Powered by Deep Web Technologies
Note: This page contains sample records for the topic "ocean thermal energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC ENVIRONMENTAL ASSESSMENT  

E-Print Network [OSTI]

Ocean Thermal Energy Conversion (OTEC) Draft Programmaticof ocean thermal energy conversion technology. U.S. Depart~on Ocean TherUial Energy Conversion, June 18, 1979. Ocean

Sands, M.Dale

2013-01-01T23:59:59.000Z

2

Ocean Thermal Extractable Energy Visualization: Final Technical...  

Office of Environmental Management (EM)

Ocean Thermal Extractable Energy Visualization: Final Technical Report Ocean Thermal Extractable Energy Visualization: Final Technical Report Report about the Ocean Thermal...

3

Ocean Thermal Energy Conversion  

Science Journals Connector (OSTI)

A pertinent question, however, is: what is the worldwide power resource that could be extracted with OTEC plants without affecting the thermohaline ocean circulation? The estimate is that the maximum steady-state...

Dr. Luis A. Vega Ph.D.

2013-01-01T23:59:59.000Z

4

Ocean Thermal Energy Conversion  

Science Journals Connector (OSTI)

A pertinent question, however, is: what is the worldwide power resource that could be extracted with OTEC plants without affecting the thermohaline ocean circulation? The estimate is that the maximum steady-state...

Dr. Luis A. Vega Ph.D.

2012-01-01T23:59:59.000Z

5

OCEAN THERMAL ENERGY CONVERSION: AN OVERALL ENVIRONMENTAL ASSESSMENT  

E-Print Network [OSTI]

1980. Ocean Thermal Energy Conversion Draft ProgrammaticPlan. Ocean Thermal Energy Conversion. U.S. DOE Assistantl OCEAN THERMAL ENERGY CONVERSION: ENVIRONMENTAL ASSESSMENT

Sands, M.Dale

2013-01-01T23:59:59.000Z

6

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network [OSTI]

of ocean thermal energy conversion technology. U.S. DOE.ocean thermal energy conversion. A preliminary engineeringCompany. Ocean thermal energy conversion mission analysis

Sands, M. D.

2011-01-01T23:59:59.000Z

7

ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

Commercial ocean thermal energy conversion (OTEC) plants byFifth Ocean Thermal Energy Conversion Conference, February1980. Ocean thermal energy conversion (OTEC) pilot plant

Sullivan, S.M.

2014-01-01T23:59:59.000Z

8

DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

Commercial ocean thermal energy conversion ( OTEC) plants byfield of ocean thermal energy conversion discharges. I~. L.Sixth Ocean Thermal Energy conversion Conference. June 19-

Sullivan, S.M.

2014-01-01T23:59:59.000Z

9

Ocean Thermal Energy Conversion LUIS A. VEGA  

E-Print Network [OSTI]

Ocean Thermal Energy Conversion LUIS A. VEGA Hawaii Natural Energy Institute, School of Ocean depths of 20 m (surface water) and 1,000 m. OTEC Ocean Thermal Energy Conversion, the process Energy Conversion. At first, OTEC plantships providing electricity, via submarine power cables, to shore

10

Ocean Thermal Extractable Energy Visualization: Final Technical...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Approved for public release; distribution is unlimited OCEAN THERMAL EXTRACTABLE ENERGY VISUALIZATION Award DE-EE0002664 October 28, 2012 Final Technical Report Prepared by...

11

Assessment of ocean thermal energy conversion  

E-Print Network [OSTI]

Ocean thermal energy conversion (OTEC) is a promising renewable energy technology to generate electricity and has other applications such as production of freshwater, seawater air-conditioning, marine culture and chilled-soil ...

Muralidharan, Shylesh

2012-01-01T23:59:59.000Z

12

Ocean Thermal Extractable Energy Visualization: Final Technical Report  

Broader source: Energy.gov [DOE]

Report about the Ocean Thermal Extractable Energy Visualization project, which focuses on assessing the Maximum Practicably Extractable Energy from the world’s ocean thermal resources.

13

Ocean Thermal Energy Conversion Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Thermal Energy Conversion Basics Thermal Energy Conversion Basics Ocean Thermal Energy Conversion Basics August 16, 2013 - 4:22pm Addthis A process called ocean thermal energy conversion (OTEC) uses the heat energy stored in the Earth's oceans to generate electricity. OTEC works best when the temperature difference between the warmer, top layer of the ocean and the colder, deep ocean water is about 36°F (20°C). These conditions exist in tropical coastal areas, roughly between the Tropic of Capricorn and the Tropic of Cancer. To bring the cold water to the surface, ocean thermal energy conversion plants require an expensive, large-diameter intake pipe, which is submerged a mile or more into the ocean's depths. Some energy experts believe that if ocean thermal energy conversion can become cost-competitive with conventional power technologies, it could be

14

Ocean Thermal Energy Conversion Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Thermal Energy Conversion Basics Thermal Energy Conversion Basics Ocean Thermal Energy Conversion Basics August 16, 2013 - 4:22pm Addthis A process called ocean thermal energy conversion (OTEC) uses the heat energy stored in the Earth's oceans to generate electricity. OTEC works best when the temperature difference between the warmer, top layer of the ocean and the colder, deep ocean water is about 36°F (20°C). These conditions exist in tropical coastal areas, roughly between the Tropic of Capricorn and the Tropic of Cancer. To bring the cold water to the surface, ocean thermal energy conversion plants require an expensive, large-diameter intake pipe, which is submerged a mile or more into the ocean's depths. Some energy experts believe that if ocean thermal energy conversion can become cost-competitive with conventional power technologies, it could be

15

Ocean Thermal Energy Conversion Mostly about USA  

E-Print Network [OSTI]

Ocean Thermal Energy Conversion History Mostly about USA 1980's to 1990's and bias towards Vega or other energy carriers to be delivered to shore... 13luisvega@hawaii.edu #12;US Federal Government OTEC period estimated at 3 to 4 years. #12;luisvega@hawaii.edu 20 Energy Carriers · OTEC energy could

16

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network [OSTI]

of an open cycle ocean thermal difference power plant. M.S.screens for ocean thermal energy conversion power plants.1958. Ocean cooling water system for 800 MW power station.

Sands, M. D.

2011-01-01T23:59:59.000Z

17

A PRELIMINARY EVALUATION OF IMPINGEMENT AND ENTRAINMENT BY OCEAN THERMAL ENERGY CONVERSION (OTEC) PLANTS  

E-Print Network [OSTI]

Assessment, Ocean Thermal Energy Conversion (OTEC) ProgramOcean Thermal Energy Conversion (OTEC), U.S. Department offor Ocean Thermal Energy Conversion (OTEC) plants. Argonne,

Sullivan, S.M.

2013-01-01T23:59:59.000Z

18

ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

screens for ocean thermal energy conversion power plants.cold deep-ocean waters to produce electric power via eitherOffice of Solar Power Applications. Division of Ocean Energy

Sullivan, S.M.

2014-01-01T23:59:59.000Z

19

DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

screens for ocean thermal energy conversion power plants.cold deep-ocean waters to produce electric power via eitherpower from the temperature differential between warm surface and cold deep-ocean

Sullivan, S.M.

2014-01-01T23:59:59.000Z

20

Chapter 4 - Ocean Thermal Energy Converters  

Science Journals Connector (OSTI)

Publisher Summary The most plentiful renewable energy source on the planet is solar radiation. Harvesting this energy is difficult because of its dilute and erratic nature. Large collecting areas and large storage capacities are needed. These two requirements are satisfied by the tropical oceans. Oceans cover 71% of Earth's surface. In the tropics, they absorb sunlight, and the top layers heat up to some 25°C. Warm surface waters from the equatorial belt flow poleward, melting both the Arctic and the Antarctic ice. The resulting cold waters return to the equator at great depth, completing a huge planetary thermosyphon. Two basic configurations have been proposed for ocean thermal energy converters (OTECs)—those using hydraulic turbines and those using vapor turbines. The first uses the temperature difference between the surface and bottom waters to create a hydraulic head that drives a conventional water turbine. The advantages of this proposal include the absence of heat exchangers. It is easier to find warm surface water than sufficiently cool abyssal waters, which are not readily available in continental shelf regions. This limits the possible sitings of ocean thermal energy converters.

Aldo Vieira da Rosa

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ocean thermal energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

2007 Survey of Energy Resources World Energy Council 2007 Ocean Thermal Energy Conversion COUNTRY NOTES  

E-Print Network [OSTI]

2007 Survey of Energy Resources World Energy Council 2007 Ocean Thermal Energy Conversion 573 and personal communication. Valuable inputs were provided by Don Lennard of Ocean Thermal Energy Conversion in the technology. #12;2007 Survey of Energy Resources World Energy Council 2007 Ocean Thermal Energy Conversion 574

22

Lockheed Testing the Waters for Ocean Thermal Energy System ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

today, according to Lockheed Martin. The technology in play: Ocean Thermal Energy Conversion (OTEC). Lockheed Martin is developing a design for an OTEC system that would produce...

23

Thermodynamic Optimization in Ocean Thermal Energy Conversion  

Science Journals Connector (OSTI)

As alternative energy sources to oil and uranium, we can consider well known alternative sources such as solar power, geothermal power and wind power. However when we consider the 21st century energy sources, ocean

Y. Ikegami; H. Uehara

1999-01-01T23:59:59.000Z

24

Energy from the Oceans: A Small Land Based Ocean Thermal Energy Plant  

Science Journals Connector (OSTI)

This paper describes a small land based closed cycle Ocean Thermal Energy Plant which is being designed ... aquaculture facility and to produce a net electric power output of up to 300 kW. In...

Dr. F. A. Johnson

1990-01-01T23:59:59.000Z

25

Thermal power plant efficiency enhancement with Ocean Thermal Energy Conversion  

Science Journals Connector (OSTI)

Abstract In addition to greenhouse gas emissions, coastal thermal power plants would gain further opposition due to their heat rejection distressing the local ecosystem. Therefore, these plants need to enhance their thermal efficiency while reducing their environmental offense. In this study, a hybrid plant based on the principle of Ocean Thermal Energy Conversion was coupled to a 740 MW coal-fired power plant project located at latitude 28°S where the surface to deepwater temperature difference would not suffice for regular OTEC plants. This paper presents the thermodynamical model to assess the overall efficiency gained by adopting an ammonia Rankine cycle plus a desalinating unit, heated by the power plant condenser discharge and refrigerated by cold deep seawater. The simulation allowed us to optimize a system that would finally enhance the plant power output by 25–37 MW, depending on the season, without added emissions while reducing dramatically the water temperature at discharge and also desalinating up to 5.8 million tons per year. The supplemental equipment was sized and the specific emissions reduction was estimated. We believe that this approach would improve the acceptability of thermal and nuclear power plant projects regardless of the plant location.

Rodrigo Soto; Julio Vergara

2014-01-01T23:59:59.000Z

26

List of Ocean Thermal Incentives | Open Energy Information  

Open Energy Info (EERE)

Thermal Incentives Thermal Incentives Jump to: navigation, search The following contains the list of 96 Ocean Thermal Incentives. CSV (rows 1 - 96) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Business Energy Investment Tax Credit (ITC) (Federal) Corporate Tax Credit United States Agricultural Commercial Industrial Utility Anaerobic Digestion Biomass CHP/Cogeneration Fuel Cells Fuel Cells using Renewable Fuels Geothermal Direct Use Geothermal Electric Ground Source Heat Pumps Hydroelectric energy Landfill Gas Microturbines Municipal Solid Waste Ocean Thermal Photovoltaics Small Hydroelectric Small Wind Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Water Heat Tidal Energy Wave Energy Wind energy Yes CCEF - Project 150 Initiative (Connecticut) State Grant Program Connecticut Commercial Solar Thermal Electric

27

Assessment of Microbial Fouling in an Ocean Thermal Energy Conversion Experiment  

Science Journals Connector (OSTI)

...Press Inc., New York. 14. Hirshman...Ocean Thermal Energy Conversion...Press Inc., New York. 24. Mathis...Ocean thermal energy: the biggest...Department of Energy, part II. U...Pergamon Press, New York. 28. Perrigo...

R. Paul Aftring; Barrie F. Taylor

1979-10-01T23:59:59.000Z

28

Ocean Thermal Energy Conversion (OTEC) A New Secure Renewable Energy Source  

E-Print Network [OSTI]

Ocean Thermal Energy Conversion (OTEC) A New Secure Renewable Energy Source For Defense Water Temperature Delta 2 A New Clean Renewable 24/7 Energy Source #12;Ocean Thermal Energy Conversion and Commercial Applications 1 Dr. Ted Johnson Director of Alternative Energy Programs Development Lockheed Martin

29

OCEAN THERMAL ENERGY CONVERSION PRELIMINARY DATA REPORT FOR THE NOVEMBER 1977 GOTEC-02 CRUISE TO THE GULF OF MEXICO MOBILE SITE  

E-Print Network [OSTI]

02 OCEAN THERMAL ENERGY CONVERSION PRELIMINARY DATA REPORTto potential Ocean Thermal Energy Conversion (OTEC) sites inOcean Thermal Energy Conversion (OTEC) Sites: Puerto Rico,

Commins, M.L.

2010-01-01T23:59:59.000Z

30

Assessment of Microbial Fouling in an Ocean Thermal Energy Conversion Experiment  

Science Journals Connector (OSTI)

...Proceedings of the Ocean Thermal Energy Conversion...Claude, G. 1930. Power from the tropical seas...Metz, W. D. 1977. Ocean thermal energy: the biggest gamble in solar power. Science 198:178-180...studies, p. 1-53. In Ocean Thermal Energy Conversion...

R. Paul Aftring; Barrie F. Taylor

1979-10-01T23:59:59.000Z

31

Countermeasures to Microbiofouling in Simulated Ocean Thermal Energy Conversion Heat Exchangers with Surface and Deep Ocean Waters in Hawaii  

Science Journals Connector (OSTI)

...thermal energy from warm ocean waters. A small fraction...converted to electrical power and waste heat is rejected...water pumped from the ocean depth. Solar energy absorbed by the ocean surface provides the heat...Thermal losses, the power requirements to pump large...

Leslie Ralph Berger; Joyce A. Berger

1986-06-01T23:59:59.000Z

32

Assessment of Microbial Fouling in an Ocean Thermal Energy Conversion Experiment  

Science Journals Connector (OSTI)

...publication 23 July 1979 A project to investigate biofouling...to ocean thermal energy conversion heat exchangers...in ocean thermal energy conversion heat exchangers...for man to harvest solar energy involves exploitation...exchanger units. The project was conducted from...

R. Paul Aftring; Barrie F. Taylor

1979-10-01T23:59:59.000Z

33

Ocean Energy Resource Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Hydrogen & Fuel Cells Hydropower Ocean Ocean Thermal Energy Conversion Tidal Energy Wave Energy Ocean Resources Solar Wind Homes & Buildings Industry Vehicles & Fuels...

34

Modeling the Physical and Biochemical Influence of Ocean Thermal Energy Conversion Plant Discharges into their Adjacent Waters  

Broader source: Energy.gov [DOE]

Modeling the Physical and Biochemical Influence of Ocean Thermal Energy Conversion Plant Discharges into their Adjacent Waters

35

Economics of Ocean Thermal Energy Conversion Luis A. Vega, Ph.D.  

E-Print Network [OSTI]

Economics of Ocean Thermal Energy Conversion (OTEC) by Luis A. Vega, Ph.D. Published and 100 MW Plants 15 Co-Products of OTEC 16 OTEC Energy Carriers 19 Externalities in the Production Thermal Energy Conversion (OTEC) Luis A. Vega, Ph.D.1, 2 Abstract A straightforward analytical model

36

Challenges in Ocean Energy Utilization  

Science Journals Connector (OSTI)

Ocean is a reservoir of energy. It is ... . Development of suitable cost effective technologies for power generation from different forms of ocean energy (like wave energy, tidal energy, Ocean Thermal Energy Conv...

S. Neelamani

2013-01-01T23:59:59.000Z

37

Potential environmental consequences of ocean thermal energy conversion (OTEC) plants. A workshop  

SciTech Connect (OSTI)

The concept of generating electrical power from the temperature difference between surface and deep ocean waters was advanced over a century ago. A pilot plant was constructed in the Caribbean during the 1920's but commercialization did not follow. The US Department of Energy (DOE) earlier planned to construct a single operational 10MWe Ocean Thermal Energy Conversion (OTEC) plant by 1986. However, Public Law P.L.-96-310, the Ocean Thermal Energy Conversion Research, Development and Demonstration Act, and P.L.-96-320, the Ocean Thermal Energy Conversion Act of 1980, now call for acceleration of the development of OTEC plants, with capacities of 100 MWe in 1986, 500 MWe in 1989, and 10,000 MWe by 1999 and provide for licensing and permitting and loan guarantees after the technology has been demonstrated.

Walsh, J.J. (ed.)

1981-05-01T23:59:59.000Z

38

Chapter 7 - Geothermal and ocean-thermal energy conversion  

Science Journals Connector (OSTI)

Publisher Summary Geothermal heat sources are utilized by means of thermodynamic engines such as Brayton cycles, in cases where the geothermal heat is in the form of steam. In some regions, geothermal sources exist that provide a mixture of water and steam, including suspended soil and rock particles, such that conventional turbines cannot be used. In most regions the geothermal resources are in the form of heat-containing rock or sediments, with little possibility of direct use. If an aquifer passes through the region, it may collect heat from the surrounding layers and allow a substantial rate of heat extraction such as by drilling two holes from the surface to the aquifer, separated from each other. If no aquifer is present to establish a heat exchange surface in the heat-containing rock, it may be feasible to create suitable fractures artificially. Downward gradients of temperature exist in most oceans, and they are particularly stable in the tropical oceans. The utilization of such temperature gradients for electricity generation such as by use of a Rankine cycle, are considered several times. The temperature differences available over the first 500-1000 m of water depth are only about 25?C. Considering a closed Rankine cycle, with a working fluid such as ammonia, which evaporates and condenses at convenient temperatures, placed near the ocean surface, it will be required to pump colder water through a pipe from the depth to a heat exchanger for condensation of the working fluid. A warm water heat exchanger is required for evaporating the working fluid. The converters must be placed in strong currents such as the Gulf Stream in order to save energy to pump the hot water through the heat exchanger.

Bent Sřrensen

2007-01-01T23:59:59.000Z

39

Ocean Thermal Energy Conversion Primer L. A. Vega, Ph.D.  

E-Print Network [OSTI]

source and the heat sink required for a heat engine. A practical application is found in a system (heat engine) designed to transform the thermal energy into electricity. This is referred to as OTEC for Ocean seawater is flash-evaporated in a vacuum chamber. The resulting low-pressure steam is used to drive

40

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network [OSTI]

Mexico. Energy Research and Development Administration, Division of SolarMexico. Energy Research and Development Administration, Division of Solar

Sands, M. D.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ocean thermal energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Energy from the Ocean [and Discussion  

Science Journals Connector (OSTI)

...development among the ocean energy options, and other relatively...paper focuses on ocean thermal energy conversion (OTEC). However, much of the paper's content has relevance to the use of the other ocean energy sources. Techniques of ocean...

1982-01-01T23:59:59.000Z

42

ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

Division of Central Solar Technology, U.s. Dept. of Energy.Div. of Central Solar Technology. U.S. Dept. of Energy.Division of Central Solar Technology, u.s. Dept. of Energy.

Sullivan, S.M.

2014-01-01T23:59:59.000Z

43

DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

Div. of Central Solar Technology. U.S. Dept. of Energy.Division of Central Solar Technology, U.S. Dept. of Energy.Division of Central Solar Technology, U.S. Dept. of Energy.

Sullivan, S.M.

2014-01-01T23:59:59.000Z

44

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network [OSTI]

Electricity - Hawaii is almost totally dependent upon imported petroleum A natural energy source of geothermal

Sands, M. D.

2011-01-01T23:59:59.000Z

45

Ocean Energy Technology Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Ocean Energy Technology Basics Ocean Energy Technology Basics Ocean Energy Technology Basics August 16, 2013 - 4:18pm Addthis Text Version Photo of low waves in the ocean. A dock is visible in the background. Oceans cover more than 70% of the Earth's surface. As the world's largest solar collectors, oceans contain thermal energy from the sun and produce mechanical energy from tides and waves. Even though the sun affects all ocean activity, the gravitational pull of the moon primarily drives tides, and wind powers ocean waves. Learn more about: Ocean Thermal Energy Conversion Tidal Energy Wave Energy Ocean Resources Addthis Related Articles Energy Department Releases New Energy 101 Video on Ocean Power A map generated by Georgia Tech's tidal energy resource database shows mean current speed of tidal streams. The East Coast, as shown above, has strong tides that could be tapped to produce energy. | Photo courtesy of Georgia Institute of Technology

46

ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

1979, Rosslyn, VA. U.S. Dept. of Energy and Argonne NationalLaboratory, Argonne, IL. ANL/OTEC- BCM-002. Bretschneider,Environmental Systems Division, Argonne National Laboratory.

Sullivan, S.M.

2014-01-01T23:59:59.000Z

47

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network [OSTI]

Div. of Central Solar Technology. U.S. Dept. of Energy.Division of Central Solar Technology. , U.S. Dept. ofDivision of Central Solar Technology. USDOE paper 7D-3/1.

Sands, M. D.

2011-01-01T23:59:59.000Z

48

Ocean Energy  

Science Journals Connector (OSTI)

Some of these technologies are taking off from very low power capacities, although with an intense activity....4, 5] including La Rance tidal power station calculate a capacity of ocean energy facilities worldwid...

Ricardo Guerrero-Lemus; José Manuel Martínez-Duart

2013-01-01T23:59:59.000Z

49

Ocean Thermal Energy Conversion Life Cycle Cost Assessment, Final Technical Report, 30 May 2012  

SciTech Connect (OSTI)

The Ocean Thermal Energy Conversion (OTEC) Life Cycle Cost Assessment (OLCCA) is a study performed by members of the Lockheed Martin (LM) OTEC Team under funding from the Department of Energy (DOE), Award No. DE-EE0002663, dated 01/01/2010. OLCCA objectives are to estimate procurement, operations and maintenance, and overhaul costs for two types of OTEC plants: -Plants moored to the sea floor where the electricity produced by the OTEC plant is directly connected to the grid ashore via a marine power cable (Grid Connected OTEC plants) -Open-ocean grazing OTEC plant-ships producing an energy carrier that is transported to designated ports (Energy Carrier OTEC plants) Costs are developed using the concept of levelized cost of energy established by DOE for use in comparing electricity costs from various generating systems. One area of system costs that had not been developed in detail prior to this analysis was the operations and sustainment (O&S) cost for both types of OTEC plants. Procurement costs, generally referred to as capital expense and O&S costs (operations and maintenance (O&M) costs plus overhaul and replacement costs), are assessed over the 30 year operational life of the plants and an annual annuity calculated to achieve a levelized cost (constant across entire plant life). Dividing this levelized cost by the average annual energy production results in a levelized cost of electricity, or LCOE, for the OTEC plants. Technical and production efficiency enhancements that could result in a lower value of the OTEC LCOE were also explored. The thermal OTEC resource for Oahu, Hawai�¢����i and projected build out plan were developed. The estimate of the OTEC resource and LCOE values for the planned OTEC systems enable this information to be displayed as energy supplied versus levelized cost of the supplied energy; this curve is referred to as an Energy Supply Curve. The Oahu Energy Supply Curve represents initial OTEC deployment starting in 2018 and demonstrates the predicted economies of scale as technology and efficiency improvements are realized and larger more economical plants deployed. Utilizing global high resolution OTEC resource assessment from the Ocean Thermal Extractable Energy Visualization (OTEEV) project (an independent DOE project), Global Energy Supply Curves were generated for Grid Connected and Energy Carrier OTEC plants deployed in 2045 when the predicted technology and efficiencies improvements are fully realized. The Global Energy Supply Curves present the LCOE versus capacity in ascending order with the richest, lowest cost resource locations being harvested first. These curves demonstrate the vast ocean thermal resource and potential OTEC capacity that can be harvested with little change in LCOE.

Martel, Laura; Smith, Paul; Rizea, Steven; Van Ryzin, Joe; Morgan, Charles; Noland, Gary; Pavlosky, Rick; Thomas, Michael

2012-06-30T23:59:59.000Z

50

Hydropower and Ocean Energy Resources and Technologies | Department...  

Energy Savers [EERE]

Several people are photographed standing on the barge. The Ocean Thermal Energy Conversion project at Hawaii's Natural Energy Lab was one of the first successful thermal ocean...

51

Performance analysis of an absorption power cycle for ocean thermal energy conversion  

Science Journals Connector (OSTI)

Abstract An absorption power cycle with two ejectors is proposed for ocean thermal energy conversion. The ammonia–water is used as the working fluid. The ejectors are driven by vapor and solution from the sub-generator. Based on the first and second law, the mathematical model for this cycle is developed and theoretical analysis is conducted to evaluate the effects of thermodynamic parameters on the performance of this cycle. Results show that the absorption temperature is increased by 2.0–6.5 °C by employing the two-stage ejector sub-cycle, which indicates that this proposed cycle can be driven with a lower temperature difference. Further, the thermal efficiency, net thermal efficiency and exergy efficiency of this cycle can reach to 4.17%, 3.10% and 39.92% respectively. Besides, the generation pressure, the heating source temperature, the solution concentration, and the expansion ratio, as well as the entrainment ratio of the first stage ejector have significant effects on the absorption temperature, the thermal efficiency, the exergy efficiency and the exergy loss of this cycle. In addition, 49.80% of exergy loss in this proposed cycle occurs in the generators and reheater, followed by the ejectors of 36.12%.

Han Yuan; Ning Mei; Peilin Zhou

2014-01-01T23:59:59.000Z

52

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network [OSTI]

power plants, solar thermal energy, geothermal energy, oceanpower plants, distributed solar thermal energy, geo/ocean-power plants [59]. Other LGH sources include solar thermal energy, geo-thermal energy, ocean

Lim, Hyuck

2011-01-01T23:59:59.000Z

53

Ocean | Open Energy Information  

Open Energy Info (EERE)

Related Links List of Ocean Thermal Incentives Retrieved from "http:en.openei.orgwindex.php?titleOcean&oldid273467" Categories: Articles with outstanding TODO tasks Sectors...

54

Ocean Thermal Extractable Energy Visualization- Final Technical Report on Award DE-EE0002664. October 28, 2012  

SciTech Connect (OSTI)

The Ocean Thermal Extractable Energy Visualization (OTEEV) project focuses on assessing the Maximum Practicably Extractable Energy (MPEE) from the world's ocean thermal resources. MPEE is defined as being sustainable and technically feasible, given today's state-of-the-art ocean energy technology. Under this project the OTEEV team developed a comprehensive Geospatial Information System (GIS) dataset and software tool, and used the tool to provide a meaningful assessment of MPEE from the global and domestic U.S. ocean thermal resources. The OTEEV project leverages existing NREL renewable energy GIS technologies and integrates extractable energy estimated from quality-controlled data and projected optimal achievable energy conversion rates. Input data are synthesized from a broad range of existing in-situ measurements and ground-truthed numerical models with temporal and spatial resolutions sufficient to reflect the local resource. Energy production rates are calculated for regions based on conversion rates estimated for current technology, local energy density of the resource, and sustainable resource extraction. Plant spacing and maximum production rates are then estimated based on a default plant size and transmission mechanisms. The resulting data are organized, displayed, and accessed using a multi-layered GIS mapping tool, http://maps.nrel.gov/mhk_atlas with a user-friendly graphical user interface.

Ascari, Matthew B.; Hanson, Howard P.; Rauchenstein, Lynn; Van Zwieten, James; Bharathan, Desikan; Heimiller, Donna; Langle, Nicholas; Scott, George N.; Potemra, James; Nagurny, N. John; Jansen, Eugene

2012-10-28T23:59:59.000Z

55

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network [OSTI]

solar radiation, and the geothermal energy. [16] Fig. 1.1.thermal energy, geothermal energy, wasted heat from athermal energy, geothermal energy, ocean thermal energy,

Lim, Hyuck

2011-01-01T23:59:59.000Z

56

An economic and environmental assessment of transporting bulk energy from a grazing ocean thermal energy conversion facility  

Science Journals Connector (OSTI)

Abstract An ocean thermal energy conversion (OTEC) facility produces electrical power without generating carbon dioxide (CO2) by using the temperature differential between the reservoir of cold water at greater depths and the shallow mixed layer on the ocean surface. As some of the best sites are located far from shore, one option is to ship a high-energy carrier by tanker from these open-ocean or “grazing” OTEC platforms. We evaluate the economics and environmental attributes of producing and transporting energy using ammonia (NH3), liquid hydrogen (LH2) and methanol (CH3OH). For each carrier, we develop transportation pathways that include onboard production, transport via tanker, onshore conversion and delivery to market. We then calculate the difference between the market price and the variable cost for generating the product using the OTEC platform without and with a price on CO2 emissions. Finally, we compare the difference in prices to the capital cost of the OTEC platform and onboard synthesis equipment. For all pathways, the variable cost is lower than the market price, although this difference is insufficient to recover the entire capital costs for a first of a kind OTEC platform. With an onboard synthesis efficiency of 75%, we recover 5%, 25% and 45% of the capital and fixed costs for LH2, CH3OH and NH3, respectively. Improving the capital costs of the OTEC platform by up to 25% and adding present estimates for the damages from CO2 do not alter these conclusions. The near-term potential for the grazing OTEC platform is limited in existing markets. In the longer term, lower capital costs combined with improvements in onboard synthesis costs and efficiency as well as increases in CO2 damages may allow the products from OTEC platforms to enter into markets.

Elisabeth A. Gilmore; Andrew Blohm; Steven Sinsabaugh

2014-01-01T23:59:59.000Z

57

OceanEnergyMMS.p65  

Broader source: Energy.gov (indexed) [DOE]

Minerals Management Service, U.S. Department of the Interior Ocean Energy PAGE 1 Minerals Management Service, U.S. Department of the Interior Ocean Energy PAGE 1 Teacher Guide .......................................................... 2 Related National Science Standards .......................... 3 Introduction to Ocean Energy .................................. 4 Petroleum & Natural Gas ......................................... 5 Natural Oil and Gas Seeps ........................................ 7 Methane Hydrates .................................................... 8 Solar Energy .............................................................. 9 Wind Energy ........................................................... 10 Wave Energy ........................................................... 11 OTEC: Ocean Thermal Energy Conversion .............

58

Energy and exergy analyses of hydrogen production via solar-boosted ocean thermal energy conversion and PEM electrolysis  

Science Journals Connector (OSTI)

Energy and exergy analyses are reported of hydrogen production via an ocean thermal energy conversion (OTEC) system coupled with a solar-enhanced proton exchange membrane (PEM) electrolyzer. This system is composed of a turbine, an evaporator, a condenser, a pump, a solar collector and a PEM electrolyzer. Electricity is generated in the turbine, which is used by the PEM electrolyzer to produce hydrogen. A simulation program using Matlab software is developed to model the PEM electrolyzer and OTEC system. The simulation model for the PEM electrolyzer used in this study is validated with experimental data from the literature. The amount of hydrogen produced, the exergy destruction of each component and the overall system, and the exergy efficiency of the system are calculated. To better understand the effect of various parameters on system performance, a parametric analysis is carried out. The energy and exergy efficiencies of the integrated OTEC system are 3.6% and 22.7% respectively, and the exergy efficiency of the PEM electrolyzer is about 56.5% while the amount of hydrogen produced by it is 1.2 kg/h.

Pouria Ahmadi; Ibrahim Dincer; Marc A. Rosen

2013-01-01T23:59:59.000Z

59

Off-design performance analysis of a closed-cycle ocean thermal energy conversion system with solar thermal preheating and superheating  

Science Journals Connector (OSTI)

Abstract This article reports the off-design performance analysis of a closed-cycle ocean thermal energy conversion (OTEC) system when a solar thermal collector is integrated as an add-on preheater or superheater. Design-point analysis of a simple OTEC system was numerically conducted to generate a gross power of 100 kW, representing a base OTEC system. In order to improve the power output of the OTEC system, two ways of utilizing solar energy are considered in this study: (1) preheating of surface seawater to increase its input temperature to the cycle and (2) direct superheating of the working fluid before it enters a turbine. Obtained results reveal that both preheating and superheating cases increase the net power generation by 20–25% from the design-point. However, the preheating case demands immense heat load on the solar collector due to the huge thermal mass of the seawater, being less efficient thermodynamically. The superheating case increases the thermal efficiency of the system from 1.9% to around 3%, about a 60% improvement, suggesting that this should be a better approach in improving the OTEC system. This research provides thermodynamic insight on the potential advantages and challenges of adding a solar thermal collection component to OTEC power plants.

Hakan Aydin; Ho-Saeng Lee; Hyeon-Ju Kim; Seung Kyoon Shin; Keunhan Park

2014-01-01T23:59:59.000Z

60

Ocean thermal energy conversion power system development. Final design report: PSD-I, Phase II  

SciTech Connect (OSTI)

The PSD-I program provides a heat exchanger sytem consisting of an evaporator, condenser and various ancillaries with ammonia used as a working fluid in a closed simulated Rankine cycle. It is to be installed on the Chepachet Research Vessel for test and evaluation of a number of OTEC concepts in a true ocean environment. It is one of several test articles to be tested. Primary design concerns include control of biofouling, corrosion and erosion of aluminum tubes, selection of materials, and the development of a basis for scale-up to large heat exchangers so as to ultimately demonstrate economic feasibility on a commercial scale. The PSD-I test article is devised to verify thermodynamic, environmental, and mechanical performance of basic design concepts. The detailed design, development, fabrication, checklist, delivery, installation support, and operation support for the Test Article Heat Exchangers are described. (WHK)

None

1980-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "ocean thermal energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

The magnesium silicide germanide stannide alloy: A new concept in ocean thermal energy conversion  

SciTech Connect (OSTI)

In devices hitherto used for the direct conversion of heat into electricity, commonly known as ''thermoelectric energy converters'', the efficiency of conversion is appreciably lower than that of conventional reciprocating or rotary heat engines. This low efficiency is brought about by the physical properties of the materials selected for the manufacture of these devices. The materials that are currently being used for this purpose are either simple elements and alloys thereof, such as silicon and germanium, or intermetallic compounds, either simple or alloys and solid solutions thereof. Of the latter, mention may be made of bismuth telluride, antimony telluride, lead telluride, antimony silver telluride, lead selenide, bismuth selenide, antimony selenide, etc., as well as mixtures and solid solutions of these and other compounds. A search in respect of these materials carried out in the U.S. Patent literature indicates indeed a quite substantial and impressive record.

Nicolaou, M.C.

1983-12-01T23:59:59.000Z

62

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network [OSTI]

using aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"ings of Aquifer Thermal Energy Storage Workshop, Lawrence

Tsang, C.-F.

2011-01-01T23:59:59.000Z

63

Green Ocean Wave Energy | Open Energy Information  

Open Energy Info (EERE)

Ocean Wave Air Piston This article is a stub. You can help OpenEI by expanding it. Retrieved from "http:en.openei.orgwindex.php?titleGreenOceanWaveEnergy&oldid769161...

64

Hydropower and Ocean Energy Resources and Technologies | Department of  

Broader source: Energy.gov (indexed) [DOE]

Hydropower and Ocean Energy Resources and Technologies Hydropower and Ocean Energy Resources and Technologies Hydropower and Ocean Energy Resources and Technologies October 7, 2013 - 9:29am Addthis Photo of water flowing from several openings in a hydropower dam. Hydropower produces 10% of the nation's energy, including power from the Ice Harbor Dam in Burbank, Washington. This page provides a brief overview of hydropower and ocean energy resources and technologies supplemented by specific information to apply these technologies within the Federal sector. Overview Hydropower has been used for centuries to power machinery, but the application most commonly associated with hydropower is electricity production through dams. Ocean energy refers to various forms of renewable energy harnessed from the ocean. There are two primary types of ocean energy: mechanical and thermal.

65

ocean energy | OpenEI  

Open Energy Info (EERE)

ocean energy ocean energy Dataset Summary Description This shapefile represents the seasonal winter depth profile to reach water at a temperature of 20ÂşC. Source NREL Date Released October 28th, 2012 (2 years ago) Date Updated Unknown Keywords depth profile hydrokinetic ocean ocean energy ocean thermal energy conversion OTEC seawater cooling thermal Data application/zip icon OTEC Seawater Cooling 20ÂşC Depth Profile - Winter Average (zip, 1.1 MiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Time Period March 2009 - February 2011 License License Other or unspecified, see optional comment below Comment This GIS data was developed by the National Renewable Energy Laboratory ("NREL"), which is operated by the Alliance for Sustainable Energy, LLC for the U.S. Department of Energy ("DOE"). The user is granted the right, without any fee or cost, to use, copy, modify, alter, enhance and distribute this data for any purpose whatsoever, provided that this entire notice appears in all copies of the data. Further, the user of this data agrees to credit NREL in any publications or software that incorporate or use the data. Access to and use of the GIS data shall further impose the following obligations on the User. The names DOE/NREL may not be used in any advertising or publicity to endorse or promote any product or commercial entity using or incorporating the GIS data unless specific written authorization is obtained from DOE/NREL. The User also understands that DOE/NREL shall not be obligated to provide updates, support, consulting, training or assistance of any kind whatsoever with regard to the use of the GIS data. THE GIS DATA IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL DOE/NREL BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER, INCLUDING BUT NOT LIMITED TO CLAIMS ASSOCIATED WITH THE LOSS OF DATA OR PROFITS, WHICH MAY RESULT FROM AN ACTION IN CONTRACT, NEGLIGENCE OR OTHER TORTIOUS CLAIM THAT ARISES OUT OF OR IN CONNECTION WITH THE ACCESS OR USE OF THE GIS DATA. The User acknowledges that access to the GIS data is subject to U.S. Export laws and regulations and any use or transfer of the GIS data must be authorized under those regulations. The User shall not use, distribute, transfer, or transmit GIS data or any products incorporating the GIS data except in compliance with U.S. export regulations. If requested by DOE/NREL, the User agrees to sign written assurances and other export-related documentation as may be required to comply with U.S. export regulations.

66

Seasonal thermal energy storage  

SciTech Connect (OSTI)

This report describes the following: (1) the US Department of Energy Seasonal Thermal Energy Storage Program, (2) aquifer thermal energy storage technology, (3) alternative STES technology, (4) foreign studies in seasonal thermal energy storage, and (5) economic assessment.

Allen, R.D.; Kannberg, L.D.; Raymond, J.R.

1984-05-01T23:59:59.000Z

67

Ocean Thermal Power for Hydrogen Production  

Science Journals Connector (OSTI)

Roughly three-fourths of the earth’s surface is covered by the oceans and thus receives the major share of the Sun’s radiant energy falling on the planet. Allowing for the loss of part of this energy income by...

M. V. C. Sastri

1987-01-01T23:59:59.000Z

68

Makai Ocean Engineering Inc | Open Energy Information  

Open Energy Info (EERE)

Makai Ocean Engineering Inc Makai Ocean Engineering Inc Jump to: navigation, search Name Makai Ocean Engineering Inc Address PO Box 1206 Place Kailua Zip 96734-1206 Sector Marine and Hydrokinetic Year founded 1973 Number of employees 28 Phone number 808.259.8871 Website http://www.makai.com Region United States LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: Modeling the Physical and Biochemical Influence of Ocean Thermal Energy Conversion Plant Discharges into their Adjacent Waters This company is involved in the following MHK Technologies: Deep Water Pipelines This article is a stub. You can help OpenEI by expanding it.

69

Use of Ocean Energies  

Science Journals Connector (OSTI)

For converting the current of water for the production of electricity, there is a wide range of technological approaches. The Italian ocean current power plant named Kobold (Fig. 6.2) was the first commercial o...

Prof. Dr.-Ing Hermann-Josef Wagner…

2011-01-01T23:59:59.000Z

70

Federal Energy Management Program: Hydropower and Ocean Energy Resources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydropower and Hydropower and Ocean Energy Resources and Technologies to someone by E-mail Share Federal Energy Management Program: Hydropower and Ocean Energy Resources and Technologies on Facebook Tweet about Federal Energy Management Program: Hydropower and Ocean Energy Resources and Technologies on Twitter Bookmark Federal Energy Management Program: Hydropower and Ocean Energy Resources and Technologies on Google Bookmark Federal Energy Management Program: Hydropower and Ocean Energy Resources and Technologies on Delicious Rank Federal Energy Management Program: Hydropower and Ocean Energy Resources and Technologies on Digg Find More places to share Federal Energy Management Program: Hydropower and Ocean Energy Resources and Technologies on AddThis.com... Energy-Efficient Products

71

Energy from the Ocean [and Discussion  

Science Journals Connector (OSTI)

...October 1982 research-article Energy from the Ocean [and Discussion...Lennard J. H. Turner P. Wadhams Renewable ocean energy sources can eventually supply a large fraction of man's energy needs, starting in the 1990s...

1982-01-01T23:59:59.000Z

72

Effects of thermocline on performance of underwater glider’s power system propelled by ocean thermal energy  

Science Journals Connector (OSTI)

The thermal glider’s changeable volume produces propelling force to power the glider’s descending and ascending through ... affect the working processes of the glider’s power system. Based on the enthalpy method,...

Hai Yang; Jie Ma

2009-12-01T23:59:59.000Z

73

Ocean energy conversion systems annual research report  

SciTech Connect (OSTI)

Alternative power cycle concepts to the closed-cycle Rankine are evaluated and those that show potential for delivering power in a cost-effective and environmentally acceptable fashion are explored. Concepts are classified according to the ocean energy resource: thermal, waves, currents, and salinity gradient. Research projects have been funded and reported in each of these areas. The lift of seawater entrained in a vertical steam flow can provide potential energy for a conventional hydraulic turbine conversion system. Quantification of the process and assessment of potential costs must be completed to support concept evaluation. Exploratory development is being completed in thermoelectricity and 2-phase nozzles for other thermal concepts. Wave energy concepts are being evaluated by analysis and model testing with present emphasis on pneumatic turbines and wave focussing. Likewise, several conversion approaches to ocean current energy are being evaluated. The use of salinity resources requires further research in membranes or the development of membraneless processes. Using the thermal resource in a Claude cycle process as a power converter is promising, and a program of R and D and subsystem development has been initiated to provide confirmation of the preliminary conclusion.

Not Available

1981-03-01T23:59:59.000Z

74

HEATS: Thermal Energy Storage  

SciTech Connect (OSTI)

HEATS Project: The 15 projects that make up ARPA-E’s HEATS program, short for “High Energy Advanced Thermal Storage,” seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

None

2012-01-01T23:59:59.000Z

75

Deep-Sea Research II 53 (2006) 3141 Decadal variability of wind-energy input to the world ocean  

E-Print Network [OSTI]

- tion is emerging. Although the ocean receives a huge amount of thermal energy, it cannot convert such thermal energy into mechanical energy very effi- ciently because the ocean is heated and cooled fromDeep-Sea Research II 53 (2006) 31­41 Decadal variability of wind-energy input to the world ocean

Huang, Rui Xin

76

Novel green illumination energy for LED with ocean battery materials  

Science Journals Connector (OSTI)

This paper launches novel materials of LED with ocean battery. Ocean battery employs sea water existing by the nature as energy materials to drive LED lamp lighting. The analysing methods are thermal-, electric- and illumination-performance experiments to discuss the novel green illumination techniques. Ocean battery and LED are all DC components, there is no energy loss of current converter between them, and the ocean battery has more electricity in LED illumination. Vapour chamber (VC) and aluminium (AL) materials are assigned to be the LED PCBs. Results show that the effective thermal conductivity of the VCPCB is many times higher than that of the ALPCB, proving that it can effectively reduce the temperature of the LED and obtain more uniform luminance. And the output voltage and LED lighting start unstable resulting from the air bubble of ocean battery slight vibration.

Jung-Chang Wang

2012-01-01T23:59:59.000Z

77

AWS Ocean Energy Ltd | Open Energy Information  

Open Energy Info (EERE)

AWS Ocean Energy Ltd AWS Ocean Energy Ltd Jump to: navigation, search Name AWS Ocean Energy Ltd Place Inverness, Scotland, United Kingdom Zip IV17 1SN Product Inverness-based company established to commercialise the Archimedes Wave Swing. Coordinates 48.55324°, -110.689764° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.55324,"lon":-110.689764,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

78

Gravitational Potential Energy Sinks in the Oceans R. X. Huang* and W. Wang+  

E-Print Network [OSTI]

Gravitational Potential Energy Sinks in the Oceans R. X. Huang* and W. Wang+ *Woods Hole conversion rate from internal energy to GPE through molecular diffusion. More relevant to the ocean in the ocean interior, only if the heating source is located below the cooling source. For Case 3, thermal

Huang, Rui Xin

79

Ocean tide energy converter  

SciTech Connect (OSTI)

A tide motor energy source includes a tidal piston with a valved chamber. The piston drives a hydraulic ram to generate electrical power through a pressure accumulator and hydraulic motor. The ram can be locked hydraulically to enable the tidal piston to be held fixed at a desired elevation and the valves in the chamber permit it to be filled with water or air. The piston with its chamber filled with air at its low tide position and then released for controlled ascent while submerged acts as a submerged float for driving the ram upwardly while the tide runs in during one phase of its operation. The piston with its chamber filled with water while locked at its highest position as the tide begins to run out, and then released to fall under control, acts as a weight suspended in air after the water level drops below the piston for driving the ram downwardly during the second phase of its operation. The rising and falling motion of the tidal piston is used as the energy source.

Rainey, D.E.

1980-06-24T23:59:59.000Z

80

Practical Ocean Energy Management Systems Inc POEMS | Open Energy  

Open Energy Info (EERE)

Ocean Energy Management Systems Inc POEMS Ocean Energy Management Systems Inc POEMS Jump to: navigation, search Name Practical Ocean Energy Management Systems Inc (POEMS) Place San Diego, California Zip 92138 Sector Ocean, Renewable Energy Product POEMS was formed to involve the public in providing support for the development of ocean energy as a viable component of the renewable energy market. References Practical Ocean Energy Management Systems Inc (POEMS)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Practical Ocean Energy Management Systems Inc (POEMS) is a company located in San Diego, California . References ↑ "Practical Ocean Energy Management Systems Inc (POEMS)" Retrieved from

Note: This page contains sample records for the topic "ocean thermal energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Hydropower and Ocean Energy Resources and Technologies  

Broader source: Energy.gov [DOE]

This page provides a brief overview of hydropower and ocean energy resources and technologies supplemented by specific information to apply these technologies within the Federal sector.

82

Ocean Energy Technology Overview: Federal Energy Management Program (FEMP)  

SciTech Connect (OSTI)

Introduction to and overview of ocean renewable energy resources and technologies prepared for the U.S. Department of Energy Federal Energy management Program.

Not Available

2009-07-01T23:59:59.000Z

83

The Mechanical Energy Input to the Ocean Induced by Tropical Cyclones LING LING LIU AND WEI WANG  

E-Print Network [OSTI]

, and environments. 1. Introduction Although oceans receive a huge amount of thermal energy, such energy cannot be efficiently converted into mechanical energy because the ocean is heated and cooled from the same geopotentialThe Mechanical Energy Input to the Ocean Induced by Tropical Cyclones LING LING LIU AND WEI WANG

Huang, Rui Xin

84

International Conference on Ocean Energy | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

International Conference on Ocean Energy International Conference on Ocean Energy November 4, 2014 1:00PM EST to November 6, 2014 10:00PM EST Halifax, Nova Scotia, Canada http:...

85

Solar Thermal Energy Storage  

Science Journals Connector (OSTI)

Various types of thermal energy storage systems are introduced and their importance and desired characteristics are outlined. Sensible heat storage, which is one of the most commonly used storage systems in pract...

E. Paykoç; S. Kakaç

1987-01-01T23:59:59.000Z

86

Mapping and Assessment of the United States Ocean Wave Energy...  

Broader source: Energy.gov (indexed) [DOE]

Mapping and Assessment of the United States Ocean Wave Energy Resource Mapping and Assessment of the United States Ocean Wave Energy Resource This report describes the analysis and...

87

www.hboi.fau.edu Ocean Energy  

E-Print Network [OSTI]

to drive turbines #12;At present, the focus is to establish a small-scale ocean current test sitewww.hboi.fau.edu Ocean Energy Collaboration: A Charge for Engineers BULLETIN Summer 2012 Beginning by Executive Director Sue Skemp, they are helping to investigate and develop power extraction from particularly

Fernandez, Eduardo

88

Ocean Navitas | Open Energy Information  

Open Energy Info (EERE)

Navitas Navitas Jump to: navigation, search Name Ocean Navitas Address Nursery House Place United Kingdom Zip DN21 5BQ Sector Ocean Product Ocean Navitas was incorporated in May 2006 by experienced engineers, businessmen and sailing enthusiasts David Hunt, James McCague and Simon Condry. Website http://www.oceannavitas.com Region United Kingdom References Ocean NavitasUNIQ75db538f85b32404-ref-000014E2-QINU LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: Ocean Navitas NaREC This company is involved in the following MHK Technologies: Aegir Dynamo This article is a stub. You can help OpenEI by expanding it.

89

ocean energy | OpenEI Community  

Open Energy Info (EERE)

ocean energy ocean energy Home Kch's picture Submitted by Kch(24) Member 9 April, 2013 - 13:30 MHK Cost Breakdown Structure Draft CBS current energy GMREC LCOE levelized cost of energy marine energy MHK ocean energy The generalized Cost Breakdown Structure (CBS) for marine and hydrokinetic (MHK) projects is a hierarchical structure designed to facilitate the collection and organization of lifecycle costs of any type of MHK project, including wave energy converters and current energy convertners. At a high level, the categories in the CBS will be applicable to all projects; at a detailed level, however, the CBS includes many cost categories that will pertain to one project but not others. It is expected that many of the detailed levels of the CBS will be populated with "NA" or left blank.Upload

90

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network [OSTI]

heat source can be solar thermal energy, biological thermaland concentrated solar thermal energy farms. They demandsources include solar thermal energy, geo-thermal energy,

Lim, Hyuck

2011-01-01T23:59:59.000Z

91

Ocean Motion International LLC | Open Energy Information  

Open Energy Info (EERE)

Ocean Motion International LLC Ocean Motion International LLC Jump to: navigation, search Name Ocean Motion International LLC Place Saulsbury, Tennessee Zip 38067 Sector Ocean Product Marine energy technology firm developing ocean/ wave powered generators. Coordinates 35.052242°, -89.083299° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.052242,"lon":-89.083299,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

92

Ocean Energy Projects Developing On and Off America's Shores | Department  

Broader source: Energy.gov (indexed) [DOE]

Ocean Energy Projects Developing On and Off America's Shores Ocean Energy Projects Developing On and Off America's Shores Ocean Energy Projects Developing On and Off America's Shores January 22, 2013 - 1:14pm Addthis Artist rendering of Ocean Power Technologies' proposed wave park off the coast of Oregon. | Photo courtesy of Ocean Power Technologies. Artist rendering of Ocean Power Technologies' proposed wave park off the coast of Oregon. | Photo courtesy of Ocean Power Technologies. Verdant testing its tidal energy device in New York's East River. | Photo courtesy of Verdant Power. Verdant testing its tidal energy device in New York's East River. | Photo courtesy of Verdant Power. Ocean Power Technologies wave energy device. | Photo courtesy of Ocean Power Technologies. Ocean Power Technologies wave energy device. | Photo courtesy of Ocean

93

Ocean Energy Projects Developing On and Off America's Shores | Department  

Broader source: Energy.gov (indexed) [DOE]

Ocean Energy Projects Developing On and Off America's Shores Ocean Energy Projects Developing On and Off America's Shores Ocean Energy Projects Developing On and Off America's Shores January 22, 2013 - 1:14pm Addthis Artist rendering of Ocean Power Technologies' proposed wave park off the coast of Oregon. | Photo courtesy of Ocean Power Technologies. Artist rendering of Ocean Power Technologies' proposed wave park off the coast of Oregon. | Photo courtesy of Ocean Power Technologies. Verdant testing its tidal energy device in New York's East River. | Photo courtesy of Verdant Power. Verdant testing its tidal energy device in New York's East River. | Photo courtesy of Verdant Power. Ocean Power Technologies wave energy device. | Photo courtesy of Ocean Power Technologies. Ocean Power Technologies wave energy device. | Photo courtesy of Ocean

94

NREL: Energy Storage - Energy Storage Thermal Management  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Storage Thermal Management Infrared image of rectangular battery cell. Infrared thermal image of a lithium-ion battery cell with poor terminal design. Graph of relative...

95

Assessment of Energy Production Potential from Ocean Currents...  

Broader source: Energy.gov (indexed) [DOE]

Ocean Currents along the United States Coastline Assessment of Energy Production Potential from Ocean Currents along the United States Coastline Report summarizing the results of...

96

Ocean thermal plantships for production of ammonia as the hydrogen carrier.  

SciTech Connect (OSTI)

Conventional petroleum, natural gas, and coal are the primary sources of energy that have underpinned modern civilization. Their continued availability in the projected quantities required and the impacts of emission of greenhouse gases (GHGs) on the environment are issues at the forefront of world concerns. New primary sources of energy are being sought that would significantly reduce the emissions of GHGs. One such primary source that can help supply energy, water, and fertilizer without GHG emissions is available in the heretofore unexploited thermal gradients of the tropical oceans. The world's oceans are the largest natural collector and reservoir of solar energy. The potential of ocean energy is limitless for producing base-load electric power or ammonia as the hydrogen carrier and fresh water from seawater. However, until now, ocean energy has been virtually untapped. The general perception is that ocean thermal energy is limited to tropical countries. Therefore, the full potential of at-sea production of (1) ammonia as a hydrogen carrier and (2) desalinated water has not been adequately evaluated. Using ocean thermal plantships for the at-sea co-production of ammonia as a hydrogen carrier and desalinated water offer potential energy, environmental, and economic benefits that support the development of the technology. The introduction of a new widespread solution to our projected energy supply requires lead times of a decade or more. Although continuation of the ocean thermal program from the 1970s would likely have put us in a mitigating position in the early 2000s, we still have a window of opportunity to dedicate some of our conventional energy sources to the development of this renewable energy by the time new sources would be critically needed. The primary objective of this project is to evaluate the technical and economic viability of ocean thermal plantships for the production of ammonia as the hydrogen carrier. This objective is achieved by completing project tasks that consist of updating the John Hopkins University/Applied Physics Laboratory (JHU/APL) pilot plantship design and extrapolating it to commercial plantships, evaluating a new energy-efficient ammonia synthesis process, evaluating the co-production of desalinated water on plantships, and developing a conceptual design of a satellite plantships system for commercial-scale ammonia production. In addition, an industrial workshop was organized to present the results and develop future goals for commercialization of ocean thermal plantships by 2015. The following goals, arranged in chronological order, were examined at the workshop: (1) Global displacement of petroleum-fuel-based (diesel, fuel oil, naphtha) power generation for freeing up these fuels for transportation, chemical feedstock, and other high-valued uses; (2) At-sea production of desalinated water for regions of critical water shortages; (3) Displacement of carbon-based feed stocks and energy for production of ammonia fertilizers; (4) Development of hydrogen supply to allow economic processing of heavy crude oils and upgrading oil sands; (5) Development of ammonia-fueled distributed energy to displace natural-gas fueled power generation to free up natural gas for higher-value uses and the mitigation of issues associated with imported liquefied natural gas (LNG); and (6) Use of ammonia as a hydrogen carrier for transportation.

Panchal, C.B.; Pandolfini, P. P.; Kumm, W. H.; Energy Systems; Johns Hopkins Univ.; Arctic Energies, Ltd.

2009-12-02T23:59:59.000Z

97

Ocean Renewable Power Company | Open Energy Information  

Open Energy Info (EERE)

Power Company Power Company Jump to: navigation, search Name Ocean Renewable Power Company LLC Place Portland, Maine Zip 4101 Sector Ocean, Renewable Energy Product Ocean Renewable Power Company, LLC was founded in 2004 for the purpose of generating reliable, competitive, emission-free electricity from the energy resources of the oceans. Coordinates 45.511795°, -122.675629° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.511795,"lon":-122.675629,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

98

Ocean Thermal Gradient Hydraulic Power Plant  

Science Journals Connector (OSTI)

...for the probable life of the earth, only...low-pressure steam turbines pSrhaps hun-dreds...con-ventional hydraulic turbine under gravity flow...horizontally and the remaining available energy...through a hydraulic turbine to generatepower...between the liquid and gas-eous phases, with...

Earl J. Beck

1975-07-25T23:59:59.000Z

99

NREL: Energy Analysis - Ocean Energy Results - Life Cycle Assessment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ocean Energy Results - Life Cycle Assessment Review Ocean Energy Results - Life Cycle Assessment Review For more information, visit: Special Report on Renewable Energy Sources and Climate Change Mitigation: Ocean Energy OpenEI: Data, Visualization, and Bibliographies Chart that shows life cycle greenhouse gas emissions for ocean power technologies. For help reading this chart, please contact the webmaster. Estimates of life cycle greenhouse gas emissions of wave and tidal range technologies. Credit: Lewis, A., S. Estefen, J. Huckerby, W. Musial, T. Pontes, J. Torres-Martinez, 2011: Ocean Energy. In IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation [O. Edenhofer, R. Pichs-Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer, C. von Stechow (eds)], Cambridge University Press. Figure 6.11 Enlarge image

100

MHK Technologies/Ocean | Open Energy Information  

Open Energy Info (EERE)

Ocean Ocean < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Ocean.jpg Technology Profile Primary Organization Hydro Green Energy LLC Project(s) where this technology is utilized *MHK Projects/Alaska 35 *MHK Projects/Maine 1 Project *MHK Projects/Mississippi 6 *MHK Projects/Mississippi 7 *MHK Projects/New York 1 *MHK Projects/New York 2 Technology Resource Click here Current/Tidal Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 4: Proof of Concept Technology Description Hydro Green Energy's HydroKinetic Turbine Arrays operate differently than a traditional hydropower plant. Like a traditional hydropower station, the electricity that we produce is clean and renewable, however, there are significant differences. Hydro Green Energy's Krouse Turbines are kinetic turbines. This means that the renewable power that is generated comes from the energy in the "motion" of the moving water, i.e. the velocity of the moving water be it river, tidal or ocean current to generate river, tidal energy or ocean energy, respectively.

Note: This page contains sample records for the topic "ocean thermal energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Ocean Energy Technology: Overview, Federal Energy Management Program (FEMP)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

femp.energy.gov femp.energy.gov Ocean Energy Technology Overview Prepared for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Federal Energy Management Program July 2009 DOE/GO-102009-2823 Ocean Energy Technology Overview i Contacts Principal Investigators: Kari Burman Phone: 303-384-7558 E-mail: kari.burman@nrel.gov Andy Walker, PhD PE Phone: 303-384-7531 E-mail: andy.walker@nrel.gov Energy Management and Federal Markets Group National Renewable Energy Laboratory (NREL) MS 301 1617 Cole Boulevard Golden, CO 80401 Sponsor: U.S. Department of Energy Federal Energy Management Program Acknowledgements This work was sponsored by the U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP). Research regarding ocean energy resources, status of wave and tidal power technologies, and

102

Thermal energy storage  

Science Journals Connector (OSTI)

Various types of thermal stares for solar systems are surveyed which include: long-term water stores for solar systems; ground storage using soil as an interseasonal energy store; ground-water aquifers; pebble or rock bed storage; phase change storage; solar ponds; high temperature storage; and cold stores for solar air conditioning system. The use of mathematical models for analysis of the storage systems is considered

W.E.J. Neal

1981-01-01T23:59:59.000Z

103

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network [OSTI]

Survey of Thermal Energy Storage in Aquifers Coupled withLow Temperature Thermal Energy Storage Program of Oak Ridgefor Seasonal Thermal Energy Storage: An Overview of the DOE-

Authors, Various

2011-01-01T23:59:59.000Z

104

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network [OSTI]

Scale Thermal Energy Storage for Cogeneration and Solarsolar captors, thermal effluents, low cost energy duringSeale Thermal Energy Storage for Cogeneration and Solar

Authors, Various

2011-01-01T23:59:59.000Z

105

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network [OSTI]

Survey of Thermal Energy Storage in Aquifers Coupled withconcept of thermal energy storage in aquifers was suggestedAnnual Thermal Energy Storage Contractors' Information

Authors, Various

2011-01-01T23:59:59.000Z

106

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network [OSTI]

Nanoporous Thermal-to-Electrical Energy Conversion System (of Wasted Energy : Thermal to Electrical Energy Conversion AArticles: 1. “ Thermal to electrical energy conversion” , Yu

Lim, Hyuck

2011-01-01T23:59:59.000Z

107

Thermal Storage of Solar Energy  

Science Journals Connector (OSTI)

Thermal storage is needed to improve the efficiency and usefulness of solar thermal systems. The paper indicates the main storage ... which would greatly increase the practical use of solar energy — is more diffi...

H. Tabor

1984-01-01T23:59:59.000Z

108

Establishing a Testing Center for Ocean Energy Technologies in...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Marine Renewable Energy Centers. NNMREC offers a full range of capabilities to support wave and tidal energy development for the United States. Ocean energy, generated from...

109

Ninth Annual Ocean Renewable Energy Conference | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Ninth Annual Ocean Renewable Energy Conference Ninth Annual Ocean Renewable Energy Conference September 24, 2014 12:00PM PDT to September 25, 2014 9:00PM PDT Portland, Oregon The...

110

Scott Wilson Oceans | Open Energy Information  

Open Energy Info (EERE)

Oceans Oceans Jump to: navigation, search Name Scott Wilson Oceans Place Chesterfield, United Kingdom Zip S30 1JF Sector Wind energy Product Specialist in the engineering of onshore and offshore wind farm technology. Coordinates 37.376844°, -77.508252° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.376844,"lon":-77.508252,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

111

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network [OSTI]

density, making direct thermal energy storage methods, e.g.reduced. Conventional thermal energy harvesting and storageharvesting, storage, and utilization of thermal energy has

Lim, Hyuck

2011-01-01T23:59:59.000Z

112

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network [OSTI]

biological thermal energy, geothermal energy, wasted heatpower plants, solar thermal energy, geothermal energy, oceansolar radiation, and the geothermal energy. [16] Fig. 1.1.

Lim, Hyuck

2011-01-01T23:59:59.000Z

113

Ocean Energy: Forms and Prospects  

Science Journals Connector (OSTI)

...disabled yacht or fish-ing boat out of...indicates that wind waves are regenerated...For example, if wind is forced to move...envisaged are huge offshore floating or near-surface...suggested that kelp farms be developed for...flux of energy from winds into waves would...

John D. Isaacs; Walter R. Schmitt

1980-01-18T23:59:59.000Z

114

ENERGY & ENVIRONMENT DIVISION ANNUAL REPORT 1979  

E-Print Network [OSTI]

for geothermal energy, OTEC, solar thermal electricity andsolar thermal Jlectric systems and geothermal energy. Solarsolar thermal electric plants, ocean thermal energy plants (

Cairns, E.J.

2010-01-01T23:59:59.000Z

115

Mapping and Assessment of the United States Ocean Wave Energy...  

Open Energy Info (EERE)

Mapping and Assessment of the United States Ocean Wave Energy Resource This project estimates the naturally available and technically recoverable U.S. wave energy resources, using...

116

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network [OSTI]

CALIFORNIA, SAN DIEGO Recycling of Wasted Energy : ThermalOF THE DISSERTATION Recycling of Wasted Energy : Thermal to

Lim, Hyuck

2011-01-01T23:59:59.000Z

117

Ocean Renewable Energy Coalition OREC | Open Energy Information  

Open Energy Info (EERE)

Energy Coalition OREC Energy Coalition OREC Jump to: navigation, search Name Ocean Renewable Energy Coalition (OREC) Place Potomac, Maryland Zip 20859 Sector Ocean Product US trade association founded to promote energy technologies from ocean resources. Coordinates 39.017653°, -77.208337° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.017653,"lon":-77.208337,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

118

Finavera Renewables Ocean Energy Ltd | Open Energy Information  

Open Energy Info (EERE)

Renewables Ocean Energy Ltd Renewables Ocean Energy Ltd Jump to: navigation, search Name Finavera Renewables Ocean Energy Ltd Address 595 Burrard Street Suite 3113 Three Bentall Centre PO Box 49071 Place Vancouver Zip V7X 1G4 Sector Marine and Hydrokinetic Phone number 604-288-9051 Website http://www.finavera.com Region Canada LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: Coos County Offshore Wave Energy Power Plant Figueira da Foz Portugal Humboldt County Wave Project Makah Bay Offshore Wave Pilot Project South Africa Ucluelet BC Canada This company is involved in the following MHK Technologies: AquaBuoy This article is a stub. You can help OpenEI by expanding it.

119

Massachusetts Ocean Management Plan (Massachusetts) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Massachusetts Ocean Management Plan (Massachusetts) Massachusetts Ocean Management Plan (Massachusetts) Massachusetts Ocean Management Plan (Massachusetts) < Back Eligibility Construction Industrial Installer/Contractor Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Savings Category Water Buying & Making Electricity Wind Program Info State Massachusetts Program Type Siting and Permitting Provider Executive Office of Energy and Environmental Affairs The Massachusetts Ocean Act of 2008 required the state's Secretary of Energy and Environmental Affairs to develop a comprehensive ocean management plan for the state by the end of 2009. That plan identified certain state waters that are eligible for offshore wind, wave and tidal energy development and other state waters where such development is

120

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network [OSTI]

and Zakhidov, 1971. "Storage of Solar Energy in a Sandy-Aquifer Storage of Hot Water from Solar Energy Collectors,"with solar energy systems, aquifer energy storage provides a

Tsang, C.-F.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ocean thermal energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network [OSTI]

Zakhidov, 1971. "Storage of Solar Energy in a Sandy-Gravelwith solar energy systems, aquifer energy storage provides aAquifer Storage of Hot Water from Solar Energy Collectors,"

Tsang, C.-F.

2011-01-01T23:59:59.000Z

122

Thermal Energy Storage Technologies  

Science Journals Connector (OSTI)

Energy, the lifeline of all activities is highly ... a country. The gap present between the energy generation and the energy consumption keeps expanding with a precipitous increase in the demand for the energy, e...

R. Parameshwaran; S. Kalaiselvam

2013-01-01T23:59:59.000Z

123

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network [OSTI]

Other LGH sources include solar thermal energy, geo-thermalThe heat source can be solar thermal energy, biologicalsources include the coolants in coal and nuclear power plants, solar thermal energy,

Lim, Hyuck

2011-01-01T23:59:59.000Z

124

MHK Technologies/Ocean Energy Rig | Open Energy Information  

Open Energy Info (EERE)

Rig Rig < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Ocean Energy Rig.jpg Technology Profile Primary Organization Free Flow 69 Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description The Ocean Energy Rig is a hybrid concept harnessing tidal stream with increased velocity from venturi system wave and wind power The rig also uses solar panels to power computers and warning lights Other unique features include a water ballasting system with automatic self levelling and wave ramps to maximize FreeFlow 69 s new wave power device It is envisaged that the Ocean Energy Rig would be assembled and maintained in dry docks and would be towed out into position before being semi submerged and anchored for operation Power output of the production model would be at least 10MW

125

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network [OSTI]

and J. Schwarz, Survey of Thermal Energy Storage in AquifersLow Temperature Thermal Energy Storage Program of Oak RidgeAquifers for Seasonal Thermal Energy Storage: An Overview of

Authors, Various

2011-01-01T23:59:59.000Z

126

Ocean Shores, Washington: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Ocean Shores, Washington: Energy Resources Ocean Shores, Washington: Energy Resources (Redirected from Ocean Shores, WA) Jump to: navigation, search Equivalent URI DBpedia Coordinates 46.9736986°, -124.1562852° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.9736986,"lon":-124.1562852,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

127

MHK Technologies/OceanStar | Open Energy Information  

Open Energy Info (EERE)

OceanStar OceanStar < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage OceanStar.jpg Technology Profile Primary Organization Bourne Energy Technology Resource Click here Wave Technology Type Click here Overtopping Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description The OceanStar device captures the underlying pressure wave through a series of small turbine generators The OceanStar relies upon a proprietary energy efficient process to smooth out the pulse characteristics common to wave energy in order to be electrical grid friendly The OceanStars high level of scalability is essential to reach the large surface areas required to reach utility scale ocean power generation Technology Dimensions

128

Definition: Thermal energy | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Thermal energy Jump to: navigation, search Dictionary.png Thermal energy The kinetic energy associated with the random motions of the molecules of a material or object; often used interchangeably with the terms heat and heat energy. Measured in joules, calories, or Btu.[1][2][3] View on Wikipedia Wikipedia Definition Thermal energy is the part of the total potential energy and kinetic energy of an object or sample of matter that results in the system temperature. It is represented by the variable Q, and can be measured in Joules. This quantity may be difficult to determine or even meaningless unless the system has attained its temperature only through warming (heating), and not been subjected to work input or output, or any other

129

Assessment of Energy Production Potential from Ocean Currents...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Assessment of Energy Production Potential from Ocean Currents along the United States Coastline Final Project Report September 15, 2013 Georgia Tech Research Corporation Award...

130

Energy Absorption from Ocean Waves: A Free Ride for Cetaceans  

Science Journals Connector (OSTI)

...cetaceans are capable of absorbing energy from ocean waves for propulsion. The extent of...following seas. Consequences of wave-energy absorption for energetics of...following seas. Consequences of wave-energy absorption for energetics of...

1990-01-01T23:59:59.000Z

131

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants  

E-Print Network [OSTI]

ENERGY STORAGE FOR CONCENTRATING SOLAR POWER PLANTS,”Thermal Energy Storage in Concentrated Solar Thermal PowerThermal Energy Storage in Concentrated Solar Thermal Power

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

132

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants  

E-Print Network [OSTI]

CHANGE THERMAL ENERGY STORAGE FOR CONCENTRATING SOLAR POWERfor Thermal Energy Storage in Concentrated Solar Thermalfor Thermal Energy Storage in Concentrated Solar Thermal

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

133

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants  

E-Print Network [OSTI]

and Background Solar thermal energy collection is anCHANGE THERMAL ENERGY STORAGE FOR CONCENTRATING SOLAR POWERfor Thermal Energy Storage in Concentrated Solar Thermal

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

134

Sandia National Laboratories: solar thermal energy storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

thermal energy storage Sandia Solar Energy Test System Cited in National Engineering Competition On May 16, 2013, in Concentrating Solar Power, Energy, Energy Storage, Facilities,...

135

Grays Harbor Ocean Energy Company | Open Energy Information  

Open Energy Info (EERE)

Ocean Energy Company Ocean Energy Company Jump to: navigation, search Name Grays Harbor Ocean Energy Company Place Seattle, Washington Zip 98105 Sector Renewable Energy, Wind energy Product Grays Harbor has started a demonstration project for offshore wind/wave renewable power generation in Washington State and has applied for up to 1GW in permits for wave projects around the US. Coordinates 47.60356°, -122.329439° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.60356,"lon":-122.329439,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

136

Ocean Wave Energy Company OWECO | Open Energy Information  

Open Energy Info (EERE)

Energy Company OWECO Energy Company OWECO Jump to: navigation, search Name Ocean Wave Energy Company (OWECO) Place Bristol, Rhode Island Sector Ocean Product Wave energy device developer. The company has patented the OWEC Ocean Wave Energy Converter®., a device consisting of a submerged array, suspended at depths permitting full reciprocation of buoys and respective driveshafts. Coordinates 42.55678°, -88.050449° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.55678,"lon":-88.050449,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

137

Response of oceanic hydrate-bearing sediments to thermal stresses  

E-Print Network [OSTI]

are often observed in unconsolidated oceanic sediments11.wellbore assembly if a weak unconsolidated porous medium isevidence, because of the unconsolidated, unlithified nature

Moridis, G.J.; Kowalsky, M.B.

2006-01-01T23:59:59.000Z

138

Estimating Internal Wave Energy Fluxes in the Ocean  

Science Journals Connector (OSTI)

Energy flux is a fundamental quantity for understanding internal wave generation, propagation, and dissipation. In this paper, the estimation of internal wave energy fluxes ?u?p?? from ocean observations that may be sparse in either time or depth ...

Jonathan D. Nash; Matthew H. Alford; Eric Kunze

2005-10-01T23:59:59.000Z

139

AWS Ocean Energy formerly Oceanergia | Open Energy Information  

Open Energy Info (EERE)

formerly Oceanergia formerly Oceanergia Jump to: navigation, search Name AWS Ocean Energy formerly Oceanergia Address Redshank House Alness Point Business Park Place Alness Ross shire Zip IV17 0UP Sector Marine and Hydrokinetic Phone number 44 (0) 1349 88 44 22 Website http://www.awsocean.com Region United Kingdom LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: AWS II Portugal Pre Commercial Pilot Project This company is involved in the following MHK Technologies: Archimedes Wave Swing This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=AWS_Ocean_Energy_formerly_Oceanergia&oldid=678253

140

Thermal Imaging Technique for Measuring Mixing of Fluids - Energy...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solar Thermal Solar Thermal Energy Analysis Energy Analysis Building Energy Efficiency Building Energy Efficiency Find More Like This Return to Search Thermal Imaging Technique for...

Note: This page contains sample records for the topic "ocean thermal energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Biomass Thermal Energy Council (BTEC) | Open Energy Information  

Open Energy Info (EERE)

Biomass Thermal Energy Council (BTEC) Biomass Thermal Energy Council (BTEC) Jump to: navigation, search Tool Summary Name: Biomass Thermal Energy Council (BTEC) Agency/Company /Organization: Biomass Thermal Energy Council (BTEC) Partner: International Trade Administration Sector: Energy Focus Area: Biomass, - Biomass Combustion, - Biomass Gasification, - Biomass Pyrolysis, - Biofuels Phase: Determine Baseline, Evaluate Options, Develop Goals Resource Type: Guide/manual User Interface: Website Website: www.biomassthermal.org Cost: Free The Biomass Thermal Energy Council (BTEC) website is focused on biomass for heating and other thermal energy applications, and includes links to numerous reports from various agencies around the world. Overview The Biomass Thermal Energy Council (BTEC) website is focused on biomass for

142

Thermal and non-thermal energies in solar flares  

E-Print Network [OSTI]

The energy of the thermal flare plasma and the kinetic energy of the non-thermal electrons in 14 hard X-ray peaks from 9 medium-sized solar flares have been determined from RHESSI observations. The emissions have been carefully separated in the spectrum. The turnover or cutoff in the low-energy distribution of electrons has been studied by simulation and fitting, yielding a reliable lower limit to the non-thermal energy. It remains the largest contribution to the error budget. Other effects, such as albedo, non-uniform target ionization, hot target, and cross-sections on the spectrum have been studied. The errors of the thermal energy are about equally as large. They are due to the estimate of the flare volume, the assumption of the filling factor, and energy losses. Within a flare, the non-thermal/thermal ratio increases with accumulation time, as expected from loss of thermal energy due to radiative cooling or heat conduction. Our analysis suggests that the thermal and non-thermal energies are of the same magnitude. This surprising result may be interpreted by an efficient conversion of non-thermal energy to hot flare plasma.

Pascal Saint-Hilaire; Arnold O. Benz

2005-03-03T23:59:59.000Z

143

Ocean Wave Converters: State of the Art and Current Status  

E-Print Network [OSTI]

Ocean Wave Converters: State of the Art and Current Status M.S. Lagoun1,2 , A. Benalia2 and M in one of the following categories: wave energy, marine and tidal current energy, ocean thermal energy of energy exists in oceans. Ocean energy exists in many forms. Among these forms, significant opportunities

Paris-Sud XI, Université de

144

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants  

E-Print Network [OSTI]

PHASE CHANGE THERMAL ENERGY STORAGE FOR CONCENTRATING SOLARChange Materials for Thermal Energy Storage in ConcentratedChange Materials for Thermal Energy Storage in Concentrated

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

145

Microwavable thermal energy storage material  

DOE Patents [OSTI]

A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene-vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments.

Salyer, Ival O. (Dayton, OH)

1998-09-08T23:59:59.000Z

146

Microwavable thermal energy storage material  

DOE Patents [OSTI]

A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments. 3 figs.

Salyer, I.O.

1998-09-08T23:59:59.000Z

147

Development of the market of thermal energy  

Science Journals Connector (OSTI)

Specific features relating to development of the market of thermal energy and its management structure are considered, and...

V. A. Koksharov

2009-12-01T23:59:59.000Z

148

Thermal and non-thermal energies in solar flares  

E-Print Network [OSTI]

The energy of the thermal flare plasma and the kinetic energy of the non-thermal electrons in 14 hard X-ray peaks from 9 medium-sized solar flares have been determined from RHESSI observations. The emissions have been carefully separated in the spectrum. The turnover or cutoff in the low-energy distribution of electrons has been studied by simulation and fitting, yielding a reliable lower limit to the non-thermal energy. It remains the largest contribution to the error budget. Other effects, such as albedo, non-uniform target ionization, hot target, and cross-sections on the spectrum have been studied. The errors of the thermal energy are about equally as large. They are due to the estimate of the flare volume, the assumption of the filling factor, and energy losses. Within a flare, the non-thermal/thermal ratio increases with accumulation time, as expected from loss of thermal energy due to radiative cooling or heat conduction. Our analysis suggests that the thermal and non-thermal energies are of the same m...

Saint-Hilaire, P; Saint-Hilaire, Pascal; Benz, Arnold O.

2005-01-01T23:59:59.000Z

149

Energy Department Releases New Energy 101 Video on Ocean Power | Department  

Broader source: Energy.gov (indexed) [DOE]

Energy Department Releases New Energy 101 Video on Ocean Power Energy Department Releases New Energy 101 Video on Ocean Power Energy Department Releases New Energy 101 Video on Ocean Power April 30, 2013 - 12:40pm Addthis See how marine and hydrokinetic technologies harness the energy of the ocean's waves, tides, and currents and convert it into electricity to power our homes, buildings and cities. Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy FIND OUT MORE Read about the Energy Department's assessments of wave and tidal energy resources. You've probably seen water at work generating electricity at dams and other hydropower facilities in your region. But an emerging clean energy technology called marine and hydrokinetic (MHK) energy -- or ocean power -- uses water to generate electricity in a different way, and has yet to get

150

Energy harvesting from transverse ocean waves by a piezoelectric plate  

Science Journals Connector (OSTI)

Abstract An ocean wave energy harvester from the transverse wave motion of water particles is developed by the piezoelectric effects. The harvester is made of two horizontal cantilever plates attached by piezoelectric patches and fixed on a vertical rectangular column. To describe the energy harvesting process, a mathematical model is developed to calculate the output charge and voltage from the piezoelectric patches according to the Airy linear wave theory and the elastic beam model. The influences on the root mean square (RMS) of the generated power from the piezoelectric patches, such as the ocean depth, the harvester location under the ocean surface, the length of the cantilevers, the wave height, and the ratio of wave length to ocean depth, are discussed. Results show that the RMS increases with the increase in the length of cantilevers and the wave height, and decrease in the distance of the ocean surface to the cantilevers and the ratio of the wave length to ocean depth. As a result, an optimum ocean depth is obtained to achieve a maximum RMS at different harvester locations under the ocean surface. A value of the power up to 30 W can be realized for a practical transverse wave with the values of the ocean depth, wave length, wave height and harvester location under the ocean surface to be 10.6 m, 21.2 m, 4 m, and ?2 m, respectively. This research develops a novel technique leading to efficient and practical energy harvesting from transverse waves by piezoelectric energy harvesters that could be easily fixed on an offshore platform.

X.D. Xie; Q. Wang; N. Wu

2014-01-01T23:59:59.000Z

151

Mixing and Available Potential Energy in a Boussinesq Ocean  

Science Journals Connector (OSTI)

The commonly used definitions for available potential energy and its sources in the oceans are based on the quasigeostrophic approximation, so they are not suitable for the study of basin-scale circulation. Accurate definitions for the available ...

Rui Xin Huang

1998-04-01T23:59:59.000Z

152

Thermal Energy Storage for Cooling of Commercial Buildings  

E-Print Network [OSTI]

of Commercial Building Thermal Energy _Storage in ASEANGas Electric Company, "Thermal Energy Storage for Cooling,"LBL--25393 DE91 ,THERMAL ENERGY STORAGE FOR COOLING OF

Akbari, H.

2010-01-01T23:59:59.000Z

153

Thermal Energy Storage in Adsorbent Beds .  

E-Print Network [OSTI]

??Total produced energy in the world is mostly consumed as thermal energy which is used for space or water heating. Currently, more than 85% of… (more)

Ugur, Burcu

2013-01-01T23:59:59.000Z

154

Open Ocean Aquaculture & Wave Energy Site | Open Energy Information  

Open Energy Info (EERE)

Aquaculture & Wave Energy Site Aquaculture & Wave Energy Site Jump to: navigation, search Basic Specifications Facility Name Open Ocean Aquaculture & Wave Energy Site Overseeing Organization University of New Hampshire Hydrodynamics Hydrodynamic Testing Facility Type Offshore Berth Depth(m) 52.0 Cost(per day) Contact POC Special Physical Features The Offshore Mooring System is placed in 52m water depth with a subsurface attachment grid at 20m. The entire mooring system covers 36 acres of bottom. There are four 'bays' into which devices can be attached. Each bay is approximately 130m on a side. There is a database with ~10 years of wave data and other environmental parameters available. Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes

155

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network [OSTI]

of Thermal Energy Energy Sources o Solar Heat o Winter Coldusual Solar Energy System which uses only a heat source andsources and heat sinks not found anywhere else. Furthermore even where Solar energy

Authors, Various

2011-01-01T23:59:59.000Z

156

Energy Department Releases New Energy 101 Video on Ocean Power | Department  

Broader source: Energy.gov (indexed) [DOE]

Energy 101 Video on Ocean Power Energy 101 Video on Ocean Power Energy Department Releases New Energy 101 Video on Ocean Power April 30, 2013 - 12:40pm Addthis See how marine and hydrokinetic technologies harness the energy of the ocean's waves, tides, and currents and convert it into electricity to power our homes, buildings and cities. Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy FIND OUT MORE Read about the Energy Department's assessments of wave and tidal energy resources. You've probably seen water at work generating electricity at dams and other hydropower facilities in your region. But an emerging clean energy technology called marine and hydrokinetic (MHK) energy -- or ocean power -- uses water to generate electricity in a different way, and has yet to get

157

THOR Turner Hunt Ocean Renewable LLC | Open Energy Information  

Open Energy Info (EERE)

Turner Hunt Ocean Renewable LLC Turner Hunt Ocean Renewable LLC Jump to: navigation, search Name THOR Turner Hunt Ocean Renewable LLC Address 3814 West St Place Cincinnati Zip 45227 Sector Marine and Hydrokinetic Year founded 2007 Phone number 513-527-4924 Website http://http://www.thorocean.co Region United States LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Technologies: THOR Ocean Current Turbine This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=THOR_Turner_Hunt_Ocean_Renewable_LLC&oldid=678473" Categories: Clean Energy Organizations Companies Organizations

158

EnOcean Inc | Open Energy Information  

Open Energy Info (EERE)

EnOcean Inc EnOcean Inc Jump to: navigation, search Name EnOcean Inc Address 801 Boylston Street Place Boston, Massachusetts Zip 02116 Sector Efficiency Product Wireless sensor for building automation to improve efficiency Website http://www.enocean.com/ Coordinates 42.349048°, -71.082153° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.349048,"lon":-71.082153,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

159

Ecologically pure conversion of the energy of air, river, and ocean currents  

Science Journals Connector (OSTI)

Renewable energy sources (primarily the energy of air, river, and ocean currents) are available on the earth and in...

V. M. Lyatkher

1989-08-01T23:59:59.000Z

160

A Realizable Renewable Energy Future  

Science Journals Connector (OSTI)

...solar thermal (electric and thermal), wind...hydroelectric, ocean, and geothermal...recognizable solar energy converters, directly...electric and thermal), wind...hydroelectric, ocean, and geothermal...recognizable solar energy converters, directly...

John A. Turner

1999-07-30T23:59:59.000Z

Note: This page contains sample records for the topic "ocean thermal energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Thermal Energy Systems | Open Energy Information  

Open Energy Info (EERE)

Energy Systems Energy Systems Jump to: navigation, search Name Thermal Energy Systems Place London, United Kingdom Sector Biomass Product UK based company that constructs and installs boilers for biomass projects. Coordinates 51.506325°, -0.127144° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.506325,"lon":-0.127144,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

162

Solar energy thermalization and storage device  

DOE Patents [OSTI]

A passive solar thermalization and thermal energy storage assembly which is visually transparent. The assembly consists of two substantial parallel, transparent wall members mounted in a rectangular support frame to form a liquid-tight chamber. A semitransparent thermalization plate is located in the chamber, substantially paralled to and about equidistant from the transparent wall members to thermalize solar radiation which is stored in a transparent thermal energy storage liquid which fills the chamber. A number of the devices, as modules, can be stacked together to construct a visually transparent, thermal storage wall for passive solar-heated buildings.

McClelland, John F. (Ames, IA)

1981-09-01T23:59:59.000Z

163

Heart transport by currents and thermal balance of the south-eastern Indian Ocean active layer  

Science Journals Connector (OSTI)

The paper shows that, by virtue of the specific water circulation in the south-eastern Indian Ocean, thermal influx within the 0–200 m layer exceeds the efflux by 13.5×1015 MJ per year, which, being recalculated ...

V. F. Sukhovey; B. V. Baskaran

1996-01-01T23:59:59.000Z

164

Project Profile: Sensible Heat, Direct, Dual-Media Thermal Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Sensible Heat, Direct, Dual-Media Thermal Energy Storage Module Acciona logo Acciona Solar, under the Thermal Storage FOA, plans to develop a prototype thermal energy storage...

165

Ocean Power Technologies | Open Energy Information  

Open Energy Info (EERE)

Power Technologies Power Technologies Jump to: navigation, search Logo: Ocean Power Technologies Name Ocean Power Technologies Address 1590 Reed Road Place Pennington, New Jersey Zip 08534 Year founded 1994 Number of employees 100 Website http://www.oceanpowertechnolog Coordinates 40.297652°, -74.794481° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.297652,"lon":-74.794481,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

166

CHARACTERIZING DANGEROUS WAVES FOR OCEAN WAVE ENERGY CONVERTER SURVIVABILITY Justin Hovland  

E-Print Network [OSTI]

CHARACTERIZING DANGEROUS WAVES FOR OCEAN WAVE ENERGY CONVERTER SURVIVABILITY Justin Hovland ABSTRACT Ocean Wave Energy Converters (OWECs) operating on the water surface are subject to storms at station 139. Keywords: wave energy, survivability, breaking waves, joint distribution, OWEC INTRODUCTION

Haller, Merrick

167

Bartlett's Ocean View Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Bartlett's Ocean View Wind Farm Bartlett's Ocean View Wind Farm Jump to: navigation, search Name Bartlett's Ocean View Wind Farm Facility Bartlett's Ocean View Wind Farm Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Bartlett's Ocean View Wind Farm Energy Purchaser Bartlett's Ocean View Wind Farm Location Nantucket MA Coordinates 41.259168°, -70.131913° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.259168,"lon":-70.131913,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

168

MHK Technologies/Ocean Current Linear Turbine | Open Energy Information  

Open Energy Info (EERE)

Linear Turbine Linear Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Ocean Current Linear Turbine.jpg Technology Profile Primary Organization Ocean Energy Company LLC Technology Type Click here Seabed mooring system Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description Endless cable loop with parachutes spliced to cable which moored in an ocean current pulls the cable through rotors which in turn power conventional electricity generators See US Patent 3 887 817 Additional patent pending Technology Dimensions Device Testing Date Submitted 30:08.6 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Ocean_Current_Linear_Turbine&oldid=681618"

169

Performance evaluation of thermal energy storage systems;.  

E-Print Network [OSTI]

??Solar thermal technologies are promising, given the fact that solar newlineenergy is the cheapest and most widely available of all renewable energy newlinetechnologies. The recent… (more)

Ramana A S

2014-01-01T23:59:59.000Z

170

MHK Technologies/Deep Ocean Water Application Facility DOWAF | Open Energy  

Open Energy Info (EERE)

Water Application Facility DOWAF Water Application Facility DOWAF < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Deep Ocean Water Application Facility DOWAF.jpg Technology Profile Primary Organization Marc M Siah Associates Inc Technology Resource Click here OTEC Technology Type Click here OTEC - Hybrid Cycle Technology Description MOTEC systems utilize the temperature differential between the warm surface and the cold deep seawater The OTEC heat engine converts the thermal energy into usable mechanical energy which in turn is converted to electrical energy There are different types of OTEC system Technology Dimensions Device Testing Date Submitted 24:54.0 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Deep_Ocean_Water_Application_Facility_DOWAF&oldid=681561

171

Om Ocean Energy Centre Vrt uppdrag r att frmja havsenergiindustrin i Sverige  

E-Print Network [OSTI]

test med uppankring av "slangen" i havet) Waves4Power Vigor WaveEnergy Ocean Harvester Deep Green simulation · Power from the ocean Ocean Mechanical system Electrical System · Power take-off · ElectricOm Ocean Energy Centre Vårt uppdrag är att främja havsenergiindustrin i Sverige och

Lemurell, Stefan

172

Thermal Energy Transport in Nanostructured Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thermal Energy Transport in Nanostructured Materials Thermal Energy Transport in Nanostructured Materials Speaker(s): Ravi Prasher Date: August 25, 2008 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Ashok Gadgil World energy demand is expected to reach ~30 TW by 2050 from the current demand of ~13 TW. This requires substantial technological innovation. Thermal energy transport and conversion play a very significant role in more than 90% of energy technologies. All four modes of thermal energy transport, conduction, convection, radiation, and phase change (e.g. evaporation/boiling) are important in various energy technologies such as vapor compression power plants, refrigeration, internal combustion engines and building heating/cooling. Similarly thermal transport play a critical role in electronics cooling as the performance and reliability of

173

Wing Wave: Feasible, Alternative, Renewable, Electrical Energy Producing Ocean Floor System  

E-Print Network [OSTI]

Wing Wave: Feasible, Alternative, Renewable, Electrical Energy Producing Ocean Floor System Mark, alternative energy system to convert the circular motion of ocean waves as they propagate through the sea and feasible alternative, renewable, electrical energy producing subsea system. Index Terms--ocean energy, wave

Wood, Stephen L.

174

Mapping and Assessment of the United States Ocean Wave Energy Resource  

Broader source: Energy.gov [DOE]

This report describes the analysis and results of a rigorous assessment of the United States ocean wave energy resource.

175

Ocean Power (4 Activities) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Science Properties and changes of properties in matter Motions and Forces Transfer of energy CONTENT STANDARD D: Earth and Space Science Structure of the Earth System CONTENT...

176

Ocean Wavemaster Ltd | Open Energy Information  

Open Energy Info (EERE)

Wavemaster Ltd Wavemaster Ltd Jump to: navigation, search Name Ocean Wavemaster Ltd Address CAPCIS House 1 Echo Street Place Manchester, United Kingdom Zip M1 2DP Sector Marine and Hydrokinetic Product String representation "WaveMaster expl ... water surface." is too long. Phone number 0161 933 4000 Website http://http://www.tnei.co.uk/p Coordinates 53.479605°, -2.248818° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":53.479605,"lon":-2.248818,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

177

MHK Technologies/Ocean Treader floating | Open Energy Information  

Open Energy Info (EERE)

Treader floating Treader floating < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Ocean Treader floating.jpg Technology Profile Primary Organization Green Ocean Energy Ltd Project(s) where this technology is utilized *MHK Projects/Development of Ocean Treader Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 4: Proof of Concept Technology Description The Ocean Treader is comprised of two sponsons at the fore and aft of the device and a spar buoy in the center. As a wave passes along the device, first the fore sponson lifts and falls, then the spar buoy, and then the aft sponson, respectively. The relative motion between these three floating bodies is harvested by hydraulic cylinders mounted between the tops of the arms and the spar buoy. The cylinders pressurize hydraulic fluid that spins hydraulic motors and an electric generator. The electricity is exported via a cable piggy-backed to the anchor cable. Ocean Treader is designed to passively weather-vane to face the wave direction; and in addition, the device has active onboard adjustment to allow for offset due to the effects of current.

178

Thermal Energy Storage for Vacuum Precoolers  

E-Print Network [OSTI]

radically creating high peak demands and low load factors. An ice bank thermal energy storage (TES) and ice water vapor condenser were installed. The existing equipment and TES system were computer monitored to determine energy consumption and potential... efficiency at night. The ice bank thermal energy storage system has a 4.4 year simple payback. While building ice, the refrigeration system operated at a 6.26 Coefficient of Performance (COP). The refrigeration system operated more efficiently at night...

Nugent, D. M.

179

Chapter 16 - Ocean Engines  

Science Journals Connector (OSTI)

Publisher Summary Ocean thermal energy converters (OTECs) took advantage of the ocean acting as an immense collector and storer of solar radiation, thus delivering a steady flow of low-grade thermal energy. The ocean plays a similar role in relation to the wind energy, which is transformed into waves far steadier than the air currents that created them. Nevertheless, waves are neither steady nor concentrated enough to constitute a highly attractive energy source notwithstanding their large total power. There is little net horizontal motion of water in a surface ocean wave. A floating object drifts in the direction of the wave with about 1% of the wave velocity. A given elementary cell of water will move in a vertical circle, surging forward near the crest of the wave but receding by an almost equal amount at the trough. Any system in which the wave velocity depends on wavelength is called dispersive; hence the deep ocean is dispersive.

Aldo Vieira da Rosa

2009-01-01T23:59:59.000Z

180

Definition: British thermal unit | Open Energy Information  

Open Energy Info (EERE)

thermal unit thermal unit Jump to: navigation, search Dictionary.png British thermal unit The amount of heat required to raise the temperature of one pound of water one degree Fahrenheit; often used as a unit of measure for the energy content of fuels.[1][2] View on Wikipedia Wikipedia Definition The British thermal unit (BTU or Btu) is a traditional unit of energy equal to about 1055 joules. It is the amount of energy needed to cool or heat one pound of water by one degree Fahrenheit. In scientific contexts the BTU has largely been replaced by the SI unit of energy, the joule. The unit is most often used as a measure of power (as BTU/h) in the power, steam generation, heating, and air conditioning industries, and also as a measure of agricultural energy production (BTU/kg). It is still used

Note: This page contains sample records for the topic "ocean thermal energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Thermally-Activated Technologies | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Thermally-Activated Technologies Thermally-Activated Technologies Thermally-Activated Technologies November 1, 2013 - 11:40am Addthis Thermally-activated technologies include a diverse portfolio of equipment that transforms heat for useful purposes such as heating, cooling, humidity control, thermal storage, and shaft/electrical power. Thermally-activated technologies are essential for combined heat and power (CHP)-integrated systems that maximize energy savings and economic return. Thermally-activated technologies systems also enable customers to reduce seasonal peak electric demand and future electric and gas grids to operate with more level loads. Absorption Chillers Absorption cycles have been used for more than 150 years. Early equipment used a mixture of ammonia and water as an absorption working pair, with

182

EXPERIMENTAL AND THEORETICAL STUDIES OF THERMAL ENERGY STORAGE IN AQUIFERS  

E-Print Network [OSTI]

In Proceed- ings of Thermal Energy Storage in Aquifers Work-Mathematical Modeling of Thermal Energy storage in Aquifers.In Proceed- ings of Thermal Energy Storage in Aquifers Work-

Tsang, Chin Fu

2011-01-01T23:59:59.000Z

183

Thermal Insulation for Energy Conservation  

Science Journals Connector (OSTI)

The use of thermal insulations to reduce heat flow across the building ... decades. Materials available for use as building insulation include naturally occurring fibers and particles, man ... plastics, evacuated...

Dr. David W. Yarbrough Ph.D.; PE

2012-01-01T23:59:59.000Z

184

Project Profile: Innovative Thermal Energy Storage for Baseload...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermal Energy Storage for Baseload Solar Power Generation Project Profile: Innovative Thermal Energy Storage for Baseload Solar Power Generation University of South Florida logo...

185

Project Profile: Innovative Phase Change Thermal Energy Storage...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Phase Change Thermal Energy Storage Solution for Baseload Power Project Profile: Innovative Phase Change Thermal Energy Storage Solution for Baseload Power Infinia logo Infinia,...

186

Project Profile: Reducing the Cost of Thermal Energy Storage...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Reducing the Cost of Thermal Energy Storage for Parabolic Trough Solar Power Plants Project Profile: Reducing the Cost of Thermal Energy Storage for Parabolic Trough Solar Power...

187

Evaluation of Thermal to Electrical Energy Conversion of High...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermal to Electrical Energy Conversion of High Temperature Skutterudite-Based Thermoelectric Modules Evaluation of Thermal to Electrical Energy Conversion of High Temperature...

188

Project Profile: Novel Molten Salts Thermal Energy Storage for...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Novel Molten Salts Thermal Energy Storage for Concentrating Solar Power Generation Project Profile: Novel Molten Salts Thermal Energy Storage for Concentrating Solar Power...

189

Environmental siting suitability analysis for commercial scale ocean renewable energy| A southeast Florida case study.  

E-Print Network [OSTI]

?? This thesis aims to facilitate the siting and implementation of Florida Atlantic University Southeast National Marine Renewable Energy Center (FAU SNMREC) ocean current energy… (more)

Mulcan, Amanda

2015-01-01T23:59:59.000Z

190

ENERGY EFFICIENT BUILDING DESIGN AND THERMAL ENERGY STORAGE  

Science Journals Connector (OSTI)

This chapter discusses the potential for cost-effectively reducing the energy intensity of office buildings by applying proven technologies, especially the use of ground source systems with thermal energy stor...

Edward Morofsky

2007-01-01T23:59:59.000Z

191

A power analysis and data acquisition system for ocean wave energy device testing  

Science Journals Connector (OSTI)

In the testing of ocean wave energy devices, the demand for a portable and robust data acquisition and electrical loading system has become apparent. This paper investigates the development of a 30 kW inclusive system combining loading capabilities, real-time power analysis, and data acquisition for the testing of deployed ocean wave energy devices. Hardware results for ocean testing are included.

Ean Amon; Ted K.A. Brekken; Annette von Jouanne

2011-01-01T23:59:59.000Z

192

Solar Thermal Incentive Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Thermal Incentive Program Thermal Incentive Program Solar Thermal Incentive Program < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Multi-Family Residential Nonprofit Residential Schools State Government Savings Category Heating & Cooling Solar Water Heating Maximum Rebate Residential: $4,000 per site/meter Non-residential: $25,000 per site/meter Incentive also capped at 80% of calculated existing thermal load Program Info Funding Source RPS surcharge Start Date 12/10/2010 Expiration Date 12/31/2015 State New York Program Type State Rebate Program Rebate Amount $1.50 per kWh displaced annually, for displacement of up to 80% of calculated existing thermal load Provider New York State Energy Research and Development Authority The New York State Energy Research and Development Authority (NYSERDA)

193

Solar Thermal Incentive Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Solar Thermal Incentive Program Solar Thermal Incentive Program Solar Thermal Incentive Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate 50% of the project cost Program Info Funding Source Public Benefits Fund State Connecticut Program Type State Rebate Program Rebate Amount Calculated: $70 multiplied by the SRCC "C" rating multiplied by the number of collectors multiplied by the Shading Factor Provider Clean Energy Finance and Investment Authority Note: This program is not currently accepting applications. Check the program web site for information regarding future financing programs. To participate in the residential solar hot water rebate, homeowners must first complete an energy assessment. Then, they must work with CEFIA

194

Storage of Solar Thermal Energy  

Science Journals Connector (OSTI)

It is estimated that, at the present rate of consumption of (readily available stored energy in) fossil fuels, the world’s ... world are in search of new and renewable energy sources. Developing efficient and ine...

S. Kakaç; E. Paykoç; Y. Yener

1989-01-01T23:59:59.000Z

195

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants  

E-Print Network [OSTI]

Solar thermal energy collection is an exciting technology for the replacement of non-renewable energy production.

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

196

Permanent magnet thermal energy system  

SciTech Connect (OSTI)

An improved rotary magnet thermal generator system of the type having an array of magnets in alternating disposition coaxially disposed about and parallel with the shaft of a motor driving the rotary array and having a copper heat absorber and a ferro-magnetic plate fixed on a face of the heat absorber, includes as efficiency improver a plurality of heat sink plates extending beyond the ferro-magnet plate into a plenum through a respective plurality of close-fitting apertures. In a further embodimetn the heat sink plates are in thermal contact with sinusoidally convoluted tubing that both increases surface area and provides for optional heating of gases and/or fluids at the same time.

Gerard, F.

1985-04-16T23:59:59.000Z

197

Utilizing Solar Thermal Energy in Textile Processing Units  

Science Journals Connector (OSTI)

This chapter presents the prospects of solar thermal energy utilization in the textile processing units in Pakistan. Various solar thermal technologies suitable for thermal energy production and their application...

Asad Mahmood; Khanji Harijan

2012-01-01T23:59:59.000Z

198

MHK Technologies/Ocean Wave Air Piston | Open Energy Information  

Open Energy Info (EERE)

Piston Piston < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Ocean Wave Air Piston.jpg Technology Profile Primary Organization Green Ocean Wave Energy Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description The OWAP captures power by continually raising or lowering a float which in turn raises or lowers one side of a lever arm about a stationary pivot point This therby raises or lowers a piston which is attached to the opposite side of the lever arm through a cylinder which in turn causes large volumes of air to move This air is funneled through drive turbines to produce power Mooring Configuration Monopile or platfrom

199

MHK Technologies/Ocean Powered Compressed Air Stations | Open Energy  

Open Energy Info (EERE)

Powered Compressed Air Stations Powered Compressed Air Stations < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Ocean Powered Compressed Air Stations.png Technology Profile Primary Organization Wave Power Plant Inc Technology Resource Click here Wave Technology Type Click here Point Absorber - Submerged Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description The Ocean Powered Compressed Air Station is a point absorber that uses an air pump to force air to a landbased generator The device only needs 4m water depth and electricity production fluctations through storing energy at a constant air pressure Technology Dimensions Device Testing Date Submitted 13:16.5 << Return to the MHK database homepage Retrieved from

200

Estimating Internal Wave Energy Fluxes in the Ocean JONATHAN D. NASH  

E-Print Network [OSTI]

Estimating Internal Wave Energy Fluxes in the Ocean JONATHAN D. NASH College of Oceanic FE u p cgE is a fundamental quan- tity in internal wave energetics to identify energy sources, wave propagation, and energy sinks. Internal wave radiation transports energy from the boundaries

Kurapov, Alexander

Note: This page contains sample records for the topic "ocean thermal energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Memorandum of Understanding On Weather-Dependent and Oceanic Renewable Energy Resources  

Broader source: Energy.gov [DOE]

Memorandum of Understanding (MOU) On Weather-Dependent and Oceanic Renewable Energy Resources between the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy and the U.S. Department of Commerce, National Oceanic and Atmospheric Administration

202

Experimental Testing and Model Validation for Ocean Wave Energy Harvesting Buoys  

E-Print Network [OSTI]

for large scale grid power applications, but rather for relatively low-power ocean sensor and communicationsExperimental Testing and Model Validation for Ocean Wave Energy Harvesting Buoys Douglas A. Gemme1 Island Department of Ocean Engineering Narragansett, RI 02882, USA Abstract-- Methodology and results

Grilli, Stéphan T.

203

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants.  

E-Print Network [OSTI]

??Experimental studies are presented that aim to utilize phase change materials (PCM's) to enhance thermal energy storage systems for concentrated solar thermal power (CSP) systems.… (more)

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

204

Project Profile: Novel Thermal Energy Storage Systems for Concentratin...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Solar Power Project Profile: Novel Thermal Energy Storage Systems for Concentrating Solar Power University of Connecticut logo The University of Connecticut, under the Thermal...

205

Thermal Management Studies and Modeling | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Documents & Publications Energy Storage R&D - Thermal Management Studies and Modeling Battery Thermal Modeling and Testing Vehicle Technologies Office Merit Review 2014:...

206

An Act to Facilitate Testing and Demonstration of Renewable Ocean Energy Technology (Maine)  

Broader source: Energy.gov [DOE]

This law streamlines and coordinates State permitting and submerged lands leasing requirements for renewable ocean energy demonstration projects, aiding Maine's goal to become an international...

207

NRG Thermal LLC | Open Energy Information  

Open Energy Info (EERE)

Thermal LLC Thermal LLC Jump to: navigation, search Name NRG Thermal LLC Place Minneapolis, Minnesota Zip 55402-2200 Product A subsidiary of NRG Energy that specialises in district energy systems and CHP plants. Coordinates 44.979035°, -93.264929° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.979035,"lon":-93.264929,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

208

An Observational Estimate of Inferred Ocean Energy Divergence KEVIN E. TRENBERTH AND JOHN T. FASULLO  

E-Print Network [OSTI]

An Observational Estimate of Inferred Ocean Energy Divergence KEVIN E. TRENBERTH AND JOHN T, in final form 25 September 2007) ABSTRACT Monthly net surface energy fluxes (FS) over the oceans are computed as residuals of the atmospheric energy budget using top-of-atmosphere (TOA) net radiation (RT

Fasullo, John

209

Combined Thermal and Power Energy Management Optimization  

E-Print Network [OSTI]

, 'various types of prime movers (e.g. boilers, waste heat recovery, steam and gas turbines, etc.), and varying requirements for process heat and electrical power, particularly if bulk power is being dispatched to a utility grid. The ability...) maintaining the operating security of the energy supply system and equipment, and 3) optimization of energy use to meet given loads and constraints at the lowest costs. The thermal dispatch of power system boilers and turbines is the key function which...

Ahner, D. J.; Priestley, R. R.

210

Phase change thermal energy storage material  

DOE Patents [OSTI]

A thermal energy storge composition is disclosed. The composition comprises a non-chloride hydrate having a phase change transition temperature in the range of 70.degree.-95.degree. F. and a latent heat of transformation of at least about 35 calories/gram.

Benson, David K. (Golden, CO); Burrows, Richard W. (Conifer, CO)

1987-01-01T23:59:59.000Z

211

Modeling of Thermal Storage Systems in MILP Distributed Energy Resource Models  

E-Print Network [OSTI]

potential materials for thermal energy storage in buildingcoupled with thermal energy storage," Applied Energy, vol.N. Fumo, "Benefits of thermal energy storage option combined

Steen, David

2014-01-01T23:59:59.000Z

212

Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications  

E-Print Network [OSTI]

for Storage of Solar Thermal Energy,” Solar Energy, 18 (3),Toward Molecular Solar-Thermal Energy Storage,” Angewandtescale molecular solar thermal energy storage system, in

Coso, Dusan

2013-01-01T23:59:59.000Z

213

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network [OSTI]

reclamation and solar thermal energy," Energy [accepted]. [and M Dennis, "Solar thermal energy systems in Australia,"and M Dennis, "Solar thermal energy systems in Australia,"

Ho, Tony

2012-01-01T23:59:59.000Z

214

Turbulent Vertical Kinetic Energy in the Ocean Mixed Layer  

Science Journals Connector (OSTI)

Vertical velocities in the ocean boundary layer were measured for two weeks at an open ocean, wintertime site using neutrally buoyant floats. Simultaneous measurements of the surface meteorology and surface waves showed a large variability in ...

Eric A. D'Asaro

2001-12-01T23:59:59.000Z

215

Definition: Multispectral Thermal Infrared | Open Energy Information  

Open Energy Info (EERE)

Infrared Infrared Jump to: navigation, search Dictionary.png Multispectral Thermal Infrared This wavelength range senses heat energy from the Earth's surface. It can be used to sense surface temperature, including anomalies associated with active geothermal or volcanic systems. Both multispectral and hyperspectral remote sensing observations are available. This range can also be used to map mineralogy associate with common rock-forming silicates.[1][2] View on Wikipedia Wikipedia Definition References ↑ http://en.wikipedia.org/wiki/Thermal_infrared_spectroscopy ↑ http://asterweb.jpl.nasa.gov/ Ret LikeLike UnlikeLike You like this.Sign Up to see what your friends like. rieved from "http://en.openei.org/w/index.php?title=Definition:Multispectral_Thermal_Infrared&oldid=601561

216

Sorption thermal storage for solar energy  

Science Journals Connector (OSTI)

Abstract Sorption technologies, which are considered mainly for solar cooling and heat pumping before, have gained a lot of interests for heat storage of solar energy in recent years, due to their high energy densities and long-term preservation ability for thermal energy. The aim of this review is to provide an insight into the basic knowledge and the current state of the art of research on sorption thermal storage technologies. The first section is concerned with the terminology and classification for sorption processes to give a clear scope of discussion in this paper. Sorption thermal storage is suggested to cover four technologies: liquid absorption, solid adsorption, chemical reaction and composite materials. Then the storage mechanisms and descriptions of basic closed and open cycles are given. The progress of sorption materials, cycles, and systems are also reviewed. Besides the well-known sorbents like silica gels and zeolites, some new materials, including aluminophosphates (AlPOs), silico-aluminophosphates (SAPOs) and metal-organic frameworks (MOFs), are proposed for heat storage. As energy density is a key criterion, emphais is given to the comparison of storage densities and charging tempertures for different materials. Ongoing research and development studies show that the challenges of the technology focus on the aspects of different types of sorption materials, the configurations of absorption cycles and advanced adsorption reactors. Booming progress illustrates that sorption thermal storage is a realistic and sustainable option for storing solar energy, especially for long-term applications. To bring the sorption storage solution into market, more intensive studies in fields of evaluation of advanced materials and development of efficient and compact prototypes are still required.

N. Yu; R.Z. Wang; L.W. Wang

2013-01-01T23:59:59.000Z

217

An energy-diagnostics intercomparison of coupled ice-ocean Arctic models  

E-Print Network [OSTI]

An energy-diagnostics intercomparison of coupled ice-ocean Arctic models Petteri Uotila a,*, David are estimated based on results from six different coupled ice- ocean models. The components of the kinetic of potential and kinetic energies. The models produce arctic boundary undercurrents controlled by the non

Zhang, Jinlun

218

Thermal Sciences The thermal sciences area involves the study of energy conversion and transmission, power  

E-Print Network [OSTI]

Thermal Sciences The thermal sciences area involves the study of energy conversion and transmission in virtually all energy conversion devices and systems. One may think of the jet engine as a mechanical device, power generation, the flow of liquids and gases, and the transfer of thermal energy (heat) by means

New Hampshire, University of

219

Integration of solar thermal energy into processes with heat demand  

Science Journals Connector (OSTI)

An integration of solar thermal energy can reduce the utility cost and the environmental impact. A proper integration of solar thermal energy is required in order to achieve ... objective of this study is to maxi...

Andreja Nemet; Zdravko Kravanja…

2012-06-01T23:59:59.000Z

220

Solar Thermal Energy Storage Device: Hybrid Nanostructures for High-Energy-Density Solar Thermal Fuels  

SciTech Connect (OSTI)

HEATS Project: MIT is developing a thermal energy storage device that captures energy from the sun; this energy can be stored and released at a later time when it is needed most. Within the device, the absorption of sunlight causes the solar thermal fuel’s photoactive molecules to change shape, which allows energy to be stored within their chemical bonds. A trigger is applied to release the stored energy as heat, where it can be converted into electricity or used directly as heat. The molecules would then revert to their original shape, and can be recharged using sunlight to begin the process anew. MIT’s technology would be 100% renewable, rechargeable like a battery, and emissions-free. Devices using these solar thermal fuels—called Hybrisol—can also be used without a grid infrastructure for applications such as de-icing, heating, cooking, and water purification.

None

2012-01-09T23:59:59.000Z

Note: This page contains sample records for the topic "ocean thermal energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

DISTRIBUTED ENERGY SYSTEMS IN CALIFORNIA'S FUTURE: A PRELIMINARY REPORT, VOLUME I  

E-Print Network [OSTI]

Other Solar Technologies HYDROELECTRIC AND PUMPED STORAGEand Solar Thermal Hydroelectric Power Geothermal . Land UseOcean Wind Geothermal Hydroelectric Ocean Energy Fossil

Authors, Various

2010-01-01T23:59:59.000Z

222

THEORETICAL STUDIES IN LONG-TERM THERMAL ENERGY STORAGE IN AQUIFERS  

E-Print Network [OSTI]

Mathematical Modeling of Thermal Energy Storage in Aquifers.of Aquifer Thermal Energy Storage Workshop, LawrenceF.P. "Thermal Energy Storage in a Confined Aquifer- Second

Tsang, C.F.

2013-01-01T23:59:59.000Z

223

AQUIFER THERMAL ENERGY STORAGE. A NUMERICAL SIMULATION OF AUBURN UNIVERSITY FIELD EXPERIMENTS  

E-Print Network [OSTI]

Auburn University Thermal Energy Storage , LBL No. 10194.Mathematical modeling of thermal energy storage in aquifers,of Current Aquifer Thermal Energy Storage Programs (in

Tsang, Chin Fu

2013-01-01T23:59:59.000Z

224

Optimal Deployment of Thermal Energy Storage under Diverse Economic and Climate Conditions  

E-Print Network [OSTI]

Deployment  of  Thermal  Energy   Storage  under  Diverse  Dincer I. On thermal energy storage systems and applicationsin research on cold thermal energy storage, International

DeForest, Nicolas

2014-01-01T23:59:59.000Z

225

THEORETICAL STUDIES IN LONG-TERM THERMAL ENERGY STORAGE IN AQUIFERS  

E-Print Network [OSTI]

Mathematical Modeling of Thermal Energy Storage in Aquifers.of Aquifer Thermal Energy Storage Workshop, Lawrencewithin the Seasonal Thermal Energy Storage program managed

Tsang, C.F.

2013-01-01T23:59:59.000Z

226

Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications  

E-Print Network [OSTI]

on Sustainable thermal Energy Storage Technologies, Part I:2009, “Review on Thermal Energy Storage with Phase Change2002, “Survey of Thermal Energy Storage for Parabolic Trough

Coso, Dusan

2013-01-01T23:59:59.000Z

227

SEASONAL THERMAL ENERGY STORAGE IN AQUIFERS-MATHEMATICAL MODELING STUDIES IN 1979  

E-Print Network [OSTI]

of Aquifer Thermal Energy Storage." Lawrence Berkeleythe Auburn University Thermal Energy Storage Experiment."LBL~l0208 SEASONAL THERMAL ENERGY STORAGE IN AQUIFERS~

Tsang, Chin Fu

2013-01-01T23:59:59.000Z

228

Ocean City, New Jersey: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

City, New Jersey: Energy Resources City, New Jersey: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.2776156°, -74.5746001° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.2776156,"lon":-74.5746001,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

229

Ocean Gate, New Jersey: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Gate, New Jersey: Energy Resources Gate, New Jersey: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.926785°, -74.1337496° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.926785,"lon":-74.1337496,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

230

Ocean Ridge, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Ridge, Florida: Energy Resources Ridge, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 26.5270157°, -80.0483747° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.5270157,"lon":-80.0483747,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

231

Ocean Beach, New York: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Beach, New York: Energy Resources Beach, New York: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.6467664°, -73.1570589° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.6467664,"lon":-73.1570589,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

232

Ocean Bluff-Brant Rock, Massachusetts: Energy Resources | Open Energy  

Open Energy Info (EERE)

Bluff-Brant Rock, Massachusetts: Energy Resources Bluff-Brant Rock, Massachusetts: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.1080418°, -70.6633175° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.1080418,"lon":-70.6633175,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

233

Ocean Acres, New Jersey: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Acres, New Jersey: Energy Resources Acres, New Jersey: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.7434529°, -74.2809757° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.7434529,"lon":-74.2809757,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

234

Electric Motor Thermal Management | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Merit Review and Peer Evaluation ape030bennion2011o.pdf More Documents & Publications Motor Thermal Control Electric Motor Thermal Management Electric Motor Thermal Management...

235

Thermal Energy Storage Technology for Transportation and Other...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Storage Technology for Transportation and Other Applications D. Bank, M. Maurer, J. Penkala, K. Sehanobish, A. Soukhojak Thermal Energy Storage Technology for Transportation...

236

Chapter 12 - Assessment of Thermal Energy Storage Systems  

Science Journals Connector (OSTI)

Abstract The foremost challenges of energy supply in meeting the energy demand apply to the development of energy efficient technologies to achieve energy security and environmental emissions. In the spectrum of energy-efficient technologies, thermal energy storage systems offer huge potential to bridge the mismatch between energy supply and energy demand. The overall operational performance of thermal storage systems depends on the quality of energy content and the energy degradation effects exhibited during the cyclic charging and discharging processes. The assessment pertaining to the exergy efficiency in addition to energy efficiency can have a pivotal role to enable thermal storage systems to outperform on a long-term basis.

S. Kalaiselvam; R. Parameshwaran

2014-01-01T23:59:59.000Z

237

E. Guilyardi G. Madec L. Terray The role of lateral ocean physics in the upper ocean thermal balance  

E-Print Network [OSTI]

. As this gradient is proportional to the isopycnal gradient of salinity, this con®rms the strong role of salinity of diusion and to the sign of the isopycnal gradients of temperature at the base of the bowl to the existence of a salinity structure. The lateral ocean physics is shown to be a signi®cant contributor

Guilyardi, Eric

238

Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications  

E-Print Network [OSTI]

Thermal Energy Storage,” Renewable and Sustainable EnergyReview on Sustainable thermal Energy Storage Technologies,Energy Storage Using Phase Change Materials,” Renewable and Sustainable Energy

Coso, Dusan

2013-01-01T23:59:59.000Z

239

Solar thermal power generation: a bibliography with abstracts. Quarterly update, October-December 1979  

SciTech Connect (OSTI)

This annotated bibliography contains the following subjects: energy overviews, solar overviews, energy conservation, economics and law, solar thermal power, thermionic and thermoelectric, ocean thermal energy conversion, biomass and photochemical energy, and large-scale photovoltaics. (MHR)

Not Available

1980-04-01T23:59:59.000Z

240

ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

stored on the platform and these two chemicals will explodeChemical Categories Nutrients Dissolved Oxygen Biological Categories Phyto- plankton Zooplankton lchthyo- plankton Micro- nekton Nekton Hammals, Birds Benthos Issue Platform

Sullivan, S.M.

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ocean thermal energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

stored on the platform and these two chemicals will explodeplatform continuously releases chlorine along with its discharge waters at a concentration of 0.1 mg liter . Chemical

Sullivan, S.M.

2014-01-01T23:59:59.000Z

242

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network [OSTI]

stored on the platform and these two chemicals explode whenhandling chemical contaminants on OTEC platforms. The Coastof chemicals or processes used on OTEC platforms, there is a

Sands, M. D.

2011-01-01T23:59:59.000Z

243

ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

delivered to the local power grid either directly (for Land-Oahu, Hawaii) • • • • Electrical Power Grid for Oahu,Hawaii Electrical Power Grid for Key West, Florida ••

Sullivan, S.M.

2014-01-01T23:59:59.000Z

244

DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

Oahu, Hawaii) • . • • . Electrical Power Grid for Oahu,Hawaii • • • Electrical Power Grid for Key West,Florida • • . • . . Electrical Power Grid for Puerto

Sullivan, S.M.

2014-01-01T23:59:59.000Z

245

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network [OSTI]

Occupational Safety and Health Administration (OSHA) safety, and the Coast Guard covers mar1ne covers some offshore

Sands, M. D.

2011-01-01T23:59:59.000Z

246

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

SciTech Connect (OSTI)

This programmatic environmental analysis is an initial assessment of OTEC technology considering development, demonstration and commercialization; it is concluded that the OTEC development program should continue because the development, demonstration, and commercialization on a single-plant deployment basis should not present significant environmental impacts. However, several areas within the OTEC program require further investigation in order to assess the potential for environmental impacts from OTEC operation, particularly in large-scale deployments and in defining alternatives to closed-cycle biofouling control: (1) Larger-scale deployments of OTEC clusters or parks require further investigations in order to assess optimal platform siting distances necessary to minimize adverse environmental impacts. (2) The deployment and operation of the preoperational platform (OTEC-1) and future demonstration platforms must be carefully monitored to refine environmental assessment predictions, and to provide design modifications which may mitigate or reduce environmental impacts for larger-scale operations. These platforms will provide a valuable opportunity to fully evaluate the intake and discharge configurations, biofouling control methods, and both short-term and long-term environmental effects associated with platform operations. (3) Successful development of OTEC technology to use the maximal resource capabilities and to minimize environmental effects will require a concerted environmental management program, encompassing many different disciplines and environmental specialties.

Sands, M. D.

1980-01-01T23:59:59.000Z

247

ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

50 ing a turning basin in the bight. (See Notice to Marinersbasin to a basin in the SW part of the bight. In 1972. theturning basin just in- side the entrance of Garrison Bight.

Sullivan, S.M.

2014-01-01T23:59:59.000Z

248

DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

upper turning basin off Key West Bight, and then 12 feet toso ing a turnmg basin in the bight. (See Nutice to :V1annersbasin to a basin in the SW part of the bight. ln 197 2. the

Sullivan, S.M.

2014-01-01T23:59:59.000Z

249

ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

la. Supplies and repairs. - Bunker C. die-,el oib. and wateragricultur- Supplies. -No bunkers are available; in emergen·3, Vessel Arrival In- cies bunkers and lube oils may be

Sullivan, S.M.

2014-01-01T23:59:59.000Z

250

DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

de Ratones. Supplies. -No bunkers are available; in emergen-and agricultur· cies bunkers and lube oils may be deliveredr'..:w h'>urs. Fr..:shwater. bunker C otl. and dtesd oil are

Sullivan, S.M.

2014-01-01T23:59:59.000Z

251

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network [OSTI]

aspects of siting OTEC plants offshore the United States ongas. phosgene Offshore ammonia plant-ships will presentan facility offshore may expose the plant to power outages

Sands, M. D.

2011-01-01T23:59:59.000Z

252

DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

fossil-fuel intake canals for withdrawing marine waters;Some marine supplies and water are available. Bunker fuels.marine ecosystem effects caused by Pilot Plant operation are associated with the seawater discharge and approximately fossil-fuel

Sullivan, S.M.

2014-01-01T23:59:59.000Z

253

ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

fuel or nuclear-powered plants use intake canals for withdrawing marineSome marine supplies and water are available. Uunker fuels.marine supplies are available at Key West. Gasoline and diesel fuel

Sullivan, S.M.

2014-01-01T23:59:59.000Z

254

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network [OSTI]

seawater. produce can be generated electrolytically Producing chlorine on an OTEC plant eliminates storage

Sands, M. D.

2011-01-01T23:59:59.000Z

255

DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

W of Fort Taylor. the flood (NNE) and the ebb (SSW) currentswas available in the Largo; it floods S and ebbs NW. Islacurrents u: ~1aunalua Bav flood W and ebb E: slack watci'

Sullivan, S.M.

2014-01-01T23:59:59.000Z

256

ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

reported that a tidal current floods W and ebbs E along thethe authority for navigation, flood control, and productionW of Fort Taylor, the flood (NNE) and the ebb (SSW) currents

Sullivan, S.M.

2014-01-01T23:59:59.000Z

257

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network [OSTI]

ECONOMIC ISSUES Baseload Electricity Baseload electricity production in the Gulf Coast States relies primarily on oil, natural gas, and coal.

Sands, M. D.

2011-01-01T23:59:59.000Z

258

Renewable Energy Resources and Technologies | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Policy Act of 2005, which defines renewable energy as "electric energy generated from solar, wind, biomass, landfill gas, ocean (including tidal, wave, current, and thermal),...

259

Efficient Thermal Energy Distribution in Commercial Final Report  

E-Print Network [OSTI]

energy distribution. These include, but not limited to, 1) reducing thermal losses induced by air leakage through system components (i.e., duct, equipment), 2) decreasing thermal losses induced by heat conductionLBNL-41365 Efficient Thermal Energy Distribution in Commercial Buildings Final Report to California

260

Boosting CSP Production with Thermal Energy Storage  

SciTech Connect (OSTI)

Combining concentrating solar power (CSP) with thermal energy storage shows promise for increasing grid flexibility by providing firm system capacity with a high ramp rate and acceptable part-load operation. When backed by energy storage capability, CSP can supplement photovoltaics by adding generation from solar resources during periods of low solar insolation. The falling cost of solar photovoltaic (PV) - generated electricity has led to a rapid increase in the deployment of PV and projections that PV could play a significant role in the future U.S. electric sector. The solar resource itself is virtually unlimited; however, the actual contribution of PV electricity is limited by several factors related to the current grid. The first is the limited coincidence between the solar resource and normal electricity demand patterns. The second is the limited flexibility of conventional generators to accommodate this highly variable generation resource. At high penetration of solar generation, increased grid flexibility will be needed to fully utilize the variable and uncertain output from PV generation and to shift energy production to periods of high demand or reduced solar output. Energy storage is one way to increase grid flexibility, and many storage options are available or under development. In this article, however, we consider a technology already beginning to be used at scale - thermal energy storage (TES) deployed with concentrating solar power (CSP). PV and CSP are both deployable in areas of high direct normal irradiance such as the U.S. Southwest. The role of these two technologies is dependent on their costs and relative value, including how their value to the grid changes as a function of what percentage of total generation they contribute to the grid, and how they may actually work together to increase overall usefulness of the solar resource. Both PV and CSP use solar energy to generate electricity. A key difference is the ability of CSP to utilize high-efficiency TES, which turns CSP into a partially dispatchable resource. The addition of TES produces additional value by shifting the delivery of solar energy to periods of peak demand, providing firm capacity and ancillary services, and reducing integration challenges. Given the dispatchability of CSP enabled by TES, it is possible that PV and CSP are at least partially complementary. The dispatchability of CSP with TES can enable higher overall penetration of the grid by solar energy by providing solar-generated electricity during periods of cloudy weather or at night, when PV-generated power is unavailable. Such systems also have the potential to improve grid flexibility, thereby enabling greater penetration of PV energy (and other variable generation sources such as wind) than if PV were deployed without CSP.

Denholm, P.; Mehos, M.

2012-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "ocean thermal energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Tuning energy transport in solar thermal systems using nanostructured materials  

E-Print Network [OSTI]

Solar thermal energy conversion can harness the entire solar spectrum and theoretically achieve very high efficiencies while interfacing with thermal storage or back-up systems for dispatchable power generation. Nanostructured ...

Lenert, Andrej

2014-01-01T23:59:59.000Z

262

MHK Projects/Greenwave Rhode Island Ocean Wave Energy Project | Open Energy  

Open Energy Info (EERE)

Greenwave Rhode Island Ocean Wave Energy Project Greenwave Rhode Island Ocean Wave Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.4501,"lon":-71.4495,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

263

MHK Projects/Grays Harbor Ocean Energy and Coastal Protection | Open Energy  

Open Energy Info (EERE)

Grays Harbor Ocean Energy and Coastal Protection Grays Harbor Ocean Energy and Coastal Protection < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.4651,"lon":-124.367,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

264

Missing Thermal Energy of the Intracluster Medium  

E-Print Network [OSTI]

The Sunyaev-Zel'dovich (SZ) effect is a direct probe of thermal energy content of the Universe, induced in the cosmic microwave background (CMB) sky through scattering of CMB photons off hot electrons in the intracluster medium (ICM). We report a 9-sigma detection of the SZ signal in the CMB maps of Wilkinson Microwave Anisotropy Probe (WMAP) 3yr data, through study of a sample of 193 massive galaxy clusters with observed X-ray temperatures greater than 3 keV. For the first time, we make a model-independent measurement of the pressure profile in the outskirts of the ICM, and show that it closely follows the profiles obtained by X-ray observations and numerical simulations. We find that our measurements of the SZ effect would account for only half of the thermal energy of the cluster, if all the cluster baryons were in the hot ICM phase. Our measurements indicate that a significant fraction (35 +/- 8 %) of baryonic mass is missing from the hot ICM, and thus must have cooled to form galaxies, intracluster stars, or an unknown cold phase of the ICM. There does not seem to be enough mass in the form of stars or cold gas in the cluster galaxies or intracluster space, signaling the need for a yet-unknown baryonic component (at 3-sigma level), or otherwise new astrophysical processes in the ICM.

Niayesh Afshordi; Yen-Ting Lin; Daisuke Nagai; Alastair J. R. Sanderson

2006-12-26T23:59:59.000Z

265

Preliminary Research of Using Ocean Currents and Wind Energy to Support Lighthouse in Small Island, Indonesia  

Science Journals Connector (OSTI)

Abstract This study was aimed to get preliminary result, which review potential of utilizing ocean surface current and wind energy as energy source of lighthouse in Small Island. The data was acquired from field observation and from satellite. Ocean current speed in Berhala, Anambas, and Biawak island have their mean on 0.135 m/s, 0.055 m/s, and 0.272 m/s, meanwhile the ocean surface wind speed has its mean on 0.220 m/s and 3.032 m/s. Three years satellite data showed that Miangas island has the highest mean speed (0.835 m/s) of ocean current and Biawak island has the smallest one (0.154 m/s), whereas the highest mean speed (4.848 m/s) of ocean surface wind was in Rondo island and the smallest one (1.438 m/s) was in Berhala island.

Noir P. Purba; Jaya Kelvin; Muallimah Annisaa; Dessy Teliandi; K.G. Ghalib; I.P. Resti Ayu; Finri S. Damanik

2014-01-01T23:59:59.000Z

266

Photoswitchable Molecular Rings for Solar-Thermal Energy Storage  

Science Journals Connector (OSTI)

Photoswitchable Molecular Rings for Solar-Thermal Energy Storage ... Ground-state energy barriers along the NN torsional coordinates were also computed, along with excitation energies and intensities for the species that can contribute to the photostationary state. ...

E. Durgun; Jeffrey C. Grossman

2013-03-04T23:59:59.000Z

267

NREL: Energy Systems Integration Facility - Thermal Distribution...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

thermal distribution bus consists of a thermal water loop connected to a research boiler and chiller that provide precise and efficient control of the water temperature...

268

Electric Motor Thermal Management | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Peer Evaluation Meeting ape030bennion2012o.pdf More Documents & Publications Electric Motor Thermal Management Electric Motor Thermal Management Vehicle Technologies...

269

Thermal Regenerator Testing | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermal Regenerator Testing Thermal Regenerator Testing Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007,...

270

Solar Thermal Process Heat | Open Energy Information  

Open Energy Info (EERE)

Solar Thermal Process Heat Incentives Retrieved from "http:en.openei.orgwindex.php?titleSolarThermalProcessHeat&oldid267198" Category: Articles with outstanding TODO tasks...

271

Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications  

E-Print Network [OSTI]

S. a. , 2004, “Solar Thermal Collectors and Applications,”86] Schnatbaum L. , 2009, “Solar Thermal Power Plants,” Thefor Storage of Solar Thermal Energy,” Solar Energy, 18 (3),

Coso, Dusan

2013-01-01T23:59:59.000Z

272

EA-1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy  

Broader source: Energy.gov (indexed) [DOE]

16: Ocean Renewable Power Company Maine, LLC Cobscook Bay 16: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot Project, Cobscook in Washington County, Maine EA-1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot Project, Cobscook in Washington County, Maine Summary This EA evaluates the environmental impacts of a project that would use the tidal currents of Cobscook Bay to generate electricity via cross-flow Kinetic System turbine generator units (TGU) mounted on the seafloor. The TGUs would capture energy from the flow in both ebb and flood directions. Public Comment Opportunities None available at this time. Documents Available for Download March 19, 2012 EA-1916: Finding of No Significant Impact Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot

273

Design, construction and testing of an ocean renewable energy storage scaled prototype  

E-Print Network [OSTI]

The concept for a new form of pumped storage hydro is being developed within the Precision Engineering Research Group at MIT: the Ocean Renewable Energy Storage (ORES) project. Large, hollow concrete spheres are created, ...

Meredith, James D. C. (James Douglas Charles)

2012-01-01T23:59:59.000Z

274

The Dissipation of Energy in Permanent Ocean Currents, with Some Relations between Salinities, Temperatures and Currents  

Science Journals Connector (OSTI)

6 April 1921 research-article The Dissipation of Energy in Permanent Ocean Currents, with Some Relations between Salinities, Temperatures and Currents R. O. Street The Royal Society is collaborating with JSTOR to digitize, preserve...

1921-01-01T23:59:59.000Z

275

Current-Induced Modulation of the Ocean Wave Spectrum and the Role of Nonlinear Energy Transfer  

Science Journals Connector (OSTI)

Numerical simulations were performed to investigate current-induced modulation of the spectral and statistical properties of ocean waves advected by idealized and realistic current fields. In particular, the role of nonlinear energy transfer ...

Hitoshi Tamura; Takuji Waseda; Yasumasa Miyazawa; Kosei Komatsu

2008-12-01T23:59:59.000Z

276

Global energy conversion rate from geostrophic flows into internal lee waves in the deep ocean  

E-Print Network [OSTI]

A global estimate of the energy conversion rate from geostrophic flows into internal lee waves in the ocean is presented. The estimate is based on a linear theory applied to bottom topography at O(1–10) km scales obtained ...

Nikurashin, Maxim

277

An ocean kinetic energy converter for low-power applications using piezoelectric disk elements  

Science Journals Connector (OSTI)

The main problem facing long-term electronic system deployments in the sea, is to find a feasible way to supply them with the power they require. Harvesting mechanical energy from the ocean wave oscillations and ...

C. Vińolo; D. Toma; A. Mŕnuel; J. del Rio

2013-09-01T23:59:59.000Z

278

EA-1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy  

Broader source: Energy.gov (indexed) [DOE]

1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay 1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot Project, Cobscook in Washington County, Maine EA-1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot Project, Cobscook in Washington County, Maine Summary This EA evaluates the environmental impacts of a project that would use the tidal currents of Cobscook Bay to generate electricity via cross-flow Kinetic System turbine generator units (TGU) mounted on the seafloor. The TGUs would capture energy from the flow in both ebb and flood directions. Public Comment Opportunities None available at this time. Documents Available for Download March 19, 2012 EA-1916: Finding of No Significant Impact Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot

279

Application Level Optimizations for Energy Efficiency and Thermal Stability  

E-Print Network [OSTI]

, a method optimizing energy efficiency by clustering the work- load in a few resources, temporally can help achieve higher energy efficiency and better thermal behavior. 2. METHODS A fundamentalApplication Level Optimizations for Energy Efficiency and Thermal Stability Md. Ashfaquzzaman Khan

Coskun, Ayse

280

MHK Technologies/THOR Ocean Current Turbine | Open Energy Information  

Open Energy Info (EERE)

THOR Ocean Current Turbine THOR Ocean Current Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage THOR Ocean Current Turbine.jpg Technology Profile Primary Organization THOR Turner Hunt Ocean Renewable LLC Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description The THOR ocean current turbine ROCT is a tethered fully submersible hydrokinetic device with a single horizontal axis rotor that operates at constant speed by varying the depth of operation using a patented power feedback control technology Rotor diameters can reach 60 meters for a 2 0MW class turbine and operations can be conducted as deep as 250 meters Arrays of THOR s ROCTs can be located in outer continental shelf areas 15 to 100 miles offshore in well established ocean currents such as the Gulf Stream or the Kuroshio and deliver electrical power to onshore load centers via submarine transmission line

Note: This page contains sample records for the topic "ocean thermal energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Cool Trends in District Energy: A Survey of Thermal Energy Storage Use in District Energy Utility Applications, June 2005  

Broader source: Energy.gov [DOE]

A Survey of Thermal Energy Storage (TES) Use In District Energy (DE) Utility Applications in June 2005

282

Carbon Foam Infused with Pentaglycerine for Thermal Energy Storage Applications.  

E-Print Network [OSTI]

??A thermal energy storage device that uses pentaglycerine as a phase change material was developed. This solid-state phase change material was embedded in a carbon… (more)

Johnson, Douglas James

2011-01-01T23:59:59.000Z

283

Performance investigation of various cold thermal energy storages.  

E-Print Network [OSTI]

??This study deals with solidification and melting of some typical encapsulated ice thermal energy storage geometries. Using ANSYS GAMBIT and FLUENT 6.0 software, HTF fluid… (more)

MacPhee, David

2008-01-01T23:59:59.000Z

284

Macroencapsulation of Phase Change Materials for Thermal Energy Storage.  

E-Print Network [OSTI]

??The use of a latent heat storage system using phase change materials (PCMs) is an effective way of storing thermal energy. Latent heat storage enables… (more)

Pendyala, Swetha

2012-01-01T23:59:59.000Z

285

Project Profile: High-Efficiency Thermal Energy Storage System...  

Office of Environmental Management (EM)

the National Laboratory R&D competitive funding opportunity, will design, develop, and test a prototype high-temperature and high-efficiency thermal energy storage (TES) system...

286

Optics and Photonics in Solar Thermal Energy Technologies  

Science Journals Connector (OSTI)

The complex optical diagnostics employed in the development and application of solar thermal and wind energy technologies are reviewed, with application in particle receivers, solar...

Nathan, G J 'Gus'; Alwahabi, Zeyad; Dally, Bassam B; Medwell, Paul R; Arjomandi, Maziar; Sun, Zhiwei; Lau, Timothy C; van Eyk, Philip

287

Nitric acid cycle process for extracting thermal energy from low-level heat sources  

Science Journals Connector (OSTI)

... ENORMOUS amounts of solar energy are stored in the tropical oceans. The first attempt to recover this ' ... energy are stored in the tropical oceans. The first attempt to recover this 'solar sea energy' from the tropical oceans, using the temperature difference between the warm surface ...

N. Wakao; K. Nojo

1978-05-04T23:59:59.000Z

288

Model-predicted distribution of wind-induced internal wave energy in the world's oceans  

E-Print Network [OSTI]

Model-predicted distribution of wind-induced internal wave energy in the world's oceans Naoki 9 July 2008; published 30 September 2008. [1] The distribution of wind-induced internal wave energy-scaled kinetic energy are all consistent with the available observations in the regions of significant wind

Miami, University of

289

Type F: Oceanic-ridge, Basaltic Resource | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Type F: Oceanic-ridge, Basaltic Resource Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Type F: Oceanic-ridge, Basaltic Resource Dictionary.png Type F: Oceanic-ridge, Basaltic Resource: No definition has been provided for this term. Add a Definition Brophy Occurrence Models This classification scheme was developed by Brophy, as reported in Updating the Classification of Geothermal Resources.[1] Type A: Magma-heated, Dry Steam Resource Type B: Andesitic Volcanic Resource Type C: Caldera Resource Type D: Sedimentary-hosted, Volcanic-related Resource Type E: Extensional Tectonic, Fault-Controlled Resource

290

Ocean County Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

County Landfill Biomass Facility County Landfill Biomass Facility Jump to: navigation, search Name Ocean County Landfill Biomass Facility Facility Ocean County Landfill Sector Biomass Facility Type Landfill Gas Location Ocean County, New Jersey Coordinates 39.9652553°, -74.3118212° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.9652553,"lon":-74.3118212,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

291

Energy Partitions and Evolution in a Purely Thermal Solar Flare  

E-Print Network [OSTI]

This paper presents a solely thermal flare, which we detected in the microwave range from the thermal gyro- and free-free emission it produced. An advantage of analyzing thermal gyro emission is its unique ability to precisely yield the magnetic field in the radiating volume. When combined with observationally-deduced plasma density and temperature, these magnetic field measurements offer a straightforward way of tracking evolution of the magnetic and thermal energies in the flare. For the event described here, the magnetic energy density in the radio-emitting volume declines over the flare rise phase, then stays roughly constant during the extended peak phase, but recovers to the original level over the decay phase. At the stage where the magnetic energy density decreases, the thermal energy density increases; however, this increase is insufficient, by roughly an order of magnitude, to compensate for the magnetic energy decrease. When the magnetic energy release is over, the source parameters come back to ne...

Fleishman, Gregory D; Gary, Dale E

2015-01-01T23:59:59.000Z

292

Overview of Thermal Management | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Nanofluids for Thermal Conditions Underhood Heat Transfer Nanofluid Development for Engine Cooling Systems Erosion of Radiator...

293

MHK Projects/Ocean Trials Ver 2 | Open Energy Information  

Open Energy Info (EERE)

Ocean Trials Ver 2 Ocean Trials Ver 2 < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

294

Flexible Hybrid Energy Cell for Simultaneously Harvesting Thermal, Mechanical, and Solar Energies  

Science Journals Connector (OSTI)

Flexible Hybrid Energy Cell for Simultaneously Harvesting Thermal, Mechanical, and Solar Energies ... We report the first flexible hybrid energy cell that is capable of simultaneously or individually harvesting thermal, mechanical, and solar energies to power some electronic devices. ... By integrating the NGs and the solar cells, a hybrid energy cell was fabricated to simultaneously harvest three different types of energies. ...

Ya Yang; Hulin Zhang; Guang Zhu; Sangmin Lee; Zong-Hong Lin; Zhong Lin Wang

2012-12-03T23:59:59.000Z

295

Hydrogen Energy Stations: Poly-Production of Electricity, Hydrogen, and Thermal Energy  

E-Print Network [OSTI]

re-use of thermal energy “waste heat” for building heating/and thermal energy “waste heat,” as well as purifiedare used to capture waste heat for productive purposes. Use

Lipman, Timothy; Brooks, Cameron

2006-01-01T23:59:59.000Z

296

Thermal Ion Dispersion | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Thermal Ion Dispersion Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Thermal Ion Dispersion Details Activities (1) Areas (1) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geochemical Techniques Exploration Sub Group: Geochemical Data Analysis Parent Exploration Technique: Geochemical Data Analysis Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png Thermal Ion Dispersion: Thermal Ion Dispersion (TID) is a method used by the precious-metals industry to determine the movement of hot, mineral-bearing waters through rocks, gravels, and soils. The survey involves collection of soil samples

297

Modeling of thermal energy storage in groundwater aquifers  

E-Print Network [OSTI]

MODELING OF THERMAL ENERGY STORAGE IN GROUNDWATER AQUIFERS A Thesis by DAVID BRYAN REED Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE December 1979... ABSTRACT Modeling of Thermal Energy Storage in Groundwater Aquifers. (December 1979) David Bryan Reed, B. S. , Texas A&M University Chairman of Advisory Committee: Dr. Donald L. Reddell Solar energy is a promising alternate energy source for space heat...

Reed, David Bryan

2012-06-07T23:59:59.000Z

298

SEASONAL THERMAL ENERGY STORAGE IN AQUIFERS-MATHEMATICAL MODELING STUDIES IN 1979  

E-Print Network [OSTI]

of Aquifer Thermal Energy Storage." Lawrence BerkeleyP, Andersen, "'rhermal Energy Storage in a Confined Aquifer~University Thermal Energy Storage Experiment." Lawrence

Tsang, Chin Fu

2013-01-01T23:59:59.000Z

299

National Oceanic and Atmospheric Administration (NOAA) | Open Energy  

Open Energy Info (EERE)

Oceanic and Atmospheric Administration (NOAA) Oceanic and Atmospheric Administration (NOAA) Jump to: navigation, search Logo: National Oceanic and Atmospheric Administration (NOAA) Name National Oceanic and Atmospheric Administration (NOAA) Address 1401 Constitution Avenue, NW Room 5128 Washington, DC 20230 Zip 20230 Phone number (301) 713-4000. Website http://www.noaa.gov/index.html Coordinates 38.892111°, -77.031981° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.892111,"lon":-77.031981,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

300

Controlling and maximizing effective thermal properties by manipulating transient behaviors during energy-system cycles  

E-Print Network [OSTI]

Transient processes generally constitute part of energy-system cycles. If skillfully manipulated, they actually are capable of assisting systems to behave beneficially to suit designers' needs. In the present study, behaviors related to both thermal conductivities ($\\kappa$) and heat capacities ($c_{v}$) are analyzed. Along with solutions of the temperature and the flow velocity obtained by means of theories and simulations, three findings are reported herein: $(1)$ effective $\\kappa$ and effective $c_{v}$ can be controlled to vary from their intrinsic material-property values to a few orders of magnitude larger; $(2)$ a parameter, tentatively named as "nonlinear thermal bias", is identified and can be used as a criterion in estimating energies transferred into the system during heating processes and effective operating ranges of system temperatures; $(3)$ When a body of water, such as the immense ocean, is subject to the boundary condition of cold bottom and hot top, it may be feasible to manipulate transien...

Gao, Z J; Merlitz, H; Pagni, P J; Chen, Z

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ocean thermal energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

MHK Technologies/Ocean Wave Energy Converter OWEC | Open Energy Information  

Open Energy Info (EERE)

Converter OWEC Converter OWEC < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Ocean Wave Energy Converter OWEC.jpg Technology Profile Primary Organization Ocean Wave Energy Company Technology Resource Click here Wave Technology Type Click here Point Absorber - Submerged Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description Neutrally suspended and positively buoyant modules are quick connected into open frame networks Submerged portions are stabilized by variable ballast buoyancy chambers and optional damper sheets situated at a relatively calm depth Frame members carry shaft components of linear rotary converters associated with large point absorber buoys Both directions of reciprocal wave motion i e vertical and horizontal motion directly drive components of counter rotating electrical generators Compared to standard generators wherein one is associated with upstroke and another of smaller proportion with downstroke this configuration increases relative speed with fewer parts Electromechanical loads are real time adjustable with respect to wave sensor web resulting in optimal energy conversion from near fully submerged wave following buoys Electrical conductors are series connected and further quick connected with those of other modules via upper frame members Through implementation of rep

302

Composite materials for thermal energy storage  

DOE Patents [OSTI]

The present invention discloses composite material for thermal energy storage based upon polyhydric alcohols, such as pentaerythritol, trimethylol ethane (also known as pentaglycerine), neopentyl glycol and related compounds including trimethylol propane, monoaminopentaerythritol, diamino-pentaerythritol and tris(hydroxymethyl)acetic acid, separately or in combinations, which provide reversible heat storage through crystalline phase transformations. These phase change materials do not become liquid during use and are in contact with at least one material selected from the group consisting of metals, carbon siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, porous rock, and mixtures thereof. Particulate additions, such as aluminum or graphite powders, as well as metal and carbon fibers can also be incorporated therein. Particulate and/or fibrous additions can be introduced into molten phase change materials which can then be cast into various shapes. After the phase change materials have solidified, the additions will remain dispersed throughout the matrix of the cast solid. The polyol is in contact with at least one material selected from the group consisting of metals, carbon siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, and mixtures thereof.

Benson, David K. (Golden, CO); Burrows, Richard W. (Conifer, CO); Shinton, Yvonne D. (Northglenn, CO)

1986-01-01T23:59:59.000Z

303

Thermal Waters of Nevada | Open Energy Information  

Open Energy Info (EERE)

Thermal Waters of Nevada Thermal Waters of Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Thermal Waters of Nevada Abstract Abstract unavailable. Authors Larry J. Garside and John H. Schilling Organization Nevada Bureau of Mines and Geology Published Nevada Bureau of Mines and Geology, 1979 Report Number Bulletin 91 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Thermal Waters of Nevada Citation Larry J. Garside,John H. Schilling (Nevada Bureau of Mines and Geology). 1979. Thermal Waters of Nevada. Reno, NV: Nevada Bureau of Mines and Geology. Report No.: Bulletin 91. Retrieved from "http://en.openei.org/w/index.php?title=Thermal_Waters_of_Nevada&oldid=690515" Categories: References Geothermal References

304

PCM energy storage during defective thermal cycling:.  

E-Print Network [OSTI]

??Incomplete thermal cycling affects storage capacities of phase change materials (PCMs). Existing PCM measuring methods are presented with their drawbacks. A new device named “the… (more)

Koekenbier, S.F.

2011-01-01T23:59:59.000Z

305

Thermal Energy Storage:Analysis and Application.  

E-Print Network [OSTI]

??The purpose of this paper is to analyze and determine the feasibility of a cold thermal storage system in manufacturing Industries. Cooling loads and actual… (more)

Ogunkoya, Dolanimi Olugbenga

2009-01-01T23:59:59.000Z

306

Thermal Management Using Carbon Nanotubes - Energy Innovation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thermal Management Using Carbon Nanotubes Oak Ridge National Laboratory Contact ORNL About This Technology Vertically Aligned Carbon Nanotubes Vertically Aligned Carbon Nanotubes...

307

MHK Projects/Development of Ocean Treader | Open Energy Information  

Open Energy Info (EERE)

Ocean Treader Ocean Treader < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":57.1497,"lon":-2.09428,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

308

Energy Conversion and Thermal Efficiency Sales Tax Exemption | Department  

Broader source: Energy.gov (indexed) [DOE]

Energy Conversion and Thermal Efficiency Sales Tax Exemption Energy Conversion and Thermal Efficiency Sales Tax Exemption Energy Conversion and Thermal Efficiency Sales Tax Exemption < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Bioenergy Biofuels Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Wind Solar Water Heating Maximum Rebate None Program Info State Ohio Program Type Sales Tax Incentive Rebate Amount 100% exemption Provider Ohio Department of Taxation Ohio may provide a sales and use tax exemption for certain tangible personal property used in energy conversion, solid waste energy conversion, or thermal efficiency improvement facilities designed, constructed, or installed after December 31, 1974. Qualifying energy conversion facilities are those that are used for the

309

List of Solar Thermal Electric Incentives | Open Energy Information  

Open Energy Info (EERE)

Electric Incentives Electric Incentives Jump to: navigation, search The following contains the list of 548 Solar Thermal Electric Incentives. CSV (rows 1-500) CSV (rows 501-548) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active 30% Business Tax Credit for Solar (Vermont) Corporate Tax Credit Vermont Commercial Industrial Photovoltaics Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Water Heat No APS - Net Metering (Arizona) Net Metering Arizona Commercial Industrial Residential Nonprofit Schools Local Government State Government Fed. Government Agricultural Institutional Solar Thermal Electric Photovoltaics Wind energy Biomass No Advanced Energy Fund (Ohio) Public Benefits Fund Ohio Commercial Industrial Institutional

310

Thermal Gradient Holes | Open Energy Information  

Open Energy Info (EERE)

Thermal Gradient Holes Thermal Gradient Holes Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Thermal Gradient Holes Details Activities (50) Areas (39) Regions (4) NEPA(29) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Exploration Drilling Parent Exploration Technique: Exploration Drilling Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Field wide fluid flow characteristics if an array of wells are drilled Thermal: Mapping and projecting thermal anomalies Cost Information Low-End Estimate (USD): 5.00500 centUSD 0.005 kUSD 5.0e-6 MUSD 5.0e-9 TUSD / foot Median Estimate (USD): 16.501,650 centUSD 0.0165 kUSD 1.65e-5 MUSD 1.65e-8 TUSD / foot High-End Estimate (USD): 50.005,000 centUSD

311

Aquifer thermal energy storage costs with a seasonal heat source.  

SciTech Connect (OSTI)

The cost of energy supplied by an aquifer thermal energy storage (ATES) system from a seasonal heat source was investigated. This investigation considers only the storage of energy from a seasonal heat source. Cost estimates are based upon the assumption that all of the energy is stored in the aquifer before delivery to the end user. Costs were estimated for point demand, residential development, and multidistrict city ATES systems using the computer code AQUASTOR which was developed specifically for the economic analysis of ATES systems. In this analysis the cost effect of varying a wide range of technical and economic parameters was examined. Those parameters exhibiting a substantial influence on ATES costs were: cost of purchased thermal energy; cost of capital; source temperature; system size; transmission distance; and aquifer efficiency. ATES-delivered energy costs are compared with the costs of hot water heated by using electric power or fuel-oils. ATES costs are shown as a function of purchased thermal energy. Both the potentially low delivered energy costs available from an ATES system and its strong cost dependence on the cost of purchased thermal energy are shown. Cost components for point demand and multi-district city ATES systems are shown. Capital and thermal energy costs dominate. Capital costs, as a percentage of total costs, increase for the multi-district city due to the addition of a large distribution system. The proportion of total cost attributable to thermal energy would change dramatically if the cost of purchased thermal energy were varied. It is concluded that ATES-delivered energy can be cost competitive with conventional energy sources under a number of economic and technical conditions. This investigation reports the cost of ATES under a wide range of assumptions concerning parameters important to ATES economics. (LCL)

Reilly, R.W.; Brown, D.R.; Huber, H.D.

1981-12-01T23:59:59.000Z

312

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network [OSTI]

1974. Geothermal Storage of Solar Energy, in "Governors1976. "Geothermal Storage of Solar Energy for Electric PowerUnderground Longterm Storage of Solar Energy - An Overview,"

Authors, Various

2011-01-01T23:59:59.000Z

313

Molten Oxide Glass Materials for Thermal Energy Storage  

Science Journals Connector (OSTI)

Abstract Halotechnics, Inc. is developing an energy storage system utilizing a low melting point molten glass as the heat transfer and thermal storage material. This work is supported under a grant from the Department of Energy's Advanced Research Projects Agency-Energy (ARPA-E). Advanced oxide glasses promise a potential breakthrough as a low cost, earth abundant, and stable thermal storage material. The system and new glass material will enable grid scale electricity storage at a fraction of the cost of batteries by integrating the thermal storage with a large heat pump device. Halotechnics is combining its proven expertise in combinatorial chemistry with advanced techniques for handling molten glass to design and build a two-tank thermal energy storage system. This system, operating at a high temperature of 1200 °C and a low temperature of 400 °C, will demonstrate sensible heat thermal energy storage using a uniquely formulated oxide glass. Our molten glass thermal storage material has the potential to significantly reduce thermal storage costs once developed and deployed at commercial scale. Thermal storage at the target temperature can be integrated with existing high temperature gas turbines that significantly increase efficiencies over today's steam turbine technology. This paper describes the development and selection of Halotechnics’ molten glass heat transfer fluids with some additional systems considerations.

B. Elkin; L. Finkelstein; T. Dyer; J. Raade

2014-01-01T23:59:59.000Z

314

Thermal Energy Storage at a Federal Facility  

SciTech Connect (OSTI)

Utility partnership upgrades energy system to help meet the General Services Administration's (GSA) energy-saving goals

Not Available

2000-07-01T23:59:59.000Z

315

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network [OSTI]

the International Solar Energy Society, Winnipeg, Canada. 8:Intern. Solar Energy Soc. , Winnipeg, Canada, August 15-20,

Authors, Various

2011-01-01T23:59:59.000Z

316

AQUIFER THERMAL ENERGY STORAGE-A SURVEY  

E-Print Network [OSTI]

source of energy, proceedings, International Solar Energybuilding and solar energy could be used as sources of heat

Tsang, Chin Fu

2012-01-01T23:59:59.000Z

317

Thermal Energy Storage for Electricity Peakdemand Mitigation: A Solution in  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thermal Energy Storage for Electricity Peakdemand Mitigation: A Solution in Thermal Energy Storage for Electricity Peakdemand Mitigation: A Solution in Developing and Developed World Alike Title Thermal Energy Storage for Electricity Peakdemand Mitigation: A Solution in Developing and Developed World Alike Publication Type Conference Proceedings Refereed Designation Refereed LBNL Report Number LBNL-6308E Year of Publication 2013 Authors DeForest, Nicholas, Gonçalo Mendes, Michael Stadler, Wei Feng, Judy Lai, and Chris Marnay Conference Name ECEEE 2013 Summer Study 3-8 June 2013, Belambra Les Criques, France Date Published 06/2013 Conference Location Belambra Les Criques, France Keywords electricity, energy storage, Energy System Planning & Grid Integration, peakdemand mitigation, thermal Abstract In much of the developed world, air-conditioning in buildings is the dominant driver of summer peak electricity

318

Mapping and Assessment of the United States Ocean Wave Energy Resource  

Open Energy Info (EERE)

TECHNICAL REPORT TECHNICAL REPORT Mapping and Assessment of the United States Ocean Wave Energy Resource EPRI Project Manager P. Jacobson 3420 Hillview Avenue Palo Alto, CA 94304-1338 USA PO Box 10412 Palo Alto, CA 94303-0813 USA 800.313.3774 650.855.2121 askepri@epri.com 1024637 www.epri.com Final Report, December 2011 Mapping and Assessment of the United States Ocean Wave Energy Resource DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITIES THIS DOCUMENT WAS PREPARED BY THE ORGANIZATION(S) NAMED BELOW AS AN ACCOUNT OF WORK SPONSORED OR COSPONSORED BY THE ELECTRIC POWER RESEARCH INSTITUTE, INC. (EPRI).

319

Thermal performance evaluation of a solar air heater with and without thermal energy storage  

Science Journals Connector (OSTI)

This communication presents the experimental study and performance analysis of a solar air heater with and without phase change ... found that the output temperature in case with thermal energy storage (TES) is h...

V. V. Tyagi; A. K. Pandey; S. C. Kaushik…

2012-03-01T23:59:59.000Z

320

Thermal Energy Storage for Electricity Peak-demand Mitigation: A Solution in Developing and Developed World Alike  

E-Print Network [OSTI]

N ATIONAL L ABORATORY Thermal Energy Storage for Electricity20, 2012. I. Dincer, On thermal energy storage systems andin research on cold thermal energy storage, International

DeForest, Nicholas

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ocean thermal energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

MULTIPLE WELL VARIABLE RATE WELL TEST ANALYSIS OF DATA FROM THE AUBURN UNIVERSITY THERMAL ENERGY STORAGE PROGRAM  

E-Print Network [OSTI]

experimental Thermal energy storage in confined aquifers. ©lAUBURN UNIVERSITY THERMAL ENERGY STORAGE PROGRM1 Christineseries of aquifer thermal energy storage field experiments.

Doughty, Christine

2012-01-01T23:59:59.000Z

322

Technical and economic feasibility of a Thermal Gradient Utilization Cycle (TGUC) power plant  

E-Print Network [OSTI]

has grown in energy technologies that use renewable resources such as solar (thermal conversion, ocean thermal energy conversion, photovoltaics, wind and biomass conversion), geothermal and magnetohydrodynamics (MHD) . A new concept that can...

Raiji, Ashok

1980-01-01T23:59:59.000Z

323

ThermalSoul | Open Energy Information  

Open Energy Info (EERE)

ThermalSoul ThermalSoul Jump to: navigation, search Name ThermalSoul Place Austin, Texas Zip 78746 Sector Solar Product Austin, Texas-based parabolic trough-based solar thermal electrical generation systems maker. Coordinates 30.267605°, -97.742984° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.267605,"lon":-97.742984,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

324

Energy-Dependent Timing of Thermal Emission in Solar Flares  

Science Journals Connector (OSTI)

We report solar flare plasma to be multi-thermal in nature based on the theoretical model and study of the energy-dependent timing of thermal emission in ten M-class flares. We ... observed by the Si detector of ...

Rajmal Jain; Arun Kumar Awasthi; Arvind Singh Rajpurohit…

2011-05-01T23:59:59.000Z

325

Thermal Energy Storage (TES): Past, Present and Future  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thermal Energy Storage (TES): Past, Present and Future Thermal Energy Storage (TES): Past, Present and Future Speaker(s): Klaus Schiess Date: June 10, 2011 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Sila Kiliccote Thermal Energy Storage (TES) is a technology that stores "cooling" energy in a thermal storage mass. In the eighties and early nineties the utilities in California incentivised this technology to shift electrical on-peak power to off-peak. Thereafter, for various reasons TES became the most neglected permanent load shifting opportunity. It is only now with the challenges that the renewables provide that TES may have a come- back because it is basically the best and most economical AC battery available with a round trip efficiency of 100% or even better. This presentation gives some background to this development and shows the interdependence of

326

Thermal Bypass Air Barriers in the 2009 International Energy...  

Energy Savers [EERE]

of thermal bypass air barriers, which led to their inclusion in ENERGY STAR for Homes Version 3 specifications in 2006 and then to inclusion in the 2009 IECC. Since...

327

Latent Heat or Phase Change Thermal Energy Storage  

Science Journals Connector (OSTI)

It has been explained in sections 1.6 and 1.6.2 how phase change materials (PCM) have considerably higher thermal energy storage densities compared to sensible heat storage materials and are able to absorb or rel...

H. P. Garg; S. C. Mullick; A. K. Bhargava

1985-01-01T23:59:59.000Z

328

Augmentation of thermal power stations with solar energy  

Science Journals Connector (OSTI)

A new concept of integration of a solar concentrator field with a modern thermal power station is proposed. Such a configuration ... and infrastructure as a base load facility and solar energy to reduce the fuel ...

BR Pai

1991-06-01T23:59:59.000Z

329

The Exchange-Value of Solar Thermal Energy  

Science Journals Connector (OSTI)

In Sweden there is a tendency that alternative energy will develop on market premises. In this ... I suggest that the low exergy value of solar thermal heat limits the technique“s commodification, i ... . By appl...

Johan Leidi

2009-01-01T23:59:59.000Z

330

Designing a Thermal Energy Storage Program for Electric Utilities  

E-Print Network [OSTI]

Electric utilities are looking at thermal energy storage technology as a viable demand side management (DSM) option. In order for this DSM measure to be effective, it must be incorporated into a workable, well-structured utility program. This paper...

Niehus, T. L.

1994-01-01T23:59:59.000Z

331

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network [OSTI]

and R.A. Zakhidov, "Storage of Solar Energy in a Sandy-Heat as Related to the Storage of Solar Energy. Sharing the1974. Geothermal Storage of Solar Energy, in "Governors

Authors, Various

2011-01-01T23:59:59.000Z

332

AQUIFER THERMAL ENERGY STORAGE-A SURVEY  

E-Print Network [OSTI]

R. A. 8 1971, Storage of solar energy in a sandy-gravelthermal energy storage for cogeneration and solar systems,storage, solar captors for heat production 9 and heat pumps for energy

Tsang, Chin Fu

2012-01-01T23:59:59.000Z

333

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network [OSTI]

III, "Man-made Geothermal Energy," presented at MiamiA.C.Meyers III; "Manmade Geothermal Energy", Proc. of Miamiin soils extraction of geothermal energy heat storage in the

Authors, Various

2011-01-01T23:59:59.000Z

334

Thermal Modernisation Through Utilisation of Solar Energy  

Science Journals Connector (OSTI)

The paper presents idea of modernization of energy system in buildings through implementation of traditional energy efficiency measures and introduction of modern options of utilization of solar energy systems...

Dorota Chwieduk

2009-01-01T23:59:59.000Z

335

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network [OSTI]

III, "Man-made Geothermal Energy," presented at MiamiA.C.Meyers III; "Manmade Geothermal Energy", Proc. of MiamiBlack is director of Geothermal Energy Systems, Fox Parry is

Authors, Various

2011-01-01T23:59:59.000Z

336

List of Solar Thermal Process Heat Incentives | Open Energy Information  

Open Energy Info (EERE)

Process Heat Incentives Process Heat Incentives Jump to: navigation, search The following contains the list of 204 Solar Thermal Process Heat Incentives. CSV (rows 1 - 204) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active 30% Business Tax Credit for Solar (Vermont) Corporate Tax Credit Vermont Commercial Industrial Photovoltaics Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Water Heat No APS - Renewable Energy Incentive Program (Arizona) Utility Rebate Program Arizona Commercial Residential Anaerobic Digestion Biomass Daylighting Geothermal Electric Ground Source Heat Pumps Landfill Gas Other Distributed Generation Technologies Photovoltaics Small Hydroelectric Solar Pool Heating Solar Space Heat Solar Thermal Process Heat

337

Maximizing Thermal Efficiency and Optimizing Energy Management (Fact Sheet), Thermal Test Facility (TTF), NREL (National Renewable Energy Laboratory)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Maximizing Thermal Efficiency and Maximizing Thermal Efficiency and Optimizing Energy Management Scientists at this living laboratory develop optimal solutions for managing energy flows within buildings and transportation systems. The built environment is stressing the utility grid to a greater degree than ever before. Growing demand for electric vehicles, space conditioning, and plug loads presents a critical opportunity for more effective energy management and development of efficiency technologies. Researchers at the Thermal Test Facility (TTF) on the campus of the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) in Golden, Colorado, are addressing this opportunity. Through analysis of efficient heating, ventilating, and air conditioning (HVAC) strategies, automated home energy management (AHEM), and energy storage systems,

338

Phase-change thermal energy storage: Final subcontract report  

SciTech Connect (OSTI)

The research and development described in this document was conducted within the US Department of Energy's Solar Thermal Technology Program. The goal of this program is to advance the engineering and scientific understanding of solar thermal technology and to establish the technology base from which private industry can develop solar thermal power production options for introduction into the competitive energy market. Solar thermal technology concentrates the solar flux using tracking mirrors or lenses onto a receiver where the solar energy is absorbed as heat and converted into electricity or incorporated into products as process heat. The two primary solar thermal technologies, central receivers and distributed receivers, employ various point and line-focus optics to concentrate sunlight. Current central receiver systems use fields of heliostats (two-axes tracking mirrors) to focus the sun's radiant energy onto a single, tower-mounted receiver. Point focus concentrators up to 17 meters in diameter track the sun in two axes and use parabolic dish mirrors or Fresnel lenses to focus radiant energy onto a receiver. Troughs and bowls are line-focus tracking reflectors that concentrate sunlight onto receiver tubes along their focal lines. Concentrating collector modules can be used alone or in a multimodule system. The concentrated radiant energy absorbed by the solar thermal receiver is transported to the conversion process by a circulating working fluid. Receiver temperatures range from 100{degree}C in low-temperature troughs to over 1500{degree}C in dish and central receiver systems. 12 refs., 119 figs., 4 tabs.

Not Available

1989-11-01T23:59:59.000Z

339

Definition: Thermal Ion Dispersion | Open Energy Information  

Open Energy Info (EERE)

Dispersion Dispersion Jump to: navigation, search Dictionary.png Thermal Ion Dispersion Thermal Ion Dispersion (TID) is a method used by the precious-metals industry to determine the movement of hot, mineral-bearing waters through rocks, gravels, and soils. The survey involves collection of soil samples and analyses of ions by an enzyme leach process done by commercial laboratories. The method utilizes the property of elements to be dissolved, transported, or deposited depending on the temperature of the thermal waters.{{#tag:ref|[[Final Technical Report}}[1][2][3][4] Also Known As enzyme leach References ↑ Geothermal Resource Evaluation And Definitioni (Gred) Program-Phases I ↑ Ii ↑ And Iii For The Animas Valley ↑ Nm Geothermal Resource]] {{#set:Reference URI={{#explode:{{#replace:[[Final Technical Report|[|}}|

340

Amulaire Thermal Technology | Open Energy Information  

Open Energy Info (EERE)

Amulaire Thermal Technology Amulaire Thermal Technology Jump to: navigation, search Name Amulaire Thermal Technology Address 11555 Sorrento Valley Road Place San Diego, California Zip 92121 Sector Efficiency Product Makes heat-dissipation products used in liquid cooling systems Website http://www.amulaire.com/ Coordinates 32.912393°, -117.231201° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.912393,"lon":-117.231201,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "ocean thermal energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Development of two-variable maximum power point tracking control for ocean wave energy converters utilizing a power analysis and data acquisition system.  

E-Print Network [OSTI]

??Ocean wave energy shows great potential as a developing form of renewable energy. However, challenges arise in maturing this technology to achieve cost-effective energy conversion.… (more)

Amon, Ean A.

2010-01-01T23:59:59.000Z

342

Property:ThermalInfo | Open Energy Information  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:ThermalInfo Jump to: navigation, search Property Name ThermalInfo Property Type Text Subproperties This property has the following 93 subproperties: A Acoustic Logs Active Seismic Methods Active Sensors Aeromagnetic Survey Airborne Electromagnetic Survey Analytical Modeling C Caliper Log Cation Geothermometers Cement Bond Log Conceptual Model Controlled Source Frequency-Domain Magnetics Cross-Dipole Acoustic Log Cuttings Analysis D Data Acquisition-Manipulation Data Collection and Mapping Data Techniques Data and Modeling Techniques Density Log Direct-Current Resistivity Survey Drilling Methods E Earth Tidal Analysis Electric Micro Imager Log Electromagnetic Sounding Methods Elemental Analysis with Fluid Inclusion

343

Unique Solar Thermal Laboratory Gets an Upgrade | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Unique Solar Thermal Laboratory Gets an Upgrade Unique Solar Thermal Laboratory Gets an Upgrade Unique Solar Thermal Laboratory Gets an Upgrade September 10, 2010 - 2:54pm Addthis This “power tower” is part of the National Solar Thermal Test Facility in Albuquerque, which is getting upgrades through Recovery Act funding. | Photo Courtesy of Sandia National Laboratories This "power tower" is part of the National Solar Thermal Test Facility in Albuquerque, which is getting upgrades through Recovery Act funding. | Photo Courtesy of Sandia National Laboratories Lorelei Laird Writer, Energy Empowers The National Solar Thermal Test Facility at Sandia National Laboratories is unique - and in demand. The Facility has been instrumental in NASA tests, national defense programs and concentrated solar technology development.

344

Portfolio Manager Technical Reference: Thermal Conversion Factors | ENERGY  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thermal Conversion Factors Thermal Conversion Factors Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder

345

Aero-Acoustic Analysis of Wells Turbine for Ocean Wave Energy Conversion  

E-Print Network [OSTI]

Aero-Acoustic Analysis of Wells Turbine for Ocean Wave Energy Conversion Ralf Starzmann Fluid the water wave motion into a bi-directional air flow, which in turn drives an air turbine. The Wells turbine the environmental impact of an in situ Wells turbine in more detail requires an in depth understanding

Frandsen, Jannette B.

346

Overview of Ocean Wave and Tidal Energy Lingchuan Mei  

E-Print Network [OSTI]

resources such as solar and wind energy, waves and tides have the advantages of having much higher power stronger energy conversion devices lower in capital cost than for other renewable technologies and creating more job opportunities. For these major benefits the marine energy can provide us with, a great

Lavaei, Javad

347

Assessment of Energy Production Potential from Ocean Currents along the United States Coastline  

SciTech Connect (OSTI)

Increasing energy consumption and depleting reserves of fossil fuels have resulted in growing interest in alternative renewable energy from the ocean. Ocean currents are an alternative source of clean energy due to their inherent reliability, persistence and sustainability. General ocean circulations exist in the form of large rotating ocean gyres, and feature extremely rapid current flow in the western boundaries due to the Coriolis Effect. The Gulf Stream system is formed by the western boundary current of the North Atlantic Ocean that flows along the east coastline of the United States, and therefore is of particular interest as a potential energy resource for the United States. This project created a national database of ocean current energy resources to help advance awareness and market penetration in ocean current energy resource assessment. The database, consisting of joint velocity magnitude and direction probability histograms, was created from data created by seven years of numerical model simulations. The accuracy of the database was evaluated by ORNL?s independent validation effort documented in a separate report. Estimates of the total theoretical power resource contained in the ocean currents were calculated utilizing two separate approaches. Firstly, the theoretical energy balance in the Gulf Stream system was examined using the two-dimensional ocean circulation equations based on the assumptions of the Stommel model for subtropical gyres with the quasi-geostrophic balance between pressure gradient, Coriolis force, wind stress and friction driving the circulation. Parameters including water depth, natural dissipation rate and wind stress are calibrated in the model so that the model can reproduce reasonable flow properties including volume flux and energy flux. To represent flow dissipation due to turbines additional turbine drag coefficient is formulated and included in the model. Secondly, to determine the reasonableness of the total power estimates from the Stommel model and to help determine the size and capacity of arrays necessary to extract the maximum theoretical power, further estimates of the available power based on the distribution of the kinetic power density in the undisturbed flow was completed. This used estimates of the device spacing and scaling to sum up the total power that the devices would produce. The analysis has shown that considering extraction over a region comprised of the Florida Current portion of the Gulf Stream system, the average power dissipated ranges between 4-6 GW with a mean around 5.1 GW. This corresponds to an average of approximately 45 TWh/yr. However, if the extraction area comprises the entire portion of the Gulf Stream within 200 miles of the US coastline from Florida to North Carolina, the average power dissipated becomes 18.6 GW or 163 TWh/yr. A web based GIS interface, http://www.oceancurrentpower.gatech.edu/, was developed for dissemination of the data. The website includes GIS layers of monthly and yearly mean ocean current velocity and power density for ocean currents along the entire coastline of the United States, as well as joint and marginal probability histograms for current velocities at a horizontal resolution of 4-7 km with 10-25 bins over depth. Various tools are provided for viewing, identifying, filtering and downloading the data.

Haas, Kevin

2013-09-15T23:59:59.000Z

348

Aquifer thermal energy storage reference manual: seasonal thermal energy storage program  

SciTech Connect (OSTI)

This is the reference manual of the Seasonal Thermal Energy Storage (STES) Program, and is the primary document for the transfer of technical information of the STES Program. It has been issued in preliminary form and will be updated periodically to include more technical data and results of research. As the program progresses and new technical data become available, sections of the manual will be revised to incorporate these data. This primary document contains summaries of: the TRW, incorporated demonstration project at Behtel, Alaska, Dames and Moore demonstration project at Stony Brook, New York, and the University of Minnesota demonstration project at Minneapolis-St. Paul, Minnesota; the technical support programs including legal/institutional assessment; economic assessment; environmental assessment; field test facilities; a compendia of existing information; numerical simulation; and non-aquifer STES concepts. (LCL)

Prater, L.S.

1980-01-01T23:59:59.000Z

349

AQUIFER THERMAL ENERGY STORAGE-A SURVEY  

E-Print Network [OSTI]

Zakhidov, R. A. 8 1971, Storage of solar energy in a sandy-aquifers for heat storage, solar captors for heat productionthermal energy storage for cogeneration and solar systems,

Tsang, Chin Fu

2012-01-01T23:59:59.000Z

350

Flexible ocean upwelling pipe  

DOE Patents [OSTI]

In an ocean thermal energy conversion facility, a cold water riser pipe is releasably supported at its upper end by the hull of the floating facility. The pipe is substantially vertical and has its lower end far below the hull above the ocean floor. The pipe is defined essentially entirely of a material which has a modulus of elasticity substantially less than that of steel, e.g., high density polyethylene, so that the pipe is flexible and compliant to rather than resistant to applied bending moments. The position of the lower end of the pipe relative to the hull is stabilized by a weight suspended below the lower end of the pipe on a flexible line. The pipe, apart from the weight, is positively buoyant. If support of the upper end of the pipe is released, the pipe sinks to the ocean floor, but is not damaged as the length of the line between the pipe and the weight is sufficient to allow the buoyant pipe to come to a stop within the line length after the weight contacts the ocean floor, and thereafter to float submerged above the ocean floor while moored to the ocean floor by the weight. The upper end of the pipe, while supported by the hull, communicates to a sump in the hull in which the water level is maintained below the ambient water level. The sump volume is sufficient to keep the pipe full during heaving of the hull, thereby preventing collapse of the pipe.

Person, Abraham (Los Alamitos, CA)

1980-01-01T23:59:59.000Z

351

Thermal conductor for high-energy electrochemical cells  

DOE Patents [OSTI]

A thermal conductor for use with an electrochemical energy storage device is disclosed. The thermal conductor is attached to one or both of the anode and cathode contacts of an electrochemical cell. A resilient portion of the conductor varies in height or position to maintain contact between the conductor and an adjacent wall structure of a containment vessel in response to relative movement between the conductor and the wall structure. The thermal conductor conducts current into and out of the electrochemical cell and conducts thermal energy between the electrochemical cell and thermally conductive and electrically resistive material disposed between the conductor and the wall structure. The thermal conductor may be fabricated to include a resilient portion having one of a substantially C-shaped, double C-shaped, Z-shaped, V-shaped, O-shaped, S-shaped, or finger-shaped cross-section. An elastomeric spring element may be configured so as to be captured by the resilient conductor for purposes of enhancing the functionality of the thermal conductor. The spring element may include a protrusion that provides electrical insulation between the spring conductor and a spring conductor of an adjacently disposed electrochemical cell in the presence of relative movement between the cells and the wall structure. The thermal conductor may also be fabricated from a sheet of electrically conductive material and affixed to the contacts of a number of electrochemical cells.

Hoffman, Joseph A. (Minneapolis, MN); Domroese, Michael K. (South St. Paul, MN); Lindeman, David D. (Hudson, WI); Radewald, Vern E. (Austin, TX); Rouillard, Roger (Beloeil, CA); Trice, Jennifer L. (Eagan, MN)

2000-01-01T23:59:59.000Z

352

Mapping and Assessment of the United States Ocean Wave Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

wave has traveled seven wavelengths, while the wave group as a whole and its associated energy content have advanced only half that distance. ......

353

MHK Technologies/The Ocean Hydro Electricity Generator Plant | Open Energy  

Open Energy Info (EERE)

MHK Technologies/The Ocean Hydro Electricity Generator Plant MHK Technologies/The Ocean Hydro Electricity Generator Plant < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage The Ocean Hydro Electricity Generator Plant.jpg Technology Profile Primary Organization Free Flow 69 Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The O H E G plant is a revolutionary concept using tidal energy designed by FreeFlow 69 The plant uses tidal energy to create electricity 24 hours a day making this a unique project 24 hour power is produced by using both the kinetic energy in tidal flow and the potential energy created by tidal height changes The O H E G plant is completely independent of the wind farm however it does make an ideal foundation for offshore wind turbines combining both tidal energy and wind energy The O H E G plant is not detrimental to the surrounding environment or ecosystem and due to its offshore location it will not be visually offensive

354

Influence of the Iceland mantle plume on oceanic crust generation in the North Atlantic  

Science Journals Connector (OSTI)

......analogue-digital converter with a dynamic range...reverberation of seismic energy in the water column...the North Atlantic ocean. The change in morphology...support from the thermal anomaly in the mantle...margin and mantle thermal anomalies beneath...generation beneath mid-ocean ridges, Earth planet......

C. J. Parkin; R. S. White

2008-04-01T23:59:59.000Z

355

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network [OSTI]

such as in solar energy and geothermal energy [183]. Solar128] V Minea, "Using Geothermal Energy and Industrial Wastesuch as solar thermal and geothermal energy will become an

Ho, Tony

2012-01-01T23:59:59.000Z

356

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network [OSTI]

128] V Minea, "Using Geothermal Energy and Industrial Wastesuch as solar thermal and geothermal energy will become ansolar field, and geothermal energy, where energy is obtained

Ho, Tony

2012-01-01T23:59:59.000Z

357

Eurotherm Seminar #99 Advances in Thermal Energy Storage  

E-Print Network [OSTI]

Eurotherm Seminar #99 Advances in Thermal Energy Storage 1 EUROTHERM99-01-103 Convection Energy Storage 2 Nussel number. This study shows that an increase in the convection coefficient leads in this paper consists in horizontal PCM plates separated by an air flow. This is a storage system dedicated

Boyer, Edmond

358

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network [OSTI]

Solar Thermal Energy Research," in Sandia National Laboratory Science and Engineering Exposition 2011, Albuquerque, New Mexico,

Ho, Tony

2012-01-01T23:59:59.000Z

359

National Thermal Power Corporation NTPC | Open Energy Information  

Open Energy Info (EERE)

NTPC NTPC Jump to: navigation, search Name National Thermal Power Corporation (NTPC) Place New Delhi, Delhi (NCT), India Zip 110003 Sector Biomass, Hydro, Solar, Wind energy Product Delhi-based, state owned largest thermal power generating company of India. The firm has also ventured into consultancy, power trading, ash utilisation and coal mining. The firm is also developing various wind, solar, small hydro and biomass project. References National Thermal Power Corporation (NTPC)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. National Thermal Power Corporation (NTPC) is a company located in New Delhi, Delhi (NCT), India . References ↑ "National Thermal Power Corporation (NTPC)"

360

Gulf Power - Solar Thermal Water Heating Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Gulf Power - Solar Thermal Water Heating Program Gulf Power - Solar Thermal Water Heating Program Gulf Power - Solar Thermal Water Heating Program < Back Eligibility Low-Income Residential Multi-Family Residential Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate $1,000 Program Info State Florida Program Type Utility Rebate Program Provider Energy Efficiency '''''This program reopened on October 3, 2011 for 2012 applications. Funding is limited and must be reserved through online application before the installation of qualifying solar water heating systems. See Gulf Power's [http://www.gulfpower.com/renewable/solarThermal.asp Solar Water Heating] web site for more information.''''' Gulf Power offers a Solar Thermal Water Heating rebate to customers who install water heaters. This program started after the original pilot

Note: This page contains sample records for the topic "ocean thermal energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Mapping the Potential of U.S. Ocean Energy  

Office of Energy Efficiency and Renewable Energy (EERE)

EERE's resource assessments show the scope of potential wave, tidal, and current energy development off of U.S. coasts, a technical potential of more than 2,000 TWh per year of clean, renewable electricity.

362

DE-EE0000319 Final Technical Report [National Open-ocean Energy Laboratory  

SciTech Connect (OSTI)

Under the authorization provided by Section 634 of the Energy Independence and Security Act of 2007 (P.L. 110-140), in 2009 FAU was awarded U.S. Congressionally Directed Program (CDP) funding through the U.S. Department of Energy (DOE) to investigate and develop technologies to harness the energy of the Florida Current as a source of clean, renewable, base-load power for Florida and the U.S. A second CDP award in 2010 provided additional funding in order to enhance and extend FAU’s activities. These two CDPs in 2009 and 2010 were combined into a single DOE grant, DE-EE0000319, and are the subject of this report. Subsequently, in July 2010 funding was made available under a separate contract, DE-EE0004200. Under that funding, DOE’s Wind and Water Power Program designated FAU’s state of Florida marine renewable energy (MRE) center as the Southeast National Marine Renewable Energy Center (SNMREC). This report discusses SNMREC activities funded by the DE-EE0000319 grant, but will make reference, as appropriate, to activities that require further investigation under the follow-on grant. The concept of extracting energy from the motions of the oceans has a long history. However, implementation on large scales of the technologies to effect renewable energy recovery from waves, tides, and open-ocean currents is relatively recent. DOE’s establishment of SNMREC recognizes a significant potential for ocean current energy recovery associated with the (relatively) high-speed Florida Current, the reach of the Gulf Stream System flowing through the Straits of Florida, between the Florida Peninsula and the Bahamas Archipelago. The proximity of the very large electrical load center of southeast Florida’s metropolitan area to the resource itself makes this potential all the more attractive. As attractive as this potential energy source is, it is not without its challenges. Although the technology is conceptually simple, its design and implementation in a commercially-viable fashion presents a variety of challenges. Beyond the technology itself (and, especially, the effects on the technology of the harsh oceanic environment), it is important to consider the possible environmental impacts of commercial-scale implementation of oceanic energy extraction. Further, because such implementation represents a completely new undertaking, the human resources required do not exist, so education and training programs are critical to eventual success. This project, establishing a national open-ocean energy laboratory, was designed to address each of these three challenges in a flexible framework allowing for adaptive management as the project proceeded. In particular: ? the technology challenge, including resource assessment, evolved during the project to recognize and address the need for a national testing facility in the ocean for small-scale prototype MRE systems developed by industry; ? the environmental challenge became formalized and expanded during the permitting process for such a testing facility; and ? the human resources/societal challenges, both in terms of the need for education and training and in terms of public acceptance of MRE, stimulated a robust outreach program far beyond that originally envisioned at SNMREC. While all of these activities at SNMREC are ongoing, a number of significant milestones (in addition to the contributions listed in the appendices) were achieved under the auspices of this award. These include: ? Planning and site selection for the first-phase test facility, offshore of Dania Beach, FL, including some equipment for the facility, submission of an Interim Policy Lease Application to the U.S. Department of Interior’s Bureau of Ocean Energy Management (BOEM), and completion of an Environmental Assessment by BOEM and a positive Consistency Determination by the State of Florida; ? Measurements using acoustic profilers of the current structure and variability in the vicinity of the site under a variety of weather conditions, seasons and time durations; ? Design and implementation of instrument

Skemp, Susan

2013-12-29T23:59:59.000Z

363

Southside Thermal Services Ltd | Open Energy Information  

Open Energy Info (EERE)

Ltd Ltd Jump to: navigation, search Name Southside Thermal Services Ltd Place London, Greater London, United Kingdom Zip SW7 2AZ Product String representation "Southside Therm ... perial College." is too long. Coordinates 51.506325°, -0.127144° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.506325,"lon":-0.127144,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

364

Thermal energy storage technical progress report, April 1992--March 1993  

SciTech Connect (OSTI)

The Department of Energy (DOE) is supporting development of thermal energy storage (TES) as a means of efficiently coupling energy supplies to variable heating or cooling demands. Uses of TES include electrical demand-side management in buildings and industry, extending the utilization of renewable energy resources such as solar, and recovery of waste heat from periodic industrial processes. Technical progress to develop TES for specific diurnal and industrial applications under the Oak Ridge National Laboratory`s TES program from April 1992 to March 1993 is reported and covers research in the areas of low temperature sorption, thermal energy storage water heater, latent heat storage wallboard and latent/sensible heat regenerator technology development.

Olszewski, M.

1993-05-01T23:59:59.000Z

365

Simulation and experimental study on honeycomb-ceramic thermal energy storage for solar thermal systems  

Science Journals Connector (OSTI)

Abstract A honeycomb-ceramic thermal energy storage (TES) was proposed for thermal utilization of concentrating solar energy. A numerical model was developed to simulate the thermal performances, and TES experiments were carried out to demonstrate and improve the model. The outlet temperature difference between simulation and experimental results was within 5% at the end of a charging period, indicating the simulation model was reasonable. The simulation model was applied to predict the effects of geometric, thermo-physical parameters and flow fluxes on TES performances. The temperature dropped more quickly and decreased to a lower temperature in discharging period when the conductivity was smaller. The storage capacity increased with the growth of volumetric heat capacity. As to a TES with big channels and thin walls, the outlet temperature increased quickly and greatly in a charging process and dropped sharply in a discharging process.

Zhongyang Luo; Cheng Wang; Gang Xiao; Mingjiang Ni; Kefa Cen

2014-01-01T23:59:59.000Z

366

An Act to Implement the Recommendations of the Governor's Ocean Energy Task  

Broader source: Energy.gov (indexed) [DOE]

An Act to Implement the Recommendations of the Governor's An Act to Implement the Recommendations of the Governor&#039;s Ocean Energy Task Force (Maine) An Act to Implement the Recommendations of the Governor's Ocean Energy Task Force (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Water Buying & Making Electricity Program Info State Maine Program Type Siting and Permitting Provider Department of Environmental Protection This law was enacted to overcome economic, technical and regulatory

367

Pacific Ocean Contribution to the Asymmetry in Eastern Indian Ocean Variability  

Science Journals Connector (OSTI)

Variations in eastern Indian Ocean upper-ocean thermal properties are assessed for the period 1970–2004, with a particular focus on asymmetric features related to opposite phases of Indian Ocean dipole events, using high-resolution ocean model ...

Caroline C. Ummenhofer; Franziska U. Schwarzkopf; Gary Meyers; Erik Behrens; Arne Biastoch; Claus W. Böning

2013-02-01T23:59:59.000Z

368

Progress from DOE EF RC: Solid-State Solar-Thermal Energy Conversion...  

Broader source: Energy.gov (indexed) [DOE]

Research Center of the DOE Office of Basic Energy Sciences SOLID-STATE SOLAR-THERMAL ENERGY CONVERSION CENTER Progress from DOE EFRC: Solid-State Solar-Thermal Energy...

369

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network [OSTI]

total energy received by today’s solar panels and is beings best solar panels can convert only ~16% of solar energy to

Lim, Hyuck

2011-01-01T23:59:59.000Z

370

Semi-transparent solar energy thermal storage device  

DOE Patents [OSTI]

A visually transmitting solar energy absorbing thermal storage module includes a thermal storage liquid containment chamber defined by an interior solar absorber panel, an exterior transparent panel having a heat mirror surface substantially covering the exterior surface thereof and associated top, bottom and side walls. Evaporation of the thermal storage liquid is controlled by a low vapor pressure liquid layer that floats on and seals the top surface of the liquid. Porous filter plugs are placed in filler holes of the module. An algicide and a chelating compound are added to the liquid to control biological and chemical activity while retaining visual clarity. A plurality of modules may be supported in stacked relation by a support frame to form a thermal storage wall structure.

McClelland, John F. (Ames, IA)

1986-04-08T23:59:59.000Z

371

Semi-transparent solar energy thermal storage device  

DOE Patents [OSTI]

A visually transmitting solar energy absorbing thermal storage module includes a thermal storage liquid containment chamber defined by an interior solar absorber panel, an exterior transparent panel having a heat mirror surface substantially covering the exterior surface thereof and associated top, bottom and side walls, Evaporation of the thermal storage liquid is controlled by a low vapor pressure liquid layer that floats on and seals the top surface of the liquid. Porous filter plugs are placed in filler holes of the module. An algicide and a chelating compound are added to the liquid to control biological and chemical activity while retaining visual clarity. A plurality of modules may be supported in stacked relation by a support frame to form a thermal storage wall structure.

McClelland, John F. (Ames, IA)

1985-06-18T23:59:59.000Z

372

Ocean Wave Energy Systems Design: Conceptual Design Methodology for the Operational Matching of the Wells Air Turbine  

Science Journals Connector (OSTI)

The paper has set out a conceptual design methodology that was employed in the design of a Wells air turbine for OWC ocean wave energy plants. In particular, the ... sizing, given the range and frequency of power

2008-01-01T23:59:59.000Z

373

Improving the assessment of wave energy resources by means of coupled wave-ocean numerical modeling  

Science Journals Connector (OSTI)

Abstract Sea waves energy represents a renewable and sustainable energy resource, that nevertheless needs to be further investigated to make it more cost-effective and economically appealing. A key step in the process of Wave Energy Converters (WEC) deployment is the energy resource assessment at a sea site either measured or obtained through numerical model analysis. In these kind of studies, some approximations are often introduced, especially in the early stages of the process, viz. waves are assumed propagating in deep waters without underneath ocean currents. These aspects are discussed and evaluated in the Adriatic Sea and its northern part (Gulf of Venice) using locally observed and modeled wave data. In particular, to account for a “state of the art” treatment of the Wave–Current Interaction (WCI) we have implemented the Simulating \\{WAves\\} Nearshore (SWAN) model and the Regional Ocean Modeling System (ROMS), fully coupled within the Coupled Ocean Atmosphere Wave Sediment Transport (COAWST) system. COAWST has been applied to a computational grid covering the whole Adriatic Sea and off-line nested to a high-resolution grid in the Gulf of Venice. A 15-year long wave data set collected at the oceanographic tower “Acqua Alta”, located approximately 15 km off the Venice coast, has also been analyzed with the dual purpose of providing a reference to the model estimates and to locally assess the wave energy resource. By using COAWST, we have quantified for the first time to our best knowledge the importance of the WCI effect on wave power estimation. This can vary up to 30% neglecting the current effect. Results also suggest the Gulf of Venice as a suitable testing site for WECs, since it is characterized by periods of calm (optimal for safe installation and maintenance) alternating with severe storms, whose wave energy potentials are comparable to those ordinarily encountered in the energy production sites.

Francesco Barbariol; Alvise Benetazzo; Sandro Carniel; Mauro Sclavo

2013-01-01T23:59:59.000Z

374

Molten Glass for Thermal Storage: Advanced Molten Glass for Heat Transfer and Thermal Energy Storage  

SciTech Connect (OSTI)

HEATS Project: Halotechnics is developing a high-temperature thermal energy storage system using a new thermal-storage and heat-transfer material: earth-abundant and low-melting-point molten glass. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at night—when the sun is not out—to drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours. Halotechnics new thermal storage material targets a price that is potentially cheaper than the molten salt used in most commercial solar thermal storage systems today. It is also extremely stable at temperatures up to 1200°C—hundreds of degrees hotter than the highest temperature molten salt can handle. Being able to function at high temperatures will significantly increase the efficiency of turning heat into electricity. Halotechnics is developing a scalable system to pump, heat, store, and discharge the molten glass. The company is leveraging technology used in the modern glass industry, which has decades of experience handling molten glass.

None

2012-01-01T23:59:59.000Z

375

Low Energy Buildings: CFD Techniques for Natural Ventilation and Thermal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Low Energy Buildings: CFD Techniques for Natural Ventilation and Thermal Low Energy Buildings: CFD Techniques for Natural Ventilation and Thermal Comfort Prediction Speaker(s): Malcolm Cook Date: February 14, 2013 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Michael Wetter Malcolm's presentation will cover both his research and consultancy activities. This will cover the work he has undertaken during his time spent working with architects on low energy building design, with a particular focus on natural ventilation and passive cooling strategies, and the role computer simulation can play in this design process. Malcolm will talk about the simulation techniques employed, as well as the innovative passive design principles that have led to some of the UK's most energy efficient buildings. In addition to UK building projects, the talk will

376

Thermal energy storage technical progress report, April 1990--March 1991  

SciTech Connect (OSTI)

The Department of Energy (DOE) is supporting development of thermal energy storage (TES) as a means of efficiently coupling energy supplies to variable heating or cooling demands. Uses of TES include electrical demand-side management in buildings and industry, extending the utilization of renewable energy resources such as solar, and recovery of waste heat from periodic industrial processes. Technical progress to develop TES for specific diurnal and industrial applications under Oak Ridge National Laboratory's TES program from April 1990 to March 1992 is reported and covers research in the areas of low temperature sorption, direct contact ice making, latent heat storage plasterboard and latent/sensible heat regenerator technology development.

Tomlinson, J.J.

1992-03-01T23:59:59.000Z

377

Thermal energy storage technical progress report, April 1990--March 1991  

SciTech Connect (OSTI)

The Department of Energy (DOE) is supporting development of thermal energy storage (TES) as a means of efficiently coupling energy supplies to variable heating or cooling demands. Uses of TES include electrical demand-side management in buildings and industry, extending the utilization of renewable energy resources such as solar, and recovery of waste heat from periodic industrial processes. Technical progress to develop TES for specific diurnal and industrial applications under Oak Ridge National Laboratory`s TES program from April 1990 to March 1992 is reported and covers research in the areas of low temperature sorption, direct contact ice making, latent heat storage plasterboard and latent/sensible heat regenerator technology development.

Tomlinson, J.J.

1992-03-01T23:59:59.000Z

378

Encapsulation of High Temperature Phase Change Materials for Thermal Energy Storage.  

E-Print Network [OSTI]

??Thermal energy storage is a major contributor to bridge the gap between energy demand (consumption) and energy production (supply) by concentrating solar power. The utilization… (more)

Nath, Rupa

2012-01-01T23:59:59.000Z

379

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network [OSTI]

temperature energy resources such as solar thermal,low temperature energy resources such as solar ponds (70 orenewable energy resources such as non-concentrated solar

Ho, Tony

2012-01-01T23:59:59.000Z

380

FRONTIERS ARTICLE Fundamentals of energy transport, energy conversion, and thermal properties  

E-Print Network [OSTI]

FRONTIERS ARTICLE Fundamentals of energy transport, energy conversion, and thermal properties, thermoelectrics, and photovoltaics. However, energy transport and conversion, at the organic­inorganic interface and as an energy conversion technology. Aviram and Ratner's revolutionary suggestion that molecules could behave

Malen, Jonathan A.

Note: This page contains sample records for the topic "ocean thermal energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Thermal Storage Materials Laboratory (Fact Sheet), NREL (National Renewable Energy Laboratory), Energy Systems Integration Facility (ESIF)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Storage Materials Storage Materials Laboratory may include: * CSP technology developers * Utilities * Certification laboratories * Government agencies * Universities * Other National laboratories Contact Us If you are interested in working with NREL's Thermal Storage Materials Laboratory, please contact: ESIF Manager Carolyn Elam Carolyn.Elam@nrel.gov 303-275-4311 Thermal Storage Materials Laboratory The Thermal Storage Materials Laboratory at NREL's Energy Systems Integration Facility (ESIF) investigates materials that can be used as high-temperature heat transfer fluids or thermal energy storage media in concentrating solar power (CSP) plants. Research objectives include the discovery and evaluation of

382

Thermal energy conversion to motive power  

SciTech Connect (OSTI)

Performance evaluations of both ideal and actual organic Rankine cycle (ORC) and steam Rankine cycles (SRC) are presented for systems that may be candidates for Solar Total Energy Systems (STES). Many organic fluids and heat engines (turbines or expanders) are being developed; therefore, performance of a few representative ORCs are evaluated. The electrical power outputs range from several kW to <10 MW with maximum cycle temperatures of 482/sup 0/C (900 F). Conclusions from basic Rankine cycle analyses are that the Carnot cycle concept should not be used as a standard of comparison for different cycle fluids, even when they are operating at the same inlet and exhaust temperatures. The ideal Rankine cycle with the maximum conversion efficiency, when based on exact physical properties of fluids, should provide a better standard for actual cycles. Three sets of maximum (ideal) Rankine cycle efficiency (n/sub r/) curves are estimated for steam and several organic fluids for exhaust temperatures of 38/sup 0/C, 100/sup 0/C, and 149/sup 0/C (100 F, 212 F, and 300F). These curves of n/sub r/ versus peak temperature at the expander inlet are referred to as Criterion Curves for basic Rankine cycles, in which corresponding inlet pressures are selected such that n/sub r/ will be a maximum. Basic cycle efficiencies indicate some fluids preferred for solar total energy applications.

Meador, J.T.

1980-01-01T23:59:59.000Z

383

Design and optimization of solid thermal energy storage modules for solar thermal power plant applications  

Science Journals Connector (OSTI)

Abstract Solid sensible heat storage is an attractive option for high-temperature storage applications in terms of investment and maintenance costs. Typical solid thermal energy storage systems use a heat transfer fluid to exchange heat as the fluid flows through a tubular heat exchanger embedded in the solid storage material. The modified lumped capacitance method is used with an effective heat transfer coefficient in a simplified analysis of the heat transfer in solid thermal energy storage systems for a solid cylindrical heat storage unit. The analytical solution was found using the Laplace transform method. The solution was then used to develop an optimization method for designing solid storage modules which uses the system requirements (released energy and fluid outlet temperature) as the constraint conditions and the storage module cost as the objective function for the optimization. Optimized results are then given for many kinds of system configurations.

Yongfang Jian; Quentin Falcoz; Pierre Neveu; Fengwu Bai; Yan Wang; Zhifeng Wang

2015-01-01T23:59:59.000Z

384

Thermal Energy Storage/Heat Recovery and Energy Conservation in Food Processing  

E-Print Network [OSTI]

discharges can be made more economically attrac tank holding several thousand gallons of water tive by incorporating thermal energy storage in a maintained at 128-130?F. This scald tank is con heat recovery system. Thermal energy storage can stantly... the ultimate energy end use. of wasting this hot water to the plant drain, a heat A project conducted by the Georgia Tech exchanger was installed at the Gold Kist plant to Engineering Experiment Station to demonstrate preheat scald tank makeup water...

Combes, R. S.; Boykin, W. B.

1980-01-01T23:59:59.000Z

385

An investigation of the efficiency of the receiver of a solar thermal cooker with thermal energy storage.  

E-Print Network [OSTI]

??A small scale solar concentrator cooker with a thermal energy storage system was designed, constructed and tested on the roof of the Physics building at… (more)

Heilgendorff, Heiko Martin.

2015-01-01T23:59:59.000Z

386

Energy Cascading Combined with Thermal Energy Storage in Industry  

Science Journals Connector (OSTI)

The opportunities for energy conservation through the application of storage cascades has not previously been examined in...

R. J. Wood; D. T. Baldwin; P. W. O’Callaghan…

1983-01-01T23:59:59.000Z

387

SunShot Initiative: High-Efficiency Thermal Energy Storage System for CSP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

High-Efficiency Thermal Energy High-Efficiency Thermal Energy Storage System for CSP to someone by E-mail Share SunShot Initiative: High-Efficiency Thermal Energy Storage System for CSP on Facebook Tweet about SunShot Initiative: High-Efficiency Thermal Energy Storage System for CSP on Twitter Bookmark SunShot Initiative: High-Efficiency Thermal Energy Storage System for CSP on Google Bookmark SunShot Initiative: High-Efficiency Thermal Energy Storage System for CSP on Delicious Rank SunShot Initiative: High-Efficiency Thermal Energy Storage System for CSP on Digg Find More places to share SunShot Initiative: High-Efficiency Thermal Energy Storage System for CSP on AddThis.com... Concentrating Solar Power Systems Components Competitive Awards CSP Research & Development Thermal Storage CSP Recovery Act

388

Azobenzene-Functionalized Carbon Nanotubes As High-Energy Density Solar Thermal Fuels  

Science Journals Connector (OSTI)

Azobenzene-Functionalized Carbon Nanotubes As High-Energy Density Solar Thermal Fuels ... Solar thermal fuels, which reversibly store solar energy in molecular bonds, are a tantalizing prospect for clean, renewable, and transportable energy conversion/storage. ... Here we present a novel solar thermal fuel, composed of azobenzene-functionalized carbon nanotubes, with the volumetric energy density of Li-ion batteries. ...

Alexie M. Kolpak; Jeffrey C. Grossman

2011-06-20T23:59:59.000Z

389

Solar thermal energy contract list, fiscal year 1990  

SciTech Connect (OSTI)

The federal government has conducted the national Solar Thermal Technology Program since 1975. Its purpose is to provide focus, direction, and funding for the development of solar thermal technology as an energy option for the United States. This year's document is more concise than the summaries of previous years. The FY 1990 contract overview comprises a list of all subcontracts begun, ongoing, or completed during FY 1990 (October 1, 1989, through September 30, 1990). Under each managing laboratory projects are listed alphabetically by project area and then by subcontractor name. Amount of funding milestones are listed.

Not Available

1991-09-01T23:59:59.000Z

390

Energy management in solar thermal power plants with double thermal storage system and subdivided solar field  

Science Journals Connector (OSTI)

In the paper, two systems for solar thermal power plants (STPPs) are devised for improving the overall performance of the plant. Each one attempts to reduce losses coming from two respective sources. The systems are simulated and compared to a reference STPP. They consists on: (a) a double thermal energy storage (DTS) with different functionalities for each storage and (b) the subdivision of the solar collector field (SSF) into specialised sectors, so that each sector is designed to meet a thermal requirement, usually through an intermediate heat exchanger. This subdivision reduces the losses in the solar field by means of a decrease of the temperature of the heat transfer fluid (HTF). Double thermal energy storage is intended for keeping the plant working at nominal level for many hours a day, including post-sunset hours. One of the storages gathers a fluid which is heated up to temperatures above the nominal one. In order to make it work, the solar field must be able to overheat the fluid at peak hours. The second storage is the classical one. The combination of both allows the manager of the plant to keep the nominal of the plant for longer periods than in the case of classical thermal energy storage. To the authors’ knowledge, it is the first time that both configurations are presented and simulated for the case of parabolic through STPP with HTF technology. The results show that, if compared to the reference STPP, both configurations may raise the annual electricity generation (up to 1.7% for the DTS case and 3.9% for the SSF case).

Antonio Rovira; María José Montes; Manuel Valdes; José María Martínez-Val

2011-01-01T23:59:59.000Z

391

Technical assessment of solar thermal energy storage technologies  

Science Journals Connector (OSTI)

Solar energy is recognized as one of the most promising alternative energy options. On sunny days, solar energy systems generally collect more energy than necessary for direct use. Therefore, the design and development of solar energy storage systems, is of vital importance and nowadays one of the greatest efforts in solar research. These systems, being part of a complete solar installation, provide an optimum tuning between heat demand and heat supply. This paper reviews the basic concepts, systems design, and the latest developments in (sensible and latent heat) thermal energy storage. Parameters influencing the storage system selection, the advantages and disadvantages of each system, and the problems encountered during the systems operation are highlighted.

Hassan E.S. Fath

1998-01-01T23:59:59.000Z

392

A methodology for a thermal energy building audit  

Science Journals Connector (OSTI)

The present paper introduces a new method for the certification of the energy consumption of a building recording its “energy behavior”. The method utilizes energy indices such as Index of Thermal Charge or Index of Energy Disposition to simulate the heat losses of the building and the heat flow because of the temperature difference (?T) from the inner to outer space. The present method and the algorithm that is implemented could be used as a part of a building energy audit or as a single audit method. Additionally it could be used for the inspection of the energy efficiency in public or municipal buildings. The forenamed method is currently under investigation by the present research team.

Pantelis N. Botsaris; Spyridon Prebezanos

2004-01-01T23:59:59.000Z

393

Energy Transport by Nonlinear Internal Waves College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon  

E-Print Network [OSTI]

Energy Transport by Nonlinear Internal Waves J. N. MOUM College of Oceanic and Atmospheric Sciences in the bottom bound- ary layer. In the nonlinear internal waves that were observed, the kinetic energy. The energy transported by these waves includes a nonlinear advection term uE that is negligible in linear

Kurapov, Alexander

394

Estimates of wind energy input to the Ekman layer in the Southern Ocean from surface drifter data  

E-Print Network [OSTI]

Estimates of wind energy input to the Ekman layer in the Southern Ocean from surface drifter data the contribution from the anticyclonic frequencies dominate the wind energy input. The latitudinal and seasonal variations of the wind energy input to the Ekman layer are closely related to the variations of the wind

Gille, Sarah T.

395

Accelerating Ocean Energy to the Marketplace – Environmental Research at the U.S. Department of Energy National Laboratories  

SciTech Connect (OSTI)

The U.S. Department of Energy (US DOE) has mobilized its National Laboratories to address the broad range of environmental effects of ocean and river energy development. The National Laboratories are using a risk-based approach to set priorities among environmental effects, and to direct research activities. Case studies will be constructed to determine the most significant environmental effects of ocean energy harvest for tidal systems in temperate estuaries, for wave energy installations in temperate coastal areas, wave installations in sub-tropical waters, and riverine energy installations in large rivers. In addition, the National Laboratories are investigating the effects of energy removal from waves, tides and river currents using numerical modeling studies. Laboratory and field research is also underway to understand the effects of electromagnetic fields (EMF), acoustic noise, toxicity from anti-biofouling coatings, effects on benthic habitats, and physical interactions with tidal and wave devices on marine and freshwater organisms and ecosystems. Outreach and interactions with stakeholders allow the National Laboratories to understand and mitigate for use conflicts and to provide useful information for marine spatial planning at the national and regional level.

Copping, Andrea E.; Cada, G. F.; Roberts, Jesse; Bevelhimer, Mark

2010-10-06T23:59:59.000Z

396

Beijing Tianyin Thermal Development Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Tianyin Thermal Development Co Ltd Tianyin Thermal Development Co Ltd Jump to: navigation, search Name Beijing Tianyin Thermal Development Co Ltd Place Beijing, China Zip 100000 Sector Geothermal energy Product A professional developer of large-scale geothermal resource. Coordinates 39.90601°, 116.387909° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.90601,"lon":116.387909,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

397

Energy Conversion of Fully Random Thermal Relaxation Times  

E-Print Network [OSTI]

Thermodynamic random processes in thermal systems are generally associated with one or several relaxation times, the inverse of which are formally homogeneous with energy. Here, we show in a precise way that the periodic modification of relaxation times during temperature-constant thermodynamic cycles can be thermodynamically beneficiary to the operator. This result holds as long as the operator who adjusts relaxation times does not attempt to control the randomness associated with relaxation times itself as a Maxwell 'demon' would do. Indirectly, our result also shows that thermal randomness appears satisfactorily described within a conventional quantum-statistical framework, and that the attempts advocated notably by Ilya Prigogine to go beyond a Hilbert space description of quantum statistics do not seem justified - at least according to the present state of our knowledge. Fundamental interpretation of randomness, either thermal or quantum mechanical, is briefly discussed.

François Barriquand

2005-07-26T23:59:59.000Z

398

Solar thermal power generation: a bibliography with abstracts. Quarterly update, April-June 1980  

SciTech Connect (OSTI)

This annotated bibliography covers the following subjects: energy overviews; solar overviews; energy conservation; environment, law, and policy; total energy systems; solar thermal power and energy storage; thermoelectric, thermionic, and thermolysis; Ocean Thermal Energy Conversion; wind energy; biomass; bioconversion, and photochemical; satellite power systems; and photovoltaic applications. (MHR)

Sparkman, T.; Bozman, W.R. (eds.)

1980-08-01T23:59:59.000Z

399

Design and Implementation of Tracking System for Dish Solar Thermal Energy Based on Embedded System  

Science Journals Connector (OSTI)

Solar thermal energy has lots of advantages compare with photovoltage ... and stability can’t satisfy the requirements of thermal energy system. This paper gives a design and implementation of tracking system for...

Jian Kuang; Wei Zhang

2012-01-01T23:59:59.000Z

400

Progress from DOE EF RC: Solid-State Solar-Thermal Energy Conversion...  

Broader source: Energy.gov (indexed) [DOE]

Progress from DOE EF RC: Solid-State Solar-Thermal Energy Conversion Center (S3TEC ) Progress from DOE EF RC: Solid-State Solar-Thermal Energy Conversion Center (S3TEC )...

Note: This page contains sample records for the topic "ocean thermal energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants  

E-Print Network [OSTI]

OF CALIFORNIA RIVERSIDE Phase Change Materials for ThermalOF THE THESIS Phase Change Materials for Thermal Energyto utilize phase change materials (PCM’s) to enhance thermal

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

402

Buildings Energy Data Book: 5.5 Thermal Distribution Systems  

Buildings Energy Data Book [EERE]

5 5 Typical Commercial Building Thermal Energy Distribution Design Load Intensities (Watts per SF) Distribution System Fans Other Central System Supply Fans Cooling Tower Fan Central System Return Fans Air-Cooled Chiller Condenser Fan 0.6 Terminal Box Fans 0.5 Exhaust Fans (2) Fan-Coil Unit Fans (1) Condenser Fans 0.6 Packaged or Split System Indoor Blower 0.6 Pumps Chilled Water Pump Condenser Water Pump Heating Water Pump Note(s): Source(s): 0.1 - 0.2 0.1 - 0.2 1) Unducted units are lower than those with some ductwork. 2) Strong dependence on building type. BTS/A.D. Little, Energy Consumption Characteristics of Commercial Building HVAC Systems, Volume II:Thermal Distribution, Auxiliary Equipment, and Ventilation, Oct. 1999, Table 3-1, p. 3-6. 0.3 - 1.0 0.1 - 0.3 0.1 - 0.4

403

Semi-flexible bimetal-based thermal energy harvesters  

Science Journals Connector (OSTI)

This paper introduces a new semi-flexible device able to turn thermal gradients into electricity by using a curved bimetal coupled to an electret-based converter. In fact, a two-step conversion is carried out: (i) a curved bimetal turns the thermal gradient into a mechanical oscillation that is then (ii) converted into electricity thanks to an electrostatic converter using electrets in Teflon®. The semi-flexible and low-cost design of these new energy converters pave the way to mass production over large areas of thermal energy harvesters. Raw output powers up to 13.46 ?W per device were reached on a hot source at 60?°C with forced convection. Then, a DC-to-DC flyback converter has been sized to turn the energy harvesters' raw output powers into a viable supply source for an electronic circuit (DC@3 V). At the end, 10 ?W of directly usable output power were reached with 3 devices, which is compatible with wireless sensor network powering applications.

S Boisseau; G Despesse; S Monfray; O Puscasu; T Skotnicki

2013-01-01T23:59:59.000Z

404

Environmental risk assessment for aquifer thermal energy storage  

SciTech Connect (OSTI)

This report has been prepared by Pacific Northwest Laboratory at the request of the International Energy Agency (IEA). The US Department of Energy represents the United States in the IEA for Annex IV, the IEA task for research and development in aquifer thermal energy storage (ATES). Installation and operation of an ATES system is necessarily intrusive to ground-water resources. Therefore, governmental authorities usually require an environmental risk assessment to be performed before permission to construct an ATES system is granted. Writing an accurate statement of risk presupposes a knowledge of aquifer and ground-water characteristics and that an engineering feasibility study has taken place. Effective and logical presentation of the results of the risk assessment can expedite the grant of approval. Introductory remarks should address questions regarding why the ATES project has been proposed, what it is expected to accomplish, and what the expected benefits are. Next, the system configuration, including the aquifer, ATES plant, and well field, should be described in terms of size and location, design components, and thermal and hydraulic capacity. The final element of system design, the predicted annual operating cycle, needs to be described in sufficient detail to allow the reviewer to appreciate the net hydraulic, thermal, and hydrochemical effects imposed on the aquifer. Risks may be environmental or legal. Only after a reviewer has been introduced to the proposed system's design, operation, and scale can risk issues can be identified and weighed against the benefits of the proposed ATES system.

Hall, S.H.

1993-01-01T23:59:59.000Z

405

Environmental risk assessment for aquifer thermal energy storage  

SciTech Connect (OSTI)

This report has been prepared by Pacific Northwest Laboratory at the request of the International Energy Agency (IEA). The US Department of Energy represents the United States in the IEA for Annex IV, the IEA task for research and development in aquifer thermal energy storage (ATES). Installation and operation of an ATES system is necessarily intrusive to ground-water resources. Therefore, governmental authorities usually require an environmental risk assessment to be performed before permission to construct an ATES system is granted. Writing an accurate statement of risk presupposes a knowledge of aquifer and ground-water characteristics and that an engineering feasibility study has taken place. Effective and logical presentation of the results of the risk assessment can expedite the grant of approval. Introductory remarks should address questions regarding why the ATES project has been proposed, what it is expected to accomplish, and what the expected benefits are. Next, the system configuration, including the aquifer, ATES plant, and well field, should be described in terms of size and location, design components, and thermal and hydraulic capacity. The final element of system design, the predicted annual operating cycle, needs to be described in sufficient detail to allow the reviewer to appreciate the net hydraulic, thermal, and hydrochemical effects imposed on the aquifer. Risks may be environmental or legal. Only after a reviewer has been introduced to the proposed system`s design, operation, and scale can risk issues can be identified and weighed against the benefits of the proposed ATES system.

Hall, S.H.

1993-01-01T23:59:59.000Z

406

Mapping and Assessment of the United States Ocean Wave Energy Resource |  

Open Energy Info (EERE)

450 450 Varnish cache server Mapping and Assessment of the United States Ocean Wave Energy Resource Dataset Summary Description This project estimates the naturally available and technically recoverable U.S. wave energy resources, using a 51-month Wavewatch III hindcast database developed especially for this study by National Oceanographic and Atmospheric Administration's (NOAA's) National Centers for Environmental Prediction. For total resource estimation, wave power density in terms of kilowatts per meter is aggregated across a unit diameter circle. This approach is fully consistent with accepted global practice and includes the resource made available by the lateral transfer of wave energy along wave crests, which enables densities within a few kilometers of a linear array, even for fixed terminator devices.

407

Quantifying the Value of CSP with Thermal Energy Storage  

Broader source: Energy.gov [DOE]

This PowerPoint slide deck was originally presented at the SunShot Concentrating Solar Power Program Review by Paul Denholm and Mark Mehos of NREL on April 23, 2013. Entitled "Quantifying the Value of CSP with Thermal Energy Storage," the presenters seek to answer the question, "What is the addition of TES to a CSP plant actually worth?" Ultimately they conclude that CSP with TES can actually complement other variable generation sources including solar PV and act as an enabling technology to achieve higher overall penetration of renewable energy.

408

Literature review of market studies of thermal energy storage  

SciTech Connect (OSTI)

This report presents the results of a review of market studies of thermal energy storage (TES). This project was conducted by Pacific Northwest Laboratory (PNL) for the US Department of Energy (DOE). PNL staff reviewed and consolidated the findings of existing TES market studies conducted in the industrial, commercial, and residential sectors. The purpose of this project was to review and assess previous work and to use the information obtained to help provide direction for future technology transfer planning activities and to identify additional economic research needed within those three sectors. 37 refs.

Hattrup, M.P.

1988-02-01T23:59:59.000Z

409

Advanced Technology Paths to Global Climate Stability: Energy for a Greenhouse Planet  

Science Journals Connector (OSTI)

...Renewable energy converters include photovoltaic...sunlight-to-chemical energy efficiency...the nominal thermal-to-electric...subterranean, ocean, and/or...Renewable energy converters include...sunlight-to-chemical energy efficiency...the nominal thermal-to-electric...subterranean, ocean, and/or...

Martin I. Hoffert; Ken Caldeira; Gregory Benford; David R. Criswell; Christopher Green; Howard Herzog; Atul K. Jain; Haroon S. Kheshgi; Klaus S. Lackner; John S. Lewis; H. Douglas Lightfoot; Wallace Manheimer; John C. Mankins; Michael E. Mauel; L. John Perkins; Michael E. Schlesinger; Tyler Volk; Tom M. L. Wigley

2002-11-01T23:59:59.000Z

410

Exergy analysis of thermal energy storage in a district energy application  

Science Journals Connector (OSTI)

Abstract The role of thermal energy storage (TES) in district energy (DE) system is assessed. The Friedrichshafen DE system is considered as a case study and exergy analysis is utilized. The TES is designed to complement and to increase the effectiveness of the solar panels included in the district energy system. The TES stores the surplus solar energy until is needed by thermal energy users of the Friedrichshafen DE system. The results quantify the positive impact of the TES on the performance of the Friedrichshafen DE system, and demonstrate that the overall energy and exergy efficiencies of the TES are 60% and 19%, respectively. It is also shown over an annual period that the temperature, energy, exergy and energy efficiency of the TES exhibit similar trends and that the TES exergy accumulation and exergy efficiency exhibit similar trends.

Behnaz Rezaie; Bale V. Reddy; Marc A. Rosen

2015-01-01T23:59:59.000Z

411

Energy transfers in internal tide generation, propagation and dissipation in the deep ocean  

Science Journals Connector (OSTI)

The energy transfers associated with internal tide (IT) generation by a semi-diurnal surface tidal wave impinging on a supercritical meridionally uniform deep ocean ridge on the f-plane, and subsequent IT-propagation are analysed using the Boussinesq, free-surface, terrain-following ocean model Symphonie. The energy diagnostics are explicitly based on the numerical formulation of the governing equations, permitting a globally conservative, high-precision analysis of all physical and numerical/artificial energy transfers in a sub-domain with open lateral boundaries. The net primary energy balances are quantified using a moving average of length two tidal periods in a simplified control simulation using a single time-step, minimal diffusion, and a no-slip sea floor. This provides the basis for analysis of enhanced vertical and horizontal diffusion and a free-slip bottom boundary condition. After a four tidal period spin-up, the tidally averaged (net) primary energy balance in the generation region, extending ±20 km from the ridge crest, shows that the surface tidal wave loses approximately C = 720 W/m or 0.3% of the mean surface tidal energy flux (2.506 × 105 W/m) in traversing the ridge. This corresponds mainly to the barotropic-to-baroclinic energy conversion due to stratified flow interaction with sloping topography. Combined with a normalised net advective flux of baroclinic potential energy of 0.9 × C this causes a net local baroclinic potential energy gain of 0.72 × C and a conversion into baroclinic kinetic energy through the baroclinic buoyancy term of 1.18 × C. Tidally averaged, about 1.14 × C is radiated into the abyssal ocean through the total baroclinic flux of internal pressure associated with the IT- and background density field. This total baroclinic pressure flux is therefore not only determined by the classic linear surface-to-internal tide conversion, but also by the net advection of baroclinic (background) potential energy, indicating the importance of local processes other than linear IT-motion. In the propagation region (PR), integrated over the areas between 20 and 40 km from the ridge crest, the barotropic and baroclinic tide are decoupled. The net incoming total baroclinic pressure flux is balanced by local potential energy gain and outward baroclinic flux of potential energy associated with the total baroclinic density. The primary net energy balances are robust to changes in the vertical diffusion coefficient, whereas relatively weak horizontal diffusion significantly reduces the outward IT energy flux. Diapycnal mixing due to vertical diffusion causes an available potential energy loss of about 1% of the total domain-averaged potential energy gain, which matches k m - 1 k m ? 0 K V N 2 to within 0.5%, for km linearly distributed grid-levels and constant background density ?0, vertical diffusivity (KV) and buoyancy frequency (N).

J.W. Floor; F. Auclair; P. Marsaleix

2011-01-01T23:59:59.000Z

412

Potential of thermal insulation and solar thermal energy in domestic hot water and space heating and cooling sectors in Lebanon in the period 2010 - 2030.  

E-Print Network [OSTI]

??The potential of thermal insulation and solar thermal energy in domestic water heating, space heating and cooling in residential and commercial buildings Lebanon is studied… (more)

Zaatari, Z.A.R.

2012-01-01T23:59:59.000Z

413

Development of an Airless Thermal Enhancer | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of a Thermal Enhancer for Combined Partial Range Burning and Hydrocarbon Dosing Thermal Enhancer - Airless Exhaust Thermal Management Device SCR Technologies for NOx Reduction...

414

Conversion of Concentrated Solar Thermal Energy into Chemical Energy  

Science Journals Connector (OSTI)

When a concentrated solar beam is irradiated to the ceramics such as Ni-ferrite, the high-energy flux in the range of 1500–2500 kW/m2 is absorbed by an excess Frenkel defect formation. This non-equilibrium state ...

Yutaka Tamaura

2012-03-01T23:59:59.000Z

415

Feasibility of Tidal and Ocean Current Energy in False Pass, Aleutian Islands, Alaska FINAL REPORT  

SciTech Connect (OSTI)

The Aleutian Pribilof Islands Association was awarded a U.S. Department of Energy Tribal Energy Program grant (DE-EE0005624) for the Feasibility of Tidal and Ocean Current Energy in False Pass, Aleutian Islands, Alaska (Project). The goal of the Project was to perform a feasibility study to determine if a tidal energy project would be a viable means to generate electricity and heat to meet long-term fossil fuel use reduction goals, specifically to produce at least 30% of the electrical and heating needs of the tribally-owned buildings in False Pass. The Project Team included the Aleut Region organizations comprised of the Aleutian Pribilof Island Association (APIA), and Aleutian Pribilof Island Community Development Association (APICDA); the University of Alaska Anchorage, ORPC Alaska a wholly-owned subsidiary of Ocean Renewable Power Company (ORPC), City of False Pass, Benthic GeoScience, and the National Renewable Energy Laboratory (NREL). The following Project objectives were completed: collected existing bathymetric, tidal, and ocean current data to develop a basic model of current circulation at False Pass, measured current velocities at two sites for a full lunar cycle to establish the viability of the current resource, collected data on transmission infrastructure, electrical loads, and electrical generation at False Pass, performed economic analysis based on current costs of energy and amount of energy anticipated from and costs associated with the tidal energy project conceptual design and scoped environmental issues. Utilizing circulation modeling, the Project Team identified two target sites with strong potential for robust tidal energy resources in Isanotski Strait and another nearer the City of False Pass. In addition, the Project Team completed a survey of the electrical infrastructure, which identified likely sites of interconnection and clarified required transmission distances from the tidal energy resources. Based on resource and electrical data, the Project Team developed a conceptual tidal energy project design utilizing ORPC’s TidGen® Power System. While the Project Team has not committed to ORPC technology for future development of a False Pass project, this conceptual design was critical to informing the Project’s economic analysis. The results showed that power from a tidal energy project could be provided to the City of False at a rate at or below the cost of diesel generated electricity and sold to commercial customers at rates competitive with current market rates, providing a stable, flat priced, environmentally sound alternative to the diesel generation currently utilized for energy in the community. The Project Team concluded that with additional grants and private investment a tidal energy project at False Pass is well-positioned to be the first tidal energy project to be developed in Alaska, and the first tidal energy project to be interconnected to an isolated micro grid in the world. A viable project will be a model for similar projects in coastal Alaska.

Wright, Bruce Albert [Aleutian Pribilof Islands Association] [Aleutian Pribilof Islands Association

2014-05-07T23:59:59.000Z

416

Advanced Reactors Thermal Energy Transport for Process Industries  

SciTech Connect (OSTI)

The operation temperature of advanced nuclear reactors is generally higher than commercial light water reactors and thermal energy from advanced nuclear reactor can be used for various purposes such as liquid fuel production, district heating, desalination, hydrogen production, and other process heat applications, etc. Some of the major technology challenges that must be overcome before the advanced reactors could be licensed on the reactor side are qualification of next generation of nuclear fuel, materials that can withstand higher temperature, improvement in power cycle thermal efficiency by going to combined cycles, SCO2 cycles, successful demonstration of advanced compact heat exchangers in the prototypical conditions, and from the process side application the challenge is to transport the thermal energy from the reactor to the process plant with maximum efficiency (i.e., with minimum temperature drop). The main focus of this study is on doing a parametric study of efficient heat transport system, with different coolants (mainly, water, He, and molten salts) to determine maximum possible distance that can be achieved.

P. Sabharwall; S.J. Yoon; M.G. McKellar; C. Stoots; George Griffith

2014-07-01T23:59:59.000Z

417

Solar thermal power generation: a bibliography with abstracts. Quarterly update, January-March 1980  

SciTech Connect (OSTI)

This annotated bibliography contains the following: energy overviews, solar overviews, energy conservation, economics and law, total energy systems, solar thermal power, thermionic and thermoelectric, ocean thermal energy conversion, wind power, biomass and photochemical energy, satellite power stations, and large-scale photovoltaics. (MHR)

Not Available

1980-06-01T23:59:59.000Z

418

Green Energy Ohio - GEO Solar Thermal Rebate Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Ohio - GEO Solar Thermal Rebate Program Ohio - GEO Solar Thermal Rebate Program Green Energy Ohio - GEO Solar Thermal Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Program Info Start Date 04/01/2009 State Ohio Program Type Non-Profit Rebate Program Provider Green Energy Ohio With funding from The Sierra Club, Green Energy Ohio (GEO) is offering rebates on residential properties in Ohio for solar water heating systems purchased after April 1, 2009. The rebates are based on the projected energy output from the solar collectors and are calculated at $30 per kBtu/day (based on SRCC rating for "Clear Day/C Interval"). The maximum amount is $2,400 per applicant. There are two parts to the application. PART I of the application collects

419

Thermal Energy Harvesting with Thermoelectrics for Self-powered Sensors: With Applications to Implantable Medical Devices, Body Sensor Networks and Aging in Place  

E-Print Network [OSTI]

thermal expansion of polymer composites filled with ceramicas thermal energy generation and refrigeration. Ceramic&

Chen, Alic

2011-01-01T23:59:59.000Z

420

Causes of ocean currents  

Science Journals Connector (OSTI)

In the foregoing analysis of the ocean and the atmosphere as two interacting subsystems, we have identified two major energy inputs into the ocean. These are the wind stress over the sea surface and heat fluxe...

David Tolmazin

1985-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ocean thermal energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Performance comparison of thermal energy storage oils for solar cookers during charging  

Science Journals Connector (OSTI)

Abstract Charging experiments to evaluate the thermal performance of three thermal energy storage oils for solar cookers are presented. An experimental setup using an insulated 20 L storage tank is used to perform the experiments. The three thermal oils evaluated are Sunflower Oil, Shell Thermia C and Shell Thermia B. Energy and exergy based thermal performance parameters are evaluated. A new parameter, the exergy factor, is proposed which evaluates the ratio of the exergy content to the energy content. Sunflower Oil performs better than the other thermal oils under high power charging. Thermal performances of the oils are comparable under low power charging.

Ashmore Mawire; Abigail Phori; Simeon Taole

2014-01-01T23:59:59.000Z

422

The transfer between electron bulk kinetic energy and thermal energy in collisionless magnetic reconnection  

SciTech Connect (OSTI)

By performing two-dimensional particle-in-cell simulations, we investigate the transfer between electron bulk kinetic and electron thermal energy in collisionless magnetic reconnection. In the vicinity of the X line, the electron bulk kinetic energy density is much larger than the electron thermal energy density. The evolution of the electron bulk kinetic energy is mainly determined by the work done by the electric field force and electron pressure gradient force. The work done by the electron gradient pressure force in the vicinity of the X line is changed to the electron enthalpy flux. In the magnetic island, the electron enthalpy flux is transferred to the electron thermal energy due to the compressibility of the plasma in the magnetic island. The compression of the plasma in the magnetic island is the consequence of the electromagnetic force acting on the plasma as the magnetic field lines release their tension after being reconnected. Therefore, we can observe that in the magnetic island the electron thermal energy density is much larger than the electron bulk kinetic energy density.

Lu, San; Lu, Quanming; Huang, Can; Wang, Shui [CAS Key Lab of Basic Plasma Physics, University of Science and Technology of China, Hefei 230026 (China)] [CAS Key Lab of Basic Plasma Physics, University of Science and Technology of China, Hefei 230026 (China)

2013-06-15T23:59:59.000Z

423

Effects of thermal pollution on the soft-bottoms surrounding a power station in the Canary Islands (NE Atlantic ocean)  

Science Journals Connector (OSTI)

The spatial and temporal effects of hot seawater (60–70°C) from a power station on nearby soft-bottom communities were ... coast of Tenerife, Canary Islands, NE Atlantic Ocean). The samples were taken during summ...

Rodrigo Riera; Jorge Núńez; Daniel Martín

2011-12-01T23:59:59.000Z

424

Concrete as a thermal energy storage medium for thermocline solar energy storage systems  

Science Journals Connector (OSTI)

Abstract Rising energy costs and the adverse effect on the environment caused by the burning of fossil fuels have triggered extensive research into alternative sources of energy. Harnessing the abundance of solar energy has been one of the most attractive energy alternatives. However, the development of an efficient and economical solar energy storage system is of major concern. According to the Department of Energy (DOE), the cost per kilowatt hour electric from current technologies which utilize solar energy is high, estimated at approximately $0.15–$0.20/kW helectric, while the unit cost to store the thermal energy is approximately $30.00/kW hthermal. Based on traditional means of producing electricity (through burning fossil fuels), the unit cost of electricity is $0.05–$0.06/kW h. Clearly, current solar energy technologies cannot compete with traditional forms of electricity generation. In response, the DOE has established a goal of reducing the cost of solar generated electricity to $0.05–$0.07/kW helectric and achieving thermal storage costs below $15.00/kW hthermal. Reduction in the cost of the storage medium is one step in achieving the stated goal. In this research program economical concrete mixtures were developed that resisted temperatures up to 600 °C. This temperature level represents a 50% increase over the operating temperature of current systems, which is approximately 400 °C. However, long-term testing of concrete is required to validate its use. At this temperature, the unit cost of energy stored in concrete (the thermal energy storage medium) is estimated at $0.88–$1.00/kW hthermal. These concrete mixtures, used as a thermal energy storage medium, can potentially change solar electric power output allowing production through periods of low to no insolation at lower unit costs.

Emerson John; Micah Hale; Panneer Selvam

2013-01-01T23:59:59.000Z

425

Exergetic optimization of solar collector and thermal energy storage system  

Science Journals Connector (OSTI)

This paper deals with the exergetic optimization of a solar thermal energy system. This consists of a solar collector (SC) and a rectangular water storage tank (ST) that contains a phase change material (PCM) distributed in an assembly of slabs. The study takes into account both conduction and convection heat transfer mode for water in the SC, and also the phase change process for the PCM in the ST. An analytical solution for the melting process in the PCM is also presented. The results of the study are compared with previous experimental data, confirming the accuracy of the model. Results of a numerical case study are presented and discussed.

F. Aghbalou; F. Badia; J. Illa

2006-01-01T23:59:59.000Z

426

Solar-thermal-energy collection/storage-pond system  

DOE Patents [OSTI]

A solar thermal energy collection and storage system is disclosed. Water is contained, and the water surface is exposed directly to the sun. The central part of an impermeable membrane is positioned below the water's surface and above its bottom with a first side of the membrane pointing generally upward in its central portion. The perimeter part of the membrane is placed to create a watertight boundary separating the water into a first volume which is directly exposable to the sun and which touches the membranes first side, and a second volumn which touches the membranes second side. A salt is dissolved in the first water volume.

Blahnik, D.E.

1982-03-25T23:59:59.000Z

427

Futurestock'2003 9 International Conference on Thermal Energy Storage, Warsaw, POLAND  

E-Print Network [OSTI]

381 Futurestock'2003 9 th International Conference on Thermal Energy Storage, Warsaw, POLAND is also needed when designing a BTES (Borehole Thermal Energy Storage) system. The ground thermal eight countries (Sweden, Canada, Germany, Netherlands, Norway, Turkey, United Kingdom, and USA) have

428

Makai Ocean Engineering, Inc.'s Recent OTEC Activities at NELHA  

E-Print Network [OSTI]

Makai Ocean Engineering, Inc.'s Recent OTEC Activities at NELHA Duke Hartman Vice President of the company and provide some details about one current project: Makai's OTEC demonstration plant, and operator of an Ocean Thermal Energy Conversion (OTEC) power plant and heat exchanger test facility at NELHA

Frandsen, Jannette B.

429

Improved irradiances for use in ocean heating, primary production, and photo-oxidation calculations  

E-Print Network [OSTI]

computed by a radiative transfer code that can be used to convert above-surface values in either energy- plankton affect upper-ocean thermal structure via absorption of solar irradiance at visible wavelengthsImproved irradiances for use in ocean heating, primary production, and photo-oxidation calculations

Boss, Emmanuel S.

430

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants  

E-Print Network [OSTI]

COST REDUCTION STUDY FOR SOLAR THERMAL POWER PLANTS, Ottawa,Storage in Concentrated Solar Thermal Power Plants A ThesisStorage in Concentrated Solar Thermal Power Plants by Corey

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

431

Project Profile: Novel Molten Salts Thermal Energy Storage for Concentrating Solar Power Generation  

Broader source: Energy.gov [DOE]

The University of Alabama, under the Thermal Storage FOA, is developing thermal energy storage (TES) media consisting of low melting point (LMP) molten salt with high TES density for sensible heat storage systems.

432

Project Profile: Novel Thermal Energy Storage Systems for Concentrating Solar Power  

Broader source: Energy.gov [DOE]

The University of Connecticut, under the Thermal Storage FOA, is developing innovative heat transfer devices and methodologies for novel thermal energy storage (TES) systems for CSP involving phase change materials (PCMs).

433

Toward zero-emission data centers through direct reuse of thermal energy  

Science Journals Connector (OSTI)

We have tested hot water data center cooling by directly reusing the generated thermal energy in neighborhood heating systems. First, we introduce high-performance liquid cooling devices with minimal thermal resistance in order to cool a computer system ...

T. Brunschwiler; B. Smith; E. Ruetsche; B. Michel

2009-05-01T23:59:59.000Z

434

Thermal storage of solar energy as sensible heat at medium temperatures  

Science Journals Connector (OSTI)

A model has been solved in order to determine the thermal losses of a storage tank, where thermal energy is stored as sensible heat of a diathermic fluid at medium temperatures. A parametric analysis has been ...

C. Bellecci; A. Bonanno; M. Camarca; M. Conti; L. La Rotonda…

435

Project Profile: Indirect, Dual-Media, Phase Changing Material Modular Thermal Energy Storage System  

Broader source: Energy.gov [DOE]

Acciona Solar, under the Thermal Storage FOA, plans to design and validate a prototype and demonstrate a full-size (800 MWth) thermal energy storage (TES) system based on phase change materials (PCMs).

436

Project Profile: Sensible Heat, Direct, Dual-Media Thermal Energy Storage Module  

Broader source: Energy.gov [DOE]

Acciona Solar, under the Thermal Storage FOA, plans to develop a prototype thermal energy storage (TES) module with high efficiency. This project is looking at a packed or structured bed TES tank with molten salt flowing through it.

437

Energy Storage R&D: Thermal Management Studies and Modeling (Presentation)  

SciTech Connect (OSTI)

Here we summarize NREL's FY09 energy storage R&D studies in the areas of 1. thermal characterization and analysis, 2. cost, life, and performance trade-off studies, and 3. thermal abuse modeling.

Pesaran, A. A.

2009-05-01T23:59:59.000Z

438

Microwave impregnation of porous materials with thermal energy storage materials  

DOE Patents [OSTI]

A method for impregnating a porous, non-metallic construction material with a solid phase-change material is described. The phase-change material in finely divided form is spread onto the surface of the porous material, after which the porous material is exposed to microwave energy for a time sufficient to melt the phase-change material. The melted material is spontaneously absorbed into the pores of the porous material. A sealing chemical may also be included with the phase-change material (or applied subsequent to the phase-change material) to seal the surface of the porous material. Fire retardant chemicals may also be included with the phase-change materials. The treated construction materials are better able to absorb thermal energy and exhibit increased heat storage capacity.

Benson, David K. (Golden, CO); Burrows, Richard W. (Conifer, CO)

1993-01-01T23:59:59.000Z

439

Microwave impregnation of porous materials with thermal energy storage materials  

DOE Patents [OSTI]

A method for impregnating a porous, non-metallic construction material with a solid phase-change material is described. The phase-change material in finely divided form is spread onto the surface of the porous material, after which the porous material is exposed to microwave energy for a time sufficient to melt the phase-change material. The melted material is spontaneously absorbed into the pores of the porous material. A sealing chemical may also be included with the phase-change material (or applied subsequent to the phase-change material) to seal the surface of the porous material. Fire retardant chemicals may also be included with the phase-change materials. The treated construction materials are better able to absorb thermal energy and exhibit increased heat storage capacity.

Benson, D.K.; Burrows, R.W.

1993-04-13T23:59:59.000Z

440

Thermal Transport in Nanoporous Materials for Energy Applications  

E-Print Network [OSTI]

Theory of thermal conduction in thin ceramic ?lms”,Thermal resistance of grain boundaries in alumina ceramicsThermal conduc- tivity of highly porous zirconia”, Journal of the European Ceramic

Fang, Jin

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ocean thermal energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

MHK Technologies/Ocean Wave Power Spar Buoy Engine | Open Energy  

Open Energy Info (EERE)

Spar Buoy Engine Spar Buoy Engine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Ocean Wave Power Spar Buoy Engine.jpg Technology Profile Primary Organization Functional Design Engineering Inc Technology Resource Click here Wave Technology Type Click here Point Absorber - Submerged Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description A long period spar buoy supports a subsurface flow augmentor The augmentor directs water from the wave s submarine flow field to a free prime mover piston The prime mover is decoupled from the machine s PTO during times in the wave s cycle when there is little power available for conversion Wave energy is stored in the device until the is enough flow magnetude that power take off can efficiently take place Power can be taken off as high pressure water crankshaft torque or directly as DC electricity

442

Solar Thermal Energy Use in EU-27 Countries: Evolution and Promotion  

Science Journals Connector (OSTI)

Growth in the use of renewable energies in the 27 European Union (EU-27 ... past decade has been remarkable. Among these energies is solar thermal energy (STE). The average annual growth rate ... has reached almo...

María P. del Pablo-Romero; Antonio Sánchez-Braza; Enrique Lerma

2013-01-01T23:59:59.000Z

443

Category:Thermal Gradient Holes | Open Energy Information  

Open Energy Info (EERE)

in category "Thermal Gradient Holes" This category contains only the following page. T Thermal Gradient Holes Retrieved from "http:en.openei.orgwindex.php?titleCategory:T...

444

Thermal Energy Storage in Metal Foams filled with Paraffin Wax.  

E-Print Network [OSTI]

??Phase change materials (PCM) such as paraffin wax are known to exhibit slow thermal response due to their relatively low thermal conductivity. In this study,… (more)

Vadwala, Pathik

2012-01-01T23:59:59.000Z

445

NREL Battery Thermal and Life Test Facility | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

NREL Battery Thermal and Life Test Facility NREL Battery Thermal and Life Test Facility 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit...

446

Solar thermal power generation: a bibliography with abstracts. Quarterly update, July-September 1979  

SciTech Connect (OSTI)

This annotated bibliography covers the following subjects: energy overviews, solar overviews, energy conservation, economics and law, solar thermal power, thermionic and thermoelectric, ocean thermal energy conversion, wind power, biomass and photochemical energy, and large scale photovoltaics. An author index and a keyword index are included. (MHR)

Not Available

1980-02-01T23:59:59.000Z

447

Direct measurements of the mean flow and eddy kinetic energy structure of the upper ocean circulation in the NE Atlantic  

E-Print Network [OSTI]

Direct measurements of the mean flow and eddy kinetic energy structure of the upper ocean, University of Bergen, Bergen, Norway Tom Rossby Graduate School of Oceanography, University of Rhode Island and variable wind-forcing, and strong and variable deep currents that lead to large uncertainties in the use

448

Reducing Energy Costs And Minimizing Capital Requirements: Case Studies of Thermal Energy Storage (TES)  

E-Print Network [OSTI]

, and thus during those times when power has its highest cost or value. Thermal Energy Storage (TES) provides a means of de-coupling the generation of cooling from the provision of cooling to the peak cooling loads. In this manner, peak power demand...

Andrepont, J. S.

2007-01-01T23:59:59.000Z

449

Predictive control and thermal energy storage for optimizing a multi-energy district boiler  

E-Print Network [OSTI]

and used when demand is high, instead of engaging the gas-fuel oil boiler. Keywords: multi-energy district believe that by 2015 the supply of oil and natural gas will be unable to keep up with demand [1 of La Rochelle (France) adding to the plant a controlled thermal storage tank. This plant supplies

Paris-Sud XI, Université de

450

Hydrogen Energy Stations: Poly-Production of Electricity, Hydrogen, and Thermal Energy  

E-Print Network [OSTI]

Exhaust (CO 2 ) Grid electricity Cogen Heat Natural gas Airutility grid, 2) re-use of thermal energy “waste heat” forGrid electricity Exhaust (CO 2 ) Recycled Reformate Natural gas Air Water H2 Purifier Source: Weinert, 2005 Cogen Heat

Lipman, Timothy; Brooks, Cameron

2006-01-01T23:59:59.000Z

451

JETC: Joint Energy Thermal and Cooling Management for Memory and CPU Subsystems in Servers  

E-Print Network [OSTI]

JETC: Joint Energy Thermal and Cooling Management for Memory and CPU Subsystems in Servers Raid In this work we propose a joint energy, thermal and cooling management technique (JETC) that significantly re- duces per server cooling and memory energy costs. Our analysis shows that decoupling the optimization

Simunic, Tajana

452

Effects of horizontal mixing on the upper ocean temperature in the equatorial Pacific Ocean  

Science Journals Connector (OSTI)

The influence of horizontal mixing on the thermal structure of the equatorial Pacific Ocean is examined based on a sigma coordinate ... on the upper thermal structure in the equatorial Pacific Ocean, while their ...

Chuanjiang Huang; Fangli Qiao

2012-01-01T23:59:59.000Z

453

Designing an Optimal Urban Community Mix for an Aquifer Thermal Energy Storage System.  

E-Print Network [OSTI]

??This research examined what mix of building types result in the most efficient use of a technology known as Aquifer Thermal Energy Storage (ATES). Hourly… (more)

Zizzo, Ryan

2010-01-01T23:59:59.000Z

454

Expected benefits of federally-funded thermal energy storage research  

SciTech Connect (OSTI)

Pacific Northwest Laboratory (PNL) conducted this study for the Office of Advanced Utility Concepts of the US Department of Energy (DOE). The objective of this study was to develop a series of graphs that depict the long-term benefits of continuing DOE`s thermal energy storage (TES) research program in four sectors: building heating, building cooling, utility power production, and transportation. The study was conducted in three steps- The first step was to assess the maximum possible benefits technically achievable in each sector. In some sectors, the maximum benefit was determined by a ``supply side`` limitation, and in other sectors, the maximum benefit is determined by a ``demand side`` limitation. The second step was to apply economic cost and diffusion models to estimate the benefits that are likely to be achieved by TES under two scenarios: (1) with continuing DOE funding of TES research, and (2) without continued funding. The models all cover the 20-year period from 1990 to 2010. The third step was to prepare graphs that show the maximum technical benefits achievable, the estimated benefits with TES research funding, and the estimated benefits in the absence of TES research funding. The benefits of federally-funded TES research are largely in four areas: displacement of primary energy, displacement of oil and natural gas, reduction in peak electric loads, and emissions reductions.

Spanner, G.E.; Daellenbach, K.K.; Hughes, K.R.; Brown, D.R.; Drost, M.K.

1992-09-01T23:59:59.000Z

455

Expected benefits of federally-funded thermal energy storage research  

SciTech Connect (OSTI)

Pacific Northwest Laboratory (PNL) conducted this study for the Office of Advanced Utility Concepts of the US Department of Energy (DOE). The objective of this study was to develop a series of graphs that depict the long-term benefits of continuing DOE's thermal energy storage (TES) research program in four sectors: building heating, building cooling, utility power production, and transportation. The study was conducted in three steps- The first step was to assess the maximum possible benefits technically achievable in each sector. In some sectors, the maximum benefit was determined by a supply side'' limitation, and in other sectors, the maximum benefit is determined by a demand side'' limitation. The second step was to apply economic cost and diffusion models to estimate the benefits that are likely to be achieved by TES under two scenarios: (1) with continuing DOE funding of TES research, and (2) without continued funding. The models all cover the 20-year period from 1990 to 2010. The third step was to prepare graphs that show the maximum technical benefits achievable, the estimated benefits with TES research funding, and the estimated benefits in the absence of TES research funding. The benefits of federally-funded TES research are largely in four areas: displacement of primary energy, displacement of oil and natural gas, reduction in peak electric loads, and emissions reductions.

Spanner, G E; Daellenbach, K K; Hughes, K R; Brown, D R; Drost, M K

1992-09-01T23:59:59.000Z

456

How Do You Find Thermal Leaks in Your Home? | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

How Do You Find Thermal Leaks in Your Home? How Do You Find Thermal Leaks in Your Home? How Do You Find Thermal Leaks in Your Home? March 31, 2011 - 7:30am Addthis On Monday, John told you about the thermal leak detector he purchased to help him find and seal leaks in his home. A thermal leak detector can be a great tool to help you find leaks in your own home, but it's not your only option. In addition to tools like this, you can also use some of our tips on do-it-yourself energy assessments, or you could get a professional energy assessment. How do you find thermal leaks in your home? Each Thursday, you have the chance to share your thoughts on a question about energy efficiency or renewable energy for consumers. Please e-mail your responses to the Energy Saver team at consumer.webmaster@nrel.gov.

457

Assessment of Energy Production Potential from Ocean Currents along the United States Coastline  

Broader source: Energy.gov [DOE]

Report summarizing the results of seven years of numerical model simulations of ocean currents in the United States and the database created with that data.

458

BismuthCeramic Nanocomposites with Unusual Thermal Stability via High-Energy Ball Milling**  

E-Print Network [OSTI]

Bismuth±Ceramic Nanocomposites with Unusual Thermal Stability via High-Energy Ball Milling, nanostructured bismuth±ceramic nanocomposites with unusual thermal stabil- ity. These materials contain a high. Important for electrical and thermoelectric applications, the ceramic phase is electrically and thermally

Braun, Paul

459

Geothermal energy market study on the Atlantic Coastal Plain: Ocean City, Maryland geothermal energy evaluation  

SciTech Connect (OSTI)

This report is one of a series of studies that have been made by the Applied Physics Laboratory, or its subcontractors, to examine the technical and economic feasibility of the utilization of geothermal energy at the request of potential users.

Schubert, C.E.

1981-08-01T23:59:59.000Z

460

8.01 - Generating Electrical Power from Ocean Resources  

Science Journals Connector (OSTI)

Abstract Ocean energy resources derived from wind, waves, tidal or marine currents can be utilized and converted to large scale sustainable electrical power. Conversion technologies are easily adaptable and can be integrated within the current utility infrastructure. However, ocean energy has many forms - tides, surface waves, ocean circulation, salinity, and thermal gradients. The focus of this chapter is dedicated to two of these, namely waves and tidal energy. The first are the result of wind-driven waves derived ultimately from solar energy and the latter represents those found in tidal or marine currents, driven by gravitational effects. This chapter also gives an analysis of the current state of art of generating electricity from wave and tidal currents (termed ocean energy). Section 8.01.1 provides an overview of ocean wave and marine current energy conversion with more emphasis on the latter; Sections 8.01.2, 8.01.3, 8.01.4, and 8.01.5 address respectively the history of wave energy, wave resource assessment, wave device development, and air turbines; and Section 8.01.6 gives a review of the economics of ocean energy as applied to wave and tidal energy conversion technologies.

A.S. Bahaj

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ocean thermal energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Characterization of U.S. Wave Energy Converter (WEC) Test Sites: A Catalogue of Met-Ocean Data.  

SciTech Connect (OSTI)

This report presents met - ocean data and wave energy characteristics at three U.S. wave energy converter (WEC) test and potential deployment sites . Its purpose is to enable the compari son of wave resource characteristics among sites as well as the select io n of test sites that are most suitable for a developer's device and that best meet their testing needs and objectives . It also provides essential inputs for the design of WEC test devices and planning WEC tests, including the planning of deployment and op eration s and maintenance. For each site, this report catalogues wave statistics recommended in the (draft) International Electrotechnical Commission Technical Specification (IEC 62600 - 101 TS) on Wave Energy Characterization, as well as the frequency of oc currence of weather windows and extreme sea states, and statistics on wind and ocean currents. It also provides useful information on test site infrastructure and services .

Dallman, Ann Renee; Neary, Vincent Sinclair

2014-10-01T23:59:59.000Z

462

Ocean circulation plays a key role in distributing solar energy and maintaining climate, by moving heat from Earth's equator to the poles. At  

E-Print Network [OSTI]

heat from Earth's equator to the poles. At the ocean surface, currents are primarily driven by windOcean circulation plays a key role in distributing solar energy and maintaining climate, by moving. Deep below the surface however, currents are controlled by water density, which depends

Waliser, Duane E.

463

Thermal comfort assessment and potential for energy efficiency enhancement in modern tropical buildings: A review  

Science Journals Connector (OSTI)

Abstract The rapid growth in population and economy activities in the tropical countries has led to an increase in energy consumption which hastens the depletion of available energy resources. The building sector is one of the major end users of energy. On the other hand, the air conditioning system is viewed as an important tool to sustain and improve thermal comfort of occupants, but this system is often the biggest energy consumer in buildings. This has raised concerns on efficient use of the air conditioning system for reduction in energy cost. In order to identify the thermal comfort perception of occupants as well as energy conservation potentials in tropical buildings, various thermal comfort assessments were conducted which included field surveys and chamber studies. This paper provides a comprehensive review of the energy efficiency improvement potentials in air-conditioned tropical buildings by considering thermal comfort of occupants. Some of the studies conducted in the institutes of learning, offices and residential were reviewed and focus was placed on the thermal comfort studies that emphasis on balance between energy efficiency and thermal comfort. It was estimated that a reduction of 2150 GWh of energy demand annually in Malaysia can be achieved if the thermostat set-point is set higher by 2 °C, together with a reduction of 3 × 109 lbs (1.36 × 109 kg) of greenhouse gases. Besides, the use of computational simulation tools for prediction of thermal comfort and adaptive behaviour of people in the tropics towards their immediate thermal environment are also highlighted.

Qi Jie Kwong; Nor Mariah Adam; B.B. Sahari

2014-01-01T23:59:59.000Z

464

Energy efficient control of HVAC systems with ice cold thermal energy storage  

Science Journals Connector (OSTI)

Abstract In heating, ventilation and air conditioning (HVAC) systems of medium/high cooling capacity, energy demands can be matched with the help of thermal energy storage (TES) systems. If properly designed, TES systems can reduce energy costs and consumption, equipment size and pollutant emissions. In order to design efficient control strategies for TES systems, we present a model-based approach with the aim of increasing the performance of HVAC systems with ice cold thermal energy storage (CTES). A simulation environment based on Matlab/Simulink® is developed, where thermal behaviour of the plant is analysed by a lumped formulation of the conservation equations. In particular, the ice CTES is modelled as a hybrid system, where the water phase transitions (solid–melting–liquid and liquid–freezing–solid) are described by combining continuous and discrete dynamics, thus considering both latent and sensible heat. Standard control strategies are compared with a non-linear model predictive control (NLMPC) approach. In the simulation examples model predictive control proves to be the best control solution for the efficient management of ice CTES systems.

Alessandro Beghi; Luca Cecchinato; Mirco Rampazzo; Francesco Simmini

2014-01-01T23:59:59.000Z

465

Design and installation manual for thermal energy storage  

SciTech Connect (OSTI)

The purpose of this manual is to provide information on the design and installation of thermal energy storage in active solar systems. It is intended for contractors, installers, solar system designers, engineers, architects, and manufacturers who intend to enter the solar energy business. The reader should have general knowledge of how solar heating and cooling systems operate and knowledge of construction methods and building codes. Knowledge of solar analysis methods such as f-Chart, SOLCOST, DOE-1, or TRNSYS would be helpful. The information contained in the manual includes sizing storage, choosing a location for the storage device, and insulation requirements. Both air-based and liquid-based systems are covered with topics on designing rock beds, tank types, pump and fan selection, installation, costs, and operation and maintenance. Topics relevant to latent heat storage include properties of phase-change materials, sizing the storage unit, insulating the storage unit, available systems, and cost. Topics relevant to heating domestic water include safety, single- and dual-tank systems, domestic water heating with air- and liquid-based space heating systems, and stand alone domestics hot water systems. Several appendices present common problems with storage systems and their solutions, heat transfer fluid properties, economic insulation thickness, heat exchanger sizing, and sample specifications for heat exchangers, wooden rock bins, steel tanks, concrete tanks, and fiberglass-reinforced plastic tanks.

Cole, R L; Nield, K J; Rohde, R R; Wolosewicz, R M

1980-01-01T23:59:59.000Z

466

Satellite-based assessment of cloud-free net radiative effect of dust aerosols over the Atlantic Ocean  

E-Print Network [OSTI]

and the Earth's Radiant Energy System (CERES) data from the Terra satellite over the Atlantic Ocean [10W­60W, 0 Ocean Sundar A. Christopher1 and Thomas Jones1 Received 7 August 2006; revised 8 November 2006; accepted effect (+1.44 ± 0.57 Wm�2 ) indicating the importance of the dust aerosols in the thermal portion

Christopher, Sundar A.

467

Use of Renewable Energy in Buildings: Experiences With Solar Thermal Utilization  

E-Print Network [OSTI]

Solar energy is receiving much more attention in building energy systems in recent years. Solar thermal utilization should be based on the integration of solar collectors into buildings. The facades of buildings can be important solar collectors...

Wang, R.; Zhai, X.

2006-01-01T23:59:59.000Z

468

A Methodological Framework for Integrating Waste Biomass into a Portfolio of Thermal Energy Production Systems  

Science Journals Connector (OSTI)

The integration of Renewable Energy Sources (RES) within the contextual framework of existing thermal energy production systems has emerged as a promising ... and sustainable policy towards addressing the growing...

Eleftherios Iakovou; Dimitrios Vlachos; Agorasti Toka

2012-01-01T23:59:59.000Z

469

Thermal Energy Storage: It's not Just for Electric Cost Savings Anymore  

E-Print Network [OSTI]

Large cool Thermal Energy Storage (TES), typically ice TES or chilled water (CHW) TES, has traditionally been thought of, and used for, managing time-of-day electricity use to reduce the cost associated with electric energy and demand charges...

Andrepont, J. S.

2014-01-01T23:59:59.000Z

470

Use of Thermal Energy Storage to Enhance the Recovery and Utilization of Industrial Waste Heat  

E-Print Network [OSTI]

evaluation involving process data from 12 industrial plants to determine if thermal energy storage (TES) systems can be used with commercially available energy management equipment to enhance the recovery and utilization of industrial waste heat. Results...

McChesney, H. R.; Bass, R. W.; Landerman, A. M.; Obee, T. N.; Sgamboti, C. T.

1982-01-01T23:59:59.000Z

471

An Invariable Point in the Energy Spectra of Non-Thermal Electrons of Solar Flares  

Science Journals Connector (OSTI)

The power-law energy spectra of non-thermal electrons for each 1.024 second have been drawn together during the flare. For some flares, it is discovered that the energy spectra taken at different times present...

W.Q. Gan

1998-01-01T23:59:59.000Z

472

Improved Product Energy Intensity Benchmarking Metrics for Thermally Concentrated Food Products  

Science Journals Connector (OSTI)

Improved Product Energy Intensity Benchmarking Metrics for Thermally Concentrated Food Products ... Sogut, Z.; Ilten, N.; Oktay, Z.Energetic and exergetic performance evaluation of the quadruple-effect evaporator unit in tomato paste evaporation Energy 2010, 35, 3821– 3826 ...

Michael E. Walker; Craig S. Arnold; David J. Lettieri; Margot J. Hutchins; Eric Masanet

2014-09-12T23:59:59.000Z

473

Research and Development for Novel Thermal Energy Storage Systems (TES) for Concentrating Solar Power (CSP)  

SciTech Connect (OSTI)

The overall objective was to develop innovative heat transfer devices and methodologies for novel thermal energy storage systems for concentrating solar power generation involving phase change materials (PCMs). Specific objectives included embedding thermosyphons and/or heat pipes (TS/HPs) within appropriate phase change materials to significantly reduce thermal resistances within the thermal energy storage system of a large-scale concentrating solar power plant and, in turn, improve performance of the plant. Experimental, system level and detailed comprehensive modeling approaches were taken to investigate the effect of adding TS/HPs on the performance of latent heat thermal energy storage (LHTES) systems.

Faghri, Amir; Bergman, Theodore L; Pitchumani, Ranga

2013-09-26T23:59:59.000Z

474

Thermal and Economic Analyses of Energy Saving by Enclosing Gas Turbine Combustor Section  

E-Print Network [OSTI]

) thermography inspection indicated a high-temperature area (500~560°F) at the combustor section of the GE Frame 5 gas turbine of Dynegy Gas Processing Plant at Venice, Louisiana. To improve the thermal efficiency and reduce energy cost, thermal... within the natural gas industry, the Venice plant is seeking various means to reduce cost. As part of the project to improve the energy efficiency of the plant and thus reduce energy costs, Dynegy contracted the Energy Conversion & Conservation...

Li, X.; Wang, T.; Day, B.

2006-01-01T23:59:59.000Z

475

Comparison of closed and open thermochemical processes, for long-term thermal energy storage applications  

E-Print Network [OSTI]

1 Comparison of closed and open thermochemical processes, for long-term thermal energy storage-term thermal storage, second law analysis * Corresponding author: E-mail: mazet@univ-perp.fr Nomenclature c Energy Tecnosud, Rambla de la thermodynamique, 66100 Perpignan, France b Université de Perpignan Via

Paris-Sud XI, Université de

476

Charging-free electrochemical system for harvesting low-grade thermal energy  

Science Journals Connector (OSTI)

...Mechanical Engineering, Massachusetts Institute of Technology...Mechanical Engineering, Massachusetts Institute of Technology...processes, environment, solar-thermal, and geothermal energy (1...Commun 2 : 550 Work at Massachusetts Institute of Technology...by the Solid State Solar-Thermal Energy Conversion...

Yuan Yang; Seok Woo Lee; Hadi Ghasemi; James Loomis; Xiaobo Li; Daniel Kraemer; Guangyuan Zheng; Yi Cui; Gang Chen

2014-01-01T23:59:59.000Z

477

A Novel Integrated Frozen Soil Thermal Energy Storage and Ground-Source Heat Pump System  

E-Print Network [OSTI]

In this paper, a novel integrated frozen soil thermal energy storage and ground-source heat pump (IFSTS&GSHP) system in which the GHE can act as both cold thermal energy storage device and heat exchanger for GSHP is first presented. The IFSTS...

Jiang, Y.; Yao, Y.; Rong, L.; Ma, Z.

2006-01-01T23:59:59.000Z

478

Energy News | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

27, 2010 27, 2010 Statement by Energy Secretary Steven Chu on Groundbreaking of BASF Advanced Battery Materials Plant Recovery Act Investment Will Support Job Creation, U.S. Economic Competitiveness and Advanced Vehicle Industry October 26, 2010 DOE, BOEMRE and NOAA Announce Nearly $5 Million for Joint Environmental Research Projects to Advance Ocean Renewable Energy WASHINGTON, DC - The Department of Energy (DOE), Bureau of Ocean Energy Management, Regulation and Enforcement (BOEMRE), and the Department of Commerce's National Oceanic and Atmospheric Administration (NOAA) today announced eight joint research awards totaling nearly $5 million to support the responsible siting and permitting of offshore wind energy facilities and ocean energy generated from waves, tides, currents and thermal

479

Enhanced performance of high temperature aluminate cementitious materials incorporated with Cu powders for thermal energy storage  

Science Journals Connector (OSTI)

Abstract Cementitious materials have been extensively developed in thermal energy storage system of solar thermal power. This paper deals with the volume heat capacity, thermal conductivity, thermal expansion coefficient, and compressive strength of aluminate cementitious thermal energy storage materials with the addition of metal Cu powders. The specimens were subjected to heat-treatment at 105, 350, and 900 °C, respectively. In the heating process, Cu powders gradually oxidized to Cu2O and CuO, providing a so-called mass compensation mechanism for the composite paste. Meanwhile, it indicates that volume heat capacity and thermal conductivity both increase with increasing Cu powders content and decrease with the rising temperature. The optimum thermal properties were obtained at 15 wt% Cu powders loading. In addition, Calorimetric Test, XRD, TG–DSC, and MIP are performed for characterizing the hydration rates, the phases, the mass/heat evolution, and the pore distribution, respectively.

Huiwen Yuan; Yu Shi; Chunhua Lu; Zhongzi Xu; Yaru Ni; Xianghui Lan

2015-01-01T23:59:59.000Z

480

Thermal Systems Process and Components Laboratory (Fact Sheet), NREL (National Renewable Energy Laboratory), Energy Systems Integration Facility (ESIF)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Systems Process and Systems Process and Components Laboratory may include: * CSP technology developers * Utilities * Certification laboratories * Government agencies * Universities * Other National laboratories Contact Us If you are interested in working with NREL's Thermal Systems Process and Components Laboratory, please contact: ESIF Manager Carolyn Elam Carolyn.Elam@nrel.gov 303-275-4311 Thermal Systems Process and Components Laboratory The focus of the Thermal Systems Process and Components Laboratory at NREL's Energy Systems Integration Facility (ESIF) is to research, develop, test, and evaluate new techniques for thermal energy storage systems that are relevant to utility-scale concentrating solar power plants. The laboratory holds

Note: This page contains sample records for the topic "ocean thermal energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Relationship of regional water quality to aquifer thermal energy storage  

SciTech Connect (OSTI)

Ground-water quality and associated geologic characteristics may affect the feasibility of aquifer thermal energy storage (ATES) system development in any hydrologic region. This study sought to determine the relationship between ground-water quality parameters and the regional potential for ATES system development. Information was collected from available literature to identify chemical and physical mechanisms that could adversely affect an ATES system. Appropriate beneficiation techniques to counter these potential geochemical and lithologic problems were also identified through the literature search. Regional hydrology summaries and other sources were used in reviewing aquifers of 19 drainage regions in the US to determine generic geochemical characteristics for analysis. Numerical modeling techniques were used to perform geochemical analyses of water quality from 67 selected aquifers. Candidate water resources regions were then identified for exploration and development of ATES. This study identified six principal mechanisms by which ATES reservoir permeability may be impaired: (1) particulate plugging, (2) chemical precipitation, (3) liquid-solid reactions, (4) formation disaggregation, (5) oxidation reactions, and (6) biological activity. Specific proven countermeasures to reduce or eliminate these effects were found. Of the hydrologic regions reviewed, 10 were identified as having the characteristics necessary for ATES development: (1) Mid-Atlantic, (2) South-Atlantic Gulf, (3) Ohio, (4) Upper Mississippi, (5) Lower Mississippi, (6) Souris-Red-Rainy, (7) Missouri Basin, (8) Arkansas-White-Red, (9) Texas-Gulf, and (10) California.

Allen, R.D.

1983-11-01T23:59:59.000Z

482

Fluoride based cathodes and electrolytes for high energy thermal batteries  

SciTech Connect (OSTI)

A research and development program is being conducted at the Saft Advanced Technologies Division in Hunt Valley, MD to double the energy density of a thermal battery. A study of high voltage cathodes to replace iron disulfide is in progress. Single cells are being studied with a lithium anode and either a copper(II) fluoride, silver(II) fluoride, or iron(III) fluoride cathode. Due to the high reactivity of these cathodes, conventional alkali metal chloride and bromide salt electrolytes must be replaced by alkali metal fluoride electrolytes. Parametric studies using design-of-experiments matrices will be performed so that the best cathode for an improved battery design can be selected. Titanium hardware for the design will provide a higher strength to weight ratio with lower emissivity than conventional stainless steel. The battery will consist of two power sections. The goals are battery activation in less than 0.2 s, 88 Wh/kg, 1,385 W/kg, and 179 Wh/L over an environmental temperature range of {minus}40 C to +70 C.

Briscoe, J.D.

1998-07-01T23:59:59.000Z

483

Thermal Gradient Holes At Coso Geothermal Area (1976) | Open Energy  

Open Energy Info (EERE)

Thermal Gradient Holes At Coso Geothermal Area (1976) Thermal Gradient Holes At Coso Geothermal Area (1976) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Coso Geothermal Area (1976) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Thermal Gradient Holes Activity Date 1976 Usefulness useful DOE-funding Unknown Notes Temperatures have been obtained to depths up to 133 m in 22 boreholes with measurements being made at least four times in each borehole. Geothermal gradients ranged from 240C/km to 450 0C/km. References Combs, J. (1 December 1976) Heat flow determinations and implied thermal regime of the Coso geothermal area, California Retrieved from "http://en.openei.org/w/index.php?title=Thermal_Gradient_Holes_At_Coso_Geothermal_Area_(1976)&oldid=511217"

484

Observations and Modeling of the Green Ocean Amazon (GoAmazon2014) PI: Scot T. Martin, Harvard University Funding Agency: Department of Energy  

E-Print Network [OSTI]

Observations and Modeling of the Green Ocean Amazon (GoAmazon2014) PI: Scot T. Martin, Harvard University Funding Agency: Department of Energy Main Deployment: 1 January 2014 through 31 December 2014

485

Nanotubes as Robust Thermal Conductors - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Materials Advanced Materials Find More Like This Return to Search Nanotubes as Robust Thermal Conductors Lawrence Berkeley National Laboratory Contact LBL About This...

486

Energy Balance and Thermal Comfort in Passive Solar Housing  

Science Journals Connector (OSTI)

To evaluate the performance of different passive solar dwellings it is necessary to consider not only the thermal performance but also the “comfort performance” of the system.

K. Alder; Ch. Eriksson; A. Faist; N. Morel

1984-01-01T23:59:59.000Z

487

Research Program - Center for Solar and Thermal Energy Conversion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

below. Organic and Hybrid Systems for TE Improving Thermoelectric Efficiency via Low Thermal Boundary Conductance Heat dissipation in Atomic-Scale Junctions A General Strategy to...

488

Battery Thermal Modeling and Testing | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation es110smith2011p.pdf More Documents & Publications NREL Battery Thermal and Life Test Facility...

489

Bispectral Analysis of Energy Transfer within the Two-Dimensional Oceanic Internal Wave Field  

Science Journals Connector (OSTI)

Bispectral analysis of the numerically reproduced spectral responses of the two-dimensional oceanic internal wave field to the incidence of the low-mode semidiurnal internal tide is performed. At latitudes just equatorward of 30°, the low-mode ...

Naoki Furuichi; Toshiyuki Hibiya; Yoshihiro Niwa

2005-11-01T23:59:59.000Z

490

Determining the influence of wind-wave breaking on the dissipation of the turbulent kinetic energy in the upper ocean and on the dependence of the turbulent kinetic energy on the stage of wind-wave development  

Science Journals Connector (OSTI)

New experimental data that make it possible to explain and predict the observed variability of turbulent-energy dissipation in the upper ocean are discussed. ... For this purpose, the dependence of the energy dis...

S. A. Kitaigorodskii

2009-06-01T23:59:59.000Z

491

Transition Region Emission and Energy Input to Thermal Plasma During the Impulsive Phase of Solar Flares  

E-Print Network [OSTI]

The energy released in a solar flare is partitioned between thermal and non-thermal particle energy and lost to thermal conduction and radiation over a broad range of wavelengths. It is difficult to determine the conductive losses and the energy radiated at transition region temperatures during the impulsive phases of flares. We use UVCS measurements of O VI photons produced by 5 flares and subsequently scattered by O VI ions in the corona to determine the 5.0 thermal energy and the conductive losses deduced from RHESSI and GOES X-ray data using areas from RHESSI images to estimate the loop volumes, cross-sectional areas and scale lengths. The transition region luminosities during the impulsive phase exceed the X-ray luminosities for the first few minutes, but they are smaller than the rates of increase of thermal energy unless the filling factor of the X-ray emitting gas is ~ 0.01. The estimated conductive losses from the hot gas are too large to be balanced by radiative losses or heating of evaporated plasma, and we conclude that the area of the flare magnetic flux tubes is much smaller than the effective area measured by RHESSI during this phase of the flares. For the 2002 July 23 flare, the energy deposited by non-thermal particles exceeds the X-ray and UV energy losses and the rate of increase of the thermal energy.

J. C. Raymond; G. Holman; A. Ciaravella; A. Panasyuk; Y. -K. Ko; J. Kohl

2007-01-12T23:59:59.000Z

492

Software Optimization for Performance, Energy, and Thermal Distribution: Initial Case Studies  

E-Print Network [OSTI]

of our time. Data center energy consumption is now 2-3% of total US electricity use and is increasing-level energy consumption. I. INTRODUCTION Energy efficiency is one of the central societal and technical issues- sired level of performance while reducing energy consumption. A closely related issue is thermal

Herbordt, Martin

493

EnergyPlus as a forensic tool: Thermal reconstruction of a crime scene using calibrated simulation  

Science Journals Connector (OSTI)

This study utilized energy simulation in support of a forensic pathology time-of-death analysis for a corpse discovered in a single-family residence two years prior to the study. In order to produce an accurate estimate of the interior temperature profile ... Keywords: Energy model calibration, energy model accuracy, free-floating energy simulation, legal application of thermal simulation

Nathan Brown, M Susan Ubbelohde, George Loisos, Santosh Philip, Ibone Santiago

2014-08-01T23:59:59.000Z

494

Thermal energy storage technologies and systems for concentrating solar power plants  

Science Journals Connector (OSTI)

This paper presents a review of thermal energy storage system design methodologies and the factors to be considered at different hierarchical levels for concentrating solar power (CSP) plants. Thermal energy storage forms a key component of a power plant for improvement of its dispatchability. Though there have been many reviews of storage media, there are not many that focus on storage system design along with its integration into the power plant. This paper discusses the thermal energy storage system designs presented in the literature along with thermal and exergy efficiency analyses of various thermal energy storage systems integrated into the power plant. Economic aspects of these systems and the relevant publications in literature are also summarized in this effort.

Sarada Kuravi; Jamie Trahan; D. Yogi Goswami; Muhammad M. Rahman; Elias K. Stefanakos

2013-01-01T23:59:59.000Z

495

Nanofluid \\{PCMs\\} for thermal energy storage: Latent heat reduction mechanisms and a numerical study of effective thermal storage performance  

Science Journals Connector (OSTI)

Abstract The latent heat of fusion of paraffin-based nanofluids has been examined to investigate the use of enhanced phase change materials (PCMs) for thermal energy storage (TES) applications. The nanofluid approach has often been exploited to enhance thermal conductivity of PCMs, but the effects of particle addition on other thermal properties affecting TES are relatively ignored. An experimental study of paraffin-based nanofluids containing various particle sizes of multi-walled carbon nanotubes has been conducted to investigate the effect of nanoparticles on latent heat of fusion. Results demonstrated that the magnitude of nanofluid latent heat reduction increases for smaller diameter particles in suspension. Three possible mechanisms – interfacial liquid layering, Brownian motion, and particle clustering – were examined to explain further reduction in latent heat, through the weakening of molecular bond structures. Although additional research is required to explore detailed mechanisms, experimental evidence suggests that interfacial liquid layering and Brownian motion cannot explain the degree of latent heat reduction observed. A finite element model is also presented as a method of quantifying nanofluid PCM energy storage performance. Thermal properties based on modified effective medium theory and an empirical relation for latent heat of fusion were applied as model parameters to determine energy stored and extracted over a given period of time. The model results show that while micro-scale particle inclusions exhibit some performance enhancement, nanoparticles in \\{PCMs\\} provide no significant improvement in TES performance. With smaller particles, the enhancement in thermal conductivity is not significant enough to overcome the reduction in latent heat of fusion, and less energy is stored over the PCM charge period. Therefore, the nanofluid approach may not be justifiable for energy storage applications. However, since the model parameters are dependent on the material properties of the system observed, storage performance may vary for differing nanofluid materials.

Aitor Zabalegui; Dhananjay Lokapur; Hohyun Lee

2014-01-01T23:59:59.000Z

496

Generating electricity from the oceans  

Science Journals Connector (OSTI)

Ocean energy has many forms, encompassing tides, surface waves, ocean circulation, salinity and thermal gradients. This paper will considers two of these, namely those found in the kinetic energy resource in tidal streams or marine currents, driven by gravitational effects, and the resources in wind-driven waves, derived ultimately from solar energy. There is growing interest around the world in the utilisation of wave energy and marine currents (tidal stream) for the generation of electrical power. Marine currents are predictable and could be utilised without the need for barrages and the impounding of water, whilst wave energy is inherently less predictable, being a consequence of wind energy. The conversion of these resources into sustainable electrical power offers immense opportunities to nations endowed with such resources and this work is partially aimed at addressing such prospects. The research presented conveys the current status of wave and marine current energy conversion technologies addressing issues related to their infancy (only a handful being at the commercial prototype stage) as compared to others such offshore wind. The work establishes a step-by-step approach that could be used in technology and project development, depicting results based on experimental and field observations on device fundamentals, modelling approaches, project development issues. It includes analysis of the various pathways and approaches needed for technology and device or converter deployment issues. As most technology developments are currently UK based, the paper also discusses the UK's financial mechanisms available to support this area of renewable energy, highlighting the needed economic approaches in technology development phases. Examination of future prospects for wave and marine current ocean energy technologies are also discussed.

AbuBakr S. Bahaj

2011-01-01T23:59:59.000Z

497

Modeling the heating of the Green Energy Lab in Shanghai by the geothermal heat pump combined with the solar thermal energy and ground energy storage.  

E-Print Network [OSTI]

?? This work involves the study of heating systems that combine solar collectors, geothermal heat pumps and thermal energy storage in the ground. Solar collectors… (more)

Yu, Candice Yau May

2012-01-01T23:59:59.000Z

498

Legal Implications of CO2 Ocean Storage  

E-Print Network [OSTI]

, ocean currents may prevent stagnation or accumulatioLegal Implications of CO2 Ocean Storage Jason Heinrich Working Paper Laboratory for Energy #12;Introduction Ocean sequestration of CO2, a potentially significant technique to be used

499

Thermally Speciated Mercury in Mineral Exploration | Open Energy  

Open Energy Info (EERE)

Thermally Speciated Mercury in Mineral Exploration Thermally Speciated Mercury in Mineral Exploration Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Thermally Speciated Mercury in Mineral Exploration Abstract Abstract unavailable. Author S.C. Smith Conference IGES; Dublin, CA; 2003/09/01 Published IGES, 2003 DOI Not Provided Check for DOI availability: http://crossref.org Citation S.C. Smith. 2003. Thermally Speciated Mercury in Mineral Exploration. In: Programs & Abstracts: Soil and Regolith Geochemistry in the Search for Mineral Deposits. IGES; 2003/09/01; Dublin, CA. Dublin, CA: IGES; p. 78 Retrieved from "http://en.openei.org/w/index.php?title=Thermally_Speciated_Mercury_in_Mineral_Exploration&oldid=681717" Categories: References Geothermal References

500

Test results of heat-exchanger cleaning in support of ocean thermal energy conversion  

SciTech Connect (OSTI)

These tests evaluated flow-driven brushes, recirculating sponge rubber balls, chlorination, and mechanical system/chlorination combinations for in-situ cleaning of two potential heat exchanger materials: titanium and aluminum alloy 5052. Tests were successful when fouling resistance was <3.0 x 10/sup -4/ ft/sup 2/ hr-/sup 0/F/Btu. Results indicated systems and cleaning techniques using brushes, soft sponge balls, and various concentrations of chlorine had some potential for maintaining heat transfer efficiency.

Lott, D F

1980-12-01T23:59:59.000Z