential customers for electricity generated by qualifying photovoltaic (PV) systems of up to...

138

Merced Irrigation District- PV Buydown Program  

Broader source: Energy.gov [DOE]

Merced Irrigation District (MID) offers its residential, commercial and non-profit customers a rebate for installing solar electric photovoltaic (PV) systems on their homes and offices. The rebate...

139

SMUD- PV Residential Retrofit Buy-Down  

Broader source: Energy.gov [DOE]

SMUD offers an incentive of $0.20 per watt (W) AC to residential customers who install grid-connected photovoltaic (PV) systems. Customers do not have to contract directly with SMUD-approved...

140

PV Module Reliability Research (Fact Sheet)  

SciTech Connect (OSTI)

This National Center for Photovoltaics sheet describes the capabilities of its PV module reliability research. The scope and core competencies and capabilities are discussed and recent publications are listed.

Not Available

2013-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "off-grid photovoltaics pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Pacific Power- PV Rebate Program (California)  

Broader source: Energy.gov [DOE]

Pacific Power is providing rebates to their customers who install photovoltaic (PV) systems on their homes and facilities. These rebates step down over time as key installation targets are met. As...

142

PHOTOVOLTAICS AND THE ENVIRONMENT 1998. REPORT ON THE WORKSHOP PHOTOVOLTAICS AND THE ENVIRONMENT 1999  

SciTech Connect (OSTI)

The objective of the workshop ``Photovoltaics and the Environment'' was to bring together PV manufacturers and industry analysts to define EH and S issues related to the large-scale commercialization of PV technologies.

FTHENAKIS,V.; ZWEIBEL,K.; MOSKOWITZ,P.

1999-02-01T23:59:59.000Z

143

Analysis of the Potential Applications of Solar Termal and Photovoltaic Systems for Northwest Vista College  

E-Print Network [OSTI]

the following RE technologies as viable: ground source heat pump (GSHP) systems, closed loop solar thermal system and photovoltaic (PV)....

Ugursal, A.; Martinez, J.; Baltazar, J. C.; Zilbershtein, G.

2013-01-01T23:59:59.000Z

144

NREL Photovoltaic Program. FY 1994 annual report, October 1, 1993--September 30, 1994  

SciTech Connect (OSTI)

This report summarizes the in-house and subcontracted research and development activities under the National renewable Energy Laboratory (NREL) Photovoltaics (PV) program for fiscal year 1994. Research is organized under the following areas; PV program management; crystalline silicon and advanced devices; thin-film PV technologies; PV manufacturing; PV module and system performance and engineering; and PV applications and markets.

NONE

1995-06-01T23:59:59.000Z

145

Bracket for photovoltaic modules  

DOE Patents [OSTI]

Brackets for photovoltaic ("PV") modules are described. In one embodiment, a saddle bracket has a mounting surface to support one or more PV modules over a tube, a gusset coupled to the mounting surface, and a mounting feature coupled to the gusset to couple to the tube. The gusset can have a first leg and a second leg extending at an angle relative to the mounting surface. Saddle brackets can be coupled to a torque tube at predetermined locations. PV modules can be coupled to the saddle brackets. The mounting feature can be coupled to the first gusset and configured to stand the one or more PV modules off the tube.

Ciasulli, John; Jones, Jason

2014-06-24T23:59:59.000Z

146

Solid-State Lighting on a Shoestring Budget: The Economics of Off-Grid Lighting for Small Businesses in Kenya  

SciTech Connect (OSTI)

superior lighting services to low income people in off-grid areas of developing countries, many of whom currently rely on fuel based lighting sources such as kerosene. If this potential is to be achieved in the near term, however, manufacturers must produce off-grid lighting products that are inexpensive, perform well, and meet the needs of potential end users. At present, relatively few products meet all three of these goals. In this article, we report results from a detailed study of lighting use by micro-enterprises in two small towns in Kenya's Rift Valley Province. The work included a survey about lighting use by 50 small businesses, careful measurements of kerosene lighting use patterns and associated costs for 23 of these businesses, and a subsequent field trial in which 14 of the 23 businesses purchased and used low cost LED lamps over a number of months.

Radecsky, Kristen; Johnstone, Peter; Jacobson, Arne; Mills, Evan

2008-12-14T23:59:59.000Z

147

Calibration and Rating of Photovoltaics: Preprint  

SciTech Connect (OSTI)

Rating the performance of photovoltaic (PV) modules is critical to determining the cost per watt, and efficiency is useful to assess the relative progress among PV concepts. Procedures for determining the efficiency for PV technologies from 1-sun to low concentration to high concentration are discussed. We also discuss the state of the art in primary and secondary calibration of PV reference cells used by calibration laboratories around the world. Finally, we consider challenges to rating PV technologies and areas for improvement.

Emery, K.

2012-06-01T23:59:59.000Z

148

Introduction! Low Cost, High Volume, Scale-up Photovoltaic Manufacturing!  

E-Print Network [OSTI]

Introduction! Low Cost, High Volume, Scale-up Photovoltaic Manufacturing! Prof. Shreyes Melkote, Manufacturing Research Center, Georgia Institute of Technology Photovoltaics (PV) will be part of the energy mix volume PV manufacturing, therefore to reduce manufacturing cost and accelerate PV use. ! q Silicon wafer

Das, Suman

149

Fast Photovoltaic Array Reconfiguration for Partial Solar Powered Vehicles  

E-Print Network [OSTI]

Fast Photovoltaic Array Reconfiguration for Partial Solar Powered Vehicles Jaemin Kim1 , Yanzhi during cruising using innovative fast photovoltaic array (PV) reconfiguration. Use of all the vehicle sur and partial PV array mounting by the car owner's driving pattern, which results in more than 20% PV cell cost

Pedram, Massoud

150

Design a PV-AF system using V2G Technology to Improve Power Quality  

E-Print Network [OSTI]

--PHEVs, PV-AF, Active filter, Battery scheme I. INTRODUCTION Plug in Hybrid Electrical Vehicles (PHEVsDesign a PV-AF system using V2G Technology to Improve Power Quality F. R. Islam, and H. R. Pota a photovoltaic shunt active filter (PV- AF) system to improve power quality of photovoltaic generation. A system

Pota, Himanshu Roy

151

A Distributed Approach to MPPT for PV Sub-Module Differential Power Processing  

E-Print Network [OSTI]

for differential power processing in photovoltaic (PV) applica- tions. This distributed algorithm performs true of the proposed distributed algorithm. I. INTRODUCTION In photovoltaic (PV) energy systems, PV modules are of- ten, reliability, and cost. A high level introduction to the DPP concept can be found in [8]. In contrast to DC

Liberzon, Daniel

152

Design and Implementation of Real-Time Off-Grid Detection Tool Based on FNET/GridEye  

SciTech Connect (OSTI)

Real-time situational awareness tools are of critical importance to power system operators, especially during emergencies. The availability of electric power has become a linchpin of most post disaster response efforts as it is the primary dependency for public and private sector services, as well as individuals. Knowledge of the scope and extent of facilities impacted, as well as the duration of their dependence on backup power, enables emergency response officials to plan for contingencies and provide better overall response. Based on real-time data acquired by Frequency Disturbance Recorders (FDRs) deployed in the North American power grid, a real-time detection method is proposed. This method monitors critical electrical loads and detects the transition of these loads from an on-grid state, where the loads are fed by the power grid to an off-grid state, where the loads are fed by an Uninterrupted Power Supply (UPS) or a backup generation system. The details of the proposed detection algorithm are presented, and some case studies and off-grid detection scenarios are also provided to verify the effectiveness and robustness. Meanwhile, the algorithm has already been implemented based on the Grid Solutions Framework (GSF) and has effectively detected several off-grid situations.

Guo, Jiahui [University of Tennessee, Knoxville (UTK); Zhang, Ye [University of Tennessee, Knoxville (UTK); Liu, Yilu [University of Tennessee (UTK) and Oak Ridge National Laboratory (ORNL); Young II, Marcus Aaron [ORNL; Irminger, Philip [ORNL; Dimitrovski, Aleksandar D [ORNL; Willging, Patrick [U.S. Department of Energy

2014-01-01T23:59:59.000Z

153

Supporting Photovoltaics in Market-Rate Residential New Construction: A Summary of Programmatic Experience to Date and Lessons Learned  

E-Print Network [OSTI]

Investigation of Photovoltaic Cost Trends in California,photovoltaic (PV) adoption, new homes have a number of attractive attributes. Homebuyers can easily roll the cost

Barbose, Galen; Wiser, Ryan; Bolinger, Mark

2006-01-01T23:59:59.000Z

154

Materials for Solar Energy: Photovoltaics The University Center of Excellence for Photovoltaics Research and Education (UCEP) at  

E-Print Network [OSTI]

, Anneal Ion Implantation UV laser LPCVD Polysilicon depostition PV Systems Sizing PV Form PC Cad SizeMaterials for Solar Energy: Photovoltaics The University Center of Excellence for Photovoltaics hood, VL Texturing hood PV Cost E-cost (Calculates cost of electricity system) M-Cost 1 (Excel

Li, Mo

155

Exploiting weather forecasts for sizing photovoltaic energy bids  

E-Print Network [OSTI]

1 Exploiting weather forecasts for sizing photovoltaic energy bids Antonio Giannitrapani, Simone for a photovoltaic (PV) power producer taking part into a competitive electricity market characterized by financial set from an Italian PV plant. Index Terms--Energy market, bidding strategy, photovoltaic power

Giannitrapani, Antonello

156

Battery Management for Grid-Connected PV Systems with a Battery  

E-Print Network [OSTI]

}@usc.edu ABSTRACT Photovoltaic (PV) power generation systems are one of the most promising renewable power sources-connected systems, Photovoltaic power, Electricity bill 1. INTRODUCTION The number and capacity of photovoltaic (PV for customers to save enough money with lower monthly electricity bills to compensate the initial cost

Pedram, Massoud

157

National Center for Photovoltaics at NREL  

SciTech Connect (OSTI)

The National Center for Photovoltaics at the National Renewable Energy Laboratory (NREL) focuses on technology innovations that drive industry growth in U.S. photovoltaic (PV) manufacturing. The NCPV is a central resource for our nation's capabilities in PV research, development, deployment, and outreach.

VanSant, Kaitlyn; Wilson, Greg; Berry, Joseph; Al-Jassim, Mowafak; Kurtz, Sarah

2013-11-07T23:59:59.000Z

158

Photovoltaic Energy Program overview, fiscal year 1997  

SciTech Connect (OSTI)

The US Department of Energy (DOE) Photovoltaic Energy Program fosters the widespread acceptance of photovoltaic (PV) technology and accelerates commercial use of US PV products. The Program is founded on a collaborative strategy involving industry, the research and development community, potential users, utilities, and state and federal agencies. There are three main Program elements: Systems Engineering and Applications, Technology Development, and Research and Development.

NONE

1998-02-01T23:59:59.000Z

159

National Center for Photovoltaics at NREL  

ScienceCinema (OSTI)

The National Center for Photovoltaics at the National Renewable Energy Laboratory (NREL) focuses on technology innovations that drive industry growth in U.S. photovoltaic (PV) manufacturing. The NCPV is a central resource for our nation's capabilities in PV research, development, deployment, and outreach.

VanSant, Kaitlyn; Wilson, Greg; Berry, Joseph; Al-Jassim, Mowafak; Kurtz, Sarah

2014-06-10T23:59:59.000Z

160

Rooftop Photovoltaics Market Penetration Scenarios  

SciTech Connect (OSTI)

The goal of this study was to model the market penetration of rooftop photovoltaics (PV) in the United States under a variety of scenarios, on a state-by-state basis, from 2007 to 2015.

Paidipati, J.; Frantzis, L.; Sawyer, H.; Kurrasch, A.

2008-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "off-grid photovoltaics pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Salem Electric- Photovoltaic Rebate Program  

Broader source: Energy.gov [DOE]

Salem Electric offers a rebate to residential customers who install solar photovoltaic (PV) systems. Customers have the option of receiving a rebate or a [http://dsireusa.org/incentives/incentive...

162

Mandatory Photovoltaic System Cost Estimate  

Broader source: Energy.gov [DOE]

At the request of a customer or a potential customer, Colorado electric utilities are required to conduct a cost comparison of a photovoltaic (PV) system to any proposed distribution line extension...

163

Ameren Missouri- Photovoltaic Rebate Program  

Broader source: Energy.gov [DOE]

Ameren Missouri offers rebates to its customers for the installation of net metered photovoltaic (PV) systems on their properties. The rebate is set at $2.00 per DC watt with a maximum rebate of ...

164

Mandatory Photovoltaic System Cost Analysis  

Broader source: Energy.gov [DOE]

The Arizona Corporation Commission requires electric utilities to conduct a cost/benefit analysis to compare the cost of line extension with the cost of installing a stand-alone photovoltaic (PV)...

165

Abstract--This paper deals with the design of a nonlinear con-troller for single-phase grid-connected photovoltaic (PV) systems  

E-Print Network [OSTI]

exhaustion. The PV system is the most employed renewable energy source among different sources. Residential is designed based on the partial feedback linearization which transforms the nonlinear system into a reduced to design partial feedback linearizing controller. The performance of the proposed controller is evaluated

Pota, Himanshu Roy

166

Durability of Materials in a Stress-Response Framework: Acrylic Materials for Photovoltaic Systems  

E-Print Network [OSTI]

Durability of Materials in a Stress-Response Framework: Acrylic Materials for Photovoltaic Systems materials for enhanced photovoltaic (PV) performance, it is critical to have quantitative knowledge developed for solar radiation durability studies of solar and environmentally exposed photovoltaic materials

Rollins, Andrew M.

167

Integrating Photovoltaic Inverter Reliability into Energy Yield Estimation with Markov Models  

E-Print Network [OSTI]

Integrating Photovoltaic Inverter Reliability into Energy Yield Estimation with Markov Models@illinois.edu Abstract-- Markov reliability models to estimate Photovoltaic (PV) inverter reliability of the inverters. Keywords-Photovoltaic energy conversion, Markov reliability models, utility-interactive inverters

Liberzon, Daniel

168

Durability of Acrylic: Stress and Response Characterization of Materials for Photovoltaics  

E-Print Network [OSTI]

Durability of Acrylic: Stress and Response Characterization of Materials for Photovoltaics Myles P of materials for enhanced photovoltaic (PV) performance, it is critical to have quantitative knowledge of acrylic PMMA are reported. Keywords-Acrylic, Degradation, Photovoltaics, Photodegradation I. INTRODUCTION

Rollins, Andrew M.

169

PSCAD Modules Representing PV Generator  

SciTech Connect (OSTI)

Photovoltaic power plants (PVPs) have been growing in size, and the installation time is very short. With the cost of photovoltaic (PV) panels dropping in recent years, it can be predicted that in the next 10 years the contribution of PVPs to the total number of renewable energy power plants will grow significantly. In this project, the National Renewable Energy Laboratory (NREL) developed a dynamic modeling of the modules to be used as building blocks to develop simulation models of single PV arrays, expanded to include Maximum Power Point Tracker (MPPT), expanded to include PV inverter, or expanded to cover an entire PVP. The focus of the investigation and complexity of the simulation determines the components that must be included in the simulation. The development of the PV inverter was covered in detail, including the control diagrams. Both the current-regulated voltage source inverter and the current-regulated current source inverter were developed in PSCAD. Various operations of the PV inverters were simulated under normal and abnormal conditions. Symmetrical and unsymmetrical faults were simulated, presented, and discussed. Both the three-phase analysis and the symmetrical component analysis were included to clarify the understanding of unsymmetrical faults. The dynamic model validation was based on the testing data provided by SCE. Testing was conducted at SCE with the focus on the grid interface behavior of the PV inverter under different faults and disturbances. The dynamic model validation covers both the symmetrical and unsymmetrical faults.

Muljadi, E.; Singh, M.; Gevorgian, V.

2013-08-01T23:59:59.000Z

170

Abstract--With the increasing fears of the impacts of the high penetration rates of Photovoltaic (PV) systems, a technical study  

E-Print Network [OSTI]

by a transmission line. Despite its small size, this system was specifically designed to mimic very closely but the simulation gets slower as the system size gets lager. Both Simulink SimPowerSystems and PSCAD don't allow by the researchers and the developers in power systems. II. PSCAD MODEL OF GRID TIED PHOTOVOLTAIC SYSTEM The PSCAD

Lavaei, Javad

171

The Market Value and Cost of Solar Photovoltaic Electricity Production  

E-Print Network [OSTI]

high cost of power from solar photovoltaic (PV) panels hassolar panels can be more closely synchronized with system demand, but at a costcost of the solar PV installation is equivalent to purchasing each MWh over the life of the panels

Borenstein, Severin

2008-01-01T23:59:59.000Z

172

Transmission System Performance Analysis for High-Penetration Photovoltaics  

SciTech Connect (OSTI)

This study is an assessment of the potential impact of high levels of penetration of photovoltaic (PV) generation on transmission systems. The effort used stability simulations of a transmission system with different levels of PV generation and load.

Achilles, S.; Schramm, S.; Bebic, J.

2008-02-01T23:59:59.000Z

173

FEMP Offers New Training on Photovoltaic Operations and Maintenance...  

Broader source: Energy.gov (indexed) [DOE]

The seminar will cover operations and maintenance (O&M) best practices for photovoltaic (PV) systems of 100 kW or less, including planning for a PV O&M scope of work and...

174

Assessing the drivers of regional trends in solar photovoltaic manufacturing  

E-Print Network [OSTI]

The photovoltaic (PV) industry has grown rapidly as a source of energy and economic activity. Since 2008, the average manufacturer-sale price of PV modules has declined by over a factor of two, coinciding with a significant ...

Goodrich, Alan C.

175

Photovoltaics and the National Park Service : an institutional analysis  

E-Print Network [OSTI]

This paper is one of a series resulting from institutional analysis of photovoltaic (PV) acceptance. The case reported here involves the acceptance of PV by the National Park Service. As part of the Department of the ...

Nutt-Powell, Thomas E.

1980-01-01T23:59:59.000Z

176

Growth in metals production for rapid photovoltaics deployment  

E-Print Network [OSTI]

If global photovoltaics (PV) deployment grows rapidly, the required input materials need to be supplied at an increasing rate. We quantify the effect of PV deployment levels on the scale of annual metals production. If a ...

Kavlak, Goksin

177

Photovoltaic Systems Interconnected onto Secondary Network Distribution Systems – Success Stories  

Broader source: Energy.gov [DOE]

This report examines six case studies of photovoltaic (PV) systems integrated into secondary network systems. The six PV systems were chosen for evaluation because they are interconnected to secondary network systems located in four major Solar America Cities.

178

NREL Photovoltaic Program FY 1993  

SciTech Connect (OSTI)

This report reviews the in-house and subcontracted research and development (R&D) activities under the National Renewable Energy Laboratory (NREL) Photovoltaic (PV) Program from October 1, 1992, through September 30, 1993 (fiscal year [FY] 1993). The NREL PV Program is part of the U.S. Department of Energy`s (DOE`s) National Photovoltaics Program, as described in the DOE Photovoltaics Program Plan, FY 1991 - FY 1995. The FY 1993 budget authority (BA) for carrying out the NREL PV Program was $40.1 million in operating funds and $0.9 million in capital equipment funds. An additional $4.8 million in capital equipment funds were made available for the new Solar Energy Research Facility (SERF) that will house the in-house PV laboratories beginning in FY 1994. Subcontract activities represent a major part of the NREL PV Program, with more than $23.7 million (nearly 59%) of the FY 1993 operating funds going to 70 subcontractors. In FY 1993, DOE assigned certain other PV subcontracting efforts to the DOE Golden Field Office (DOE/GO), and assigned responsibility for their technical support to the NREL PV Program. An example is the PV:BONUS (Building Opportunities in the U.S. for Photovoltaics) Project. These DOE/GO efforts are also reported in this document.

Not Available

1994-08-01T23:59:59.000Z

179

Climatically Diverse Data Set for Flat-Plate PV Module Model Validations (Presentation)  

SciTech Connect (OSTI)

Photovoltaic (PV) module I-V curves were measured at Florida, Colorado, and Oregon locations to provide data for the validation and development of models used for predicting the performance of PV modules.

Marion, B.

2013-05-01T23:59:59.000Z

180

Photovoltaic Module Reliability Workshop 2010: February 18-19, 2010  

SciTech Connect (OSTI)

NREL's Photovoltaic (PV) Module Reliability Workshop (PVMRW) brings together PV reliability experts to share information, leading to the improvement of PV module reliability. Such improvement reduces the cost of solar electricity and promotes investor confidence in the technology--both critical goals for moving PV technologies deeper into the electricity marketplace.

Kurtz, J.

2013-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "off-grid photovoltaics pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Photovoltaic Module Reliability Workshop 2014: February 25-26, 2014  

SciTech Connect (OSTI)

NREL's Photovoltaic (PV) Module Reliability Workshop (PVMRW) brings together PV reliability experts to share information, leading to the improvement of PV module reliability. Such improvement reduces the cost of solar electricity and promotes investor confidence in the technology--both critical goals for moving PV technologies deeper into the electricity marketplace.

Kurtz, S.

2014-02-01T23:59:59.000Z

182

Photovoltaic Module Reliability Workshop 2011: February 16-17, 2011  

SciTech Connect (OSTI)

NREL's Photovoltaic (PV) Module Reliability Workshop (PVMRW) brings together PV reliability experts to share information, leading to the improvement of PV module reliability. Such improvement reduces the cost of solar electricity and promotes investor confidence in the technology--both critical goals for moving PV technologies deeper into the electricity marketplace.

Kurtz, S.

2013-11-01T23:59:59.000Z

183

Photovoltaic Module Reliability Workshop 2012: February 28 - March 1, 2012  

SciTech Connect (OSTI)

NREL's Photovoltaic (PV) Module Reliability Workshop (PVMRW) brings together PV reliability experts to share information, leading to the improvement of PV module reliability. Such improvement reduces the cost of solar electricity and promotes investor confidence in the technology--both critical goals for moving PV technologies deeper into the electricity marketplace.

Kurtz, S.

2013-11-01T23:59:59.000Z

184

Photovoltaic Module Reliability Workshop 2013: February 26-27, 2013  

SciTech Connect (OSTI)

NREL's Photovoltaic (PV) Module Reliability Workshop (PVMRW) brings together PV reliability experts to share information, leading to the improvement of PV module reliability. Such improvement reduces the cost of solar electricity and promotes investor confidence in the technology--both critical goals for moving PV technologies deeper into the electricity marketplace.

Kurtz, S.

2013-10-01T23:59:59.000Z

185

backfed from utility-interactive PV inverters. This equation expresses this ratings requirement  

E-Print Network [OSTI]

-interactive photovoltaic (PV) system and the electrical utility grid is an area of importance to PV system designers and installers. Due to the varying sizes of PV systems and configurations of existing service-entrance equipment, these connections vary significantly among PV systems. Differences in Section 690.64 of the 2005 and 2008 editions

Johnson, Eric E.

186

Ensuring Quality of PV Modules: Preprint  

SciTech Connect (OSTI)

Photovoltaic (PV) customers need to have confidence in the PV modules they purchase. Currently, no test can quantify a module's lifetime with confidence, but stress tests are routinely used to differentiate PV product designs. We suggest that the industry would be strengthened by using the wisdom of the community to develop a single set of tests that will help customers quantify confidence in PV products. This paper evaluates the need for quality assurance (QA) standards and suggests a path for creating these. Two types of standards are needed: 1) QA of the module design and 2) QA of the manufacturing process.

Kurtz, S.; Wohlgemuth, J.; Hacke, P.; Kempe, M.; Sample, T.; Yamamichi, M.; Kondo, M.; Doi, T.; Otani, K.; Amano, J.

2011-07-01T23:59:59.000Z

187

Photovoltaics for the Terawatt Christiana Honsberg  

E-Print Network [OSTI]

1 Photovoltaics for the Terawatt Challenge Christiana Honsberg Department of Electrical Computer;Photovoltaic Milestones · Germany, Spain, Italy have yearly installed PV capacity > yearly increase Workshop 02/28/14 C. Honsberg 5 5 #12;Learning Curves for Photovoltaics UD Energy Institute Solar Workshop

Firestone, Jeremy

188

The Solar Photovoltaics Technology Conflict between  

E-Print Network [OSTI]

A Duel in the Sun The Solar Photovoltaics Technology Conflict between China and the United States A Duel in the Sun The Solar Photovoltaics Technology Conflict between China and the United States1 John domestically, and selling interna- tionally solar photovoltaic (PV) electricity- generating technology. Over

Deutch, John

189

Outdoor PV Degradation Comparison  

SciTech Connect (OSTI)

As photovoltaic (PV) penetration of the power grid increases, it becomes vital to know how decreased power output; may affect cost over time. In order to predict power delivery, the decline or degradation rates must be determined; accurately. At the Performance and Energy Rating Testbed (PERT) at the Outdoor Test Facility (OTF) at the; National Renewable Energy Laboratory (NREL) more than 40 modules from more than 10 different manufacturers; were compared for their long-term outdoor stability. Because it can accommodate a large variety of modules in a; limited footprint the PERT system is ideally suited to compare modules side-by-side under the same conditions.

Jordan, D. C.; Smith, R. M.; Osterwald, C. R.; Gelak, E.; Kurtz, S. R.

2011-02-01T23:59:59.000Z

190

The Market Value and Cost of Solar Photovoltaic Electricity Production  

E-Print Network [OSTI]

Solar Photovoltaic Cells”, Center for the Study of Energy Markets Working Paper WP-142, UniversitySolar Photovoltaic Subsidies? ” Center for the Study of Energy Markets Working Paper #172, Universitysolar PV today positive. Director, University of California Energy

Borenstein, Severin

2008-01-01T23:59:59.000Z

191

Tariffs Can Be Structured to Encourage Photovoltaic Energy  

E-Print Network [OSTI]

Tariffs Can Be Structured to Encourage Photovoltaic Energyamong available commercial tariffs, however, the reductionhowever, these “PV-friendly” tariffs would not be optimal

Wiser, Ryan

2009-01-01T23:59:59.000Z

192

Financing Non-Residential Photovoltaic Projects: Options and Implications  

E-Print Network [OSTI]

of panel titled “Financing Residential and Small CommercialL ABORATORY Financing Non-Residential Photovoltaic Projects:1 2. Policy Support for Non-Residential PV

Bolinger, Mark

2009-01-01T23:59:59.000Z

193

Project Profile: Innovative Ballasted Flat Roof Solar Photovoltaic...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

alone cost about 0.95 per watt for rooftop installations. Cascade is developing a plastic-based photovoltaic (PV) racking system that reduces mechanical and electrical labor,...

194

Novel materials, computational spectroscopy, and multiscale simulation in nanoscale photovoltaics  

E-Print Network [OSTI]

Photovoltaic (PV) solar cells convert solar energy to electricity using combinations of semiconducting sunlight absorbers and metallic materials as electrical contacts. Novel nanoscale materials introduce new paradigms for ...

Bernardi, Marco, Ph. D. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

195

The Market Value and Cost of Solar Photovoltaic Electricity Production  

E-Print Network [OSTI]

Shannon Moynahan, “The California Solar Initiative — TriumphRates Undermine California’s Solar Photovoltaic Subsidies? ”to the fact that solar PV in California has not been focused

Borenstein, Severin

2008-01-01T23:59:59.000Z

196

Photovoltaics at DOE's National Renewable Energy Laboratory License...  

Broader source: Energy.gov (indexed) [DOE]

describes a sample land use agreement surrounding the National Renewable Energy Laboratory Science and Technology Facility roof-top photovoltaic (PV) power purchase agreement...

197

Financing Solar PV at Government Sites with PPAs and Public Debt...  

Broader source: Energy.gov (indexed) [DOE]

state and local governmental agencies have employed one of two models to deploy solar photovoltaic (PV) projects: (1) self-ownership (financed through a variety of means)...

198

Financing Solar PV at Government Sites with PPAs and Public Debt...  

Broader source: Energy.gov (indexed) [DOE]

Solar PV at Government Sites with PPAs and Public Debt Overview of financing solar photovoltaics at government sties with power purchase agreements and public debt. Author:...

199

Modeling Metal Fatigue As a Key Step in PV Module Life Time Prediction (Presentation)  

SciTech Connect (OSTI)

This presentation covers modeling metal fatigue as a key step in photovoltaic (PV) module lifetime predictions. Described are time-dependent and time-independent case studies.

Bosco, N.

2012-02-01T23:59:59.000Z

200

The Economic Value of PV and Net Metering to Residential Customers in California  

E-Print Network [OSTI]

incentives under the California Solar Initiative takeRates Undermine California’s Solar Photovoltaic Subsidies? ”Solar PV and Retail Rate Design”, Unpublished draft report for the California

Darghouth, Naim

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "off-grid photovoltaics pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Fault Evolution in Photovoltaic Array During Night-to-Day Transition  

E-Print Network [OSTI]

amount of energy loss. For example, in UK domestic PV systems, the annual energy loss due to faults in PV Fault detection and protection in solar photovoltaic (PV) arrays are important tasks for improving PV at night when there is no solar irradiance. During sunrise, the irradiance on the PV array increases slowly

Lehman, Brad

202

Ballasted photovoltaic module and module arrays  

DOE Patents [OSTI]

A photovoltaic (PV) module assembly including a PV module and a ballast tray. The PV module includes a PV device and a frame. A PV laminate is assembled to the frame, and the frame includes an arm. The ballast tray is adapted for containing ballast and is removably associated with the PV module in a ballasting state where the tray is vertically under the PV laminate and vertically over the arm to impede overt displacement of the PV module. The PV module assembly can be installed to a flat commercial rooftop, with the PV module and the ballast tray both resting upon the rooftop. In some embodiments, the ballasting state includes corresponding surfaces of the arm and the tray being spaced from one another under normal (low or no wind) conditions, such that the frame is not continuously subjected to a weight of the tray.

Botkin, Jonathan (El Cerrito, CA); Graves, Simon (Berkeley, CA); Danning, Matt (Oakland, CA)

2011-11-29T23:59:59.000Z

203

PV output smoothing with energy storage.  

SciTech Connect (OSTI)

This report describes an algorithm, implemented in Matlab/Simulink, designed to reduce the variability of photovoltaic (PV) power output by using a battery. The purpose of the battery is to add power to the PV output (or subtract) to smooth out the high frequency components of the PV power that that occur during periods with transient cloud shadows on the PV array. The control system is challenged with the task of reducing short-term PV output variability while avoiding overworking the battery both in terms of capacity and ramp capability. The algorithm proposed by Sandia is purposely very simple to facilitate implementation in a real-time controller. The control structure has two additional inputs to which the battery can respond. For example, the battery could respond to PV variability, load variability or area control error (ACE) or a combination of the three.

Ellis, Abraham; Schoenwald, David Alan

2012-03-01T23:59:59.000Z

204

Tracking the Sun III; The Installed Cost of Photovoltaics in the United States from 1998-2009  

E-Print Network [OSTI]

Investigation of Photovoltaic Cost Trends in California.photovoltaic (PV) systems has increased, so too has the desire to track the installed costPhotovoltaic Power Systems. Figure 13. Comparison of Average Installed Costs (

Barbose, Galen

2011-01-01T23:59:59.000Z

205

Tracking the Sun II: The Installed Cost of Photovoltaics in the U.S. from 1998-2008  

E-Print Network [OSTI]

Investigation of Photovoltaic Cost Trends in California,Investigation of Photovoltaic Cost Trends in California.photovoltaic (PV) systems have grown in number, so too has the desire to track the installed cost

Barbose, Galen L

2010-01-01T23:59:59.000Z

206

Photovoltaic performance and reliability workshop  

SciTech Connect (OSTI)

This workshop was the sixth in a series of workshops sponsored by NREL/DOE under the general subject of photovoltaic testing and reliability during the period 1986--1993. PV performance and PV reliability are at least as important as PV cost, if not more. In the US, PV manufacturers, DOE laboratories, electric utilities, and others are engaged in the photovoltaic reliability research and testing. This group of researchers and others interested in the field were brought together to exchange the technical knowledge and field experience as related to current information in this evolving field of PV reliability. The papers presented here reflect this effort since the last workshop held in September, 1992. The topics covered include: cell and module characterization, module and system testing, durability and reliability, system field experience, and standards and codes.

Mrig, L. [ed.

1993-12-01T23:59:59.000Z

207

Taunton Municipal Lighting Plant- Residential PV Rebate Program  

Broader source: Energy.gov [DOE]

Customers of Taunton Municipal Lighting Plant (TMLP) may be eligible for $2.00/watt rebate on solar photovoltaic (PV) installations. The minimum system size eligible for this rebate is 1 kilowatt ...

208

New York Sun Competitive PV Program (New York)  

Broader source: Energy.gov [DOE]

The New York Sun Competitive Photovoltaic (PV) Program is an expansion of the Renewable Portfolio Standard (RPS) Customer-Sited Tier Regional Program that includes Upstate New York. The New York...

209

Perspective on International PV Challenge & Opportunities for Rural Development  

SciTech Connect (OSTI)

International market opportunities for the sale and deployment of photovoltaic (PV) systems abound and will continue to out-pace domestic, grid-connected opportunities for the foreseeable future.

Taylor, R. W.

2000-01-01T23:59:59.000Z

210

Department of Energy: Photovoltaics program - FY 1996  

SciTech Connect (OSTI)

The National Photovoltaic Program supports efforts to make PV an important part of the US economy through three main program elements: Research and Development, Technology Development, and Systems Engineering and Applications. (1) Research and Development activities generate new ideas, test the latest scientific theories, and push the limits of PV efficiencies in laboratory and prototype materials and devices. (2) Technology Development activities apply laboratory innovations to products to improve PV technology and the manufacturing techniques used to produce PV systems for the market. (3) Systems Engineering and Applications activities help improve PV systems and validate these improvements through tests, measurements, and deployment of prototypes. In addition, applications research validates, sales, maintenance, and financing mechanisms worldwide. (4) Environmental, Health, Safety and Resource Characterization activities help to define environmental, health and safety issues for those facilities engaged in the manufacture of PV products and organizations engaged in PV research and development. All PV Program activities are planned and executed in close collaboration and partnership with the U.S. PV industry. The overall PV Program is planned to be a balanced effort of research, manufacturing development, and market development. Critical to the success of this strategy is the National Photovoltaic Program`s effort to reduce the cost of electricity generated by photovoltaic. The program is doing this in three primary ways: by making devices more efficient, by making PV systems less expensive, and by validating the technology through measurements, tests, and prototypes.

NONE

1996-12-31T23:59:59.000Z

211

Introduction of Break-Out Session 2 of the 2011 International PV Module Quality Assurance Forum(Presentation)  

SciTech Connect (OSTI)

This presentation outlines the goals and specific tasks of break-out session 2 of the 2011 International PV Module Quality Assurance Forum, along with a review of accelerated stress tests used for photovoltaics (PV).

Wohlgemuth, J.; Kurtz, S.; Sample, T.; Yamamichi, M.

2011-07-01T23:59:59.000Z

212

Quantify Degradation Rates and Mechanisms of PV Modules and Systems Installed in Florida Through Comprehensive Experimental and Theoretical Analysis (Poster)  

SciTech Connect (OSTI)

The economic viability of photovoltaic (PV) technologies is inextricably tied to both the electrical performance and degradation rate of the PV systems, which are the generators of electrical power in PV systems. Over the past 15 years, performance data have been collected on numerous PV systems installed throughout the state of Florida and will be presented.

Sorloaica-Hickman, N.; Davis, K.; Kurtz, S.; Jordan, D.

2011-02-01T23:59:59.000Z

213

NREL study may provide future guidance in improving CdS/CdTe photovoltaic device performance.  

E-Print Network [OSTI]

NREL study may provide future guidance in improving CdS/CdTe photovoltaic device performance. The majority of minority carrier lifetime (MCL) studies performed on CdS/CdTe photovoltaic (PV) devices have Carrier Lifetime Measurements in Superstrate and Substrate CdTe PV Devices." Proc. 37th IEEE Photovoltaic

214

Battery-assisted and Photovoltaic-sourced Switched-inductor CMOS Harvesting ChargerSupply  

E-Print Network [OSTI]

Battery-assisted and Photovoltaic-sourced Switched-inductor CMOS Harvesting Charger­Supply Rajiv-scale photovoltaic (PV) cells harness a diminutive fraction of light and artificial lighting avails a small 25 mV at 10 ­ 80 kHz and with 77% ­ 89% efficiency. Index Terms--Harvester, photovoltaic (PV

Rincon-Mora, Gabriel A.

215

NREL discoveries will enable manufacturers to produce more robust photovoltaic modules.  

E-Print Network [OSTI]

NREL discoveries will enable manufacturers to produce more robust photovoltaic modules. Over the past decade, some photovoltaic (PV) modules have experienced power losses because of the system voltage-Induced Degradation Mechanisms on PV Modules and Methods For Test." 37th IEEE Photovoltaic Specialists Conference. Key

216

Performance Analysis of Photovoltaic Cell with Dynamic PHEV Loads  

E-Print Network [OSTI]

Performance Analysis of Photovoltaic Cell with Dynamic PHEV Loads F. R. Islam, H. R. Pota, M. S. Rahman and M. S. Ali Abstract--This paper presents the dynamics of photovoltaic (PV) cell with Plug for charging PHEVs with PV cell where PHEVs load are modelled based on third order battery model. System

Pota, Himanshu Roy

217

Data Science Study Protocols for Investigating Lifetime and Degradation of PV Technology Systems  

E-Print Network [OSTI]

of Epidemiology and Biostatistics, Case Western Reserve University Abstract -- The reliability of photovoltaic (PV. Index Terms -- photovoltaic systems, regression analysis, enter- prise resource planning, knowledge management I. INTRODUCTION AND BACKGROUND The reliability of PV technology systems is of the utmost im

Rollins, Andrew M.

218

Energy Management Strategy for Commercial Buildings Integrating PV and Storage Systems  

E-Print Network [OSTI]

Energy Management Strategy for Commercial Buildings Integrating PV and Storage Systems He ZHANG1 by using the solution proposed. Keywords: Photovoltaic (PV) systems, fuzzy logic, storage system, energy connected to the power network and associated to photovoltaic and storage system. Some energy management

Paris-Sud XI, Université de

219

Method of manufacturing a large-area segmented photovoltaic module  

DOE Patents [OSTI]

One embodiment of the invention relates to a segmented photovoltaic (PV) module which is manufactured from laminate segments. The segmented PV module includes rectangular-shaped laminate segments formed from rectangular-shaped PV laminates and further includes non-rectangular-shaped laminate segments formed from rectangular-shaped and approximately-triangular-shaped PV laminates. The laminate segments are mechanically joined and electrically interconnected to form the segmented module. Another embodiment relates to a method of manufacturing a large-area segmented photovoltaic module from laminate segments of various shapes. Other embodiments relate to processes for providing a photovoltaic array for installation at a site. Other embodiments and features are also disclosed.

Lenox, Carl

2013-11-05T23:59:59.000Z

220

Integrating PV into Performance Contracts: Barriers and Trends  

E-Print Network [OSTI]

value chain includes the technology's value as a peak-shaving and load management tool, as a sourceIntegrating PV into Performance Contracts: Barriers and Trends Wilson Rickerson Center for Energy incorporated photovoltaic (PV) systems as part of an overall building energy service strategy. This paper

Delaware, University of

Note: This page contains sample records for the topic "off-grid photovoltaics pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Performance Assessment of Photovoltaic Attic Ventilator Fans  

E-Print Network [OSTI]

has long been identified as a method to abate such heat gains. We present test results from using the photovoltaic (PV) attic ventilator fans in a test home to assess impact on attic and cooling energy performance....

Parker, D. S.; Sherwin, J. R.

2000-01-01T23:59:59.000Z

222

Sawnee EMC- Solar Photovoltaic Rebate Program  

Broader source: Energy.gov [DOE]

Sawnee EMC offers a rebate of $300 per kilowatt (kW) to residential customers who install photovoltaic (PV) systems that meet the cooperative's [http://www.sawnee.com/Rate%20Pdfs/NEM%20Rider.pdf...

223

Central Georgia EMC- Photovoltaic Rebate Program  

Broader source: Energy.gov [DOE]

In June 2008, Central Georgia Electric Membership Corporation (CGEMC) began offering a rebate of $450 per kilowatt (kW) to residential members who install photovoltaic (PV) systems that are...

224

Poudre Valley REA- Photovoltaic Rebate Program  

Broader source: Energy.gov [DOE]

Poudre Valley REC is providing rebates to their residential customers who install photovoltaic (PV) systems on their homes. This rebate program was timed to coincide with the Colorado Governor's...

225

Silicon cast wafer recrystallization for photovoltaic applications  

E-Print Network [OSTI]

Current industry-standard methods of manufacturing silicon wafers for photovoltaic (PV) cells define the electrical properties of the wafer in a first step, and then the geometry of the wafer in a subsequent step. The ...

Hantsoo, Eerik T. (Eerik Torm)

2008-01-01T23:59:59.000Z

226

Photovoltaic Subcontract Program. Annual report, FY 1992  

SciTech Connect (OSTI)

This report summarizes the fiscal year (FY) 1992 progress of the subcontracted photovoltaic (PV) research and development (R&D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL)-formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Crystalline Materials and Advanced Concepts project, the Polycrystalline Thin Films project, Amorphous Silicon Research project, the Photovoltaic Manufacturing Technology (PVMaT) project, PV Module and System Performance and Engineering project, and the PV Analysis and Applications Development project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1992, and future research directions.

Not Available

1993-03-01T23:59:59.000Z

227

Dynamic Interactions of PV units in Low Volatge Distribution Systems  

E-Print Network [OSTI]

. Abstract--Photovoltaic (PV) units along with other distributed energy resources (DERs) are located close by minimizing the negative interactions. Index Terms--Photovoltaic, negative interactions, distribution systems different DERs may react negatively and degrade reliability. There are several different measures

Pota, Himanshu Roy

228

Photovoltaic Subcontract Program, FY 1991  

SciTech Connect (OSTI)

This report summarizes the fiscal year (FY) 1991 (October 1, 1990, through September 30, 1991) progress of the subcontracted photovoltaic (PV) research and development (R D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL) -- formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Amorphous Silicon Research Project, Polycrystalline Thin Films, Crystalline Silicon Materials Research, High-Efficiency Concepts, the New Ideas Program, the University Participation Program, and the Photovoltaic Manufacturing Technology (PVMaT) project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1991, and future research directions.

Not Available

1992-03-01T23:59:59.000Z

229

The Effect of PV Array Size and Battery Size on the Economics of PV/Diesel/Battery Hybrid RAPS Systems  

E-Print Network [OSTI]

Wh per day. The effect of varying the size of the pv array and the battery bank in such systems on both hours and so on. This paper explores the effect of different sizes of battery bank and photovoltaic of battery size and photovoltaic array. The study is addressed to loads in the small community range

230

Modeling and Simulation of Photovoltaic Cell Using Matlab/Simulink  

E-Print Network [OSTI]

Abstract- This paper presents modeling of Photovoltaic (PV) module using MATLAB/Simulink. The model is developed on the basis of mathematical model of the PV module. The PV module of VIKRAM SOLAR PANEL PV- ELDORA 230 is selected for the experimental and technical data to analyze the developed model. The objective of this paper is to develop a model to simulate the behavior of a photovoltaic cell. Both models are implemented in MATLAB/Simulink. To demonstrate the validity of the model the IV and PV curves results were compared with those provided by the manufacturer.

Nisha Sharma; Dr. Fahim Ansari; Pawan Kr. P

231

Solar Photovoltaic Capacity F t P f d P li  

E-Print Network [OSTI]

6/19/2013 1 Solar Photovoltaic ­ Capacity F t P f d P li Generating Resources Advisory Committee Advisor Model (SAM), version 2013.1.15 Technology: Solar PV (PVWatts system model)Technology: Solar PV (MWh) (First year output, each year thereafter degrades 0.5%) 6 #12;6/19/2013 4 Shape of PNW Solar PV

232

PV Solar Site Assessment (Milwaukee High School)  

Broader source: Energy.gov [DOE]

The purpose of this assessment is to provide site-specific information on how a solar electric (also referred to as a photovoltaic, or PV) system would perform at your location, including information on estimated physical size, rated output, energy production, costs, financial incentives and mounting options. Site assessors are required to present unbiased information and may not recommend contractors or products.

233

2 IAEI NEWS January.February 2005 www.iaei.org PERSPECTIVES ON PV  

E-Print Network [OSTI]

to ease installation and are used in PV systems for battery cables, power conductors to large utility2 IAEI NEWS January.February 2005 www.iaei.org PERSPECTIVES ON PV T he use of fine stranded" industries like the photovoltaic (PV) industry, the fuel cell indus- try, and the uninterruptible power

Johnson, Eric E.

234

DOE High Performance Concentrator PV Project  

SciTech Connect (OSTI)

Much in demand are next-generation photovoltaic (PV) technologies that can be used economically to make a large-scale impact on world electricity production. The U.S. Department of Energy (DOE) initiated the High-Performance Photovoltaic (HiPerf PV) Project to substantially increase the viability of PV for cost-competitive applications so that PV can contribute significantly to both our energy supply and environment. To accomplish such results, the National Center for Photovoltaics (NCPV) directs in-house and subcontracted research in high-performance polycrystalline thin-film and multijunction concentrator devices with the goal of enabling progress of high-efficiency technologies toward commercial-prototype products. We will describe the details of the subcontractor and in-house progress in exploring and accelerating pathways of III-V multijunction concentrator solar cells and systems toward their long-term goals. By 2020, we anticipate that this project will have demonstrated 33% system efficiency and a system price of $1.00/Wp for concentrator PV systems using III-V multijunction solar cells with efficiencies over 41%.

McConnell, R.; Symko-Davies, M.

2005-08-01T23:59:59.000Z

235

Interplay of oxygen-evolution kinetics and photovoltaic power curves on the construction of artificial leaves  

E-Print Network [OSTI]

An artificial leaf can perform direct solar-to-fuels conversion. The construction of an efficient artificial leaf or other photovoltaic (PV)-photoelectrochemical device requires that the power curve of the PV material and ...

Surendranath, Yogesh

236

A Cradle to Grave Framework for Environmental Assessment of Photovoltaic Systems  

E-Print Network [OSTI]

be expected in life cycle assessment (LCA). Though there isLife cycle assessments of photovoltaic products, like most attributional LCAs,life cycle assessments for PV products in three ways: by (1) helping readers interpret the PV LCA

Zhang, Teresa; Dornfeld, David

2010-01-01T23:59:59.000Z

237

Photovoltaic system reliability  

SciTech Connect (OSTI)

This paper discusses the reliability of several photovoltaic projects including SMUD`s PV Pioneer project, various projects monitored by Ascension Technology, and the Colorado Parks project. System times-to-failure range from 1 to 16 years, and maintenance costs range from 1 to 16 cents per kilowatt-hour. Factors contributing to the reliability of these systems are discussed, and practices are recommended that can be applied to future projects. This paper also discusses the methodology used to collect and analyze PV system reliability data.

Maish, A.B.; Atcitty, C. [Sandia National Labs., NM (United States); Greenberg, D. [Ascension Technology, Inc., Lincoln Center, MA (United States)] [and others

1997-10-01T23:59:59.000Z

238

Photovoltaic industry progress through 1984  

SciTech Connect (OSTI)

The growth of the US photovoltaics (PV) industry over the past decade has been impressive. First designed to provide power for satellites using high-cost production techniques, PV is now the economical choice in many remote terrestrial applications. The remarkable growth of PV in terms of quality of cells and modules, production techniques, and system design, was initiated by a cooperative effort of the US Government and the domestic PV manufacturers. European and Japanese firms entered the PV industry later, but are also growing rapidy. The Europeans continue to supply PV systems for village electrification and water pumping to many Third World countries. The Japanese have been developing the amorphous silicon (A-Si) technology by expanding its use in consumer goods. The world PV industry saw dramatic changes in industry ownership and in the emphasis on developing new and improved technology during 1984. The objective of this report is to present information on the developments of the world PV industry and focuses on developments occurring in 1984. Information is presented on a regional basis (US, Europe, Japan, other) to avoid disclosing company-confidential data. All information was gleaned from several sources, including a review of the technical literature and direct contacts with PV manufacturers. Prior to publishing the regional totals, all numbers were compared with those of other sources. The information contained in this report is prepared for use by the Department of Energy for their use in long-term R and D planning. However, this information should also be of interest by PV manufacturers and to those who may be contemplating entering the PV market. PV shipments for 1984, government supports for PV, and various PV market sectors are discussed.

Watts, R.L.; Smith, S.A.; Dirks, J.A.

1985-04-01T23:59:59.000Z

239

Integrating Photovoltaic Systems into Low-Income Housing Developments  

E-Print Network [OSTI]

Integrating Photovoltaic Systems into Low-Income Housing Developments: A Case Study on the Creation Integrating Photovoltaic Systems into Low-Income Housing Developments: A Case Study on the Creation of a New with integrating photovoltaic (PV) systems into existing financing models and the added cost to the new

240

Peer Effects in the Diffusion of Solar Photovoltaic Panels  

E-Print Network [OSTI]

Peer Effects in the Diffusion of Solar Photovoltaic Panels Bryan Bollinger NYU Stern School base of consumers in the reference group. We study the diffusion of solar photovoltaic panels of an environmentally beneficial technology, solar photovoltaic (PV) panels. Policymakers are particularly interested

Lee, Daeyeol

Note: This page contains sample records for the topic "off-grid photovoltaics pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

AEC PHOTOVOLTAIC TEST FACILITY FIRST YEAR TEST DATA James Krumsick  

E-Print Network [OSTI]

AEC PHOTOVOLTAIC TEST FACILITY ­ FIRST YEAR TEST DATA James Krumsick Alternative Energy Consortium@uoregon.edu ABSTRACT Alternative Energy Consortium's Photovoltaic test facility (AEC PV) came on line in August, 2004 is to evaluate different photovoltaic products and to monitor the performance of these products under different

Oregon, University of

242

UncorrectedProof PROGRESS IN PHOTOVOLTAICS: RESEARCH AND APPLICATIONS  

E-Print Network [OSTI]

IN PHOTOVOLTAICS: RESEARCH AND APPLICATIONS Prog. Photovolt: Res. Appl. 2005; 13:1­11 Published online in Wiley the roof, photovoltaic arrays mounted on the roof will be exposed to the flames. The amount of cadmium which are the only ones in the market. Pieces of commercial CdTe photovoltaic (PV) modules, sizes 25 Â 3

243

Photovoltaic Installations at Williams College Ruth Aronoff  

E-Print Network [OSTI]

generation using solar power. Photovoltaic (PV) panel installations are a simple way for the College facilities, it is now evaluating in detail the environmental impact of these actions. In addition to making1 Photovoltaic Installations at Williams College Ruth Aronoff Williams Luce Project SUMMARY

Aalberts, Daniel P.

244

Capital Cost-Aware Design and Partial Shading-Aware Architecture Optimization of a Reconfigurable Photovoltaic System  

E-Print Network [OSTI]

Photovoltaic System Yanzhi Wang, Xue Lin, and Massoud Pedram University of Southern California Los Angeles, CA Seoul, Korea 151-744 {jmkim, naehyuck}@elpl.snu.ac.kr Abstract-- Photovoltaic (PV) systems are often and will not be changed after PV system installation in the field. Determining the optimal size of the PV macro

Pedram, Massoud

245

High performance organic photovoltaic cells with blade-coated active layers Siew-Lay Lim a  

E-Print Network [OSTI]

Organic bulk heterojunction photovoltaic (PV) cells are pro- mising renewable energy alternatives-weight and versatile products, such as portable battery chargers and window shades in building integrated photovoltaic

246

Importance of spin-orbit coupling in hybrid organic/inorganic perovskites for photovoltaic  

E-Print Network [OSTI]

1 Importance of spin-orbit coupling in hybrid organic/inorganic perovskites for photovoltaic, optoelectronics, titanateoxyde, density functional theory Photovoltaic (PV) solar electricity is one of the key

Boyer, Edmond

247

Operation o Solar Photovoltaic-Thermal (PVT) Hybrid System in KIER  

E-Print Network [OSTI]

The details of the Photovoltaic Thermal (PVT) hybrid air heating system, UTC air heating system and its effect on the performance of photovoltaic (PV) module and room temperature in KIER are explained in this paper. Two identical test rooms were...

Naveed, A.T.; Lee, E. J.; Kang, E. C.

2006-01-01T23:59:59.000Z

248

Uncertainty Analysis of Certified Photovoltaic Measurements at the National Renewable Energy Laboratory  

SciTech Connect (OSTI)

Discusses NREL Photovoltaic Cell and Module Performance Characterization Group's procedures to achieve lowest practical uncertainty in measuring PV performance with respect to reference conditions.

Emery, K.

2009-08-01T23:59:59.000Z

249

US photovoltaic patents: 1991--1993  

SciTech Connect (OSTI)

This document contains US patents on terrestrial photovoltaic (PV) power applications, including systems, components, and materials as well as manufacturing and support functions. The patent entries in this document were issued from 1991 to 1993. The entries were located by searching USPA, the database of the US Patent Office. The final search retrieved all patents under the class ``Batteries, Thermoelectric and Photoelectric`` and the subclasses ``Photoelectric,`` ``Testing,`` and ``Applications.`` The search also located patents that contained the words ``photovoltaic(s)`` or ``solar cell(s)`` and their derivatives. After the initial list was compiled, most of the patents on the following subjects were excluded: space photovoltaic technology, use of the photovoltaic effect for detectors, and subjects only peripherally concerned with photovoltaic. Some patents on these three subjects were included when ft appeared that those inventions might be of use in terrestrial PV power technologies.

Pohle, L

1995-03-01T23:59:59.000Z

250

Harvesting Circuits for Miniaturized Photovoltaic Cells Rajiv Damodaran Prabha, Gabriel A. Rincn-Mora, and Suhwan Kim  

E-Print Network [OSTI]

Harvesting Circuits for Miniaturized Photovoltaic Cells Rajiv Damodaran Prabha, Gabriel A. Rincón is microscale photovoltaic (PV) cells only produce 1 and 100 µW/mm2 for artificial and solar lighting, so tiny photovoltaic (PV) cells constrains power to below 100 µW/mm2 , which parasitic components

Rincon-Mora, Gabriel A.

251

IEEE TRANSACTIONS ON ENERGY CONVERSION, VOL. 29, NO. 4, DECEMBER 2014 957 Decentralized Optimal Dispatch of Photovoltaic  

E-Print Network [OSTI]

Dispatch of Photovoltaic Inverters in Residential Distribution Systems Emiliano Dall'Anese, Member, IEEE photovoltaic (PV) in- verters are developed in this paper. It is known that conventional PV inverter), photovoltaic systems, sparsity, voltage regulation. I. INTRODUCTION THE PROLIFERATION of residential

Giannakis, Georgios

252

Dynamic Model Validation of PV Inverters Under Short-Circuit Conditions: Preprint  

SciTech Connect (OSTI)

Photovoltaic (PV) modules have dramatically decreased in price in the past few years, spurring the expansion of photovoltaic deployment. Residential and commercial rooftop installations are connected to the distribution network; large-scale installation PV power plants (PVPs) have benefited from tax incentives and the low cost of PV modules. As the level penetration of PV generation increases, the impact on power system reliability will also be greater. Utility power system planners must consider the role of PV generation in power systems more realistically by representing PV generation in dynamic stability analyses. Dynamic models of PV inverters have been developed in the positive sequence representation. NREL has developed a PV inverter dynamic model in PSCAD/EMTDC. This paper validates the dynamic model with an actual hardware bench test conducted by Southern California Edison's Distributed Energy Resources laboratory. All the fault combinations -- symmetrical and unsymmetrical -- were performed in the laboratory. We compare the simulation results with the bench test results.

Muljadi, E.; Singh, M.; Bravo, R.; Gevorgian, V.

2013-03-01T23:59:59.000Z

253

Request for Information on Photovoltaic Module Recycling  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy SunShot Initiative requests feedback from industry, academia, research laboratories, government agencies, and other stakeholders on issues related to photovoltaic (PV) module recycling technology. SunShot intends to understand the current state of recycling technology and the areas of research that could lead to impactful recycling technologies to support the developing PV industry. The intent of this request for information is to generate discussion related to planning for the end of life of photovoltaic modules and to create a list of high impact research topics in photovoltaics recycling.

254

Photovoltaic module and module arrays  

DOE Patents [OSTI]

A photovoltaic (PV) module including a PV device and a frame. The PV device has a PV laminate defining a perimeter and a major plane. The frame is assembled to and encases the laminate perimeter, and includes leading, trailing, and side frame members, and an arm that forms a support face opposite the laminate. The support face is adapted for placement against a horizontal installation surface, to support and orient the laminate in a non-parallel or tilted arrangement. Upon final assembly, the laminate and the frame combine to define a unitary structure. The frame can orient the laminate at an angle in the range of 3.degree.-7.degree. from horizontal, and can be entirely formed of a polymeric material. Optionally, the arm incorporates integral feature(s) that facilitate interconnection with corresponding features of a second, identically formed PV module.

Botkin, Jonathan (El Cerrito, CA); Graves, Simon (Berkeley, CA); Lenox, Carl J. S. (Oakland, CA); Culligan, Matthew (Berkeley, CA); Danning, Matt (Oakland, CA)

2012-07-17T23:59:59.000Z

255

Photovoltaic module and module arrays  

DOE Patents [OSTI]

A photovoltaic (PV) module including a PV device and a frame, The PV device has a PV laminate defining a perimeter and a major plane. The frame is assembled to and encases the laminate perimeter, and includes leading, trailing, and side frame members, and an arm that forms a support face opposite the laminate. The support face is adapted for placement against a horizontal installation surface, to support and orient the laminate in a non-parallel or tilted arrangement. Upon final assembly, the laminate and the frame combine to define a unitary structure. The frame can orient the laminate at an angle in the range of 3.degree.-7.degree. from horizontal, and can be entirely formed of a polymeric material. Optionally, the arm incorporates integral feature(s) that facilitate interconnection with corresponding features of a second, identically formed PV module.

Botkin, Jonathan; Graves, Simon; Lenox, Carl J. S.; Culligan, Matthew; Danning, Matt

2013-08-27T23:59:59.000Z

256

Photovoltaic module reliability workshop  

SciTech Connect (OSTI)

The paper and presentations compiled in this volume form the Proceedings of the fourth in a series of Workshops sponsored by Solar Energy Research Institute (SERI/DOE) under the general theme of photovoltaic module reliability during the period 1986--1990. The reliability Photo Voltaic (PV) modules/systems is exceedingly important along with the initial cost and efficiency of modules if the PV technology has to make a major impact in the power generation market, and for it to compete with the conventional electricity producing technologies. The reliability of photovoltaic modules has progressed significantly in the last few years as evidenced by warranties available on commercial modules of as long as 12 years. However, there is still need for substantial research and testing required to improve module field reliability to levels of 30 years or more. Several small groups of researchers are involved in this research, development, and monitoring activity around the world. In the US, PV manufacturers, DOE laboratories, electric utilities and others are engaged in the photovoltaic reliability research and testing. This group of researchers and others interested in this field were brought together under SERI/DOE sponsorship to exchange the technical knowledge and field experience as related to current information in this important field. The papers presented here reflect this effort.

Mrig, L. (ed.)

1990-01-01T23:59:59.000Z

257

Battery compatibility with photovoltaic charge controllers  

SciTech Connect (OSTI)

Photovoltaic (PV) systems offer a cost-effective solution to provide electrical power for a wide variety of applications, with battery performance playing a major role in their success. This paper presents some of the results of an industry meeting regarding battery specifications and ratings that photovoltaic system designers require, but do not typically have available to them. Communications between the PV industry and the battery industry regarding appropriate specifications have been uncoordinated and poor in the past. This paper also discusses the effort under way involving the PV industry and battery manufacturers, and provides a working draft of specifications to develop and outline the information sorely needed on batteries. The development of this information is referred to as ``Application Notes for Batteries in Photovoltaic Systems.`` The content of these ``notes`` has been compiled from various sources, including the input from the results of a survey on battery use in the photovoltaic industry. Only lead-acid batteries are discussed

Harrington, S.R. [Ktech Corp., Albuquerque, NM (United States); Bower, W.I. [Sandia National Labs., Albuquerque, NM (United States)

1992-12-31T23:59:59.000Z

258

Assessing the Performance of LED-Based Flashlights Available in the Kenyan Off-Grid Lighting Market  

SciTech Connect (OSTI)

Low cost rechargeable flashlights that use LED technology are increasingly available in African markets. While LED technology holds promise to provide affordable, high quality lighting services, the widespread dissemination of low quality products may make it difficult to realize this potential. This study includes performance results for three brands of commonly available LED flashlights that were purchased in Kenya in 2009. The performance of the flashlights was evaluated by testing five units for each of the three brands. The tests included measurements of battery capacity, time required to charge the battery, maximum illuminance at one meter, operation time and lux-hours from a fully charged battery, light distribution, and color rendering. All flashlights tested performed well below the manufacturers? rated specifications; the measured battery capacity was 30-50percent lower than the rated capacity and the time required to fully charge the battery was 6-25percent greater than the rated time requirement. Our analysis further shows that within each brand there is considerable variability in each performance indicator. The five samples within a single brand varied from each other by as much as 22percent for battery capacity measurements, 3.6percent for the number of hours required for a full charge, 23percent for maximum initial lux, 38percent for run time, 11percent for light distribution and by as much as 200percent for color rendering. Results obtained are useful for creating a framework for quality assurance of off-grid LED products and will be valuable for informing consumers, distributors and product manufacturers about product performance.

Tracy, Jennifer; Jacobson, Arne; Mills, Evan

2010-03-02T23:59:59.000Z

259

Photovoltaic Subcontract Program, FY 1990  

SciTech Connect (OSTI)

This report summarizes the progress of the subcontracted photovoltaic (PV) research and development (R D) performed under the Photovoltaics Program at the Solar Energy Research Institute (SERI). The SERI subcontracted PV research and development represents most of the subcontracted R D that is funded by the US Department of Energy (DOE) National Photovoltaics Program. This report covers fiscal year (FY) 1990: October 1, 1989 through September 30, 1990. During FY 1990, the SERI PV program started to implement a new DOE subcontract initiative, entitled the Photovoltaic Manufacturing Technology (PVMaT) Project.'' Excluding (PVMaT) because it was in a start-up phase, in FY 1990 there were 54 subcontracts with a total annualized funding of approximately $11.9 million. Approximately two-thirds of those subcontracts were with universities, at a total funding of over $3.3 million. Cost sharing by industry added another $4.3 million to that $11.9 million of SERI PV subcontracted R D. The six technical sections of this report cover the previously ongoing areas of the subcontracted program: the Amorphous Silicon Research Project, Polycrystalline Thin Films, Crystalline Silicon Materials Research, High-Efficiency Concepts, the New Ideas Program, and the University Participation Program. Technical summaries of each of the subcontracted programs discuss approaches, major accomplishments in FY 1990, and future research directions. Another section introduces the PVMaT project and reports the progress since its inception in FY 1990. Highlights of technology transfer activities are also reported.

Summers, K.A. (ed.)

1991-03-01T23:59:59.000Z

260

NREL photovoltaic program FY 1997 annual report  

SciTech Connect (OSTI)

This report summarizes the in-house and subcontracted research and development (R and D) activities under the NREL PV Program from October 1, 1996, through September 30, 1997 (FY 1997). The NREL PV Program is part of the US Department of Energy`s (DOE`s) National Photovoltaics Program, as described in the DOE National Photovoltaics Program Plan for 1996--2000. The FY 1997 budget authority for carrying out the NREL PV Program was $39.3 million in operating funds and $0.4 million in capital equipment funds. Subcontract activities represent a major part of the NREL PV Program, with $21.8 million (55% of PV funds) going to some 84 subcontractors. Cost sharing by industry added almost $8.8 million to the subcontract R and D activities with industry.

McConnell, R.D.; Hansen, A.; Smoller, S.

1998-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "off-grid photovoltaics pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Photovoltaic Materials  

SciTech Connect (OSTI)

The goal of the current project was to help make the US solar industry a world leader in the manufacture of thin film photovoltaics. The overall approach was to leverage ORNL’s unique characterization and processing technologies to gain a better understanding of the fundamental challenges for solar cell processing and apply that knowledge to targeted projects with industry members. ORNL has the capabilities in place and the expertise required to understand how basic material properties including defects, impurities, and grain boundaries affect the solar cell performance. ORNL also has unique processing capabilities to optimize the manufacturing process for fabrication of high efficiency and low cost solar cells. ORNL recently established the Center for Advanced Thin-film Systems (CATS), which contains a suite of optical and electrical characterization equipment specifically focused on solar cell research. Under this project, ORNL made these facilities available to industrial partners who were interested in pursuing collaborative research toward the improvement of their product or manufacturing process. Four specific projects were pursued with industrial partners: Global Solar Energy is a solar industry leader in full scale production manufacturing highly-efficient Copper Indium Gallium diSelenide (CIGS) thin film solar material, cells and products. ORNL worked with GSE to develop a scalable, non-vacuum, solution technique to deposit amorphous or nanocrystalline conducting barrier layers on untextured stainless steel substrates for fabricating high efficiency flexible CIGS PV. Ferro Corporation’s Electronic, Color and Glass Materials (“ECGM”) business unit is currently the world’s largest supplier of metallic contact materials in the crystalline solar cell marketplace. Ferro’s ECGM business unit has been the world's leading supplier of thick film metal pastes to the crystalline silicon PV industry for more than 30 years, and has had operational cells and modules in the field for 25 years. Under this project, Ferro leveraged world leading analytical capabilities at ORNL to characterize the paste-to-silicon interface microstructure and develop high efficiency next generation contact pastes. Ampulse Corporation is developing a revolutionary crystalline-silicon (c-Si) thin-film solar photovoltaic (PV) technology. Utilizing uniquely-textured substrates and buffer materials from the Oak Ridge National Laboratory (ORNL), and breakthroughs in Hot-Wire Chemical Vapor Deposition (HW-CVD) techniques in epitaxial silicon developed at the National Renewable Energy Laboratory (NREL), Ampulse is creating a solar technology that is tunable in silicon thickness, and hence in efficiency and economics, to meet the specific requirements of multiple solar PV applications. This project focused on the development of a high rate deposition process to deposit Si, Ge, and Si1-xGex films as an alternate to hot-wire CVD. Mossey Creek Solar is a start-up company with great expertise in the solar field. The primary interest is to create and preserve jobs in the solar sector by developing high-yield, low-cost, high-efficiency solar cells using MSC-patented and -proprietary technologies. The specific goal of this project was to produce large grain formation in thin, net-shape-thickness mc-Si wafers processed with high-purity silicon powder and ORNL's plasma arc lamp melting without introducing impurities that compromise absorption coefficient and carrier lifetime. As part of this project, ORNL also added specific pieces of equipment to enhance our ability to provide unique insight for the solar industry. These capabilities include a moisture barrier measurement system, a combined physical vapor deposition and sputtering system dedicated to cadmium-containing deposits, adeep level transient spectroscopy system useful for identifying defects, an integrating sphere photoluminescence system, and a high-speed ink jet printing system. These tools were combined with others to study the effect of defects on the performance of crystalline silicon and

Duty, C.; Angelini, J.; Armstrong, B.; Bennett, C.; Evans, B.; Jellison, G. E.; Joshi, P.; List, F.; Paranthaman, P.; Parish, C.; Wereszczak, A.

2012-10-15T23:59:59.000Z

262

A Framework of Incorporating Spatio-temporal Forecast in Look-ahead Grid Dispatch with Photovoltaic Generation  

E-Print Network [OSTI]

Increasing penetration of stochastic photovoltaic (PV) generation into the electric power system poses significant challenges to system operators. In the thesis, we evaluate the spatial and temporal correlations of stochastic PV generation...

Yang, Chen

2013-05-02T23:59:59.000Z

263

Photovoltaic-Thermal New Technology Demonstration  

SciTech Connect (OSTI)

Photovoltaic-thermal (PV-T) hybrid solar systems offer increased electricity production by cooling the PV panel, and using the removed thermal energy to heat water - all in the same footprint as a standard PV system. GPG's assessment of the nation's first large-scale PV-T system installed at the Thomas P. O'Neill, Jr. Federal Building in Boston, MA, provided numerous lessons learned in system design, and identified a target market of locations with high utility costs and electric hot water backup.

Dean, J.; McNutt, P.; Lisell, L.; Burch, J.; Jones, D.; Heinicke, D.

2015-01-01T23:59:59.000Z

264

PERFORMANCE EVALUATION OF PHOTOVOLTAIC CELL WITH AND WITHOUT THERMAL SINK  

E-Print Network [OSTI]

The following paper presents concisely the operation principles of photovoltaic cells and their main parameters. The efficiency of photovoltaic (PV) cell drop as their operating temperature increases especially under high insolation levels. The aim of the paper is to improve the performance of PV cell by dissipating excess heat, there by maintaining effective temperature of the cell which will enhance performance of the system. The work also deals with the comparing of the performance of PV cell with and without heat sink. During the study an optimum performance temperature was determined and heat sink mechanisms are used to maintain the determined temperature in PV cell.

Rob Res; Pramod N; K S Shashishekar; Pramod N; K S Shashishekar

265

Large-Scale PV Integration Study  

SciTech Connect (OSTI)

This research effort evaluates the impact of large-scale photovoltaic (PV) and distributed generation (DG) output on NV Energy’s electric grid system in southern Nevada. It analyzes the ability of NV Energy’s generation to accommodate increasing amounts of utility-scale PV and DG, and the resulting cost of integrating variable renewable resources. The study was jointly funded by the United States Department of Energy and NV Energy, and conducted by a project team comprised of industry experts and research scientists from Navigant Consulting Inc., Sandia National Laboratories, Pacific Northwest National Laboratory and NV Energy.

Lu, Shuai; Etingov, Pavel V.; Diao, Ruisheng; Ma, Jian; Samaan, Nader A.; Makarov, Yuri V.; Guo, Xinxin; Hafen, Ryan P.; Jin, Chunlian; Kirkham, Harold; Shlatz, Eugene; Frantzis, Lisa; McClive, Timothy; Karlson, Gregory; Acharya, Dhruv; Ellis, Abraham; Stein, Joshua; Hansen, Clifford; Chadliev, Vladimir; Smart, Michael; Salgo, Richard; Sorensen, Rahn; Allen, Barbara; Idelchik, Boris

2011-07-29T23:59:59.000Z

266

Novel Controls of Photovoltaic (PV) Solar Farms.  

E-Print Network [OSTI]

??Solar Farms are absolutely idle in the night and even during daytime operate below capacity in early mornings and late afternoons. Thus, the entire expensive… (more)

Rahman, Shah Arifur

2012-01-01T23:59:59.000Z

267

Solar photovoltaic residence in Carlisle, Massachusetts  

SciTech Connect (OSTI)

The first solar photovoltaic house designed and constructed under the US Department of Energy's Solar Photovoltaic Residential Project has been completed. The house, which is powered by a 7-kWp PV system, will be used to assess the occupants' acceptance of and reactions to residential photovoltaic systems and to familiarize utilities, builders, developers, town building officials and others with issues concerning photovoltaic installations. The house is located on a two-acre lot in Carlisle, approximately twenty miles northwest of Boston. Built by a local architect/developer team, the house includes energy conservation and passive solar features. It utilizes a roof-mounted, flat-plate PV array which operates in a two-way energy exchange mode with the electric utility. The energy conservation and passive solar features of this house are described and a detailed description of the utility-interactive photovoltaic system is presented, along with initial performance data.

Strong, S. J.; Nichols, B. E.

1981-01-01T23:59:59.000Z

268

www.iaei.org July.August 2005 IAEI NEWS 83 GROUNDING PV AND SYSTEMS FINE STRANDED CONDUCTORS  

E-Print Network [OSTI]

with single inverters sized below about 10 kW. Figure 1 shows the dc grounding for a PV system as spelled out electrode) bare or insulated A series of articles on photovoltaic (PV) power systems and the Nationalwww.iaei.org July.August 2005 IAEI NEWS 83 GROUNDING PV AND SYSTEMS FINE STRANDED CONDUCTORS

Johnson, Eric E.

269

Development of a dispatchable PV peak shaving system. Final report on PV:BONUS Phase 2 activities  

SciTech Connect (OSTI)

In July 1993, the Delmarva Power and Light Company (now Conectiv, Inc.) was awarded a contract for the development of a Dispatchable Photovoltaic Peak Shaving System under the US Department of Energy PV:BONUS Program. The rationale for the dispatchable PV peak shaving system is based on the coincidence between the solar resource and the electrical load in question. Where poor coincidence exists, a PV array by itself does little to offset peak demands. However, with the addition of a relatively small amount of energy storage, the energy from the PV array can be managed and the value of the PV system increases substantially. In Phase 2, Delmarva Power continued the refinement of the system deployed in Phase 1. Four additional dispatchable PV peak shaving systems were installed for extended testing and evaluation at sites in Delaware, Maryland, Wisconsin and North Carolina. A second type of system that can be used to provide back-up power as well as peak shaving was also developed in Phase 2. This PV-UPS system used a packaging approach nearly identical to the PV peak shaving system, although there were significant differences in the design of the power electronics and control systems. Conceptually, the PV-UPS system builds upon the idea of adding value to PV systems by increasing functionality. A prototype of the PV-UPS system was installed in Delaware for evaluation near the end of the contract period.

Ferguson, W.D. [Conectiv, Inc., Wilmington, DE (United States); Nigro, R.M. [Applied Energy Group, Inc., Hauppauge, NY (United States)

1999-01-20T23:59:59.000Z

270

Modelling of a stand alone photovoltaic system with dedicated hybrid battery energy storage system by Nicholas Vanden Eynde.  

E-Print Network [OSTI]

??Includes abstract. The purpose of this thesis project was to model and simulate a stand-alone photovoltaic (PV) plant that utilized the maximum power point tracking… (more)

Vanden Eynde, Nicholas.

2012-01-01T23:59:59.000Z

271

Fractal-based cloud shadow and irradiance model for power system analysis with high penetration of photovoltaics.  

E-Print Network [OSTI]

??Distributed photovoltaic (PV) power generation systems are being rapidly deployed worldwide, causing technical problems such as reverse power flows, voltage rise and abnormal operation of… (more)

Cai, Chengrui

2014-01-01T23:59:59.000Z

272

Photovoltaics: From the laboratory to the marketplace  

SciTech Connect (OSTI)

Photovoltaics (PV), the direct conversion of sunlight to electricity, is experiencing significant improvements in technology performance and lowered costs. Fostering these improvements, the SERI Photovoltaic Advanced Research and Development (PV AR D) Project supports research and provides services to the US PV industry. This paper presents the recent advances and future direction of the PV project. Research areas are Fundamental and Supporting Research, Advanced Thin-Film Materials, High-Efficiency Materials, Module Development, and Systems Development. Materials of interest include amorphous silicon, copper indium diselenide, cadmium telluride, crystalline silicon, gallium arsenide and related alloys, transparent conductors, antireflection coatings, substrates, and encapsulants. The PV project inherently provides technology transfer that helps industry shorten the time to bring R D advances to the marketplace. SERI annually performs over 10,000 measurements for the entire PV community, participates in collaborative research, and welcomes visiting scientists. Two specific areas of recently increased national focus are: (1) manufacturing processes for cost-effective PV modules, and (2) systems development for high-value utility applications. The SERI research approach is based on facilitating direct contact between industry, electric utilities, and others interested in PV technology. This approach heavily relies on SERI/industry partnerships. The arrangements vary to address generic and company-specific problems to improve the US industry's competitive position and accelerate greater electric utility deployment of PV systems. 5 refs., 5 figs., 6 tabs.

Basso, T.S.; Surek, T.; Thornton, J.

1991-03-01T23:59:59.000Z

273

Progress in photovoltaic system and component improvements  

SciTech Connect (OSTI)

The Photovoltaic Manufacturing Technology (PVMaT) project is a partnership between the US government (through the US Department of Energy [DOE]) and the PV industry. Part of its purpose is to conduct manufacturing technology research and development to address the issues and opportunities identified by industry to advance photovoltaic (PV) systems and components. The project was initiated in 1990 and has been conducted in several phases to support the evolution of PV industrial manufacturing technology. Early phases of the project stressed PV module manufacturing. Starting with Phase 4A and continuing in Phase 5A, the goals were broadened to include improvement of component efficiency, energy storage and manufacturing and system or component integration to bring together all elements for a PV product. This paper summarizes PV manufacturers` accomplishments in components, system integration, and alternative manufacturing methods. Their approaches have resulted in improved hardware and PV system performance, better system compatibility, and new system capabilities. Results include new products such as Underwriters Laboratories (UL)-listed AC PV modules, modular inverters, and advanced inverter designs that use readily available and standard components. Work planned in Phase 5A1 includes integrated residential and commercial roof-top systems, PV systems with energy storage, and 300-Wac to 4-kWac inverters.

Thomas, H.P.; Kroposki, B.; McNutt, P.; Witt, C.E. [National Renewable Energy Lab., Golden, CO (United States); Bower, W.; Bonn, R.; Hund, T.D. [Sandia National Labs., Albuquerque, NM (United States)

1998-07-01T23:59:59.000Z

274

Photovoltaic Forecasting: A state of the art B. Espinar, J.L. Aznarte, R. Girard, A.M. Moussa and G. Kariniotakis  

E-Print Network [OSTI]

Photovoltaic Forecasting: A state of the art B. Espinar, J.L. Aznarte, R. Girard, A.M. Moussa and G(0)493678967; FAX: +33 (0)493957535,bella.espinar@mines-paristech.fr Abstract Photovoltaic (PV) energy, together Introduction Photovoltaics (PV) for electricity generation is the fastest-growing energy technology since 2002

Paris-Sud XI, Université de

275

PHOTOVOLTAIC MODULE AND SHADOW: STUDY AND INTEGRATION OF A CURRENT BALANCING SYSTEM  

E-Print Network [OSTI]

PHOTOVOLTAIC MODULE AND SHADOW: STUDY AND INTEGRATION OF A CURRENT BALANCING SYSTEM Stéphane: Current crystalline photovoltaic modules (PV) are designed with 36 or 72 series ­ connected PV cells of shadow, keep the reliability and the cost imposed by the market [7, 8, and 9]. This study concerns

Paris-Sud XI, Université de

276

A Distributed Approach to Maximum Power Point Tracking for Photovoltaic Sub-Module Differential  

E-Print Network [OSTI]

of the proposed distributed algorithm. I. INTRODUCTION IN photovoltaic (PV) energy systems, PV modules are often of the system, small size and low power ratings of the power electronics circuit components. Due1 A Distributed Approach to Maximum Power Point Tracking for Photovoltaic Sub-Module Differential

Liberzon, Daniel

277

NREL Photovoltaic Program FY 1996 Annual Report  

SciTech Connect (OSTI)

This report summarizes the in-house and subcontract research and development (R&D) activities under the National Renewable Energy Laboratory (NREL) Photovoltaics (PV) Program from October 1, 1995 through September 30, 1996 (fiscal year [FY] 1996). The NREL PV Program is part of the U.S. Department of Energy's (DOE) National Photovoltaics Program, as described in the DOE Photovoltaics Program Plan, FY 1991 - FY 1995. The mission of the DOE National Photovoltaics Program is to: "Work in partnership with U.S. industry to develop and deploy photovoltaic technology for generating economically competitive electric power, making photovoltaics an important contributor to the nation's and the world's energy use and environmental improvement. The two primary goals of the national program are to (1) maintain the U.S. PV industry's world leadership in research and technology development and (2) help the U.S. industry remain a major, profitable force in the world market. The NREL PV Program provides leadership and support to the national program toward achieving its mission and goals.

Not Available

1997-08-01T23:59:59.000Z

278

Chapter VII-2, Practical Handbook of Photovoltaics: Fundamentals and Applications, General editors T. Markvart and L. Castaner, to  

E-Print Network [OSTI]

Chapter VII-2, Practical Handbook of Photovoltaics: Fundamentals and Applications, General editors Brookhaven National Laboratory Upton, NY 11973 1. INTRODUCTION Photovoltaic (PV) technologies have distinct of photovoltaic systems does not produce any noise, toxic-gas emissions, or greenhouse gases. Photovoltaic

Ohta, Shigemi

279

Updating Technical Screens for PV Interconnection: Preprint  

SciTech Connect (OSTI)

Solar photovoltaics (PV) is the dominant type of distributed generation (DG) technology interconnected to electric distribution systems in the United States, and deployment of PV systems continues to increase rapidly. Considering the rapid growth and widespread deployment of PV systems in United States electric distribution grids, it is important that interconnection procedures be as streamlined as possible to avoid unnecessary interconnection studies, costs, and delays. Because many PV interconnection applications involve high penetration scenarios, the process needs to allow for a sufficiently rigorous technical evaluation to identify and address possible system impacts. Existing interconnection procedures are designed to balance the need for efficiency and technical rigor for all DG. However, there is an implicit expectation that those procedures will be updated over time in order to remain relevant with respect to evolving standards, technology, and practical experience. Modifications to interconnection screens and procedures must focus on maintaining or improving safety and reliability, as well as accurately allocating costs and improving expediency of the interconnection process. This paper evaluates the origins and usefulness of the capacity penetration screen, offers potential short-term solutions which could effectively allow fast-track interconnection to many PV system applications, and considers longer-term solutions for increasing PV deployment levels in a safe and reliable manner while reducing or eliminating the emphasis on the penetration screen.

Coddington, M.; Ellis, A.; Lynn, K.; Razon, A.; Key, T.; Kroposki, B.; Mather, B.; Hill, R.; Nicole, K.; Smith, J.

2012-08-01T23:59:59.000Z

280

MANUSCRIPT PREPARATION TEMPLATE FOR THE 35TH IEEE PHOTOVOLTAIC...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Microscale C-Si PV Cells For Low-Cost Power, Conference record on the 34th IEEE Photovoltaic Specialists Conference (2009)1816-1821 3 Nielson, G. N.; Okandan, M; Resnick. P....

Note: This page contains sample records for the topic "off-grid photovoltaics pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Request for Information: Photovoltaic Reliability and Durability Research and Development  

Broader source: Energy.gov [DOE]

The United States Department of Energy (DOE) – Office of Energy Efficiency and Renewable Energy (EERE) seeks feedback from industry, academia, research laboratories, government agencies, and other stakeholders on issues related to solar photovoltaic (PV) reliability and durability research and development.

282

Photovoltaic Supply Chain and Cross-Cutting Technologies Round 1  

Broader source: Energy.gov [DOE]

On June 11, 2009, DOE announced the first round of Photovoltaic (PV) Supply Chain and Cross-Cutting Technologies awardees. The funded projects target manufacturing and product cost reduction with...

283

Oncor Electric Delivery- Solar Photovoltaic Standard Offer Program  

Broader source: Energy.gov [DOE]

The 2013 Oncor Solar Photovoltaic Standard Offer Program Guidelines are now [https://www.oncoreepm.com/SolarPV.aspx available]. The application period for both the residential and non-residential...

284

Photovoltaic-powered desalination system for remote Australian communities   

E-Print Network [OSTI]

This paper reports on the design and successful field testing of a photovoltaic (PV)-powered desalination system. The system described here is intended for use in remote areas of the Australian outback, where fresh water is extremely limited...

Richards, B.S.; Schäfer, Andrea

2003-01-01T23:59:59.000Z

285

Effects of solar photovoltaic panels on roof heat transfer  

E-Print Network [OSTI]

Itron Inc. , CPUC California Solar Initiative 2009 Impact hot  days found by the California Solar Initiative impact solar photovoltaic (PV) panels were conducted in  San Diego, California.  

Dominguez, Anthony; Kleissl, Jan; Luvall, Jeffrey C

2011-01-01T23:59:59.000Z

286

Photovoltaic Cell Quantum Efficiency Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

carriers collected by a photovoltaic (PV) cell to the number of photons-or packets of light-of a given energy shining on the solar cell. Quantum efficiency therefore relates to...

287

Optical properties of polymeric materials for concentrator photovoltaic systems  

E-Print Network [OSTI]

photovoltaics (CPV), we are evaluating the optical properties and solar radiation durability of a number sheet (e.g., DuPontTM PV5300) have applications as encapsulants in crystalline silicon (c-Si) and other

Rollins, Andrew M.

288

Time-dependent first-principles approaches to PV materials  

SciTech Connect (OSTI)

Computational scheme for designing photovoltaic (PV) materials is presented. First-principles electron dynamics of photo-excitation and subsequent electron-hole splitting is performed based on the time-dependent density functional theory. Photo-induced enhancement of dipole moment was observed in a polar crystal and a donor-acceptor molecular pair. These experiences will pave a way to design PV material from first-principles simulations.

Miyamoto, Yoshiyuki [Nanosystem Research Institute, AIST, Central 2, 1-1-1, Umezono, Tsukuba, 305-8568 (Japan)

2013-12-10T23:59:59.000Z

289

A methodology for optimal sizing of autonomous hybrid PV/wind system  

E-Print Network [OSTI]

mathematical models for characterizing PV module, wind generator and battery are proposed. The second step is obtained for a system comprising a 125 W photovoltaic modules, one wind generator (600 W) and storage

Boyer, Edmond

290

Photovoltaic module with removable wind deflector  

DOE Patents [OSTI]

A photovoltaic (PV) module assembly including a PV module, a deflector, and a clip. The PV module includes a PV device and a frame. A PV laminate is assembled to the frame, and the frame includes a support arm forming a seat. The deflector defines a front face and a rear face, with the clip extending from either the trailing frame member or the rear face of the deflector. In a mounted state, the deflector is nested within the seat and is releasably mounted to the trailing frame member via the clip. In some embodiments, the support arm forms a second seat, with the PV module assembly providing a second mounted state in which the deflector is in a differing orientation/slope, nested within the second seat and releasably mounted to the trailing frame member via the clip.

Botkin, Jonathan; Graves, Simon; Danning, Matt; Culligan, Matthew

2013-05-28T23:59:59.000Z

291

Photovoltaic module with removable wind deflector  

DOE Patents [OSTI]

A photovoltaic (PV) module assembly including a PV module, a deflector, and a clip. The PV module includes a PV device and a frame. A PV laminate is assembled to the frame, and the frame includes a support arm forming a seat. The deflector defines a front face and a rear face, with the clip extending from either the trailing frame member or the rear face of the deflector. In a mounted state, the deflector is nested within the seat and is releasably mounted to the trailing frame member via the clip. In some embodiments, the support arm forms a second seat, with the PV module assembly providing a second mounted state in which the deflector is in a differing orientation/slope, nested within the second seat and releasably mounted to the trailing frame member via the clip.

Botkin, Jonathan; Graves, Simon; Danning, Matt; Culligan, Matthew

2014-02-18T23:59:59.000Z

292

Photovoltaic module with removable wind deflector  

DOE Patents [OSTI]

A photovoltaic (PV) module assembly including a PV module, a deflector, and a clip. The PV module includes a PV device and a frame. A PV laminate is assembled to the frame, and the frame includes a support arm forming a seat. The deflector defines a front face and a rear face, with the clip extending from either the trailing frame member or the rear face of the deflector. In a mounted state, the deflector is nested within the seat and is releasably mounted to the trailing frame member via the clip. In some embodiments, the support arm forms a second seat, with the PV module assembly providing a second mounted state in which the deflector is in a differing orientation/slope, nested within the second seat and releasably mounted to the trailing frame member via the clip.

Botkin, Jonathan (El Cerrito, CA); Graves, Simon (Berkeley, CA); Danning, Matt (Oakland, CA); Culligan, Matthew (Berkeley, CA)

2012-08-07T23:59:59.000Z

293

Postdoctoral Fellowship in Advanced Photovoltaics McMaster University has recently been granted $4.1M for a Special Project in Photovoltaics by the Ontario Centres  

E-Print Network [OSTI]

Postdoctoral Fellowship in Advanced Photovoltaics Background McMaster University has recently been granted $4.1M for a Special Project in Photovoltaics by the Ontario Centres of Excellence (OCE) ­ Centre) photovoltaic devices, with a preference given to candidates with experience in multi-junction PV technology

Thompson, Michael

294

Preprint of: A.H. Nosrat, L.G. Swan, J.M. Pearce, Improved Performance of Hybrid Photovoltaic-Trigeneration Systems Over Photovoltaic-Cogen Systems Including Effects of Battery Storage, Energy 49, pp. 366-374 (2013). http://dx.doi.org/10.1016/j.energy.201  

E-Print Network [OSTI]

-Trigeneration Systems Over Photovoltaic-Cogen Systems Including Effects of Battery Storage, Energy 49, pp. 366-374 (2013-Trigeneration Systems Over Photovoltaic-Cogen Systems Including Effects of Battery Storage Amir H. Nosrat1, Lukas G of residential-scale cogeneration with roof-mounted solar photovoltaic (PV) arrays can increase the PV

Paris-Sud XI, Université de

2013-01-01T23:59:59.000Z

295

Real Power and Reactive Power Control of a Three-Phase Single-Stage-PV System and PV voltage Stability  

SciTech Connect (OSTI)

Grid-connected photovoltaic (PV) systems with power electronic interfaces can provide both real and reactive power to meet power system needs with appropriate control algorithms. This paper presents the control algorithm design for a three-phase single-stage grid-connected PV inverter to achieve either maximum power point tracking (MPPT) or a certain amount of real power injection, as well as the voltage/var control. The switching between MPPT control mode and a certain amount of real power control mode is automatic and seamless. Without the DC-to-DC booster stage, PV DC voltage stability is an important issue in the control design especially when the PV inverter is operating at maximum power point (MPP) with voltage/var control. The PV DC voltage collapse phenomenon and its reason are discussed. The method based on dynamic correction of the PV inverter output is proposed to ensure PV DC voltage stability. Simulation results of the single-stage PV system during system disturbances and fast solar irradiation changes confirm that the proposed control algorithm for single-stage PV inverters can provide appropriate real and reactive power services and ensure PV DC voltage stability during dynamic system operation and atmospheric conditions.

Li, Huijuan [ORNL] [ORNL; Xu, Yan [ORNL] [ORNL; Adhikari, Sarina [ORNL] [ORNL; Rizy, D Tom [ORNL] [ORNL; Li, Fangxing [ORNL] [ORNL; Irminger, Philip [ORNL] [ORNL

2012-01-01T23:59:59.000Z

296

Annual Report: Photovoltaic Subcontract Program FY 1991  

SciTech Connect (OSTI)

This report summarizes the fiscal year (FY) 1991 (October 1, 1990, through September 30, 1991) progress of the subcontracted photovoltaic (PV) research and development (R&D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL)-formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Amorphous Silicon Research Project, Polycrystalline Thin Films, Crystalline Silicon Materials Research, High Efficiency Concepts, the New Ideas Program, the University Participation Program, and the Photovoltaic Manufacturing Technology (PVMaT) project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1991, and future research directions.

Summers, K. A.

1992-03-01T23:59:59.000Z

297

Potential of Photovoltaics: Preprint  

SciTech Connect (OSTI)

This paper discusses PV in the world energy portfolio, PV basics, PV technologies, and vacuum web-coating applications in PV.

Nelson, B. P.

2008-10-01T23:59:59.000Z

298

PV array simulator development and validation.  

SciTech Connect (OSTI)

The ability to harvest all available energy from a photovoltaic (PV) array is essential if new system developments are to meet levelized cost of energy targets and achieve grid parity with conventional centralized utility power. Therefore, exercising maximum power point tracking (MPPT) algorithms, dynamic irradiance condition operation and startup and shutdown routines and evaluating inverter performance with various PV module fill-factor characteristics must be performed with a repeatable, reliable PV source. Sandia National Laboratories is collaborating with Ametek Programmable Power to develop and demonstrate a multi-port TerraSAS PV array simulator. The simulator will replicate challenging PV module profiles, enabling the evaluation of inverter performance through analyses of the parameters listed above. Energy harvest algorithms have traditionally implemented methods that successfully utilize available energy. However, the quantification of energy capture has always been difficult to conduct, specifically when characterizing the inverter performance under non-reproducible dynamic irradiance conditions. Theoretical models of the MPPT algorithms can simulate capture effectiveness, but full validation requires a DC source with representative field effects. The DC source being developed by Ametek and validated by Sandia is a fully integrated system that can simulate an IV curve from the Solar Advisor Model (SAM) module data base. The PV simulator allows the user to change the fill factor by programming the maximum power point voltage and current parameters and the open circuit voltage and short circuit current. The integrated PV simulator can incorporate captured irradiance and module temperature data files for playback, and scripted profiles can be generated to validate new emerging hardware embedded with existing and evolving MPPT algorithms. Since the simulator has multiple independent outputs, it also has the flexibility to evaluate an inverter with multiple MPPT DC inputs. The flexibility of the PV simulator enables the validation of the inverter's capability to handle vastly different array configurations.

Kuszmaul, Scott S.; Gonzalez, Sigifredo; Lucca, Roberto (Ametek Programmable Power, San Diego, CA); Deuel, Don (Ametek Programmable Power, San Diego, CA)

2010-06-01T23:59:59.000Z

299

Enhancing Efficiency and Robustness of a Photovoltaic Power System under Partial Shading  

E-Print Network [OSTI]

with the battery arrays and incorporate the HEES into the PV system. We apply a crossover filter to the irradiation and temperature profiles of the source PV modules, and thereby allow the battery arrays to steadily receive energy}@usc.edu, 2 E-mail: {yhkim, naehyuck}@elpl.snu.ac.kr Abstract Photovoltaic (PV) power systems have been widely

Pedram, Massoud

300

Fine-grained Photovoltaic Output Prediction using a Bayesian Ensemble Prithwish Chakraborty1,2  

E-Print Network [OSTI]

generation is increasingly reliant on renewable power sources, e.g., solar (pho- tovoltaic or PV) and wind Increasingly, local and distributed power generation e.g., through solar (photovoltaic or PV), wind, fuel cells and intermittent in their energy output, which makes integration with the power grid challenging. PV output

Ramakrishnan, Naren

Note: This page contains sample records for the topic "off-grid photovoltaics pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Estimating market potential for reducing customer peak loads through photovoltaics  

SciTech Connect (OSTI)

Past studies have quantified photovoltaics` (PV) peak load matching capability on a utility-wide scale. The purpose of this paper is to estimate the number of utility subloads (e.g., customers, substations) whose peak loads are well matched with solar availability. A simple tool based on the utility scale load-PV match is developed to estimate the market size of customer scale PV applications with high load-PV matches. Illustrative examples of customer owned PV economics are also provided. The authors show that (1) the market size of high load matching PV applications on the subload scale is significant even within utility systems whose load requirements are not particularly well matched with PV output; and (2) the cost of PV as a peak shaving resource for utility customers is approaching competitive levels.

Bryan, J. [Citizens Advisory Panel, Central Islip, NY (United States); Perez, R. [Univ. of New York, Albany, NY (United States). Atmospheric Sciences Research Center

1996-11-01T23:59:59.000Z

302

Production Cost Modeling for High Levels of Photovoltaics Penetration  

SciTech Connect (OSTI)

The goal of this report is to evaluate the likely avoided generation, fuels, and emissions resulting from photovoltaics (PV) deployment in several U.S. locations and identify new tools, methods, and analysis to improve understanding of PV impacts at the grid level.

Denholm, P.; Margolis, R.; Milford, J.

2008-02-01T23:59:59.000Z

303

High Penetration, Grid Connected Photovoltaic Technology Codes and Standards: Preprint  

SciTech Connect (OSTI)

This paper reports the interim status in identifying and reviewing photovoltaic (PV) codes and standards (C&S) and related electrical activities for grid-connected, high-penetration PV systems with a focus on U.S. electric utility distribution grid interconnection.

Basso, T. S.

2008-05-01T23:59:59.000Z

304

EELE408 Photovoltaics Lecture 21: Stand Alone Designs  

E-Print Network [OSTI]

Design · Determine Average Daily PV System Load · Determine Battery Needs · Determine Array Sizing1 EELE408 Photovoltaics Lecture 21: Stand Alone Designs Dr. Todd J. Kaiser tjkaiser@ece.montana.edu Department of Electrical and Computer Engineering Montana State University - Bozeman Stand Alone PV System

Kaiser, Todd J.

305

Environmental impacts of large-scale grid-connected ground-mounted PV installations  

E-Print Network [OSTI]

deployment and solar energy use are developing rapidly in Europe. In particular, Austria, Switzerland the higher external environmental costs of PV compared to those of nuclear energy and natural-gas-fuel power,6]. They highlighted the photovoltaic potential for a low carbon energy supply and the environmental benefits of PV

Paris-Sud XI, Université de

306

FEMP Webcast: O&M Best Practices for Small-Scale PV Systems  

Broader source: Energy.gov [DOE]

Hosted by the Federal Energy Management Program (FEMP), this seminar covers operations and maintenance (O&M) best practices for photovoltaic (PV) systems of 100 kilowatt or less, including planning for a PV O&M scope of work and maintenance procedures to keep the system operating at optimal capacity.

307

Optimal Design of Hybrid Energy System with PV/ Wind Turbine/ Storage: A Case Study  

E-Print Network [OSTI]

with photovoltaic (PV) arrays, wind turbines, and battery storage is designed based on empirical weather and load with renewable resources such as solar and wind power, supplemented with battery storage in a case study. One ­ the size of PV arrays, the number of wind turbines and the capacity of battery storage ­ that limit

Low, Steven H.

308

THE INTEGRATION AND CONTROL OF MULTIFUNCTIONAL STATIONARY PV-BATTERY SYSTEMS IN SMART DISTRIBUTION GRID  

E-Print Network [OSTI]

) in presence of photovoltaic (PV) panel on the view of techno economic optimal sizing taking the considerationTHE INTEGRATION AND CONTROL OF MULTIFUNCTIONAL STATIONARY PV-BATTERY SYSTEMS IN SMART DISTRIBUTION stationary battery energy storage systems (BESS) in the public low-voltage distribution grid in order

Berning, Torsten

309

Sandia National Laboratories: PV Value®  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and PV industry sales staff. For appraisers, the inputs specific to PV in the Residential Green and Energy Efficient Addendum can be used as inputs to PV Value. Valuing a PV...

310

Redesign of Electrical Installations to Maximize the Use of Photo Voltaic (PV) Cells at the End Use of Consumers in Kuwait  

E-Print Network [OSTI]

) Photovoltaic PV 2010 1900 2 20 Photovoltaic PV2020 900 2 20 Table 2 gives the current price of Photovoltaic for Crystalline Silicon and Thin Films/Concentrators, while the price will be much reduced in the year 2020 as a result of using Thin Films... system was to meet a maximum demand load of 9710 MW in the year 2008, then the cost of one KW load was 19 475 /9710= 2005 US$/KW. By comparing this cost with the expected PV Photovoltaic in 2010 -given in Table 2 ? it is seems that the conventional...

Alatrash, J.; Mhaisen, N.; Ismail, Z.

2010-01-01T23:59:59.000Z

311

Temperature compensated photovoltaic array  

DOE Patents [OSTI]

A temperature compensated photovoltaic module comprises a series of solar cells having a thermally activated switch connected in parallel with several of the cells. The photovoltaic module is adapted to charge conventional batteries having a temperature coefficient differing from the temperature coefficient of the module. The calibration temperatures of the switches are chosen whereby the colder the ambient temperature for the module, the more switches that are on and form a closed circuit to short the associated solar cells. By shorting some of the solar cells as the ambient temperature decreases, the battery being charged by the module is not excessively overcharged at lower temperatures. PV module is an integrated solution that is reliable and inexpensive. 2 figs.

Mosher, D.M.

1997-11-18T23:59:59.000Z

312

Temperature compensated photovoltaic array  

DOE Patents [OSTI]

A temperature compensated photovoltaic module (20) comprised of a series of solar cells (22) having a thermally activated switch (24) connected in parallel with several of the cells (22). The photovoltaic module (20) is adapted to charge conventional batteries having a temperature coefficient (TC) differing from the temperature coefficient (TC) of the module (20). The calibration temperatures of the switches (24) are chosen whereby the colder the ambient temperature for the module (20), the more switches that are on and form a closed circuit to short the associated solar cells (22). By shorting some of the solar cells (22) as the ambient temperature decreases, the battery being charged by the module (20) is not excessively overcharged at lower temperatures. PV module (20) is an integrated solution that is reliable and inexpensive.

Mosher, Dan Michael (Plano, TX)

1997-11-18T23:59:59.000Z

313

Photovoltaic Degradation Risk: Preprint  

SciTech Connect (OSTI)

The ability to accurately predict power delivery over the course of time is of vital importance to the growth of the photovoltaic (PV) industry. Important cost drivers include the efficiency with which sunlight is converted into power, how this relationship changes over time, and the uncertainty in this prediction. An accurate quantification of power decline over time, also known as degradation rate, is essential to all stakeholders - utility companies, integrators, investors, and researchers alike. In this paper we use a statistical approach based on historical data to quantify degradation rates, discern trends and quantify risks related to measurement uncertainties, number of measurements and methodologies.

Jordan, D. C.; Kurtz, S. R.

2012-04-01T23:59:59.000Z

314

Sandia National Laboratories: Photovoltaics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik SpoerkeSolar Regional Test Center in VermontContactPhotovoltaics PV

315

Sandia National Laboratories: photovoltaic  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmitted for USMaterialsthe GoalMicrosystems Enabled Photovoltaics2013 PV

316

Nanostructured Titania-Polymer Photovoltaic Devices Made Using PFPE-Based Nanomolding Techniques  

E-Print Network [OSTI]

Nanostructured Titania-Polymer Photovoltaic Devices Made Using PFPE-Based Nanomolding Techniques heterojunction photovoltaic (PV) cells using a perfluoropolyether (PFPE) elastomeric mold to control the donor photovoltaic materials because they are strong light absorbers and solution pro- cessable and can be deposited

McGehee, Michael

317

Graphene-based photovoltaic cells for near-field thermal energy conversion  

E-Print Network [OSTI]

Graphene-based photovoltaic cells for near-field thermal energy conversion Riccardo Messina to a photovoltaic cell can be largely enhanced because of the contribution of evanescent photons, in particular important source of energy. By approaching a photovoltaic (PV) cell3 in proximity of a thermal emitter

Paris-Sud XI, Université de

318

Two-and three-dimensional folding of thin film single-crystalline silicon for photovoltaic  

E-Print Network [OSTI]

Two- and three-dimensional folding of thin film single-crystalline silicon for photovoltaic power of a functional, nonpla- nar photovoltaic (PV) device. A mechanics model based on the theory of thin plates self-folding photovoltaics capillary force Silicon, in crystalline and amorphous forms, is currently

Lewis, Jennifer

319

A Smart Algorithm for the Diagnosis of Short-Circuit Faults in a Photovoltaic Generator  

E-Print Network [OSTI]

A Smart Algorithm for the Diagnosis of Short-Circuit Faults in a Photovoltaic Generator Wail Rezgui observations distributed over classes is used for simulation purposes. Keywords--Photovoltaic generator, SVM, k-NN, short-circuit fault, smart classification, linear programming. NOMENCLATURE PV = Photovoltaic; SVM

Paris-Sud XI, Université de

320

Conjugated Polymer Photovoltaic Cells Kevin M. Coakley and Michael D. McGehee*  

E-Print Network [OSTI]

Conjugated Polymer Photovoltaic Cells Kevin M. Coakley and Michael D. McGehee* Department semiconductors for photovoltaic cells because they are strong absorbers and can be deposited on flexible to create, transport, and store electricity. For photovoltaic (PV) cells to gain widespread ac- ceptance

McGehee, Michael

Note: This page contains sample records for the topic "off-grid photovoltaics pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Report IEA-PVPS T1-14:2005 TRENDS IN PHOTOVOLTAIC APPLICATIONS  

E-Print Network [OSTI]

Report IEA-PVPS T1-14:2005 TRENDS IN PHOTOVOLTAIC APPLICATIONS Survey report of selected IEA countries between 1992 and 2004 #12;1 TRENDS IN PHOTOVOLTAIC APPLICATIONS Survey report of selected IEA countries between 1992 and 2004 Contents Introduction 2 1 Implementation of photovoltaic systems 3 2 The PV

322

A Regression Algorithm for the Smart Prognosis of a Reversed Polarity Fault in a Photovoltaic Generator  

E-Print Network [OSTI]

A Regression Algorithm for the Smart Prognosis of a Reversed Polarity Fault in a Photovoltaic database containing sample data is used for simulation purposes. Keywords--Photovoltaic generator, SVR, k-NNR, reversed polarity fault, diagnosis, prognosis. NOMENCLATURE PV = Photovoltaic; SVM = Support Vector

Paris-Sud XI, Université de

323

PROGRESS IN PHOTOVOLTAICS: RESEARCH AND APPLICATIONS Prog. Photovolt: Res. Appl. 2009; 17:1133  

E-Print Network [OSTI]

PROGRESS IN PHOTOVOLTAICS: RESEARCH AND APPLICATIONS Prog. Photovolt: Res. Appl. 2009; 17 Research History of Accelerated and Qualification Testing of Terrestrial Photovoltaic Modules: A Literature-plate terrestrial photovoltaic (PV) modules. An important facet of this subject is the standard module test

324

Cu(In,Ga)Se2based Photovoltaics: Challenges and Opportunities  

E-Print Network [OSTI]

Cu(In,Ga)Se2­based Photovoltaics: Challenges and Opportunities William Shafarman Institute of Energy Conversion University of Delaware #12;Thin Film Photovoltaics Potential for low cost PV using a Thickness K.Kim, et al., IEEE J. Photovoltaics, 3, 446 (2013). 2 µm, 60 min reaction 1 µm, 25 min reaction 0

Firestone, Jeremy

325

Importance of the Donor:Fullerene Intermolecular Arrangement for High-Efficiency Organic Photovoltaics  

E-Print Network [OSTI]

Photovoltaics Kenneth R. Graham,, Clement Cabanetos, Justin P. Jahnke,§ Matthew N. Idso,§ Abdulrahman El Labban *S Supporting Information ABSTRACT: The performance of organic photovoltaic (OPV) material systems the performance of OPV material systems. INTRODUCTION Organic photovoltaics (OPVs) are a promising PV technology

McGehee, Michael

326

Bill Shafarman 1 May 15, 2013 Thin Film Photovoltaics Research at the  

E-Print Network [OSTI]

Bill Shafarman 1 May 15, 2013 Thin Film Photovoltaics Research at the Institute of Energy of Photovoltaics 2. IEC: History and Capabilities 3. Current Research at IEC #12;Bill Shafarman 2 May 15, 2013 Concentrators #12;Bill Shafarman 5 May 15, 2013 Thin Film Photovoltaics Potential for low cost PV using " a

Firestone, Jeremy

327

Estimation of Photovoltaic System Reliability and Performance Metrics  

E-Print Network [OSTI]

1 Estimation of Photovoltaic System Reliability and Performance Metrics Sairaj V. Dhople, Student reliability and perfor- mance analysis of grid-tied photovoltaic (PV) systems is for- mulated using Markov and energy yield, and reliability metrics such as availability. The paper also provides an analytical method

Liberzon, Daniel

328

Life Cycle Greenhouse Gas Emissions from Solar Photovoltaics  

E-Print Network [OSTI]

Life Cycle Greenhouse Gas Emissions from Solar Photovoltaics Over the last thirty years, hundreds and utility-scale solar photovoltaic (PV) systems. These LCAs have yielded wide-ranging results. Variation of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. ~40 g CO2

329

The following contribution was presented at the 28. European PV Solar Energy Conference and Exhibition  

E-Print Network [OSTI]

in photovoltaic (PV) modules [1, 2]. This cell cracking may reduce the reliability of the solar modules [3, 4 and Exhibition in Paris, France. 30.9.2013 - 4.10.2013 #12;28th European Photovoltaic Solar Energy Conference

330

IEEE TRANSACTIONS ON POWER ELECTRONICS 1 A Hybrid Power Control Concept for PV Inverters with Reduced  

E-Print Network [OSTI]

- cept for grid-connected Photovoltaic (PV) inverters. The control strategy is based on either a Maximum concept. Index Terms--Photovoltaic inverters, constant power genera- tion, maximum power point tracking, efficiency, thermal loading, reliability. I. INTRODUCTION MAXIMUM Power Point Tracking (MPPT) is effective

Kerekes, Tamas

331

Batteries put to test in PV plan The technology could help utilities absorb  

E-Print Network [OSTI]

of solar power produced by rooftop photovoltaic panels. The project, in a neighborhood with one when output from PV panels drops, and absorbing power when the solar power spikes. The battery systems@STARADVERTISER.COM Neighborhoods with high penetration of photovoltaic panels, like this one in Hawaii Kai, are creating challenges

332

PV performance modeling workshop summary report.  

SciTech Connect (OSTI)

During the development of a solar photovoltaic (PV) energy project, predicting expected energy production from a system is a key part of understanding system value. System energy production is a function of the system design and location, the mounting configuration, the power conversion system, and the module technology, as well as the solar resource. Even if all other variables are held constant, annual energy yield (kWh/kWp) will vary among module technologies because of differences in response to low-light levels and temperature. A number of PV system performance models have been developed and are in use, but little has been published on validation of these models or the accuracy and uncertainty of their output. With support from the U.S. Department of Energy's Solar Energy Technologies Program, Sandia National Laboratories organized a PV Performance Modeling Workshop in Albuquerque, New Mexico, September 22-23, 2010. The workshop was intended to address the current state of PV system models, develop a path forward for establishing best practices on PV system performance modeling, and set the stage for standardization of testing and validation procedures for models and input parameters. This report summarizes discussions and presentations from the workshop, as well as examines opportunities for collaborative efforts to develop objective comparisons between models and across sites and applications.

Stein, Joshua S.; Tasca, Coryne Adelle (SRA International, Inc., Fairfax, VA); Cameron, Christopher P.

2011-05-01T23:59:59.000Z

333

November 21, 2000 PV Lesson Plan 2 Solar Electric Arrays  

E-Print Network [OSTI]

rating of a photovoltaic module is typically quoted as the power output of the module when the incidentNovember 21, 2000 PV Lesson Plan 2 ­ Solar Electric Arrays Prepared for the Oregon Million Solar Roofs Coalition By Frank Vignola ­ University of Oregon Solar Radiation Monitoring Lab John Hocken

Oregon, University of

334

Photovoltaics performance and reliability workshop  

SciTech Connect (OSTI)

This document consists of papers and viewgraphs compiled from the proceedings of a workshop held in September 1992. This workshop was the fifth in a series sponsored by NREL/DOE under the general subject areas of photovoltaic module testing and reliability. PV manufacturers, DOE laboratories, electric utilities and others exchanged technical knowledge and field experience. The topics of cell and module characterization, module and system performance, materials and module durability/reliability research, solar radiation, and applications are discussed.

Mrig, L. [ed.] [ed.

1992-11-01T23:59:59.000Z

335

Photovoltaics performance and reliability workshop  

SciTech Connect (OSTI)

This document consists of papers and viewgraphs compiled from the proceedings of a workshop held in September 1992. This workshop was the fifth in a series sponsored by NREL/DOE under the general subject areas of photovoltaic module testing and reliability. PV manufacturers, DOE laboratories, electric utilities and others exchanged technical knowledge and field experience. The topics of cell and module characterization, module and system performance, materials and module durability/reliability research, solar radiation, and applications are discussed.

Mrig, L. (ed.) [ed.

1992-01-01T23:59:59.000Z

336

Extremum seeking control techniques applied to photovoltaic systems with multimodal power curves  

E-Print Network [OSTI]

) Current(A) 0 200 320025 I-V curve P-V curve VMPP Power(W) 1000 Fig. 1. Photovoltaic cell I-V and P nonlinear steady-state characteristics, expressed as either current versus voltage (the so called I-V curve), or as power versus voltage (the P-V curve, like the one in Fig. 1). The I-V and P-V curves of a PV system vary

Boyer, Edmond

337

Photovoltaic array mounting apparatus, systems, and methods  

DOE Patents [OSTI]

An apparatus for mounting a photovoltaic (PV) module on a surface, including a support with an upper surface, a lower surface, tabs, one or more openings, and a clip comprising an arm and a notch, where the apparatus resists wind forces and seismic forces and creates a grounding electrical bond between the PV module, support, and clip. The invention further includes a method for installing PV modules on a surface that includes arranging supports in rows along an X axis and in columns along a Y axis on a surface such that in each row the distance between two neighboring supports does not exceed the length of the longest side of a PV module and in each column the distance between two neighboring supports does not exceed the length of the shortest side of a PV module.

West, John Raymond; Atchley, Brian; Hudson, Tyrus Hawkes; Johansen, Emil

2014-12-02T23:59:59.000Z

338

Metals Production Requirements for Rapid Photovoltaics Deployment  

E-Print Network [OSTI]

If global photovoltaics (PV) deployment grows rapidly, the required input materials need to be supplied at an increasing rate. In this paper, we quantify the effect of PV deployment levels on the scale of metals production. For example, we find that if cadmium telluride {copper indium gallium diselenide} PV accounts for more than 3% {10%} of electricity generation by 2030, the required growth rates for the production of indium and tellurium would exceed historically-observed production growth rates for a large set of metals. In contrast, even if crystalline silicon PV supplies all electricity in 2030, the required silicon production growth rate would fall within the historical range. More generally, this paper highlights possible constraints to the rate of scaling up metals production for some PV technologies, and outlines an approach to assessing projected metals growth requirements against an ensemble of past growth rates from across the metals production sector. The framework developed in this paper may be...

Kavlak, Goksin; Jaffe, Robert L; Trancik, Jessika E

2015-01-01T23:59:59.000Z

339

Breakeven Prices for Photovoltaics on Supermarkets in the United States  

SciTech Connect (OSTI)

The photovoltaic (PV) breakeven price is the PV system price at which the cost of PV-generated electricity equals the cost of electricity purchased from the grid. This point is also called 'grid parity' and can be expressed as dollars per watt ($/W) of installed PV system capacity. Achieving the PV breakeven price depends on many factors, including the solar resource, local electricity prices, customer load profile, PV incentives, and financing. In the United States, where these factors vary substantially across regions, breakeven prices vary substantially across regions as well. In this study, we estimate current and future breakeven prices for PV systems installed on supermarkets in the United States. We also evaluate key drivers of current and future commercial PV breakeven prices by region. The results suggest that breakeven prices for PV systems installed on supermarkets vary significantly across the United States. Non-technical factors -- including electricity rates, rate structures, incentives, and the availability of system financing -- drive break-even prices more than technical factors like solar resource or system orientation. In 2020 (where we assume higher electricity prices and lower PV incentives), under base-case assumptions, we estimate that about 17% of supermarkets will be in utility territories where breakeven conditions exist at a PV system price of $3/W; this increases to 79% at $1.25/W (the DOE SunShot Initiative's commercial PV price target for 2020). These percentages increase to 26% and 91%, respectively, when rate structures favorable to PV are used.

Ong, S.; Clark, N.; Denholm, P.; Margolis, R.

2013-03-01T23:59:59.000Z

340

Design And Development Of Small Wind Energy Systems Is A Soft Path For Power Generation And Environment Conservation For Off Grid Applications In India.  

E-Print Network [OSTI]

ABSTRACT: This paper describes the design a new evolving electrical power generation system with small wind turbine. Which offer solutions to meet local energy requirements of a specific location. Energy conservation decreases energy requirements, promotes energy efficiency and facilitates development of renewable. Wind energy dominates as an immediate viable cost effective option which promotes energy conservation and avoids equivalent utilization of fossil fuels and avoids million ton of green house gas emission causing ozone depletion and other environmental impacts like global warming. This paper gives an over view about the current status and a possible development for small wind turbines for offgrid applications in India. KEY WORDS: wind energy, wind power generation system, wind sensor, Energy resources, and wind

unknown authors

Note: This page contains sample records for the topic "off-grid photovoltaics pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

NREL Center for Photovoltaics  

ScienceCinema (OSTI)

Solar cells, also called photovoltaics (PV) by solar cell scientists, convert sunlight directly into electricity. Solar cells are often used to power calculators and watches. The performance of a solar cell is measured in terms of its efficiency at turning sunlight into electricity. Only sunlight of certain energies will work efficiently to create electricity, and much of it is reflected or absorbed by the material that make up the cell. Because of this, a typical commercial solar cell has an efficiency of 15%?about one-sixth of the sunlight striking the cell generates electricity. Low efficiencies mean that larger arrays are needed, and that means higher cost. Improving solar cell efficiencies while holding down the cost per cell is an important goal of the PV industry, researchers at the National Renewable Energy Laboratory (NREL) and other U.S. Department of Energy (DOE) laboratories, and they have made significant progress. The first solar cells, built in the 1950s, had efficiencies of less than 4%. For a text version of this video visit http://www.nrel.gov/learning/re_photovoltaics_video_text.html

None

2013-05-29T23:59:59.000Z

342

Photovoltaics information user study  

SciTech Connect (OSTI)

The results of a series of telephone interviews with groups of users of information on photovoltaics (PV) are described. These results, part of a larger study on many different solar technologies, identify types of information each group needed and the best ways to get information to each group. The report is 1 of 10 discussing study results. The overall study provides baseline data about information needs in the solar community. It covers these technological areas: photovoltaics, passive solar heating and cooling, active solar heating and cooling, biomass energy, solar thermal electric power, solar industrial and agricultural process heat, wind energy, ocean energy, and advanced energy storage. An earlier study identified the information user groups in the solar community and the priority (to accelerate solar energy commercialization) of getting information to each group. In the current study only high-priority groups were examined. Results from seven PV groups respondents are analyzed in this report: DOE-Funded Researchers, Non-DOE-Funded Researchers, Researchers Working for Manufacturers, Representatives of Other Manufacturers, Representatives of Utilities, Electric Power Engineers, and Educators.

Belew, W.W.; Wood, B.L.; Marie, T.L.; Reinhardt, C.L.

1980-10-01T23:59:59.000Z

343

Maximum Photovoltaic Penetration Levels on Typical Distribution Feeders: Preprint  

SciTech Connect (OSTI)

This paper presents simulation results for a taxonomy of typical distribution feeders with various levels of photovoltaic (PV) penetration. For each of the 16 feeders simulated, the maximum PV penetration that did not result in steady-state voltage or current violation is presented for several PV location scenarios: clustered near the feeder source, clustered near the midpoint of the feeder, clustered near the end of the feeder, randomly located, and evenly distributed. In addition, the maximum level of PV is presented for single, large PV systems at each location. Maximum PV penetration was determined by requiring that feeder voltages stay within ANSI Range A and that feeder currents stay within the ranges determined by overcurrent protection devices. Simulations were run in GridLAB-D using hourly time steps over a year with randomized load profiles based on utility data and typical meteorological year weather data. For 86% of the cases simulated, maximum PV penetration was at least 30% of peak load.

Hoke, A.; Butler, R.; Hambrick, J.; Kroposki, B.

2012-07-01T23:59:59.000Z

344

ROBOTIC DEVICE FOR CLEANING PHOTOVOLTAIC PANEL ARRAYS  

E-Print Network [OSTI]

-Corresponding Author, ymarkopoulos@greenproject.gr, +30-210-60.90.880 With growing costs of electricity and concern. The main method for harnessing solar power is with arrays made up of photovoltaic (PV) panels. Accumulation, and it is vital to maximize the power generating potential during daily service. The accumulation of dust

Mavroidis, Constantinos

345

Photovoltaic module mounting clip with integral grounding  

DOE Patents [OSTI]

An electrically conductive mounting/grounding clip, usable with a photovoltaic (PV) assembly of the type having an electrically conductive frame, comprises an electrically conductive body. The body has a central portion and first and second spaced-apart arms extending from the central portion. Each arm has first and second outer portions with frame surface-disrupting element at the outer portions.

Lenox, Carl J.

2010-08-24T23:59:59.000Z

346

Photovoltaic Incentive Design Handbook  

SciTech Connect (OSTI)

Investments in customer-owned grid-connected photovoltaic (PV) energy systems are growing at a steady pace. This is due, in part, to the availability of attractive economic incentives offered by public state agencies and utilities. In the United States, these incentives have largely been upfront lump payments tied to the system capacity rating. While capacity-based ''buydowns'' have stimulated the domestic PV market, they have been criticized for subsidizing systems with potentially poor energy performance. As a result, the industry has been forced to consider alternative incentive structures, particularly ones that pay based on long-term measured performance. The industry, however, lacks consensus in the debate over the tradeoffs between upfront incentive payments versus longer-term payments for energy delivery. This handbook is designed for agencies and utilities that offer or intend to offer incentive programs for customer-owned PV systems. Its purpose is to help select, design, and implement incentive programs that best meet programmatic goals. The handbook begins with a discussion of the various available incentive structures and then provides qualitative and quantitative tools necessary to design the most appropriate incentive structure. It concludes with program administration considerations.

Hoff, T. E.

2006-12-01T23:59:59.000Z

347

Pyranometers and Reference Cells: Part 2: What Makes the Most Sense for PV Power Plants?; Preprint  

SciTech Connect (OSTI)

As described in Part 1 of this two-part series, thermopile pyranometers and photovoltaic (PV) reference cells can both be used to measure irradiance; however, there are subtle differences between the data that are obtained. This two-part article explores some implications of uncertainty and subtleties of accurately measuring PV efficiency in the field. Part 2 of the series shows how reference cells can be used to more confidently predict PV performance, but how this could best be accomplished if historic irradiance data could be available in PV-technology-specific formats.

Meydbray, J.; Riley, E.; Dunn, L.; Emery, K.; Kurtz, S.

2012-10-01T23:59:59.000Z

348

Precursor Report of Data Needs and Recommended Practices for PV Plant Availability Operations and Maintenance Reporting.  

SciTech Connect (OSTI)

Characterizing the factors that affect reliability of a photovoltaic (PV) power plant is an important aspect of optimal asset management. This document describes the many factors that affect operation and maintenance (O&M) of a PV plant, identifies the data necessary to quantify those factors, and describes how data might be used by O&M service providers and others in the PV industry. This document lays out data needs from perspectives of reliability, availability, and key performance indicators and is intended to be a precursor for standardizing terminology and data reporting, which will improve data sharing, analysis, and ultimately PV plant performance.

Hill, Roger R.; Klise, Geoffrey Taylor; John Balfour, John R Balfour, High Performance PV

2015-01-01T23:59:59.000Z

349

Module Handbook Specialisation Photovoltaics  

E-Print Network [OSTI]

Module Handbook Specialisation Photovoltaics 2nd Semester for the Master Programme REMA/EUREC Course 2008/2009 University of Northumbria Specialisation Provider: Photovoltaics #12;Specialisation Photovoltaics, University of Northumbria Module 1/Photovoltaics: PHOTOVOLTAIC CELL

Habel, Annegret

350

PV Manufacturing R&D Project -- Trends in the U.S. PV Industry  

SciTech Connect (OSTI)

To foster continued growth in the U.S. photovoltaic (PV) industry, the U.S. Department of Energy initiated the PV Manufacturing R&D (PVMR&D) Project--a partnership with U.S. PV industry participants to perform cost-shared manufacturing research and development. Throughout FY 2004, PVMR&D managed fourteen subcontracts across the industry. The impact of PVMR&D is quantified by reductions in direct module manufacturing costs, scale-up of existing PV production capacity, and accrual of cost savings to the public and industry. An analysis of public and industry investment shows that both recaptured funds by mid-1998 based on estimated manufacturing cost savings from PVMR&D participation. Since project inception, total PV manufacturing capacity has increased from 14 MW to 201 MW at the close of 2003, while direct manufacturing costs declined from $5.55/W to $2.49/W. These results demonstrate continued progress toward the overriding goals of the PVMR&D project.

Brown, K. E.; Mitchell, R. L.; Bower, W. I.; King, R.

2005-01-01T23:59:59.000Z

351

Abstract--The many different techniques for maximum power point tracking of photovoltaic arrays are discussed. The  

E-Print Network [OSTI]

Abstract--The many different techniques for maximum power point tracking of photovoltaic arrays on implementation. This manuscript should serve as a convenient reference for future work in photovoltaic power generation. Index Terms--maximum power point tracking, MPPT, photovoltaic, PV. I. INTRODUCTION RACKING

Chapman, Patrick

352

Electronic copy available at: http://ssrn.com/abstract=2014754 Joshua M. Pearce, "Industrial Symbiosis for Very Large Scale Photovoltaic  

E-Print Network [OSTI]

Symbiosis for Very Large Scale Photovoltaic Manufacturing", Renewable Energy 33, pp. 11011108, 2008. http://dx.doi.org/10.1016/j.renene.2007.07.002 Industrial Symbiosis of Very Large Scale Photovoltaic Manufacturing. Solar photovoltaic (PV) cells offer a technically sustainable solution to the projected enormous future

Paris-Sud XI, Université de

353

564 IEEE JOURNAL OF PHOTOVOLTAICS, VOL. 2, NO. 4, OCTOBER 2012 Dynamic Stability of Three-Phase Grid-Connected  

E-Print Network [OSTI]

564 IEEE JOURNAL OF PHOTOVOLTAICS, VOL. 2, NO. 4, OCTOBER 2012 Dynamic Stability of Three-Phase Grid-Connected Photovoltaic System Using Zero Dynamic Design Approach M. A. Mahmud, Student Member of the dynamic response of a three-phase grid-connected photovoltaic (PV) system. To control the grid cur- rent

Pota, Himanshu Roy

354

Ris-R-1219(EN) / SEC-R-12 Models for a Stand-Alone PV System  

E-Print Network [OSTI]

with a battery bank verified against a sys- tem installed at Risř National Laboratory. The work has been for modelling and simulation of a stand-alone photovoltaic (PV) system with a battery bank verified against mathematical models for each individual element of a stand-alone PV system, namely solar cells, battery

355

Overview of NREL's Photovoltaic Advanced R D Project  

SciTech Connect (OSTI)

The National Renewable Energy Laboratory's (NREL's) Photovoltaic Advanced Research and Development (PV AR D) Project supports the US Department of Energy's National Photovoltaics Program in assisting the development and commercialization of photovoltaics (PV) energy technology. The NREL program is implemented through in-house research and subcontracts, with over 50% of the annual budget awarded through competitive solicitations to universities, large and small businesses, and other research centers. These activities include cost-shared, multiyear, government/industry partnerships and technology initiatives. The research has resulted in a better fundamental understanding of materials, devices, and processes, the achievement of record efficiencies in nearly all PV technology areas, the identification of promising new approaches to low-cost photovoltaics, and the introduction of new PV technology products into system experiments and PV markets. This paper presents an overview of NREL's PV AR D Project in terms of project organization and budgets, near- and long-term project objectives, research participants, and current and future research directions. Recent progress in the in-house and subcontracted research activities is described. 4 refs.

Surek, T.

1992-01-01T23:59:59.000Z

356

Photovoltaic battery & charge controller market & applications survey. An evaluation of the photovoltaic system market for 1995  

SciTech Connect (OSTI)

Under the sponsorship of the Department of Energy, Office of Utility Technologies, the Battery Analysis and Evaluation Department and the Photovoltaic System Assistance Center of Sandia National Laboratories (SNL) initiated a U.S. industry-wide PV Energy Storage System Survey. Arizona State University (ASU) was contracted by SNL in June 1995 to conduct the survey. The survey included three separate segments tailored to: (a) PV system integrators, (b) battery manufacturers, and (c) PV charge controller manufacturers. The overall purpose of the survey was to: (a) quantify the market for batteries shipped with (or for) PV systems in 1995, (b) quantify the PV market segments by battery type and application for PV batteries, (c) characterize and quantify the charge controllers used in PV systems, (d) characterize the operating environment for energy storage components in PV systems, and (e) estimate the PV battery market for the year 2000. All three segments of the survey were mailed in January 1996. This report discusses the purpose, methodology, results, and conclusions of the survey.

Hammond, R.L.; Turpin, J.F.; Corey, G.P. [and others] [and others

1996-12-01T23:59:59.000Z

357

Sandia National Laboratories: PV Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

manufacturing consultation complete performance characterization of PV cells and photo sensors calibration of PV reference cells, reference modules, and solar instruments...

358

Optimal Solar PV Arrays Integration for Distributed Generation  

SciTech Connect (OSTI)

Solar photovoltaic (PV) systems hold great potential for distributed energy generation by installing PV panels on rooftops of residential and commercial buildings. Yet challenges arise along with the variability and non-dispatchability of the PV systems that affect the stability of the grid and the economics of the PV system. This paper investigates the integration of PV arrays for distributed generation applications by identifying a combination of buildings that will maximize solar energy output and minimize system variability. Particularly, we propose mean-variance optimization models to choose suitable rooftops for PV integration based on Markowitz mean-variance portfolio selection model. We further introduce quantity and cardinality constraints to result in a mixed integer quadratic programming problem. Case studies based on real data are presented. An efficient frontier is obtained for sample data that allows decision makers to choose a desired solar energy generation level with a comfortable variability tolerance level. Sensitivity analysis is conducted to show the tradeoffs between solar PV energy generation potential and variability.

Omitaomu, Olufemi A [ORNL; Li, Xueping [University of Tennessee, Knoxville (UTK)

2012-01-01T23:59:59.000Z

359

Kauai Island Utility Co-op (KIUC) PV integration study.  

SciTech Connect (OSTI)

This report investigates the effects that increased distributed photovoltaic (PV) generation would have on the Kauai Island Utility Co-op (KIUC) system operating requirements. The study focused on determining reserve requirements needed to mitigate the impact of PV variability on system frequency, and the impact on operating costs. Scenarios of 5-MW, 10-MW, and 15-MW nameplate capacity of PV generation plants distributed across the Kauai Island were considered in this study. The analysis required synthesis of the PV solar resource data and modeling of the KIUC system inertia. Based on the results, some findings and conclusions could be drawn, including that the selection of units identified as marginal resources that are used for load following will change; PV penetration will displace energy generated by existing conventional units, thus reducing overall fuel consumption; PV penetration at any deployment level is not likely to reduce system peak load; and increasing PV penetration has little effect on load-following reserves. The study was performed by EnerNex under contract from Sandia National Laboratories with cooperation from KIUC.

Ellis, Abraham; Mousseau, Tom (Knoxville, TN)

2011-08-01T23:59:59.000Z

360

2011 The NEED Project P.O. Box 10101, Manassas, VA 20108 1.800.875.5029 www.NEED.org 43 How a Photovoltaic CellWorks  

E-Print Network [OSTI]

a Photovoltaic CellWorks Step 1 A slab (or wafer) of pure silicon is used to make a PV cell. The top of the slab electricfield PHOTONS n-type p-type p-n junction POSITIVE CHARGE NEGATIVE CHARGE SUNSTEP 3 PHOTOVOLTAIC CELLS that motivates the energetic electrons out of the cell created when light strikes the PV cell. The phosphorous

Oregon, University of

Note: This page contains sample records for the topic "off-grid photovoltaics pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

US Photovoltaic Patents, 1988--1990  

SciTech Connect (OSTI)

This document contains US patents on terrestrial photovoltaic (PV) power applications, including systems, components, and materials, as well as manufacturing and support functions. The patent entries in this document were issued from 1988 through 1990. The entries were located by searching USPA, the data base of the US Patent Office. The final search retrieved all patents under the class ``Batteries, Thermoelectric and Photoelectric`` and the subclasses ``Photoelectric,`` ``Testing,`` and ``Applications.`` The search also located patents that contained the words ``photovoltaic(s)`` or ``solar cell(s)`` and their derivatives. A manual search of the patents in the Solar Energy Research Institute (SERI) patent file augmented the data base search. After the initial list was compiled, most of the patents on the following subjects were excluded: space photovoltaic technology, use of the photovoltaic effect for detectors and subjects only peripherally concerned with photovoltaics. Some patents on these three subjects were included when it appeared that those inventions might be of use in terrestrial PV power technologies.

Not Available

1991-12-01T23:59:59.000Z

362

US Photovoltaic Patents, 1988--1990  

SciTech Connect (OSTI)

This document contains US patents on terrestrial photovoltaic (PV) power applications, including systems, components, and materials, as well as manufacturing and support functions. The patent entries in this document were issued from 1988 through 1990. The entries were located by searching USPA, the data base of the US Patent Office. The final search retrieved all patents under the class Batteries, Thermoelectric and Photoelectric'' and the subclasses Photoelectric,'' Testing,'' and Applications.'' The search also located patents that contained the words photovoltaic(s)'' or solar cell(s)'' and their derivatives. A manual search of the patents in the Solar Energy Research Institute (SERI) patent file augmented the data base search. After the initial list was compiled, most of the patents on the following subjects were excluded: space photovoltaic technology, use of the photovoltaic effect for detectors and subjects only peripherally concerned with photovoltaics. Some patents on these three subjects were included when it appeared that those inventions might be of use in terrestrial PV power technologies.

Not Available

1991-12-01T23:59:59.000Z

363

http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=8846343 2012 MRS Fall Meeting; Symposium E, Photovoltaic Technologies, Devices and Systems Based on Inorganic Materials, Small  

E-Print Network [OSTI]

a superior potential for the development of high performance photovoltaic (PV) devices with reduced cost Meeting; Symposium E, Photovoltaic Technologies, Devices and Systems Based on Inorganic Materials, Small investigated for use in photovoltaic solar cells for the past years. At present, almost all photovoltaic device

Dietz, Nikolaus

364

Monitoring and analysis of two grid connected PV systems Michael BRESSAN* Valrie DUPE**, Bruno JAMMES**, Thierry TALBERT*, Corinne ALONSO**  

E-Print Network [OSTI]

Reliability and Availability Abstract In this paper, two grid connected photovoltaic systems are studied and monitored for fault detection ad predictive reliability. The first PV grid, is at CNRS-PROMES laboratory systemsThen, from these measurements, a performance analysis of the photovoltaic power generation

Paris-Sud XI, Université de

365

Photovoltaic cell  

DOE Patents [OSTI]

In a photovoltaic cell structure containing a visibly transparent, electrically conductive first layer of metal oxide, and a light-absorbing semiconductive photovoltaic second layer, the improvement comprising a thin layer of transition metal nitride, carbide or boride interposed between said first and second layers.

Gordon, Roy G. (Cambridge, MA); Kurtz, Sarah (Somerville, MA)

1984-11-27T23:59:59.000Z

366

Justification of village scale photovoltaic powered electrodialysis desalination systems for rural India  

E-Print Network [OSTI]

This thesis justifies photovoltaic (PV)-powered electrodialysis (ED) as an energy and cost-effective means of desalinating groundwater in rural India and presents the design requirements for a village-level system. Saline ...

Wright, Natasha C. (Natasha Catherine)

2014-01-01T23:59:59.000Z

367

Solar capabilities : promoting, technological learning in South Africa's photovoltaic supply industry  

E-Print Network [OSTI]

I explore the mechanisms through which technological capabilities have been built in the market for photovoltaic (PV) module and balance of system (BOS) manufacture in South Africa. Drawing on the literature on technology ...

Wright, Janelle N., 1978-

2003-01-01T23:59:59.000Z

368

Control of Stand-Alone Photovoltaic System Using Fuzzy-Logic Controller  

E-Print Network [OSTI]

With industrial development the problem of energy shortage is more and more aggravating. The photovoltaic (PV) systems are rapidly expanding and have increasing in electric power technology and regarded as the green energy of the new century control...

Mellit, A.; Benghanme, M.; Arab, A. H.; Guessoum, A.

2004-01-01T23:59:59.000Z

369

Synthesis of Titanium Dioxide Hetero-Structures for Photovoltaic Energy Conversion  

E-Print Network [OSTI]

The photovoltaic energy conversion system (PV cells or solar cells) has been researched over the last few decades, and new technologies have been proposed. At the same time, the synthesis of nano-scale materials has been investigated intensively...

Park, Jongbok

2010-10-12T23:59:59.000Z

370

The design and control of a thermal management system for a photovoltaic reverse osmosis system  

E-Print Network [OSTI]

Reverse osmosis (RO) is a well-known process for desalinating seawater and brackish groundwater. Desalination is energy-intensive, so using photovoltaic (PV) panels to power the process is an attractive environmentally ...

Kelley, Leah C. (Leah Camille)

2011-01-01T23:59:59.000Z

371

E-Print Network 3.0 - a-si photovoltaic manufacturing Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

< 1 2 3 4 5 > >> Page: << < 1 2 3 4 5 > >> 21 Presented at the 21st European Photovoltaic Solar Energy Conference, Dresden,Germany, 4-8 September 2006 ENVIRONMENTAL IMPACTS OF PV...

372

Economic valuation of energy storage coupled with photovoltaics : current technologies and future projections  

E-Print Network [OSTI]

A practical framework for the economic valuation of current energy storage systems coupled with photovoltaic (PV) systems is presented. The solar-with-storage system's operation is optimized for two different rate schedules: ...

Mosher, Trannon

2010-01-01T23:59:59.000Z

373

The Photovoltaic Crisis and the Demand-side Generation in Spain  

E-Print Network [OSTI]

The RES-E promotion policy in Spain gave priority to the photovoltaic (henceforth, PV) ground-mounted installations. For years, the coupling of customer-side generation coupled with excess energy exports was never specifically considered. However...

Mir-Artigues, Pere

2013-03-01T23:59:59.000Z

374

New Hampshire Electric Co-Op- Residential Solar Photovoltaic Incentive Program  

Broader source: Energy.gov [DOE]

New Hampshire Electric Co-op (NHEC) is offering rebates for residential, grid-tied photovoltaic (PV) systems up to one megawatt (MW) in capacity. The rebate is equal to 20% of the installed cost of...

375

Photovoltaic power plant as FACTS devices in multi-feeder systems  

E-Print Network [OSTI]

This paper illustrates possible configurations for a large-scale photovoltaic power plant (PV), to operate as a FACTS (flexible AC transmission system) device in addition to operating as a source of renewable power generation. ...

Moawwad, Ahmed

376

Optical design guidelines for spectral splitting photovoltaic systems : a sensitivity analysis approach  

E-Print Network [OSTI]

Solar power has unmatched ability to provide greater security and reduced environmental impact for the energy sector. Photovoltaic (PV) systems provide the most popular method used today for harnessing this power. However, ...

Berney Needleman, David

2014-01-01T23:59:59.000Z

377

An analysis of the photovoltaic value chain for reviewing solar energy policy in Massachusetts  

E-Print Network [OSTI]

We explore the photovoltaic value chain for 1st generation crystalline silicon, 2nd generation thin film and 3rd generation organic/ dye-sensitized PV in an effort to evaluate two levels of policy options intended to create ...

Dean, Ryan, S. B. (Ryan G.) Massachusetts Institute of Technology

2008-01-01T23:59:59.000Z

378

Bexar County Parking Garage Photovoltaic Panels  

SciTech Connect (OSTI)

The main objective of the Bexar County Parking Garage Photovoltaic (PV) Panel project is to install a PV System that will promote the use of renewable energy. This project will also help sustain Bexar County ongoing greenhouse gas emissions reduction and energy efficiency goals. The scope of this project includes the installation of a 100-kW system on the top level of a new 236,285 square feet parking garage. The PV system consists of 420 solar panels that covers 7,200 square feet and is tied into the electric-grid. It provides electricity to the office area located within the garage. The estimated annual electricity production of the PV system is 147,000 kWh per year.

Golda Weir

2012-01-23T23:59:59.000Z

379

Toward integrated PV panels and power electronics using printing technologies  

SciTech Connect (OSTI)

In this paper, we review the latest developments in the area of printing technologies with an emphasis on the fabrication of control-embedded photovoltaics (PV) with on-board active and passive devices. We also review the use of power converters and maximum power point tracking (MPPT) circuits with PV panels. Our focus is on the investigation of the simplest implementations of such circuits in view of their integration with solar cells using printing technologies. We see this concept as potentially enabling toward further cost reduction. Besides a discussion as to feasibility, we shall also present some projections and guidelines toward possible integration. (author)

Ababei, Cristinel; Yuvarajan, Subbaraya [Electrical and Computer Engineering Department, North Dakota State University, Fargo, ND 58108 (United States); Schulz, Douglas L. [Center for Nanoscale Science and Engineering, North Dakota State University, Fargo, ND 58102 (United States)

2010-07-15T23:59:59.000Z

380

Testing of Packaging Materials for Improved PV Module Reliability  

SciTech Connect (OSTI)

A number of candidate alternative encapsulant and soft backsheet materials have been evaluated in terms of their suitability for photovoltaic (PV) module packaging applications. Relevant properties, including interfacial adhesion and moisture transport, have been measured as a function of damp-heat (85 C/85% relative humidity) exposure. Based on these tests, promising new encapsulants with improved properties have been identified. Backsheets prepared by industry and at NREL have been found to provide varying levels of moisture ingress protection. To achieve significantly improved products, further development of these candidates is ongoing. The relative effectiveness of various packaging strategies to protect PV devices has also been investigated.

Jorgensen, G. J.; Terwilliger, K. M.; Kempe, M. D.; McMahon, T. J.

2005-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "off-grid photovoltaics pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Outdoor PV Module Degradation of Current-Voltage Parameters: Preprint  

SciTech Connect (OSTI)

Photovoltaic (PV) module degradation rate analysis quantifies the loss of PV power output over time and is useful for estimating the impact of degradation on the cost of energy. An understanding of the degradation of all current-voltage (I-V) parameters helps to determine the cause of the degradation and also gives useful information for the design of the system. This study reports on data collected from 12 distinct mono- and poly-crystalline modules deployed at the National Renewable Energy Laboratory (NREL) in Golden, Colorado. Most modules investigated showed < 0.5%/year decrease in maximum power due to short-circuit current decline.

Smith, R. M.; Jordan, D. C.; Kurtz, S. R.

2012-04-01T23:59:59.000Z

382

Insuring Solar Photovoltaics: Challenges and Possible Solutions; (Revised)  

SciTech Connect (OSTI)

Insuring solar photovoltaic (PV) systems poses certain challenges. Insurance premiums, which can represent a significant part of overall costs for PV developers, can affect market competition. The market for certain types of insurance products is limited. Historical loss data is lacking, and test data for the long-term viability of PV products under real-life conditions is limited. Insurers' knowledge about PV systems and the PV industry is uneven even as the industry introduces innovative contractual structures and business models. Interviews conducted for this report with PV project developers, insurance brokers, and underwriters suggest government actions aimed at better testing, data collection, and communication could facilitate the development of a market for PV insurance products. This report identifies actions by governments, national laboratories, and other stakeholders that could accelerate the development of insurance products in support PV systems. Such actions include: increasing understanding of the solar PV industry among insurance professionals; expanding the availability of PV historical loss data; evaluating the expansion of renewable energy business classification; developing module and component testing capabilities and services offered by federal labs; and, advancing industry standards for PV system installers.

Speer, B.; Mendelsohn, M.; Cory, K.

2010-02-01T23:59:59.000Z

383

PV production Accumulator  

E-Print Network [OSTI]

Profile COMPARISON BETWEEN LEAD-ACID AND LI-ION ACCUMULATORS IN STAND-ALONE PHOTOVOLTAIC SYSTEM USING-ion accumulators more and more envisioned in such applications. In this paper, sizing optimisations of SAPV systems have been lead for each accumulator technology considered. The photovoltaic system has been simulated

Paris-Sud XI, Université de

384

Advanced Photovoltaic Inverter Functionality using 500 kW Power Hardware-in-Loop Complete System Laboratory Testing: Preprint  

SciTech Connect (OSTI)

With the increasing penetration of distribution connected photovoltaic (PV) systems, more and more PV developers and utilities are interested in easing future PV interconnection concerns by mitigating some of the impacts of PV integration using advanced PV inverter controls and functions. This paper describes the testing of a 500 kW PV inverter using Power Hardware-in-Loop (PHIL) testing techniques. The test setup is described and the results from testing the inverter in advanced functionality modes, not commonly used in currently interconnected PV systems, are presented. PV inverter operation under PHIL evaluation that emulated both the DC PV array connection and the AC distribution level grid connection are shown for constant power factor (PF) and constant reactive power (VAr) control modes. The evaluation of these modes was completed under varying degrees of modeled PV variability.

Mather, B. A.; Kromer, M. A.; Casey, L.

2013-01-01T23:59:59.000Z

385

Transformation of California's Residential Photovoltaics Market Through Third-Party Ownership  

SciTech Connect (OSTI)

Third-party photovoltaics (PV) ownership is a rapidly growing market trend, where commercial companies own and operate customer-sited PV systems and lease PV equipment or sell PV electricity to the building occupant. Third-party PV companies can reduce or eliminate up-front adoption costs, reduce technology risk and complexity by monitoring system performance, and can repackage the PV value proposition by showing cost savings in the first month of ownership rather than payback times on the order of a decade. We find that the entrance of third-party business models in southern California residential PV markets has enticed a new demographic to adopt PV systems that is more highly correlated to younger, less affluent, and less educated populations than the demographics correlated to purchasing PV systems. By enticing new demographics to adopt PV, we find that third-party PV products are likely increasing total PV demand rather than gaining market share entirely at the expense of existing customer owned PV demand. We also find that mean population demographics are good predictors of third-party and customer owned PV adoption, and mean voting trends on California carbon policy (Proposition 23) are poor predictors of PV adoption.

Drury, E.; Miller, M.; Macal, C. M.; Graziano, D. J.; Heimiller, D.; Ozik, J.; Perry, T. D.

2012-03-01T23:59:59.000Z

386

Short term generation scheduling in photovoltaic-utility grid with battery storage  

SciTech Connect (OSTI)

This paper presents an efficient approach to short term resource scheduling for an integrated thermal and photovoltaic-battery generation. The proposed model incorporated battery storage for peak load shaving. Several constraints including battery capacity, minimum up/down time and ramp rates for thermal units, as well as natural photovoltaic (PV) capacity are considered in the proposed model. A case study composed of 26 thermal units and a PV-battery plant is presented to test the efficiency of the method.

Marwali, M.K.C.; Ma, H.; Shahidehpour, S.M. [Illinois Inst. of Tech., Chicago, IL (United States). Dept. of Electrical and Computer Engineering] [Illinois Inst. of Tech., Chicago, IL (United States). Dept. of Electrical and Computer Engineering; Abdul-Rahman, K.H. [Siemens Energy and Automation, Brooklyn Park, MN (United States)] [Siemens Energy and Automation, Brooklyn Park, MN (United States)

1998-08-01T23:59:59.000Z

387

Technical and Energy Assessment of Building Integrated Photovoltaic Systems applied to the UAE Office Buildings  

E-Print Network [OSTI]

Technical and Energy Assessment of Building Integrated Photovoltaic Systems applied to the UAE Office Buildings Hassan Radhi Assistant Professor College of Engineering UAE University Al-Ain, United Arab Emirates ABSTRACT In the market... due to the PV panels represents an important factor when the EPBT is estimated Keywords: BiPV, embodied energy, UAE commercial buildings. INTRODUCTION Developments in the design and manufacture of photovoltaic cells have recently been a...

Radhi, H.

2010-01-01T23:59:59.000Z

388

Integrating High Penetrations of PV into Southern California: Year 2 Project Update; Preprint  

SciTech Connect (OSTI)

Southern California Edison (SCE) is well into a five-year project to install a total of 500 MW of distributed photovoltaic (PV) energy within its utility service territory. Typical installations to date are 1-3 MW peak rooftop PV systems that interconnect to medium-voltage urban distribution circuits or larger (5 MW peak) ground-mounted systems that connect to medium-voltage rural distribution circuits. Some of the PV system interconnections have resulted in distribution circuits that have a significant amount of PV generation compared to customer load, resulting in high-penetration PV integration scenarios. The National Renewable Energy Laboratory (NREL) and SCE have assembled a team of distribution modeling, resource assessment, and PV inverter technology experts in order to investigate a few of the high-penetration PV distribution circuits. Currently, the distribution circuits being studied include an urban circuit with a PV penetration of approximately 46% and a rural circuit with a PV penetration of approximately 60%. In both cases, power flow on the circuit reverses direction, compared to traditional circuit operation, during periods of high PV power production and low circuit loading. Research efforts during year two of the five-year project were focused on modeling the distribution system level impacts of high-penetration PV integrations, the development and installation of distribution circuit data acquisition equipment appropriate for quantifying the impacts of high-penetration PV integrations, and investigating high-penetration PV impact mitigation strategies. This paper outlines these research efforts and discusses the following activities in more detail: the development of a quasi-static time-series test feeder for evaluating high-penetration PV integration modeling tools; the advanced inverter functions being investigated for deployment in the project's field demonstration and a power hardware-in-loop test of a 500-kW PV inverter implementing a limited set of advanced inverter functions.

Mather, B.; Neal, R.

2012-08-01T23:59:59.000Z

389

Grid integrated distributed PV (GridPV).  

SciTech Connect (OSTI)

This manual provides the documentation of the MATLAB toolbox of functions for using OpenDSS to simulate the impact of solar energy on the distribution system. The majority of the functions are useful for interfacing OpenDSS and MATLAB, and they are of generic use for commanding OpenDSS from MATLAB and retrieving information from simulations. A set of functions is also included for modeling PV plant output and setting up the PV plant in the OpenDSS simulation. The toolbox contains functions for modeling the OpenDSS distribution feeder on satellite images with GPS coordinates. Finally, example simulations functions are included to show potential uses of the toolbox functions. Each function in the toolbox is documented with the function use syntax, full description, function input list, function output list, example use, and example output.

Reno, Matthew J.; Coogan, Kyle [Georgia Institute of Technology, Atlanta, GA

2013-08-01T23:59:59.000Z

390

A novel hybrid (wind-photovoltaic) system sizing procedure  

SciTech Connect (OSTI)

Wind-photovoltaic hybrid system (WPHS) utilization is becoming popular due to increasing energy costs and decreasing prices of turbines and photovoltaic (PV) panels. However, prior to construction of a renewable generation station, it is necessary to determine the optimum number of PV panels and wind turbines for minimal cost during continuity of generated energy to meet the desired consumption. In fact, the traditional sizing procedures find optimum number of the PV modules and wind turbines subject to minimum cost. However, the optimum battery capacity is either not taken into account, or it is found by a full search between all probable solution spaces which requires extensive computation. In this study, a novel description of the production/consumption phenomenon is proposed, and a new sizing procedure is developed. Using this procedure, optimum battery capacity, together with optimum number of PV modules and wind turbines subject to minimum cost can be obtained with good accuracy. (author)

Hocaoglu, Fatih O. [Afyon Kocatepe University, Dept. of Electronics and Communication Eng., 03200 Afyonkarahisar (Turkey); Gerek, Oemer N.; Kurban, Mehmet [Anadolu University, Dept. of Electrical and Electronics Eng., 26555 Eskisehir (Turkey)

2009-11-15T23:59:59.000Z

391

Overview of the Photovoltaic Manufacturing Technology (PVMaT) project  

SciTech Connect (OSTI)

The Photovoltaic Manufacturing Technology (PVMaT) project is a historic government/industry photovoltaic (PV) manufacturing R&D partnership composed of joint efforts between the federal government (through the US Department of Energy) and members of the US PV industry. The project`s ultimate goal is to ensure that the US industry retains and extends its world leadership role in the manufacture and commercial development of PV components and systems. PVMaT is designed to do this by helping the US PV industry improve manufacturing processes, accelerate manufacturing cost reductions for PV modules, improve commercial product performance, and lay the groundwork for a substantial scale-up of US-based PV manufacturing capacities. Phase 1 of the project, the problem identification phase, was completed in early 1991. Phase 2, the problem solution phase, which addresses process-specific problems of specific manufacturers, is now underway with an expected duration of 5 years. Phase 3 addresses R&D problems that are relatively common to a number of PV companies or the PV industry as a whole. These ``generic`` problem areas are being addressed through a teamed research approach.

Witt, C.E.; Mitchell, R.L.; Mooney, G.D.

1993-08-01T23:59:59.000Z

392

Development of a Dispatchable PV Peak Shainv System. PV: Bonus Program - Phase 1 Report. Volume 1  

SciTech Connect (OSTI)

This report summarizes the work performed by Delmarva Power and Light and its subcontractors in Phase 1 of the US Department of Energy's PV:BONUS Program. The purpose of the program is to develop products and systems for buildings which utilize photovoltaic (N) technology. Beginning with a cooperative research effort with the University of Delaware's Center for Energy and Environmental Policy Research Delmarva Power developed and demonstrated the concept of Dispatchable PV Peak Shaving. This concept and the system which resulted horn the development work are unique from other grid-connected PV systems because it combines a PV, battery energy storage, power conversion and control technologies into an integrated package. Phase 1 began in July 1993 with the installation of a test and demonstration system at Delmarva's Northern Division General Office building near Newark, Delaware. Following initial testing throughout the summer and fall of 1993, significant modifications were made under an amendment to the DOE contract. Work on Phase 1 concluded in the early spring of 1995. Significant progress towards the goal of commercializing the system was made during Phase 1, and is summarized. Based on progress in Phase 1, a proposal to continue the work in Phase 2 was submitted to the US DOE in May 1995. A contract amendment and providing funds for the Phase 2 work is expected in July 1995.

None

1995-10-01T23:59:59.000Z

393

EELE408 Photovoltaics Lecture 20: Photovoltaic Systems  

E-Print Network [OSTI]

· 6. Determine battery size for recommended reserve time Photovoltaic System Design Block Diagram Ph1 EELE408 Photovoltaics Lecture 20: Photovoltaic Systems Dr. Todd J. Kaiser tjkaiser into the grid 2 Application Areas 3 Photovoltaic System Basics · Photovoltaic Systems ­ Cell Panel Array

Kaiser, Todd J.

394

Photovoltaics for demand-side management utility markets: A utility/customer partnership approach  

SciTech Connect (OSTI)

Photovoltaic (PV) systems located at customer sites can be used to meet utility needs for demand-side management (DSM) applications. PV-DSM can also represent a high-value intermediate market for PV in the utility sector. Maximum value for PV in DSM applications can be achieved by incorporating a dispatching capability to PV systems (through the addition of storage). This enables utilities to evaluate PV systems as a peak-shaving technology. To date, peak-shaving has been the higher value DSM application for US utilities. This analysis of the value of dispatchable PV-DSM systems indicates that small-scale, customer-sited systems are approaching competitive cost levels in several regions of the US that have favorable load matching and peak demand pricing characteristics. This paper presents the results for PV-DSM systems located within the service territories of five case study utilities.

Byrne, J.; Letendre, S.; Govindarajalu, C.; Wang, Y.D. [Univ. of Delaware, Newark, DE (United States). Center for Energy and Environmental Policy; Nigro, R. [Delmarva Power and Light Co., Wilmington, DE (United States); Wallace, W. [National Renewable Energy Lab., Golden, CO (United States)

1994-12-31T23:59:59.000Z

395

Building-Integrated Photovoltaics (BIPV) in the Residential Sector: An Analysis of Installed Rooftop System Prices  

SciTech Connect (OSTI)

For more than 30 years, there have been strong efforts to accelerate the deployment of solar-electric systems by developing photovoltaic (PV) products that are fully integrated with building materials. This report examines the status of building-integrated PV (BIPV), with a focus on the cost drivers of residential rooftop systems, and explores key opportunities and challenges in the marketplace.

James, T.; Goodrich, A.; Woodhouse, M.; Margolis, R.; Ong, S.

2011-11-01T23:59:59.000Z

396

Appropriate storage for high-penetration grid-connected photovoltaic plants A.A. Solomon a  

E-Print Network [OSTI]

% of the PV-generated energy, and needing to re-structure the manner in which the grid was then being operated-or-less arbitrarily sized storage example, and allowing a small amount of PV energy dumping, we showed o Article history: Received 5 April 2011 Accepted 10 October 2011 Keywords: Photovoltaics Energy

Kammen, Daniel M.

397

US manufacturers of commercially available stand-alone photovoltaic lighting systems  

SciTech Connect (OSTI)

This report introduces photovoltaic (PV) lighting systems, gives some specifications for ordering these systems, and provides a list of some of the manufacturers of these systems in the United States. These PV lighting systems are all commercially available. They are stand-alone systems because they are not tied to the electric utility power grid.

McNutt, P.

1994-05-01T23:59:59.000Z

398

Residential Photovoltaic Energy Systems in California: The Effect on Home Sales Prices  

E-Print Network [OSTI]

Commission (CPUC) "CPUC California Solar Initiative: 2009California has been and continues to be the country’s largest market for photovoltaic solar (solar PV is expanding rapidly in the U.S. Almost 100,000 PV systems have been installed in California

Hoen, Ben

2013-01-01T23:59:59.000Z

399

Photovoltaics (Fact Sheet), SunShot Initiative, U.S. Department of Energy (DOE)  

Broader source: Energy.gov [DOE]

DOE works with national labs, academia, and industry to support the domestic photovoltaics (PV) industry and research enterprise. SunShot aims to achieve widespread, unsubsidized cost-competitiveness through an applied research and development (R&D) portfolio spanning PV materials, devices, and manufacturing technologies.

400

A Digitally Implemented Photovoltaic Simulator with a Double Current Mode Controller  

E-Print Network [OSTI]

-DC converter-based photovoltaic (PV) simulator which emulates the output characteristics of a real solar panel data and a double current mode controller that regulates output current is implemented. In particular, the PV simulator designed is portable and has a maximum output power of 85W. The control

Kimball, Jonathan W.

Note: This page contains sample records for the topic "off-grid photovoltaics pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Residential Solar Photovoltaics: Comparison of Financing Benefits, Innovations, and Options  

SciTech Connect (OSTI)

This report examines relatively new, innovative financing methods for residential photovoltaics (PV) and compares them to traditional self-financing. It provides policymakers with an overview of the residential PV financing mechanisms, describes relative advantages and challenges, and analyzes differences between them where data is available. Because these innovative financing mechanisms have only been implemented in a few locations, this report can inform their wider adoption.

Speer, B.

2012-10-01T23:59:59.000Z

402

Review of PV Inverter Technology Cost and Performance Projections  

SciTech Connect (OSTI)

The National Renewable Energy Laboratory (NREL) has a major responsibility in the implementation of the U.S. Department of Energy's (DOE's) Solar Energy Technologies Program. Sandia National Laboratories (SNL) has a major role in supporting inverter development, characterization, standards, certifications, and verifications. The Solar Energy Technologies Program recently published a Multiyear Technical Plan, which establishes a goal of reducing the Levelized Energy Cost (LEC) for photovoltaic (PV) systems to $0.06/kWh by 2020. The Multiyear Technical Plan estimates that, in order to meet the PV system goal, PV inverter prices will need to decline to $0.25-0.30 Wp by 2020. DOE determined the need to conduct a rigorous review of the PV Program's technical and economic targets, including the target set for PV inverters. NREL requested that Navigant Consulting Inc.(NCI) conduct a review of historical and projected cost and performance improvements for PV inverters, including identification of critical barriers identified and the approaches government might use to address them.

Navigant Consulting Inc.

2006-01-01T23:59:59.000Z

403

How Can We Make PV Modules Safer?: Preprint  

SciTech Connect (OSTI)

Safety is a prime concern for the photovoltaics (PV) industry. As a technology deployed on residential and commercial buildings, it is critical that PV not cause damage to the buildings nor harm the occupants. Many of the PV systems on buildings are of sufficiently high voltage (300 to 600 Volts dc) that they may present potential hazards. These PV systems must be safe in terms of mechanical damage (nothing falls on someone), shock hazard (no risk of electrical shock when touching an exposed circuit element), and fire (the modules neither cause nor promote a fire). The present safety standards (IEC 61730 and UL 1703) do a good job of providing for design rules and test requirements for mechanical, shock, and spread of flame dangers. However, neither standard addresses the issue of electrical arcing within a module that can cause a fire. To make PV modules, they must be designed, built, and installed with an emphasis on minimizing the potential for open circuits and ground faults. This paper provides recommendations on redundant connection designs, robust mounting methods, and changes to the safety standards to yield safer PV modules.

Wohlgemuth, J. H.; Kurtz, S. R.

2012-06-01T23:59:59.000Z

404

Research on advanced photovoltaic manufacturing technology  

SciTech Connect (OSTI)

This report outlines opportunities for significantly advancing the scale and economy of high-volume manufacturing of high-efficiency photovoltaic (PV) modules. We propose to pursue a concurrent effort to advance existing crystalline silicon module manufacturing technology and to implement thin film CuInSe{sub 2} (CIS) module manufacturing. This combination of commercial-scale manufacturing of high-efficiency crystalline silicon modules and of pilot-scale manufacturing of low-cost thin film CIS technology will support continued, rapid growth of the US PV industry.

Jester, T.; Eberspacher, C. (Siemens Solar Industries, Camarillo, CA (United States))

1991-11-01T23:59:59.000Z

405

Esthetically Designed Municipal PV System Maximizes Energy Production and Revenue Return  

Broader source: Energy.gov [DOE]

In late 2008, the City of Sebastopol, CA installed a unique 42 kW grid-interactive photovoltaic (PV) system to provide electricity for pumps of the Sebastopol municipal water system. The resulting innovative Sun Dragon PV system, located in a public park, includes design elements that provide optimized electrical performance and revenue generation for the energy produced while also presenting an artistic and unique appearance to park visitors.

406

Photovoltaics for municipal planners  

SciTech Connect (OSTI)

This booklet is intended for city and county government personnel, as well as community organizations, who deal with supplying, regulating, or recommending electric power resources. Specifically, this document deals with photovoltaic (PV) power, or power from solar cells, which is currently the most cost-effective energy source for electricity requirements that are relatively small, located in isolated areas, or difficult to serve with conventional technology. Recently, PV has been documented to be more cost-effective than conventional alternatives (such as line extensions or engine generators) in dozens of applications within the service territories of electric, gas, and communications utilities. Here, we document numerous cost-effective urban applications, chosen by planners and utilities because they were the most cost-effective option or because they were appropriate for environmental or logistical reasons. These applications occur within various municipal departments, including utility, parks and recreation, traffic engineering, transportation, and planning, and they include lighting applications, communications equipment, corrosion protection, irrigation control equipment, remote monitoring, and even portable power supplies for emergency situations.

Not Available

1993-04-01T23:59:59.000Z

407

Illuminating the Pecking Order in Off-Grid Lighting: A Demonstration of LED Lighting for Saving Energy in the Poultry Sector  

SciTech Connect (OSTI)

The Lumina Project and Lighting Africa conducted a full-scale field test involving a switch from kerosene to solar-LED lighting for commercial broiler chicken production at an off-grid farm in Kenya. The test achieved lower operating costs, produced substantially more light, improved the working environment, and had no adverse effect on yields. A strategy using conventional solar-fluorescent lighting also achieved comparable yields, but entailed a six-fold higher capital cost and significantly higher recurring battery replacement costs. Thanks to higher energy and optical efficiencies, the LED system provided approximately twice the illumination to the chicken-production area and yet drew less than half the power.At the study farm, 3000 chickens were grown in each of three identical houses under kerosene, fluorescent, and LED lighting configurations. Under baseline conditions, a yearly expenditure of 1,200 USD is required to illuminate the three houses with kerosene. The LED system eliminates this fuel use and expense with a corresponding simple payback time of 1.5 years, while the solar-fluorescent system has a payback time of 9.3 years. The corresponding reduction in fuel expenditure in both cases represents a 15percent increase in after-tax net income (revenues minus expenses) across the entire business operation. The differential cost-effectiveness between the LED and fluorescent systems would be substantially greater if the fluorescent system were upsized to provide the same light as the LED system. Providing light with the fluorescent or LED systems is also far more economical than connecting to the grid in this case. The estimated grid-connection cost at this facility is 1.7 million Kenya Schillings (approximately 21,250 USD), which is nearly six-times the cost of the fluorescent system and 35-times the cost of the LED system.The LED system also confers various non-energy benefits. The relative uniformity of LED lighting, compared to the fluorescent or kerosene lighting, reduced crowding which in turn created a less stressful environment for the chickens. The far higher levels of illumination also created a better environment for the workers, while eliminating the time required for obtaining fuel and maintaining kerosene lanterns. An additional advantage of the LED system relative to the solar fluorescent system was that the former does not require a skilled technician to carry out the installation. The portable LED system lighting layout is also more easily adjusted than that of the hardwired fluorescent systems. Furthermore, switching to the LED system avoids over one metric ton of carbon dioxide emissions per house on an annual basis compared to kerosene. There is high potential for replication of this particular LED lighting strategy in the developing world. In order to estimate the scale of kerosene use and the potential for savings, more information is needed on the numbers of chickens produced off-grid, as well as lighting uses for other categories of poultry production (egg layers, indigenous broilers ). Our discovery that weight gain did not slow in the solar-fluorescent house after it experienced extended lighting outages beginning on day 14 of the 35-day study suggests that conventional farming practices in Kenyan broiler operations may call for more hours of lighting than is needed to achieve least-cost production.

Tracy, Jennifer; Mills, Evan

2010-11-06T23:59:59.000Z

408

Technical Qualifications for Treating Photovoltaic Assets as Real Property by Real Estate Investment Trusts (REITs)  

SciTech Connect (OSTI)

It has been proposed that Real Estate Investment Trusts (REITs) have the potential to lower the cost and increase the adoption of photovoltaic systems (PV) by offering a more attractive source of capital. The purpose of this paper is to explain the fundamental physical characteristics of PV and compare them to the characteristics of 'real' property, to help determine whether REITs can own PV systems.

Feldman, D.; Mendelsohn, M.; Coughlin, J.

2012-06-01T23:59:59.000Z

409

Mesoscopic photovoltaic effect in GaAs/Ga1-xAlxAs Aharonov-Bohm rings L. Angers, A. Chepelianskii, R. Deblock, B. Reulet, and H. Bouchiat  

E-Print Network [OSTI]

Mesoscopic photovoltaic effect in GaAs/Ga1-xAlxAs Aharonov-Bohm rings L. Angers, A. Chepelianskii specific dc voltage. We have investigated this photovoltaic PV effect on GaAs/Ga1-xAlxAs Aharonov is generally done by measuring the dc induced signal sometimes called photovoltaic effect which has also given

Shepelyansky, Dima

410

LET THE SUN SHINE: OPTIMAL DEPLOYMENT OF PHOTOVOLTAICS IN GERMANY  

E-Print Network [OSTI]

/kWh, depending on its location as well as on the size and type of PV system used (EPIA Report, 2011). InvestmentLET THE SUN SHINE: OPTIMAL DEPLOYMENT OF PHOTOVOLTAICS IN GERMANY Anna CRETI JĂ©rĂ´me JOAUG Cahier n:chantal.poujouly@polytechnique.edu hal-00751743,version1-14Nov2012 #12;Let the sun shine: optimal deployment of photovoltaics in Germany

Paris-Sud XI, Université de

411

Aalborg Universitet Frequency Stability of Hierarchically Controlled Hybrid Photovoltaic-Battery-  

E-Print Network [OSTI]

-HP microgrid, including 2 MWp PV station, 15.2 MWh battery storage system, and 12.8 MVA hydropower plantAalborg Universitet Frequency Stability of Hierarchically Controlled Hybrid Photovoltaic-Battery of Hierarchically Controlled Hybrid Photovoltaic-Battery-Hydropower Microgrids. In Proceedings of the 2014 IEEE

Vasquez, Juan Carlos

412

Dynamic Reconfiguration of Photovoltaic Energy Harvesting System in Hybrid Electric Vehicles  

E-Print Network [OSTI]

Dynamic Reconfiguration of Photovoltaic Energy Harvesting System in Hybrid Electric Vehicles Yanzhi, xuelin, pedram}@usc.edu, 2 {naehyuck}@elpl.snu.ac.kr ABSTRACT Photovoltaic (PV) energy harvesting system and Reliability]: Performance Analysis and Design Aids. General Terms Algorithms, Design, Management, Performance

Pedram, Massoud

413

Challenges to Overcurrent Protection Devices under Line-line Faults in Solar Photovoltaic Arrays  

E-Print Network [OSTI]

Challenges to Overcurrent Protection Devices under Line-line Faults in Solar Photovoltaic Arrays Ye-MA, LLC Newburyport, MA, US Abstract--Solar photovoltaic (PV) arrays behave distinctively from remain undetected, which could lead to reduced system efficiency, reduced system reliability, and even

Lehman, Brad

414

2007 IEEE Canada Electrical Power Conference Solar Photovoltaic Array's Shadow Evaluation  

E-Print Network [OSTI]

whether the maximum output power of the solar photovoltaic arrays under the system is sufficiently cost, and the the "shading factor," which is defined as the ratio of the non- maximum output power of the solar photovoltaic solar PV arrays: effects on performance, and in particular the output power of * In the numerical method

Lehman, Brad

415

ELEG620: Solar Electric Systems University of Delaware, ECE Spring 2008 C. Honsberg Photovoltaic Systems  

E-Print Network [OSTI]

1 ELEG620: Solar Electric Systems University of Delaware, ECE Spring 2008 C. Honsberg Photovoltaic Systems · Central issues in photovoltaic systems · Characteristics of energy systems & performance, these parameters determine the minimum effective system size. · Thermal-based systems are · PV systems are both

Honsberg, Christiana

416

Sri M., Huld T., Dunlop E.D., Albuisson M., Lefvre M., Wald L., 2007. Uncertainties in photovoltaic electricity yield prediction from fluctuation of solar radiation. Proceedings of the 22nd  

E-Print Network [OSTI]

in photovoltaic electricity yield prediction from fluctuation of solar radiation. Proceedings of the 22nd European ELECTRICITY YIELD PREDICTION FROM FLUCTUATION OF SOLAR RADIATION Marcel SĂşri1 , Thomas Huld1 , Ewan D. Dunlop1Clim, PVGIS, solar radiation, interannual variability, PV yield prediction 1 INTRODUCTION Photovoltaic (PV

Boyer, Edmond

417

PVMaT cost reductions in the EFG high volume PV manufacturing line: Annual report, 5 August 1998--4 August 1999[PhotoVoltaic Manufacturing Technology, Edge-defined Film-fed Growth  

SciTech Connect (OSTI)

This report describes work performed by ASE Americas researchers during the first year of this Photovoltaic Manufacturing Technology 5A2 program. Significant accomplishments in each of three task are as follows. Task 1--Manufacturing Systems: Researchers completed key node analysis, started statistical process control (SPC) charting, carried out design-of-experiment (DoE) matrices on the cell line to optimize efficiencies, performed a capacity and bottleneck study, prepared a baseline chemical waste analysis report, and completed writing of more than 50% of documentation and statistical sections of ISO 9000 procedures. A highlight of this task is that cell efficiencies in manufacturing were increased by 0.4%--0.5% absolute, to an average in excess of 14.2%, with the help of DoE and SPC methods. Task 2--Low-Cost Processes: Researchers designed, constructed, and tested a 50-cm-diameter, edge-defined, film-fed growth (EFG) cylinder crystal growth system to successfully produce thin cylinders up to 1.2 meters in length; completed a model for heat transfer; successfully deployed new nozzle designs and used them with a laser wafer-cutting system with the potential to decrease cutting labor costs by 75% and capital costs by 2X; achieved laser-cutting speeds of up to 8X and evaluation of this system is proceeding in production; identified laser-cutting conditions that reduce damage for both Q-switched Nd:YAG and copper-vapor lasers with the help of a breakthrough in fundamental understanding of cutting with these short-pulse-length lasers; and found that bulk EFG material lifetimes are optimized when co-firing of silicon nitride and aluminum is carried out with rapid thermal processing (RTP). Task 3--Flexible Manufacturing: Researchers improved large-volume manufacturing of 10-cm {times} 15-cm EFG wafers by developing laser-cutting fixtures, adapting carriers and fabricating adjustable racks for etching and rinsing facilities, and installing a high-speed data collection net work; initiated fracture studies to develop methods to reduce wafer breakage; and started a module field studies program to collect data on field failures to help identify potential manufacturing problems. New encapsulants, which cure at room temperature, are being tested to improve flexibility and provide higher yields for thin wafers in lamination.

Bathey, B.; Brown, B.; Cao, J.; Ebers, S.; Gonsiorawski, R.; Heath, B.; Kalejs, J.; Kardauskas, M.; Mackintosh, B.; Ouellette, M.; Piwczyk, B.; Rosenblum, M.; Southimath, B.

1999-11-16T23:59:59.000Z

418

Photovoltaic module certification/laboratory accreditation criteria development  

SciTech Connect (OSTI)

This document provides an overview of the structure and function of typical product certification/laboratory accreditation programs. The overview is followed by a model program which could serve as the basis for a photovoltaic (PV) module certification/laboratory accreditation program. The model covers quality assurance procedures for the testing laboratory and manufacturer, third-party certification and labeling, and testing requirements (performance and reliability). A 30-member Criteria Development Committee was established to guide, review, and reach a majority consensus regarding criteria for a PV certification/laboratory accreditation program. Committee members represented PV manufacturers, end users, standards and codes organizations, and testing laboratories.

Osterwald, C.R. [National Renewable Energy Lab., Golden, CO (United States); Hammond, R.L.; Wood, B.D.; Backus, C.E.; Sears, R.L. [Arizona State Univ., Tempe, AZ (United States); Zerlaut, G.A. [SC-International Inc., Phoenix, AZ (United States); D`Aiello, R.V. [RD Associates, Tempe, AZ (United States)

1995-04-01T23:59:59.000Z

419

User's Manual for Data for Validating Models for PV Module Performance  

SciTech Connect (OSTI)

This user's manual describes performance data measured for flat-plate photovoltaic (PV) modules installed in Cocoa, Florida, Eugene, Oregon, and Golden, Colorado. The data include PV module current-voltage curves and associated meteorological data for approximately one-year periods. These publicly available data are intended to facilitate the validation of existing models for predicting the performance of PV modules, and for the development of new and improved models. For comparing different modeling approaches, using these public data will provide transparency and more meaningful comparisons of the relative benefits.

Marion, W.; Anderberg, A.; Deline, C.; Glick, S.; Muller, M.; Perrin, G.; Rodriguez, J.; Rummel, S.; Terwilliger, K.; Silverman, T. J.

2014-04-01T23:59:59.000Z

420

Development of a Visual Inspection Checklist for Evaluation of Fielded PV Module Condition (Presentation)  

SciTech Connect (OSTI)

A visual inspection checklist for the evaluation of fielded photovoltaic (PV) modules has been developed to facilitate collection of data describing the field performance of PV modules. The proposed inspection checklist consists of 14 sections, each documenting the appearance or properties of a part of the module. This tool has been evaluated through the inspection of over 60 PV modules produced by more than 20 manufacturers and fielded at two different sites for varying periods of time. Aggregated data from a single data collection tool such as this checklist has the potential to enable longitudinal studies of module condition over time, technology evolution, and field location for the enhancement of module reliability models.

Packard, C. E; Wohlgemuth, J. H.; Kurtz, S. R.

2012-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "off-grid photovoltaics pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Overview of Scientific Issues Involved in Selection of Polymers for PV Applications  

SciTech Connect (OSTI)

Encapsulant materials used in photovoltaic (PV) modules serve multiple purposes. They physically hold components in place, provide electrical insulation, reduce moisture ingress, optically couple superstrate materials (e.g., glass) to PV cells, protect components from mechanical stress by mechanically decoupling components via strain relief, and protect materials from corrosion. To do this, encapsulants must adhere well to all surfaces, remain compliant, and transmit light after exposure to temperature, humidity, and UV radiation histories. Here, a brief review of some of the polymeric materials under consideration for PV applications is provided, with an explanation of some of their advantages and disadvantages.

Kempe, M.

2011-01-01T23:59:59.000Z

422

Overview of Scientific Issues Involved in Selection of Polymers for PV Applications: Preprint  

SciTech Connect (OSTI)

Encapsulant materials used in photovoltaic (PV) modules serve multiple purposes. They physically hold components in place, provide electrical insulation, reduce moisture ingress, optically couple superstrate materials (e.g., glass) to PV cells, protect components from mechanical stress by mechanically de-coupling components via strain relief, and protect materials from corrosion. To do this, encapsulants must adhere well to all surfaces, remain compliant, and transmit light after exposure to temperature, humidity, and UV radiation histories. Here, a brief review of some of the polymeric materials under consideration for PV applications is provided, with an explanation of some of their advantages and disadvantages.

Kempe, M.

2011-07-01T23:59:59.000Z

423

Open PV Project: Unlocking PV Installation Data (Brochure)  

SciTech Connect (OSTI)

This brochure summarizes the Open PV Project, a collaborative effort of government, industry, and the public to compile a comprehensive database of PV installations in the United States. The brochure outlines the purpose and history of the project as well as the main capabilities and benefits of the online Open PV tool. The brochure also introduces how features of the tool are used, and it describes the sources and characteristics of Open PV's data and data collection processes.

Not Available

2012-04-01T23:59:59.000Z

424

Connector device for building integrated photovoltaic device  

SciTech Connect (OSTI)

The present invention is premised upon a connector device and method that can more easily electrically connect a plurality of PV devices or photovoltaic system components and/or locate these devices/components upon a building structure. It also may optionally provide some additional sub-components (e.g. at least one bypass diode and/or an indicator means) and may enhance the serviceability of the device.

Keenihan, James R.; Langmaid, Joseph A.; Eurich, Gerald K.; Lesniak, Michael J.; Mazor, Michael H.; Cleereman, Robert J.; Gaston, Ryan S.

2014-06-03T23:59:59.000Z

425

FPGA Implementation of Multilayer Perceptron for Modeling of Photovoltaic panel  

SciTech Connect (OSTI)

The Number of electronic applications using artificial neural network-based solutions has increased considerably in the last few years. However, their applications in photovoltaic systems are very limited. This paper introduces the preliminary result of the modeling and simulation of photovoltaic panel based on neural network and VHDL-language. In fact, an experimental database of meteorological data (irradiation, temperature) and output electrical generation signals of the PV-panel (current and voltage) has been used in this study. The inputs of the ANN-PV-panel are the daily total irradiation and mean average temperature while the outputs are the current and voltage generated from the panel. Firstly, a dataset of 4x364 have been used for training the network. Subsequently, the neural network (MLP) corresponding to PV-panel is simulated using VHDL language based on the saved weights and bias of the network. Simulation results of the trained MLP-PV panel based on Matlab and VHDL are presented. The proposed PV-panel model based ANN and VHDL permit to evaluate the performance PV-panel using only the environmental factors and involves less computational efforts, and it can be used for predicting the output electrical energy from the PV-panel.

Mekki, H.; Belhout, K. [Department of Electronics, RASIC laboratory BLIDA UniversityBLIDA (Algeria); Mellit, A.; Salhi, H. [Department of Electronics, Control laboratory BLIDA UniversityBLIDA (Algeria)

2008-06-12T23:59:59.000Z

426

Local Control of Reactive Power by Distributed Photovoltaic Generators  

E-Print Network [OSTI]

High penetration levels of distributed photovoltaic (PV) generation on an electrical distribution circuit may severely degrade power quality due to voltage sags and swells caused by rapidly varying PV generation during cloud transients coupled with the slow response of existing utility compensation and regulation equipment. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We suggest a local control scheme that dispatches reactive power from each PV inverter based on local instantaneous measurements of the real and reactive components of the consumed power and the re...

Turitsyn, Konstantin S; Backhaus, Scott; Chertkov, Misha

2010-01-01T23:59:59.000Z

427

Southern California Edison High Penetration Photovoltaic Project - Year 1  

SciTech Connect (OSTI)

This report discusses research efforts from the first year of a project analyzing the impacts of high penetration levels of photovoltaic (PV) resources interconnected onto Southern California Edison's (SCE's) distribution system. SCE will be interconnecting a total of 500 MW of commercial scale PV within their service territory by 2015. This Year 1 report describes the need for investigating high-penetration PV scenarios on the SCE distribution system; discusses the necessary PV system modeling and distribution system simulation advances; describes the available distribution circuit data for the two distribution circuits identified in the study; and discusses the additional inverter functionality that could be implemented in order to specifically mitigate some of the undesirable distribution system impacts caused by high-penetration PV installations.

Mather, B.; Kroposki, B.; Neal, R.; Katiraei, F.; Yazdani, A.; Aguero, J. R.; Hoff, T. E.; Norris, B. L.; Parkins, A.; Seguin, R.; Schauder, C.

2011-06-01T23:59:59.000Z

428

EVALUATION OF FLAT-PLATE PHOTOVOLTAIC THERMAL HYBRID SYSTEMS FOR SOLAR ENERGY UTILIZATION.  

SciTech Connect (OSTI)

The technical and economic attractiveness of combined photovoltaic/thermal (PV/T) solar energy collectors was evaluated. The study was limited to flat-plate collectors since concentrating photovoltaic collectors require active cooling and thus are inherently PV/T collectors, the only decision being whether to use the thermal energy or to dump it. it was also specified at the outset that reduction in required roof area was not to be used as an argument for combining the collection of thermal and electrical energy into one module. Three tests of economic viability were identified, all of which PV/T must pass if it is to be considered a promising alternative: PV/T must prove to be competitive with photovoltaic-only, thermal-only, and side-by-side photovoltaic-plus-thermal collectors and systems. These three tests were applied to systems using low-temperature (unglazed) collectors and to systems using medium-temperature (glazed) collectors in Los Angeles, New York, and Tampa. For photovoltaics, the 1986 DOE cost goals were assumed to have been realized, and for thermal energy collection two technologies were considered: a current technology based on metal and glass, and a future technology based on thin-film plastics. The study showed that for medium-temperature applications PV/T is not an attractive option in any of the locations studied. For low-temperature applications, PV/T appears to be marginally attractive.

ANDREWS,J.W.

1981-06-01T23:59:59.000Z

429

Building integrated photovoltaic systems analysis: Preliminary report  

SciTech Connect (OSTI)

The National Renewable Energy Laboratory (NREL) has estimated that the deployment of photovoltaics (PV) in the commercial buildings sector has the potential to contribute as much as 40 gigawatts peak electrical generation capacity and displace up to 1.1 quads of primary fuel use. A significant portion of this potential exists for smaller buildings under 25,000 square feet (2,300 square meters) in size or two stories or less, providing a strong cross over potential for residential applications as well. To begin to achieve this potential, research is needed to define the appropriate match of PV systems to energy end-uses in the commercial building sector. This report presents preliminary findings for a technical assessment of several alternative paths to integrate PV with building energy systems.

none,

1993-08-01T23:59:59.000Z

430

Testing for PV Reliability (Presentation)  

SciTech Connect (OSTI)

The DOE SUNSHOT workshop is seeking input from the community about PV reliability and how the DOE might address gaps in understanding. This presentation describes the types of testing that are needed for PV reliability and introduces a discussion to identify gaps in our understanding of PV reliability testing.

Kurtz, S.; Bansal, S.

2014-09-01T23:59:59.000Z

431

PV PLANNER A DESIGN AND  

E-Print Network [OSTI]

PV PLANNER A DESIGN AND ANALYSIS TOOL FOR BUILDING INTEGRATED SOLAR ELECTRIC SYSTEMS FINAL PLANNER A DESIGN AND ANALYSIS TOOL FOR BUILDING INTEGRATED SOLAR ELECTRIC SYSTEMS Final Report A Renewable............................................................................................................................................26 3. ILLUSTRATIVE OUTPUTS FROM PV PLANNER FOR A BUILDING INTEGRATED (BIPV) PV APPLICATION

Delaware, University of

432

EELE408 Photovoltaics Lecture 15 Photovoltaic Devices  

E-Print Network [OSTI]

1 EELE408 Photovoltaics Lecture 15 Photovoltaic Devices Dr. Todd J. Kaiser tjkaiser) · Demonstrated the photovoltaic effect · Best results with UV or blue light 2 g · Electrodes covered with light of photovoltaic effect in an all solid state device · Several decades before the effect could be explained Fritts

Kaiser, Todd J.

433

20 IAEI NEWS January.February 2006 www.iaei.org back to the grid, designing pv systems for code complance  

E-Print Network [OSTI]

on photovoltaic (PV) power systems and the National Electrical Code by John Wiles Code Compliance20 IAEI NEWS.82(6) lists solar photovoltaic equipment as permitted to be connected to the supply side of the service and sheet metal screws rather than with the required ground-bar kit listed by the manufacturer. Section 230

Johnson, Eric E.

434

PV Module Reliability R&D Project Overview  

SciTech Connect (OSTI)

The DOE Solar Energy Technologies Program includes a sub-key activity entitled ''Photovoltaic Module Reliability R&D''. This activity has been in existence for several years to help ensure that the PV technologies that advance to the commercial module stage have acceptable service lifetimes and annual performance degradation rates. The long-term (2020) goal, as stated in the Solar Program Multi-Year Technical Plan [1], is to assist industry with the development of PV systems that have 30-year service lifetimes and 1% annual performance degradation rates. The corresponding module service lifetimes and annual performance degradation rate would have to be 30 years lifetime and approximately 0.5% (or less, depending on the type of PV system) annual performance degradation. Reaching this goal is critical to achieving the PV technology Levelized Energy Cost Targets, as listed and described in the Solar Program Multi-Year Technical Plan. This paper is an overview of the Module Reliability R&D sub-key activity. More details and the major results and accomplishments are covered in the papers presented in the PV Module Reliability Session of the DOE Solar Energy Technology Review Meeting, October 25-28, 2004, in Denver, Colorado.

Hulstrom, R. L.

2005-01-01T23:59:59.000Z

435

Models used to assess the performance of photovoltaic systems.  

SciTech Connect (OSTI)

This report documents the various photovoltaic (PV) performance models and software developed and utilized by researchers at Sandia National Laboratories (SNL) in support of the Photovoltaics and Grid Integration Department. In addition to PV performance models, hybrid system and battery storage models are discussed. A hybrid system using other distributed sources and energy storage can help reduce the variability inherent in PV generation, and due to the complexity of combining multiple generation sources and system loads, these models are invaluable for system design and optimization. Energy storage plays an important role in reducing PV intermittency and battery storage models are used to understand the best configurations and technologies to store PV generated electricity. Other researcher's models used by SNL are discussed including some widely known models that incorporate algorithms developed at SNL. There are other models included in the discussion that are not used by or were not adopted from SNL research but may provide some benefit to researchers working on PV array performance, hybrid system models and energy storage. The paper is organized into three sections to describe the different software models as applied to photovoltaic performance, hybrid systems, and battery storage. For each model, there is a description which includes where to find the model, whether it is currently maintained and any references that may be available. Modeling improvements underway at SNL include quantifying the uncertainty of individual system components, the overall uncertainty in modeled vs. measured results and modeling large PV systems. SNL is also conducting research into the overall reliability of PV systems.

Stein, Joshua S.; Klise, Geoffrey T.

2009-12-01T23:59:59.000Z

436

NREL/SCE High-Penetration PV Integration Project: Report on Field Demonstration of Advanced Inverter Functionality in Fontana, CA  

SciTech Connect (OSTI)

The National Renewable Energy Laboratory/Southern California Edison High-Penetration PV Integration Project is (1) researching the distribution system level impacts of high-penetration photovoltaic (PV) integration, (2) determining mitigation methods to reduce or eliminate those impacts, and (3) seeking to demonstrate these mitigation methods on actual high-penetration PV distribution circuits. This report describes a field demonstration completed during the fall of 2013 on the Fontana, California, study circuit, which includes a total of 4.5 MW of interconnected utility-scale rooftop PV systems. The demonstration included operating a 2-MW PV system at an off-unity power factor that had been determined during previously completed distribution system modeling and PV impact assessment analyses. Data on the distribution circuit and PV system operations were collected during the 2-week demonstration period. This demonstration reinforces the findings of previous laboratory testing that showed that utility-scale PV inverters are capable of operating at off-unity power factor to mitigate PV impacts; however, because of difficulties setting and retaining PV inverter power factor set points during the field demonstration, it was not possible to demonstrate the effectiveness of off-unity power factor operation to mitigate the voltage impacts of high-penetration PV integration. Lessons learned from this field demonstration are presented to inform future field demonstration efforts.

Mather, B.

2014-08-01T23:59:59.000Z

437

Electrochemical Approaches to PV Busbar Application  

SciTech Connect (OSTI)

Busbars are an integral component of any thin-film photovoltaic module and must be easy and quick to apply by PV manufacturers, as well as provide long-term reliability in deployed modules. Potential reliability issues include loss of adhesion and delamination, chemical instability under current collection conditions (electromigration or corrosion), compatibility of material and application method with subsequent encapsulation steps. Several new and novel busbar materials and application methods have been explored, including adhering metal busbars with various one- and two-part conductive epoxies or conductive adhesive films, ultrasonic bonding of metal busbar strips, and bonding of busbar strips using low-temperature solders. The most promising approach to date has been the direct application of metal busbars via various electrochemical techniques, which offers a variety of distinct advantages.

Pankow, J. W.

2005-01-01T23:59:59.000Z

438

Innovations in Wind and Solar PV Financing  

SciTech Connect (OSTI)

There is growing national interest in renewable energy development based on the economic, environmental, and security benefits that these resources provide. Historically, greater development of our domestic renewable energy resources has faced a number of hurdles, primarily related to cost, regulation, and financing. With the recent sustained increase in the costs and associated volatility of fossil fuels, the economics of renewable energy technologies have become increasingly attractive to investors, both large and small. As a result, new entrants are investing in renewable energy and new business models are emerging. This study surveys some of the current issues related to wind and solar photovoltaic (PV) energy project financing in the electric power industry, and identifies both barriers to and opportunities for increased investment.

Cory, K.; Coughlin, J.; Jenkin, T.; Pater, J.; Swezey, B.

2008-02-01T23:59:59.000Z

439

Analytical Improvements in PV Degradation Rate Determination  

SciTech Connect (OSTI)

As photovoltaic (PV) penetration of the power grid increases, it becomes vital to know how decreased power output may affect cost over time. In order to predict power delivery, the decline or degradation rates must be determined accurately. For non-spectrally corrected data several complete seasonal cycles (typically 3-5 years) are required to obtain reasonably accurate degradation rates. In a rapidly evolving industry such a time span is often unacceptable and the need exists to determine degradation rates accurately in a shorter period of time. Occurrence of outliers and data shifts are two examples of analytical problems leading to greater uncertainty and therefore to longer observation times. In this paper we compare three methodologies of data analysis for robustness in the presence of outliers, data shifts and shorter measurement time periods.

Jordan, D. C.; Kurtz, S. R.

2011-02-01T23:59:59.000Z

440

Exploring the Economic Value of EPAct 2005's PV Tax Credits  

SciTech Connect (OSTI)

This CESA - LBNL Case Study examines how much economic value do new and expanded federal tax credits really provide to PV system purchasers, and what implications might they hold for state/utility PV grant programs. The report begins with a discussion of the taxability of PV grants and their interaction with federal credits, as this issue significantly affects the analysis that follows. We then calculate the incremental value of EPAct's new and expanded credits for PV systems of different sizes, and owned by different types of entities. The report concludes with a discussion of potential implications for purchasers of PV systems, as well as for administrators of state/utility PV programs. The market for grid-connected photovoltaics (PV) in the US has grown dramatically in recent years, driven in large part by PV grant or 'buy-down' programs in California, New Jersey, and many other states. The recent announcement of a new 11-year, $3.2 billion PV program in California suggests that state policy will continue to drive even faster growth over the next decade. Federal policy has also played a role, primarily by providing commercial PV systems access to tax benefits, including accelerated depreciation (5-year MACRS schedule) and a business energy investment tax credit (ITC). Since the signing of the Energy Policy Act of 2005 (EPAct) on August 8, the federal government has begun to play a much more significant role in supporting both commercial and residential PV systems. Specifically, EPAct increased the federal ITC for commercial PV systems from 10% to 30% of system costs, and also created a new 30% ITC (capped at $2000) for residential solar systems. Both changes went into effect on January 1, 2006, for an initial period of two years, and in late 2006 were extended for an additional year. Unless extended further, the new residential ITC will expire, and the 30% commercial ITC will revert back to 10%, on January 1, 2009. How much economic value do these new and expanded federal tax credits really provide to PV system purchasers? And what implications might they hold for state/utility PV grant programs? Using a generic (i.e., non-state-specific) cash flow model, this report explores these questions.1 We begin with a discussion of the taxability of PV grants and their interaction with federal credits, as this issue significantly affects the analysis that follows. We then calculate the incremental value of EPAct's new and expanded credits for PV systems of different sizes, and owned by different types of entities. We conclude with a discussion of potential implications for purchasers of PV systems, as well as for administrators of state/utility PV programs.

Bolinger, Mark A; Wiser, Ryan; Ing, Edwin

2009-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "off-grid photovoltaics pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

25 Year Lifetime for Flexible Buildings Integrated Photovoltaics  

SciTech Connect (OSTI)

Although preliminary proof-of-principle of the efficacy of barrier materials and processes, first developed by Battelle at PNNL and commercialized by Vitex, has been demonstrated at the laboratory scale, there are several challenges to the practical commercial implementation of these developments in the Buildings Integrated Photovoltaics (BIPV) market. Two important issues that are addressed in this project are identifying a low cost substrate material that can survive in the outside environment (rain, heat, dust, hail, etc.) for 25 years and developing an encapsulation method for the photovoltaic (PV) cells that can meet the required barrier performance without driving the cost of the total barrier package out of range (remaining below $3.00/Wp). Without these solutions, current encapsulation technologies will limit the use of PV for BIPV applications. Flexible, light-weight packaging that can withstand 25 years in the field is required for a totally flexible integrated PV package. The benefit of this research is to make substantial progress in the development of a cost-effective, viable thin film barrier package which will be a critical enabling technology to meet the Solar America Initiative cost and device reliability goals, and to make photovoltaics (PV) more cost-competitive with electricity generated using fossil fuels. Increased PV installations will enable increased US electrical capacity and reduce dependence on imported oil through increased utilization of a widely abundant source of renewable energy (sunlight).

Gross, Mark E.

2010-07-10T23:59:59.000Z

442

Amorphous Silicon-Carbon Nanostructure Photovoltaic Devices  

E-Print Network [OSTI]

and Photovoltaic Performance . . . . . . . . . . . . . . .Amorphous Silicon as a Photovoltaic Material 2.1.2ii Photovoltaic Model . . . . . . . . . . .

Schriver, Maria Christine

2012-01-01T23:59:59.000Z

443

SunEdison Photovoltaic Grid Integration Evaluation: Cooperative Research and Development Final Report, CRADA Number CRD-08-302  

SciTech Connect (OSTI)

Under this Agreement, NREL will work with SunEdison to monitor and analyze the performance of photovoltaic (PV) systems as they relate to grid integration. Initially this project will examine the performance of PV systems with respect to evaluating the benefits and impacts on the electric power grid.

Kroposki, B.

2012-09-01T23:59:59.000Z

444

Methods of preparing flexible photovoltaic devices using epitaxial liftoff, and preserving the integrity of growth substrates used in epitaxial growth  

DOE Patents [OSTI]

There is disclosed methods of making photosensitive devices, such as flexible photovoltaic (PV) devices, through the use of epitaxial liftoff. Also described herein are methods of preparing flexible PV devices comprising a structure having a growth substrate, wherein the selective etching of protective layers yields a smooth growth substrate that us suitable for reuse.

Forrest, Stephen R; Zimmerman, Jeramy; Lee, Kyusang; Shiu, Kuen-Ting

2013-02-19T23:59:59.000Z

445

Chapter 1.19: Cadmium Telluride Photovoltaic Thin Film: CdTe  

SciTech Connect (OSTI)

The chapter reviews the history, development, and present processes used to fabricate thin-film, CdTe-based photovoltaic (PV) devices. It is intended for readers who are generally familiar with the operation and material aspects of PV devices but desire a deeper understanding of the process sequences used in CdTe PV technology. The discussion identifies why certain processes may have commercial production advantages and how the various process steps can interact with each other to affect device performance and reliability. The chapter concludes with a discussion of considerations of large-area CdTe PV deployment including issues related to material availability and energy-payback time.

Gessert, T. A.

2012-01-01T23:59:59.000Z

446

Overview of PV balance-of-systems technology: Experience and guidelines for utility ties in the United States of America  

SciTech Connect (OSTI)

The U.S. National Photovoltaic Program began in 1975 by supporting the development of terrestrial PV modules and hardware associated with grid-connected PV systems. Early PV-system demonstration programs were also supported and cost shared by the U.S. Department of Energy (DOE). A wide variety of PV systems were deployed, usually with utility participation. The early demonstration projects provided, and continue to provide, valuable PV system experience to utilities, designers and suppliers. As a result of experience gained, several important milestones in codes and standards pertaining to the design, installation and operation of photovoltaic (PV) systems have been completed. These code and standard activities were conducted through collaboration of participants from all sectors of the PV industry, utilities and the US DOE National Photovoltaic Program. Codes and standards that have been proposed, written, or modified include changes and additions for the 1999 National Electric Code{reg_sign} (NEC{reg_sign}), standards for fire and personnel safety, system testing, field acceptance, component qualification, and utility interconnection. Project authorization requests with the Institute of Electrical and Electronic Engineers (IEEE) have resulted in standards for component qualification and were further adapted for standards used to list PV modules and balance-of-system components. Industry collaboration with Underwriter Laboratories, Inc., with the American Society for Testing and Materials, and through critical input and review for international standards with the International Electrotechnical Commission have resulted in new and revised domestic and international standards for PV applications. Activities related to work on codes and standards through the International Energy Agency are also being supported by the PV industry and the US DOE. The paper shows relationships between activities in standards writing.

Bower, W. [Sandia National Labs., Albuquerque, NM (United States); Whitaker, C. [Endecon Engineering, San Ramon, CA (United States)

1997-10-01T23:59:59.000Z

447

Interconnecting PV on New York City's Secondary Network Distribution System  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) has teamed with cities across the country through the Solar America Cities (SAC) partnership program to help reduce barriers and accelerate implementation of solar energy. The New York City SAC team is a partnership between the City University of New York (CUNY), the New York City Mayor s Office of Long-term Planning and Sustainability, and the New York City Economic Development Corporation (NYCEDC).The New York City SAC team is working with DOE s National Renewable Energy Laboratory (NREL) and Con Edison, the local utility, to develop a roadmap for photovoltaic (PV) installations in the five boroughs. The city set a goal to increase its installed PV capacity from1.1 MW in 2005 to 8.1 MW by 2015 (the maximum allowed in 2005). A key barrier to reaching this goal, however, is the complexity of the interconnection process with the local utility. Unique challenges are associated with connecting distributed PV systems to secondary network distribution systems (simplified to ���¢��������networks���¢������� in this report). Although most areas of the country use simpler radial distribution systems to distribute electricity, larger metropolitan areas like New York City typically use networks to increase reliability in large load centers. Unlike the radial distribution system, where each customer receives power through a single line, a network uses a grid of interconnected lines to deliver power to each customer through several parallel circuits and sources. This redundancy improves reliability, but it also requires more complicated coordination and protection schemes that can be disrupted by energy exported from distributed PV systems. Currently, Con Edison studies each potential PV system in New York City to evaluate the system s impact on the network, but this is time consuming for utility engineers and may delay the customer s project or add cost for larger installations. City leaders would like to streamline this process to facilitate faster, simpler, and less expensive distributed PV system interconnections. To assess ways to improve the interconnection process, NREL conducted a four-part study with support from DOE. The NREL team then compiled the final reports from each study into this report. In Section 1���¢��������PV Deployment Analysis for New York City���¢��������we analyze the technical potential for rooftop PV systems in the city. This analysis evaluates potential PV power production in ten Con Edison networks of various locations and building densities (ranging from high density apartments to lower density single family homes). Next, we compare the potential power production to network loads to determine where and when PV generation is most likely to exceed network load and disrupt network protection schemes. The results of this analysis may assist Con Edison in evaluating future PV interconnection applications and in planning future network protection system upgrades. This analysis may also assist other utilities interconnecting PV systems to networks by defining a method for assessing the technical potential of PV in the network and its impact on network loads. Section 2���¢��������A Briefing for Policy Makers on Connecting PV to a Network Grid���¢��������presents an overview intended for nontechnical stakeholders. This section describes the issues associated with interconnecting PV systems to networks, along with possible solutions. Section 3���¢��������Technical Review of Concerns and Solutions to PV Interconnection in New Y

K. Anderson; M. Coddington; K. Burman; S. Hayter; B. Kroposki; and A. Watson

2009-11-30T23:59:59.000Z

448

Photovoltaic roof heat flux  

E-Print Network [OSTI]

designs (relatively) Photovoltaic Solar P a n e l AtmosphereCALIFORNIA, SAN DIEGO Photovoltaic Roof Heat Flux A ThesisABSTRACT OF T H E THESIS Photovoltaic Roof Heat Flux by

Samady, Mezhgan Frishta

2011-01-01T23:59:59.000Z

449

INTEGRATING PHOTOVOLTAIC SYSTEMS  

E-Print Network [OSTI]

INTEGRATING PHOTOVOLTAIC SYSTEMS INTO PUBLIC SECTOR PERFORMANCE CONTRACTS IN DELAWARE FINAL for Energy and Environmental Policy University of Delaware February 2006 #12;INTEGRATING PHOTOVOLTAIC..................................................................................................... 1 1.2 Photovoltaics in Performance Contracts: An Overview

Delaware, University of

450

EVALUATION OF RISKS IN THE LIFE CYCLE OF PHOTOVOLTAICS IN A COMPARATIVE CONTEXT V.M. Fthenakis1,2 H.C. Kim1, A. Colli3, and C. Kirchsteiger3  

E-Print Network [OSTI]

EVALUATION OF RISKS IN THE LIFE CYCLE OF PHOTOVOLTAICS IN A COMPARATIVE CONTEXT V.M. Fthenakis1,2 H.C. Kim1, A. Colli3, and C. Kirchsteiger3 1 National Photovoltaic EH&S Research Center, Brookhaven: The greatest potential risks in the photovoltaic (PV) fuel cycle probably are associated with using some

451

Cost-Effectivenessof PhotovoltaicGenerationIn A Transmission-Constrained Load Area of An InterconnectedSystem  

E-Print Network [OSTI]

Cost-Effectivenessof PhotovoltaicGenerationIn A Transmission-Constrained Load Area examines and evaluates the applicability and cost-effectiveness of Photovoltaic(PV) generation the construction of many large power stations with high efficiency, which were located far fi-om customer sites

Gross, George

452

Creating dynamic equivalent PV circuit models with impedance spectroscopy for arc-fault modeling.  

SciTech Connect (OSTI)

Article 690.11 in the 2011 National Electrical Code{reg_sign} (NEC{reg_sign}) requires new photovoltaic (PV) systems on or penetrating a building to include a listed arc fault protection device. Currently there is little experimental or empirical research into the behavior of the arcing frequencies through PV components despite the potential for modules and other PV components to filter or attenuate arcing signatures that could render the arc detector ineffective. To model AC arcing signal propagation along PV strings, the well-studied DC diode models were found to inadequately capture the behavior of high frequency arcing signals. Instead dynamic equivalent circuit models of PV modules were required to describe the impedance for alternating currents in modules. The nonlinearities present in PV cells resulting from irradiance, temperature, frequency, and bias voltage variations make modeling these systems challenging. Linearized dynamic equivalent circuits were created for multiple PV module manufacturers and module technologies. The equivalent resistances and capacitances for the modules were determined using impedance spectroscopy with no bias voltage and no irradiance. The equivalent circuit model was employed to evaluate modules having irradiance conditions that could not be measured directly with the instrumentation. Although there was a wide range of circuit component values, the complex impedance model does not predict filtering of arc fault frequencies in PV strings for any irradiance level. Experimental results with no irradiance agree with the model and show nearly no attenuation for 1 Hz to 100 kHz input frequencies.

Johnson, Jay Dean; Kuszmaul, Scott S.; Strauch, Jason E.; Schoenwald, David Alan

2011-06-01T23:59:59.000Z

453

High Penetration Photovoltaic Case Study Report  

SciTech Connect (OSTI)

Technical concerns with integrating higher penetrations of photovoltaic (PV) systems include grid stability, voltage regulation, power quality (voltage rise, sags, flicker, and frequency fluctuations), and protection and coordination. The current utility grid was designed to accommodate power flows from the central generation source to the transmission system and eventually to the distribution feeders. At the distribution level, the system was designed to carry power from the substation toward the load. Renewable distributed generation, particularly solar PV, provides power at the distribution level challenging this classical paradigm. As these resources become more commonplace the nature of the distribution network and its operation is changing to handle power flow in both directions. This report is focused on large PV installations in which penetration is significantly greater than 15% of maximum daytime feeder load. These case studies are intended to demonstrate success stories with integration of large PV plants at the distribution level as well as some of the solutions used by the utility to ensure safe, reliable operation of both the PV system and the distribution network.

Bank, J.; Mather, B.; Keller, J.; Coddington, M.

2013-01-01T23:59:59.000Z

454

Potential of Photovoltaics  

SciTech Connect (OSTI)

Presented at the Association of Industrial Metallizers, Coaters and Laminators (AIMCAL) Fall Technical Conference 2008 and 22nd International Vacuum Web Coating Conference held October 19-22, 2008 in Myrtle Beach, South Carolina. This presentation discusses PV in the world energy portfolio, PV basics, PV technologies, and vacuum web-coating applications in PV.

Nelson, B. P.

2008-10-22T23:59:59.000Z

455

Characterizing Shading Losses on Partially Shaded PV Systems (Presentation)  

SciTech Connect (OSTI)

Presentation on shaded PV power loss, practical issues with modeling shaded PV, and methods of implementing partially shaded PV modeling.

Deline, C.

2010-09-23T23:59:59.000Z

456

Selecting a PV battery  

SciTech Connect (OSTI)

The primary goal for all photovoltaic systems must be to provide value. Since the total life cycle cost of a system will depend on the type of battery installed, the impact of proper battery selection is considerable. For the designer, selecting an ideal battery can be confusing because he seldom has a reliable frame of reference with which to compare options. This article is an attempt to provide that frame of reference by describing a specific battery design which, for many photovoltaic applications, will represent the best value option. Other battery types can then simply be contrasted to this ''reference battery'' to see if they provide better or worse overall value in any particular application.

Jones, W.

1983-01-01T23:59:59.000Z

457

Overview of NREL`s Photovoltaic Advanced R&D Project  

SciTech Connect (OSTI)

The National Renewable Energy Laboratory`s (NREL`s) Photovoltaic Advanced Research and Development (PV AR & D) Project supports the US Department of Energy`s National Photovoltaics Program in assisting the development and commercialization of photovoltaics (PV) energy technology. The NREL program is implemented through in-house research and subcontracts, with over 50% of the annual budget awarded through competitive solicitations to universities, large and small businesses, and other research centers. These activities include cost-shared, multiyear, government/industry partnerships and technology initiatives. The research has resulted in a better fundamental understanding of materials, devices, and processes, the achievement of record efficiencies in nearly all PV technology areas, the identification of promising new approaches to low-cost photovoltaics, and the introduction of new PV technology products into system experiments and PV markets. This paper presents an overview of NREL`s PV AR & D Project in terms of project organization and budgets, near- and long-term project objectives, research participants, and current and future research directions. Recent progress in the in-house and subcontracted research activities is described. 4 refs.

Surek, T.

1992-01-01T23:59:59.000Z

458

The photovoltaic manufacturing technology project: A government/industry partnership  

SciTech Connect (OSTI)

The Photovoltaic Manufacturing Technology (PVMaT) project is a government/industry photovoltaic manufacturing research and development (R&D) project composed of partnerships between the federal government (through the US Department of Energy) and members of the US photovoltaic (PV) industry. It is designed to assist the US PV industry in improving manufacturing processes, accelerating manufacturing cost reductions for PV modules, increasing commercial product performance, and generally laying the groundwork for a substantial scale-up of US-based PV manufacturing plant capabilities. The project is being carried out in three separate phases, each focused on a specific approach to solving the problems identified by the industrial participants. These participants are selected through competitive procurements. Furthermore, the PVMaT project has been specifically structured to ensure that these PV manufacturing R&D subcontract awards are selected with no intention of either directing funding toward specific PV technologies (e.g., amorphous silicon, polycrystalline thin films, etc.), or spreading the awards among a number of technologies (e.g., one subcontract in each area). Each associated subcontract under any phase of this project is, and will continue to be, selected for funding on its own technical and cost merits. Phase 1, the problem identification phase, was completed early in 1991. Phase 2 is now under way. This is the solution phase of the project and addresses problems of specific manufacturers. The envisioned subcontracts under Phase 2 may be up to three years in duration and will be highly cost-shared between the US government and US industrial participants. Phase 3, is also under way. General issues related to PV module development will be studied through various teaming arrangements. 25 refs.

Mitchell, R.L.; Witt, C.E.; Mooney, G.D.

1991-12-01T23:59:59.000Z

459

PV Fact Sheets Argument B1Some people state that "The external costs of PV electricity  

E-Print Network [OSTI]

PV Fact Sheets Argument B1Some people state that "The external costs of PV electricity is much and the low one to thin-film cadmium telluride PV systems. Fossil fuel power plants PV displaces. 5.8 External

460

Time series power flow analysis for distribution connected PV generation.  

SciTech Connect (OSTI)

Distributed photovoltaic (PV) projects must go through an interconnection study process before connecting to the distribution grid. These studies are intended to identify the likely impacts and mitigation alternatives. In the majority of the cases, system impacts can be ruled out or mitigation can be identified without an involved study, through a screening process or a simple supplemental review study. For some proposed projects, expensive and time-consuming interconnection studies are required. The challenges to performing the studies are twofold. First, every study scenario is potentially unique, as the studies are often highly specific to the amount of PV generation capacity that varies greatly from feeder to feeder and is often unevenly distributed along the same feeder. This can cause location-specific impacts and mitigations. The second challenge is the inherent variability in PV power output which can interact with feeder operation in complex ways, by affecting the operation of voltage regulation and protection devices. The typical simulation tools and methods in use today for distribution system planning are often not adequate to accurately assess these potential impacts. This report demonstrates how quasi-static time series (QSTS) simulation and high time-resolution data can be used to assess the potential impacts in a more comprehensive manner. The QSTS simulations are applied to a set of sample feeders with high PV deployment to illustrate the usefulness of the approach. The report describes methods that can help determine how PV affects distribution system operations. The simulation results are focused on enhancing the understanding of the underlying technical issues. The examples also highlight the steps needed to perform QSTS simulation and describe the data needed to drive the simulations. The goal of this report is to make the methodology of time series power flow analysis readily accessible to utilities and others responsible for evaluating potential PV impacts.

Broderick, Robert Joseph; Quiroz, Jimmy Edward; Ellis, Abraham; Reno, Matthew J. [Georgia Institute of Technology, Atlanta, GA; Smith, Jeff [Electric Power Research Institute, Knoxville, TN; Dugan, Roger [Electric Power Research Institute, Knoxville, TN

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "off-grid photovoltaics pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Sandia National Laboratories: PV  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch WelcomeSciencePrograms NuclearPublications AnnualNuclearPV

462

Sandia National Laboratories: PV  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLSMolten-Salt StorageNoLong RangePILS Sandia'sAdvancedPV

463

Sandia National Laboratories: PV  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLSMolten-Salt StorageNoLong RangePILS Sandia'sAdvancedPVFinancePV

464

Novel Technique of Sizing the Stand-Alone Photovoltaic Systems Using the Radial Basis Function Neural Networks: Application in Isolated Sites  

E-Print Network [OSTI]

The objective of this work is to investigate the Radial Basis Function Neural Networks (RBFN) to identifying and modeling the optimal sizing couples of stand-alone photovoltaic (PV) system using a minimum of input data, These optimal couples allow...

Mellit, A.; Benghanme, M.; Arab, A. H.; Guessoum, A.

2004-01-01T23:59:59.000Z

465

Generic solar photovoltaic system dynamic simulation model specification.  

SciTech Connect (OSTI)

This document is intended to serve as a specification for generic solar photovoltaic (PV) system positive-sequence dynamic models to be implemented by software developers and approved by the WECC MVWG for use in bulk system dynamic simulations in accordance with NERC MOD standards. Two specific dynamic models are included in the scope of this document. The first, a Central Station PV System model, is intended to capture the most important dynamic characteristics of large scale (> 10 MW) PV systems with a central Point of Interconnection (POI) at the transmission level. The second, a Distributed PV System model, is intended to represent an aggregation of smaller, distribution-connected systems that comprise a portion of a composite load that might be modeled at a transmission load bus.

Ellis, Abraham; Behnke, Michael Robert; Elliott, Ryan Thomas

2013-10-01T23:59:59.000Z

466

Technical analysis of prospective photovoltaic systems in Utah.  

SciTech Connect (OSTI)

This report explores the technical feasibility of prospective utility-scale photovoltaic system (PV) deployments in Utah. Sandia National Laboratories worked with Rocky Mountain Power (RMP), a division of PacifiCorp operating in Utah, to evaluate prospective 2-megawatt (MW) PV plants in different locations with respect to energy production and possible impact on the RMP system and customers. The study focused on 2-MW{sub AC} nameplate PV systems of different PV technologies and different tracking configurations. Technical feasibility was evaluated at three different potential locations in the RMP distribution system. An advanced distribution simulation tool was used to conduct detailed time-series analysis on each feeder and provide results on the impacts on voltage, demand, voltage regulation equipment operations, and flicker. Annual energy performance was estimated.

Quiroz, Jimmy Edward; Cameron, Christopher P.

2012-02-01T23:59:59.000Z

467

Merging photovoltaic hardware development with hybrid applications in the USA  

SciTech Connect (OSTI)

The use of multi-source power systems, ``hybrids,`` is one of the fastest growing, potentially significant markets for photovoltaic (PV) system technology today. Cost-effective applications today include remote facility power, remote area power supplies, remote home and village power, and power for dedicated electrical loads such as communications systems. This market sector is anticipated to be one of the most important growth opportunities for PV over the next five years. The US Department of Energy (USDOE) and Sandia National Laboratories (SNL) are currently engaged in an effort to accelerate the adoption of market-driven PV hybrid power systems and to effectively integrate PV with other energy sources. This paper provides details of this development and the ongoing hybrid activities in the United States. Hybrid systems are the primary focus of this paper.

Bower, W.

1993-11-01T23:59:59.000Z

468

Design & Fabrication of a High-Voltage Photovoltaic Cell  

SciTech Connect (OSTI)

Silicon photovoltaic (PV) cells are alternative energy sources that are important in sustainable power generation. Currently, applications of PV cells are limited by the low output voltage and somewhat low efficiency of such devices. In light of this fact, this project investigates the possibility of fabricating high-voltage PV cells on float-zone silicon wafers having output voltages ranging from 50 V to 2000 V. Three designs with different geometries of diffusion layers were simulated and compared in terms of metal coverage, recombination, built-in potential, and conduction current density. One design was then chosen and optimized to be implemented in the final device design. The results of the simulation serve as a feasibility test for the design concept and provide supportive evidence of the effectiveness of silicon PV cells as high-voltage power supplies.

Felder, Jennifer; /North Carolina State U. /SLAC

2012-09-05T23:59:59.000Z

469

Fault Current Contribution from Single-Phase PV Inverters  

SciTech Connect (OSTI)

A significant increase in photovoltaic (PV) system installations is expected to come on line in the near future and as the penetration level of PV increases, the effect of PV may no longer be considered minimal. One of the most important attributions of additional PV is what effect this may have on protection systems. Protection engineers design protection systems to safely eliminate faults from the electric power system. One of the new technologies recently introduced into the electric power system are distributed energy resources (DER). Currently, inverter-based DER contributes very little to the power balance on all but a few utility distribution systems. As DER become prevalent in the distribution system, equipment rating capability and coordination of protection systems merit a closer investigation. A collaborative research effort between the National Renewable Energy Laboratory (NREL) and Southern California Edison (SCE) involved laboratory short-circuit testing single-phase (240 VAC) residential type (between 1.5 and 7kW) inverters. This paper will reveal test results obtained from these short-circuit tests.

Keller, J.; Kroposki, B.; Bravo, R.; Robles, S.

2011-01-01T23:59:59.000Z

470

Arima Photovoltaic And Optical Corp Arima PV | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300AlgoilEnergy InformationArcata,Koblitz Jump to:ArgonautMaine:Optical Corp

471

Pioneer Valley Photovoltaics Cooperative aka PV Squared | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/GeothermalOrangePeru:Job Corp Jump to: navigation,GroveITrail Jump

472

Sandia National Laboratories: Photovoltaic Technology and Tour of PV Test  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik SpoerkeSolar Regional Test Center in VermontContact UsFacilities

473

Sandia National Laboratories: Photovoltaic (PV) Regional Test Center (RTC)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive SolarEducationStationCSP ResourcesSynthetic Aperture Radar? WhatWebsite

474

Sandia National Laboratories: Photovoltaic Regional Testing Center (PV RTC)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive SolarEducationStationCSP ResourcesSynthetic Aperture Radar?

475

Performance and Analysis of Photovoltaic (PV)Technologies  

E-Print Network [OSTI]

HAWAI`I NATURAL ENERGY INSTITUTE School of Ocean & Earth Science & Technology ­ University of Hawai was submitted by HNEI to the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability for the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability Under Cooperative

476

Do Photovoltaic Energy Systems Effect Residential Selling Prices? Results from a California Statewide Investigation.  

SciTech Connect (OSTI)

An increasing number of homes in the U.S. have sold with photovoltaic (PV) energy systems installed at the time of sale, yet relatively little research exists that provides estimates of the marginal impacts of those PV systems on home sale prices. This research analyzes a large dataset of California homes that sold from 2000 through mid-2009 with PV installed. We find strong evidence that homes with PV systems sold for a premium over comparable homes without PV systems during this time frame. Estimates for this premium expressed in dollars per watt of installed PV range, from roughly $4 to $6.4/watt across the full dataset, to approximately $2.3/watt for new homes, to more than $6/watt for existing homes. A number of ideas for further research are suggested.

Hoen, Ben; Cappers, Pete; Wiser, Ryan; Thayer, Mark

2011-04-12T23:59:59.000Z

477

The Impact of Retail Rate Structures on the Economics of Commercial Photovoltaic Systems in California  

Broader source: Energy.gov [DOE]

To achieve a sizable and self-sustaining market for grid-connected, customer-sited photovoltaic (PV) systems, solar will likely need to be competitive with retail electricity rates. In this report, we examine the impact of retail rate design on the economic value of commercial PV systems in California. Using 15-minute interval building load and PV production data from 24 actual commercial PV installations, we compare the value of the bill savings across 20 commercial customer retail rates currently offered in the state. We find that the specifics of the rate structure, combined with the characteristics of the customer’s underlying load and the size of the PV system, can have a substantial impact on the customer-economics of commercial PV systems.

478

The effect of sandstorms on PV arrays and components  

SciTech Connect (OSTI)

Photovoltaic (PV) systems deployed in desert areas are exposed to wind-blown particles during most of their lifetimes. Here I describe the characteristics of wind-blown particles and with their effect on exposed surfaces. I provide insights for use in array design to minimize the effects of exposure and keep system costs as low as possible. Finally, I present some data describing the exposure of polymer-encapsulated arrays to both field and laboratory wind-blown sand environments, and I present evidence that an encapsulated or ``soft`` array has a higher abrasion resistance and, therefore, a much higher probability of surviving a severe sand environment.

Thornton, J.P.

1992-03-01T23:59:59.000Z

479

The effect of sandstorms on PV arrays and components  

SciTech Connect (OSTI)

Photovoltaic (PV) systems deployed in desert areas are exposed to wind-blown particles during most of their lifetimes. Here I describe the characteristics of wind-blown particles and with their effect on exposed surfaces. I provide insights for use in array design to minimize the effects of exposure and keep system costs as low as possible. Finally, I present some data describing the exposure of polymer-encapsulated arrays to both field and laboratory wind-blown sand environments, and I present evidence that an encapsulated or soft'' array has a higher abrasion resistance and, therefore, a much higher probability of surviving a severe sand environment.

Thornton, J P

1992-03-01T23:59:59.000Z

480

PV vs. Solar Water Heating- Simple Solar Payback  

Broader source: Energy.gov [DOE]

Solar energy systems hang their hats on payback. Financial payback is as tangible as money in your bank account, while other types of payback—like environmental externalities—are not usually calculated in dollars. There’s no doubt that photovoltaic (PV) and solar hot water (SHW) systems will pay you back. Maybe not as quickly as you’d like, but all systems will significantly offset their cost over their lifetimes. Here we’ll try to answer: Which system will give the quickest return on investment (ROI)?

Note: This page contains sample records for the topic "off-grid photovoltaics pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Kauai, Hawaii: Solar Resource Analysis and High Penetration PV Potential  

SciTech Connect (OSTI)

Overview of the solar resource assessment conducted by the National Renewable Energy Laboratory (NREL) in cooperation with Kauai Island Utility Cooperative (KIUC) in Hawaii to determine the technical feasibility of increasing the contribution of solar renewable energy generation on the island of Kauaii through the use of photovoltaic (PV) arrays. The analysis, which was performed using a custom version of NREL's In My Back Yard (IMBY) software tool, showed that there is potential to generate enough energy to cover the peak load as reported for Kauai in 2007.

Helm, C.; Burman, K.

2010-04-01T23:59:59.000Z

482

Geothermal, Energy Efficiency, and Solar PV Opportunities at Nissan USE  

E-Print Network [OSTI]

Geothermal, Energy Efficiency, and Solar PV Opportunities at Nissan USA May 21st, 2014 Robinson Ford Justin Ong Jake Reeder Vikram Sridar Rica Zhang ESL-IE-14-05-04 Proceedings of the Thrity-Sixth Industrial Energy Technology Conference New... Orleans, LA. May 20-23, 2014 Carbon Goal is Driving Innovation ESL-IE-14-05-04 Proceedings of the Thrity-Sixth Industrial Energy Technology Conference New Orleans, LA. May 20-23, 2014 Research Areas Geothermal Solar Photovoltaics EE Verification ESL...

Ford, R.; Ong, J.; Reeder, J.; Sridar, V.; Zhang, R.

2014-01-01T23:59:59.000Z

483

Sandia National Laboratories: PV  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive SolarEducationStationCSP Resources On SeptemberNuclearSPIDERS OnPhotovoltaic

484

Experimental investigation and modeling of a direct-coupled PV/T air collector  

SciTech Connect (OSTI)

Photovoltaic/thermal (PV/T) systems refer to the integration of photovoltaic and solar thermal technologies into one single system, in that both useful heat energy and electricity are produced. The impetus of this paper is to model a direct-coupled PV/T air collector which is designed, built, and tested at a geographic location of Kerman, Iran. In this system, a thin aluminum sheet suspended at the middle of air channel is used to increase the heat exchange surface and consequently improve heat extraction from PV panels. This PV/T system is tested in natural convection and forced convection (with two, four and eight fans operating) and its unsteady results are presented in with and without glass cover cases. A theoretical model is developed and validated against experimental data, where good agreement between the measured values and those calculated by the simulation model were achieved. Comparisons are made between electrical performance of the different modes of operation, and it is concluded that there is an optimum number of fans for achieving maximum electrical efficiency. Also, results show that setting glass cover on photovoltaic panels leads to an increase in thermal efficiency and decrease in electrical efficiency of the system. (author)

Shahsavar, A.; Ameri, M. [Department of Mechanical Engineering, Faculty of Engineering, Shahid Bahonar University, Kerman (Iran, Islamic Republic of); Energy and Environmental Engineering Research Center, Shahid Bahonar University, Kerman (Iran, Islamic Republic of)

2010-11-15T23:59:59.000Z

485

Analysis of concentrating PV-T systems for the commercial/industrial sector. Volume II. PV-T state-of-the-art survey and site/application pair selection and analysis  

SciTech Connect (OSTI)

As part of a project to develop feasibility assessments, design procedures, and reference designs for total energy systems that could use actively cooled concentrating photovoltaic collectors, a survey was conducted to provide an overview of available photovoltaic-thermal (PV-T) technology. General issues associated with the design and installation of a PV-T system are identified. Electrical and thermal efficiencies for the line-focus Fresnel, the linear parabolic trough, and the point-focus Fresnel collectors are specified as a function of operating temperature, ambient temperature, and insolation. For current PV-T technologies, the line-focus Fresnel collector proved to have the highest thermal and electrical efficiencies, lowest array cost, and lowest land area requirement. But a separate feasibility analysis involving 11 site/application pairs showed that for most applications, the cost of the photovoltaic portion of a PV-T system is not recovered through the displacement of an electrical load, and use of a thermal-only system to displace the thermal load would be a more economical alternative. PV-T systems are not feasible for applications that have a small thermal load, a large steam requirement, or a high load return temperature. SAND82-7157/3 identifies the technical issues involved in designing a photovoltaic-thermal system and provides guidance for resolving such issues. Detailed PV-T system designs for three selected applications and the results of a trade-off study for these applications are presented in SAND82-7157/4. A summary of the major results of this entire study and conclusions concerning PV-T systems and applications is presented in SAND82-7157/1.

Schwinkendorf, W.E.

1984-09-01T23:59:59.000Z

486

Photovoltaic Subcontract Program, FY 1991. Annual report, [October 1, 1990--September 30, 1991  

SciTech Connect (OSTI)

This report summarizes the fiscal year (FY) 1991 (October 1, 1990, through September 30, 1991) progress of the subcontracted photovoltaic (PV) research and development (R&D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL) -- formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Amorphous Silicon Research Project, Polycrystalline Thin Films, Crystalline Silicon Materials Research, High-Efficiency Concepts, the New Ideas Program, the University Participation Program, and the Photovoltaic Manufacturing Technology (PVMaT) project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1991, and future research directions.

Not Available

1992-03-01T23:59:59.000Z

487

Analysis of concentrating PV-T systems for the commercial/industrial sector. Volume III. Technical issues and design guidance  

SciTech Connect (OSTI)

This report provide appropriate guidance for addressing the major technical issues associated with the design and installation of a photovoltaic-thermal (PV-T) system. Nomographs are presented for developing preliminary sizing and costing, and issues associated with specific components and the overall design of the electrical and mechanical system are discussed. SAND82-7157/2 presents a review of current PV-T technology and operating systems and a study of potential PV-T applications. Detailed PV-T system designs for three selected applications and the results of a trade-off study for these applications are presented in SAND82-7157/4. A summary of the major results of this entire study and conclusions concerning PV-T systems and applications is presented in SAND82-7157/1.

Schwinkendorf, W.E.

1984-09-01T23:59:59.000Z

488

Photovoltaics for demand-side management: Opportunities for early commercialization  

SciTech Connect (OSTI)

Recently, interest in utilizing photovoltaics (PV) in a demand-side management (DSM) role has been increasing. Research has shown that many utilities across the US have a good match between peak loads and the availability of the solar resource. Maximum value for PV in DSM applications can be achieved by incorporating a dispatching capability to PV systems (through the addition of storage). This enables utilities to evaluate PV systems as a peak-shaving technology. To date, peak-shaving has been a high-value DSM application for US utilities. The authors analysis of the value of dispatchable PV-DSM systems indicates that small-scale, customer-sited systems are approaching competitive cost levels in several regions of the US that have favorable load matching and high demand charges. This paper presents the results of an economic analysis for high-value PV-DSM systems located in the service territories of five case study utilities. The results suggest that PV is closer to commercialization when viewed as a DSM technology relative to analyses that focus on the technology as a supply-side option.

Byrne, J.; Letendre, S.; Govindarajalu, C.; Wang, Y.D. [Univ. of Delaware, Newark, DE (United States). Center for Energy and Environmental Policy; Nigro, R. [Delmarva Power, Newark, DE (United States); Wallace, W. [National Renewable Energy Lab., Golden, CO (United States)

1995-10-01T23:59:59.000Z

489

Advanced Inverter Technology for High Penetration Levels of PV Generation in Distribution Systems  

SciTech Connect (OSTI)

This subcontract report was completed under the auspices of the NREL/SCE High-Penetration Photovoltaic (PV) Integration Project, which is co-funded by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) and the California Solar Initiative (CSI) Research, Development, Demonstration, and Deployment (RD&D) program funded by the California Public Utility Commission (CPUC) and managed by Itron. This project is focused on modeling, quantifying, and mitigating the impacts of large utility-scale PV systems (generally 1-5 MW in size) that are interconnected to the distribution system. This report discusses the concerns utilities have when interconnecting large PV systems that interconnect using PV inverters (a specific application of frequency converters). Additionally, a number of capabilities of PV inverters are described that could be implemented to mitigate the distribution system-level impacts of high-penetration PV integration. Finally, the main issues that need to be addressed to ease the interconnection of large PV systems to the distribution system are presented.

Schauder, C.

2014-03-01T23:59:59.000Z

490

Designing PV Incentive Programs to Promote Performance: A Reviewof Current Practice in the U.S.  

SciTech Connect (OSTI)

In the U.S., the increasing financial support for customer-sited photovoltaic (PV) systems provided through publicly-funded incentive programs has heightened concerns about the long-term performance of these systems. Given the barriers that customers face to ensuring that their PV systems perform well, and the responsibility that PV incentive programs bear to ensure that public funds are prudently spent, these programs should, and often do, play a critical role in addressing PV system performance. To provide a point of reference for assessing the current state of the art, and to inform program design efforts going forward, we examine the approaches to encouraging PV system performance used by 32 prominent PV incentive programs in the U.S. We identify eight general strategies or groups of related strategies that these programs have used to address factors that affect performance, and describe key implementation details. Based on this review, we then offer recommendations for how PV incentive programs can be effectively designed to mitigate potential performance issues.

Barbose, Galen; Wiser, Ryan; Bolinger, Mark

2006-10-06T23:59:59.000Z

491

PV Ramping in a Distributed Generation Environment: A Study Using Solar Measurements; Preprint  

SciTech Connect (OSTI)

Variability in Photovoltaic (PV) generation resulting from variability in the solar radiation over the PV arrays is a topic of continuing concern for those involved with integrating renewables onto existing electrical grids. The island of Lanai, Hawaii is an extreme example of the challenges that integrators will face due to the fact that it is a small standalone grid. One way to study this problem is to take high-resolution solar measurements in multiple locations and model simultaneous PV production for various sizes at those locations. The National Renewable Energy Laboratory (NREL) collected high-resolution solar data at four locations on the island where proposed PV plants will be deployed in the near future. This data set provides unique insight into how the solar radiation may vary between points that are proximal in distance, but diverse in weather, due to the formation of orographic clouds in the center of the island. Using information about each proposed PV plant size, power output was created at high resolution. The team analyzed this output to understand power production ramps at individual locations and the effects of aggregating the production from all four locations. Hawaii is a unique environment, with extremely variable events occurring on a daily basis. This study provided an excellent opportunity for understanding potential worst-case scenarios for PV ramping. This paper provides an introduction to the datasets that NREL collected over a year and a comprehensive analysis of PV variability in a distributed generation scenario.

Sengupta, M.; Keller, J.

2012-06-01T23:59:59.000Z

492

Evaluation of phase change materials for thermal regulation enhancement of building integrated photovoltaics  

SciTech Connect (OSTI)

Regulating the temperature of building integrated photovoltaics (BIPV) using phase change materials (PCMs) reduces the loss of temperature dependent photovoltaic (PV) efficiency. Five PCMs were selected for evaluation all with melting temperatures {proportional_to}25 {+-} 4 C and heat of fusion between 140 and 213 kJ/kg. Experiments were conducted at three insolation intensities to evaluate the performance of each PCM in four different PV/PCM systems. The effect on thermal regulation of PV was determined by changing the (i) mass of PCM and (ii) thermal conductivities of the PCM and PV/PCM system. A maximum temperature reduction of 18 C was achieved for 30 min while 10 C temperature reduction was maintained for 5 h at -1000 W/m{sup 2} insolation. (author)

Hasan, A.; Norton, B. [Dublin Energy Lab., Focas Institute, School of Physics, Dublin Institute of Technology, Kevin St., Dublin 8 (Ireland); McCormack, S.J. [Department of Civil, Structure and Environmental Engineering, Trinity College Dublin, Dublin 1 (Ireland); Huang, M.J. [Centre for Sustainable Technologies, University of Ulster, Newtownabbey, N. Ireland, BT370QB (United Kingdom)

2010-09-15T23:59:59.000Z

493

High-Penetration Photovoltaics Standards and Codes Workshop, Denver, Colorado, May 20, 2010: Workshop Proceedings  

SciTech Connect (OSTI)

Effectively interconnecting high-level penetration of photovoltaic (PV) systems requires careful technical attention to ensuring compatibility with electric power systems. Standards, codes, and implementation have been cited as major impediments to widespread use of PV within electric power systems. On May 20, 2010, in Denver, Colorado, the National Renewable Energy Laboratory, in conjunction with the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE), held a workshop to examine the key technical issues and barriers associated with high PV penetration levels with an emphasis on codes and standards. This workshop included building upon results of the High Penetration of Photovoltaic (PV) Systems into the Distribution Grid workshop held in Ontario California on February 24-25, 2009, and upon the stimulating presentations of the diverse stakeholder presentations.

Coddington, M.; Kroposki, B.; Basso, T.; Lynn, K.; Herig, C.; Bower, W.

2010-09-01T23:59:59.000Z

494

High-Penetration PV Deployment in the Arizona Public Service System, Phase 1 Update: Preprint  

SciTech Connect (OSTI)

In an effort to better understand the impacts of high penetrations of photovoltaic generators on distribution systems, Arizona Public Service and its partners have begun work on a multi-year project to develop the tools and knowledge base needed to safely and reliably integrate high penetrations of utility- and residential-scale photovoltaics (PV). Building upon the APS Community Power Project -- Flagstaff Pilot, this project will analyze the impact of PV on a representative feeder in northeast Flagstaff. To quantify and catalog the effects of the estimated 1.3 MW of PV that will be installed on the feeder (both smaller units at homes as well as large, centrally located systems), high-speed weather and electrical data acquisition systems and digital 'smart' meters are being designed and installed to facilitate monitoring and to build and validate comprehensive, high-resolution models of the distribution system. These models will be used to analyze the impacts of the PV on distribution circuit protection systems (including anti-islanding), predict voltage regulation and phase balance issues, and develop volt/var control schemes. This paper continues from a paper presented at the 2011 IEEE PVSC conference that introduces the project and describes some of the preliminary consideration, as well as project plans and early results. This paper gives a status update of the project and presents selected results from Phase 2 of the project. It discusses baseline feeder modeling, load allocation, data acquisition, utility-scale PV integration, preliminary model validation, and plans for future phases.

Hambrick, J.; Narang, D.

2012-06-01T23:59:59.000Z

495

Effect of photovoltaic (PV) module mounting angle on PV module power output.  

E-Print Network [OSTI]

??Solar energy is a renewable resource that is environmentally friendly. Unlike fossil fuels, solar energy is available just about everywhere on earth. This source of… (more)

Alkhatib, Husam Hamdi

2007-01-01T23:59:59.000Z

496

Solar resource-utility load matching assessment: NREL photovoltaic project summary  

SciTech Connect (OSTI)

Many utility planners may be unfamiliar with the potential for the development of photovoltaics (PV) in their service areas. The goal of the research summarized in this document is to provide information on the match existing between the output of PV powder plants and the load requirements of US utilities. This material indicates whether or not the effective capacity (hence the value) of this renewable resource should be higher than that traditionally assigned to an intermittent resource.

none,

1993-11-01T23:59:59.000Z

497

State-Level Comparison of Processes and Timelines for Distributed Photovoltaic Interconnection in the United States  

SciTech Connect (OSTI)

This report presents results from an analysis of distributed photovoltaic (PV) interconnection and deployment processes in the United States. Using data from more than 30,000 residential (up to 10 kilowatts) and small commercial (10-50 kilowatts) PV systems, installed from 2012 to 2014, we assess the range in project completion timelines nationally (across 87 utilities in 16 states) and in five states with active solar markets (Arizona, California, New Jersey, New York, and Colorado).

Ardani, K.; Davidson, C.; Margolis, R.; Nobler, E.

2015-01-01T23:59:59.000Z

498

Field Test and Evaluation Report Five Photovoltaic Power Systems for the City of Tucson  

Broader source: Energy.gov [DOE]

Members of the DOE solar energy Tiger Team tested five municipally owned, grid connected photovoltaic (PV) power systems for the City of Tucson on March 26 and 27, 2008. The five PV systems tested were Southeast Service Center, Clements Fitness Center, and Thonydale water treatment plant systems 1, 2, and 3. During all tests, skies were virtually cloudless with only occasional, high cirrus present, and none during array testing.

499

Utility-Interconnected Photovoltaic Systems: Evaluating the Rationale for the Utility-Accessible External Disconnect Switch  

SciTech Connect (OSTI)

The utility-accessible alternating current (AC) external disconnect switch (EDS) for distributed generators, including photovoltaic (PV) systems, is a hardware feature that allows a utility?s employees to manually disconnect a customer-owned generator from the electricity grid. This paper examines the utility-accessible EDS debate in the context of utility-interactive PV systems for residential and small commercial installations. It also evaluates the rationale for EDS requirements.

Coddington, M.; Margolis, R.M.; Aabakken, J.

2008-01-01T23:59:59.000Z

500

Rheological and Mechanical Considerations for Photovoltaic Encapsulants  

SciTech Connect (OSTI)

Photovoltaic (pv) devices are encapsulated in polymeric materials not only for corrosion protection, but also for mechanical support. Even though ethylene-vinyl acetate (EVA) suffers from having both glass and melting phase transitions at temperatures experienced under environmental exposure, its low cost and good optical transmission made EVA the most commonly used material for PV modules. These transitions, however, cause EVA to embrittle at low temperatures (~ -15 deg C) and to be very soft at high temperatures (>40 deg C). From mechanical considerations, one would prefer a material that was relatively unchanged under a wide temperature range. This would produce a more predictable and reliable package. These concerns are likely to become more important as silicon based cells are made thinner.

Kempe, M. D.

2005-11-01T23:59:59.000Z