Sample records for oceanography monitoring sites

  1. West Hackberry Strategic Petroleum Reserve site brine-disposal monitoring, Year I report. Volume III. Biological oceanography. Final report

    SciTech Connect (OSTI)

    DeRouen, L.R.; Hann, R.W.; Casserly, D.M.; Giammona, C.; Lascara, V.J. (eds.)

    1983-02-01T23:59:59.000Z

    The Department of Energy's Strategic Petroleum Reserve Program began discharging brine into the Gulf of Mexico from its West Hackberry site near Cameron, Louisiana in May 1981. The brine originates from underground salt domes being leached with water from the Intracoastal Waterway, making available vast underground storage caverns for crude oil. The effects of brine discharge on aquatic organisms are presented in this volume. The topics covered are: benthos; nekton; phytoplankton; zooplankton; and data management.

  2. West Hackberry Strategic Petroleum Reserve site brine-disposal monitoring, Year I report. Volume II. Physical and chemical oceanography. Final report

    SciTech Connect (OSTI)

    DeRouen, L.R.; Hann, R.W.; Casserly, D.M.; Giammona, C.; Lascara, V.J. (eds.)

    1983-02-01T23:59:59.000Z

    This project centers around the Strategic Petroleum Site (SPR) known as the West Hackberry salt dome which is located in southwestern Louisiana, and which is designed to store 241 million barrels of crude oil. Oil storage caverns are formed by injecting water into salt deposits, and pumping out the resulting brine. Studies described in this report were designed as follow-on studies to three months of pre-discharge characterization work, and include data collected during the first year of brine leaching operations. The objectives were to: (1) characterize the environment in terms of physical, chemical and biological attributes; (2) determine if significant adverse changes in ecosystem productivity and stability of the biological community are occurring as a result of brine discharge; and (3) determine the magnitude of any change observed. Contents of Volume II include: introduction; physical oceanography; estuarine hydrology and hydrography; analysis of discharge plume; and water and sediment quality.

  3. Site Monitoring Area Maps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to the Site Monitoring Area (SMA) The Site Monitoring Area sampler Control measures (best management practices) installed at the Site Monitoring Area Structures such as...

  4. West Hackberry Strategic Petroleum Reserve site brine disposal monitoring, Year I report. Volume V. Supporting data for estuarine hydrology, discharge plume analysis, chemical oceanography, biological oceanography, and data management. Final report

    SciTech Connect (OSTI)

    DeRouen, L.R.; Hann, R.W.; Casserly, D.M.; Giammona, C.; Lascara, V.J. (eds.)

    1983-02-01T23:59:59.000Z

    This project centers around the Strategic Petroleum Site (SPR) known as the West Hackberry salt dome which located in southwestern Louisiana, and which is designed to store 241 million barrels of crude oil. Oil storage caverns are formed by injecting water into salt deposits, and pumping out the resulting brine. Studies described in this report were designed as follow-on studies to three months of pre-discharge characterization work, and include data collected during the first year of brine leaching operations. The objectives were to: (1) characterize the environment in terms of physical, chemical and biological attributes; (2) determine if significant adverse changes in ecosystem productivity and stability of the biological community are occurring as a result of brine discharge; and (3) determine the magnitude of any change observed. Volume V contains appendices for the following: supporting data for estuarine hydrology and hydrography; supporting data analysis of discharge plume; supporting data for water and sediment chemistry; CTD/DO and pH profiles during biological monitoring; supporting data for nekton; and supporting data for data management.

  5. Site Monitoring Area Maps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebookScholarship Fund3 Outlook forSDPPP Individual Permit:SiteSite

  6. AQUIFER STORAGE SITE EVALUATION AND MONITORING

    E-Print Network [OSTI]

    Edwards, Mike

    CO2 AQUIFER STORAGE SITE EVALUATION AND MONITORING Edited and compiled by Martin Smith, David Campbell, Eric Mackay and Debbie Polson Understanding the challenges of CO2 storage: results of the CASSEM Project Im agecopyrightofNERC #12;#12;CO2 Aquifer storage site evaluation and monitoring EDITED

  7. Idaho National Laboratory Site Environmental Monitoring Plan

    SciTech Connect (OSTI)

    Jenifer Nordstrom

    2014-02-01T23:59:59.000Z

    This plan provides a high-level summary of environmental monitoring performed by various organizations within and around the Idaho National Laboratory (INL) Site as required by U.S. Department of Energy (DOE) Order 435.1, Radioactive Waste Management, and DOE Order 458.1, Radiation Protection of the Public and the Environment, Guide DOE/EH-0173T, Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance, and in accordance with 40 Code of Federal Regulations (CFR) 61, National Emission Standards for Hazardous Air Pollutants. The purpose of these orders is to 1) implement sound stewardship practices that protect the air, water, land, and other natural and cultural resources that may be impacted by DOE operations, and 2) to establish standards and requirements for the operations of DOE and DOE contractors with respect to protection of the environment and members of the public against undue risk from radiation. This plan describes the organizations responsible for conducting environmental monitoring across the INL Site, the rationale for monitoring, the types of media being monitored, where the monitoring is conducted, and where monitoring results can be obtained. Detailed monitoring procedures, program plans, or other governing documents used by contractors or agencies to implement requirements are referenced in this plan. This plan covers all planned monitoring and environmental surveillance. Nonroutine activities such as special research studies and characterization of individual sites for environmental restoration are outside the scope of this plan.

  8. Offshore Wind Guidance Document: Oceanography and Sediment Stability (Version 1) Development of a Conceptual Site Model.

    SciTech Connect (OSTI)

    Roberts, Jesse D.; Jason Magalen; Craig Jones

    2014-06-01T23:59:59.000Z

    This guidance document provide s the reader with an overview of the key environmental considerations for a typical offshore wind coastal location and the tools to help guide the reader through a thoro ugh planning process. It will enable readers to identify the key coastal processes relevant to their offshore wind site and perform pertinent analysis to guide siting and layout design, with the goal of minimizing costs associated with planning, permitting , and long - ter m maintenance. The document highlight s site characterization and assessment techniques for evaluating spatial patterns of sediment dynamics in the vicinity of a wind farm under typical, extreme, and storm conditions. Finally, the document des cribe s the assimilation of all of this information into the conceptual site model (CSM) to aid the decision - making processes.

  9. The Savannah River Site's Groundwater Monitoring Program

    SciTech Connect (OSTI)

    Not Available

    1991-06-18T23:59:59.000Z

    This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted in the fourth quarter of 1990. It includes the analytical data, field data, well activity data, and other documentation for this program, provides a record of the program's activities and rationale, and serves as an official document of the analytical results. The groundwater monitoring program includes the following activities: installation, maintenance, and abandonment of monitoring wells, environmental soil borings, development of the sampling and analytical schedule, collection and analyses of groundwater samples, review of analytical and other data, maintenance of the databases containing groundwater monitoring data, quality assurance (QA) evaluations of laboratory performance, and reports of results to waste-site facility custodians and to the Environmental Protection Section (EPS) of EPD.

  10. The Savannah River Site's Groundwater Monitoring Program

    SciTech Connect (OSTI)

    Not Available

    1989-01-01T23:59:59.000Z

    The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site's Groundwater Monitoring Program. During fourth quarter 1989 (October--December), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. An explanation of flagging criteria for the fourth quarter is presented in the Flagging Criteria section of this document. All analytical results from fourth quarter 1989 are listed in this report, which is distributed to all waste-site custodians.

  11. The Savannah River Site's groundwater monitoring program

    SciTech Connect (OSTI)

    Not Available

    1991-10-18T23:59:59.000Z

    This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted by EPD/EMS in the first quarter of 1991. In includes the analytical data, field data, data review, quality control, and other documentation for this program, provides a record of the program's activities and rationale, and serves as an official document of the analytical results.

  12. The Savannah River Site's groundwater monitoring program

    SciTech Connect (OSTI)

    Not Available

    1991-05-06T23:59:59.000Z

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site's (SRS) Groundwater Monitoring Program. During third quarter 1990 (July through September) EPD/EMS conducted routine sampling of monitoring wells and drinking water locations. EPD/EMS established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead they aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. All analytical results from third quarter 1990 are listed in this report, which is distributed to all site custodians. One or more analytes exceeded Flag 2 in 87 monitoring well series. Analytes exceeded Flat 2 for the first since 1984 in 14 monitoring well series. In addition to groundwater monitoring, EPD/EMS collected drinking water samples from SRS drinking water systems supplied by wells. The drinking water samples were analyzed for radioactive constituents.

  13. Site monitoring from soil sample analysis

    SciTech Connect (OSTI)

    Illsley, C.T.

    1982-01-01T23:59:59.000Z

    Soil samples have been collected for the past three years as part of a long range monitoring program. The program was designed to provide information on possible migration of plutonium in soil and to provide data for comparison with the EPA proposed guidance on transuranium elements in the environment. Samples have been collected at six locations west of Indiana Street within the eastern boundaries of the Rocky Flats Plant site. The EPA comparison study has been performed at five sites and the plutonium migration study is underway at the sixth site. The data on plutonium analyses will be compared to the EPA screening level of 0.20 ..mu..Ci/m/sup 2/ (74 x 10/sup 8/ Bq/km/sup 2/) in the five boundary sites. Possible migration trends will be examined for the plutonium data on soils from the other site.

  14. The Savannah River Site's Groundwater Monitoring Program

    SciTech Connect (OSTI)

    Not Available

    1992-01-10T23:59:59.000Z

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site's (SRS) Groundwater Monitoring Program. During second quarter 1991 EPD/EMS conducted extensive sampling of monitoring wells. EPD/EMS established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead, they aid personnel in sample scheduling, interpretation of data, and trend identification. Beginning in 1991, the flagging criteria are based on EPA drinking water standards and method detection limits. A detailed explanation of the current flagging criteria is presented in the Flagging Criteria section of this document. Analytical results from second quarter 1991 are listed in this report.

  15. Hanford Site Groundwater Monitoring for Fiscal Year 2001

    SciTech Connect (OSTI)

    Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

    2002-02-28T23:59:59.000Z

    This report provides information on the status of groundwater monitoring at the Hanford Site during fiscal year 2001.

  16. Idaho National Laboratory Site Environmental Monitoring Plan

    SciTech Connect (OSTI)

    Joanne L. Knight

    2010-10-01T23:59:59.000Z

    This plan describes environmental monitoring as required by U.S. Department of Energy (DOE) Order 450.1, “Environmental Protection Program,” and additional environmental monitoring currently performed by other organizations in and around the Idaho National Laboratory (INL). The objective of DOE Order 450.1 is to implement sound stewardship practices that protect the air, water, land, and other natural and cultural resources that may be impacted by DOE operations. This plan describes the organizations responsible for conducting environmental monitoring across the INL, the rationale for monitoring, the types of media being monitored, where the monitoring is conducted, and where monitoring results can be obtained. This plan presents a summary of the overall environmental monitoring performed in and around the INL without duplicating detailed information in the various monitoring procedures and program plans currently used to conduct monitoring.

  17. Idaho National Laboratory Site Environmental Monitoring Plan

    SciTech Connect (OSTI)

    Joanne L. Knight

    2012-08-01T23:59:59.000Z

    This plan describes environmental monitoring as required by U.S. Department of Energy (DOE) Order 450.1, “Environmental Protection Program,” and additional environmental monitoring currently performed by other organizations in and around the Idaho National Laboratory (INL). The objective of DOE Order 450.1 is to implement sound stewardship practices that protect the air, water, land, and other natural and cultural resources that may be impacted by DOE operations. This plan describes the organizations responsible for conducting environmental monitoring across the INL, the rationale for monitoring, the types of media being monitored, where the monitoring is conducted, and where monitoring results can be obtained. This plan presents a summary of the overall environmental monitoring performed in and around the INL without duplicating detailed information in the various monitoring procedures and program plans currently used to conduct monitoring.

  18. The Savannah River Site`s Groundwater Monitoring Program, third quarter 1991

    SciTech Connect (OSTI)

    Not Available

    1992-02-17T23:59:59.000Z

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site`s (SRS) Groundwater Monitoring Program. During third quarter 1991, EPD/EMS conducted extensive sampling of monitoring wells. Analytical results from third quarter 1991 are listed in this report.

  19. The Savannah River site`s groundwater monitoring program: second quarter 1997

    SciTech Connect (OSTI)

    Rogers, C.D. [Westinghouse Savannah River Company, AIKEN, SC (United States)

    1997-11-01T23:59:59.000Z

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site`s (SRS) Groundwater Monitoring Program. During second quarter 1997, EPD/EMS conducted extensive sampling of monitoring wells. A detailed explanation of the flagging criteria is presented in the Flagging Criteria section of this document. Analytical results from second quarter 1997 are included in this report.

  20. Effluent emissions monitoring at the DOE Hanford Site

    SciTech Connect (OSTI)

    Vance, L.W.

    1993-05-01T23:59:59.000Z

    There are numerous regulatory requirements controlling the effluent emissions monitoring at a U.S. Department of Energy site. This paper defines how these regulatory effluent emissions monitoring requirements and the Quality Assurance oversight of these requirements were implemented by Westinghouse Hanford Company, the operations contractor, at the DOE Hanford Site.

  1. The Savannah River Site's Groundwater Monitoring Program, third quarter 1991

    SciTech Connect (OSTI)

    Not Available

    1992-02-17T23:59:59.000Z

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site's (SRS) Groundwater Monitoring Program. During third quarter 1991, EPD/EMS conducted extensive sampling of monitoring wells. Analytical results from third quarter 1991 are listed in this report.

  2. Hanford Site Groundwater Monitoring for Fiscal Year 2006

    SciTech Connect (OSTI)

    Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

    2007-03-01T23:59:59.000Z

    This report presents the results of groundwater monitoring for FY 2006 on DOE's Hanford Site. Results of groundwater remediation, vadose zone monitoring, and characterization are summarized. DOE monitors groundwater at the Hanford Site to fulfill a variety of state and federal regulations, including the Atomic Energy Act (AEA), the Resource Conservation and Recovery Act (RCRA), the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), and Washington Administrative Code (WAC).

  3. Hanford site seismic monitoring instrumentation plan

    SciTech Connect (OSTI)

    Reidel, S.P.

    1996-02-29T23:59:59.000Z

    This document provides a plan to comply with the seismic monitoring provisions of US DOE Order 5480.28, Natural Phenomena Hazards.

  4. Hanford Site groundwater monitoring: Setting, sources and methods

    SciTech Connect (OSTI)

    M.J. Hartman

    2000-04-11T23:59:59.000Z

    Groundwater monitoring is conducted on the Hanford Site to meet the requirements of the Resource Conservation and Recovery Act of 1976 (RCRA); Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA); U.S. Department of Energy (DOE) orders; and the Washington Administrative Code. Results of monitoring are published annually (e.g., PNNL-11989). To reduce the redundancy of these annual reports, background information that does not change significantly from year to year has been extracted from the annual report and published in this companion volume. This report includes a description of groundwater monitoring requirements, site hydrogeology, and waste sites that have affected groundwater quality or that require groundwater monitoring. Monitoring networks and methods for sampling, analysis, and interpretation are summarized. Vadose zone monitoring methods and statistical methods also are described. Whenever necessary, updates to information contained in this document will be published in future groundwater annual reports.

  5. Hanford Site ground-water monitoring for 1994

    SciTech Connect (OSTI)

    Dresel, P.E.; Thorne, P.D.; Luttrell, S.P. [and others

    1995-08-01T23:59:59.000Z

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1994 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiologic and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1994 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1993 and June 1994. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal.

  6. Hanford Site Groundwater Monitoring for Fiscal Year 2004

    SciTech Connect (OSTI)

    Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

    2005-03-01T23:59:59.000Z

    This document presents the results of groundwater and vadose zone monitoring for fiscal year 2004 (October 2003 through September 2004)on the U.S. Department of Energy's Hanford Site in southeast Washington State.

  7. The Savannah River Site`s Groundwater Monitoring Program: Third quarter 1992

    SciTech Connect (OSTI)

    Rogers, C.D. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1993-02-04T23:59:59.000Z

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site`s (SRS) Groundwater Monitoring Program. During third quarter 1992, EPD/EMS conducted extensive sampling of monitoring wells. Table 1 lists those well series with constituents in the groundwater above Flag 2 during third quarter 1992, organized by location. Results from all laboratory analyses are used to generate this table. Specific conductance and pH data from the field also are included in this table.

  8. The Savannah River Site`s Groundwater Monitoring Program 1993 well installation, abandonment, and maintenance report

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    This report is a summary of the well and environmental soil boring information compiled for the groundwater monitoring program of the Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) at the Savannah River Site (SRS) during 1993. It includes discussions of environmental soil borings, surveying, well construction, abandonments, maintenance, and stabilization. EPD/EMS is responsible for monitoring constituents in the groundwater at approximately 135 waste sites in 16 areas at SRS. The majority of this monitoring is required by US Department of Energy (DOE) orders and by federal and state regulations administered by the US Environmental Protection Agency (EPA) and the South Carolina Department of Health and Environmental Control (SCDHEC). The groundwater monitoring program includes the following activities: installation, maintenance, and abandonment of monitoring wells; environmental soil borings; development of sampling and analytical schedules; collection and analyses of groundwater samples; review of analytical and other data; maintenance of the databases containing groundwater monitoring data; quality assurance (QA) evaluations of laboratory performance; and reports of results to waste site facility custodians and to the Environmental Protection Section (EPS) of EPD. EPD/EMS is responsible for monitoring the wells but is not responsible for the facilities that are monitored. It is the responsibility of the custodian of each waste site to ensure that EPD/EMS is informed of sampling requirements and special requests for the sampling schedule, to assist in reviewing the data, and to make any decisions regarding groundwater monitoring at the waste site.

  9. Analysis of the Monitoring Network at the Salmon, Mississippi, Site

    SciTech Connect (OSTI)

    None

    2013-08-01T23:59:59.000Z

    The Salmon site in southern Mississippi was the location of two underground nuclear tests and two methane-oxygen gas explosion tests conducted in the Tatum Salt Dome at a depth of 2,715 feet below ground surface. The U.S. Atomic Energy Commission (a predecessor agency of the U.S. Department of Energy [DOE]) and the U.S. Department of Defense jointly conducted the tests between 1964 and 1970. The testing operations resulted in surface contamination at multiple locations on the site and contamination of shallow aquifers. No radionuclides from the nuclear tests were released to the surface or to groundwater, although radionuclide-contaminated drill cuttings were brought to the surface during re-entry drilling. Drilling operations generated the largest single volume of waste materials, including radionuclide-contaminated drill cuttings and drilling fluids. Nonradioactive wastes were also generated as part of the testing operations. Site cleanup and decommissioning began in 1971 and officially ended in 1972. DOE conducted additional site characterization between 1992 and 1999. The historical investigations have provided a reasonable understanding of current surface and shallow subsurface conditions at the site, although some additional investigation is desirable. For example, additional hydrologic data would improve confidence in assigning groundwater gradients and flow directions in the aquifers. The U.S. Environmental Protection Agency monitored groundwater at the site as part of its Long-Term Hydrologic Monitoring Program from 1972 through 2007, when DOE's Office of Legacy Management (LM) assumed responsibility for site monitoring. The current monitoring network consists of 28 monitoring wells and 11 surface water locations. Multiple aquifers which underlie the site are monitored. The current analyte list includes metals, radionuclides, and volatile organic compounds (VOCs).

  10. Hanford Site Groundwater Monitoring for Fiscal Year 2000

    SciTech Connect (OSTI)

    Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

    2001-03-01T23:59:59.000Z

    This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 2000 on the U.S. Department of Energy's Hanford Site, Washington. The most extensive contaminant plumes are tritium, iodine-129, and nitrate, which all had multiple sources and are very mobile in groundwater. Carbon tetrachloride and associated organic constituents form a relatively large plume beneath the central part of the Site. Hexavalent chromium is present in smaller plumes beneath the reactor areas along the river and beneath the central part of the site. Strontium-90 exceeds standards beneath each of the reactor areas, and technetium-99 and uranium are present in the 200 Areas. RCRA groundwater monitoring continued during fiscal year 2000. Vadose zone monitoring, characterization, remediation, and several technical demonstrations were conducted in fiscal year 2000. Soil gas monitoring at the 618-11 burial ground provided a preliminary indication of the location of tritium in the vadose zone and in groundwater. Groundwater modeling efforts focused on 1) identifying and characterizing major uncertainties in the current conceptual model and 2) performing a transient inverse calibration of the existing site-wide model. Specific model applications were conducted in support of the Hanford Site carbon tetrachloride Innovative Treatment Remediation Technology; to support the performance assessment of the Immobilized Low-Activity Waste Disposal Facility; and in development of the System Assessment Capability, which is intended to predict cumulative site-wide effects from all significant Hanford Site contaminants.

  11. Hanford Site ground-water monitoring for 1993

    SciTech Connect (OSTI)

    Dresel, P.E.; Luttrell, S.P.; Evans, J.C. [and others

    1994-09-01T23:59:59.000Z

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1993 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1993 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1992 and June 1993. The greatest declines occurred in the 200-West Area. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal. Water levels remained nearly constant in the vicinity of B Pond, as a result of continued disposal to the pond. Water levels measured from wells in the unconfined aquifer north and east of the Columbia River indicate that the primary source of recharge is irrigation practices.

  12. The Savannah River Site's Groundwater Monitoring Program, third quarter 1989

    SciTech Connect (OSTI)

    Not Available

    1989-01-01T23:59:59.000Z

    The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site's Groundwater Monitoring Program. During third quarter 1989 (July--September), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead they aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the third quarter is presented in the Flagging Criteria section of this document. All analytical results from third quarter 1989 are listed in this report, which is distributed to all waste-site custodians.

  13. The Savannah River Site's Groundwater Monitoring Program, first quarter 1989

    SciTech Connect (OSTI)

    Not Available

    1989-01-01T23:59:59.000Z

    The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site's Groundwater Monitoring Program. During first quarter 1989 (January--March), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the first quarter is presented in the Flagging Criteria section of this document. All analytical results from first quarter 1989 are listed in this report, which is distributed to all waste-site custodians.

  14. The Savannah River Site's Groundwater Monitoring Program, second quarter 1989

    SciTech Connect (OSTI)

    Not Available

    1989-01-01T23:59:59.000Z

    The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site's Groundwater Monitoring Program. During second quarter 1989 (April--June), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the second quarter is presented in the Flagging Criteria section of this document. All analytical results from second quarter 1989 are listed in this report, which is distributed to all waste-site custodians.

  15. Physics 6321 Coastal oceanography

    E-Print Network [OSTI]

    deYoung, Brad

    Physics 6321 Coastal oceanography · Instructor: Dr. Iakov Afanassiev · Office: Physics C-4065 · email: yakov@physics.mun.ca · Course Times: TBD Room TBD · Office Hours: unlimited · Web Page: http://www.physics

  16. Special Nuclear Material Portal Monitoring at the Nevada Test Site

    SciTech Connect (OSTI)

    DeAnn Long; Michael Murphy

    2008-07-01T23:59:59.000Z

    Prior to April 2007, acceptance and performance testing of the various Special Nuclear Material (SNM) monitoring devices at the Nevada Test Site (NTS) was performed by the Radiological Health Instrumentation department. Calibration and performance testing on the PM-700 personnel portal monitor was performed, but there was no test program for the VM-250 vehicle portal monitor. The handheld SNM monitors, the TSA model 470B, were being calibrated annually, but there was no performance test program. In April of 2007, the Material Control and Accountability Manager volunteered to take over performance testing of all SNM portal monitors at NTS in order to strengthen the program and meet U.S. Department of Energy Order requirements. This paper will discuss the following activities associated with developing a performance testing program: changing the culture, learning the systems, developing and implementing procedures, troubleshooting and repair, validating the process, physical control of equipment, acquisition of new systems, and implementing the performance test program.

  17. Hanford Site Raptor Nest Monitoring Report for Calendar Year 2013

    SciTech Connect (OSTI)

    Nugent, John J.; Lindsey, Cole T.; Wilde, Justin W.

    2014-02-13T23:59:59.000Z

    The U.S. Department of Energy, Richland Operations Office (DOE-RL) conducts ecological monitoring on the Hanford Site to collect and track data needed to ensure compliance with an array of environmental laws, regulations, and policies governing DOE activities. Ecological monitoring data provide baseline information about the plants, animals, and habitat under DOE-RL stewardship at Hanford required for decision-making under the National Environmental Policy Act (NEPA) and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The Hanford Site Comprehensive Land Use Plan (CLUP, DOE/EIS-0222-F) which is the Environmental Impact Statement for Hanford Site activities, helps ensure that DOE-RL, its contractors, and other entities conducting activities on the Hanford Site are in compliance with NEPA.

  18. Hanford Site Anuran Monitoring Report for Calendar Year 2013

    SciTech Connect (OSTI)

    Wilde, Justin W.; Johnson, Scott J.; Lindsey, Cole T.

    2014-02-13T23:59:59.000Z

    The U.S. Department of Energy, Richland Operations Office (DOE-RL) conducts ecological monitoring on the Hanford Site to collect and track data needed to ensure compliance with an array of environmental laws, regulations, and policies governing DOE activities. Ecological monitoring data provide baseline information about the plants, animals, and habitat under DOE-RL stewardship at Hanford required for decision-making under the National Environmental Policy Act (NEPA) and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The Hanford Site Comprehensive Land Use Plan (CLUP, DOE/EIS-0222-F) which is the Environmental Impact Statement for Hanford Site activities, helps ensure that DOE-RL, its contractors, and other entities conducting activities on the Hanford Site are in compliance with NEPA.

  19. Hanford Site groundwater monitoring for fiscal year 1996

    SciTech Connect (OSTI)

    Hartman, M.J.; Dresel, P.E.; Borghese, J.V. [eds.] [and others] [eds.; and others

    1997-02-01T23:59:59.000Z

    This report presents the results of groundwater and vadose-zone monitoring for fiscal year (FY) 1996 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that affected groundwater quality on the site. Characterization and monitoring of the vadose zone during FY 1996 comprised primarily spectral gamma logging, soil-gas monitoring, and electrical resistivity tomography. Water-level monitoring was performed to evaluate groundwater-flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Water levels over most of the Hanford Site continued to decline between June 1995 and June 1996. Groundwater chemistry was monitored to track the extent of contamination, to note trends, and to identify emerging groundwater-quality problems. The most widespread radiological contaminant plumes were tritium and iodine-129. Smaller plumes of strontium-90, technetium-99, and plutonium also were present at levels above the U.S. Environmental Protection Agency or State of Washington interim drinking water standards. Uranium concentrations greater than the proposed drinking water standard were also observed. Nitrate, fluoride, chromium, carbon tetrachloride, chloroform, trichloroethylene, and cis-1,2-dichlomethylene were present in groundwater samples at levels above their U.S. Environmental Protection Agency or State of Washington maximum contaminant levels. The nitrate plume is the most extensive. Three-dimensional, numerical, groundwater models were applied to the Hanford Site to predict contaminant-flow paths and the impact of operational changes on site groundwater conditions. Other models were applied to assess the performance of three separate pump-and-treat systems.

  20. Hanford Site Groundwater Monitoring for Fiscal Year 2002

    SciTech Connect (OSTI)

    Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

    2003-02-28T23:59:59.000Z

    This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 2002 on the U.S. Department of Energy's Hanford Site in Washington State. This report is written to meet the requirements in CERCLA, RCRA, the Atomic Energy Act of 1954, and Washington State Administrative Code.

  1. Hanford Site Groundwater Monitoring for Fiscal Year 2005

    SciTech Connect (OSTI)

    Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

    2006-02-28T23:59:59.000Z

    This report is one of the major products and deliverables of the Groundwater Remediation and Closure Assessment Projects detailed work plan for FY 2006, and reflects the requirements of The Groundwater Performance Assessment Project Quality Assurance Plan (PNNL-15014). This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 2005 on the U.S. Department of Energy's Hanford Site, Washington. The most extensive contaminant plumes in groundwater are tritium, iodine-129, and nitrate, which all had multiple sources and are very mobile in groundwater. The largest portions of these plumes are migrating from the central Hanford Site to the southeast, toward the Columbia River. Carbon tetrachloride and associated organic constituents form a relatively large plume beneath the west-central part of the Hanford Site. Hexavalent chromium is present in plumes beneath the reactor areas along the river and beneath the central part of the site. Strontium-90 exceeds standards beneath all but one of the reactor areas. Technetium-99 and uranium plumes exceeding standards are present in the 200 Areas. A uranium plume underlies the 300 Area. Minor contaminant plumes with concentrations greater than standards include carbon-14, cesium-137, cis-1,2-dichloroethene, cyanide, fluoride, plutonium, and trichloroethene. Monitoring for the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 is conducted in 11 groundwater operable units. The purpose of this monitoring is to define and track plumes and to monitor the effectiveness of interim remedial actions. Interim groundwater remediation in the 100 Areas continued with the goal of reducing the amount of chromium (100-K, 100-D, and 100-H) and strontium-90 (100-N) reaching the Columbia River. The objective of two interim remediation systems in the 200 West Area is to prevent the spread of carbon tetrachloride and technetium-99/uranium plumes. Resource Conservation and Recovery Act of 1976 groundwater monitoring continued at 25 waste management areas during fiscal year 2005: 15 under interim or final status detection programs and data indicate that they are not adversely affecting groundwater, 8 under interim status groundwater quality assessment programs to assess contamination, and 2 under final status corrective-action programs. During calendar year 2005, drillers completed 27 new monitoring wells, and decommissioned (filled with grout) 115 unneeded wells. Vadose zone monitoring, characterization, and remediation continued in fiscal year 2005. Remediation and associated monitoring continued at a soil-vapor extraction system in the 200 West Area, which removes gaseous carbon tetrachloride from the vadose zone. DOE uses geophysical methods to monitor potential movement of contamination beneath former waste sites.

  2. The Savannah River Site`s Groundwater Monitoring Program, third quarter 1989

    SciTech Connect (OSTI)

    Not Available

    1989-12-31T23:59:59.000Z

    The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site`s Groundwater Monitoring Program. During third quarter 1989 (July--September), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead they aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the third quarter is presented in the Flagging Criteria section of this document. All analytical results from third quarter 1989 are listed in this report, which is distributed to all waste-site custodians.

  3. The Savannah River Site`s Groundwater Monitoring Program, first quarter 1989

    SciTech Connect (OSTI)

    Not Available

    1989-12-31T23:59:59.000Z

    The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site`s Groundwater Monitoring Program. During first quarter 1989 (January--March), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the first quarter is presented in the Flagging Criteria section of this document. All analytical results from first quarter 1989 are listed in this report, which is distributed to all waste-site custodians.

  4. The Savannah River Site`s Groundwater Monitoring Program. Fourth quarter, 1989

    SciTech Connect (OSTI)

    Not Available

    1989-12-31T23:59:59.000Z

    The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site`s Groundwater Monitoring Program. During fourth quarter 1989 (October--December), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. An explanation of flagging criteria for the fourth quarter is presented in the Flagging Criteria section of this document. All analytical results from fourth quarter 1989 are listed in this report, which is distributed to all waste-site custodians.

  5. The Savannah River Site`s Groundwater Monitoring Program, second quarter 1989

    SciTech Connect (OSTI)

    Not Available

    1989-12-31T23:59:59.000Z

    The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site`s Groundwater Monitoring Program. During second quarter 1989 (April--June), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the second quarter is presented in the Flagging Criteria section of this document. All analytical results from second quarter 1989 are listed in this report, which is distributed to all waste-site custodians.

  6. Hanford Site Groundwater Monitoring for Fiscal Year 2003

    SciTech Connect (OSTI)

    Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

    2004-04-12T23:59:59.000Z

    This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 2003 (October 2002 through September 2003) on the U.S. Department of Energy's Hanford Site, Washington. The most extensive contaminant plumes in groundwater are tritium, iodine-129, and nitrate, which all had multiple sources and are very mobile in groundwater. The largest portions of these plumes are migrating from the central Hanford Site to the southeast, toward the Columbia River. Concentrations of tritium, nitrate, and some other contaminants continued to exceed drinking water standards in groundwater discharging to the river in some locations. However, contaminant concentrations in river water remained low and were far below standards. Carbon tetrachloride and associated organic constituents form a relatively large plume beneath the central part of the Hanford Site. Hexavalent chromium is present in smaller plumes beneath the reactor areas along the river and beneath the central part of the site. Strontium-90 exceeds standards beneath all but one of the reactor areas, and technetium-99 and uranium are present in the 200 Areas. Uranium exceeds standards in the 300 Area in the south part of the Hanford Site. Minor contaminant plumes with concentrations greater than standards include carbon-14, cesium-137, cis-1,2-dichloroethene, cyanide, fluoride, plutonium, and trichloroethene. Monitoring for the ''Comprehensive Environmental Response, Compensation, and Liability Act'' is conducted in 11 groundwater operable units. The purpose of this monitoring is to define and track plumes and to monitor the effectiveness of interim remedial actions. Interim groundwater remediation in the 100 Areas continued with the goal of reducing the amount of chromium (100-K, 100-D, and 100-H) and strontium-90 (100-N) reaching the Columbia River. The objective of two interim remediation systems in the 200 West Area is to prevent the spread of carbon tetrachloride and technetium-99/uranium plumes. ''Resource Conservation and Recovery Act'' groundwater monitoring continued at 24 waste management areas during fiscal year 2003: 15 under interim or final status detection programs and data indicate that they are not adversely affecting groundwater; 7 under interim status groundwater quality assessment programs to assess contamination; and 2 under final status corrective-action programs. During calendar year 2003, drillers completed seven new RCRA monitoring wells, nine wells for CERCLA, and two wells for research on chromate bioremediation. Vadose zone monitoring, characterization, and remediation continued in fiscal year 2003. Remediation and associated monitoring continued at a soil-vapor extraction system in the 200 West Area, which removes gaseous carbon tetrachloride from the vadose zone. Soil vapor also was sampled to locate carbon tetrachloride sites with the potential to impact groundwater in the future. DOE uses geophysical methods to monitor potential movement of contamination beneath single-shell tank farms. During fiscal year 2003, DOE monitored selected boreholes within each of the 12 single-shell tank farms. In general, the contaminated areas appeared to be stable over time. DOE drilled new boreholes at the T Tank Farm to characterize subsurface contamination near former leak sites. The System Assessment Capability is a set of computer modules simulating movement of contaminants from waste sites through the vadose zone and groundwater. In fiscal year 2003, it was updated with the addition of an atmospheric transport module and with newer versions of models including an updated groundwater flow and transport model.

  7. Wildlife mitigation and monitoring report Gunnison, Colorado, site

    SciTech Connect (OSTI)

    NONE

    1997-04-01T23:59:59.000Z

    The Uranium Mill Tailings Remedial Action (UMTRA) Project is administered by the U.S. Department of Energy (DOE); its purpose is to cleanup uranium mill tailings and other contaminated material at 24 UMTRA Project sites in 10 states. This report summarizes the wildlife mitigation and monitoring program under way at the Gunnison UMTRA Project, Gunnison, Colorado. Remedial action at the Gunnison site was completed in December 1995 and is described in detail in the Gunnison completion report. The impacts of this activity were analyzed in the Gunnison environmental assessment (EA). These impacts included two important game species: the pronghorn antelope (Antilocapra americans) and sage grouse (Wentrocerus urophasianus). Haul truck traffic was predicted to limit antelope access to water sources north of the Tenderfoot Mountain haul road and that truck traffic along this and other haul roads could result in antelope road kills. Clearing land at the disposal cell, haul road and borrow site activities, and the associated human activities also were predicted to negatively impact (directly and indirectly) sage grouse breeding, nesting, loafing, and wintering habitat. As a result, an extensive mitigation and monitoring plan began in 1992. Most of the monitoring studies are complete and the results of these studies, written by different authors, appear in numerous reports. This report will: (1) Analyze existing impacts and compare them to predicted impacts. (2) Summarize mitigation measures. (3) Summarize all existing monitoring data in one report. (4) Analyze the effectiveness of the mitigation measures.

  8. The Savannah River Site`s Groundwater Monitoring Program. Fourth quarter, 1990

    SciTech Connect (OSTI)

    Not Available

    1991-06-18T23:59:59.000Z

    This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted in the fourth quarter of 1990. It includes the analytical data, field data, well activity data, and other documentation for this program, provides a record of the program`s activities and rationale, and serves as an official document of the analytical results. The groundwater monitoring program includes the following activities: installation, maintenance, and abandonment of monitoring wells, environmental soil borings, development of the sampling and analytical schedule, collection and analyses of groundwater samples, review of analytical and other data, maintenance of the databases containing groundwater monitoring data, quality assurance (QA) evaluations of laboratory performance, and reports of results to waste-site facility custodians and to the Environmental Protection Section (EPS) of EPD.

  9. The Savannah River Site`s Groundwater Monitoring Program. Fourth quarter 1988

    SciTech Connect (OSTI)

    Not Available

    1989-12-31T23:59:59.000Z

    The Environmental Monitoring Group of the Health Protection Department administers the Savannah River Site`s Groundwater Monitoring Program. During fourth quarter 1988 (October--December), routine sampling of monitoring wells and drinking water locations was performed. The drinking water samples were collected from Savannah River Site (SRS) drinking water systems supplied by wells. Two sets of flagging criteria were established in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead they aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the fourth quarter is presented in the Flagging Criteria section of this document. The drinking water samples were analyzed for radioactive constituents.

  10. Hanford Site groundwater monitoring for Fiscal Year 1997

    SciTech Connect (OSTI)

    Hartman, M.J.; Dresel, P.E. [eds.] [and others] [eds.; and others

    1998-02-01T23:59:59.000Z

    This report presents the results of groundwater and vadose-zone monitoring for fiscal year (FY) 1997 on the Hanford Site, Washington. Soil-vapor extraction continued in the 200-West Area to remove carbon tetrachloride from the vadose zone. Characterization and monitoring of the vadose zone comprised primarily spectral gamma logging, soil-vapor monitoring, and analysis and characterization of sediments sampled below a vadose-zone monitoring well. Source-term analyses for strontium-90 in 100-N Area vadose-zone sediments were performed using recent groundwater-monitoring data and knowledge of strontium`s ion-exchange properties. Water-level monitoring was performed to evaluate groundwater-flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Water levels over most of the Hanford Site continued to decline between June 1996 and June 1997. Water levels near the Columbia River increased during this period because the river stage was unusually high. Groundwater chemistry was monitored to track the extent of contamination, to note trends, and to identify emerging groundwater-quality problems. The most widespread radiological contaminant plumes were tritium and iodine-129. Concentrations of technetium-99, uranium, strontium-90, and carbon-14 also exceeded drinking water standards in smaller plumes. Plutonium and cesium-137 exceeded standards only near the 216-B-5 injection well. Derived concentration guide levels specified in U.S. Department of Energy Order 5400.5 were exceeded for tritium, uranium, strontium-90, and plutonium in small plumes or single wells. Nitrate is the most extensive chemical contaminant. Carbon tetrachloride, chloroform, chromium, cis-1,2-dichloroethylene, fluoride, and trichloroethylene also were present in smaller areas at levels above their maximum contaminant levels. Cyanide concentrations were elevated in one area but were below the maximum contaminant level.

  11. The Savannah River Site`s Groundwater Monitoring Program: First quarter 1993, Volume 1

    SciTech Connect (OSTI)

    Rogers, C.D. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1993-08-01T23:59:59.000Z

    This report summarizes the Savannah River Site (SRS) Groundwater Monitoring Program conducted by the Environmental Protection Department`s Environmental Monitoring Section (EPD/EMS) during the first quarter of 1993. It includes the analytical data, field data, data review, quality control, and other documentation for this program; provides a record of the program`s activities; and serves as an official document of the analytical results.

  12. The Savannah River Site`s Groundwater Monitoring Program. Fourth quarter 1992

    SciTech Connect (OSTI)

    Not Available

    1993-05-17T23:59:59.000Z

    This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted by the Environmental Protection Department`s Environmental Monitoring Section (EPD/EMS) during the fourth quarter of 1992. It includes the analytical data, field data, data review, quality control, and other documentation for this program, provides a record of the program`s activities; and serves as an official document of the analytical results.

  13. The Savannah River Site`s groundwater monitoring program. Third quarter 1990

    SciTech Connect (OSTI)

    Not Available

    1991-05-06T23:59:59.000Z

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site`s (SRS) Groundwater Monitoring Program. During third quarter 1990 (July through September) EPD/EMS conducted routine sampling of monitoring wells and drinking water locations. EPD/EMS established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead they aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. All analytical results from third quarter 1990 are listed in this report, which is distributed to all site custodians. One or more analytes exceeded Flag 2 in 87 monitoring well series. Analytes exceeded Flat 2 for the first since 1984 in 14 monitoring well series. In addition to groundwater monitoring, EPD/EMS collected drinking water samples from SRS drinking water systems supplied by wells. The drinking water samples were analyzed for radioactive constituents.

  14. The Savannah River Site's Groundwater Monitoring Program, second quarter 1990

    SciTech Connect (OSTI)

    Not Available

    1991-02-07T23:59:59.000Z

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site's (SRS) Groundwater Monitoring Program. During second quarter 1990 (April through June) EPD/EMS conducted routine sampling of monitoring wells and drinking water locations. EPD/EMS established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the second quarter is presented in the Flagging Criteria section of this document. All analytical results from second quarter 1990 are listed in this report.

  15. Nevada Test Site 2000 Annual Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site

    SciTech Connect (OSTI)

    Y. E.Townsend

    2001-02-01T23:59:59.000Z

    This report is a compilation of the calendar year 2000 groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS). Contamination indicator data are presented in control chart and tabular form with investigation levels (IL) indicated. Gross water chemistry data are presented in graphical and tabular form. Other information in the report includes, the Cumulative Chronology for Area 5 RWMS Groundwater Monitoring Program, a brief description of the site hydrogeology, and the groundwater sampling procedure.

  16. The Savannah River Site`s groundwater monitoring program. First quarter 1991

    SciTech Connect (OSTI)

    Not Available

    1991-10-18T23:59:59.000Z

    This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted by EPD/EMS in the first quarter of 1991. In includes the analytical data, field data, data review, quality control, and other documentation for this program, provides a record of the program`s activities and rationale, and serves as an official document of the analytical results.

  17. The Savannah River Site`s Groundwater Monitoring Program. Second quarter, 1991

    SciTech Connect (OSTI)

    Not Available

    1992-01-10T23:59:59.000Z

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site`s (SRS) Groundwater Monitoring Program. During second quarter 1991 EPD/EMS conducted extensive sampling of monitoring wells. EPD/EMS established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead, they aid personnel in sample scheduling, interpretation of data, and trend identification. Beginning in 1991, the flagging criteria are based on EPA drinking water standards and method detection limits. A detailed explanation of the current flagging criteria is presented in the Flagging Criteria section of this document. Analytical results from second quarter 1991 are listed in this report.

  18. The Savannah River Site`s Groundwater Monitoring Program, second quarter 1990

    SciTech Connect (OSTI)

    Not Available

    1991-02-07T23:59:59.000Z

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site`s (SRS) Groundwater Monitoring Program. During second quarter 1990 (April through June) EPD/EMS conducted routine sampling of monitoring wells and drinking water locations. EPD/EMS established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the second quarter is presented in the Flagging Criteria section of this document. All analytical results from second quarter 1990 are listed in this report.

  19. Hanford Site Groundwater Monitoring for Fiscal Year 1999

    SciTech Connect (OSTI)

    MJ Hartman; LF Morasch; WD Webber

    2000-05-10T23:59:59.000Z

    This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 1999 on the US. Department of Energy's Hanford Site, Washington. Water-level monitoring was performed to evaluate groundwater flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Measurements for site-wide maps were conducted in June in past years and are now measured in March to reflect conditions that are closer to average. Water levels over most of the Hanford Site continued to decline between June 1998 and March 1999. The most widespread radiological contaminant plumes in groundwater were tritium and iodine-129. Concentrations of carbon-14, strontium-90, technetium-99, and uranium also exceeded drinking water standards in smaller plumes. Cesium-137 and plutonium exceeded standards only near the 216-B-5 injection well. Derived concentration guide levels specified in US Department of Energy Order 5400.5 were exceeded for plutonium, strontium-90, tritium, and uranium in small plumes or single wells. Nitrate and carbon tetrachloride are the most extensive chemical contaminants. Chloroform, chromium, cis-1,2dichloroethylene, cyanide, fluoride, and trichloroethylene also were present in smaller areas at levels above their maximum contaminant levels. Metals such as aluminum, cadmium, iron, manganese, and nickel exceeded their maximum contaminant levels in filtered samples from numerous wells; however, in most cases, they are believed to represent natural components of groundwater. ''Resource Conservation and Recovery Act of 1976'' groundwater monitoring continued at 25 waste management areas during fiscal year 1999: 16 under detection programs and data indicate that they are not adversely affecting groundwater; 6 under interim status groundwater quality assessment programs to assess contamination; and 2 under final status corrective-action programs. Another site, the 120-D-1 ponds, was clean closed in fiscal year 1999, and monitoring is no longer required. Groundwater remediation in the 100 Areas continued with the goal of reducing the amount of chromium (100 K, D, and H) and strontium-90 (100 N) reaching the Columbia River. The objective of two remediation systems in the 200 West Area is to prevent the spread of carbon tetrachloride and technetium-99/uranium plumes. Groundwater monitoring continued at these sites and at other sites where there is no active remediation. Subsurface source characterization and vadose zone monitoring, soil-vapor monitoring, sediment sampling and characterization, and vadose zone remediation were conducted in fiscal year 1999. Baseline spectral gamma-ray logging at two single-shell tank farms was completed, and logging of zones at tank farms with the highest count rate was initiated. Spectral gamma-ray logging also occurred at specific retention facilities in the 200 East Area. These facilities are some of the most significant potential sources of remaining vadose zone contamination. Finally, remediation and monitoring of carbon tetradoride in the 200 West Area continued, with an additional 972 kilograms of carbon tetrachloride removed from the vadose zone in fiscal year 1999.

  20. Site-Wide Integrated Water Monitoring - Defining and Implementing Sampling Objectives to Support Site Closure - 13060

    SciTech Connect (OSTI)

    Wilborn, Bill; Knapp, Kathryn [U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (United States)] [U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (United States); Farnham, Irene; Marutzky, Sam [Navarro-Intera (United States)] [Navarro-Intera (United States)

    2013-07-01T23:59:59.000Z

    The Underground Test Area (UGTA) activity is responsible for assessing and evaluating the effects of the underground nuclear weapons tests on groundwater at the Nevada National Security Site (NNSS), formerly the Nevada Test Site (NTS), and implementing a corrective action closure strategy. The UGTA strategy is based on a combination of characterization, modeling studies, monitoring, and institutional controls (i.e., monitored natural attenuation). The closure strategy verifies through appropriate monitoring activities that contaminants of concern do not exceed the SDWA at the regulatory boundary and that adequate institutional controls are established and administered to ensure protection of the public. Other programs conducted at the NNSS supporting the environmental mission include the Routine Radiological Environmental Monitoring Program (RREMP), Waste Management, and the Infrastructure Program. Given the current programmatic and operational demands for various water-monitoring activities at the same locations, and the ever-increasing resource challenges, cooperative and collaborative approaches to conducting the work are necessary. For this reason, an integrated sampling plan is being developed by the UGTA activity to define sampling and analysis objectives, reduce duplication, eliminate unnecessary activities, and minimize costs. The sampling plan will ensure the right data sets are developed to support closure and efficient transition to long-term monitoring. The plan will include an integrated reporting mechanism for communicating results and integrating process improvements within the UGTA activity as well as between other U.S. Department of Energy (DOE) Programs. (authors)

  1. Site-Wide Integrated Water Monitoring -- Defining and Implementing Sampling Objectives to Support Site Closure

    SciTech Connect (OSTI)

    Wilborn, Bill [NNSA/NFO, Nevada Site Office (United States); Farnham, Irene [Navarro-Interra LLC, Las Vegas (United States); Marutzky, Sam [Navarro-Interra LLC, Las Vegas (United States); Knapp, Kathryn [NNSA/NFO, Nevada Site Office (United States)

    2013-02-24T23:59:59.000Z

    The Underground Test Area (UGTA) activity is responsible for assessing and evaluating the effects of the underground nuclear weapons tests on groundwater at the Nevada National Security Site (NNSS), formerly the Nevada Test Site (NTS), and implementing a corrective action closure strategy. The UGTA strategy is based on a combination of characterization, modeling studies, monitoring, and institutional controls (i.e., monitored natural attenuation). The closure strategy verifies through appropriate monitoring activities that contaminants of concern do not exceed the SDWA at the regulatory boundary and that adequate institutional controls are established and administered to ensure protection of the public. Other programs conducted at the NNSS supporting the environmental mission include the Routine Radiological Environmental Monitoring Program (RREMP), Waste Management, and the Infrastructure Program. Given the current programmatic and operational demands for various water-monitoring activities at the same locations, and the ever-increasing resource challenges, cooperative and collaborative approaches to conducting the work are necessary. For this reason, an integrated sampling plan is being developed by the UGTA activity to define sampling and analysis objectives, reduce duplication, eliminate unnecessary activities, and minimize costs. The sampling plan will ensure the right data sets are developed to support closure and efficient transition to long-term monitoring. The plan will include an integrated reporting mechanism for communicating results and integrating process improvements within the UGTA activity as well as between other U.S. Department of Energy (DOE) Programs.

  2. HANFORD SITE NEAR-FACILITY ENVIRONMENTAL MONITORING DATA REPORT FOR CALENDAR YEAR 2003

    SciTech Connect (OSTI)

    Perkins, Craig J.; Coffman, Randy T.; Mckinney, Stephen M.; Mitchell, Ronald M.; Roos, Richard C.

    2004-09-01T23:59:59.000Z

    This document presents the results of near-facility monitoring on the Hanford Site for calendar year 2003.

  3. Hanford Site ground-water monitoring for 1992

    SciTech Connect (OSTI)

    Dresel, P.E.; Newcomer, D.R.; Evans, J.C.; Webber, W.D.; Spane, F.A. Jr.; Raymond, R.G.; Opitz, B.E.

    1993-06-01T23:59:59.000Z

    Monitoring activities were conducted to determine the distribution of radionuclides and hazardous chemicals present in ground water as a result of Hanford Site operations and, whenever possible, relate the distribution of these constituents to Site operations. A total of 720 wells were sampled during 1992 by all Hanford ground-water monitoring activities. The Ground-Water Surveillance Project prepared water-table maps of DOE`s Hanford Site for June 1992 from water-level elevations measured in 287 wells across the Hanford Site and outlying areas. These maps are used to infer ground-water flow directions and gradients for the interpretation of contaminant transport. Water levels beneath the 200 Areas decreased as much as 0.75 m (2.5 ft) between December 1991 and December 1992. Water levels in the Cold Creek Valley decreased approximately 0.5 m in that same period. The water table adjacent to the Columbia River along the Hanford Reach continues to respond significantly to fluctuations in river stage. These responses were observed in the 100 and 300 areas. The elevation of the ground-water mound beneath B Pond did not change significantly between December 1991 and December 1992. However, water levels from one well located at the center of the mound indicate a water-level rise of approximately 0.3 m (1 ft) during the last quarter of 1992. Water levels measured from unconfined aquifer wells north and east of the Columbia River in 1992 indicate that the primary source of recharge is from irrigation practices.

  4. Site Screening and Technical Guidance for Monitored Natural Attenuation at DOE Sites

    SciTech Connect (OSTI)

    Borns, D.J.; Brady, P.V.; Brady, W.D.; Krupka, K.M.; Spalding, B.P.; Waters, R.D.; Zhang, P.

    1999-03-01T23:59:59.000Z

    Site Screening and Technical Guidance for Monitored Natural Attenuation at DOE Sites briefly outlines the biological and geochemical origins of natural attenuation, the tendency for natural processes in soils to mitigate contaminant transport and availability, and the means for relying on monitored natural attenuation (MNA) for remediation of contaminated soils and groundwaters. This report contains a step-by-step guide for (1) screening contaminated soils and groundwaters on the basis of their potential for remediation by natural attenuation and (2) implementing MNA consistent with EPA OSWER Directive 9200.4-17. The screening and implementation procedures are set up as a web-based tool (http://www.sandia.gov/eesector/gs/gc/na/mnahome.html) to assist US Department of Energy (DOE) site environmental managers and their staff and contractors to adhere to EPA guidelines for implementing MNA. This document is intended to support the Decision Maker's Framework Guide and Monitoring Guide both to be issued from DOE EM-40. Further technical advances may cause some of the approach outlined in this document to change over time.

  5. Hanford Site Groundwater Monitoring for Fiscal Year 1998

    SciTech Connect (OSTI)

    Hartman, M.J. [and others

    1999-03-24T23:59:59.000Z

    This report presents the results of groundwater and vadose-zone monitoring and remediation for fiscal year (FY) 1998 on the Word Site, Washington. Soil-vapor extraction in the 200-West Area removed 777 kg of carbon tetrachloride in FY 1998, for a total of 75,490 kg removed since remediation began in 1992. Spectral gamma logging and evaluation of historical gross gamma logs near tank farms and liquid-disposal sites in the 200 Areas provided information on movement of contaminants in the vadose zone. Water-level monitoring was performed to evaluate groundwater-flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Water levels over most of the Hanford Site continued to decline between June 1997 and June 1998. The most widespread radiological contaminant plumes in groundwater were tritium and iodine-129. Concentrations of technetium-99, uranium, strontium-90, and carbon-14 also exceeded drinking water standards in smaller plumes. Plutonium and cesium-137 exceeded standards only near the 216-B-5 injection well. Derived concentration guide levels specified in U.S. Department of Energy Order 5400.5 were exceeded for tritium, uranium, strontium-90, and plutonium in small plumes or single wells. One well completed in the basalt-confined aquifer beneath the 200-East Area exceeded the drinking water standard for technetium-99. Nitrate is the most extensive chemical contaminant. Carbon tetrachloride, chloroform, chromium, cis-l, Z-dichloroethylene, fluoride, and trichloroethylene also were present in smaller areas at levels above their maximum contaminant levels. Cyanide concentrations were elevated in one area but were below the maximum contaminant level. Tetrachloroethylene exceeded its maximum contaminant level in several wells in the 300 Area for the first time since the 1980s. Metals such as aluminum, cadmium, iron, manganese, and nickel exceeded their maximum contaminant levels in filtered samples from numerous wells; they are believed to represent natural components of groundwater. Resource Conservation and Recovery Act of 1976 groundwater monitoring continued at 25 waste management areas during FY 1998: 17 under detection programs and data indicate that they are not adversely affecting groundwater, 6 under interim-status groundwater-quality-assessment programs to assess possible contamination, and 2 under final-status corrective-action programs. Groundwater remediation in the 100 Areas continued to reduce the amount of strontium-90 (100-N) and chromium (100-K, D, and H) reaching the Columbia River. Two systems in the 200-West Area operated to prevent the spread of carbon tetrachloride and technetide uranium plumes. Groundwater monitoring continued at these sites and at other sites where there is no active remediation. A three-dimensional, numerical groundwater model was applied to simulate radionuclide movement from sources in the 200 Areas following site closure in 2050. Contaminants will continue to move toward the southeast and north (through Gable Gap), but the areas with levels exceeding drinking water standards will diminish.

  6. Final monitoring plan for site restoration at Murdock, Nebraska.

    SciTech Connect (OSTI)

    LaFreniere, L. M.; Environmental Science Division

    2006-02-28T23:59:59.000Z

    In early 2005, Argonne National Laboratory conducted an Engineering Evaluation/Cost Analysis (EE/CA; Argonne 2005b) to address carbon tetrachloride contamination identified in groundwater and surface water at Murdock, Nebraska, approximately 22 mi east-northeast of Lincoln (Figure 1.1). The EE/CA study was performed for the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA), as the technical basis for a proposed removal action for the Murdock site. The EE/CA was conducted in compliance with an Administrative Order on Consent issued for Murdock by the U.S. Environmental Protection Agency (EPA 1991). Three removal action alternatives were examined through the use of site-specific data and predictive simulations of groundwater flow and contaminant transport performed with calibrated numerical models. The alternatives were evaluated individually and compared against performance criteria established under the National Oil and Hazardous Substances Pollution Contingency Plan and the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). On the basis of these evaluations, an alternative employing phytoremediation in conjunction with seasonal groundwater extraction and treatment by spray irrigation was recommended by the CCC/USDA to permanently reduce the carbon tetrachloride contaminant levels in groundwater and surface water at the site. The proposed alternative is being implemented in cooperation with the EPA. Under the direction of the CCC/USDA and the EPA, implementation of the chosen removal action occurred in phases, beginning in April 2005. Installation of all the required remediation systems was completed by the end of August 2005. Specific technical objectives of the removal action are as follows: (1) To eliminate pathways for potential human exposure to carbon tetrachloride concentrations above the regulatory limit of 44.2 {micro}g/L in surface water at the site. (2) To minimize or eliminate any detrimental environmental impacts of carbon tetrachloride discharge to the surface waters of a tributary creek located immediately north of the town. (3) To permanently reduce carbon tetrachloride concentrations in the groundwater and surface water at Murdock and hence restore these resources for potential beneficial use. To evaluate the effectiveness of the selected remedy and its ability to achieve the objectives specified for this site, monitoring is required. This document outlines the proposed scope of a long-term program for monitoring of the removal action at Murdock. In this section the specific remedial objectives of the action are summarized, and a brief overview of the chosen remedy is provided. Section 2 summarizes the results of a baseline sampling event that documented the distribution of carbon tetrachloride contamination in selected media at the Murdock site immediately before cleanup activities began. Section 3 recommends a strategy for subsequent monitoring of the removal action at Murdock, as well as criteria for evaluating the performance of the remedial systems and the progress of the restoration effort.

  7. Nevada Test Site 2007 Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2008-01-01T23:59:59.000Z

    This report is a compilation of the groundwater sampling results from three monitoring wells located near the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS), Nye County, Nevada, for calendar year 2007. The NTS is an approximately 3,561 square kilometer (1,375 square mile) restricted-access federal installation located approximately 105 kilometers (65 miles) northwest of Las Vegas, Nevada (Figure 1). Pilot wells UE5PW-1, UE5PW-2, and UE5PW-3 are used to monitor the groundwater at the Area 5 RWMS (Figure 2). In addition to groundwater monitoring results, this report includes information regarding site hydrogeology, well construction, sample collection, and meteorological data measured at the Area 5 RWMS. The disposal of low-level radioactive waste and mixed low-level radioactive waste at the Area 5 RWMS is regulated by U.S. Department of Energy (DOE) Order 435.1, 'Radioactive Waste Management'. The disposal of mixed low-level radioactive waste is also regulated by the state of Nevada under the Resource Conservation and Recovery Act (RCRA) regulation Title 40 Code of Federal Regulations (CFR) Part 265, 'Interim Status Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities' (CFR, 1999). The format of this report was requested by the Nevada Division of Environmental Protection (NDEP) in a letter dated August 12, 1997. The appearance and arrangement of this document have been modified slightly since that date to provide additional information and to facilitate the readability of the document. The objective of this report is to satisfy any Area 5 RWMS reporting agreements between DOE and NDEP.

  8. Nevada Test Site 2002 Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site

    SciTech Connect (OSTI)

    Y. E. Townsend

    2003-02-01T23:59:59.000Z

    This report is a compilation of the calendar year 2002 groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS). Wells Ue5PW-1, Ue5PW-2, and Ue5PW-3 were sampled semiannually for the required analytes: pH, specific conductance, major cations/anions, metals, tritium, total organic carbon (TOC), and total organic halogen (TOX). Results from all samples collected in 2002 were within established criteria. These data indicate that there has been no measurable impact to the uppermost aquifer from the Resource Conservation and Recovery Act(RCRA) regulated unit within the RWMS-5 and confirm that the detections of TOC and TOX in 2000 were false positives. Contamination indicator data are presented in control chart and tabular form with investigation levels (ILs) indicated. Gross water chemistry data are presented in graphical and tabular form. There were no major changes noted in the monitored groundwater elevation. There continues to be an extremely small gradient to the northeast with an average flow velocity of less than one foot per year. Other information in the report includes, the Cumulative Chronology for Area 5 RWMS Groundwater Monitoring Program, a brief description of the site hydrogeology, and the groundwater sampling procedure.

  9. Nevada Test Site 2001 Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site

    SciTech Connect (OSTI)

    Y. E. Townsend

    2002-02-01T23:59:59.000Z

    This report is a compilation of the calendar year 2001 groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS). Contamination indicator data are presented in control chart and tabular form with investigation levels (ILs) indicated. Gross water chemistry data are presented in graphical and tabular form. Other information in the report includes, the Cumulative Chronology for Area 5 RWMS Groundwater Monitoring Program, a brief description of the site hydrogeology, and the groundwater sampling procedure. Wells Ue5PW-1, Ue5PW-2, and Ue5PW-3 were sampled semiannually for the required analytes: pH, specific conductance, major cations/anions, metals, tritium, total organic carbon (TOC), and total organic halogen (TOX). Due to detections of TOC and TOX in some samples collected in 2000, a plan, as approved by the Nevada Division of Environmental Protection (NDEP), was executed to collect an increased number and type of samples in 2001. Results from all samples collected in 2001 were below ILs. These data indicate that there has been no measurable impact to the uppermost aquifer from the Resource Conservation and Recovery Act (RCRA) regulated unit within the Area 5 RWMS and confirm that the detections of TOC and TOX in 2000 were false positives. There were no major changes noted in the monitored groundwater elevation. There continues to be an extremely small gradient to the northeast with an average flow velocity of less than one foot per year.

  10. 2005 Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site

    SciTech Connect (OSTI)

    Bechtel Nevada

    2006-02-01T23:59:59.000Z

    This report is a compilation of the calendar year 2005 groundwater sampling results from the Area 5 Radioactive Waste Management Site. In additon to providing groundwater monitoring results, this report also includes information regarding site hydrogeology, well construction, sample collection, and meteorological data measured at the Area 5 Radioactive Waste Management Site at the Nevada Test Site, Ny County, Nevada.

  11. Site characterization and monitoring data from Area 5 Pilot Wells, Nevada Test Site, Nye County, Nevada

    SciTech Connect (OSTI)

    NONE

    1994-02-01T23:59:59.000Z

    The Special Projects Section (SPS) of Reynolds Electrical & Engineering Co., Inc. (REECO) is responsible for characterizing the subsurface geology and hydrology of the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS) for the US Department of Energy, Nevada Operations Office (DOE/NV), Environmental Restoration and Waste Management Division, Waste Operations Branch. The three Pilot Wells that comprise the Pilot Well Project are an important part of the Area 5 Site Characterization Program designed to determine the suitability of the Area 5 RWMS for disposal of low-level waste (LLW), mixed waste (MW), and transuranic waste (TRU). The primary purpose of the Pilot Well Project is two-fold: first, to characterize important water quality and hydrologic properties of the uppermost aquifer; and second, to characterize the lithologic, stratigraphic, and hydrologic conditions which influence infiltration, redistribution, and percolation, and chemical transport through the thick vadose zone in the vicinity of the Area 5 RWMS. This report describes Pilot Well drilling and coring, geophysical logging, instrumentation and stemming, laboratory testing, and in situ testing and monitoring activities.

  12. Integrated Closure and Monitoring Plan for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site

    SciTech Connect (OSTI)

    Bechtel Nevada

    2005-06-01T23:59:59.000Z

    This document is an integrated plan for closing and monitoring two low-level radioactive waste disposal sites at the Nevada Test Site.

  13. Nevada National Security Site 2012 Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2013-02-11T23:59:59.000Z

    This report is a compilation of the groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS). The data have been collected since 1993 and include calendar year 2012 results. During 2012, groundwater samples were collected and static water levels were measured at the three pilot wells surrounding the Area 5 RWMS. Groundwater samples were collected at UE5PW-1, UE5PW-2, and UE5PW-3 on March 21, August 7, August 21, and September 11, 2012, and static water levels were measured at each of the three pilot wells on March 19, June 6, August 2, and October 15, 2012. Groundwater samples were analyzed for the following indicators of contamination: pH, specific conductance, total organic carbon, total organic halides, and tritium. Indicators of general water chemistry (cations and anions) were also measured. Final results from samples collected in 2012 were within the limits established by agreement with the Nevada Division of Environmental Protection for each analyte. These data indicate that there has been no measurable impact to the uppermost aquifer from the Area 5 RWMS. There were no significant changes in measured groundwater parameters compared to previous years. The report contains an updated cumulative chronology for the Area 5 RWMS Groundwater Monitoring Program and a brief description of the site hydrogeology.

  14. Nevada Test Site 2009 Data Report: Groundwater Monitoring Program, Area 5 Radioactive Waste Management Site

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2010-01-19T23:59:59.000Z

    This report is a compilation of the groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS). The data have been collected since 1993 and include calendar year 2009 results. During 2009, groundwater at each of the three pilot wells was sampled on March 10, 2009, and August 18, 2009, and water levels at each of the three pilot wells were measured on February 17, May 6, August 17, and November 10, 2009. Groundwater samples were analyzed for the following indicators of contamination: pH, specific conductance, total organic carbon, total organic halides, and tritium. Indicators of general water chemistry (cations and anions) were also measured. Results from all samples collected in 2009 were within the limits established by agreement with the Nevada Division of Environmental Protection for each analyte. These data indicate that there has been no measurable impact to the uppermost aquifer from the Area 5 RWMS. There were no significant changes in measured groundwater parameters compared to previous years. The report contains an updated cumulative chronology for the Area 5 RWMS Groundwater Monitoring Program and a brief description of the site hydrogeology.

  15. ATLAS off-Grid sites (Tier 3) monitoring. From local fabric monitoring to global overview of the VO computing activities

    E-Print Network [OSTI]

    PETROSYAN, A; The ATLAS collaboration; BELOV, S; ANDREEVA, J; KADOCHNIKOV, I

    2012-01-01T23:59:59.000Z

    ATLAS is a particle physics experiment on Large Hadron Collider at CERN. The experiment produces petabytes of data every year. The ATLAS Computing model embraces the Grid paradigm and originally included three levels of computing centres to be able to operate such large volume of data. With the formation of small computing centres, usually based at universities, the model was expanded to include them as Tier3 sites. The experiment supplies all necessary software to operate typical Grid-site, but Tier3 sites do not support Grid services of the experiment or support them partially. Tier3 centres comprise a range of architectures and many do not possess Grid middleware, thus, monitoring of storage and analysis software used on Tier2 sites becomes unavailable for Tier3 site system administrator and, also, Tier3 sites activity becomes unavailable for virtual organization of the experiment. In this paper we present ATLAS off-Grid sites monitoring software suite, which enables monitoring on sites, which are not unde...

  16. 2013 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title I Disposal Sites

    SciTech Connect (OSTI)

    none,

    2014-03-01T23:59:59.000Z

    This report, in fulfillment of a license requirement, presents the results of long-term surveillance and maintenance activities conducted by the U.S. Department of Energy (DOE) Office of Legacy Management (LM) in 2013 at 19 uranium mill tailings disposal sites established under Title I of the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978.1 These activities verified that the UMTRCA Title I disposal sites remain in compliance with license requirements. DOE operates 18 UMTRCA Title I sites under a general license granted by the U.S. Nuclear Regulatory Commission (NRC) in accordance with Title 10 Code of Federal Regulations Part 40.27 (10 CFR 40.27). As required under the general license, a long-term surveillance plan (LTSP) for each site was prepared by DOE and accepted by NRC. The Grand Junction, Colorado, Disposal Site, one of the 19 Title I sites, will not be included under the general license until the open, operating portion of the cell is closed. The open portion will be closed either when it is filled or in 2023. This site is inspected in accordance with an interim LTSP. Long-term surveillance and maintenance services for these disposal sites include inspecting and maintaining the sites; monitoring environmental media and institutional controls; conducting any necessary corrective actions; and performing administrative, records, stakeholder relations, and other regulatory stewardship functions. Annual site inspections and monitoring are conducted in accordance with site-specific LTSPs and procedures established by DOE to comply with license requirements. Each site inspection is performed to verify the integrity of visible features at the site; to identify changes or new conditions that may affect the long-term performance of the site; and to determine the need, if any, for maintenance, follow-up or contingency inspections, or corrective action in accordance with the LTSP. LTSPs and site compliance reports are available on the Internet at http://www.lm.doe.gov/.

  17. Nevada National Security Site 2011 Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2012-02-27T23:59:59.000Z

    This report is a compilation of the groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS). The data have been collected since 1993 and include calendar year 2011 results. During 2011, groundwater samples were collected and static water levels were measured at the three pilot wells surrounding the Area 5 RWMS. Samples were collected at UE5PW-1 on March 8, August 2, August 24, and October 19, 2011; at UE5PW-2 on March 8, August 2, August 23, and October 19, 2011; and at UE5PW-3 on March 8, August 2, August 23, and October 19, 2011. Static water levels were measured at each of the three pilot wells on March 1, June 7, August 1, and October 17, 2011. Groundwater samples were analyzed for the following indicators of contamination: pH, specific conductance, total organic carbon, total organic halides, and tritium. Indicators of general water chemistry (cations and anions) were also measured. Initial total organic carbon and total organic halides results for samples collected in August 2011 were above previous measurements and, in some cases, above the established investigation limits. However, after field sample pumps and tubing were disinfected with Clorox solution, the results returned to normal levels. Final results from samples collected in 2011 were within the limits established by agreement with the Nevada Division of Environmental Protection for each analyte. These data indicate that there has been no measurable impact to the uppermost aquifer from the Area 5 RWMS. There were no significant changes in measured groundwater parameters compared to previous years. The report contains an updated cumulative chronology for the Area 5 RWMS Groundwater Monitoring Program and a brief description of the site hydrogeology.

  18. 2013 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title II Disposal Sites

    SciTech Connect (OSTI)

    None

    2013-11-01T23:59:59.000Z

    This report, in fulfillment of a license requirement, presents the results of long-term surveillance and maintenance activities conducted by the U.S. Department of Energy (DOE) Office of Legacy Management in 2013 at six uranium mill tailings disposal sites reclaimed under Title II of the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978. These activities verified that the UMTRCA Title II disposal sites remain in compliance with license requirements. DOE manages six UMTRCA Title II disposal sites under a general license granted by the U.S. Nuclear Regulatory Commission (NRC) established at Title 10 Code of Federal Regulations Part 40.28. Reclamation and site transition activities continue at other sites, and DOE ultimately expects to manage approximately 27 Title II disposal sites. Long-term surveillance and maintenance activities and services for these disposal sites include inspecting and maintaining the sites; monitoring environmental media and institutional controls; conducting any necessary corrective action; and performing administrative, records, stakeholder services, and other regulatory functions. Annual site inspections and monitoring are conducted in accordance with site-specific long-term surveillance plans (LTSPs) and procedures established by DOE to comply with license requirements. Each site inspection is performed to verify the integrity of visible features at the site; to identify changes or new conditions that may affect the long-term performance of the site; and to determine the need, if any, for maintenance, follow-up inspections, or corrective action. LTSPs and site compliance reports are available online at http://www.lm.doe.gov

  19. Session: Monitoring wind turbine project sites for avian impacts

    SciTech Connect (OSTI)

    Erickson, Wally

    2004-09-01T23:59:59.000Z

    This third session at the Wind Energy and Birds/Bats workshop consisted of one presentation followed by a discussion/question and answer period. The focus of the session was on existing wind projects that are monitored for their impacts on birds and bats. The presentation given was titled ''Bird and Bat Fatality Monitoring Methods'' by Wally Erickson, West, Inc. Sections included protocol development and review, methodology, adjusting for scavenging rates, and adjusting for observer detection bias.

  20. ENVIRONMENTAL MONITORING AND ASSESSMENT PROGRAM AT POTENTIAL OTEC SITES

    E-Print Network [OSTI]

    Wilde, P.

    2010-01-01T23:59:59.000Z

    Thermal Energy Conversion (OTEC) program preoperational testand biomass distribution at potential OTEC sites.6th OTEC conference, Washington, D.C. Payne, S.F. 1979. The

  1. ENVIRONMENTAL MONITORING AND ASSESSMENT PROGRAM AT POTENTIAL OTEC SITES

    E-Print Network [OSTI]

    Wilde, P.

    2010-01-01T23:59:59.000Z

    assessment Ocean Thermal Energy Conversion (OTEC) programprojected Ocean Thermal Energy Conversion (OTEC) plants canmonitoring at Ocean Thermal Energy Conversion (OTEC) sites

  2. 2010 Groundwater Monitoring and Inspection Report Gnome-Coach Site, New Mexico

    SciTech Connect (OSTI)

    None

    2011-02-01T23:59:59.000Z

    This report presents the 2010 groundwater monitoring results collected by the U.S. Department of Energy (DOE) Office of Legacy Management (LM) at the Gnome-Coach (Gnome) Site in New Mexico (Figure 1). Groundwater monitoring consisted of collecting hydraulic head data and groundwater samples from the wells on site. Historically, the U.S. Environmental Protection Agency (EPA) had conducted these annual activities under the Long-Term Hydrologic Monitoring Program (LTHMP). LM took over the sampling and data collection activities in 2008 but continues to use the EPA Radiation and Indoor Environments National Laboratory in Las Vegas, Nevada, to analyze the water samples. This report summarizes groundwater monitoring and site investigation activities that were conducted at the site during calendar year 2010.

  3. Idaho National Laboratory (INL) Site Greenhouse Gas (GHG) Monitoring Plan - 40 CFR 98

    SciTech Connect (OSTI)

    Deborah L. Layton; Kimberly Frerichs

    2010-07-01T23:59:59.000Z

    The purpose of this Greenhouse Gas (GHG) Monitoring Plan is to meet the monitoring plan requirements of Title 40 of the Code of Federal Regulations Part 98.3(g)(5). This GHG Monitoring Plan identifies procedures and methodologies used at the Idaho National Laboratory Site (INL Site) to collect data used for GHG emissions calculations and reporting requirements from stationary combustion and other regulated sources in accordance with 40 CFR 98, Subparts A and other applicable subparts. INL Site Contractors determined subpart applicability through the use of a checklist (Appendix A). Each facility/contractor reviews operations to determine which subparts are applicable and the results are compiled to determine which subparts are applicable to the INL Site. This plan is applicable to the 40 CFR 98-regulated activities managed by the INL Site contractors: Idaho National Laboratory (INL), Idaho Cleanup Project (ICP), Advanced Mixed Waste Treatment Project (AMWTP), and Naval Reactors Facilities (NRF).

  4. Idaho National Laboratory (INL) Site Greenhouse Gas (GHG) Monitoring Plan - 40 CFR 98

    SciTech Connect (OSTI)

    Deborah L. Layton; Kimberly Frerichs

    2011-12-01T23:59:59.000Z

    The purpose of this Greenhouse Gas (GHG) Monitoring Plan is to meet the monitoring plan requirements of Title 40 of the Code of Federal Regulations Part 98.3(g)(5). This GHG Monitoring Plan identifies procedures and methodologies used at the Idaho National Laboratory Site (INL Site) to collect data used for GHG emissions calculations and reporting requirements from stationary combustion and other regulated sources in accordance with 40 CFR 98, Subparts A and other applicable subparts. INL Site Contractors determined subpart applicability through the use of a checklist (Appendix A). Each facility/contractor reviews operations to determine which subparts are applicable and the results are compiled to determine which subparts are applicable to the INL Site. This plan is applicable to the 40 CFR 98-regulated activities managed by the INL Site contractors: Idaho National Laboratory (INL), Idaho Cleanup Project (ICP), Advanced Mixed Waste Treatment Project (AMWTP), and Naval Reactors Facilities (NRF).

  5. Data Quality Objectives Supporting Radiological Air Emissions Monitoring for the PNNL Site

    SciTech Connect (OSTI)

    Barnett, J. M.; Meier, Kirsten M.; Snyder, Sandra F.; Fritz, Brad G.; Poston, Ted M.; Rhoads, Kathleen

    2010-05-25T23:59:59.000Z

    This document of Data Quality Objectives (DQOs) was prepared based on the U.S. Environmental Protection Agency (EPA) Guidance on Systematic Planning Using the Data Quality Objectives Process, EPA, QA/G4, 2/2006 (EPA 2006) as well as several other published DQOs. Pacific Northwest National Laboratory (PNNL) is in the process of developing a radiological air monitoring program for the PNNL Site that is distinct from that of the nearby Hanford Site. Radiological emissions at the PNNL Site result from Physical Sciences Facility (PSF) major emissions units. A team was established to determine how the PNNL Site would meet federal regulations and address guidelines developed to monitor and estimate offsite air emissions of radioactive materials. The result is a program that monitors the impact to the public from the PNNL Site.

  6. Data Quality Objectives Supporting Radiological Air Emissions Monitoring for the PNNL Site

    SciTech Connect (OSTI)

    Barnett, J. M.; Meier, Kirsten M.; Snyder, Sandra F.; Fritz, Brad G.; Poston, Theodore M.; Antonio, Ernest J.

    2012-11-12T23:59:59.000Z

    Pacific Northwest National Laboratory (PNNL) is in the process of developing a radiological air monitoring program for the PNNL Site that is distinct from that of the nearby Hanford Site. The original DQO (PNNL-19427) considered radiological emissions at the PNNL Site from Physical Sciences Facility (PSF) major emissions units. This first revision considers PNNL Site changes subsequent to the implementation of the original DQO. A team was established to determine how the PNNL Site changes would continue to meet federal regulations and address guidelines developed to monitor air emissions and estimate offsite impacts of radioactive material operations. The result is an updated program to monitor the impact to the public from the PNNL Site. The team used the emission unit operation parameters and local meteorological data as well as information from the PSF Potential-to-Emit documentation and Notices of Construction submitted to the Washington State Department of Health (WDOH). The locations where environmental monitoring stations would most successfully characterize the maximum offsite impacts of PNNL Site emissions from the three PSF buildings with major emission units were determined from these data. Three monitoring station locations were determined during the original revision of this document. This first revision considers expanded Department of Energy operations south of the PNNL Site and relocation of the two offsite, northern monitoring stations to sites near the PNNL Site fenceline. Inclusion of the southern facilities resulted in the proposal for a fourth monitoring station in the southern region. The southern expansion added two minor emission unit facilities and one diffuse emission unit facility. Relocation of the two northern stations was possible due to the use of solar power, rather than the previous limitation of the need for access to AC power, at these more remote locations. Addendum A contains all the changes brought about by the revision 1 considerations. This DQO report also updates the discussion of the Environmental Monitoring Plan for the PNNL Site air samples and how existing Hanford Site monitoring program results could be used. This document of Data Quality Objectives (DQOs) was prepared based on the U.S. Environmental Protection Agency (EPA) Guidance on Systematic Planning Using the Data Quality Objectives Process, EPA, QA/G4, 2/2006 (EPA 2006) as well as several other published DQOs.

  7. IpNose: Electronic nose for remote bad odour monitoring system in landfill sites Alex Perera*

    E-Print Network [OSTI]

    Gutierrez-Osuna, Ricardo

    IpNose: Electronic nose for remote bad odour monitoring system in landfill sites Alex Perera to classify and quantify different gas/odours. Here we suggest the integration of a small form factor computer of bad odours in landfill sites. Preliminary approach to this application using commercial sensors

  8. Nevada Test 1999 Waste Management Monitoring Report, Area 3 and Area 5 radioactive waste management sites

    SciTech Connect (OSTI)

    Yvonne Townsend

    2000-05-01T23:59:59.000Z

    Environmental monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site (NTS). These monitoring data include radiation exposure, air, groundwater, meteorology, vadose zone, and biota data. Although some of these media (radiation exposure, air, and groundwater) are reported in detail in other Bechtel Nevada reports (Annual Site Environmental Report [ASER], the National Emissions Standard for Hazardous Air Pollutants [NESHAP] report, and the Annual Groundwater Monitoring Report), they are also summarized in this report to provide an overall evaluation of RWMS performance and environmental compliance. Direct radiation monitoring data indicate that exposure at and around the RWMSs is not above background levels. Air monitoring data indicate that tritium concentrations are slightly above background levels, whereas radon concentrations are not above background levels. Groundwater monitoring data indicate that the groundwater in the alluvial aquifer beneath the Area 5 RWMS has not been affected by the facility. Meteorology data indicate that 1999 was a dry year: rainfall totaled 3.9 inches at the Area 3 RWMS (61 percent of average) and 3.8 inches at the Area 5 RWMS (75 percent of average). Vadose zone monitoring data indicate that 1999 rainfall infiltrated less than one foot before being returned to the atmosphere by evaporation. Soil-gas tritium data indicate very slow migration, and tritium concentrations in biota were insignificant. All 1999 monitoring data indicate that the Area 3 and Area 5 RWMSs are performing as expected at isolating buried waste.

  9. Scientific Opportunities for Monitoring at Environmental Remediation Sites (SOMERS): Integrated Systems-Based Approaches to Monitoring

    SciTech Connect (OSTI)

    Bunn, Amoret L.; Wellman, Dawn M.; Deeb, Rula A.; Hawley, Elizabeth L.; Truex, Michael J.; Peterson, Mark; Freshley, Mark D.; Pierce, Eric M.; McCord, John; Young, Michael H.; Gilmore, Tyler J.; Miller, Rick; Miracle, Ann L.; Kaback, Dawn; Eddy-Dilek, Carol; Rossabi, Joe; Lee, Michelle H.; Bush, Richard P.; Beam , Paul; Chamberlain, G. M.; Marble, Justin; Whitehurst, Latrincy; Gerdes, Kurt D.; Collazo, Yvette

    2012-05-15T23:59:59.000Z

    Through an inter-disciplinary effort, DOE is addressing a need to advance monitoring approaches from sole reliance on cost- and labor-intensive point-source monitoring to integrated systems-based approaches such as flux-based approaches and the use of early indicator parameters. Key objectives include identifying current scientific, technical and implementation opportunities and challenges, prioritizing science and technology strategies to meet current needs within the DOE complex for the most challenging environments, and developing an integrated and risk-informed monitoring framework.

  10. ATLAS off-Grid sites (Tier 3) monitoring. From local fabric monitoring to global overview of the VO computing activities

    E-Print Network [OSTI]

    PETROSYAN, A; The ATLAS collaboration; BELOV, S; ANDREEVA, J; KADOCHNIKOV, I

    2012-01-01T23:59:59.000Z

    The ATLAS Distributed Computing activities have so far concentrated in the "central" part of the experiment computing system, namely the first 3 tiers (the CERN Tier0, 10 Tier1 centers and over 60 Tier2 sites). Many ATLAS Institutes and National Communities have deployed (or intend to) deploy Tier-3 facilities. Tier-3 centers consist of non-pledged resources, which are usually dedicated to data analysis tasks by the geographically close or local scientific groups, and which usually comprise a range of architectures without Grid middleware. Therefore a substantial part of the ATLAS monitoring tools which make use of Grid middleware, cannot be used for a large fraction of Tier3 sites. The presentation will describe the T3mon project, which aims to develop a software suite for monitoring the Tier3 sites, both from the perspective of the local site administrator and that of the ATLAS VO, thereby enabling the global view of the contribution from Tier3 sites to the ATLAS computing activities. Special attention in p...

  11. Analysis of Environmental Monitoring Data Following Site Closure |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613Portsmouth SitePresentations |StateNuclearWith all of theAdvancedAnalysis ofDepartment

  12. K-Area and Par Pond Sewage Sludge Application Sites groundwater monitoring report: Second quarter 1993

    SciTech Connect (OSTI)

    Not Available

    1993-10-01T23:59:59.000Z

    During second quarter 1993, samples from the three monitoring wells at the K-Area site (KSS series) and the three monitoring wells at the Par Pond site (PSS series) were analyzed for constituents required by South Carolina Department of Health and Environmental Control Construction Permit 13,173 and for other constituents as part of the Savannah River Site (SRS) Groundwater Monitoring Program. This report describes monitoring results that exceeded the final Primary Drinking Water Standards (PDWS) or the SRS flagging criteria. During second quarter 1993, no constituents exceeded the final PDWS or any other flagging criteria at the K-Area and Par Pond Sewage Sludge Application Sites. During first quarter 1993, aluminum and iron exceeded the SRS Flag 2 criteria in one or more of the KSS and the PSS wells. These constituents were not analyzed second quarter 1993. In the KSS well series, the field measurement for alkalinity ranged as high as 35 mg/L in well KSS 1D. Alkalinity measurements were zero in the PSS wells, except for a single measurement of 1 mg/L in well PSS 1D. Historical and current water-level elevations at the K-Area Sewage Sludge Application Site indicate that the groundwater flow direction is south to southwest (SRS grid coordinates). The groundwater flow direction at the Par Pond Sewage Sludge Application Site could not be determined second quarter 1993.

  13. 2011 Groundwater Monitoring and Inspection Report Gnome-Coach Site, New Mexico

    SciTech Connect (OSTI)

    None

    2012-02-01T23:59:59.000Z

    Gnome-Coach was the site of a 3-kiloton underground nuclear test in 1961. Surface and subsurface contamination resulted from the underground nuclear testing, post-test drilling, and groundwater tracer test performed at the site. The State of New Mexico is currently proceeding with a conditional certificate of completion for the surface. As for the subsurface, monitoring activities that include hydraulic head monitoring and groundwater sampling of the wells onsite are conducted as part of the annual site inspection. These activities were conducted on January 19, 2011. The site roads, monitoring well heads, and the monument at surface ground zero were observed as being in good condition at the time of the site inspection. An evaluation of the hydraulic head data obtained from the site indicates that water levels in wells USGS-4 and USGS-8 appear to respond to the on/off cycling of the dedicated pump in well USGS-1 and that water levels in wells LRL-7 and DD-1 increased during this annual monitoring period. Analytical results obtained from the sampling indicate that concentrations of tritium, strontium-90, and cesium-137 were consistent with concentrations from historical sampling events.

  14. Groundwater Monitoring Optimization of Post Closure Waste Sites at SRS - 13184

    SciTech Connect (OSTI)

    Ross, Jeff; O'Quinn, Sadika [Savannah River Nuclear Solutions, LLC, Aiken, SC 29808 (United States)] [Savannah River Nuclear Solutions, LLC, Aiken, SC 29808 (United States); Adams, Karen; Prater, Phil [Department of Energy - Savannah River Site, Aiken, SC 29808 (United States)] [Department of Energy - Savannah River Site, Aiken, SC 29808 (United States)

    2013-07-01T23:59:59.000Z

    Groundwater monitoring at the Savannah River Site (SRS) is required at dozens of waste sites and includes sampling at over 1,000 monitoring wells. The expected longevity of groundwater contamination and associated groundwater monitoring and reporting constitutes a significant long-term cost that represents an increasing proportion of the environmental management budget as surface waste units are closed. Therefore, a comprehensive evaluation of the monitoring program for eighteen regulated waste units was conducted to identify areas where monitoring could be optimized. The units evaluated varied considerably in the scope of monitoring; ranging from two wells to hundreds of wells. In order to systematically evaluate such disparate monitoring networks, SRS developed a decision-logic analysis using flow sheets to address potential areas of optimization. Five areas were identified for evaluation, including: (1) Comparison of current monitoring to regulatory requirements, (2) Spatial distribution, (3) Temporal sampling, (4) Analyte requirements, and (5) Reporting frequency and content. Optimization recommendations were made for fifteen of the eighteen groundwater units. The spatial evaluation resulted in recommendations to suspend sampling in 79 wells and add sampling at 16 wells. The temporal evaluation resulted in recommendations to reduce the number of well visits per year by 504. Analyte reductions were recommended at three groundwater units, with increases at three other units. Reporting frequency reductions were recommended for five units. Approximately $700,000 (direct dollars) of potential annualized cost savings were identified for these groundwater units, provided all recommendations are approved. The largest area of savings was associated with reducing the reporting frequency. The optimization approach has been presented to the EPA and South Carolina Department of Environmental Control (SCHDEC), with unit-specific recommendations approved for all five units presented. This approach can be expected to be highly successful for sites with rich historical data sets and where the requirements in regulatory monitoring plans can be negotiated. (authors)

  15. 2002 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites

    SciTech Connect (OSTI)

    Y. E. Townsend

    2003-06-01T23:59:59.000Z

    Environmental, subsidence, and meteorological monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site (NTS)(refer to Figure 1). These monitoring data include radiation exposure, air, groundwater,meteorology, vadose zone, subsidence, and biota data. Although some of these media (radiation exposure, air, and groundwater) are reported in detail in other Bechtel Nevada (BN) reports (Annual Site Environmental Report [ASER], the National Emissions Standard for Hazardous Air Pollutants [NESHAP] report, and the Annual Groundwater Monitoring Report), they are also summarized in this report to provide an overall evaluation of RWMS performance and environmental compliance. Direct radiation monitoring data indicate that exposure at and around the RWMSs is not above background levels. Air monitoring data indicate that tritium concentrations are slightly above background levels. Groundwater monitoring data indicate that the groundwater in the uppermost aquifer beneath the Area 5 RWMS has not been affected by the facility. Meteorological data indicate that 2002 was a dry year: rainfall totaled 26 mm (1.0 in) at the Area 3 RWMS and 38 mm (1.5 in) at the Area 5 RWMS. Vadose zone monitoring data indicate that 2002 rainfall infiltrated less than 30 cm (1 ft) before being returned to the atmosphere by evaporation. Soil-gas tritium monitoring data indicate slow subsurface migration, and tritium concentrations in biota were lower than in previous years. Special investigations conducted in 2002 included: a comparison between waste cover water contents measured by neutron probe and coring; and a comparison of four methods for measuring radon concentrations in air. All 2002 monitoring data indicate that the Area 3 and Area 5 RWMSs are performing within expectations of the model and parameter assumptions for the facility Performance Assessments (PAs).

  16. Community Environmental Monitoring Program (CEMP) Data related to Air, Soil, and Water Monitoring around the Nevada Test Site

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Community Environmental Monitoring Program (CEMP) is a network of 29 monitoring stations located in communities surrounding and downwind of the Nevada Test Site (NTS) that monitor the airborne environment for manmade radioactivity that could result from NTS activities. The network stations, located in Nevada, Utah, and California are comprised of instruments that collect a variety of environmental radiological and meteorological data. The emphasis of the CEMP is to monitor airborne radioactivity and weather conditions, and make the results available to the public. Instrumentation that records these data is connected to a datalogger, and real-time radiation levels or weather conditions can immediately and easily be seen on a display at each station. These data are transmitted via direct or wireless internet connection, landline or cellular phone, or satellite transmission to DRI's Western Regional Climate Center in Reno, Nevada, and are updated as frequently as every 10 minutes on the World Wide Web at http://www.cemp.dri.edu. DOE and DRI also publish the results of the monitoring program and distribute these reports throughout the network community. The reports provide summaries of average values for each station and the entire network, and show deviations from the expected range values. [Copied from the CEMP website (Introduction) at http://www.cemp.dri.edu/cemp/moreinfo.html

  17. Report on the Watershed Monitoring Program at the Paducah Site January-December 1998

    SciTech Connect (OSTI)

    Kszos, L.A.; Peterson, M.J.; Ryon, M.G.; Southworth, G.R.

    1999-03-01T23:59:59.000Z

    Watershed Monitoring of Big Bayou and Little Bayou creeks has been conducted since 1987. The monitoring was conducted by the University of Kentucky between 1987 and 1991 and by staff of the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) from 1991 to present. The goals of monitoring are to (1) demonstrate that the effluent limitations established for DOE protect and maintain the use of Little Bayour and Big Bayou creeks for frowth and propagation of fish and other aquatic life, (2) characterize potential environmental impacts, and (3) document the effects of pollution abatement facilities on stream biota. The watershed (biological) monitoring discussed in this report was conducted under DOE Order 5400.1, General Environmental Protection Program. Future monitoring will be conducted as required by the Kentucky Pollutant Discharge Elimination System (KPDES) permit issued to the Department of Energy (DOE) in March 1998. A draft Watershed Monitoring Program plan was approved by the Kentucky Division of Water and will be finalized in 1999. The DOE permit also requires toxicity monitoring of one continuous outfall and of three intermittent outfalls on a quarterly basis. The Watershed Monitoring Program for the Paducah Site during calendar year 1998 consisted of three major tasks: (1) effluent toxicity monitoring, (2) bioaccumulation studies, and (3) ecological surveys of fish communities. This report focuses on ESD activities occurring from january 1998 to December 1998, although activities conducted outside this time period are included as appropriate.

  18. Hanford Site Black-Tailed Jackrabbit Monitoring Report for Fiscal Year 2013

    SciTech Connect (OSTI)

    Lindsey, Cole T.; Nugent, John J.; Wilde, Justin W.; Johnson, Scott J.

    2014-02-13T23:59:59.000Z

    The U.S. Department of Energy, Richland Operations Office (DOE-RL) conducts ecological monitoring on the Hanford Site to collect and track data needed to ensure compliance with an array of environmental laws, regulations, and policies governing DOE activities. Ecological monitoring data provide baseline information about the plants, animals, and habitat under DOE-RL stewardship at Hanford required for decision-making under the National Environmental Policy Act (NEPA) and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The Hanford Site Comprehensive Land Use Plan (CLUP, DOE/EIS-0222-F) which is the Environmental Impact Statement for Hanford Site activities, helps ensure that DOE-RL, its contractors, and other entities conducting activities on the Hanford Site are in compliance with NEPA.

  19. Technical Assessment of DOE Savannah River Site-Sponsored Radionuclide Monitoring Efforts in the Central Savannah River Area

    E-Print Network [OSTI]

    Georgia, University of

    Technical Assessment of DOE Savannah River Site-Sponsored Radionuclide Monitoring Efforts...................................................................................................... 3 Summary Conclusions to DOE Regarding CAB Recommendation 317........................... 4............................................................................................................ 8 Standards

  20. F- and H-area Sewage Sludge Application Sites: Groundwater monitoring report. Second quarter 1993

    SciTech Connect (OSTI)

    Not Available

    1993-10-01T23:59:59.000Z

    Samples from the four wells at the F-Area Sewage Sludge Application Site (FSS wells) and the three wells at the H-Area Sewage Sludge Application Site (HSS wells) are analyzed quarterly for constituents as required by South Carolina Department of Health and Environmental Control Construction Permit 12,076 and, as requested, for other constituents as part of the Savannah River Site Groundwater Monitoring Program. Annual analyses for other constituents, primarily metals, also are required by the permit. Currently, no permit-required analytes exceed standards at the F- and H-Area Sewage Sludge Application Sites. Tritium and aluminum have been the primary nonpermit constituents exceeding standards at the F-Area Sewage Sludge Application Site. These constituents were not analyzed second quarter 1993. Other constituents also have exceeded standards at this site, but only sporadically, and none of those were analyzed second quarter 1993.

  1. F- and H-Area Sewage Sludge Application Sites groundwater monitoring report

    SciTech Connect (OSTI)

    Not Available

    1993-07-01T23:59:59.000Z

    Samples from the four wells at the F-Area Sewage Sludge Application Site (FSS wells) and the three wells at the H-Area Sewage Sludge Application Site (HSS wells) are analyzed quarterly for constituents as required by South Carolina Department of Health and Environmental Control Construction Permit 12,076 and, as requested, for other constituents as part of the Savannah River Site Groundwater Monitoring Program. Annual analyses for other constituents, primarily metals, also are required by the permit. Historically and currently, no permit-required analytes exceed standards at the F- and H-Area Sewage Sludge Application Sites except iron, lead, and manganese, which occur in elevated concentrations frequently in FSS wells and occasionally in HSS wells. Tritium and aluminum are the primary nonpermit constituents that exceed standards at the F-Area Sewage Sludge Application Site. Other constituents also exceed standards at this site but only sporadically.

  2. A field strategy to monitor radioactivity associated with investigation derived wastes returned from deep drilling sites

    SciTech Connect (OSTI)

    Rego, J.H.; Smith, D.K.; Friensehner, A.V.

    1995-05-26T23:59:59.000Z

    The U.S. Department of Energy, Nevada Operations Office, Underground Test Area Operable Unit (UGTA) is drilling deep (>1500m) monitoring wells that penetrate both unsaturated (vadose) and saturated zones potentially contaminated by sub-surface nuclear weapons testing at the Nevada Test Site, Nye County, Nevada. Drill site radiological monitoring returns data on drilling effluents to make informed management decisions concerning fluid management. Because of rapid turn-around required for on-site monitoring, a representative sample will be analyzed simultaneously for {alpha}, {beta} and {gamma} emitters by instrumentation deployed on-site. For the purposes of field survey, accurate and precise data is returned, in many cases, with minimal sample treatment. A 30% efficient high purity germanium detector and a discriminating liquid scintillation detector are being evaluated for {gamma} and {alpha}/{beta} monitoring respectively. Implementation of these detector systems complements a successful on-site tritium monitoring program. Residual radioactivity associated with underground nuclear tests include tritium, activation products, fission products and actinides. Pulse shape discrimination (PSD) is used in {alpha}/{beta} liquid scintillation counting and is a function of the time distribution of photon emission. In particular, we hope to measure {sup 241}Am produced from {sup 241}Pu by {beta} decay. Because {sup 241}Pu is depleted in fissile bomb fuels, maximum PSD resolution will be required. The high purity germanium detector employs a multichannel analyzer to count gamma emitting radionuclides; we will designate specific window configurations to selectively monitor diagnostic fission product radionuclides (i.e., {sup 137}Cs).

  3. Nevada National Security Site 2013 Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site

    SciTech Connect (OSTI)

    Hudson, David B

    2014-02-13T23:59:59.000Z

    This report is a compilation of the groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada National Security Site, Nye County, Nevada. Groundwater samples from the aquifer immediately below the Area 5 RWMS have been collected and analyzed and static water levels have been measured in this aquifer since 1993. This report updates these data to include the 2013 results. Beginning with this report, analysis results for leachate collected from the mixed-waste cell at the Area 5 RWMS (Cell 18) are also included.

  4. The Savannah River Site's Groundwater Monitoring Program - Fourth Quarter 1999 (October through December 1999)

    SciTech Connect (OSTI)

    Hutchison, J.B.

    2000-10-12T23:59:59.000Z

    This report summarizes the Groundwater Monitoring Program conducted by the Savannah River site during fourth quarter 1999. It includes the analytical data, field data, data review, quality control, and other documentation for this program; provides a record of the program's activities; and serves as an official records of the analytical results.

  5. The Savannah River Site's Groundwater Monitoring Program - Third Quarter 1999 (July through September 1999)

    SciTech Connect (OSTI)

    Hutchison, J.B.

    2000-09-05T23:59:59.000Z

    This report summarizes the Savannah River Site Groundwater Monitoring Program during the third quarter 1999. It includes the analytical data, field data, data review, quality control, and other documentation for this program; provides a record of the program activities; and serves as an official record of the analytical results.

  6. The Savannah River Site's Groundwater Monitoring Program First Quarter 1999 (January through March 1999)

    SciTech Connect (OSTI)

    Hutchison, J.B.

    1999-12-08T23:59:59.000Z

    This report summarizes the Groundwater Monitoring Program conducted by Savannah River Site during first quarter 1999. It includes the analytical data, field data, data review, quality control, and other documentation for this program; provides a record of the program's activities; and serves as an official record of the analytical results.

  7. The Savannah River Site's Groundwater Monitoring Program second quarter 1999 (April through June 1999)

    SciTech Connect (OSTI)

    Hutchison, J.B.

    1999-12-16T23:59:59.000Z

    This report summarizes the Groundwater Monitoring Program conducted by Savannah River Site during first quarter 1999. It includes the analytical data, field data, data review, quality control, and other documentation for this program; provides a record of the program's activities; and serves as an official record of the analytical results.

  8. The Savannah River Site's Groundwater Monitoring Program First Quarter 1998 (January through March 1998)

    SciTech Connect (OSTI)

    Hutchison, J.B.

    1999-05-26T23:59:59.000Z

    This report summarizes the Groundwater Monitoring Program conducted by the Savannah River Site during first quarter 1998. It includes the analytical data, field data, data review, quality control, and other documentation for this program; provides a record of the program's activities; and serves as an official record of the analytical results.

  9. Review of present groundwater monitoring programs at the Nevada Test Site

    SciTech Connect (OSTI)

    Hershey, R.L.; Gillespie, D.

    1993-09-01T23:59:59.000Z

    Groundwater monitoring at the Nevada Test Site (NTS) is conducted to detect the presence of radionuclides produced by underground nuclear testing and to verify the quality and safety of groundwater supplies as required by the State of Nevada and federal regulations, and by U.S. Department of Energy (DOE) Orders. Groundwater is monitored at water-supply wells and at other boreholes and wells not specifically designed or located for traditional groundwater monitoring objectives. Different groundwater monitoring programs at the NTS are conducted by several DOE Nevada Operations Office (DOE/NV) contractors. Presently, these individual groundwater monitoring programs have not been assessed or administered under a comprehensive planning approach. Redundancy exists among the programs in both the sampling locations and the constituents analyzed. Also, sampling for certain radionuclides is conducted more frequently than required. The purpose of this report is to review the existing NTS groundwater monitoring programs and make recommendations for modifying the programs so a coordinated, streamlined, and comprehensive monitoring effort may be achieved by DOE/NV. This review will be accomplished in several steps. These include: summarizing the present knowledge of the hydrogeology of the NTS and the potential radionuclide source areas for groundwater contamination; reviewing the existing groundwater monitoring programs at the NTS; examining the rationale for monitoring and the constituents analyzed; reviewing the analytical methods used to quantify tritium activity; discussing monitoring network design criteria; and synthesizing the information presented and making recommendations based on the synthesis. This scope of work was requested by the DOE/NV Hydrologic Resources Management Program (HRMP) and satisfies the 1993 (fiscal year) HRMP Groundwater Monitoring Program Review task.

  10. 1993 Effluent and environmental monitoring report for the Bettis Atomic Power Laboratory, Pittsburgh Site

    SciTech Connect (OSTI)

    Not Available

    1993-12-31T23:59:59.000Z

    The results of the radiological and non-radiological environmental monitoring programs for 1993 at the Bettis-Pittsburgh Site are presented. The results obtained from the monitoring programs demonstrate that the existing procedures ensured that environmental releases during 1993 were in accordance with applicable Federal and State regulations. Evaluation of the environmental data indicates that the current operations at the Site continue to have no adverse effect on the quality of the environment. A conservative assessment of radiation exposure to the general public as a result of Site operations demonstrated that the dose received by any member of the public was well below the most restrictive dose limits established by the US Environmental Protection Agency and the US Department of Energy.

  11. Session: Development and application of guidelines for siting, constructing, operating and monitoring wind turbines

    SciTech Connect (OSTI)

    Manville, Albert; Hueckel, Greg

    2004-09-01T23:59:59.000Z

    This session at the Wind Energy and Birds/Bats workshop consisted of two presentations followed by a discussion/question and answer period. The two papers were: 'Development and Application of USFWS Guidance for Site Evaluation, Siting, Construction, Operation and Monitoring of Wind Turbines' by Albert Manville and 'Wind Power in Washington State' by Greg Hueckel. The session provided a comparison of wind project guidelines developed by the U.S. Fish and Wildlife Service (USFWS) in May 2003 and the Washington State Department of Fish and Wildlife in August 2003. Questions addressed included: is there a need or desire for uniform national or state criteria; can other states learn from Washington State's example, or from the USFWS voluntary guidelines; should there be uniform requirements/guidelines/check-lists for the siting, operation, monitoring, and mitigation to prevent or minimize avian, bat, and other wildlife impacts.

  12. F- and H-Area Sewage Sludge Application Sites Groundwater Monitoring Report: Third quarter 1993

    SciTech Connect (OSTI)

    Not Available

    1994-01-01T23:59:59.000Z

    Samples from the four wells at the F-Area Sewage Sludge Application Site (FSS wells) and the three wells at the H-Area Sewage Sludge Application Site (HSS wells) are analyzed quarterly for constituents as required by South Carolina Department of Health and Environmental Control Construction Permit 12,076 and, as requested, for other constituents as part of the Savannah River Site Groundwater Monitoring Program. Annual analyses for other constituents, primarily metals, also are required by the permit. Currently, iron, lead, and manganese are the only permit-required analytes that exceed standards at the F- and H-Area Sewage Sludge Application Sites. Tritium and aluminum are the nonpermit constituents exceeding standards. Other constituents have exceeded standards at this site previously, but only sporadically.

  13. K-Area and Par Pond Sewage Sludge Application Sites Groundwater Monitoring Report: Third quarter 1993

    SciTech Connect (OSTI)

    Not Available

    1994-01-01T23:59:59.000Z

    Samples from the three wells at the K-Area Sewage Sludge Application Site (KSS wells) and the three wells at the Par Pond Sewage Sludge Application Site (PSS wells) are analyzed quarterly for constituents required by South Carolina Department of Health and Environmental Control Construction Permit 13,173 and, as requested, for other constituents as part of the Savannah River Site (SRS) Groundwater Monitoring Program. Annual analyses for other constituents, primarily metals, also are required by the permit. Iron and lead, permit-required constituents, and aluminum presently exceed SRS flagging standards in samples from the two sites. Elevated concentrations of metals at these sites, not reported during 1992, may be the reflection of a recent change in analytical methodology.

  14. K-Area and Par Pond Sewage Sludge Application Sites Groundwater Monitoring Report. First quarter 1993

    SciTech Connect (OSTI)

    Not Available

    1993-07-01T23:59:59.000Z

    Samples from the three wells at the K-Area Sewage Sludge Application Site (KSS wells) and the three wells at the Par Pond Sewage Sludge Application Site (PSS wells) are analyzed quarterly for constituents required by South Carolina Department of Health and Environmental Control Construction Permit 13,173 and, as requested, for other constituents as part of the Savannah River Site Groundwater Monitoring Program. Annual analyses for other constituents, primarily metals, also are required by the permit. During first quarter 1993, no permit-required constituents exceeded standards at the two sites except iron, which was elevated in one KSS well and two PSS wells. Aluminum, not required by the permit, was the only other constituent that exceeded standards. Elevated levels of aluminum and iron at these two sites may be concurrent with a change in analytical methodology. As in previous quarters, chlordane concentrations did not exceed the detection limit in any of the wells.

  15. Post-Closure Inspection and Monitoring Report for the Salmon, Mississippi, Site Calendar Year 2007

    SciTech Connect (OSTI)

    None

    2008-05-01T23:59:59.000Z

    This report summarizes inspection and monitoring activities performed on and near the Salmon, Mississippi, Site in calendar year 2007. The Draft Long-Term Surveillance and Maintenance Plan for the Salmon Site, Lamar County, Mississippi (DOE 2007) specifies the submittal of an annual report of site activities and the results of sample analyses. This report is submitted to comply with that requirement. The Tatum Salt Dome was used by the U.S. Atomic Energy Commission (AEC) for underground nuclear testing during the cold war. The land surface above the salt dome, the Salmon Site, is located in Lamar County, Mississippi, approximately 12 miles west of Purvis (Figure 1). The U.S. Department of Energy (DOE), the successor to the AEC, is responsible for long-term surveillance and maintenance of the site. The DOE Office of Legacy Management (LM) was assigned this responsibility effective October 2006.

  16. Shifting the Paradigm for Long Term Monitoring at Legacy Sites to Improve Performance while Reducing Cost

    SciTech Connect (OSTI)

    Eddy-Dilek, Carol A.; Looney, Brian B.; Seaman, John; Kmetz, Thomas

    2013-01-10T23:59:59.000Z

    A major issue facing many government and private industry sites that were previously contaminated with radioactive and chemical wastes is that often the sites cannot be cleaned up enough to permit unrestricted human access. These sites will require long-term management, in some cases indefinitely, leaving site owners with the challenge of protecting human health and environmental quality in a cost effective manner. Long-term monitoring of groundwater contamination is one of the largest projected costs in the life cycle of environmental management at the Savannah River Site (SRS), the larger DOE complex, and many large federal and private sites. Currently, most monitoring strategies are focused on laboratory measurements of contaminants measured in groundwater samples collected from wells. This approach is expensive, and provides limited and lagging information about the effectiveness of cleanup activities and the behavior of the residual contamination. Over the last twenty years, DOE and other federal agencies have made significant investments in the development of various types of sensors and strategies that would allow for remote analysis of contaminants in groundwater, but these approaches do not promise significant reductions in risk or cost. Scientists at SRS have developed a new paradigm to simultaneously improve the performance of long term monitoring systems while lowering the overall cost of monitoring. This alternative approach incorporates traditional point measurements of contaminant concentration with measurements of controlling variables including boundary conditions, master variables, and traditional plume/contaminant variables. Boundary conditions are the overall driving forces that control plume movement and therefore provide leading indication to changes in plume stability. These variables include metrics associated with meteorology, hydrology, hydrogeology, and land use. Master variables are the key variables that control the chemistry of the groundwater system, and include redox variables (ORP, DO, chemicals), pH, specific conductivity, biological community (breakdown/decay products), and temperature. A robust suite of relatively inexpensive tools is commercially available to measure these variables. Traditional plume/contaminant variables are various measures of contaminant concentration including traditional analysis of chemicals in groundwater samples. An innovative long term monitoring strategy has been developed for acidic or caustic groundwater plumes contaminated with metals and/or radionuclides. Not only should the proposed strategy be more effective at early identification of potential risks, this strategy should be significantly more cost effective because measurement of controlling boundary conditions and master variables is relatively simple. These variables also directly reflect the evolution of the plume through time, so that the monitoring strategy can be modified as the plume 'ages'. This transformational long-term monitoring paradigm will generate significant cost savings to DOE, other federal agencies and industry and will provide improved performance and leading indicators of environmental management performance.

  17. Hanford site near-facility environmental monitoring annual report, calendar year 1996

    SciTech Connect (OSTI)

    Perkins, C.J.

    1997-08-05T23:59:59.000Z

    This document summarizes the results of the near-facility environmental monitoring results for 1996 in the 100, 200/600, and 300/400 areas of the Hanford Site in south-central Washington State. Surveillance activities included sampling and analyses of ambient air, surface water, groundwater, soil, sediments, and biota. Also, external radiation measurements and radiological surveys were taken at waste disposal sites, radiologically controlled areas, and roads. These activities were conducted to assess and control the effects of nuclear facilities and waste sites on the local environment. The monitoring implements applicable portions of DOE Orders 5400.1 (DOE 1988a), 5400.5 (DOE 1990), and 5820.2A (DOE 1988b); Washington Administrative Code (WAC) 246-247; and Title 40 Code of Federal Regulations (CFR) Part 61, Subpart H (EPA 1989). In addition, diffuse sources were monitored to determine compliance with federal, state, and/or local regulations. In general, although effects from nuclear facilities can still be observed on the Hanford Site and radiation levels were slightly elevated when compared to offsite locations, the differences are less than in previous years.

  18. 2012 Groundwater Monitoring and Inspection Report Gnome-Coach, New Mexico, Site

    SciTech Connect (OSTI)

    None

    2013-03-01T23:59:59.000Z

    Gnome-Coach was the site of a 3-kiloton underground nuclear test conducted in 1961. Surface and subsurface contamination resulted from the underground nuclear testing, post-test drilling, and a groundwater tracer test performed at the site. Surface reclamation and remediation began after the underground testing. A Completion Report was prepared, and the State of New Mexico is currently proceeding with a conditional certificate of completion for the surface. Subsurface corrective action activities began in 1972 and have generally consisted of annual sampling and monitoring of wells near the site. In 2008, the annual site inspections were refined to include hydraulic head monitoring and collection of samples from groundwater monitoring wells onsite using the low-flow sampling method. These activities were conducted during this monitoring period on January 18, 2012. Analytical results from this sampling event indicate that concentrations of tritium, strontium-90, and cesium-137 were generally consistent with concentrations from historical sampling events. The exceptions are the decreases in concentrations of strontium-90 in samples from wells USGS-4 and USGS-8, which were more than 2.5 times lower than last year's results. Well USGS-1 provides water for livestock belonging to area ranchers, and a dedicated submersible pump cycles on and off to maintain a constant volume in a nearby water tank. Water levels in wells USGS-4 and USGS-8 respond to the on/off cycling of the water supply pumping from well USGS-1. Well LRL-7 was not sampled in January, and water levels were still increasing when the transducer data were downloaded in September. A seismic reflection survey was also conducted this year. The survey acquired approximately 13.9 miles of seismic reflection data along 7 profiles on and near the site. These activities were conducted from February 23 through March 10, 2012. The site roads, monitoring well heads, and the monument at surface ground zero were in good condition at the time of the site inspection. However, it was reported in September 2012 that the USGS-1 well head had been damaged by a water truck in April 2012.

  19. An economic analysis of a monitored retrievable storage site for Tennessee. Final report and appendices

    SciTech Connect (OSTI)

    Fox, W.F.; Mayo, J.W.; Hansen, L.T.; Quindry, K.E.

    1985-12-17T23:59:59.000Z

    The United States Department of Energy is charged with the task of identifying potential sites for a Monitored Retrievable Storage (MRS) Facility and reporting the results of its analysis to Congress by January 1986. DOE chose three finalist sites from 11 sites DOE analysts evaluated earlier. All three are in Tennessee, including two in Oak Ridge and one in Trousdale/Smith Counties. This paper is a summary of research undertaken on the economic effects of establishing the MRS facility in Tennessee. All three locations were considered in the analysis, but on some occasions attention is focused on the site preferred by DOE. The research was undertaken by the Center for Business and Economic Research (CBER), College of Business Administration, the University of Tennessee, Knoxville, under contract with the Tennessee Department of Economic and Community Development.

  20. An economic analysis of a monitored retrievable storage site for Tennessee

    SciTech Connect (OSTI)

    Fox, W.F.; Mayo, J.W.; Hansen, L.T.; Quindry, K.E.

    1985-12-17T23:59:59.000Z

    The United States Department of Energy is charged with the task of identifying potential sites for a Monitored Retrievable Storage (MRS) Facility and reporting the results of its analysis to Congress by January 1986. DOE chose three finalist sites from 11 sites DOE analysts evaluated earlier. All three are in Tennessee, including two in Oak Ridge and one in Trousdale/Smith Counties. This paper is a summary of research undertaken on the economic effects of establishing the MRS facility in Tennessee. All three locations were considered in the analysis, but on some occasions attention is focused on the site preferred by DOE. The research was undertaken by the Center for Business and Economic Research (CBER), College of Business Administration, the University of Tennessee, Knoxville, under contract with the Tennessee Department of Economic and Community Development.

  1. Performance Assessment Monitoring Plan for the Hanford Site Low-Level Burial Grounds

    SciTech Connect (OSTI)

    None

    2006-03-30T23:59:59.000Z

    The U.S. Department of Energy Order 435.1, Radioactive Waste Management, requires a disposal authorization statement authorizing operation (or continued operation) for low-level waste disposal facilities. In fulfillment of these requirements, a disposal authorization statement was issued on October 25, 1999, authorizing the Hanford Site to transfer, receive, possess, and dispose of low-level radioactive waste at the 200 East Area burial grounds and the 200 West Area burial grounds. One of the conditions is that monitoring plans for the 200 East Area and 200 West Area low-level burial grounds be written and approved by the Richland Operations Office. As a result of a record of decision for the Hanford Site Solid Waste Program and acceptance of the Hanford Site Solid Waste Environmental Impact Statement, the use of the low-level burial ground (LLBG) as a disposal facility for low-level and mixed low-level wastes has been restricted to lined trenches and the Navy reactor-compartment trench only. Hence, as of July 2004, only the two lined trenches in burial ground 218-W-5 (trenches 31 and 34, see Appendix A) and the Navy reactor-compartment trench in burial ground 218 E 12B (trench 94) are allowed to receive waste. When the two lined trenches are filled, the LLBG will cease to operate except for reactor compartment disposal at trench 94. Remaining operational lifetime of the LLBG is dependent on waste volume disposal rates. Existing programs for air sampling and analyses and subsidence monitoring are currently adequate for performance assessment at the LLBG. The waste disposal authorization for the Hanford Site is based (in part) on the post-closure performance assessments for the LLBG. In order to maintain a useful link between operational monitoring (e.g., Resource Conservation and Recovery Act [RCRA], Comprehensive Environmental Response, Compensation, and Liability Act, and State Waste Discharge Permits), constituents, monitoring frequencies, and boundaries require regular review and comparison. The annual reports discussed here are the primary sources for these reviews. The pathways of interest are air and groundwater for both operational and post-closure conditions at the LLBG, with groundwater considered to be the most significant long-term exposure pathway. Constituents that contributed at least 0.1% of the total relative hazard were selected as target analytes for monitoring. These are technetium-99, uranium, and iodine-129. Because of its environmental unavailability, carbon 14 was removed from the list of constituents. Given the potential uncertainties in inventories at the 200 Area LLBG and the usefulness of tritium as a contaminant indicator, tritium will be monitored as a constituent of concern at all burial grounds. Preexisting contamination plumes in groundwater beneath low-level waste management areas are attributed to other past-practice liquid waste disposal sites. Groundwater and air will be sampled and analyzed for radiogenic components. Subsidence monitoring will also be performed on a regular basis. The existing near-facility and surveillance air monitoring programs are sufficient to satisfy the performance assessment monitoring. Groundwater monitoring will utilize the existing network of wells at the LLBG, and co-sampling with RCRA groundwater monitoring, to be sampled semiannually. Installation of additional wells is currently underway to replace wells that have gone dry.

  2. Soil Water Balance and Recharge Monitoring at the Hanford Site - FY09 Status Report

    SciTech Connect (OSTI)

    Rockhold, Mark L.; Saunders, Danielle L.; Strickland, Christopher E.; Waichler, Scott R.; Clayton, Ray E.

    2009-09-28T23:59:59.000Z

    Recharge provides the primary driving force for transporting contaminants from the vadose zone to underlying aquifer systems. Quantification of recharge rates is important for assessing contaminant transport and fate and for evaluating remediation alternatives. This report describes the status of soil water balance and recharge monitoring performed by Pacific Northwest National Laboratory at the Hanford Site for Fiscal Year 2009. Previously reported data for Fiscal Years 2004 - 2008 are updated with data collected in Fiscal Year 2009 and summarized.

  3. Soil Water Balance and Recharge Monitoring at the Hanford Site – FY 2010 Status Report

    SciTech Connect (OSTI)

    Fayer, Michael J.; Saunders, Danielle L.; Herrington, Ricky S.; Felmy, Diana

    2010-10-27T23:59:59.000Z

    This report summarizes the recharge data collected in FY 2010 at five locations on the Hanford Site in southeastern Washington State. Average monthly precipitation and temperature conditions in FY 2010 were near normal and did not present an opportunity for increased recharge. The recharge monitoring data confirmed those conditions, showing normal behavior in water content, matric head, and recharge rates. Also provided in this report is a strategy for recharge estimation for the next 5 years.

  4. Addendum to Environmental Monitoring Plan, Nevada Test Site and Support Facilities; Addendum 2

    SciTech Connect (OSTI)

    NONE

    1993-11-01T23:59:59.000Z

    This 1993 Addendum to the ``Environmental Monitoring Plan Nevada Test Site and Support Facilities -- 1991,`` Report No. DOE/NV/10630-28 (EMP) applies to the US Department of Energy`s (DOE`s) operations on the Continental US (including Amchitka Island, Alaska) that are under the purview of the DOE Nevada Operations Office (DOE/NV). The primary purpose of these operations is the conduct of the nuclear weapons testing program for the DOE and the Department of Defense. Since 1951, these tests have been conducted principally at the Nevada Test Site (NTS), which is located approximately 100 miles northwest of Las Vegas, Nevada. In accordance with DOE Order 5400.1, this 1993 Addendum to the EMP brings together, in one document, updated information and/or new sections to the description of the environmental activities conducted at the NTS by user organizations, operations support contractors, and the US Environmental Protection Agency (EPA) originally published in the EMP. The EPA conducts both the offsite environmental monitoring program around the NTS and post-operational monitoring efforts at non-NTS test locations used between 1961 and 1973 in other parts of the continental US. All of these monitoring activities are conducted under the auspices of the DOE/NV, which has the stated policy of conducting its operations in compliance with both the letter and the spirit of applicable environmental statutes, regulations, and standards.

  5. Addendum to environmental monitoring plan Nevada Test Site and support facilities

    SciTech Connect (OSTI)

    NONE

    1992-11-01T23:59:59.000Z

    This 1992 Addendum to the ``Environmental Monitoring Plan Nevada Test Site and Support Facilities -- 1991,`` Report No. DOE/NV/1 0630-28 (EMP) applies to the US Department of Energy`s (DOE`s) operations on the Continental US (including Amchitka Island, Alaska) that are under the purview of the DOE Nevada Field Office (DOE/NV). The primary purpose of these operations is the conduct of the nuclear weapons testing program for the DOE and the Department of Defense. Since 1951, these tests have been conducted principally at the Nevada Test Site (NTS), which is located approximately 100 miles northwest of Las Vegas, Nevada. In accordance with DOE Order 5400.1, this 1992 Addendum to the EMP brings together, in one document, updated information and/or new sections to the description of the environmental activities conducted at the NTS by user organizations, operations support contractors, and the US Environmental Protection Agency (EPA) originally published in the EMP. The EPA conducts both the offsite environmental monitoring program around the NTS and post-operational monitoring efforts at non-NTS test locations used between 1961 and 1973 in other parts of the continental US All of these monitoring activities are conducted under the auspices of the DOE/NV, which has the stated policy of conducting its operations in compliance with both the letter and the spirit of applicable environmental statutes, regulations, and standards.

  6. Nevada National Security Site 2011 Waste Management Monitoring Report, Area 3 and Area 5 Radioactive Waste Management Site

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2012-07-31T23:59:59.000Z

    Environmental monitoring data are collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada National Security Site (NNSS). These data are associated with radiation exposure, air, groundwater, meteorology, and vadose zone. This report summarizes the 2011 environmental data to provide an overall evaluation of RWMS performance and to support environmental compliance and performance assessment (PA) activities. Some of these data (e.g., radiation exposure, air, and groundwater) are presented in other reports. Direct radiation monitoring data indicate exposure levels at the RWMSs are within the range of background levels measured at the NNSS. Slightly elevated exposure levels outside the Area 3 RWMS are attributed to nearby historical aboveground nuclear weapons tests. Air monitoring data show tritium concentrations in water vapor and americium and plutonium concentrations in air particles are only slightly above detection limits and background levels. The measured levels of radionuclides in air particulates and moisture are below derived concentration guides for these radionuclides. During the last 2 weeks of March 2011, gamma spectroscopy results for air particles showed measurable activities of iodine-131 (131I), cesium-134 (134Cs), and cesium-137 (137Cs). These results are attributed to the release of fission products from the damaged Fukushima Daiichi power plant in Japan. The remaining gamma spectroscopy results for air particulates collected at the Area 3 and Area 5 RWMS were below minimum detectable concentrations. Groundwater monitoring data indicate the groundwater in the uppermost aquifer beneath the Area 5 RWMS is not impacted by RWMS operations. Results of groundwater analysis from wells around the Area 5 RWMS were all below established investigation levels. The 86.3 millimeters (mm) (3.40 inches [in.]) of precipitation at the Area 3 RWMS during 2011 is 44% below the average of 154.1 mm (6.07 in.), and the 64.8 mm (2.55 in.) of precipitation at the Area 5 RWMS during 2011 is 47% below the average of 122.4 mm (4.82 in.). Water balance measurements indicate that evapotranspiration from the vegetated weighing lysimeter dries the soil and prevents downward percolation of precipitation more effectively than evaporation from the bare-soil weighing lysimeter. Automated vadose zone monitoring on Area 5 RWMS operational waste covers was not done during 2011 due to construction of the final evapotranspiration cover at these monitoring locations. Moisture from precipitation did not percolate below 122 centimeters (4 feet) in the vegetated final mono-layer cover on the U-3ax/bl disposal unit at the Area 3 RWMS before being removed by evapotranspiration. During 2011, there was no drainage through 2.4 meters (8 feet) of soil from the Area 3 drainage lysimeters that received only natural precipitation. Ten percent of the applied precipitation and irrigation drained from the bare-soil drainage lysimeter that received 3 times natural precipitation. All 2011 monitoring data indicate that the Area 3 and Area 5 RWMSs are performing within expectations of the model and parameter assumptions for the facility PAs.

  7. 2001 environmental monitoring report for the Bettis Atomic Power Laboratory, West Mifflin Site

    SciTech Connect (OSTI)

    NONE

    2002-12-01T23:59:59.000Z

    The 2001 results for the Bettis-Pittsburgh radiological and nonradiological environmental monitoring programs are presented. The results demonstrate that the existing procedures ensured that releases to the environment during 2001 were in accordance with applicable Federal, State, County, and local regulations. Evaluation of the environmental data indicates that current operations at the Site continue to have no adverse effect on human health and the quality of the environment. A conservative assessment of radiation exposure to the general public as a result of Site operations demonstrates that the dose received by any member of the public was well below the most restrictive dose limits established by the Environmental Protection Agency, the Nuclear Regulatory Commission, and the U.S. Department of Energy. A risk assessment of potentially exposed populations to chemical residues in the environment at the Site demonstrates that any potential risk posed by these residues is much less than the risks encountered in normal everyday life.

  8. 2003 Environmental Monitoring Report for the Bettis Atomic Power Laboratory Pittsburgh Site

    SciTech Connect (OSTI)

    None

    2003-12-31T23:59:59.000Z

    The 2003 results for the Bettis-Pittsburgh radiological and nonradiological environmental monitoring programs are presented. The results demonstrate that the existing procedures ensured that releases to the environment during 2003 were in accordance with applicable Federal, State, County, and local regulations. Evaluation of the environmental data indicates that current operations at the Site continue to have no adverse effect on human health and the quality of the environment. A conservative assessment of radiation exposure to the general public as a result of Site operations demonstrates that the dose received by any member of the public was well below the most restrictive dose limits established by the Environmental Protection Agency, the Nuclear Regulatory Commission, and the U.S. Department of Energy. A risk assessment of potentially exposed populations to chemical residues in the environment at the Site demonstrates that any potential risk posed by these residues in much less than the risks encountered in normal everyday life.

  9. 1999 environmental monitoring report for the Bettis Atomic Power Laboratory, Pittsburgh Site

    SciTech Connect (OSTI)

    None

    2000-12-01T23:59:59.000Z

    The 1999 results for the Bettis-Pittsburgh radiological and nonradiological environmental monitoring programs are presented. The results demonstrate that the existing procedures ensured that releases to the environment during 1999 were in accordance with applicable Federal, State, County, and local regulations. Evaluation of the environmental data indicates that current operations at the Site continue to have no adverse effect on human health and the quality of the environment. A conservative assessment of radiation exposure to the general public as a result of Site operations demonstrates that the dose received by any member of the public was well below the most restrictive dose limits established by the Environmental Protection Agency, the Nuclear Regulatory Commission, and the US Department of Energy. A risk assessment of potentially exposed populations to chemical residues in the environment at the Site demonstrates that these residues do not pose any significant risk to human health or the environment.

  10. 1997 environmental monitoring report for the Bettis Atomic Power Laboratory, Pittsburgh Site

    SciTech Connect (OSTI)

    NONE

    1997-12-31T23:59:59.000Z

    The 1997 results for the Bettis-Pittsburgh radiological and nonradiological environmental monitoring programs are presented. The results demonstrate that the existing procedures ensured that releases to the environment during 1997 were in accordance with applicable Federal, State, County, and local regulations. Evaluation of the environmental data indicates tat current operations at the Site continue to have no adverse effect on human health and the quality of the environment. A conservative assessment of radiation exposure to the general public as a result of Site operations demonstrates that the dose received by any member of the public was well below the most restrictive dose limits established by the Environmental Protection Agency, the Nuclear Regulatory Commission, and the US Department of Energy. A risk assessment of potentially exposed populations to chemical residues in the environment at the Site demonstrates that these residues do not pose any significant risk to human health or the environment.

  11. Nevada National Security Site 2013 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Site

    SciTech Connect (OSTI)

    Hudson, D. B.

    2014-08-19T23:59:59.000Z

    Environmental monitoring data are collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) within the Nevada National Security Site (NNSS). These data are associated with radiation exposure, air, groundwater, meteorology, and vadose zone. This report summarizes the 2013 environmental data to provide an overall evaluation of RWMS performance and to support environmental compliance and performance assessment (PA) activities. Some of these data (e.g., radiation exposure, air, and groundwater) are presented in other reports (National Security Technologies, LLC, 2013; 2014a; 2014b). Direct radiation monitoring data indicate exposure levels at the RWMSs are within the range of background levels measured at the NNSS. Slightly elevated exposure levels outside the Area 3 RWMS are attributed to nearby historical aboveground nuclear weapons tests. Air monitoring data show tritium concentrations in water vapor and americium and plutonium concentrations in air particles are close to detection limits and background levels. The measured levels of radionuclides in air particulates and moisture are below Derived Concentration Standards for these radionuclides. Groundwater monitoring data indicate the groundwater in the uppermost aquifer beneath the Area 5 RWMS is not impacted by RWMS operations. Results of groundwater analysis from wells around the Area 5 RWMS were all below established investigation levels. Leachate samples collected from the leachate collection system at the mixed low-level waste cell were below established contaminant regulatory limits. The 105.8 millimeters (mm) (4.17 inches [in.]) of precipitation at the Area 3 RWMS during 2013 is 30% below the average of 150.3 mm (5.92 in.), and the 117.5 mm (4.63 in.) of precipitation at the Area 5 RWMS during 2013 is 5% below the average of 123.6 mm (4.86 in.). Water balance measurements indicate that evapotranspiration from the vegetated weighing lysimeter dries the soil and prevents downward percolation of precipitation more effectively than evaporation from the bare-soil weighing lysimeter. Automated vadose zone monitoring on Area 5 and Area 3 RWMS cell covers show no evidence of precipitation percolating through the cover to the waste. Moisture from precipitation did not percolate below 60 centimeters (cm) (2 feet [ft]) in the vegetated final cover on the U-3ax/bl disposal unit at the Area 3 RWMS, and moisture from precipitation and irrigation did not percolate below 45 cm (1.5 ft) on the 92-Acre Area final cover. Irrigation was applied to this cover for seed germination and plant growth. During 2013, there was no drainage through 2.4 meters (8 ft) of soil from the Area 3 drainage lysimeters that received only natural precipitation. Twenty percent of the applied precipitation and irrigation drained from the bare-soil drainage lysimeter that received 3-times natural precipitation. All 2013 monitoring data indicate that the Area 3 and Area 5 RWMSs are performing within expectations of the model and parameter assumptions for the facility PAs.

  12. Nevada National Security Site 2012 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Site

    SciTech Connect (OSTI)

    Hudson, David B.

    2013-09-10T23:59:59.000Z

    Environmental monitoring data are collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada National Security Site (NNSS). These data are associated with radiation exposure, air, groundwater, meteorology, and vadose zone. This report summarizes the 2012 environmental data to provide an overall evaluation of RWMS performance and to support environmental compliance and performance assessment (PA) activities. Some of these data (e.g., radiation exposure, air, and groundwater) are presented in other reports (National Security Technologies, LLC, 2012; 2013a; 2013b). Direct radiation monitoring data indicate exposure levels at the RWMSs are within the range of background levels measured at the NNSS. Slightly elevated exposure levels outside the Area 3 RWMS are attributed to nearby historical aboveground nuclear weapons tests. Air monitoring data show tritium concentrations in water vapor and americium and plutonium concentrations in air particles are only slightly above detection limits and background levels. The measured levels of radionuclides in air particulates and moisture are below Derived Concentration Standards for these radionuclides. Groundwater monitoring data indicate the groundwater in the uppermost aquifer beneath the Area 5 RWMS is not impacted by RWMS operations. Results of groundwater analysis from wells around the Area 5 RWMS were all below established investigation levels. Leachate samples collected from the leachate collection system at the mixed low-level waste cell were below established contaminant regulatory limits. The 133.9 millimeters (mm) (5.27 inches [in.]) of precipitation at the Area 3 RWMS during 2012 is 12% below the average of 153.0 mm (6.02 in.), and the 137.6 mm (5.42 in.) of precipitation at the Area 5 RWMS during 2012 is 11% below the average of 122.4 mm (4.82 in.). Water balance measurements indicate that evapotranspiration from the vegetated weighing lysimeter dries the soil and prevents downward percolation of precipitation more effectively than evaporation from the bare-soil weighing lysimeter. Automated vadose zone monitoring on Area 5 and Area 3 RWMS cell covers show no evidence of precipitation percolating through the cover to the waste. Moisture from precipitation did not percolate below 60 centimeters (cm) (2 feet [ft]) in the vegetated final cover on the U-3ax/bl disposal unit at the Area 3 RWMS, and moisture from precipitation and irrigation did not percolate below 45 cm (1.5 ft) on the 92-Acre Area final cover. Irrigation was applied to this cover for seed germination and plant growth. During 2012, there was no drainage through 2.4 meters (8 ft) of soil from the Area 3 drainage lysimeters that received only natural precipitation. Twenty percent of the applied precipitation and irrigation drained from the bare-soil drainage lysimeter that received 3 times natural precipitation. All 2012 monitoring data indicate that the Area 3 and Area 5 RWMSs are performing within expectations of the model and parameter assumptions for the facility PAs.

  13. Evaluation of chemical sensors for in situ ground-water monitoring at the Hanford Site

    SciTech Connect (OSTI)

    Murphy, E.M.; Hostetler, D.D.

    1989-03-01T23:59:59.000Z

    This report documents a preliminary review and evaluation of instrument systems and sensors that may be used to detect ground-water contaminants in situ at the Hanford Site. Three topics are covered in this report: (1) identification of a group of priority contaminants at Hanford that could be monitored in situ, (2) a review of current instrument systems and sensors for environmental monitoring, and (3) an evaluation of instrument systems that could be used to monitor Hanford contaminants. Thirteen priority contaminants were identified in Hanford ground water, including carbon tetrachloride and six related chlorinated hydrocarbons, cyanide, methyl ethyl ketone, chromium (VI), fluoride, nitrate, and uranium. Based on transduction principles, chemical sensors were divided into four classes, ten specific types of instrument systems were considered: fluorescence spectroscopy, surface-enhanced Raman spectroscopy (SERS), spark excitation-fiber optic spectrochemical emission sensor (FOSES), chemical optrodes, stripping voltammetry, catalytic surface-modified ion electrode immunoassay sensors, resistance/capacitance, quartz piezobalance and surface acoustic wave devices. Because the flow of heat is difficult to control, there are currently no environmental chemical sensors based on thermal transduction. The ability of these ten instrument systems to detect the thirteen priority contaminants at the Hanford Site at the required sensitivity was evaluated. In addition, all ten instrument systems were qualitatively evaluated for general selectivity, response time, reliability, and field operability. 45 refs., 23 figs., 7 tabs.

  14. Annual report for RCRA groundwater monitoring projects at Hanford Site facilities for 1993

    SciTech Connect (OSTI)

    Not Available

    1994-02-01T23:59:59.000Z

    This report presents the annual hydrogeologic evaluation of 20 Resource Conservation and Recovery Act of 1976 groundwater monitoring projects and 1 nonhazardous waste facility at the US Department of Energy`s Hanford Site. Most of the projects no longer receive dangerous waste; a few projects continue to receive dangerous waste constituents for treatment, storage, or disposal. The 20 RCRA projects comprise 30 waste management units. Ten of the units are monitored under groundwater quality assessment status because of elevated levels of indicator parameters. The impact of those units on groundwater quality, if any, is being investigated. If dangerous waste or waste constituents have entered groundwater, their concentration, distribution, and rate of migration are evaluated. Groundwater is monitored at the other 20 units to detect contamination, should it occur. This report provides an interpretation of groundwater data collected at the waste management units between October 1992 and September 1993. Recent groundwater quality is also described for the 100, 200, 300, and 600 Areas and for the entire Hanford Site. Widespread contaminants include nitrate, chromium, carbon tetrachloride, tritium, and other radionuclides.

  15. Air/Superfund national technical guidance study series. Contingency plans at Superfund sites using air monitoring. Final report

    SciTech Connect (OSTI)

    Paul, R.

    1990-09-01T23:59:59.000Z

    Air emissions from remedial or removal activities at Superfund sites can potentially have a significant impact on the health and safety of the individuals living and working around the site. Contingency planning, as defined in the document, encompasses the air program established to protect offsite populations. Monitors for this purpose are usually located at the site perimeter or within the community. The purpose of the document is to: (1) illustrate contingency air monitoring with examples from past projects, and (2) describe how a contingency air monitoring program may be established. The document is illustrative in nature because the application of this type of monitoring is not consistently prescribed in rules and regulations, but is based on professional judgment applied in an analysis of individual sites and particular circumstances.

  16. Mitigation and monitoring plan for impacted wetlands at the Gunnison UMTRA Project site, Gunnison, Colorado

    SciTech Connect (OSTI)

    Not Available

    1992-06-01T23:59:59.000Z

    The U.S Department of Energy (DOE) administers the Uranium Mill Tailings Remedial Action (UMTRA) Project. The UMTRA Project is the result of the Uranium Mill Tailings Radiation Control Act(UMTRA) which was passed in response to the public`s concern over the potential public health hazards related to uranium mill tailings and associated contaminated material at abandoned or otherwise uncontrolled inactive processing sites throughout the United States. The Gunnison, Colorado abandoned uranium mill site is one of the sites slated for cleanup by the DOE under authority of UMTRA. The contaminated material at this site will be transported to a disposal site on US Bureau of Land Management (BLM) land east of Gunnison. Remedial action activities will temporarily disturb 0.8 acre and permanently eliminate 5.1 acres of wetlands. This report describes the proposed mitigation plan for the 5.9 acres of impacted wetlands. In conjunction with the mitigation of the permanently impacted wetlands through the enhancement of wetland and adjacent riparian areas, impacts to wildlife as a result of this project will also be mitigated. However, wildlife mitigation is not the focus of this document and is covered in relevant BLM permits for this project. This plan proposes the enhancement of a 3:1 ratio of impacted wetlands in accordance with US Environmental Protection Agency guidelines, plus the enhancement of riparian areas for wildlife mitigation. Included in this mitigation plan is a monitoring plan to ensure that the proposed measures are working and being maintained.

  17. Lessons from five years of vegetation monitoring on the Nevada Test Site

    SciTech Connect (OSTI)

    Hunter, R.B.

    1992-10-01T23:59:59.000Z

    In 1987 the US Department of Energy funded a formal, extensive monitoring program for the flora and fauna on the Nevada Test Site. The goal was to understand and record changes with time In the distribution and abundance of the plants and animals. The need to detect changes, rather than do a one-time characterization, required careful selection of parameters and the use of permanent plots to distinguish spatial from temporal variability. Repeated measurements of the same plots revealed errors and imprecision which required changes in training and data collection techniques. Interpretation of trends after several years suggested it will be important to monitor not only changes, but causes of change, such as soil moisture and herbivory. Finally, the requirement for records to be available over long periods of time poses problems of archiving and publication. This report consists of viewgraphs presenting the findings of the study.

  18. Water quality monitoring at the Hoe Creek test site: review and preliminary conclusions

    SciTech Connect (OSTI)

    Wang, F.T.

    1983-01-01T23:59:59.000Z

    Post-burn monitoring of the ground water near to the Hoe creek underground coal gasification site showed that a broad range of gasification products had been introduced into the water system. Although many of these contaminants were eventually absorbed by the surrounding coal, some chemicals continued to appear in the water in concentrations higher than pre-test levels for several years after gasification. Possible mechanisms by which the contaminants entered the ground water include: (1) leakage of pyrolysis products; (2) post-burn leaching of coal ash and overburden rubble by returning ground water; and (3) dissolution of minerals outside the cavity by the CO/SUB/2 generated during gasification.

  19. Remedial Action Plan and Site Design for Stabilization of the Inactive Uranium Mill Tailings Sites at Slick Rock, Colorado: Appendix B to Attachment 3, Lithologic logs and monitor well construction information. Final report

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    This volume contains lithology logs and monitor well construction information for: NC processing site; UC processing site; and Burro Canyon disposal site. This information pertains to the ground water hydrology investigations which is attachment 3 of this series of reports.

  20. Weldon Spring storage site environmental-monitoring report for 1979 and 1980

    SciTech Connect (OSTI)

    Weidner, R B; Boback, M W

    1982-04-19T23:59:59.000Z

    The US Department of Energy (DOE) Weldon Spring Site consists of two separate radioactive waste storage properties: a 52-acre site which is a remnant of the Weldon Spring Feed Materials Plant; and a 9-acre abandoned rock quarry. The larger property has four pits which contain settled sludge from uranium and thorium processing operations. At the quarry, part of the excavation contains contaminated building rubble, scrap, and various residues. During 1979 and 1980 these storage locations were managed by NLO, Inc., contract operator of the DOE Feed Materials Production Center. Air and water samples were collected to provide information about the transfer of radionuclides in the offsite environment. Monitoring results show that uranium and radium concentrations in offsite surface and well water were within DOE Guide values for uncontrolled areas. At offsite locations, radon-222 concentrations in air were well within the Guide value.

  1. Integrated Closure and Monitoring Plan for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site

    SciTech Connect (OSTI)

    S. E. Rawlinson

    2001-09-01T23:59:59.000Z

    Bechtel Nevada (BN) manages two low-level Radioactive Waste Management Sites (RWMSs) (one site is in Area 3 and the other is in Area 5) at the Nevada Test Site (NTS) for the U.S. Department of Energy's (DOE's) National Nuclear Security Administration Nevada Operations Office (NNSA/NV). The current DOE Order governing management of radioactive waste is 435.1. Associated with DOE Order 435.1 is a Manual (DOE M 435.1-1) and Guidance (DOE G 435.1-1). The Manual and Guidance specify that preliminary closure and monitoring plans for a low-level waste (LLW) management facility be developed and initially submitted with the Performance Assessment (PA) and Composite Analysis (CA) for that facility. The Manual and Guidance, and the Disposal Authorization Statement (DAS) issued for the Area 3 RWMS further specify that the preliminary closure and monitoring plans be updated within one year following issuance of a DAS. This Integrated Closure and Monitoring Plan (ICMP) fulfills both requirements. Additional updates will be conducted every third year hereafter. This document is an integrated plan for closing and monitoring both RWMSs, and is based on guidance issued in 1999 by the DOE for developing closure plans. The plan does not follow the format suggested by the DOE guidance in order to better accommodate differences between the two RWMSs, especially in terms of operations and site characteristics. The modification reduces redundancy and provides a smoother progression of the discussion. The closure and monitoring plans were integrated because much of the information that would be included in individual plans is the same, and integration provides efficient presentation and program management. The ICMP identifies the regulatory requirements, describes the disposal sites and the physical environment where they are located, and defines the approach and schedule for both closing and monitoring the sites.

  2. Mitigation and Monitoring Plan for impacted wetlands at the Gunnison UMTRA Project site, Gunnison, Colorado. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1994-12-01T23:59:59.000Z

    The Gunnison, Colorado, abandoned uranium mill site is one site being cleaned up by the DOE under UMTRCA authority. This site`s contaminated material is being transported to a disposal site on US Bureau of Land Management (BLM) land east of Gunnison. Remedial action activities have temporarily disturbed 0.8 acre (ac) (0.3 hectares [ha]) of wetlands and permanently eliminated 4.3 ac (1.7 ha). As required by the Clean Water Act, the US Army Corps of Engineers (USACE) prepared a Section 404 Permit that addresses the loss of wetlands as a result of remedial action at the Gunnison UMTRA Project site. The 404 permit includes this report as an attachment and it describes the wetland mitigation and monitoring plan. The DOE formulated this plan in consultation with the BLM and the USACE. This report represents a revised version of the mitigation and monitoring plan (DOE, 1992b).

  3. 1999 data report: Groundwater monitoring program Area 5 Radioactive Waste Management Site

    SciTech Connect (OSTI)

    Yvonne Townsend

    2000-03-01T23:59:59.000Z

    This report is a compilation of the annual 1999 groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS). Contamination indicator data are presented in control chart and tabular form with investigation levels indicated. Gross water chemistry data are presented in graphical and tabular form. Other information in the report includes, the Cumulative Chronology for Area 5 RWMS Groundwater Monitoring Program, a brief description of the site hydrogeology and the groundwater sampling procedure. Wells Ue5PW-1, Ue5PW-2, and Ue5PW-3 were sampled semiannually for pH, specific conductance, major cations/anions, metals, tritium, total organic carbon (TOC), and total organic halogen (TOX). Results indicate that there has been no measurable impact to the uppermost aquifer from the Resource Conservation and Recovery Act (RCRA) regulated unit within the Area 5 RWMS. Groundwater elevation was monitored quarterly with no major changes noted. There continues to be an extremely small gradient to the northeast with a flow velocity less than one foot per year; however, this is subject to change because the wells have a similar groundwater elevation.

  4. Selection of Sampling Pumps Used for Groundwater Monitoring at the Hanford Site

    SciTech Connect (OSTI)

    Schalla, Ronald; Webber, William D.; Smith, Ronald M.

    2001-11-05T23:59:59.000Z

    The variable frequency drive centrifugal submersible pump, Redi-Flo2a made by Grundfosa, was selected for universal application for Hanford Site groundwater monitoring. Specifications for the selected pump and five other pumps were evaluated against current and future Hanford groundwater monitoring performance requirements, and the Redi-Flo2 was selected as the most versatile and applicable for the range of monitoring conditions. The Redi-Flo2 pump distinguished itself from the other pumps considered because of its wide range in output flow rate and its comparatively moderate maintenance and low capital costs. The Redi-Flo2 pump is able to purge a well at a high flow rate and then supply water for sampling at a low flow rate. Groundwater sampling using a low-volume-purging technique (e.g., low flow, minimal purge, no purge, or micropurgea) is planned in the future, eliminating the need for the pump to supply a high-output flow rate. Under those conditions, the Well Wizard bladder pump, manufactured by QED Environmental Systems, Inc., may be the preferred pump because of the lower capital cost.

  5. Development of a 1 x N Fiber Optic Sensor Array for Carbon Sequestration Site Monitoring

    SciTech Connect (OSTI)

    Repasky, Kevin

    2013-09-30T23:59:59.000Z

    A fiber sensor array for sub-surface CO{sub 2} concentrations measurements was developed for monitoring geologic carbon sequestration sites. The fiber sensor array uses a single temperature tunable distributed feedback (DFB) laser operating with a nominal wavelength of 2.004 􀁐m. Light from this DFB laser is direct to one of the 4 probes via an in-line 1 x 4 fiber optic switch. Each of the 4 probes are buried and allow the sub-surface CO{sub 2} to enter the probe through Millipore filters that allow the soil gas to enter the probe but keeps out the soil and water. Light from the DFB laser interacts with the CO{sub 2} before it is directed back through the in-line fiber optic switch. The DFB laser is tuned across two CO{sub 2} absorption features where a transmission measurement is made allowing the CO{sub 2} concentration to be retrieved. The fiber optic switch then directs the light to the next probe where this process is repeated allowing sub-surface CO{sub 2} concentration measurements at each of the probes to be made as a function of time. The fiber sensor array was deployed for fifty-eight days beginning June 19, 2012 at the Zero Emission Research Technology (ZERT) field site where sub-surface CO{sub 2} concentrations were monitored. Background measurements indicate the fiber sensor array can monitor background levels as low as 1,000 parts per million (ppm). A thirty four day sub-surface release of 0.15 tones CO{sub 2}/day began on July 10, 2012. The elevated subsurface CO{sub 2} concentration was easily detected by each of the four probes with values ranging to over 60,000 ppm, a factor of greater than 6 higher than background measurements. The fiber sensor array was also deploy at the Big Sky Carbon Sequestration Partnership (BSCSP) site in north-central Montana between July 9th and August 7th, 2013 where background measurements were made in a remote sequestration site with minimal infrastructure. The project provided opportunities for two graduate students to participate in research directly related to geologic carbon sequestration. Furthermore, commercialization of the technology developed is being pursued with five different companies via the Department of energy SBIR/STTR program

  6. Journal of Physical Oceanography EARLY ONLINE RELEASE

    E-Print Network [OSTI]

    Rhode Island, University of

    version of the manuscript may be downloaded, distributed, and cited, but please be aware METEOROLOGICAL SOCIETY #12;Generated using version 3.1.2 of the official AMS LATEX template Propagation. Donohue Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island 3 Hiroshi

  7. Jason C Smith Department of Physical Oceanography

    E-Print Network [OSTI]

    Yu, Lisan

    Jason C Smith Department of Physical Oceanography Woods Hole Oceanographic Institution Woods Hole, Lord, Pritchard, Smith. 2001. "A Compact Coastal Ocean Observing System for Kernal Blitz 2001". Woods Hole Oceanographic Institution Technical Report 2001-18, 57 pages Plueddemann, Ostrom, Galbraith, Smith

  8. Oceanography Vol.21, No.490 Northern End

    E-Print Network [OSTI]

    Hickey, Barbara

    by submarine canyons. Large-scale upwelling resulting from coastal-trapped waves forced in the areas,rockville,Md20849-1931,USa. #12;Oceanography december 2008 91 aBStraCt. Although scientists have long for the upwelling of deep nutrients that initiates phytoplankton blooms, the California Current System (CCS

  9. Oceanography June 200450 Colored Dissolved Organic

    E-Print Network [OSTI]

    Oregon, University of

    . Sunlight striking the ocean surface penetrates into the water column and interacts with the dissolvedOceanography June 200450 Colored Dissolved Organic in the Coastal Ocean A N O P T I C A L TO O L F usage that all three words are individu- ally synonymous for "ocean." Poems, song titles, and movies

  10. Atmospheric corrosion monitoring at the US Department of Energy`s Oak Ridge K-25 Site

    SciTech Connect (OSTI)

    Rao, M.

    1995-12-31T23:59:59.000Z

    Depleted uranium hexafluoride (UF{sub 6}) at the US Department of Energy`s K-25 Site at Oak Ridge, TN has been stored in large steel cylinders which have undergone significant atmospheric corrosion damage over the last 35 years. A detailed experimental program to characterize and monitor the corrosion damage was initiated in 1992. Large amounts of corrosion scale and deep pits are found to cover cylinder surfaces. Ultrasonic wall thickness measurements have shown uniform corrosion losses up to 20 mils (0.5 mm) and pits up to 100 mils (2.5 mm) deep. Electrical resistance corrosion probes, time-of-wetness sensors and thermocouples have been attached to cylinder bodies. Atmospheric conditions are monitored using rain gauges, relative humidity sensors and thermocouples. Long-term (16 years) data are being obtained from mild steel corrosion coupons on test racks as well as attached directly to cylinder surfaces. Corrosion rates have been found to intimately related to the times-of-wetness, both tending to be higher on cylinder tops due to apparent sheltering effects. Data from the various tests are compared, discrepancies are discussed and a pattern of cylinder corrosion as a function of cylinder position and location is described.

  11. Water-quality monitoring at the Hoe Creek test site: review and preliminary conclusions

    SciTech Connect (OSTI)

    Wang, F T; Mead, S W; Stuermer, D H

    1982-05-20T23:59:59.000Z

    It has been shown that underground coal gasification (UCG) may introduce a broad range of residual gasification products into the groundwater of a coal aquifer. Sorption of many contaminants by the coal itself is an important factor in restricting the migration of these contaminants in the ground water. However, field studies, conducted at Lawrence Livermore National Laboratory's Hoe Creek site, have shown that sorption of organic compounds by coal is not as effective as expected, perhaps because the coal surface area is limited. Furthermore, if severe roof collapse has taken place during gasification, non-coal aquifers located above the gasified coal seam may be interconnected with the coal aquifer, and contaminants may enter these non-coal aquifers, in which sorption is even less effective. The Hoe Creek II and III experiments have provided opportunities to study the contamination of a sand aquifer located above a gasified coal seam in a hydrological recharge area. Preliminary results indicate that the water in the overlying sand aquifer is much less contaminated with organic compounds than the water in the gasified coal aquifer. In conducting these field investigations, valuable lessons ere learned concerning groundwater monitoring. A suggested monitoring strategy is discussed.

  12. Ground-water monitoring at the Hanford Site, January-December 1984

    SciTech Connect (OSTI)

    Cline, C.S.; Rieger, J.T.; Raymond, J.R.

    1985-09-01T23:59:59.000Z

    This program is designed to evaluate existing and potential pathways of exposure to radioactivity and hazardous chemicals from site operations. This document contains an evaluation of data collected during CY 1984. During 1984, 339 monitoring wells were sampled at various times for radioactive and nonradioactive constituents. Two of these constituents, specifically, tritium and nitrate, have been selected for detailed discussion in this report. Tritium and nitrate in the primary plumes originating from the 200 Areas continue to move generally eastward toward the Columbia River in the direction of ground-water flow. The movement within these plumes is indicated by changes in trends within the analytical data from the monitoring wells. No discernible impact on ground water has yet been observed from the start-up of the PUREX plant in December 1983. The shape of the present tritium plume is similar to those described in previous ground-water monitoring reports, although slight changes on the outer edges have been noted. Radiological impacts from two potential pathways for radionuclide transport in ground water to the environment are discussed in this report. The pathways are: (1) human consumption of ground water from onsite wells, and (2) seepage of ground water into the Columbia River. Concentrations of tritium in spring samples that were collected and analyzed in 1983, and in wells sampled adjacent to the Columbia River in 1984 confirmed that constituents in the ground water are entering the river via springs and subsurface flow. The primary areas where radionuclides enter the Columbia River via ground-water flow are the 100-N and 300 Areas and the shoreline adjacent to the Hanford Townsite. 44 refs., 25 figs., 11 tabs.

  13. NRC Monitoring of Salt Waste Disposal at the Savannah River Site - 13147

    SciTech Connect (OSTI)

    Pinkston, Karen E.; Ridge, A. Christianne; Alexander, George W.; Barr, Cynthia S.; Devaser, Nishka J.; Felsher, Harry D. [U.S. Nuclear Regulatory Commission (United States)] [U.S. Nuclear Regulatory Commission (United States)

    2013-07-01T23:59:59.000Z

    As part of monitoring required under Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 (NDAA), the NRC staff reviewed an updated DOE performance assessment (PA) for salt waste disposal at the Saltstone Disposal Facility (SDF). The NRC staff concluded that it has reasonable assurance that waste disposal at the SDF meets the 10 CFR 61 performance objectives for protection of individuals against intrusion (chap.61.42), protection of individuals during operations (chap.61.43), and site stability (chap.61.44). However, based on its evaluation of DOE's results and independent sensitivity analyses conducted with DOE's models, the NRC staff concluded that it did not have reasonable assurance that DOE's disposal activities at the SDF meet the performance objective for protection of the general population from releases of radioactivity (chap.61.41) evaluated at a dose limit of 0.25 mSv/yr (25 mrem/yr) total effective dose equivalent (TEDE). NRC staff also concluded that the potential dose to a member of the public is expected to be limited (i.e., is expected to be similar to or less than the public dose limit in chap.20.1301 of 1 mSv/yr [100 mrem/yr] TEDE) and is expected to occur many years after site closure. The NRC staff used risk insights gained from review of the SDF PA, its experience monitoring DOE disposal actions at the SDF over the last 5 years, as well as independent analysis and modeling to identify factors that are important to assessing whether DOE's disposal actions meet the performance objectives. Many of these factors are similar to factors identified in the NRC staff's 2005 review of salt waste disposal at the SDF. Key areas of interest continue to be waste form and disposal unit degradation, the effectiveness of infiltration and erosion controls, and estimation of the radiological inventory. Based on these factors, NRC is revising its plan for monitoring salt waste disposal at the SDF in coordination with South Carolina Department of Health and Environmental Control (SCDHEC). DOE has completed or begun additional work related to salt waste disposal to address these factors. NRC staff continues to evaluate information related to the performance of the SDF and has been working with DOE and SCDHEC to resolve NRC staff's technical concerns. (authors)

  14. Installation of the Monitoring Site at the Los Alamos Canyon Low-Head Weir

    SciTech Connect (OSTI)

    W.J.Stone; D.L.Newell

    2002-08-01T23:59:59.000Z

    The Cerro Grande fire of 2000 had an enormously adverse impact on and around Los Alamos National Laboratory (LANL). Immediately there were concerns about the potential for enhanced runoff/offsite transport of contaminant-laden sediments because of watershed damage. In response to this concern, the U.S. Army Corps of Engineers installed a low-head weir in Los Alamos Canyon near the White Rock ''Y.'' However, the occurrence of fractured basalt at the surface and ponding of runoff behind the weir enhance the possibility of downward migration of contaminants. Therefore, three boreholes were drilled on the south bank of the channel by LANL to provide a means of monitoring the impact of the Cerro Grande fire and of the weir on water quality beneath the canyon. The boreholes and associated instrumentation are referred to as the Los Alamos Weir Site (LAWS). The three boreholes include a vertical hole and two angled holes (one at approximately 45{sup o} and one at approximately 30{sup o}). Since the basalt is highly fractured, the holes would not stay open. Plans called for inserting flexible liners into all holes. However, using liners in such unstable ground was problematic and, in the angled holes, required deployment through scalloped or perforated polyvinyl chloride (PVC) shield. The vertical hole (LAWS-01), drilled to a total depth of 281.5 ft below ground surface (bgs), was completed as a 278-ft deep monitoring well with four screens: one targeting shallow perched water encountered at 80 ft, two in what may correspond to the upper perched zone at regional groundwater characterization well R-9i (1/4 mi. to the west), and one in what may correspond to the lower perched zone at R-9i. A Water FLUTe{trademark} system deployed in the well isolates the screened intervals; associated transducers and sampling ports permit monitoring head and water quality in the screened intervals. The second hole (LAWS-02), drilled at an angle of 43{sup o} from horizontal, is 156 ft long and bottoms at a depth of 106 ft bgs. The shallow perched water seen at LAWS-01 (at 80 ft) was not encountered. A scalloped PVC shield was installed to keep the hole open while permitting flexible liners to contact the borehole wall. It was initially instrumented with a color-reactive liner to locate water-producing fractures. That was later replaced by an absorbent liner to collect water from the vadose zone. The third hole (LAWS-03), drilled at an angle of 34{sup o} from horizontal, initially had a length of 136 ft and bottomed at a depth of 76 ft bgs. However, the PVC shield rotated during installation such that scallops were at the top and rock debris repeatedly fell in, preventing liner insertion. While pulling the scalloped PVC to replace it with a perforated PVC shield that did not require orientation, the scalloped PVC broke and only 85 ft was recovered. The hole was blocked at that position and could not be drilled out with the equipment available. Thus, LAWS-03 was completed at a length of 85 ft and a depth of 40 ft bgs. An absorbent liner was installed at the outset in preparation for the 2002 summer monsoon season. The entire monitoring site is enclosed inside a locked, 8-ft-high chainlink fence for security. The liners used in the angled boreholes carry electrical wire pairs to detect soil-moisture changes. Surface-water data are provided by stream gages above and below the weir site. Depth of ponding behind the weir is provided by a gage installed just behind the structure.

  15. Scripps Institution of Oceanography Contributions Index Vols. 1-39, 1938-1969

    E-Print Network [OSTI]

    Anonymous,

    1970-01-01T23:59:59.000Z

    formed during an underwater nuclear test •..•• Author/John D. Isaacs). Nuclear science and oceanography ••••••••John D. Isaacs) Nuclear science and oceanography . •. •.•

  16. Using Analytical and Numerical Modeling to Assess the Utility of Groundwater Monitoring Parameters at Carbon Capture, Utilization, and Storage Sites

    E-Print Network [OSTI]

    Texas at Austin, University of

    -D transport and mixing of fluids .The research was conducted at a CO2 enhanced oil recovery (EOR to commercial geologic sequestration (GS) to help reduce anthropogenic CO2 emissions. While CCUS at brownfield networks. Extensive work has been done on developing monitoring networks at GS sites for CO2 accounting

  17. SITE CHARACTERIZATION AND MONITORING DATA FROM THE AREA 5 PILOT WELLS

    SciTech Connect (OSTI)

    BECHTEL NEVADA; U.S. DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECURITY ADMINISTRATION NEVADA SITE OFFICE

    2005-09-01T23:59:59.000Z

    Three exploratory boreholes were drilled and completed to the uppermost alluvial aquifer in Area 5 of the Nevada Test Site, Nye County, Nevada, in 1992. The boreholes and associated investigations were part of the Area 5 Site Characterization Program developed to meet data needs associated with regulatory requirements applicable to the disposal of low-level, mixed, and high-specific-activity waste at this site. This series of boreholes was specifically designed to characterize the hydrogeology of the thick vadose zone and to help define the water quality and hydraulic properties of the uppermost aquifer. Wells UE5PW-1, UE5PW-2, and UE5PW-3 are located in a triangular array near the southeast, northeast, and northwest corners, respectively, of the approximately 2.6-square-kilometer Area 5 Radioactive Waste Management Site to give reasonable spatial coverage for sampling and characterization, and to help define the nearly horizontal water table. Two of the wells, UE5PW-1 and UE5PW-2, penetrated only unconsolidated alluvial materials. The third well, located closer to the margin of the basin, penetrated both alluvium and underlying ash-flow and bedded tuff units. The watertable was encountered at the elevation of approximately 734 meters. The results of laboratory testing of core and drill cuttings samples indicate that the mineralogical, material, and hydrologic properties of the alluvium are very similar within and between boreholes. Additional tests on the same core and drill cuttings samples indicate that hydrologic conditions within the alluvium are also similar between pilot wells. Both core and drill cuttings samples are dry (less than 10 percent water content by weight) throughout the entire unsaturated section of alluvium, and water content increases slightly with depth in each borehole. Water potential measurements on core samples show a large positive potential gradient (water tends to move upward, rather than downward) to a depth of approximately 30.5 meters in each borehole, and a nearly zero potential gradient throughout the remaining portion of the vadose zone. These hydrologic condition data and hydrologic property data indicate that little net downward liquid flow is occurring (if any) through the thick vadose zone. Conversely, gas flow by diffusion, and possibly by advection, may be an important transport mechanism. Environmental tracer measurements made on water extracted from geologic samples suggest that water vapor in the upper portion of the vadose zone is moving upward in response to evaporative demand of the present arid climate. Preliminary water quality data indicate that the key hazardous and radioactive constituents do not exceed appropriate standards. Monitoring instruments and equipment were installed in each pilot well for making in-situ measurements of key hydrologic and pneumatic parameters and to monitor change in these parameters over time.

  18. Long-term hydrologic monitoring program. Rulison Event Site, Grand Valley, Colorado

    SciTech Connect (OSTI)

    Not Available

    1984-01-01T23:59:59.000Z

    The Hydrologic Program Advisory Group reviewed the Long-Term Hydrologic Monitoring Program proposed for the Rulison site at their December 12, 1971, meeting. Samples are collected annually, at about the same dates each year. The hydraulic head, temperature in /sup 0/C, pH, and electrical conductance are recorded at the time of sample collection. Prior to October 1, 1979, each sample was analyzed for gamma emitters and tritium. Gross alpha and beta radioactivity measurements were made on all samples collected. After October 1, 1979, these analyses were discontinued in favor of high-resolution gamma spectrometry using a GeLi detector. For each sample location, samples of raw water and filtered and acidified watar are collected. The raw water samples are analyzed for tritium by the conventional method. Those samples with concentrations that are below the detection level for this method are then analyzed by the enrichment method. Portions of the filtered and acidified samples are analyzed for gamma emitters.

  19. PASSIVE WIRELESS SURFACE ACOUSTIC WAVE SENSORS FOR MONITORING SEQUESTRATION SITES CO2 EMISSION

    SciTech Connect (OSTI)

    Wang, Yizhong; Chyu, Minking; Wang, Qing-Ming

    2012-11-30T23:59:59.000Z

    University of Pittsburgh’s Transducer lab has teamed with the U.S. Department of Energy’s National Energy Technology Laboratory (DOE NETL) to conduct a comprehensive study to develop/evaluate low-cost, efficient CO2 measuring technologies for geological sequestration sites leakage monitoring. A passive wireless CO2 sensing system based on surface acoustic wave technology and carbon nanotube nanocomposite was developed. Surface acoustic wave device was studied to determine the optimum parameters. Delay line structure was adopted as basic sensor structure. CNT polymer nanocomposite was fabricated and tested under different temperature and strain condition for natural environment impact evaluation. Nanocomposite resistance increased for 5 times under pure strain, while the temperature dependence of resistance for CNT solely was -1375ppm/?. The overall effect of temperature on nanocomposite resistance was -1000ppm/?. The gas response of the nanocomposite was about 10% resistance increase under pure CO2. The sensor frequency change was around 300ppm for pure CO2. With paralyne packaging, the sensor frequency change from relative humidity of 0% to 100% at room temperature decreased from over 1000ppm to less than 100ppm. The lowest detection limit of the sensor is 1% gas concentration, with 36ppm frequency change. Wireless module was tested and showed over one foot transmission distance at preferred parallel orientation.

  20. Water-quality monitoring at the Hoe Creek test site: review and preliminary conclusions

    SciTech Connect (OSTI)

    Wang, F.T.; Mead, S.W.; Stuermer, D.H.

    1983-04-16T23:59:59.000Z

    It has been shown that underground coal gasification (UCG) may introduce a broad range of residual gasification products into the groundwater of a coal aquifer. Sorption of many contaminants by the coal itself is an important factor in restricting the migration of these contaminants in the groundwater. However, our field studies at the Lawrence Livermore National Laboratory (LLNL) Hoe Creek site in northeastern Wyoming have shown that sorption of organic compounds by coal is not as effective as expected, perhaps because the coal surface area is limited. Furthermore, if severe roof collapse has taken place during gasification, non-coal aquifers located above the gasified coal seam may be interconnected with the coal aquifer. Contaminants may enter these non-coal aquifers, in which sorption is even less effective. The Hoe Creek II and III experiments have enabled us to study the contamination of a sand aquifer located above a gasified coal seam in a hydrological recharge area. Our preliminary results indicate that the water in the overlying sand aquifer is much less contaminated with organic compounds than that in the gasified coal aquifer. In conducting these field investigations, we have also learned valuable lessons concerning a strategy for groundwater monitoring. 21 figures.

  1. Shifting the Paradigm for Long Term Monitoring at Legacy Sites to Improve Performance while Reducing Costs - 13422

    SciTech Connect (OSTI)

    Eddy-Dilek, Carol A; Looney, Brian B. [Savannah River National Laboratory (United States)] [Savannah River National Laboratory (United States); Gaughan, Thomas; Kmetz, Thomas [Savannah River Nuclear Solutions, LLC (United States)] [Savannah River Nuclear Solutions, LLC (United States); Seaman, John [Savannah River Ecology Laboratory (United States)] [Savannah River Ecology Laboratory (United States)

    2013-07-01T23:59:59.000Z

    A major issue facing many government and private industry sites that were previously contaminated with radioactive and chemical wastes is that often the sites cannot be cleaned up enough to permit unrestricted human access. These sites will require long-term management, in some cases indefinitely, leaving site owners with the challenge of protecting human health and environmental quality in a cost effective manner. Long-term monitoring of groundwater contamination is one of the largest projected costs in the life cycle of environmental management at the Savannah River Site (SRS), the larger DOE complex, and many large federal and private sites. Currently, most monitoring strategies are focused on laboratory measurements of contaminants measured in groundwater samples collected from wells. This approach is expensive, and provides limited and lagging information about the effectiveness of cleanup activities and the behavior of the residual contamination. Over the last twenty years, DOE and other federal agencies have made significant investments in the development of various types of sensors and strategies that would allow for remote analysis of contaminants in groundwater, but these approaches do not promise significant reductions in risk or cost. Scientists at SRS have developed a new paradigm to simultaneously improve the performance of long term monitoring systems while lowering the overall cost of monitoring. This alternative approach incorporates traditional point measurements of contaminant concentration with measurements of controlling variables including boundary conditions, master variables, and traditional plume/contaminant variables. Boundary conditions are the overall driving forces that control plume movement and therefore provide leading indication to changes in plume stability. These variables include metrics associated with meteorology, hydrology, hydrogeology, and land use. Master variables are the key variables that control the chemistry of the groundwater system, and include redox variables (ORP, DO, chemicals), pH, specific conductivity, biological community (breakdown/decay products), and temperature. A robust suite of relatively inexpensive tools is commercially available to measure these variables. Traditional plume/contaminant variables are various measures of contaminant concentration including traditional analysis of chemicals in groundwater samples. An innovative long term monitoring strategy has been developed for acidic or caustic groundwater plumes contaminated with metals and/or radionuclides. Not only should the proposed strategy be more effective at early identification of potential risks, this strategy should be significantly more cost effective because measurement of controlling boundary conditions and master variables is relatively simple. These variables also directly reflect the evolution of the plume through time, so that the monitoring strategy can be modified as the plume 'ages'. This transformational long-term monitoring paradigm will generate significant cost savings to DOE, other federal agencies and industry and will provide improved performance and leading indicators of environmental management performance. (authors)

  2. Tritium monitoring in groundwater and evaluation of model predictions for the Hanford Site 200 Area Effluent Treatment Facility

    SciTech Connect (OSTI)

    Barnett, D.B.; Bergeron, M.P.; Cole, C.R.; Freshley, M.D.; Wurstner, S.K.

    1997-08-01T23:59:59.000Z

    The Effluent Treatment Facility (ETF) disposal site, also known as the State-Approved Land Disposal Site (SALDS), receives treated effluent containing tritium, which is allowed to infiltrate through the soil column to the water table. Tritium was first detected in groundwater monitoring wells around the facility in July 1996. The SALDS groundwater monitoring plan requires revision of a predictive groundwater model and reevaluation of the monitoring well network one year from the first detection of tritium in groundwater. This document is written primarily to satisfy these requirements and to report on analytical results for tritium in the SALDS groundwater monitoring network through April 1997. The document also recommends an approach to continued groundwater monitoring for tritium at the SALDS. Comparison of numerical groundwater models applied over the last several years indicate that earlier predictions, which show tritium from the SALDS approaching the Columbia River, were too simplified or overly robust in source assumptions. The most recent modeling indicates that concentrations of tritium above 500 pCi/L will extend, at most, no further than {approximately}1.5 km from the facility, using the most reasonable projections of ETF operation. This extent encompasses only the wells in the current SALDS tritium-tracking network.

  3. Monitoring the Performance of an Alternative Landfill Cover at the Monticello, Utah, Uranium Mill Tailings Disposal Site

    SciTech Connect (OSTI)

    Waugh, W.J.; Kastens, M.K.; Sheader, L.R.L. [Environmental Sciences Laboratory, Grand Junction, CO (United States); Benson, C.H. [University of Wisconsin, Madison, WI (United States); Albright, W.H. [Desert Research Institute, Reno, NV (United States); Mushovic, P.S. [U.S. Environmental Protection Agency, Denver, CO (United States)

    2008-07-01T23:59:59.000Z

    The U.S. Department of Energy Office of Legacy Management (DOE) and the U.S. Environmental Protection Agency (EPA) collaborated on the design and monitoring of an alternative cover for the Monticello uranium mill tailings disposal cell, a Superfund site in southeastern Utah. Ground-water recharge is naturally limited at sites like Monticello where thick, fine-textured soils store precipitation until evaporation and plant transpiration seasonally return it to the atmosphere. The cover at Monticello uses local soils and a native plant community to mimic the natural soil water balance. The cover is fundamentally an evapotranspiration (ET) design with a capillary barrier. A 3-hectare drainage lysimeter was embedded in the cover during construction of the disposal cell in 2000. The lysimeter consists of a geo-membrane liner below the capillary barrier that directs percolation water to a monitoring system. Soil water storage is determined by integration of point water content measurements. Meteorological parameters are measured nearby. Plant cover, shrub density, and leaf area index (LAI) are monitored annually. The cover performed well over the 7-year monitoring period (2000-2007). The cumulative percolation was 4.2 mm (0.6 mm yr{sup -1}), satisfying an EPA goal of an average percolation of <3.0 mm yr{sup -1}. Almost all percolation can be attributed to the exceptionally wet winter and spring of 2004-2005 when soil water content slightly exceeded the water storage capacity of the cover. The diversity, percent cover, and LAI of vegetation increased over the monitoring period, although the density of native shrubs that extract water from deeper in the cover has remained less than revegetation targets. DOE and EPA are applying the monitoring results to plan for long-term surveillance and maintenance and to evaluate alternative cover designs for other waste disposal sites. (authors)

  4. Internal Technical Report, 1981 Annual Report, An Analysis of the Response of the Raft River Geothermal Site Monitor Wells

    SciTech Connect (OSTI)

    Thurow, T.L.; Large, R.M.; Allman, D.W.; Tullis, J.A.; Skiba, P.A.

    1982-04-01T23:59:59.000Z

    A groundwater monitoring program has been established on the Raft River Geothermal Site since 1978. The objective of this program is to document possible impacts that may be caused by geothermal production and injection on the shallow aquifers used for culinary and irrigation purposes. This annual progress report summarizes data from 12 monitor wells during 1981. These data are compared with long-term trends and are correlated with seasonal patterns, irrigation water use and geothermal production and testing. These results provide a basis for predicting long-term impacts of sustained geothermal production and testing. To date, there has been no effect on the water quality of the shallow aquifers.

  5. Monitoring Soil Erosion of a Burn Site in the Central Basin and Range Ecoregion: Final Report on Measurements at the Gleason Fire Site, Nevada

    SciTech Connect (OSTI)

    Miller, Julianne [DRI] [DRI; Etyemezian, Vicken [DRI] [DRI; Shillito, Rose [DRI] [DRI; Cablk, Mary [DRI] [DRI; Fenstermaker, Lynn [DRI] [DRI; Shafer, David [DOE Legacy Management] [DOE Legacy Management

    2013-10-01T23:59:59.000Z

    The increase in wildfires in arid and semi-arid parts of Nevada and elsewhere in the southwestern United States has implications for post-closure management and long-term stewardship for Soil Corrective Action Units (CAUs) on the Nevada National Security Site (NNSS) for which the Nevada Field Office of the United States Department of Energy, National Nuclear Security Administration has responsibility. For many CAUs and Corrective Action Sites, where closure-in-place alternatives are now being implemented or considered, there is a chance that these sites could burn over at some time while they still pose a risk to the environment or human health, given the long half lives of some of the radionuclide contaminants. This study was initiated to examine the effects and duration of wildfire on wind and water erodibility on sites analogous to those that exist on the NNSS. The data analyzed herein were gathered at the prescribed Gleason Fire site near Ely, Nevada, a site comparable to the northern portion of the NNSS. Quantification of wind erosion was conducted with a Portable In-Situ Wind ERosion Lab (PI-SWERL) on unburned soils, and on interspace and plant understory soils within the burned area. The PI-SWERL was used to estimate emissions of suspendible particles (particulate matter with aerodynamic diameters less than or equal to 10 micrometers) at different wind speeds. Filter samples, collected from the exhaust of the PI-SWERL during measurements, were analyzed for chemical composition. Based on nearly three years of data, the Gleason Fire site does not appear to have returned to pre burn wind erosion levels. Chemical composition data of suspendible particles are variable and show a trend toward pre-burn levels, but provide little insight into how the composition has been changing over time since the fire. Soil, runoff, and sediment data were collected from the Gleason Fire site to monitor the water erosion potential over the nearly three-year period. Soil hydrophobicity (water repellency) was noted on burned understory soils up to 12 months after the fire, as was the presence of ash on the soil surface. Soil deteriorated from a strong, definable pre-fire structure to a weakly cohesive mass (unstructured soil) immediately after the fire. Surface soil structure was evident 34 months after the fire at both burned and unburned sites, but was rare and weaker at burned sites. The amount of runoff and sediment was highly variable, but runoff occurred more frequently at burned interspace sites compared to burned understory and unburned interspace sites up to 34 months after the burn. No discernible pattern was evident on the amount of sediment transported, but the size of sediment from burned understory sites was almost double that of burned and unburned interspace soils after the fire, and decreased over the monitoring period. Curve numbers, a measure of the runoff potential, did not indicate any obvious runoff response to the fire. However, slight seasonal changes in curve numbers and runoff potential and, therefore, post-fire runoff response may be a function of fire impacts as well as the time of year that precipitation occurs. Site (interspace or understory) differences in soil properties and runoff persisted even after the fire. Vegetation data showed the presence of invasive grasses after the fire. Results from analysis of wind and water coupled with the spatial analysis of vegetation suggest that wind erosion may continue to occur due to the additional exposed soil surface (burned understory sites) until vegetation becomes re-established, and runoff may occur more frequently in interspace sites. The potential for fire-related wind erosion and water erosion may persist beyond three years in this system.

  6. Hanford Site Near-Facility Environmental Monitoring Data Report for Calendar Year 2008

    SciTech Connect (OSTI)

    Perkins, Craig J.; Dorsey, Michael C.; Mckinney, Stephen M.; Wilde, Justin W.; Poston, Ted M.

    2009-09-15T23:59:59.000Z

    Near-facility environmental monitoring is defined as monitoring near facilities that have the potential to discharge or have discharged, stored, or disposed of radioactive or hazardous materials. Monitoring locations are associated with nuclear facilities such as the Plutonium Finishing Plant, Canister Storage Building, and the K Basins; inactive nuclear facilities such as N Reactor and the Plutonium-Uranium Extraction (PUREX) Facility; and waste storage or disposal facilities such as burial grounds, cribs, ditches, ponds, tank farms, and trenches. Much of the monitoring consists of collecting and analyzing environmental samples and methodically surveying areas near facilities. The program is also designed to evaluate acquired analytical data, determine the effectiveness of facility effluent monitoring and controls, assess the adequacy of containment at waste disposal units, and detect and monitor unusual conditions.

  7. The 1993 baseline biological studies and proposed monitoring plan for the Device Assembly Facility at the Nevada Test Site

    SciTech Connect (OSTI)

    Woodward, B.D.; Hunter, R.B.; Greger, P.D.; Saethre, M.B.

    1995-02-01T23:59:59.000Z

    This report contains baseline data and recommendations for future monitoring of plants and animals near the new Device Assembly Facility (DAF) on the Nevada Test Site (NTS). The facility is a large structure designed for safely assembling nuclear weapons. Baseline data was collected in 1993, prior to the scheduled beginning of DAF operations in early 1995. Studies were not performed prior to construction and part of the task of monitoring operational effects will be to distinguish those effects from the extensive disturbance effects resulting from construction. Baseline information on species abundances and distributions was collected on ephemeral and perennial plants, mammals, reptiles, and birds in the desert ecosystems within three kilometers (km) of the DAF. Particular attention was paid to effects of selected disturbances, such as the paved road, sewage pond, and the flood-control dike, associated with the facility. Radiological monitoring of areas surrounding the DAF is not included in this report.

  8. Ground water elevation monitoring at the Uranium Mill Tailings Remedial Action Salt Lake City, Utah, Vitro processing site

    SciTech Connect (OSTI)

    NONE

    1995-04-01T23:59:59.000Z

    In February 1994, a ground water level monitoring program was begun at the Vitro processing site. The purpose of the program was to evaluate how irrigating the new golf driving range affected ground water elevations in the unconfined aquifer. The program also evaluated potential impacts of a 9-hole golf course planned as an expansion of the driving range. The planned golf course expansion would increase the area to be irrigated and, thus, the water that could infiltrate the processing site soil to recharge the unconfined aquifer. Increased water levels in the aquifer could alter the ground water flow regime; contaminants in ground water could migrate off the site or could discharge to bodies of surface water in the area. The potential effects of expanding the golf course have been evaluated, and a report is being prepared. Water level data obtained during this monitoring program indicate that minor seasonal mounding may be occurring in response to irrigation of the driving range. However, the effects of irrigation appear small in comparison to the effects of precipitation. There are no monitor wells in the area that irrigation would affect most; that data limitation makes interpretations of water levels and the possibility of ground water mounding uncertain. Limitations of available data are discussed in the conclusion.

  9. Scoping study of SNM detection and indentification for adjunct on-site treaty monitoring. Final report

    SciTech Connect (OSTI)

    Murray, W.S.; Morgado, R.E.; Frankle, C.M.

    1995-07-01T23:59:59.000Z

    Following the fall of the Soviet Union, political pressure to negotiate meaningful nuclear arms agreements with Russia and the former soviet republics has increased. Anticipating the monitoring requirements of a future treaty for the decommissioning and disassembly of nuclear warheads presents opportunities to review existing monitoring technologies and to explore new methods to detect and analyze intrinsic radiation. Fully instrumented radiation-detection systems with a range of monitoring capabilities are available, but special-purpose instruments will still need to be developed to match increasing demands for high-confidence, low-intrusion monitoring in a specific scenario. As a guide to present capabilities in monitoring technologies, we have categorized their relevant attributes to detect and identify special nuclear material based on levels of confidence, intrusiveness, vulnerability, and other critical concerns. To add additional flexibility, we review emerging technologies and estimate the development time to bring them to operational status.

  10. Predicted impacts of future water level decline on monitoring wells using a ground-water model of the Hanford Site

    SciTech Connect (OSTI)

    Wurstner, S.K.; Freshley, M.D.

    1994-12-01T23:59:59.000Z

    A ground-water flow model was used to predict water level decline in selected wells in the operating areas (100, 200, 300, and 400 Areas) and the 600 Area. To predict future water levels, the unconfined aquifer system was stimulated with the two-dimensional version of a ground-water model of the Hanford Site, which is based on the Coupled Fluid, Energy, and Solute Transport (CFEST) Code in conjunction with the Geographic Information Systems (GIS) software package. The model was developed using the assumption that artificial recharge to the unconfined aquifer system from Site operations was much greater than any natural recharge from precipitation or from the basalt aquifers below. However, artificial recharge is presently decreasing and projected to decrease even more in the future. Wells currently used for monitoring at the Hanford Site are beginning to go dry or are difficult to sample, and as the water table declines over the next 5 to 10 years, a larger number of wells is expected to be impacted. The water levels predicted by the ground-water model were compared with monitoring well completion intervals to determine which wells will become dry in the future. Predictions of wells that will go dry within the next 5 years have less uncertainty than predictions for wells that will become dry within 5 to 10 years. Each prediction is an estimate based on assumed future Hanford Site operating conditions and model assumptions.

  11. The Savannah River Site Groundwater Monitoring Program Fourth Quarter 2000 (October thru December 2000)

    SciTech Connect (OSTI)

    Dukes, M.D.

    2001-08-02T23:59:59.000Z

    This report summarizes the Groundwater Monitoring Program conducted by SRS during fourth quarter 2000. It includes the analytical data, field data, data review, quality control, and other documentation for this program.

  12. Feasibility study: Assess the feasibility of siting a monitored retrievable storage facility. Phase 1

    SciTech Connect (OSTI)

    King, J.W.

    1993-08-01T23:59:59.000Z

    The purpose of phase one of this study are: To understand the waste management system and a monitored retrievable storage facility; and to determine whether the applicant has real interest in pursuing the feasibility assessment process. Contents of this report are: Generating electric power; facts about exposure to radiation; handling storage, and transportation techniques; description of a proposed monitored retrievable storage facility; and benefits to be received by host jurisdiction.

  13. Monitoring

    DOE Patents [OSTI]

    Orr, Christopher Henry (Calderbridge, GB); Luff, Craig Janson (Calderbridge, GB); Dockray, Thomas (Calderbridge, GB); Macarthur, Duncan Whittemore (Los Alamos, NM)

    2004-11-23T23:59:59.000Z

    The invention provides apparatus and methods which facilitate movement of an instrument relative to an item or location being monitored and/or the item or location relative to the instrument, whilst successfully excluding extraneous ions from the detection location. Thus, ions generated by emissions from the item or location can successfully be monitored during movement. The technique employs sealing to exclude such ions, for instance, through an electro-field which attracts and discharges the ions prior to their entering the detecting location and/or using a magnetic field configured to repel the ions away from the detecting location.

  14. Combining Space Geodesy, Seismology, and Geochemistry for Monitoring Verification and Accounting of CO2 in Sequestration Sites

    SciTech Connect (OSTI)

    Swart, Peter; Dixon, Tim

    2014-09-30T23:59:59.000Z

    A series of surface geophysical and geochemical techniques are tested in order to demonstrate and validate low cost approaches for Monitoring, Verification and Accounting (MVA) of the integrity of deep reservoirs for CO2 storage. These techniques are (i) surface deformation by GPS; ii) surface deformation by InSAR; iii) passive source seismology via broad band seismometers; and iv) soil gas monitoring with a cavity ring down spectrometer for measurement of CO2 concentration and carbon isotope ratio. The techniques were tested at an active EOR (Enhanced Oil Recovery) site in Texas. Each approach has demonstrated utility. Assuming Carbon Capture, Utilization and Storage (CCUS) activities become operational in the future, these techniques can be used to augment more expensive down-hole techniques.

  15. Groundwater monitoring program plan and conceptual site model for the Al-Tuwaitha Nuclear Research Center in Iraq.

    SciTech Connect (OSTI)

    Copland, John Robin; Cochran, John Russell

    2013-07-01T23:59:59.000Z

    The Radiation Protection Center of the Iraqi Ministry of Environment is developing a groundwater monitoring program (GMP) for the Al-Tuwaitha Nuclear Research Center located near Baghdad, Iraq. The Al-Tuwaitha Nuclear Research Center was established in about 1960 and is currently being cleaned-up and decommissioned by Iraq's Ministry of Science and Technology. This Groundwater Monitoring Program Plan (GMPP) and Conceptual Site Model (CSM) support the Radiation Protection Center by providing:A CSM describing the hydrogeologic regime and contaminant issues,recommendations for future groundwater characterization activities, anddescriptions of the organizational elements of a groundwater monitoring program. The Conceptual Site Model identifies a number of potential sources of groundwater contamination at Al-Tuwaitha. The model also identifies two water-bearing zones (a shallow groundwater zone and a regional aquifer). The depth to the shallow groundwater zone varies from approximately 7 to 10 meters (m) across the facility. The shallow groundwater zone is composed of a layer of silty sand and fine sand that does not extend laterally across the entire facility. An approximately 4-m thick layer of clay underlies the shallow groundwater zone. The depth to the regional aquifer varies from approximately 14 to 17 m across the facility. The regional aquifer is composed of interfingering layers of silty sand, fine-grained sand, and medium-grained sand. Based on the limited analyses described in this report, there is no severe contamination of the groundwater at Al-Tuwaitha with radioactive constituents. However, significant data gaps exist and this plan recommends the installation of additional groundwater monitoring wells and conducting additional types of radiological and chemical analyses.

  16. Developing algorithms for healthcare insurers to systematically monitor surgical site infection rates

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    7. Sands K, Vineyard G, Platt R: Surgical site infectionsNottebart VF, Hameed SR, Platt R: Automated post- dischargeDS, Shapiro M, Simchen E, Platt R: Use of antibiotic expo-

  17. The Savannah River Site's Groundwater Monitoring Program - Second Quarter 1998 (April through June 1998)

    SciTech Connect (OSTI)

    Hutchison, J B

    1999-02-10T23:59:59.000Z

    This report summarizes the Groundwater Monitoring Program conducted by SRS during second quarter 1998. It includes the analytical data, field data, data review, quality control, and other documentation for the program; provides a record of the program's activities; and serves as an official record of the analytical results.

  18. The Savannah River Site's Groundwater Monitoring Program Second Quarter 2000 (April through June 2000)

    SciTech Connect (OSTI)

    Dukes, M.D.

    2001-04-17T23:59:59.000Z

    This report summarizes the Groundwater Monitoring Program conducted by SRS during second quarter 2000. It includes the analytical data, field data, data review, quality control, and other documentation for this program; provides a record of the program's activities; and serves as an official record of the analytical results.

  19. The Savannah River Site's Groundwater Monitoring Program First Quarter 2000 (January through March 2000)

    SciTech Connect (OSTI)

    Dukes, M.

    2000-11-16T23:59:59.000Z

    This report summarizes the Groundwater Monitoring Program conducted by SRS during first quarter 2000. It includes the analytical data, field data, data review, quality control, and other documentation for this program; provides a record of the program's activities; and serves as an official record of the analytical results.

  20. The Savannah River Site's Groundwater Monitoring Program Third Quarter 2000 (July through September 2000)

    SciTech Connect (OSTI)

    Dukes, M.D.

    2001-05-02T23:59:59.000Z

    This report summarizes the Groundwater Monitoring Program conducted by SRS during third quarter 2000. It includes the analytical data, field data, data review, quality control, and other documentation for this program; provides a record of the program's activities; and serves as an official record of the analytical results.

  1. Data Quality Objectives Supporting Radiological Air Emissions Monitoring for the Marine Sciences Laboratory, Sequim Site

    SciTech Connect (OSTI)

    Barnett, J. M.; Meier, Kirsten M.; Snyder, Sandra F.; Antonio, Ernest J.; Fritz, Brad G.; Poston, Theodore M.

    2012-12-27T23:59:59.000Z

    This document of Data Quality Objectives (DQOs) was prepared based on the U.S. Environmental Protection Agency (EPA) Guidance on Systematic Planning Using the Data Quality Objectives Process, EPA, QA/G4, 2/2006 (EPA 2006), as well as several other published DQOs. The intent of this report is to determine the necessary steps required to ensure that radioactive emissions to the air from the Marine Sciences Laboratory (MSL) headquartered at the Pacific Northwest National Laboratory’s Sequim Marine Research Operations (Sequim Site) on Washington State’s Olympic Peninsula are managed in accordance with regulatory requirements and best practices. The Sequim Site was transitioned in October 2012 from private operation under Battelle Memorial Institute to an exclusive use contract with the U.S. Department of Energy, Office of Science, Pacific Northwest Site Office.

  2. Status of the flora and fauna on the Nevada Test Site, 1994: Results of continuing Basic Environmental Monitoring January through December 1994

    SciTech Connect (OSTI)

    Hunter, R.B. [comp.

    1995-09-01T23:59:59.000Z

    This is the final progress report of a Department of Energy (DOE), Nevada operations Office (NV), program to monitor the ecology of the Nevada Test Site (NTS). The eight-year Basic Environmental Compliance and Monitoring Program (BECAMP) included meeting goals of understanding the spatial and temporal changes of plants and animals on the NTS, and determining the effects of DOE operations on those plants and animals. Determination of the changes was addressed through monitoring the most common plant and animal species at undisturbed (baseline) plots located in the major NTS valleys and mesas. One plot in Yucca Flat, the site of most nuclear weapons tests, was monitored annually, while other baseline plots were censused on a three- or four-year cycle. Effects of DOE operations were examined at sites of major disturbances, related to both DOE operations and natural disturbance mechanisms, censused on a three-year cycle. This report concentrates on work completed in 1994.

  3. Status of the flora and fauna on the Nevada Test Site, 1992. Results of continuing basic environmental monitoring, January through December 1992

    SciTech Connect (OSTI)

    Hunter, R.B. [comp.

    1994-03-01T23:59:59.000Z

    This report documents changes in the populations of plants and animals on the Nevada Test Site (NTS) for calendar year 1992. It is part of a Department of Energy (DOE) program (Basic Environmental Compliance and Monitoring Program -- BECAMP) that also includes monitoring DOE compliance with the Endangered Species Act, the Historic Preservation Act, and the American Indian Freedom of Religion Act. Ecological studies were to comply with the National Environmental Policy Act and DOE Order 5400.1, ``General Environmental Protection Program.`` These studies focused on the following: status of ephemeral plants on the Nevada Test Site, 1992; status of reptile and amphibian populations on the Nevada Test Site, 1992; trends in small mammal populations on the Nevada Test Site, 1992; status of large mammals and birds at Nevada Test Site, 1992; and status of perennial plants on the Nevada Test Site, 1992.

  4. Improved Performance of Energy Window Ratio Criteria Obtained Using Multiple Windows at Radiation Portal Monitoring Sites

    SciTech Connect (OSTI)

    Weier, Dennis R.; Lopresti, Charles A.; Ely, James H.; Bates, Derrick J.; Kouzes, Richard T.

    2006-06-07T23:59:59.000Z

    Radiation portal monitors are being used to detect radioactive target materials in vehicles transporting cargo. As vehicles pass through the portal monitors, they generate count profiles over time that can be compared to the average panel background counts obtained just prior to the time the vehicle entered the area of the monitors. Pacific Northwest National Laboratory, in support of U.S. Customs and Border Protection (CBP) and U.S. Domestic Nuclear Detection Office (DNDO) under the U.S. Department of Homeland Security (DHS), has accumulated considerable data regarding such background radiation and vehicle profiles from portal installations. Energy window criteria have been shown to increase sensitivity to certain types of target radioactive sources while also controlling to a manageable level the rate of false or nuisance alarms. First generation equipment had only two-window capability, and while energy windowing for such systems was shown to be useful for detecting certain types of sources, it was subsequently found that improved performance could be obtained with more windows. Second generation equipment instead has more windows and can thus support additional energy window criteria which can be shown to be sensitive to a wider set of target sources. Detection likelihoods are generated for various sources and energy window criteria, as well as for gross count decision criteria, based on computer simulated injections of sources into archived vehicle profiles. (PIET-43741-TM-534)

  5. Status of the flora and fauna on the Nevada Test Site, 1988. Results of continuing basic environmental monitoring, January--December 1988

    SciTech Connect (OSTI)

    Hunter, R.B. [comp.

    1992-06-01T23:59:59.000Z

    In 1987 the US Department of Energy (DOE) initiated a program to monitor the health of the Nevada Test Site (NTS) plants and animals in support of the National Environmental Protection Act. The program, part of DOE`s Basic Environmental Compliance and Monitoring Program (BECAMP), monitors perennial and ephemeral plants, the more common species of rodents and lizards, and the horses, deer, raptors and other large animals on the NTS. This is a report of data collected on these flora and fauna for the year 1988, the second year of monitoring.

  6. Environmental radiological monitoring of air, rain, and snow on and near the Hanford Site, 1945-1957

    SciTech Connect (OSTI)

    Hanf, R.W.; Thiede, M.E.

    1994-03-01T23:59:59.000Z

    This report is a result of the Hanford Environmental Dose Reconstruction (HEDR) Project. The goal of the HEDR Project is to estimate the radiation dose that individuals could have received from emissions since 1944 at the Hanford Site near Richland, Washington. Members of the HEDR Project`s Environmental Monitoring Data Task have developed databases of historical environmental measurements of such emissions. Hanford documents were searched for information on the radiological monitoring of air, rain, and snow at and near the Hanford Site in Richland, Washington. The monitoring information was reviewed and summarized. The end product is a yearly overview of air, rain, and snow samples as well as ambient radiation levels in the air that were measured from 1945 through 1957. The following information is provided in each annual summary: the media sampled, the constituents (radionuclides) measured/reported, the sampling locations, the sampling frequencies, the sampling methods, and the document references. For some years a notes category is included that contains additional useful information. For the years 1948 through 1957, tables summarizing the sampling locations for the various sample media are also included in the appendix. A large number of documents were reviewed to obtain the information in this report. A reference list is attached to the end of each annual summary. All of the information summarized here was obtained from reports originating at Hanford. These reports are all publicly available and can be found in the Richland Operations Office (RL) public reading room. The information in this report has been compiled without analysis and should only be used as a guide to the original documents.

  7. Post-Closure Monitoring Report for Corrective Action Unit 339: Area 12 Fleet Operations Steam Cleaning Effluent Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    K. B. Campbell

    2002-09-01T23:59:59.000Z

    The Area 12 Fleet Operations Steam Cleaning Effluent site is located in the southeastern portion of the Area 12 Camp at the Nevada Test Site. This site is identified in the Federal Facility Agreement and Consent Order (1996) as Corrective Action Site (CAS) 12-19-01 and is the only CAS assigned to Corrective Action Unit (CAU) 339. Post-closure sampling and inspection of the site were completed on March 27, 2002. Post-closure monitoring activities were scheduled biennially (every two years) in the Post-Closure Monitoring Plan provided in the Closure Report for CAU 339: Area 12 Fleet Operations Steam Cleaning Effluent, Nevada Test Site (U.S. Department of Energy, Nevada Operations Office [DOEN], 1997). A baseline for the site was established by sampling in 1997. Based on the recommendations from the 1999 post-closure monitoring report (DOE/NV, 1999), samples were collected in 2000, earlier than originally proposed, because the 1999 sample results did not provide the expected decrease in total petroleum hydrocarbon (TPH) concentrations at the site. Sampling results from 2000 (DOE/NV, 2000) and 2001 (DOE/NV, 2001) revealed favorable conditions for natural degradation at the CAU 339 site, but because of differing sample methods and heterogeneity of the soil, data results from 2000 and later were not directly correlated with previous results. Post-closure monitoring activities for 2002 consisted of the following: (1) Soil sample collection from three undisturbed plots (Plots A, B, and C, Figure 2). (2) Sample analysis for TPH as oil and bio-characterization parameters (Comparative Enumeration Assay [CEA] and Standard Nutrient Panel [SNP]). (3) Site inspection to evaluate the condition of the fencing and signs. (4) Preparation and submittal of the Post-Closure Monitoring Report.

  8. Radiological and Environmental Monitoring at the Clean Slate I and III Sites, Tonopah Test Range, Nevada, With Emphasis on the Implications for Off-site Transport

    SciTech Connect (OSTI)

    Mizell, Steve A [DRI; Etyemezian, Vic [DRI; McCurdy, Greg [DRI; Nikolich, George [DRI; Shadel, Craig [DRI; Miller, Julianne J [DRI

    2014-09-01T23:59:59.000Z

    In 1963, the U.S. Department of Energy (DOE) (formerly the Atomic Energy Commission [AEC]) implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range [NAFR]). Operation Roller Coaster consisted of four tests in which chemical explosions were detonated in the presence of nuclear devices to assess the dispersal of radionuclides and evaluate the effectiveness of storage structures to contain the ejected radionuclides. These tests resulted in the dispersal of plutonium over the ground surface downwind of the test ground zero (GZ). Three tests—Clean Slate I, II, and III—were conducted on the TTR in Cactus Flat. The fourth, Double Tracks, was conducted in Stonewall Flat on the NTTR. The Desert Research Institute (DRI) installed two monitoring stations in 2008, Station 400 at the Sandia National Laboratories (SNL) Range Operations Center (ROC) and Station 401 at Clean Slate III. Station 402 was installed at Clean Slate I in 2011 to measure radiological, meteorological, and dust conditions. The monitoring activity was implemented to determine if radionuclide contamination in the soil at the Clean Slate sites was being transported beyond the contamination area boundaries. Some of the data collected also permits comparison of radiological exposure at the TTR monitoring stations to conditions observed at Community Environmental Monitoring Program (CEMP) stations around the NTTR. Annual average gross alpha values from the TTR monitoring stations are higher than values from the surrounding CEMP stations. Annual average gross beta values from the TTR monitoring stations are generally lower than values observed for the surrounding CEMP stations. This may be due to use of sample filters with larger pore space because when glass-fiber filters began to be used at TTR Station 400, gross beta values increased. Gamma spectroscopy typically identified only naturally occurring radionuclides. The radionuclides cesium-134 and -137 were identified in only two samples at each station collected in the weeks following the destruction of the nuclear power reactor in Fukushima, Japan, on March 11, 2011. Observed gamma energy values never exceeded the local background by more than 4 ?R/h. The higher observed gamma values were coincident with wind from any of the cardinal directions, which suggests that there is no significant transport from the Clean Slate contamination areas. Annual average daily gamma values at the TTR stations are higher than at the surrounding CEMP stations, but they are equivalent to or just slightly higher than the background estimates made at locations at equivalent elevations, such as Denver, Colorado. Winds in excess of approximately 15 mph begin to resuspend soil particles and create dust, but dust generation is also affected by soil temperature, relative humidity, and soil water content. Power curves provide good predictive equations for dust concentration as a function of wind speed. However, winds in the highest wind speed category occur infrequently. iii

  9. Subsurface Monitor for Dissolved Inorganic Carbon at Geological Sequestration Site Phase 1 SBIR Final Report

    SciTech Connect (OSTI)

    Sheng Wu

    2012-08-03T23:59:59.000Z

    Phase I research of this SBIR contract has yielded anticipated results and enable us to develop a practical new instrument to measure the Dissolved Inorganic Carbons (DIC) as well as Supercritical (SC) CO2 in underground brine water at higher sensitivity, lower cost, higher frequency and longer period of time for the Monitoring, Verification & Accounting (MVA) of CO2 sequestration as well as Enhanced Oil Recovery (EOR). We show that reduced cost and improved performance are possible; both future and emerging market exist for the proposed new instrument.

  10. Post-Closure Monitoring Report for Corrective Action Unit 339: Area 12 Fleet Operations Steam Cleaning Discharge Area Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    A. T. Urbon

    2001-08-01T23:59:59.000Z

    The Area 12 Fleet Operations Steam Cleaning site is located in the southeast portion of the Area 12 Camp at the Nevada Test Site (Figure 1). This site is identified in the Federal Facility Agreement and Consent Order (FFACO, 1996) as Corrective Action Site (CAS) 12-19-01 and is the only CAS assigned to Corrective Action Unit (CAU) 339. Post-closure sampling and inspection of the site were completed on March 23, 2001. Because of questionable representativeness and precision of the results, the site was resampled on June 12, 2001. Post-closure monitoring activities were scheduled biennially (every two years) in the Post-Closure Monitoring Plan provided in the December 1997 Closure Report for CAU 339: Area 12 Fleet Operations Steam Cleaning Discharge Area, Nevada Test Site (U.S. Department of Energy, Nevada Operations Office [DOE/NV], 1997). If after six years the rate of degradation appears to be so slow that the greatest concentration of total petroleum hydrocarbons (TPH) present at the site would not decay within 30 years of the site closure, the site will be reevaluated with consideration to enriching the impacted soil at the site to enhance the degradation process. A baseline for the site was established by sampling in 1997. Based on the recommendations from the 1999 post-closure monitoring report, samples were collected in 2000, earlier than originally proposed, because the 1999 sample results did not provide the expected decrease in TPH concentrations at the site. Sampling results from 2000 revealed favorable conditions for natural degradation at the CAU 339 site, but because of differing sample methods and heterogeneity of the soil, the data results from 2000 were not directly correlated with previous results. Post-closure monitoring activities for 2001 consisted of the following: Soil sample collection from three undisturbed plots (Plots A, B, and C, Figure 2); Sample analysis for TPH as oil and bio-characterization parameters (Comparative Enumeration Assay [CEA] and Standard Nutrient Panel [SNP]); Site inspection to evaluate the condition of the fencing and signs; and Preparation and submittal of the Post-Closure Monitoring Report.

  11. Depleted uranium risk assessment for Jefferson Proving Ground using data from environmental monitoring and site characterization. Final report

    SciTech Connect (OSTI)

    Ebinger, M.H.; Hansen, W.R.

    1996-10-01T23:59:59.000Z

    This report documents the third risk assessment completed for the depleted uranium (DU) munitions testing range at Jefferson Proving Ground (JPG), Indiana, for the U.S. Army Test and Evaluation command. Jefferson Proving Ground was closed in 1995 under the Base Realignment and Closure Act and the testing mission was moved to Yuma Proving Ground. As part of the closure of JPG, assessments of potential adverse health effects to humans and the ecosystem were conducted. This report integrates recent information obtained from site characterization surveys at JPG with environmental monitoring data collected from 1983 through 1994 during DU testing. Three exposure scenarios were evaluated for potential adverse effects to human health: an occasional use scenario and two farming scenarios. Human exposure was minimal from occasional use, but significant risk were predicted from the farming scenarios when contaminated groundwater was used by site occupants. The human health risk assessments do not consider the significant risk posed by accidents with unexploded ordnance. Exposures of white-tailed deer to DU were also estimated in this study, and exposure rates result in no significant increase in either toxicological or radiological risks. The results of this study indicate that remediation of the DU impact area would not substantially reduce already low risks to humans and the ecosystem, and that managed access to JPG is a reasonable model for future land use options.

  12. Water quality monitoring at the Hoe Creek test site: review and preliminary conclusions

    SciTech Connect (OSTI)

    Wang, F.T.; Mead, S.W.; Sturmer, D.H.

    1983-01-01T23:59:59.000Z

    It has been shown that underground coal gasification (UCG) may introduce a broad range of residual products into the groundwater of a coal aquifer. Sorption of many contaminants by the coal itself is an important factor in restricting the migration of these contaminants in the groundwater. However, our field studies at the Lawrence Livermore National Laboratory (LLNL) Hoe Creek site in northeastern Wyoming have shown that sorption of organic compounds by coal is not as effective as expected, perhaps because the coal surface area is limited. Furthermore, if severe roof collapse has taken place during gasification, non-coal aquifers located above the gasified coal seam may become interconnected with the cavity. Contaminants may enter these non-coal aquifers, in which sorption is even less effective. The Hoe Creek II and III experiments have enabled us to study the contamination of a sand aquifer located above a gasified coal seam in a hydrological recharge area. The preliminary results indicate that the water in the overlying sand aquifer is much less contaminated with organic compounds than that in the gasified

  13. Remotely sensed mesoscale oceanography and the distribution of Illex argentinus

    E-Print Network [OSTI]

    Pierce, Graham

    Remotely sensed mesoscale oceanography and the distribution of Illex argentinus in the South consider the inŻuence of mesoscale oceanographic processes around the Falkland Islands (Islas Malvinas remotely sensed satellite images were used as an indicator of mesoscale oceanographic activity and compared

  14. Corrosion monitoring in the UF{sub 6} cylinder yards at the Oak Ridge K-25 Site: FY 1994 report

    SciTech Connect (OSTI)

    Rao, M. [Midwest Technical Inc., Oak Ridge, TN (United States); Adamski, R.; Broders, J.; Ellis, A.; Freels, D.; Kelley, D.; Phillips, B. [Oak Ridge K-25 Site, TN (United States)

    1994-10-01T23:59:59.000Z

    Depleted uranium hexafluoride (UF{sub 6}) at the U.S. Department of Energy`s K-25 Site at Oak Ridge, Tennessee, has been stored in large steel cylinders that have undergone significant atmospheric corrosion damage over the last 35 years. A detailed experimental program to characterize the corrosion damage was initiated in 1992. Large amounts of corrosion scale and deep pits are found to cover UF{sub 6} cylinder surfaces. Ultrasonic wall thickness measurements have shown uniform corrosion losses up to 20 mils (0.5 mm) and pits up to 100 mils (2.5 mm) deep. Electrical resistance corrosion probes, TOW sensors, and thermocouples have been attached to cylinder bodies. Atmospheric conditions are monitored using rain gauges, relative humidity sensors, and thermocouples. Long-term (16-year) data are being obtained from mild steel corrosion coupons on test racks as well as attached directly to cylinder surfaces. Corrosion rates have been found to be intimately related to the times-of-wetness, both tending to be higher on cylinder tops due to apparent sheltering effects. Data from the various tests are compared, discrepancies are discussed, and a pattern of cylinder corrosion as a function of cylinder position and location is described.

  15. Seismic Monitoring - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook TwitterSearch-Comments Sign InNuclearSynchrotron RadiationPublic

  16. Ecological Monitoring - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract ManagementDiscoveringESnet UpdateEarth Week eventPublic Safety and

  17. COMPARATIVE EVALUATION OF AMBIENT FINE PARTICULATE MATTER (PM2.5) DATA OBTAINED FROM URBAN AND RURAL MONITORING SITES ALONG THE UPPER OHIO RIVER VALLEY

    SciTech Connect (OSTI)

    Robinson P. Khosah; John P. Shimshock

    2004-03-02T23:59:59.000Z

    Advanced Technology Systems, Inc. (ATS), with Desert Research Institute (DRI) and Ohio University as subcontractors, was contracted by the NETL in September 1998 to manage the Upper Ohio River Valley Project (UORVP), with a goal of characterizing the ambient fine particulate in this region, including examination of urban/rural variations, correlations between PM{sub 2.5} and gaseous pollutants, and influences of artifacts on PM{sub 2.5} measurements in this region. Two urban and two rural monitoring sites were included in the UORVP. The four sites selected were all part of existing local and/or state air quality programs. One urban site was located in the Lawrenceville section of Pittsburgh, Pennsylvania at an air quality monitoring station operated by the Allegheny County Health Department. A second urban site was collocated at a West Virginia Division of Environmental Protection (WVDEP) monitoring station at the airport in Morgantown, West Virginia. One rural site was collocated with the Pennsylvania Department of Environmental Protection (PADEP) at a former NARSTO-Northeast site near Holbrook, Greene County, Pennsylvania. The other rural site was collocated at a site operated by the Ohio Environmental Protection Agency (OHEPA) and managed by the Ohio State Forestry Division in Gifford State Forest near Athens, Ohio. Previous Semi-Annual Technical Progress Reports presented the following: (1) the median mass and composition of PM{sub 2.5} are similar for both Lawrenceville and Holbrook, suggesting that the sites are impacted more by the regional than by local effects; (2) there was no significant differences in the particulate trending and levels observed at both sites within seasons; (3) sulfate levels predominate at both sites and (4) PM{sub 2.5} and PM{sub 10} mass concentration levels are consistently higher in summer than in winter, with intermediate levels being observed in the fall and spring. Analyses of data conducted during the period from April 1, 2003 through September 30, 2003 are presented in this Semi-Annual Technical Progress Report. Report Revision No. 1 includes the additions or removals of text presented in the previous version of this report.

  18. COMPARATIVE EVALUATION OF AMBIENT FINE PARTICULATE MATTER (PM2.5)DATA OBTAINED FROM URBAN AND RURAL MONITORING SITES ALONG THE UPPER OHIO RIVER VALLEY

    SciTech Connect (OSTI)

    Robinson P. Khosah; John P. Shimshock

    2003-04-30T23:59:59.000Z

    Advanced Technology Systems, Inc. (ATS), with Desert Research Institute (DRI) and Ohio University as subcontractors, was contracted by the NETL in September 1998 to manage the Upper Ohio River Valley Project (UORVP), with a goal of characterizing the ambient fine particulate in this region, including examination of urban/rural variations, correlations between PM{sub 2.5} and gaseous pollutants, and influences of artifacts on PM{sub 2.5} measurements in this region. Two urban and two rural monitoring sites were included in the UORVP. The four sites selected were all part of existing local and/or state air quality programs. One urban site was located in the Lawrenceville section of Pittsburgh, Pennsylvania at an air quality monitoring station operated by the Allegheny County Health Department. A second urban site was collocated at a West Virginia Division of Environmental Protection (WVDEP) monitoring station at the airport in Morgantown, West Virginia. One rural site was collocated with the Pennsylvania Department of Environmental Protection (PADEP) at a former NARSTO-Northeast site near Holbrook, Greene County, Pennsylvania. The other rural site was collocated at a site operated by the Ohio Environmental Protection Agency (OHEPA) and managed by the Ohio State Forestry Division in Gifford State Forest near Athens, Ohio. Analysis of data collected to date show that: (1) the median mass and composition of PM{sub 2.5} are similar for both Lawrenceville and Holbrook, suggesting that the sites are impacted more by the regional than by local effects; (2) there was no significant differences in the particulate trending and levels observed at both sites within seasons; (3) sulfate levels predominate at both sites, and (4) PM{sub 2.5} and PM{sub 10} mass concentration levels are consistently higher in summer than in winter, with intermediate levels being observed in the fall and spring. Data analysis focusing on relating the aerometric measurements to local and regional scale emissions of sources of primary and secondary fine particles using receptor-based air quality models will follow.

  19. NRC Consultation and Monitoring at the Savannah River Site: Focusing Reviews of Two Different Disposal Actions - 12181

    SciTech Connect (OSTI)

    Ridge, A. Christianne; Barr, Cynthia S.; Pinkston, Karen E.; Parks, Leah S.; Grossman, Christopher J.; Alexander, George W. [U.S. Nuclear Regulatory Commission (United States)

    2012-07-01T23:59:59.000Z

    Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 (NDAA) requires the U.S. Department of Energy (DOE) to consult with the U.S. Nuclear Regulatory Commission (NRC) for certain non-high level waste determinations. The NDAA also requires NRC to monitor DOE's disposal actions related to those determinations. In Fiscal Year 2011, the NRC staff reviewed DOE performance assessments for tank closure at the F-Tank Farm (FTF) Facility and salt waste disposal at the Saltstone Disposal Facility (SDF) at the Savannah River Site (SRS) as part of consultation and monitoring, respectively. Differences in inventories, waste forms, and key barriers led to different areas of focus in the NRC reviews of these two activities at the SRS. Because of the key role of chemically reducing grouts in both applications, the evaluation of chemical barriers was significant to both reviews. However, radionuclide solubility in precipitated metal oxides is expected to play a significant role in FTF performance whereas release of several key radionuclides from the SDF is controlled by sorption or precipitation within the cementitious wasteform itself. Similarly, both reviews included an evaluation of physical barriers to flow, but differences in the physical configurations of the waste led to differences in the reviews. For example, NRC's review of the FTF focused on the modeled degradation of carbon steel tank liners while the staff's review of the SDF performance included a detailed evaluation of the physical degradation of the saltstone wasteform and infiltration-limiting closure cap. Because of the long time periods considered (i.e., tens of thousands of years), the NRC reviews of both facilities included detailed evaluation of the engineered chemical and physical barriers. The NRC staff reviews of residual waste disposal in the FTF and salt waste disposal in the SDF focused on physical barriers to flow and chemical barriers to radionuclide release from the waste. Because the waste inventory and concentration at both sites is sufficient to generate unacceptable doses to an off-site member of the public or inadvertent intruder in the absence of engineered barriers, the NRC staff review focused on the engineering features DOE plans to put in place to limit radionuclide release. At the FTF, DOE expects that peak doses are delayed beyond a 10,000 year performance period by a combination of (1) the flow-limiting effect of the steel tank liner and (2) chemical conditions created by the stabilizing grout overlying the waste that limit the solubility of key radionuclides for tens of thousands of years. At the SDF, DOE expects that flow will be significantly limited by water shedding along the closure cap lower drainage layer and that radionuclide release will be further limited by radionuclide precipitation or sorption within the high pH, chemically reducing conditions created within the saltstone waste form. Because the performance of both facilities depends on the performance of engineered barriers for thousands of years, the reviews included a detailed evaluation of the expected long-term behavior of these barriers. As previously discussed, NRC staff reviews of DOE waste determinations during consultation are designed to evaluate the three NDAA criteria, whereas the review of an updated PA during monitoring only addresses whether the NRC staff has reasonable assurance that the planned disposal action will meet the performance objectives of 10 CFR Part 61. The NRC staff review of the Waste Determination for the FTF did not include conclusions about whether the planned disposal of residual waste at the FTF would meet the NDAA criteria because of the substantial uncertainties in the degree of waste removal DOE would achieve and other technical uncertainties. The main product of the NRC staff review of the planned FTF disposal action is the recommendation that DOE should conduct waste release experiments to increase support for key modeling assumptions related to: (1) the evolution of pH and Eh in the grouted tank syst

  20. COMPARATIVE EVALUATION OF AMBIENT FINE PARTICULATE MATTER (PM2.5) DATA OBTAINED FROM URBAN AND RURAL MONITORING SITES ALONG THE UPPER OHIO RIVER VALLEY

    SciTech Connect (OSTI)

    Robinson P. Khosah; John P. Shimshock; Jerry L. Penland

    2004-10-15T23:59:59.000Z

    Advanced Technology Systems, Inc. (ATS), with Desert Research Institute (DRI) and Ohio University as subcontractors, was contracted by the NETL in September 1998 to manage the Upper Ohio River Valley Project (UORVP), which included the establishment and operation of four ambient air monitoring sites located in the Upper Ohio River Valley (UORV). Two urban and two rural monitoring sites were included in the UORVP. The four sites selected for the UOVRP were collocated at existing local and/or state air quality monitoring stations. The goal of the UORVP was to characterize the nature and composition of PM{sub 2.5} and its precursor gases. In the process, the objectives of the UORVP were to examine the ambient air concentrations of PM{sub 2.5} as compared with the promulgated PM{sub 2.5} standards, the geographical, seasonal and temporal variations of ambient air concentrations of PM{sub 2.5}, the primary chemical constituents of PM{sub 2.5}, and the correlations between ambient air concentrations of PM{sub 2.5} and its precursor gases, other gaseous pollutants and meteorological parameters. A variety of meteorological and pollutant measurement devices, including several different PM{sub 2.5} samplers that provided either real-time or integrated concentration data, were deployed at the monitoring sites. The frequency of integrated sampling varied throughout the UORVP study period and was as follows: ''Intensive'' sampling periods were defined as periods in which samples were collected on a relatively frequent basis (ranged from 6-hour integrated samples collected round-the-clock to one 24-hour integrated sample collected every third day). ''Background'' sampling periods were defined as periods in which 24-hour integrated samples were collected every third or sixth day.

  1. Ground-water monitoring compliance projects for Hanford Site facilities: Volume 2, Appendices A and B: Progress report, January 1, 1987 to March 31, 1987

    SciTech Connect (OSTI)

    Not Available

    1987-05-01T23:59:59.000Z

    This report convers recent progress on ground-water monitoring programs for four Hanford Site facilities: the 300 Area Process Trenches, the 183-H Solar Evaporation Basins, the 200 Area Low-Level Burial Grounds, and the Nonradioactive Dangerous Waste Landfill. The time period covered by this covered by this report is January 1 to March 31, 1987. Volume 2 contains Appendices A and B.

  2. Monitoring Soil Erosion on a Burned Site in the Mojave-Great Basin Transition Zone: Final Report for the Jacob Fire Site

    SciTech Connect (OSTI)

    Miller, Julianne [DRI] DRI; Etyemezian, Vic [DRI] DRI; Cablk, Mary E. [DRI] DRI; Shillito, Rose [DRI] DRI; Shafer, David [DOE Grand Junction, Colorado] DOE Grand Junction, Colorado

    2013-06-01T23:59:59.000Z

    A historic return interval of 100 years for large fires in the U.S. southwestern deserts is being replaced by one where fires may reoccur as frequently as every 20 to 30 years. The shortened return interval, which translates to an increase in fires, has implications for management of Soil Corrective Action Units (CAUs) and Corrective Action Sites (CASs) for which the Department of Energy, National Nuclear Security Administration Nevada Field Office has responsibility. A series of studies was initiated at uncontaminated analog sites to better understand the possible impacts of erosion and transport by wind and water should contaminated soil sites burn. The first of these studies was undertaken at the Jacob Fire site approximately 12 kilometers (7.5 miles) north of Hiko, Nevada. A lightning-caused fire burned approximately 200 hectares during August 6-8, 2008. The site is representative of a transition between Mojave and Great Basin desert ecoregions on the Nevada National Security Site (NNSS), where the largest number of Soil CAUs/CASs are located. The area that burned at the Jacob Fire site was primarily a Coleogyne ramosissima (blackbrush) and Ephedra nevadensis (Mormon tea) community, also an abundant shrub assemblage in the similar transition zone on the NNSS. This report summarizes three years of measurements after the fire. Seven measurement campaigns at the Jacob Fire site were completed. Measurements were made on burned ridge (upland) and drainage sites, and on burned and unburned sites beneath and between vegetation. A Portable In-Situ Wind Erosion Lab (PI-SWERL) was used to estimate emissions of suspended particles at different wind speeds. Context for these measurements was provided through a meteorological tower that was installed at the Jacob Fire site to obtain local, relevant environmental parameters. Filter samples, collected from the exhaust of the PI-SWERL during measurements, were analyzed for chemical composition. Runoff and water erosion were quantified through a series of rainfall/runoff simulation tests in which controlled amounts of water were delivered to the soil surface in a specified amount of time. Runoff data were collected from understory and interspace soils on burned ridge and drainage areas. Runoff volume and suspended sediment in the runoff were sampled; the particle size distribution of the sediment was determined by laboratory analysis. Several land surface and soil characteristics associated with runoff were integrated by the calculation of site-specific curve numbers. Several vegetation surveys were conducted to assess post-burn recovery. Data from plots in both burned and unburned areas included species identification, counts, and location. Characterization of fire-affected area included measures at both the landscape scale and at specific sites. Although wind erosion measurements indicate that there are seasonal influences on almost all parameters measured, several trends were observed. PI-SWERL measurements indicated the potential for PM10 windblown dust emissions was higher on areas that were burned compared to areas that were not. Among the burned areas, understory soils in drainage areas were the most emissive, and interspace soils along burned ridges were least emissive. By 34 months after the burn (MAB), at the end of the study, emissions from all burned soil sites were virtually indistinguishable from unburned levels. Like the amount of emissions, the chemical signature of the fire (indicated by the EC-Soil ratio) was elevated immediately after the fire and approached pre-burn levels by 24 MAB. Thus, the potential for wind erosion at the Jacob Fire site, as measured by the amount and type of emissions, increased significantly after the fire and returned to unburned levels by 24 MAB. The effect of fire on the potential for water erosion at the Jacob Fire site was more ambiguous. Runoff and sediment from ridge interspace soils and unburned interspace soils were similar throughout the study period. Seldom, if ever, did runoff and sediment occur in burned drainage area soils. Fo

  3. POST-CLOSURE INSPECTION AND MONITORING REPORT FOR CORRECTIVE ACTION UNIT 112: AREA 23 HAZARDOUS WASTE TRENCHES, NEVADA TEST SITE, NEVADA; FOR THE PERIOD OCTOBER 2003 - SEPTEMBER 2004

    SciTech Connect (OSTI)

    BECHTEL NEVADA

    2004-12-01T23:59:59.000Z

    Corrective Action Unit (CAU) 112, Area 23 Hazardous Waste Trenches, Nevada Test Site (NTS), Nevada, is a Resource Conservation and Recovery Act (RCRA) unit located in Area 23 of the NTS. This annual Post-Closure Inspection and Monitoring Report provides the results of inspections and monitoring for CAU 112. This report includes a summary and analysis of the site inspections, repair and maintenance, meteorological information, and neutron soil moisture monitoring data obtained at CAU 112 for the current monitoring period, October 2003 through September 2004. Inspections of the CAU 112 RCRA unit were performed quarterly to identify any significant physical changes to the site that could impact the proper operation of the waste unit. The overall condition of the covers and facility was good, and no significant findings were observed. The annual subsidence survey of the elevation markers was conducted on August 23, 2004, and the results indicated that no cover subsidence4 has occurred at any of the markers. The elevations of the markers have been consistent for the past 11 years. The total precipitation for the current reporting period, october 2003 to September 2004, was 14.0 centimeters (cm) (5.5 inches [in]) (National Oceanographic and Atmospheric Administration, Air Resources Laboratory, Special Operations and Research Division, 2004). This is slightly below the average rainfall of 14.7 cm (5.79 in) over the same period from 1972 to 2004. Post-closure monitoring verifies that the CAU 112 trench covers are performing properly and that no water is infiltrating into or out of the waste trenches. Sail moisture measurements are obtained in the soil directly beneath the trenches and compared to baseline conditions for the first year of post-closure monitoring, which began in october 1993. neutron logging was performed twice during this monitoring period along 30 neutron access tubes to obtain soil moisture data and detect any changes that may indicate moisture movement beneath each trench. Soil moisture results obtained to date indicate that the compliance criterion of less than 5% Residual Volumetric Moisture Content was met. Soil conditions remain dry and stable beneath the trenches, and the cover is functioning as designed within the compliance limits.

  4. Hazardous Waste Disposal Sites (Iowa)

    Broader source: Energy.gov [DOE]

    These sections contain information on fees and monitoring relevant to operators of hazardous waste disposal sites.

  5. Annual Report RCRA Post-Closure Monitoring and Inspections for CAU 112: Area 23 Hazardous Waste Trenches, Nevada Test Site, Nevada, for the Period October 1999-October 2000

    SciTech Connect (OSTI)

    D. F. Emer

    2001-03-01T23:59:59.000Z

    This annual Neutron Soil Moisture Monitoring report provides an analysis and summary for site inspections, meteorological information, and neutron soil moisture monitoring data obtained at the Area 23 Hazardous Waste Trenches Resource Conservation and Recovery Act (RCRA) unit, located in Area 23 of the Nevada Test Site, Nye County, Nevada, during the October 1999-October 2000 period. Inspections of the Area 23 Hazardous Waste Trenches RCRA unit are conducted to determine and document the physical condition of the covers, facilities, and any unusual conditions that could impact the proper operation of the waste unit closure. Physical inspections of the closure were completed quarterly and indicated that the site is in good condition with no significant findings noted. An annual subsidence survey of the elevation markers was conducted in August 2000. There has been no subsidence at any of the markers since monitoring began seven years ago. The objective of the neutron logging program is to monitor the soil moisture conditions along 30 neutron access tubes and detect changes that maybe indicative of moisture movement at a point located directly beneath each trench. Precipitation for the period October 1999 through October 2000 was 10.44 centimeters (cm) (4.11 inches [in.]) (U.S. National Weather Service, 2000). The prior year annual rainfall (January 1999 through December 1999) was 10.13cm (3.99 in.). The highest 30-day cumulative rainfall occurred on March 8, 2000, with a total of 6.63 cm (2.61 in.). The heaviest daily precipitation occurred on February 23,2000, with a total of 1.70 cm (0.67 in.) falling in that 24-hour period. The recorded average annual rainfall for this site, from 1972 to January 1999, is 15.06 cm (5.93 in.). All monitored access tubes are within the compliance criteria of less than 5 percent residual volumetric moisture content at the compliance point directly beneath each respective trench. Soil conditions remain dry and stable underneath the trenches.

  6. Mitigation and monitoring plan for impacted wetlands at the Gunnison UMTRA Project site, Gunnison, Colorado. [Uranium Mill Tailings Remedial Action (UMTRA) Project

    SciTech Connect (OSTI)

    Not Available

    1992-06-01T23:59:59.000Z

    The U.S Department of Energy (DOE) administers the Uranium Mill Tailings Remedial Action (UMTRA) Project. The UMTRA Project is the result of the Uranium Mill Tailings Radiation Control Act(UMTRA) which was passed in response to the public's concern over the potential public health hazards related to uranium mill tailings and associated contaminated material at abandoned or otherwise uncontrolled inactive processing sites throughout the United States. The Gunnison, Colorado abandoned uranium mill site is one of the sites slated for cleanup by the DOE under authority of UMTRA. The contaminated material at this site will be transported to a disposal site on US Bureau of Land Management (BLM) land east of Gunnison. Remedial action activities will temporarily disturb 0.8 acre and permanently eliminate 5.1 acres of wetlands. This report describes the proposed mitigation plan for the 5.9 acres of impacted wetlands. In conjunction with the mitigation of the permanently impacted wetlands through the enhancement of wetland and adjacent riparian areas, impacts to wildlife as a result of this project will also be mitigated. However, wildlife mitigation is not the focus of this document and is covered in relevant BLM permits for this project. This plan proposes the enhancement of a 3:1 ratio of impacted wetlands in accordance with US Environmental Protection Agency guidelines, plus the enhancement of riparian areas for wildlife mitigation. Included in this mitigation plan is a monitoring plan to ensure that the proposed measures are working and being maintained.

  7. Annual Post-Closure Inspection and Monitoring Report for Corrective Action Unit 329: Area 22 Desert Rock Airstrip Fuel Spill, Nevada Test Site, Nevada, Rev. No.: 0

    SciTech Connect (OSTI)

    Alfred Wickline

    2006-09-01T23:59:59.000Z

    This report presents the data collected during field activities and quarterly soil-gas sampling activities conducted from May 9, 2005, through May 20, 2006, at Corrective Action Unit (CAU) 329, Area 22 Desert Rock Airstrip (DRA) Fuel Spill; Corrective Action Site (CAS) 22-44-01, Fuel Spill. The CAU is located at the DRA, which is located approximately two miles southwest of Mercury, Nevada, as shown in Figure 1-1. Field activities were conducted in accordance with the revised sampling approach outlined in the Addendum to the Closure Report (CR) for CAU 329 (NNSA/NSO, 2005) to support data collection requirements. The previous annual monitoring program for CAU 329 was initiated in August 2000 using soil-gas samples collected from three specific intervals at the DRA-0 and DRA-3 monitoring wells. Results of four sampling events from 2000 through 2003 indicated there is uncertainty in the approach to establish a rate of natural attenuation as specified in ''Streamlined Approach for Environmental Restoration (SAFER) Work Plan for Corrective Action Unit 329: Area 22 Desert Rock Airstrip Fuel Spill, Nevada Test Site, Nevada'' (DOE/NV, 1999). As a result, the Addendum to the CR (NNSA/NSO, 2005) was completed to address this uncertainty by modifying the previous approach. A risk evaluation was added to the scope of the project to determine if the residual concentration of the hazardous constituents of JP4 pose an unacceptable risk to human health or the environment and if a corrective action was required at the site, because the current quarterly monitoring program is not expected to yield a rate constant that could be used effectively to determine a biodegradation rate for total petroleum hydrocarbons (TPH) in less than the initial five years outlined in the CR. Additionally, remediation to the Tier 1 action level for TPH is not practical or technically feasible due to the depth of contamination.

  8. COMPARATIVE EVALUATION OF AMBIENT FINE PARTICULATE MATTER (PM2.5) DATA OBTAINED FROM URBAN AND RURAL MONITORING SITES ALONG THE UPPER OHIO RIVER VALLEY

    SciTech Connect (OSTI)

    Robinson P. Khosah; John P. Shimshock; Jerry L. Penland

    2004-04-15T23:59:59.000Z

    Advanced Technology Systems, Inc. (ATS), with Desert Research Institute (DRI) and Ohio University as subcontractors, was contracted by the NETL in September 1998 to manage the Upper Ohio River Valley Project (UORVP), which included the establishment and operation of four ambient air monitoring sites located in the Upper Ohio River Valley (UORV). Two urban and two rural monitoring sites were included in the UORVP. The four sites selected for the UOVRP were collocated at existing local and/or state air quality monitoring stations. The goal of the UORVP was to characterize the nature and composition of PM{sub 2.5} and its precursor gases. In the process, the objectives of the UORVP were to examine the ambient air concentrations of PM{sub 2.5} as compared with the promulgated PM{sub 2.5} standards, the geographical, seasonal and temporal variations of ambient air concentrations of PM{sub 2.5}, the primary chemical constituents of PM{sub 2.5}, and the correlations between ambient air concentrations of PM{sub 2.5} and its precursor gases, other gaseous pollutants and meteorological parameters. A variety of meteorological and pollutant measurement devices, including several different PM{sub 2.5} samplers that provided either real-time or integrated concentration data, were deployed at the monitoring sites. The frequency of integrated sampling varied throughout the UORVP study period and was as follows: (1) ''Intensive'' sampling periods were defined as periods in which samples were collected on a relatively frequent basis (ranged from 6-hour integrated samples collected round-the-clock to one 24-hour integrated sample collected every third day). (2) ''Background'' sampling periods were defined as periods in which 24-hour integrated samples were collected every third or sixth day. Sampling activities for the UORVP were initiated in February 1999 and concluded in February 2003. This semi-annual Technical Progress Report summarizes the data analyses and interpretations conducted during the period from October 2003 through March 2004. This report was organized in accordance with the Guidelines for Organization of Technical Reports (September 2003).

  9. COMPARATIVE EVALUATION OF AMBIENT FINE PARTICULATE MATTER (PM2.5) DATA OBTAINED FROM URBAN AND RURAL MONITORING SITES ALONG THE UPPER OHIO RIVER VALLEY

    SciTech Connect (OSTI)

    Robinson P. Khosah; John P. Shimshock; Jerry L. Penland

    2004-12-27T23:59:59.000Z

    Advanced Technology Systems, Inc. (ATS), with Desert Research Institute (DRI) and Ohio University as subcontractors, was contracted by the NETL in September 1998 to manage the Upper Ohio River Valley Project (UORVP), which included the establishment and operation of four ambient air monitoring sites located in the Upper Ohio River Valley (UORV). Two urban and two rural monitoring sites were included in the UORVP. The four sites selected for the UOVRP were collocated at existing local or state air quality monitoring stations. The goal of the UORVP was to characterize the nature and composition of PM{sub 2.5} and its precursor gases. In the process, the objectives of the UORVP were to examine the ambient air concentrations of PM{sub 2.5} as compared with the promulgated PM{sub 2.5} standards, the geographical, seasonal and temporal variations of ambient air concentrations of PM{sub 2.5}, the primary chemical constituents of PM{sub 2.5}, and the correlations between ambient air concentrations of PM{sub 2.5} and its precursor gases, other gaseous pollutants and meteorological parameters. A variety of meteorological and pollutant measurement devices, including several different PM{sub 2.5} samplers that provided either real-time or integrated concentration data, were deployed at the monitoring sites. The frequency of integrated sampling varied throughout the UORVP study period and was as follows: (1) ''Intensive'' sampling periods were defined as periods in which samples were collected on a relatively frequent basis (ranged from 6-hour integrated samples collected round-the-clock to one 24-hour integrated sample collected every third day). (2) ''Background'' sampling periods were defined as periods in which 24-hour integrated samples were collected every third or sixth day. Sampling activities for the UORVP were initiated in February 1999 and concluded in February 2003. This Final Technical Progress Report summarizes the data analyses and interpretations conducted during the period from October 1998 through December 2004. This report was organized in accordance with the Guidelines for Organization of Technical Reports (September 2003).

  10. U.S. Geological Survey Scripps Institution of Oceanography University of California -San Diego

    E-Print Network [OSTI]

    -instrumentation Site Tioga Pass RCS Tenaya Lake Snow Sensor Alpine River Monitoring System - Merced Alpine River in the photo below, lets keep each other informed about our activities. 1 Introduction #12; To readers

  11. Biological monitoring of Upper Three Runs Creek, Savannah River Site, Aiken County, South Carolina, March 1990--July 1991

    SciTech Connect (OSTI)

    Not Available

    1991-12-01T23:59:59.000Z

    In anticipation of the fall 1988 start up of effluent discharges into Upper Three Runs Creek by the F/H Area Effluent Treatment Facility of the Savannah River Site, Aiken, SC, a two and one half year biological study was initiated in June 1987. Upper Three Runs Creek is an intensively studied fourth order stream known for its high species richness. Designed to assess the potential impact of F/H area effluent on the creek, the study included qualitative and quantitative macroinvertebrate stream surveys at five sites (see map), chronic toxicity testing of the effluent, water chemistry and bioaccumulation analysis. In a March 1990 study of the potential impact of F/H Area effluent on the macroinvertebrate communities of Upper Three Runs Creek was extended, with reductions in the number of sites to be sampled and in the frequency of water chemistry sampling. This report presents the results of macroinvertebrate stream surveys at three sites, chronic toxicity testing of the effluent and water chemistry analysis of the three stream sites and the effluent from March 1990 to July 1991.

  12. Status of the flora and fauna on the Nevada Test Site, 1993. Results of continuing basic environmental monitoring, January through December 1993

    SciTech Connect (OSTI)

    Hunter, R.B. [comp.] [comp.

    1994-09-01T23:59:59.000Z

    This report provides the results of monitoring of plants and animals on the Nevada Test Site during calendar year 1993. Monitoring was accomplished under the Department of Energy`s Basic Environmental Compliance and Monitoring Program, initiated in 1987. The program looks at both baseline study areas, chosen to represent undisturbed conditions as much as possible, and areas disturbed by Department of energy (DOE) activities or natural phenomena. DOE disturbances studied include areas blasted by above-ground nuclear tests before 1962, subsidence craters created by underground nuclear tests, road maintenance activities, areas cleared for drilling, and influences of man-made water sources. Natural phenomena studied include recovery from range fires, effects of introduced species, damage to plants by insect outbreaks, and effects of weather fluctuations. In 1993 disturbances examined included several burned areas and roadsides, a drill pad on Pahute Mesa, introduced grasses and shrub removal effects on ephemeral plants, and effects on pine trees of an infestation of pinyon needle scale insects.

  13. Environmental monitoring plan - environmental monitoring section. Revision 1

    SciTech Connect (OSTI)

    Wilt, G.C. [ed.; Tate, P.J.; Brigdon, S.L. [and others

    1994-11-01T23:59:59.000Z

    This report presents the environmental monitoring plan for the Lawrence Livermore National Laboratory. A site characterization is provided along with monitoring and measurement techniques and quality assurance measures.

  14. U.S. Department of Energy Monitoring Results for Natural Gas Wells, 1st Quarter FY 2015, Rulison Site

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourthN V O'1repositoryShiprock, NewMonitoring

  15. 1. Department, course number, title ORE 603 Oceanography for Ocean Engineers

    E-Print Network [OSTI]

    Frandsen, Jannette B.

    1. Department, course number, title ORE 603 Oceanography for Ocean Engineers 2. Designation Core for ocean engineers. Introduction to ocean dynamical processes and general circulation. Ocean measurement Program Outcome 3: Ocean engineering core Program Outcome 6: Problem formulation & solution Program

  16. Journal of Oceanography, Vol. 62, pp. 717 to 729, 2006 North Sea,

    E-Print Network [OSTI]

    in the world. The sea is also rich in oil and gas. These facts result in intense pres- sure on the marine717 Journal of Oceanography, Vol. 62, pp. 717 to 729, 2006 Keywords: North Sea, phytoplankton

  17. MESOSCALE OCEANOGRAPHY Instructors: Igor Kamenkovich, Arthur Mariano and Donald B. Olson, with other contributions

    E-Print Network [OSTI]

    Miami, University of

    MESOSCALE OCEANOGRAPHY Instructors: Igor Kamenkovich, Arthur Mariano and Donald B. Olson of ocean mesoscale variability, including its properties in different oceanic regimes, the dynamics will learn basic concepts on ocean mesoscale processes and perspectives on current research topics from

  18. Methods for environmental monitoring of DOE waste disposal and storage sites. Semiannual progress report, April 1, 1988--September 30, 1988

    SciTech Connect (OSTI)

    Hadden, C.T.; Benson, S.B.; Osborne, T.R.; Revis, N.W.

    1988-12-31T23:59:59.000Z

    Perchloroethylene (PCE) is a persistent environmental contaminant whose chemical stability and hydrophobicity have made it difficult to remove from contaminated groundwater. PCE is also toxic and has been implicated as a carcinogen. This study was aimed at assessing methods for biological degradation of PCE. As a part of the study, the authors have characterized possible products of the degradation of PCE, and have determined the effects of detergents and solvents on the water solubility of PCE and on the toxic effects of PCE on bacteria. The authors have also isolated PCE-resistant microorganisms from monitoring wells at Y-12. To date all of the PCE-resistant bacteria isolated from the monitoring wells have been of the genus Bacillus. One of these isolates appears to be able to degrade PCE, as indicated by the disappearance of PCE from cultures of growing cells. The organism does not grow on PCE as the sole carbon source, so degradation of the solvent must occur by cometabolism.

  19. Limnol. Oceanogr., 49(4, part 2), 2004, 13651381 2004, by the American Society of Limnology and Oceanography, Inc.

    E-Print Network [OSTI]

    and Oceanography, Inc. Winter storms: Sequential sediment traps record Daphnia ephippial production, resuspension of Daphnia spatial abundance. In contrast, resuspension of ephippia was inversely related to water column

  20. Monitoring of saline tracer movement with vertically distributed self-potential measurements at the HOBE agricultural test site, Voulund, Denmark

    E-Print Network [OSTI]

    Jougnot, Damien; Haarder, Eline B; Looms, Majken C

    2015-01-01T23:59:59.000Z

    The self-potential (SP) method is sensitive to water fluxes in saturated and partially saturated porous media, such as those associated with rainwater infiltration and groundwater recharge. We present a field-based study at the Voulund agricultural test site, Denmark, that is, to the best of our knowledge, the first to focus on the vertical self-potential distribution prior to and during a saline tracer test. A coupled hydrogeophysical modeling framework is used to simulate the SP response to precipitation and saline tracer infiltration. A layered hydrological model is first obtained by inverting dielectric and matric potential data. The resulting model that compares favorably with electrical resistance tomography models is subsequently used to predict the SP response. The electrokinetic contribution (caused by water fluxes in a charged porous soil) is modeled by an effective excess charge approach that considers both water saturation and pore water salinity. Our results suggest that the effective excess char...

  1. POST-CLOSURE INSPECTION AND MONITORING REPORT FOR CORRECTIVE ACTION UNIT 91: AREA 3 U3fi INJECTION WELL, NEVADA TEST SITE, NEVADA FOR THE PERIOD NOVEMBER 2003 - OCTOBER 2004

    SciTech Connect (OSTI)

    NONE

    2005-01-01T23:59:59.000Z

    This Post-Closure Inspection and Monitoring report provides an analysis and summary of inspections, meteorological information, and neutron soil moisture monitoring for Corrective Action Unit (CAU) 91: Area 3 U-3fi Injection Well, Nevada Test Site (NTS), Nevada. This report covers the annual period November 2003 through October 2004. Site inspections of CAU 91 are performed every six months to identify any significant changes that could impact the proper operation of the waste disposal unit. Inspection results for the current period indicate that the overall condition of the concrete pad, perimeter fence, and warning signs is good.

  2. Results of 1999 Spectral Gamma-Ray and Neutron Moisture Monitoring of Boreholes at Specific Retention Facilities in the 200 East Area, Hanford Site

    SciTech Connect (OSTI)

    DG Horton; RR Randall

    2000-01-18T23:59:59.000Z

    Twenty-eight wells and boreholes in the 200 East Are% Hanford Site, Washington were monitored in 1999. The monitored facilities were past-practice liquid waste disposal facilities and consisted of six cribs and nineteen ''specific retention'' cribs and trenches. Monitoring consisted of spectral gamma-ray and neutron moisture logging. All data are included in Appendix B. The isotopes {sup 137}Cs, {sup 60}Co, {sup 235}U, {sup 238}U, and {sup 154}Eu were identified on spectral gamma logs from boreholes monitoring the PUREX specific retention facilities; the isotopes {sup 137}Cs, {sup 60}Co, {sup 125}Sb, and {sup 154}Eu were identified on the logs from boreholes at the BC Controlled Area cribs and trenches; and {sup 137}Cs, {sup 60}Co, and {sup 125}Sb were, identified on the logs from boreholes at the BX specific retention trenches. Three boreholes in the BC Controlled Area and one at the BX trenches had previous spectral gamma logs available for comparison with 1999 logs. Two of those logs showed that changes in the subsurface distribution of {sup 137}CS and/or {sup 60}Co had occurred since 1992. Although the changes are not great, they do point to continued movement of contaminants in the vadose zone. The logs obtained in 1999 create a larger baseline for comparison with future logs. Numerous historical gross gamma logs exist from most of the boreholes logged. Qualitative comparison of those logs with the 1999 logs show many substantial changes, most of which reflect the decay of deeper short-lived isotopes, such as {sup 106}Ru and {sup 125}Sb, and the much slower decay of shallower and longer-lived isotopes such as {sup 137}Cs. The radionuclides {sup 137}Cs and {sup 60}Co have moved in two boreholes since 1992. Given the amount of movement and the half-lives of the isotopes, it is expected that they will decay to insignificant amounts before reaching groundwater. However, gamma ray logging cannot detect many of the contaminants of interest such as {sup 99}Tc, NO{sub 3}, or {sup 129}I, all of which can be highly mobile in the vadose zone and, for the radionuclides, have long half-lives.

  3. Determination of Depleted Uranium in Environmental Bio-monitor Samples and Soil from Target sites in Western Balkan Region

    SciTech Connect (OSTI)

    Sahoo, Sarata K.; Enomoto, Hiroko; Tokonami, Shinji; Ishikawa, Tetsuo [National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Ujic, Predrag; Celikovic, Igor; Zunic, Zora S. [Institute of Nuclear Sciences, Vinca, Mike Petrovica Alasa 12-14, 11000 Belgrade (Serbia)

    2008-08-07T23:59:59.000Z

    Lichen and Moss are widely used to assess the atmospheric pollution by heavy metals and radionuclides. In this paper, we report results of uranium and its isotope ratios using mass spectrometric measurements (followed by chemical separation procedure) for mosses, lichens and soil samples from a depleted uranium (DU) target site in western Balkan region. Samples were collected in 2003 from Han Pijesak (Republika Srpska in Bosnia and Hercegovina). Inductively coupled plasma mass spectrometry (ICP-MS) measurements show the presence of high concentration of uranium in some samples. Concentration of uranium in moss samples ranged from 5.2-755.43 Bq/Kg. We have determined {sup 235}U/{sup 238}U isotope ratio using thermal ionization mass spectrometry (TIMS) from the samples with high uranium content and the ratios are in the range of 0.002097-0.002380. TIMS measurement confirms presence of DU in some samples. However, we have not noticed any traces of DU in samples containing lesser amount of uranium or from any samples from the living environment of same area.

  4. Summer Courses in Ocean Optics and Biogeochemistry: "Monitoring the Oceans with Coastal Observatories" and

    E-Print Network [OSTI]

    Boss, Emmanuel S.

    Summer Courses in Ocean Optics and Biogeochemistry: "Monitoring the Oceans with Coastal integration of optical approaches into oceanographic research in general. OBJECTIVES These two courses created and optical oceanography and ocean color remote sensing to learn the fundamentals of optics in a coastal

  5. Title I Disposal Sites Annual Report | Department of Energy

    Office of Environmental Management (EM)

    Sites Annual Report 2013 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title I Disposal Sites (March 2014) 2013 Annual Site...

  6. Ground-water monitoring compliance projects for Hanford Site facilities: Progress report for the period January 1--March 31, 1988: Volume 1, Text

    SciTech Connect (OSTI)

    Not Available

    1988-05-01T23:59:59.000Z

    This report describes the progress of eight Hanford Site ground-water monitoring projects for the period January 1 to March 31, 1988. The facilities represented by the eight projects are the 300 Area Process trenches, 183-H Solar Evaporation Basins, 200 Areas Low-Level Burial Grounds, Nonradioactive Dangerous Waste Landfill, 216-A-36B Crib, 1301-N Liquid Waste Disposal Facility, 1325-N Liquid Waste Disposal Facility, and 1324-N/NA Surface Impoundment and Percolation Ponds. The latter four projects are included in this series of quarterly reports for the first time. This report is the seventh in a series of periodic status reports; the first six cover the period from May 1, 1986, through December 31, 1987 (PNL 1986; 1987a, b, c, d; 1988a). This report satisfies the requirements of Section 17B(3) of the Consent Agreement and Compliance Order issued by the Washington State Department of Ecology (1986a) to the US Department of Energy-Richland Operations Office. 13 refs., 19 figs., 24 tabs.

  7. Subseabed Disposal Project annual report, FY85 to termination of project: Physical Oceanography and Water Column Geochemistry Studies, October 1984 through May 1986

    SciTech Connect (OSTI)

    Kupferman, S.L. (ed.)

    1987-05-01T23:59:59.000Z

    This report covers the work of the Physical Oceanography and Water Column Geochemistry (POWCG) Studies Group of the Subseabed Disposal Project (SDP) from October 1984 to termination of the project in May 1986. The overview of the work includes an introduction, general descriptions of the activities, and a summary. Detailed discussions are included as appendices. During the period of this report the POWCG Studies Group held a meeting to develop a long-term research plan for the Nares Abyssal Plain, which was recently designated as a study area for the Environmental Study Group of the SDP. The POWCG Studies Group has also planned and participated in two interdisciplinary oceanographic missions to the Nares which have resulted in the acquisition of data and samples which can be used to begin to understand the workings of the ecosystem at the site, and for developing a preliminary site assessment. The papers in the appendices have been processed for inclusion in the Energy Data Base.

  8. Journal of Oceanography, Vol. 66, pp. 709 to 717, 2010 Near-inertial wave,

    E-Print Network [OSTI]

    Rhode Island, University of

    et al. (2004) show that the Gulf Stream can advect NIW energy away from its generation region, such as the Gulf Stream and the Kuroshio Extension regions, observational Distribution of Deep Near-Inertial Waves RAINVILLE 2 1 Graduate School of Oceanography, University of Rhode Island, Narragansett, RI 02882-1197, U

  9. Journal of Oceanography, Vol. 65, pp. 703 to 720, 2009 Carbon cycle,

    E-Print Network [OSTI]

    Maine, University of

    703 Journal of Oceanography, Vol. 65, pp. 703 to 720, 2009 Keywords: Carbon cycle, South China and Interannual Variability of Carbon Cycle in South China Sea: A Three-Dimensional Physical- Biogeochemical 100081, China 3 California Institute of Technology, Jet Propulsion Laboratory, 4800 Oak Grove Rd

  10. Journal of Oceanography, Vol. 60, pp. 163 to 188, 2004 Pacific Ocean,

    E-Print Network [OSTI]

    Maine, University of

    163 Journal of Oceanography, Vol. 60, pp. 163 to 188, 2004 Keywords: Pacific Ocean, decadal. Decadal-Scale Climate and Ecosystem Interactions in the North Pacific Ocean ARTHUR J. MILLER 1 *, FEI CHAI variations in the Pacific Ocean wield a strong influence on the oceanic ecosystem. Two dominant patterns

  11. Oceanography Vol.21, No.4118 WiNter-SpriNg StormS aNd

    E-Print Network [OSTI]

    Oceanography Vol.21, No.4118 WiNter-SpriNg StormS aNd their iNflueNce oN SedimeNt reSuSpeNSioN, tra-grained materials to the southern basin, (4) resuspension surrogates based on 50 years of wave data show

  12. Real World Issues in Deploying a Wireless Sensor Network for Oceanography

    E-Print Network [OSTI]

    Kent, University of

    interplay of tides, currents, waves, and seabed and coastal modelling. Oceanography can tell us about]. Scroby Sands therefore offers the opportunity to study not only active sedimentation and wave processes distributed data points, by providing a spatially dispersed measurement array that was at least one order

  13. Annual Site Environmental Report Paducah Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of U. S. Department of Energy Order 231.1A. The data and information contained in this report were collected in accordance with the Paducah Site Environmental Monitoring Plan (LATA...

  14. Offshore oceanographic and environmental monitoring services for the Strategic Petroleum Reserve. Volume I. Appendices. Annual report for the Bryan Mound Site, September 1982-August 1983

    SciTech Connect (OSTI)

    None

    1984-03-01T23:59:59.000Z

    The Department of Energy's Strategic Petroleum Reserve Program began leaching the Bryan Mound salt dome and discharging brine into the coastal waters offshore of Freeport, Texas on March 10, 1980. This report describes the findings of a team of Texas A and M University scientists and engineers who have conducted a study to evaluate the effects of the Bryan Mound brine discharge on the marine environment. The study addresses the areas of physical oceanography, analysis of the discharge plume, water and sediment quality, nekton, benthos and data management. It focuses on the period from September 1982 through August 1983. The ambient physical environment and its temporal and spatial variability were studied by means of continuously recording in situ current/conductivitiy/temperature meters and twelve, one-day synoptic hydrographic cruises. The quarterly water and sediment quality data show a small increase in salinity, sodium and chloride ions occurs in the bottom waters and sediment pore waters near the diffuser relative to those values measured at stations farther away. Data from the brine plume study for this reporting study show the largest areal extent within the +1 o/oo above ambient salinity contour was 40.0 km/sup 2/ which occurred on August 11, 1983. It appears that brine disposal at Bryan Mound has had neglible if any influence on the nekton community surrounding the diffuser. The benthic quarterly data from 26 stations, including 7 collections made after the diffuser outflow rate was increased to 1,000,000 barrels/day, show the total numbers of species at the diffuser station were higher than most other nearfield stations as well as many farfield stations in both the pre- and post-1,000,000 barrels/day brine flow periods. 138 references, 175 figures, 53 tables.

  15. POST CLOSURE INSPECTION AND MONITORING REPORT FOR CORRECTIVE ACTION UNIT 110: AREA 3 WMD U-3AX/BL CRATER, NEVADA TEST SITE, NEVADA FOR THE PERIOD JULY 2004 - JUNE 2005

    SciTech Connect (OSTI)

    BECHTEL NEVADA

    2005-08-01T23:59:59.000Z

    This Post-Closure Inspection and Monitoring report provides the results of inspections and monitoring for Corrective Action Unit (CAU) 110, Area 3 Waste Management Division (WMD) U-3ax/bl Crater. This report includes an analysis and summary of the site inspections, repairs and maintenance, meteorological information, and soil moisture monitoring data obtained at CAU 110, for the annual period July 2004 through June 2005. Site inspections of the cover were performed quarterly to identify any significant changes to the site requiring action. The overall condition of the cover, cover vegetation, perimeter fence, and use restriction warning signs was good. Settling was observed that exceeded the action level as specified in Section VII.B.7 of the Hazardous Waste Permit Number NEV HW009 (Nevada Division of Environmental Protection, 2000). This permit states that cracks or settling greater than 15 centimeters (cm) (6 inches [in]) deep that extend 1.0 meter (m) (3 feet [ft]) or more on the cover will be evaluated and repaired within 60 days of detection.

  16. Physics and Physical Oceanography Data Report 2000-2 Tow-Yo and Temperature Data from Trinity Bay,

    E-Print Network [OSTI]

    deYoung, Brad

    Physics and Physical Oceanography Data Report 2000-2 Tow-Yo and Temperature Data from Trinity Bay Oeanography Memorial University of Newfoundland St. John's, Newfoundland A1B 3X7 #12;ii Abstract Trinity Bay

  17. West Valley Demonstration Project Site Environmental Report Calendar Year 2000

    SciTech Connect (OSTI)

    NONE

    2001-08-31T23:59:59.000Z

    The annual site environmental monitoring report for the West Valley Demonstration Project nuclear waste management facility.

  18. Annual Post-Closure Inspection and Monitoring Report for Corrective Action Unit 329: Area 22 Desert Rock Airstrip Fuel Spill, Nevada Test Site, Nevada, with Errata Sheet, Rev. No.: 1

    SciTech Connect (OSTI)

    Wickline, Alfred

    2007-01-01T23:59:59.000Z

    This report presents the data collected during field activities and quarterly soil-gas sampling activities conducted from May 9, 2005, through May 20, 2006, at Corrective Action Unit (CAU) 329, Area 22 Desert Rock Airstrip (DRA) Fuel Spill; Corrective Action Site (CAS) 22-44-01, Fuel Spill. The CAU is located at the DRA, which is located approximately two miles southwest of Mercury, Nevada. A risk evaluation was added to the scope of the project to determine if the residual concentration of the hazardous constituents of JP4 pose an unacceptable risk to human health or the environment and if a corrective action was required at the site, because the current quarterly monitoring program is not expected to yield a rate constant that could be used effectively to determine a biodegradation rate for total petroleum hydrocarbons (TPH) in less than the initial five years outlined in the CR. Additionally, remediation to the Tier 1 action level for TPH is not practical or technically feasible due to the depth of contamination. Field activities were conducted under the Addendum to the CR to collect sufficient data to determine the rate of biodegradation for TPH contamination at CAU 329 to support closure requirements. Reconstruction of the monitoring system at the site and quarterly soil-gas sampling were conducted to collect the required data. Because existing Wells DRA-0 and DRA-3 were determined to be insufficient to provide adequate data, soil-gas monitoring Wells DRA-10 and DRA-11 were installed. Two soil-gas sampling events were conducted to establish a baseline for the site, and subsequent quarterly sampling was conducted as part of the quarterly soil-gas sampling program. In addition, soil samples were collected during well drilling activities so comparisons might be made between the initial soil contamination levels in 2000 and the concentrations present at the time of the well installation.

  19. Savings Analysis of Utility Bills for Unmonitored Sites, Volume II: Detailed Savings Calculations, Texas LoanSTAR Monitoring and Analysis Program

    E-Print Network [OSTI]

    Wei, G.; Eggebrecht, J.; Saman, N. F.; Claridge, D. E.

    1995-01-01T23:59:59.000Z

    Detailed calculations for each site are shown in this Volume. For each site the ECRM description, approved loan amount, expected savings, the pre and post-retrofit energy use (electricity and gas separately), cost of energy, energy savings (in kWh...

  20. Work plan for monitor well installation water and sediment sample collection aquifer testing and topographic surveying at the Riverton, Wyoming, UMTRA Project Site

    SciTech Connect (OSTI)

    NONE

    1995-06-01T23:59:59.000Z

    Investigations conducted during preparation of the site observational work plan (SOWP) at the Uranium Mill Tailings Remedial Action (UMTRA) Project site support a proposed natural flushing ground water compliance strategy, with institutional controls. However, additional site-specific data are needed to reduce uncertainties in order to confirm the applicability and feasibility of this proposed compliance strategy option. This proposed strategy will be analyzed in the site-specific environmental assessment. The purpose of this work plan is to summarize the data collection objectives to fill those data needs, describe the data collection activities that will be undertaken to meet those objectives, and elaborate on the data quality objectives which define the procedures that will be followed to ensure that the quality of these data meet UMTRA Project needs.

  1. PROOF OF CONCEPT TEST OF A UNIQUE GASEOUS PERFLUROCARBON TRACER SYSTEM FOR VERIFICATION AND LONG TERM MONITORING OF CAPS AND COVER SYSTEMS CONDUCTED AT THE SAVANNAH RIVER SITE BENTONITE MAT TEST FACILITY.

    SciTech Connect (OSTI)

    HEISER,J.; SULLIVAN,T.; SERRATO,M.

    2002-02-24T23:59:59.000Z

    Engineered covers have been placed on top of buried/subsurface wastes to minimize water infiltration and therefore, release of hazardous contaminants. In order for the cover to protect the environment it must remain free of holes and breaches throughout its service life. Covers are subject to subsidence, erosion, animal intrusion, plant root infiltration, etc., all of which will affect the overall performance of the cover. The U.S. Department of Energy Environmental Management (DOE-EM) Program 2006 Accelerated Cleanup Plan is pushing for rapid closure of many of the DOE facilities. This will require a great number of new cover systems. Some of these new covers are expected to maintain their performance for periods of up to 1000 years. Long-term stewardship will require monitoring/verification of cover performance over the course of the designed lifetime. In addition, many existing covers are approaching the end of their design life and will need validation of current performance (if continued use is desired) or replacement (if degraded). The need for a reliable method of verification and long-term monitoring is readily apparent. Currently, failure is detected through monitoring wells downstream of the waste site. This is too late as the contaminants have already left the disposal area. The proposed approach is the use of gaseous Perfluorocarbon tracers (PFT) to verify and monitor cover performance. It is believed that PFTs will provide a technology that can verify a cover meets all performance objectives upon installation, be capable of predicting changes in cover performance and failure (defined as contaminants leaving the site) before it happens, and be cost-effective in supporting stewardship needs. The PFTs are injected beneath the cover and air samples taken above (either air samples or soil gas samples) at the top of the cover. The location, concentrations, and time of arrival of the tracer(s) provide a direct measure of cover performance. PFT technology can be used as a non-invasive method (if injection ports are emplaced prior to cover emplacement) on new covers or a minimally invasive method on existing covers. PFT verification will be useful at all buried waste sites using a cover system (e.g., treated or untreated chemical waste landfills) including DOE, commercial, and private sector sites. This paper discusses the initial field trial of the PFT cover monitoring system performed at the Savannah River Site (SRS) in FY01. The experiments provided a successful proof-of-principle test of the PFT technology in monitoring caps and covers. An injection and sampling array was installed in the Bentomat test cap at the SRS Caps Test Facility. This system contained 6 feet of sandy soil beneath a 1/2 inch geosynthetic clay liner covered by an HDPE liner which was covered by 2 feet of clayey top soil. PFTs were injected into the sandy soil though a pre-existing system of access pipes below the cap and soil gas samples were taken on top of the cap. Mid-way into the injection period a series of 1 1/2 inch holes were punched into the cap (through the geomembrane) to provide a positive breach in the cap. Data will be presented that shows the initial cap was fairly tight and leak free and that the artificially induced leaks were detectable within two hours of occurrence.

  2. Characterizing Commercial Sites Selected for

    E-Print Network [OSTI]

    such as solar thermal absorption chillers, building energy management systems, and advanced lighting. The twoCharacterizing Commercial Sites Selected for Energy Efficiency Monitoring This report presents data of Commercial Sites Selected for Energy Efficiency Monitoring Prepared for the U.S. Department of Energy Office

  3. Development and Deployment of a Compact Eye-Safe Scanning Differential absorption Lidar (DIAL) for Spatial Mapping of Carbon Dioxide for Monitoring/Verification/Accounting at Geologic Sequestration Sites

    SciTech Connect (OSTI)

    Repasky, Kevin

    2014-03-31T23:59:59.000Z

    A scanning differential absorption lidar (DIAL) instrument for monitoring carbon dioxide has been developed. The laser transmitter uses two tunable discrete mode laser diodes (DMLD) operating in the continuous wave (cw) mode with one locked to the online absorption wavelength and the other operating at the offline wavelength. Two in-line fiber optic switches are used to switch between online and offline operation. After the fiber optic switch, an acousto- optic modulator (AOM) is used to generate a pulse train used to injection seed an erbium doped fiber amplifier (EDFA) to produce eye-safe laser pulses with maximum pulse energies of 66 {micro}J, a pulse repetition frequency of 15 kHz, and an operating wavelength of 1.571 {micro}m. The DIAL receiver uses a 28 cm diameter Schmidt-Cassegrain telescope to collect that backscattered light, which is then monitored using a photo-multiplier tube (PMT) module operating in the photon counting mode. The DIAL instrument has been operated from a laboratory environment on the campus of Montana State University, at the Zero Emission Research Technology (ZERT) field site located in the agricultural research area on the western end of the Montana State University campus, and at the Big Sky Carbon Sequestration Partnership site located in north-central Montana. DIAL data has been collected and profiles have been validated using a co-located Licor LI-820 Gas Analyzer point sensor.

  4. Beatty Wind Monitoring Project

    SciTech Connect (OSTI)

    Hurt, Rick

    2009-06-01T23:59:59.000Z

    The UNLV Center for Energy Research (CER) and Valley Electric Association (VEA) worked with Kitty Shubert of the Beatty Economic Redevelopment Corporation (BERC) to install two wind monitoring stations outside the town of Beatty, Nevada. The following is a description of the two sites. The information for a proposed third site is also shown. The sites were selected from previous work by the BERC and Idaho National Laboratory. The equipment was provided by the BERC and installed by researchers from the UNLV CER.

  5. Site Environmental Report, 1993

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    The Site Environmental Report (SER) is prepared annually in accordance with DOE Order 5400.1, ``General Environmental Protection Program.`` This 1993 SER provides the general public as well as scientists and engineers with the results from the site`s ongoing Environmental Monitoring Program. Also included in this report is information concerning the site`s progress toward achieving full compliance with requirements set forth by DOE, US Environmental Protection Agency (USEPA), and Ohio EPA (OEPA). For some readers, the highlights provided in the Executive Summary may provide sufficient information. Many readers, however, may wish to read more detailed descriptions of the information than those which are presented here.

  6. Geological oceanography of the Atchafalaya Bay area, Louisiana

    E-Print Network [OSTI]

    Thompson, Warren Charles

    1953-01-01T23:59:59.000Z

    off the river mouth, and 2. Mud-flat sediments on the coast west of Atchafalaya Bay to form the 7-mile-wide stretch of marshland which extends for 60 miles (Figure 3, p. 14). B. The contemporary rapid increase in discharge of the Atchafalaya River... area of the recently formed Atchafalaya River, and the site at which a great new river delta will eventually form. Engineering operations undertaken near the head of the Atchafalaya River in central Louisiana in the mid-19th century to open a...

  7. Site Environmental Report for 2012, Volumes 1 & 2

    E-Print Network [OSTI]

    Pauer, Ron

    2013-01-01T23:59:59.000Z

    and southern areas. Downstream from the monitoring station,Creek Creeks; Sediment Chicken Creek— Downstream ChickenCreek downstream of routine monitoring site Creeks Chicken

  8. Site Environmental Report for 2010, Volumes 1 & 2

    E-Print Network [OSTI]

    Baskin, David

    2012-01-01T23:59:59.000Z

    and southern parts of LBNL. Downstream from the monitoringData Volume II section Chicken Creek— Downstream ChickenCreek downstream of routine monitoring site Creeks Chicken

  9. Cost reduction performance enhancements of multiple site cooling water systems, enabled by remote system monitoring/control and multifaceted data management

    SciTech Connect (OSTI)

    Cook, B. [BetzDearborn Water Management Group, Horsham, PA (United States); Young, D. [BetzDearborn Water Management Group, Mississauga, Ontario (Canada); Tari, K. [Praxair, Inc., Tonawanda, New York, NY (United States)

    1998-12-31T23:59:59.000Z

    An outsourced cooling water treatment automated control and data acquisition package, has been designed, installed, and commissioned in over 70 sites in North America and offshore. The standard package consists of a controller, sensors, human-machine interface software, data acquisition and management software, communications, and reporting. Significant challenges to applying this standard package in multiple sites arose from variations in cooling system design and makeup water quality as well as operations, environmental considerations, metrics, and language. A standard approach has met these challenges and overcome effects of downsizing through significant reduction in non-value-added, manual activities. Overall system reliability has been improved by migration to best practice throughout the organizations involved and immediate proactive response to out-of-specification conditions. This paper documents the evolution of a standard cooling water automation and data management package from its inception to current practice.

  10. Ground-water monitoring compliance projects for Hanford site facilities: Progress report for January 1 to March 31, 1988: Volume 9: Appendix C

    SciTech Connect (OSTI)

    Not Available

    1988-05-01T23:59:59.000Z

    The appendix is one of nine volumes, and presents data describing wells completed at the Hanford Site during the first quarter of calendar year 1988 (January through March). The data in this volume of Appendix C cover the following wells: 199-N-58; 199-N-59; 199-N-60; 199-N-61; 199-N-67. The data are presented in the following order: Well Completion Report/Title III Inspection List, As-Built Diagram, Logging Charts, and Drill Logs.

  11. Ameliorating risk: Culturable and metagenomic monitoring of the 14 year decline of a genetically engineered microorganism at a bioremediation field site

    SciTech Connect (OSTI)

    Layton, Alice [University of Tennessee, Knoxville (UTK); Smart, Abby E. [University of Tennessee, Knoxville (UTK); Chauhan, Archana [University of Tennessee, Knoxville (UTK); Ripp, Steven Anthony [University of Tennessee, Knoxville (UTK); Williams, Daniel [University of Tennessee, Knoxville (UTK); Burton, Whitney [University of Tennessee, Knoxville (UTK); Moser, Scott [University of Tennessee, Knoxville (UTK); Phillips, Jana Randolph [ORNL; Palumbo, Anthony Vito [ORNL; Sayler, Gary [University of Tennessee, Knoxville (UTK)

    2012-01-01T23:59:59.000Z

    Pseudomonas fluorescens HK44 represented the first genetically engineered microorganism to be approved in the United States for field release for applications related to subsurface soil bioremediation. In October 1996, strain HK44 was introduced into a replicated semi-contained array of soil lysimeters where its luciferase (luxCDABE)-based bioluminescent response to soil-borne polycyclic aromatic hydrocarbon (PAH) contaminants was detected and monitored for the next two years. At the termination of this experiment, it was decided that the lysimeters remain available for future longer-term monitoring efforts, and were thus covered and left essentially undisturbed until the initiation of a large sampling event in 2010, fourteen years after the original release. Although after extensive sampling culturable HK44 cells were not found, additional molecular and metagenomic analyses indicated that genetic signatures of HK44 cells still persisted, with genes diagnostic for the bioluminescent transposon carried by strain HK44 (luxA and tetA) being found at low concentrations (< 5000 copies/g).

  12. Site environmental report for 1996

    SciTech Connect (OSTI)

    Holland, R.C.

    1997-08-01T23:59:59.000Z

    To help verify effective protection of public safety and preservation of the environment, Sandia National Laboratories (SNL)/California maintains an extensive, ongoing environmental monitoring program. This program monitors all significant airborne and liquid effluents and the environment at the SNL/California site perimeter. Lawrence Livermore National Laboratory (LLNL) performs off-site environmental monitoring for both sites. These monitoring efforts ensure that emission controls are effective in preventing contamination of the environment. As part of SNL/California`s Environmental Monitoring Program, an environmental surveillance system measures the possible presence of radioactive and hazardous materials in ambient air, surface water, groundwater, sewage, soil, vegetation, and locally produced food-stuffs. The program also includes an extensive environmental dosimetry program, which measures external radiation levels around the Livermore site and nearby vicinity. Each year, the results of the Environmental Monitoring Program are published in this report, the Site Environmental Report. This executive summary focuses on impacts to the environment and estimated radiation doses to the public from site emissions. Chapter 3, {open_quotes}Compliance Summary,{close_quotes} reviews the site`s various environmental protection activities and compliance status, with applicable environmental regulations. The effluent monitoring and environmental surveillance results for 1996 show that SNL/California operations had no harmful effects on the environment or the public. 37 figs., 12 tabs.

  13. Ground-water monitoring compliance projects for Hanford site facilities: Progress report for the period January 1 to March 31, 1988: Volume 5, Appendix B

    SciTech Connect (OSTI)

    none,

    1988-05-01T23:59:59.000Z

    This appendix is one of nine volumes, and presents data describing wells completed at the Hanford Site during the fourth quarter of calendar year 1987 (October through December). The data in this volume of Appendix B cover the following wells: 299-W6-2; 299-W7-1; 299-W7-2; 299-W7-3; 299-W7-4. The data are presented in the following order: Well Completion Report/Title III Inspection List, Inspection Plan, As-Built Diagram, Logging Charts, and Drill Logs.

  14. Ground-water monitoring compliance projects for Hanford site facilities: Progress report for the period January 1 to March 31, 1988: Volume 7, Appendix B (contd)

    SciTech Connect (OSTI)

    Not Available

    1988-05-01T23:59:59.000Z

    This appendix is one of nine volumes, and presents data describing wwlls completed at the Hanford Site during the fourth quarter of calendar year 1987 (October through December). The data in this volume of Appendix B cover the following wells: 299-W10-14; 299-W15-15; 299-W15-16; 299-W15-17; 299-W15-18. The data are presented in the following order: Well Completion Report/Title III Inspection List, Inspection Plan, As-Built Diagram, Logging Charts, and Drill Logs.

  15. Ground-water monitoring compliance projects for Hanford site facilities: Progress report for the period January 1 to March 31, 1988: Volume 2, Appendix A

    SciTech Connect (OSTI)

    Not Available

    1988-05-01T23:59:59.000Z

    This appendix is one of nine volumes, and presents data describing wells completed at the Hanford Site during the fourth quarter of calendar year 1987 (October through December). The data in this volume of Appendix A cover the following wells: 299-E27-8; 299-E27-9; 299-E27-10; 299-E28-26; 299-E28-27. The data are presented in the following order: Well Completion Report/Title III Inspection List, Inspection Plan, As-Built Diagram, Logging Charts, and Drill Logs.

  16. Ground-water monitoring compliance projects for Hanford site facilities: Progress report for the period January 1 to March 31, 1988: Volume 8, Appendix B (contd)

    SciTech Connect (OSTI)

    Not Available

    1988-05-01T23:59:59.000Z

    This appendix is one of nine volumes, and presents data describing wells completed at the Hanford Site during the fourth quarter of calendar year 1987 (October through December). The data in this volume of Appendix B cover the following wells: 299-W18-21; 299-W18-22; 299-W18-23; 299-W18-24. The data are presented in the following order: Well Completion Report/Title III Inspection List, Inspection Plan, As-Built Diagram, Logging Charts, and Drill Logs.

  17. Ground-water monitoring compliance projects for Hanford site facilities: Progress report for the period January 1 to March 31, 1988: Volume 4, Appendix A (contd)

    SciTech Connect (OSTI)

    Not Available

    1988-05-01T23:59:59.000Z

    This appendix is one of nine volumes, and presents data describing wells completed at the Hanford Site during the fourth quarter of calendar year 1987 (October through December). The data in this volume of Appendix A cover the following wells: 299-E33-30; 299-E34-2; 299-E34-3; 299-E34-4; 299-E34-5; 299-E34-6. The data are presented in the following order: Well Completion Report/Title III Inspection List, Inspection Plan, As-Built Diagram, Logging Charts, and Drill Logs.

  18. Ground-water monitoring compliance projects for Hanford site facilities: Progress report for the period, January 1-March 31, 1988: Volume 6, Appendix B (contd)

    SciTech Connect (OSTI)

    Not Available

    1988-05-01T23:59:59.000Z

    This appendix is one of nine volumes, and presents data describing wells completed at the Hanford Site during the fourth quarter of calendar year 1987 (October through December). The data in this volume of Appendix B cover the following wells: 299-W7-5; 299-W7-6; 299-W8-1; 299-W9-1; 299-W10-13. The data are presented in the following order: Well Completion Report/Title III Inspection List, Inspection Plan, As-Built Diagram, Logging Charts, and Drill Logs.

  19. Puna Geothermal Venture Hydrologic Monitoring Program

    SciTech Connect (OSTI)

    None

    1990-04-01T23:59:59.000Z

    This document provides the basis for the Hydrologic Monitoring Program (HMP) for the Puna Geothermal Venture. The HMP is complementary to two additional environmental compliance monitoring programs also being submitted by Puma Geothermal Venture (PGV) for their proposed activities at the site. The other two programs are the Meteorology and Air Quality Monitoring Program (MAQMP) and the Noise Monitoring Program (NMP), being submitted concurrently.

  20. COMPARATIVE EVALUATION OF AMBIENT FINE PARTICULATE MATTER (PM2.5) DATA OBTAINED FROM URBAN AND RURAL MONITORING SITES ALONG THE UPPER OHIO RIVER VALLEY

    SciTech Connect (OSTI)

    Unknown

    2002-04-30T23:59:59.000Z

    The report discusses the following conclusions: (1) The TEOM equipment performed as well as the sequential filter samplers in accounting for ambient PM{sub 2.5} levels; however, the FRM-obtained data was consistently lower than the averages from the TEOM/DRI-SFS measurements; (2) The trending in the PM{sub 2.5} levels was similar for Lawrenceville and Holbrook, which represent an urban and a rural site sixty-five miles apart. This implies that the PM{sub 2.5} levels appear to be impacted more by regional than by local effects; (3) The absolute median PM{sub 2.5} levels were slightly higher for Lawrenceville than for Holbrook, implying that local urban environmental contributions had a minor but measurable effect on total PM{sub 2.5} mass concentration; (4) PM{sub 2.5} and PM{sub 10} mass concentration levels were consistently higher in summer than in winter, with intermediate levels observed in the spring and fall; (5) Sulfate levels predominated in the speciation data obtained from both the Holbrook and the Lawrenceville sites during winter and summer intensive sampling. Sulfate level measured at Holbrook were higher than those taken at Lawrenceville regardless of the season; (6) Ammonium levels remained relatively constant between seasons and between sites; (7) Nitrate levels measured at Lawrenceville were higher than those measured at Holbrook during winter intensive sampling. Nitrate levels measured during the summer intensive period were found to be very low at both locations; (8) In general, the predominant inorganic fraction of the samples analyzed could be described as being composed of a mixture of ammonium bisulfate and ammonium sulfate with minor amounts of ammonium nitrate; (9) The PM10 fraction had a larger percentage of geological material and a smaller percentage of condensable material (ammonium bisulfate, ammonium sulfate, ammonium nitrate and total carbon species) than the PM{sub 2.5} fraction for samples collected in winter at Lawrenceville; and (10) Most high PM{sub 2.5} episodes occurred when the predominating wind direction was from the South-West. (11) Plots of ozone vs. NO{sub x} suggest chemical reaction between these molecules since a high concentration of one always results in a low concentration of the other. The analysis of the acquired data has so far addressed three of the four scientific questions originally posed. More data analysis is on-going including the correlation between O{sub 3} and PM{sub 2.5} levels and the correlation of mass data with meteorological observations.

  1. Limnol. Oceanogr., 47(4), 2002, 12101216 2002, by the American Society of Limnology and Oceanography, Inc.

    E-Print Network [OSTI]

    Aeschbach-Hertig, Werner

    and Oceanography, Inc. Rapid deep-water renewal in Lake Issyk-Kul (Kyrgyzstan) indicated by transient tracers, and the chlorofluorocarbons CFC-11 and CFC-12 were measured in Lake Issyk-Kul, a large, deep lake in Kyrgyzstan. Apparent in the Tien Shan mountains of northeast Kyrgyzstan. With a water volume of 1,740 km3 and a maximum depth

  2. Limnol. Oceanogr., 51(1, part 2), 2006, 569579 2006, by the American Society of Limnology and Oceanography, Inc.

    E-Print Network [OSTI]

    Myers, Ransom A.

    and Oceanography, Inc. Effects of eutrophication, grazing, and algal blooms on rocky shores Boris Worm1 and Heike K Eutrophication can profoundly change rocky shore communities. These changes often cause the replacement. Grazing, however, can counteract eutrophication by eliminating the annual algae's susceptible recruits. We

  3. Limnol. Oceanogr., 47(4), 2002, 11521164 2002, by the American Society of Limnology and Oceanography, Inc.

    E-Print Network [OSTI]

    Beaulieu, Stace E.

    and Oceanography, Inc. Sequential resuspension of protists by accelerating tidal flow: Implications for community & Marshall College, Lancaster, Pennsylvania 17604-3003 Abstract We measured resuspension thresholds with particles. As tidal currents accelerated to u* 1.3 cm s 1 , resuspension caused cell concentrations at 5 cm

  4. Limnol. Oceanogr., 49(1), 2004, 180190 2004, by the American Society of Limnology and Oceanography, Inc.

    E-Print Network [OSTI]

    Jacquet, Stéphan

    current off the Norwegian coast and in the fjords have been conducted over the years (e.g., Braa- rud et and Oceanography, Inc. Spring phytoplankton bloom dynamics in Norwegian coastal waters: Microbial community in Norwegian waters have employed light microscopy and accounted for species composition of phyto

  5. Limnol. Oceanogr., 44(3, part 2), 1999, 784794 1999, by the American Society of Limnology and Oceanography, Inc.

    E-Print Network [OSTI]

    Williamson, Craig E.

    and Oceanography, Inc. Multiple stresses from a single agent: Diverse responses to the experimental acidification Maria J. Gonzalez Department of Biological Sciences, Wright State University, Dayton, Ohio 45435 Ronald and suggest that singly operating stresses may actually be quite rare. Human activities have generated a wide

  6. Limnol. Oceanogr., 39(6), 1994, 1487-1495 0 1994, by the American Society of Limnology and Oceanography, Inc.

    E-Print Network [OSTI]

    Hansell, Dennis

    significant portion of the trap- collected material. The problems of fecal pellet production and consumption of Oceanography, University of Washington. duction, is equivalent to new production when the system under study and export production are fundamental for understanding the functioning of any marine system. Most often

  7. Oceanography Vol.21, No.392 W o r k s h o p r e p o rt

    E-Print Network [OSTI]

    Buesseler, Ken

    limits the extent of carbon sequestration from the atmo- sphere. The mechanisms controlling both the impact of ongoing climate and ocean circulation changes on this carbon sequestration. To identify gapsOceanography Vol.21, No.392 W o r k s h o p r e p o rt Controls on organic Carbon export

  8. Limnol. Oceanogr., 41(4), 1996,707-721 0 1996, by the American Society of Limnology and Oceanography, Inc.

    E-Print Network [OSTI]

    Aeschbach-Hertig, Werner

    and Oceanography, Inc. Density-driven exchange between the basins of Lake Lucerne (Switzerland) traced with the 3H, NO C61, CH-8902 Zurich, Switzerland Abstract Lab: Lucerne is divided by sills into four major and two Urs Menet and Stefan Thiirig. Johny Wiiest contributed his knowledge of Lake Lucerne to the plan- ning

  9. Limnol. Oceanogr., 32(6), 1987, 1353-1362 0 1987, by the American Society of Limnology and Oceanography, Inc.

    E-Print Network [OSTI]

    concentrations of amino acids and ammonium in lake water held in "dark" and "light/dark" bottles offer another ap and Oceanography, Inc. Sources and fate of dissolved free amino acids in epilimnetic Lake Michigan water 1 The importance of the "microbial food web" to energy flow and nutrient cycling processes in pelagic zones

  10. Limnol. Oceanogr., 46(8), 2001, 19771989 2001, by the American Society of Limnology and Oceanography, Inc.

    E-Print Network [OSTI]

    and Oceanography, Inc. Tracking the fate of a high concentration groundwater nitrate plume through a fringing marsh: A combined groundwater tracer and in situ isotope enrichment study Craig R. Tobias1 School of Marine Science, Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, Virginia 23062 Stephen

  11. Limnol. Oceanogr., 46(3), 2001, 604615 2001, by the American Society of Limnology and Oceanography, Inc.

    E-Print Network [OSTI]

    and Oceanography, Inc. Quantifying groundwater discharge through fringing wetlands to estuaries: Seasonal of Marine Science, Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, Virginia 23062 Judson W. Harvey U.S. Geological Survey, Reston, Virginia 20192 Iris C. Anderson School

  12. Oak Ridge Reservation annual site environmental report for 1995

    SciTech Connect (OSTI)

    Koncinski, W.S. [ed.

    1996-09-01T23:59:59.000Z

    This report presents the details of the environmental monitoring and management program for the Oak Ridge Reservation. Topics discussed include: site background, climate, and operations; environmental compliance strategies; effluent monitoring; environmental management program including environmental restoration, decontamination and decommissioning, technology development, and public involvement; effluent monitoring of airborne discharges, liquid discharges, toxicity control and monitoring, biological monitoring and abatement; environmental surveillance which encompasses meteorological monitoring, ambient air monitoring, surface water monitoring, soils monitoring, sediment monitoring, and contamination of food stuffs monitoring; radiation doses; chemical exposures; ground water monitoring; and quality assurance.

  13. Monitoring materials

    DOE Patents [OSTI]

    Orr, Christopher Henry (Calderbridge, GB); Luff, Craig Janson (Calderbridge, GB); Dockray, Thomas (Calderbridge, GB); Macarthur, Duncan Whittemore (Los Alamos, NM)

    2002-01-01T23:59:59.000Z

    The apparatus and method provide techniques for effectively implementing alpha and/or beta and/or gamma monitoring of items or locations as desired. Indirect alpha monitoring by detecting ions generated by alpha emissions, in conjunction with beta and/or gamma monitoring is provided. The invention additionally provides for screening of items prior to alpha monitoring using beta and/or gamma monitoring, so as to ensure that the alpha monitoring apparatus is not contaminated by proceeding direct to alpha monitoring of a heavily contaminated item or location. The invention provides additional versatility in the emission forms which can be monitored, whilst maintaining accuracy and avoiding inadvertent contamination.

  14. Performance Monitoring

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimization Performance Monitoring Performance Monitoring A redirector page has been set up without anywhere to redirect to. Last edited: 2014-08-25 14:37:27...

  15. WEST VALLEY DEMONSTRATION PROJECT SITE ENVIRONMENTAL REPORT CALENDARY YEAR 2001

    SciTech Connect (OSTI)

    NONE

    2002-09-30T23:59:59.000Z

    THE ANNUAL (CALENDAR YEAR 2001) SITE ENVIRONMENTAL MONITORING REPORT FOR THE WEST VALLEY DEMONSTRATION PROJECT NUCLEAR WASTE MANAGEMENT FACILITY.

  16. Site Environmental Report for 1998

    SciTech Connect (OSTI)

    Holland, R.C.

    1999-06-01T23:59:59.000Z

    Sandia National Laboratories (SNL) is committed to conducting its operations in an environmentally safe and sound manner. It is mandatory that activities at SNL/California comply with all applicable environmental statutes, regulations, and standards. Moreover, SNL/California continuously strives to reduce risks to employees, the public, and the environment to the lowest levels reasonably possible. To help verify effective protection of public safety and preservation of the environment, SNL/California maintains an extensive, ongoing environmental monitoring program. This program monitors all significant effluents and the environment at the SNL/California site perimeter. Lawrence Livermore National Laboratory (LLNL) performs off-site external radiation monitoring for both sites. These monitoring efforts ensure that emission controls are effective in preventing contamination of the environment. As part of SNL/California's Environmental Monitoring Program, an environmental surveillance system measures the possible presence of hazardous materials in groundwater, stormwater, and sewage. The program also includes an extensive environmental dosimetry program, which measures external radiation levels around the Livermore site and nearby vicinity. Each year, the results of the Environmental Monitoring Program are published in this report, the Site Environmental Report. This executive summary focuses on impacts to the environment. Chapter 3, ''Compliance Summary,'' reviews the site's various environmental protection activities and compliance status with applicable environmental regulations. The effluent monitoring and environmental surveillance results for 1998 show that SNL/California operations had no harmful effects on the environment or the public.

  17. Paducah Site Annual Site Environmental Report PAD-REG-1021

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy Order (DOE) 231.1B. The data and information contained in this report were collected in accordance with the Paducah Site Environmental Monitoring Plan (LATA...

  18. Paducah Site Annual Site Environmental Report for Calendar Year...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U. S. Department of Energy Order 231.1A. 1 The data and information contained in this report were collected in accordance with the Paducah Site Environmental Monitoring Plan (LATA...

  19. Ph.D. Student -Biological Oceanography knsato@ucsd.edu 1450 Chalcedony St., #6, San Diego, CA 92109 (925) 381-8098

    E-Print Network [OSTI]

    Levin, Lisa

    Diego B.S. in Evolution, Ecology, and Biodiversity (with Honors) June 2008 University of California of the Tohoku tsunami debris field. Oceanography 25: 200­ 207. http://dx.doi.org/10.5670/oceanog.2012

  20. * Corresponding author. National Institute of Water and Atmospheric Research, Centre for Chemical and Physical Oceanography, Department of Chemistry, University of Otago, Dunedin, New Zealand. Fax

    E-Print Network [OSTI]

    and Physical Oceanography, Department of Chemistry, University of Otago, Dunedin, New Zealand. Fax: 0064 aggregation predominated. Vertical pro"les of thorium/uranium also provided 0967-0645/99/$- see front matter

  1. FY 2002 Integrated Monitoring Plan for the Hanford Groundwater Monitoring Project

    SciTech Connect (OSTI)

    Hartman, Mary J.; Dresel, P Evan; Lindberg, Jonathan W.; Newcomer, Darrell R.; Thornton, Edward C.

    2001-10-31T23:59:59.000Z

    This document is an integrated monitoring plan for the groundwater project and contains: well and constituent lists for monitoring required by the Atomic Energy Act of 1954 and its implementing orders ("surveillance monitoring"); other, established monitoring plans by reference; and a master well/ constituent/frequency matrix for the entire Hanford Site.

  2. Continental Shelf processes affecting the oceanography of the South Atlantic Bight

    SciTech Connect (OSTI)

    Pietrafesa, L.J.

    1980-04-14T23:59:59.000Z

    Progress in studies of the physical processes affecting the oceanography of the South Atlantic Bight is reported. NCSU personnel efforts have been focused on processing and analyzing existing data sets as well as planning and preparing for the Georgia Atlantic Bight Experiment (GABEX-1). Three cruises were conducted between June 1979 and February 1980 for the temperature/pressure recording instruments (June to Oct) and for the deployment of the GABEX I and other arrays. The Onslow Bay data sets extend over four years of observations from the mid- and outer-shelf region. Each mooring cruise has been coordinated with similar mooring deployments off Savannah and off Cape Romain with hydrographic cruises and with interdisciplinary cruises following Gulf Stream filaments and involving biological, chemical and physical oceanographers. The current meter data collected in the Carolina Capes is listed. Preprints and reprints are included.

  3. Rulison Monitoring Plan

    SciTech Connect (OSTI)

    None

    2010-07-01T23:59:59.000Z

    The Project Rulison Monitoring Plan has been developed as part of the U.S. Department of Energy (DOE) Office of Legacy Management's mission to protect human health and the environment. The purpose of the plan is to monitor fluids from gas wells for radionuclides that would indicate contamination is migrating from the Rulison detonation zone to producing gas wells, allowing action to be taken before the contamination could pose a risk. The Monitoring Plan (1) lists the contaminants present and identifies those that have the greatest potential to migrate from the detonation zone (radionuclide source term), (2) identifies locations that monitor the most likely transport pathways, (3) identifies which fluids will be sampled (gas and liquid) and why, (4) establishes the frequency of sampling, and (5) specifies the most practical analyses and where the analysis results will be reported. The plan does not affect the long-term hydrologic sampling conducted by DOE since 1972, which will continue for the purpose of sampling shallow groundwater and surface water near the site. The Monitoring Plan was developed in anticipation of gas wells being drilled progressively nearer the Rulison site. DOE sampled 10 gas wells in 1997 and 2005 at distances ranging from 2.7 to 7.6 miles from the site to establish background concentrations for radionuclides. In a separate effort, gas industry operators and the Colorado Oil and Gas Conservation Commission (COGCC) developed an industry sampling and analysis plan that was implemented in 2007. The industry plan requires the sampling of gas wells within 3 miles of the site, with increased requirements for wells within 1 mile of the site. The DOE plan emphasizes the sampling of wells near the site (Figure 1), specifically those with a bottom-hole location of 1 mile or less from the detonation, depending on the direction relative to the natural fracture trend of the producing formation. Studies indicate that even the most mobile radionuclides created by the test are unlikely to migrate appreciable distances (hundreds of feet) from the detonation zone (Cooper et al. 2007, 2009). The Monitoring Plan was developed to provide a cautious and comprehensive approach for detecting any potential contaminant migration from the Rulison test site. It also provides an independent confirmation of results from the industry sampling and analysis plan while effectively increasing the sampling frequency of wells near the site.

  4. Site environmental report for 1994

    SciTech Connect (OSTI)

    Brekke, D.D.; Holland, R.C.; Gordon, K.W. [ed.

    1995-12-01T23:59:59.000Z

    Sandia National Laboratories (SNL) is committed to conducting its operations in an environmentally safe and sound manner. It is mandatory that activities at SNL/California comply with all applicable environmental statutes, regulations, and standards. Moreover, SNL/California continuously strives to reduce risks to employees, the public, and the environment to the lowest levels reasonably possible. To help verify effective protection of public safety and preservation of the environment, SNL/California maintains an extensive, ongoing environmental monitoring program. This program monitors all significant airborne and liquid effluents and the environment at the SNL/California site perimeter. Lawrence Livermore National Laboratory (LLNL) performs off-site environmental monitoring for both sites. These monitoring efforts ensure that emission controls are effective in preventing contamination of the environment. As part of SNL/California`s Environmental Monitoring Program, an environmental surveillance system measures the possible presence of radioactive and hazardous materials in ambient air, surface water, groundwater, sewage, soil, vegetation, and locally-produced food-stuffs. The program also includes an extensive environmental dosimetry program, which measures external radiation levels around the Livermore site and nearby vicinity. Each year, the results of the Environmental Monitoring Program are published in this report, the Site Environmental Report This executive summary focuses on impacts to the environment and estimated radiation doses to the public from site emissions. Chapter 3, {open_quotes}Compliance Summary,{close_quotes} reviews the site`s various environmental protection activities and compliance status with applicable environmental regulations. The effluent monitoring and environmental surveillance results for 1994 show that SNL/California operations had no harmful effects on the environment or the public. A summary of the findings is provided below.

  5. 1994 Site environmental report

    SciTech Connect (OSTI)

    NONE

    1995-07-01T23:59:59.000Z

    The Fernald site is a Department of Energy (DOE)-owned facility that produced high-quality uranium metals for military defense for nearly 40 years. DOE suspended production at the site in 1989 and formally ended production in 1991. Although production activities have ceased, the site continues to examine the air and liquid pathways as possible routes through which pollutants from past operations and current remedial activities may leave the site. The Site Environmental Report (SER) is prepared annually in accordance with DOE Order 5400.1, General Environmental Protection Program. This 1994 SER provides the general public as well as scientists and engineers with the results from the site`s ongoing Environmental Monitoring Program. Also included in this report is information concerning the site`s progress toward achieving full compliance with requirements set forth by DOE, U.S. Environmental Protection Agency (USEPA), and Ohio EPA (OEPA). For some readers, the highlights provided in this Executive Summary may provide sufficient information. Many readers, however, may wish to read more detailed descriptions of the information than those which are presented here. All information presented in this summary is discussed more fully in the main body of this report.

  6. Site Index - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclearHomelandMultivariate Metal-OrganicPulseSimulation,Site Index

  7. Ecological Monitoring and Compliance Program 2012 Report

    SciTech Connect (OSTI)

    Hall, Derek B.; Anderson, David C.; Greger, Paul D.; Ostler, W. Kent; Hansen, Dennis J.

    2013-07-03T23:59:59.000Z

    The Ecological Monitoring and Compliance Program (EMAC), funded through the U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/NFO, formerly Nevada Site Office), monitors the ecosystem of the Nevada National Security Site (NNSS) and ensures compliance with laws and regulations pertaining to NNSS biota. This report summarizes the program’s activities conducted by National Security Technologies, LLC (NSTec), during calendar year 2012. Program activities included (a) biological surveys at proposed construction sites, (b) desert tortoise compliance, (c) ecosystem monitoring, (d) sensitive plant species monitoring, (e) sensitive and protected/regulated animal monitoring, (f) habitat restoration monitoring, and (g) monitoring of the Nonproliferation Test and Evaluation Complex (NPTEC). During 2012, all applicable laws, regulations, and permit requirements were met, enabling EMAC to achieve its intended goals and objectives.

  8. Ecological Monitoring and Compliance Program 2010 Report

    SciTech Connect (OSTI)

    Hansen, D.J.; Anderson, D.C.; Hall, D.B.; Greger, P.D.; Ostler, W.K.

    2011-07-01T23:59:59.000Z

    The Ecological Monitoring and Compliance (EMAC) Program, funded through the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO), monitors the ecosystem of the Nevada National Security Site (NNSS) and ensures compliance with laws and regulations pertaining to NNSS biota. This report summarizes the program’s activities conducted by National Security Technologies, LLC (NSTec), during calendar year 2010. Program activities included (a) biological surveys at proposed construction sites, (b) desert tortoise compliance, (c) ecosystem monitoring, (d) sensitive plant species monitoring, (e) sensitive and protected/regulated animal monitoring, (f) habitat restoration monitoring, and (g) monitoring of the Nonproliferation Test and Evaluation Complex (NPTEC). During 2010, all applicable laws, regulations, and permit requirements were met, enabling EMAC to achieve its intended goals and objectives.

  9. Ecological Monitoring and Compliance Program 2011 Report

    SciTech Connect (OSTI)

    Hansen, D. J., Anderson, D. C., Hall, D. B., Greger, P. D., Ostler, W. K.

    2012-06-13T23:59:59.000Z

    The Ecological Monitoring and Compliance (EMAC) Program, funded through the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, monitors the ecosystem of the Nevada National Security Site and ensures compliance with laws and regulations pertaining to NNSS biota. This report summarizes the program's activities conducted by National Security Technologies, LLC, during calendar year 2011. Program activities included (a) biological surveys at proposed construction sites, (b) desert tortoise compliance, (c) ecosystem monitoring, (d) sensitive plant species monitoring, (e) sensitive and protected/regulated animal monitoring, (f) habitat restoration monitoring, and (g) monitoring of the Nonproliferation Test and Evaluation Complex. During 2011, all applicable laws, regulations, and permit requirements were met, enabling EMAC to achieve its intended goals and objectives.

  10. Ecological Monitoring and Compliance Program 2008 Report

    SciTech Connect (OSTI)

    Dennis J. Hansen, David C. Anderson, Derek B. Hall, Paul D. Greger, W. Kent Ostler

    2009-04-30T23:59:59.000Z

    The Ecological Monitoring and Compliance Program, funded through the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO), monitors the ecosystem of the Nevada Test Site (NTS) and ensures compliance with laws and regulations pertaining to NTS biota. This report summarizes the program’s activities conducted by National Security Technologies, LLC (NSTec), during calendar year 2008. Program activities included (a) biological surveys at proposed construction sites, (b) desert tortoise compliance, (c) ecosystem mapping and data management, (d) sensitive plant species monitoring, (e) sensitive and protected/regulated animal monitoring, (f) habitat monitoring, (g) habitat restoration monitoring, and (h) monitoring of the Nonproliferation Test and Evaluation Complex (NPTEC).

  11. Ecological Monitoring and Compliance Program 2009 Report

    SciTech Connect (OSTI)

    Dennis J. Hansen, David C. Anderson, Derek B. Hall, Paul D. Greger, and W. Kent Ostler

    2010-07-13T23:59:59.000Z

    The Ecological Monitoring and Compliance Program (EMAC), funded through the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, monitors the ecosystem of the Nevada Test Site and ensures compliance with laws and regulations pertaining to NTS biota. This report summarizes the program’s activities conducted by National Security Technologies, LLC, during calendar year 2009. Program activities included (a) biological surveys at proposed construction sites, (b) desert tortoise compliance, (c) ecosystem mapping and data management, (d) sensitive plant species monitoring, (e) sensitive and protected/regulated animal monitoring, (f) habitat monitoring, (g) habitat restoration monitoring, and (h) monitoring of the Nonproliferation Test and Evaluation Complex. During 2009, all applicable laws, regulations, and permit requirements were met, enabling EMAC to achieve its intended goals and objectives.

  12. Annual Hanford Site GW Monitoring Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternative FuelsSanta3 Table 3.EnergyAug 15,781

  13. Ecological Monitoring and Compliance Program 2013 Report

    SciTech Connect (OSTI)

    Hall, Derek B.; Anderson, David C.; Greger, Paul D.

    2014-06-05T23:59:59.000Z

    The Ecological Monitoring and Compliance Program (EMAC), funded through the U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/NFO, formerly Nevada Site Office), monitors the ecosystem of the Nevada National Security Site (NNSS) and ensures compliance with laws and regulations pertaining to NNSS biota. This report summarizes the program’s activities conducted by National Security Technologies, LLC (NSTec), during calendar year 2013. Program activities included (a) biological surveys at proposed activity sites, (b) desert tortoise compliance, (c) ecosystem monitoring, (d) sensitive plant species monitoring, (e) sensitive and protected/regulated animal monitoring, and (f) habitat restoration monitoring. During 2013, all applicable laws, regulations, and permit requirements were met, enabling EMAC to achieve its intended goals and objectives.

  14. Ecological Monitoring and Compliance Program Fiscal Year 2003 Report

    SciTech Connect (OSTI)

    Bechtel Nevada

    2003-12-01T23:59:59.000Z

    The Ecological Monitoring and Compliance program, funded through the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, monitors the ecosystem of the Nevada Test Site and ensures compliance with laws and regulations pertaining to Nevada Test Site biota. This report summarizes the program's activities conducted by Bechtel Nevada during fiscal year 2003.

  15. Ion Monitoring

    DOE Patents [OSTI]

    Orr, Christopher Henry (Calderbridge, GB); Luff, Craig Janson (Calderbridge, GB); Dockray, Thomas (Calderbridge, GB); Macarthur, Duncan Whittemore (Los Alamos, NM)

    2003-11-18T23:59:59.000Z

    The apparatus and method provide a technique for significantly reducing capacitance effects in detector electrodes arising due to movement of the instrument relative to the item/location being monitored in ion detection based techniques. The capacitance variations are rendered less significant by placing an electrically conducting element between the detector electrodes and the monitored location/item. Improved sensitivity and reduced noise signals arise as a result. The technique also provides apparatus and method suitable for monitoring elongate items which are unsuited to complete enclosure in one go within a chamber. The items are monitored part by part as the pass through the instrument, so increasing the range of items or locations which can be successfully monitored.

  16. TRACKING SITE

    Energy Science and Technology Software Center (OSTI)

    003235MLTPL00 AASG Geothermal Data submissions tracking application and site.  https://github.com/usgin/aasgtrack 

  17. Savannah River Site environmental report for 1993

    SciTech Connect (OSTI)

    Arnett, M.W.; Karapatakis, L.K.; Mamatey, A.R. [eds.

    1994-08-01T23:59:59.000Z

    Savannah River Site (SRS) conducts effluent monitoring and environmental surveillance to ensure the safety of the public and the well-being of the environment. DOE Order 5400,1, ``General Environmental Protection Program,`` requires the submission of an environmental report that documents the impact of facility operations on the environment and on public health. SRS has had an extensive environmental surveillance program in place since 1951 (before site startup). At that time, data generated by the on-site surveillance program were reported in site documents. Beginning in 1959, data from off-site environmental monitoring activities were presented in reports issued for public dissemination. Separate reporting of SRS`s on- and off-site environmental monitoring activities continued until 1985, when data from both surveillance programs were merged into a single public document. The Savannah River Site Environmental Report for 1993 is an overview of effluent monitoring and environmental surveillance activities conducted on and in the vicinity of SRS from January 1 through December 31, 1993. For complete program descriptions, consult the ``SRS Environmental Monitoring Plan`` (WSRC-3Ql-2-1000). It documents the rationale and design criteria for the monitoring program, the frequency of monitoring and analysis, the specific analytical and sampling procedures, and the quality assurance requirements.

  18. Nevada Test Site Environmental Report 2009, Attachment A: Site Description

    SciTech Connect (OSTI)

    Cathy Wills, ed.

    2010-09-13T23:59:59.000Z

    This attachment expands on the general description of the Nevada Test Site (NTS) presented in the Introduction to the Nevada Test Site Environmental Report 2009. Included are subsections that summarize the site’s geological, hydrological, climatological, and ecological setting. The cultural resources of the NTS are also presented. The subsections are meant to aid the reader in understanding the complex physical and biological environment of the NTS. An adequate knowledge of the site’s environment is necessary to assess the environmental impacts of new projects, design and implement environmental monitoring activities for current site operations, and assess the impacts of site operations on the public residing in the vicinity of the NTS. The NTS environment contributes to several key features of the site that afford protection to the inhabitants of adjacent areas from potential exposure to radioactivity or other contaminants resulting from NTS operations. These key features include the general remote location of the NTS, restricted access, extended wind transport times, the great depths to slow-moving groundwater, little or no surface water, and low population density. This attachment complements the annual summary of monitoring program activities and dose assessments presented in the main body of this report.

  19. Nevada Test Site Environmental Report 2008 Attachment A: Site Description

    SciTech Connect (OSTI)

    Cathy A. Wills

    2009-09-01T23:59:59.000Z

    This attachment expands on the general description of the Nevada Test Site (NTS) presented in the Introduction to the Nevada Test Site Environmental Report 2008 (National Security Technologies, LLC [NSTec], 2009a). Included are subsections that summarize the site’s geological, hydrological, climatological, and ecological setting. The cultural resources of the NTS are also presented. The subsections are meant to aid the reader in understanding the complex physical and biological environment of the NTS. An adequate knowledge of the site’s environment is necessary to assess the environmental impacts of new projects, design and implement environmental monitoring activities for current site operations, and assess the impacts of site operations on the public residing in the vicinity of the NTS. The NTS environment contributes to several key features of the site that afford protection to the inhabitants of adjacent areas from potential exposure to radioactivity or other contaminants resulting from NTS operations. These key features include the general remote location of the NTS, restricted access, extended wind transport times, the great depths to slow-moving groundwater, little or no surface water, and low population density. This attachment complements the annual summary of monitoring program activities and dose assessments presented in the main body of this report.

  20. DOE-Funded Project Testing Laser CO2 Monitoring at Carbon Storage...

    Energy Savers [EERE]

    DOE-Funded Project Testing Laser CO2 Monitoring at Carbon Storage Site DOE-Funded Project Testing Laser CO2 Monitoring at Carbon Storage Site June 3, 2015 - 8:44am Addthis Photo...

  1. Summary of the Hanford Site Environmental Report for Calendar Year 2005

    SciTech Connect (OSTI)

    Hanf, Robert W.; Morasch, Launa F.; Poston, Ted M.; Dirkes, Roger L.

    2006-09-28T23:59:59.000Z

    This small booklet provides highlights of the environmental monitoring at the Hanford Site during 2005. It is a summary of the information contained in the larger report: Hanford Site Environmental Monitoring for Calendar Year 2005.

  2. Groundwater Protection 7 2007 Site environmental report7-

    E-Print Network [OSTI]

    Groundwater Protection 7 2007 Site environmental report7- DRAFT Brookhaven National Laboratory's (BNL) Groundwater Protection Management Program is made up of four elements: prevention, monitoring to protect groundwater resources. An extensive groundwater monitoring well network is used to verify

  3. Electrostatic monitoring

    DOE Patents [OSTI]

    Orr, Christopher Henry (Cumbria, GB); Luff, Craig Janson (Cumbria, GB); Dockray, Thomas (Cumbria, GB); Macarthur, Duncan Whittemore (Los Alamos, NM)

    2001-01-01T23:59:59.000Z

    The apparatus and method provide a technique for more simply measuring alpha and/or beta emissions arising from items or locations. The technique uses indirect monitoring of the emissions by detecting ions generated by the emissions, the ions being attracted electrostatically to electrodes for discharge of collection. The apparatus and method employ a chamber which is sealed around the item or location during monitoring with no air being drawn into or expelled from the chamber during the monitoring process. A simplified structure and operations arises as a result, but without impairing the efficiency and accuracy of the detection technique.

  4. Texas Rangeland Monitoring: Level Two

    E-Print Network [OSTI]

    Hanselka, C. Wayne; Hart, Charles R.; McGinty, Allan

    2006-10-09T23:59:59.000Z

    are best used for monitoring herbaceous plant communities. Belt transects can be used for monitoring the woody plant commu- nity. Line transect To use a line transect, stretch a 100-foot to 300-foot measuring tape across the monitoring site, carefully... plant rooted closest to each foot mark along the line. If using a 300-foot line, every other foot mark may be used. At least 100 plants should be identi- fied and recorded for each line transect installed. The math for calculating species com...

  5. Hanford Site Environmental Report 1999

    SciTech Connect (OSTI)

    TM Poston; RW Hanf; RL Dirkes

    2000-09-28T23:59:59.000Z

    This Hanford Site environmental report is prepared annually to summarize environmental data and information, to describe environmental management performance, to demonstrate the status of compliance with environmental regulations, and to highlight major environmental programs and efforts. The report is written to meet requirements and guidelines of the U.S. Department of Energy (DOE) and to meet the needs of the public. This summary has been written with a minimum of technical terminology. Individual sections of the report are designed to: (1) describe the Hanford Site and its mission; (2) summarize the status of compliance with environmental regulations; (3) describe the environmental programs at the Hanford Site; (4) discuss the estimated radionuclide exposure to the public from 1999 Hanford Site activities; (5) present the effluent monitoring, environmental surveillance, groundwater protection and monitoring information; and (6) discuss the activities to ensure quality.

  6. Hanford Site 1998 Environmental Report

    SciTech Connect (OSTI)

    RL Dirkes; RW Hanf; TM Poston

    1999-09-21T23:59:59.000Z

    This Hanford Site environmental report is prepared annually to summarize environmental data and information, to describe environmental management performance, to demonstrate the status of compliance with environmental regulations, and to highlight major environmental programs and efforts. The report is written to meet requirements and guidelines of the U.S. Department of Energy (DOE) and to meet the needs of the public. This summary has been written with a minimum of technical terminology. Individual sections of the report are designed to: describe the Hanford Site and its mission; summarize the status of compliance with environmental regulations; describe the environmental programs at the Hanford Site; discuss the estimated radionuclide exposure to the public from 1998 Hanford Site activities; present the effluent monitoring, environmental surveillance, and groundwater protection and monitoring information; and discuss the activities to ensure quality.

  7. ECOLOGICAL MONITORING AND COMPLIANCE PROGRAM CALENDAR YEAR 2005 REPORT

    SciTech Connect (OSTI)

    BECHTEL NEVADA ECOLOGICAL SERVICES

    2006-03-01T23:59:59.000Z

    The Ecological Monitoring and Compliance program (EMAC), funded through the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO), monitors the ecosystem of the Nevada Test Site (NTS) and ensures compliance with laws and regulations pertaining to NTS biota. This report summarizes the program’s activities conducted by Bechtel Nevada (BN) during the Calendar Year 2005. Program activities included: (1) biological surveys at proposed construction sites, (2) desert tortoise compliance, (3) ecosystem mapping and data management, (4) sensitive and protected/regulated species and unique habitat monitoring, (5) habitat restoration monitoring, and (6) biological monitoring at the Non-Proliferation Test and Evaluation Complex (NPTEC).

  8. Quarterly RCRA Groundwater Monitoring Data for the Period April Through June 2006

    SciTech Connect (OSTI)

    Hartman, Mary J.

    2006-11-01T23:59:59.000Z

    This report provides information about RCRA groundwater monitoring for the period April through June 2006. Seventeen RCRA sites were sampled during the reporting quarter. Sampled sites include seven monitored under groundwater indicator evaluation (''detection'') programs, eight monitored under groundwater quality assessment programs, and two monitored under final-status programs.

  9. Nevada Test Site Environmental Report 2005, Attachment A - Site Description

    SciTech Connect (OSTI)

    Cathy A. Wills

    2006-10-01T23:59:59.000Z

    This appendix to the ''Nevada Test Site Environmental Report 2005'', dated October 2006 (DOE/NV/11718--1214; DOE/NV/25946--007) expands on the general description of the Nevada Test Site (NTS) presented in the Introduction. Included are subsections that summarize the site?s geological, hydrological, climatological, and ecological setting. The cultural resources of the NTS are also presented. The subsections are meant to aid the reader in understanding the complex physical and biological environment of the NTS. An adequate knowledge of the site's environment is necessary to assess the environmental impacts of new projects, design and implement environmental monitoring activities for current site operations, and assess the impacts of site operations on the public residing in the vicinity of the NTS. The NTS environment contributes to several key features of the site which afford protection to the inhabitants of adjacent areas from potential exposure to radioactivity or other contaminants resulting from NTS operations. These key features include the general remote location of the NTS, restricted access, extended wind transport times, the great depths to slow-moving groundwater, little or no surface water, and low population density. This appendix complements the annual summary of monitoring program activities and dose assessments presented in the main body of this report.

  10. 1990 Weatherization Assistance Program monitoring. Final report

    SciTech Connect (OSTI)

    Samuels, L.S.

    1992-06-19T23:59:59.000Z

    The fiscal year 1990 DOE weatherization programs were monitored in Indiana, Ohio, and Wisconsin. The focus of the monitoring was on a total of 18 subgrantees. Separate reports on the monitoring completed on each site was submitted as well as the final summary report for each state. The scope of monitoring consisted of a review of current contracts, budgets, program operating procedures, staffing, inventory control, financial and procurement procedures, review of client files and audit reports, inspection of completed dwelling units and assessment of monitoring, training, and technical assistance provided by the grantees. A random sampling of completed units were selected and visits were made to inspect these weatherized dwellings.

  11. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cleanup Document Date: 10162009 Keywords: recovery, waste site, BC Control, soil, contamination Area: BC Control Area Description: Using Recovery Act funding, contractors are...

  12. Energy Facility Evaluation, Siting, Construction and Operation (New Hampshire)

    Broader source: Energy.gov [DOE]

    The statute establishes a procedure for the review, approval, monitoring, and enforcement of compliance in the planning, siting, construction, and operation of energy facilities, including...

  13. Wireless, automated monitoring for potential landslide hazards 

    E-Print Network [OSTI]

    Garich, Evan Andrew

    2007-09-17T23:59:59.000Z

    . Commercially available soil moisture probes and soil tilt sensors were combined with low-power, wireless data transmitters to form a self-configuring network of soil monitoring sensors. The remote locations of many slope stability hazard sites eliminates...

  14. Routine environmental monitoring schedule, calendar year 1995

    SciTech Connect (OSTI)

    Schmidt, J.W.; Markes, B.M.; McKinney, S.M.

    1994-12-01T23:59:59.000Z

    This document provides Bechtel Hanford, Inc. (BHI) and Westinghouse Hanford Company (WHC) a schedule of monitoring and sampling routines for the Operational Environmental Monitoring (OEM) program during calendar year (CY) 1995. Every attempt will be made to consistently follow this schedule; any deviation from this schedule will be documented by an internal memorandum (DSI) explaining the reason for the deviation. The DSI will be issued by the scheduled performing organization and directed to Near-Field Monitoring. The survey frequencies for particular sites are determined by the technical judgment of Near-Field Monitoring and may depend on the site history, radiological status, use and general conditions. Additional surveys may be requested at irregular frequencies if conditions warrant. All radioactive wastes sites are scheduled to be surveyed at least annually. Any newly discovered wastes sites not documented by this schedule will be included in the revised schedule for CY 1995.

  15. Annual Environmental Monitoring Report Released | Department...

    Office of Environmental Management (EM)

    radioactivity. Visit http:www.cemp.dri.edu for more information on the off-site air monitoring program. "Each year, we use this report as one of our tools to inform the...

  16. Savannah River Site environmental data for 1995

    SciTech Connect (OSTI)

    Arnett, M.W. [ed.

    1995-12-31T23:59:59.000Z

    This document presents data from Savannah River Site routine environmental monitoring and surveillance programs. An attempt also has been made to include all available data from environmental research programs.

  17. Monitoring well

    DOE Patents [OSTI]

    Hubbell, Joel M. (Idaho Falls, ID); Sisson, James B. (Idaho Falls, ID)

    2002-01-01T23:59:59.000Z

    The present invention relates to a monitoring well which includes an enclosure defining a cavity and a water reservoir enclosed within the cavity and wherein the reservoir has an inlet and an outlet. The monitoring well further includes a porous housing borne by the enclosure and which defines a fluid chamber which is oriented in fluid communication with the outlet of the reservoir, and wherein the porous housing is positioned in an earthen soil location below-grade. A geophysical monitoring device is provided and mounted in sensing relation relative to the fluid chamber of the porous housing; and a coupler is selectively moveable relative to the outlet of reservoir to couple the porous housing and water reservoir in fluid communication. An actuator is coupled in force transmitting relation relative to the coupler to selectively position the coupler in a location to allow fluid communication between the reservoir and the fluid chamber defined by the porous housing.

  18. Nevada Test Site Environmental Report 2007 Attachment A: Site Description

    SciTech Connect (OSTI)

    Cathy Wills

    2008-09-01T23:59:59.000Z

    This appendix expands on the general description of the Nevada Test Site (NTS) presented in the Introduction to the Nevada Test Site Environmental Report 2007 (U.S. Department of Energy [DOE], 2008). Included are subsections that summarize the site's geological, hydrological, climatological, and ecological setting. The cultural resources of the NTS are also presented. The subsections are meant to aid the reader in understanding the complex physical and biological environment of the NTS. An adequate knowledge of the site's environment is necessary to assess the environmental impacts of new projects, design and implement environmental monitoring activities for current site operations, and assess the impacts of site operations on the public residing in the vicinity of the NTS. The NTS environment contributes to several key features of the site which afford protection to the inhabitants of adjacent areas from potential exposure to radioactivity or other contaminants resulting from NTS operations. These key features include the general remote location of the NTS, restricted access, extended wind transport times, the great depths to slow-moving groundwater, little or no surface water, and low population density. This attachment complements the annual summary of monitoring program activities and dose assessments presented in the main body of this report.

  19. Nest site selection and partitioning among sympatric white-winged, mourning, and Inca doves in Mason, Texas

    E-Print Network [OSTI]

    Mathewson, Heather Alexis

    2002-01-01T23:59:59.000Z

    ; and (3) compare nest-site characteristics, nest-site partitioning, and assess the role of interspecific competition on nest-site selection. Nest searching, monitoring, nest-site characterizations, and vegetation measurements were conducted during June...

  20. Journal of Oceanography, Vol. 63, pp. 927 to 939, 2007 High-order

    E-Print Network [OSTI]

    Chu, Peter C.

    , intermittency, internal wave, internal soliton, multifractal analysis, power spectrum, stationarity) temperature in the western Philippine Sea near Taiwan was sampled using a coastal monitoring buoy (CMB. Without the internal waves and solitons, the power spectra, structure functions, and singular measures

  1. WIPP Documents - Environmental Monitoring

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >Internship Program TheSiteEureka AnalyticsLarge file sizeMonitoring

  2. Monitoring well

    DOE Patents [OSTI]

    Hubbell, Joel M. (Idaho Falls, ID); Sisson, James B. (Idaho Falls, ID)

    1999-01-01T23:59:59.000Z

    A monitoring well including a conduit defining a passageway, the conduit having a proximal and opposite, distal end; a coupler connected in fluid flowing relationship with the passageway; and a porous housing borne by the coupler and connected in fluid flowing relation thereto.

  3. Monitoring well

    DOE Patents [OSTI]

    Hubbell, J.M.; Sisson, J.B.

    1999-06-29T23:59:59.000Z

    A monitoring well is described which includes: a conduit defining a passageway, the conduit having a proximal and opposite, distal end; a coupler connected in fluid flowing relationship with the passageway; and a porous housing borne by the coupler and connected in fluid flowing relation thereto. 8 figs.

  4. Environmental Monitoring Plan, Revision 6

    SciTech Connect (OSTI)

    Gallegos, G M; Bertoldo, N A; Blake, R G; Campbell, C G; Grayson, A R; Nelson, J C; Revelli, M A; Rosene, C A; Wegrecki, T; Williams, R A; Wilson, K R; Jones, H E

    2012-03-02T23:59:59.000Z

    The purpose of environmental monitoring is to promote the early identification of, and response to, potential adverse environmental impacts associated with Lawrence Livermore National Laboratory (LLNL) operations. Environmental monitoring supports the Integrated Safety Management System (ISMS), International Organization for Standardization (ISO) 14001 Environmental Management Systems standard, and U. S. Department of Energy (DOE) Order 458.1, Radiation Protection of the Public and the Environment. Specifically, environmental monitoring enables LLNL to detect, characterize, and respond to releases from LLNL activities; assess impacts; estimate dispersal patterns in the environment; characterize the pathways of exposure to members of the public; characterize the exposures and doses to individuals and to the population; and to evaluate the potential impacts to the biota in the vicinity of LLNL. Environmental monitoring is also a major component of compliance demonstration for permits and other regulatory requirements. The Environmental Monitoring Plan (EMP) addresses the sample collection and analytical work supporting environmental monitoring to ensure the following: (1) A consistent system for collecting, assessing, and documenting environmental data of known and documented quality; (2) A validated and consistent approach for sampling and analysis of samples to ensure laboratory data meets program-specific needs and requirements within the framework of a performance-based approach for analytical laboratory work; and (3) An integrated sampling approach to avoid duplicative data collection. LLNL prepares the EMP because it provides an organizational framework for ensuring that environmental monitoring work, which is integral to the implementation of LLNL's Environmental Management System, is conducted appropriately. Furthermore, the Environmental Monitoring Plan helps LLNL ensure compliance with DOE Order 231.1 Change 2, Environment, Safety and Health Reporting, which require the publication of an annual report that characterizes the site's environmental management performance. To summarize, the general regulatory drivers for this environmental monitoring plan are ISO 14001, DOE Order 458.1, and DOE Order 231.1. The environmental monitoring addressed by this plan includes preoperational characterization and assessment, effluent and surveillance monitoring, and permit and regulatory compliance monitoring. Additional environmental monitoring is conducted at LLNL as part of compliance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA, also known as Superfund). LLNL coordinates its ground water surveillance monitoring program with the CERCLA monitoring program to gain sampling efficiencies.

  5. Hanford Site Environmental Report 1993

    SciTech Connect (OSTI)

    Dirkes, R.L.; Hanf, R.W.; Woodruff, R.K. [eds.

    1994-06-01T23:59:59.000Z

    The Hanford Site Environmental Report is prepared annually to summarize environmental data and information, describe environmental management performance, and demonstrate the status of compliance with environmental regulations. The report also highlights major environmental programs and efforts. The report is written to meet reporting requirements and Guidelines of the U.S. Department of Energy (DOE) an to meet the needs of the public. This summary has been written with a minimum of technical terminology. Individual sections of the report are designed to (a) describe the Hanford Site and its mission, (b) summarize the status in 1993 of compliance with environmental regulations, (c) describe the environmental programs at the Hanford Site, (d) discuss estimated radionuclide exposure to the public from 1993 Hanford activities, (e) present information on effluent monitoring and environmental surveillance, including ground-water protection and monitoring, (f) discuss activities to ensure quality. More detailed information can be found in the body of the report, the appendixes, and the cited references.

  6. Knolls Atomic Power Laboratory environmental monitoring report, calendar year 1999

    SciTech Connect (OSTI)

    None

    2000-12-01T23:59:59.000Z

    The results of the effluent and environmental monitoring programs at the three Knolls Atomic Power Laboratory (KAPL) Sites are summarized and assessed in this report. Operations at the three KAPL Sites [Knolls Site, Niskayuna, New York; Kesselring Site, West Milton, New York; S1C Site, Windsor, Connecticut] during calendar year 1999 resulted in no significant release of hazardous substances or radioactivity to the environment. The effluent and environmental monitoring programs conducted by KAPL are designed to determine the effectiveness of treatment and control methods, to provide measurement of the concentrations in effluents for comparison with applicable standards, and to assess resultant concentrations in the environment. The monitoring programs include analyses of samples of liquid and gaseous effluents for chemical constituents and radioactivity as well as monitoring of environmental air, water, sediment, and fish. Radiation measurements are also made around the perimeter of each Site and at off-site background locations.

  7. Invitation to Present, Sponsor, and Attend Geologic Carbon Sequestration Site Integrity: Characterization and

    E-Print Network [OSTI]

    Daniels, Jeffrey J.

    Invitation to Present, Sponsor, and Attend Geologic Carbon Sequestration Site Integrity and long-term sustainability of geologic carbon sequestration sites depends upon the ability on geologic carbon sequestration site monitoring. The management framework and costs will be similar

  8. Tritium monitor

    DOE Patents [OSTI]

    Chastagner, Philippe (Augusta, GA)

    1994-01-01T23:59:59.000Z

    A system for continuously monitoring the concentration of tritium in an aqueous stream. The system pumps a sample of the stream to magnesium-filled combustion tube which reduces the sample to extract hydrogen gas. The hydrogen gas is then sent to an isotope separation device where it is separated into two groups of isotopes: a first group of isotopes containing concentrations of deuterium and tritium, and a second group of isotopes having substantially no deuterium and tritium. The first group of isotopes containing concentrations of deuterium and tritium is then passed through a tritium detector that produces an output proportional to the concentration of tritium detected. Preferably, the detection system also includes the necessary automation and data collection equipment and instrumentation for continuously monitoring an aqueous stream.

  9. Tritium monitor

    DOE Patents [OSTI]

    Chastagner, P.

    1994-06-14T23:59:59.000Z

    A system is described for continuously monitoring the concentration of tritium in an aqueous stream. The system pumps a sample of the stream to magnesium-filled combustion tube which reduces the sample to extract hydrogen gas. The hydrogen gas is then sent to an isotope separation device where it is separated into two groups of isotopes: a first group of isotopes containing concentrations of deuterium and tritium, and a second group of isotopes having substantially no deuterium and tritium. The first group of isotopes containing concentrations of deuterium and tritium is then passed through a tritium detector that produces an output proportional to the concentration of tritium detected. Preferably, the detection system also includes the necessary automation and data collection equipment and instrumentation for continuously monitoring an aqueous stream. 1 fig.

  10. SAVANNAH RIVER SITE ENVIRONMENTAL REPORT FOR 2012

    SciTech Connect (OSTI)

    Griffith, M.; Jannik, T.; Cauthen, K.; Bryant, T.; Coward, L.; Eddy, T.; Vangelas, K.; O'Quinn, S.; Meyer, A.

    2013-09-12T23:59:59.000Z

    This report is an overview of effluent monitoring and environmental surveillance activities conducted on and in the vicinity of SRS from January 1 through December 31, 2012 - including the Site?s performance against applicable standards and requirements. Details are provided on major programs such as the Environmental Management System (EMS) and permit compliance.

  11. Rocky Flats Plant Site Environmental Report for 1992

    SciTech Connect (OSTI)

    Cirrincione, D.A.; Erdmann, N.L. [eds.

    1992-12-31T23:59:59.000Z

    The Rocky Rats Plant Site Environmental Report provides summary information on the plant`s environmental monitoring programs and the results recorded during 1992. The report contains a compliance summary, results of environmental monitoring and other related programs, a review of environmental remediation activities, information on external gamma radiation dose monitoring, and radiation dose estimates for the surrounding population.

  12. Annual Site Environmental Report Paducah Site PAD-REG-1009 Volume...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of U. S. Department of Energy Order 231.1A. The data and information contained in this report were collected in accordance with the Paducah Site Environmental Monitoring Plan (PRS...

  13. Site Risks:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9Morgan McCorkleSingin' in theCleanup SiteSite

  14. Routine Operational Environmental Monitoring schedule, CY 1994

    SciTech Connect (OSTI)

    Schmidt, J.W.

    1993-12-01T23:59:59.000Z

    This document provides Health Physics (HP) a schedule in accordance with the Environmental Compliance Manual, WHC-CM-7-5, of monitoring and sampling routines for the Operational Environmental Monitoring (OEM) Program during calendar year (CY) 1994. The survey frequencies for particular sites are determined by the technical judgment of EES and may depend on the site history, radiological status, use, and general conditions. Additional surveys may be requested at irregular frequencies if conditions warrant. All radioactive waste sites are scheduled to be surveyed annually at a minimum. Any newly discovered waste sites not documented by this schedule will be included in the revised schedule for CY 1995. This schedule does not discuss the manpower needs nor does it list the monitoring equipment to be used in completing specific routines.

  15. Ecological Monitoring and Compliance Program Fiscal Year 1999 Report

    SciTech Connect (OSTI)

    Cathy A. Wills

    1999-12-01T23:59:59.000Z

    The Ecological and Compliance program, funded through the U. S. Department of Energy, Nevada Operations Office, monitors the ecosystem of the Nevada Test Site (NTS) and ensures compliance with laws and regulations pertaining to NTS biota. This report summarizes the program's activities conducted by Bechtel Nevada during fiscal year 1999. Program activities included: (1) biological surveys at proposed construction sites (2) desert tortoise compliance (3) ecosystem mapping (4) sensitive species and unique habitat monitoring and (5) biological monitoring at the HAZMAT Spill Center.

  16. Whole facility energy use monitoring

    SciTech Connect (OSTI)

    Mazzucchi, R.P.; Jo, J.

    1989-05-01T23:59:59.000Z

    Pacific Northwest Laboratory (PNL) is conducting numerous field monitoring studies of the induces of energy in buildings. Energy use monitoring techniques have been developed to provide reliable empirical measurements of energy consumption according to enduse and time of day. These measurements are analyzed in conjunction with climate and site characteristics data to determine energy use efficiencies and identify energy conservation and load management opportunities. This paper draws upon this experience to advance an approach to minimize the cost and maximize the benefits of field data collection projects for entire facilities.

  17. Standards Development and Deployment of a Comprehensive, Integrated, Open-standard Monitoring and Equipment Control Networking Protocol Infrastructure for Effective Facility Energy Management of a Large-scale Industrial Site in Alberta, Canada

    E-Print Network [OSTI]

    Bernstein, R.

    2014-01-01T23:59:59.000Z

    Management of a Large-scale Industrial Site in Alberta, Canada Ron Bernstein ESL-IE-14-05-27 Proceedings of the Thrity-Sixth Industrial Energy Technology Conference New Orleans, LA. May 20-23, 2014 Suncor – Oil Sands Recovery Process ESL-IE-14...

  18. SCRIPPS OCEANOGRAPHY SCIENTISTS FIRST SOUNDED THE ALARM A HALF-CENTURY

    E-Print Network [OSTI]

    Russell, Lynn

    , visit scrippsnews.ucsd.edu. Building on 50 Years of Climate Change Research RESEARCH ADVANCES A Promising Energy Resource from the Oceans Scripps is part of an intensive biofuel development effort.Hydrological monitoring in the Sierras Shrinking supplies at Lake Mead #12;(SD-CAB), an algal biofuel consortium

  19. Environmental remediation of contamination sites at the Hanford Site

    SciTech Connect (OSTI)

    Wittreich, C.D.; Johnson, W.L. [Westinghouse Hanford Co., Richland, WA (United States)

    1993-12-31T23:59:59.000Z

    Efforts currently are under way to remediate the 200 Areas of the US Department of Energy`s (DOE) Hanford Site in Washington State. Because of the complexity and extent of environmental contamination that has resulted from decades of hazardous and radioactive waste disposal practices, an innovative approach to remediating the site was required. A comprehensive study of waste disposal and environmental monitoring data with field investigations, referred to as the 200 Aggregate Area Management Study (AAMS) program, was conducted in 1992 to assess the scope of the remediation effort and to develop a plan to expedite the cleanup progress.

  20. Brookhaven National Laboratory environmental monitoring plan for Calendar Year 1996

    SciTech Connect (OSTI)

    Naidu, J.R.; Paquette, D.; Lee, R. [and others

    1996-10-01T23:59:59.000Z

    As required by DOE Order 5400.1, each U.S. Department of Energy (DOE) site, facility, or activity that uses, generates, releases, or manages significant quantities of hazardous materials shall provide a written Environmental Monitoring Plan (EMP) covering effluent monitoring and environmental surveillance. DOE/EH-0173T, Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance, provides specific guidance regarding environmental monitoring activities.

  1. 1999 SITE ENVIRONMENTAL REPORT

    SciTech Connect (OSTI)

    ENGEL-COX,J.; ZIMMERMAN,E.; LEE,R.; WILLIAMS,J.; GREEN,T.; PAQUETTE,D.; HOODA,B.; SCARPITTA,S.; GENZER,P.; ET AL

    2000-09-01T23:59:59.000Z

    Throughout the scientific community, Brookhaven National Laboratory (BNL) is renowned for its leading-edge research in physics, medicine, chemistry, biology, materials, and the environment. BNL is committed to supporting its world-class scientific research with an internationally recognized environmental protection program. The 1999 Site Environmental Report (SER) summarizes the status of the Laboratory's environmental programs and performance, including the steady progress towards cleaning up the site and fully integrating environmental stewardship into all facets of the Laboratory's mission. BNL is located on 5,265 acres of pine barrens in Suffolk County in the center of Long Island, New York. The Laboratory is situated above a sole source aquifer at the headwaters of the Peconic River; therefore, protecting ground and surface water quality is a special concern. Approximately 3,600 acres of the site are undeveloped and serve as habitat for a wide variety of animals and plants, including one New York State endangered species, the tiger salamander, and two New York State threatened species, the banded sunfish and the stiff goldenrod. Monitoring, preserving, and restoring these ecological resources is a high priority for the Laboratory.

  2. 2012 Radiological Monitoring Results Associated with the Advanced Test Reactor Complex Cold Waste Pond

    SciTech Connect (OSTI)

    Mike Lewis

    2013-02-01T23:59:59.000Z

    This report summarizes radiological monitoring performed of the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste wastewater prior to discharge into the Cold Waste Pond and of specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit (#LA-000161-01, Modification B). All radiological monitoring is performed to fulfill Department of Energy requirements under the Atomic Energy Act.

  3. 2013 Radiological Monitoring Results Associated with the Advanced Test Reactor Complex Cold Waste Pond

    SciTech Connect (OSTI)

    Mike Lewis

    2014-02-01T23:59:59.000Z

    This report summarizes radiological monitoring performed of the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste wastewater prior to discharge into the Cold Waste Pond and of specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit (#LA-000161-01, Modification B). All radiological monitoring is performed to fulfill Department of Energy requirements under the Atomic Energy Act.

  4. 2010 Radiological Monitoring Results Associated with the Advance Test Reactor Complex Cold Waste Pond

    SciTech Connect (OSTI)

    mike lewis

    2011-02-01T23:59:59.000Z

    This report summarizes radiological monitoring performed of the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste wastewater prior to discharge into the Cold Waste Pond and of specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit (#LA-000161-01, Modification B). All radiological monitoring is performed to fulfill Department of Energy requirements under the Atomic Energy Act.

  5. Operating Experience Review of Tritium-in-Water Monitors

    SciTech Connect (OSTI)

    S. A. Bruyere; L. C. Cadwallader

    2011-09-01T23:59:59.000Z

    Monitoring tritium facility and fusion experiment effluent streams is an environmental safety requirement. This paper presents data on the operating experience of a solid scintillant monitor for tritium in effluent water. Operating experiences were used to calculate an average monitor failure rate of 4E-05/hour for failure to function. Maintenance experiences were examined to find the active repair time for this type of monitor, which varied from 22 minutes for filter replacement to 11 days of downtime while waiting for spare parts to arrive on site. These data support planning for monitor use; the number of monitors needed, allocating technician time for maintenance, inventories of spare parts, and other issues.

  6. Remote monitoring for international safeguards

    SciTech Connect (OSTI)

    Dupree, S.A. [Sandia National Labs., Albuquerque, NM (United States); Sonnier, C.S. [Jupiter Corp., Albuquerque, NM (United States)

    1997-09-01T23:59:59.000Z

    Remote monitoring is not a new technology, and its application to safeguards relevant activities has been examined for a number of years. On behalf of the US Department of Energy and international partners, remote monitoring systems have been emplaced in nuclear facilities and laboratories in various parts of the world. The experience gained from these field trials of remote monitoring systems has shown the viability of the concept of using integrated monitoring systems. Although a wide variety of sensors has been used in the remote monitoring field trials conducted to date, the possible range of instrumentation that might be used has scarcely been touched. As the technology becomes widespread, large amounts of data will become available to inspectors responsible for safeguards activities at the sites. Effective use of remote monitoring will require processing, archiving, presenting, and assessing of these data. To provide reasonable efficiency in the application of this technology, data processing should be done in a careful and organized manner. The problem will be not an issue of poring over scant records but of surviving under a deluge of information made possible by modern technology. Fortunately, modern technology, which created the problem of the data glut, is available to come to the assistance of those inundated by data. Apart from the technological problems, one of the most important aspects of remote monitoring is the potential constraint related to the transmission of data out of a facility or beyond national borders. Remote monitoring across national borders can be seriously considered only in the context of a comprehensive, transparent, and open implementation regime.

  7. Corral Monitoring System assessment results

    SciTech Connect (OSTI)

    Filby, E.E.; Haskel, K.J.

    1998-03-01T23:59:59.000Z

    This report describes the results of a functional and operational assessment of the Corral Monitoring Systems (CMS), which was designed to detect and document accountable items entering or leaving a monitored site. Its development was motivated by the possibility that multiple sites in the nuclear weapons states of the former Soviet Union might be opened to such monitoring under the provisions of the Strategic Arms Reduction Treaty. The assessment was performed at three levels. One level evaluated how well the planned approach addressed the target application, and which involved tracking sensitive items moving into and around a site being monitored as part of an international treaty or other agreement. The second level examined the overall design and development approach, while the third focused on individual subsystems within the total package. Unfortunately, the system was delivered as disassembled parts and pieces, with very poor documentation. Thus, the assessment was based on fragmentary operating data coupled with an analysis of what documents were provided with the system. The system design seemed to be a reasonable match to the requirements of the target application; however, important questions about site manning and top level administrative control were left unanswered. Four weaknesses in the overall design and development approach were detected: (1) poor configuration control and management, (2) inadequate adherence to a well defined architectural standard, (3) no apparent provision for improving top level error tolerance, and (4) weaknesses in the object oriented programming approach. The individual subsystems were found to offer few features or capabilities that were new or unique, even at the conceptual level. The CMS might possibly have offered a unique combination of features, but this level of integration was never realized, and it had no unique capabilities that could be readily extracted for use in another system.

  8. Savannah River Site Environmental Report for 1994

    SciTech Connect (OSTI)

    Arnett, M.W.; Mamatey, A.; Spitzer, D.

    1994-12-16T23:59:59.000Z

    The mission at the Savannah River Site has changed from producing nuclear weapons materials for national defense to managing the waste it has generated, restoring the environment, and enhancing industrial development in and around the site. But no matter what the site`s mission is, it will continue to maintain its comprehensive environmental monitoring and surveillance program. In 1994, effluent monitoring and environmental surveillance were conducted within a 30,000-square-mile area in and around SRS that includes neighboring cities, towns, and counties in Georgia and South Carolina and extends up to 100 miles from the site. Thousands of samples of air, surface water, groundwater, foodstuffs, drinking water, wildlife, rainwater, soil, sediment, and vegetation were collected and analyzed for radioactive and nonradioactive contaminants.

  9. Ecological Monitoring and Compliance Program 2007 Report

    SciTech Connect (OSTI)

    Dennis Hansen, David Anderson, Derek Hall, Paul Greger, W. Kent Ostler

    2008-03-01T23:59:59.000Z

    In accordance with U.S. Department of Energy (DOE) Order 450.1, 'Environmental Protection Program', the Office of the Assistant Manager for Environmental Management of the DOE, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) requires ecological monitoring and biological compliance support for activities and programs conducted at the Nevada Test Site (NTS). National Security Technologies, LLC (NSTec), Ecological Services has implemented the Ecological Monitoring and Compliance (EMAC) Program to provide this support. EMAC is designed to ensure compliance with applicable laws and regulations, delineate and define NTS ecosystems, and provide ecological information that can be used to predict and evaluate the potential impacts of proposed projects and programs on those ecosystems. This report summarizes the EMAC activities conducted by NSTec during calendar year 2007. Monitoring tasks during 2007 included eight program areas: (a) biological surveys, (b) desert tortoise compliance, (c) ecosystem mapping and data management, (d) sensitive plant monitoring, (e) sensitive and protected/regulated animal monitoring, (f) habitat monitoring, (g) habitat restoration monitoring, and (h) biological monitoring at the Nonproliferation Test and Evaluation Complex (NPTEC). The following sections of this report describe work performed under these eight areas.

  10. 1992 Fernald Site Environmental Report

    SciTech Connect (OSTI)

    Not Available

    1993-06-01T23:59:59.000Z

    The Fernald site is a Department of Energy (DOE) owned facility that produced high-quality uranium metals for military defense for nearly 40 years. DOE suspended production at the Fernald site in 1989 and formally ended production in 1991. Although production activities have ceased, the site continues to examine the air and liquid pathways as possible routes through which pollutants from past operations and current remedial activities may leave the site. This report covers the reporting period from January 1, 1992, through December 31, 1992, with the exception of Chapter Three, which provides information from the first quarter of 1993 as well as calendar year 1992 information. This 1992 report provides the general public as well as scientists and engineers with the results from the site`s ongoing Environmental Monitoring Program. Use included in this report are summary data of the sampling conducted to determine if the site complies with DOE, US Environmental Protection Agency (USEPA), and Ohio EPA (OEPA) requirements. Finally, this report provides general information on the major waste management and environmental restoration activities during 1992.

  11. Site environmental report for 1992

    SciTech Connect (OSTI)

    Gordon, K.W. [ed.; Brekke, D.D. [Sandia National Labs., Livermore, CA (United States); Holland, R.C. [Science Applications International Corp., San Diego, CA (United States)

    1993-12-31T23:59:59.000Z

    Sandia National Laboratories (SNL) is committed to conducting its operations in an environmentally safe and sound manner. It is mandatory that activities at SNL/California comply with all applicable environmental statutes, regulations, and standards. Moreover, SNL/California continuously strives to reduce risks to employees, the public, and the environment to the lowest levels reasonably possible. To help verify effective protection of public safety and preservation of the environment, SNL/California maintains an extensive, ongoing environmental monitoring program. This program, conducted in conjunction with Lawrence Livermore National Laboratory, monitors all significant airborne and liquid effluents and the general environment in the area. This monitoring effort ensures that emission controls are effective in preventing contamination of the environment. As part of the Environmental Monitoring Program, an ambient environmental surveillance system measures the possible presence of radioactive and hazardous materials in ambient air, surface water, groundwater, sewage, soil, vegetation, and locally-produced food stuffs. The program also includes an extensive environmental dosimetry program, which measures external radiation levels around the Livermore site and nearby vicinity. This executive summary focuses on impacts to the environment and estimated radiation doses to the public from site emissions.

  12. Knolls Atomic Power Laboratory environmental monitoring report, calendar year 2001

    SciTech Connect (OSTI)

    NONE

    2002-12-31T23:59:59.000Z

    The results of the effluent and environmental monitoring programs at the three Knolls Atomic Power Laboratory (KAPL) Sites are summarized and assessed in this report. Operations at the Knolls and Kesselring Sites and Site closure activities at the S1C Site (also known as the KAPL Windsor Site) continue to have no adverse effect on human health and the quality of the environment. The effluent and environmental monitoring programs conducted by KAPL at the Knolls and Kesselring Sites are designed to determine the effectiveness of treatment and control methods, to provide measurement of the concentrations in effluents for comparison with applicable standards, and to assess resultant concentrations in the environment. The monitoring programs include analyses of samples of liquid and gaseous effluents for chemical constituents and radioactivity as well as environmental monitoring of air, water, sediment, and fish. Radiation measurements are also made around the perimeter of the Knolls and Kesselring Sites and at off-site background locations. The environmental monitoring program for the S1C Site continues to be reduced in scope from previous years due to the completion of Site dismantlement activities during 1999 and a return to green field conditions during 2000.

  13. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) Harmonic EngineHIVDecember> About Us > Hanford Site

  14. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) Harmonic EngineHIVDecember> About Us > Hanford SiteW

  15. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) Harmonic EngineHIVDecember> About Us > Hanford SiteW

  16. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) Harmonicbet When yourecovery Waste Site Cleanup 100K Area

  17. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) Harmonicbet When yourecovery Waste Site Cleanup 100K

  18. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) Harmonicbet When yourecovery Waste Site Cleanup

  19. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) Harmonicbet When yourecovery Waste Site Cleanupwaste

  20. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) Harmonicbet When yourecovery Waste Site Cleanupwastewaste

  1. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) Harmonicbet When yourecovery Waste Site Cleanupwastewaste

  2. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) Harmonicbet When yourecovery Waste Site CleanupwastewasteB

  3. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) Harmonicbet When yourecovery Waste Site

  4. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) Harmonicbet When yourecovery Waste Site

  5. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) Harmonicbet When yourecovery Waste Site

  6. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) Harmonicbet When yourecovery Waste Site

  7. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) Harmonicbet When yourecovery Waste Site

  8. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) Harmonicbet When yourecovery Waste SiteDOE office of river

  9. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) Harmonicbet When yourecovery Waste SiteDOE office of

  10. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) Harmonicbet When yourecovery Waste SiteDOE office ofF

  11. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) Harmonicbet When yourecovery Waste SiteDOE office ofF

  12. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) Harmonicbet When yourecovery Waste SiteDOE office

  13. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) Harmonicbet When yourecovery Waste SiteDOE

  14. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) Harmonicbet When yourecovery Waste SiteDOE

  15. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) Harmonicbet When yourecovery Waste SiteDOE

  16. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) Harmonicbet When yourecovery Waste SiteDOEPress Conference

  17. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) Harmonicbet When yourecovery Waste SiteDOEPress

  18. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) Harmonicbet When yourecovery Waste SiteDOEPress

  19. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) Harmonicbet When yourecovery Waste SiteDOEPress

  20. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) Harmonicbet When yourecovery Waste SiteDOEPress

  1. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) Harmonicbet When yourecovery Waste SiteDOEPress

  2. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) Harmonicbet When yourecovery Waste SiteDOEPress

  3. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) Harmonicbet When yourecovery Waste SiteDOEPress

  4. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) Harmonicbet When yourecovery Waste SiteDOEPress

  5. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) Harmonicbet When yourecovery Waste SiteDOEPressdepartment

  6. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) Harmonicbet When yourecovery WasteSite Public Tours

  7. Site Map

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebookScholarship Fund3 Outlook forSDPPP Individual Permit:Site Map TUNL

  8. Site Map

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclearHomelandMultivariate Metal-OrganicPulseSimulation,Site

  9. Site Map

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclearHomelandMultivariateSite Map Main Menu About the ALS ALS@20

  10. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cn SunnybankD.jpg Gallery: VPPCompanyFebruary 2005GloveSite visit EdBoard3

  11. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cn SunnybankD.jpg Gallery: VPPCompanyFebruary 2005GloveSite visit

  12. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cn SunnybankD.jpg Gallery: VPPCompanyFebruary 2005GloveSite visitARRA Funded

  13. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cn SunnybankD.jpg Gallery: VPPCompanyFebruary 2005GloveSite visitARRA

  14. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cn SunnybankD.jpg Gallery: VPPCompanyFebruary 2005GloveSite

  15. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cn SunnybankD.jpg Gallery: VPPCompanyFebruary 2005GloveSite03080006-010df

  16. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cn SunnybankD.jpg Gallery: VPPCompanyFebruary4155-8HoursBasin Waste Site

  17. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cn SunnybankD.jpgHanford LEED&soil PRC Soildumptoolstrack hoe Waste Site

  18. Site C

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourthN V O'1 ~(3JlpV Project Proposal -Site40s'

  19. Tillman Creek Mitigation Site As-Build Report.

    SciTech Connect (OSTI)

    Gresham, Doug [Otak, Inc.

    2009-05-29T23:59:59.000Z

    This as-built report describes site conditions at the Tillman Creek mitigation site in South Cle Elum, Washington. This mitigation site was constructed in 2006-2007 to compensate for wetland impacts from the Yakama Nation hatchery. This as-built report provides information on the construction sequence, as-built survey, and establishment of baseline monitoring stations.

  20. 2009 Site Environmental Report

    SciTech Connect (OSTI)

    Ratel, K.M.; Brookhaven National Laboratory

    2010-09-30T23:59:59.000Z

    Each year, Brookhaven National Laboratory (BNL) prepares an annual Site Environmental Report (SER) in accordance with DOE Order 231.1A, Environment, Safety and Health Reporting of the U.S. Department of Energy. The report is written to inform the public, regulators, employees, and other stakeholders of BNL's environmental performance during the calendar year in review. The SER summarizes environmental data; environmental management performance; compliance with applicable DOE, federal, state, and local regulations; and compliance, restoration, and surveillance monitoring program performance. BNL has prepared annual SERs since 1971 and has documented nearly all of its environmental history since the Laboratory's inception in 1947. The report is available in print and as a downloadable file on the BNL web page at http://www.bnl.gov/ewms/ser/. A summary of the SER is also prepared each year to provide a general overview of the report, and is distributed with a CD of the full report.

  1. 2005 SITE ENVIRONMENTAL REPORT

    SciTech Connect (OSTI)

    BROOKHAVEN NATIONAL LABORATORY

    2006-08-29T23:59:59.000Z

    Each year, Brookhaven National Laboratory (BNL) prepares an annual Site Environmental Report (SER) in accordance with DOE Order 231.1A, Environment, Safety and Health Reporting of the U.S. Department of Energy (DOE). The report is written to inform the public, regulators, employees, and other stakeholders of BNL's environmental performance during the calendar year in review. The SER summarizes environmental data; environmental management performance; compliance with applicable DOE, federal, state, and local regulations; and compliance, restoration, and surveillance monitoring program performance. BNL has prepared annual SERs since 1971 and has documented nearly all of its environmental history since the Laboratory's inception in 1947. The report is available in print and as a downloadable file on the BNL web page at http://www.bnl.gov/ewms/ser/. A summary of the SER is also prepared each year to provide a general overview of the report, and is distributed with a CD of the full report.

  2. 2006 SITE ENVIRONMENTAL REPORT

    SciTech Connect (OSTI)

    BROOKHAVEN NATIONAL LABORATORY; RATEL,K.

    2007-10-01T23:59:59.000Z

    Each year, Brookhaven National Laboratory (BNL) prepares an annual Site Environmental Report (SER) in accordance with DOE Order 231.1A, Environment, Safety and Health Reporting of the U.S. Department of Energy. The report is written to inform the public, regulators, employees, and other stakeholders of BNL's environmental performance during the calendar year in review. The SER summarizes environmental data; environmental management performance; compliance with applicable DOE, federal, state, and local regulations; and compliance, restoration, and surveillance monitoring program performance. BNL has prepared annual SERs since 1971 and has documented nearly all of its environmental history since the Laboratory's inception in 1947. The report is available in print and as a downloadable file on the BNL web page at http://www.bnl.gov/ewms/ser/. A summary of the SER is also prepared each year to provide a general overview of the report, and is distributed with a CD of the full report.

  3. An instrumentation package for monitoring tractor performance

    E-Print Network [OSTI]

    Green, Malcolm Kirk

    1983-01-01T23:59:59.000Z

    of performance for most current tractor models was engine speed. Since overall tractor performance was influenced by several operating variables, not just engine speed, additional monitors and displays of performance were needed. Tractor performance monitors... Rotational Sp D' fferential Speed Measurement Draft Measurement Rear Axle Torque Measurement Fuel Consumption Measurement Campbell CR5 Digital Recorder Field Test Design and Procedures Data Requirements Test Site and Field Variables Travel Speed...

  4. Ecological Monitoring and Compliance Program Fiscal/Calendar Year 2004 Report

    SciTech Connect (OSTI)

    Bechtel Nevada

    2005-03-01T23:59:59.000Z

    The Ecological Monitoring and Compliance program, funded through the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, monitors the ecosystem of the Nevada Test Site and ensures compliance with laws and regulations pertaining to Nevada Test Site biota. This report summarizes the program's activities conducted by Bechtel Nevada during the Fiscal Year 2004 and the additional months of October, November, and December 2004, reflecting a change in the monitoring period to a calendar year rather than a fiscal year as reported in the past. This change in the monitoring period was made to better accommodate information required for the Nevada Test Site Environmental Report, which reports on a calendar year rather than a fiscal year. Program activities included: (1) biological surveys at proposed construction sites, (2) desert tortoise compliance, (3) ecosystem mapping and data management, (4) sensitive species and unique habitat monitoring, (5) habitat restoration monitoring, and (6) biological monitoring at the Hazardous Materials Spill Center.

  5. Facility Effluent Monitoring Plan determinations for the 600 Area facilities

    SciTech Connect (OSTI)

    Nickels, J.M.

    1991-08-01T23:59:59.000Z

    This document determines the need for Facility Effluent Monitoring Plans for Westinghouse Hanford Company's 600 Area facilities on the Hanford Site. The Facility Effluent Monitoring Plan determinations were prepared in accordance with A Guide For Preparing Hanford Site Facility Effluent Monitoring Plans (WHC 1991). Five major Westinghouse Hanford Company facilities in the 600 Area were evaluated: the Purge Water Storage Facility, 212-N, -P, and -R Facilities, the 616 Facility, and the 213-J K Storage Vaults. Of the five major facilities evaluated in the 600 Area, none will require preparation of a Facility Effluent Monitoring Plan.

  6. Knolls Atomic Power Laboratory Environmental Monitoring Report, Calendar Year 2003

    SciTech Connect (OSTI)

    None

    2003-12-31T23:59:59.000Z

    The effluent and environmental monitoring programs conducted by KAPL at the Knolls and Kesselring Sites are designed to determine the effectiveness of treatment and control methods, to provide measurement of the concentrations in effluents for comparison with applicable standards, and to assess resultant concentrations in the environment. The monitoring programs include analyses of samples of liquid and gaseous effluents for chemical constituents and radioactivity as well as environmental monitoring of air, water, sediment, and fish. Radiation measurements are also made around the perimeter of the Knolls and Kesselring Sites and at off-site background locations.

  7. Fernald Environmental Management Project 1995 site environmental report

    SciTech Connect (OSTI)

    NONE

    1996-06-01T23:59:59.000Z

    The Fernald site continues to examine the air and liquid pathways as possible routes through which pollutants from past operations and current remedial activities may leave the site. This 1995 Site Environmental Report provides the general public as well as scientists and engineers with the results from the site`s ongoing Environmental Monitoring Program. Also included in this report is information concerning the site`s progress toward achieving full compliance with requirements set forth by DOE, US Environmental Protection Agency (USEPA), and Ohio EPA.

  8. West Valley Demonstration Project site environmental report calendar year 1998

    SciTech Connect (OSTI)

    NONE

    1999-06-01T23:59:59.000Z

    This report represents a single, comprehensive source of off-site and on-site environmental monitoring data collected during 1998 by environmental monitoring personnel for the West Valley Demonstration Project (WVDP), West Valley, New York. The environmental monitoring program and results are discussed in the body of this report. The monitoring data are presented in the appendices. The data collected provide an historical record of radionuclide and radiation levels from natural and manmade sources in the survey area and document the quality of the groundwater on and around the WVDP and the quality of the air and water discharged by the WVDP.

  9. West Valley Demonstration Project site environmental report, calendar year 1999

    SciTech Connect (OSTI)

    None Available

    2000-06-01T23:59:59.000Z

    This report represents a single, comprehensive source of off-site and on-site environmental monitoring data collected during 1999 by environmental monitoring personnel for the West Valley Demonstration Project (WVDP), West Valley, New York. The environmental monitoring program and results are discussed in the body of this report. The monitoring data are presented in the appendices. The data collected provide an historical record of radionuclide and radiation levels from natural and manmade sources in the survey area and document the quality of the groundwater on and around the WVDP and the quality of the air and water discharged by the WVDP.

  10. Knolls Atomic Power Laboratory environmental monitoring report, calendar year 2000

    SciTech Connect (OSTI)

    None

    2001-12-01T23:59:59.000Z

    The results of the effluent and environmental monitoring programs at the three Knolls Atomic Power Laboratory (KAPL) Sites are summarized and assessed in this report. Operations at the Knolls Site, Niskayuna, New York and the Kesselring Site, West Milton, New York and site closure activities at the S1C Site, Windsor, Connecticut, continued to have no adverse effect on human health and the quality of the environment during calendar year 2000. The effluent and environmental monitoring programs conducted by KAPL are designed to determine the effectiveness of treatment and control methods, to provide measurement of the concentrations in effluents for comparison with applicable standards, and to assess resultant concentrations in the environment. The monitoring programs include analyses of samples of liquid and gaseous effluents for chemical constituents and radioactivity as well as monitoring of environmental air, water, sediment, and fish. Radiation measurements are also made around the perimeter of each Site and at off-site background locations. Monitoring programs at the S1C Site were reduced in scope during calendar year 2000 due to completion of site dismantlement activities during 1999.

  11. Site environmental report for calendar year 1996

    SciTech Connect (OSTI)

    NONE

    1997-08-01T23:59:59.000Z

    The purpose of this Site Environmental Report (SER) is to characterize site environmental management performance, confirm compliance with environmental standards and requirements, and highlight significant programs and efforts to the US Department of Energy (DOE) Strategic Petroleum Reserve (SPR). The SER, provided annually in accordance with DOE Order 5400.1, serves the public by summarizing monitoring data collected to assess how the SPR impacts the environment. The SER provides a balanced synopsis of non-radiological monitoring and regulatory compliance data and affirms that the SPR has been operating within acceptable regulatory limits.

  12. SITE MAINTENANCE PLAN CSMRI SITE REMEDIATION

    E-Print Network [OSTI]

    ...............................................................................3 3.2 Bagged Materials Storage Area Management....................................................3...............................................................................................................5 5.2 Ground and Surface Water Monitoring

  13. 1996 Site environmental report

    SciTech Connect (OSTI)

    NONE

    1997-06-01T23:59:59.000Z

    The FEMP is a Department of Energy (DOE)-owned facility that produced high-quality uranium metals for military defense for nearly 40 years. DOE suspended production at the FEMP in 1989 and formally ended production in 1991. Although production activities have ceased, the site continues to examine the air and liquid pathways as possible routes through which pollutants from past operations and current remedial activities may leave the FEMP. The Site Environmental Report (SER) is prepared annually in accordance with DOE Order 5400.1, General Environmental Protection Program. This 1996 SER provides the general public as well as scientists and engineers with the results from the ongoing Environmental Monitoring Program. Also included in this report is information concerning the FEMP progress toward achieving full compliance with requirements set forth by DOE, U.S. Environmental Protection Agency (EPA), and Ohio EPA (OEPA). For some readers, the highlights provided in this Executive Summary may provide sufficient information. Many readers, however, may wish are presented here. All information presented in this summary is discussed more fully in the main body of this report.

  14. 2003 SITE ENVIRONMENTAL REPORT

    SciTech Connect (OSTI)

    ENVIRONMENT AND WASTE MANAGMENT SERVICES DIVISION; ET AL.

    2004-10-01T23:59:59.000Z

    Each year, Brookhaven National Laboratory (BNL), a multi-program national laboratory, prepares an annual Site Environmental Report (SER) in accordance with Order 231.1A, Environment, Safety and Health Reporting, of the U.S. Department of Energy (DOE). The SER is written to inform outside regulators, the public, and Laboratory employees of BNL's environmental performance during the calendar year in review, and to summarize BNL's on-site environmental data; environmental management performance; compliance with applicable DOE, Environmental Protection Agency (EPA), state, and local regulations; and environmental, restoration, and surveillance monitoring programs. BNL has prepared annual SERs since 1971 and has documented nearly all of its environmental history since the Laboratory's inception in 1947. This report is intended to be a technical document. It is available in print and as a downloadable file on the BNL web page at http://www.bnl.ser.htm. A summary of the SER is also prepared each year to provide a general overview, and is distributed with a CD version of the full-length SER. The summary supports BNL's educational and community outreach program.

  15. Environmental Monitoring Plan, Revision 5

    SciTech Connect (OSTI)

    Gallegos, G M; Blake, R G; Bertoldo, N A; Campbell, C G; Coty, J; Folks, K; Grayson, A R; Jones, H E; Nelson, J C; Revelli, M A; Wegrecki, T; Williams, R A; Wilson, K

    2010-01-27T23:59:59.000Z

    The purpose of environmental monitoring is to promote the early identification of, and response to, potential adverse environmental impacts associated with Lawrence Livermore National Laboratory (LLNL) operations. Environmental monitoring supports the Integrated Safety Management System (ISMS), International Organization for Standardization (ISO) 14001 Environmental Management Systems standard, and U. S. Department of Energy (DOE) Order 450.1A, Environmental Protection Program. Specifically, in conformance with DOE Order 450.1A, Attachment 1, paragraph 1(b)(5), environmental monitoring enables LLNL to detect, characterize, and respond to releases from LLNL activities; assess impacts; estimate dispersal patterns in the environment; characterize the pathways of exposure to members of the public; characterize the exposures and doses to individuals and to the population; and to evaluate the potential impacts to the biota in the vicinity of LLNL. Environmental monitoring also serves to demonstrate compliance with permits and other regulatory requirements. The Environmental Monitoring Plan (EMP) addresses the sample collection and analytical work supporting environmental monitoring to ensure the following: (1) A consistent system for collecting, assessing, and documenting environmental data of known and documented quality. (2) A validated and consistent approach for sampling and analysis of samples to ensure laboratory data meets program-specific needs and requirements within the framework of a performance-based approach for analytical laboratory work. (3) An integrated sampling approach to avoid duplicative data collection. Until its cancellation in January 2003, DOE Order 5400.1 required the preparation of an environmental monitoring plan. Neither DOE Order 450.1A nor the ISO 14001 standard are as prescriptive as DOE Order 5400.1, in that neither expressly requires an EMP. However, LLNL continues to prepare the EMP because it provides an organizational framework for ensuring that this work, which is integral to the implementation of LLNL's Environmental Management System, is conducted appropriately. Furthermore, the Environmental Monitoring Plan helps LLNL ensure compliance with DOE Order 5400.5, Radiation Protection of the Public and the Environment, and DOE Order 231.1 Change 2, Environment, Safety and Health Reporting, which require the publication of an annual report that characterizes the site's environmental management performance. To summarize, the general regulatory drivers for this environmental monitoring plan are ISO 14001, DOE Order 450.1A, DOE Order 5400.5, and DOE Order 231.1. The environmental monitoring addressed by this plan includes preoperational characterization and assessment, effluent and surveillance monitoring, and permit and regulatory compliance monitoring. Additional environmental monitoring is conducted at LLNL as part of compliance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA, also known as Superfund). LLNL coordinates its ground water surveillance monitoring program with the CERCLA monitoring program to gain sampling efficiencies. (See LLNL [1992] and LLNL [2008] for information about LLNL's CERCLA activities).

  16. Sandia National Laboratories/California site environmental report for 1997

    SciTech Connect (OSTI)

    Condouris, R.A. [ed.] [Sandia National Labs., Livermore, CA (United States); Holland, R.C. [Science Applications International Corp. (United States)

    1998-06-01T23:59:59.000Z

    Sandia National Laboratories (SNL) is committed to conducting its operations in an environmentally safe and sound manner. It is mandatory that activities at SNL/California comply with all applicable environmental statutes, regulations, and standards. Moreover, SNL/California continuously strives to reduce risks to employees, the public, and the environment to the lowest levels reasonably possible. To help verify effective protection of public safety and preservation of the environment, SNL/California maintains an extensive, ongoing environmental monitoring program. This program monitors all significant effluents and the environment at the SNL/California site perimeter. Lawrence Livermore National Laboratory (LLNL) performs off-site external radiation monitoring for both sites. These monitoring efforts ensure that emission controls are effective in preventing contamination of the environment. As part of SNL/California`s Environmental Monitoring Program, an environmental surveillance system measures the possible presence of hazardous materials in groundwater, stormwater, and sewage. The program also includes an extensive environmental dosimetry program, which measures external radiation levels around the Livermore site and nearby vicinity. The Site Environmental Report describes the results of SNL/California`s environmental protection activities during the calendar year. It also summarizes environmental monitoring data and highlights major environmental programs. Overall, it evaluates SNL/California`s environmental management performance and documents the site`s regulatory compliance status.

  17. Environmental Monitoring Plan for the Oak Ridge Reservation, 2012

    SciTech Connect (OSTI)

    Thompson, Sharon D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2012-10-01T23:59:59.000Z

    The purpose of Oak Ridge Reservation (ORR) environmental surveillance is to characterize radiological and nonradiological conditions of the off-site environs and estimate public doses related to these conditions, confirm estimations of public dose based on effluent monitoring data, and, where appropriate, provide supplemental data to support compliance monitoring for applicable environmental regulations. This environmental monitoring plan (EMP) is intended to document the rationale, frequency, parameters, and analytical methods for the ORR environmental surveillance program and provides information on ORR site characteristics, environmental pathways, dose assessment methods, and quality management. ORR-wide environmental monitoring activities include a variety of media including air, surface water, vegetation, biota, and wildlife. In addition to these activities, site-specific effluent, groundwater, and best management monitoring programs are conducted at the Oak Ridge National Laboratory (ORNL), the Y-12 National Security Complex (Y-12), and the East Tennessee Technology Park (ETTP). This is revision 5.

  18. The data collection component of the Hanford Meteorology Monitoring Program

    SciTech Connect (OSTI)

    Glantz, C.S.; Islam, M.M.

    1988-09-01T23:59:59.000Z

    An intensive program of meteorological monitoring is in place at the US Department of Energy's Hanford Site. The Hanford Meteorology Monitoring Program involves the measurement, observation, and storage of various meteorological data; continuous monitoring of regional weather conditions by a staff of professional meteorologists; and around-the-clock forecasting of weather conditions for the Hanford Site. The objective of this report is to document the data collection component of the program. In this report, each meteorological monitoring site is discussed in detail. Each site's location and instrumentation are described and photographs are presented. The methods for processing and communicating data to the Hanford Meteorology Station are also discussed. Finally, the procedures followed to maintain and calibrate these instruments are presented. 2 refs., 83 figs., 15 tabs.

  19. 2005 River Corridor Cleanup Contractor Revegetation Monitoring Report

    SciTech Connect (OSTI)

    A. L. Johnson

    2005-09-12T23:59:59.000Z

    This report contains a compilation of the results of vegetation monitoring data that were collected in the spring and summer of 2005 for the Environmental Restoration Contractor's revegetation and mitigation areas on the Hanford Site.

  20. Parallel ozone monitoring study performed in the Ojai Valley, California

    SciTech Connect (OSTI)

    Mikel, D.K. [Ventura County Air Pollution Control District, CA (United States)

    1998-12-31T23:59:59.000Z

    The Ventura County Air Pollution Control District (also known as the District) Monitoring and Technical Services Division, relocated the State and Local Air Monitoring Station (SLAMS) for the Ojai Valley. The SLAMS was located on property that was being abandoned and sold by the County of Ventura, thus necessitating a station relocation. From August 3, through October 31, 1995, the District performed parallel ozone monitoring at two sites. The former site was located at 1768 Maricopa Road, Ojai, California (AIRS Site 06111-1003) and the existing site at 1201 Ojai Avenue, Ojai California (County Fire Station {number_sign}21). This paper outlines the process of parallel monitoring, the statistical tests used and their justification. In addition, there is a discussion on station equivalency.

  1. SITE ELECTRICAL POWER SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect (OSTI)

    E.P. McCann

    1999-04-16T23:59:59.000Z

    The Site Electrical Power System receives and distributes utility power to all North Portal site users. The major North Portal users are the Protected Area including the subsurface facility and Balance of Plant areas. The system is remotely monitored and controlled from the Surface Operations Monitoring and Control System. The system monitors power quality and provides the capability to transfer between Off-Site Utility and standby power (including dedicated safeguards and security power). Standby power is only distributed to selected loads for personnel safety and essential operations. Security power is only distributed to essential security operations. The standby safeguards and security power is independent from all other site power. The system also provides surface lighting, grounding grid, and lightning protection for the North Portal. The system distributes power during construction, operation, caretaker, and closure phases of the repository. The system consists of substation equipment (disconnect switches, breakers, transformers and grounding equipment) and power distribution cabling from substation to the north portal switch gear building. Additionally, the system includes subsurface facility substation (located on surface), switch-gear, standby diesel generators, underground duct banks, power cables and conduits, switch-gear building and associated distribution equipment for power distribution. Each area substation distributes power to the electrical loads and includes the site grounding, site lighting and lightning protection equipment. The site electrical power system distributes power of sufficient quantity and quality to meet users demands. The Site Electrical Power System interfaces with the North Portal surface systems requiring electrical power. The system interfaces with the Subsurface Electrical Distribution System which will supply power to the underground facilities from the North Portal. Power required for the South Portal and development side activities of the subsurface facility will be provided at the South Portal by the Subsurface Electrical Distribution System. The Site Electrical Power System interfaces with the Off-Site Utility System for the receipt of power. The System interfaces with the Surface Operations Monitoring and Control System for monitoring and control. The System interfaces with MGR Site Layout System for the physical location of equipment and power distribution.

  2. SOUTHERN FINE PARTICULATE MONITORING PROJECT

    SciTech Connect (OSTI)

    Unknown

    2002-04-01T23:59:59.000Z

    This quarterly report presents results and analysis of continuous onsite ambient fine particulate data at the North Birmingham sampling site during the January-March, 2002 study period. The continuous data include PM{sub 2.5} mass concentrations measured by TEOM, particle sulfate using the R&P 8400S monitor, particle size distributions measured by SMPS and APS monitors, and PM{sub 2.5} light scattering extinction coefficient as measured by nephelometer. Some instrumental issues were noted with the upgrade of the APS model 3320 are described in the report, as well as preliminary performance indications for the upgraded instrument. During the quarter preliminary data analysis and modeling studies were conducted to test the potential of the North Birmingham site data for source attribution analyses. Our initial assessment has continued to be optimistic in this regard due to the location of the site relative to several important classes of local and midrange emission sources. We anticipate that these analyses will provide good separations of the effects of major source classes and spatial source clusters, and will provide useful information relevant to PM{sub 2.5} implementation strategies.

  3. Nevada Test Site environmental data report for calendar year 1996

    SciTech Connect (OSTI)

    Black, S.C.; Townsend, Y.E. [eds.; Kinnison, R.R.

    1998-03-01T23:59:59.000Z

    US Department of Energy (DOE) Order 5400.1, ``General Environmental Protection Program,`` establishes environmental protection program requirements, authorities, and responsibilities for DOE operations. These mandates require compliance with applicable federal, state, and local environmental protection regulations. During calendar year (CY) 1996, environmental protection and monitoring programs were conducted at the Nevada Test Site and other DOE Nevada Operations Office (DOE/NV)-managed sites in Nevada and across the US. A detailed discussion of these environmental protection and monitoring programs and summary data and assessments for environmental monitoring results are provided in the DOE/NV Annual Site Environmental Report-1996 (ASER), DOE/NV/11718-137. This document provides summary data results and detailed assessments for the environmental monitoring conducted for all DOE/NV-managed sites in CY1996.

  4. Groundwater Protection 7 2008 Site environmental report7-

    E-Print Network [OSTI]

    Groundwater Protection 7 2008 Site environmental report7- The Brookhaven National Laboratory Groundwater Protection Program is made up of four elements: prevention, monitoring, restoration, and communication. The Laboratory has implemented aggressive pollution prevention measures to protect groundwater

  5. Groundwater Protection 7 2009 Site environmental report7-

    E-Print Network [OSTI]

    Groundwater Protection 7 2009 Site environmental report7- DRAFT The Brookhaven National Laboratory Groundwater Protection Program is made up of four elements: prevention, monitoring, restoration, and communication. The Laboratory has implemented aggressive pollution prevention measures to protect groundwater

  6. Groundwater Protection 7 2005 Site environmental report7-

    E-Print Network [OSTI]

    Groundwater Protection 7 2005 Site environmental report7- Brookhaven National Laboratory's Groundwater Protection Management Program is made up of four elements: prevention, monitoring, restoration, and communication. The Laboratory has implemented aggressive pollution prevention measures to protect groundwater

  7. Groundwater Protection 7 2012 SITE ENVIRONMENTAL REPORT7-1

    E-Print Network [OSTI]

    Groundwater Protection 7 2012 SITE ENVIRONMENTAL REPORT7-1 Brookhaven National Laboratory has implemented aggressive pollution prevention measures to protect groundwater resources. An extensive groundwater monitoring well network is used to verify that prevention and restoration activities are effective

  8. Groundwater Protection 7 2013 SITE ENVIRONMENTAL REPORT7-1

    E-Print Network [OSTI]

    Groundwater Protection 7 2013 SITE ENVIRONMENTAL REPORT7-1 Brookhaven National Laboratory has implemented aggressive pollution prevention measures to protect groundwater resources. An extensive groundwater monitoring well network is used to verify that prevention and restoration activities are effective

  9. Groundwater Protection 7 2006 Site environmental report7-

    E-Print Network [OSTI]

    Groundwater Protection 7 2006 Site environmental report7- DRAFT Brookhaven National Laboratory's Groundwater Protection Management Program is made up of four elements: prevention, monitoring, restoration, and communication. The Laboratory has implemented aggressive pollution prevention measures to protect groundwater

  10. Groundwater Protection 7 2011 Site environmental report7-1

    E-Print Network [OSTI]

    Groundwater Protection 7 2011 Site environmental report7-1 Brookhaven National Laboratory has implemented aggressive pollution prevention measures to protect groundwater resources. An extensive groundwater monitoring well network is used to verify that prevention and restoration activities are effective

  11. Paducah Site annual environmental report summary for 1994

    SciTech Connect (OSTI)

    Horak, C.M. [ed.] [Oak Ridge National Lab., TN (United States)

    1996-02-01T23:59:59.000Z

    This pamphlet contains summaries of the environmental programs at the Paducah Gaseous Plant site, environmental monitoring and the results, and the impact of operations on the environment and the public for 1994.

  12. HP Steam Trap Monitoring

    E-Print Network [OSTI]

    Pascone, S.

    2011-01-01T23:59:59.000Z

    STEAM MONITORING HP Steam Trap Monitoring HP Steam Trap Monitoring ? 12-18 months payback! ? 3-5% permanent reduction in consumption ? LEED Pt.? Innovation in Operations EB O&M ? Saved clients over $1,000,000 Annual consumption... Steam Trap Monitoring ? Real-time monitoring for high-pressure critical traps (>15 PSIG) ? Average total system cost $25K - $50K ? Web-Based or Modbus/BMS Integration Basic Installation Wireless Signal Transmitter Receiver Repeater...

  13. Integral Monitored Retrievable Storage (MRS) Facility conceptual design report

    SciTech Connect (OSTI)

    None

    1985-09-01T23:59:59.000Z

    In April 1985, the Department of Energy (DOE) selected the Clinch River site as its preferred site for the construction and operation of the monitored retrievable storage (MRS) facility (USDOE, 1985). In support of the DOE MRS conceptual design activity, available data describing the site have been gathered and analyzed. A composite geotechnical description of the Clinch River site has been developed and is presented herein. This report presents Clinch River site description data in the following sections: general site description, surface hydrologic characteristics, groundwater characteristics, geologic characteristics, vibratory ground motion, surface faulting, stability of subsurface materials, slope stability, and references. 48 refs., 35 figs., 6 tabs.

  14. Waste Isolation Pilot Plant Environmental Monitoring Plan

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2008-03-12T23:59:59.000Z

    U.S. Department of Energy (DOE) Order 450.1, Environmental Protection Program, requires each DOE site to conduct environmental monitoring. Environmental monitoring at the Waste Isolation Pilot Plant (WIPP) is conducted in order to: (a) Verify and support compliance with applicable federal, state, and local environmental laws, regulations, permits, and orders; (b) Establish baselines and characterize trends in the physical, chemical, and biological condition of effluent and environmental media; (c) Identify potential environmental problems and evaluate the need for remedial actions or measures to mitigate the problems; (d) Detect, characterize, and report unplanned releases; (e) Evaluate the effectiveness of effluent treatment and control, and pollution abatement programs; and (f) Determine compliance with commitments made in environmental impact statements, environmental assessments, safety analysis reports, or other official DOE documents. This Environmental Monitoring Plan (EMP) explains the rationale and design criteria for the environmental monitoring program, extent and frequency of monitoring and measurements, procedures for laboratory analyses, quality assurance (QA) requirements, program implementation procedures, and direction for the preparation and disposition of reports. Changes to the environmental monitoring program may be necessary to allow the use of advanced technology and new data collection techniques. This EMP will document changes in the environmental monitoring program. Guidance for preparation of EMPs is contained in DOE/EH-0173T, Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance.

  15. Best practice techniques for environmental radiological monitoring

    E-Print Network [OSTI]

    tackling flooding and pollution incidents, reducing industry's impacts on the environment, cleaning up from nuclear sites in England and Wales under the Radioactive Substances Act 1993. The Environment Monitoring The Environment Agency is the leading public body protecting and improving the environment

  16. Executive summary: Weldon Spring Site Environmental Report for calendar year 1992. Weldon Spring Site Remedial Action Project, Weldon Spring, Missouri

    SciTech Connect (OSTI)

    Not Available

    1993-06-01T23:59:59.000Z

    This report has been prepared to provide information about the public safety and environmental protection programs conducted by the Weldon Spring Site Remedial Action Project. The Weldon Spring site is located in southern St. Charles County, Missouri, approximately 48 km (30 mi) west of St. Louis. The site consists of two main areas, the Weldon Spring Chemical Plant and raffinate pits and the Weldon Spring Quarry. The objectives of the Site Environmental Report are to present a summary of data from the environmental monitoring program, to characterize trends and environmental conditions at the site, and to confirm compliance with environmental and health protection standards and requirements. The report also presents the status of remedial activities and the results of monitoring these activities to assess their impacts on the public and environment. The scope of the environmental monitoring program at the Weldon Spring site has changed since it was initiated. Previously, the program focused on investigations of the extent and level of contaminants in the groundwater, surface waters, buildings, and air at the site. In 1992, the level of remedial activities required monitoring for potential impacts of those activities, particularly on surface water runoff and airborne effluents. This report includes monitoring data from routine radiological and nonradiological sampling activities. These data include estimates of dose to the public from the Weldon Spring site; estimates of effluent releases; and trends in groundwater contaminant levels. Also, applicable compliance requirements, quality assurance programs, and special studies conducted in 1992 to support environmental protection programs are reviewed.

  17. Routine Radiological Environmental Monitoring Plan, Volume 2 Appendices

    SciTech Connect (OSTI)

    Bechtel Nevada

    1998-12-31T23:59:59.000Z

    Supporting material for the plan includes: QUALITY ASSURANCE, ANALYSIS, AND SAMPLING PLAN FOR NTS AIR; QUALITY ASSURANCE, ANALYSIS, AND SAMPLING PLAN FOR WATER ON AND OFF THE NEVADA TEST SITE; QUALITY ASSURANCE, ANALYSIS, AND SAMPLING PLAN FOR NTS BIOTA; QUALITY ASSURANCE, ANALYSIS, AND SAMPLING PLAN FOR DIRECT RADIATION MONITORING; DATA QUALITY OBJECTIVES PROCESS; VADOSE ZONE MONITORING PLAN CHECKLIST.

  18. Solar Powered Radioactive Air Monitoring Stations

    SciTech Connect (OSTI)

    Barnett, J. M.; Bisping, Lynn E.; Gervais, Todd L.

    2013-10-30T23:59:59.000Z

    Environmental monitoring of ambient air for radioactive material is required as stipulated in the PNNL Site radioactive air license. Sampling ambient air at identified preferred locations could not be initially accomplished because utilities were not readily available. Therefore, solar powered environmental monitoring systems were considered as a possible option. PNNL purchased two 24-V DC solar powered environmental monitoring systems which consisted of solar panels, battery banks, and sampling units. During an approximate four month performance evaluation period, the solar stations operated satisfactorily at an on-site test location. They were subsequently relocated to their preferred locations in June 2012 where they continue to function adequately under the conditions found in Richland, Washington.

  19. Technical summary of groundwater quality protection program at the Savannah River Site, 1952--1986. Volume 1, Site geohydrology and waste sites

    SciTech Connect (OSTI)

    Heffner, J.D. [ed.] [Exploration Resources, Inc., Athens, GA (United States)

    1991-11-01T23:59:59.000Z

    This report provides information regarding the status of and groundwater quality at the waste sites at the Department of Energy`s (DOE) Savannah River Site (SRS). Specific information provided for each waste site at SRS includes its location, size, inventory (when known), and history. Many waste sites at SRS are considered to be of little environmental concern because they contain nontoxic or inert material such as construction rubble and debris. Other waste sites, however, either are known to have had an effect on groundwater quality or are suspected of having the potential to affect groundwater. Monitoring wells have been installed at most of these sites; monitoring wells are scheduled for installation at the remaining sites. Results of the groundwater analyses from these monitoring wells, presented in the appendices, are used in the report to help identify potential contaminants of concern, if any, at each waste site. The list of actions proposed for each waste site in Christensen and Gordon`s 1983 report are summarized, and an update is provided for each site. Planned actions for the future are also outlined.

  20. Annual Site Environmental Report. Calendar Year 1997

    SciTech Connect (OSTI)

    NONE

    1997-12-01T23:59:59.000Z

    This report summarizes the environmental status of Ames Laboratory for calendar year 1997. It includes descriptions of the Laboratory site, its mission, the status of its compliance with applicable environmental regulations, its planning and activities to maintain compliance, and a comprehensive review of its environmental protection, surveillance and monitoring programs.

  1. Savannah River Site Environmental Report for 1998

    SciTech Connect (OSTI)

    Arnett, M.

    1999-06-09T23:59:59.000Z

    The mission at the Savannah River Site (SRS) is focused primarily on support of the national defense, nonproliferation, and environmental cleanup. SRS-through its prime operating contractor, Westinghouse Savannah River Company-continues to maintain a comprehensive environmental monitoring program.

  2. Site Environmental Report for 2008, Volume 1

    SciTech Connect (OSTI)

    Lackner, Regina; Baskin, David; Fox, Robert; Jelinski, John; Pauer, Ron; Thorson, Patrick; Wahl, Linnea; Xu, Suying

    2009-09-21T23:59:59.000Z

    The Site Environmental Report for 2008 is an integrated report on the environmental programs at Lawrence Berkeley National Laboratory and satisfies the requirements of DOE order 231.1A, Environment, Safety, and Health Reporting. Volume II contains individual data results from surveillance and monitoring activities

  3. Characterization of Commercial Sites Selected for

    E-Print Network [OSTI]

    Energy Institute School of Ocean and Earth Science and Technology University of Hawai`i January 2014 #12Characterization of Commercial Sites Selected for Energy Efficiency Monitoring Prepared for the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability Under Cooperative Agreement No. DE

  4. Summary Site Environmental Report for 1998

    SciTech Connect (OSTI)

    Holland, R.C.

    1999-06-01T23:59:59.000Z

    Sandia National Laboratories' California Laboratory (Sandia/California) publishes a complete environmental report annually to communicate environmental monitoring results and efforts to reduce pollution at the site. Information presented includes impacts to the surrounding area and the local community from operations at Sandia/California. The Site Environmental Report is distributed to the Department of Energy Federal, State, and local regulatory agencies; community officials; and the public (available in public reading rooms). This booklet summarizes the information provided in the Sandia/California Site Environmental Report for 1998. It is intended to serve the general public by presenting environmental information in less technical language than is used in the formal report.

  5. Oak Ridge Reservation Annual Site environmental report for 1994

    SciTech Connect (OSTI)

    Koncinski, W.S. [ed.] [Oak Ridge National Lab., TN (United States)

    1995-10-01T23:59:59.000Z

    This report presents the details of the environmental monitoring and management plan for the Oak Ridge Reservation. Topics include: site and operations overview; environmental compliance strategies; environmental management program; effluent monitoring; environmental surveillance; radiation doses; chemical doses; ground water; and quality assurance.

  6. Air Quality 4 4-1 2003 SITE ENVIRONMENTAL REPORT

    E-Print Network [OSTI]

    Homes, Christopher C.

    at the Central Steam Facility. 4.1 RADIOLOGICAL EMISSIONS Federal air quality laws and DOE regulations monitoring is conducted. Figure 4-1 indicates the locations of the monitored facilities for radiological emis radioactive and nonradioactive emissions at several facilities on site to ensure compliance

  7. WELDON SPRING SITE ENVIRONMENTAL REPORT FOR CALENDAR YEAR 2002

    SciTech Connect (OSTI)

    WASHINGTON GROUP INTERNATIONAL AND JACOBS ENGINEERING GROUP

    2003-05-01T23:59:59.000Z

    This annual report presents a summary of data from the environmental monitoring program, to characterize trends and environmental conditions at the site, and to confirm compliance with environmental and health protection standards and requirements. This report also presents the status of remedial activities and the results of monitoring activities to assess their impacts on the public and environment.

  8. Rocky Flats Plant Site Environmental Report: 1993 Highlights

    SciTech Connect (OSTI)

    Not Available

    1993-12-31T23:59:59.000Z

    The Rocky Flats Plant Site Environmental Report provides summary information on the plant`s environmental monitoring programs and the results recorded during 1993. The report contains a compliance summary, results of environmental monitoring and other related programs, a review of environmental remediation activities, information on external gamma radiation dose monitoring, and radiation dose estimates for the surrounding population. This section provides an overview of these topics and summarizes more comprehensive discussions found in the main text of this annual report.

  9. Savannah River Site environmental report for 1989

    SciTech Connect (OSTI)

    Cummins, C.L.; Martin, D.K.; Todd, J.L.

    1989-01-01T23:59:59.000Z

    The purpose of this report is to meet three of the primary objectives of the Savannah River Site (SRS) environmental monitoring program. These objectives are to assess actual or potential exposures to populations form the presence of radioactive and nonradioactive materials from normal operations or nonroutine occurrences; to demonstrate compliance with applicable authorized limits and legal requirements; and to communicate results of the monitoring program to the public. This 1989 report contains descriptions of radiological and nonradiological monitoring programs, it provides data obtained from these programs, and it describes various environmental research activities ongoing at the site. Also included are summaries of environmental management and compliance activities, a summary of National Environmental Policy Act activities, and a listing of environmental permits issued by regulatory agencies.

  10. St. Louis Airport Site annual site environmental report. Calendar year 1985

    SciTech Connect (OSTI)

    Not Available

    1986-04-01T23:59:59.000Z

    During 1985, the environmental monitoring program was continued at the St. Louis Airport Site (SLAPS) in St. Louis County, Missouri. The ditches north and south of the site have been designated for cleanup as part of the Formerly Utilized Sites Remedial Action Program (FUSRAP), a United States Department of Energy (DOE) program to identify, decontaminate, or otherwise control sites where low-level radioactive contamination remains from the early years of the nation's atomic energy program. The site is not currently controlled or regulated by DOE or NRC, although radiological monitoring of the site has been authorized by the DOE. The monitoring program at the SLAPS measures radon gas concentrations in air; external gamma radiation dose rates; and uranium, thorium, and radium concentrations in surface water, groundwater, and sediment. Potential radiation doses to the public are also calculated. Because the site is not controlled or regulated by the DOE, the DOE Derived Concentration Guides (DCGs) are not applicable to SLAPS, but are included as a basis for comparison only. The DOE DCGs and the DOE radiation protection standard have been revised.

  11. Nevada National Security Site Environmental Report 2013 Attachment A: Site Description

    SciTech Connect (OSTI)

    Wills, C.

    2014-09-09T23:59:59.000Z

    This attachment expands on the general description of the Nevada National Security Site (NNSS) presented in the Introduction to the Nevada National Security Site Environmental Report 2012 (National Security Technologies, LLC [NSTec], 2013). Included are subsections that summarize the site’s geological, hydrological, climatological, and ecological setting and the cultural resources of the NNSS. The subsections are meant to aid the reader in understanding the complex physical and biological environment of the NNSS. An adequate knowledge of the site’s environment is necessary to assess the environmental impacts of new projects, design and implement environmental monitoring activities for current site operations, and assess the impacts of site operations on the public residing in the vicinity of the NNSS. The NNSS environment contributes to several key features of the site that afford protection to the inhabitants of adjacent areas from potential exposure to radioactivity or other contaminants resulting from NNSS operations. These key features include the general remote location of the NNSS, restricted access, extended wind transport times, the great depths to slow-moving groundwater, little or no surface water, and low population density. This attachment complements the annual summary of monitoring program activities and dose assessments presented in the main body of this report.

  12. Nevada National Security Site Environmental Report 2012 Attachment A: Site Description

    SciTech Connect (OSTI)

    Wills, Cathy A

    2013-09-11T23:59:59.000Z

    This attachment expands on the general description of the Nevada National Security Site (NNSS) presented in the Introduction to the Nevada National Security Site Environmental Report 2012 (National Security Technologies, LLC [NSTec], 2013). Included are subsections that summarize the site’s geological, hydrological, climatological, and ecological setting and the cultural resources of the NNSS. The subsections are meant to aid the reader in understanding the complex physical and biological environment of the NNSS. An adequate knowledge of the site’s environment is necessary to assess the environmental impacts of new projects, design and implement environmental monitoring activities for current site operations, and assess the impacts of site operations on the public residing in the vicinity of the NNSS. The NNSS environment contributes to several key features of the site that afford protection to the inhabitants of adjacent areas from potential exposure to radioactivity or other contaminants resulting from NNSS operations. These key features include the general remote location of the NNSS, restricted access, extended wind transport times, the great depths to slow-moving groundwater, little or no surface water, and low population density. This attachment complements the annual summary of monitoring program activities and dose assessments presented in the main body of this report.

  13. 2002 WIPP Environmental Monitoring Plan

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2002-09-30T23:59:59.000Z

    DOE Order 5400.1, General Environmental Protection Program, requires each DOE | facility to prepare an environmental management plan (EMP). This document is | prepared for WIPP in accordance with the guidance contained in DOE Order 5400.1; DOE Order 5400.5, Radiation Protection of the Public and Environment; applicable sections of Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE/EH-0173T; DOE, 1991); and the Title 10 Code of Federal Regulations (CFR) Part 834, ''Radiation Protection of the Public and Environment'' (draft). Many sections of DOE Order 5400.1 have been replaced by DOE Order 231.1, which is the driver for the annual Site Environmental Report (SER) and the guidance source for preparing many environmental program documents. The WIPP Project is operated by Westinghouse TRU Solutions (WTS) for the DOE. This plan defines the extent and scope of WIPP's effluent and environmental | monitoring programs during the facility's operational life and also discusses WIPP's quality assurance/quality control (QA/QC) program as it relates to environmental monitoring. In addition, this plan provides a comprehensive description of environmental activities at WIPP including: A summary of environmental programs, including the status of environmental monitoring activities A description of the WIPP Project and its mission A description of the local environment, including demographics An overview of the methodology used to assess radiological consequences to the public, including brief discussions of potential exposure pathways, routine and accidental releases, and their consequences Responses to the requirements described in the Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance.

  14. SNL/VNIIEF Storage Monitoring Collaboration

    SciTech Connect (OSTI)

    Barkanov, Boris P.; Bartberger, Jack C.; Blagin, Sergei V.; Croessmann, C. Dennis; Gruda, Jeffrey D.; Lupsha, Vitali A.; Moroskin, Dimitri V.; Nilsen, Curt A.

    1999-07-12T23:59:59.000Z

    Sandia National Laboratories (SNL) and the Russian Federal Nuclear Center-All Russian Research Institute for Experimental Physics (VNIIEF)(also know as Arzamas-16) are collaborating on ways to assure the highest standards on safety, security, and international accountability of fissile material. This includes systems used to reduce the need for human access to fissile material, reduce radiation exposure, and provide prompt safety-related information, and provide continuous international accountability information while reducing the need for intrusive, on-site visits. This paper will report on the ongoing SNL/VNIIEF efforts to develop technologies and monitoring systems to meet these goals. Specific topics covered will include: the Smart Bolt tag/seal development, development and testing of electronic sensor platforms (U.S. T-1 ESP and VNIIEF Radio Tag) for monitoring and transportation applications, the ''Magazine-to-Magazine'' remote monitoring system field test, and the ''Facility-to-Facility'' storage monitoring system field trial.

  15. UW School of Oceanography Box 357940 206-543-5062 UW EH&S Radiation Safety Section Box 354400 201 Hall Health Seattle WA 98195-4400 206-543-0463

    E-Print Network [OSTI]

    jeopardize future work on Oceanographic research vessels. Initials Required 9. Radiation Protection ProgramUW School of Oceanography Box 357940 206-543-5062 UW EH&S Radiation Safety Section Box 354400 201-543-5062 UW EH&S Radiation Safety Section Box 354400 201 Hall Health Seattle WA 98195-4400 206

  16. Waste Isolation Pilot Plant Environmental Monitoring Plan

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2004-02-19T23:59:59.000Z

    U.S. Department of Energy (DOE) Order 450.1, Environmental Protection Program, requires each DOE site to conduct environmental monitoring. Environmental monitoring at the Waste Isolation Pilot Plant (WIPP) is conducted in order to: (a) Verify and support compliance with applicable federal, state, and local environmental laws, regulations, permits, and orders; (b) Establish baselines and characterize trends in the physical, chemical, and biological condition of effluent and environmental media; (c) Identify potential environmental problems and evaluate the need for remedial actions or measures to mitigate the problem; (d) Detect, characterize, and report unplanned releases; (e) Evaluate the effectiveness of effluent treatment and control, and pollution abatement programs; and (f) Determine compliance with commitments made in environmental impact statements, environmental assessments, safety analysis reports, or other official DOE documents. This Environmental Monitoring Plan (EMP) has been written to contain the rationale and design criteria for the monitoring program, extent and frequency of monitoring and measurements, procedures for laboratory analyses, quality assurance (QA) requirements, program implementation procedures, and direction for the preparation and disposition of reports. Changes to the environmental monitoring program may be necessary to allow the use of advanced technology and new data collection techniques. This EMP will document any proposed changes in the environmental monitoring program. Guidance for preparation of Environmental Monitoring Plans is contained in DOE/EH-0173T, Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance. The plan will be effective when it is approved by the appropriate Head of Field Organization or their designee. The plan discusses major environmental monitoring and hydrology activities at the WIPP and describes the programs established to ensure that WIPP operations do not have detrimental effects on the environment. This EMP is to be reviewed annually and updated every three years unless otherwise requested by the DOE or contractor.

  17. 2004 SITE ENVIRONMENTAL REPORT

    SciTech Connect (OSTI)

    BROOKHAVEN NATIONAL LABORATORY; SER TEAM; ENVIRONMENTAL INFORMATION MANAGEMENT SERVICES GROUP; ENVIROMENTAL AND WASTE MANAGEMENT SERVICES DIVISION FIELD SAMPLING TEAM; (MANY OTHER CONTRIBUTORS)

    2005-08-22T23:59:59.000Z

    Each year, Brookhaven National Laboratory (BNL) prepares an annual Site Environmental Report (SER) in accordance with DOE Order 231.1A, Environment, Safety and Health Reporting of the U.S. Department of Energy (DOE). The SER is written to inform the public, regulators, Laboratory employees, and other stakeholders of BNL's environmental performance during the calendar year in review. The report summarizes BNL's environmental data; environmental management performance; compliance with applicable DOE, federal, state, and local regulations; and restoration and surveillance monitoring programs. BNL has prepared annual SERs since 1971 and has documented nearly all of its environmental history since the Laboratory's inception in 1947. The SER is intended to be a technical document. It is available in print and as a downloadable file on the BNL web page at http://www.bnl.gov/esd/SER.htm. A summary of the SER is also prepared each year to provide a general overview of the report, and is distributed with a CD version of the full report. The summary supports BNL's educational and community outreach program.

  18. 2007 Site Environmental Report

    SciTech Connect (OSTI)

    Ratel,K.

    2008-10-01T23:59:59.000Z

    Brookhaven National Laboratory (BNL) prepares an annual Site Environmental Report (SER) in accordance with DOE Order 231.1A, Environment, Safety and Health Reporting of the U.S. Department of Energy. The report is written to inform the public, regulators, employees, and other stakeholders of the Laboratory's environmental performance during the calendar year in review. Volume I of the SER summarizes environmental data; environmental management performance; compliance with applicable DOE, federal, state, and local regulations; and performance in restoration and surveillance monitoring programs. BNL has prepared annual SERs since 1971 and has documented nearly all of its environmental history since the Laboratory's inception in 1947. Volume II of the SER, the Groundwater Status Report, also is prepared annually to report on the status of and evaluate the performance of groundwater treatment systems at the Laboratory. Volume II includes detailed technical summaries of groundwater data and its interpretation, and is intended for internal BNL users, regulators, and other technically oriented stakeholders. A brief summary of the information contained in Volume II is included in this volume in Chapter 7, Groundwater Protection. Both reports are available in print and as downloadable files on the BNL web page at http://www.bnl.gov/ewms/ser/. An electronic version on compact disc is distributed with each printed report. In addition, a summary of Volume I is prepared each year to provide a general overview of the report, and is distributed with a compact disc containing the-length report.

  19. Water-Level Monitoring Plan for the Hanford Groundwater Monitoring Project

    SciTech Connect (OSTI)

    D.R. Newcomer; J.P. McDonald; M.A. Chamness

    1999-09-30T23:59:59.000Z

    This document presents the water-level monitoring plan for the Hanford Groundwater Monitoring Project, conducted by the Pacific Northwest National Laboratory (PNNL). Water-level monitoring of the groundwater system beneath the Hanford Site is performed to fulfill the requirements of various state and federal regulations, orders, and agreements. The primary objective of this monitoring is to determine groundwater flow rates and directions. To meet this and other objectives, water-levels are measured annually in monitoring wells completed within the unconfined aquifer system, the upper basalt-confined aquifer system, and in the lower basalt-confined aquifers for surveillance monitoring. At regulated waste units, water levels are taken monthly, quarterly, semi-annually, or annually, depending on the hydrogeologic conditions and regulatory status of a given site. The techniques used to collect water-level data are described in this document along with the factors that affect the quality of the data and the strategies employed by the project to minimize error in the measurement and interpretation of water levels. Well networks are presented for monitoring the unconfined aquifer system, the upper basalt-confined aquifer system, and the lower basalt-confined aquifers, all at a regional scale (surveillance monitoring), as well as the local-scale well networks for each of the regulated waste units studied by this project (regulated-unit monitoring). The criteria used to select wells for water-table monitoring are discussed. It is observed that poor well coverage for surveillance water-table monitoring exists south and west of the 200-West Area, south of the 100-F Area, and east of B Pond and the Treated Effluent Disposal Facility (TEDF). This poor coverage results from a lack of wells suitable for water-table monitoring, and causes uncertainty in representation of the regional water-table in these areas. These deficiencies are regional in scale and apply to regions outside of the operational areas, so these deficiencies do not in anyway reflect on the adequacy of the local-scale well networks used for regulated-unit monitoring. The sediments comprising the unconfined aquifer system have been subdivided into nine hydro-geologic units. The specific hydrogeologic units present within the saturated open interval of each onsite well used for water-level measurements are identified. This was accomplished by geologic interpretation at individual wells combined with extrapolation to nearby wells using a three-dimensional, regional-scale conceptual model of the Hanford Site hydrostratigraphy.

  20. Portal radiation monitor

    DOE Patents [OSTI]

    Kruse, Lyle W. (Albuquerque, NM)

    1985-01-01T23:59:59.000Z

    A portal radiation monitor combines 0.1% FAR with high sensitivity to special nuclear material. The monitor utilizes pulse shape discrimination, dynamic compression of the photomultiplier output and scintillators sized to maintain efficiency over the entire portal area.

  1. APS Building Monitors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Building Monitors For non-401 Building Monitors, select: LOMs Other APS Buildings 401 West WCtr Lab Wing ECtr East 5th Floor Yiying Ge na na na na 4th Floor Rick Fenner Karen...

  2. Corrosion monitoring apparatus

    DOE Patents [OSTI]

    Isaacs, Hugh S. (Shoreham, NY); Weeks, John R. (Stony Brook, NY)

    1980-01-01T23:59:59.000Z

    A corrosion monitoring device in an aqueous system which includes a formed crevice and monitoring the corrosion of the surfaces forming the crevice by the use of an a-c electrical signal.

  3. Quality Assurance Program Plan for radionuclide airborne emissions monitoring

    SciTech Connect (OSTI)

    Vance, L.M.

    1993-07-01T23:59:59.000Z

    This Quality Assurance Program Plan (QAPP) describes the quality assurance requirements and responsibilities for radioactive airborne emissions measurements activities from regulated stacks are controlled at the Hanford Site. Detailed monitoring requirements apply to stacks exceeding 1% of the standard of 10 mrem annual effective dose equivalent to the maximally exposed individual from operations of the Hanford Site.

  4. Hanford Site environmental report for calendar year 1989

    SciTech Connect (OSTI)

    Jaquish, R.E.; Bryce, R.W. (eds.)

    1990-05-01T23:59:59.000Z

    This report is a summary of the environmental status of the Hanford Site in 1989. It includes descriptions of the Site and its mission, the status of compliance with environmental regulations, planning and activities to accomplish compliance, environmental protection and restoration activities, and environmental monitoring. 97 refs., 67 figs., 14 tabs.

  5. Geothermal: Site Map

    Office of Scientific and Technical Information (OSTI)

    Site Map Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search About Publications Advanced Search New Hot Docs News Related Links Site Map...

  6. SITE OFFICE CONSOLIDATION

    Broader source: Energy.gov [DOE]

    Paul Golan, Site Office Manager, SLAC/LBNL, will present on the role of the DOE Site Office. We anticipate that Paul will cover the role of the DOE Site Office, operating model, and vision.

  7. Knolls Atomic Power Laboratory annual environmental monitoring report, calendar year 1997

    SciTech Connect (OSTI)

    NONE

    1997-12-31T23:59:59.000Z

    The results of the effluent and environmental monitoring programs at the three Knolls Atomic Power Laboratory (KAPL) sites are summarized and assessed in this report. The effluent and environmental monitoring programs conducted by KAPL are designed to determine the effectiveness of treatment and control methods, to provide measurement of the concentrations in effluents for comparison with applicable standards, and to assess resultant concentrations in the environment. The monitoring programs include analyses of samples of liquid and gaseous effluents for chemical constituents and radioactivity as well as monitoring of environmental air, water, sediment, and fish. Radiation measurements are also made around the perimeter of each site and at off-site background locations.

  8. Sanitary Landfill 1991 annual groundwater monitoring report

    SciTech Connect (OSTI)

    Thompson, C.Y.; Norrell, G.T.; Bennett, C.B.

    1992-02-01T23:59:59.000Z

    The Savannah River Site (SRS) Sanitary Landfill is an approximately seventy acre site located just south of SRS Road C between the Savannah River Site`s B-Area and Upper Three Runs Creek. Results from the first through third quarter 1991 groundwater monitoring date continue to show evidence of elevated levels of several hazardous constituents beneath the Sanitary Landfill: tritium, vinyl chloride, total radium, cadmium, 1,1,1-trichloroethane, 1,2 dichloroethane, 1,4 dichlorobenzene, trichloroethylene (TCE), tetrachloroethylene, and 1,1 dichloroethylene in excess of the primary drinking water standards were observed in at least one well monitoring the Sanitary Landfill during the third quarter of 1991. All of these constituents, except radium, were observed in the lower half of the original thirty-two acre site or the southern expansion site. Trichloroethylene and vinyl chloride are the primary organic contaminants in groundwater beneath the Sanitary Landfill. Vinyl chloride has become the primary contaminant during 1991. Elevated levels of benzene were consistently detected in LFW 7 in the past, but were not present in any LFW wells during the third quarter of 1991. A minor tritium plume is present in the central part of original thirty-two acre landfill. Elevated levels of tritium above the PDWS were consistently present in LFW 10A through 1991. This well has exhibited elevated tritium activities since the second quarter of 1989. Contaminant concentrations in the Sanitary Landfill are presented and discussed in this report.

  9. Nevada National Security Site Environmental Report 2010, Attachment A: Site Description

    SciTech Connect (OSTI)

    C. Wills, ed.

    2011-09-13T23:59:59.000Z

    Introduction to the Nevada National Security Site Environmental Report 2010. Included are subsections that summarize the site’s geological, hydrological, climatological, and ecological setting and the cultural resources of the NNSS. The subsections are meant to aid the reader in understanding the complex physical and biological environment of the NNSS. An adequate knowledge of the site’s environment is necessary to assess the environmental impacts of new projects, design and implement environmental monitoring activities for current site operations, and assess the impacts of site operations on the public residing in the vicinity of the NNSS. The NNSS environment contributes to several key features of the site that afford protection to the inhabitants of adjacent areas from potential exposure to radioactivity or other contaminants resulting from NNSS operations. These key features include the general remote location of the NNSS, restricted access, extended wind transport times, the great depths to slow-moving groundwater, little or no surface water, and low population density. This attachment complements the annual summary of monitoring program activities and dose assessments presented in the main body of this report.

  10. Establishment of a Background Environmental Monitoring Station for the PNNL Campus

    SciTech Connect (OSTI)

    Fritz, Brad G.; Snyder, Sandra F.; Barnett, J. M.; Bisping, Lynn E.; Rishel, Jeremy P.

    2014-12-18T23:59:59.000Z

    The environmental surveillance of background levels of radionuclides and, in particular, the siting of a background environmental surveillance (monitoring) station are examined. Many published works identify and stress the need for background monitoring; however, little definitive and comprehensive information for siting a station exists. A definition of an ideal background monitoring location and the generic criteria recommended for use in establishing such a background monitoring location are proposed. There are seven primary (mandatory) criteria described with two additional, optional criteria. The criteria are applied to the Richland, Washington (WA), Pacific Northwest National Laboratory (PNNL) Campus, which currently uses background monitoring data from the nearby Hanford Site. Eleven potential background monitoring sites were identified, with one location in Benton City, WA found to meet all of the mandatory and optional criteria. It is expected that the new sampler will be installed and operating by the end of June, 2015.

  11. 2011 Radiological Monitoring Results Associated with the Advanced Test Reactor Complex Cold Waste Pond

    SciTech Connect (OSTI)

    Mike Lewis

    2012-02-01T23:59:59.000Z

    This report summarizes radiological monitoring performed of the Idaho National Laboratory Site's Advanced Test Reactor Complex Cold Waste wastewater prior to discharge into the Cold Waste Pond and of specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit (LA-000161-01, Modification B). All radiological monitoring is performed to fulfill Department of Energy requirements under the Atomic Energy Act.

  12. Hanford Site Development Plan

    SciTech Connect (OSTI)

    Rinne, C.A.; Curry, R.H.; Hagan, J.W.; Seiler, S.W.; Sommer, D.J. (Westinghouse Hanford Co., Richland, WA (USA)); Yancey, E.F. (Pacific Northwest Lab., Richland, WA (USA))

    1990-01-01T23:59:59.000Z

    The Hanford Site Development Plan (Site Development Plan) is intended to guide the short- and long-range development and use of the Hanford Site. All acquisition, development, and permanent facility use at the Hanford Site will conform to the approved plan. The Site Development Plan also serves as the base document for all subsequent studies that involve use of facilities at the Site. This revision is an update of a previous plan. The executive summary presents the highlights of the five major topics covered in the Site Development Plan: general site information, existing conditions, planning analysis, Master Plan, and Five-Year Plan. 56 refs., 67 figs., 31 tabs.

  13. Seismic Imaging and Monitoring

    SciTech Connect (OSTI)

    Huang, Lianjie [Los Alamos National Laboratory

    2012-07-09T23:59:59.000Z

    I give an overview of LANL's capability in seismic imaging and monitoring. I present some seismic imaging and monitoring results, including imaging of complex structures, subsalt imaging of Gulf of Mexico, fault/fracture zone imaging for geothermal exploration at the Jemez pueblo, time-lapse imaging of a walkway vertical seismic profiling data for monitoring CO{sub 2} inject at SACROC, and microseismic event locations for monitoring CO{sub 2} injection at Aneth. These examples demonstrate LANL's high-resolution and high-fidelity seismic imaging and monitoring capabilities.

  14. ENVIRONMENTAL MONITORING AND ASSESSMENT PROGRAM AT POTENTIAL OTEC SITES

    E-Print Network [OSTI]

    Wilde, P.

    2010-01-01T23:59:59.000Z

    existing literature to characterize air/water emissions expected to be encountered in the production of chemicals at OTEC plants; develop applicable control technologies

  15. air monitoring sites: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A. Reguera 2001-04-20 178 Applications of AirMaster+ in Real Industrial Facilities Texas A&M University - TxSpace Summary: poor overall efficiencies. Given this...

  16. ENVIRONMENTAL MONITORING AND ASSESSMENT PROGRAM AT POTENTIAL OTEC SITES

    E-Print Network [OSTI]

    Wilde, P.

    2010-01-01T23:59:59.000Z

    Environmental assessment Ocean Thermal Energy Conversion (the 6th Annual Ocean Thermal Energy Conversion Conference,of projected Ocean Thermal Energy Conversion (OTEC) plants

  17. ENVIRONMENTAL MONITORING AND ASSESSMENT PROGRAM AT POTENTIAL OTEC SITES

    E-Print Network [OSTI]

    Wilde, P.

    2010-01-01T23:59:59.000Z

    Power/water from platform but with backup systems RFP late FY 80 Operations Van (sensor packages on buoy)

  18. Database for Landscape-Scale Carbon Monitoring Sites

    E-Print Network [OSTI]

    is an assistant professor of biology and natural resources at Northland College Ashland, WI 54806. KENNETH L

  19. ENVIRONMENTAL MONITORING AND ASSESSMENT PROGRAM AT POTENTIAL OTEC SITES

    E-Print Network [OSTI]

    Wilde, P.

    2010-01-01T23:59:59.000Z

    assessment Ocean Thermal Energy Conversion (OTEC) programthe 6th Annual Ocean Thermal Energy Conversion Conference,of projected Ocean Thermal Energy Conversion (OTEC) plants

  20. Improved robustness and efficiency for automatic visual site monitoring

    E-Print Network [OSTI]

    Dalley, Gerald Edwin

    2009-01-01T23:59:59.000Z

    Knowing who people are, where they are, what they are doing, and how they interact with other people and things is valuable from commercial, security, and space utilization perspectives. Video sensors backed by computer ...

  1. Water Monitoring Flume Replaced at the Rocky Flats, Colorado, Site |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradley Nickell Director ofDepartmentDRAFTEnergyDepartment of

  2. ENVIRONMENTAL MONITORING AND ASSESSMENT PROGRAM AT POTENTIAL OTEC SITES

    E-Print Network [OSTI]

    Wilde, P.

    2010-01-01T23:59:59.000Z

    Environmental assessment Ocean Thermal Energy Conversion (Plan (EDP) 1978. Ocean Thermal Energy Conversion. U.S. Dept.the 6th Annual Ocean Thermal Energy Conversion Conference,

  3. ENVIRONMENTAL MONITORING AND ASSESSMENT PROGRAM AT POTENTIAL OTEC SITES

    E-Print Network [OSTI]

    Wilde, P.

    2010-01-01T23:59:59.000Z

    leaks during OTEC operations -Survey existing literature tosurvey of international law of the sea applicable to OTEC operations;operations -Conduct laboratory tests to determine the effects of varying levels of biocide use on marine ecosystems -Survey

  4. HYDROGEOLOGIC MONITORING AT TIlE FAULTLESS' SITE,

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7111AWell:F E ," POSTGranite City,' : H.

  5. Radiation Exposure Monitoring Systems - Other Related Sites | Department of

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR - TProcuring SolarNo.Frequency | DepartmentOE-3:Energy

  6. Remote Gas Well Monitoring Technology Applied to Marcellus Shale Site |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015 < prevQuick Guide:U.N.JuneAsPipeline FirstLuncheon

  7. Remote Gas Well Monitoring Technology Applied to Marcellus Shale Site |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18,new2004_v1.3_5.0.zipFlorida4Visitors ChapterRequirements

  8. Facility effluent monitoring plan for the tank farm facility

    SciTech Connect (OSTI)

    Crummel, G.M.

    1998-05-18T23:59:59.000Z

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements.

  9. Hanford Site Environmental Report for calendar year 1992

    SciTech Connect (OSTI)

    Woodruff, R.K.; Hanf, R.W.; Lundgren, R.E. [eds.

    1993-06-01T23:59:59.000Z

    This report is prepared annually to summarize environmental data and information, describe environmental management performance, and demonstrate the status of compliance with environmental regulations at the Hanford Site. The following sections: describe the Hanford Site and its mission; summarize the status in 1992 of compliance with environmental regulations; describe the environmental programs at the Hanford Site; discuss public dose estimates from 1992 Hanford activities; present information on effluent monitoring and environmental surveillance, including ground-water protection and monitoring, and discuss activities to ensure quality.

  10. Hanford Site environmental surveillance data report for calendar year 1996

    SciTech Connect (OSTI)

    Bisping, L.E.

    1997-09-01T23:59:59.000Z

    Environmental surveillance at the Hanford Site collects data that provides a historical record of radionuclide and radiation levels attributable to natural causes, worldwide fallout, and Hanford operations. Data are also collected to monitor several chemicals and metals in Columbia River water and sediment. In addition, Hanford Site wildlife samples were also collected for metals analysis. Pacific Northwest National Laboratory publishes an annual environmental report for the Hanford Site each calendar year. The Hanford Site Environmental Report for Calendar Year 1996 describes the site mission and activities, general environmental features, radiological and chemical releases from operations, status of compliance with environmental regulations, status of programs to accomplish compliance, and environmental monitoring activities and results. The report includes a summary of offsite and onsite environmental monitoring data collected during 1996 by PNNL`s Environmental Monitoring Program. Appendix A of that report contains data summaries created from river monitoring and sediment data. This volume contains the actual raw data used to create the summaries. The data volume also includes Hanford Site drinking water radiological data.

  11. Yucca Mountain biological resources monitoring program; Annual report FY92

    SciTech Connect (OSTI)

    NONE

    1993-02-01T23:59:59.000Z

    The US Department of Energy (DOE) is required by the Nuclear Waste Policy Act of 1982 (as amended in 1987) to study and characterize Yucca Mountain as a potential site for a geologic repository for high-level nuclear waste. During site characterization, the DOE will conduct a variety of geotechnical, geochemical, geological, and hydrological studies to determine the suitability of Yucca Mountain as a potential repository. To ensure that site characterization activities (SCA) do not adversely affect the environment at Yucca Mountain, an environmental program has been implemented to monitor and mitigate potential impacts and ensure activities comply with applicable environmental regulations. This report describes the activities and accomplishments of EG&G Energy Measurements, Inc. (EG&G/EM) during fiscal year 1992 (FY92) for six program areas within the Terrestrial Ecosystem component of the YMP environmental program. The six program areas are Site Characterization Effects, Desert Tortoises, Habitat Reclamation, Monitoring and Mitigation, Radiological Monitoring, and Biological Support.

  12. Yucca Mountain Biological Resources Monitoring Program; Annual report, FY91

    SciTech Connect (OSTI)

    NONE

    1992-01-01T23:59:59.000Z

    The US Department of Energy (DOE) is required by the Nuclear Waste Policy Act of 1982 (as amended in 1987) to study and characterize Yucca Mountain as a possible site for a geologic repository for high-level nuclear waste. During site characterization, the DOE will conduct a variety of geotechnical, geochemical, geological, and hydrological studies to determine the suitability of Yucca Mountain as a repository. To ensure that site characterization activities (SCA) do not adversely affect the Yucca Mountain area, an environmental program has been implemented to monitor and mitigate potential impacts and to ensure that activities comply with applicable environmental regulations. This report describes the activities and accomplishments during fiscal year 1991 (FY91) for six program areas within the Terrestrial Ecosystem component of the YMP environmental program. The six program areas are Site Characterization Activities Effects, Desert Tortoises, Habitat Reclamation, Monitoring and Mitigation, Radiological Monitoring, and Biological Support.

  13. Routine environmental monitoring schedule, calendar year 1998

    SciTech Connect (OSTI)

    McKinney, S.M.

    1997-11-24T23:59:59.000Z

    This document provides the Environmental Restorations Contractor (ERC) and the Project Hanford Management Contractor (PHMC) a schedule in accordance with the HNF-PRO-454, Inactive Waste Sites` HNF-PRO-455, Solid Waste 3 Management4 and BHI-EE-02, Environmental Requirements, of monitoring and sampling, routines for the near-facility environmental monitoring program during calendar year (CY) 1998. Every attempt will be made to consistently follow this schedule; any deviation from this schedule will be documented by an internal memorandum (DSI) explaining the reason for the deviation. The DSI will be issued by the scheduled performing organization and directed to Environmental Monitoring and Investigations. The survey frequencies for particular sites are determined by the technical judgment of Environmental Monitoring and investigations and may depend on the site history, radiological status, use, and general conditions. Additional surveys may be requested at irregular frequencies if conditions warrant. All radioactive wastes sites are scheduled to be surveyed at least annually. Any newly discovered wastes sites not documented by this schedule will be included in the revised schedule for CY 1999. The outside perimeter road surveys of 200 East and West Area and the rail survey from the 300 Area to Columbia Center will be performed in the year 2000 per agreement with Department of Energy, Richland Field Office. This schedule does not discuss staffing needs, nor does it list the monitoring equipment to be used in completing specific routines. Personnel performing routines to meet this schedule shall communicate any need for 1332 assistance in completing these routines to Radiological Control management and Environmental Monitoring and Investigations. After each routine survey is completed, a copy of the survey record, maps, and data sheets will be forwarded to Environmental Monitoring and Investigations. These routine surveys will not be considered complete until this documentation is received. At the end of each month, the ERC and PHMC radiological control organizations shall forward a copy of the Routine Signoff Sheet and a DSI validating the completion of the scheduled routine surveys for that month.

  14. Environmental Monitoring Plan

    SciTech Connect (OSTI)

    Holland, R.C. [Science Applications International Corp., San Diego, CA (United States)

    1993-07-01T23:59:59.000Z

    This Environmental Monitoring Plan was written to fulfill the requirements of Department of Energy (DOE) Order 5400.1 and DOE Environmental Regulatory Guide DOE/EH 0173T. This Plan documents the background, organizational structure, and methods used for effluent monitoring and environmental surveillance at Sandia National Laboratories/California. The design, rationale, and historical results of the environmental monitoring system are discussed in detail. Throughout the Plan, recommendations for improvements to the monitoring system are made. This revision to the Environmental Monitoring Plan was written to document the changes made to the Monitoring Program during 1992. Some of the data (most notably the statistical analyses of past monitoring data) has not been changed.

  15. Lawrence Berkeley National Laboratory 1995 site environmental report

    SciTech Connect (OSTI)

    Balgobin, D.; Javandel, I.; Lackner, G.; Smith, C.; Thorson, P.; Tran, H.

    1996-07-01T23:59:59.000Z

    The 1995 Site Environmental Report summarizes environmental activities at the Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) for the 1995 calendar year. The report strives to present environmental data in a manner that characterizes the performance and compliance status of the environmental management programs. The report also discusses significant highlights and plans of these programs. Topics discussed include: environmental monitoring, environmental compliance programs, air quality, water quality, ground water protection, sanitary sewer monitoring, soil and sediment quality, vegetation and foodstuffs monitoring, and special studies which include preoperational monitoring of building 85 and 1995 sampling results, radiological dose assessment, and quality assessment.

  16. Savannah River site environmental report for 1996

    SciTech Connect (OSTI)

    Arnett, M.; Mamatey, A. [eds.

    1998-12-31T23:59:59.000Z

    The mission at the Savannah River Site (SRS) has changed from the production of nuclear weapons materials for national defense to the management of site-generated waste, restoration of the surrounding environment, and the development of industry in and around the site. However, SRS-through its prime operating contractor, Westinghouse Savannah River Company (WSRC)-continues to maintain a comprehensive environmental monitoring program. In 1996, effluent monitoring and environmental surveillance were conducted within a 31,000-square-mile area in and around SRS that includes neighboring cities, towns, and counties in Georgia and South Carolina and extends up to 100 miles from the site. Though the environmental monitoring program was streamlined in 1996-to improve its cost-effectiveness without compromising data quality or reducing its overall ability to produce critical information-thousands of samples of air, surface water, groundwater, food products, drinking water, wildlife, rainwater, soil, sediment, and vegetation were collected and analyzed for radioactive and nonradioactive contaminants.

  17. Sandia Energy - Structural Health Monitoring

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structural Health Monitoring Home Stationary Power Energy Conversion Efficiency Wind Energy Materials, Reliability, & Standards Structural Health Monitoring Structural Health...

  18. Site Environmental Report for 2007 Volume I

    SciTech Connect (OSTI)

    Lackner, Regina E.; Baskin, David; Fox, Robert; Jelinski, John; Pauer, Ron; Thorson, Patrick; Wahl, Linnea

    2008-09-15T23:59:59.000Z

    The Site Environmental Report is an integrated report on Berkeley Lab's environmental programs to satisfy the requirements of DOE Order 231.1A, Environment, Safety, and Health Reporting. It summarizes Berkeley Lab's environmental management performance, presents environmental monitoring results, and describes significant programs for calendar year 2007. Volume I is organized into an executive summary followed by six chapters that contain an overview of the Laboratory, a discussion of the Laboratory's environmental management system, the status of environmental programs, and summarized results from surveillance and monitoring activities.

  19. Savannah River Site environmental report for 1991

    SciTech Connect (OSTI)

    Arnett, M.W.; Karapatakis, L.K.; Mamatey, A.R.; Todd, J.L.

    1991-01-01T23:59:59.000Z

    This report describes environmental activities conducted on and in the vicinity of the Savannah River Site (SRS) in Aiken, S.C., from Jan. 1 to Dec. 31, 1991, with an update on compliance activities through April 1, 1992. The report is a single volume with a separate summary pamphlet highlighting the major findings for 1991. The report is divided into an executive summary and 14 chapters containing information on environmental compliance issues, environmental monitoring methods and programs, and environmental research activities for 1991, as well as historical data from previous years. Analytical results, figures, charts, and data tables relevant to the environmental monitoring program for 1991 at SRS are included.

  20. Knolls Atomic Power Laboratory environmental monitoring report, calendar year 1996

    SciTech Connect (OSTI)

    NONE

    1996-12-31T23:59:59.000Z

    The results of the effluent and environmental monitoring programs at the three Knolls Atomic Power Laboratory (KAPL) sites are summarized and assessed in this report. The principal function at KAPL sites (Knolls, Kesselring, and Windsor) is research and development in the design and operation of Naval nuclear propulsion plants. The Kesselring Site is also used for the training of personnel in the operation of these plants. The Naval nuclear propulsion plant at the Windsor Site is currently being dismantled. Operations at the three KAPL sites resulted in no significant release of hazardous substances or radioactivity to the environment. The effluent and environmental monitoring programs conducted by KAPL are designed to determine the effectiveness of treatment and control methods, to provide measurement of the concentrations in effluents for comparison with applicable standards, and to assess resultant concentrations in the environment. The monitoring programs include analyses of samples of liquid and gaseous effluents for chemical constituents and radioactivity as well as monitoring of environmental air, water, sediment, and fish. Radiation measurements are also made around the perimeter of each site and at off-site background locations.