National Library of Energy BETA

Sample records for ocean thermal gradients

  1. Ocean Thermal Energy Conversion: Potential Environmental Impacts and Fisheries

    E-Print Network [OSTI]

    Hawai'i at Manoa, University of

    Ocean Thermal Energy Conversion: Potential Environmental Impacts and Fisheries Christina M Comfort Institute #12;Ocean Thermal Energy Conversion (OTEC) · Renewable energy ­ ocean thermal gradient · Large will unavoidably affect pelagic fish... ­ Noise and water pollution ­ FAD effects ­ Entrainment and Impingement

  2. Ocean Thermal Energy Conversion Basics

    Broader source: Energy.gov [DOE]

    A process called ocean thermal energy conversion (OTEC) uses the heat energy stored in the Earth's oceans to generate electricity.

  3. Ocean Thermal Extractable Energy Visualization: Final Technical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ocean Thermal Extractable Energy Visualization: Final Technical Report Ocean Thermal Extractable Energy Visualization: Final Technical Report Report about the Ocean Thermal...

  4. Ocean Thermal Extractable Energy Visualization

    SciTech Connect (OSTI)

    Ascari, Matthew

    2012-10-28

    The Ocean Thermal Extractable Energy Visualization (OTEEV) project focuses on assessing the Maximum Practicably Extractable Energy (MPEE) from the world’s ocean thermal resources. MPEE is defined as being sustainable and technically feasible, given today’s state-of-the-art ocean energy technology. Under this project the OTEEV team developed a comprehensive Geospatial Information System (GIS) dataset and software tool, and used the tool to provide a meaningful assessment of MPEE from the global and domestic U.S. ocean thermal resources.

  5. Thermal Gradient Holes At Northern Basin & Range Region (Pritchett...

    Open Energy Info (EERE)

    Thermal Gradient Holes At Northern Basin & Range Region (Pritchett, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes...

  6. Thermal Gradient Holes At Blue Mountain Geothermal Area (Fairbank...

    Open Energy Info (EERE)

    Thermal Gradient Holes At Blue Mountain Geothermal Area (Fairbank & Ross, 1999) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient...

  7. Thermal Gradient Holes At Central Nevada Seismic Zone Region...

    Open Energy Info (EERE)

    Thermal Gradient Holes At Central Nevada Seismic Zone Region (Pritchett, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient...

  8. OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS

    E-Print Network [OSTI]

    Sands, M. D.

    2011-01-01

    310, the Ocean the Ocean Energy Thermal Energy Conversionfor the commercialization of ocean thermal energy conversionOpen cycle ocean thermal energy conversion. A preliminary

  9. Ocean thermal energy conversion plants : experimental and analytical study of mixing and recirculation

    E-Print Network [OSTI]

    Jirka, Gerhard H.

    Ocean thermal energy conversion (OTEC) is a method of generating power using the vertical temperature gradient of the tropical ocean as an energy source. Experimental and analytical studies have been carried out to determine ...

  10. Thermal Gradient Holes At North Brawley Geothermal Area (Matlick...

    Open Energy Info (EERE)

    gradient wells and Grace Geothermal Corporation drilled 13. Unocal's wells were 76 m deep and Grace Geothermal's were 152 m deep. The thermal gradient wells revealed an anomaly...

  11. OCEAN THERMAL ENERGY CONVERSION: AN OVERALL ENVIRONMENTAL ASSESSMENT

    E-Print Network [OSTI]

    Sands, M.Dale

    2013-01-01

    M.D. (editor). 1980. Ocean Thermal Energy Conversion Draft1980 :. i l OCEAN THERMAL ENERGY CONVERSION: ENVIRONMENTALDevelopment Plan. Ocean Thermal Energy Conversion. U.S. DOE

  12. DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS

    E-Print Network [OSTI]

    Sullivan, S.M.

    2014-01-01

    1979. Commercial ocean thermal energy conversion ( OTEC)field of ocean thermal energy conversion discharges. I~. L.II of the Sixth Ocean Thermal Energy conversion Conference.

  13. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS

    E-Print Network [OSTI]

    Sullivan, S.M.

    2014-01-01

    1979. Commercial ocean thermal energy conversion (OTEC)of the Fifth Ocean Thermal Energy Conversion Conference,Sands. 1980. Ocean thermal energy conversion (OTEC) pilot

  14. Thermal Gradient Holes At Breitenbush Hot Springs Area (Ingebritsen...

    Open Energy Info (EERE)

    Thermal Gradient Holes At Breitenbush Hot Springs Area (Ingebritsen, Et Al., 1993) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal...

  15. Thermal Gradient Holes At Neal Hot Springs Geothermal Area (U...

    Open Energy Info (EERE)

    Thermal Gradient Holes At Neal Hot Springs Geothermal Area (U.S. Geothermal Inc., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal...

  16. Thermal Gradient Holes At Lightning Dock Geothermal Area (Cunniff...

    Open Energy Info (EERE)

    Thermal Gradient Holes At Lightning Dock Geothermal Area (Cunniff & Bowers, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal...

  17. Thermal Gradient Holes At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Thermal Gradient Holes At Long Valley Caldera Geothermal Area (Sorey, Et Al., 1978) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal...

  18. Thermal Gradient Holes At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Thermal Gradient Holes At Long Valley Caldera Geothermal Area (Conservation, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal...

  19. Thermal Gradient Holes At Blue Mountain Geothermal Area (Fairbank...

    Open Energy Info (EERE)

    Thermal Gradient Holes At Blue Mountain Geothermal Area (Fairbank & Niggemann, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal...

  20. Thermal Gradient Holes At North Brawley Geothermal Area (Edmunds...

    Open Energy Info (EERE)

    of the North Brawley, Heber, East Mesa, and Salton Sea Geothermal Areas. Notes Well logs, thermal gradient data, and magnetic data were correlated to form a better geologic...

  1. Thermal Gradient Holes At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Area (Farrar, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Thermal Gradient Holes Activity Date 1998 - 2002...

  2. Thermal Gradient Holes At Waunita Hot Springs Geothermal Area...

    Open Energy Info (EERE)

    regional heat flux around the hot springs and potentially identify the location of the geothermal reservoir feeding the hot springs Notes Eight thermal gradient boreholes were...

  3. Thermal Gradient Holes At Walker-Lane Transitional Zone Region...

    Open Energy Info (EERE)

    Zone Region (Pritchett, 2004) Exploration Activity Details Location Walker-Lane Transition Zone Geothermal Region Exploration Technique Thermal Gradient Holes Activity Date...

  4. Molecular Rotation and Polarization under Thermal Gradients

    E-Print Network [OSTI]

    Alpha A Lee

    2015-10-21

    Recent molecular dynamics simulations show that a thermal gradient induces an electric field in water that is comparable to that seen in ionic thin films and biomembranes. This counterintuitive phenomena of thermo-orientation is also observed more generally in simulations of polar and non-polar size-assymetric dumbbell fluids. However, a microscopic theory for this novel non-equilibrium phenomenon is yet unknown. We develop a microscopic theory of thermo-orientation using a mean-field, local equilibrium approach. Our theory reveals analytically how thermo-orientation depends on the molecular volume, size anisotropy, and dipole moment. Predictions of the theory agree quantitatively with molecular dynamics simulations. Crucially, our framework shows how thermo-orientation can be controlled and maximised by tuning microscopic molecular properties.

  5. Molecular Rotation and Polarization under Thermal Gradients

    E-Print Network [OSTI]

    Lee, Alpha A

    2015-01-01

    Recent molecular dynamics simulations show that a thermal gradient induces an electric field in water that is comparable to that seen in ionic thin films and biomembranes. This counterintuitive phenomena of thermo-orientation is also observed more generally in simulations of polar and non-polar size-assymetric dumbbell fluids. However, a microscopic theory for this novel non-equilibrium phenomenon is yet unknown. We develop a microscopic theory of thermo-orientation using a mean-field, local equilibrium approach. Our theory reveals analytically how thermo-orientation depends on the molecular volume, size anisotropy, and dipole moment. Predictions of the theory agree quantitatively with molecular dynamics simulations. Crucially, our framework shows how thermo-orientation can be controlled and maximised by tuning microscopic molecular properties.

  6. Pumpernickel Valley Geothermal Project Thermal Gradient Wells

    SciTech Connect (OSTI)

    Z. Adam Szybinski

    2006-01-01

    The Pumpernickel Valley geothermal project area is located near the eastern edge of the Sonoma Range and is positioned within the structurally complex Winnemucca fold and thrust belt of north-central Nevada. A series of approximately north-northeast-striking faults related to the Basin and Range tectonics are superimposed on the earlier structures within the project area, and are responsible for the final overall geometry and distribution of the pre-existing structural features on the property. Two of these faults, the Pumpernickel Valley fault and Edna Mountain fault, are range-bounding and display numerous characteristics typical of strike-slip fault systems. These characteristics, when combined with geophysical data from Shore (2005), indicate the presence of a pull-apart basin, formed within the releasing bend of the Pumpernickel Valley – Edna Mountain fault system. A substantial body of evidence exists, in the form of available geothermal, geological and geophysical information, to suggest that the property and the pull-apart basin host a structurally controlled, extensive geothermal field. The most evident manifestations of the geothermal activity in the valley are two areas with hot springs, seepages, and wet ground/vegetation anomalies near the Pumpernickel Valley fault, which indicate that the fault focuses the fluid up-flow. There has not been any geothermal production from the Pumpernickel Valley area, but it was the focus of a limited exploration effort by Magma Power Company. In 1974, the company drilled one exploration/temperature gradient borehole east of the Pumpernickel Valley fault and recorded a thermal gradient of 160oC/km. The 1982 temperature data from five unrelated mineral exploration holes to the north of the Magma well indicated geothermal gradients in a range from 66 to 249oC/km for wells west of the fault, and ~283oC/km in a well next to the fault. In 2005, Nevada Geothermal Power Company drilled four geothermal gradient wells, PVTG-1, -2, -3, and -4, and all four encountered geothermal fluids. The holes provided valuable water geochemistry, supporting the geothermometry results obtained from the hot springs and Magma well. The temperature data gathered from all the wells clearly indicates the presence of a major plume of thermal water centered on the Pumpernickel Valley fault, and suggests that the main plume is controlled, at least in part, by flow from this fault system. The temperature data also defines the geothermal resource with gradients >100oC/km, which covers an area a minimum of 8 km2. Structural blocks, down dropped with respect to the Pumpernickel Valley fault, may define an immediate reservoir. The geothermal system almost certainly continues beyond the recently drilled holes and might be open to the east and south, whereas the heat source responsible for the temperatures associated with this plume has not been intersected and must be at a depth greater than 920 meters (depth of the deepest well – Magma well). The geological and structural setting and other characteristics of the Pumpernickel Valley geothermal project area are markedly similar to the portions of the nearby Dixie Valley geothermal field. These similarities include, among others, the numerous, unexposed en echelon faults and large-scale pull-apart structure, which in Dixie Valley may host part of the geothermal field. The Pumpernickel Valley project area, for the majority of which Nevada Geothermal Power Company has geothermal rights, represents a geothermal site with a potential for the discovery of a relatively high temperature reservoir suitable for electric power production. Among locations not previously identified as having high geothermal potential, Pumpernickel Valley has been ranked as one of four sites with the highest potential for electrical power production in Nevada (Shevenell and Garside, 2003). Richards and Blackwell (2002) estimated the total heat loss and the preliminary production capacity for the entire Pumpernickel Valley geothermal system to be at 35MW. A more conservative estimate, for

  7. Ocean Thermal Energy Conversion Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ocean Thermal Energy Conversion Basics Ocean Thermal Energy Conversion Basics August 16, 2013 - 4:22pm Addthis A process called ocean thermal energy conversion (OTEC) uses the heat...

  8. Assessment of ocean thermal energy conversion

    E-Print Network [OSTI]

    Muralidharan, Shylesh

    2012-01-01

    Ocean thermal energy conversion (OTEC) is a promising renewable energy technology to generate electricity and has other applications such as production of freshwater, seawater air-conditioning, marine culture and chilled-soil ...

  9. Thermal Gradient Holes At Salt Wells Area (Bureau of Land Management...

    Open Energy Info (EERE)

    Thermal Gradient Holes At Salt Wells Area (Bureau of Land Management, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient...

  10. A PRELIMINARY EVALUATION OF IMPINGEMENT AND ENTRAINMENT BY OCEAN THERMAL ENERGY CONVERSION (OTEC) PLANTS

    E-Print Network [OSTI]

    Sullivan, S.M.

    2013-01-01

    nental Assessment, Ocean Thermal Energy Conversion (OTEC)Impact Assessment Ocean Thermal Energy Conversion (OTEC),Intake Screens for Ocean Thermal Energy M.S. Thesis. Oregon

  11. Ocean Thermal Energy Conversion LUIS A. VEGA

    E-Print Network [OSTI]

    demand due to emerging economies like China, India, and Brazil. Coal and natural gas resources 7296 OOcean Thermal Energy Conversion LUIS A. VEGA Hawaii Natural Energy Institute, School of Ocean the OTEC plant. The difference between gross power and in-plant power consumption needed to run all sweater

  12. Open cycle ocean thermal energy conversion system

    DOE Patents [OSTI]

    Wittig, J. Michael (West Goshen, PA)

    1980-01-01

    An improved open cycle ocean thermal energy conversion system including a flash evaporator for vaporizing relatively warm ocean surface water and an axial flow, elastic fluid turbine having a vertical shaft and axis of rotation. The warm ocean water is transmitted to the evaporator through a first prestressed concrete skirt-conduit structure circumferentially situated about the axis of rotation. The unflashed warm ocean water exits the evaporator through a second prestressed concrete skirt-conduit structure located circumferentially about and radially within the first skirt-conduit structure. The radially inner surface of the second skirt conduit structure constitutes a cylinder which functions as the turbine's outer casing and obviates the need for a conventional outer housing. The turbine includes a radially enlarged disc element attached to the shaft for supporting at least one axial row of radially directed blades through which the steam is expanded. A prestressed concrete inner casing structure of the turbine has upstream and downstream portions respectively situated upstream and downstream from the disc element. The radially outer surfaces of the inner casing portions and radially outer periphery of the axially interposed disc cooperatively form a downwardly radially inwardly tapered surface. An annular steam flowpath of increasing flow area in the downward axial direction is radially bounded by the inner and outer prestressed concrete casing structures. The inner casing portions each include a transversely situated prestressed concrete circular wall for rotatably supporting the turbine shaft and associated structure. The turbine blades are substantially radially coextensive with the steam flowpath and receive steam from the evaporator through an annular array of prestressed concrete stationary vanes which extend between the inner and outer casings to provide structural support therefor and impart a desired flow direction to the steam.

  13. Category:Thermal Gradient Holes | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County,Camilla,Thermal Gradient Holes Jump to: navigation, search

  14. OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC ENVIRONMENTAL ASSESSMENT

    SciTech Connect (OSTI)

    Sands, M.Dale

    1980-08-01

    Significant achievements in Ocean Thermal Energy Conversion (OTEC) technology have increased the probability of producing OTEC-derived power in this decade with subsequent large-scale commercialization to follow by the turn of the century. Under U.S. Department of Energy funding, Interstate Electronics has prepared an OTEC Programmatic Environmental Assessment (EA) that considers tne development, demonstration, and commercialization of OTEC power systems. The EA considers several tecnnological designs (open cycle and closed cycle), plant configurations (land-based, moored, and plantship), and power usages (baseload electricity and production of ammonia and aluminum). Potencial environmental impacts, health and safety issues, and a status update of international, federal, and state plans and policies, as they may influence OTEC deployments, are included.

  15. Thermal Gradient Holes At Upper Hot Creek Ranch Area (Benoit...

    Open Energy Info (EERE)

    gradient holes up to 500' deep were initially planned but higher than anticipated drilling and permitting costs within a fixed budget reduced the number of holes to five....

  16. Pararell Electron temperature and Density Gradients measured in the JET Mk I Divertor using Thermal Helium Beams

    E-Print Network [OSTI]

    Pararell Electron temperature and Density Gradients measured in the JET Mk I Divertor using Thermal Helium Beams

  17. ENERGY SCAVENGING BASED ON TRANSIENT THERMAL GRADIENTS: APPLICATION TO STRUCTURAL HEALTH MONITORING OF AIRCRAFTS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ENERGY SCAVENGING BASED ON TRANSIENT THERMAL GRADIENTS: APPLICATION TO STRUCTURAL HEALTH MONITORING health monitoring 1. INTRODUCTION Aircraft in-service structural health monitoring (SHM) by wireless be considered in the context of aircraft structural health monitoring, we will restrict ourselves

  18. August 2011 Environmental Assessment of Ocean Thermal Energy

    E-Print Network [OSTI]

    August 2011 1 Environmental Assessment of Ocean Thermal Energy Conversion in Hawaii Available data and a protocol for baseline monitoring Christina M. Comfort and Luis Vega, Ph.D. Hawaii National Marine Renewable Energy Center Hawaii Natural Energy Institute University of Hawaii at Manoa Honolulu, HI ccomfort

  19. Ocean Thermal Energy Conversion Mostly about USA

    E-Print Network [OSTI]

    to all US Island Territories. #12;OTEC 11 Other Applications: AC Cold deep water as the chiller fluid ? #12;Thermal Resource Temperature Difference between Surface Water and 1,000 m Water (want > 20 °C: Truisms · OTEC plants could supply all the electricity and potable water consumed in the State, {but

  20. Magneto-Seebeck effect in spin-valve with in-plane thermal gradient

    SciTech Connect (OSTI)

    Jain, S. Bose, A. Palkar, V. R. Tulapurkar, A. A.; Lam, D. D. Suzuki, Y.; Sharma, H. Tomy, C. V.

    2014-12-15

    We present measurements of magneto-Seebeck effect on a spin valve with in-plane thermal gradient. We measured open circuit voltage and short circuit current by applying a temperature gradient across a spin valve stack, where one of the ferromagnetic layers is pinned. We found a clear hysteresis in these two quantities as a function of magnetic field. From these measurements, the magneto-Seebeck effect was found to be same as magneto-resistance effect.

  1. Technical and economic feasibility of a Thermal Gradient Utilization Cycle (TGUC) power plant 

    E-Print Network [OSTI]

    Raiji, Ashok

    1980-01-01

    be used to exploit solar, geothermal or other low grade energy sources is to utilize the temperature gradient that naturally occurs in the atmosphere to provide the temperature differential for a power production cycle. This concept known... low grade energy (geothermal, solar oonds, etc. ) to vaporize the working fluid. The following sections describe the operating principles of the TGUC, the digital computer model, the Atmospheric Thermal Gradient Cycle, the parametric study...

  2. Millisecond ordering of block-copolymer films via photo-thermal gradients

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Majewski, Pawel W.; Yager, Kevin G.

    2015-03-12

    For the promise of self-assembly to be realized, processing techniques must be developed that simultaneously enable control of the nanoscale morphology, rapid assembly, and, ideally, the ability to pattern the nanostructure. Here, we demonstrate how photo-thermal gradients can be used to control the ordering of block-copolymer thin films. Highly localized laser heating leads to intense thermal gradients, which induce a thermophoretic force on morphological defects. This increases the ordering kinetics by at least 3 orders-of-magnitude, compared to conventional oven annealing. By simultaneously exploiting the thermal gradients to induce shear fields, we demonstrate uniaxial alignment of a block-copolymer film in lessmore »than a second. Finally, we provide examples of how control of the incident light-field can be used to generate prescribed configurations of block-copolymer nanoscale patterns.« less

  3. Ocean thermal plantships for production of ammonia as the hydrogen carrier.

    SciTech Connect (OSTI)

    Panchal, C.B.; Pandolfini, P. P.; Kumm, W. H.; Energy Systems; Johns Hopkins Univ.; Arctic Energies, Ltd.

    2009-12-02

    Conventional petroleum, natural gas, and coal are the primary sources of energy that have underpinned modern civilization. Their continued availability in the projected quantities required and the impacts of emission of greenhouse gases (GHGs) on the environment are issues at the forefront of world concerns. New primary sources of energy are being sought that would significantly reduce the emissions of GHGs. One such primary source that can help supply energy, water, and fertilizer without GHG emissions is available in the heretofore unexploited thermal gradients of the tropical oceans. The world's oceans are the largest natural collector and reservoir of solar energy. The potential of ocean energy is limitless for producing base-load electric power or ammonia as the hydrogen carrier and fresh water from seawater. However, until now, ocean energy has been virtually untapped. The general perception is that ocean thermal energy is limited to tropical countries. Therefore, the full potential of at-sea production of (1) ammonia as a hydrogen carrier and (2) desalinated water has not been adequately evaluated. Using ocean thermal plantships for the at-sea co-production of ammonia as a hydrogen carrier and desalinated water offer potential energy, environmental, and economic benefits that support the development of the technology. The introduction of a new widespread solution to our projected energy supply requires lead times of a decade or more. Although continuation of the ocean thermal program from the 1970s would likely have put us in a mitigating position in the early 2000s, we still have a window of opportunity to dedicate some of our conventional energy sources to the development of this renewable energy by the time new sources would be critically needed. The primary objective of this project is to evaluate the technical and economic viability of ocean thermal plantships for the production of ammonia as the hydrogen carrier. This objective is achieved by completing project tasks that consist of updating the John Hopkins University/Applied Physics Laboratory (JHU/APL) pilot plantship design and extrapolating it to commercial plantships, evaluating a new energy-efficient ammonia synthesis process, evaluating the co-production of desalinated water on plantships, and developing a conceptual design of a satellite plantships system for commercial-scale ammonia production. In addition, an industrial workshop was organized to present the results and develop future goals for commercialization of ocean thermal plantships by 2015. The following goals, arranged in chronological order, were examined at the workshop: (1) Global displacement of petroleum-fuel-based (diesel, fuel oil, naphtha) power generation for freeing up these fuels for transportation, chemical feedstock, and other high-valued uses; (2) At-sea production of desalinated water for regions of critical water shortages; (3) Displacement of carbon-based feed stocks and energy for production of ammonia fertilizers; (4) Development of hydrogen supply to allow economic processing of heavy crude oils and upgrading oil sands; (5) Development of ammonia-fueled distributed energy to displace natural-gas fueled power generation to free up natural gas for higher-value uses and the mitigation of issues associated with imported liquefied natural gas (LNG); and (6) Use of ammonia as a hydrogen carrier for transportation.

  4. OCEAN THERMAL ENERGY CONVERSION: AN OVERALL ENVIRONMENTAL ASSESSMENT

    SciTech Connect (OSTI)

    Sands, M.Dale

    1980-08-01

    Significant acccrmplishments in Ocean Thermal Energy Conversion (OTEC) technology have increased the probability of producing OTEC-derived power within this decade with subsequent large scale commercialization following by the turn of the century. Under U.S. Department of Energy funding, the Oceanic Engineering Operations of Interstate Electronics Corporation has prepared several OTEC Environmental Assessments over the past years, in particular, the OTEC Programmatic Environmental Assessment. The Programmatic EA considers several technological designs (open- and closed-cycle), plant configuratlons (land-based, moored, and plant-ship), and power usages (baseload electricity, ammonia and aluminum production). Potential environmental impacts, health and safetv issues and a status update of the institutional issues as they influence OTEC deployments, are included.

  5. Wax diffusivity under given thermal gradient: a mathematical model , A. Fasano

    E-Print Network [OSTI]

    Primicerio, Mario

    Wax diffusivity under given thermal gradient: a mathematical model S. Correra , A. Fasano , L. Fusi , M. Primicerio , F. Rosso Abstract In this paper we describe how to obtain wax diffusivity and solubility in a saturated crude oil using the measurements of solid wax deposit in the experimental apparatus

  6. Thermal lens elimination by gradient-reduced zone coupling of optical beams

    DOE Patents [OSTI]

    Page, Ralph H. (San Ramon, CA); Beach, Raymond J. (Livermore, CA)

    2000-01-01

    A thermal gradient-reduced-zone laser includes a laser medium and an optically transparent plate with an index of refraction that is less than the index of refraction of the laser medium. The pump face of the laser medium is bonded to a surface of the optically transparent member. Pump light is directed through the transparent plate to optically pump the solid state laser medium. Heat conduction is mainly through the surface of the laser medium where the heat is introduced by the pump light. Heat flows in a direction opposite to that of the pump light because the side of the laser medium that is opposite to that of the pump face is not in thermal contact with a conductor and thus there is no heat flux (and hence, no temperature gradient), thus producing a thermal gradient-reduced zone. A laser cavity is formed around the laser medium such that laser light oscillating within the laser cavity reflects by total-internal-reflection from the interface between the pump face and the optically transparent plate and enters and exits through a thermal gradient-reduced zone.

  7. Near-inertial and thermal to atmospheric forcing in the North Atlantic Ocean

    E-Print Network [OSTI]

    Silverthorne, Katherine E

    2010-01-01

    Observational and modeling techniques are employed to investigate the thermal and inertial upper ocean response to wind and buoyancy forcing in the North Atlantic Ocean. First, the seasonal kinetic energy variability of ...

  8. The mechanics of coating delamination in thermal gradients A.G. Evans a,, J.W. Hutchinson b

    E-Print Network [OSTI]

    Hutchinson, John W.

    The mechanics of coating delamination in thermal gradients A.G. Evans a,, J.W. Hutchinson b in revised form 16 March 2007 Available online 27 March 2007 Abstract Oxide coatings used for various stress gradient in the coating, governed by these thermal circumstances. Two extreme cool-down scenarios

  9. Response of oceanic hydrate-bearing sediments to thermal stresses

    E-Print Network [OSTI]

    Moridis, G.J.; Kowalsky, M.B.

    2006-01-01

    higher pressures. The geothermal gradient in this case (asoC/m. With this geothermal gradient, the base of the hydratedeposit and different geothermal gradient. As can be seen in

  10. Thermal gradient-induced forces on geodesic reference masses for LISA

    SciTech Connect (OSTI)

    Carbone, L.; Ciani, G.; Dolesi, R.; Hueller, M.; Tombolato, D.; Vitale, S.; Weber, W. J.; Cavalleri, A.

    2007-11-15

    The low frequency sensitivity of space-borne gravitational wave observatories will depend critically on the geodesic purity of the trajectories of orbiting test masses. Fluctuations in the temperature difference across the enclosure surrounding the free-falling test mass can produce noisy forces through several processes, including the radiometric effect, radiation pressure, and outgassing. We present here a detailed experimental investigation of thermal gradient-induced forces for the Laser Interferometer Space Antenna (LISA) gravitational wave mission and the LISA Pathfinder, employing high resolution torsion pendulum measurements of the torque on a LISA-like test mass suspended inside a prototype of the LISA gravitational reference sensor that will surround the test mass in orbit. The measurement campaign, accompanied by numerical simulations of the radiometric and radiation pressure effects, allows a more accurate and representative characterization of thermal-gradient forces in the specific geometry and environment relevant to LISA free-fall. The pressure dependence of the measured torques allows clear identification of the radiometric effect, in quantitative agreement with the model developed. In the limit of zero gas pressure, the measurements are most likely dominated by outgassing, but at a low level that does not threaten the current LISA noise estimate, which assumes a maximum net force per degree of temperature difference of 100(pN/K) for the overall thermal gradient-induced effects.

  11. Modeling the Physical and Biochemical Influence of Ocean Thermal Energy Conversion Plant Discharges into their Adjacent Waters

    Broader source: Energy.gov [DOE]

    Modeling the Physical and Biochemical Influence of Ocean Thermal Energy Conversion Plant Discharges into their Adjacent Waters

  12. ESTIMATION OF IN-SITU THERMAL CONDUCTIVITIES FROM TEMPERATURE GRADIENT MEASUREMENTS

    E-Print Network [OSTI]

    Hoang, V.T.

    2010-01-01

    to Evaluate Regional Geothermal Gradients t " Journal ofin wells, a linear geothermal gradient profile has beenfluid saturations. The geothermal gradient is caused by the

  13. Lockheed Testing the Waters for Ocean Thermal Energy System

    Office of Energy Efficiency and Renewable Energy (EERE)

    The company is working to develop a system to produce electricity using temperature differences in the ocean.

  14. Draft environmental assessment: Ocean Thermal Energy Conversion (OTEC) Pilot Plants

    SciTech Connect (OSTI)

    Sullivan, S.M.; Sands, M.D.; Donat, J.R.; Jepsen, P.; Smookler, M.; Villa, J.F.

    1981-02-01

    This Environmental Assessment (EA) has been prepared, in accordance with the National Environmental Policy Act of 1969, for the deployment and operation of a commercial 40-Megawatt (MW) Ocean Thermal Energy Conversion (OTEC) Pilot Plant (hereafter called the Pilot Plant). A description of the proposed action is presented, and a generic environment typical of the candidate Pilot Plant siting regions is described. An assessment of the potential environmental impacts associated with the proposed action is given, and the risk of credible accidents and mitigating measures to reduce these risks are considered. The Federal and State plans and policies the proposed action will encompass are described. Alternatives to the proposed action are presented. Appendix A presents the navigation and environmental information contained in the US Coast Pilot for each of the candidate sites; Appendix B provides a brief description of the methods and calculations used in the EA. It is concluded that environmental disturbances associated with Pilot Plant activities could potentially cause significant environmental impacts; however, the magnitude of these potential impacts cannot presently be assessed, due to insufficient engineering and environmental information. A site- and design-specific OTEC Pilot Plant Environmental Impact Statement (EIS) is required to resolve the potentially significant environmental effects associated with Pilot Plant deployment and operation. (WHK)

  15. Ocean Thermal Energy Conversion (OTEC) Programmatic Environmental Analysis--Appendices

    SciTech Connect (OSTI)

    Authors, Various

    1980-01-01

    The programmatic environmental analysis is an initial assessment of Ocean Thermal Energy Conversion (OTEC) technology considering development, demonstration and commercialization. It is concluded that the OTEC development program should continue because the development, demonstration, and commercialization on a single-plant deployment basis should not present significant environmental impacts. However, several areas within the OTEC program require further investigation in order to assess the potential for environmental impacts from OTEC operation, particularly in large-scale deployments and in defining alternatives to closed-cycle biofouling control: (1) Larger-scale deployments of OTEC clusters or parks require further investigations in order to assess optimal platform siting distances necessary to minimize adverse environmental impacts. (2) The deployment and operation of the preoperational platform (OTEC-1) and future demonstration platforms must be carefully monitored to refine environmental assessment predictions, and to provide design modifications which may mitigate or reduce environmental impacts for larger-scale operations. These platforms will provide a valuable opportunity to fully evaluate the intake and discharge configurations, biofouling control methods, and both short-term and long-term environmental effects associated with platform operations. (3) Successful development of OTEC technology to use the maximal resource capabilities and to minimize environmental effects will require a concerted environmental management program, encompassing many different disciplines and environmental specialties. This volume contains these appendices: Appendix A -- Deployment Scenario; Appendix B -- OTEC Regional Characterization; and Appendix C -- Impact and Related Calculations.

  16. Thermal gradient-induced forces on geodetic reference masses for LISA

    E-Print Network [OSTI]

    L. Carbone; A. Cavalleri; G. Ciani; R. Dolesi; M. Hueller; D. Tombolato; S. Vitale; W. J. Weber

    2007-06-29

    The low frequency sensitivity of space-borne gravitational wave observatories will depend critically on the geodetic purity of the trajectories of orbiting test masses. Fluctuations in the temperature difference across the enclosure surrounding the free-falling test mass can produce noisy forces through several processes, including the radiometric effect, radiation pressure, and outgassing. We present here a detailed experimental investigation of thermal gradient-induced forces for the LISA gravitational wave mission and the LISA Pathfinder, employing high resolution torsion pendulum measurements of the torque on a LISA-like test mass suspended inside a prototype of the LISA gravitational reference sensor that will surround the test mass in orbit. The measurement campaign, accompanied by numerical simulations of the radiometric and radiation pressure effects, allows a more accurate and representative characterization of thermal-gradient forces in the specific geometry and environment relevant to LISA free-fall. The pressure dependence of the measured torques allows clear identification of the radiometric effect, in quantitative agreement with the model developed. In the limit of zero gas pressure, the measurements are most likely dominated by outgassing, but at a low level that does not threaten the LISA sensitivity goals.

  17. Thermally-assisted-occupation density functional theory with generalized-gradient approximations

    SciTech Connect (OSTI)

    Chai, Jeng-Da

    2014-05-14

    We extend the recently proposed thermally-assisted-occupation density functional theory (TAO-DFT) [J.-D. Chai, J. Chem. Phys. 136, 154104 (2012)] to generalized-gradient approximation (GGA) exchange-correlation density functionals. Relative to our previous TAO-LDA (i.e., the local density approximation to TAO-DFT), the resulting TAO-GGAs are significantly superior for a wide range of applications, such as thermochemistry, kinetics, and reaction energies. For noncovalent interactions, TAO-GGAs with empirical dispersion corrections are shown to yield excellent performance. Due to their computational efficiency for systems with strong static correlation effects, TAO-LDA and TAO-GGAs are applied to study the electronic properties (e.g., the singlet-triplet energy gaps, vertical ionization potentials, vertical electron affinities, fundamental gaps, and symmetrized von Neumann entropy) of acenes with different number of linearly fused benzene rings (up to 100), which is very challenging for conventional electronic structure methods. The ground states of acenes are shown to be singlets for all the chain lengths studied here. With the increase of acene length, the singlet-triplet energy gaps, vertical ionization potentials, and fundamental gaps decrease monotonically, while the vertical electron affinities and symmetrized von Neumann entropy (i.e., a measure of polyradical character) increase monotonically.

  18. NREL-Ocean Energy Thermal Conversion | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI Ventures Ltd Jump to: navigation, search Name:NREL's RenewableOpenOcean

  19. Ocean Thermal Energy Conversion (OTEC) A New Secure Renewable Energy Source

    E-Print Network [OSTI]

    Ocean Thermal Energy Conversion (OTEC) A New Secure Renewable Energy Source For Defense load renewable energy system to achieve energy security for DoD facilities and bases Schofield Barracks and Commercial Applications 1 Dr. Ted Johnson Director of Alternative Energy Programs Development Lockheed Martin

  20. Lyapunov Exponents of a Simple Stochastic Model of the Thermally and Wind-Driven Ocean Circulation

    E-Print Network [OSTI]

    Monahan, Adam Hugh

    Lyapunov Exponents of a Simple Stochastic Model of the Thermally and Wind-Driven Ocean Circulation, then the leading Lyapunov exponent of the circulation can become positive for sufficiently strong fluctuations of the leading Lyapunov exponent can have a substantial effect on the predictability of the system. 1 #12

  1. Open cycle ocean thermal energy conversion system structure

    DOE Patents [OSTI]

    Wittig, J. Michael (West Goshen, PA)

    1980-01-01

    A generally mushroom-shaped, open cycle OTEC system and distilled water producer which has a skirt-conduit structure extending from the enlarged portion of the mushroom to the ocean. The enlarged part of the mushroom houses a toroidal casing flash evaporator which produces steam which expands through a vertical rotor turbine, partially situated in the center of the blossom portion and partially situated in the mushroom's stem portion. Upon expansion through the turbine, the motive steam enters a shell and tube condenser annularly disposed about the rotor axis and axially situated beneath the turbine in the stem portion. Relatively warm ocean water is circulated up through the radially outer skirt-conduit structure entering the evaporator through a radially outer portion thereof, flashing a portion thereof into motive steam, and draining the unflashed portion from the evaporator through a radially inner skirt-conduit structure. Relatively cold cooling water enters the annular condenser through the radially inner edge and travels radially outwardly into a channel situated along the radially outer edge of the condenser. The channel is also included in the radially inner skirt-conduit structure. The cooling water is segregated from the potable, motive steam condensate which can be used for human consumption or other processes requiring high purity water. The expansion energy of the motive steam is partially converted into rotational mechanical energy of the turbine rotor when the steam is expanded through the shaft attached blades. Such mechanical energy drives a generator also included in the enlarged mushroom portion for producing electrical energy. Such power generation equipment arrangement provides a compact power system from which additional benefits may be obtained by fabricating the enclosing equipment, housings and component casings from low density materials, such as prestressed concrete, to permit those casings and housings to also function as a floating support vessel.

  2. List of Ocean Thermal Incentives | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History ViewInformationWindsCompressed airGeothermalList ofList ofThermal

  3. Geothermal Resource/Reservoir Investigations Based on Heat Flow and Thermal Gradient Data for the United States

    SciTech Connect (OSTI)

    D. D. Blackwell; K. W. Wisian; M. C. Richards; J. L. Steele

    2000-04-01

    Several activities related to geothermal resources in the western United States are described in this report. A database of geothermal site-specific thermal gradient and heat flow results from individual exploration wells in the western US has been assembled. Extensive temperature gradient and heat flow exploration data from the active exploration of the 1970's and 1980's were collected, compiled, and synthesized, emphasizing previously unavailable company data. Examples of the use and applications of the database are described. The database and results are available on the world wide web. In this report numerical models are used to establish basic qualitative relationships between structure, heat input, and permeability distribution, and the resulting geothermal system. A series of steady state, two-dimensional numerical models evaluate the effect of permeability and structural variations on an idealized, generic Basin and Range geothermal system and the results are described.

  4. ELSEVIER Earth and Planetary Science Letters 163 (1998) 149165 High geothermal gradient metamorphism during thermal subsidence

    E-Print Network [OSTI]

    Sandiford, Mike

    1998-01-01

    metamorphism during thermal subsidence Mike Sandiford L , Martin Hand, Sandra McLaren Department of Geology producing elements during thermal subsidence following rifting produces two concomitant changes subsidence reduces the heat flowing into the deeper crust from the mantle. Because the process of thermal

  5. Research on the external fluid mechanics of ocean thermal energy conversion plants : report covering experiments in a current

    E-Print Network [OSTI]

    Fry, David J. (David James)

    1981-01-01

    This report describes a set of experiments in a physical model study to explore plume transport and recirculation potential for a range of generic Ocean Thermal Energy Conversion (OTEC) plant designs and ambient conditions. ...

  6. Near and far field models of external fluid mechanics of Ocean Thermal Energy Conversion (OTEC) power plants

    E-Print Network [OSTI]

    Rodríguez Buño, Mariana

    2013-01-01

    The world is facing the challenge of finding new renewable sources of energy - first, in response to fossil fuel reserve depletion, and second, to reduce greenhouse gas emissions. Ocean Thermal Energy Conversion (OTEC) can ...

  7. Study of thermal-gradient-induced migration of brine inclusions in salt. Final report

    SciTech Connect (OSTI)

    Olander, D.R.

    1984-08-01

    Natural salt deposits, which are being considered for high-level waste disposal, contain a small volume fraction of water in the form of brine inclusions distributed throughout the salt. Radioactive decay heating of the nuclear wastes will impose a temperature gradient on the surrounding salt which mobilizes the brine inclusions. Inclusions filled completely with brine (the all-liquid inclusions) migrate up the temperature gradient and eventually accumulate brine near the buried waste forms. The brine may slowly corrode or degrade the waste forms, which is undesirable. Therefore it is important to consider the migration of brine inclusions in salt under imposed temperature gradients to properly evaluate the performance of a future salt repository for nuclear wastes. The migration velocities of the inclusions were found to be dependent on temperature, temperature gradient, and inclusion shape and size. The velocities were also dictated by the interfacial mass transfer resistance at brine/solid interface. This interfacial resistance depends on the dislocation density in the crystal, which in turn, depends on the axial compressive loading of the crystal. At low axial loads, the dependence between the velocity and temperature gradient is nonlinear. At high axial loads, the interfacial resistance is reduced and the migration velocity depends linearly on the temperature gradient. All-liquid inclusions filled with mixed brines were also studied. For gas-liquid inclusions, helium, air and argon were compared. Migration studies were also conducted on single crystallites of natural salt as well as in polycrystalline natural salt samples. The behavior of the inclusions at large-ange grain boundaries was observed.

  8. Method and apparatus for producing a carbon based foam article having a desired thermal-conductivity gradient

    DOE Patents [OSTI]

    Klett, James W. (Knoxville, TN) [Knoxville, TN; Cameron, Christopher Stan (Sanford, NC) [Sanford, NC

    2010-03-02

    A carbon based foam article is made by heating the surface of a carbon foam block to a temperature above its graphitizing temperature, which is the temperature sufficient to graphitize the carbon foam. In one embodiment, the surface is heated with infrared pulses until heat is transferred from the surface into the core of the foam article such that the graphitizing temperature penetrates into the core to a desired depth below the surface. The graphitizing temperature is maintained for a time sufficient to substantially entirely graphitize the portion of the foam article from the surface to the desired depth below the surface. Thus, the foam article is an integral monolithic material that has a desired conductivity gradient with a relatively high thermal conductivity in the portion of the core that was graphitized and a relatively low thermal conductivity in the remaining portion of the foam article.

  9. Ocean Thermal Energy Conversion Life Cycle Cost Assessment, Final Technical Report, 30 May 2012

    SciTech Connect (OSTI)

    Martel, Laura; Smith, Paul; Rizea, Steven; Van Ryzin, Joe; Morgan, Charles; Noland, Gary; Pavlosky, Rick; Thomas, Michael

    2012-06-30

    The Ocean Thermal Energy Conversion (OTEC) Life Cycle Cost Assessment (OLCCA) is a study performed by members of the Lockheed Martin (LM) OTEC Team under funding from the Department of Energy (DOE), Award No. DE-EE0002663, dated 01/01/2010. OLCCA objectives are to estimate procurement, operations and maintenance, and overhaul costs for two types of OTEC plants: -Plants moored to the sea floor where the electricity produced by the OTEC plant is directly connected to the grid ashore via a marine power cable (Grid Connected OTEC plants) -Open-ocean grazing OTEC plant-ships producing an energy carrier that is transported to designated ports (Energy Carrier OTEC plants) Costs are developed using the concept of levelized cost of energy established by DOE for use in comparing electricity costs from various generating systems. One area of system costs that had not been developed in detail prior to this analysis was the operations and sustainment (O&S) cost for both types of OTEC plants. Procurement costs, generally referred to as capital expense and O&S costs (operations and maintenance (O&M) costs plus overhaul and replacement costs), are assessed over the 30 year operational life of the plants and an annual annuity calculated to achieve a levelized cost (constant across entire plant life). Dividing this levelized cost by the average annual energy production results in a levelized cost of electricity, or LCOE, for the OTEC plants. Technical and production efficiency enhancements that could result in a lower value of the OTEC LCOE were also explored. The thermal OTEC resource for Oahu, Hawai�¢����i and projected build out plan were developed. The estimate of the OTEC resource and LCOE values for the planned OTEC systems enable this information to be displayed as energy supplied versus levelized cost of the supplied energy; this curve is referred to as an Energy Supply Curve. The Oahu Energy Supply Curve represents initial OTEC deployment starting in 2018 and demonstrates the predicted economies of scale as technology and efficiency improvements are realized and larger more economical plants deployed. Utilizing global high resolution OTEC resource assessment from the Ocean Thermal Extractable Energy Visualization (OTEEV) project (an independent DOE project), Global Energy Supply Curves were generated for Grid Connected and Energy Carrier OTEC plants deployed in 2045 when the predicted technology and efficiencies improvements are fully realized. The Global Energy Supply Curves present the LCOE versus capacity in ascending order with the richest, lowest cost resource locations being harvested first. These curves demonstrate the vast ocean thermal resource and potential OTEC capacity that can be harvested with little change in LCOE.

  10. Ocean Heat Transport and Water Vapor Greenhouse in a Warm Equable Climate: A New Look at the Low Gradient Paradox

    E-Print Network [OSTI]

    Rose, Brian E. J.

    The authors study the role of ocean heat transport (OHT) in the maintenance of a warm, equable, ice-free climate. An ensemble of idealized aquaplanet GCM calculations is used to assess the equilibrium sensitivity of global ...

  11. Ocean Thermal Extractable Energy Visualization- Final Technical Report on Award DE-EE0002664. October 28, 2012

    SciTech Connect (OSTI)

    Ascari, Matthew B.; Hanson, Howard P.; Rauchenstein, Lynn; Van Zwieten, James; Bharathan, Desikan; Heimiller, Donna; Langle, Nicholas; Scott, George N.; Potemra, James; Nagurny, N. John; Jansen, Eugene

    2012-10-28

    The Ocean Thermal Extractable Energy Visualization (OTEEV) project focuses on assessing the Maximum Practicably Extractable Energy (MPEE) from the world's ocean thermal resources. MPEE is defined as being sustainable and technically feasible, given today's state-of-the-art ocean energy technology. Under this project the OTEEV team developed a comprehensive Geospatial Information System (GIS) dataset and software tool, and used the tool to provide a meaningful assessment of MPEE from the global and domestic U.S. ocean thermal resources. The OTEEV project leverages existing NREL renewable energy GIS technologies and integrates extractable energy estimated from quality-controlled data and projected optimal achievable energy conversion rates. Input data are synthesized from a broad range of existing in-situ measurements and ground-truthed numerical models with temporal and spatial resolutions sufficient to reflect the local resource. Energy production rates are calculated for regions based on conversion rates estimated for current technology, local energy density of the resource, and sustainable resource extraction. Plant spacing and maximum production rates are then estimated based on a default plant size and transmission mechanisms. The resulting data are organized, displayed, and accessed using a multi-layered GIS mapping tool, http://maps.nrel.gov/mhk_atlas with a user-friendly graphical user interface.

  12. Groundwater Flow and Thermal Modeling to Support a Preferred Conceptual Model for the Large Hydraulic Gradient North of Yucca Mountain

    SciTech Connect (OSTI)

    McGraw, D.; Oberlander, P.

    2007-12-18

    The purpose of this study is to report on the results of a preliminary modeling framework to investigate the causes of the large hydraulic gradient north of Yucca Mountain. This study builds on the Saturated Zone Site-Scale Flow and Transport Model (referenced herein as the Site-scale model (Zyvoloski, 2004a), which is a three-dimensional saturated zone model of the Yucca Mountain area. Groundwater flow was simulated under natural conditions. The model framework and grid design describe the geologic layering and the calibration parameters describe the hydrogeology. The Site-scale model is calibrated to hydraulic heads, fluid temperature, and groundwater flowpaths. One area of interest in the Site-scale model represents the large hydraulic gradient north of Yucca Mountain. Nearby water levels suggest over 200 meters of hydraulic head difference in less than 1,000 meters horizontal distance. Given the geologic conceptual models defined by various hydrogeologic reports (Faunt, 2000, 2001; Zyvoloski, 2004b), no definitive explanation has been found for the cause of the large hydraulic gradient. Luckey et al. (1996) presents several possible explanations for the large hydraulic gradient as provided below: The gradient is simply the result of flow through the upper volcanic confining unit, which is nearly 300 meters thick near the large gradient. The gradient represents a semi-perched system in which flow in the upper and lower aquifers is predominantly horizontal, whereas flow in the upper confining unit would be predominantly vertical. The gradient represents a drain down a buried fault from the volcanic aquifers to the lower Carbonate Aquifer. The gradient represents a spillway in which a fault marks the effective northern limit of the lower volcanic aquifer. The large gradient results from the presence at depth of the Eleana Formation, a part of the Paleozoic upper confining unit, which overlies the lower Carbonate Aquifer in much of the Death Valley region. The Eleana Formation is absent at borehole UE-25 p#1 at Yucca Mountain, which penetrated the lower Carbonate Aquifer directly beneath the lower volcanic confining unit. The Site-scale model uses an area of very low permeability, referenced as the east-west barrier, to simulate the large hydraulic gradient. The Site-scale model is further refined in this study to provide a base-case model for exploring the geologic causes of the large hydraulic gradient.

  13. Economics of Ocean Thermal Energy Conversion (OTEC): Luis A. Vega Ph.D., National Marine Renewable Energy Center at the University of Hawai'i

    E-Print Network [OSTI]

    .D., National Marine Renewable Energy Center at the University of Hawai'i Copyright 2010, Offshore TechnologyOTC 21016 Economics of Ocean Thermal Energy Conversion (OTEC): An Update Luis A. Vega Ph for the production of electricity, desalinated water and energy intensive products. It is postulated that the US

  14. Ocean thermal energy conversion power system development. Final design report: PSD-I, Phase II

    SciTech Connect (OSTI)

    None

    1980-06-30

    The PSD-I program provides a heat exchanger sytem consisting of an evaporator, condenser and various ancillaries with ammonia used as a working fluid in a closed simulated Rankine cycle. It is to be installed on the Chepachet Research Vessel for test and evaluation of a number of OTEC concepts in a true ocean environment. It is one of several test articles to be tested. Primary design concerns include control of biofouling, corrosion and erosion of aluminum tubes, selection of materials, and the development of a basis for scale-up to large heat exchangers so as to ultimately demonstrate economic feasibility on a commercial scale. The PSD-I test article is devised to verify thermodynamic, environmental, and mechanical performance of basic design concepts. The detailed design, development, fabrication, checklist, delivery, installation support, and operation support for the Test Article Heat Exchangers are described. (WHK)

  15. Creation of nonlinear density gradients for use in internal wave research

    E-Print Network [OSTI]

    Harris, Victoria Siân

    2007-01-01

    A method was developed to create a nonlinear density gradient in a tank of water. Such gradients are useful for studying internal waves, an ocean phenomenon that plays an important role in climate and ocean circulation. ...

  16. Experiments on oxygen desorption from surface warm seawater under open-cycle ocean thermal energy conversion (OC-OTEC) conditions

    SciTech Connect (OSTI)

    Pesaran, A.A.

    1989-12-01

    This paper reports the results of scoping deaeration experiments conducted with warm surface seawater under open-cycle ocean thermal energy conversion (OC-OTEC). Concentrations of dissolved oxygen in seawater at three locations (in the supply water, water leaving a predeaerator, and discharge water from an evaporator) were measured and used to estimate oxygen desorption levels. The results suggest that 7% to 60% of dissolved oxygen in the supply water was desorbed from seawater in the predeaerator for pressures ranging from 9 to 35 kPa. Bubble injection in the upcomer increased the oxygen desorption rate by 20% to 60%. The dependence of oxygen desorption with flow rate could not be determined. The data also indicated that at typical OC-OTEC evaporator pressures when flashing occurred, 75% to 95% of dissolved oxygen was desorbed overall from the warm seawater. The uncertainty in results is larger than one would desire. These uncertainties are attributed to the uncertainties and difficulties in the dissolved oxygen measurements. Methods to improve the measurements for future gas desorption studies for warm surface and cold deep seawater under OC-OTEC conditions are recommended. 14 refs., 5 figs., 2 tabs.

  17. Results of scoping tests for open-cycle OTEC (ocean thermal energy conversion) components operating with seawater

    SciTech Connect (OSTI)

    Zangrando, F; Bharathan, D; Green, H J; Link, H F; Parsons, B K; Parsons, J M; Pesaran, A A [Solar Energy Research Inst., Golden, CO (USA); Panchal, C B [Argonne National Lab., IL (USA)

    1990-09-01

    This report presents comprehensive documentation of the experimental research conducted on open-cycle ocean thermal energy conversion (OC-OTEC) components operating with seawater as a working fluid. The results of this research are presented in the context of previous analysis and fresh-water testing; they provide a basis for understanding and predicting with confidence the performance of all components of an OC-OTEC system except the turbine. Seawater tests have confirmed the results that were obtained in fresh-water tests and predicted by the analytical models of the components. A sound technical basis has been established for the design of larger systems in which net power will be produced for the first time from OC-OTEC technology. Design and operation of a complete OC-OTEC system that produces power will provide sufficient confidence to warrant complete transfer of OC-OTEC technology to the private sector. Each components performance is described in a separate chapter written by the principal investigator responsible for technical aspects of the specific tests. Chapters have been indexed separately for inclusion on the data base.

  18. Conceptual design of an open-cycle ocean thermal energy conversion net power-producing experiment (OC-OTEC NPPE)

    SciTech Connect (OSTI)

    Bharathan, D.; Green, H.J.; Link, H.F.; Parsons, B.K.; Parsons, J.M.; Zangrando, F.

    1990-07-01

    This report describes the conceptual design of an experiment to investigate heat and mass transfer and to assess the viability of open-cycle ocean thermal energy conversion (OC-OTEC). The experiment will be developed in two stages, the Heat- and Mass-Transfer Experimental Apparatus (HMTEA) and the Net Power-Producing Experiment (NPPE). The goal for the HMTEA is to test heat exchangers. The goal for the NPPE is to experimentally verify OC-OTEC's feasibility by installing a turbine and testing the power-generating system. The design effort met the goals of both the HMTEA and the NPPE, and duplication of hardware was minimal. The choices made for the design resource water flow rates are consistent with the availability of cold and warm seawater as a result of the seawater systems upgrade carried out by the US Department of Energy (DOE), the state of Hawaii, and the Pacific International Center for High Technology Research. The choices regarding configuration of the system were made based on projected performance, degree of technical risk, schedule, and cost. The cost for the future phase of the design and the development of the HMTEA/NPPE is consistent with the projected future program funding levels. The HMTEA and NPPE were designed cooperatively by PICHTR, Argonne National Laboratory, and Solar Energy Research Institute under the guidance of DOE. The experiment will be located at the DOE's Seacoast Test Facility at the Natural Energy Laboratory of Hawaii, Kailua-Kona, Hawaii. 71 refs., 41 figs., 34 tabs.

  19. Thermal evolution of an early magma ocean in interaction with the atmosphere: conditions for the condensation of a

    E-Print Network [OSTI]

    Brandeis, Geneviève

    for the condensation of a water ocean T. Lebrun1 , H. Massol1 , E. Chassefière1 , A. Davaille2 , E. Marcq3 , P. Sarda1-planet distance. Our results suggest that a steam atmosphere delays the end of the magma ocean phase by typically 1 Myr. Water vapor condenses to an ocean after 0.1 Myr, 1.5 Myr and 10 Myr for, respectively, Mars

  20. Ocean Power (4 Activities) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    our existing non-renewable resources. Ocean power is divided into three categories: wave energy, tidal energy, and ocean thermal energy conversion (OTEC) Systems. It is...

  1. GEOTHERMAL GRADIENT DATA FOR UTAH Robert E. Blackett

    E-Print Network [OSTI]

    Laughlin, Robert B.

    of a geothermal system at depth. Temperature logs of boreholes are made by lowering a sensitive thermistor probeGEOTHERMAL GRADIENT DATA FOR UTAH by Robert E. Blackett February 2004 UTAH GEOLOGICAL SURVEY-gradient boreholes in Utah showing relative gradient magnitudes. PLATE Plate 1. Thermal-gradient boreholes in Utah

  2. Gradients of meteorological parameters in convective and nonconvective areas 

    E-Print Network [OSTI]

    McCown, Milton Samuel

    1976-01-01

    involve horizontal gradients. For example, the equations of motion relate wind speed to pressure gradient, and the thermal wind equation relates vertical wind shear to the horizontal temperature gradient. The study of gradients may help... GRADIENTS OF METEOROLOGICAL PARAMETERS IN CONVECTIVE AND NONCONVECTIVE AREAS A Thesis by Milton Samuel McCown Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement for the degree of MASTER...

  3. Recycling of wasted energy : thermal to electrical energy conversion

    E-Print Network [OSTI]

    Lim, Hyuck

    2011-01-01

    ocean thermal energy, distributed solar thermal energy,heat source can be solar thermal energy, biological thermaland concentrated solar thermal energy farms. They demand

  4. Ocean thermal energy conversion preliminary data report for the November 1977 GOTEC-02 cruise to the Gulf of Mexico Mobile Site

    SciTech Connect (OSTI)

    Commins, M. L; Duncan, C. P.; Estrella, D. J.; Frisch, J. D.; Horne, A. J.; Jones, K.; Johnson, P. W.; Oldson, J. C.; Quinby-Hunt, M. S.; Ryan, C. J.; Sandusky, J. C.; Tatro, M.; Wilde, P.

    1980-03-01

    This is the second in a series of preliminary data reports from cruises to potential Ocean Thermal Energy Conversion (OTEC) sites in the Gulf of Mexico. The data are from the GOTEC-02 cruise to a site at approximately 29/sup 0/N, 88/sup 0/W, the Mobile Site. Twelve oceanographic stations were visited. Due to bad weather, the results are scanty. The reader will note that much of the data is questionable. Current meter results are presented elsewhere (Molinari, Hazelworth and Ortman, 1979). Determinations of the biomass indicators - chlorophyll a, phaeophytins and adenosine triphosphate - and zooplankton, are presented. Results were generally those that might have been predicted from previous studies in the area.

  5. Ocean energy conversion systems annual research report

    SciTech Connect (OSTI)

    Not Available

    1981-03-01

    Alternative power cycle concepts to the closed-cycle Rankine are evaluated and those that show potential for delivering power in a cost-effective and environmentally acceptable fashion are explored. Concepts are classified according to the ocean energy resource: thermal, waves, currents, and salinity gradient. Research projects have been funded and reported in each of these areas. The lift of seawater entrained in a vertical steam flow can provide potential energy for a conventional hydraulic turbine conversion system. Quantification of the process and assessment of potential costs must be completed to support concept evaluation. Exploratory development is being completed in thermoelectricity and 2-phase nozzles for other thermal concepts. Wave energy concepts are being evaluated by analysis and model testing with present emphasis on pneumatic turbines and wave focussing. Likewise, several conversion approaches to ocean current energy are being evaluated. The use of salinity resources requires further research in membranes or the development of membraneless processes. Using the thermal resource in a Claude cycle process as a power converter is promising, and a program of R and D and subsystem development has been initiated to provide confirmation of the preliminary conclusion.

  6. Modeling the Physical and Biochemical Influence of Ocean Thermal Energy Conversion Plant Discharges into their Adjacent Waters

    SciTech Connect (OSTI)

    PAT GRANDELLI, P.E.; GREG ROCHELEAU; JOHN HAMRICK, Ph.D.; MATT CHURCH, Ph.D.; BRIAN POWELL, Ph.D.

    2012-09-29

    This paper describes the modeling work by Makai Ocean Engineering, Inc. to simulate the biochemical effects of of the nutrient-enhanced seawater plumes that are discharged by one or several 100 megawatt OTEC plants. The modeling is needed to properly design OTEC plants that can operate sustainably with acceptably low biological impact. In order to quantify the effect of discharge configuration and phytoplankton response, Makai Ocean Engineering implemented a biological and physical model for the waters surrounding O`ahu, Hawai`i, using the EPA-approved Environmental Fluid Dynamics Code (EFDC). Each EFDC grid cell was approximately 1 square kilometer by 20 meters deep, and used a time step of three hours. The biological model was set up to simulate the biochemical response for three classes of organisms: Picoplankton (< 2 um) such as prochlorococccus, nanoplankton (2-20 um), and microplankton (> 20 um) e.g., diatoms. The dynamic biological phytoplankton model was calibrated using chemical and biological data collected for the Hawaii Ocean Time Series (HOTS) project. Peer review of the biological modeling was performed. The physical oceanography model uses boundary conditions from a surrounding Hawai'i Regional Ocean Model, (ROM) operated by the University of Hawai`i and the National Atmospheric and Oceanic Administration. The ROM provided tides, basin scale circulation, mesoscale variability, and atmospheric forcing into the edges of the EFDC computational domain. This model is the most accurate and sophisticated Hawai'ian Regional Ocean Model presently available, assimilating real-time oceanographic observations, as well as model calibration based upon temperature, current and salinity data collected during 2010 near the simulated OTEC site. The ROM program manager peer-reviewed Makai's implementation of the ROM output into our EFDC model. The supporting oceanographic data was collected for a Naval Facilities Engineering Command / Makai project. Results: The model was run for a 100 MW OTEC Plant consisting of four separate ducts, discharging a total combined flow rate of 420 m3/s of warm water and 320 m3/s of cold water in a mixed discharge at 70 meters deep. Each duct was assumed to have a discharge port diameter of 10.5m producing a downward discharge velocity of about 2.18 m/s. The natural system, as measured in the HOTS program, has an average concentration of 10-15 mgC/m3. To calibrate the biological model, we first ran the model with no OTEC plant and varied biological parameters until the simulated data was a good match to the HOTS observations. This modeling showed that phytoplankton concentration were patchy and highly dynamic. The patchiness was a good match with the data variability observed within the HOTS data sets. We then ran the model with simulated OTEC intake and discharge flows and associated nutrients. Directly under the OTEC plant, the near-field plume has an average terminal depth of 172 meters, with a volumetric dilution of 13:1. The average terminal plume temperature was 19.8oC. Nitrate concentrations are 1 to 2 umol/kg above ambient. The advecting plume then further dilutes to less than 1 umol/kg above ambient within a few kilometers downstream, while remaining at depth. Because this terminal near-field plume is well below the 1% light limited depths (~120m), no immediate biological utilization of the nutrients occurs. As the nitrate is advected and dispersed downstream, a fraction of the deep ocean nutrients (< 0.5 umol/kg perturbation) mix upward where they are utilized by the ambient phytoplankton population. This occurs approximately twenty-five kilometers downstream from the plant at 110 - 70 meters depth. For pico-phytoplankton, modeling results indicate that this nutrient perturbation causes a phytoplankton perturbation of approximately 1 mgC/m3 (~10% of average ambient concentrations) that covers an area 10x5 km in size at the 70 to 90m depth. Thus, the perturbations are well within the natural variability of the system, generally corresponding to a 10 to 15% increase above the a

  7. Thermal springs list for the United States; National Oceanic and Atmospheric Administration Key to Geophysical Records Documentation No. 12

    SciTech Connect (OSTI)

    Berry, G.W.; Grim, P.J.; Ikelman, J.A.

    1980-06-01

    The compilation has 1702 thermal spring locations in 23 of the 50 States, arranged alphabetically by State (Postal Service abbreviation) and degrees of latitude and longitude within the State. It shows spring name, surface temperature in degrees Fahrenheit and degrees Celsius; USGS Professional Paper 492 number, USGS Circular 790 number, NOAA number, north to south on each degree of latitude and longitude of the listed. USGS 1:250,000-scale (AMS) map; and the USGS topographic map coverage, 1:63360- or 1:62500-scale (15-minute) or 1:24000-scale (7.5-minute) quadrangle also included is an alphabetized list showing only the spring name and the State in which it is located. Unnamed springs are omitted. The list includes natural surface hydrothermal features: springs, pools, mud pots, mud volcanoes, geysers, fumaroles, and steam vents at temperature of 20{sup 0}C (68[sup 0}F) or greater. It does not include wells or mines, except at sites where they supplement or replace natural vents presently or recently active, or, in some places, where orifices are not distinguishable as natural or artificial. The listed springs are located on the USGS 1:250,000 (AMS) topographic maps. (MHR)

  8. Warm Bias and Parameterization of Boundary Upwelling in Ocean Models

    SciTech Connect (OSTI)

    Cessi, Paola; Wolfe, Christopher

    2012-11-06

    It has been demonstrated that Eastern Boundary Currents (EBC) are a baroclinic intensification of the interior circulation of the ocean due to the emergence of mesoscale eddies in response to the sharp buoyancy gradients driven by the wind-stress and the thermal surface forcing. The eddies accomplish the heat and salt transport necessary to insure that the subsurface flow is adiabatic, compensating for the heat and salt transport effected by the mean currents. The EBC thus generated occurs on a cross-shore scale of order 20-100 km, and thus this scale needs to be resolved in climate models in order to capture the meridional transport by the EBC. Our result indicate that changes in the near shore currents on the oceanic eastern boundaries are linked not just to local forcing, such as coastal changes in the winds, but depend on the basin-wide circulation as well.

  9. Recycling of wasted energy : thermal to electrical energy conversion

    E-Print Network [OSTI]

    Lim, Hyuck

    2011-01-01

    and nuclear power plants, solar thermal energy, geothermalpower plants, distributed solar thermal energy, geo/ocean-power plants and concentrated solar thermal energy farms.

  10. Ocean Systems Lecture 16 & 17

    E-Print Network [OSTI]

    Richerson, Peter J.

    to thrive in oceans and lakes they need sunlight and nutrients. But thermal stratification tends to separateOcean Systems Lecture 16 & 17 #12;Hydroclimate, heat budgets and stratification For plants the nature of stratification. Light, less dense, water floats on top of colder, less dense water. Plankton

  11. Ocean Thermal | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to:Information 3rd|Northfork ElectricName01988) | OpenThePower

  12. Thermal Gradient Holes | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeterInformation Policy andInstitute JumpWash Tidal

  13. Joining of Tungsten Armor Using Functional Gradients

    SciTech Connect (OSTI)

    John Scott O'Dell

    2006-12-31

    The joining of low thermal expansion armor materials such as tungsten to high thermal expansion heat sink materials has been a major problem in plasma facing component (PFC) development. Conventional planar bonding techniques have been unable to withstand the high thermal induced stresses resulting from fabrication and high heat flux testing. During this investigation, innovative functional gradient joints produced using vacuum plasma spray forming techniques have been developed for joining tungsten armor to copper alloy heat sinks. A model was developed to select the optimum gradient architecture. Based on the modeling effort, a 2mm copper rich gradient was selected. Vacuum plasma pray parameters and procedures were then developed to produce the functional gradient joint. Using these techniques, dual cooling channel, medium scale mockups (32mm wide x 400mm length) were produced with vacuum plasma spray formed tungsten armor. The thickness of the tungsten armor was up to 5mm thick. No evidence of debonding at the interface between the heat sink and the vacuum plasma sprayed material was observed.

  14. Short wavelength ion temperature gradient turbulence

    SciTech Connect (OSTI)

    Chowdhury, J.; Ganesh, R. [Institute for Plasma Research, Bhat, Gandhinagar (India); Brunner, S.; Lapillonne, X.; Villard, L. [CRPP, Association EURATOM-Confederation Suisse, EPFL, 1015 Lausanne (Switzerland); Jenko, F. [Max-Planck-Institut fuer Plasmaphysik Boltzmannstr. 2, D-85748 Garching (Germany)

    2012-10-15

    The ion temperature gradient (ITG) mode in the high wavenumber regime (k{sub y}{rho}{sub s}>1), referred to as short wavelength ion temperature gradient mode (SWITG) is studied using the nonlinear gyrokinetic electromagnetic code GENE. It is shown that, although the SWITG mode may be linearly more unstable than the standard long wavelength (k{sub y}{rho}{sub s}<1) ITG mode, nonlinearly its contribution to the total thermal ion heat transport is found to be low. We interpret this as resulting from an increased zonal flow shearing effect on the SWITG mode suppression.

  15. Flexible ocean upwelling pipe

    DOE Patents [OSTI]

    Person, Abraham (Los Alamitos, CA)

    1980-01-01

    In an ocean thermal energy conversion facility, a cold water riser pipe is releasably supported at its upper end by the hull of the floating facility. The pipe is substantially vertical and has its lower end far below the hull above the ocean floor. The pipe is defined essentially entirely of a material which has a modulus of elasticity substantially less than that of steel, e.g., high density polyethylene, so that the pipe is flexible and compliant to rather than resistant to applied bending moments. The position of the lower end of the pipe relative to the hull is stabilized by a weight suspended below the lower end of the pipe on a flexible line. The pipe, apart from the weight, is positively buoyant. If support of the upper end of the pipe is released, the pipe sinks to the ocean floor, but is not damaged as the length of the line between the pipe and the weight is sufficient to allow the buoyant pipe to come to a stop within the line length after the weight contacts the ocean floor, and thereafter to float submerged above the ocean floor while moored to the ocean floor by the weight. The upper end of the pipe, while supported by the hull, communicates to a sump in the hull in which the water level is maintained below the ambient water level. The sump volume is sufficient to keep the pipe full during heaving of the hull, thereby preventing collapse of the pipe.

  16. Modeling the three-dimensional upper ocean heat budget and subduction rate during the Subduction Experiment

    E-Print Network [OSTI]

    the evolution of the upper ocean thermal structure and provide a useful tool for the analysis of air

  17. Hot Pot Contoured Temperature Gradient Map

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Lane, Michael

    2013-06-28

    Temperature gradient contours derived from Oski temperature gradient hole program and from earlier published information.

  18. Hot Pot Contoured Temperature Gradient Map

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Lane, Michael

    Temperature gradient contours derived from Oski temperature gradient hole program and from earlier published information.

  19. Comprehensive Ocean Drilling

    E-Print Network [OSTI]

    Comprehensive Ocean Drilling Bibliography containing citations related to the Deep Sea Drilling Project, Ocean Drilling Program, Integrated Ocean Drilling Program, and International Ocean Discovery Program Last updated: May 2014 #12;Comprehensive Bibliography Comprehensive Ocean Drilling Bibliography

  20. OCEAN DRILLING PROGRAM LEG 198 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    (successors to the Planning Committee) and the Pollution Prevention and Safety Panel. Technical Editor: Karen thermal maximum, the mid-Maastrichtian deep-water event, and the early Aptian Oceanic Anoxic Event

  1. Ocean Climate Change: Comparison of Acoustic

    E-Print Network [OSTI]

    Frandsen, Jannette B.

    Ocean Climate Change: Comparison of Acoustic Tomography, Satellite Altimetry, and Modeling The ATOC to thermal expansion. Interpreting climate change signals from fluctuations in sea level is therefore in the advective heat flux. Changes in oceanic heat storage are a major expected element of future climate shifts

  2. Motivation Smoothing Projected gradient Proximal Gradient Non-Smooth Optimization

    E-Print Network [OSTI]

    Marlin, Benjamin

    Motivation Smoothing Projected gradient Proximal Gradient Non-Smooth Optimization Jason Hartford (with slides from Mark Schmidt) October 2015 #12;Motivation Smoothing Projected gradient Proximal-dimensional problems Nesterov-style and Newton-like methods allow better performance. #12;Motivation Smoothing

  3. Modeling of mesoscale coupled oceanatmosphere interaction and its feedback to ocean in the western Arabian Sea

    E-Print Network [OSTI]

    Jochum, Markus

    horizontal SST gradients in the ocean, developing in response to the southwest monsoon winds. This summertime of the ocean. The observed relationship between the near-surface winds and mesoscale SSTs generate Ekman pump by seasonally reversing monsoonal winds, which drive an in- tense oceanic response off the coast of Africa

  4. CHARACTERIZING DANGEROUS WAVES FOR OCEAN WAVE ENERGY CONVERTER SURVIVABILITY Justin Hovland

    E-Print Network [OSTI]

    Haller, Merrick

    gradient technologies. This paper is focused on Ocean Wave Energy Converters (OWECs) and the needCHARACTERIZING DANGEROUS WAVES FOR OCEAN WAVE ENERGY CONVERTER SURVIVABILITY Justin Hovland ABSTRACT Ocean Wave Energy Converters (OWECs) operating on the water surface are subject to storms

  5. A joint atmosphere-ocean inversion for surface fluxes of carbon dioxide

    E-Print Network [OSTI]

    Fletcher, Sara E. Mikaloff

    A joint atmosphere-ocean inversion for surface fluxes of carbon dioxide: 2. Regional results Andrew atmospheric CO2 gradients and transport simulations are combined with observations of ocean interior carbon (2007), A joint atmosphere-ocean inversion for surface fluxes of carbon dioxide: 2. Regional results

  6. TRANSPORT NUMBER GRADIENTS AND SOLID ELECTROLYTE DEGRADATION

    E-Print Network [OSTI]

    De Jonghe, Lutgard C.

    2014-01-01

    NUMBER GRADIENTS AND SOLID ELECTROLYTE DEGRADATION LutgardNUMBER GRADIENTS AND SOLID ELECTROLYTE DEGRADATION LutgardNUMBER GRADIENTS AND SOLID ELECTROLYTE DEGRADATION Lutgard

  7. TRANSPORT NUMBER GRADIENTS AND SOLID ELECTROLYTE DEGRADATION

    E-Print Network [OSTI]

    De Jonghe, Lutgard C.

    2012-01-01

    NUMBER GRADIENTS AND SOLID ELECTROLYTE DEGRADATION LutgardNUMBER GRADIENTS AND SOLID ELECTROLYTE DEGRADATION LutgardNUMBER GRADIENTS AND SOLID ELECTROLYTE DEGRADATION Lutgard

  8. Thermal diffusion shock waves Sorasak Danworaphong1

    E-Print Network [OSTI]

    Craig, Walter

    Thermal diffusion shock waves Sorasak Danworaphong1 , Walter Craig3 , Vitalyi Gusev4 , and Gerald J and are concentrated by a thermal gradient imposed on a salt solution, the separation of the components of a mixture in a thermal field, known as "thermal diffusion", or the Ludwig-Soret effect has been found not only in liquids

  9. COOLING OF THE OCEANIC LITHOSPHERE AND OCEAN FLOOR (Copyright, 2001, David T. Sandwell)

    E-Print Network [OSTI]

    Sandwell, David T.

    1 COOLING OF THE OCEANIC LITHOSPHERE AND OCEAN FLOOR TOPOGRAPHY (Copyright, 2001, David T. Sandwell) Introduction This lecture is the development of the lithospheric cooling problem. For researchers in the areas important thermal boundary layer which is at the core-mantle boundary. As the lithosphere cools it becomes

  10. Optical gradient force nano-imaging and -spectroscopy

    E-Print Network [OSTI]

    Yang, Honghua U

    2015-01-01

    Nanoscale forces play an important role in different scanning probe microscopies, most notably atomic force microscopy (AFM). In contrast, in scanning near-field optical microscopy (SNOM) a light-induced coupled local optical polarization between tip and sample is typically detected by scattering to the far field. Measurements of the optical gradient force associated with that optical near-field excitation would offer a novel optical scanning probe modality. Here we provide a generalized theory of optical gradient force nano-imaging and -spectroscopy. We quantify magnitude and distance dependence of the optical gradient force and its spectral response. We show that the optical gradient force is dispersive for single particle electronic and vibrational resonances, distinct from recent claims of its experimental observation. In contrast, the force can be absorptive for collective resonances. We provide a guidance for its measurements and distinction from competing processes such as thermal expansion.

  11. THE ONLY SOURCE OF ENERGY

    E-Print Network [OSTI]

    Calvin, Genevieve J.

    2011-01-01

    sun — on climate (wind, hydro, ocean thermal gradients); on absorptive materials (solar cells and similar collectors);

  12. Odne Stokke Burheim Thermal Signature and Thermal Conductivities of PEM Fuel Cells

    E-Print Network [OSTI]

    Kjelstrup, Signe

    Odne Stokke Burheim Thermal Signature and Thermal Conductivities of PEM Fuel Cells Thesis-Holst for believing in me and for giving me the opportunity to join the work on the "Thermal Effects in Fuel cell The work presented here gives estimates on thermal gradients within the PEM fuel cell, an experimental

  13. Diverse patterns of ocean export productivity change across the Cretaceous-7 Paleogene boundary: new insights from biogenic barium8

    E-Print Network [OSTI]

    1 1 2 3 4 5 6 Diverse patterns of ocean export productivity change across the Cretaceous-7 is the decline and subsequent47 recovery of open ocean export productivity (e.g., the flux of organic matter from the surface to48 deep ocean). Some export proxies, including surface-to-deep water 13 C gradients

  14. Gradient zone boundary control in salt gradient solar ponds

    DOE Patents [OSTI]

    Hull, John R. (Downers Grove, IL)

    1984-01-01

    A method and apparatus for suppressing zone boundary migration in a salt gradient solar pond includes extending perforated membranes across the pond at the boundaries, between the convective and non-convective zones, the perforations being small enough in size to prevent individual turbulence disturbances from penetrating the hole, but being large enough to allow easy molecular diffusion of salt thereby preventing the formation of convective zones in the gradient layer. The total area of the perforations is a sizable fraction of the membrane area to allow sufficient salt diffusion while preventing turbulent entrainment into the gradient zone.

  15. Allochthonous inputs of riverine picocyanobacteria to coastal waters in the Arctic Ocean

    E-Print Network [OSTI]

    Vincent, Warwick F.

    strains along this gradient showed that the cyanobacterial sequences were divided into eight operational, includ- ing geothermal and sulphide-rich anoxic waters, as well as nutrient-poor open ocean waters

  16. High field gradient particle accelerator

    DOE Patents [OSTI]

    Nation, John A. (Ithaca, NY); Greenwald, Shlomo (Haifa, IL)

    1989-01-01

    A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle.

  17. Gradient characterization in magnetic resonance imaging

    E-Print Network [OSTI]

    Cheng, Joseph Yitan

    2007-01-01

    Special magnetic resonance (MR) scans, such as spiral imaging and echo-planar imaging, require speed and gradient accuracy while putting high demands on the MR gradient system that may cause gradient distortion. Additionally, ...

  18. Covariation of climate and long-term erosion rates across a steep rainfall gradient on the Hawaiian island of Kaua'i

    E-Print Network [OSTI]

    Ferrier, Ken L.

    Erosion of volcanic ocean islands creates dramatic landscapes, modulates Earth’s carbon cycle, and delivers sediment to coasts and reefs. Because many volcanic islands have large climate gradients and minimal variations ...

  19. OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC ENVIRONMENTAL ASSESSMENT

    E-Print Network [OSTI]

    Sands, M.Dale

    2013-01-01

    boch open- and closed-power cycles in land-based, moored andopen- and closed-power cycle), plant configurations (land-demonstration. The closed-power cycle may be used for land-

  20. GEOPHYSICAL RESEARCH LETTERS, VOL. 0, NO. 0, PAGES 0-0, M 0, 2001 On the Pacific Ocean regime shift

    E-Print Network [OSTI]

    GEOPHYSICAL RESEARCH LETTERS, VOL. 0, NO. 0, PAGES 0-0, M 0, 2001 On the Pacific Ocean regime shift variability of Pacific Ocean upper ocean heat content is examined for the 1948-1998 period using gridded-wide phenomenon affecting the thermal structure from 60 S to 70 N. EOF analysis of the Pacific Ocean heat content

  1. Short Communication Three ocean state indices implemented in

    E-Print Network [OSTI]

    ), the tropical cyclone heat potential, showing the thermal energy available in the ocean to enhance or decrease-case scenario, they also allow users to anticipate the effects of environmental hazards and pollution crises

  2. Influence of bacterial uptake on deep-ocean dissolved organic Jrgen Bendtsen and Claus Lundsgaard

    E-Print Network [OSTI]

    loop in the aphotic zone based on new measurements of deep ocean bacterial metabolism. These together ocean circulation, we show that the observed gradient of DOC in the deep North Atlantic can be explained by the temperature dependence of bacterial metabolic activity in conjunction with the formation of deep-water at high

  3. Design, prototyping, and testing of an apparatus for establishing a linear temperature gradient in experimental fish tanks

    E-Print Network [OSTI]

    Kadri, Romi Sinclair

    2014-01-01

    Immunology researchers require a new type of fish tank that provides a linear thermal gradient for experimental zebrafish in order to improve the accuracy and validity of their research. Zebrafish require the ability to ...

  4. Gas Exchange, Partial Pressure Gradients,

    E-Print Network [OSTI]

    Riba Sagarra, Jaume

    Gas Exchange, Partial Pressure Gradients, and the Oxygen Window Johnny E. Brian, Jr., M. Inherent unsaturation. Partial pressure vacancy. Most divers with an interest in decompression diving have affect the precise gas exchange occurring in individual areas of the lungs and body tissues. To make

  5. Thermal Gradient Holes At Blue Mountain Geothermal Area (Fairbank &

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013) |InformationThe2009) | Open Energy2008) ||

  6. Thermal Gradient Holes At Breitenbush Hot Springs Area (Ingebritsen, Et

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013) |InformationThe2009) | Open Energy2008) ||Al., 1993) | Open

  7. Thermal Gradient Holes At Hualalai Northwest Rift Area (Thomas, 1986) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013) |InformationThe2009) | Open Energy2008)

  8. Thermal Gradient Holes At Long Valley Caldera Geothermal Area (Lachenbruch,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013) |InformationThe2009) | Open Energy2008)| OpenEt Al., 1976)

  9. Thermal Gradient Holes At Lake City Hot Springs Area (Warpinski...

    Open Energy Info (EERE)

    or drilling of production wells. Some deep wells, several seismic lines, limited gravity surveys, and geochemical and geological studies have suggested that the geothermal...

  10. Thermal Gradient Holes At Mt Princeton Hot Springs Geothermal...

    Open Energy Info (EERE)

    the area References J. Held, F. Henderson (2012) New developments in Colorado geothermal energy projects Additional References Retrieved from "http:en.openei.orgw...

  11. Thermal Gradient Holes At Lightning Dock Geothermal Area (Arnold...

    Open Energy Info (EERE)

    Arnold, Anderson, Donaldson, Foster, Gutjahr, Hatton, Hill, Martinez (1978) New Mexico's Energy Resources '77: Office of the State Geologist Additional References Retrieved from...

  12. Thermal Gradient Holes At Fenton Hill HDR Geothermal Area (Purtymun...

    Open Energy Info (EERE)

    Valles caldera in order to locate an of high heat flow that would serve as a favorable test site for the HDR concept. Notes Data from these wells are report in Reiter et al....

  13. THERMAL GRADIENT MIGRATION OF BRINE INCLUSIONS IN SALT

    E-Print Network [OSTI]

    Yagnik, S.K.

    2010-01-01

    OF BRINE INCLUSIONS IN SALT Suresh K. Yagnik February 1982 TOF BRINE INCLUSIONS IN SALT by Suresh K. Yagnik Materialsb u i l t in future. The salt deposits, however, are known

  14. Thermal Gradient Holes At Spencer Hot Springs Area (Shevenell...

    Open Energy Info (EERE)

    Activity Date Usefulness useful DOE-funding Unknown Notes Collaboration with the gold mining industry has brought two new geothermal discoveries to the attention of the geothermal...

  15. Thermal Gradient Holes At Roosevelt Hot Springs Geothermal Area...

    Open Energy Info (EERE)

    References S. H. Ward, W. T. Parry, W. P. Nash, W. R. Sill, K. L. Cook, R. B. Smith, D. S. Chapman, F. H. Brown, J. A. Whelan, J. R. Bowman (1978) A Summary of the...

  16. Thermal Gradient Holes At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Regime of Long Valley Caldera. Journal of Geophysical Research. 81(5):763-768. J.L. Smith,R.W. Rex. 1977. Drilling results from eastern Long Valley Caldera. () : American...

  17. Thermal Gradient Holes At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    studies, and seem to prove useful in most cases (Flexser, 1991; Goff et al., 1991; Smith and Suemnicht, 1991). Results from these studies are also summarized in Sorey et al....

  18. Thermal Gradient Holes At Lightning Dock Geothermal Area (Cunniff...

    Open Energy Info (EERE)

    holes drilled References R.A. Cunniff, R.L. Bowers (2003) Final Report: Enhanced Geothermal Systems Technology Phase II: Animas Valley, New Mexico Additional References...

  19. Pumpernickel Valley Geothermal Project Thermal Gradient Wells | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource HistoryPotentialRuralUtilityScalePVGeneration JumpPublic Utility District No 2Pumped Hydro Jump

  20. Thermal Gradient Holes At Central Nevada Seismic Zone Region (Pritchett,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJ AutomationTexas/WindEnergy Information 1968-1971) JumpAlum2004)

  1. Thermal Gradient Holes At Coso Geothermal Area (1974) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJ AutomationTexas/WindEnergy Information 1968-1971)Open

  2. Thermal Gradient Holes At Coso Geothermal Area (1976) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJ AutomationTexas/WindEnergy Information

  3. Thermal Gradient Holes At Long Valley Caldera Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJ AutomationTexas/WindEnergyOpen Energy Information2005)

  4. Thermal Gradient Holes At Waunita Hot Springs Geothermal Area (Zacharakis,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJ AutomationTexas/WindEnergyOpenInformation Silver Peak1981) |

  5. Effective Thermal Conductivity of Graded Nanocomposites with Interfacial Thermal

    E-Print Network [OSTI]

    Paulino, Glaucio H.

    .M. Yin", G. H. Paulino", W.G. Buttlar", and L.Z. Sun'' '^Department of Civil and Environmental the effective thermal conductivity distribution in functionally graded materials (FGMs) considering the Kapitza is developed to derive the averaged heat flux field of the particle phase. Then the temperature gradient can

  6. GFD-2 OC-513 Spring 2013 P.B. Rhines MWF 10.30-11.20 Ocean Teaching Building 205

    E-Print Network [OSTI]

    => potential vorticity thermal wind · rotation and stratification: the layered, stiffened ocean fluid · Ekman: wind-stress and buoyancy flux · stratification and the `quiet' interior water column · mapping

  7. An Introduction to the Conjugate Gradient Method

    E-Print Network [OSTI]

    the convergence of the Jacobi Method, Steepest Descent, and Conjugate Gradients. Other topics includeAn Introduction to the Conjugate Gradient Method Without the Agonizing Pain Jonathan Richard 15213 Abstract The Conjugate Gradient Method is the most prominent iterative method for solving sparse

  8. Ocean and Resources Engineering is the application of ocean science and engineering to the challenging conditions

    E-Print Network [OSTI]

    engineering, mixing and transport, water quality, ocean thermal energy conversion, hydrogen. GENO PAWLAK to waves and current, sediment transport, high pressure and temperature variations, and renewable energy methods, water wave mechanics, sediment transport. R. CENGIZ ERTEKIN Professor, PhD 1984, UC Berkeley

  9. Impact of modern climate change on the intercommunication: Global ocean-land (Northern Hemisphere)

    SciTech Connect (OSTI)

    Lobanova, H.V.; Lobanov, V.A.; Stepanenko, S.R.

    1996-12-31

    Two main temperature gradients define the synoptic and climatic conditions on the earth in general: equator-pole gradient and ocean-land gradient. The analysis of temperature on the basis of new cyclic-different-scales conception has been fulfilled in every important part of the climatic system in the Northern Hemisphere for assessment of their vulnerability to modern climate change. Historical time series of monthly surface temperature have been used for this aim in the points of regular grid over the Northern Hemisphere from 1891 to 1992. The main feature of the temperature in main climatic parts of the earth is a complexity of its spatial structure. New methods of spatial decomposition have been developed for the division of this complex fields structure into characteristics of mean value of the field and index of its non-homogeneity or spatial variation. It has been established, that the temperature gradient between ocean and land is increasing that is characterized of the increasing of an intensity of synoptic processes, their spatial non-homogeneity and more frequent appearance of the extreme synoptic events. The models of intercommunications between coefficients of temperature spatial decomposition over the ocean and land have been developed for two time period and the increasing of the relationships closeness has been established between ocean and land as well as the decrease of main planet gradient: the pole(the Polar ocean)-equator.

  10. INTEGRATED OCEAN DRILLING PROGRAM 2011 OCEAN DRILLING CITATION REPORT

    E-Print Network [OSTI]

    INTEGRATED OCEAN DRILLING PROGRAM 2011 OCEAN DRILLING CITATION REPORT covering citations related to the Deep Sea Drilling Project, Ocean Drilling Program, and Integrated Ocean Drilling Program from Geo Drilling Program Publication Services September 2011 #12;OVERVIEW OF THE OCEAN DRILLING CITATION DATABASE

  11. CoastWatch/OceanWatch Proving Ground: VIIRS Ocean Color

    E-Print Network [OSTI]

    ;VIIRS Operational Ocean Color User: NWS/EMC · Phytoplankton alter the penetration of solar radiationCoastWatch/OceanWatch Proving Ground: VIIRS Ocean Color User Engagement, Quality Assessment Science Seminar #12;Outline Overview of VIIRS Ocean Color Proving Ground (Hughes) VIIRS Ocean Color

  12. Our Ocean Backyard Santa Cruz Sentinel columns by Gary Griggs, Director, Institute of Marine Sciences, UC Santa Cruz.

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    the ocean--wave power, tidal or current power, offshore wind power, and ocean thermal energy conversion Sciences, UC Santa Cruz. #15 November 8, 2008 Energy and the oceans­part 2 The San Onofre Power plant is one of only two commercial nuclear power plants in California. Important questions about energy

  13. Ocean Energy Technology Overview

    SciTech Connect (OSTI)

    none,

    2009-08-05

    Introduction to and overview of ocean renewable energy resources and technologies prepared for the U.S. Department of Energy Federal Energy management Program.

  14. Temperature-Aware MPSoC Scheduling for Reducing Hot Spots and Gradients

    E-Print Network [OSTI]

    Coskun, Ayse

    to manufacture reliable systems while meeting energy and performance constraints. In this work, we solve the task, San Diego Abstract-- Thermal hot spots and temperature gradients on the die need to be minimized is optimal. We compare our technique against optimal scheduling methods for energy minimization, energy

  15. Time changes in gradient and observed winds 

    E-Print Network [OSTI]

    Carlson, Ronald Dale

    1972-01-01

    OF FIGURES. 1. INXRODUCTION. 2. BACKGROUND AND STATEI'U':NT OF THE PROBLEM. . a. Previous studies. b. Statement of the problem. c. Objectives. 3. THEORETICAL CONSIDERATIONS. a. Gradient wind equation. b. Time rate-of-change of the gradient wind. . 4... for curvature of the height contours on the upper-level synoptic charts. Of the forces and accelerations contained in the complete horizontal equations of motion, those which do not appear in the gradient wind approximation are the frictional force...

  16. Optimization of synchronization in gradient clustered networks

    E-Print Network [OSTI]

    Xingang Wang; Liang Huang; Ying-Cheng Lai; Choy Heng Lai

    2007-11-23

    We consider complex clustered networks with a gradient structure, where sizes of the clusters are distributed unevenly. Such networks describe more closely actual networks in biophysical systems and in technological applications than previous models. Theoretical analysis predicts that the network synchronizability can be optimized by the strength of the gradient field but only when the gradient field points from large to small clusters. A remarkable finding is that, if the gradient field is sufficiently strong, synchronizability of the network is mainly determined by the properties of the subnetworks in the two largest clusters. These results are verified by numerical eigenvalue analysis and by direct simulation of synchronization dynamics on coupled-oscillator networks.

  17. Ocean General Circulation Models

    SciTech Connect (OSTI)

    Yoon, Jin-Ho; Ma, Po-Lun

    2012-09-30

    1. Definition of Subject The purpose of this text is to provide an introduction to aspects of oceanic general circulation models (OGCMs), an important component of Climate System or Earth System Model (ESM). The role of the ocean in ESMs is described in Chapter XX (EDITOR: PLEASE FIND THE COUPLED CLIMATE or EARTH SYSTEM MODELING CHAPTERS). The emerging need for understanding the Earth’s climate system and especially projecting its future evolution has encouraged scientists to explore the dynamical, physical, and biogeochemical processes in the ocean. Understanding the role of these processes in the climate system is an interesting and challenging scientific subject. For example, a research question how much extra heat or CO2 generated by anthropogenic activities can be stored in the deep ocean is not only scientifically interesting but also important in projecting future climate of the earth. Thus, OGCMs have been developed and applied to investigate the various oceanic processes and their role in the climate system.

  18. Response of photosynthesis to ocean acidification

    E-Print Network [OSTI]

    Mackey, KRM; Morris, JJ; Morris, JJ; Morel, FMM; Kranz, SA

    2015-01-01

    sub- tropical North Pacific Ocean. Aquatic Microbial Ecologytropical Atlantic and Pacific Oceans and contributes sub-

  19. Approximate error conjugation gradient minimization methods

    DOE Patents [OSTI]

    Kallman, Jeffrey S

    2013-05-21

    In one embodiment, a method includes selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, calculating an approximate error using the subset of rays, and calculating a minimum in a conjugate gradient direction based on the approximate error. In another embodiment, a system includes a processor for executing logic, logic for selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, logic for calculating an approximate error using the subset of rays, and logic for calculating a minimum in a conjugate gradient direction based on the approximate error. In other embodiments, computer program products, methods, and systems are described capable of using approximate error in constrained conjugate gradient minimization problems.

  20. Mesoscale Coupled Ocean-Atmosphere Interaction

    E-Print Network [OSTI]

    Seo, Hyodae

    2007-01-01

    curl) and downwind (crosswind) SST gradient, similar to theal. (2001). Downwind and crosswind SST gradient are computedcurl) and downwind (crosswind) SST gradient appear to be

  1. Mesoscale coupled ocean-atmosphere interaction

    E-Print Network [OSTI]

    Seo, Hyodae

    2007-01-01

    curl) and downwind (crosswind) SST gradient, similar to theal. (2001). Downwind and crosswind SST gradient are computedcurl) and downwind (crosswind) SST gradient appear to be

  2. Mapping the Potential of U.S. Ocean Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    undertaken to date to accurately define the magnitude and location of U.S. and global wave, tidal, ocean thermal, and continental U.S. river hydrokinetic resources. With more...

  3. The Effects Of High Pressure-High Temperature On Some Physical Properties Of Ocean Sediments

    E-Print Network [OSTI]

    Morin, Roger

    1983-01-01

    A series of laboratory experiments was conducted with four ocean sediments, two biogenic oozes and two clays. Permeability and thermal conductivity were directly measured as a function of porosity and the testing program ...

  4. A magmatic trigger for the Paleocene-Eocene thermal maximum?

    E-Print Network [OSTI]

    Dubin, Andrea Rose

    2015-01-01

    Fifty-six million years ago Earth experienced rapid global warming (~6°C) that was caused by the release of large amounts of carbon into the ocean-atmosphere system. This Paleocene-Eocene Thermal Maximum (PETM) is often ...

  5. Z .Mechanics of Materials 27 1998 91110 Effects of thermal gradient and residual stresses on thermal

    E-Print Network [OSTI]

    Nakamura, Toshio

    Engineering, State UniÕersity of New York, Stony Brook, NY 11794, USA b Department of Materials Science and Engineering, State UniÕersity of New York, Stony Brook, NY 11794, USA Received 5 May 1997; received in revised of that of Zbulk zirconia Herman and Shankar, 1987; McPher- .son, 1989; Bengtsson and Johannesson, 1995 . 0167

  6. Ocean Energy Resource Basics

    Broader source: Energy.gov [DOE]

    Although the potential for ocean energy technologies is believed to be very large, no comprehensive studies have been conducted to date to determine an accurate resource assessment for the United States.

  7. ENCYCLOPEDIA OCEAN SCIENCES

    E-Print Network [OSTI]

    ENCYCLOPEDIA OF OCEAN SCIENCES Editor-in-Chief JOHN H. STEELE Editors STEVE A. THORPE KARL K in Marine Biology 26: 115-168. Rosland Rand Giske .I (1997) A dynamic model for tbe life history

  8. An Enhanced Nonlinear Critical Gradient for Electron Turbulent Transport due to Reversed Magnetic Shear

    SciTech Connect (OSTI)

    Peterson, J. L.; Hammet, G. W.; Mikkelsen, D. R.; Yuh, H. Y.; Candy, J.; Guttenfelder, W.; Kaye, S. M.; LeBlanc, B.

    2011-05-11

    The first nonlinear gyrokinetic simulations of electron internal transport barriers (e-ITBs) in the National Spherical Torus Experiment show that reversed magnetic shear can suppress thermal transport by increasing the nonlinear critical gradient for electron-temperature-gradient-driven turbulence to three times its linear critical value. An interesting feature of this turbulence is non- linearly driven off-midplane radial streamers. This work reinforces the experimental observation that magnetic shear is likely an effective way of triggering and sustaining e-ITBs in magnetic fusion devices.

  9. Measurement of thermodynamics using gradient flow

    E-Print Network [OSTI]

    Masakiyo Kitazawa; Masayuki Asakawa; Tetsuo Hatsuda; Takumi Iritani; Etsuko Itou; Hiroshi Suzuki

    2014-12-15

    We analyze bulk thermodynamics and correlation functions of the energy-momentum tensor in pure Yang-Mills gauge theory using the energy-momentum tensor defined by the gradient flow and small flow time expansion. Our results on thermodynamic observables are consistent with those obtained by the conventional integral method. The analysis of the correlation function of total energy supports the energy conservation. It is also addressed that these analyses with gradient flow require less statistics compared with the previous methods. All these results suggest that the energy-momentum tensor can be successfully defined and observed on the lattice with moderate numerical costs with the gradient flow.

  10. Thermal engine

    SciTech Connect (OSTI)

    Karnes, T.E.; Trupin, R.J.

    1984-01-03

    A thermal engine utilizing a strip of nitinol material or other thermally responsive shape memory effect material to drive a reciprocating output shaft, said strip of material forming a common wall between two different alternating temperature sources which thermally cycle the material.

  11. Transport across 48N in the Atlantic Ocean RICK LUMPKIN

    E-Print Network [OSTI]

    , Tallahassee, Florida K. PETER KOLTERMANN Bundesamt für Seeschiffahrt und Hydrographie, Hamburg, Germany for thermal wind calculations or the specific flux dataset chosen. In addition, flux-based calculations do. Introduction The partition of energy and freshwater flux between the ocean and the atmosphere and among various

  12. THE SPECTRUM OF OCEANIC VARIABILITY (Part 1) Stephen Riser, University of Washington

    E-Print Network [OSTI]

    Riser, Stephen C.

    , heating/cooling, tides, geothermal heating (generally large spatial scales, > 1000 km) Energy dissipation gradient yields ocean pressure force to the east. wind wind sea level wind 100° W140° E #12;ENSO Atmosphere;13 April 1993 31 July 1993 Rossby wave propagation is clearly evident near the Equator; at other latitudes

  13. The gradient flow in simple field theories

    E-Print Network [OSTI]

    Monahan, Christopher

    2015-01-01

    The gradient flow is a valuable tool for the lattice community, with applications from scale-setting to implementing chiral fermions. Here I focus on the gradient flow as a means to suppress power-divergent mixing. Power-divergent mixing stems from the hypercubic symmetry of the lattice regulator and is a particular difficulty for calculations of, for example, high moments of parton distribution functions. The gradient flow removes power-divergent mixing on the lattice, provided the flow time is kept fixed in physical units, at the expense of introducing a new physical scale in the continuum. One approach to dealing with this new scale is the smeared operator product expansion, a formalism that systematically connects nonperturbative calculations of flowed operators to continuum physics. I study the role of the gradient flow in suppressing power-divergent mixing and present the first nonperturbative study in scalar field theory.

  14. The gradient flow in simple field theories

    E-Print Network [OSTI]

    Christopher Monahan

    2015-12-01

    The gradient flow is a valuable tool for the lattice community, with applications from scale-setting to implementing chiral fermions. Here I focus on the gradient flow as a means to suppress power-divergent mixing. Power-divergent mixing stems from the hypercubic symmetry of the lattice regulator and is a particular difficulty for calculations of, for example, high moments of parton distribution functions. The gradient flow removes power-divergent mixing on the lattice, provided the flow time is kept fixed in physical units, at the expense of introducing a new physical scale in the continuum. One approach to dealing with this new scale is the smeared operator product expansion, a formalism that systematically connects nonperturbative calculations of flowed operators to continuum physics. I study the role of the gradient flow in suppressing power-divergent mixing and present the first nonperturbative study in scalar field theory.

  15. Scale-up characteristics of salinity gradient power technologies

    E-Print Network [OSTI]

    Feinberg, Benjamin Jacob

    2014-01-01

    gradient power,” Energy and Environmental Science, 4 (2011)gradient power,” Energy and Environmental Science, 4 (2011)to reverse osmosis, Energy & Environmental Science, 3 (2010)

  16. BRUCE HOWE Chair and Professor , PhD 1986, UC San Diego. Ocean observatories, ocean acoustic tomography, sensor webs

    E-Print Network [OSTI]

    . NIHOUS Associate Professor, PhD 1983, UC Berkeley. Ocean Thermal Energy Conversion (OTEC), marine renewable energy, hydrodynamics. EVA-MARIE NOSAL Assistant Professor, PhD 2007 Hawaii. Passive acoustic. JOHN C. WILTSHIRE Associate Specialist, PhD 1983, Hawaii. Marine mineral deposits, marine mining

  17. Mesoscale coupled ocean-atmosphere interaction

    E-Print Network [OSTI]

    Seo, Hyodae

    2007-01-01

    mesoscale oceanic features are current coarse resolutionmesoscale r current variability associated with oceanic ringthe TIW- currents. These mesoscale oceanic and atmospheric

  18. Mesoscale Coupled Ocean-Atmosphere Interaction

    E-Print Network [OSTI]

    Seo, Hyodae

    2007-01-01

    mesoscale oceanic features are current coarse resolutionmesoscale r current variability associated with oceanic ringthe TIW- currents. These mesoscale oceanic and atmospheric

  19. AOML is an environmental laboratory of NOAA's Office of Oceanic and Atmospheric Research on Virginia Key in Miami, Florida ATLANTIC OCEANOGRAPHIC AND METEOROLOGICAL LABORATORY

    E-Print Network [OSTI]

    the thermal struc- ture of the upper ocean. SOOP is a global network of commer- cial vessels that aid NOAA are to investigate the variability of the ocean's upper thermal structure at high latitudes (AX01 and AX02 transects storage and the global transport of heat and fresh water, which are crucial for improving climate

  20. The thermal structure of continental crust in active orogens: insight fromMioceneeclogiteandgranulitexenolithsofthePamirMountains

    E-Print Network [OSTI]

    Meyers, Stephen R.

    The thermal structure of continental crust in active orogens: insight from in the Pamir Mountains, southeastern Tajikistan, preserve a compositional and thermal record at mantle depths. The extraction depths exceed the present-day Pamir Moho at 65 km depth and suggest an average thermal gradient

  1. Massachusetts Ocean Management Plan (Massachusetts)

    Broader source: Energy.gov [DOE]

    The Massachusetts Ocean Act of 2008 required the state’s Secretary of Energy and Environmental Affairs to develop a comprehensive ocean management plan for the state by the end of 2009. That plan...

  2. Steroid estrogens in ocean sediments 

    E-Print Network [OSTI]

    Braga, O.; Smythe, G.A.; Schäfer, Andrea; Feitz, A.J.

    2005-01-01

    This paper gives results from a study measuring the abundance of steroid hormones in ocean sediments in the proximity of a deep ocean sewage outfall. The outfall is discharge point for an enhanced primary sewage treatment ...

  3. Critical gradient formula for toroidal electron temperature gradient modes F. Jenko, W. Dorland,a)

    E-Print Network [OSTI]

    Hammett, Greg

    Critical gradient formula for toroidal electron temperature gradient modes F. Jenko, W. Dorland and edge plasmas are presented. An algebraic formula for the threshold of the linear instability is derived formula. We discuss the results with respect to previous analytical results and to experimental

  4. Turbulent electron transport in edge pedestal by electron temperature gradient turbulence

    SciTech Connect (OSTI)

    Singh, R.; Institute for Plasma Research, Bhat Gandhinagar, Gujarat 2382 428 ; Jhang, Hogun; Diamond, P. H.; CMTFO and CASS, University of California, San Diego 92093-0424, California

    2013-11-15

    We present a model for turbulent electron thermal transport at the edge pedestal in high (H)-mode plasmas based on electron temperature gradient (ETG) turbulence. A quasi-linear analysis of electrostatic toroidal ETG modes shows that both turbulent electron thermal diffusivity and hyper-resistivity exhibits the Ohkawa scaling in which the radial correlation length of turbulence becomes the order of electron skin depth. Combination of the Ohkawa scales and the plasma current dependence results in a novel confinement scaling inside the pedestal region. It is also shown that ETG turbulence induces a thermoelectric pinch, which may accelerate the density pedestal formation.

  5. A Global Pattern of Thermal Adaptation in Marine Phytoplankton

    E-Print Network [OSTI]

    A Global Pattern of Thermal Adaptation in Marine Phytoplankton Mridul K. Thomas,1,2 * Colin T temperatures this century will cause poleward shifts in species' thermal niches and a sharp decline in tropical in ocean stratification, which in turn leads to a decrease in nutrient supply to sur- face waters. However

  6. Ocean Engineering Development Team

    E-Print Network [OSTI]

    Wood, Stephen L.

    the same conditions). 3) To demonstrate a working knowledge of fluid mechanics, naval architecture: Design/Fluid Mechanics Major: Ocean Engineering, Junior Focus: Naval Architecture and High Speed Small vessel under a variety of foil configurations, sea conditions, propulsion states and loads. 2) To perform

  7. Ocean Circulation Lynne D Talley

    E-Print Network [OSTI]

    Talley, Lynne D.

    to the topography, with low pressure in the center. Ocean currents transport heat from the tropics to the poles have gone to sea. As knowledge about ocean currents and capabilities to observe it below the surfaceOcean Circulation Lynne D Talley Volume 1, The Earth system: physical and chemical dimensions

  8. 6, 51375162, 2006 Oceanic ozone

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ACPD 6, 5137­5162, 2006 Oceanic ozone deposition velocity C. W. Fairall et al. Title Page Abstract Discussions Water-side turbulence enhancement of ozone deposition to the ocean C. W. Fairall1 , D. Helmig2 , L. Fairall (chris.fairall@noaa.gov) 5137 #12;ACPD 6, 5137­5162, 2006 Oceanic ozone deposition velocity C. W

  9. Strategic Plan National Ocean Service

    E-Print Network [OSTI]

    Strategic Plan of the National Ocean Service 2005-2010 U.S. Department of Commerce National Oceanic Strategic Plan for 2005 to 2010. This Plan heralds a new era for the ocean and coasts as NOS responds these challenges. The NOS Strategic Plan is synchronous with the NOAA Strategic Plan -- one NOAA, one workforce

  10. December 2001 OCEAN DRILLING PROGRAM

    E-Print Network [OSTI]

    December 2001 OCEAN DRILLING PROGRAM LEG 203 SCIENTIFIC PROSPECTUS DRILLING AT THE EQUATORIAL -------------------------------- Dr. Jack Bauldauf Deputy Director of Science Operations Ocean Drilling Program Texas A&M University. Acton Leg Project Manager and Staff Scientist Ocean Drilling Program Texas A&M University 1000 Discovery

  11. February 2002 OCEAN DRILLING PROGRAM

    E-Print Network [OSTI]

    February 2002 OCEAN DRILLING PROGRAM LEG 204 SCIENTIFIC PROSPECTUS DRILLING GAS HYDRATES ON HYDRATE -------------------------------- Dr. Jack Baldauf Deputy Director of Science Operations Ocean Drilling Program Texas A&M University Richter Leg Project Manager and Staff Scientist Ocean Drilling Program Texas A&M University 1000 Discovery

  12. November 2002 OCEAN DRILLING PROGRAM

    E-Print Network [OSTI]

    November 2002 OCEAN DRILLING PROGRAM LEG 208 SCIENTIFIC PROSPECTUS EARLY CENOZOIC EXTREME CLIMATES -------------------------------- Dr. Jack Baldauf Deputy Director of Science Operations Ocean Drilling Program Texas A&M University Leg Project Manager and Staff Scientist Ocean Drilling Program Texas A&M University 1000 Discovery

  13. Engineering by Design Ocean Engineering

    E-Print Network [OSTI]

    Virginia Tech

    Engineering by Design Ocean Engineering Bachelor of Science Degree Virginia Tech For more engineering is a diverse field. At Virginia Tech, the major focus areas are ocean energy systems and ocean in the aerospace and related industries and in the shipbuilding, naval engineering, and ship design fields. Some

  14. Ninth Annual Ocean Renewable Energy Conference

    Broader source: Energy.gov [DOE]

    The future of clean, renewable ocean wave energy will be discussed in depth at the 2014 Ocean Renewable Energy Conference.

  15. High pressure liquid chromatographic gradient mixer

    DOE Patents [OSTI]

    Daughton, Christian G. (San Pablo, CA); Sakaji, Richard H. (El Cerrito, CA)

    1985-01-01

    A gradient mixer which effects the continuous mixing of any two miscible solvents without excessive decay or dispersion of the resultant isocratic effluent or of a linear or exponential gradient. The two solvents are fed under low or high pressure by means of two high performance liquid chromatographic pumps. The mixer comprises a series of ultra-low dead volume stainless steel tubes and low dead volume chambers. The two solvent streams impinge head-on at high fluxes. This initial nonhomogeneous mixture is then passed through a chamber packed with spirally-wound wires which cause turbulent mixing thereby homogenizing the mixture with minimum "band-broadening".

  16. High-pressure liquid chromatographic gradient mixer

    DOE Patents [OSTI]

    Daughton, C.G.; Sakaji, R.H.

    1982-09-08

    A gradient mixer effects the continuous mixing of any two miscible solvents without excessive decay or dispersion of the resultant isocratic effluent or of a linear or exponential gradient. The two solvents are fed under low or high pressure by means of two high performance liquid chromatographic pumps. The mixer comprises a series of ultra-low dead volume stainless steel tubes and low dead volume chambers. The two solvent streams impinge head-on at high fluxes. This initial nonhomogeneous mixture is then passed through a chamber packed with spirally-wound wires which cause turbulent mixing thereby homogenizing the mixture with minimum band-broadening.

  17. 17 GHz High Gradient Accelerator Research

    SciTech Connect (OSTI)

    Temkin, Richard J.; Shapiro, Michael A.

    2013-07-10

    This is a report on the MIT High Gradient Accelerator Research program which has included: Operation of the 17 GHz, 25 MeV MIT/Haimson Research Corp. electron accelerator at MIT, the highest frequency, stand-alone accelerator in the world; collaboration with members of the US High Gradient Collaboration, including the design and test of novel structures at SLAC at 11.4 GHz; the design, construction and testing of photonic bandgap structures, including metallic and dielectric structures; the investigation of the wakefields in novel structures; and the training of the next generation of graduate students and postdoctoral associates in accelerator physics.

  18. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    Solar Thermal Collectors .is solar energy. Solar thermal collector arrays can be usedon integrating solar thermal collectors with desalination

  19. Drake passage and central american seaway controls on the distribution of the oceanic carbon reservoir

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fyke, Jeremy G.; D'Orgeville, Marc; Weaver, Andrew J.

    2015-05-01

    A coupled carbon/climate model is used to explore the impact of Drake Passage opening and Central American Seaway closure on the distribution of carbon in the global oceans. We find that gateway evolution likely played an important role in setting the modern day distribution of oceanic dissolved inorganic carbon (DIC), which is currently characterized by relatively low concentrations in the Atlantic ocean, and high concentrations in the Southern, Indian, and Pacific oceans. In agreement with previous studies, we find a closed Drake Passage in the presence of an open Central American Seaway results in suppressed Atlantic meridional overturning and enhancedmore »southern hemispheric deep convection. Opening of the Drake Passage triggers Antarctic Circumpolar Current flow and a weak Atlantic meridional overturning circulation (AMOC). Subsequent Central American Seaway closure reinforces the AMOC while also stagnating equatorial Pacific subsurface waters. These gateway-derived oceanographic changes are reflected in large shifts to the global distribution of DIC. An initially closed Drake Passage results in high DIC concentrations in the Atlantic and Arctic oceans, and lower DIC concentrations in the Pacific/Indian/Southern oceans. Opening Drake Passage reverses this gradient by lowering mid-depth Atlantic and Arctic DIC concentrations and raising deep Pacific/Indian/Southern Ocean DIC concentrations. Central American Seaway closure further reinforces this trend through additional Atlantic mid-depth DIC decreases, as well as Pacific mid-depth DIC concentration increases, with the net effect being a transition to a modern distribution of oceanic DIC.« less

  20. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    and thermal energy storage in solar thermal applications,"aided or powered by solar thermal energy. A section is alsoexhaustive review of solar thermal energy systems has been

  1. Advanced Thermal Control

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    thermal models power density cost lifetime Advanced Thermal Interface Materials Advanced Heat Transfer Technologies Air Cooling Thermal System Performance and Integration Thermal...

  2. Universal Microfluidic Gradient Generator Daniel Irimia1

    E-Print Network [OSTI]

    Geba, Dan-Andrei

    Universal Microfluidic Gradient Generator Daniel Irimia1 , Dan A Geba2 , Mehmet Toner1 1 Bio, Building 114, 16th St, Charlestown, MA 02129. Email: mtoner@hms.harvard.edu Keywords: microfluidics cells in vitro. While microfluidic devices have shown unmatched capability in generating linear stable

  3. Ant Colony Optimization and Stochastic Gradient Descent

    E-Print Network [OSTI]

    Libre de Bruxelles, Université

    process is biased toward the generation of approximate solutions of improving quality. The historic rst (ACO) for an important logistic problem [R. Palm, personal communication]. As a consequence, the ACO show that some ACO algorithms approximate gradient descent of the expected value of the solution p

  4. Multi-gradient drilling method and system

    DOE Patents [OSTI]

    Maurer, William C. (Houston, TX); Medley, Jr., George H. (Spring, TX); McDonald, William J. (Houston, TX)

    2003-01-01

    A multi-gradient system for drilling a well bore from a surface location into a seabed includes an injector for injecting buoyant substantially incompressible articles into a column of drilling fluid associated with the well bore. Preferably, the substantially incompressible articles comprises hollow substantially spherical bodies.

  5. Gradient zone-boundary control in salt-gradient solar ponds

    DOE Patents [OSTI]

    Hull, J.R.

    1982-09-29

    A method and apparatus for suppressing zone boundary migration in a salt gradient solar pond includes extending perforated membranes across the pond at the boundaries, between the convective and non-convective zones, the perforations being small enough in size to prevent individual turbulence disturbances from penetrating the hole, but being large enough to allow easy molecular diffusion of salt thereby preventing the formation of convective zones in the gradient layer. The total area of the perforations is a sizeable fraction of the membrane area to allow sufficient salt diffusion while preventing turbulent entrainment into the gradient zone.

  6. Heat flux measurement from thermal infrared imagery in low-flux fumarolic zones: Example of the Ty fault (La Soufrire de Guadeloupe)

    E-Print Network [OSTI]

    Beauducel, François

    the geothermal flux of a dormant volcano is necessary both for hazard assessment and for studying hydrothermal for the thermal infrared method, and 275 ± 50 W/m2 for the vertical temperature gradient method), if surface through connected porosity and fissures of rocks in which the thermal vertical gradient is nil. Near

  7. Strategies for gas production from oceanic Class 3 hydrate accumulations

    E-Print Network [OSTI]

    Moridis, George J.; Reagan, Matthew T.

    2007-01-01

    where the local geothermal gradient may vary significantly,of the onshore geothermal gradient. Geological System

  8. Dielectric-Lined High-Gradient Accelerator Structure

    SciTech Connect (OSTI)

    Jay L. Hirshfield

    2012-04-24

    Rectangular particle accelerator structures with internal planar dielectric elements have been studied, with a view towards devising structures with lower surface fields for a given accelerating field, as compared with structures without dielectrics. Success with this concept is expected to allow operation at higher accelerating gradients than otherwise on account of reduced breakdown probabilities. The project involves studies of RF breakdown on amorphous dielectrics in test cavities that could enable high-gradient structures to be built for a future multi-TeV collider. The aim is to determine what the limits are for RF fields at the surfaces of selected dielectrics, and the resulting acceleration gradient that could be achieved in a working structure. The dielectric of principal interest in this study is artificial CVD diamond, on account of its advertised high breakdown field ({approx}2 GV/m for dc), low loss tangent, and high thermal conductivity. Experimental studies at mm-wavelengths on materials and structures for achieving high acceleration gradient were based on the availability of the 34.3 GHz third-harmonic magnicon amplifier developed by Omega-P, and installed at the Yale University Beam Physics Laboratory. Peak power from the magnicon was measured to be about 20 MW in 0.5 {micro}s pulses, with a gain of 54 dB. Experiments for studying RF high-field effects on CVD diamond samples failed to show any evidence after more than 10{sup 5} RF pulses of RF breakdown up to a tangential surface field strength of 153 MV/m; studies at higher fields were not possible due to a degradation in magnicon performance. A rebuild of the tube is underway at this writing. Computed performance for a dielectric-loaded rectangular accelerator structure (DLA) shows highly competitive properties, as compared with an existing all-metal structure. For example, comparisons were made of a DLA structure having two planar CVD diamond elements with a all-metal CERN structure HDS operating at 30 GHz. It was shown that the ratio of maximum surface electric field to accelerating field at the metal wall is only 0.35-0.4 for DLA, much smaller than the value 2.2 for HDS; and the ratio of surface magnetic field to accelerating field is 3.0 mA/V for DLA, compared with 3.45 mA/V for HDS. These values bode well for DLA in helping to avoid breakdown and to reducing pulsed surface heating and fatigue. The shunt impedance is found to be 160-175 M{Omega}/m for DLA, as compared to 99 M{Omega}/m for HDS. Conclusions are reached from this project that CVD diamond appears promising as a dielectric with a high threshold for RF breakdown, and that rectangular accelerator structures can be devised using planar CVD diamond elements that could be operated at higher acceleration gradients with low probability of RF breakdown, as compared with corresponding all-metallic structures.

  9. The thermal conductivity of sediments as a function of porosity 

    E-Print Network [OSTI]

    Miller, James W

    1979-01-01

    as thermal barriers to heat and tend to insulate the surrounding material. Fig, 1 shows how the temperature gradient changes when a high pressured zone is encountered. Assuming the flow of heat through any zone obeys Fourier's law, the following equation... = thermal con- aT ductivity of the material, and z is the depth below the mudline. It can be seen from Equation 1 that if the heat flux, q, is constant and the temperature gradient, ~, is increased as is the case for a high z pressured zone...

  10. Ocean dynamics and thermodynamics in the tropical Indo- Pacific region

    E-Print Network [OSTI]

    Drushka, Kyla

    2011-01-01

    Pacific Oceans . . . . . . . . . . . . . . . . . . . . . . . . . . . . .in the eastern tropical Pacific Ocean associated with thethe western equatorial Pacific Ocean. J. Geophys. Res. , 96,

  11. Automated apparatus for producing gradient gels

    DOE Patents [OSTI]

    Anderson, N.L.

    1983-11-10

    Apparatus for producing a gradient gel which serves as a standard medium for a two-dimensional analysis of proteins, the gel having a density gradient along its height formed by a variation in gel composition, with the apparatus including first and second pumping means each including a plurality of pumps on a common shaft and driven by a stepping motor capable of providing small incremental changes in pump outputs for the gel ingredients, the motors being controlled, by digital signals from a digital computer, a hollow form or cassette for receiving the gel composition, means for transferring the gel composition including a filler tube extending near the bottom of the cassette, adjustable horizontal and vertical arms for automatically removing and relocating the filler tube in the next cassette, and a digital computer programmed to automatically control the stepping motors, arm movements, and associated sensing operations involving the filling operation.

  12. High gradient accelerators for linear light sources

    SciTech Connect (OSTI)

    Barletta, W.A.

    1988-09-26

    Ultra-high gradient radio frequency linacs powered by relativistic klystrons appear to be able to provide compact sources of radiation at XUV and soft x-ray wavelengths with a duration of 1 picosecond or less. This paper provides a tutorial review of the physics applicable to scaling the present experience of the accelerator community to the regime applicable to compact linear light sources. 22 refs., 11 figs., 21 tabs.

  13. Steep Gradient Flume | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren) Jumpand MaintenanceStationary PowerformStecaSteep Gradient

  14. Results of geothermal gradient core hole TCB-1, Tecuamburro volcano geothermal site, Guatemala, Central America

    SciTech Connect (OSTI)

    Adams, A.I.; Chipera, S.; Counce, D.; Gardner, J.; Goff, S.; Goff, F.; Heiken, G.; Laughlin, A.W.; Musgrave, J.; Trujillo, P.E. Jr. (Los Alamos National Lab., NM (United States)); Aycinena, S.; Martinelli, L. (Swissboring Overseas Corp. Ltd., Guatemala City (Guatemala)); Castaneda, O.; Revolorio, M.; Roldan, A. (Unidad de Desarrollo Geotermico, Guatemala City (Guatemala). Inst. Nacional de Electrificacion); D

    1992-02-01

    Results of geological, volcanological, hydrogeochemical, and geophysical field studies conducted in 1988 and 1989 at the Tecuamburro volcano geothermal site in Guatemala indicated that there is a substantial shallow heat source beneath the area of youngest volcanism. To obtain information on subsurface temperatures and temperature gradients, stratigraphy, hydrothermal alteration, fracturing, and possible inflows of hydrothermal fluids, a geothermal gradient core hole (TCB-1) was drilled to 808 m low on the northern flank of the Tecuamburro volcano Complex, 300 km south of a 300-m-diameter phreatic crater, Laguna Ixpaco, dated at 2,910 years. Gases from acid-sulfate springs near Laguna Ixpaco consistently yield maximum estimated subsurface temperatures of 250--300{degrees}C. The temperature versus depth curve from TCB-1 does not show isothermal conditions and the calculated thermal gradients from 500--800 m is 230{degrees}C/km. Bottom hole temperature is 238{degrees}C. Calculated heat flow values are nearly 9 heat flow units (HFU). The integration of results from the TCB-1 gradient core hole with results from field studies provides strong evidence that the Tecuamburro area holds great promise for containing a commercial geothermal resource.

  15. ARM - Oceanic Properties

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments?govInstrumentsnoaacrnBarrow, Alaska OutreachCalendar NSA Related Links AntarcticaNews fromOceanic

  16. Ocean | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg, Oregon:OGE Energy Resources, IncIncOccidental,OceanLtd

  17. OCEAN THERMAL ENERGY CONVERSION: AN OVERALL ENVIRONMENTAL ASSESSMENT

    E-Print Network [OSTI]

    Sands, M.Dale

    2013-01-01

    include the choice of power cycle (open or closed), plat-both closed- and open-power cycles and 1~volve. land-based,

  18. OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS

    E-Print Network [OSTI]

    Sands, M. D.

    2011-01-01

    of open and hybrid OTEC power cycles. Pages VII 45 - VII 67.6 ALTERNATIVES 6 • 1 POWER CYCLE 6.2 PLATFORM CONFIGURATION.features of a closed power cycle include: Release of trace

  19. Ocean thermal energy. Quarterly report, April-June 1982

    SciTech Connect (OSTI)

    Not Available

    1982-06-30

    This quarterly report includes summaries of the following tasks: (1) OTEC pilot plant conceptual design review; (2) OTEC methanol; (3) management decision requirements for OTEC construction; (4) hybrid geothermal - OTEC (GEOTEC) power plant performance estimates; and (5) supervision of testing of pneumatic wave energy conversion system.

  20. OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS

    E-Print Network [OSTI]

    Sands, M. D.

    2011-01-01

    3). The counties of Hawaii, Maui and Kauai, comprise 9%, 7%,POPULATION = 33,800) KAUAI HAWAII COUNTY -------. ; (Hawaii and Maui will increase to 10% to 12%, and 8% to 9%, respectively, and Kauai

  1. OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS

    E-Print Network [OSTI]

    Sands, M. D.

    2011-01-01

    possible Plate-Type Heat Exchanger Estimated Relationshipseawater plate-type heat exchanger design is illustrated in6. One possible Plate Type Heat Exchanger Source: Berndt and

  2. OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS

    SciTech Connect (OSTI)

    Sands, M. D.

    1980-01-01

    This programmatic environmental analysis is an initial assessment of OTEC technology considering development, demonstration and commercialization; it is concluded that the OTEC development program should continue because the development, demonstration, and commercialization on a single-plant deployment basis should not present significant environmental impacts. However, several areas within the OTEC program require further investigation in order to assess the potential for environmental impacts from OTEC operation, particularly in large-scale deployments and in defining alternatives to closed-cycle biofouling control: (1) Larger-scale deployments of OTEC clusters or parks require further investigations in order to assess optimal platform siting distances necessary to minimize adverse environmental impacts. (2) The deployment and operation of the preoperational platform (OTEC-1) and future demonstration platforms must be carefully monitored to refine environmental assessment predictions, and to provide design modifications which may mitigate or reduce environmental impacts for larger-scale operations. These platforms will provide a valuable opportunity to fully evaluate the intake and discharge configurations, biofouling control methods, and both short-term and long-term environmental effects associated with platform operations. (3) Successful development of OTEC technology to use the maximal resource capabilities and to minimize environmental effects will require a concerted environmental management program, encompassing many different disciplines and environmental specialties.

  3. OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS

    E-Print Network [OSTI]

    Sands, M. D.

    2011-01-01

    KILOMETERS () = FOSSIL GENERATING PLANT NUMBER WITHIN PLANTKaupo o () = FOSSIL GENERATING PLANT NUMBER WITHIN PLANTSea o = o FOSSIL GENERATING PLANT HYDROELECTRIC GENERATING

  4. OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS

    E-Print Network [OSTI]

    Sands, M. D.

    2011-01-01

    Working Fluid Process Product Process Requirement FuelNo fuel in a conventional sense 1S used. working fluid is

  5. DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS

    E-Print Network [OSTI]

    Sullivan, S.M.

    2014-01-01

    fauna associated with offshore platforms in Mexico. Fish.aspects of siting OTEC plants offshore the United States onthe high seas, and offshore other countries. In G. L.

  6. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS

    E-Print Network [OSTI]

    Sullivan, S.M.

    2014-01-01

    fauna associated with offshore platforms in the northeasternaspects of siting OTEC plants offshore the United States onthe high seas, and offshore other countries. In G. L.

  7. OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS

    E-Print Network [OSTI]

    Sands, M. D.

    2011-01-01

    Mexico. Energy Research and Development Administration, Division of SolarMexico. Energy Research and Development Administration, Division of Solar

  8. OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS

    E-Print Network [OSTI]

    Sands, M. D.

    2011-01-01

    Sperm whale E Dugong E Caribbean manatee Hawaiian monk sealCaribbean monk seal E E Northwest Hawaiian Islands (NWHI) E

  9. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS

    E-Print Network [OSTI]

    Sullivan, S.M.

    2014-01-01

    Caribbean Monachus schauinslandi Hawaiian monk seal EHawaiian Islands Monachus troeicalis Caribbean monk seal E

  10. DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS

    E-Print Network [OSTI]

    Sullivan, S.M.

    2014-01-01

    manatee E Off Florida, Caribbean Hawaiian monk seal ENorthwest Hawaiian Islands (NWHI) Caribbean monk seal E

  11. Ocean Thermal Energy Conversion (OTEC) | Seawater Cooling - Depth...

    Open Energy Info (EERE)

    Author National Renewable Energy Laboratory Maintainer Nicholas Langle bureaucode 019:20 Catalog DOE harvestobjectid 3ba3acfd-d54a-4a3d-a971-1cf4ac97fcb0 harvestsourceid...

  12. OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS

    E-Print Network [OSTI]

    Sands, M. D.

    2011-01-01

    skipjack tuna, Katsuwonnus pelamis, in an offshore area oflittle tuna), Katsuwonus pelamis (skipj ack), spp. ,

  13. Ocean thermal energy. Quarterly report, January-March 1982

    SciTech Connect (OSTI)

    Not Available

    1982-03-30

    This quarterly report summarizes work of the following tasks as of March 31, 1982: OTEC pilot plant conceptual design review; OTEC methanol; review of electrolyzer development programs and requirements; financial and legal considerations in OTEC implementation; potential Navy sites for GEOTEC systems; hybrid geothermal-OTEC power plants: single-cycle performance estimates; and supervision of testing of pneumatic wave energy conversion system.

  14. OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS

    E-Print Network [OSTI]

    Sands, M. D.

    2011-01-01

    treatment As above eFederal Aviation Administration Heliport licensing Point source discharge See Safety/Health Section 5 Federal Water Pollution

  15. Ocean Thermal Extractable Energy Visualization: Final Technical Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool Fits the BillDepartmentSitesUMTRCA3 ANNUALPrograms inDevelopmentFernald Preserve

  16. Ocean Thermal Extractable Energy Visualization: Final Technical Report |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyApril 2014Department ofWindOPENOccurrence Reporting and

  17. Oceans and Ecosystems Research Changing levels of Oceanic Carbon

    E-Print Network [OSTI]

    in the atmospheric, the remainder is taken up by land plants and oceans. · We study the uptake by the oceans both EPA qualified the increasing CO2 levels as a pollutant along with the other greenhouse gases Ch4, N2O & wind Algorithm development pCO2= f(SST, color) Co-located satellite data Regional satellite SST & color

  18. OCEAN PREDICTION WITH THE HYBRID COORDINATE OCEAN MODEL (HYCOM)

    E-Print Network [OSTI]

    . of South Florida, Fugro-GEOS, ROFFS, Orbimage, Shell, ExxonMobil #12;414 ERIC P. CHASSIGNET ET AL-resolving, real-time global and basin-scale ocean prediction system in the context of the Global Ocean Data Assimilation Experiment (GODAE). Keywords: HYCOM, GODAE, LAS, data assimilation, metrics. 1. Introduction

  19. Coastal ocean margins program

    SciTech Connect (OSTI)

    Not Available

    1988-12-01

    The marine research program supported by the Office of Energy Research, Ecological Research Division, is focused to provide scientific information on major environmental issues facing development and expansion of most energy technologies and energy policy. These issues include waste disposal, siting/operations, and possible long term effects on global systems. The research is concentrated along the United States coastal margins where marine waters provide abundant food and resources while assimilating discharges from atmospheric, terrestrial, and aquatic sources. The program focuses on the formation and transport of particles within the waters of the continental shelf and the fate of these particles, whether on the shelf, on the slope, or in the open ocean. The program is conducted with multidisciplinary teams of researchers who investigate water mass movements, biological productivity, and naturally forming particles, as well as contaminant transport, to develop a clear understanding of the exchanges of contaminants and other materials that take place between continental shelf and open ocean waters. Seventy-five percent of the projects are funded to university grantees and twenty-five percent to National Laboratories.

  20. Scalar gradient behaviour in MILD combustion

    E-Print Network [OSTI]

    Minamoto, Y.; Swaminathan, N.

    2013-10-22

    must be improved constantly to achieve high efficiency and reduced emission simultaneously to meet the ever stringent emission legisla- tion and environmental requirements. A number of approaches are being explored to meet these requirements. Although... the heat in the exhaust stream. The preheating results in higher flame temperature which can cause the thermal NOx to increase if there is substantial level of oxygen in the reactant stream. The thermal NOx formation can also be reduced by using the exhaust...

  1. The effect of density gradient on the growth rate of relativistic Weibel instability

    SciTech Connect (OSTI)

    Mahdavi, M.; Khodadadi Azadboni, F.

    2014-02-15

    In this paper, the effect of density gradient on the Weibel instability growth rate is investigated. The density perturbations in the near corona fuel, where temperature anisotropy, ?, is larger than the critical temperature anisotropy, ?{sub c}, (??>??{sub c}), enhances the growth rate of Weibel instability due to the sidebands coupled with the electron oscillatory velocity. But for ??thermal spread of the energetic electrons reduces the growth rate. Also, the growth rate can be reduced if the relativistic parameter (Lorentz factor) is sufficiently large, ??>?2. The analysis shows that relativistic effects and density gradient tend to stabilize the Weibel instability. The growth rate can be reduced by 88% by reducing ? by a factor of 100 and increasing relativistic parameter by a factor of 3.

  2. Modeling Ocean Ecosystems: The PARADIGM Program

    E-Print Network [OSTI]

    Rothstein, Lewis M.

    The role of the oceans in Earth systems ecology, and the effects of climate variability on the ocean and its ecosystems, can be understood only by observing, describing, and ultimately predicting the state of the ocean as ...

  3. Oceans and Human Health (and climate change)

    E-Print Network [OSTI]

    Zhou, Xianghong Jasmine

    Oceans and Human Health (and climate change) Tracy K. Collier Science Dimensions and Ocean Health in a Changing Climate, USC March 12, 2013 1 #12 use Climate change Closes the loop in understanding connections between ocean health and human health

  4. Pelagic Polychaetes of the Pacific Ocean

    E-Print Network [OSTI]

    Dales, K Phillips

    1957-01-01

    Polyc'kaetes of the Pacific Ocean CLAPARtDE,E. 1868. LesPolyc'haetes of the Pacific Ocean KINBERG, J. G. H. 1866.Polyc'kaetes of the Pacific Ocean TREADWELL, A. L. 1906.

  5. Marine Ecosystems Ocean Environment Research Division

    E-Print Network [OSTI]

    been studying how CO2 emissions affect the ocean system for more than three decades and conQnue to monitor ocean acidificaQon in all the world's oceans from

  6. HOW TO COOK OCEAN PERCH

    E-Print Network [OSTI]

    , is an excellent food fish with firm fle h. When cooked, the meat is white and flaky, with a delicate flavor. Ocean to the consumer until 1935. At that time, the indlu;try began experimenting with filleting and freezing ocean pel

  7. November 2002 OCEAN DRILLING PROGRAM

    E-Print Network [OSTI]

    November 2002 OCEAN DRILLING PROGRAM LEG 209 SCIENTIFIC PROSPECTUS DRILLING MANTLE PERIDOTITE ALONG Drilling Program Texas A&M University 1000 Discovery Drive College Station TX 77845-9547 USA -------------------------------- Dr. D. Jay Miller Leg Project Manager and Staff Scientist Ocean Drilling Program Texas A&M University

  8. January 2003 OCEAN DRILLING PROGRAM

    E-Print Network [OSTI]

    January 2003 OCEAN DRILLING PROGRAM LEG 210 SCIENTIFIC PROSPECTUS DRILLING THE NEWFOUNDLAND HALF OF THE NEWFOUNDLAND­IBERIA TRANSECT: THE FIRST CONJUGATE MARGIN DRILLING IN A NON-VOLCANIC RIFT Brian E. Tucholke Co Baldauf Deputy Director of Science Operations Ocean Drilling Program Texas A&M University 1000 Discovery

  9. Exploration geothermal gradient drilling, Platanares, Honduras, Central America

    SciTech Connect (OSTI)

    Goff, S.J.; Laughlin, A.W.; Ruefenacht, H.D.; Goff, F.E.; Heiken, G.; Ramos, N.

    1988-01-01

    This paper is a review and summary of the core drilling operations component of the Honduras Geothermal Resource Development Project at the Platanares geothermal prospect in Honduras, Central America. Three intermediate depth (428 to 679 m) coreholes are the first continuously cored geothermal exploration boreholes in Honduras. These coring operations are part of the Central America Energy Resource Project (CAERP) effort funded by the Agency for International Development (AID) and implemented by the Los Alamos National Laboratory (Los Alamos) in cooperation with the Empresa Nacional de Energia Electrica (ENEE) and the United States Geological Survey (USGS). This report emphasizes coring operations with reference to the stratigraphy, thermal gradient, and flow test data of the boreholes. The primary objectives of this coring effort were (1) to obtain quantitative information on the temperature distribution as a function of depth, (2) to recover fluids associated with the geothermal reservoir, (3) to recover 75% or better core from the subsurface rock units, and (4) to drill into the subsurface rock as deeply as possible in order to get information on potential reservoir rocks, fracture density, permeabilities, and alteration histories of the rock units beneath the site. The three exploration coreholes drilled to depths of 650, 428 and 679 m, respectively, encountered several hot water entries. Coring operations and associated testing began in mid-October 1986 and were completed at the end of June 1987.

  10. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01

    varying solar energy inputs and thermal or power demands. Itusing aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"

  11. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    of solar collectors and thermal energy storage in solaraided or powered by solar thermal energy. A section is alsobesides MVC require thermal energy as their primary energy

  12. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    15] O. A. Hamed, "THERMAL PERFORMANCE OF MULTISTAGE FLASHdesa4.aspx. [18] Encon, "Thermal Evaporators," June 2013. [http://www.evaporator.com/thermal-evaporator. [19] Y. Tian

  13. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01

    of such an aquifer thermal storage system were studied andusing aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"

  14. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    This requires no thermal storage tanks, but can have athe need for large thermal storage equipment, the evaporatorinclude analysis of thermal storage. A way of keeping the

  15. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01

    aquifers for thermal energy storage. Problems outlined aboveModeling of Thermal Energy Storage in Aquifers," Proceed-ings of Aquifer Thermal Energy Storage Workshop, Lawrence

  16. Polyakov loop renormalization with gradient flow

    E-Print Network [OSTI]

    Peter Petreczky; Hans-Peter Schadler

    2015-11-14

    We propose to use the gradient flow for the renormalization of Polyakov loops in various representations. We study Polyakov loops in 2+1 flavor QCD using the HISQ action and lattices with temporal extents $N_\\tau$=6, 8, 10 and 12 in various representations, including fundamental, sextet, adjoint, decuplet, 15-plet and 27-plet. This alternative renormalization procedure allows for the renormalization over a large temperature range from $T$=100 MeV - 800 MeV, with small errors not only for the fundamental, but also for the higher representations of the Polyakov loop. We discuss the results of this procedure and Casimir scaling of the Polyakov loop.

  17. Ocean Surface Topography Mission/ Jason 2 Launch

    E-Print Network [OSTI]

    Ocean Surface Topography Mission/ Jason 2 Launch PreSS KiT/JUNe 2008 #12;#12;Media Contacts Steve .............................................................................................................................. 7 Why Study Ocean Surface Topography

  18. Iron Availability in the Southern Ocean

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Iron Availability in the Southern Ocean Print The Southern Ocean, circling the Earth between Antarctica and the southernmost regions of Africa, South America, and Australia, is...

  19. California Small Hydropower and Ocean Wave Energy

    E-Print Network [OSTI]

    California Small Hydropower and Ocean Wave Energy Resources IN SUPPORT OF THE 2005 INTEGRATED....................................................................................................................... 9 Ocean Wave Energy............................................................................................................. 20 Wave Energy Conversion Technology

  20. Contribution of oceanic gas hydrate dissociation to the formation of Arctic Ocean methane plumes

    E-Print Network [OSTI]

    Reagan, M.

    2012-01-01

    temperature based on a geothermal gradient of 8.7 ?C/100 m (match the desired initial geothermal gradient and supply theCase II.1: Reduced geothermal gradient Case II.2: Decreased

  1. Functionally gradient material for membrane reactors to convert methane gas into value-added products

    DOE Patents [OSTI]

    Balachandran, U.; Dusek, J.T.; Kleefisch, M.S.; Kobylinski, T.P.

    1996-11-12

    A functionally gradient material for a membrane reactor for converting methane gas into value-added-products includes an outer tube of perovskite, which contacts air; an inner tube which contacts methane gas, of zirconium oxide, and a bonding layer between the perovskite and zirconium oxide layers. The bonding layer has one or more layers of a mixture of perovskite and zirconium oxide, with the layers transitioning from an excess of perovskite to an excess of zirconium oxide. The transition layers match thermal expansion coefficients and other physical properties between the two different materials. 7 figs.

  2. Functionally gradient material for membrane reactors to convert methane gas into value-added products

    DOE Patents [OSTI]

    Balachandran, Uthamalingam (Hinsdale, IL); Dusek, Joseph T. (Lombard, IL); Kleefisch, Mark S. (Napersville, IL); Kobylinski, Thadeus P. (Lisle, IL)

    1996-01-01

    A functionally gradient material for a membrane reactor for converting methane gas into value-added-products includes an outer tube of perovskite, which contacts air; an inner tube which contacts methane gas, of zirconium oxide, and a bonding layer between the perovskite and zirconium oxide layers. The bonding layer has one or more layers of a mixture of perovskite and zirconium oxide, with the layers transitioning from an excess of perovskite to an excess of zirconium oxide. The transition layers match thermal expansion coefficients and other physical properties between the two different materials.

  3. Gas flow driven by thermal creep in dusty plasma T. M. Flanagan and J. Goree

    E-Print Network [OSTI]

    Goree, John

    Gas flow driven by thermal creep in dusty plasma T. M. Flanagan and J. Goree Department of Physics 2009 Thermal creep flow TCF is a flow of gas driven by a temperature gradient along a solid boundary to the bulk gas, causing the bulk gas to flow, thereby stirring the suspension of dust particles. This result

  4. Thermal structure of continental upper mantle inferred from S-wave velocity and surface heat ow

    E-Print Network [OSTI]

    Snieder, Roel

    ; geothermal gradient 1. Introduction Oceanic lithosphere is continuously recycled by mantle convection geotherms differ most at depths of 60^120 km with variations of up to 900³C. Below 230 km, differences do not exceed 300³C. These geotherms agree well with one-dimensional conductive geotherms for the observed range

  5. "Towards Optics-Based Measurements in Ocean Observatories"

    E-Print Network [OSTI]

    Boss, Emmanuel S.

    /JPSS ­ UAV ­ Ocean optics, Biological ­ Laser penetration New opportunity · Insitu Sensors ­ (Gliders"Towards Optics-Based Measurements in Ocean Observatories" "Ocean Observatories Contributions to Ocean Models and Data Assimilation For Ecosystems" Ocean Optics 2012 Glasgow Scotland Robert Arnone

  6. The Ocean Sampling Day Consortium

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kopf, Anna; Bicak, Mesude; Kottmann, Renzo; Schnetzer, Julia; Kostadinov, Ivaylo; Lehmann, Katja; Fernandez-Guerra, Antonio; Jeanthon, Christian; Rahav, Eyal; Ullrich, Matthias; et al

    2015-06-19

    In this study, Ocean Sampling Day was initiated by the EU-funded Micro B3 (Marine Microbial Biodiversity, Bioinformatics, Biotechnology) project to obtain a snapshot of the marine microbial biodiversity and function of the world’s oceans. It is a simultaneous global mega-sequencing campaign aiming to generate the largest standardized microbial data set in a single day. This will be achievable only through the coordinated efforts of an Ocean Sampling Day Consortium, supportive partnerships and networks between sites. This commentary outlines the establishment, function and aims of the Consortium and describes our vision for a sustainable study of marine microbial communities and theirmore »embedded functional traits.« less

  7. Thermal Transport in Nanoporous Materials for Energy Applications

    E-Print Network [OSTI]

    Fang, Jin

    2012-01-01

    Thermal Conductivity Measurement . . . . . . . . . . . . .Thermal ConductivityThermal Conductivity . . . . . . . . . . . . . . . .Thermal

  8. The Link Foundation Ocean Engineering and Instrumentation

    E-Print Network [OSTI]

    Virginia Tech

    and ocean instrumentation. Application Available online at www.linkoe.org or write to/email: Forms and DrThe Link Foundation Ocean Engineering and Instrumentation Ph.D. Fellowship Program Objectives: To foster ocean engineering and ocean instrumentation research; to enhance both the theoretical

  9. Response of photosynthesis to ocean acidification

    E-Print Network [OSTI]

    Mackey, KRM; Morris, JJ; Morris, JJ; Morel, FMM; Kranz, SA

    2015-01-01

    primary productiv- ity, especially in the oligotrophic regions of the ocean. In addition to the energy

  10. OCEAN DRILLING PROGRAM LEG 165 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 165 SCIENTIFIC PROSPECTUS CARIBBEAN OCEAN HISTORY AND THE CRETACEOUS Scientist, Leg 165 Ocean Drilling Program Texas A&M University Research Park 1000 Discovery Drive College of any portion requires the written consent of the Director, Ocean Drilling Program, Texas A&M University

  11. OCEAN DRILLING PROGRAM LEG 110 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 110 SCIENTIFIC PROSPECTUS LESSER ANTILLES FOREARC J. Casey Moore Staff Science Representative, Leg 110 Ocean Drilling Program Texas A&M University College Station, TX 77843-3469 Philip D. Direct* Ocean Drilling Program Robert B. Kidd Manager of Science Operations Ocean

  12. INSTRUCTIONS INTEGRATED OCEAN DRILLING PROGRAM (IODP)

    E-Print Network [OSTI]

    INSTRUCTIONS FOR THE INTEGRATED OCEAN DRILLING PROGRAM (IODP) MANUSCRIPT AND PHOTOGRAPH COPYRIGHT, Integrated Ocean Drilling Program, 1000 Discovery Drive, College Station, Texas 77845, USA A signed copyright of the Integrated Ocean Drilling Program or any other publications of the Integrated Ocean Drilling Program. Author

  13. OCEAN DRILLING PROGRAM LEG 109 PRELIMINARY REPORT

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 109 PRELIMINARY REPORT BARE ROCK DRILLING IN THE MID-ATLANTIC RIDGE RIFT 109 Ocean Drilling Program Texas A & M University College Station, TX 77843-3469 Philip D. Rabinowitz Director Ocean Drilling Program Robert B. Kidd Manager of Science Operations Ocean Drilling Program Louis E

  14. OCEAN DRILLING PROGRAM LEG 104 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 104 SCIENTIFIC PROSPECTUS NORWEGIAN SEA Olav Eldholm Co-Chief Scientist Ocean Drilling Program Texas A & M University College Station, Texas 77843-3469 Pni±ip o Rabinowitz Director Ocean Drilling Program Robert B Kidd Manager of Science Operations Ocean Drilling Program Louis E

  15. WORLD OCEAN ATLAS 2013 Product Documentation

    E-Print Network [OSTI]

    WORLD OCEAN ATLAS 2013 Product Documentation Ocean Climate Laboratory NODC / NESDIS / NOAA Silver: World Ocean Atlas 2013 Product Documentation. T. Boyer, Ed.; A. Mishonov, Technical Ed.; 14 pp such as mixed layer depth. Upon publishing Climatological Atlas of the World Ocean in 1982, he distributed

  16. Heat Content Changes in the Pacific Ocean

    E-Print Network [OSTI]

    Frandsen, Jannette B.

    Heat Content Changes in the Pacific Ocean The Acoustic Thermometry of Ocean Cli- mate (ATOC assimilating ocean observations and changes expected from surface heat fluxes as measured by the daily National are a result of advection of heat by ocean currents. We calculate that the most likely cause of the discrepancy

  17. Thermoacoustic mixture separation with an axial temperature gradient

    SciTech Connect (OSTI)

    Geller, Drew W; Swift, Gregory A

    2008-01-01

    The theory of thermoacoustic mixture separation is extended to include the effect of a nonzero axial temperature gradient. The analysis yields a new term in the second-order mole flux that is proportional to the temperature gradient and to the square of the volumetric velocity and is independent of the phasing of the wave. Because of this new term, thermoacoustic separation stops at a critical temperature gradient and changes direction above that gradient. For a traveling wave, this gradient is somewhat higher than that predicted by a simple four-step model. An experiment tests the theory for temperature gradients from 0 to 416 K/m in 50-50 He-Ar mixtures.

  18. Method for determining thermal conductivity and thermal capacity per unit volume of earth in situ

    DOE Patents [OSTI]

    Poppendiek, Heinz F. (LaJolla, CA)

    1982-01-01

    A method for determining the thermal conductivity of the earth in situ is based upon a cylindrical probe (10) having a thermopile (16) for measuring the temperature gradient between sets of thermocouple junctions (18 and 20) of the probe after it has been positioned in a borehole and has reached thermal equilibrium with its surroundings, and having means (14) for heating one set of thermocouple junctions (20) of the probe at a constant rate while the temperature gradient of the probe is recorded as a rise in temperature over several hours (more than about 3 hours). A fluid annulus thermally couples the probe to the surrounding earth. The recorded temperature curves are related to the earth's thermal conductivity, k.sub..infin., and to the thermal capacity per unit volume, (.gamma.c.sub.p).sub..infin., by comparison with calculated curves using estimates of k.sub..infin. and (.gamma.c.sub.p).sub..infin. in an equation which relates these parameters to a rise in the earth's temperature for a known and constant heating rate.

  19. Newsletter of Coastal Ocean Processes

    E-Print Network [OSTI]

    Science Workshop Executive Summary Draft OCEAN.US Airlie House Workshop Update Evolution of the Cross and the following working groups: 1.Trace elements in ecological and biogeochemical processes 2.Physical forcing

  20. Mercury in the Anthropocene Ocean

    E-Print Network [OSTI]

    Lamborg, Carl

    The toxic metal mercury is present only at trace levels in the ocean, but it accumulates in fish at concentrations high enough to pose a threat to human and environmental health. Human activity has dramatically altered the ...

  1. Ocean Renewable Energy Conference X

    Broader source: Energy.gov [DOE]

    The 10th annual Ocean Renewable Energy Conference provides attendees a forum to share new ideas and concepts, opportunity to learn from leading-edge practitioners and policy-makers, information...

  2. Constant field gradient planar coupled cavity structure

    DOE Patents [OSTI]

    Kang, Y.W.; Kustom, R.L.

    1999-07-27

    A cavity structure is disclosed having at least two opposing planar housing members spaced apart to accommodate the passage of a particle beam through the structure between the members. Each of the housing members have a plurality of serially aligned hollows defined therein, and also passages, formed in the members, which interconnect serially adjacent hollows to provide communication between the hollows. The opposing planar housing members are spaced and aligned such that the hollows in one member cooperate with corresponding hollows in the other member to form a plurality of resonant cavities aligned along the particle beam within the cavity structure. To facilitate the obtaining of a constant field gradient within the cavity structure, the passages are configured so as to be incrementally narrower in the direction of travel of the particle beam. In addition, the spacing distance between the opposing housing members is configured to be incrementally smaller in the direction of travel of the beam. 16 figs.

  3. High gradient lens for charged particle beam

    SciTech Connect (OSTI)

    Chen, Yu-Jiuan

    2014-04-29

    Methods and devices enable shaping of a charged particle beam. A dynamically adjustable electric lens includes a series of alternating a series of alternating layers of insulators and conductors with a hollow center. The series of alternating layers when stacked together form a high gradient insulator (HGI) tube to allow propagation of the charged particle beam through the hollow center of the HGI tube. A plurality of transmission lines are connected to a plurality of sections of the HGI tube, and one or more voltage sources are provided to supply an adjustable voltage value to each transmission line of the plurality of transmission lines. By changing the voltage values supplied to each section of the HGI tube, any desired electric field can be established across the HGI tube. This way various functionalities including focusing, defocusing, acceleration, deceleration, intensity modulation and others can be effectuated on a time varying basis.

  4. MPAS-Ocean Development Update

    SciTech Connect (OSTI)

    Jacobsen, Douglas W.; Ringler, Todd D.; Petersen, Mark R.; Jones, Philip W.; Maltrud, Mathew E.

    2012-06-13

    The Model for Prediction Across Scales (MPAS) is a modeling framework developed jointly between NCAR and LANL, built to allow core developers to: rapidly develop new dynamical cores, and leverage improvements made to shared codes. MPAS-Ocean (MPAS-O) is a functioning ocean model capable of high resolution, or highly vairable resolution simulations. The first MPAS-O publication is expected by the end of the year.

  5. Dept. of Ocean and Resources Engineering School of Ocean and Earth Science and Technology

    E-Print Network [OSTI]

    ) Only Indian and Pacific Ocean GlobalEEZ100km from shorelineAtlantic OceanIndo-Pacific #12;OTEC MODELINGDept. of Ocean and Resources Engineering School of Ocean and Earth Science and Technology of deep layers, Increase in THC strength 1) Global 2) EEZ 3)100km from Shoreline 4) Only Atlantic Ocean 5

  6. Ocean Sci., 5, 313327, 2009 www.ocean-sci.net/5/313/2009/

    E-Print Network [OSTI]

    Gnanadesikan, Anand

    . The role of the penetration length scale of short- wave radiation into the surface ocean and its impactOcean Sci., 5, 313­327, 2009 www.ocean-sci.net/5/313/2009/ © Author(s) 2009. This work is distributed under the Creative Commons Attribution 3.0 License. Ocean Science Regional impacts of ocean color

  7. Penetration of solar radiation in the upper ocean: A numerical model for oceanic and coastal waters

    E-Print Network [OSTI]

    Lee, Zhongping

    Penetration of solar radiation in the upper ocean: A numerical model for oceanic and coastal waters (2005), Penetration of solar radiation in the upper ocean: A numerical model for oceanic and coastal; Siegel et al., 1995] have demonstrated that the penetration of EVIS in the upper layer of the ocean plays

  8. Bernstein instability driven by thermal ring distribution

    SciTech Connect (OSTI)

    Yoon, Peter H.; Hadi, Fazal; Qamar, Anisa

    2014-07-15

    The classic Bernstein waves may be intimately related to banded emissions detected in laboratory plasmas, terrestrial, and other planetary magnetospheres. However, the customary discussion of the Bernstein wave is based upon isotropic thermal velocity distribution function. In order to understand how such waves can be excited, one needs an emission mechanism, i.e., an instability. In non-relativistic collision-less plasmas, the only known Bernstein wave instability is that associated with a cold perpendicular velocity ring distribution function. However, cold ring distribution is highly idealized. The present Brief Communication generalizes the cold ring distribution model to include thermal spread, so that the Bernstein-ring instability is described by a more realistic electron distribution function, with which the stabilization by thermal spread associated with the ring distribution is demonstrated. The present findings imply that the excitation of Bernstein waves requires a sufficiently high perpendicular velocity gradient associated with the electron distribution function.

  9. Gradient induced liquid motion on laser structured black Si surfaces

    E-Print Network [OSTI]

    Paradisanos, I; Anastasiadis, S H; Stratakis, E

    2015-01-01

    This letter reports on the femtosecond laser fabrication of gradient-wettability micro/nano- patterns on Si surfaces. The dynamics of directional droplet spreading on the surface tension gradients developed is systematically investigated and discussed. It is shown that microdroplets on the patterned surfaces spread at a maximum speed of 505 mm/sec, that is the highest velocity demonstrated so far for liquid spreading on a surface tension gradient in ambient conditions. The application of the proposed laser patterning technique for the precise fabrication of surface tension gradients for open microfluidic systems, liquid management in fuel cells and drug delivery is envisaged.

  10. Generalized Defect Energy in a Gradient Plasticity Framework

    E-Print Network [OSTI]

    Bayerschen, E

    2015-01-01

    A gradient plasticity model is presented that includes a generalized, power-law type defect energy depending on the gradient of an equivalent plastic strain. Numerical regularization for the case of vanishing gradients is employed in the finite element discretization of the theory. Three exemplary choices of the defect energy exponent are compared in finite element simulations of elastic-plastic tricrystals under tensile loading. The influence of the power-law exponent is discussed related to the distribution of gradients and in regard to size effects. In addition, an analytical solution is presented for the single slip case and allows to interpret the numerical findings.

  11. Geology and Temperature Gradient Surveys Blue Mountain Geothermal...

    Open Energy Info (EERE)

    Geology and Temperature Gradient Surveys Blue Mountain Geothermal Discovery, Humboldt County, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal...

  12. Permafrost and organic layer interactions over a climate gradient...

    Office of Scientific and Technical Information (OSTI)

    in permafrost occurrence (PF) and organic layer thickness (OLT) in more than 3000 soil pedons across a mean annual temperature (MAT) gradient. Cause and effect relationships...

  13. A Nonmonotone Approach without Differentiability Test for Gradient ...

    E-Print Network [OSTI]

    Elias S. Helou

    2015-03-18

    Mar 18, 2015 ... A Nonmonotone Approach without Differentiability Test for Gradient Sampling Methods. Elias S. Helou(elias ***at*** icmc.usp.br) Sandra A.

  14. Engineering chemoattractant gradients using controlled release polysaccharide microspheres

    E-Print Network [OSTI]

    Wang, Yana, Ph. D. Massachusetts Institute of Technology

    2012-01-01

    Chemoattractant gradients play important roles in the normal function of immune system, from lymphocyte homeostasis to mounting efficient immune responses against infection. Improved fundamental knowledge about the role ...

  15. Ocean Barrier Layers’ Effect on Tropical Cyclone Intensification

    SciTech Connect (OSTI)

    Balaguru, Karthik; Chang, P.; Saravanan, R.; Leung, Lai-Yung R.; Xu, Zhao; Li, M.; Hsieh, J.

    2012-09-04

    Improving a tropical cyclone's forecast and mitigating its destructive potential requires knowledge of various environmental factors that influence the cyclone's path and intensity. Herein, using a combination of observations and model simulations, we systematically demonstrate that tropical cyclone intensification is significantly affected by salinity-induced barrier layers, which are 'quasi-permanent' features in the upper tropical oceans. When tropical cyclones pass over regions with barrier layers, the increased stratification and stability within the layer reduce storm-induced vertical mixing and sea surface temperature cooling. This causes an increase in enthalpy flux from the ocean to the atmosphere and, consequently, an intensification of tropical cyclones. On average, the tropical cyclone intensification rate is nearly 50% higher over regions with barrier layers, compared to regions without. Our finding, which underscores the importance of observing not only the upper-ocean thermal structure but also the salinity structure in deep tropical barrier layer regions, may be a key to more skillful predictions of tropical cyclone intensities through improved ocean state estimates and simulations of barrier layer processes. As the hydrological cycle responds to global warming, any associated changes in the barrier layer distribution must be considered in projecting future tropical cyclone activity.

  16. Deployment, release and recovery of ocean riser pipes

    DOE Patents [OSTI]

    Person, Abraham (Los Alamitos, CA); Wetmore, Sherman B. (Westminster, CA); McNary, James F. (Santa Ana, CA)

    1980-11-18

    An ocean thermal energy conversion facility includes a long pipe assembly which is supported at its upper end by the hull of the floating facility. Cold water flows to the facility from deep in the ocean. The pipe assembly comprises an elongate pipe construction and a weight connected to the lower end of the construction by a line of selected length. A floatation collar is connected to the construction at its upper end to cause the construction to have positive buoyancy and a center of buoyancy closer to the upper end of the construction than its center of mass. The weight renders the entire pipe assembly negatively buoyant. In the event that support of the pipe assembly should be lost, as by release of the assembly from the facility hull in an emergency, the assembly sinks to the ocean floor where it is moored by the weight. The pipe construction floats submerged above the ocean floor in a substantially vertical attitude which facilitates recovery of the assembly.

  17. Coronal Heating Driven by Magnetic-gradient Pumping Mechanism in Solar Plasmas

    E-Print Network [OSTI]

    Tan, Baolin

    2014-01-01

    The solar coronal heating is a longstanding mystery in astrophysics. Considering that the solar magnetic field is spatially inhomogeneous with considerable magnetic gradient from solar surface to the corona, this work proposes a magnetic gradient pumping (MGP) mechanism and try to explain the formation of hot plasma upflows, such as the hot type II spicules and hot plasma ejections, etc. In MGP mechanism, the magnetic gradients drive the energetic particles to move upwards from the underlying solar atmosphere and form hot upflows. These upflow energetic particles deposit in corona and make it becoming very hot. Roughly estimations indicate that the solar corona can be heated to above 1 million degrees, and the upflow velocity is about 40 km/s in chromosphere and about 130 km/s in the corona. The solar magnetic flux tubes act as pumpers to extract energetic particles from the underlying thermal photosphere, convey them and deposit in the corona. The deposition of energetic particles will make the corona become...

  18. Coronal heating driven by a magnetic gradient pumping mechanism in solar plasmas

    SciTech Connect (OSTI)

    Tan, Baolin

    2014-11-10

    The heating of the solar corona is a longstanding mystery in astrophysics. Considering that the solar magnetic field is spatially inhomogeneous with a considerable magnetic gradient from the solar surface to the corona, this work proposes a magnetic gradient pumping (MGP) mechanism to try to explain the formation of hot plasma upflows, such as hot type II spicules and hot plasma ejections. In the MGP mechanism, the magnetic gradient may drive the energetic particles to move upward from the underlying solar atmosphere and form hot upflows. These upflow energetic particles are deposited in the corona, causing it to become very hot. Rough estimations indicate that the solar corona can be heated to above 1 million degrees, and the upflow velocity is about 40 km s{sup –1} in the chromosphere and about 130 km s{sup –1} in the corona. The solar magnetic flux tubes act as pumpers to extract energetic particles from the underlying thermal photosphere, convey them, and deposit them in the corona. The deposit of these energetic particles causes the corona to become hot, and the escape of such particles from the photosphere leaves it a bit cold. This mechanism can present a natural explanation to the mystery of solar coronal heating.

  19. Warm ocean anomaly, air sea fluxes, and the rapid intensification of tropical cyclone Nargis (2008)

    E-Print Network [OSTI]

    2008-01-01

    Profile Program) data base are searched to depict the detail UOTS structure. Sea surface height anom- aly are available. The cyclone track and intensity data is from the Unisys Weather (http://weather to Monthly Weather Review, 2008], in this work we investigate the role of upper ocean thermal structure (UOTS

  20. Ocean Heat Transport , Overturning Circulations, and some fine-resolution ASOF dynamics

    E-Print Network [OSTI]

    , seasonal storage of heat in the mixed layer balances air/sea heat flux, so only a mixed layer ocean of Europe? (i.e., is air-sea heat flux dominated by seasonal storage in the mixed layer?) We have argued, it is thermally driven'. Why? -salt diffusion is essential to overturning circulation, -diffusion is molecular

  1. Final Technical Report Modeling the Physical and Biochemical Influence of Ocean

    E-Print Network [OSTI]

    -EE0003638 Prepared For THE DEPARTMENT OF ENERGY (DOE): MARINE AND HYDROKINETIC INITIATIVE Prepared By MAKAI of the global OTEC resource dwarfs that of other other marine renewable energy technologies, and OTEC powerFinal Technical Report Modeling the Physical and Biochemical Influence of Ocean Thermal Energy

  2. Open ocean DMS air/sea fluxes over the eastern South Pacific Ocean

    E-Print Network [OSTI]

    Marandino, C. A; De Bruyn, W. J; Miller, S. D; Saltzman, E. S

    2009-01-01

    over the North Pacific Ocean, J. Geophys. Res. - Atmos. ,air/sea fluxes over S. Pacific Ocean References Asher, W.in the equa- torial Pacific Ocean ( 1982 to 1996): Evidence

  3. Enceladus's measured physical libration requires a global subsurface ocean

    E-Print Network [OSTI]

    Thomas, P C; Tiscareno, M S; Burns, J A; Joseph, J; Loredo, T J; Helfenstein, P; Porco, C

    2015-01-01

    Several planetary satellites apparently have subsurface seas that are of great interest for, among other reasons, their possible habitability. The geologically diverse Saturnian satellite Enceladus vigorously vents liquid water and vapor from fractures within a south polar depression and thus must have a liquid reservoir or active melting. However, the extent and location of any subsurface liquid region is not directly observable. We use measurements of control points across the surface of Enceladus accumulated over seven years of spacecraft observations to determine the satellite's precise rotation state, finding a forced physical libration of 0.120 $\\pm$ 0.014{\\deg} (2{\\sigma}). This value is too large to be consistent with Enceladus's core being rigidly connected to its surface, and thus implies the presence of a global ocean rather than a localized polar sea. The maintenance of a global ocean within Enceladus is problematic according to many thermal models and so may constrain satellite properties or requ...

  4. Ocean Fertilization and Other Climate Change Mitigation Strategies: An Overview

    SciTech Connect (OSTI)

    Huesemann, Michael H.

    2008-07-29

    In order to evaluate ocean fertilization in the larger context of other proposed strategies for reducing the threat of the global warming, a wide range of different climate change mitigation approaches are compared in terms of their long-term potential, stage of development, relative costs and potential risks, as well as public acceptance. This broad comparative analysis is carried out for the following climate change mitigation strategies: supply-side and end-use efficiency improvements, terrestrial and geological carbon sequestration, CO2 ocean disposal and iron fertilization, nuclear power, and renewable energy generation from biomass, passive solar, solar thermal, photovoltaics, hydroelectric and wind. In addition, because of the inherent problems of conducting an objective comparative cost-benefit analysis, two non-technological solutions to global warming are also discussed: curbing population growth and transitioning to a steady-state economy.

  5. On The Thermal Consolidation Of Boom Clay

    E-Print Network [OSTI]

    Delage, Pierre; Cui, Yu-Jun

    2012-01-01

    When a mass of saturated clay is heated, as in the case of host soils surrounding nuclear waste disposals at great depth, the thermal expansion of the constituents generates excess pore pressures. The mass of clay is submitted to gradients of pore pressure and temperature, to hydraulic and thermal flows, and to changes in its mechanical properties. In this work, some of these aspects were experimentally studied in the case of Boom clay, so as to help predicting the response of the soil, in relation with investigations made in the Belgian underground laboratory at Mol. Results of slow heating tests with careful volume change measurements showed that a reasonable prediction of the thermal expansion of the clay-water system was obtained by using the thermal properties of free water. In spite of the density of Boom clay, no significant effect of water adsorption was observed. The thermal consolidation of Boom clay was studied through fast heating tests. A simple analysis shows that the hydraulic and thermal trans...

  6. Hebbian Learning and Gradient Descent Learning Neural Computation : Lecture 5

    E-Print Network [OSTI]

    Bullinaria, John

    Hebbian Learning and Gradient Descent Learning Neural Computation : Lecture 5 © John A. Bullinaria, 2014 1. Hebbian Learning 2. Learning by Error Minimisation 3. Gradient Descent Learning 4. Deriving or persistently takes part in firing it, some growth process or metabolic change takes place on one or both cells

  7. Dynamics of the Dorsal morphogen gradient Jitendra S. Kanodiaa

    E-Print Network [OSTI]

    Shvartsman, Stanislav "Stas"

    Dynamics of the Dorsal morphogen gradient Jitendra S. Kanodiaa , Richa Rikhyb , Yoosik Kima Road, Princeton, NJ 08544; bCell Biology and Metabolism Branch, NIH, Building 32, 18 Library Drive localization gradient of Dorsal (Dl), a protein related to the mammalian NF- B transcription factors. Current

  8. Enhancing Optical Gradient Forces with Metamaterials Vincent Ginis,1

    E-Print Network [OSTI]

    Enhancing Optical Gradient Forces with Metamaterials Vincent Ginis,1 Philippe Tassin,2,* Costas M demonstrate how the optical gradient force between two waveguides can be enhanced using transformation optics perceived by light, resulting in a more than tenfold enhancement of the optical force. This process

  9. Evaluation of liquid lift approach to dual gradient 

    E-Print Network [OSTI]

    Okafor, Ugochukwu Nnamdi

    2009-05-15

    .............................................. 5 2.3 Methods of Achieving Dual Gradient Drilling ...................... 9 2.3.1 Subsea Mudlift Drilling............................................... 10 2.3.2 Hollow Glass Spheres... ................................................... 9 2.5 Schematic diagram of a modified subsea mudlift system .......................... 11 2.6 Hollow glass-spheres dual gradient drilling system................................... 13 2.7 A typical offshore drilling rig modified...

  10. Electrochemical-thermal modeling and microscale phase change for passive internal thermal management of lithium ion batteries.

    SciTech Connect (OSTI)

    Fuller, Thomas F.; Bandhauer, Todd; Garimella, Srinivas

    2012-01-01

    A fully coupled electrochemical and thermal model for lithium-ion batteries is developed to investigate the impact of different thermal management strategies on battery performance. In contrast to previous modeling efforts focused either exclusively on particle electrochemistry on the one hand or overall vehicle simulations on the other, the present work predicts local electrochemical reaction rates using temperature-dependent data on commercially available batteries designed for high rates (C/LiFePO{sub 4}) in a computationally efficient manner. Simulation results show that conventional external cooling systems for these batteries, which have a low composite thermal conductivity ({approx}1 W/m-K), cause either large temperature rises or internal temperature gradients. Thus, a novel, passive internal cooling system that uses heat removal through liquid-vapor phase change is developed. Although there have been prior investigations of phase change at the microscales, fluid flow at the conditions expected here is not well understood. A first-principles based cooling system performance model is developed and validated experimentally, and is integrated into the coupled electrochemical-thermal model for assessment of performance improvement relative to conventional thermal management strategies. The proposed cooling system passively removes heat almost isothermally with negligible thermal resistances between the heat source and cooling fluid. Thus, the minimization of peak temperatures and gradients within batteries allow increased power and energy densities unencumbered by thermal limitations.

  11. High Temperature Thermal Array for Next Generation Solar Thermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Temperature Thermal Array for Next Generation Solar Thermal Power Production High Temperature Thermal Array for Next Generation Solar Thermal Power Production This...

  12. Generalized Hooke's law for isotropic second gradient materials

    E-Print Network [OSTI]

    F. dell'Isola; G. Sciarra; S. Vidoli

    2010-08-17

    In the spirit of Germain the most general objective stored elastic energy for a second gradient material is deduced using a literature result of Fortun\\'e & Vall\\'ee. Linear isotropic constitutive relations for stress and hyperstress in terms of strain and strain-gradient are then obtained proving that these materials are characterized by seven elastic moduli and generalizing previous studies by Toupin, Mindlin and Sokolowski. Using a suitable decomposition of the strain-gradient, it is found a necessary and sufficient condition, to be verified by the elastic moduli, assuring positive definiteness of the stored elastic energy. The problem of warping in linear torsion of a prismatic second gradient cylinder is formulated, thus obtaining a possible measurement procedure for one of the second gradient elastic moduli.

  13. Gradient Flow Analysis on MILC HISQ Ensembles

    E-Print Network [OSTI]

    A. Bazavov; C. Bernard; N. Brown; C. DeTar; J. Foley; Steven Gottlieb; U. M. Heller; J. E. Hetrick; J. Komijani; J. Laiho; L. Levkova; M. Oktay; R. L. Sugar; D. Toussaint; R. S. Van de Water; R. Zhou

    2014-11-14

    We report on a preliminary scale determination with gradient-flow techniques on the $N_f = 2 + 1 + 1$ HISQ ensembles generated by the MILC collaboration. The ensembles include four lattice spacings, ranging from 0.15 to 0.06 fm, and both physical and unphysical values of the quark masses. The scales $\\sqrt{t_0}/a$ and $w_0/a$ are computed using Symanzik flow and the cloverleaf definition of $\\langle E \\rangle$ on each ensemble. Then both scales and the meson masses $aM_\\pi$ and $aM_K$ are adjusted for mistunings in the charm mass. Using a combination of continuum chiral perturbation theory and a Taylor series ansatz in the lattice spacing, the results are simultaneously extrapolated to the continuum and interpolated to physical quark masses. Our preliminary results are $\\sqrt{t_0} = 0.1422(7)$fm and $w_0 = 0.1732(10)$fm. We also find the continuum mass-dependence of $w_0$.

  14. Thermal Phases of Directly Imaged Exoplanets: the Effects of Eccentricity, Obliquity, and Diurnal Forcing

    E-Print Network [OSTI]

    Cowan, Nicolas B; Abbot, Dorian S

    2012-01-01

    [Abridged] In order to understand the climate on terrestrial planets orbiting nearby Sun-like stars, one would like to know their thermal inertia. We use a global climate model to simulate the thermal phase variations of Earth-analogs and test whether these data could distinguish between planets with different heat storage and heat transport characteristics. In particular, we consider a temperate climate with polar ice caps (like modern Earth), and a snowball state where the oceans are globally covered in ice. We first quantitatively study the periodic radiative forcing from, and climatic response to, rotation, obliquity, and eccentricity. The eccentricity responses of the two climates indicate that the temperate planet has 3x the bulk heat capacity of the snowball planet due to the presence of liquid water oceans. The temperate obliquity seasons are weaker than one would expect based on thermal inertia alone; this is due to cross-equatorial oceanic and atmospheric energy transport. Thermal inertia and cross-...

  15. Effects of thermal fluctuations on thermal inflation

    E-Print Network [OSTI]

    Takashi Hiramatsu; Yuhei Miyamoto; Jun'ichi Yokoyama

    2014-12-25

    The mechanism of thermal inflation, a relatively short period of accelerated expansion after primordial inflation, is a desirable ingredient for a certain class of particle physics models if they are not to be in contention with the cosmology of the early Universe. Though thermal inflation is most simply described in terms of a thermal effective potential, a thermal environment also gives rise to thermal fluctuations that must be taken into account. We numerically study the effects of these thermal fluctuations using lattice simulations. We conclude that though they do not ruin the thermal inflation scenario, the phase transition at the end of thermal inflation proceeds through phase mixing and is therefore not accompanied by the formations of bubbles nor appreciable amplitude of gravitational waves.

  16. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    storage in solar thermal applications," Applied Energy, pp.of Non-Tracking Solar Thermal Technology," 2011. [26] R.C. Y. Zhao, "A review of solar collectors and thermal energy

  17. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    Evaporator Powered By Solar Thermal Energy 10:00 AM 10:00 AMaided or powered by solar thermal energy. A section is alsoexhaustive review of solar thermal energy systems has been

  18. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    and thermal energy storage in solar thermal applications,"Solar infrastructure should include analysis of thermal storage.storage equipment, the evaporator can be integrated into the current solar

  19. "What Controls the Structure and Stability of the Ocean Meridional Overturning Circulation: Implications for Abrupt Climate Change?"

    SciTech Connect (OSTI)

    Fedorov, Alexey

    2013-11-23

    The central goal of this research project is to understand the properties of the ocean meridional overturning circulation (MOC) – a topic critical for understanding climate variability and stability on a variety of timescales (from decadal to centennial and longer). Specifically, we have explored various factors that control the MOC stability and decadal variability in the Atlantic and the ocean thermal structure in general, including the possibility abrupt climate change. We have also continued efforts on improving the performance of coupled ocean-atmosphere GCMs.

  20. Regulation of thermal conductivity in hot galaxy clusters by MHD turbulence

    E-Print Network [OSTI]

    Steven A. Balbus; Christopher S. Reynolds

    2008-06-05

    The role of thermal conduction in regulating the thermal behavior of cooling flows in galaxy clusters is reexamined. Recent investigations have shown that the anisotropic Coulomb heat flux caused by a magnetic field in a dilute plasma drives a dynamical instability. A long standing problem of cooling flow theory has been to understand how thermal conduction can offset radiative core losses without completely preventing them. In this Letter we propose that magnetohydrodynamic turbulence driven by the heat flux instability regulates field-line insulation and drives a reverse convective thermal flux, both of which may mediate the stabilization of the cooling cores of hot clusters. This model suggests that turbulent mixing should accompany strong thermal gradients in cooling flows. This prediction seems to be supported by the spatial distribution of metals in the central galaxies of clusters, which shows a much stronger correlation with the ambient hot gas temperature gradient than with the parent stellar population.

  1. Efficient and robust gradient enhanced Kriging emulators.

    SciTech Connect (OSTI)

    Dalbey, Keith R.

    2013-08-01

    %E2%80%9CNaive%E2%80%9D or straight-forward Kriging implementations can often perform poorly in practice. The relevant features of the robustly accurate and efficient Kriging and Gradient Enhanced Kriging (GEK) implementations in the DAKOTA software package are detailed herein. The principal contribution is a novel, effective, and efficient approach to handle ill-conditioning of GEK's %E2%80%9Ccorrelation%E2%80%9D matrix, RN%CC%83, based on a pivoted Cholesky factorization of Kriging's (not GEK's) correlation matrix, R, which is a small sub-matrix within GEK's RN%CC%83 matrix. The approach discards sample points/equations that contribute the least %E2%80%9Cnew%E2%80%9D information to RN%CC%83. Since these points contain the least new information, they are the ones which when discarded are both the easiest to predict and provide maximum improvement of RN%CC%83's conditioning. Prior to this work, handling ill-conditioned correlation matrices was a major, perhaps the principal, unsolved challenge necessary for robust and efficient GEK emulators. Numerical results demonstrate that GEK predictions can be significantly more accurate when GEK is allowed to discard points by the presented method. Numerical results also indicate that GEK can be used to break the curse of dimensionality by exploiting inexpensive derivatives (such as those provided by automatic differentiation or adjoint techniques), smoothness in the response being modeled, and adaptive sampling. Development of a suitable adaptive sampling algorithm was beyond the scope of this work; instead adaptive sampling was approximated by omitting the cost of samples discarded by the presented pivoted Cholesky approach.

  2. Thermal Control & System Integration

    Broader source: Energy.gov [DOE]

    The thermal control and system integration activity focuses on issues such as the integration of motor and power control technologies and the development of advanced thermal control technologies....

  3. DNA Engine Thermal Cycler

    E-Print Network [OSTI]

    Raizada, Manish N.

    ® Peltier Thermal Cycler PTC-0200 DNA Engine Cycler Operations Manual Version 4.0 #12;ii Tech Support: 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .vi The DNA Engine® Peltier Thermal Cycler Introduction

  4. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    and C. Y. Zhao, "A review of solar collectors and thermalenergy storage in solar thermal applications," Appliedon photovoltaic/thermal hybrid solar technology," Applied

  5. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01

    thermal energy becomes apparent with the development of solarsolar energy systems, aquifer energy storage provides a buffer between time-varying solar energy inputs and thermal

  6. Accuracy of direct gradient sensing by single cells

    E-Print Network [OSTI]

    Robert G. Endres; Ned S. Wingreen

    2009-06-15

    Many types of cells are able to accurately sense shallow gradients of chemicals across their diameters, allowing the cells to move towards or away from chemical sources. This chemotactic ability relies on the remarkable capacity of cells to infer gradients from particles randomly arriving at cell-surface receptors by diffusion. Whereas the physical limits of concentration sensing by cells have been explored, there is no theory for the physical limits of gradient sensing. Here, we derive such a theory, using as models a perfectly absorbing sphere and a perfectly monitoring sphere, which, respectively, infer gradients from the absorbed surface particle density or the positions of freely diffusing particles inside a spherical volume. We find that the perfectly absorbing sphere is superior to the perfectly monitoring sphere, both for concentration and gradient sensing, since previously observed particles are never remeasured. The superiority of the absorbing sphere helps explain the presence at the surfaces of cells of signal degrading enzymes, such as PDE for cAMP in Dictyostelium discoideum (Dicty) and BAR1 for mating factor alpha in Saccharomyces cerevisiae (budding yeast). Quantitatively, our theory compares favorably to recent measurements of Dicty moving up a cAMP gradient, suggesting these cells operate near the physical limits of gradient detection.

  7. Land-ocean contrasts under climate change

    E-Print Network [OSTI]

    Byrne, Michael P

    2015-01-01

    Observations and climate models show a pronounced land-ocean contrast in the responses of surface temperature and the hydrological cycle to global warming: Land temperatures increase more than ocean temperatures, low-level ...

  8. PHYSICS OF OCEAN CIRCULATION Instructor: S. Riser

    E-Print Network [OSTI]

    Riser, Stephen C.

    Topography Tides Wind Geothermal heating Surface flows elsewhere #12;How deep is the ocean? The average ocean circulation #12;UNITS Horizontal distance: km (= 105 cm) Vertical distance: m Velocity: cm/sec Density: g/cm3

  9. OCEAN DRILLING PROGRAM LEG 164 PRELIMINARY REPORT

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 164 PRELIMINARY REPORT GAS HYDRATE SAMPLING ON THE BLAKE RIDGE of Tokyo (Japan) National Science Foundation (United States) Natural Environment Research Council (United Kingdom) European Science Foundation Consortium for the Ocean Drilling Program (Belgium, Denmark, Finland

  10. Mechanistic models of oceanic nitrogen fixation

    E-Print Network [OSTI]

    Monteiro, Fanny

    2009-01-01

    Oceanic nitrogen fixation and biogeochemical interactions between the nitrogen, phosphorus and iron cycles have important implications for the control of primary production and carbon storage in the ocean. The biological ...

  11. Oceanography | Vol.24, No.3114 OCEAN WARMING

    E-Print Network [OSTI]

    Johnson, Helen

    out ows via these pathways return freshwaters to the North Atlantic that were evaporated from tropical oceans, transported by the atmosphere, and delivered to the Arctic Ocean via precipi- tation, terrestrial

  12. Climate Research Ocean Climate Sta1ons

    E-Print Network [OSTI]

    Climate Research Ocean Climate Sta1ons PI: Meghan Cronin Co Lab Review 2 hClimate Sta-ons are moored buoys #12;Ocean Climate Sta1ons 2014 PMEL Lab Review 5 Contribu-ng to NOAA's Goals

  13. Price Philanthropies Ocean Science Education: Aquarium

    E-Print Network [OSTI]

    Hampton, Randy

    ! ! ! ! ! Price Philanthropies Ocean Science Education: Aquarium Express Outreach Who: Students by The Price Philanthropies Ocean Science Fund and participate in our Aquarium Express Outreach Programs! What education, Price Philanthropies, led by Robert and Allison Price, joined supporters of Birch Aquarium

  14. PHYSICAL REVIEW B 85, 184201 (2012) Electrical and thermal conductivity of Al liquid at high pressures and temperatures

    E-Print Network [OSTI]

    Steinle-Neumann, Gerd

    2012-01-01

    perturbation theory to phase trajectories generated using first-principles molecular dynamics. Our results time-invariant electrical field and thermal gradient. First-principles calculations provide a directPHYSICAL REVIEW B 85, 184201 (2012) Electrical and thermal conductivity of Al liquid at high

  15. Thermal Gradient Holes At Chena Geothermal Area (EERE, 2010) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013) |InformationThe2009) | Open Energy2008) ||Al., 1993) |

  16. Thermal Gradient Holes At Chena Geothermal Area (Erkan, Et Al., 2007) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013) |InformationThe2009) | Open Energy2008) ||Al., 1993) |Open

  17. Thermal Gradient Holes At Chena Geothermal Area (Holdmann, Et Al., 2006) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013) |InformationThe2009) | Open Energy2008) ||Al., 1993)

  18. Thermal Gradient Holes At Chocolate Mountains Area (Alm, Et Al., 2010) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013) |InformationThe2009) | Open Energy2008) ||Al., 1993)Open

  19. Thermal Gradient Holes At Glass Mountain Area (Cumming And Mackie, 2007) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013) |InformationThe2009) | Open Energy2008) ||Al.,

  20. Thermal Gradient Holes At Hawthorne Area (Lazaro, Et Al., 2010) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013) |InformationThe2009) | Open Energy2008) ||Al.,Energy

  1. Thermal Gradient Holes At Hot Springs Ranch Area (Szybinski, 2006) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013) |InformationThe2009) | Open Energy2008) ||Al.,EnergyEnergy

  2. Thermal Gradient Holes At Kilauea East Rift Geothermal Area (Thomas, 1986)

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013) |InformationThe2009) | Open Energy2008)| Open Energy

  3. Thermal Gradient Holes At Lightning Dock Area (Warpinski, Et Al., 2004) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013) |InformationThe2009) | Open Energy2008)| Open EnergyOpen

  4. Thermal Gradient Holes At Long Valley Caldera Geothermal Area (Farrar, Et

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013) |InformationThe2009) | Open Energy2008)| Open

  5. Thermal Gradient Holes At Long Valley Caldera Geothermal Area (Sorey, Et

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013) |InformationThe2009) | Open Energy2008)| OpenEt Al.,

  6. Thermal Gradient Holes At North Brawley Geothermal Area (Edmunds & W.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013) |InformationThe2009) | Open Energy2008)| OpenEt Al.,1977) |

  7. Thermal Gradient Holes At North Brawley Geothermal Area (Matlick & Jayne,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013) |InformationThe2009) | Open Energy2008)| OpenEt Al.,1977)

  8. Thermal Gradient Holes At Northern Basin & Range Region (Pritchett, 2004) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013) |InformationThe2009) | Open Energy2008)| OpenEt

  9. Thermal Gradient Holes At Pilgrim Hot Springs Area (DOE GTP) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013) |InformationThe2009) | Open Energy2008)|

  10. Thermal Gradient Holes At Roosevelt Hot Springs Geothermal Area (Ward, Et

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013) |InformationThe2009) | Open Energy2008)|Al., 1978) | Open

  11. Thermal Gradient Holes At Socorro Mountain Area (Owens, Et Al., 2005) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013) |InformationThe2009) | Open Energy2008)|Al., 1978) |

  12. Thermal Gradient Holes At Twenty-Nine Palms Area (Page, Et Al., 2010) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013) |InformationThe2009) | Open Energy2008)|Al., 1978) |Open

  13. Thermal Gradient Holes At Twenty-Nine Palms Area (Sabin, Et Al., 2010) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013) |InformationThe2009) | Open Energy2008)|Al., 1978)

  14. Thermal Gradient Holes At Walker-Lane Transitional Zone Region (Pritchett,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013) |InformationThe2009) | Open Energy2008)|Al., 1978)2004) |

  15. strong poleward heat flux needed to produce the shallow thermal gradients that seem to have

    E-Print Network [OSTI]

    , 2818 (2008). C H E M I S T R Y A Fruitful Fuel Proposal Sustainable alternatives to gasoline and diesel fuels will need to recapitulate some of the prop- erties that make currently used fuels attractive

  16. Thermal Gradient Holes At Alum Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJ AutomationTexas/WindEnergy Information 1968-1971) JumpAlum Area

  17. Thermal Gradient Holes At Blue Mountain Geothermal Area (Fairbank & Ross,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJ AutomationTexas/WindEnergy Information 1968-1971) JumpAlum

  18. Thermal Gradient Holes At Chena Area (Erkan, Et. Al., 2008) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJ AutomationTexas/WindEnergy Information 1968-1971)

  19. Thermal Gradient Holes At Chocolate Mountains Area (Sabin, Et Al., 2010) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJ AutomationTexas/WindEnergy Information 1968-1971)Open Energy

  20. Thermal Gradient Holes At Cove Fort Area (Warpinski, Et Al., 2002) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJ AutomationTexas/WindEnergy InformationEnergy Information 2)

  1. Thermal Gradient Holes At Cove Fort Area (Warpinski, Et Al., 2004) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJ AutomationTexas/WindEnergy InformationEnergy Information

  2. Thermal Gradient Holes At Cove Fort Area - Vapor (Warpinski, Et Al., 2002)

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJ AutomationTexas/WindEnergy InformationEnergy Information|

  3. Thermal Gradient Holes At Cove Fort Area - Vapor (Warpinski, Et Al., 2004)

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJ AutomationTexas/WindEnergy InformationEnergy Information||

  4. Thermal Gradient Holes At Crump's Hot Springs Area (DOE GTP) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJ AutomationTexas/WindEnergy InformationEnergy

  5. Thermal Gradient Holes At Fenton Hill HDR Geothermal Area (Purtymun, Et

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJ AutomationTexas/WindEnergy InformationEnergyAl., 1974) | Open

  6. Thermal Gradient Holes At Fish Lake Valley Area (DOE GTP) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJ AutomationTexas/WindEnergy InformationEnergyAl., 1974) |

  7. Thermal Gradient Holes At Flint Geothermal Area (DOE GTP) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJ AutomationTexas/WindEnergy InformationEnergyAl., 1974)

  8. Thermal Gradient Holes At Fort Bidwell Area (Lafleur, Et Al., 2010) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJ AutomationTexas/WindEnergy InformationEnergyAl., 1974)Energy

  9. Thermal Gradient Holes At Fort Bliss Area (DOE GTP) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJ AutomationTexas/WindEnergy InformationEnergyAl.,

  10. Thermal Gradient Holes At Hawthorne Area (Sabin, Et Al., 2010) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJ AutomationTexas/WindEnergy InformationEnergyAl.,Energy

  11. Thermal Gradient Holes At Hot Pot Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJ AutomationTexas/WindEnergy InformationEnergyAl.,EnergyPot Area

  12. Thermal Gradient Holes At Kilauea East Rift Area (Quane, Et Al., 2000) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJ AutomationTexas/WindEnergy InformationEnergyAl.,EnergyPot

  13. Thermal Gradient Holes At Kilauea Summit Area (Keller, Et Al., 1979) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJ AutomationTexas/WindEnergy InformationEnergyAl.,EnergyPotEnergy

  14. Thermal Gradient Holes At Lake City Hot Springs Area (Warpinski, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJ AutomationTexas/WindEnergy

  15. Thermal Gradient Holes At Lightning Dock Area (Cunniff & Bowers, 2005) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJ AutomationTexas/WindEnergyOpen Energy Information Lightning

  16. Thermal Gradient Holes At Lightning Dock Geothermal Area (Arnold, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJ AutomationTexas/WindEnergyOpen Energy Information

  17. Thermal Gradient Holes At Lightning Dock Geothermal Area (Cunniff & Bowers,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJ AutomationTexas/WindEnergyOpen Energy Information2005) | Open

  18. Thermal Gradient Holes At Lightning Dock Geothermal Area (Cunniff, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJ AutomationTexas/WindEnergyOpen Energy Information2005) |

  19. Thermal Gradient Holes At Long Valley Caldera Geothermal Area (Sorey, Et

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJ AutomationTexas/WindEnergyOpen Energy Information2005)Al.,

  20. Thermal Gradient Holes At Mccoy Geothermal Area (DOE GTP) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJ AutomationTexas/WindEnergyOpen Energy

  1. Thermal Gradient Holes At Mcgee Mountain Area (DOE GTP) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJ AutomationTexas/WindEnergyOpen EnergyInformation Mcgee Mountain

  2. Thermal Gradient Holes At Mt Princeton Hot Springs Geothermal Area (Held &

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJ AutomationTexas/WindEnergyOpen EnergyInformation Mcgee

  3. Thermal Gradient Holes At Neal Hot Springs Geothermal Area (U.S. Geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJ AutomationTexas/WindEnergyOpen EnergyInformation McgeeInc.,

  4. Thermal Gradient Holes At Newberry Caldera Area (DOE GTP) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJ AutomationTexas/WindEnergyOpen EnergyInformation

  5. Thermal Gradient Holes At Nw Basin & Range Region (Pritchett, 2004) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJ AutomationTexas/WindEnergyOpen EnergyInformationEnergy

  6. Thermal Gradient Holes At Obsidian Cliff Area (Hulen, Et Al., 2003) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJ AutomationTexas/WindEnergyOpen EnergyInformationEnergyEnergy

  7. Thermal Gradient Holes At Salt Wells Area (Bureau of Land Management, 2009)

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJ AutomationTexas/WindEnergyOpen EnergyInformationEnergyEnergy|

  8. Thermal Gradient Holes At San Emidio Desert Area (DOE GTP) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJ AutomationTexas/WindEnergyOpen

  9. Thermal Gradient Holes At Silver Peak Area (DOE GTP) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJ AutomationTexas/WindEnergyOpenInformation Silver Peak Area (DOE

  10. Thermal Gradient Holes At Spencer Hot Springs Area (Shevenell, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJ AutomationTexas/WindEnergyOpenInformation Silver Peak Area

  11. Thermal Gradient Holes At Tungsten Mountain Area (Kratt, Et Al., 2008) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJ AutomationTexas/WindEnergyOpenInformation Silver Peak AreaOpen

  12. Thermal Gradient Holes At Tungsten Mountain Area (Shevenell, Et Al., 2008)

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJ AutomationTexas/WindEnergyOpenInformation Silver Peak AreaOpen|

  13. Thermal Gradient Holes At Upper Hot Creek Ranch Area (Benoit & Blackwell,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJ AutomationTexas/WindEnergyOpenInformation Silver Peak

  14. Arnold Schwarzenegger CALIFORNIA OCEAN WAVE

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor CALIFORNIA OCEAN WAVE ENERGY ASSESSMENT Prepared For: California, State and Federal Agencies and their expectations in respect to potential wave power deployments Jim a huge amount of wave measurement data from various data sources Asfaw Beyene of the Department

  15. Deep Meridional Overturning Circulation in the Indian Ocean and Its Relation to Indian Ocean Dipole

    E-Print Network [OSTI]

    Deep Meridional Overturning Circulation in the Indian Ocean and Its Relation to Indian Ocean Dipole of the Ocean (GECCO) syn- thesis data to analyze and examine the relationship of the Indian Ocean deep within the zonal band of 108 on both sides of the equator. Therefore, there exists a surface to deep

  16. AANNUALNNUAL RREPORTEPORT Integrated Ocean Drilling ProgramIntegrated Ocean Drilling Program

    E-Print Network [OSTI]

    AANNUALNNUAL RREPORTEPORT Integrated Ocean Drilling ProgramIntegrated Ocean Drilling Program U ANNUAL REPORT #12;#12;Integrated Ocean Drilling Program United States Implementing Organization JOI T his Integrated Ocean Drilling Program (IODP)-U.S. Implementing Organization (USIO) Fiscal Year 2006

  17. A Biochemical Ocean State Estimate in the Southern1 Ocean Gas Exchange Experiment2

    E-Print Network [OSTI]

    Haine, Thomas W. N.

    of the oceanic31 carbon pool. It influences light penetration with consequences for primary productivity1 A Biochemical Ocean State Estimate in the Southern1 Ocean Gas Exchange Experiment2 S. Dwivedi1 , T. W. N. Haine2 and C. E. Del Castillo3 3 1 Department of Atmospheric and Ocean Sciences, University

  18. Pacific Ocean Contribution to the Asymmetry in Eastern Indian Ocean Variability CAROLINE C. UMMENHOFER*

    E-Print Network [OSTI]

    Ummenhofer, Caroline C.

    Pacific Ocean Contribution to the Asymmetry in Eastern Indian Ocean Variability CAROLINE C is restricted to the Indian or Pacific Ocean only, support the interpretation of forcing mechanisms for large Indian Ocean atmospheric forcing versus remote influences from Pacific wind forcing: low events develop

  19. Ocean Surface Currents From Geostationary Satellite SST

    E-Print Network [OSTI]

    Kurapov, Alexander

    Ocean Surface Currents From Geostationary Satellite SST -We are implementing and evaluating a feature tracking approach to estimate ocean surface currents. - This approach allows us to estimate://cioss.coas.oregonstate.edu/ Ocean surface currents (vectors) derived from SST (background) modeled fields along the west coast of U

  20. Introducing Research College of Oceanic & Atmospheric Sciences

    E-Print Network [OSTI]

    Barth, Jack

    WECOMA Coll ege of Oceanic & Atmospheric Scie nces OREGON STATE UNIVERSITY in the O cean currents introduced by man (e.g., pollutants). Knowledge of upper-ocean currents is important for navigation and for search and rescue. The ocean currents off Oregon vary seasonally and can also vary from year to year

  1. Introducing Research College of Oceanic & Atmospheric Sciences

    E-Print Network [OSTI]

    Pierce, Stephen

    .coas.oregonstate.edu WECOMA WECOMA Coll ege of Oceanic & Atmospheric Scie nces OREGON STATE UNIVERSITY in the O cean currents, to the south in summer and generally to the north in winter, create ocean currents. The strong summertime and the topography of the ocean floor influence the east-west cross-shelf currents. Understanding and being able

  2. OCEAN DRILLING PROGRAM LEG 159 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 159 SCIENTIFIC PROSPECTUS THE COTE D'IVOIRE - GHANA TRANSFORM MARGIN, Leg 159 Ocean Drilling Program Texas A&M University Research Park 1000 Discovery Drive College Station requires the written consent of the Director, Ocean Drilling Program, Texas A&M University Research Park

  3. SHIPBOARD SCIENTISTS1 OCEAN DRILLING PROGRAM

    E-Print Network [OSTI]

    SHIPBOARD SCIENTISTS1 HANDBOOK OCEAN DRILLING PROGRAM TEXAS A&M UNIVERSITY TECHNICAL NOTE 3 portion requires the written consent of the Director, Ocean Drilling Program, Texas A&M University be obtained from the Director, Ocean Drilling Program, Texas A & M University Research Park, 1000 Discovery

  4. OCEAN DRILLING PROGRAM LEG 105 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 105 SCIENTIFIC PROSPECTUS LABRADOR SEA - BAFFIN BAY Dr. Michael A. Bradford Clement Staff Science Representative, Leg 105 Ocean Drilling Program Texas A & M University College Station, TX 77843-3469" Philip Director Ocean Drilling Program Robert B. Kidd Manager of Science

  5. OCEAN DRILLING PROGRAM LEG 205 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 205 SCIENTIFIC PROSPECTUS FLUID FLOW AND SUBDUCTION FLUXES ACROSS __________________ Dr. Jack Baldauf Deputy Director of Science Operations Ocean Drilling Program Texas A&M University Manager and Staff Scientist Ocean Drilling Program Texas A&M University 1000 Discovery Drive College

  6. OCEAN DRILLING PROGRAM LEG 100 REPORT

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 100 REPORT NORTHEASTERN GULF OF MEXICO Philip D Rabinowitz Co-Chief Scientist, Leg 100 Ocean Drilling Program Texas A&M University College Station, TX 77843 William J. Merrell Co-Chief Scientist, Leg 100 Ocean Drilling Program Texas A&M University College Station, TX 77843

  7. OCEAN DRILLING PROGRAM LEG 185 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 185 SCIENTIFIC PROSPECTUS IZU-MARIANA MARGIN Dr. Terry Plank Co France Dr. Carlota Escutia Staff Scientist Ocean Drilling Program Texas A&M University Research Park 1000 the written consent of the Director, Ocean Drilling Program, Texas A&M University Research Park, 1000

  8. OCEAN DRILLING PROGRAM LEG 202 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 202 SCIENTIFIC PROSPECTUS SOUTHEAST PACIFIC PALEOCEANOGRAPHIC TRANSECTS __________________ Dr. Jack Baldauf Deputy Director of Science Operations Ocean Drilling Program Texas A&M University Manager and Staff Scientist Ocean Drilling Program Texas A&M University 1000 Discovery Drive College

  9. OCEAN DRILLING PROGRAM LEG 200 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 200 SCIENTIFIC PROSPECTUS DRILLING AT THE H2O LONG-TERM SEAFLOOR Director of Science Operations Ocean Drilling Program Texas A&M University 1000 Discovery Drive College Ocean Drilling Program Texas A&M University 1000 Discovery Drive College Station TX 77845-9547 USA

  10. OCEAN DRILLING PROGRAM LEG 100 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 100 SCIENTIFIC PROSPECTUS SHAKEDOWN AND SEA TRIALS CRUISE Philip D. Rabinowitz Co-Chief Scientist, Leg 100 Ocean Drilling Program Texas A&M University College Station, TX 77843 William J. Merrell Co-Chief Scientist, Leg 100 Ocean Drilling Program Texas A&M University College Station

  11. OCEAN DRILLING PROGRAM LEG 199 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 199 SCIENTIFIC PROSPECTUS PALEOGENE EQUATORIAL TRANSECT Dr. Mitchell __________________ Dr. Jack Baldauf Deputy Director of Science Operations Ocean Drilling Program Texas A&M University Project Manager and Staff Scientist Ocean Drilling Program Texas A&M University 1000 Discovery Drive

  12. OCEAN DRILLING PROGRAM LEG 195 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 195 SCIENTIFIC PROSPECTUS MARIANA CONVERGENT MARGIN/ WEST PHILIPPINE SEA Baldauf Deputy Director of Science Operations Ocean Drilling Program Texas A&M University 1000 Discovery and Staff Scientist Ocean Drilling Program Texas A&M University 1000 Discovery Drive College Station TX

  13. OCEAN DRILLING PROGRAM LEG 196 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 196 SCIENTIFIC PROSPECTUS LOGGING WHILE DRILLING AND ADVANCED CORKS Deputy Director of Science Operations Ocean Drilling Program Texas A&M University 1000 Discovery Drive Scientist Ocean Drilling Program Texas A&M University 1000 Discovery Drive College Station TX 77845-9547 USA

  14. OCEAN DRILLING PROGRAM LEG 140 PRELIMINARY REPORT

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 140 PRELIMINARY REPORT HOLE 504B Dr. Henry Dick Dr. Jörg Erzinger Co Giessen Federal Republic of Germany Dr. Laura Stokking Staff Scientist, Leg 140 Ocean Drilling Program Copies of this publication may be obtained from the Director, Ocean Drilling Program, Texas A

  15. Ocean Engineering 33 (2006) 22092223 Technical Note

    E-Print Network [OSTI]

    Mohseni, Kamran

    2006-01-01

    . Three quarter of our planet's surface is covered by water where a richer biodiversity than life on land exists--more major taxonomic groupings of animals can be found in the oceans than on land. The oceans food, energy, and mineral resources, oceans also play a critical role in regulating Earth's weather

  16. Mesoscale coupled ocean-atmosphere feedbacks in boundary current systems

    E-Print Network [OSTI]

    Putrasahan, Dian Ariyani

    2012-01-01

    productive oceanic eastern boundary current, providing anCurrent System and the Kuroshio Extension uses OFES products for their oceanic

  17. Linear domain interactome and biological function of anterior gradient

    E-Print Network [OSTI]

    Lawrence, Melanie Laura Alexandra

    2013-11-29

    The Anterior Gradient 2 (AGR2) protein has been implicated in a variety of biological systems linked to cancer and metastasis, tamoxifen-induced drug resistance, pro-inflammatory diseases like IBD and asthma, and limb ...

  18. Osteochondral Interface Tissue Engineering using Macroscopic Gradients of Physicochemical Signals

    E-Print Network [OSTI]

    Dormer, Nathan Henry

    2011-04-25

    . When used in a smaller defect site, such as the New Zealand White rabbit mandibular condyle, the bioactive scaffolds were beneficial in regenerating thicker layers of cartilage. Moreover, this thesis has bridged the gradient-based microsphere scaffold...

  19. Colour Gradients in the Optical and Near-IR

    E-Print Network [OSTI]

    Roelof S. de Jong

    1995-09-01

    For many years broadband colours have been used to obtain insight into the contents of galaxies, in particular to estimate stellar and dust content. Broadband colours are easy to obtain for large samples of objects, making them ideal for statistical studies. In this paper I use the radial distribution of the colours in galaxies, which gives more insight into the local processes driving the global colour differences than integrated colours. Almost all galaxies in my sample of 86 face-on galaxies become systematically bluer with increasing radius. The radial photometry is compared to new dust extinction models and stellar population synthesis models. This comparison shows that the colour gradients in face-on galaxies are best explained by age and metallicity gradients in the stellar populations and that dust reddening plays a minor role. The colour gradients imply $M/L$ gradients, making the `missing light' problem as derived from rotation curve fitting even worse.

  20. Modelling Flow through Porous Media under Large Pressure Gradients 

    E-Print Network [OSTI]

    Srinivasan, Shriram

    2013-11-01

    The most interesting and technologically important problems in the study of flow through porous media involve very high pressures and pressure gradients in the flow do- main such as enhanced oil recovery and carbon dioxide ...

  1. Variational constitutive updates for strain gradient isotropic plasticity

    E-Print Network [OSTI]

    Qiao, Lei, Ph. D. Massachusetts Institute of Technology

    2009-01-01

    In the past decades, various strain gradient isotropic plasticity theories have been developed to describe the size-dependence plastic deformation mechanisms observed experimentally in micron-indentation, torsion, bending ...

  2. A Nonlinear Conjugate Gradient Algorithm with An Optimal Property ...

    E-Print Network [OSTI]

    2011-06-15

    State Key Laboratory of Scientific and Engineering Computing, ..... To establish a basic property for the family of conjugate gradient methods (1.3), (2.11) and ...... of Engineering Economic Systems, Stanford University, Stanford, Calif., 1972. 23

  3. Spatial gradient of protein phosphorylation underlies replicative bacterium

    E-Print Network [OSTI]

    Chen, Y. Erin

    Spatial asymmetry is crucial to development. One mechanism for generating asymmetry involves the localized synthesis of a key regulatory protein that diffuses away from its source, forming a spatial gradient. Although ...

  4. A parametric study of thermomechanical behavior of functionally gradient materials 

    E-Print Network [OSTI]

    Chin, Che-Doong

    1996-01-01

    The dynamic thermoelastic response of functionally gradient cylinders and plates is studied. Thermomechanical coupling is significant in these materials when they are used in high temperature applications, and hence, the coupling is included...

  5. Function of the anterior gradient protein family in cancer 

    E-Print Network [OSTI]

    Fourtouna, Argyro

    2009-01-01

    Proteomic technologies verified Anterior Gradient 2, AGR-2, as a protein over-expressed in human cancers, including breast, prostate and oesophagus cancers, with the ability to inhibit the tumour suppressor protein p53. AGR-2 gene is a hormone...

  6. Field Investigations And Temperature-Gradient Drilling At Marine...

    Open Energy Info (EERE)

    Field Investigations And Temperature-Gradient Drilling At Marine Corps Air-Ground Combat Center (Mcagcc), Twenty-Nine Palms, Ca Jump to: navigation, search OpenEI Reference...

  7. Differential heating: A versatile method for thermal conductivity measurements in high-energy-density matter

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ping, Y.; Fernandez-Panella, A.; Sio, H.; Correa, A.; Shepherd, R.; Landen, O.; London, R. A.; Sterne, P. A.; Whitley, H. D.; Fratanduono, D.; et al

    2015-09-04

    We propose a method for thermal conductivity measurements of high energy density matter based on differential heating. A temperature gradient is created either by surface heating of one material or at an interface between two materials by different energy deposition. The subsequent heat conduction across the temperature gradient is observed by various time-resolved probing techniques. Conceptual designs of such measurements using laser heating, proton heating, and x-ray heating are presented. As a result, the sensitivity of the measurements to thermal conductivity is confirmed by simulations.

  8. THERMAL OSCILLATIONS IN LIQUID HELIUM TARGETS.

    SciTech Connect (OSTI)

    WANG,L.; JIA,L.X.

    2001-07-16

    A liquid helium target for the high-energy physics was built and installed in the proton beam line at the Alternate Gradient Synchrotron of Brookhaven National Laboratory in 2001. The target flask has a liquid volume of 8.25 liters and is made of thin Mylar film. A G-M/J-T cryocooler of five-watts at 4.2K was used to produce liquid helium and refrigerate the target. A thermosyphon circuit for the target was connected to the J-T circuit by a liquid/gas separator. Because of the large heat load to the target and its long transfer lines, thermal oscillations were observed during the system tests. To eliminate the oscillation, a series of tests and analyses were carried out. This paper describes the phenomena and provides the understanding of the thermal oscillations in the target system.

  9. Thermal Regimes of Northeast Streams

    E-Print Network [OSTI]

    Thermal Loading (USGS) Stormwater and Streams ­ Optimizing Stormwater Management to Protect the Thermal

  10. Edge Temperature Gradient as Intrinsic Rotation Drive in AlcatorC...

    Office of Scientific and Technical Information (OSTI)

    Edge Temperature Gradient as Intrinsic Rotation Drive in AlcatorC-Mod Tokamak Plasmas Citation Details In-Document Search Title: Edge Temperature Gradient as Intrinsic Rotation...

  11. Global warming and changes in ocean circulation

    SciTech Connect (OSTI)

    Duffy, P.B.; Caldeira, K.C.

    1998-02-01

    This final report provides an overview of the goals and accomplishments of this project. Modeling and observational work has raised the possibility that global warming may cause changes in the circulation of the ocean. If such changes would occur they could have important climatic consequences. The first technical goal of this project was to investigate some of these possible changes in ocean circulation in a quantitative way, using a state-of -the-art numerical model of the ocean. Another goal was to develop our ocean model, a detailed three-dimensional numerical model of the ocean circulation and ocean carbon cycles. A major non-technical goal was to establish LLNL as a center of excellence in modelling the ocean circulation and carbon cycle.

  12. Abundance gradients in low surface brightness spirals: clues on the origin of common gradients in galactic discs

    E-Print Network [OSTI]

    Bresolin, Fabio

    2015-01-01

    We acquired spectra of 141 HII regions in ten late-type low surface brightness galaxies (LSBGs). The analysis of the chemical abundances obtained from the nebular emission lines shows that metallicity gradients are a common feature of LSBGs, contrary to previous claims concerning the absence of such gradients in this class of galaxies. The average slope, when expressed in units of the isophotal radius, is found to be significantly shallower in comparison to galaxies of high surface brightness. This result can be attributed to the reduced surface brightness range measured across their discs, when combined with a universal surface mass density-metallicity relation. With a similar argument we explain the common abundance gradient observed in high surface brightness galaxy (HSBG) discs and its approximate dispersion. This conclusion is reinforced by our result that LSBGs share the same common abundance gradient with HSBGs, when the slope is expressed in terms of the exponential disc scale length.

  13. composition of putative oceans on

    E-Print Network [OSTI]

    Treiman, Allan H.

    · CO2, ~0.3-0.9 (volume fraction) · H2O, ~0.01-0.6 · N2, ~0.02-0.15 · High temperature corresponds CO2 and N2 are degassed · S and Cl are from Earth's data · 1 km thick ocean, variable basalt layer and phyllosilicates · S is in sulfate and sulfide minerals Why? · ~ neutral pH, no trapping of atmospheric CO2

  14. Scaling of Macroscopic Properties of Porous Sediments Experiencing Compaction: Implications for Geothermal Gradient and Methane Inventory

    E-Print Network [OSTI]

    Goldobin, Denis S

    2011-01-01

    Porous sediments in geological systems experience stress by the above-laying mass and consequent compaction, which may be significantly nonuniform across the massif. We derive scaling laws for the compaction of sediments of similar geological origin. With these laws, we evaluate the dependence of the transport properties of a fluid-saturated porous medium (permeability, effective molecular diffusivity, hydrodynamic dispersion, and thermal conductivity) on its porosity. In particular, we demonstrate irrelevance of the assumption of a uniform geothermal gradient for systems with nonuniform compaction and importance of the derived scaling laws for mathematical modelling of methane hydrate deposits, which are believed to have potential for impact on global climate change and Glacial-Interglacial cycles.

  15. Grain-scale thermoelastic stresses and spatiotemporal temperature gradients on airless bodies, implications for rock breakdown

    E-Print Network [OSTI]

    Molaro, Jamie L; Langer, Steve A

    2015-01-01

    Thermomechanical processes such as fatigue and shock have been suggested to cause and contribute to rock breakdown on Earth, and on other planetary bodies, particularly airless bodies in the inner solar system. In this study, we modeled grain-scale stresses induced by diurnal temperature variations on simple microstructures made of pyroxene and plagioclase on various solar system bodies. We found that a heterogeneous microstructure on the Moon experiences peak tensile stresses on the order of 100 MPa. The stresses induced are controlled by the coefficient of thermal expansion and Young's modulus of the mineral constituents, and the average stress within the microstructure is determined by relative volume of each mineral. Amplification of stresses occurs at surface-parallel boundaries between adjacent mineral grains and at the tips of pore spaces. We also found that microscopic spatial and temporal surface temperature gradients do not correlate with high stresses, making them inappropriate proxies for investig...

  16. Latest Results of ILC High-Gradient R&D 9-cell Cavities at JLAB

    SciTech Connect (OSTI)

    Rongli Geng

    2008-02-11

    It has been over a year since JLAB started processing and testing ILC 9-cell cavities in the frame work of ILC high-gradient cavity R&D, aiming at the goal of a 35 MV/m gradient at a Q #4; of 1E10 with a yield of 90%. The necessary cavity processing steps include field flatness tuning, electropolishing (EP), hydrogen out-gassing under vacuum, high-pressure water rinsing, clean room assembly, and low temperature bake. These are followed by RF test at 2 Kelvin. Ultrasonic cleaning with Micro-90, an effective post-EP rinsing recipe discovered at JLAB, is routinely used. Seven industry manufactured 9-cell TESLAshape cavities are processed and tested repeatedly. So far, 33 EP cycles are accumulated, corresponding to more than 65 hours of active EP time. An emphasis put on RF testing is to discern cavity quench characteristics, including its nature and its location. Often times, the cavity performance is limited by thermal-magnetic quench instead of field emission. The quench field in some cavities is lower than 20 MV/m and remains unchanged despite repeated EP, implying material and/or fabrication defects. The quench field in some other cavities is high but changes unpredictably after repeated EP, suggesting processing induced defects. Based on our experience and results, several areas are identified where improvement is needed to improve cavity performance as well as yield.

  17. The dynamic response of oceanic hydrate deposits to ocean temperature change

    E-Print Network [OSTI]

    Reagan, Matthew T.

    2008-01-01

    changes modify the geothermal gradient and change theof T 0 = 4 ?C and a geothermal gradient of 3.5 ?C/100 m (XuT 0 = 6 ?C, and a geothermal gradient of 2.8 ?C/100m. This

  18. Mesoscale coupled ocean-atmosphere feedbacks in boundary current systems

    E-Print Network [OSTI]

    Putrasahan, Dian Ariyani

    2012-01-01

    N/m 2 per 10000km) against crosswind SST gradients ( ? C peroverlaid with contours crosswind SST gradients ( ? C perpositive (negative) crosswind SST gradients at 0.4 ? C per

  19. HEATS: Thermal Energy Storage

    SciTech Connect (OSTI)

    2012-01-01

    HEATS Project: The 15 projects that make up ARPA-E’s HEATS program, short for “High Energy Advanced Thermal Storage,” seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

  20. Environmental regulation of carbon isotope composition and crassulacean acid metabolism in three plant communities along a water availability gradient

    E-Print Network [OSTI]

    2010-01-01

    gradient Á Tissue acidity Á Yucatan Introduction Crassulacean acid metabolism (metabolism in three plant communities along a water availability gradient

  1. The Effects of Mesoscale Eddies on the Stratification and Transport of an Ocean with a Circumpolar Channel

    E-Print Network [OSTI]

    Vallis, Geoff

    would play a leading-order role in setting the channel stratification and hence (via thermal windThe Effects of Mesoscale Eddies on the Stratification and Transport of an Ocean with a Circumpolar in the channel are investigated. With small overlying winds, the channel stratification is largely set

  2. Thermal and Electrical Transport in Oxide Heterostructures

    E-Print Network [OSTI]

    Ravichandran, Jayakanth

    2011-01-01

    of thermal conductivity . . . . . . . . . . . . . . . .4.4 Thermal transport in2.3.2 Thermal transport . . . . . . . . . . . . . . . .

  3. Efficient Computation of Entropy Gradient for Semi-Supervised Conditional Random Fields

    E-Print Network [OSTI]

    McCallum, Andrew

    gradient that is significantly more efficient--having the same asymptotic time complexity as su- pervised

  4. Thermal Energy Storage

    SciTech Connect (OSTI)

    Rutberg, Michael; Hastbacka, Mildred; Cooperman, Alissa; Bouza, Antonio

    2013-06-05

    The article discusses thermal energy storage technologies. This article addresses benefits of TES at both the building site and the electricity generation source. The energy savings and market potential of thermal energy store are reviewed as well.

  5. Thermal Management of Solar Cells

    E-Print Network [OSTI]

    Saadah, Mohammed Ahmed

    2013-01-01

    phonon transmission and interface thermal conductance acrossF. Miao, et al. , "Superior Thermal Conductivity of Single-Advanced Materials for Thermal Management of Electronic

  6. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01

    time-varying solar energy inputs and thermal or powerthermal energy becomes apparent with the development of solar

  7. The ocean’s role in the transient response of climate to abrupt greenhouse gas forcing

    E-Print Network [OSTI]

    Scott, Jeffery R.

    We study the role of the ocean in setting the patterns and timescale of the transient response of the climate to anthropogenic greenhouse gas forcing. A novel framework is set out which involves integration of an ocean-only ...

  8. Oceanic nutrient and oxygen transports and bounds on export production during the World Ocean Circulation Experiment

    E-Print Network [OSTI]

    Wunsch, Carl

    Oceanic nutrient and oxygen transports and bounds on export production during the World Ocean about 100 m). Because of correlations between errors, the export production becomes significant when cycling; 4863 Oceanography: Biological and Chemical: Sedimentation; KEYWORDS: export production, nutrient

  9. Multiwavelength Thermal Emission

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    Multiwavelength Astronomy NASA #12;Thermal Emission #12;Thermal Emission Non-thermal p-p collisions Optical IR Radio/ Microwave sources of emission massive stars, WHIM, Ly many dust, cool objects-ray ~GeV Gamma-ray ~TeV sources of emission AGN, clusters, SNR, binaries, stars AGN (obscured), shocks

  10. Thermal neutron detection system

    DOE Patents [OSTI]

    Peurrung, Anthony J. (Richland, WA); Stromswold, David C. (West Richland, WA)

    2000-01-01

    According to the present invention, a system for measuring a thermal neutron emission from a neutron source, has a reflector/moderator proximate the neutron source that reflects and moderates neutrons from the neutron source. The reflector/moderator further directs thermal neutrons toward an unmoderated thermal neutron detector.

  11. Thermal Performance Benchmarking (Presentation)

    SciTech Connect (OSTI)

    Moreno, G.

    2014-11-01

    This project will benchmark the thermal characteristics of automotive power electronics and electric motor thermal management systems. Recent vehicle systems will be benchmarked to establish baseline metrics, evaluate advantages and disadvantages of different thermal management systems, and identify areas of improvement to advance the state-of-the-art.

  12. On the World-wide Circulation of the Deeper Waters of the World Ocean

    E-Print Network [OSTI]

    Reid, Joseph L

    2009-01-01

    circulation of the Pacific Ocean: Flow patterns, tracers,in preparing the figures. Fig. 1 Pacific Ocean winds Fig.2 Pacific Ocean circulation Fig. 4 Pacific Ocean potential

  13. Fabrication and evaluation of uniform and gradient density epoxies

    SciTech Connect (OSTI)

    Domeier, L.A.; Skala, D.M.; Goods, S.H. [and others

    1997-11-01

    Filled epoxy materials which vary in density in a designed manner have been fabricated and their mechanical properties evaluated. Density variations were produced by incorporating different volume fractions of either glass microballoons (GMB) or alumina. Several different sample types were evaluated including uniform density (0.8 g/cm{sup 3} < {rho} < 2.0 g/cm{sup 3}) samples and gradient density samples (GMB only, 0.8 g/cm{sup 3} < {rho} < 1.2 g/cm{sup 3}). The uniform density specimens were evaluated for the effects of filler type and concentration on modulus and toughness. Results indicated that addition of alumina filler significantly increased the resulting modulus while addition of GMB had little measurable effect. These differences could be understood in terms of the differing moduli of the additives relative to that of the epoxy matrix. In the former case the alumina particulates had a modulus much greater than that of the epoxy while in the latter case, the modulus of the GMB additive was only slightly greater than that of the matrix. Addition of either filler significantly degraded the toughness of the composite specimens and precluded the use of gradients to enhance toughness performance. Discontinuous {open_quotes}block{close_quotes} gradients used for testing were fabricated by simple sequential pours of formulations with different GMB loadings and were evaluated for modulus, strength and ductility. Continuous gradients were fabricated in process studies by programmed shifts in the peristaltic pumping/mixing ratio of epoxies filled with either alumina or GMB. None of the continuous gradient materials were mechanically tested. These results suggest that applications utilizing gradient materials containing alumina and similar high modulus fillers to provide designed stiffness rather than improved toughness are the most appropriate targets for future investigation.

  14. Structural Evolution and Li Dynamics in Nanophase Li3PS4 by Solid-State and Pulsed Field Gradient NMR

    SciTech Connect (OSTI)

    Gobet, Mallory [Hunter College of the City University of New York] [Hunter College of the City University of New York; Greenbaum, Steve [Hunter College of the City University of New York] [Hunter College of the City University of New York; Sahu, Gayatri [ORNL] [ORNL; Liang, Chengdu [ORNL] [ORNL

    2014-01-01

    The ceramic lithium ion conductor -Li3PS4 has a disordered and nanoporous structure that leads to an enhancement in ionic conductivity by some three orders of magnitude compared to the crystalline phase. The phase is prepared by thermal treatment of an inorganic-organic complex based on Li3PS4 and THF. Multinuclear (1H, 6,7Li, 31P) solid state NMR spectroscopy is used to characterize the structural phase evolution of the starting material at various steps in the thermal treatment. The phase formed after high temperature treatment is recognized as spectroscopically distinct from the bulk -Li3PS4 compound. Also formed is an amorphous lithium thiophosphate phase that is metastable as verified by annealing over an extended period. Lithium ion self-diffusion coefficients are measurable by standard pulsed gradient NMR methods at 100oC and with values consistent with the high ionic conductivity previously reported for this material.

  15. Ocean Viral Metagenomics (2010 JGI User Meeting)

    ScienceCinema (OSTI)

    Rohwer, Forest

    2011-04-26

    Forest Rohwer from San Diego State University talks about "Ocean Viral Metagenomics" on March 25, 2010 at the 5th Annual DOE JGI User Meeting

  16. Iron Availability in the Southern Ocean

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Southern Ocean, circling the Earth between Antarctica and the southernmost regions of Africa, South America, and Australia, is notorious for its high-nutrient, low-chlorophyll...

  17. Observations: Oceanic Climate Change and Sea Level

    E-Print Network [OSTI]

    Talley, Lynne D.

    Changes ............. 402 5.4 Ocean Biogeochemical Changes ................... 403 5.4.1 Introduction ......................................................... 403 5.4.2 Carbon................................................................. 403 5.4.3 Oxygen

  18. The thermal performance of steel-framed walls

    SciTech Connect (OSTI)

    Barbour, C.E. [NAHB Research Center, Upper Marlboro, MD (United States). Building Systems Div.; Goodrow, J. [Holometrix, Bedford, MA (United States)

    1995-12-31

    Thermal bridges are areas in constructions that have highly conductive materials, allowing higher heat transfer through less conductive areas. In a wall, thermal bridges can increase heat loss, cause dust to accumulate on the studs (ghosting) due to temperature distribution, and cause condensation to form in and on the walls. The effects of thermal bridges are often misunderstood by engineers, buildings, and manufacturers of construction products. This study attempts to provide a better understanding of the effects of thermal bridges in steel-framed walls, as well as information leading to improved methods of predicting R-value of walls containing thermal bridges. An improved method for estimating R-value would allow an equitable comparison of thermal performance with other construction types and materials. This would increase the number of alternative materials for walls available to designers, thus allowing them the freedom to correctly choose the optimum choice for construction. In order to arrive at an improved method, experimental data on the heat transfer characteristics of steel-framed walls were collected. Twenty-three wall samples were tested in a calibrated hot box (ASTM C976) to measure the thermal performance of steel-framed wall systems. The tests included an array of stud frame configurations, exterior sheathing, and fiberglass batt insulations. Other studies of thermal bridging in steel-framed walls have not included the use of insulating sheathing, which reduces the extent of the thermal bridges and improves total thermal performance. The purpose of the project was to provide measured R-values for commonly used steel-framed wall configurations and to improve R-value estimating methods. Also, detailed monitoring of temperature gradients in the test walls combined with numerical analysis provided new insights into heat transfer phenomena concerning thermal bridges.

  19. Ocean Navitas | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI VenturesNewSt. Louis,Energy Information AreaCounty LandfillLtd JumpOcean

  20. ARM - Lesson Plans: Ocean Currents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments?govInstrumentsnoaacrnBarrow, Alaska Outreach Home Room News PublicationsClimate inMakingMovingOcean

  1. Digital Manufacturing of Gradient Meshed SOFC Sealing Composites with Self-Healing Capabilities

    SciTech Connect (OSTI)

    Kathy Lu; Christopher Story; W.T. Reynolds

    2007-12-21

    Solid oxide fuel cells (SOFC) hold great promise for clean power generation. However, high temperature stability and long term durability of the SOFC components have presented serious problems in SOFC technological advancement and commercialization. The seals of the fuel cells are the most challenging area to address. A high temperature gas seal is highly needed which is durable against cracking and gas leakage during thermal cycling and extended operation. This project investigates a novel composite seal by integrating 3D printed shape memory alloy (SMA) wires into a glass matrix. The SMA we use is TiNiHf and the glass matrix we use is SrO-La{sub 2}O{sub 3}-Al{sub 2}O{sub 3}-B{sub 2}O{sub 3}-SiO{sub 2} (SLABS). Dilatometry shows to be an extremely useful tool in providing the CTEs. It pinpoints regions of different CTEs under simulated SOFC thermal cycles for the same glass. For the studied SLABS glass system, the region with the greatest CTE mismatch between the glass seal and the adjacent components is 40-500 C, the typical heating and cooling regions for SOFCs. Even for low temperature SOFC development, this region is still present and needs to be addressed. We have demonstrated that the proposed SLABS glass has great potential in mitigating the thermal expansion mismatch issues that are limiting the operation life of SOFCs. TiNiHf alloy has been successfully synthesized with the desired particle size for the 3DP process. The TiNiHf SMA shape memory effect very desirably overlaps with the problematic low CTE region of the glass. This supports the design intent that the gradient structure transition, phase transformation toughening, and self-healing of the SMA can be utilized to mitigate/eliminate the seal problem. For the 3DP process, a new binder has been identified to match with the specific chemistry of the SMA particles. This enables us to directly print SMA particles. Neutron diffraction shows to be an extremely useful tool in providing information regarding the austenite to martensite phase transformation, SMA alloy lattice constant change, and the corresponding thermal stress from the glass matrix. It pinpoints regions of SMA phase transformation and the thermal stress effect under simulated SOFC thermal cycles. The bilayer test shows that there is still much work to be done for the proper integration of the seal components. Large scale production should lower the cost associated with the proposed approach, especially on the raw material cost and 3D printing.

  2. Ocean Sci., 6, 775787, 2010 www.ocean-sci.net/6/775/2010/

    E-Print Network [OSTI]

    in the Pacific Ocean F. M. Bingham1, G. R. Foltz2, and M. J. McPhaden3 1Center for Marine Science, Univ. of North salinity (SLS) is examined in the Pacific Ocean between 40 S and 60 N using a variety of data sourcesOcean Sci., 6, 775­787, 2010 www.ocean-sci.net/6/775/2010/ doi:10.5194/os-6-775-2010 © Author

  3. Gradient catastrophe and flutter in vortex filament dynamics

    E-Print Network [OSTI]

    B. G. Konopelchenko; G. Ortenzi

    2011-06-02

    Gradient catastrophe and flutter instability in the motion of vortex filament within the localized induction approximation are analyzed. It is shown that the origin if this phenomenon is in the gradient catastrophe for the dispersionless Da Rios system which describes motion of filament with slow varying curvature and torsion. Geometrically this catastrophe manifests as a rapid oscillation of a filament curve in a point that resembles the flutter of airfoils. Analytically it is the elliptic umbilic singularity in the terminology of the catastrophe theory. It is demonstrated that its double scaling regularization is governed by the Painlev\\'e-I equation.

  4. Gradient isolator for flow field of fuel cell assembly

    DOE Patents [OSTI]

    Ernst, William D. (Troy, NY)

    1999-01-01

    Isolator(s) include isolating material and optionally gasketing material strategically positioned within a fuel cell assembly. The isolating material is disposed between a solid electrolyte and a metal flow field plate. Reactant fluid carried by flow field plate channel(s) forms a generally transverse electrochemical gradient. The isolator(s) serve to isolate electrochemically a portion of the flow field plate, for example, transversely outward from the channel(s), from the electrochemical gradient. Further, the isolator(s) serve to protect a portion of the solid electrolyte from metallic ions.

  5. Gradient isolator for flow field of fuel cell assembly

    DOE Patents [OSTI]

    Ernst, W.D.

    1999-06-15

    Isolator(s) include isolating material and optionally gasketing material strategically positioned within a fuel cell assembly. The isolating material is disposed between a solid electrolyte and a metal flow field plate. Reactant fluid carried by flow field plate channel(s) forms a generally transverse electrochemical gradient. The isolator(s) serve to isolate electrochemically a portion of the flow field plate, for example, transversely outward from the channel(s), from the electrochemical gradient. Further, the isolator(s) serve to protect a portion of the solid electrolyte from metallic ions. 4 figs.

  6. Bimetal-and-electret-based thermal energy harvesters - Application to a battery-free Wireless Sensor Node

    E-Print Network [OSTI]

    Boisseau, S; Monfray, S; Despesse, G; Puscasu, O; Arnaud, A; Skotnicki, T

    2013-01-01

    This paper introduces a thermal energy harvester turning thermal gradients into electricity by coupling a bimetallic strip to an electret-based converter: the bimetallic strip behaves as a thermal-to-mechanical power converter turning thermal gradients into mechanical oscillations that are finally converted into electricity with the electret. Output powers of 5.4uW were reached on a hot source at 70{\\deg}C, and, contrary to the previous proofs of concept, the new devices presented in this paper do not require forced convection to work, making them compatible with standard conditions of thermal energy harvesting and environments such as hot pipes, pumps and more generally industrial equipment. Finally, ten energy harvesters have been parallelized and combined to a self-starting power management circuit made of a flyback converter to supply a battery-free Wireless Temperature Sensor Node, sending information every 100 seconds after its startup state.

  7. 2007 OCEAN DRILLING CITATION REPORT Covering Deep Sea Drilling Project-

    E-Print Network [OSTI]

    2007 OCEAN DRILLING CITATION REPORT Covering Deep Sea Drilling Project- and Ocean Drilling Program Services on behalf of the Integrated Ocean Drilling Program September 2007 #12;#12;OVERVIEW OF THE OCEAN DRILLING CITATION DATABASE The Ocean Drilling Citation Database, which in February 2007 contained

  8. Thermal Expansion Models of Viscous Fluids Based on Limits of Free Energy

    E-Print Network [OSTI]

    Thermal Expansion Models of Viscous Fluids Based on Limits of Free Energy S.E. Bechtel Department applied directly on the free energy formulation of the compressible Navier-Stokes system. The method the reversible physical mechanisms governed by the gradient and Hessian of the free energy function take special

  9. Author's personal copy A novel ocean color index to detect oating algae in the global oceans

    E-Print Network [OSTI]

    Meyers, Steven D.

    Author's personal copy A novel ocean color index to detect oating algae in the global oceans December 2008 Received in revised form 15 May 2009 Accepted 23 May 2009 Keywords: Floating Algae Index (FAI Remote sensing Ocean color Climate data record Various types of oating algae have been reported in open

  10. 2006 Ocean Drilling Citation Report Overview of the Ocean Drilling Citation Database

    E-Print Network [OSTI]

    2006 Ocean Drilling Citation Report Overview of the Ocean Drilling Citation Database The Ocean Drilling Citation Database, which contained almost 22,000 citation records related to the Deep Sea Drilling Institute (AGI). The database has been on line since August 2002. Beginning in 2006, citation records

  11. Comparisons of optical properties of the coastal ocean derived from satellite ocean color and

    E-Print Network [OSTI]

    Chang, Grace C.

    Comparisons of optical properties of the coastal ocean derived from satellite ocean color Laboratory, Ocean Optics Section, Code 7333, Stennis Space Center, MS 39529 gould@nrlssc.navy.mil Abstract: Satellite-derived optical properties are compared to in situ mooring and ship-based measurements

  12. Summer Courses in Ocean Optics and Biogeochemistry: "Monitoring the Oceans with Coastal Observatories" and

    E-Print Network [OSTI]

    Boss, Emmanuel S.

    Summer Courses in Ocean Optics and Biogeochemistry: "Monitoring the Oceans with Coastal integration of optical approaches into oceanographic research in general. OBJECTIVES These two courses created and optical oceanography and ocean color remote sensing to learn the fundamentals of optics in a coastal

  13. TELECONNECTIONS BETWEEN NORTHEASTERN PACIFIC OCEAN AND THE GULF OF MEXICO AND NORTHWESTERN ATLANTIC OCEAN

    E-Print Network [OSTI]

    TELECONNECTIONS BETWEEN NORTHEASTERN PACIFIC OCEAN AND THE GULF OF MEXICO AND NORTHWESTERN ATLANTIC-scale interactions in the tropical Pacific Ocean, especially, processes associated with the EI Nino phenomena. He has of ocean temperatures. He suggests that an anomalously high heat supply in the equatorial Pacific

  14. DETECTING AND TRACKING OF MESOSCALE OCEANIC FEATURES IN THE MIAMI ISOPYCNIC CIRCULATION OCEAN MODEL

    E-Print Network [OSTI]

    Tandon, Amit

    DETECTING AND TRACKING OF MESOSCALE OCEANIC FEATURES IN THE MIAMI ISOPYCNIC CIRCULATION OCEAN MODEL developed to automatically detect, locate and track mesoscale eddies spatially and temporally. Using an invaluable tool to assess mesoscale oceanic features. Key Words ­ Scientific Visualization, Eddy Detection

  15. Gradient-based Methods for Production Optimization of Oil Reservoirs

    E-Print Network [OSTI]

    Foss, Bjarne A.

    Gradient-based Methods for Production Optimization of Oil Reservoirs Eka Suwartadi Doctoral Thesis at NTNU, 2012:104 Printed by NTNU-Trykk #12;To my wife and my parents 3 #12;4 #12;Summary Production optimization for water flooding in the secondary phase of oil recovery is the main topic in this thesis

  16. Oil displacement through a porous medium with a temperature gradient

    E-Print Network [OSTI]

    Oliveira, C L N; Herrmann, H J

    2011-01-01

    We investigate the effect of a temperature gradient on oil recovery in a two-dimensional pore-network model. The oil viscosity depends on temperature as, $\\mu_o=exp(B/T)$, where $B$ is a physico-chemical parameter depending on the type of oil, and $T$ is the temperature. A temperature gradient is applied across the medium in the flow direction. Initially, the porous medium is saturated with oil and, then, another fluid is injected. We have considered two cases representing different injection strategies. In the first case, the invading fluid viscosity is constant (finite viscosity ratio) while in the second one, the invading fluid is inviscid (infinite viscosity ratio). Our results show that, for the case of finite viscosity ratio, recovery increases with $\\Delta T$ independently on strength or sign of the gradient. For an infinite viscosity ratio, a positive temperature gradient is necessary to enhance recovery. Moreover, we show that, for $\\Delta T>0$, the percentage of oil recovery generally decreases (inc...

  17. Scale Dependent Definitions of Gradient and Aspect and their Computation

    E-Print Network [OSTI]

    Utrecht, Universiteit

    (isoaspects) can aid in digital terrain modelling. Other geomorphological features in terrains are critical. Using such measures and classifications, the goal is for example to derive drainage maps, specify areas numerical value for gradient, and the classification convex or concave for plan and profile curvature

  18. Topological charge using cooling and the gradient flow

    E-Print Network [OSTI]

    Constantia Alexandrou; Andreas Athenodorou; Karl Jansen

    2015-09-14

    The equivalence of cooling to the gradient flow when the cooling step $n_c$ and the continuous flow step of gradient flow $\\tau$ are matched is generalized to gauge actions that include rectangular terms. By expanding the link variables up to subleading terms in perturbation theory, we relate $n_c$ and $\\tau$ and show that the results for the topological charge become equivalent when rescaling $\\tau \\simeq n_c/({3-15 c_1})$ where $c_1$ is the Symanzik coefficient multiplying the rectangular term. We, subsequently, apply cooling and the gradient flow using the Wilson, the Symanzik tree-level improved and the Iwasaki gauge actions to configurations produced with $N_f=2+1+1$ twisted mass fermions. We compute the topological charge, its distribution and the correlators between cooling and gradient flow at three values of the lattice spacing demonstrating that the perturbative rescaling $\\tau \\simeq n_c/({3-15 c_1})$ leads to equivalent results.

  19. Balanced Flow Geostrophic, Inertial, Gradient, and Cyclostrophic Flow

    E-Print Network [OSTI]

    Hennon, Christopher C.

    Balanced Flow Geostrophic, Inertial, Gradient, and Cyclostrophic Flow The types of atmospheric flows describe here have the following characteristics: 1) Steady state (meaning that the flows do surfaces) These are "idealized" flows, created by balances of horizontal forces. They provide a qualitative

  20. GRADIENT THEORY FOR PLASTICITY VIA HOMOGENIZATION OF DISCRETE DISLOCATIONS

    E-Print Network [OSTI]

    Garroni, Adriana

    GRADIENT THEORY FOR PLASTICITY VIA HOMOGENIZATION OF DISCRETE DISLOCATIONS ADRIANA GARRONI theory for plasticity from a model of discrete dislocations. We restrict our analysis to the case of a cylindrical symmetry for the crystal in exam, so that the mathematical formulation will involve a two

  1. Topological charge using cooling and the gradient flow

    E-Print Network [OSTI]

    Alexandrou, Constantia; Jansen, Karl

    2015-01-01

    The equivalence of cooling to the gradient flow when the cooling step $n_c$ and the continuous flow step of gradient flow $\\tau$ are matched is generalized to gauge actions that include rectangular terms. By expanding the link variables up to subleading terms in perturbation theory, we relate $n_c$ and $\\tau$ and show that the results for the topological charge become equivalent when rescaling $\\tau \\simeq n_c/({3-15 c_1})$ where $c_1$ is the Symanzik coefficient multiplying the rectangular term. We, subsequently, apply cooling and the gradient flow using the Wilson, the Symanzik tree-level improved and the Iwasaki gauge actions to configurations produced with $N_f=2+1+1$ twisted mass fermions. We compute the topological charge, its distribution and the correlators between cooling and gradient flow at three values of the lattice spacing demonstrating that the perturbative rescaling $\\tau \\simeq n_c/({3-15 c_1})$ leads to equivalent results.

  2. Evaluation of liquid lift approach to dual gradient drilling 

    E-Print Network [OSTI]

    Okafor, Ugochukwu Nnamdi

    2008-10-10

    In the past, the oil and gas industry has typically used the single gradient system to drill wells offshore. With this system the bottom hole pressure was controlled by a mud column extending from the drilling rig to the bottom of the wellbore...

  3. A latitudinal diversity gradient in planktonic marine bacteria

    E-Print Network [OSTI]

    Brown, James H.

    A latitudinal diversity gradient in planktonic marine bacteria Jed A. Fuhrman* , Joshua A. Steele and attribute this to their high abundance and dispersal capabilities would suggest that bacteria, the smallest. Despite the high abundance and potentially high dispersal of bacteria, they exhibit geographic patterns

  4. Seasonal mass balance gradients in Norway L. A. Rasmussen1

    E-Print Network [OSTI]

    Rasmussen, L.A.

    16 Aug 05 Seasonal mass balance gradients in Norway L. A. Rasmussen1 and L. M. Andreassen2 1 Norwegian Water Resources and Energy Directorate (NVE) P. O. Box 5091 Majorstua, N-0301 Oslo, Norway in Norway exists in their profiles of both seasonal balances, winter bw(z) and summer bs(z). Unlike many

  5. University of Alberta Gradient Temporal-Difference Learning Algorithms

    E-Print Network [OSTI]

    Sutton, Richard S.

    University of Alberta Gradient Temporal-Difference Learning Algorithms by Hamid Reza Maei A thesis, Alberta Permission is hereby granted to the University of Alberta Libraries to reproduce single copies the thesis is converted to, or otherwise made available in digital form, the University of Alberta

  6. Capillary forces and osmotic gradients in salt water -oil systems

    E-Print Network [OSTI]

    Kjelstrup, Signe

    Capillary forces and osmotic gradients in salt water - oil systems Georg Ellila Chemical study. This is to my knowledge the first time the transport mechanisms in capillary oil-salt water and the Vista Program. 1 #12;Abstract This project looks at the capillary systems with salt water and oil

  7. University of Alberta Gradient Temporal-Difference Learning Algorithms

    E-Print Network [OSTI]

    Sutton, Richard S.

    of convergence--in on-policy problems. #12;Acknowledgements This PhD thesis is developed through collaboration;Abstract We present a new family of gradient temporal-difference (TD) learning methods with func- tion- proximation. In particular, convergence cannot be guaranteed for these methods when they are used with off-policy

  8. Intermittency in Turbulent Diffusion Models with a Mean Gradient

    E-Print Network [OSTI]

    Majda, Andrew J.

    Intermittency in Turbulent Diffusion Models with a Mean Gradient Andrew J Majda and Xin T TongE30, 62G32 Submitted to: Nonlinearity 1. Introduction Turbulent diffusion is the transportation and diffusion. Its application ranges from the spread of hazardous plumes and mixing properties of turbulent

  9. Tubular precipitation and redox gradients on a bubbling template

    E-Print Network [OSTI]

    Goldstein, Raymond E.

    Tubular precipitation and redox gradients on a bubbling template David A. Stone* and Raymond E) Tubular structures created by precipitation abound in nature, from chimneys at hydrothermal vents to soda oxides precipitate on the surface of bubbles that linger at the tube rim and then detach, leaving behind

  10. Physics Problems for the Future of Global Ocean

    E-Print Network [OSTI]

    Fox-Kemper, Baylor

    --graphics, movies! #12;Recent Worries of Ocean Modeling Mesoscale eddies and boundary currents-- resolving;Recent Worries of Ocean Modeling Mesoscale eddies and boundary currents-- resolving the deformation) #12;Recent Worries of Ocean Modeling Mesoscale eddies and boundary currents-- resolving

  11. Effects of variable wind stress on ocean heat content

    E-Print Network [OSTI]

    Klima, Kelly

    2008-01-01

    Ocean heat content change (ocean heat uptake) has an important role in variability of the Earth's heat balance. The understanding of which methods and physical processes control ocean heat uptake needs improvement in order ...

  12. ORE 630 Structural Analysis in Ocean Engineering Designation

    E-Print Network [OSTI]

    Frandsen, Jannette B.

    to Program Outcomes Program Outcome 2: Basic science, mathematics, & engineering Program Outcome 4: OceanORE 630 Structural Analysis in Ocean Engineering Designation Offshore Engineering Required Course. Design of Ocean Structures. Design process, project planning, materials selection, 6. economic analysis

  13. ORE 630 Structural Analysis in Ocean Engineering Designation

    E-Print Network [OSTI]

    ORE 630 Structural Analysis in Ocean Engineering Designation Offshore Engineering Required Course Catalog Description Structural and finite element analyses, and design of ocean structures to withstand analysis, finite element analysis, and their application in ocean structure design. Topics Covered 1

  14. Biological and physical regulation of the oceanic fixed nitrogen reservoir

    E-Print Network [OSTI]

    Weber, Thomas Smith

    2013-01-01

    2 in the subtropical North Pacific Ocean. Nature 412: 635-38in the eastern tropical Pacific Ocean. Marine Chemistry 16:and N 2 fixation in the Pacific Ocean. Global Biogeochemical

  15. Assessing uncertainty in models of the ocean carbon cycle 

    E-Print Network [OSTI]

    Scott, Vivian

    2010-01-01

    In this thesis I explore the effect of parameter uncertainty in ocean biogeochemical models on the calculation of carbon uptake by the ocean. The ocean currently absorbs around a quarter of the annual anthropogenic CO2 ...

  16. Remote Sensing the Ocean Sarah Gille

    E-Print Network [OSTI]

    Sandwell, David T.

    ×1021 J in 50 years = 50 TW) roughly quadru- ple current energy usage by people (13 TW). #12;Global ocean- ple current energy usage by people (13 TW). · Energy added to top 700 m of ocean equivalent to about 2 Radiation http://www.uwsp.edu/geo/faculty/ritter/geog101/textbook/energy/global patterns of heat transfer

  17. OCEAN DRILLING PROGRAM LEG 202 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 202 SCIENTIFIC PROSPECTUS SOUTHEAST PACIFIC PALEOCEANOGRAPHIC TRANSECTS, this source should be appropriately acknowledged. Ocean Drilling Program Scientific Prospectus No. 102 Publications homepage on the World Wide Web at: http://www-odp.tamu.edu/publications This publication

  18. Legal Implications of CO2 Ocean Storage

    E-Print Network [OSTI]

    Legal Implications of CO2 Ocean Storage Jason Heinrich Working Paper Laboratory for Energy the deployment of CO2 storage technologies used in the marine environment. This paper will address some of the legal issues involved in ocean storage of carbon dioxide from a US perspective. The following paragraphs

  19. Aquantis Ocean Current Turbine Development Project Report

    SciTech Connect (OSTI)

    Fleming, Alex J.

    2014-08-23

    The Aquantis® Current Plane (“C-Plane”) technology developed by Dehlsen Associates, LLC (DA) and Aquantis, Inc. is an ocean current turbine designed to extract kinetic energy from ocean currents. The technology is capable of achieving competitively priced base-load, continuous, and reliable power generation from a source of renewable energy not before possible in this scale or form.

  20. OCEAN DRILLING PROGRAM LEG 132 PRELIMINARY REPORT

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 132 PRELIMINARY REPORT ENGINEERING II: WESTERN AND CENTRAL PACIFIC Mr. Michael A. Storms Supervisor of Development Engineering Ocean Drilling Program Texas A&M University and Drilling Operations ODP/TAMU Timothy J.G. Francis Deputy Director ODP/TAMU September 1990 #12;This informal