National Library of Energy BETA

Sample records for octane enhan cer

  1. Bio Octane Energias Renov veis | Open Energy Information

    Open Energy Info (EERE)

    Octane Energias Renov veis Jump to: navigation, search Name: Bio-Octane Energias Renovveis Place: Minas Gerais, Brazil Product: Brazil-based biodiesel producer, located in the...

  2. BiOctane | Open Energy Information

    Open Energy Info (EERE)

    Product: Biofuel start-up planning to design and develop a biodiesel and ethanol refinery. References: BiOctane1 This article is a stub. You can help OpenEI by expanding it....

  3. A Vehicle Manufacturer's Perspective on Higher-Octane Fuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Manufacturer's Perspective on Higher-Octane Fuels Tom Leone, Ford Motor Company DOE "Biomass 2014" meeting Washington, D.C. July 29, 2014 2 Octane rating of fuel The ...

  4. A Vehicle Manufacturer's Perspective on Higher-Octane Fuels | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy A Vehicle Manufacturer's Perspective on Higher-Octane Fuels A Vehicle Manufacturer's Perspective on Higher-Octane Fuels Breakout Session 1C-Fostering Technology Adoption I: Building the Market for Renewables with High Octane Fuels A Vehicle Manufacturer's Perspective on Higher-Octane Fuels Tom Leone, Technical Expert, Powertrain Evaluation and Analysis, Ford Motor Company PDF icon leone_biomass_2014.pdf More Documents & Publications Co-Optimization of Fuels and Vehicles A

  5. High Octane Fuels Can Make Better Use of Renewable Transportation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mid-Blend Ethanol Fuels - Implementation Perspectives Making Better Use of Ethanol as a Transportation Fuel With "Renewable Super Premium" The Impact of Low Octane Hydrocarbon ...

  6. UNLV Center for Energy Research CER | Open Energy Information

    Open Energy Info (EERE)

    Center for Energy Research is a focus area for research, information exchange, and education in energy topics. References: UNLV Center for Energy Research (CER)1 This article...

  7. High-Octane Mid-Level Ethanol Blend Market Assessment

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    High-Octane Mid-Level Ethanol Blend Market Assessment Caley Johnson, Emily Newes, Aaron Brooker, and Robert McCormick National Renewable Energy Laboratory Steve Peterson Lexidyne, LLC Paul Leiby, Rocio Uria Martinez, and Gbadebo Oladosu Oak Ridge National Laboratory Maxwell L. Brown Colorado School of Mines Technical Report NREL/TP-5400-63698 December 2015 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance

  8. The Impact of Low Octane Hydrocarbon Blending Streams on "E85...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Octane Fuels Can Make Better Use of Renewable Transportation Fuels Making Better Use of Ethanol as a Transportation Fuel With "Renewable Super Premium" Gasoline-Like Fuel ...

  9. The Impact of Low Octane Hydrocarbon Blending Streams on "E85...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    IMPACT OF LOW OCTANE HYDROCARBON BLENDING STREAMS ON "E85" ENGINE OPTIMIZATION Jim Szybist ... Year ETHANOL IS CURRENTLY THE LARGEST VOLUME BIOFUEL, VERY IMPORTANT FOR EISA COMPLIANCE * ...

  10. FCC LPG olefinicity and branching enhanced by octane catalysts

    SciTech Connect (OSTI)

    Keyworth, D.A.; Reid, T.A.; Kreider, K.R.; Yatsu, C.A.

    1989-05-29

    Refiners are increasingly recognizing the downstream opportunities for fluid catalytic cracking LPG olefins for the production of methyl tertiary butyl ether (MTBE), ethyl tertiary butyl ether (ETBE, if the ethanol subsidy is extended to the production of ETBE), and as petrochemical feedstocks. Some of new gasoline FCC octane-enhancing catalysts can support those opportunities because their low non-framework alumina (low NFA) preserve both LPG olefinicity and promote branching of the LPG streams from the FCCU. The combined effect results in more isobutane for alkylate feed, more propylene in the propane/propylene stream, and more isobutene - which makes the addition of an MTBE unit very enticing.

  11. High-Octane Fuel from Refinery Exhaust Gas: Upgrading Refinery Off-Gas to High-Octane Alkylate

    SciTech Connect (OSTI)

    2009-12-01

    Broad Funding Opportunity Announcement Project: Exelus is developing a method to convert olefins from oil refinery exhaust gas into alkylate, a clean-burning, high-octane component of gasoline. Traditionally, olefins must be separated from exhaust before they can be converted into another source of useful fuel. Exelus process uses catalysts that convert the olefin to alkylate without first separating it from the exhaust. The ability to turn up to 50% of exhaust directly into gasoline blends could result in an additional 46 million gallons of gasoline in the U.S. each year.

  12. High Octane Fuels Can Make Better Use of Renewable Transportation Fuels

    Broader source: Energy.gov [DOE]

    Breakout Session 1C—Fostering Technology Adoption I: Building the Market for Renewables with High Octane Fuels High Octane Fuels Can Make Better Use of Renewable Transportation Fuels Brian West, Deputy Director, Engines and Emissions Research Center; Oak Ridge National Laboratory

  13. Ionization of ethane, butane, and octane in strong laser fields

    SciTech Connect (OSTI)

    Palaniyappan, Sasi; Mitchell, Rob; Ekanayake, N.; Watts, A. M.; White, S. L.; Sauer, Rob; Howard, L. E.; Videtto, M.; Mancuso, C.; Wells, S. J.; Stanev, T.; Wen, B. L.; Decamp, M. F.; Walker, B. C.

    2010-10-15

    Strong-field photoionization of ethane, butane, and octane are reported at intensities from 10{sup 14} to 10{sup 17} W/cm{sup 2}. The molecular fragment ions, C{sup +} and C{sup 2+}, are created in an intensity window from 10{sup 14} to 10{sup 15} W/cm{sup 2} and have intensity-dependent yields similar to the molecular fragments C{sub m}H{sub n}{sup +} and C{sub m}H{sub n}{sup 2+}. In the case of C{sup +}, the yield is independent of the molecular parent chain length. The ionization of more tightly bound valence electrons in carbon (C{sup 3+} and C{sup 4+}) has at least two contributing mechanisms, one influenced by the parent molecule size and one resulting from the tunneling ionization of the carbon ion.

  14. The Impact of Low Octane Hydrocarbon Blending Streams on "E85" Engine

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optimization | Department of Energy The Impact of Low Octane Hydrocarbon Blending Streams on "E85" Engine Optimization The Impact of Low Octane Hydrocarbon Blending Streams on "E85" Engine Optimization PDF icon deer12_szybist.pdf More Documents & Publications High Octane Fuels Can Make Better Use of Renewable Transportation Fuels Making Better Use of Ethanol as a Transportation Fuel With "Renewable Super Premium" Gasoline-Like Fuel Effects on Advanced

  15. Method for determining the octane rating of gasoline samples by observing corresponding acoustic resonances therein

    DOE Patents [OSTI]

    Sinha, Dipen N.; Anthony, Brian W.

    1997-01-01

    A method for determining the octane rating of gasoline samples by observing corresponding acoustic resonances therein. A direct correlation between the octane rating of gasoline and the frequency of corresponding acoustic resonances therein has been experimentally observed. Therefore, the octane rating of a gasoline sample can be directly determined through speed of sound measurements instead of by the cumbersome process of quantifying the knocking quality of the gasoline. Various receptacle geometries and construction materials may be employed. Moreover, it is anticipated that the measurements can be performed on flowing samples in pipes, thereby rendering the present method useful in refineries and distilleries.

  16. Method for determining the octane rating of gasoline samples by observing corresponding acoustic resonances therein

    DOE Patents [OSTI]

    Sinha, D.N.; Anthony, B.W.

    1997-02-25

    A method is described for determining the octane rating of gasoline samples by observing corresponding acoustic resonances therein. A direct correlation between the octane rating of gasoline and the frequency of corresponding acoustic resonances therein has been experimentally observed. Therefore, the octane rating of a gasoline sample can be directly determined through speed of sound measurements instead of by the cumbersome process of quantifying the knocking quality of the gasoline. Various receptacle geometries and construction materials may be employed. Moreover, it is anticipated that the measurements can be performed on flowing samples in pipes, thereby rendering the present method useful in refineries and distilleries. 3 figs.

  17. CRC program for quantifying performance of knock-sensor-equipped vehicles with varying octane level

    SciTech Connect (OSTI)

    Not Available

    1990-08-01

    A pilot study was conducted under the auspices of the Coordinating Research Council, Inc. (CRC) to assess the potential effects of gasoline octane quality on acceleration performance, fuel economy and driveability in vehicles equipped with electronic spark control systems (knock sensors). Fourteen vehicles were tested by five participating laboratories on CRC unleaded reference fuels of varying octane quality (78 to 104 RON). The test vehicles included nine naturally-aspirated and five turbocharged models. The results showed that acceleration performance was the parameter most sensitive to octane quality changes, particularly in the turbocharged models.

  18. Methyl aryl ethers from coal liquids as gasoline extenders and octane improvers

    SciTech Connect (OSTI)

    Singerman, G.M.

    1980-11-01

    A mixture of methyl aryl ethers derived from the phenols present in direct liquefaction coal liquids shows considerable promise as a gasoline blending agent and octane improver. The mixture of methyl aryl ethers was blended at five volume percent with a commercial, unleaded gasoline. The properties and performance of the blend in a variety of laboratory and automotive tests is reported. The tests show that the mixture of methyl aryl ethers improves gasoline octane without degrading other gasoline properties.

  19. High octane ethers from synthesis gas-derived alcohol

    SciTech Connect (OSTI)

    Klier, K.; Herman, R.G.; Bastian, R.D.; DeTavernier, S. . Dept. of Chemistry Lehigh Univ., Bethlehem, PA . Zettlemoyer Center for Surface Studies)

    1991-01-01

    The objective of the proposed research is to synthesize high octane ethers directly from coal-derived synthesis gas via alcohol mixtures that are rich in methanol and isobutanol. The overall scheme involves gasification of coal, purification and shifting of the synthesis gas, higher alcohol synthesis, and direct synthesis of ethers. Commercial acid and superacid resin catalysts were obtained and tested under one set of conditions to compare the activities and selectivities for forming the unsymmetric methylisobutylether (MIBE) by coupling methanol with isobutanol. It was found that both Nafion-H microsaddles and Amberlyst-15 resins are active for this synthesis reaction. While and the Nafion-H catalyst does form the MIBE product fairly selectively under the reaction conditions utilized, the Amberlyst-15 catalyst formed dimethylether (DME) as the major product. In addition, significantly larger quantities of the C{sub 4} hydrocarbon products were observed over the Amberlyst-15 catalyst at 123{degree}C and 13.6 atm. It has been demonstrated that methyltertiarybutylether (MTBE) MIBE, DME and diisobutylether (DIBE) are separated and quantitatively determined by using the proper analytical conditions. In order to gain insight into the role of superacidity in promoting the selective coupling of the alcohols to form the unsymmetric ether, the strengths of the acid sites on the catalysts are being probed by thermometric titrations in non-aqueous solutions. 18 refs., 20 figs., 4 tabs.

  20. An experimental investigation of low octane gasoline in diesel engines.

    SciTech Connect (OSTI)

    Ciatti, S. A.; Subramanian, S.

    2011-09-01

    Conventional combustion techniques struggle to meet the current emissions norms. In particular, oxides of nitrogen (NO{sub x}) and particulate matter (PM) emissions have limited the utilization of diesel fuel in compression ignition engines. Advance combustion concepts have proved the potential to combine fuel efficiency and improved emission performance. Low-temperature combustion (LTC) offers reduced NO{sub x} and PM emissions with comparable modern diesel engine efficiencies. The ability of premixed, low-temperature compression ignition to deliver low PM and NO{sub x} emissions is dependent on achieving optimal combustion phasing. Diesel operated LTC is limited by early knocking combustion, whereas conventional gasoline operated LTC is limited by misfiring. So the concept of using an unconventional fuel with the properties in between those two boundary fuels has been experimented in this paper. Low-octane (84 RON) gasoline has shown comparable diesel efficiencies with the lowest NO{sub x} emissions at reasonable high power densities (NO{sub x} emission was 1 g/kW h at 12 bar BMEP and 2750 rpm).

  1. Centro De Energias Renovables (CER): A Major OpenEI Contributor...

    Open Energy Info (EERE)

    Centro De Energias Renovables (CER): A Major OpenEI Contributor Home > Groups > OpenEI Community Central Graham7781's picture Submitted by Graham7781(2017) Super contributor 18...

  2. Proton NMR analysis of octane number for motor gasoline: Part IV

    SciTech Connect (OSTI)

    Ichikawa, M.; Nonaka, N.; Amano, H.; Takada, I.; Ishimori, S.; Andoh, H.; Kumamoto, K.

    1992-08-01

    Software for predicting the octane number of motor gasoline by proton magnetic resonance (PMR) spectrometry has been formulated. At the same time, a method has been studied to predict the composition of gasoline (in terms of the contents of paraffin, olefin, and aromatic compounds). The formulated program was evaluated by using it to predict the octane numbers of 31 samples of marketed summer gasoline (including 16 regular and 15 premium products), whose octane numbers and compositions were identified according to the ASTM standards. Also, the relationship between the PMR spectrum and gasoline composition was subjected to linear regression analysis by using the 31 samples whose octane numbers were calculated, and the appropriateness of the resultant regression equations was assessed. This report concerns the results of the study in which the octane numbers of the 31 samples were satisfactorily predicted by the formulated program and useful linear regression equation were obtained for the prediction of the composition of gasoline. 9 refs., 9 figs., 3 tabs.

  3. Fewer Steps to Higher Octane Gasoline in Petroleum Refining | U.S. DOE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office of Science (SC) Fewer Steps to Higher Octane Gasoline in Petroleum Refining Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: Email Us More Information » 07.01.13 Fewer

  4. The Impact of Low Octane Hydrocarbon Blending Streams on Ethanol Engine Optimization

    SciTech Connect (OSTI)

    Szybist, James P; West, Brian H

    2013-01-01

    Ethanol is a very attractive fuel from an end-use perspective because it has a high chemical octane number and a high latent heat of vaporization. When an engine is optimized to take advantage of these fuel properties, both efficiency and power can be increased through higher compression ratio, direct fuel injection, higher levels of boost, and a reduced need for enrichment to mitigate knock or protect the engine and aftertreatment system from overheating. The ASTM D5798 specification for high level ethanol blends, commonly called E85, underwent a major revision in 2011. The minimum ethanol content was revised downward from 68 vol% to 51 vol%, which combined with the use of low octane blending streams such as natural gasoline introduces the possibility of a lower octane E85 fuel. While this fuel is suitable for current ethanol tolerant flex fuel vehicles, this study experimentally examines whether engines can still be aggressively optimized for the resultant fuel from the revised ASTM D5798 specification. The performance of six ethanol fuel blends, ranging from 51-85% ethanol, is compared to a premium-grade certification gasoline (UTG-96) in a single-cylinder direct-injection (DI) engine with a compression ratio of 12.9:1 at knock-prone engine conditions. UTG-96 (RON = 96.1), light straight run gasoline (RON = 63.6), and n-heptane (RON = 0) are used as the hydrocarbon blending streams for the ethanol-containing fuels in an effort to establish a broad range of knock resistance for high ethanol fuels. Results show that nearly all ethanol-containing fuels are more resistant to engine knock than UTG-96 (the only exception being the ethanol blend with 49% n-heptane). This knock resistance allows ethanol blends made with 33 and 49% light straight run gasoline, and 33% n-heptane to be operated at significantly more advanced combustion phasing for higher efficiency, as well as at higher engine loads. While experimental results show that the octane number of the hydrocarbon blend stock does impact engine performance, there remains a significant opportunity for engine optimization when considering even the lowest octane fuels that are in compliance with the current revision of ASTM D5798 compared to premium-grade gasoline.

  5. Effects of High Octane Ethanol Blends on Four Legacy Flex-Fuel Vehicles, and a Turbocharged GDI Vehicle

    SciTech Connect (OSTI)

    Thomas, John F; West, Brian H; Huff, Shean P

    2015-03-01

    The U.S. Department of Energy (DOE) is supporting engine and vehicle research to investigate the potential of high-octane fuels to improve fuel economy. Ethanol has very high research octane number (RON) and heat of vaporization (HoV), properties that make it an excellent spark ignition engine fuel. The prospects of increasing both the ethanol content and the octane number of the gasoline pool has the potential to enable improved fuel economy in future vehicles with downsized, downsped engines. This report describes a small study to explore the potential performance benefits of high octane ethanol blends in the legacy fleet. There are over 17 million flex-fuel vehicles (FFVs) on the road today in the United States, vehicles capable of using any fuel from E0 to E85. If a future high-octane blend for dedicated vehicles is on the horizon, the nation is faced with the classic chicken-and-egg dilemma. If today’s FFVs can see a performance advantage with a high octane ethanol blend such as E25 or E30, then perhaps consumer demand for this fuel can serve as a bridge to future dedicated vehicles. Experiments were performed with four FFVs using a 10% ethanol fuel (E10) with 88 pump octane, and a market gasoline blended with ethanol to make a 30% by volume ethanol fuel (E30) with 94 pump octane. The research octane numbers were 92.4 for the E10 fuel and 100.7 for the E30 fuel. Two vehicles had gasoline direct injected (GDI) engines, and two featured port fuel injection (PFI). Significant wide open throttle (WOT) performance improvements were measured for three of the four FFVs, with one vehicle showing no change. Additionally, a conventional (non-FFV) vehicle with a small turbocharged direct-injected engine was tested with a regular grade of gasoline with no ethanol (E0) and a splash blend of this same fuel with 15% ethanol by volume (E15). RON was increased from 90.7 for the E0 to 97.8 for the E15 blend. Significant wide open throttle and thermal efficiency performance improvement was measured for this vehicle, which achieved near volumetric fuel economy parity on the aggressive US06 drive cycle, demonstrating the potential for improved fuel economy in forthcoming downsized, downsped engines with high-octane fuels.

  6. I E L D ESCALATION EVALUATION PROJECT RULISON CER GEONUCLEAR CORPORATION

    Office of Legacy Management (LM)

    Y I E L D ESCALATION EVALUATION PROJECT RULISON CER GEONUCLEAR CORPORATION Las V e g a s , Nevada J u n e 1 5 , ,1972 C o n t r a c t No. AT(26-1) -.429 b e t w e e n t h e U . S . Atomic Energy Commission, t h e U . S . D e p a r t m e n t o f t h e I n t e r i o r , A u s t r a l O i l Company, I n c o r p o r a t e d , a n d CER G e o n u c l e a r C o r p o r a t i o n . DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best

  7. Solubilities of toluene and n-octane in aqueous protosurfactant and surfactant solutions

    SciTech Connect (OSTI)

    Ho, P.C.

    1985-01-01

    The solubilities of toluene and n-octane in aqueous protosurfactant and surfactant solutins were determined at 25/sup 0/C. The protosurfactants studied are sodium salts of cyclohexanecarboxylic acid, 2,5-diisopropylbenzenesulfonic acid, and 3,5-diisopropyisalicylic acid. Each of them has six alkyl carbons (S /SUB AC/ =6) and does not form micelles in water. The two micelle-forming surfactants used are sodium n-hexanoate with six alkyl carbons (S /SUB AC/ =6) and sodium n-octanoate with eight alkyl carbons (S /SUB AC/ =8). In three-component systems of toluene or n-octane with water and organic salt (either protosurfactant or surfactant), the solubility of the hydrocarbon in the aqueous phase increases as the number of alkyl carbons of the organic salt and as the aqueous concentration of the organic salt increases. However, in this study we found that sodium 3,5-diisopropyisalicylate causes much more pronounced increases in hydrocarbon solubility than these two surfactants. Sodium 2,5-diisopropylbenzenesulfonate, although not as effective in solubilization as the salicylate, has much stronger hydrotropic properties for hydrocarbons than either of these two surfactants. Sodium cyclohexanoate, with a compact arrangement of the six alkyl carbons, shows a higher hydrotropic effect than sodium n-hexanoate.

  8. Detailed Chemical Kinetic Reaction Mechanisms for Primary Reference Fuels for Diesel Cetane Number and Spark-Ignition Octane Number

    SciTech Connect (OSTI)

    Westbrook, C K; Pitz, W J; Mehl, M; Curran, H J

    2010-03-03

    For the first time, a detailed chemical kinetic reaction mechanism is developed for primary reference fuel mixtures of n-hexadecane and 2,2,4,4,6,8,8-heptamethyl nonane for diesel cetane ratings. The mechanisms are constructed using existing rules for reaction pathways and rate expressions developed previously for the primary reference fuels for gasoline octane ratings, n-heptane and iso-octane. These reaction mechanisms are validated by comparisons between computed and experimental results for shock tube ignition and for oxidation under jet-stirred reactor conditions. The combined kinetic reaction mechanism contains the submechanisms for the primary reference fuels for diesel cetane ratings and submechanisms for the primary reference fuels for gasoline octane ratings, all in one integrated large kinetic reaction mechanism. Representative applications of this mechanism to two test problems are presented, one describing fuel/air autoignition variations with changes in fuel cetane numbers, and the other describing fuel combustion in a jet-stirred reactor environment with the fuel varying from pure 2,2,4,4,6,8,8-heptamethyl nonane (Cetane number of 15) to pure n-hexadecane (Cetane number of 100). The final reaction mechanism for the primary reference fuels for diesel fuel and gasoline is available on the web.

  9. Detailed Chemical Kinetic Modeling of Iso-octane SI-HCCI Transition

    SciTech Connect (OSTI)

    Havstad, Mark A; Aceves, Salvador M; McNenly, Matthew J; Piggott, William T; Edwards, Kevin Dean; Wagner, Robert M; Daw, C Stuart; FINNEY, Charles E A

    2010-01-01

    We describe a CHEMKIN-based multi-zone model that simulates the expected combustion variations in a single-cylinder engine fueled with iso-octane as the engine transitions from spark-ignited (SI) combustion to homogenous charge compression ignition (HCCI) combustion. The model includes a 63-species reaction mechanism and mass and energy balances for the cylinder and the exhaust flow. For this study we assumed that the SI-to-HCCI transition is implemented by means of increasing the internal exhaust gas recirculation (EGR) at constant engine speed. This transition scenario is consistent with that implemented in previously reported experimental measurements on an experimental engine equipped with variable valve actuation. We find that the model captures many of the important experimental trends, including stable SI combustion at low EGR (-0.10), a transition to highly unstable combustion at intermediate EGR, and finally stable HCCI combustion at very high EGR (-0.75). Remaining differences between the predicted and experimental instability patterns indicate that there is further room for model improvement.

  10. DETAILED CHEMICAL KINETIC MODELING OF ISO-OCTANE SI-HCCI TRANSITION

    SciTech Connect (OSTI)

    Havstad, M A; Aceves, S M; McNenly, M J; Piggott, W T; Edwards, K D; Wagner, R M; Daw, C S; Finney, C A

    2009-10-12

    The authors describe a CHEMKIN-based multi-zone model that simulates the expected combustion variations in a single-cylinder engine fueled with iso-octane as the engine transitions from spark-ignited (ST) combustion to homogeneous charge compression ignition (HCCI) combustion. The model includes a 63-species reaction mechanism and mass and energy balances for the cylinder and the exhaust flow. For this study they assumed that the SI-to-HCCI transition is implemented by means of increasing the internal exhaust gas recirculation (EGR) at constant engine speed. This transition scneario is consistent with that implemented in previously reported experimental measurements on an experimental engine equipped with variable valve actuation. They find that the model captures many of the important experimental trends, including stable SI combustion at low EGR ({approx} 0.10), a transition to highly unstable combustion at intermediate EGR, and finally stable HCCI combustion at very high EGR ({approx} 0.75). Remaining differences between the predicted and experimental instability patterns indicate that there is further room for model improvement.

  11. Supply Chain Sustainability Analysis of Indirect Liquefaction of Blended Biomass to Produce High Octane Gasoline

    SciTech Connect (OSTI)

    Cai, Hao; Canter, Christina E.; Dunn, Jennifer B.; Tan, Eric; Biddy, Mary; Talmadge, Michael; Hartley, Damon S.; Snowden-Swan, Lesley

    2015-09-01

    The Department of Energy’s (DOE) Bioenergy Technologies Office (BETO) aims at developing and deploying technologies to transform renewable biomass resources into commercially viable, high-performance biofuels, bioproducts and biopower through public and private partnerships (DOE, 2015). BETO also performs a supply chain sustainability analysis (SCSA). This report describes the SCSA of the production of renewable high octane gasoline (HOG) via indirect liquefaction (IDL) of lignocellulosic biomass. This SCSA was developed for the 2017 design case for feedstock logistics (INL, 2014) and for the 2022 target case for HOG production via IDL (Tan et al., 2015). The design includes advancements that are likely and targeted to be achieved by 2017 for the feedstock logistics and 2022 for the IDL conversion process. The 2017 design case for feedstock logistics demonstrated a delivered feedstock cost of $80 per dry U.S. short ton by the year 2017 (INL, 2014). The 2022 design case for the conversion process, as modeled in Tan et al. (2015), uses the feedstock 2017 design case blend of biomass feedstocks consisting of pulpwood, wood residue, switchgrass, and construction and demolition waste (C&D) with performance properties consistent with a sole woody feedstock type (e.g., pine or poplar). The HOG SCSA case considers the 2017 feedstock design case (the blend) as well as individual feedstock cases separately as alternative scenarios when the feedstock blend ratio varies as a result of a change in feedstock availability. These scenarios could be viewed as bounding SCSA results because of distinctive requirements for energy and chemical inputs for the production and logistics of different components of the blend feedstocks.

  12. Process Design and Economics for the Conversion of Lignocellulosic Biomass to High Octane Gasoline: Thermochemical Research Pathway with Indirect Gasification and Methanol Intermediate

    SciTech Connect (OSTI)

    Tan, Eric; Talmadge, M.; Dutta, Abhijit; Hensley, Jesse; Schaidle, Josh; Biddy, Mary J.; Humbird, David; Snowden-Swan, Lesley J.; Ross, Jeff; Sexton, Danielle; Yap, Raymond; Lukas, John

    2015-03-01

    The U.S. Department of Energy (DOE) promotes research for enabling cost-competitive liquid fuels production from lignocellulosic biomass feedstocks. The research is geared to advance the state of technology (SOT) of biomass feedstock supply and logistics, conversion, and overall system sustainability. As part of their involvement in this program, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) investigate the economics of conversion pathways through the development of conceptual biorefinery process models. This report describes in detail one potential conversion process for the production of high octane gasoline blendstock via indirect liquefaction (IDL). The steps involve the conversion of biomass to syngas via indirect gasification followed by gas cleanup and catalytic syngas conversion to a methanol intermediate; methanol is then further catalytically converted to high octane hydrocarbons. The conversion process model leverages technologies previously advanced by research funded by the Bioenergy Technologies Office (BETO) and demonstrated in 2012 with the production of mixed alcohols from biomass. Biomass-derived syngas cleanup via tar and hydrocarbons reforming was one of the key technology advancements as part of that research. The process described in this report evaluates a new technology area with downstream utilization of clean biomass-syngas for the production of high octane hydrocarbon products through a methanol intermediate, i.e., dehydration of methanol to dimethyl ether (DME) which subsequently undergoes homologation to high octane hydrocarbon products.

  13. A historical analysis of the co-evolution of gasoline octane number and spark-ignition engines

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Splitter, Derek A.; Pawlowski, Alex E.; Wagner, Robert M.

    2016-01-06

    In our work, the authors reviewed engine, vehicle, and fuel data since 1925 to examine the historical and recent coupling of compression ratio and fuel antiknock properties (i.e., octane number) in the U.S. light-duty vehicle market. The analysis identified historical timeframes, trends, and illustrated how three factors: consumer preferences, technical capabilities, and regulatory legislation, affect personal mobility. Data showed that throughout history these three factors have a complex and time sensitive interplay. Long term trends in the data were identified where interaction and evolution between all three factors was observed. Transportation efficiency per unit power (gal/ton-mi/hp) was found to bemore » a good metric to integrate technical, societal, and regulatory effects into the evolutional pathway of personal mobility. From this framework, discussions of future evolutionary changes to personal mobility are also presented.« less

  14. A Detailed Chemical Kinetic Reaction Mechanism for n-Alkane Hydrocarbons From n-Octane to n-Hexadecane

    SciTech Connect (OSTI)

    Westbrook, C K; Pitz, W J; Herbinet, O; Curran, H J; Silke, E J

    2008-02-08

    Detailed chemical kinetic reaction mechanisms have been developed to describe the pyrolysis and oxidation of nine n-alkanes larger than n-heptane, including n-octane (n-C{sub 8}H{sub 18}), n-nonane (n-C{sub 9}H{sub 20}), n-decane (n-C{sub 10}H{sub 22}), n-undecane (n-C{sub 11}H{sub 24}), n-dodecane (n-C{sub 12}H{sub 26}), n-tridecane (n-C{sub 13}H{sub 28}), n-tetradecane (n-C{sub 14}H{sub 30}), n-pentadecane (n-C{sub 15}H{sub 32}), and n-hexadecane (n-C{sub 16}H{sub 34}). These mechanisms include both high temperature and low temperature reaction pathways. The mechanisms are based on our previous mechanisms for the primary reference fuels n-heptane and iso-octane, using the reaction class mechanism construction first developed for n-heptane. Individual reaction class rules are as simple as possible in order to focus on the parallelism between all of the n-alkane fuels included in the mechanisms, and these mechanisms will be refined further in the future to incorporate greater levels of accuracy and predictive capability. These mechanisms are validated through extensive comparisons between computed and experimental data from a wide variety of different sources. In addition, numerical experiments are carried out to examine features of n-alkane combustion in which the detailed mechanisms can be used to compare reactivities of different n-alkane fuels. The mechanisms for all of these n-alkanes are presented as a single detailed mechanism, which can be edited to produce efficient mechanisms for any of the n-alkanes included, and the entire mechanism, with supporting thermochemical and transport data, together with an explanatory glossary explaining notations and structural details, will be available for download from our web page.

  15. Conceptual process design and economics for the production of high-octane gasoline blendstock via indirect liquefaction of biomass through methanol/dimethyl ether intermediates

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tan, Eric C. D.; Talmadge, Michael; Dutta, Abhijit; Hensley, Jesse; Snowden-Swan, Lesley J.; Humbird, David; Schaidle, Joshua; Biddy, Mary

    2015-10-28

    This paper describes in detail one potential conversion process for the production of high-octane gasoline blendstock via indirect liquefaction of biomass. The processing steps of this pathway include the conversion of biomass to synthesis gas via indirect gasification, gas clean-up via reforming of tars and other hydrocarbons, catalytic conversion of syngas to methanol, methanol dehydration to dimethyl ether (DME), and the homologation of DME over a zeolite catalyst to high-octane gasoline-range hydrocarbon products. The current process configuration has similarities to conventional methanol-to-gasoline (MTG) technologies, but there are key distinctions, specifically regarding the product slate, catalysts, and reactor conditions. A techno-economicmore » analysis is performed to investigate the production of high-octane gasoline blendstock. The design features a processing daily capacity of 2000 tonnes (2205 short tons) of dry biomass. The process yields 271 liters of liquid fuel per dry tonne of biomass (65 gal/dry ton), for an annual fuel production rate of 178 million liters (47 MM gal) at 90% on-stream time. The estimated total capital investment for an nth-plant is $438 million. The resulting minimum fuel selling price (MFSP) is $0.86 per liter or $3.25 per gallon in 2011 US dollars. A rigorous sensitivity analysis captures uncertainties in costs and plant performance. Sustainability metrics for the conversion process are quantified and assessed. The potential premium value of the high-octane gasoline blendstock is examined and found to be at least as competitive as fossil-derived blendstocks. A simple blending strategy is proposed to demonstrate the potential for blending the biomass-derived blendstock with petroleum-derived intermediates. Published 2015. This article is a U.S. Government work and is in the public domain in the USA. Biofuels, Bioproducts and Biorefining published by Society of Industrial Chemistry and John Wiley & Sons Ltd.« less

  16. Conceptual process design and economics for the production of high-octane gasoline blendstock via indirect liquefaction of biomass through methanol/dimethyl ether intermediates

    SciTech Connect (OSTI)

    Tan, Eric C. D.; Talmadge, Michael; Dutta, Abhijit; Hensley, Jesse; Snowden-Swan, Lesley J.; Humbird, David; Schaidle, Joshua; Biddy, Mary

    2015-10-28

    This paper describes in detail one potential conversion process for the production of high-octane gasoline blendstock via indirect liquefaction of biomass. The processing steps of this pathway include the conversion of biomass to synthesis gas via indirect gasification, gas clean-up via reforming of tars and other hydrocarbons, catalytic conversion of syngas to methanol, methanol dehydration to dimethyl ether (DME), and the homologation of DME over a zeolite catalyst to high-octane gasoline-range hydrocarbon products. The current process configuration has similarities to conventional methanol-to-gasoline (MTG) technologies, but there are key distinctions, specifically regarding the product slate, catalysts, and reactor conditions. A techno-economic analysis is performed to investigate the production of high-octane gasoline blendstock. The design features a processing daily capacity of 2000 tonnes (2205 short tons) of dry biomass. The process yields 271 liters of liquid fuel per dry tonne of biomass (65 gal/dry ton), for an annual fuel production rate of 178 million liters (47 MM gal) at 90% on-stream time. The estimated total capital investment for an nth-plant is $438 million. The resulting minimum fuel selling price (MFSP) is $0.86 per liter or $3.25 per gallon in 2011 US dollars. A rigorous sensitivity analysis captures uncertainties in costs and plant performance. Sustainability metrics for the conversion process are quantified and assessed. The potential premium value of the high-octane gasoline blendstock is examined and found to be at least as competitive as fossil-derived blendstocks. A simple blending strategy is proposed to demonstrate the potential for blending the biomass-derived blendstock with petroleum-derived intermediates. Published 2015. This article is a U.S. Government work and is in the public domain in the USA. Biofuels, Bioproducts and Biorefining published by Society of Industrial Chemistry and John Wiley & Sons Ltd.

  17. A Detailed Chemical Kinetic Reaction Mechanism for n-Alkane Hydrocarbons from n-Octane to n-Hexadecane

    SciTech Connect (OSTI)

    Westbrook, C K; Pitz, W J; Herbinet, O; Silke, E J; Curran, H J

    2007-09-25

    Detailed chemical kinetic reaction mechanisms have been developed to describe the pyrolysis and oxidation of the n-alkanes, including n-octane (n-C{sub 8}H{sub 18}), n-nonane (n-C{sub 9}H{sub 20}), n-decane (n-C{sub 10}H{sub 22}), n-undecane (n-C{sub 11}H{sub 24}), n-dodecane (n-C{sub 12}H{sub 26}), n-tridecane (n-C{sub 13}H{sub 28}), n-tetradecane (n-C{sub 14}H{sub 30}), n-pentadecane (n-C{sub 15}H{sub 32}), and n-hexadecane (n-C{sub 16}H{sub 34}). These mechanisms include both high temperature and low temperature reaction pathways. The mechanisms are based on previous mechanisms for n-heptane, using the same reaction class mechanism construction developed initially for n-heptane. Individual reaction class rules are as simple as possible in order to focus on the parallelism between all of the n-alkane fuels included in the mechanisms, and there is an intent to develop these mechanisms further in the future to incorporate greater levels of accuracy and predictive capability. Several of these areas for improvement are identified and explained in detail. These mechanisms are validated through comparisons between computed and experimental data from as many different sources as possible. In addition, numerical experiments are carried out to examine features of n-alkane combustion in which the detailed mechanisms can be used to compare processes in all of the n-alkane fuels. The mechanisms for all of these n-alkanes are presented as a single detailed mechanism, which can be edited to produce efficient mechanisms for any of the n-alkanes included, and the entire mechanism, with supporting thermochemical and transport data, together with an explanatory glossary explaining notations and structural details, will be available on our web page when the paper is accepted for publication.

  18. Experimental Investigation of Spark-Ignited Combustion with High-Octane Biofuels and EGR. 2. Fuel and EGR Effects on Knock-Limited Load and Speed

    SciTech Connect (OSTI)

    Splitter, Derek A; Szybist, James P

    2013-01-01

    The present study experimentally investigates spark-ignited combustion with 87 AKI E0 gasoline in its neat form and in midlevel alcohol gasoline blends with 24% vol/vol isobutanol gasoline (IB24) and 30% vol/vol ethanol gasoline (E30). A single-cylinder research engine is used with an 11.85:1 compression ratio, hydraulically actuated valves, laboratory intake air, and was capable of external exhaust gas recirculation (EGR). Experiments were conducted with all fuels to full-load conditions with = 1, using both 0% and 15% external-cooled EGR. Higher octane number biofuel blends exhibited increased stoichiometric torque capability at this compression ratio, where the unique properties of ethanol enabled a doubling of the stoichiometric torque capability with E30 as compared to that of 87AKI, up to 20 bar IMEPg (indicating mean effective pressure gross) at = 1. The results demonstrate that for all fuels, EGR is a key enabler for increasing engine efficiency but is less useful for knock mitigation with E30 than for 87AKI gasoline or IB24. Under knocking conditions, 15% EGR is found to offer 1 CA of CA50 timing advance with E30, whereas up to 5 CA of CA50 advance is possible with knock-limited 87AKI gasoline. Compared to 87AKI, both E30 and IB24 are found to have reduced adiabatic flame temperature and shorter combustion durations, which reduce knocking propensity beyond that indicated by the octane number. However, E30+0% EGR is found to exhibit the better antiknock properties than either 87AKI+15% EGR or IB24+15% EGR, expanding the knock limited operating range and engine stoichiometric torque capability at high compression ratio. Furthermore, the fuel sensitivity (S) of E30 was attributed to reduced speed sensitivity of E30, expanding the low-speed stoichiometric torque capability at high compression ratio. The results illustrate that intermediate alcohol gasoline blends exhibit exceptional antiknock properties and performance beyond that indicated by the octane number tests, particularly E30.

  19. A comprehensive detailed chemical kinetic reaction mechanism for combustion of n-alkane hydrocarbons from n-octane to n-hexadecane

    SciTech Connect (OSTI)

    Westbrook, Charles K.; Pitz, William J.; Herbinet, Olivier; Silke, Emma J.; Curran, Henry J.

    2009-01-15

    Detailed chemical kinetic reaction mechanisms have been developed to describe the pyrolysis and oxidation of nine n-alkanes larger than n-heptane, including n-octane (n-C{sub 8}H{sub 18}), n-nonane (n-C{sub 9}H{sub 20}), n-decane (n-C{sub 10}H{sub 22}), n-undecane (n-C{sub 11}H{sub 24}), n-dodecane (n-C{sub 12}H{sub 26}), n-tridecane (n-C{sub 13}H{sub 28}), n-tetradecane (n-C{sub 14}H{sub 30}), n-pentadecane (n-C{sub 15}H{sub 32}), and n-hexadecane (n-C{sub 16}H{sub 34}). These mechanisms include both high temperature and low temperature reaction pathways. The mechanisms are based on previous mechanisms for the primary reference fuels n-heptane and iso-octane, using the reaction classes first developed for n-heptane. Individual reaction class rules are as simple as possible in order to focus on the parallelism between all of the n-alkane fuels included in the mechanisms. These mechanisms are validated through extensive comparisons between computed and experimental data from a wide variety of different sources. In addition, numerical experiments are carried out to examine features of n-alkane combustion in which the detailed mechanisms can be used to compare reactivities of different n-alkane fuels. The mechanisms for these n-alkanes are presented as a single detailed mechanism, which can be edited to produce efficient mechanisms for any of the n-alkanes included, and the entire mechanism, with supporting thermochemical and transport data, together with an explanatory glossary explaining notations and structural details, is available for download from our web page. (author)

  20. Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbons via Indirect Liquefaction. Thermochemical Research Pathway to High-Octane Gasoline Blendstock Through Methanol/Dimethyl Ether Intermediates

    SciTech Connect (OSTI)

    Tan, Eric C. D.; Talmadge, Michael; Dutta, Abhijit; Hensley, Jesse; Schaidle, Josh; Biddy, Mary; Humbird, David; Snowden-Swan, Lesley J.; Ross, Jeff; Sexton, Danielle; Yap, Raymond; Lukas, John

    2015-03-01

    This report was developed as part of the U.S. Department of Energy’s Bioenergy Technologies Office’s (BETO’s) efforts to enable the development of technologies for the production of infrastructure-compatible, cost-competitive liquid hydrocarbon fuels from lignocellulosic biomass feedstocks. The research funded by BETO is designed to advance the state of technology of biomass feedstock supply and logistics, conversion, and overall system sustainability. It is expected that these research improvements will be made within the 2022 timeframe. As part of their involvement in this research and development effort, the National Renewable Energy Laboratory and the Pacific Northwest National Laboratory investigate the economics of conversion pathways through the development of conceptual biorefinery process models and techno-economic analysis models. This report describes in detail one potential conversion process for the production of high-octane gasoline blendstock via indirect liquefaction of biomass. The processing steps of this pathway include the conversion of biomass to synthesis gas or syngas via indirect gasification, gas cleanup, catalytic conversion of syngas to methanol intermediate, methanol dehydration to dimethyl ether (DME), and catalytic conversion of DME to high-octane, gasoline-range hydrocarbon blendstock product. The conversion process configuration leverages technologies previously advanced by research funded by BETO and demonstrated in 2012 with the production of mixed alcohols from biomass. Biomass-derived syngas cleanup via reforming of tars and other hydrocarbons is one of the key technology advancements realized as part of this prior research and 2012 demonstrations. The process described in this report evaluates a new technology area for the downstream utilization of clean biomass-derived syngas for the production of high-octane hydrocarbon products through methanol and DME intermediates. In this process, methanol undergoes dehydration to DME, which is subsequently converted via homologation reactions to high-octane, gasoline-range hydrocarbon products.

  1. Experimental Investigation of Spark-Ignited Combustion with High-Octane Biofuels and EGR. 1. Engine Load Range and Downsize Downspeed Opportunity

    SciTech Connect (OSTI)

    Splitter, Derek A; Szybist, James P

    2013-01-01

    The present study experimentally investigates spark-ignited combustion with 87 AKI E0 gasoline in its neat form and in midlevel alcohol gasoline blends with 24% vol/vol isobutanol gasoline (IB24) and 30% vol/vol ethanol gasoline (E30). A single-cylinder research engine was used with an 11.85:1 compression ratio, hydraulically actuated valves, laboratory intake air, and was capable of external exhaust gas recirculation (EGR). Experiments were conducted with all fuels to full-load conditions with = 1, using both 0% and 15% external cooled EGR. Higher octane number biofuel blends exhibited increased stoichiometric torque capability at this compression ratio, where the unique properties of ethanol enabled a doubling of the stoichiometric torque capability with E30 as compared to 87 AKI, up to 20 bar IMEPg (indicated mean effective pressure gross) at = 1. EGR provided thermodynamic advantages and was a key enabler for increasing engine efficiency for all fuel types. However, with E30, EGR was less useful for knock mitigation than gasoline or IB24. Torque densities with E30 with 15% EGR at = 1 operation were similar or better than a modern EURO IV calibration turbo-diesel engine. The results of the present study suggest that it could be possible to implement a 40% downsize + downspeed configuration (1.2 L engine) into a representative midsize sedan. For example, for a midsize sedan at a 65 miles/h cruise, an estimated fuel consumption of 43.9 miles per gallon (MPG) (engine out 102 g-CO2/km) could be achieved with similar reserve power to a 2.0 L engine with 87AKI (38.6 MPG, engine out 135 g-CO2/km). Data suggest that, with midlevel alcohol gasoline blends, engine and vehicle optimization can offset the reduced fuel energy content of alcohol gasoline blends and likely reduce vehicle fuel consumption and tailpipe CO2 emissions.

  2. Dehydrogenation links LPG to more octanes

    SciTech Connect (OSTI)

    Gussow, S.; Spence, D.C.; White, E.A.

    1980-01-01

    Air Products and Chemicals Inc.'s Houdry Catofin process, a new application of well-known Houdry catalytic dehydrogenation technology, is an adiabatic, fixed-bed, multireactor catalytic process which produces propylene, isobutylene, and mixed n-butylenes by dehydrogenation of the corresponding saturates. The process is very flexible in that propylene, isobutylene, and mixed n-butylenes can be produced either separately or simultaneously from the corresponding saturates. The process will be used to prepare purity propylene at a Morelos, Mex., plant, which is now in the engineering stage. Five variations of the procedure for producing propylene; methyl tert.-butyl ether; propylene and alkylate; methyl tert.-butyl ether and alkylate; and methyl tert.-butyl ether, alkylate, and 1-butylene are compared with respect to typical product yields, costs and values for process economics, the dehydrogenation route to the three products, manufacturing costs, the sensitivity of return on investment to feedstock costs, and the return on investment, which varies from a low of 11.5% for the third case to a high of 14.4% for the fourth case. The Catofin process is discussed.

  3. High Octane Fuels Can Make Better use of Renewable Transportation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... with future high compression, downspeeded engine achieves 28.5 mpg. 12 Managed by ... Fuel Economy and GHG * Increased Ethanolbiofuel Utilization * High Performance Vehicles ...

  4. An Experimental Investigation of Low Octane Gasoline in Diesel Engines

    Broader source: Energy.gov [DOE]

    Presentation given at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010.

  5. An Experimental Investigation of Low Octane Gasoline in Diesel...

    Broader source: Energy.gov (indexed) [DOE]

    Enable Low Temperature Combustion High-Efficiency, Ultra-Low Emission Combustion in a Heavy-Duty Engine via Fuel ... of Two-Stage Combustion in Low-Emissions Diesel Engines

  6. Centro de Energas Renovables (CER) | Open Energy Information

    Open Energy Info (EERE)

    para invertir en energas renovables En septiembre Ernst &38; Young lanz el Renewable energy country attractiveness index - 2015, que posiciona a Chile en el nmero...

  7. Centro de Energas Renovables (CER) Feed | Open Energy Information

    Open Energy Info (EERE)

    International Institute for Sustainable Development (IISD) International Renewable Energy Agency (IRENA) Joint Implementation Network (JIN) Kumasi Institute of Technology and...

  8. Centro de Energas Renovables (CER) | Open Energy Information

    Open Energy Info (EERE)

    Failed to load RSS feed from http:cifes.gob.clfeed: Error fetching URL: Operation timed out after 5000 milliseconds with 6279 bytes received...

  9. Centro de Energas Renovables (CER) en espaol | Open Energy...

    Open Energy Info (EERE)

    de barreras en la materializacin de proyectos. Promover y desarrollar una red de convenios y vnculos con centros e instituciones, a nivel nacional e internacional,...

  10. ORISE: Center for Epidemiologic Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Center for Epidemiologic Research (CER). CER has changed over time as worker health assessment needs have evolved. Since the early 1990s, CER researchers have concentrated on...

  11. High octane ethers from synthesis gas-derived alcohols. Quarterly technical progress report, April--June 1993

    SciTech Connect (OSTI)

    Klier, K.; Herman, R.G.; Menszak, J.; Johansson, M.A.; Feeley, O.C.; Kim, D.

    1993-07-01

    The results shown in Figures 10 and 11 demonstrate that the formation of butenes was very sensitive to the alcohol partial pressure. A small elevation of the alcohol pressure suppressed the formation of butenes rather drastically at both 90 and 117{degree}C. The synthesis rates of DME, MIBE, and MTBE ethers were not significantly affected at 90{degree}C, although there was a trend to increase the space time yield of DME as the alcohol pressure was increased. At the reaction temperature of 117{degree}C, all of the ethers showed increasing productivities as the pressure of the reactants was increased (Figure 11). An isotope labelling experiment was carried out to provide mechanistic insight into the manner in which methanol and isobutanol react together to form DME, MIBE, and MTBE ethers and to determine if MTBE were derived from MIBE.

  12. This Week In Petroleum Summary Printer-Friendly Version

    Gasoline and Diesel Fuel Update (EIA)

    the octane of the gasoline blendstock shipped from refineries has declined. The U.S. Environmental Protection Agency estimated that refiners are currently producing 84 octane...

  13. Well-to-Wheels Greenhouse Gas Emissions Analysis of High-Octane Fuels with Various Market Shares and Ethanol Blending Levels

    SciTech Connect (OSTI)

    Han, Jeongwoo; Elgowainy, Amgad; Wang, Michael; Divita, Vincent

    2015-07-14

    In this study, we evaluated the impacts of producing HOF with a RON of 100, using a range of ethanol blending levels (E10, E25, and E40), vehicle efficiency gains, and HOF market penetration scenarios (3.4% to 70%), on WTW petroleum use and GHG emissions. In particular, we conducted LP modeling of petroleum refineries to examine the impacts of different HOF production scenarios on petroleum refining energy use and GHG emissions. We compared two cases of HOF vehicle fuel economy gains of 5% and 10% in terms of MPGGE to baseline regular gasoline vehicles. We incorporated three key factors in GREET — (1) refining energy intensities of gasoline components for the various ethanol blending options and market shares, (2) vehicle efficiency gains, and (3) upstream energy use and emissions associated with the production of different crude types and ethanol — to compare the WTW GHG emissions of various HOF/vehicle scenarios with the business-as-usual baseline regular gasoline (87 AKI E10) pathway.

  14. A comparison of estimates of cost-effectiveness of alternative fuels and vehicles for reducing emissions

    SciTech Connect (OSTI)

    Hadder, G.R.

    1995-11-01

    The cost-effectiveness ratio (CER) is a measure of the monetary value of resources expended to obtain reductions in emissions of air pollutants. The CER can lead to selection of the most effective sequence of pollution reduction options. Derived with different methodologies and technical assumptions, CER estimates for alternative fuel vehicles (AFVs) have varied widely among pervious studies. In one of several explanations of LCER differences, this report uses a consistent basis for fuel price to re-estimate CERs for AFVs in reduction of emissions of criteria pollutants, toxics, and greenhouse gases. The re-estimated CERs for a given fuel type have considerable differences due to non-fuel costs and emissions reductions, but the CERs do provide an ordinal sense of cost-effectiveness. The category with CER less than $5,000 per ton includes compressed natural gas and ed Petroleum gas vehicles; and E85 flexible-fueled vehicles (with fuel mixture of 85 percent cellulose-derived ethanol in gasoline). The E85 system would be much less attractive if corn-derived ethanol were used. The CER for E85 (corn-derived) is higher with higher values placed on the reduction of gas emissions. CER estimates are relative to conventional vehicles fueled with Phase 1 California reformulated gasoline (RFG). The California Phase 2 RFG program will be implemented before significant market penetration by AFVs. CERs could be substantially greater if they are calculated incremental to the Phase 2 RFG program. Regression analysis suggests that different assumptions across studies can sometimes have predictable effects on the CER estimate of a particular AFV type. The relative differences in cost and emissions reduction assumptions can be large, and the effect of these differences on the CER estimate is often not predictable. Decomposition of CERs suggests that methodological differences can make large contributions to CER differences among studies.

  15. DOE 2014 Biomass Conference | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2014 Biomass Conference DOE 2014 Biomass Conference Breakout Session 1C-Fostering Technology Adoption I: Building the Market for Renewables with High Octane Fuels DOE 2014 Biomass Conference Jim Williams, Senior Manager, American Petroleum Institute PDF icon williams_biomass_2014.pdf More Documents & Publications High Octane Fuels Can Make Better Use of Renewable Transportation Fuels Underground Storage Tanks: New Fuels and Compatibility A Vehicle Manufacturer's Perspective on Higher-Octane

  16. Propane Vehicle Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The driving range for dedicated and bi-fuel vehicles is also comparable. Extra storage tanks ... Propane's high octane rating and low carbon and oil contamination characteristics have ...

  17. Table Definitions, Sources, and Explanatory Notes

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Octane Rating A number used to indicate gasoline's antiknock performance in motor vehicle engines. The two recognized laboratory engine test methods for determining the antiknock ...

  18. End Use and Fuel Certification | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuels Market Opportunities High Octane Fuels Can Make Better Use of Renewable Transportation Fuels Making Better Use of Ethanol as a Transportation Fuel With "Renewable Super ...

  19. Worcester, Massachusetts: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Registered Energy Companies in Worcester, Massachusetts BiOctane Biomass Combustion Systems Inc Mass Megawatts Wind Power Inc ThermoEnergy Corporation References US...

  20. Introduction

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... 2019 - to less than 5 per gallon algal biofuel by 2019. - STATUS: Awards anticipated ... at Increasing Scale * Fuel Testing and Engine Development for High Octane Fuels * 2015 ...

  1. Increasing LTC Engine Efficiency by Reducing Pressure-Oscillation...

    Broader source: Energy.gov (indexed) [DOE]

    losses from pressure oscillation can increase low-temperature combustion engine efficiency. ... Investigation of Low Octane Gasoline in Diesel Engines The Next ICE Age

  2. High Thermal Efficiency and Low Emissions with Supercritical...

    Broader source: Energy.gov (indexed) [DOE]

    Gasoline Injection-Ignition in a Light Duty Engine An Experimental Investigation of Low Octane Gasoline in Diesel Engines Low Temperature Combustion Demonstrator for High ...

  3. Fuel Effects on Low Temperature Combustion in a Light-Duty Diesel...

    Broader source: Energy.gov (indexed) [DOE]

    of fuel properties on engine out emissions and performance of low temperature premixed compression ... An Experimental Investigation of Low Octane Gasoline in Diesel ...

  4. DOE 2014 Biomass Conference | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Octane Fuels DOE 2014 Biomass Conference Jim Williams, Senior Manager, American Petroleum Institute PDF icon williamsbiomass2014.pdf More Documents & Publications High ...

  5. untitled

    Gasoline and Diesel Fuel Update (EIA)

    ... Octane Rating: A number used to indicate gasoline's antiknock performance in motor vehicle engines. The two recognized laboratory engine test methods for determining the antiknock ...

  6. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... of syngas to methanol, methanol dehydration to dimethyl ether (DME), and the homologation of DME over a zeolite catalyst to high-octane gasoline-range hydrocarbon products. ...

  7. Table Definitions, Sources, and Explanatory Notes

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    antiknock performance in motor vehicle engines. The two recognized laboratory engine test methods for determining the antiknock rating, i.e., octane rating, of gasolines are the...

  8. Comparative Study on Exhaust Emissions from Diesel-and CNG-powered...

    Office of Scientific and Technical Information (OSTI)

    ... Thanks to its characteristics, this gas is compatible with current alternative engines (octane number above 110, mass thermal power 10% above Diesel fuels). The main implementation ...

  9. DOE - Office of Legacy Management -- Project Rio Blanco - CO...

    Office of Legacy Management (LM)

    cooperative research effort undertaken in 1973 between CER Geonuclear Corp, Continental Oil Co (Conoco), and the US Energy Research and Development Administration Nevada Operations ...

  10. Santiago, Chile: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    (CER) Registered Energy Companies in Santiago, Chile Ecopower Chile Invener Servicios Eolicos S A Transworld References http:www.geonames.org3871336santiago.html...

  11. German Aerospace Center (DLR)Feed | Open Energy Information

    Open Energy Info (EERE)

    (CER) The Children's Investment Fund Foundation (CIFF) Climate and Development Knowledge Network (CDKN) Climate Technology Initiative (CTI) ClimateWorks Foundation Coalition...

  12. Advocate newsletter - April 2015 for webpage.indd

    Office of Environmental Management (EM)

    very busy school schedules. At Oak Ridge High School, Aditya is an offi cer of the International Relations Club. He attended the North American Invitational Model United...

  13. Biopower Tool Webinar | Open Energy Information

    Open Energy Info (EERE)

    of Energy, Centro de Energas Renovables (CER) Sector: Energy Focus Area: Biomass, - Biofuels Resource Type: Maps, Training materials, Webinar References: Biopower Tool Webinar1...

  14. Las Vegas, Nevada: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Renewable Powertech Inc Summit Energy Ventures LLC UNLV Center for Energy Research CER VAWT Industries Inc References US Census Bureau Incorporated place and minor civil...

  15. RNK Capital LLC | Open Energy Information

    Open Energy Info (EERE)

    Wilmington, Delaware Zip: 19808 Sector: Renewable Energy Product: RNK intends to invest money in the purchase of CERs to be delivered during the 2008-2012 commitment period...

  16. SI Engine Trends: A Historical Analysis with Future Projections

    SciTech Connect (OSTI)

    Pawlowski, Alexander; Splitter, Derek A

    2015-01-01

    It is well known that spark ignited engine performance and efficiency is closely coupled to fuel octane number. The present work combines historical and recent trends in spark ignition engines to build a database of engine design, performance, and fuel octane requirements over the past 80 years. The database consists of engine compression ratio, required fuel octane number, peak mean effective pressure, specific output, and combined unadjusted fuel economy for passenger vehicles and light trucks. Recent trends in engine performance, efficiency, and fuel octane number requirement were used to develop correlations of fuel octane number utilization, performance, specific output. The results show that historically, engine compression ratio and specific output have been strongly coupled to fuel octane number. However, over the last 15 years the sales weighted averages of compression ratios, specific output, and fuel economy have increased, while the fuel octane number requirement has remained largely unchanged. Using the developed correlations, 10-year-out projections of engine performance, design, and fuel economy are estimated for various fuel octane numbers, both with and without turbocharging. The 10-year-out projection shows that only by keeping power neutral while using 105 RON fuel will allow the vehicle fleet to meet CAFE targets if only the engine is relied upon to decrease fuel consumption. If 98 RON fuel is used, a power neutral fleet will have to reduce vehicle weight by 5%.

  17. Underground Storage Tanks: New Fuels and Compatibility

    Broader source: Energy.gov [DOE]

    Breakout Session 1C—Fostering Technology Adoption I: Building the Market for Renewables with High Octane Fuels Underground Storage Tanks: New Fuels and Compatibility Ryan Haerer, Program Analyst, Alternative Fuels, Office of Underground Storage Tanks, Environmental Protection Agency

  18. Aleksandr Fridlyand | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Iso-Octane Mixtures." J Propuls Power, 29, 732-43 (2013). (online) A. Fridlyand, P.T. Lynch, R.S. Tranter, K Brezinsky, "Single Pulse Shock Tube Study of Allyl Radical...

  19. Biofuels National Strategic Benefits Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... metrics for various portfolios of biofuel supply pathways Task B: Assess Potential ... Could a high-octane, mid-level ethanol blend paired with an optimized engine be more ...

  20. Novel anisole mixture and gasoline containing the same

    DOE Patents [OSTI]

    Singerman, Gary M.

    1982-01-26

    A novel anisole mixture containing anisole and a mixture of alkyl anisoles and liquid hydrocarbon fuels containing said novel anisole mixture in an amount sufficient to increase the octane number of said liquid fuel composition.

  1. EIA-878 Motor Gasoline Price Survey - Reference Guide

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Price Survey (EIA-878), prices are collected for the following gasoline grades as defined by octane rating and ethanol content (ranging from no ethanol through up to 10% ethanol). ...

  2. ORAU/ORISE Bibliography of 2007 Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Prepared for the U.S. Department of Energy Office of Health, Safety and Security, Office of Illness and Injury Prevention Programs. ORISE-07-OEWH-1210-GG. September 2007. 7 CER. ...

  3. untitled

    U.S. Energy Information Administration (EIA) Indexed Site

    resellersretailers responding to EIA-782B, W i,h is inversely proportional to the probability of inclusion. For all cer- tainty units W i,h 1. The certainty units are all...

  4. Peru-World Bank Climate Projects | Open Energy Information

    Open Energy Info (EERE)

    will come from the sale of CERs of greenhouse gases created by the combustion of methane, which makes up approximately 50 percent of the LFG. Finally, the second component is...

  5. REMS submittal notice 2015

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Be sure to use the secure data file submittal web page at: https:apps.orau.govCER... Color photographs and graphic images are encouraged, and selected images will be included ...

  6. Elk River Municipal Utilities- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    In order to receive rebates for appliances, rebate application must be jointly filled out with appliance dealer. Installation of central A/C and heat pumps must be done by a pre-approved HVAC-cer...

  7. Clean Air Trade Inc | Open Energy Information

    Open Energy Info (EERE)

    a company specialising in CER purchase as well as project development and investment in clean energy. References: Clean Air Trade Inc1 This article is a stub. You can help OpenEI...

  8. BWXTymes, April 2005, Y-12 National Security Complex newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    APRIL 2005 A newsletter for the employees and friends of the Y-12 National Security Complex NNSA authorizes restart of key Y-12 facility Process is fi nal step to full production operations Organizational changes board announced New offi cers and board members for the Y-12 Employees' Society have been elected. Offi cers * President-Thomas Watson, Manufacturing * Vice President-Ala Montgomery, Facilities, Infrastructure and Services * Secretary-Sue Toler, Public Affairs and Communications *

  9. ORISE: Center for Epidemiologic Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center for Epidemiologic Research The Oak Ridge Institute for Science and Education (ORISE) has been building its capability in epidemiology since 1978. Early ORISE studies of mortality among U.S. Department of Energy (DOE) nuclear workers led researchers to develop increasing expertise in epidemiologic research, occupational health studies and DOE worker populations. ORISE's researchers and skills coalesced into an operating unit that became the Center for Epidemiologic Research (CER). CER has

  10. Emissions with butane/propane blends

    SciTech Connect (OSTI)

    1996-11-01

    This article reports on various aspects of exhaust emissions from a light-duty car converted to operate on liquefied petroleum gas and equipped with an electrically heated catalyst. Butane and butane/propane blends have recently received attention as potentially useful alternative fuels. Butane has a road octane number of 92, a high blending vapor pressure, and has been used to upgrade octane levels of gasoline blends and improve winter cold starts. Due to reformulated gasoline requirements for fuel vapor pressure, however, industry has had to remove increasing amounts of butane form the gasoline pool. Paradoxically, butane is one of the cleanest burning components of gasoline.

  11. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    June 2015 Alcohol. The family name of a group of organic chemical compounds composed of carbon, hydrogen, and oxygen. The series of molecules vary in chain length and are composed of a hydrocarbon plus a hydroxyl group; CH3-(CH2)n-OH (e.g., methanol, ethanol, and tertiary butyl alcohol). Alkylate. The product of an alkylation reaction. It usually refers to the high octane product from alkylation units. This alkylate is used in blending high octane gasoline. Alkylation. A refning process for

  12. Protecting Public Health through Cleaner Fuels and Lower Emissions

    Broader source: Energy.gov [DOE]

    Reuben Sarkar, the Energy Department’s (DOE’s) Deputy Assistant Secretary for Sustainable Transportation, will take part in an Environmental and Energy Study Institute panel on the health and environmental benefits of cleaner octane sources in fuel, “Protecting Public Health through Cleaner Fuels and Lower Emissions.” Mr. Sarkar will speak on DOE’s Co-Optimization of Fuels and Engines (Co-Optima) program; this multi-year initiative aims to reduce petroleum consumption by 30% beyond currently mandated engine efficiency measures by 2030 through the co-optimization of new advanced high octane fuels and engines.

  13. Petroleum Supply Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    0 January 2016 Alcohol. The family name of a group of organic chemical compounds composed of carbon, hydrogen, and oxygen. The series of molecules vary in chain length and are composed of a hydrocarbon plus a hydroxyl group; CH3-(CH2)n-OH (e.g., methanol, ethanol, and tertiary butyl alcohol). Alkylate. The product of an alkylation reaction. It usually refers to the high octane product from alkylation units. This alkylate is used in blending high octane gasoline. Alkylation. A refning process for

  14. Process and catalyst for converting synthesis gas to liquid hydrocarbon mixture

    DOE Patents [OSTI]

    Rao, V. Udaya S.; Gormley, Robert J.

    1987-01-01

    Synthesis gas containing CO and H.sub.2 is converted to a high-octane hydrocarbon liquid in the gasoline boiling point range by bringing the gas into contact with a heterogeneous catalyst including, in physical mixture, a zeolite molecular sieve, cobalt at 6-20% by weight, and thoria at 0.5-3.9% by weight. The contacting occurs at a temperature of 250.degree.-300.degree. C., and a pressure of 10-30 atmospheres. The conditions can be selected to form a major portion of the hydrocarbon product in the gasoline boiling range with a research octane of more than 80 and less than 10% by weight aromatics.

  15. Multi-cylinder axial stratified charging studied

    SciTech Connect (OSTI)

    Not Available

    1982-05-01

    Charge stratification can be obtained inside a noncylindrical combustion chamber of a fuel injected multi-cylinder engine by properly timing the injection event, directing the fuel spray into the inlet port, and imparting swirl to the inlet charge. A production 1.8-liter engine modified to operate as an axially stratified-charge engine showed 50% improvement in combustion stability, 3.5% lower fuel consumption, five research octane number lower octane requirement, and increased tolerance to dilute mixtures when compared with an unmodified engine.

  16. Distributed ignition method and apparatus for a combustion engine

    DOE Patents [OSTI]

    Willi, Martin L.; Bailey, Brett M.; Fiveland, Scott B.; Gong, Weidong

    2006-03-07

    A method and apparatus for operating an internal combustion engine is provided. The method comprises the steps of introducing a primary fuel into a main combustion chamber of the engine, introducing a pilot fuel into the main combustion chamber of the engine, determining an operating load of the engine, determining a desired spark plug ignition timing based on the engine operating load, and igniting the primary fuel and pilot fuel with a spark plug at the desired spark plug ignition timing. The method is characterized in that the octane number of the pilot fuel is lower than the octane number of the primary fuel.

  17. Rehabilitation program eyed for big gas field in China

    SciTech Connect (OSTI)

    Not Available

    1992-06-01

    CER Corp., Las Vegas, has recommended a rehabilitation program it believes could boost deliverability by 20% in a major gas field in China. This paper reports that the recommendations resulted from a 4 year, multimillion dollar study of Weiyuan field in Central China's Sichuan province. Sichuan province is China's major gas producing province, with current flow of about 671 MMcfd and potential recovery pegged at 280 tcf. China's government recently announced a shift in its exploration and development emphasis to natural gas (OGJ, Jan. 6, p. 30). Funded by World Bank, CER's study found that a workover program, infill drilling, and wellbore dewatering program could significantly increase reserves.

  18. Nonlinear effects of stretch on the flame front propagation

    SciTech Connect (OSTI)

    Halter, F.; Tahtouh, T.; Mounaim-Rousselle, C. [Institut PRISME, Universite d'Orleans, 8 rue Leonard de Vinci, 45072 Orleans Cedex 2 (France)

    2010-10-15

    In all experimental configurations, the flames are affected by stretch (curvature and/or strain rate). To obtain the unstretched flame speed, independent of the experimental configuration, the measured flame speed needs to be corrected. Usually, a linear relationship linking the flame speed to stretch is used. However, this linear relation is the result of several assumptions, which may be incorrected. The present study aims at evaluating the error in the laminar burning speed evaluation induced by using the traditional linear methodology. Experiments were performed in a closed vessel at atmospheric pressure for two different mixtures: methane/air and iso-octane/air. The initial temperatures were respectively 300 K and 400 K for methane and iso-octane. Both methodologies (linear and nonlinear) are applied and results in terms of laminar speed and burned gas Markstein length are compared. Methane and iso-octane were chosen because they present opposite evolutions in their Markstein length when the equivalence ratio is increased. The error induced by the linear methodology is evaluated, taking the nonlinear methodology as the reference. It is observed that the use of the linear methodology starts to induce substantial errors after an equivalence ratio of 1.1 for methane/air mixtures and before an equivalence ratio of 1 for iso-octane/air mixtures. One solution to increase the accuracy of the linear methodology for these critical cases consists in reducing the number of points used in the linear methodology by increasing the initial flame radius used. (author)

  19. Petroleum: An energy profile, 1999

    SciTech Connect (OSTI)

    1999-07-01

    This report prepared by the Energy Information Administration covers the following topics: petroleum production and end-use sectors; resources and reserves; exploration and production; LPG sources and processing; motor gasoline octane enhancement; constructing pipelines; the strategic petroleum reserve; imports and exports; marketing; district descriptions and maps; and refinery processes and facilities. 33 figs., 7 tabs.

  20. Characterization of leaded fuel needs and use Task 2 topical report

    SciTech Connect (OSTI)

    Not Available

    1985-02-01

    This topical report is structured around the Statement-of-Work for the DOE/EPA IAG. This includes a discussion of the users of leaded fuel, valve recession and octane, alternatives to leaded fuel and geographical distribution of leaded fuel sales.

  1. Combustion Targets for Low Emissions and High Efficiency | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters PDF icon 2005_deer_ryan.pdf More Documents & Publications Diesel Engine Alternatives An Experimental Investigation of Low Octane Gasoline in Diesel Engines SwRI's HEDGE Technology for High Efficiency, Low Emissions Gasoline Engines

  2. Use of Cost Estimating Relationships

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    Cost Estimating Relationships (CERs) are an important tool in an estimator's kit, and in many cases, they are the only tool. Thus, it is important to understand their limitations and characteristics. This chapter discusses considerations of which the estimator must be aware so the Cost Estimating Relationships can be properly used.

  3. Lessons Learned Quarterly Report, June 2005

    Broader source: Energy.gov [DOE]

    Welcome to the 43rd quarterly report on lessons learned in the NEPA process. In this issue we take a look at our hard-working NEPA Compliance Officers, who share bits of wisdom (and a little humor) gained from their lessons learned implementing NEPA. Countless thanks to all NCOs for their dedication, flexibility, and perseverance.

  4. Nitrided iron catalysts for the Fischer-Tropsch synthesis in the eighties

    SciTech Connect (OSTI)

    Anderson, R.B.

    1980-01-01

    A survey covers the preparation and structure of nitrided iron catalysts and their activity, selectivity, and stability for the reaction of synthesis gas in comparison with iron catalysts pretreated by various other methods, as measured in laboratory reactors; a comparison of product distributions obtained in fluidized-bed, slurry, and oil-circulation fixed bed pilot plants with nitrided catalysts and by the Kellogg entrained catalyst process SASOL, which uses a reduced iron catalyst; and possible methods for refining the Fischer-Tropsch products from nitrided iron catalysts for producing gasoline, including bauxite treatment, the Mobil process for converting oxygenates to high-octane gasoline and C/sub 3/-C/sub 4/ olefins, and an alkylation-polymerization process for converting the C/sub 3/-C/sub 4/ fraction to high-octane blending stocks.

  5. High Temperature Chemical Kinetic Combustion Modeling of Lightly Methylated Alkanes

    SciTech Connect (OSTI)

    Sarathy, S M; Westbrook, C K; Pitz, W J; Mehl, M

    2011-03-01

    Conventional petroleum jet and diesel fuels, as well as alternative Fischer-Tropsch (FT) fuels and hydrotreated renewable jet (HRJ) fuels, contain high molecular weight lightly branched alkanes (i.e., methylalkanes) and straight chain alkanes (n-alkanes). Improving the combustion of these fuels in practical applications requires a fundamental understanding of large hydrocarbon combustion chemistry. This research project presents a detailed high temperature chemical kinetic mechanism for n-octane and three lightly branched isomers octane (i.e., 2-methylheptane, 3-methylheptane, and 2,5-dimethylhexane). The model is validated against experimental data from a variety of fundamental combustion devices. This new model is used to show how the location and number of methyl branches affects fuel reactivity including laminar flame speed and species formation.

  6. Co-Optimization of Fuels and Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Co-Optimization of Fuels and Vehicles Co-Optimization of Fuels and Vehicles Plenary IV: Fuels of the Future: Accelerating the Co-Optimization of Fuels and Engines Co-Optimization of Fuels and Vehicles James E. Anderson, Technical Expert, Ford Motor Company PDF icon anderson_bioenergy_2015.pdf More Documents & Publications A Vehicle Manufacturer's Perspective on Higher-Octane Fuels Co-Optima Stakeholder Listening Day Summary Report Co-Optimization of Fuels and Vehicles Chapter 8 - Advancing

  7. Vehicle Certification Test Fuel and Ethanol Flex Fuel Quality | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Vehicle Certification Test Fuel and Ethanol Flex Fuel Quality Vehicle Certification Test Fuel and Ethanol Flex Fuel Quality Breakout Session 2: Frontiers and Horizons Session 2-B: End Use and Fuel Certification Paul Machiele, Center Director for Fuel Programs, Office of Transportation & Air Quality, U.S. Environmental Protection Agency PDF icon b13_machiele_2-b.pdf More Documents & Publications High Octane Fuels Can Make Better Use of Renewable Transportation Fuels The

  8. Increasing Biofuel Deployment and Utilization through Development of Renewable Super Premium: Infrastructure Assessment

    SciTech Connect (OSTI)

    Moriarty, K.; Kass, M.; Theiss, T.

    2014-11-01

    A high octane fuel and specialized vehicle are under consideration as a market opportunity to meet federal requirements for renewable fuel use and fuel economy. Infrastructure is often cited as a barrier for the introduction of a new fuel. This report assesses infrastructure readiness for E25 (25% ethanol; 75% gasoline) and E25+ (more than 25% ethanol). Both above-ground and below-ground equipment are considered as are the current state of stations, codes and regulations, and materials compatibility.

  9. Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Maximizing Alternative Fuel Vehicle Efficiency Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency Besides their energy security and environmental benefits, many alternative fuels such as biodiesel, ethanol, and natural gas have unique chemical properties that offer advantages to drivers. These properties can include higher octane ratings and cetane numbers than conventional petroleum-based fuels, which can help an engine run more smoothly.

  10. Fuel from Waste Helps Power Two Tribes | Department of Energy

    Energy Savers [EERE]

    Department of Energy Fuel Economy and Emmissions of the Ethanol-Optimized Saab 9-5 Biopower Fuel Economy and Emmissions of the Ethanol-Optimized Saab 9-5 Biopower This page contains information on the recently released BioPower engines. PDF icon analysis_saab2007.pdf More Documents & Publications Enabling High Efficiency Ethanol Engines Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle Technologies Program (VTP) (Fact Sheet) The Impact of Low Octane Hydrocarbon Blending

  11. Justin B. Sluiter | Bioenergy | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Justin B. Sluiter Justin B. Sluiter Biomass Analyst Justin.Sluiter@nrel.gov | 303-384-6347 Research Interests Justin B. Sluiter started at the National Renewable Energy Laboratory (NREL) in 1996, working on a lignin utilization project aimed at catalytic conversion of lignin into a high-octane fuel additive. He also assisted with developing a metal oxide sensor array that would detect volatile organic compounds for indoor air-quality monitoring. At the end of that project, Sluiter began working

  12. Fuel Economy and Emmissions of the Ethanol-Optimized Saab 9-5 Biopower |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Fuel Economy and Emmissions of the Ethanol-Optimized Saab 9-5 Biopower Fuel Economy and Emmissions of the Ethanol-Optimized Saab 9-5 Biopower This page contains information on the recently released BioPower engines. PDF icon analysis_saab2007.pdf More Documents & Publications Enabling High Efficiency Ethanol Engines Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle Technologies Program (VTP) (Fact Sheet) The Impact of Low Octane Hydrocarbon Blending

  13. Rigid bifunctional chelating agents

    DOE Patents [OSTI]

    Sweet, Mark P. (Coram, NY); Mease, Ronnie C. (Fairfax, VA); Srivastava, Suresh C. (Setauket, NY)

    1998-07-21

    Bicyclo2.2.2! octane-2,3 diamine-N,N,N',N'-tetraacetic acids (BODTA) and bicyclo2.2.1! heptane-2,3 diamine-N,N,N',N'-tetraacetic acid (BHDTA) are chelating agents useful in forming detectably labeled bioconjugate compounds for diagnostic and therapeutic purposes. New compounds and processes of forming BODTA and BHDTA are disclosed. Radioimmunoconjugates of the present invention show high and prolonged tumor uptake with low normal tissue uptakes.

  14. New Analysis Methods Estimate a Critical Property of Ethanol Fuel Blends (Fact Sheet), Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Methods developed at NREL disclose the impact of ethanol on gasoline blend heat of vaporization with potential for improved efficiency of spark-ignition engines. More stringent standards for fuel economy, regulation of greenhouse gas emissions, and the mandated increase in the use of renew- able fuel are driving research to improve the efficiency of spark ignition engines. When fuel properties such as octane number and evaporative cooling (heat of vaporization or HOV) are insufficient, they

  15. Commercialization potential of the china lake trash-to-gasoline process

    SciTech Connect (OSTI)

    Diebold, J.; Smith, G.

    1980-01-01

    The title process involves a series of noncatalytic petrochemical processes to convert organic wastes to a synthetic crude oil containing approximately 90% high-octane gasoline and 10% fuel and lubricating oils. By-product char and gases are consumed for process energy. The key features of the process, the relative confidence of the commercial scale-up and the projected economics based on an independent 3rd-party evaluation are discussed.

  16. Rigid bifunctional chelating agents

    DOE Patents [OSTI]

    Sweet, Mark P.; Mease, Ronnie C.; Srivastava, Suresh C.

    2000-02-08

    Bicyclo[2.2.2]octane-2,3 diamine-N,N,N',N'-tetraacetic acids (BODTA) and bicyclo[2.2.1]heptane-2,3 diamine-N,N,N',N'-tetraacetic acid (BHDTA) are chelating agents useful in forming detectably labeled bioconjugate compounds for diagnostic and therapeutic purposes. New compounds and processes of forming BODTA and BHDTA are disclosed. Radioimmunoconjugates of the present invention show high and prolonged tumor uptake with low normal tissue uptakes.

  17. Rigid bifunctional chelating agents

    DOE Patents [OSTI]

    Sweet, Mark P.; Mease, Ronnie C.; Srivastava, Suresh C.

    1998-07-21

    Bicyclo›2.2.2! octane-2,3 diamine-N,N,N',N'-tetraacetic acids (BODTA) and bicyclo›2.2.1! heptane-2,3 diamine-N,N,N',N'-tetraacetic acid (BHDTA) are chelating agents useful in forming detectably labeled bioconjugate compounds for diagnostic and therapeutic purposes. New compounds and processes of forming BODTA and BHDTA are disclosed. Radioimmunoconjugates of the present invention show high and prolonged tumor uptake with low normal tissue uptakes.

  18. Rigid bifunctional chelating agents

    DOE Patents [OSTI]

    Sweet, M.P.; Mease, R.C.; Srivastava, S.C.

    1998-07-21

    Bicyclo[2.2.2] octane-2,3 diamine-N,N,N`,N`-tetraacetic acids (BODTA) and bicyclo[2.2.1] heptane-2,3 diamine-N,N,N`,N`-tetraacetic acid (BHDTA) are chelating agents useful in forming detectably labeled bioconjugate compounds for diagnostic and therapeutic purposes. New compounds and processes of forming BODTA and BHDTA are disclosed. Radioimmunoconjugates of the present invention show high and prolonged tumor uptake with low normal tissue uptakes.

  19. Hydrocarbons from methanol

    SciTech Connect (OSTI)

    Chang, C.D.

    1983-01-01

    During the early 1970s, the conversion of methanol to hydrocarbons emerged as a viable industrial process due to two events: the discovery by workers at Mobil Oil Company of the selective catalytic conversion of methanol to high octane gasoline over zeolite catalysts and the 1973 Arab oil embargo. This survey attempts to comprehensively cover the journal literature and selectively cover the patent literature dealing with the theoretical aspects of the methanol conversion. 178 references. (BLM)

  20. Fuel Injector Holes | Department of Energy

    Office of Environmental Management (EM)

    Department of Energy Fuel Economy and Emmissions of the Ethanol-Optimized Saab 9-5 Biopower Fuel Economy and Emmissions of the Ethanol-Optimized Saab 9-5 Biopower This page contains information on the recently released BioPower engines. PDF icon analysis_saab2007.pdf More Documents & Publications Enabling High Efficiency Ethanol Engines Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle Technologies Program (VTP) (Fact Sheet) The Impact of Low Octane Hydrocarbon Blending

  1. Fuel Effects on Advanced Combustion: Heavy-Duty Optical-Engine Research |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy This page contains information on the recently released BioPower engines. PDF icon analysis_saab2007.pdf More Documents & Publications Enabling High Efficiency Ethanol Engines Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle Technologies Program (VTP) (Fact Sheet) The Impact of Low Octane Hydrocarbon Blending Streams on "E85" Engine Optimization

    Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs What does this

  2. Fuel Effects on Low Temperature Combustion in a Light-Duty Diesel Engine |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Six different fuels were investigated to study the influence of fuel properties on engine out emissions and performance of low temperature premixed compression ignition combustion light-duty HSDI engines PDF icon deer10_tatur.pdf More Documents & Publications An Experimental Investigation of Low Octane Gasoline in Diesel Engines Use of Low Cetane Fuel to Enable Low Temperature Combustion Vehicle Technologies Office Merit Review 2015: Use of Low Cetane Fuel to Enable

  3. Beckmann rearrangement and reduction of the E isomer of 1,5,5-trimethylbicyclo(2. 2. 1)heptan-2-one oxime

    SciTech Connect (OSTI)

    Kozlov, N.G.; Popova, L.A.

    1987-10-10

    In the Beckmann rearrangement of the E isomer of 1,5,5-trimethylbicyclo(2.2.1)-heptan-2-one (isofenchone)oxime 1,6,6-trimethyl-2-azabicyclo(3.2.1)octan-3-one was obtained as a result of stereospecific migration of the C/sup 2/ carbon atom situated in the anti position to the hydroxime hydroxyl group. Reduction of the product with lithium aluminum hydride led to 1,6,6-trimethyl-2-azabicyclo(3.2.1)-octane. Reduction of isofenchone oxime with lithium aluminum hydride in THF leads to the formation of a mixture of 1,5,5-trimethylbicyclo(2.2.1)hept-2-yl-endo-amine, the corresponding exo-amine, and 1,6,6-trimethyl-2-aza- and 1,6,6-trimethyl-3-azabicyclo(3.2.1)octanes in ratios of 45:10:5:40. The /sup 1/H and /sup 13/C NMR spectra were measured on a Bruker WM-360 spectrometer at 360 MHz for /sup 1/H and 90 MHz for /sup 13/C. The compounds were prepared for the spectra in the form of 10% solutions in deuterochloroform.

  4. The importance of FCC catalyst selection on LPG profitability

    SciTech Connect (OSTI)

    Keyworth, D.A.; Gilman, R.; Pearce, J.R. )

    1989-01-01

    Recently the value of LPG in chemical operations downstream of the FCC unit has increased. Such downstream operations utilize propylene not only in alkylate, but also in rapid growth petrochemical applications such as for a raw material in the manufacture of polypropylene and propylene oxide. Isobutane and the butenes (particularly butene-2 in sulfuric acid catalyzed alkylation units) are prized for alkylate feed. The profit potential and incentives to use other LPG components such as isobutene to make MTBE is now increased because of legislative actions and increased octane performance demand; and because of the greater isobutene content in the LPG from the new FCC octane catalysts. A low non-framework alumina (NFA) zeolite studied made a more olefinic LPG with higher iso-to normal C4 ratio than the other zeolites. Pilot plant data has also shown the new low NFA zeolite gave not only outstanding motor octane (MON) performance, but produced an LPG with better propylene to propane ratio, more isobutene, more n-butenes and more C4 branching than other RE promoted zeolite catalysts. Commercial results have verified the improved performance and profitability for the new low-NFA type zeolite catalysts. Three commercial examples are described.

  5. Observational Study Designs for Comparative Effectiveness Research: An Alternative Approach to Close Evidence Gaps in Head-and-Neck Cancer

    SciTech Connect (OSTI)

    Goulart, Bernardo H.L.; Ramsey, Scott D.; Parvathaneni, Upendra

    2014-01-01

    Comparative effectiveness research (CER) has emerged as an approach to improve quality of care and patient outcomes while reducing healthcare costs by providing evidence to guide healthcare decisions. Randomized controlled trials (RCTs) have represented the ideal study design to support treatment decisions in head-and-neck (H and N) cancers. In RCTs, formal chance (randomization) determines treatment allocation, which prevents selection bias from distorting the measure of treatment effects. Despite this advantage, only a minority of patients qualify for inclusion in H and N RCTs, which limits the validity of their results to the broader H and N cancer patient population seen in clinical practice. Randomized controlled trials often do not address other knowledge gaps in the management of H and N cancer, including treatment comparisons for rare types of H and N cancers, monitoring of rare or late toxicity events (eg, osteoradionecrosis), or in some instances an RCT is simply not feasible. Observational studies, or studies in which treatment allocation occurs independently of investigators' choice or randomization, may address several of these gaps in knowledge, thereby complementing the role of RCTs. This critical review discusses how observational CER studies complement RCTs in generating the evidence to inform healthcare decisions and improve the quality of care and outcomes of H and N cancer patients. Review topics include a balanced discussion about the strengths and limitations of both RCT and observational CER study designs; a brief description of design and analytic techniques to handle selection bias in observational studies; examples of observational studies that inform current clinical practices and management of H and N cancers; and suggestions for relevant CER questions that could be addressed by an observational study design.

  6. The oxidation of a gasoline surrogate in the negative temperature coefficient region

    SciTech Connect (OSTI)

    Lenhert, David B.; Miller, David L.; Cernansky, Nicholas P.; Owens, Kevin G.

    2009-03-15

    This experimental study investigated the preignition reactivity behavior of a gasoline surrogate in a pressurized flow reactor over the low and intermediate temperature regime (600-800 K) at elevated pressure (8 atm). The surrogate mixture, a volumetric blend of 4.6% 1-pentene, 31.8% toluene, 14.0% n-heptane, and 49.6% 2,2,4-trimethyl-pentane (iso-octane), was shown to reproduce the low and intermediate temperature reactivity of full boiling range fuels in a previous study. Each of the surrogate components were examined individually to identify the major intermediate species in order to improve existing kinetic models, where appropriate, and to provide a basis for examining constituent interactions in the surrogate mixture. n-Heptane and 1-pentene started reacting at 630 K and 640 K, respectively, and both fuels exhibited a strong negative temperature coefficient (NTC) behavior starting at 700 and 710 K, respectively. Iso-octane showed a small level of reactivity at 630 K and a weak NTC behavior starting at 665 K. Neat toluene was unreactive at these temperatures. The surrogate started reacting at 630 K and exhibited a strong NTC behavior starting at 693 K. The extent of fuel consumption varied for each of the surrogate constituents and was related to their general autoignition behavior. Most of the intermediates identified during the surrogate oxidation were species observed during the oxidation of the neat constituents; however, the surrogate mixture did exhibit a significant increase in intermediates associated with iso-octane oxidation, but not from n-heptane. While neat toluene was unreactive at these temperatures, in the mixture it reacted with the radical pool generated by the other surrogate components, forming benzaldehyde, benzene, phenol, and ethyl-benzene. The observed n-heptane, iso-octane, and surrogate oxidation behavior was compared to predictions using existing kinetic models. The n-heptane model reasonably predicted the disappearance of the fuel, but overpredicted the formation of several of the smaller intermediates. The iso-octane model significantly overpredicted the reaction of the fuel and formation of the intermediates. The 1-pentene model reasonably predicted the fuel consumption, but underestimated the importance of radical addition to the double bond. The results of this study provide a critical experimental foundation for the investigation of surrogate mixtures and for validation of kinetic models. (author)

  7. The Impact of Alternative Fuels on Combustion Kinetics

    SciTech Connect (OSTI)

    Pitz, W J; Westbrook, C K

    2009-07-30

    The research targets the development of detailed kinetic models to quantitatively characterize the impact of alternative fuels on the performance of Navy turbines and diesel engines. Such impacts include kinetic properties such as cetane number, flame speed, and emissions as well as physical properties such as the impact of boiling point distributions on fuel vaporization and mixing. The primary focus will be Fischer-Tropsch liquids made from natural gas, coal or biomass. The models will include both the effects of operation with these alternative fuels as well as blends of these fuels with conventional petroleum-based fuels. The team will develop the requisite kinetic rules for specific reaction types and incorporate these into detailed kinetic mechanisms to predict the combustion performance of neat alternative fuels as well as blends of these fuels with conventional fuels. Reduced kinetic models will be then developed to allow solution of the coupled kinetics/transport problems. This is a collaboration between the Colorado School of Mines (CSM) and the Lawrence Livermore National Laboratory (LLNL). The CSM/LLNL team plans to build on the substantial progress made in recent years in developing accurate detailed chemical mechanisms for the oxidation and pyrolysis of conventional fuels. Particular emphasis will be placed upon reactions of the isoalkanes and the daughter radicals, especially tertiary radicals, formed by abstraction from the isoalkanes. The various components of the program are described. We have been developing the kinetic models for two iso-dodecane molecules, using the same kinetic modeling formalisms that were developed for the gasoline and diesel primary reference fuels. These mechanisms, and the thermochemical and transport coefficient submodels for them, are very close to completion at the time of this report, and we expect them to be available for kinetic simulations early in the coming year. They will provide a basis for prediction and selection of desirable F-T molecules for use in jet engine simulations, where we should be able to predict the ignition, combustion and emissions characteristics of proposed fuel components. These mechanisms include the reactions and chemical species needed to describe high temperature phenomena such as shock tube ignition and flammability behavior, and they will also include low temperature kinetics to describe other ignition phenomena such as compression ignition and knocking. During the past years, our hydrocarbon kinetics modeling group at LLNL has focused a great deal on fuels typical of gasoline and diesel fuel. About 10 years ago, we developed kinetic models for the fuel octane primary reference fuels, n-heptane [1] and iso-octane [2], which have 7 and 8 carbon atoms and are therefore representative of typical gasoline fuels. N-heptane represents the low limit of knock resistance with an octane number of 0, while iso-octane is very knock resistant with an octane number of 100. High knock resistance in iso-octane was attributed largely to the large fraction of primary C-H bonds in the molecule, including 15 of the 18 C-H bonds, and the high bond energy of these primary bonds plays a large role in this knock resistance. In contrast, in the much more ignitable n-heptane, 10 of its 16 C-H bonds are much less strongly bound secondary C-H bonds, leading to its very low octane number. All of these factors, as well as a similarly complex kinetic description of the equally important role of the transition state rings that transfer H atoms within the reacting fuel molecules, were quantified and collected into large kinetic reaction mechanisms that are used by many researchers in the fuel chemistry world.

  8. Motor gasolines, summer 1985

    SciTech Connect (OSTI)

    Dickson, C.L.; Woodward, P.W.

    1986-06-01

    Samples for this report were collected from service stations throughout the country and were analyzed in laboratories of various refiners, motor manufacturers, chemical companies, and research institutes. Analytical data for the 1571 motor gasoline and 206 motor gasoline/alcohol blend samples were submitted to the National Institute for Petroleum and Energy Research (NIPER), Bartlesville, Oklahoma, for reporting. This work is jointly funded by the American Petroleum Institute (API) and the United States Department of Energy (DOE), Bartlesville Project Office (DOE cooperative agreement No. FC22-83FE60149). The data are representative of the products of 62 marketers, large and small, which manufacture and supply gasoline. They are tabulated by groups according to brands (unlabeled) and grades for 17 marketing districts into which the country is divided. A map shows the marketing areas, districts, and sampling locations. The report includes trend charts of selected properties of motor fuels over the last twenty-five years. Twelve octane distribution graphs for leaded and unleaded grades of gasoline are presented for areas 1, 2, 3, and 4. The average antiknock (octane) index (R + M)/2 of gasoline sold in the United States during June, July, and August 1985 was 87.4 for unleaded below 90.0, 91.7 for unleaded 90.0 and above, and 88.8 for leaded below 93.0 grades of gasoline. Analyses of motor gasoline containing various alcohols are reported in separate tables beginning with this report. The average antiknock (octane) index (R + M)/2 of gasoline containing alcohols was 88.6 for unleaded below 90.0, 91.4 for unleaded 90.0 and above, and 90.2 for leaded below 93.0 grades of gasoline. 16 figs., 8 tabs.

  9. MTBE, Oxygenates, and Motor Gasoline (Released in the STEO October 1999)

    Reports and Publications (EIA)

    1999-01-01

    The blending of methyl tertiary butyl ether (MTBE) into motor gasoline has increased dramatically since it was first produced 20 years ago. MTBE usage grew in the early 1980's in response to octane demand resulting initially from the phaseout of lead from gasoline and later from rising demand for premium gasoline. The oxygenated gasoline program stimulated an increase in MTBE production between 1990 and 1994. MTBE demand increased from 83,000 in 1990 to 161,000 barrels per day in 1994. The reformulated gasoline (RFG) program provided a further boost to oxygenate blending. The MTBE contained in motor gasoline increased to 269,000 barrels per day by 1997.

  10. Process for the conversion of lower alcohols to higher branched oxygenates

    DOE Patents [OSTI]

    Barger, Paul T. (Arlington Heights, IL)

    1996-01-01

    A process is provided for the production of branched C.sub.4+ oxygenates from lower alcohols such as methanol, ethanol, propanol and mixtures thereof. The process comprises contacting the lower alcohols with a solid catalyst comprising a mixed metal oxide support having components selected from the group consisting of oxides of zinc, magnesium, zirconia, titanium, manganese, chromium, and lanthanides, and an activation metal selected from the group consisting of Group VIII metal, Group IB metals, and mixtures thereof. The advantage of the process is improved yields and selectivity to isobutanol which can subsequently be employed in the production of high octane motor gasoline.

  11. Cyclotron Road: Visolis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Deepak Dugar, Co-founder, Visolis 2 MIT (MS, MBA, PhD, Chemical Engg.) IIT Delhi (B.Tech, M.Tech, Biochemcial Engg.) Master's thesis: Algal photo-bioreactor design PhD thesis: High octane biofuels (Prof. Greg Stephanopoulos) Gourav Enterprises 3 Visolis is a platform technology for cost competitive production of bio- products Fuel Additives &Structural Materials $100B+ Specialty Chemicals & Polymers $20B Isoprene $ 3B  Drop-in products: Methyl isopropyl ketone (MIPK), Methyl vinyl

  12. Interpretation of engine cycle-to-cycle variation by chaotic time series analysis

    SciTech Connect (OSTI)

    Daw, C.S.; Kahl, W.K.

    1990-01-01

    In this paper we summarize preliminary results from applying a new mathematical technique -- chaotic time series analysis (CTSA) -- to cylinder pressure data from a spark-ignition (SI) four-stroke engine fueled with both methanol and iso-octane. Our objective is to look for the presence of deterministic chaos'' dynamics in peak pressure variations and to investigate the potential usefulness of CTSA as a diagnostic tool. Our results suggest that sequential peak cylinder pressures exhibit some characteristic features of deterministic chaos and that CTSA can extract previously unrecognized information from such data. 18 refs., 11 figs., 2 tabs.

  13. Process for the conversion of lower alcohols to higher branched oxygenates

    DOE Patents [OSTI]

    Barger, P.T.

    1996-09-24

    A process is provided for the production of branched C{sub x} oxygenates from lower alcohols such as methanol, ethanol, propanol and mixtures thereof. The process comprises contacting the lower alcohols with a solid catalyst comprising a mixed metal oxide support having components selected from the group consisting of oxides of zinc, magnesium, zirconia, titanium, manganese, chromium, and lanthanides, and an activation metal selected from the group consisting of Group VIII metal, Group IB metals, and mixtures thereof. The advantage of the process is improved yields and selectivity to isobutanol which can subsequently be employed in the production of high octane motor gasoline.

  14. Producing a trimethylpentanoic acid using hybrid polyketide synthases

    DOE Patents [OSTI]

    Katz, Leonard; Fortman, Jeffrey L; Keasling, Jay D

    2014-10-07

    The present invention provides for a polyketide synthase (PKS) capable of synthesizing trimethylpentanoic acid. The present invention also provides for a host cell comprising the PKS and when cultured produces the trimethylpentanoic acid. The present invention also provides for a method of producing the trimethylpentanoic acid, comprising: providing a host cell of the present invention, and culturing said host cell in a suitable culture medium such that the trimethylpentanoic acid is produced, optionally isolating the trimethylpentanoic acid, and optionally, reducing the isolated trimethylpentanoic acid into a trimethylpentanol or an iso-octane.

  15. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Renewable Fuels Mandate All gasoline sold in the state must be blended with 10% ethanol (E10). Gasoline with an octane rating of 91 or above is exempt from this mandate, as is gasoline sold for use in certain non-road applications. Gasoline that contains at least 9.2% agriculturally derived ethanol that meets ASTM specification D4806 complies with the mandate. For the purpose of the mandate, ethanol must meet ASTM specification D4806. The governor may suspend the renewable fuels mandate for

  16. Petroleum Marketing Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    Marketing Monthly May 2016 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other offi cer or employee of the United States Government. The views in this report therefore should not be construed as representing those of

  17. BeryllFactShts12-7-01

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Diagnostic Work-Up for Chronic Beryllium Disease Rev. 2 18/04 ORAU/ORISE - MS 45 Center for Epidemiologic Research P.O. Box 117 Oak Ridge, TN 37831 (865) 576-3115 Toll Free (866) 219-3442 ORAU/ORISE CER/Colorado 9950 W. 80th Ave. Suite 17 Arvada, CO 80005 (303) 423-9585 Toll Free (866) 812-6703 WHAT CAN I EXPECT IF I GET THE ADDITIONAL MEDICAL PROCEDURES NEEDED TO CONFIRM A DIAGNOSIS? Based on results of your screening examination, you may be offered additional medical tests through a special

  18. May 2013 Groundwater and Surface Water Sampling at the Rio Blanco, Colorado, Site (Data Validation Package)

    SciTech Connect (OSTI)

    2013-10-01

    Annual sampling was conducted at the Rio Blanco, Colorado, site for the Long-Term Hydrologic Monitoring Program May 14-16, 2013, to monitor groundwater and surface water for potential radionuclide contamination. Sampling and analyses were conducted as specified in Sampling and Analysis Plan for the U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). A duplicate sample was collected from location CER #1 Black Sulphur. Samples were analyzed for gamma-emitting radionuclides by high-resolution gamma spectrometry and for tritium using the conventional and enrichment methods.

  19. Laminar burning velocities at high pressure for primary reference fuels and gasoline: Experimental and numerical investigation

    SciTech Connect (OSTI)

    Jerzembeck, S.; Peters, N. [RWTH, Aachen (Germany); Pepiot-Desjardins, P.; Pitsch, H. [Department of Mechanical Engineering, Stanford University, CA (United States)

    2009-02-15

    Spherical flames of n-heptane, iso-octane, PRF 87 and gasoline/air mixtures are experimentally investigated to determine laminar burning velocities and Markstein lengths under engine-relevant conditions by using the constant volume bomb method. Data are obtained for an initial temperature of 373 K, equivalence ratios varying from {phi}=0.7 to {phi}=1.2, and initial pressures from 10 to 25 bar. To track the flame front in the vessel a dark field He-Ne laser Schlieren measurement technique and digital image processing were used. The propagating speed with respect to the burned gases and the stretch rate are determined from the rate of change of the flame radius. The laminar burning velocities are obtained through a linear extrapolation to zero stretch. The experimentally determined Markstein numbers are compared to theoretical predictions. A reduced chemical kinetic mechanism for n-heptane and iso-octane was derived from the Lawrence Livermore comprehensive mechanisms. This mechanism was validated for ignition delay times and flame propagation at low and high pressures. In summary an overall good agreement with the various experimental data sets used in the validation was obtained. (author)

  20. Trends in motor gasolines: 1942-1981

    SciTech Connect (OSTI)

    Shelton, E M; Whisman, M L; Woodward, P W

    1982-06-01

    Trends in motor gasolines for the years of 1942 through 1981 have been evaluated based upon data contained in surveys that have been prepared and published by the Bartlesville Energy Technology Center (BETC). These surveys have been published twice annually since 1935 describing the properties of motor gasolines from throughout the country. The surveys have been conducted in cooperation with the American Petroleum Institute (API) since 1948. Various companies from throughout the country obtain samples from retail outlets, analyze the samples by the American Society for Testing and Materials (ASTM) procedures, and report data to the Bartlesville center for compilation, tabulation, calculation, analysis and publication. A typical motor gasoline report covers 2400 samples from service stations throughout the country representing some 48 companies that manufacture and supply gasoline. The reports include trend charts, octane plots, and tables of test results from about a dozen different tests. From these data in 77 semiannual surveys, a summary report has thus been assembled that shows trends in motor gasolines throughout the entire era of winter 1942 to 1943 to the present. Trends of physical properties including octane numbers, antiknock ratings, distillation temperatures, Reid vapor pressure, sulfur and lead content are tabulated, plotted and discussed in the current report. Also included are trend effects of technological advances and the interactions of engine design, societal and political events and prices upon motor gasoline evolution during the 40 year period.

  1. Vapor Sensing Using Conjugated Molecule-Linked Au Nanoparticles in a Silica Matrix

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dirk, Shawn M.; Howell, Stephen W.; Price, B. Katherine; Fan, Hongyou; Washburn, Cody; Wheeler, David R.; Tour, James M.; Whiting, Joshua; Simonson, R. Joseph

    2009-01-01

    Cross-linkedmore » assemblies of nanoparticles are of great value as chemiresistor-type sensors. Herein, we report a simple method to fabricate a chemiresistor-type sensor that minimizes the swelling transduction mechanism while optimizing the change in dielectric response. Sensors prepared with this methodology showed enhanced chemoselectivity for phosphonates which are useful surrogates for chemical weapons. Chemoselective sensors were fabricated using an aqueous solution of gold nanoparticles that were then cross-linked in the presence of the silica precursor, tetraethyl orthosilicate with the α -, ω -dithiolate (which is derived from the in situ deprotection of 1,4-di(Phenylethynyl- 4 ′ , 4 ″ -diacetylthio)-benzene ( 1 ) with wet triethylamine). The cross-linked nanoparticles and silica matrix were drop coated onto interdigitated electrodes having 8  μ m spacing. Samples were exposed to a series of analytes including dimethyl methylphosphonate (DMMP), octane, and toluene. A limit of detection was obtained for each analyte. Sensors assembled in this fashion were more sensitive to dimethyl methylphosphonate than to octane by a factor of 1000.« less

  2. COAL CLEANING BY GAS AGGLOMERATION

    SciTech Connect (OSTI)

    T.D. Wheelock

    1999-03-01

    The technical feasibility of a gas agglomeration method for cleaning coal was demonstrated by means of bench-scale tests conducted with a mixing system which enabled the treatment of ultra-fine coal particles with a colloidal suspension of microscopic gas bubbles in water. A suitable suspension of microbubbles was prepared by first saturating water with air or carbon dioxide under pressure then reducing the pressure to release the dissolved gas. The formation of microbubbles was facilitated by agitation and a small amount of i-octane. When the suspension of microbubbles and coal particles was mixed, agglomeration was rapid and small spherical agglomerates were produced. Since the agglomerates floated, they were separated from the nonfloating tailings in a settling chamber. By employing this process in numerous agglomeration tests of moderately hydrophobic coals with 26 wt.% ash, it was shown that the ash content would be reduced to 6--7 wt.% while achieving a coal recovery of 75 to 85% on a dry, ash-free basis. This was accomplished by employing a solids concentration of 3 to 5 w/w%, an air saturation pressure of 136 to 205 kPa (5 to 15 psig), and an i-octane concentration of 1.0 v/w% based on the weight of coal.

  3. DME-to-oxygenates process studies

    SciTech Connect (OSTI)

    Tartamella, T.L.; Sardesai, A.; Lee, S.; Kulik, C.J.

    1994-12-31

    The feasibility of the production of hydrocarbons from dimethyl ether (DNM) has been illustrated in a fixed bed micro-reactor as well as a bench scale fluidized bed reactor by the University of Akron/EPRI DME-to-Hydrocarbon (DTG) Process. The DTG process has distinct advantages over its methanol based counterpart. Specifically, the DTG process excels in the area of higher productivity, higher per-pass conversion, and lower heat duties than the MTG process. Also of special importance is the production of oxygenates -- including MTBE, ETBE, and TAME. DME may be reacted with isobutylene to produce a mixture of MTBE and ETBE. The properties of ETBE excel over MTBE in the areas of lower RVP and higher RON. According to industrial reports, MTBE is the fastest growing chemical (1992 US capacity 135,350 BPD, with expected growth of 34%/year to 1997). Also, recent renewed interest as an octane-enhancer and as a source of oxygen has spurred a growing interest in nonrefinery synthesis routes to ETBE. TAME, with its lower RVP and higher RON has proven useful as a gasoline blending agent and octane enhancer and may also be produced directly from DME. DME, therefore, serves as a valuable feedstock in the conversion of may oxygenates with wide-scale industrial importance. It should be also noted that the interest in the utilization of DME as process feedstock is based on the favorable process economics of EPRI/UA`s liquid phase DME process.

  4. THE ECONOMICAL PRODUCTION OF ALCOHOL FUELS FROM COAL-DERIVED SYNTHESIS GAS. Includes quarterly technical progress report No.25 from 10/01/1997-12/31/1997, and quarterly technical progress report No.26 from 01/01/1998-03/31/1998

    SciTech Connect (OSTI)

    1999-03-01

    This project was divided into two parts. One part evaluated possible catalysts for producing higher-alcohols (C{sub 2} to C{sub 5+}) as fuel additives. The other part provided guidance by looking both at the economics of mixed-alcohol production from coal-derived syngas and the effect of higher alcohol addition on gasoline octane and engine performance. The catalysts studied for higher-alcohol synthesis were molybdenum sulfides promoted with potassium. The best catalysts produced alcohols at a rate of 200 g/kg of catalyst/h. Higher-alcohol selectivity was over 40%. The hydrocarbon by-product was less than 20%. These catalysts met established success criteria. The economics for mixed alcohols produced from coal were poor compared to mixed alcohols produced from natural gas. Syngas from natural gas was always less expensive than syngas from coal. Engine tests showed that mixed alcohols added to gasoline significantly improved fuel quality. Mixed-alcohols as produced by our catalysts enhanced gasoline octane and decreased engine emissions. Mixed-alcohol addition gave better results than adding individual alcohols as had been done in the 1980's when some refiners added methanol or ethanol to gasoline.

  5. Motor gasolines, summer 1983

    SciTech Connect (OSTI)

    Shelton, E.M.

    1984-02-01

    The samples were collected from service stations throughout the country and were analyzed in the laboratories of various refiners, motor manufacturers, chemical companies, and research institutes. The analytical data for 1583 samples of motor gasoline, were submitted to the National Institute for Petroleum and Energy Research, Bartlesville, Oklahoma for study, necessary calculations, and compilation under a cooperative agreement between the National Institute for Petroleum and Energy Research (NIPER) and the American Petroleum Institute (API). They represent the products of 48 companies, large and small, which manufacture and supply gasoline. These data are tabulated by groups according to brands (unlabeled) and grades for 17 marketing districts into which the country is divided. A map included in this report, shows marketing areas, districts and sampling locations. The report also includes charts indicating the trends of selected properties of motor fuels since 1959. Sixteen octane distribution percent charts for areas 1, 2, 3, and 4 for unleaded antiknock index (R+M)/2 below 90.0, unleaded antiknock index (R+M)/2 90.0 and above, and leaded antiknock index (R+M)/2 below 93.0 grades of gasoline are presented in this report. The antiknock (octane) index (R+M)/2 averages of gasoline sold in this country were 87.5 for unleaded below 90.0, 91.4 for unleaded 90.0 and above, and 89.0 for leaded below 93.0 grades of gasoline. 16 figures, 5 tables.

  6. Motor gasolines, Summer 1982

    SciTech Connect (OSTI)

    Shelton, E.M.

    1983-03-01

    The samples were collected from service stations throughout the country and were analyzed in the laboratories of various refiners, motor manufacturers, and chemical companies. The analytical data for 796 samples of motor gasoline, were submitted to the Bartlesville Energy Technology Center for study, necessary calculations, and compilation under a cooperative agreement between the Bartlesville Energy Technology Center (BETC) and the American Petroleum Institute (API). They represent the products of 22 companies, large and small, which manufacture and supply gasoline. These data are tabulated by groups according to brands (unlabeled) and grades for 17 marketing districts into which the country is divided. A map included in this report, shows marketing areas, districts and sampling locations. The report also includes charts indicating the trends of selected properties of motor fuels since 1959. Sixteen octane distribution percent charts for areas 1, 2, 3, and 4 for unleaded antiknock index (R + M)/2 below 90.0, unleaded antiknock index (R + M)/2 90.0 and above, leaded antiknock index (R + M)/2 below 93.0, and leaded antiknock index (R + M)/2 93.0 and above grades of gasoline are presented in this report. The antiknock (octane) index (R + M)/2 averages of gasoline sold in this country were 87.3 for unleaded below 90.0, 91.7 for unleaded 90.0 and above, 89.0 for leaded below 93.0, and no data in this report for 93.0 and above grades of leaded gasoline.

  7. Economic contribution of lignins to ethanol production from biomass

    SciTech Connect (OSTI)

    Chum, H.L.; Parker, S.K.; Feinberg, D.A.; Wright, J.D.; Rice, P.A.; Sinclair, S.A.; Glasser, W.G.

    1985-05-01

    Lignin, one of the three major polymeric components of biomass (16% to 33% by weight in wood), has the highest specific heat content. Therefore, it can be burned for process fuel. Compared to coal, its fuel value is 2.2 cents/lb. This report investigates markets for lignin utilization of higher value. After lignin isolation from the process, purchase of replacement fuel (coal was analyzed), lignin sale for the manufacture of solid materials or higher value octane enhancers was evaluated. Polymeric applications evaluated were: surfactants, asphalt, carbon black, adhesives, and lignin plastics; agricultural applications were briefly reviewed. These lignins would generate coproduct credits of 25 cents to 150 cents/gallon of ethanol respectively for 7.5 cents to 60 cents/lb lignin value (isolation and eventual modification costs were taken into account). Overall markets for these polymeric applications were projected at 11 billion lb/year by the year 2000. These projections are intensities of demand and not actual shipments of lignins. In addition, this report investigates the possibility of converting lignins into mixtures of methyls aryl ethers and methyl substituted-aryl ethers which are high value octane enhancers, fully compatible with gasoline. The report intends to show that if fuel ethanol production in the billions of gallons scale occurs lignin markets would not be saturated. 10 refs., 14 figs., 36 tabs.

  8. In-Cylinder Reaction Chemistry and Kinetics During Negative Valve Overlap Fuel Injection Under Low-Oxygen Conditions

    SciTech Connect (OSTI)

    Kalaskar, Vickey B; Szybist, James P; Splitter, Derek A; Pihl, Josh A; Gao, Zhiming; Daw, C Stuart

    2013-01-01

    Fuel injection into the negative valve overlap (NVO) period is a common method for controlling combustion phasing in homogeneous charge compression ignition (HCCI) as well as other forms of advanced combustion. During this event, at least a portion of the fuel hydrocarbons can be converted to products containing significant levels of H2 and CO, as well as other short chain hydrocarbons by means of thermal cracking, water-gas shift, and partial oxidation reactions, depending on the availability of oxygen and the time-temperature-pressure history. The resulting products alter the autoignition properties of the combined fuel mixture for HCCI. Fuel-rich chemistry in a partial oxidation environment is also relevant to other high efficiency engine concepts (e.g., the dedicated EGR (D-EGR) concept from SWRI). In this study, we used a unique 6-stroke engine cycle to experimentally investigate the chemistry of a range of fuels injected during NVO under low oxygen conditions. Fuels investigated included iso-octane, iso-butanol, ethanol, and methanol. Products from NVO chemistry were highly dependent on fuel type and injection timing, with iso-octane producing less than 1.5% hydrogen and methanol producing more than 8%. We compare the experimental trends with CHEMKIN (single zone, 0-D model) predictions using multiple kinetic mechanisms available in the current literature. Our primary conclusion is that the kinetic mechanisms investigated are unable to accurately predict the magnitude and trends of major species we observed.

  9. Compendium of Experimental Cetane Numbers

    SciTech Connect (OSTI)

    Yanowitz, J.; Ratcliff, M. A.; McCormick, R. L.; Taylor, J. D.; Murphy, M. J.

    2014-08-01

    This report is an updated version of the 2004 Compendium of Experimental Cetane Number Data and presents a compilation of measured cetane numbers for pure chemical compounds. It includes all available single compound cetane number data found in the scientific literature up until March 2014 as well as a number of unpublished values, most measured over the past decade at the National Renewable Energy Laboratory. This Compendium contains cetane values for 389 pure compounds, including 189 hydrocarbons and 201 oxygenates. More than 250 individual measurements are new to this version of the Compendium. For many compounds, numerous measurements are included, often collected by different researchers using different methods. Cetane number is a relative ranking of a fuel's autoignition characteristics for use in compression ignition engines; it is based on the amount of time between fuel injection and ignition, also known as ignition delay. The cetane number is typically measured either in a single-cylinder engine or a constant volume combustion chamber. Values in the previous Compendium derived from octane numbers have been removed, and replaced with a brief analysis of the correlation between cetane numbers and octane numbers. The discussion on the accuracy and precision of the most commonly used methods for measuring cetane has been expanded and the data has been annotated extensively to provide additional information that will help the reader judge the relative reliability of individual results.

  10. Enhanced human papillomavirus type 8 oncogene expression levels are crucial for skin tumorigenesis in transgenic mice

    SciTech Connect (OSTI)

    Hufbauer, M.; Lazic, D.; Akguel, B.; Brandsma, J.L.; Pfister, H.; Weissenborn, S.J.

    2010-08-01

    Human papillomavirus 8 (HPV8) is involved in skin cancer development in epidermodysplasia verruciformis patients. Transgenic mice expressing HPV8 early genes (HPV8-CER) developed papillomas, dysplasias and squamous cell carcinomas. UVA/B-irradiation and mechanical wounding of HPV8-CER mouse skin led to prompt papilloma induction in about 3 weeks. The aim of this study was to analyze the kinetics and level of transgene expression in response to skin irritations. Transgene expression was already enhanced 1 to 2 days after UVA/B-irradiation or tape-stripping and maintained during papilloma development. The enhanced transgene expression could be assigned to UVB and not to UVA. Papilloma development was thus always paralleled by an increased transgene expression irrespective of the type of skin irritation. A knock-down of E6 mRNA by tattooing HPV8-E6-specific siRNA led to a delay and a lower incidence of papilloma development. This indicates that the early increase of viral oncogene expression is crucial for induction of papillomatosis.

  11. Analysis of Thermal and Chemical Effets on Negative Valve Overlap Period Energy Recovery for Low-Temperature Gasoline Combustion

    SciTech Connect (OSTI)

    Ekoto, Dr Isaac; Peterson, Dr. Brian; Szybist, James P; Northrop, Dr. William

    2015-01-01

    A central challenge for efficient auto-ignition controlled low-temperature gasoline combustion (LTGC) engines has been achieving the combustion phasing needed to reach stable performance over a wide operating regime. The negative valve overlap (NVO) strategy has been explored as a way to improve combustion stability through a combination of charge heating and altered reactivity via a recompression stroke with a pilot fuel injection. The study objective was to analyze the thermal and chemical effects on NVO-period energy recovery. The analysis leveraged experimental gas sampling results obtained from a single-cylinder LTGC engine along with cylinder pressure measurements and custom data reduction methods used to estimate period thermodynamic properties. The engine was fueled by either iso-octane or ethanol, and operated under sweeps of NVO-period oxygen concentration, injection timing, and fueling rate. Gas sampling at the end of the NVO period was performed via a custom dump-valve apparatus, with detailed sample speciation by in-house gas chromatography. The balance of NVO-period input and output energy flows was calculated in terms of fuel energy, work, heat loss, and change in sensible energy. Experiment results were complemented by detailed chemistry single-zone reactor simulations performed at relevant mixing and thermodynamic conditions, with results used to evaluate ignition behavior and expected energy recovery yields. For the intermediate bulk-gas temperatures present during the NVO period (900-1100 K), weak negative temperature coefficient behavior with iso-octane fueling significantly lengthened ignition delays relative to similar ethanol fueled conditions. Faster ethanol ignition chemistry led to lower recovered fuel intermediate yields relative to similar iso-octane fueled conditions due to more complete fuel oxidation. From the energy analysis it was found that increased NVO-period global equivalence ratio, either from lower NVOperiod oxygen concentrations or higher fueling rates, in general led to a greater fraction of net recovered fuel energy and work as heat losses were minimized. These observations were supported by complementary single-zone reactor model results, which further indicated that kinetic time-scales favor chemical energy-consuming exothermic oxidation over slower endothermic reformation. Nonetheless, fuel energy recovery close to the thermodynamic equilibrium solution was achieved for baseline conditions that featured 4% NVO-period oxygen concentration.

  12. Low-temperature superacid catalysis: Reactions of n-butane catalyzed by iron- and manganese-promoted sulfated zirconia

    SciTech Connect (OSTI)

    Cheung, T.K.; D`Itri, J.L.; Gates, B.C.

    1995-02-01

    Environmental concerns are leading to the replacement of aromatic hydrocarbons in gasoline with high-octane-number branched paraffins and oxygenated compounds such as methyl t-butyl ether, which is produced from methanol and isobutylene. The latter can be formed from n-butane by isomerization followed by dehydrogenation. To meet the need for improved catalysts for isomerization of n-butane and other paraffins, researchers identified solid acids that are noncorrosive and active at low temperatures. Sulfated zirconia catalyzes the isomerization of n-butane even at 25{degrees}C, and the addition of Fe and Mn promoters increases its activity by three orders of magnitude. Little is known about this new catalyst. Here the authors provide evidence of its performance for n-butane conversion, demonstrating that isomerization is accompanied by disproportionation and other, less well understood, acid-catalyzed reactions and undergoes rapid deactivation associated with deposition of carbonaceous material. 10 refs., 3 figs.

  13. Vehicular fuels and additives for the future

    SciTech Connect (OSTI)

    Not Available

    1988-01-01

    Interest in automotive fuel is resurging. Automobile fuels must increasingly deal with clean air regulations and ozone problems. Furthermore, feedstocks become heavier,as refinery production changes, as more unleaded is produced, and as an increasing number of pollution regulations must be satisfied greater attention will be paid to better mixtures, solvents, additives, and neat methanol. BCC report analyzes developments technologies, markets, players and the political/regulations aspects of this important market. Study also assesses the advantages and drawbacks of methanol, ethanol, MTBE and other additives which have their place as octane enhancers and fuel substitutes-all now deeply involved in the gasoline modification battle. Other issues addressed are subsidies, farm lobbying, imports, pricing, economics, Detroit's response, neat fuel testing projects, volatility problems vs. fewer ozone-forming hydrocarbon species, and emission ratings.

  14. Engine Materials Compatability with Alternative Fuels

    SciTech Connect (OSTI)

    Pawel, Steve; Moore, D.

    2013-04-05

    The compatibility of aluminum and aluminum alloys with synthetic fuel blends comprised of ethanol and reference fuel C (a 50/50 mix of toluene and iso-octane) was examined as a function of water content and temperature. Commercially pure wrought aluminum and several cast aluminum alloys were observed to be similarly susceptible to substantial corrosion in dry (< 50 ppm water) ethanol. Corrosion rates of all the aluminum materials examined were accelerated by increased temperature and ethanol content in the fuel mixture, but inhibited by increased water content. Pretreatments designed to stabilize passive films on aluminum increased the incubation time for onset of corrosion, suggesting film stability is a significant factor in the mechanism of corrosion.

  15. Engine Materials Compatibility with Alternate Fuels

    SciTech Connect (OSTI)

    Thomson, Jeffery K; Pawel, Steven J; Wilson, Dane F

    2013-05-01

    The compatibility of aluminum and aluminum alloys with synthetic fuel blends comprised of ethanol and reference fuel C (a 50/50 mix of toluene and iso-octane) was examined as a function of water content and temperature. Commercially pure wrought aluminum and several cast aluminum alloys were observed to be similarly susceptible to substantial corrosion in dry (< 50 ppm water) ethanol. Corrosion rates of all the aluminum materials examined were accelerated by increased temperature and ethanol content in the fuel mixture, but inhibited by increased water content. Pretreatments designed to stabilize passive films on aluminum increased the incubation time for onset of corrosion, suggesting film stability is a significant factor in the mechanism of corrosion.

  16. Electro-autotrophic synthesis of higher alcohols

    DOE Patents [OSTI]

    Liao, James C.; Cho, Kwang Myung

    2015-10-06

    The disclosure provides a process that converts CO.sub.2 to higher alcohols (e.g. isobutanol) using electricity as the energy source. This process stores electricity (e.g. from solar energy, nuclear energy, and the like) in liquid fuels that can be used as high octane number gasoline substitutes. Instead of deriving reducing power from photosynthesis, this process derives reducing power from electrically generated mediators, either H.sub.2 or formate. H.sub.2 can be derived from electrolysis of water. Formate can be generated by electrochemical reduction of CO.sub.2. After delivering the reducing power in the cell, formate becomes CO.sub.2 and recycles back. Therefore, the biological CO.sub.2 fixation process can occur in the dark.

  17. Catalytic conversion of light alkanes, Phase 1. Topical report, January 1990--January 1993

    SciTech Connect (OSTI)

    1993-12-31

    The authors have found a family of new catalytic materials which, if successfully developed, will be effective in the conversion of light alkanes to alcohols or other oxygenates. Catalysts of this type have the potential to convert natural gas to clean-burning high octane liquid fuels directly without requiring the energy-intensive steam reforming step. In addition they also have the potential to upgrade light hydrocarbons found in natural gas to a variety of high value fuel and chemical products. In order for commercially useful processes to be developed, increases in catalytic life, reaction rate and selectivity are required. Recent progress in the experimental program geared to the further improvement of these catalysts is outlined.

  18. Formation of dl-limonene in used tire vacuum pyrolysis oils. [dipentene

    SciTech Connect (OSTI)

    Pakdel, H.; Roy, C.; Aubin, H.; Jean, G. ); Coulombe, S. )

    1991-09-01

    Tire recycling has become an important environmental issue recently due to the huge piles of tires that threaten the environment. Thermal decomposition of tire, a synthetic rubber material, enables the recovery of carbon black and liquid hydrocarbon oils. Both have potential economic values. Pyrolysis oils obtained under vacuum conditions contain a significant portion of a volatile, naptha-like fraction with an octane number similar to petroleum naphtha fraction, in addition, contains approximately 15% limonene. Potential applications of vacuum pyrolysis oil and carbon black have been investigated. However, the process economics is greatly influenced by the quality of the oil and carbon black products. This paper discusses limonene formation during used tire vacuum pyrolysis and its postulated reaction mechanism. The limonene separation method from pyrolysis oil, as well as its purification in laboratory scale, and structural characterization are discussed. Large-scale limonene separation and purification is under investigation.

  19. The green entrepreneur: Business opportunities that can save the Earth make you money

    SciTech Connect (OSTI)

    Berle, G.

    1993-01-01

    The Green Entrepreneur looks at business opportunities for the many small operators working their way through the landslide. Gustav Berle's book is an alarming cornucopia of good ideas, helpful references, and summaries of today's preoccupying business concerns to reduce waste, save materials, and conserve energy. This quick-read is also interspersed with a lower-octane blend of popularist solutions to such global problems as world hunger, world peace, and the world's needs for resource reallocation. The ideas spread throughout this text may trigger some start-up thoughts, and the many helpful references may assist those eager to learn how to use the backhoe and pick axe. Unfortunately, the small players are probably a small part of the needed answer. The momentous claim of the book - the need to combine environmentally sound concepts with sharp business plans and competent management' - isn't bad nor negligent advice for the giants, either, that still roam the globe.

  20. Photoimageable composition

    DOE Patents [OSTI]

    Simison, Kelby Liv; Dentinger, Paul

    2003-11-11

    The use of selected buffering amines in a photoimageable composition prevents process bias which with conventional photoresists causes designed features to be distorted, especially in corners and high resolution features. It is believed that the amines react with the catalysts, e.g., photoacids, generated to create an inert salt. The presence of the amines also increases resolution. Suitable photoimageable compositions includes: (a) a multifunctional polymeric epoxy resin that is dissolved in an organic solvent wherein the epoxy resin comprises oligomers of bisphenol A that is quantitatively protected by glycidyl ether and wherein the oligomers have an average functionality that ranges from about 3 to 12; (b) a photoactive compound; and (c) an amine that is selected from the group consisting of triisobutylamine, 1,8-bis(dimethylamino)naphthalene (also known as PROTON SPONGET.TM.), 2,2'-diazabicyclo[2.2.2] octane and mixtures thereof. The photoimageable composition is particularly suited for producing high aspect ratio metal microstructures.

  1. Fuel-tolerance tests with the Ford PROCO engine

    SciTech Connect (OSTI)

    Choma, M.A.; Havstad, P.H.; Simko, A.O.; Stockhausen, W.F.

    1981-01-01

    A variety of fuel tolerance tests were conducted utilizing Ford's PROCO engine, a direct fuel injection stratified charge engine developed for light duty vehicles. These engine tests were run on the dynamometer and in vehicles. Data indicate an 89 RON octane requirement, relatively low sensitivity to volatility characteristics and good fuel economy, emission control and operability on a certain range of petroleum fuel and alcohol mixes including 100% methanol. Fuels such as JP-4 and Diesel fuel are not at present suitable for this engine. There were no engine modifications tested that might improve the match between the engine and a particular fuel. The 100% methanol test was conducted with a modified fuel injection pump. Durability aspects including compatibility of various fuels with the materials in the fuel system were not addressed.

  2. An engine concept for a viable transition into the future

    SciTech Connect (OSTI)

    Eng, K.D.

    1982-11-01

    Syncrudes and synfuels will be introduced in the future to supplement or replace petroleum based transportation fuels. Initial synfuels may have qualities considerably different from present fuels and may cause operational problems in engines. Instead of further treating the synfuels to meet current fuel specifications, thus increasing the production costs, it is entirely viable to introduce an engine which has the capability of operating on a broad range of fuels. This type of engine, with its ability to run on petroleum based fuels and synfuels, could provide a smooth transition into the future. The Texaco Controlled-Combustion System (TCCS) is a direct-injection, stratified-charge, engine concept. It has demonstrated the ability to run on a broad range of fuels including gasoline, diesel, broadcut fuels, low octane shale derived gasoline and alcohols. Performance of an engine modified to employ the TCCS concept, operating on different fuels, is discussed in this paper.

  3. Susceptibility of Aluminum Alloys to Corrosion in Simulated Fuel Blends Containing Ethanol

    SciTech Connect (OSTI)

    Thomson, Jeffery K; Pawel, Steven J; Wilson, Dane F

    2013-01-01

    The compatibility of aluminum and aluminum alloys with synthetic fuel blends comprised of ethanol and reference fuel C (a 50/50 mix of toluene and iso-octane) was examined as a function of water content and temperature. Commercially pure wrought aluminum and several cast aluminum alloys were observed to be similarly susceptible to substantial corrosion in dry (< 50 ppm water) ethanol. Corrosion rates of all the aluminum materials examined was accelerated by increased temperature and ethanol content in the fuel mixture, but inhibited by increased water content. Pretreatments designed to stabilize passive films on aluminum increased the incubation time for onset of corrosion, suggesting film stability is a significant factor in the mechanism of corrosion.

  4. Ethanol from biomass: A status report

    SciTech Connect (OSTI)

    Walker, R.

    1996-12-31

    Programmatic and technical activities of SWAN Biomass, a company formed by Amoco Corporation and Stone & Webster, to convert non-grain biomass material to ethanol, are highlighted in this presentation. The potential ethanol markets identified are: (1) fuel oxygenate and octane additive, and (2) waste reduction in the agricultural and forestry industries and in municipal waste streams. Differences in the SWAN process from that used in corn-based ethanol facilities include more intense pretreatment of lignocellulosic biomass, different enzymes, hydrolysis and fermentation of sugar polymers is performed in the same vessel, and a typical solid residue of lignin. The major market and technical risks have been assessed as being manageable. 8 figs., 8 tabs.

  5. An investigation into the reactivity, deactivation, and in situ regeneration of Pt-based catalysts for the selective reduction of NO{sub x} under lean burn conditions

    SciTech Connect (OSTI)

    Burch, R.; Fornasiero, P.; Southward, B.W.L.

    1999-02-15

    The activity and deactivation characteristics of Pt-based lean burn De-NO{sub x} catalysts have been investigated and the relationships between temperature, nature of reductant (n-octane) and NO{sub 2} concentrations, and the mechanism(s) of deactivation have been examined. The effects of Pt loading and particle size on the activity and deactivation have also been studied. The results show that deactivation of the catalyst is due to site blocking via an unidentified carbonaceous deposit and that the initial surface state of the Pt is crucial. In all cases clean Pt surfaces were found to display an initial period of surprisingly high activity prior to deactivation, the rate of which was inversely related to reaction temperature. Deactivation is proposed to arise from a combination of factors which inhibit adsorption and reaction of n-octane, due to encroachment onto the Pt surface of hydrocarbonaceous species accumulating initially on the support in the vicinity of the Pt/support interface. It is possible that these carbon-containing deposits comprise some form of organonitrogen species. The loss of activity due to this gradual encroachment results in a reduction in the temperature of the Pt particles, leading to a further decrease in reaction and/or desorption rates, and rapid deactivation then ensues. The use of higher Pt loadings leads to enhanced activity at lower temperatures and increased tolerance to the deactivating effects of surface deposition. Catalyst activity and tolerance to deactivation were further enhanced by controlled sintering, which, within certain limits, resulted in excellent, stable low-temperature De-NO{sub x} activity.

  6. Fuel Composition Effects at Constant RON and MON in an HCCI Engine Operated with Negative Valve Overlap

    SciTech Connect (OSTI)

    Bunting, Bruce G; Farrell, John T

    2006-01-01

    The effects of fuel properties on gasoline HCCI operation have been investigated in a single cylinder, 500 cc, 11.3 CR port fuel injected research engine, operated at lambda=1 and equipped with hydraulic valve actuation. HCCI is promoted by early exhaust valve closing to retain hot exhaust in the cylinder, thereby increasing the cylinder gas temperature. Test fuels were formulated with pure components to have the same RON, MON, and octane sensitivity as an indolene reference fuel, but with a wide range of fuel composition differences. Experiments have been carried out to determine if fuel composition plays a role in HCCI combustion properties, independent of octane numbers. Fuel economy, emissions, and combustion parameters have been measured at several fixed speed/load conditions over a range of exhaust valve closing angles. When the data are compared at constant combustion phasing, fuel effects on emissions and other combustion properties are small. However, when compared at constant exhaust valve closing angle, fuel composition effects are more pronounced, specifically regarding ignition. Operability range differences are also related to fuel composition. An all-paraffinic (normal, iso, and cycloparaffins) fuel exhibited distinctly earlier combustion phasing, increased rate of cylinder pressure rise, and increased rate of maximum heat release compared to the indolene reference fuel. Conversely, olefin-containing fuels exhibited retarded combustion phasing. The fuels with the most advanced ignition showed a wider operating range in terms of engine speed and load, irrespective of exhaust closing angle. These ignition differences reflect contributions from both fuel and EGR kinetics, the effects of which are discussed. The fuel composition variables are somewhat inter-correlated, which makes the experimental separation their effects imprecise with this small set of fuels, though clear trends are evident. The overall effects of fuel composition on engine performance and emissions are small. However, the results suggest that the effects on combustion phasing and engine operability range may need to be considered in the practical implementation of HCCI for fuels with large compositional variations.

  7. Catalytic Synthesis of Oxygenates: Mechanisms, Catalysts and Controlling Characteristics

    SciTech Connect (OSTI)

    Klier, Kamil; Herman, Richard G

    2005-11-30

    This research focused on catalytic synthesis of unsymmetrical ethers as a part of a larger program involving oxygenated products in general, including alcohols, ethers, esters, carboxylic acids and their derivatives that link together environmentally compliant fuels, monomers, and high-value chemicals. The catalysts studied here were solid acids possessing strong Brnsted acid functionalities. The design of these catalysts involved anchoring the acid groups onto inorganic oxides, e.g. surface-grafted acid groups on zirconia, and a new class of mesoporous solid acids, i.e. propylsulfonic acid-derivatized SBA-15. The former catalysts consisted of a high surface concentration of sulfate groups on stable zirconia catalysts. The latter catalyst consists of high surface area, large pore propylsulfonic acid-derivatized silicas, specifically SBA-15. In both cases, the catalyst design and synthesis yielded high concentrations of acid sites in close proximity to one another. These materials have been well-characterization in terms of physical and chemical properties, as well as in regard to surface and bulk characteristics. Both types of catalysts were shown to exhibit high catalytic performance with respect to both activity and selectivity for the bifunctional coupling of alcohols to form ethers, which proceeds via an efficient SN2 reaction mechanism on the proximal acid sites. This commonality of the dual-site SN2 reaction mechanism over acid catalysts provides for maximum reaction rates and control of selectivity by reaction conditions, i.e. pressure, temperature, and reactant concentrations. This research provides the scientific groundwork for synthesis of ethers for energy applications. The synthesized environmentally acceptable ethers, in part derived from natural gas via alcohol intermediates, exhibit high cetane properties, e.g. methylisobutylether with cetane No. of 53 and dimethylether with cetane No. of 55-60, or high octane properties, e.g. diisopropylether with blending octane No. of 105, and can replace aromatics in liquid fuels.

  8. Chemical kinetic modeling of component mixtures relevant to gasoline

    SciTech Connect (OSTI)

    Mehl, M; Curran, H J; Pitz, W J; Dooley, S; Westbrook, C K

    2008-05-29

    Detailed kinetic models of pyrolysis and combustion of hydrocarbon fuels are nowadays widely used in the design of internal combustion engines and these models are effectively applied to help meet the increasingly stringent environmental and energetic standards. In previous studies by the combustion community, such models not only contributed to the understanding of pure component combustion, but also provided a deeper insight into the combustion behavior of complex mixtures. One of the major challenges in this field is now the definition and the development of appropriate surrogate models able to mimic the actual features of real fuels. Real fuels are complex mixtures of thousands of hydrocarbon compounds including linear and branched paraffins, naphthenes, olefins and aromatics. Their behavior can be effectively reproduced by simpler fuel surrogates containing a limited number of components. Aside the most commonly used surrogates containing iso-octane and n-heptane only, the so called Primary Reference Fuels (PRF), new mixtures have recently been suggested to extend the reference components in surrogate mixtures to also include alkenes and aromatics. It is generally agreed that, including representative species for all the main classes of hydrocarbons which can be found in real fuels, it is possible to reproduce very effectively in a wide range of operating conditions not just the auto-ignition propensity of gasoline or Diesel fuels, but also their physical properties and their combustion residuals [1]. In this work, the combustion behavior of several components relevant to gasoline surrogate formulation is computationally examined. The attention is focused on the autoignition of iso-octane, hexene and their mixtures. Some important issues relevant to the experimental and modeling investigation of such fuels are discussed with the help of rapid compression machine data and calculations. Following the model validation, the behavior of mixtures is discussed on the basis of computational results.

  9. Numerical investigation of spontaneous flame propagation under RCCI conditions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bhagatwala, Ankit V; Sankaran, Ramanan; Kokjohn, Sage; Chen, Jacqueline H

    2015-06-30

    This paper presents results from one and two-dimensional direct numerical simulations under Reactivity Controlled Compression Ignition (RCCI) conditions of a primary reference fuel (PRF) mixture consisting of n-heptane and iso-octane. RCCI uses in-cylinder blending of two fuels with different autoignition characteristics to control combustion phasing and the rate of heat release. These simulations employ an improved model of compression heating through mass source/sink terms developed in a previous work by Bhagatwala et al. (2014), which incorporates feedback from the flow to follow a predetermined experimental pressure trace. Two-dimensional simulations explored parametric variations with respect to temperature stratification, pressure profiles andmore » n-heptane concentration. Furthermore, statistics derived from analysis of diffusion/reaction balances locally normal to the flame surface were used to elucidate combustion characteristics for the different cases. Both deflagration and spontaneous ignition fronts were observed to co-exist, however it was found that higher n-heptane concentration provided a greater degree of flame propagation, whereas lower n-heptane concentration (higher fraction of iso-octane) resulted in more spontaneous ignition fronts. A significant finding was that simulations initialized with a uniform initial temperature and a stratified n-heptane concentration field, resulted in a large fraction of combustion occurring through flame propagation. The proportion of spontaneous ignition fronts increased at higher pressures due to shorter ignition delay when other factors were held constant. For the same pressure and fuel concentration, the contribution of flame propagation to the overall combustion was found to depend on the level of thermal stratification, with higher initial temperature gradients resulting in more deflagration and lower gradients generating more ignition fronts. Statistics of ignition delay are computed to assess the Zel’dovich (1980) theory for the mode of combustion propagation based on ignition delay gradients.« less

  10. Numerical investigation of spontaneous flame propagation under RCCI conditions

    SciTech Connect (OSTI)

    Bhagatwala, Ankit V; Sankaran, Ramanan; Kokjohn, Sage; Chen, Jacqueline H

    2015-06-30

    This paper presents results from one and two-dimensional direct numerical simulations under Reactivity Controlled Compression Ignition (RCCI) conditions of a primary reference fuel (PRF) mixture consisting of n-heptane and iso-octane. RCCI uses in-cylinder blending of two fuels with different autoignition characteristics to control combustion phasing and the rate of heat release. These simulations employ an improved model of compression heating through mass source/sink terms developed in a previous work by Bhagatwala et al. (2014), which incorporates feedback from the flow to follow a predetermined experimental pressure trace. Two-dimensional simulations explored parametric variations with respect to temperature stratification, pressure profiles and n-heptane concentration. Furthermore, statistics derived from analysis of diffusion/reaction balances locally normal to the flame surface were used to elucidate combustion characteristics for the different cases. Both deflagration and spontaneous ignition fronts were observed to co-exist, however it was found that higher n-heptane concentration provided a greater degree of flame propagation, whereas lower n-heptane concentration (higher fraction of iso-octane) resulted in more spontaneous ignition fronts. A significant finding was that simulations initialized with a uniform initial temperature and a stratified n-heptane concentration field, resulted in a large fraction of combustion occurring through flame propagation. The proportion of spontaneous ignition fronts increased at higher pressures due to shorter ignition delay when other factors were held constant. For the same pressure and fuel concentration, the contribution of flame propagation to the overall combustion was found to depend on the level of thermal stratification, with higher initial temperature gradients resulting in more deflagration and lower gradients generating more ignition fronts. Statistics of ignition delay are computed to assess the Zel’dovich (1980) theory for the mode of combustion propagation based on ignition delay gradients.

  11. 101112-FINAL.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Voice 918-595-6600 Fax 918-595-6656 www.swpa.gov The UPDATE is published by and for customers, retirees, and employees of Southwestern Power Administration like: Linda Mummey Realty Offi cer Tulsa, Oklahoma Special thanks to: Scott Carpenter Vicki Clarke Gary Cox Ruben Garcia Larry Harp William Hiller Beth Nielsen Kathy O'Neal Carrie Quick Angela Summer Mike Wech Jon Worthington U P DAT E S O U T H W E S T E R N P O W E R A D M I N I S T R A T I O N O C T O B E R - D E C E M B E R 2 0 0 8

  12. Active DOE Technical Standards

    Energy Savers [EERE]

    AcƟve DOE Technical Standards Document Number Document Title Responsible SLM DOE-STD-1129-2015 TriƟum Handling and Safe Storage James HuƩon DOE-STD-1020-2012 NaƟonal Phenomena hazards Design and EvaluaƟon Criteria for DOE FaciliƟes James O'Brien DOE-STD-1025-2008 Weapons Quality Assurance QualiĮcaƟon Standard Karen Boardman DOE-STD-1026-2009 NNSA Package CerƟĮcaƟon Engineer FuncƟonal Area QualiĮcaƟon Standard Karen Boardman DOE-STD-1027-92 (CH1) Hazard CategorizaƟon and Accident

  13. LANL: AOT & LANSCE The Pulse December 2010

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos National Laboratory * Est. 1943 The Pulse-Newsletter of the Los Alamos Neutron Science Center and Accelerator Operations and Technology Division I N S I D E 2 From Alex's Desk 3 lANsCe-Ns hosts NNsA ACADemiC AlliANCe CeNter oF exCelleNCe leADer 4 Workshop oN isotope hArvestiNg At the FACility For rAre isotope BeAms iN situ ChArACterizA- tioN oF multiphAse polymeriC mAteriAls upoN DeFormAtioN 5 NeutroN sCAtteriNg reveAls the AtomiC motioN iN A NeW ClAss oF CerAmiC- metAl mAteriAls

  14. F O L E

    Office of Legacy Management (LM)

    Box, z ,* 2-10-5 F O L ~ E @ \o d P!LC 5 Historical Information H. 1 General, . . . ' Book 1 : ; Economics of Nuclear Gas,. . Stimulation DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. ABSTRACT ECONOMICS O F NUCLEAR GAS STIMULATION G. W . F r a n k A u s t r a l Oil Company I n c o r p o r a t e d Houston, T e x a s H. F. Coffer CER Geonuclear C o r p o r a t i o n Las V e g a s , Nevada G. R .

  15. Regional

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 AÇORIANO ORIENTAL SEGUNDA-FEIRA, 5 DE MARÇO DE 2012 PUB Da Graciosa para a Índia graças à estação atmosférica Carlos está atualmente a trabalhar na estação atmosférica móvel instalada na Índia, a dois mil metros de altitude Estar no lugar certo na hora cer- ta pode mudar radicalmente a vida de uma pessoa. Foi isso que aconteceu ao graciosense Carlos Sousa, de 41 anos, que começou por ser trabalhador daconstrução civil antes de emigrar para os Es- tados Unidos da América. No

  16. Active DOE Technical Standards

    Office of Environmental Management (EM)

    AcƟve DOE Technical Standards Document Number Document Title Responsible SLM DOE-STD-1020-2012 NaƟonal Phenomena hazards Design and EvaluaƟon Criteria for DOE FaciliƟes James O'Brien DOE-STD-1025-2008 Weapons Quality Assurance QualiĮcaƟon Standard Karen Boardman DOE-STD-1026-2009 NNSA Package CerƟĮcaƟon Engineer FuncƟonal Area QualiĮcaƟon Standard Karen Boardman DOE-STD-1027-92 (CH1) Hazard CategorizaƟon and Accident Analysis Techniques for Compliance with DOE Order 5480.23,

  17. Active DOE Technical Standards Projects

    Office of Environmental Management (EM)

    AcƟve) Project Number Title Document ID SLM / ORG Author / Phone / Email Status / Status Date P1020- 2012REV Natural Phenomena Hazards Analysis and Design Criteria for DOE FaciliƟes P1020-2012REV James O'Brien (AU-32) Sharon Jasim-Hanif In coordinaƟon - Review and Comment P1026- 2009REV P1046- 2008REV P1063- 2011REV P1066- 2012REV P1073- 2003REV P1095- 2011REV P1098- 2008REV NNSA Packaging CerƟĮcaƟon Engineer FAQS (DOE-STD-1026-2009) P1026-2009REV Ahmad Al-Daouk (NA-53) Temporary Emergency

  18. Development of high-spatial and high-mass resolution mass spectrometric imaging (MSI) and its application to the study of small metabolites and endogenous molecules of plants

    SciTech Connect (OSTI)

    Jun, Ji Hyun

    2011-11-30

    High-spatial and high-mass resolution laser desorption ionization (LDI) mass spectrometric (MS) imaging technology was developed for the attainment of MS images of higher quality containing more information on the relevant cellular and molecular biology in unprecedented depth. The distribution of plant metabolites is asymmetric throughout the cells and tissues, and therefore the increase in the spatial resolution was pursued to reveal the localization of plant metabolites at the cellular level by MS imaging. For achieving high-spatial resolution, the laser beam size was reduced by utilizing an optical fiber with small core diameter (25 μm) in a vacuum matrix-assisted laser desorption ionization-linear ion trap (vMALDI-LTQ) mass spectrometer. Matrix application was greatly improved using oscillating capillary nebulizer. As a result, single cell level spatial resolution of ~ 12 μm was achieved. MS imaging at this high spatial resolution was directly applied to a whole Arabidopsis flower and the substructures of an anther and single pollen grains at the stigma and anther were successfully visualized. MS imaging of high spatial resolution was also demonstrated to the secondary roots of Arabidopsis thaliana and a high degree of localization of detected metabolites was successfully unveiled. This was the first MS imaging on the root for molecular species. MS imaging with high mass resolution was also achieved by utilizing the LTQ-Orbitrap mass spectrometer for the direct identification of the surface metabolites on the Arabidopsis stem and root and differentiation of isobaric ions having the same nominal mass with no need of tandem mass spectrometry (MS/MS). MS imaging at high-spatial and high-mass resolution was also applied to cer1 mutant of the model system Arabidopsis thaliana to demonstrate its usefulness in biological studies and reveal associated metabolite changes in terms of spatial distribution and/or abundances compared to those of wild-type. The spatial distribution of targeted metabolites, mainly waxes and flavonoids, was systematically explored on various organs, including flowers, leaves, stems, and roots at high spatial resolution of ~ 12-50 μm and the changes in the abundance level of these metabolites were monitored on the cer1 mutant with respect to the wild-type. This study revealed the metabolic biology of CER1 gene on each individual organ level with very detailed high spatial resolution. The separate MS images of isobaric metabolites, i.e. C29 alkane vs. C28 aldehyde could be constructed on both genotypes from MS imaging at high mass resolution. This allows tracking of abundance changes for those compounds along with the genetic mutation, which is not achievable with low mass resolution mass spectrometry. This study supported previous hypothesis of molecular function of CER1 gene as aldehyde decarbonylase, especially by displaying hyper accumulation of aldehydes and C30 fatty acid and decrease in abundance of alkanes and ketones in several plant organs of cer1 mutant. The scope of analytes was further directed toward internal cell metabolites from the surface metabolites of the plant. MS profiling and imaging of internal cell metabolites were performed on the vibratome section of Arabidopsis leaf. Vibratome sectioning of the leaf was first conducted to remove the surface cuticle layer and it was followed by enzymatic treatment of the section to induce the digestion of primary cell walls, middle lamella, and expose the internal cells underneath to the surface for detection with the laser by LDI-MS. The subsequent MS imaging onto the enzymatically treated vibratome section allowed us to map the distribution of the metabolites in the internal cell layers, linolenic acid (C18:3 FA) and linoleic acid (C18:2 FA). The development of an assay for relative quantification of analytes at the single subcellular/organelle level by LDI-MS imaging was attempted and both plausibility and significant obstacles were seen. As a test system, native plant organelle, chloroplasts isolated from the spinach leaves were used and the localization of isolated chloroplasts dispersed on the target plate in low density was monitored by detecting the ion signal of chlorophyll a (Chl a) degradation products such as pheophytin a and pheophobide a by LDI-MS imaging in combination with fluorescence microscopy. The number of chloroplasts and their localization visualized in the MS image exactly matched those in the fluorescence image especially at low density, which first shows the plausibility of single-organelle level quantification of analytes by LDI-MS. The accumulation level of Chl a within a single chloroplast detected by LDI-MS was compared to the fluorescence signal on a pixel-to-pixel basis to further confirm the correlations of the accumulation levels measured by two methods. The proportional correlation was observed only for the chloroplasts which do not show the significant leakage of chlorophyll indicated by MS ion signal of Chl a degradation products and fluorescence signal, which was presumably caused by the prior fluorescence measurement before MS imaging. Further investigation is necessary to make this method more complete and develop LDI-MS imaging as an effective analytical tool to evaluate a relative accumulation of analytes of interest at the single subcellular/organelle level.

  19. Ethanol oxidation on metal oxide-supported platinum catalysts

    SciTech Connect (OSTI)

    L. M. Petkovic 090468; Sergey N. Rashkeev; D. M. Ginosar

    2009-09-01

    Ethanol is a renewable fuel that can be used as an additive to gasoline (or its substitute) with the advantage of octane enhancement and reduced carbon monoxide exhaust emissions. However, on Ethanol is a renewable fuel that can be used as an additive to gasoline (or its substitute) with the advantage of octane enhancement and reduced carbon monoxide exhaust emissions. However, on the standard three-way catalysts, the conversion of unburned ethanol is low because both ethanol and some of its partially oxidized derivatives are highly resistant to oxidation. A combination of first-principles density-functional theory (DFT) based calculations and in-situ diffuse reflectance infrared spectroscopy (DRIFTS) analysis was applied to uncover some of the fundamental phenomena associated with ethanol oxidation on Pt containing catalysts. In particular, the objective was to analyze the role of the oxide (i.e., ?-Al2O3 or SiO2) substrate on the ethanol oxidation activity. The results showed that Pt nanoparticles trap and accumulate oxygen at their surface and perimeter sites and play the role of stoves that burn ethanol molecules and their partially oxidized derivatives to the final products. The ?-Al2O3 surfaces provided higher mobility of the fragments of ethanol molecules than the SiO2 surface and hence increased the supply rate of these objects to the Pt particles. This will in turn produce a higher conversion rate of unburned ethanol.and some of its partially oxidized derivatives are highly resistant to oxidation. A combination of first-principles density-functional theory (DFT) based calculations and in-situ diffuse reflectance infrared spectroscopy (DRIFTS) analysis was applied to uncover some of the fundamental phenomena associated with ethanol oxidation on Pt containing catalysts. In particular, the objective was to analyze the role of the oxide (i.e., ?-Al2O3 or SiO2) substrate on the ethanol oxidation activity. The results showed that Pt nanoparticles trap and accumulate oxygen at their surface and perimeter sites and play the role of stoves that burn ethanol molecules and their partially oxidized derivatives to the final products. The ?-Al2O3 surfaces provided higher mobility of the fragments of ethanol molecules than the SiO2 surface and hence increased the supply rate of these objects to the Pt particles. This will in turn produce a higher conversion rate of unburned ethanol.

  20. Saturn's inner satellites: Orbits, masses, and the chaotic motion of atlas from new Cassini imaging observations

    SciTech Connect (OSTI)

    Cooper, N. J.; Murray, C. D.; Renner, S.; Evans, M. W.

    2015-01-01

    We present numerically derived orbits and mass estimates for the inner Saturnian satellites, Atlas, Prometheus, Pandora, Janus, and Epimetheus from a fit to 2580 new Cassini Imaging Science Subsystem astrometric observations spanning 2004 February to 2013 August. The observations are provided as machine-readable and Virtual Observatory tables. We estimate GM{sub Atlas} = (0.384 0.001) 10{sup ?3} km{sup 3} s{sup ?2}, a value 13% smaller than the previously published estimate but with an order of magnitude reduction in the uncertainty. We also find GM{sub Prometheus} = (10.677 0.006) 10{sup ?3} km{sup 3} s{sup ?2}, GM{sub Pandora} = (9.133 0.009) 10{sup ?3} km{sup 3} s{sup ?2}, GM{sub Janus} = (126.51 0.03) 10{sup ?3} km{sup 3} s{sup ?2}, and GM{sub Epimetheus} = (35.110 0.009) 10{sup ?3} km{sup 3} s{sup ?2}, consistent with previously published values, but also with significant reductions in uncertainties. We show that Atlas is currently librating in both the 54:53 co-rotation-eccentricity resonance (CER) and the 54:53 inner Lindblad (ILR) resonance with Prometheus, making it the latest example of a coupled CER-ILR system, in common with the Saturnian satellites Anthe, Aegaeon, and Methone, and possibly Neptune's ring arcs. We further demonstrate that Atlas's orbit is chaotic, with a Lyapunov time of ?10 years, and show that its chaotic behavior is a direct consequence of the coupled resonant interaction with Prometheus, rather than being an indirect effect of the known chaotic interaction between Prometheus and Pandora. We provide an updated analysis of the second-order resonant perturbations involving Prometheus, Pandora, and Epimetheus based on the new observations, showing that these resonant arguments are librating only when Epimetheus is the innermost of the co-orbital pair, Janus and Epimetheus. We also find evidence that the known chaotic changes in the orbits of Prometheus and Pandora are not confined to times of apse anti-alignment.

  1. Increasing the rate of hydrogen oxidation without increasing the overpotential: A bio-inspired iron molecular electrocatalyst with an outer coordination sphere proton relay

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Darmon, Jonathan M.; Kumar, Neeraj; Hulley, Elliott B.; Weiss, Charles J.; Raugei, Simone; Bullock, R. Morris; Helm, Monte L.

    2015-03-05

    Oxidation of hydrogen (H₂) to protons and electrons for energy production in fuel cells is catalyzed by platinum, but its low abundance and high cost present drawbacks to widespread adoption. Precisely controlled proton delivery and removal is critical in hydrogenase enzymes in nature that catalyze H₂ oxidation using earth-abundant metals (iron and nickel). Here we report a synthetic iron complex, (CpC5F4N)Fe(PEtN(CH2)3NMe2PEt)(Cl), that serves as a precatalyst for the oxidation of H₂, with turnover frequencies of 290 s⁻¹ in fluorobenzene, under 1 atm of H₂ using 1,4-diazabicyclo[2.2.2]octane (DABCO) as the exogenous base. The cooperative effect of the primary, secondary and outermore » coordination spheres for moving protons in this remarkably fast catalyst emphasizes the key role of pendant amines in mimicking the functionality of the proton pathway in the hydrogenase enzymes.« less

  2. Environmental fate of methylcyclopentadienyl manganese tricarbonyl

    SciTech Connect (OSTI)

    Garrison, A.W.; Wolfe, N.L.; Swank, R.R. Jr.; Cipollone, M.G.

    1995-11-01

    Methylcyclopentadienyl manganese tricarbonyl (MMT) has been proposed as an octane booster for unleaded gasoline; such use could result in ecological and human exposure through surface water and groundwater ecosystems. To evaluate the environmental risks from MMT, its environmental fate constants and transformation pathways must be known. Constants for physical parameters that would likely influence MMT fate were collected from the literature or calculated; the compound`s octanol/water partition coefficient and water solubility were determined in the laboratory. Experiments were designed to screen MMT for transformation pathways that are significant over environmentally short time frames. The MMT was found to be fairly stable in the dark in aquifer materials and sediments at various Eh levels; half-lives ranged from 0.2 to 1.5 years in aquifer materials at 25 C. (These matrices were not optimized for biodegradation.) On the other hand, MMT photolyzes rapidly in distilled water; its half-life in midday sunlight in water is approximately 1 min and the disappearance quantum yield is 0.13. Photodegradation products were identified as cyclopentadiene, methyl cyclopentadiene, carbon monoxide, and a manganese carbonyl that readily oxidized to trimanganese tetroxide.

  3. Influence of autoignition delay time characteristics of different fuels on pressure waves and knock in reciprocating engines

    SciTech Connect (OSTI)

    Bradley, D.; Kalghatgi, G.T.

    2009-12-15

    The functional relationship of autoignition delay time with temperature and pressure is employed to derive the propagation velocities of autoignitive reaction fronts for particular reactivity gradients, once autoignition has been initiated. In the present study of a variety of premixtures, with different functional relationships, such gradients comprise fixed initial temperature gradients. The smaller is the ratio of the acoustic speed through the mixture to the localised velocity of the autoignitive front, the greater are the amplitude and frequency of the induced pressure wave. This might lead to damaging engine knock. At higher values of the ratio, the autoignition can be benign with only small over-pressures. This approach to the effects of autoignition is confirmed by its application to a variety of experimental studies involving: (i)Imposed temperature gradients in a rapid compression and expansion machine. (ii)Onset of knock in an engine with advancing spark timing. (iii)Development of autoignition at a single hot spot in an engine. (iv)Autoignition fronts initiated by several hot spots. There is much diversity in the effects that can be produced by different fuels in different ranges of temperature and pressure. Higher values of autoignitive propagation speeds lead to increasingly severe engine knock. Such effects cannot always be predicted from the Research and Motor octane numbers. (author)

  4. Sixth special price report: world petroleum-product prices

    SciTech Connect (OSTI)

    Not Available

    1984-01-11

    Twice annually, Energy Detente accesses its own twice-monthly supplement, the Fuel Price/Tax Series, for an overview of how prices and taxes for refined petroleum products from natural gas to asphalt for end-users are changing. In this issue, it also updates its review of individual nations' pricing as to controls or free-market practices. The front cover chart reveals that, in terms of US dollars, the world average price of regular leaded (RL) gasoline is US $1.63, and high-octane leaded is US $1.78 - a difference of about 9%. A table details RL retail prices, the taxes pertaining to them, the percentages that those taxes are of prices, plus the January 1983 prices and the price change in US dollars over the period. In terms of US dollars, most price changes since January 1983 appear negative - particularly in the cases of Bolivia, El Salvador, and Nicaragua. A view of actual market price changes in terms of national currencies is depicted in another table. The fuel price/tax series and the principal industrial fuel prices are presented for January 1984 for countries of the Eastern Hemisphere.

  5. Direct Measurement and Chemical Speciation of Top Ring Zone Liquid During Engine Operation

    SciTech Connect (OSTI)

    Splitter, Derek A; Burrows, Barry Clay; Lewis Sr, Samuel Arthur

    2015-01-01

    The present manuscript consists of proof of concept experiments involving direct measurements and detailed chemical speciation from the top ring zone of a running engine. The work uses a naturally aspirated single cylinder utility engine that has been modified to allow direct liquid sample acquisition from behind the top ring. Samples were analyzed and spectated using gas chromatographic techniques. Results show that the liquid mixture in the top ring zone is neither neat lubricant nor fuel but a combination of the two with unique chemical properties. At the tested steady state no-load operating condition, the chemical species of the top ring zone liquid were found to be highly dependent on boiling point, where both low reactivity higher boiling point fuel species and lubricant are observed to be the dominant constituents. The results show that at least for the tested condition, approximately 25% of the top ring zone is comprised of gasoline fuel like molecules, which are dominated by high octane number aromatic species, while the remainder of the liquid is comprised of lubricant like species.

  6. Synthesis and Rietveld refinement of the small-pore zeolite SSZ-16

    SciTech Connect (OSTI)

    Lobo, R.F.; Zones, S.I.; Medrud, R.C.

    1996-10-01

    Recent research efforts invested in the synthesis of new high-silica zeolites have yielded several novel materials with medium ({approximately}5.6 {Angstrom}) and large ({approximately}7.2 {Angstrom}) pores. Examples include new zeolites with intersecting 10 and 12 member rings-i.e., pores bounded by 10 and 12 tetrahedral (T) atoms respectively-like SSZ-26, NU-87, SSZ-37, SSZ-25, MCM-22, CIT-1 (CON), and the aluminophosphate-based DAF-1 (DFO). However, except for the zeolites SSZ-28 (DDR) and SSZ-13 (CHA), no new high-silica zeolites with small pores have been reported. High-silica small-pore zeolites could be potentially useful for several catalytic reactions including the synthesis of dimethylamine, the reduction of NO{sub x} from combustion gases and the dewaxing of fuels for octane upgrading. The authors present here the synthesis and structural characterization using Rietveld refinement of synchrotron X-ray powder diffraction data of the zeolite SSZ-16. 27 refs., 3 figs., 2 tabs.

  7. Ethanol Demand in United States Gasoline Production

    SciTech Connect (OSTI)

    Hadder, G.R.

    1998-11-24

    The Oak Ridge National Laboratory (OWL) Refinery Yield Model (RYM) has been used to estimate the demand for ethanol in U.S. gasoline production in year 2010. Study cases examine ethanol demand with variations in world oil price, cost of competing oxygenate, ethanol value, and gasoline specifications. For combined-regions outside California summer ethanol demand is dominated by conventional gasoline (CG) because the premised share of reformulated gasoline (RFG) production is relatively low and because CG offers greater flexibility for blending high vapor pressure components like ethanol. Vapor pressure advantages disappear for winter CG, but total ethanol used in winter RFG remains low because of the low RFG production share. In California, relatively less ethanol is used in CG because the RFG production share is very high. During the winter in California, there is a significant increase in use of ethanol in RFG, as ethanol displaces lower-vapor-pressure ethers. Estimated U.S. ethanol demand is a function of the refiner value of ethanol. For example, ethanol demand for reference conditions in year 2010 is 2 billion gallons per year (BGY) at a refiner value of $1.00 per gallon (1996 dollars), and 9 BGY at a refiner value of $0.60 per gallon. Ethanol demand could be increased with higher oil prices, or by changes in gasoline specifications for oxygen content, sulfur content, emissions of volatile organic compounds (VOCS), and octane numbers.

  8. Ethyl`s MMT ready to hit the road

    SciTech Connect (OSTI)

    Stringer, J.

    1996-01-03

    After spending two decades and about $30 million on the fight to sell the fuel octane booster methylcyclopentadienyl manganese tricarbonyl (MMT), Ethyl has started marketing the product. Ethyl president and chief operating officer Thomas Gottwald says he expects a profit from MMT from the outset. {open_quotes}MMT is a gangbuster new product,{close_quotes} says Paul Raman, an analyst with S.G. Warburg (New York), {open_quotes}and it will be very profitable for Ethyl.{close_quotes} Ethyl`s effort to bring MMT to market faced pressure from EPA and automakers. EPA says MMT should not be marketed until more research is done on health effects of the manganese-based additive. US automakers oppose MMT, fearing it will damage catalytic converters. Last October Ethyl won a federal appeals court decision compelling EPA to approve MMT use. Gottwald says the MMT fight has been well worth it: {open_quotes}We fought with our eye on the bottom line.{close_quotes}

  9. Geographical distribution of benzene in air in northwestern Italy and personal exposure

    SciTech Connect (OSTI)

    Gilli, G.; Scursatone, E.; Bono, R.

    1996-12-01

    Benzene is a solvent strictly related to some industrial activities and to automotive emissions. After the reduction in lead content of fuel gasoline, and the consequent decrease in octane number, an increase in benzene and other aromatic hydrocarbons in gasoline occurred. Therefore, an increase in the concentration of these chemicals in the air as primary pollutants and as precursors of photochemical smog could occur in the future. The objectives of this study were to describe the benzene air pollution at three sites in northwestern Italy throughout 1991 and 1994; to examine the relationship between benzene air pollution in indoor, outdoor, and personal air as measured by a group of nonsmoking university students; and to determine the influence of environmental tobacco smoke on the level of benzene exposure in indoor air environments. The results indicate a direct relationship between population density and levels of contamination; an indoor/outdoor ratio of benzene air pollution higher than 1 during day and night; a similar level of personal and indoor air contamination; and a direct relationship between levels of personal exposure to benzene and intensity of exposure to tobacco smoke. Human exposure to airborne benzene has been found to depend principally on indoor air contamination not only in the home but also in many other confined environments. 29 refs., 2 figs., 6 tabs.

  10. Wide range modeling study of dimethyl ether oxidation

    SciTech Connect (OSTI)

    Pitz, W.J.; Marinov, N.M.; Westbrook, C.K.; Dagaut, P.; Boettner, J-C; Cathonnet, M.

    1997-04-01

    A detailed chemical kinetic model has been used to study dimethyl ether (DME) oxidation over a wide range of conditions. Experimental results obtained in a jet-stirred reactor (JSR) at I and 10 atm, 0.2 < 0 < 2.5, and 800 < T < 1300 K were modeled, in addition to those generated in a shock tube at 13 and 40 bar, 0 = 1.0 and 650 :5 T :5 1300 K. The JSR results are particularly valuable as they include concentration profiles of reactants, intermediates and products pertinent to the oxidation of DME. These data test the Idnetic model severely, as it must be able to predict the correct distribution and concentrations of intermediate and final products formed in the oxidation process. Additionally, the shock tube results are very useful, as they were taken at low temperatures and at high pressures, and thus undergo negative temperature dependence (NTC) behavior. This behavior is characteristic of the oxidation of saturated hydrocarbon fuels, (e.g. the primary reference fuels, n-heptane and iso- octane) under similar conditions. The numerical model consists of 78 chemical species and 336 chemical reactions. The thermodynamic properties of unknown species pertaining to DME oxidation were calculated using THERM.

  11. Detailed Chemical Kinetic Modeling of Surrogate Fuels for Gasoline and Application to an HCCI Engine

    SciTech Connect (OSTI)

    Naik, C V; Pitz, W J; Sj?berg, M; Dec, J E; Orme, J; Curran, H J; Simmie, J M; Westbrook, C K

    2005-01-07

    Gasoline consists of many different classes of hydrocarbons, such as paraffins, olefins, aromatics, and cycloalkanes. In this study, a surrogate gasoline reaction mechanism is developed, and it has one representative fuel constituent from each of these classes. These selected constituents are iso-octane, n-heptane, 1-pentene, toluene, and methyl-cyclohexane. The mechanism was developed in a step-wise fashion, adding submechanisms to treat each fuel component. Reactions important for low temperature oxidation (<1000K) and cross-reactions among different fuels are incorporated into the mechanism. The mechanism consists of 1214 species and 5401 reactions. A single-zone engine model is used to evaluate how well the mechanism captures autoignition behavior for conditions corresponding to homogeneous charge compression ignition (HCCI) engine operation. Experimental data are available for both how the combustion phasing changes with fueling at a constant intake temperature, and also how the intake temperature has to be changed with pressure in order to maintain combustion phasing for a fixed equivalence ratio. Three different surrogate fuel mixtures are used for the modeling. Predictions are in reasonably good agreement with the engine data. In addition, the heat release rate is calculated and compared to the data from experiments. The model predicts less low-temperature heat release than that measured. It is found that the low temperature heat-release rate depends strongly on engine speed, reactions of RO{sub 2}+HO{sub 2}, fuel composition, and pressure boost.

  12. The Autoignition of iso-Cetane: Shock Tube Experiments and Kinetic Modeling

    SciTech Connect (OSTI)

    Oehlschlaeger, M A; Steinberg, J; Westbrook, C K; Pitz, W J

    2009-02-25

    Iso-cetane (2,2,4,4,6,8,8-heptamethylnonane, C{sub 16}H{sub 34}) is a highly branched alkane reference compound for determining cetane ratings. It is also a candidate branched alkane representative in surrogate mixtures for diesel and jet fuels. Here new experiments and kinetic modeling results are presented for the autoignition of iso-cetane at elevated temperatures and pressures relevant to combustion in internal combustion engines. Ignition delay time measurements were made in reflected shock experiments in a heated shock tube for {Phi} = 0.5 and 1.0 iso-cetane/air mixtures at temperatures ranging from 953 to 1347 K and pressures from 8 to 47 atm. Ignition delay times were measured using electronically excited OH emission, monitored through the shock tube end wall, and piezoelectric pressure transducer measurements, made at side wall locations. A new kinetic mechanism for the description of the oxidation of iso-cetane is presented that is developed based on a previous mechanism for iso-octane. Computed results from the mechanism are found in good agreement with the experimental measurements. To our knowledge, the ignition time measurements and detailed kinetic mechanism for isocetane presented here are the first of their kind.

  13. A Rapid Compression Machine Modelling Study of the Heptane Isomers

    SciTech Connect (OSTI)

    Silke, E J; Curran, H J; Simmie, J M; Pitz, W J; Westbrook, C K

    2005-05-10

    Previously we have reported on the combustion behavior of all nine isomers of heptane in a rapid compression machine (RCM) with stoichiometric fuel and ''air'' mixtures at a compressed gas pressure of 15 atm. The dependence of autoignition delay times on molecular structure was illustrated. Here, we report some additional experimental work that was performed in order to address unusual results regarding significant differences in the ignition delay times recorded at the same fuel and oxygen composition, but with different fractions of nitrogen and argon diluent gases. Moreover, we have begun to simulate these experiments with detailed chemical kinetic mechanisms. These mechanisms are based on previous studies of other alkane molecules, in particular, n-heptane and iso-octane. We have focused our attention on n-heptane in order to systematically redevelop the chemistry and thermochemistry for this C{sub 7} isomer with the intention of extending our greater knowledge gained to the other eight isomers. The addition of new reaction types, that were not included previously, has had a significant impact on the simulations, particularly at low temperatures.

  14. Vacuum pyrolysis of used tires

    SciTech Connect (OSTI)

    Roy, C.; Darmstadt, H.; Benallal, B.; Chaala, A.; Schwerdtfeger, A.E.

    1995-11-01

    The vacuum pyrolysis of used tires enables the recovery of useful products, such as pyrolytic oil and pyrolytic carbon black (CB{sub P}). The light part of the pyrolytic oil contains dl-limonene which has a high price on the market. The naphtha fraction can be used as a high octane number component for gasoline. The middle distillate demonstrated mechanical and lubricating properties similar to those of the commercial aromatic oil Dutrex R 729. The heavy oil was tested as a feedstock for the production of needle coke. It was found that the surface morphology of CB{sub P} produced by vacuum pyrolysis resembles that of commercial carbon black. The CB{sub P} contains a higher concentration of inorganic compounds (especially ZnO and S) than commercial carbon black. The pyrolysis process feasibility looks promising. One old tire can generate upon vacuum pyrolysis, incomes of at least $2.25 US with a potential of up to $4.83 US/tire upon further product improvement. The process has been licensed to McDermott Marketing Servicing Inc. (Houston) for its exploitation in the US.

  15. The Effects of Fuel Characteristics on Stoichiometric Spark-Assisted HCCI

    SciTech Connect (OSTI)

    Weall, Adam J; Szybist, James P

    2012-01-01

    The characteristics of fuel lean HCCI operation using a variety of fuels are well known and have been demonstrated using different engine concepts in the past. In contrast, stoichiometric operation of HCCI is less well documented. Recent studies have highlighted the benefits of operating at a stoichiometric condition in terms of load expansion combined with the applicability of three way catalyst technology to reduce NOx emissions. In this study the characterization of stoichiometric HCCI using gasoline-like fuels was undertaken. The fuels investigated are gasoline, a 50 vol% blend of iso-butanol and gasoline (IB50), and an 85% vol blend of ethanol and gasoline (E85). A single cylinder engine operating with direct injection and spark assist combined with a fully variable hydraulic valve actuation system allowed a wide range of operating parameters to be studied. The resultant fuel properties which differed in terms of octane rating, fuel oxygenation and heat of vaporization show that stoichiometric HCCI is possible using a range of fuels but that these fuel characteristics do have some effect on the combustion characteristics. How these fuel properties can enable an increased engine operating envelope to be achieved, in comparison with both fuel lean HCCI and conventional spark ignited combustion, is then discussed.

  16. Development of alternative fuels from coal-derived syngas

    SciTech Connect (OSTI)

    Brown, D.M.

    1992-05-19

    The overall objectives of this program are to investigate potential technologies for the conversion of coal-derived synthesis gas to oxygenated fuels, hydrocarbon fuels, fuel intermediates, and octane enhancers; and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). BASF continues to have difficulties in scaling-up the new isobutanol synthesis catalyst developed in Air Products' laboratories. Investigations are proceeding, but the proposed operation at LaPorte in April is now postponed. DOE has accepted a proposal to demonstrate Liquid Phase Shift (LPS) chemistry at LaPorte as an alternative to isobutanol. There are two principal reasons for carrying out this run. First, following the extensive modifications at the site, operation on a relatively benign'' system is needed before we start on Fischer-Tropsch technology in July. Second, use of shift catalyst in a slurry reactor will enable DOE's program on coal-based Fischer-Tropsch to encompass commercially available cobalt catalysts-up to now they have been limited to iron-based catalysts which have varying degrees of shift activity. In addition, DOE is supportive of continued fuel testing of LaPorte methanol-tests of MIOO at Detroit Diesel have been going particularly well. LPS offers the opportunity to produce methanol as the catalyst, in the absence of steam, is active for methanol synthesis.

  17. Development of alternative fuels from coal-derived syngas. Quarterly status report No. 6, January 1--March 31, 1992

    SciTech Connect (OSTI)

    Brown, D.M.

    1992-05-19

    The overall objectives of this program are to investigate potential technologies for the conversion of coal-derived synthesis gas to oxygenated fuels, hydrocarbon fuels, fuel intermediates, and octane enhancers; and to demonstrate the most promising technologies at DOE`s LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). BASF continues to have difficulties in scaling-up the new isobutanol synthesis catalyst developed in Air Products` laboratories. Investigations are proceeding, but the proposed operation at LaPorte in April is now postponed. DOE has accepted a proposal to demonstrate Liquid Phase Shift (LPS) chemistry at LaPorte as an alternative to isobutanol. There are two principal reasons for carrying out this run. First, following the extensive modifications at the site, operation on a relatively ``benign`` system is needed before we start on Fischer-Tropsch technology in July. Second, use of shift catalyst in a slurry reactor will enable DOE`s program on coal-based Fischer-Tropsch to encompass commercially available cobalt catalysts-up to now they have been limited to iron-based catalysts which have varying degrees of shift activity. In addition, DOE is supportive of continued fuel testing of LaPorte methanol-tests of MIOO at Detroit Diesel have been going particularly well. LPS offers the opportunity to produce methanol as the catalyst, in the absence of steam, is active for methanol synthesis.

  18. Increasing the rate of hydrogen oxidation without increasing the overpotential: A bio-inspired iron molecular electrocatalyst with an outer coordination sphere proton relay

    SciTech Connect (OSTI)

    Darmon, Jonathan M.; Kumar, Neeraj; Hulley, Elliott B.; Weiss, Charles J.; Raugei, Simone; Bullock, R. Morris; Helm, Monte L.

    2015-03-05

    Oxidation of hydrogen (H?) to protons and electrons for energy production in fuel cells is catalyzed by platinum, but its low abundance and high cost present drawbacks to widespread adoption. Precisely controlled proton delivery and removal is critical in hydrogenase enzymes in nature that catalyze H? oxidation using earth-abundant metals (iron and nickel). Here we report a synthetic iron complex, (CpC5F4N)Fe(PEtN(CH2)3NMe2PEt)(Cl), that serves as a precatalyst for the oxidation of H?, with turnover frequencies of 290 s? in fluorobenzene, under 1 atm of H? using 1,4-diazabicyclo[2.2.2]octane (DABCO) as the exogenous base. The cooperative effect of the primary, secondary and outer coordination spheres for moving protons in this remarkably fast catalyst emphasizes the key role of pendant amines in mimicking the functionality of the proton pathway in the hydrogenase enzymes.

  19. Fuel, lubricant and additive effects in combustion chamber deposit formation

    SciTech Connect (OSTI)

    Kelemen, S.R.; Homan, H.S.

    1996-10-01

    CCD causes octane requirement increase (ORI) and can potentially contributes to exhaust emissions and combustion chamber deposit interference (CCDI). Experiments were conducted to identify the separate fuel, lubricant and additive contributions to the amount and composition of CCD. CCD originates from multiple sources. Gasoline hydrocarbon components, gasoline additives, engine lubricant, and atmospheric nitrogen contribute to CCD in different ways. With some fuels the engine lubricant is the main contributor to CCD and this is shown by the high ash level in the CCD. For other fuels CCD is predominantly organic. Significant amounts of nitrogen were found in the CCD even when the fuel and lubricant were nitrogen free. The pyrolysis reactivity of different CCDs was studied to gain an understanding about the transformations that potentially happen over longer times and lower temperatures on the combustion chamber walls. In all cases during mild pyrolysis (375{degrees}C) there was a substantial increase in the level of aromatic carbon and a decrease in the level of organic oxygen. The largest increases in the amount of aromatic carbon occurred for CCDs that were the least aromatic.

  20. Duality of the Interfacial Thermal Conductance in Graphene-based Nanocomposites

    SciTech Connect (OSTI)

    Liu, Ying; Huang, Jingsong; Yang, Bao; Sumpter, Bobby G; Qiao, Rui

    2014-01-01

    The thermal conductance of graphene-matrix interfaces plays a key role in controlling the thermal transport properties of graphene-based nanocomposites. Using classical molecular dynamics simulations, we found that the interfacial thermal conductance depends strongly on the mode of heat transfer at the graphene-matrix interfaces: if heat enters graphene from one side of its basal plane and immediately leaves the graphene through the other side, the corresponding interfacial thermal conductance, G(across), is large; if heat enters graphene from both sides of its basal plane and leaves the graphene at a position far away on its basal plane, the corresponding interfacial thermal conductance, G(non-across), is small. For a single-layer graphene immersed in liquid octane, G(across) is ~150 MW/m2K while Gnon-across is ~5 MW/m2K. G(across) decreases with increasing multi-layer graphene thickness (i.e., number of layers in graphene) and approaches an asymptotic value of 100 MW/m2K for 7-layer graphenes. G(non-across) increases only marginally as the graphene sheet thickness increases. Such a duality of the interface thermal conductance for different probing methods and its dependence on graphene sheet thickness can be traced ultimately to the unique physical and chemical structure of graphene materials. The ramifications of these results in areas such as experimental measurement of thermal conductivity of graphene and the design of graphene-based thermal nanocomposites are discussed.

  1. FEASIBILITY STUDY FOR A PETROLEUM REFINERY FOR THE JICARILLA APACHE TRIBE

    SciTech Connect (OSTI)

    John D. Jones

    2004-10-01

    A feasibility study for a proposed petroleum refinery for the Jicarilla Apache Indian Reservation was performed. The available crude oil production was identified and characterized. There is 6,000 barrels per day of crude oil production available for processing in the proposed refinery. The proposed refinery will utilize a lower temperature, smaller crude fractionation unit. It will have a Naphtha Hydrodesulfurizer and Reformer to produce high octane gasoline. The surplus hydrogen from the reformer will be used in a specialized hydrocracker to convert the heavier crude oil fractions to ultra low sulfur gasoline and diesel fuel products. The proposed refinery will produce gasoline, jet fuel, diesel fuel, and a minimal amount of lube oil. The refinery will require about $86,700,000 to construct. It will have net annual pre-tax profit of about $17,000,000. The estimated return on investment is 20%. The feasibility is positive subject to confirmation of long term crude supply. The study also identified procedures for evaluating processing options as a means for American Indian Tribes and Native American Corporations to maximize the value of their crude oil production.

  2. Apparatus and method for comparing corresponding acoustic resonances in liquids

    DOE Patents [OSTI]

    Sinha, Dipen N.

    1999-01-01

    Apparatus and method for comparing corresponding acoustic resonances in liquids. The present invention permits the measurement of certain characteristics of liquids which affect the speed of sound therein. For example, a direct correlation between the octane rating of gasoline and the speed of sound in a gasoline sample has been experimentally observed. Therefore, changes in the speed of sound therein can be utilized as a sensitive parameter for determining changes in composition of a liquid sample. The present apparatus establishes interference patterns inside of a liquid without requiring the use of very thin, rigorously parallel ceramic discs, but rather uses readily available piezoelectric transducers attached to the outside surface of the usual container for the liquid and located on the same side thereof in the vicinity of one another. That is, various receptacle geometries may be employed, and the driving and receiving transducers may be located on the same side of the receptacle. The cell may also be constructed of any material that is inert to the liquid under investigation. A single-transducer embodiment, where the same transducer provides the excitation to the sample container and receives signals impressed therein, is also described.

  3. Apparatus and method for comparing corresponding acoustic resonances in liquids

    DOE Patents [OSTI]

    Sinha, D.N.

    1999-03-23

    Apparatus and method are disclosed for comparing corresponding acoustic resonances in liquids. The present invention permits the measurement of certain characteristics of liquids which affect the speed of sound therein. For example, a direct correlation between the octane rating of gasoline and the speed of sound in a gasoline sample has been experimentally observed. Therefore, changes in the speed of sound therein can be utilized as a sensitive parameter for determining changes in composition of a liquid sample. The present apparatus establishes interference patterns inside of a liquid without requiring the use of very thin, rigorously parallel ceramic discs, but rather uses readily available piezoelectric transducers attached to the outside surface of the usual container for the liquid and located on the same side thereof in the vicinity of one another. That is, various receptacle geometries may be employed, and the driving and receiving transducers may be located on the same side of the receptacle. The cell may also be constructed of any material that is inert to the liquid under investigation. A single-transducer embodiment, where the same transducer provides the excitation to the sample container and receives signals impressed therein, is also described. 5 figs.

  4. Synthesis of oxygenates from H{sub 2}/CO synthesis gas and use as fuel additives

    SciTech Connect (OSTI)

    Herman, R.G.; Klier, K.; Feeley, O.C.

    1994-12-31

    Alternative processes for synthesizing fuel-grade oxygenates are centered on conversion of synthesis gas into C{sub 1}-C{sub 8} alcohols and ethers. Over Cs/Cu/ZnO-based catalysts, mixtures of methanol/isobutanol are predominantly formed. It has been found that these alcohols can be directly coupled over certain strong acid organic-based catalysts to form unsymmetric C{sub 5} ethers, mainly the kinetically favored methyl isobutyl ether (MIBE) with some of the thermodynamically favored methyl tertiarybutyl ether (MTBE), the symmetric ethers of dimethylether (DME) and diisobutylether (DIBE), or selectively dehydrated to form isobutene over sulfated zirconia. Based on these reactions, a 2-stage, dual catalyst configuration can be utilized to give MTBE as the dominant ether product. The octane numbers and cetane ratings of the oxygenates have been determined and are compared, e.g. adding 10 vol% MIBE and MTBE to 82.3 MON gasoline altered the MON of the gasoline by -1.5 and +1.4 units, respectively, and MIBE has a high cetane number of 53, compared to 42 for typical U.S. diesel fuel.

  5. Separation of switchgrass bio-oil by water/organic solvent addition and pH adjustment

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Park, Lydia Kyoung-Eun; Ren, Shoujie; Yiacoumi, Sotira; Ye, X. Philip; Borole, Abhijeet P.; Tsouris, Costas

    2016-01-29

    Applications of bio-oil are limited by its challenging properties including high moisture content, low pH, high viscosity, high oxygen content, and low heating value. Separation of switchgrass bio-oil components by adding water, organic solvents (hexadecane and octane), and sodium hydroxide may help to overcome these issues. Acetic acid and phenolic compounds were extracted in aqueous and organic phases, respectively. Polar chemicals, such as acetic acid, did not partition in the organic solvent phase. Acetic acid in the aqueous phase after extraction is beneficial for a microbial-electrolysis-cell application to produce hydrogen as an energy source for further hydrodeoxygenation of bio-oil. Organicmore » solvents extracted more chemicals from bio-oil in combined than in sequential extraction; however, organic solvents partitioned into the aqueous phase in combined extraction. When sodium hydroxide was added to adjust the pH of aqueous bio-oil, organic-phase precipitation occurred. As the pH was increased, a biphasic aqueous/organic dispersion was formed, and phase separation was optimized at approximately pH 6. The neutralized organic bio-oil had approximately 37% less oxygen and 100% increased heating value than the initial centrifuged bio-oil. In conclusion, the less oxygen content and increased heating value indicated a significant improvement of the bio-oil quality through neutralization.« less

  6. Combustion control technologies for direct injection SI engine

    SciTech Connect (OSTI)

    Kume, T.; Iwamoto, Y.; Iida, K.; Murakami, M.; Akishino, K.; Ando, H.

    1996-09-01

    Novel combustion control technologies for the direct injection SI engine have been developed. By adopting upright straight intake ports to generate air tumble, an electromagnetic swirl injector to realize optimized spray dispersion and atomization and a compact piston cavity to maintain charge stratification, it has become possible to achieve super-lean stratified combustion for higher thermal efficiency under partial loads as well as homogeneous combustion to realize higher performance at full loads. At partial loads, fuel is injected into the piston cavity during the later stage of the compression stroke. Any fuel spray impinging on the cavity wall is directed to the spark plug. Tumbling air flow in the cavity also assists the conservation of the rich mixture zone around the spark plug. Stable combustion can be realized under a air fuel ratio exceeding 40. At higher loads, fuel is injected during the early stage of the intake stroke. Since air cooling by the latent heat of vaporization increases volumetric efficiency and reduces the octane number requirement, a high compression ratio of 12 to 1 can be adopted. As a result, engines utilizing these types of control technologies show a 10% increase in improved performance over conventional port injection engines.

  7. Advanced development of rotary stratified charge 750 and 1500 HP military multi-fuel engines at Curtiss-Wright

    SciTech Connect (OSTI)

    Jones, C.

    1984-01-01

    During the period from 1977 to 1982, two and four rotor naturally aspirated Stratified Charge Rotary Combustion engines were under development for the U.S. Marine Corps. These engines are described and highlights of work conducted under the government ''Advanced Development'' contracts are discussed. The basic direct injected and spark ignited stratified charge technology was defined during 1973-1976 for automotive engine applications. It was then demonstrated that the unthrottled naturally aspirated Rotary could match indirect injected diesel fuel consumption, without regard to fuel cetane or octane rating. This same technology was scaled from the 60''/sup 3//rotor automotive engine module to the 350''/sup 3//rotor military engine size. In addition, parallel company-sponsored research efforts were undertaken to explore growth directions. Tests showed significant thermal efficiency improvement at lean air-fuel ratios. When turbocharged, high exhaust energy recovery of this ported engine provided induction airflow sufficient for increased output plus excess for operation at the lean mixture strengths of best combustion efficiency. With additive improvements in mechanical efficiency accruing to higher BMEP operation, the potential for fuel economy in the same range as direct injected diesels was demonstrated. These lightweight, compact, multi-fuel engines are believed to open new possiblities for lightweight, reliable, highly mobile and agile military fighting vehicles of the future.

  8. Modeling of autoignition and NO sensitization for the oxidation of IC engine surrogate fuels

    SciTech Connect (OSTI)

    Anderlohr, J.M. |; Bounaceur, R.; Battin-Leclerc, F.; Pires Da Cruz, A.

    2009-02-15

    This paper presents an approach for modeling with one single kinetic mechanism the chemistry of the autoignition and combustion processes inside an internal combustion engine, as well as the chemical kinetics governing the postoxidation of unburned hydrocarbons in engine exhaust gases. Therefore a new kinetic model was developed, valid over a wide range of temperatures including the negative temperature coefficient regime. The model simulates the autoignition and the oxidation of engine surrogate fuels composed of n-heptane, iso-octane, and toluene, which are sensitized by the presence of nitric oxides. The new model was obtained from previously published mechanisms for the oxidation of alkanes and toluene where the coupling reactions describing interactions between hydrocarbons and NO{sub x} were added. The mechanism was validated against a wide range of experimental data obtained in jet-stirred reactors, rapid compression machines, shock tubes, and homogeneous charge compression ignition engines. Flow rate and sensitivity analysis were performed in order to explain the low temperature chemical kinetics, especially the impact of NO{sub x} on hydrocarbon oxidation. (author)

  9. Utilization of Renewable Oxygenates as Gasoline Blending Components

    SciTech Connect (OSTI)

    Yanowitz, J.; Christensen, E.; McCormick, R. L.

    2011-08-01

    This report reviews the use of higher alcohols and several cellulose-derived oxygenates as blend components in gasoline. Material compatibility issues are expected to be less severe for neat higher alcohols than for fuel-grade ethanol. Very little data exist on how blending higher alcohols or other oxygenates with gasoline affects ASTM Standard D4814 properties. Under the Clean Air Act, fuels used in the United States must be 'substantially similar' to fuels used in certification of cars for emission compliance. Waivers for the addition of higher alcohols at concentrations up to 3.7 wt% oxygen have been granted. Limited emission testing on pre-Tier 1 vehicles and research engines suggests that higher alcohols will reduce emissions of CO and organics, while NOx emissions will stay the same or increase. Most oxygenates can be used as octane improvers for standard gasoline stocks. The properties of 2-methyltetrahydrofuran, dimethylfuran, 2-methylfuran, methyl pentanoate and ethyl pentanoate suggest that they may function well as low-concentration blends with gasoline in standard vehicles and in higher concentrations in flex fuel vehicles.

  10. Intermediate Alcohol-Gasoline Blends, Fuels for Enabling Increased Engine Efficiency and Powertrain Possibilities

    SciTech Connect (OSTI)

    Splitter, Derek A; Szybist, James P

    2014-01-01

    The present study experimentally investigates spark-ignited combustion with 87 AKI E0 gasoline in its neat form and in mid-level alcohol-gasoline blends with 24% vol./vol. iso-butanol-gasoline (IB24) and 30% vol./vol. ethanol-gasoline (E30). A single-cylinder research engine is used with a low and high compression ratio of 9.2:1 and 11.85:1 respectively. The engine is equipped with hydraulically actuated valves, laboratory intake air, and is capable of external exhaust gas recirculation (EGR). All fuels are operated to full-load conditions with =1, using both 0% and 15% external cooled EGR. The results demonstrate that higher octane number bio-fuels better utilize higher compression ratios with high stoichiometric torque capability. Specifically, the unique properties of ethanol enabled a doubling of the stoichiometric torque capability with the 11.85:1 compression ratio using E30 as compared to 87 AKI, up to 20 bar IMEPg at =1 (with 15% EGR, 18.5 bar with 0% EGR). EGR was shown to provide thermodynamic advantages with all fuels. The results demonstrate that E30 may further the downsizing and downspeeding of engines by achieving increased low speed torque, even with high compression ratios. The results suggest that at mid-level alcohol-gasoline blends, engine and vehicle optimization can offset the reduced fuel energy content of alcohol-gasoline blends, and likely reduce vehicle fuel consumption and tailpipe CO2 emissions.

  11. Conversion of cellulosic wastes to liquid fuels

    SciTech Connect (OSTI)

    Kuester, J.L.

    1980-09-01

    The current status and future plans for a project to convert waste cellulosic (biomass) materials to quality liquid hydrocarbon fuels is described. The basic approach is indirect liquefaction, i.e., thermal gasification followed by catalytic liquefaction. The indirect approach results in separation of the oxygen in the biomass feedstock, i.e., oxygenated compounds do not appear in the liquid hydrocarbon fuel product. The process is capable of accepting a wide variety of feedstocks. Potential products include medium quality gas, normal propanol, diesel fuel and/or high octane gasoline. A fluidized bed pyrolysis system is used for gasification. The pyrolyzer can be fluidized with recycle pyrolysis gas, steam or recycle liquefaction system off gas or some combination thereof. Tars are removed in a wet scrubber. Unseparated pyrolysis gases are utilized as feed to a modified Fischer-Tropsch reactor. The liquid condensate from the reactor consists of a normal propanol-water phase and a paraffinic hydrocarbon phase. The reactor can be operated to optimize for either product. The following tasks were specified in the statement of work for the contract period: (1) feedstock studies; (2) gasification system optimization; (3) waste stream characterization; and (4) liquid fuels synthesis. In addition, several equipment improvements were implemented.

  12. In-Situ Real Time Measurements of Molten Glass Properties, Final Report

    SciTech Connect (OSTI)

    Robert De Saro; Joe Craparo

    2007-12-16

    Energy Research Company (ERCo) of Staten Island, NY has developed a sensor capable of measuring in situ and in real time, both the elemental composition and the temperature of molten glass. A prototype sensor has been designed, constructed and tested in ERCo's laboratory. The sensor was used to collect atomic emission spectra from molten fiberglass via Laser Induced Breakdown Spectroscopy (LIBS). From these spectra, we were able to readily identify all elements of interest (B, Si, Ca, Fe, Mg, Na, Sr, Al). The high signal-to-background signals achieved suggest that data from the sensor can be used to determine elemental concentrations, either through calibration curves or using ERCo's calibrationless method. ERCo's technology fits in well with DOE's Glass Industry Technology Roadmap which emphasizes the need for accurate process and feedstock sensors. Listed first under technological barriers to increased production efficiency is the 'Inability to accurately measure and control the production process'. A large-scale glass melting furnace, developed by SenCer Inc. of Penn Yan, NY was installed in ERCo's laboratory to ensure that a large enough quantity of glass could be melted and held at temperature in the presence of the water-cooled laser sensor without solidifying the glass.

  13. Hope or Hype? What is Next for Biofuels? (LBNL Science at the Theater)

    ScienceCinema (OSTI)

    Keasling, Jay; Bristow, Jim; Tringe, Susannah Green

    2011-04-28

    Science at the Theater: From the sun to your gas tank: A new breed of biofuels may help solve the global energy challenge and reduce the impact of fossil fuels on global warming. KTVU Channel 2 health and science editor John Fowler will moderate a panel of Lawrence Berkeley National Laboratory scientists who are developing ways to convert the solar energy stored in plants into liquid fuels. Jay Keasling is one of the foremost authorities in the ?eld of synthetic biology. He is applying this research toward the production of advanced carbon-neutral biofuels that can replace gasoline on a gallon-for-gallon basis. Keasling is Berkeley Labs Acting Deputy Director and the Chief Executive Of?cer of the U.S. Department of Energys Joint BioEnergy Institute. Jim Bristow is deputy director of programs for the U.S. Department of Energy Joint Genome Institute (JGI), a national user facility in Walnut Creek, CA. He developed and implemented JGIs Community Sequencing Program, which provides large-scale DNA sequencing and analysis to advance genomics related to bioenergy and environmental characterization and cleanup. Susanna Green Tringe is a computational biologist with the U.S. Department of Energy Joint Genome Institute (JGI). She helped pioneer the ?eld of metagenomics, a new strategy for isolating, sequencing, and characterizing DNA extracted directly from environmental samples, such as the contents of the termite gut, which yielded enzymes responsible for breakdown of wood into fuel.

  14. Life cycle impact assessment of ammonia production in Algeria: A comparison with previous studies

    SciTech Connect (OSTI)

    Makhlouf, Ali Serradj, Tayeb; Cheniti, Hamza

    2015-01-15

    In this paper, a Life Cycle Analysis (LCA) from “cradle to gate” of one anhydrous ton of ammonia with a purity of 99% was achieved. Particularly, the energy and environmental performance of the product (ammonia) were evaluated. The eco-profile of the product and the share of each stage of the Life Cycle on the whole environmental impacts have been evaluated. The flows of material and energy for each phase of the life cycle were counted and the associated environmental problems were identified. Evaluation of the impact was achieved using GEMIS 4.7 software. The primary data collection was executed at the production installations located in Algeria (Annaba locality). The analysis was conducted according to the LCA standards ISO 14040 series. The results show that Cumulative Energy Requirement (CER) is of 51.945 × 10{sup 3} MJ/t of ammonia, which is higher than the global average. Global Warming Potential (GWP) is of 1.44 t CO{sub 2} eq/t of ammonia; this value is lower than the world average. Tropospheric ozone precursor and Acidification are also studied in this article, their values are: 549.3 × 10{sup −6} t NMVOC eq and 259.3 × 10{sup −6} t SO{sub 2} eq respectively.

  15. Oak Ridge Institute for Science and Education: A guide to record series supporting epidemiologic studies conducted for the Department of Energy

    SciTech Connect (OSTI)

    1995-07-17

    This guide describes record series that pertain to epidemiologic and health-related studies at the Center for Epidemiologic Research (CER) of the Oak Ridge Institute for Science and Education (ORISE). These records document the health and safety monitoring of employees and contract employees of the Department of Energy (DOE) and its predecessor organizations, the Manhattan Engineer District (MED), the Atomic Energy Commission (AEC), and the Energy Research and Development Administration (ERDA). History Associates Incorporated (HAI) prepared this guide as part of DOE`s Epidemiologic Records Inventory Project. This introduction briefly describes the Epidemiologic Records Inventory Project, HAI`s role in the project, the history of the DOE and its epidemiologic research program, and the history of the Oak Ridge Reservation and the Oak Ridge Institute for Science and Education. It also furnishes information on the procedures that HAI sued to select, inventory, and describe pertinent records; the methodology used to produce the guide; the arrangement of the record series descriptions; the location of the records; and procedures for accessing records repositories.

  16. CRADA Final Report for CRADA Number ORNL00-0605: Advanced Engine/Aftertreatment System R&D

    SciTech Connect (OSTI)

    Pihl, Josh A; West, Brian H; Toops, Todd J; Adelman, Brad; Derybowski, Edward

    2011-10-01

    Navistar and ORNL established this CRADA to develop diesel engine aftertreatment configurations and control strategies that could meet emissions regulations while maintaining or improving vehicle efficiency. The early years of the project focused on reducing the fuel penalty associated with lean NOx trap (LNT), also known as NOx adsorber catalyst regeneration and desulfation. While Navistar pursued engine-based (in-cylinder) approaches to LNT regeneration, complementary experiments at ORNL focused on in-exhaust fuel injection. ORNL developed a PC-based controller for transient electronic control of EGR valve position, intake throttle position, and actuation of fuel injectors in the exhaust system of a Navistar engine installed at Oak Ridge. Aftertreatment systems consisting of different diesel oxidation catalysts (DOCs) in conjunction with a diesel particle filter and LNT were evaluated under quasi-steady-state conditions. Hydrocarbon (HC) species were measured at multiple locations in the exhaust system with Gas chromatograph mass spectrometry (GC-MS) and Fourier transform infrared (FTIR) spectroscopy. Under full-load, rated speed conditions, injection of fuel upstream of the DOC reduced the fuel penalty for a given level of NOx reduction by 10-20%. GC-MS showed that fuel compounds were 'cracked' into smaller hydrocarbon species over the DOC, particularly light alkenes. GC-MS analysis of HC species entering and exiting the LNT showed high utilization of light alkenes, followed by mono-aromatics; branched alkanes passed through the LNT largely unreacted. Follow-on experiments at a 'road load' condition were conducted, revealing that the NOx reduction was better without the DOC at lower temperatures. The improved performance was attributed to the large swings in the NOx adsorber core temperature. Split-injection experiments were conducted with ultra-low sulfur diesel fuel and three pure HC compounds: 1-pentene, toluene, and iso-octane. The pure compound experiments confirmed the previous results regarding hydrocarbon reactivity: 1-pentene was the most efficient LNT reductant, followed by toluene. Injection location had minimal impact on the reactivity of these two compounds. Iso-octane was an ineffective LNT reductant, requiring high doses (resulting in high HC emissions) to achieve reasonable NOx conversions. Diesel fuel reactivity was sensitive to injection location, with the best performance achieved through fuel injection downstream of the DOC. This configuration generated large LNT temperature excursions, which probably improved the efficiency of the NOx storage/reduction process, but also resulted in very high HC emissions. The ORNL team demonstrated an LNT desulfation under 'road load' conditions using throttling, EGR, and in-pipe injection of diesel fuel. Flow reactor characterization of core samples cut from the front and rear of the engine-aged LNT revealed complex spatially dependent degradation mechanisms. The front of the catalyst contained residual sulfates, which impacted NOx storage and conversion efficiencies at high temperatures. The rear of the catalyst showed significant sintering of the washcoat and precious metal particles, resulting in lower NOx conversion efficiencies at low temperatures. Further flow reactor characterization of engine-aged LNT core samples established that low temperature performance was limited by slow release and reduction of stored NOx during regeneration. Carbon monoxide was only effective at regenerating the LNT at temperatures above 200 C; propene was unreactive even at 250 C. Low temperature operation also resulted in unselective NOx reduction, resulting in high emissions of both N{sub 2}O and NH{sub 3}. During the latter years of the CRADA, the focus was shifted from LNTs to other aftertreatment devices. Two years of the CRADA were spent developing detailed ammonia SCR device models with sufficient accuracy and computational efficiency to be used in development of model-based ammonia injection control algorithms.ORNL, working closely with partners at Navistar and Mi

  17. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    SciTech Connect (OSTI)

    Caroline E. Burgess Clifford; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2006-05-17

    This report summarizes the accomplishments toward project goals during the first six months of the third year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. Characterization of the gasoline fuel indicates a dominance of single ring alkylcycloalkanes that have a low octane rating; however, blends containing these compounds do not have a negative effect upon gasoline when blended in refinery gasoline streams. Characterization of the diesel fuel indicates a dominance of 3-ring aromatics that have a low cetane value; however, these compounds do not have a negative effect upon diesel when blended in refinery diesel streams. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Combustion and characterization of fuel oil indicates that the fuel is somewhere in between a No. 4 and a No. 6 fuel oil. Emission testing indicates the fuel burns similarly to these two fuels, but trace metals for the coal-based material are different than petroleum-based fuel oils. Co-coking studies using cleaned coal are highly reproducible in the pilot-scale delayed coker. Evaluation of the coke by Alcoa, Inc. indicated that while the coke produced is of very good quality, the metals content of the carbon is still high in iron and silica. Coke is being evaluated for other possible uses. Methods to reduce metal content are being evaluated.

  18. Superacid catalysis of light hydrocarbon conversion. DOE PETC third quarterly report, February 25, 1994--May 24, 1994

    SciTech Connect (OSTI)

    Gates, B.C.

    1995-12-31

    Environmental concerns are leading to the replacement of aromatic hydrocarbons in gasoline by high-octane-number branched paraffins and oxygenated compounds such as methyl t-butyl ether. The ether is produced from methanol and isobutylene, and the latter can be formed from n-butane by isomerization followed by dehydrogenation. Paraffin isomerization reactions are catalyzed by very strong acids such as aluminum chloride supported on alumina. The aluminum chloride-containing catalysts are corrosive, and their disposal is expensive. Alternatively, hydroisomerization is catalyzed by zeolite-supported metals at high temperatures, but high temperatures do not favor branched products at equilibrium. Thus there is a need for improved catalysts and processes for the isomerization of n-butane and other straight-chain paraffins. Consequently, researchers have sought for solid acids that are noncorrosive and active enough to catalyze isomerization of paraffins at low temperatures. For example, sulfated zirconia catalyzes isomerization of n-butane at temperatures as low as 25{degrees}C. The addition of iron and manganese promoters has been reported to increase the activity of sulfated zirconia for n-butane isomerization by three orders of magnitude. Although the high activity of this catalyst is now established, the reaction network is not known, and the mechanism has not been investigated. The goal of this work is to investigate low-temperature reactions of light paraffins catalyzed by solid superacids of the sulfated zirconia type. The present report is concerned with catalysis of n-butane conversion catalyzed by the Fe- and Mn- promoted sulfated zirconia described in the previous report in this series.

  19. Proposed plant will turn wood residues into synfuel

    SciTech Connect (OSTI)

    Not Available

    1981-01-01

    A group of entrepreneurs plan to have a plant operating in Burney, CA. The projected facility will produce an estimated 21,000 gallons of oil per day, converting about 300 tons of raw material. Converting cellulose into synthetic fuel is superior to alcohol production. The process yields approximately 84 gallons of synthetic fuel per ton of raw material. The entire LHG (liquid hydrogen gas) patented facility is self-sufficient and releases only carbon dioxide into the atmosphere. Synfuel production is a three-phase process. First, butyl alcohol (butanol) and acetone are produced from a portion of the raw material. This is facilitated by adding to the raw material a bacteria culture. The planned facility in Burney will have thirty-five 2100 gallon fermentation tanks and will produce 1.25 million gallons of butanol. Next, organic material is blended with water and is pumped into patented LHG catalytic converters, charged with carbon monoxide gas as a catalyst and then heated to 350 degrees C at 2000 to 5000 psi. Here, the organic material is converted to No. 4 oil with bituminous tar as a residue. A patented gasifier system produces the carbon monoxide catalyst plus COH (carbon hydroxide) gas. The COH is used to power a gas turbine driving a 100 kW generator and a central hydraulic pump. The facility, which will be energy self-sufficient, will have approximately 50 kW of excess power to sell to the local utility power grid. Finally, the No. 4 oil, butanol and liquified COH gas are blended to produce any grade fuel oil or a gasoline substitute of very high octane.

  20. Explosion bomb measurements of ethanol-air laminar gaseous flame characteristics at pressures up to 1.4 MPa

    SciTech Connect (OSTI)

    Bradley, D.; Lawes, M.; Mansour, M.S. [School of Mechanical Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom)

    2009-07-15

    The principal burning characteristics of a laminar flame comprise the fuel vapour pressure, the laminar burning velocity, ignition delay times, Markstein numbers for strain rate and curvature, the stretch rates for the onset of flame instabilities and of flame extinction for different mixtures. With the exception of ignition delay times, measurements of these are reported and discussed for ethanol-air mixtures. The measurements were in a spherical explosion bomb, with central ignition, in the regime of a developed stable, flame between that of an under or over-driven ignition and that of an unstable flame. Pressures ranged from 0.1 to 1.4 MPa, temperatures from 300 to 393 K, and equivalence ratios were between 0.7 and 1.5. It was important to ensure the relatively large volume of ethanol in rich mixtures at high pressures was fully evaporated. The maximum pressure for the measurements was the highest compatible with the maximum safe working pressure of the bomb. Many of the flames soon became unstable, due to Darrieus-Landau and thermo-diffusive instabilities. This effect increased with pressure and the flame wrinkling arising from the instabilities enhanced the flame speed. Both the critical Peclet number and the, more rational, associated critical Karlovitz stretch factor were evaluated at the onset of the instability. With increasing pressure, the onset of flame instability occurred earlier. The measured values of burning velocity are expressed in terms of their variations with temperature and pressure, and these are compared with those obtained by other researchers. Some comparisons are made with the corresponding properties for iso-octane-air mixtures. (author)

  1. Fundamental and semi-global kinetic mechanisms for hydrocarbon combustion. Final report, March 1977-October 1980

    SciTech Connect (OSTI)

    Dryer, F L; Glassman, I; Brezinsky, K

    1981-03-01

    Over the past three and one half years, substantial research efforts of the Princeton Fuels Research Group have been directed towards the development of simplified mechanisms which would accurately describe the oxidation of hydrocarbons fuels. The objectives of this combustion research included the study of semi-empirical modeling (that is an overall description) of the chemical kinetic mechanisms of simple hydrocarbon fuels. Such fuels include the alkanes: ethane, propane, butane, hexane and octane as well as the critically important alkenes: ethene, propene and butene. As an extension to this work, the study of the detailed radical species characteristics of combustion systems was initiated as another major aspect of the program, with emphasis on the role of the OH and HO/sub 2/ radicals. Finally, the studies of important alternative fuel problems linked the program to longer range approaches to the energy supply question. Studies of alternative fuels composed the major elements of this area of the program. The efforts on methanol research were completed, and while the aromatics aspects of the DOE work have been a direct extension of efforts supported by the Air Force Office of Scientific Research, they represented a significant part of the overall research effort. The emphasis in the proposed program is to provide further fundamental understanding of the oxidation of hydrocarbon fuels which will be useful in guiding engineering approaches. Although the scope of program ranges from the fundamentals of chemical kinetics to that of alternative fuel combustion, the objective in mind is to provide insight and guidance to the understanding of practical combustion environments. The key to our approach has been our understanding of the fundamental combustion chemistry and its relation to the important practical combustion problems which exist in implementing energy efficient, alternate fuels technologies.

  2. Evaluating temperature and fuel stratification for heat-release rate control in a reactivity-controlled compression-ignition engine using optical diagnostics and chemical kinetics modeling

    SciTech Connect (OSTI)

    Musculus, Mark P. B.; Kokjohn, Sage L.; Reitz, Rolf D.

    2015-04-23

    We investigated the combustion process in a dual-fuel, reactivity-controlled compression-ignition (RCCI) engine using a combination of optical diagnostics and chemical kinetics modeling to explain the role of equivalence ratio, temperature, and fuel reactivity stratification for heat-release rate control. An optically accessible engine is operated in the RCCI combustion mode using gasoline primary reference fuels (PRF). A well-mixed charge of iso-octane (PRF = 100) is created by injecting fuel into the engine cylinder during the intake stroke using a gasoline-type direct injector. Later in the cycle, n-heptane (PRF = 0) is delivered through a centrally mounted diesel-type common-rail injector. This injection strategy generates stratification in equivalence ratio, fuel blend, and temperature. The first part of this study uses a high-speed camera to image the injection events and record high-temperature combustion chemiluminescence. Moreover, the chemiluminescence imaging showed that, at the operating condition studied in the present work, mixtures in the squish region ignite first, and the reaction zone proceeds inward toward the center of the combustion chamber. The second part of this study investigates the charge preparation of the RCCI strategy using planar laser-induced fluorescence (PLIF) of a fuel tracer under non-reacting conditions to quantify fuel concentration distributions prior to ignition. The fuel-tracer PLIF data show that the combustion event proceeds down gradients in the n-heptane distribution. The third part of the study uses chemical kinetics modeling over a range of mixtures spanning the distributions observed from the fuel-tracer fluorescence imaging to isolate the roles of temperature, equivalence ratio, and PRF number stratification. The simulations predict that PRF number stratification is the dominant factor controlling the ignition location and growth rate of the reaction zone. Equivalence ratio has a smaller, but still significant, influence. Lastly, temperature stratification had a negligible influence due to the NTC behavior of the PRF mixtures.

  3. A comparison of ethanol and butanol as oxygenates using a direct-injection, spark-ignition (DISI) engine.

    SciTech Connect (OSTI)

    Wallner, T.; Miers, S. A.; McConnell, S.

    2009-05-01

    This study was designed to evaluate a 'what if' scenario in terms of using butanol as an oxygenate in place of ethanol in an engine calibrated for gasoline operation. No changes to the stock engine calibration were performed for this study. Combustion analysis, efficiency, and emissions of pure gasoline, 10% ethanol, and 10% butanol blends in a modern direct-injection four-cylinder spark-ignition engine were analyzed. Data were taken at engine speeds of 1000 rpm up to 4000 rpm with load varying from 0 N m (idle) to 150 N m. Relatively minor differences existed between the three fuels for the combustion characteristics such as heat release rate, 50% mass fraction burned, and coefficient of variation in indicated mean effective pressure at low and medium engine loads. However at high engine loads the reduced knock resistance of the butanol blend forced the engine control unit to retard the ignition timing substantially, compared with the gasoline baseline and, even more pronounced, compared with the ethanol blend. Brake specific volumetric fuel consumption, which represented a normalized volumetric fuel flow rate, was lowest for the gasoline baseline fuel due to the higher energy density. The 10% butanol blend had a lower volumetric fuel consumption compared with the ethanol blend, as expected, based on energy density differences. The results showed little difference in regulated emissions between 10% ethanol and 10% butanol. The ethanol blend produced the highest peak specific NO{sub x} due to the high octane rating of ethanol and effective antiknock characteristics. Overall, the ability of butanol to perform equally as well as ethanol from an emissions and combustion standpoint, with a decrease in fuel consumption, initially appears promising. Further experiments are planned to explore the full operating range of the engine and the potential benefits of higher blend ratios of butanol.

  4. The Effects of Fuel Characteristics on Stoichiometric Spark-Assisted HCCI

    SciTech Connect (OSTI)

    Weall, Adam J; Szybist, James P

    2011-01-01

    The characteristics of fuel lean HCCI operation using a variety of fuels are well known and have been demonstrated using different engine concepts in the past. In contrast, stoichiometric operation of HCCI is less well documented. Recent studies have highlighted the benefits of operating at a stoichiometric condition in terms of load expansion combined with the applicability of three way catalyst technology to reduce NOx emissions. In this study the characterization of stoichiometric HCCI using gasoline-like fuels was undertaken. The fuels investigated are gasoline, a 50 vol% blend of iso-butanol and gasoline (IB50), and an 85% vol blend of ethanol and gasoline (E85). A single cylinder engine operating with direct injection and spark assist combined with a fully variable hydraulic valve actuation system allowed a wide range of operating parameters to be studied. This included the effects of negative valve overlap duration, intake valve closing and valve lift. Furthermore, the interaction between fuel injection timing and spark and how they can affect the required valve timing to achieve stoichiometric HCCI combustion are also studied. A comprehensive combustion and emissions analysis is conducted using gasoline, IB50 and E85 at an engine speed of 2000rpm over a range of operating loads. The resultant fuel properties which differed in terms of octane rating, fuel oxygenation and heat of vaporization show that stoichiometric HCCI is possible using a range of fuels but that these fuel characteristics do have some effect on the combustion characteristics. How these fuel properties can enable an increased engine operating envelope to be achieved, in comparison with both fuel lean HCCI and conventional spark ignited combustion, is then discussed.

  5. Photoionization mass spectrometric measurements of initial reaction pathways in low-temperature oxidation of 2,5-dimethylhexane

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rotavera, Brandon; Zádor, Judit; Welz, Oliver; Sheps, Leonid; Scheer, Adam M.; Savee, John D.; Akbar Ali, Mohamad; Lee, Taek Soon; Simmons, Blake A.; Osborn, David L.; et al

    2014-09-19

    The product formation from R + O2 reactions relevant to low-temperature autoignition chemistry was studied for 2,5-dimethylhexane, a symmetrically branched octane isomer, at 550 and 650 K using Cl-atom initiated oxidation and multiplexed photoionization mass spectrometry (MPIMS). The interpretation of time- and photon-energy-resolved mass spectra led to three specific results important to characterizing the initial oxidation steps: (1) quantified isomer-resolved branching ratios for HO2 + alkene channels; (2) 2,2,5,5-tetramethyltetrahydrofuran is formed in substantial yield from addition of O2 to tertiary 2,5-dimethylhex-2-yl followed by isomerization of the resulting ROO adduct to tertiary hydroperoxyalkyl (QOOH) and exhibits a positive dependence on temperaturemore » over the range covered leading to a higher flux relative to aggregate cyclic ether yield. The higher relative flux is explained by a 1,5-hydrogen atom shift reaction that converts the initial primary alkyl radical (2,5-dimethylhex-1-yl) to the tertiary alkyl radical 2,5-dimethylhex-2-yl, providing an additional source of tertiary alkyl radicals. Furthermore, quantum-chemical and master-equation calculations of the unimolecular decomposition of the primary alkyl radical reveal that isomerization to the tertiary alkyl radical is the most favorable pathway, and is favored over O2-addition at 650 K under the conditions herein. The isomerization pathway to tertiary alkyl radicals therefore contributes an additional mechanism to 2,2,5,5-tetramethyltetrahydrofuran formation; (3) carbonyl species (acetone, propanal, and methylpropanal) consistent with β-scission of QOOH radicals were formed in significant yield, indicating unimolecular QOOH decomposition into carbonyl + alkene + OH.« less

  6. Status and future opportunities for conversion of synthesis gas to liquid energy fuels: Final report

    SciTech Connect (OSTI)

    Mills, G. [Delaware Univ., Newark, DE (United States). Center for Catalytic Science and Technology

    1993-05-01

    The manufacture of liquid energy fuels from syngas (a mixture of H{sub 2} and CO, usually containing CO{sub 2}) is of growing importance and enormous potential because: (1) Abundant US supplies of coal, gas, and biomass can be used to provide the needed syngas. (2) The liquid fuels produced, oxygenates or hydrocarbons, can help lessen environmental pollution. Indeed, oxygenates are required to a significant extent by the Clean Air Act Amendments (CAAA) of 1990. (3) Such liquid synfuels make possible high engine efficiencies because they have high octane or cetane ratings. (4) There is new, significantly improved technology for converting syngas to liquid fuels and promising opportunities for further improvements. This is the subject of this report. The purpose of this report is to provide an account and evaluative assessment of advances in the technology for producing liquid energy fuels from syngas and to suggest opportunities for future research deemed promising for practical processes. Much of the improved technology for selective synthesis of desired fuels from syngas has resulted from advances in catalytic chemistry. However, novel process engineering has been particularly important recently, utilizing known catalysts in new configurations to create new catalytic processes. This report is an update of the 1988 study Catalysts for Fuels from Syngas: New Directions for Research (Mills 1988), which is included as Appendix A. Technology for manufacture of syngas is not part of this study. The manufacture of liquid synfuels is capital intensive. Thus, in evaluating advances in fuels technology, focus is on the potential for improved economics, particularly on lowering plant investment costs. A second important criteria is the potential for environmental benefits. The discussion is concerned with two types of hydrocarbon fuels and three types of oxygenate fuels that can be synthesized from syngas. Seven alternative reaction pathways are involved.

  7. Status and future opportunities for conversion of synthesis gas to liquid energy fuels: Final report

    SciTech Connect (OSTI)

    Mills, G. (Delaware Univ., Newark, DE (United States). Center for Catalytic Science and Technology)

    1993-05-01

    The manufacture of liquid energy fuels from syngas (a mixture of H[sub 2] and CO, usually containing CO[sub 2]) is of growing importance and enormous potential because: (1) Abundant US supplies of coal, gas, and biomass can be used to provide the needed syngas. (2) The liquid fuels produced, oxygenates or hydrocarbons, can help lessen environmental pollution. Indeed, oxygenates are required to a significant extent by the Clean Air Act Amendments (CAAA) of 1990. (3) Such liquid synfuels make possible high engine efficiencies because they have high octane or cetane ratings. (4) There is new, significantly improved technology for converting syngas to liquid fuels and promising opportunities for further improvements. This is the subject of this report. The purpose of this report is to provide an account and evaluative assessment of advances in the technology for producing liquid energy fuels from syngas and to suggest opportunities for future research deemed promising for practical processes. Much of the improved technology for selective synthesis of desired fuels from syngas has resulted from advances in catalytic chemistry. However, novel process engineering has been particularly important recently, utilizing known catalysts in new configurations to create new catalytic processes. This report is an update of the 1988 study Catalysts for Fuels from Syngas: New Directions for Research (Mills 1988), which is included as Appendix A. Technology for manufacture of syngas is not part of this study. The manufacture of liquid synfuels is capital intensive. Thus, in evaluating advances in fuels technology, focus is on the potential for improved economics, particularly on lowering plant investment costs. A second important criteria is the potential for environmental benefits. The discussion is concerned with two types of hydrocarbon fuels and three types of oxygenate fuels that can be synthesized from syngas. Seven alternative reaction pathways are involved.

  8. Raman Scattering Sensor for Control of the Acid Alkylation Process in Gasoline Production

    SciTech Connect (OSTI)

    Uibel, Rory, H.; Smith, Lee M.; Benner, Robert, E.

    2006-04-19

    Gasoline refineries utilize a process called acid alkylation to increase the octane rating of blended gasoline, and this is the single most expensive process in the refinery. For process efficiency and safety reasons, the sulfuric acid can only be used while it is in the concentration range of 98 to 86 %. The conventional technique to monitor the acid concentration is time consuming and is typically conducted only a few times per day. This results in running higher acid concentrations than they would like to ensure that the process proceeds uninterrupted. Maintaining an excessively high acid concentration costs the refineries millions of dollars each year. Using SBIR funding, Process Instruments Inc. has developed an inline sensor for real time monitoring of acid concentrations in gasoline refinery alkylation units. Real time data was then collected over time from the instrument and its responses were matched up with the laboratory analysis. A model was then developed to correlate the laboratory acid values to the Raman signal that is transmitted back to the instrument from the process stream. The instrument was then used to demonstrate that it could create real-time predictions of the acid concentrations. The results from this test showed that the instrument could accurately predict the acid concentrations to within ~0.15% acid strength, and this level of prediction proved to be similar or better then the laboratory analysis. By utilizing a sensor for process monitoring the most economic acid concentrations can be maintained. A single smaller refinery (50,000 barrels/day) estimates that they should save over $120,000/year, with larger refineries saving considerably more.

  9. Ethanol Demand in United States Production of Oxygenate-limited Gasoline

    SciTech Connect (OSTI)

    Hadder, G.R.

    2000-08-16

    Ethanol competes with methyl tertiary butyl ether (MTBE) to satisfy oxygen, octane, and volume requirements of certain gasolines. However, MTBE has water quality problems that may create significant market opportunities for ethanol. Oak Ridge National Laboratory (ORNL) has used its Refinery Yield Model to estimate ethanol demand in gasolines with restricted use of MTBE. Reduction of the use of MTBE would increase the costs of gasoline production and possibly reduce the gasoline output of U.S. refineries. The potential gasoline supply problems of an MTBE ban could be mitigated by allowing a modest 3 vol percent MTBE in all gasoline. In the U.S. East and Gulf Coast gasoline producing regions, the 3 vol percent MTBE option results in costs that are 40 percent less than an MTBE ban. In the U.S. Midwest gasoline producing region, with already high use of ethanol, an MTBE ban has minimal effect on ethanol demand unless gasoline producers in other regions bid away the local supply of ethanol. The ethanol/MTBE issue gained momentum in March 2000 when the Clinton Administration announced that it would ask Congress to amend the Clean Air Act to provide the authority to significantly reduce or eliminate the use of MTBE; to ensure that air quality gains are not diminished as MTBE use is reduced; and to replace the existing oxygenate requirement in the Clean Air Act with a renewable fuel standard for all gasoline. Premises for the ORNL study are consistent with the Administration announcement, and the ethanol demand curve estimates of this study can be used to evaluate the impact of the Administration principles and related policy initiatives.

  10. Lean-burn hydrogen spark-ignited engines: the mechanical equivalent to the fuel cell

    SciTech Connect (OSTI)

    Aceves, S.M.; Smith, J.R.

    1996-10-01

    Fuel cells are considered as the ideal power source for future vehicles, due to their high efficiency and low emissions. However, extensive use of fuel cells in light-duty vehicles is likely to be years away, due to their high manufacturing cost. Hydrogen-fueled, spark-ignited, homogeneous-charge engines offer a near-term alternative to fuel cells. Hydrogen in a spark-ignited engine can be burned at very low equivalence ratios, so that NO[sub x] emissions can be reduced to less than 10 ppm without catalyst. HC and CO emissions may result from oxidation of engine oil, but by proper design are negligible (a few ppm). Lean operation also results in increased indicated efficiency due to the thermodynamic properties of the gaseous mixture contained in the cylinder. The high effective octane number of hydrogen allows the use of a high compression ratio, further increasing engine efficiency. In this paper, a simplified engine model is used for predicting hydrogen engine efficiency and emissions. The model uses basic thermodynamic equations for the compression and expansion processes, along with an empirical correlation for heat transfer, to predict engine indicated efficiency. A friction correlation and a supercharger/turbocharger model are then used to calculate brake thermal efficiency. The model is validated with many 1345 experimental points obtained in a recent evaluation of a hydrogen research engine. The experimental data are used to adjust the empirical constants in the heat release rate and heat transfer correlation. The adjusted engine model predicts pressure traces, indicated efficiency and NO,, emissions with good accuracy over the range of speed, equivalence ratio and manifold pressure experimentally covered.

  11. Novel Characterization of GDI Engine Exhaust for Gasoline and Mid-Level Gasoline-Alcohol Blends

    SciTech Connect (OSTI)

    Storey, John Morse; Lewis Sr, Samuel Arthur; Szybist, James P; Thomas, John F; Barone, Teresa L; Eibl, Mary A; Nafziger, Eric J; Kaul, Brian C

    2014-01-01

    Gasoline direct injection (GDI) engines can offer improved fuel economy and higher performance over their port fuel-injected (PFI) counterparts, and are now appearing in increasingly more U.S. and European vehicles. Small displacement, turbocharged GDI engines are replacing large displacement engines, particularly in light-duty trucks and sport utility vehicles, in order for manufacturers to meet more stringent fuel economy standards. GDI engines typically emit the most particulate matter (PM) during periods of rich operation such as start-up and acceleration, and emissions of air toxics are also more likely during this condition. A 2.0 L GDI engine was operated at lambda of 0.91 at typical loads for acceleration (2600 rpm, 8 bar BMEP) on three different fuels; an 87 anti-knock index (AKI) gasoline (E0), 30% ethanol blended with the 87 AKI fuel (E30), and 48% isobutanol blended with the 87 AKI fuel. E30 was chosen to maximize octane enhancement while minimizing ethanol-blend level and iBu48 was chosen to match the same fuel oxygen level as E30. Particle size and number, organic carbon and elemental carbon (OC/EC), soot HC speciation, and aldehydes and ketones were all analyzed during the experiment. A new method for soot HC speciation is introduced using a direct, thermal desorption/pyrolysis inlet for the gas chromatograph (GC). Results showed high levels of aromatic compounds were present in the PM, including downstream of the catalyst, and the aldehydes were dominated by the alcohol blending.

  12. Emissions and performance evaluation of a dedicated compressed natural gas saturn

    SciTech Connect (OSTI)

    Hodgson, J.W.; Taylor, J.D.

    1997-07-01

    The use of compressed natural gas (CNG) as a transportation fuel has been identified as one strategy that can help ameliorate some problems, which include a growing dependence on imported oil (and all its ramifications) and the persistent contributions that mobile sources make to urban air pollution, associated with the use of conventional petroleum fuels. The attributes and limitations of CNG as a fuel for spark-ignition engines have been presented by others. The attributes are associated with its high octane rating, low cost relative to other alternative fuels, its availability, the absence of running and diurnal evaporative emissions, and its demonstrated potential for producing extremely low exhaust emissions-particularly if the volatile organic compounds (VOCs) emitted are expressed in terms of reactivity adjusted non-methane organic gases (RANMOG). The limitations associated with the use of CNG include its limited refueling infrastructure, the cost of refueling facilities, the cost of on-board fuel storage tanks, and its relatively low energy density. Because one impediment to CNG use is the cost associated with producing a CNG-powered vehicle, a study was initiated at the University of Tennessee under sponsorship by the Saturn Corporation to determine how a CNG vehicle (specifically, a 1991 Saturn SL1) could be engineered so it could be produced with a minimal impact on the production of the base vehicle. The present study was undertaken to further investigate the emissions reduction potential of the Saturn CNG vehicle. In the previous study the role of exhaust gas recirculation was not thoroughly investigated. Those involved in the study agreed that the NO{sub x} levels could be brought down well below California ULEV levels without increasing either the non-methane organic gases or the CO levels.

  13. Solar Technology Center

    SciTech Connect (OSTI)

    Boehm, Bob

    2011-04-27

    The Department of Energy, Golden Field Office, awarded a grant to the UNLV Research Foundation (UNLVRF) on August 1, 2005 to develop a solar and renewable energy information center. The Solar Technology Center (STC) is to be developed in two phases, with Phase I consisting of all activities necessary to determine feasibility of the project, including design and engineering, identification of land access issues and permitting necessary to determine project viability without permanently disturbing the project site, and completion of a National Environmental Policy Act (NEPA) Environmental Assessment. Phase II is the installation of infrastructure and related structures, which leads to commencement of operations of the STC. The STC is located in the Boulder City designated 3,000-acre Eldorado Valley Energy Zone, approximately 15 miles southwest of downtown Boulder City and fronting on Eldorado Valley Drive. The 33-acre vacant parcel has been leased to the Nevada Test Site Development Corporation (NTSDC) by Boulder City to accommodate a planned facility that will be synergistic with present and planned energy projects in the Zone. The parcel will be developed by the UNLVRF. The NTSDC is the economic development arm of the UNLVRF. UNLVRF will be the entity responsible for overseeing the lease and the development project to assure compliance with the lease stipulations established by Boulder City. The STC will be operated and maintained by University of Nevada, Las Vegas (UNLV) and its Center for Energy Research (UNLV-CER). Land parcels in the Eldorado Valley Energy Zone near the 33-acre lease are committed to the construction and operation of an electrical grid connected solar energy production facility. Other projects supporting renewable and solar technologies have been developed within the energy zone, with several more developments in the horizon.

  14. Clean Coal Technology III: 10 MW Demonstration of Gas Suspension Absorption final project performance and economics report

    SciTech Connect (OSTI)

    Hsu, F.E.

    1995-08-01

    The 10 MW Demonstration of the Gas Suspension Absorption (GSA) program is a government and industry co-funded technology development. The objective of the project is to demonstrate the performance of the GSA system in treating a 10 MW slipstream of flue gas resulting from the combustion of a high sulfur coal. This project involves design, fabrication, construction and testing of the GSA system. The Project Performance and Economics Report provides the nonproprietary information for the ``10 MW Demonstration of the Gas Suspension Absorption (GSA) Project`` installed at Tennessee Valley Authority`s (TVA) Shawnee Power Station, Center for Emissions Research (CER) at Paducah, Kentucky. The program demonstrated that the GSA flue-gas-desulfurization (FGD) technology is capable of achieving high SO{sub 2} removal efficiencies (greater than 90%), while maintaining particulate emissions below the New Source Performance Standards (NSPS), without any negative environmental impact (section 6). A 28-day test demonstrated the reliability and operability of the GSA system during continuous operation. The test results and detailed discussions of the test data can be obtained from TVA`s Final Report (Appendix A). The Air Toxics Report (Appendix B), prepared by Energy and Environmental Research Corporation (EERC) characterizes air toxic emissions of selected hazardous air pollutants (HAP) from the GSA process. The results of this testing show that the GSA system can substantially reduce the emission of these HAP. With its lower capital costs and maintenance costs (section 7), as compared to conventional semi-dry scrubbers, the GSA technology commands a high potential for further commercialization in the United States. For detailed information refer to The Economic Evaluation Report (Appendix C) prepared by Raytheon Engineers and Constructors.

  15. Development of ITM oxygen technology for integration in IGCC and other advanced power generation

    SciTech Connect (OSTI)

    Armstrong, Phillip A.

    2015-03-31

    Ion Transport Membrane (ITM) technology is based on the oxygen-ion-conducting properties of certain mixed-metal oxide ceramic materials that can separate oxygen from an oxygen-containing gas, such as air, under a suitable driving force. The “ITM Oxygen” air separation system that results from the use of such ceramic membranes produces a hot, pure oxygen stream and a hot, pressurized, oxygen-depleted stream from which significant amounts of energy can be extracted. Accordingly, the technology integrates well with other high-temperature processes, including power generation. Air Products and Chemicals, Inc., the Recipient, in conjunction with a dozen subcontractors, developed ITM Oxygen technology under this five-phase Cooperative Agreement from the laboratory bench scale to implementation in a pilot plant capable of producing power and 100 tons per day (TPD) of purified oxygen. A commercial-scale membrane module manufacturing facility (the “CerFab”), sized to support a conceptual 2000 TPD ITM Oxygen Development Facility (ODF), was also established and operated under this Agreement. In the course of this work, the team developed prototype ceramic production processes and a robust planar ceramic membrane architecture based on a novel ceramic compound capable of high oxygen fluxes. The concept and feasibility of the technology was thoroughly established through laboratory pilot-scale operations testing commercial-scale membrane modules run under industrial operating conditions with compelling lifetime and reliability performance that supported further scale-up. Auxiliary systems, including contaminant mitigation, process controls, heat exchange, turbo-machinery, combustion, and membrane pressure vessels were extensively investigated and developed. The Recipient and subcontractors developed efficient process cycles that co-produce oxygen and power based on compact, low-cost ITMs. Process economics assessments show significant benefits relative to state-of-the-art cryogenic air separation technology in energy-intensive applications such as IGCC with and without carbon capture.

  16. Evaluating temperature and fuel stratification for heat-release rate control in a reactivity-controlled compression-ignition engine using optical diagnostics and chemical kinetics modeling

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Musculus, Mark P. B.; Kokjohn, Sage L.; Reitz, Rolf D.

    2015-04-23

    We investigated the combustion process in a dual-fuel, reactivity-controlled compression-ignition (RCCI) engine using a combination of optical diagnostics and chemical kinetics modeling to explain the role of equivalence ratio, temperature, and fuel reactivity stratification for heat-release rate control. An optically accessible engine is operated in the RCCI combustion mode using gasoline primary reference fuels (PRF). A well-mixed charge of iso-octane (PRF = 100) is created by injecting fuel into the engine cylinder during the intake stroke using a gasoline-type direct injector. Later in the cycle, n-heptane (PRF = 0) is delivered through a centrally mounted diesel-type common-rail injector. This injectionmore » strategy generates stratification in equivalence ratio, fuel blend, and temperature. The first part of this study uses a high-speed camera to image the injection events and record high-temperature combustion chemiluminescence. Moreover, the chemiluminescence imaging showed that, at the operating condition studied in the present work, mixtures in the squish region ignite first, and the reaction zone proceeds inward toward the center of the combustion chamber. The second part of this study investigates the charge preparation of the RCCI strategy using planar laser-induced fluorescence (PLIF) of a fuel tracer under non-reacting conditions to quantify fuel concentration distributions prior to ignition. The fuel-tracer PLIF data show that the combustion event proceeds down gradients in the n-heptane distribution. The third part of the study uses chemical kinetics modeling over a range of mixtures spanning the distributions observed from the fuel-tracer fluorescence imaging to isolate the roles of temperature, equivalence ratio, and PRF number stratification. The simulations predict that PRF number stratification is the dominant factor controlling the ignition location and growth rate of the reaction zone. Equivalence ratio has a smaller, but still significant, influence. Lastly, temperature stratification had a negligible influence due to the NTC behavior of the PRF mixtures.« less

  17. A jet fuel surrogate formulated by real fuel properties

    SciTech Connect (OSTI)

    Dooley, Stephen; Won, Sang Hee; Chaos, Marcos; Heyne, Joshua; Ju, Yiguang; Dryer, Frederick L.; Kumar, Kamal; Sung, Chih-Jen; Wang, Haowei; Oehlschlaeger, Matthew A.; Santoro, Robert J.; Litzinger, Thomas A.

    2010-12-15

    An implicit methodology based on chemical group theory to formulate a jet aviation fuel surrogate by the measurements of several combustion related fuel properties is tested. The empirical formula and derived cetane number of an actual aviation fuel, POSF 4658, have been determined. A three component surrogate fuel for POSF 4658 has been formulated by constraining a mixture of n-decane, iso-octane and toluene to reproduce the hydrogen/carbon ratio and derived cetane number of the target fuel. The validity of the proposed surrogate is evaluated by experimental measurement of select combustion properties of POSF 4658, and the POSF 4658 surrogate. (1)A variable pressure flow reactor has been used to chart the chemical reactivity of stoichiometric mixtures of POSF 4658/O{sub 2}/N{sub 2} and POSF 4658 surrogate/O{sub 2}/N{sub 2} at 12.5 atm and 500-1000 K, fixing the carbon content at 0.3% for both mixtures. (2)The high temperature chemical reactivity and chemical kinetic-molecular diffusion coupling of POSF 4658 and POSF 4658 surrogate have been evaluated by measurement of the strained extinction limit of diffusion flames. (3)The autoignition behavior of POSF 4658 and POSF 4658 surrogate has been measured with a shock tube at 674-1222 K and with a rapid compression machine at 645-714 K for stoichiometric mixtures of fuel in air at pressures close to 20 atm. The flow reactor study shows that the character and extent of chemical reactivity of both fuels at low temperature (500-675 K) and high temperature (900 K+) are extremely similar. Slight differences in the transition from the end of the negative temperature coefficient regime to hot ignition are observed. The diffusion flame strained extinction limits of the fuels are observed to be indistinguishable when compared on a molar basis. Ignition delay measurements also show that POSF 4658 exhibits NTC behavior. Moreover, the ignition delays of both fuels are also extremely similar over the temperature range studied in both shock tube and rapid compression machine experiments. A chemical kinetic model is constructed and utilized to interpret the experimental observations and provides a rationale as to why the real fuel and surrogate fuel exhibit such similar reactivity. (author)

  18. HCCI experiments with gasoline surrogate fuels modeled by a semidetailed chemical kinetic model

    SciTech Connect (OSTI)

    Andrae, J.C.G.; Head, R.A.

    2009-04-15

    Experiments in a homogeneous charge compression ignition (HCCI) engine have been conducted with four gasoline surrogate fuel blends. The pure components in the surrogate fuels consisted of n-heptane, isooctane, toluene, ethanol and diisobutylene and fuel sensitivities (RON-MON) in the fuel blends ranged from two to nine. The operating conditions for the engine were p{sub in}=0.1 and 0.2 MPa, T{sub in}=80 and 250 C, {phi}=0.25 in air and engine speed 1200 rpm. A semidetailed chemical kinetic model (142 species and 672 reactions) for gasoline surrogate fuels, validated against ignition data from experiments conducted in shock tubes for gasoline surrogate fuel blends at 1.0{<=} p{<=}5.0MPa, 700{<=} T{<=}1200 K and {phi}=1.0, was successfully used to qualitatively predict the HCCI experiments using a single zone modeling approach. The fuel blends that had higher fuel sensitivity were more resistant to autoignition for low intake temperature and high intake pressure and less resistant to autoignition for high intake temperature and low intake pressure. A sensitivity analysis shows that at high intake temperature the chemistry of the fuels ethanol, toluene and diisobutylene helps to advance ignition. This is consistent with the trend that fuels with the least Negative Temperature Coefficient (NTC) behavior show the highest octane sensitivity, and become less resistant to autoignition at high intake temperatures. For high intake pressure the sensitivity analysis shows that fuels in the fuel blend with no NTC behavior consume OH radicals and acts as a radical scavenger for the fuels with NTC behavior. This is consistent with the observed trend of an increase in RON and fuel sensitivity. With data from shock tube experiments in the literature and HCCI modeling in this work, a correlation between the reciprocal pressure exponent on the ignition delay to the fuel sensitivity and volume percentage of single-stage ignition fuel in the fuel blend was found. Higher fuel sensitivity and single-stage fuel content generally gives a lower value of the pressure exponent. This helps to explain the results obtained while boosting the intake pressure in the HCCI engine. (author)

  19. Investigation of Knock limited Compression Ratio of Ethanol Gasoline Blends

    SciTech Connect (OSTI)

    Szybist, James P; Youngquist, Adam D; Wagner, Robert M; Moore, Wayne; Foster, Matthew; Confer, Keith

    2010-01-01

    Ethanol offers significant potential for increasing the compression ratio of SI engines resulting from its high octane number and high latent heat of vaporization. A study was conducted to determine the knock limited compression ratio of ethanol gasoline blends to identify the potential for improved operating efficiency. To operate an SI engine in a flex fuel vehicle requires operating strategies that allow operation on a broad range of fuels from gasoline to E85. Since gasoline or low ethanol blend operation is inherently limited by knock at high loads, strategies must be identified which allow operation on these fuels with minimal fuel economy or power density tradeoffs. A single cylinder direct injection spark ignited engine with fully variable hydraulic valve actuation (HVA) is operated at WOT conditions to determine the knock limited compression ratio (CR) of ethanol fuel blends. The geometric compression ratio is varied by changing pistons, producing CR from 9.2 to 13.66. The effective CR is varied using an electro-hydraulic valvetrain that changed the effective trapped displacement using both Early Intake Valve Closing (EIVC) and Late Intake Valve Closing (LIVC). The EIVC and LIVC strategies result in effective CR being reduced while maintaining the geometric expansion ratio. It was found that at substantially similar engine conditions, increasing the ethanol content of the fuel results in higher engine efficiency and higher engine power. These can be partially attributed to a charge cooling effect and a higher heating valve of a stoichiometric mixture for ethanol blends (per unit mass of air). Additional thermodynamic effects on and a mole multiplier are also explored. It was also found that high CR can increase the efficiency of ethanol fuel blends, and as a result, the fuel economy penalty associated with the lower energy content of E85 can be reduced by about a third. Such operation necessitates that the engine be operated in a de-rated manner for gasoline, which is knock-prone at these high CR, in order to maintain compatibility. By using EIVC and LIVC strategies, good efficiency is maintained with gasoline, but power is reduced by about 34%.

  20. Chemistry Impacts in Gasoline HCCI

    SciTech Connect (OSTI)

    Szybist, James P; Bunting, Bruce G

    2006-09-01

    The use of homogeneous charge compression ignition (HCCI) combustion in internal combustion engines is of interest because it has the potential to produce low oxides of nitrogen (NOx) and particulate matter (PM) emissions while providing diesel-like efficiency. In HCCI combustion, a premixed charge of fuel and air auto-ignites at multiple points in the cylinder near top dead center (TDC), resulting in rapid combustion with very little flame propagation. In order to prevent excessive knocking during HCCI combustion, it must take place in a dilute environment, resulting from either operating fuel lean or providing high levels of either internal or external exhaust gas recirculation (EGR). Operating the engine in a dilute environment can substantially reduce the pumping losses, thus providing the main efficiency advantage compared to spark-ignition (SI) engines. Low NOx and PM emissions have been reported by virtually all researchers for operation under HCCI conditions. The precise emissions can vary depending on how well mixed the intake charge is, the fuel used, and the phasing of the HCCI combustion event; but it is common for there to be no measurable PM emissions and NOx emissions <10 ppm. Much of the early HCCI work was done on 2-stroke engines, and in these studies the CO and hydrocarbon emissions were reported to decrease [1]. However, in modern 4-stroke engines, the CO and hydrocarbon emissions from HCCI usually represent a marked increase compared with conventional SI combustion. This literature review does not report on HCCI emissions because the trends mentioned above are well established in the literature. The main focus of this literature review is the auto-ignition performance of gasoline-type fuels. It follows that this discussion relies heavily on the extensive information available about gasoline auto-ignition from studying knock in SI engines. Section 2 discusses hydrocarbon auto-ignition, the octane number scale, the chemistry behind it, its shortcomings, and its relevance to HCCI. Section 3 discusses the effects of fuel volatility on fuel and air mixing and the consequences it has on HCCI. The effects of alcohol fuels on HCCI performance, and specifically the effects that they have on the operable speed/load range, are reviewed in Section 4. Finally, conclusions are drawn in Section 5.

  1. Propane vehicles : status, challenges, and opportunities.

    SciTech Connect (OSTI)

    Rood Werpy, M.; Burnham, A.; Bertram, K.; Energy Systems

    2010-06-17

    Propane as an auto fuel has a high octane value and has key properties required for spark-ignited internal combustion engines. To operate a vehicle on propane as either a dedicated fuel or bi-fuel (i.e., switching between gasoline and propane) vehicle, only a few modifications must be made to the engine. Until recently propane vehicles have commonly used a vapor pressure system that was somewhat similar to a carburetion system, wherein the propane would be vaporized and mixed with combustion air in the intake plenum of the engine. This leads to lower efficiency as more air, rather than fuel, is inducted into the cylinder for combustion (Myers 2009). A newer liquid injection system has become available that injects propane directly into the cylinder, resulting in no mixing penalty because air is not diluted with the gaseous fuel in the intake manifold. Use of a direct propane injection system will improve engine efficiency (Gupta 2009). Other systems include the sequential multi-port fuel injection system and a bi-fuel 'hybrid' sequential propane injection system. Carbureted systems remain in use but mostly for non-road applications. In the United States a closed-loop system is used in after-market conversions. This system incorporates an electronic sensor that provides constant feedback to the fuel controller to allow it to measure precisely the proper air/fuel ratio. A complete conversion system includes a fuel controller, pressure regulator valves, fuel injectors, electronics, fuel tank, and software. A slight power loss is expected in conversion to a vapor pressure system, but power can still be optimized with vehicle modifications of such items as the air/fuel mixture and compression ratios. Cold start issues are eliminated for vapor pressure systems since the air/fuel mixture is gaseous. In light-duty propane vehicles, the fuel tank is typically mounted in the trunk; for medium- and heavy-duty vans and trucks, the tank is located under the body of the vehicle. Propane tanks add weight to a vehicle and can slightly increase the consumption of fuel. On a gallon-to-gallon basis, the energy content of propane is 73% that of gasoline, thus requiring more propane fuel to travel an equivalent distance, even in an optimized engine (EERE 2009b).

  2. Chronic alcohol consumption enhances iNKT cell maturation and activation

    SciTech Connect (OSTI)

    Zhang, Hui Zhang, Faya; Zhu, Zhaohui; Luong, Dung; Meadows, Gary G.

    2015-01-15

    Alcohol consumption exhibits diverse effects on different types of immune cells. NKT cells are a unique T cell population and play important immunoregulatory roles in different types of immune responses. The effects of chronic alcohol consumption on NKT cells remain to be elucidated. Using a mouse model of chronic alcohol consumption, we found that alcohol increases the percentage of NKT cells, especially iNKT cells in the thymus and liver, but not in the spleen or blood. Alcohol consumption decreases the percentage of NK1.1{sup −} iNKT cells in the total iNKT cell population in all of the tissues and organs examined. In the thymus, alcohol consumption increases the number of NK1.1{sup +}CD44{sup hi} mature iNKT cells but does not alter the number of NK1.1{sup −} immature iNKT cells. A BrdU incorporation assay shows that alcohol consumption increases the proliferation of thymic NK1.1{sup −} iNKT cells, especially the NK1.1{sup −}CD44{sup lo} Stage I iNKT cells. The percentage of NKG2A{sup +} iNKT cells increases in all of the tissues and organs examined; whereas CXCR3{sup +} iNKT cells only increases in the thymus of alcohol-consuming mice. Chronic alcohol consumption increases the percentage of IFN-γ-producing iNKT cells and increases the blood concentration of IFN-γ and IL-12 after in vivo α-galactosylceramide (αGalCer) stimulation. Consistent with the increased cytokine production, the in vivo activation of iNKT cells also enhances the activation of dendritic cells (DC) and NK, B, and T cells in the alcohol-consuming mice. Taken together the data indicate that chronic alcohol consumption enhances iNKT cell maturation and activation, which favors the Th1 immune response. - Highlights: • Chronic alcohol consumption increases iNKT cells in the thymus and liver • Chronic alcohol consumption enhances thymic Stage I iNKT cell proliferation • Chronic alcohol consumption enhances iNKT cell maturation in thymus and periphery • Chronic alcohol consumption induces Th1 immune response upon iNKT cell in vivo activation.

  3. E85 Optimized Engine through Boosting, Spray-Optimized DIG, VCR and Variable Valvetrain

    SciTech Connect (OSTI)

    Keith Confer; Harry Husted

    2011-05-31

    The use of biofuels for internal combustion engines has several well published advantages. The biofuels, made from biological sources such as corn or sugar cane, are renewable resources that reduce the dependence on fossil fuels. Fuels from agricultural sources can therefore reduce a countries energy dependency on other nations. Biofuels also have been shown to reduce CO2 emissions into the atmosphere compared to traditional fossil based fuels. Because of these benefits several countries have set targets for the use of biofuels, especially ethanol, in their transportation fuels. Small percentages of ethanol are common place in gasoline but are typically limited to 5 to 8% by volume. Greater benefits are possible from higher concentrations and some countries such as the US and Sweden have encouraged the production of vehicles capable of operating on E85 (85% denatured ethanol and 15% gasoline). E85 capable vehicles are normally equipped to run the higher levels of ethanol by employing modified fuel delivery systems that can withstand the highly corrosive nature of the alcohol. These vehicles are not however equipped to take full advantage of ethanol's properties during the combustion process. Ethanol has a much higher blend research octane number than gasoline. This allows the use of higher engine compression ratios and spark advance which result in more efficient engine operation. Ethanol's latent heat of vaporization is also much higher that gasoline. This higher heat of vaporization cools the engine intake charge which also allows the engine compression ratio to be increased even further. An engine that is optimized for operation on high concentrations of ethanol therefore will have compression ratios that are too high to avoid spark knock (pre-ignition) if run on gasoline or a gasoline/ethanol blend that has a low percentage alcohol. An engine was developed during this project to leverage the improved evaporative cooling and high octane of E85 to improve fuel economy and offset E85's lower energy content. A 2.0 L production Direct Injection gasoline, (DIg) engine employing Dual Independent Cam Phasing, (DICP) and turbo charging was used as the base engine. Modified pistons were used to increase the geometric compression ratio from 9.2:1 to 11.85:1 by modifying the pistons and adding advanced valvetrain to proved control of displacement and effective compression ratio through valve timing control. The advanced valvetrain utilized Delphi's two step valvetrain hardware and intake cam phaser with increased phasing authority of 80 crank angle degrees. Using this hardware the engine was capable of operating knock free on all fuels tested from E0-E85 by controlling effective compression ratio using a Late Intake Valve Closing, (LIVC) strategy. The LIVC strategy results in changes in the trapped displacement such that knock limited torque for gasoline is significantly lower than E85. The use of spark retard to control knock enables higher peak torque for knock limited fuels, however a loss in efficiency results. For gasoline and E10 fuels, full effective displacement could not be reached before spark retard produced a net loss in torque. The use of an Early Intake Valve Closing, (EIVC) strategy resulted in an improvement of engine efficiency at low to mid loads for all fuels tested from E0- E85. Further the use of valve deactivation, to a single intake valve, improved combustion stability and enabled throttle-less operation down to less than 2 bar BMEP. Slight throttling to trap internal residual provided additional reductions in fuel consumption. To fully leverage the benefits of E85, or ethanol blends above E10, would require a vehicle level approach that would take advantage of the improved low end torque that is possible with E85. Operating the engine at reduced speeds and using advanced transmissions (6 speeds or higher) would provide a responsive efficient driving experience to the customer. The vehicle shift and torque converter lockup points for high ethanol blends could take advantage of the significant efficiency advantage of down-speeding and operating at higher loads to deliver the required power.

  4. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    SciTech Connect (OSTI)

    Caroline E. Burgess Clifford; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2007-03-17

    This report summarizes the accomplishments toward project goals during the no cost extension period of the third year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts for a third round of testing, the use of a research gasoline engine to test coal-based gasoline, and modification of diesel engines for use in evaluating diesel produced in the project. At the pilot scale, the hydrotreating process was modified to separate the heavy components from the LCO and RCO fractions before hydrotreating in order to improve the performance of the catalysts in further processing. Hydrotreating and hydrogenation of the product has been completed, and due to removal of material before processing, yield of the jet fuel fraction has decreased relative to an increase in the gasoline fraction. Characterization of the gasoline fuel indicates a dominance of single ring alkylcycloalkanes that have a low octane rating; however, blends containing these compounds do not have a negative effect upon gasoline when blended in refinery gasoline streams. Characterization of the diesel fuel indicates a dominance of 3-ring aromatics that have a low cetane value; however, these compounds do not have a negative effect upon diesel when blended in refinery diesel streams. Both gasoline and diesel continue to be tested for combustion performance. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Activated carbons have proven useful to remove the heavy sulfur components, and unsupported Ni/Mo and Ni/Co catalysts have been very effective for hydrodesulfurization. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Combustion and characterization of the latest fuel oil (the high temperature fraction of RCO from the latest modification) indicates that the fraction is heavier than a No. 6 fuel oil. Combustion efficiency on our research boiler is {approx}63% for the heavy RCO fraction, lower than the combustion performance for previous co-coking fuel oils and No. 6 fuel oil. Emission testing indicates that the coal derived material has more trace metals related to coal than petroleum, as seen in previous runs. An additional coal has been procured and is being processed for the next series of delayed co-coking runs. The co-coking of the runs with the new coal have begun, with the coke yield similar to previous runs, but the gas yield is lower and the liquid yield is higher. Characterization of the products continues. Work continues on characterization of liquids and solids from co-coking of hydrotreated decant oils; liquid yields include more saturated and hydro- aromatics, while the coke quality varies depending on the conditions used. Pitch material is being generated from the heavy fraction of co-coking.

  5. The Use of Exhaust Gas Recirculation to Optimize Fuel Economy and Minimize Emission in Engines Operating on E85 Fuel

    SciTech Connect (OSTI)

    Wu, Ko-Jen

    2011-12-31

    This report summarizes activities conducted for the project The Use of Exhaust Gas Recirculation to Optimized Fuel Economy and Minimize Emissions in Engines Operating on E85 Fuel under COOPERATIVE AGREEMENT NUMBER DE-FC26-07NT43271, which are as outlined in the STATEMENT OF PROJECT OBJECTIVES (SOPO) dated March 2007 and in the supplemental SOPO dated October 2010. The project objective was to develop and demonstrate an internal combustion engine that is optimized for E85 (85% ethanol and 15% gasoline) fuel operation to achieve substantially improved fuel economy while operating with E85 fuel and that is also production viable in the near- to medium-term. The key engine technology selected for research and development was turbocharging, which is known to improve fuel economy thru downsizing and is in particular capable of exploiting ethanol fuels characteristics of high octane number and high latent heat of vaporization. The engine further integrated synergistic efficiency improving technologies of cooled exhaust gas recirculation (EGR), direct fuel injection and dual continuously variable intake and exhaust cam phasers. On the vehicle level, fuel economy was furthered thru powertrain system optimization by mating a state-of-the-art six-speed automatic transmission to the engine. In order to achieve the projects objective of near- to medium-term production viability, it was essential to develop the engine to be flex-fuel capable of operating with fuels ranging from E0 (0% ethanol and 100% gasoline) to E85 and to use three-way type of catalyst technology for exhaust aftertreatment. Within these scopes, various technologies were developed through systems approach to focus on ways to help accelerate catalyst light-off. Significant amount of development took place during the course of the project within General Motors, LLC. Many prototype flex-fuel engines were designed, built and developed with various hardware configurations selected to achieve the project goals. Several flex-fuel demonstration vehicles were designed and built for carrying out calibration development and final testing to quantify the technology merits. Based on the extensive test results collected from dynamometer and vehicle testing, the fuel economy benefits of cooled EGR from the intended level of turbocharger technology were quantified. When combined with turbo downsizing, the FE benefits are considered large enough for E0 fuel as well as for E85 fuel to warrant further development of the technology beyond the current proof-of-concept level to a level that can meet production driveability quality and durability requirements in order to meet customers expectations. Cold-start cart test results from the emissions segment of the project were positive, confirming the assumption of faster thermal response of turbo exhaust system for emissions reductions for both E0 and E85 fuels. Vehicle emissions test results directionally correlated to the cold-start cart findings. The limited number of test runs did demonstrate the potentials of meeting stringent emission standards, however, they did not comprehend the factors such as hardware variability and long-term durability, 3 which are essential for mass production to satisfy customers expectations. It is therefore recommended, moving forward, durability concerns over turbocharger, EGR system and aftertreatment system, which would likely impact production viability, should be addressed. The data moreover suggested that further FE increase is likely with turbocharger technology advancement.

  6. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    SciTech Connect (OSTI)

    Caroline E. Burgess Clifford; Andre' Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2006-09-17

    This report summarizes the accomplishments toward project goals during the second six months of the third year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts and examination of carbon material, the use of a research gasoline engine to test coal-based gasoline, and modification of diesel engines for use in evaluating diesel produced in the project. At the pilot scale, the hydrotreating process was modified to separate the heavy components from the LCO and RCO fractions before hydrotreating in order to improve the performance of the catalysts in further processing. Characterization of the gasoline fuel indicates a dominance of single ring alkylcycloalkanes that have a low octane rating; however, blends containing these compounds do not have a negative effect upon gasoline when blended in refinery gasoline streams. Characterization of the diesel fuel indicates a dominance of 3-ring aromatics that have a low cetane value; however, these compounds do not have a negative effect upon diesel when blended in refinery diesel streams. Both gasoline and diesel continue to be tested for combustion performance. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Activated carbons have proven useful to remove the heavy sulfur components, and unsupported Ni/Mo and Ni/Co catalysts have been very effective for hydrodesulfurization. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Combustion and characterization of the latest fuel oil (the high temperature fraction of RCO from the latest modification) indicates that the fraction is heavier than a No. 6 fuel oil. Combustion efficiency on our research boiler is {approx}63% for the heavy RCO fraction, lower than the combustion performance for previous co-coking fuel oils and No. 6 fuel oil. An additional coal has been procured and is being processed for the next series of delayed co-coking runs. Work continues on characterization of liquids and solids from co-coking of hydrotreated decant oils; liquid yields include more saturated and hydro- aromatics, while the coke quality varies depending on the conditions used. Pitch material is being generated from the heavy fraction of co-coking. Investigation of coal extraction as a method to produce RCO continues; the reactor modifications to filter the products hot and to do multi-stage extraction improve extraction yields from {approx}50 % to {approx}70%. Carbon characterization of co-cokes for use as various carbon artifacts continues.

  7. QER- Comment of Brian West

    Broader source: Energy.gov [DOE]

    Hello, Thanks for the invitation to the QER workshop. Here are a couple of comments that I was probably unable to fully articulate in the main session, although I did try to make some of these points in the breakout session: When considering alternatives and policy that drives alternative fuel use, it is important to learn from Policy successes and failures. Policy drivers put in place in Thailand, Brazil, and Sweden have been successful in transitions to greater alternative fuel use. US policy for Flex Fuel Vehicles has been largely unsuccessful at encouraging alternative fuel use. The fuel economy credit for the OEMs to build FFVs was generous but encouraged only modest production; nonetheless there are over 15M FFVs on the road. However, they use very little ethanol fuel due to cost ($/mile), range, etc. Natural Gas has a very real value proposition (lower $/gge) so fleet owners have good financial incentive to make the switch, even if investments are required. One participant commented that infrastructure costs are small compared to costs of imported oil. I agree with this statement. One presenter mentioned (a city?) with a law that requires infrastructure to support future EV charging be installed in any new parking garage. Great idea. (Better to have and not need than need and not have, especially when cost differential is small on the front end and very large on the back end). In the US we install about 20,000-40,000 new fuel dispensers per year (according to Gilbarco/Wayne). It would be a horrible missed opportunity to not put policy in place that encourages/requires E25 or E85-compatible dispensers. With a successful policy driver, in the next five years the nation could have over 100,000 ethanol-compatible dispensers in place, ready for a new High Octane Fuel (that could very likely contain more than 10 or 15% ethanol). Thanks Brian H. West Fuels, Engines, and Emissions Research Center Oak Ridge National Laboratory http://www.ornl.gov/ http://feerc.ornl.gov/ http://www.fueleconomy.gov/ From: Tillemann, Levi Sent: Thursday, July 03, 2014 3:52 PM To: West, Brian H. Subject: AMR/QER Technical Workshop Dear Brian: On behalf of the Department of Energy's Office of Energy Policy and Systems Analysis (EPSA) I want to thank you for your participation at the June 20th AMR/QER Alternative Transportation Refueling Infrastructure technical workshop. Your contribution in the breakout sessions and general discussion sessions provided valuable insight that will help inform EPSA during the QER process going forward. During the course of the workshop, detailed notes were taken. These have been anonymized and will be made publically available to you and the general public in the coming weeks. Once they are posted, we will provide you with a link for accessing them online. We encourage you to submit additional comments regarding infrastructure for transmission, storage or distribution of alternative transportation fuels to qercomments@hq.doe.gov. For more information about the QER's stakeholder meeting locations, areas of analysis and public comments you can visit the QER website at: http://energy.gov/epsa/initiatives/quadrennial-energy-review-qer. Please feel free to contact me or Sallie Gilbert (sallie.gilbert@hq.doe.gov) if you have additional questions. I will be leaving the DOE August 1, thereafter you may contact Renee Picket (adonica.pickett@hq.doe.gov) or Carla Frisch (carla.frisch@hq.doe.gov) with questions or comments. Thank you again for making the workshop a great success. I look forward to working together with all of you on these issues in the future. Best regards, Levi Tillemann, Ph.D. Special Advisor, EPSA US Department of Energy

  8. Optimally Controlled Flexible Fuel Powertrain System

    SciTech Connect (OSTI)

    Duncan Sheppard; Bruce Woodrow; Paul Kilmurray; Simon Thwaite

    2011-06-30

    A multi phase program was undertaken with the stated goal of using advanced design and development tools to create a unique combination of existing technologies to create a powertrain system specification that allowed minimal increase of volumetric fuel consumption when operating on E85 relative to gasoline. Although on an energy basis gasoline / ethanol blends typically return similar fuel economy to straight gasoline, because of its lower energy density (gasoline ~ 31.8MJ/l and ethanol ~ 21.1MJ/l) the volume based fuel economy of gasoline / ethanol blends are typically considerably worse. This project was able to define an initial engine specification envelope, develop specific hardware for the application, and test that hardware in both single and multi-cylinder test engines to verify the ability of the specified powertrain to deliver reduced E85 fuel consumption. Finally, the results from the engine testing were used in a vehicle drive cycle analysis tool to define a final vehicle level fuel economy result. During the course of the project, it was identified that the technologies utilized to improve fuel economy on E85 also enabled improved fuel economy when operating on gasoline. However, the E85 fueled powertrain provided improved vehicle performance when compared to the gasoline fueled powertrain due to the improved high load performance of the E85 fuel. Relative to the baseline comparator engine and considering current market fuels, the volumetric fuel consumption penalty when running on E85 with the fully optimized project powertrain specification was reduced significantly. This result shows that alternative fuels can be utilized in high percentages while maintaining or improving vehicle performance and with minimal or positive impact on total cost of ownership to the end consumer. The justification for this project was two-fold. In order to reduce the US dependence on crude oil, much of which is imported, the US Environmental Protection Agency (EPA) developed the Renewable Fuels Standard (RFS) under the Energy Policy Act of 2005. The RFS specifies targets for the amount of renewable fuel to be blended into petroleum based transportation fuels. The goal is to blend 36 billion gallons of renewable fuels into transportation fuels by 2022 (9 billion gallons were blended in 2008). The RFS also requires that the renewable fuels emit fewer greenhouse gasses than the petroleum fuels replaced. Thus the goal of the EPA is to have a more fuel efficient national fleet, less dependent on petroleum based fuels. The limit to the implementation of certain technologies employed was the requirement to run the developed powertrain on gasoline with minimal performance degradation. The addition of ethanol to gasoline fuels improves the fuels octane rating and increases the fuels evaporative cooling. Both of these fuel property enhancements make gasoline / ethanol blends more suitable than straight gasoline for use in downsized engines or engines with increased compression ratio. The use of engine downsizing and high compression ratios as well as direct injection (DI), dual independent cam phasing, external EGR, and downspeeding were fundamental to the fuel economy improvements targeted in this project. The developed powertrain specification utilized the MAHLE DI3 gasoline downsizing research engine. It was a turbocharged, intercooled, DI engine with dual independent cam phasing utilizing a compression ratio of 11.25 : 1 and a 15% reduction in final drive ratio. When compared to a gasoline fuelled 2.2L Ecotec engine in a Chevrolet HHR, vehicle drive cycle predictions indicate that the optimized powertrain operating on E85 would result in a reduced volume based drive cycle fuel economy penalty of 6% compared to an approximately 30% penalty for current technology engines.

  9. Generation, Detection and characterization of Gas-Phase Transition Metal containing Molecules

    SciTech Connect (OSTI)

    Steimle, Timothy

    2015-12-15

    The objective of this project was to generate, detect, and characterize small, gas-phase, metal containing molecules. In addition to being relevant to high temperature chemical environments (e.g. plasmas and combustion), gas-phase experiments on metal containing molecules serve as the most direct link to a molecular-level theoretical model for catalysis. Catalysis (i.e. the addition of a small about of recoverable material to control the rate and direction of a chemical reaction) is critical to the petroleum and pharmaceutical industries as well as environmental remediation. Currently, the majority of catalytic materials are based on very expensive metals such as platinum (Pt), palladium (Pd), iridium (Ir,) rhenium (Re), and rhodium (Rh). For example, the catalyst used for converting linear hydrocarbon molecules (e.g. hexane) to cyclic molecules (e.g. cyclohexane) is a mixture of Pt and Re suspended on alumina. It enables straight chain alkanes to be converted into branched-chain alkanes, cyclohexanes and aromatic hydrocarbons which are used, amongst other things, to enhance the octane number of petrol. A second example is the heterogeneous catalysis used in automobile exhaust systems to: a) decrease nitrogen oxide; b) reduce carbon monoxide; and c) oxidize unburned hydrocarbons. The exhaust is vented through a high-surface area chamber lined with Pt, Pd, and Rh. For example, the carbon monoxide is catalytically converted to carbon dioxide by reaction with oxygen. The research results from this work have been published in readily accessible journals1-28. The ground and excited electronic state properties of small metal containing molecules that we determine were: a) electronic state distributions and lifetimes, b) vibrational frequencies, c) bond lengths and angles, d) hyperfine interactions, e) permanent electric dipole moments, mel, and f) magnetic dipoles, μm. In general terms, μel, gives insight into the charge distribution and mm into the number and nature of the unpaired electrons. Analysis of the hyperfine interactions (i.e. Fermi-contact, nuclear electric quadrupole, etc.) is particularly insightful because it results from the interaction of nuclei with non-zero spin and the chemically important valence electrons. The bulk of the spectroscopic techniques used in these studies exploit the sensitivity of laser induced fluorescence (LIF) detection. The spectroscopic schemes employed include: a) cw and pulsed laser field-free(FF) excitation and dispersed LIF (DLIF); b) optical Stark; c) optical Zeeman; d) pump/probe microwave double resonance (PPMODR); e) fluorescence lifetimes, and f) resonant and non-resonant two-photon ionization TOF mass spectrometry. Vibrational spacing, force constants and electronic states distributions are derived from the analysis of pulsed dye laser excitation and DLIF spectra. Geometric structure (bond lengths and angles) and hyperfine parameters are derived from the analysis of cw-laser LIF and PPMODR spectra. Permanent electric dipole moments, mel,, and magnetic dipole moments, mm, are derived from the analysis of optical Stark and Zeeman spectra, respectively. Transition moments are derived from the analysis of radiative lifetimes. A supersonic molecular beam sample of these ephemeral molecules is generated by skimming the products of either a laser ablation/reaction source or a d.c. discharge source.

  10. DEVELOPMENT OF ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS

    SciTech Connect (OSTI)

    Peter J. Tijrn

    2003-05-31

    This Final Report for Cooperative Agreement No. DE-FC22-95PC93052, the ''Development of Alternative Fuels and Chemicals from Synthesis Gas,'' was prepared by Air Products and Chemicals, Inc. (Air Products), and covers activities from 29 December 1994 through 31 July 2002. The overall objectives of this program were to investigate potential technologies for the conversion of synthesis gas (syngas), a mixture primarily of hydrogen (H{sub 2}) and carbon monoxide (CO), to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at the LaPorte, Texas Alternative Fuels Development Unit (AFDU). Laboratory work was performed by Air Products and a variety of subcontractors, and focused on the study of the kinetics of production of methanol and dimethyl ether (DME) from syngas, the production of DME using the Liquid Phase Dimethyl Ether (LPDME{trademark}) Process, the conversion of DME to fuels and chemicals, and the production of other higher value products from syngas. Four operating campaigns were performed at the AFDU during the performance period. Tests of the Liquid Phase Methanol (LPMEOH{trademark}) Process and the LPDME{trademark} Process were made to confirm results from the laboratory program and to allow for the study of the hydrodynamics of the slurry bubble column reactor (SBCR) at a significant engineering scale. Two campaigns demonstrated the conversion of syngas to hydrocarbon products via the slurry-phase Fischer-Tropsch (F-T) process. Other topics that were studied within this program include the economics of production of methyl tert-butyl ether (MTBE), the identification of trace components in coal-derived syngas and the means to economically remove these species, and the study of systems for separation of wax from catalyst in the F-T process. The work performed under this Cooperative Agreement has continued to promote the development of technologies that use clean syngas produced from any one of a variety of sources (including coal) for the production of a spectrum of alternative fuels (hydrocarbons and oxygenate fuels), octane enhancers, and chemicals and chemical intermediates. In particular, the data from the 1995 LPMEOH{trademark} campaign provided confirmation of assumptions used in the design of the catalyst reduction system at the Kingsport LPMEOH{trademark} Commercial Demonstration Project, and the alternate methanol catalyst has been in use there since late 1998. The kinetic model was also expanded to allow for more accurate prediction of methanol production and carbon dioxide (CO{sub 2}) conversion, and more accurate modeling of by-product formation for the alternate methanol catalyst. The outstanding performance results of the LPMEOH{trademark} Process at Kingsport can be attributed in large part to the body of work performed since 1981 in collaboration between the U.S. Department of Energy (DOE) and Air Products. In addition, a pilot-plant-tested LPDME{trademark} Process has been demonstrated, and the product cost of DME from coal-derived syngas can be competitive in certain locations and applications. The need for liquid fuels will continue to be a critical concern for this nation in the 21st century. Efforts are needed to ensure the development and demonstration of economically competitive, efficient, environmentally responsible technologies that produce clean fuels and chemicals from coal under DOE's Vision 21 concept. These liquids will be a component of the fuel mix that will provide the transition from the current reliance on carbon-based fuels to the ultimate use of H{sub 2} as a means of energy transport. Indirect liquefaction, which converts the syngas (H{sub 2} and CO) produced by the gasification of coal to sulfur- and nitrogen-free liquid products, is a key component of the Vision 21 initiative. The results from this current program provide continued support to the objectives for the conversion of domestic coal to electric power and co-produced clean liquid fuels and chemicals in an environmentally superior manner.

  11. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    SciTech Connect (OSTI)

    Caroline Clifford; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2008-03-31

    The final report summarizes the accomplishments toward project goals during length of the project. The goal of this project was to integrate coal into a refinery in order to produce coal-based jet fuel, with the major goal to examine the products other than jet fuel. These products are in the gasoline, diesel and fuel oil range and result from coal-based jet fuel production from an Air Force funded program. The main goal of Task 1 was the production of coal-based jet fuel and other products that would need to be utilized in other fuels or for non-fuel sources, using known refining technology. The gasoline, diesel fuel, and fuel oil were tested in other aspects of the project. Light cycle oil (LCO) and refined chemical oil (RCO) were blended, hydrotreated to removed sulfur, and hydrogenated, then fractionated in the original production of jet fuel. Two main approaches, taken during the project period, varied where the fractionation took place, in order to preserve the life of catalysts used, which includes (1) fractionation of the hydrotreated blend to remove sulfur and nitrogen, followed by a hydrogenation step of the lighter fraction, and (2) fractionation of the LCO and RCO before any hydrotreatment. Task 2 involved assessment of the impact of refinery integration of JP-900 production on gasoline and diesel fuel. Fuel properties, ignition characteristics and engine combustion of model fuels and fuel samples from pilot-scale production runs were characterized. The model fuels used to represent the coal-based fuel streams were blended into full-boiling range fuels to simulate the mixing of fuel streams within the refinery to create potential 'finished' fuels. The representative compounds of the coal-based gasoline were cyclohexane and methyl cyclohexane, and for the coal-base diesel fuel they were fluorine and phenanthrene. Both the octane number (ON) of the coal-based gasoline and the cetane number (CN) of the coal-based diesel were low, relative to commercial fuels ({approx}60 ON for coal-based gasoline and {approx}20 CN for coal-based diesel fuel). Therefore, the allowable range of blending levels was studied where the blend would achieve acceptable performance. However, in both cases of the coal-based fuels, their ignition characteristics may make them ideal fuels for advanced combustion strategies where lower ON and CN are desirable. Task 3 was designed to develop new approaches for producing ultra clean fuels and value-added chemicals from refinery streams involving coal as a part of the feedstock. It consisted of the following three parts: (1) desulfurization and denitrogenation which involves both new adsorption approach for selective removal of nitrogen and sulfur and new catalysts for more effective hydrotreating and the combination of adsorption denitrogenation with hydrodesulfurization; (2) saturation of two-ring aromatics that included new design of sulfur resistant noble-metal catalysts for hydrogenation of naphthalene and tetralin in middle distillate fuels, and (3) value-added chemicals from naphthalene and biphenyl, which aimed at developing value-added organic chemicals from refinery streams such as 2,6-dimethylnaphthalene and 4,4{prime}-dimethylbiphenyl as precursors to advanced polymer materials. Major advances were achieved in this project in designing the catalysts and sorbent materials, and in developing fundamental understanding. The objective of Task 4 was to evaluate the effect of introducing coal into an existing petroleum refinery on the fuel oil product, specifically trace element emissions. Activities performed to accomplish this objective included analyzing two petroleum-based commercial heavy fuel oils (i.e., No. 6 fuel oils) as baseline fuels and three co-processed fuel oils, characterizing the atomization performance of a No. 6 fuel oil, measuring the combustion performance and emissions of the five fuels, specifically major, minor, and trace elements when fired in a watertube boiler designed for natural gas/fuel oil, and determining the boiler performance when firing the five fuels. Two different co-processed fuel oils were tested: one that had been partially hydrotreated, and the other a product of fractionation before hydrotreating. Task 5 focused on examining refining methods that would utilize coal and produce thermally stable jet fuel, included delayed coking and solvent extraction. Delayed coking was done on blends of decant oil and coal, with the goal to produce a premium carbon product and liquid fuels. Coking was done on bench scale and large laboratory scale cokers. Two coals were examined for co-coking, using Pittsburgh seam coal and Marfork coal product. Reactions in the large, laboratory scaled coker were reproducible in yields of products and in quality of products. While the co-coke produced from both coals was of sponge coke quality, minerals left in the coke made it unacceptable for use as anode or graphite grade filler.