Powered by Deep Web Technologies
Note: This page contains sample records for the topic "ocean thermal energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC ENVIRONMENTAL ASSESSMENT  

E-Print Network [OSTI]

M.D. (editor) Ocean Thermal Energy Conversion (OTEC) Draftin Ocean Thermal Energy Conversion (OTEC) technology haveThe Ocean Thermal Energy Conversion (OTEC) 2rogrammatic

Sands, M.Dale

2013-01-01T23:59:59.000Z

2

Ocean Thermal Extractable Energy Visualization: Final Technical...  

Office of Environmental Management (EM)

Ocean Thermal Extractable Energy Visualization: Final Technical Report Ocean Thermal Extractable Energy Visualization: Final Technical Report Report about the Ocean Thermal...

3

OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC ENVIRONMENTAL ASSESSMENT  

E-Print Network [OSTI]

M.D. (editor) Ocean Thermal Energy Conversion (OTEC) Draftof ocean thermal energy conversion technology. U.S. Depart~June 1-11, 1980 OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC

Sands, M.Dale

2013-01-01T23:59:59.000Z

4

OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC ENVIRONMENTAL ASSESSMENT  

E-Print Network [OSTI]

M.D. (editor) Ocean Thermal Energy Conversion (OTEC) Draftr:he comnercialization of ocean thermal energy conversionJune 1-11, 1980 OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC

Sands, M.Dale

2013-01-01T23:59:59.000Z

5

OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC ENVIRONMENTAL ASSESSMENT  

E-Print Network [OSTI]

Sands, M.D. (editor) Ocean Thermal Energy Conversion (OTEC)r:he comnercialization of ocean thermal energy conversionJune 1-11, 1980 OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC

Sands, M.Dale

2013-01-01T23:59:59.000Z

6

DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

Fifth Ocean Thermal Energy Conversion Conference, Februarythe Sixth Ocean Thermal Energy Conversion Conference. OceanSixth Ocean Thermal Energy conversion Conference. June 19-

Sullivan, S.M.

2014-01-01T23:59:59.000Z

7

Ocean Thermal Energy Conversion LUIS A. VEGA  

E-Print Network [OSTI]

Ocean Thermal Energy Conversion LUIS A. VEGA Hawaii Natural Energy Institute, School of Ocean depths of 20 m (surface water) and 1,000 m. OTEC Ocean Thermal Energy Conversion, the process of converting the ocean thermal energy into electricity. OTEC transfer function The relationship between

8

DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

Commercial ocean thermal energy conversion ( OTEC) plants byand M.D. Sands. Ocean thermal energy conversion (OTEC) pilotfield of ocean thermal energy conversion discharges. I~. L.

Sullivan, S.M.

2014-01-01T23:59:59.000Z

9

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network [OSTI]

of ocean thermal energy conversion technology. U.S. DOE.Open cycle ocean thermal energy conversion. A preliminaryof the Fifth Ocean Thermal Energy Conversion Conference,

Sands, M. D.

2011-01-01T23:59:59.000Z

10

ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

Sands. 1980. Ocean thermal energy conversion (OTEC) pilotCommercial ocean thermal energy conversion (OTEC) plants byof the Fifth Ocean Thermal Energy Conversion Conference,

Sullivan, S.M.

2014-01-01T23:59:59.000Z

11

ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

Fifth Ocean Thermal Energy Conversion Conference, FebruarySixth Ocean Thermal Energy Conversion Conference, June 19-Fifth Ocean Thermal Energy Conversion Conference, February

Sullivan, S.M.

2014-01-01T23:59:59.000Z

12

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network [OSTI]

Fifth Ocean Thermal Energy Conversion Conference, FebruaryFifth Ocean Thermal Energy Conversion Conference, FebruarySixth Ocean Thermal Energy Conversion Conference. June 19-

Sands, M. D.

2011-01-01T23:59:59.000Z

13

OCEAN THERMAL ENERGY CONVERSION: AN OVERALL ENVIRONMENTAL ASSESSMENT  

E-Print Network [OSTI]

1980 :. i l OCEAN THERMAL ENERGY CONVERSION: ENVIRONMENTALM.D. (editor). 1980. Ocean Thermal Energy Conversion DraftDevelopment Plan. Ocean Thermal Energy Conversion. U.S. DOE

Sands, M.Dale

2013-01-01T23:59:59.000Z

14

ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

Commercial ocean thermal energy conversion (OTEC) plants byof the Fifth Ocean Thermal Energy Conversion Conference,Sands. 1980. Ocean thermal energy conversion (OTEC) pilot

Sullivan, S.M.

2014-01-01T23:59:59.000Z

15

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network [OSTI]

of ocean thermal energy conversion technology. U.S. DOE.Open cycle ocean thermal energy conversion. A preliminaryCompany. Ocean thermal energy conversion mission analysis

Sands, M. D.

2011-01-01T23:59:59.000Z

16

Ocean Thermal Energy Conversion: Potential Environmental Impacts and Fisheries  

E-Print Network [OSTI]

Ocean Thermal Energy Conversion: Potential Environmental Impacts and Fisheries Christina M Comfort Institute #12;Ocean Thermal Energy Conversion (OTEC) · Renewable energy ­ ocean thermal gradient · Large

Hawai'i at Manoa, University of

17

DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

Commercial ocean thermal energy conversion ( OTEC) plants byfield of ocean thermal energy conversion discharges. I~. L.II of the Sixth Ocean Thermal Energy conversion Conference.

Sullivan, S.M.

2014-01-01T23:59:59.000Z

18

ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

Commercial ocean thermal energy conversion (OTEC) plants bySands. 1980. Ocean thermal energy conversion (OTEC) pilotof the Ocean Thermal Energy Conversion (OTEC) Biofouling,

Sullivan, S.M.

2014-01-01T23:59:59.000Z

19

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network [OSTI]

of the Ocean Thermal Energy Conversion (OTEC) Biofouling,development of ocean thermal energy conversion (OTEC) plant-impact assessment ocean thermal energy conversion (OTEC)

Sands, M. D.

2011-01-01T23:59:59.000Z

20

DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

Commercial ocean thermal energy conversion ( OTEC) plants bySands. Ocean thermal energy conversion (OTEC) pilot plantof the Ocean Thermal Energy Conversion (OTEC) Biofouling,

Sullivan, S.M.

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ocean thermal energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

1979. Commercial ocean thermal energy conversion ( OTEC)field of ocean thermal energy conversion discharges. I~. L.II of the Sixth Ocean Thermal Energy conversion Conference.

Sullivan, S.M.

2014-01-01T23:59:59.000Z

22

ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

1979. Commercial ocean thermal energy conversion (OTEC)of the Fifth Ocean Thermal Energy Conversion Conference,Sands. 1980. Ocean thermal energy conversion (OTEC) pilot

Sullivan, S.M.

2014-01-01T23:59:59.000Z

23

OCEAN THERMAL ENERGY CONVERSION: AN OVERALL ENVIRONMENTAL ASSESSMENT  

E-Print Network [OSTI]

M.D. (editor). 1980. Ocean Thermal Energy Conversion Draft1980 :. i l OCEAN THERMAL ENERGY CONVERSION: ENVIRONMENTALDevelopment Plan. Ocean Thermal Energy Conversion. U.S. DOE

Sands, M.Dale

2013-01-01T23:59:59.000Z

24

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network [OSTI]

for the commercialization of ocean thermal energy conversionE. Hathaway. Open cycle ocean thermal energy conversion. AElectric Company. Ocean thermal energy conversion mission

Sands, M. D.

2011-01-01T23:59:59.000Z

25

DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

1979. Commercial ocean thermal energy conversion ( OTEC)the intermediate field of ocean thermal energy conversionII of the Sixth Ocean Thermal Energy conversion Conference.

Sullivan, S.M.

2014-01-01T23:59:59.000Z

26

ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

1979. Commercial ocean thermal energy conversion (OTEC)of the Fifth Ocean Thermal Energy Conversion Conference,and M.D. Sands. 1980. Ocean thermal energy conversion (OTEC)

Sullivan, S.M.

2014-01-01T23:59:59.000Z

27

Ocean Thermal | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico:CommunityNorthwest BasinOahu, Hawaii:EnergyOpenTheOceanThermal

28

Assessment of ocean thermal energy conversion  

E-Print Network [OSTI]

Ocean thermal energy conversion (OTEC) is a promising renewable energy technology to generate electricity and has other applications such as production of freshwater, seawater air-conditioning, marine culture and chilled-soil ...

Muralidharan, Shylesh

2012-01-01T23:59:59.000Z

29

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network [OSTI]

for the commercialization of ocean thermal energy conversionOpen cycle ocean thermal energy conversion. A preliminary1978. 'Open cycle thermal energy converS1on. A preliminary

Sands, M. D.

2011-01-01T23:59:59.000Z

30

Ocean Thermal Energy Conversion Mostly about USA  

E-Print Network [OSTI]

Ocean Thermal Energy Conversion History Mostly about USA 1980's to 1990's and bias towards Vega Structures (Plantships) · Bottom-Mounted Structures · Model Basin Tests/ At-Sea Tests · 210 kW OC-OTEC) #12;#12;Claude's Off Rio de Janeiro (1933) · Floating Ice Plant: 2.2 MW OC- OTEC to produce 2000

31

NAVFAC Ocean Thermal Energy Conversion (OTEC) Project  

E-Print Network [OSTI]

NAVFAC Ocean Thermal Energy Conversion (OTEC) Project Contract Number N62583-09-C-0083 CDRL A014 OTEC Mini-Spar Pilot Plant 9 December 2011 OTEC-2011-001-4 Prepared for: Naval Facilities; distribution is unlimited. #12; Configuration Report and Development Plan Volume 4 Site Specific OTEC

32

COMMERCIAL FISHERY DATA FROM A PROPOSED OCEAN THERMAL ENERGY CONVERSION (OTEC) SITE IN PUERTO RICO  

E-Print Network [OSTI]

proposed Ocean Thermal Energy Conversion (OTEC) sites toassessment: ocean thermal energy conversion (OTEC) program;operation of Ocean Thermal Energy Conversion (OTEC) power

Ryan, Constance J.

2013-01-01T23:59:59.000Z

33

A PRELIMINARY EVALUATION OF IMPINGEMENT AND ENTRAINMENT BY OCEAN THERMAL ENERGY CONVERSION (OTEC) PLANTS  

E-Print Network [OSTI]

Assessment, Ocean Thermal Energy Conversion (OTEC) ProgramAssessment Ocean Thermal Energy Conversion (OTEC), U.S.recommendations for Ocean Thermal Energy Conversion (OTEC)

Sullivan, S.M.

2013-01-01T23:59:59.000Z

34

A PRELIMINARY EVALUATION OF IMPINGEMENT AND ENTRAINMENT BY OCEAN THERMAL ENERGY CONVERSION (OTEC) PLANTS  

E-Print Network [OSTI]

Assessment, Ocean Thermal Energy Conversion (OTEC) ProgramAssessment Ocean Thermal Energy Conversion (OTEC), U.S.for Ocean Thermal Energy Conversion (OTEC) plants. Argonne,

Sullivan, S.M.

2013-01-01T23:59:59.000Z

35

COMMERCIAL FISHERY DATA FROM A PROPOSED OCEAN THERMAL ENERGY CONVERSION (OTEC) SITE IN PUERTO RICO  

E-Print Network [OSTI]

assessment: ocean thermal energy conversion (OTEC) program;proposed Ocean Thermal Energy Conversion (OTEC) sites tooperation of Ocean Thermal Energy Conversion (OTEC) power

Ryan, Constance J.

2013-01-01T23:59:59.000Z

36

A PRELIMINARY EVALUATION OF IMPINGEMENT AND ENTRAINMENT BY OCEAN THERMAL ENERGY CONVERSION (OTEC) PLANTS  

E-Print Network [OSTI]

nental Assessment, Ocean Thermal Energy Conversion (OTEC)Impact Assessment Ocean Thermal Energy Conversion (OTEC),Intake Screens for Ocean Thermal Energy M.S. Thesis. Oregon

Sullivan, S.M.

2013-01-01T23:59:59.000Z

37

COMMERCIAL FISHERY DATA FROM A PROPOSED OCEAN THERMAL ENERGY CONVERSION (OTEC) SITE IN PUERTO RICO  

E-Print Network [OSTI]

at several proposed Ocean Thermal Energy Conversion (OTEC)Environmental assessment: ocean thermal energy conversion (The operation of Ocean Thermal Energy Conversion (OTEC)

Ryan, Constance J.

2013-01-01T23:59:59.000Z

38

August 2011 Environmental Assessment of Ocean Thermal Energy  

E-Print Network [OSTI]

August 2011 1 Environmental Assessment of Ocean Thermal Energy Conversion in Hawaii Available data prompted ocean thermal energy conversion (OTEC) technology to be re-considered for use in Hawaii for OTEC development. Keywords- Ocean thermal energy conversion, OTEC, renewable energy, Hawaii

39

Open cycle ocean thermal energy conversion system  

DOE Patents [OSTI]

An improved open cycle ocean thermal energy conversion system including a flash evaporator for vaporizing relatively warm ocean surface water and an axial flow, elastic fluid turbine having a vertical shaft and axis of rotation. The warm ocean water is transmitted to the evaporator through a first prestressed concrete skirt-conduit structure circumferentially situated about the axis of rotation. The unflashed warm ocean water exits the evaporator through a second prestressed concrete skirt-conduit structure located circumferentially about and radially within the first skirt-conduit structure. The radially inner surface of the second skirt conduit structure constitutes a cylinder which functions as the turbine's outer casing and obviates the need for a conventional outer housing. The turbine includes a radially enlarged disc element attached to the shaft for supporting at least one axial row of radially directed blades through which the steam is expanded. A prestressed concrete inner casing structure of the turbine has upstream and downstream portions respectively situated upstream and downstream from the disc element. The radially outer surfaces of the inner casing portions and radially outer periphery of the axially interposed disc cooperatively form a downwardly radially inwardly tapered surface. An annular steam flowpath of increasing flow area in the downward axial direction is radially bounded by the inner and outer prestressed concrete casing structures. The inner casing portions each include a transversely situated prestressed concrete circular wall for rotatably supporting the turbine shaft and associated structure. The turbine blades are substantially radially coextensive with the steam flowpath and receive steam from the evaporator through an annular array of prestressed concrete stationary vanes which extend between the inner and outer casings to provide structural support therefor and impart a desired flow direction to the steam.

Wittig, J. Michael (West Goshen, PA)

1980-01-01T23:59:59.000Z

40

2007 Survey of Energy Resources World Energy Council 2007 Ocean Thermal Energy Conversion COUNTRY NOTES  

E-Print Network [OSTI]

2007 Survey of Energy Resources World Energy Council 2007 Ocean Thermal Energy Conversion 573 and personal communication. Valuable inputs were provided by Don Lennard of Ocean Thermal Energy Conversion organisation. Australia At an ocean energy workshop held in Townsville, northern Queensland in September 2005

Note: This page contains sample records for the topic "ocean thermal energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

OCEAN THERMAL ENERGY CONVERSION ECOLOGICAL DATA REPORT FROM 0. S. S. RESEARCHER IN GULF OF MEXICO, JULY 12-23, 1977.  

E-Print Network [OSTI]

LBL-8945 GOTEC-01 OCEAN THERMAL ENERGY CONVERSION ECOLOGICALThree Proposed Ocean Thermal Energy Conversion (OTEC) Sites:an operating Ocean Thermal Energy Conversion plant were in-

Quinby-Hunt, M.S.

2008-01-01T23:59:59.000Z

42

OCEAN THERMAL ENERGY CONVERSION PRELIMINARY DATA REPORT FOR THE NOVEMBER 1977 GOTEC-02 CRUISE TO THE GULF OF MEXICO MOBILE SITE  

E-Print Network [OSTI]

9437 GOTEC-02 OCEAN THERMAL ENERGY CONVERSION PRELIMINARYto potential Ocean Thermal Energy Conversion (OTEC) sites inThree Proposed Ocean Thermal Energy Conversion (OTEC) Sites:

Commins, M.L.

2010-01-01T23:59:59.000Z

43

OCEAN THERMAL ENERGY CONVERSION PRELIMINARY DATA REPORT FOR THE NOVEMBER 1977 GOTEC-02 CRUISE TO THE GULF OF MEXICO MOBILE SITE  

E-Print Network [OSTI]

9437 GOTEC-02 OCEAN THERMAL ENERGY CONVERSION PRELIMINARYThree Proposed Ocean Thermal Energy Conversion (OTEC) Sites:al. , (1979) Ocean Thermal Energy Conversion, Eco- logical

Commins, M.L.

2010-01-01T23:59:59.000Z

44

OCEAN THERMAL ENERGY CONVERSION ECOLOGICAL DATA REPORT FROM 0. S. S. RESEARCHER IN GULF OF MEXICO, JULY 12-23, 1977.  

E-Print Network [OSTI]

LBL-8945 GOTEC-01 OCEAN THERMAL ENERGY CONVERSION ECOLOGICALat Three Proposed Ocean Thermal Energy Conversion (OTEC)effect of an operating Ocean Thermal Energy Conversion plant

Quinby-Hunt, M.S.

2008-01-01T23:59:59.000Z

45

OCEAN THERMAL ENERGY CONVERSION PRELIMINARY DATA REPORT FOR THE NOVEMBER 1977 GOTEC-02 CRUISE TO THE GULF OF MEXICO MOBILE SITE  

E-Print Network [OSTI]

9437 GOTEC-02 OCEAN THERMAL ENERGY CONVERSION PRELIMINARYcruises to potential Ocean Thermal Energy Conversion (OTEC)at Three Proposed Ocean Thermal Energy Conversion (OTEC)

Commins, M.L.

2010-01-01T23:59:59.000Z

46

OCEAN THERMAL ENERGY CONVERSION PRELIMINARY DATA REPORT FOR THE NOVEMBER 1977 GOTEC-02 CRUISE TO THE GULF OF MEXICO MOBILE SITE  

E-Print Network [OSTI]

to potential Ocean Thermal Energy Conversion (OTEC) sites inThree Proposed Ocean Thermal Energy Conversion (OTEC) Sites:

Commins, M.L.

2010-01-01T23:59:59.000Z

47

COMMERCIAL FISHERY DATA FROM A PROPOSED OCEAN THERMAL ENERGY CONVERSION (OTEC) SITE IN PUERTO RICO  

E-Print Network [OSTI]

Ocean Thermal Energy Conversion (OTEC) sites to identify thefishery resources at potential OTEC sites. At this time, thethermal energy conversion (OTEC) program; preoperational

Ryan, Constance J.

2013-01-01T23:59:59.000Z

48

Ocean thermal energy conversion plants : experimental and analytical study of mixing and recirculation  

E-Print Network [OSTI]

Ocean thermal energy conversion (OTEC) is a method of generating power using the vertical temperature gradient of the tropical ocean as an energy source. Experimental and analytical studies have been carried out to determine ...

Jirka, Gerhard H.

49

Carbon dioxide release from ocean thermal energy conversion (OTEC) cycles  

SciTech Connect (OSTI)

This paper presents the results of recent measurements of CO{sub 2} release from an open-cycle ocean thermal energy conversion (OTEC) experiment. Based on these data, the rate of short-term CO{sub 2} release from future open-cycle OTEC plants is projected to be 15 to 25 times smaller than that from fossil-fueled electric power plants. OTEC system that incorporate subsurface mixed discharge are expected to result in no long-term release. OTEC plants can significantly reduce CO{sub 2} emissions when substituted for fossil-fueled power generation. 12 refs., 4 figs., 3 tabs.

Green, H.J. (Solar Energy Research Inst., Golden, CO (USA)); Guenther, P.R. (Scripps Institution of Oceanography, La Jolla, CA (USA))

1990-09-01T23:59:59.000Z

50

Ocean Thermal Energy Conversion Basics | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment of Energy(National1 -OSSGasof Energy Ocean EnergyRenewable

51

Economics of Ocean Thermal Energy Conversion Luis A. Vega, Ph.D.  

E-Print Network [OSTI]

Economics of Ocean Thermal Energy Conversion (OTEC) by Luis A. Vega, Ph.D. Published by the American Society of Civil Engineers (ASCE) Chapter 7 of "Ocean Energy Recovery: The State of the Art" 1992 #12;Published in Ocean Energy Recovery, pp 152-181, ASCE (1992) ii Table of Contents Tables /Figures

52

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network [OSTI]

geo-thermal energy, ocean thermal energy, wasted heat ingeothermal energy, ocean thermal energy, wasted heat inthermal energy, geo/ocean-thermal energy, wasted heat in

Lim, Hyuck

2011-01-01T23:59:59.000Z

53

Modeling the Physical and Biochemical Influence of Ocean Thermal Energy Conversion Plant Discharges into their Adjacent Waters  

Broader source: Energy.gov [DOE]

Modeling the Physical and Biochemical Influence of Ocean Thermal Energy Conversion Plant Discharges into their Adjacent Waters

54

Draft environmental assessment: Ocean Thermal Energy Conversion (OTEC) Pilot Plants  

SciTech Connect (OSTI)

This Environmental Assessment (EA) has been prepared, in accordance with the National Environmental Policy Act of 1969, for the deployment and operation of a commercial 40-Megawatt (MW) Ocean Thermal Energy Conversion (OTEC) Pilot Plant (hereafter called the Pilot Plant). A description of the proposed action is presented, and a generic environment typical of the candidate Pilot Plant siting regions is described. An assessment of the potential environmental impacts associated with the proposed action is given, and the risk of credible accidents and mitigating measures to reduce these risks are considered. The Federal and State plans and policies the proposed action will encompass are described. Alternatives to the proposed action are presented. Appendix A presents the navigation and environmental information contained in the US Coast Pilot for each of the candidate sites; Appendix B provides a brief description of the methods and calculations used in the EA. It is concluded that environmental disturbances associated with Pilot Plant activities could potentially cause significant environmental impacts; however, the magnitude of these potential impacts cannot presently be assessed, due to insufficient engineering and environmental information. A site- and design-specific OTEC Pilot Plant Environmental Impact Statement (EIS) is required to resolve the potentially significant environmental effects associated with Pilot Plant deployment and operation. (WHK)

Sullivan, S.M.; Sands, M.D.; Donat, J.R.; Jepsen, P.; Smookler, M.; Villa, J.F.

1981-02-01T23:59:59.000Z

55

Ocean Thermal Energy Conversion (OTEC) Programmatic Environmental Analysis--Appendices  

SciTech Connect (OSTI)

The programmatic environmental analysis is an initial assessment of Ocean Thermal Energy Conversion (OTEC) technology considering development, demonstration and commercialization. It is concluded that the OTEC development program should continue because the development, demonstration, and commercialization on a single-plant deployment basis should not present significant environmental impacts. However, several areas within the OTEC program require further investigation in order to assess the potential for environmental impacts from OTEC operation, particularly in large-scale deployments and in defining alternatives to closed-cycle biofouling control: (1) Larger-scale deployments of OTEC clusters or parks require further investigations in order to assess optimal platform siting distances necessary to minimize adverse environmental impacts. (2) The deployment and operation of the preoperational platform (OTEC-1) and future demonstration platforms must be carefully monitored to refine environmental assessment predictions, and to provide design modifications which may mitigate or reduce environmental impacts for larger-scale operations. These platforms will provide a valuable opportunity to fully evaluate the intake and discharge configurations, biofouling control methods, and both short-term and long-term environmental effects associated with platform operations. (3) Successful development of OTEC technology to use the maximal resource capabilities and to minimize environmental effects will require a concerted environmental management program, encompassing many different disciplines and environmental specialties. This volume contains these appendices: Appendix A -- Deployment Scenario; Appendix B -- OTEC Regional Characterization; and Appendix C -- Impact and Related Calculations.

Authors, Various

1980-01-01T23:59:59.000Z

56

ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

the external fluid mechanics of OTEC plants: report coveringocean thermal energy conversion (OTEC) plants by mid-1980's.1980. A baseline design of a 40-MW OTEC Pilot Johns Hopkins

Sullivan, S.M.

2014-01-01T23:59:59.000Z

57

USE OF MIXTURES AS WORKING FLUIDS IN OCEAN THERMAL ENERGY CONVERSION CYCLES  

E-Print Network [OSTI]

Mixtures offer potential advantages over pure compounds as working fluids in ocean thermal energy conversion cycles. Power plant capital costs per unit of energy output can be reduced using mixtures because of increased thermal efficiency and/or decreased heat exchanger size requirements. Mixtures

Khan Zafar Iqbal; Kenneth E. Starling

58

NREL-Ocean Energy Thermal Conversion | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3Informationof Energy Calculator Jump to: navigation,

59

Ocean Thermal Extractable Energy Visualization: Final Technical Report  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment of Energy(National1 -OSSGasof Energy Ocean

60

Potential environmental consequences of ocean thermal energy conversion (OTEC) plants. A workshop  

SciTech Connect (OSTI)

The concept of generating electrical power from the temperature difference between surface and deep ocean waters was advanced over a century ago. A pilot plant was constructed in the Caribbean during the 1920's but commercialization did not follow. The US Department of Energy (DOE) earlier planned to construct a single operational 10MWe Ocean Thermal Energy Conversion (OTEC) plant by 1986. However, Public Law P.L.-96-310, the Ocean Thermal Energy Conversion Research, Development and Demonstration Act, and P.L.-96-320, the Ocean Thermal Energy Conversion Act of 1980, now call for acceleration of the development of OTEC plants, with capacities of 100 MWe in 1986, 500 MWe in 1989, and 10,000 MWe by 1999 and provide for licensing and permitting and loan guarantees after the technology has been demonstrated.

Walsh, J.J. (ed.)

1981-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "ocean thermal energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Open cycle ocean thermal energy conversion system structure  

DOE Patents [OSTI]

A generally mushroom-shaped, open cycle OTEC system and distilled water producer which has a skirt-conduit structure extending from the enlarged portion of the mushroom to the ocean. The enlarged part of the mushroom houses a toroidal casing flash evaporator which produces steam which expands through a vertical rotor turbine, partially situated in the center of the blossom portion and partially situated in the mushroom's stem portion. Upon expansion through the turbine, the motive steam enters a shell and tube condenser annularly disposed about the rotor axis and axially situated beneath the turbine in the stem portion. Relatively warm ocean water is circulated up through the radially outer skirt-conduit structure entering the evaporator through a radially outer portion thereof, flashing a portion thereof into motive steam, and draining the unflashed portion from the evaporator through a radially inner skirt-conduit structure. Relatively cold cooling water enters the annular condenser through the radially inner edge and travels radially outwardly into a channel situated along the radially outer edge of the condenser. The channel is also included in the radially inner skirt-conduit structure. The cooling water is segregated from the potable, motive steam condensate which can be used for human consumption or other processes requiring high purity water. The expansion energy of the motive steam is partially converted into rotational mechanical energy of the turbine rotor when the steam is expanded through the shaft attached blades. Such mechanical energy drives a generator also included in the enlarged mushroom portion for producing electrical energy. Such power generation equipment arrangement provides a compact power system from which additional benefits may be obtained by fabricating the enclosing equipment, housings and component casings from low density materials, such as prestressed concrete, to permit those casings and housings to also function as a floating support vessel.

Wittig, J. Michael (West Goshen, PA)

1980-01-01T23:59:59.000Z

62

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network [OSTI]

sheet] map I - 732). General Electric Company. Ocean thermalby Washom et al. General Electric (1977), Francis (1977),selected is based on General Electric estimated the ammonia

Sands, M. D.

2011-01-01T23:59:59.000Z

63

Ocean Thermal Energy Conversion Primer L. A. Vega, Ph.D.  

E-Print Network [OSTI]

source and the heat sink required for a heat engine. A practical application is found in a system (heat engine) designed to transform the thermal energy into electricity. This is referred to as OTEC for Ocean seawater is flash-evaporated in a vacuum chamber. The resulting low-pressure steam is used to drive

64

Near and far field models of external fluid mechanics of Ocean Thermal Energy Conversion (OTEC) power plants  

E-Print Network [OSTI]

The world is facing the challenge of finding new renewable sources of energy - first, in response to fossil fuel reserve depletion, and second, to reduce greenhouse gas emissions. Ocean Thermal Energy Conversion (OTEC) can ...

Rodrguez Buo, Mariana

2013-01-01T23:59:59.000Z

65

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network [OSTI]

Electricity - Hawaii is almost totally dependent upon imported petroleum A natural energy source of geothermal

Sands, M. D.

2011-01-01T23:59:59.000Z

66

Ocean Thermal Extractable Energy Visualization: Final Technical Report |  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced ScorecardReactor TechnologyOFFICE: I Oak Ridge,8 8EnergyQ1

67

DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

the external fluid mechanics of OTEC plants: report coveringthermal energy conversion ( OTEC) plants by mid-1980 1 s.distributiion at potential OTEC sites. p. 7D-4/1-4/5. In

Sullivan, S.M.

2014-01-01T23:59:59.000Z

68

Ocean Thermal Energy Conversion Life Cycle Cost Assessment, Final Technical Report, 30 May 2012  

SciTech Connect (OSTI)

The Ocean Thermal Energy Conversion (OTEC) Life Cycle Cost Assessment (OLCCA) is a study performed by members of the Lockheed Martin (LM) OTEC Team under funding from the Department of Energy (DOE), Award No. DE-EE0002663, dated 01/01/2010. OLCCA objectives are to estimate procurement, operations and maintenance, and overhaul costs for two types of OTEC plants: -Plants moored to the sea floor where the electricity produced by the OTEC plant is directly connected to the grid ashore via a marine power cable (Grid Connected OTEC plants) -Open-ocean grazing OTEC plant-ships producing an energy carrier that is transported to designated ports (Energy Carrier OTEC plants) Costs are developed using the concept of levelized cost of energy established by DOE for use in comparing electricity costs from various generating systems. One area of system costs that had not been developed in detail prior to this analysis was the operations and sustainment (O&S) cost for both types of OTEC plants. Procurement costs, generally referred to as capital expense and O&S costs (operations and maintenance (O&M) costs plus overhaul and replacement costs), are assessed over the 30 year operational life of the plants and an annual annuity calculated to achieve a levelized cost (constant across entire plant life). Dividing this levelized cost by the average annual energy production results in a levelized cost of electricity, or LCOE, for the OTEC plants. Technical and production efficiency enhancements that could result in a lower value of the OTEC LCOE were also explored. The thermal OTEC resource for Oahu, Hawai?¢????i and projected build out plan were developed. The estimate of the OTEC resource and LCOE values for the planned OTEC systems enable this information to be displayed as energy supplied versus levelized cost of the supplied energy; this curve is referred to as an Energy Supply Curve. The Oahu Energy Supply Curve represents initial OTEC deployment starting in 2018 and demonstrates the predicted economies of scale as technology and efficiency improvements are realized and larger more economical plants deployed. Utilizing global high resolution OTEC resource assessment from the Ocean Thermal Extractable Energy Visualization (OTEEV) project (an independent DOE project), Global Energy Supply Curves were generated for Grid Connected and Energy Carrier OTEC plants deployed in 2045 when the predicted technology and efficiencies improvements are fully realized. The Global Energy Supply Curves present the LCOE versus capacity in ascending order with the richest, lowest cost resource locations being harvested first. These curves demonstrate the vast ocean thermal resource and potential OTEC capacity that can be harvested with little change in LCOE.

Martel, Laura; Smith, Paul; Rizea, Steven; Van Ryzin, Joe; Morgan, Charles; Noland, Gary; Pavlosky, Rick; Thomas, Michael

2012-06-30T23:59:59.000Z

69

Research on the external fluid mechanics of ocean thermal energy conversion plants : report covering experiments in a current  

E-Print Network [OSTI]

This report describes a set of experiments in a physical model study to explore plume transport and recirculation potential for a range of generic Ocean Thermal Energy Conversion (OTEC) plant designs and ambient conditions. ...

Fry, David J. (David James)

1981-01-01T23:59:59.000Z

70

Ocean Thermal Resource and Site Selection Criteria (January 2011) luisvega@hawaii.edu Ocean Thermal Resources  

E-Print Network [OSTI]

Ocean Thermal Resource and Site Selection Criteria (January 2011) luisvega@hawaii.edu 1 Ocean Thermal Resources The vast size of the ocean thermal resource and the baseload capability of OTEC systems of Hawaii throughout the year and at all times of the day. This is an indigenous renewable energy resource

71

OCEAN THERMAL ENERGY CONVERSION PRELIMINARY DATA REPORT FOR THE NOVEMBER 1977 GOTEC-02 CRUISE TO THE GULF OF MEXICO MOBILE SITE  

E-Print Network [OSTI]

Ocean Thermal Energy Conversion (OTEC) sites in the Gulf ofBiofoul- ing and Corrosion of OTEC plants ~ Selected Sites.Thermal Energy Conversion (OTEC) Sites: Puerto Rico, St.

Commins, M.L.

2010-01-01T23:59:59.000Z

72

Ocean Thermal Resources off the Hawaiian Islands luisvega@hawaii.edu Ocean Thermal Resources off the Hawaiian Islands  

E-Print Network [OSTI]

information to assist developers of ocean thermal energy conversion (OTEC) systems in site selection Energy Conversion The immense size of the ocean thermal resource and the baseload capability of OTECOcean Thermal Resources off the Hawaiian Islands luisvega@hawaii.edu 1 Ocean Thermal Resources off

73

A PRELIMINARY EVALUATION OF IMPINGEMENT AND ENTRAINMENT BY OCEAN THERMAL ENERGY CONVERSION (OTEC) PLANTS  

E-Print Network [OSTI]

Thermal Energy Conversion (OTEC) Program PreoperationalThermal Energy Conversion (OTEC), U.S. Department of Energy,aspects of the screens for OTEC intake systems. U.S. Energy

Sullivan, S.M.

2013-01-01T23:59:59.000Z

74

Ocean Thermal Extractable Energy Visualization- Final Technical Report on Award DE-EE0002664. October 28, 2012  

SciTech Connect (OSTI)

The Ocean Thermal Extractable Energy Visualization (OTEEV) project focuses on assessing the Maximum Practicably Extractable Energy (MPEE) from the world's ocean thermal resources. MPEE is defined as being sustainable and technically feasible, given today's state-of-the-art ocean energy technology. Under this project the OTEEV team developed a comprehensive Geospatial Information System (GIS) dataset and software tool, and used the tool to provide a meaningful assessment of MPEE from the global and domestic U.S. ocean thermal resources. The OTEEV project leverages existing NREL renewable energy GIS technologies and integrates extractable energy estimated from quality-controlled data and projected optimal achievable energy conversion rates. Input data are synthesized from a broad range of existing in-situ measurements and ground-truthed numerical models with temporal and spatial resolutions sufficient to reflect the local resource. Energy production rates are calculated for regions based on conversion rates estimated for current technology, local energy density of the resource, and sustainable resource extraction. Plant spacing and maximum production rates are then estimated based on a default plant size and transmission mechanisms. The resulting data are organized, displayed, and accessed using a multi-layered GIS mapping tool, http://maps.nrel.gov/mhk_atlas with a user-friendly graphical user interface.

Ascari, Matthew B.; Hanson, Howard P.; Rauchenstein, Lynn; Van Zwieten, James; Bharathan, Desikan; Heimiller, Donna; Langle, Nicholas; Scott, George N.; Potemra, James; Nagurny, N. John; Jansen, Eugene

2012-10-28T23:59:59.000Z

75

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network [OSTI]

solar radiation, and the geothermal energy. [16] Fig. 1.1.thermal energy, geothermal energy, wasted heat from athermal energy, geothermal energy, ocean thermal energy,

Lim, Hyuck

2011-01-01T23:59:59.000Z

76

Economics of Ocean Thermal Energy Conversion (OTEC): Luis A. Vega Ph.D., National Marine Renewable Energy Center at the University of Hawai'i  

E-Print Network [OSTI]

OTC 21016 Economics of Ocean Thermal Energy Conversion (OTEC): An Update Luis A. Vega Ph and we will face a steadily diminishing petroleum supply. This situation justifies re-evaluating OTEC should begin to implement the first generation of OTEC plantships providing electricity, via submarine

77

DCNS, OTEC roadmap May 2013 DCNSDCNS -Ocean Energy Business Unit  

E-Print Network [OSTI]

© DCNS, OTEC roadmap ­ May 2013 © DCNSDCNS - Ocean Energy Business Unit Emmanuel BROCHARD, VP OTEC positioning for DCNS on Ocean Energy Provider of added-value · On Ocean Thermal Energy Conversion, Floating #12;© DCNS, OTEC roadmap ­ May 2013 4 DNCS invests in 4 ocean energy technologies Keypoints OTEC

78

Conceptual design of an open-cycle ocean thermal energy conversion net power-producing experiment (OC-OTEC NPPE)  

SciTech Connect (OSTI)

This report describes the conceptual design of an experiment to investigate heat and mass transfer and to assess the viability of open-cycle ocean thermal energy conversion (OC-OTEC). The experiment will be developed in two stages, the Heat- and Mass-Transfer Experimental Apparatus (HMTEA) and the Net Power-Producing Experiment (NPPE). The goal for the HMTEA is to test heat exchangers. The goal for the NPPE is to experimentally verify OC-OTEC's feasibility by installing a turbine and testing the power-generating system. The design effort met the goals of both the HMTEA and the NPPE, and duplication of hardware was minimal. The choices made for the design resource water flow rates are consistent with the availability of cold and warm seawater as a result of the seawater systems upgrade carried out by the US Department of Energy (DOE), the state of Hawaii, and the Pacific International Center for High Technology Research. The choices regarding configuration of the system were made based on projected performance, degree of technical risk, schedule, and cost. The cost for the future phase of the design and the development of the HMTEA/NPPE is consistent with the projected future program funding levels. The HMTEA and NPPE were designed cooperatively by PICHTR, Argonne National Laboratory, and Solar Energy Research Institute under the guidance of DOE. The experiment will be located at the DOE's Seacoast Test Facility at the Natural Energy Laboratory of Hawaii, Kailua-Kona, Hawaii. 71 refs., 41 figs., 34 tabs.

Bharathan, D.; Green, H.J.; Link, H.F.; Parsons, B.K.; Parsons, J.M.; Zangrando, F.

1990-07-01T23:59:59.000Z

79

E. Guilyardi G. Madec L. Terray The role of lateral ocean physics in the upper ocean thermal balance  

E-Print Network [OSTI]

inertia and to its opacity, the ocean stores vast amounts of energy, away from a direct contactE. Guilyardi á G. Madec á L. Terray The role of lateral ocean physics in the upper ocean thermal balance of a coupled ocean-atmosphere GCM Received: 24 January 2000 / Accepted: 11 September 2000 Abstract

Guilyardi, Eric

80

Ocean thermal energy conversion power system development. Final design report: PSD-I, Phase II  

SciTech Connect (OSTI)

The PSD-I program provides a heat exchanger sytem consisting of an evaporator, condenser and various ancillaries with ammonia used as a working fluid in a closed simulated Rankine cycle. It is to be installed on the Chepachet Research Vessel for test and evaluation of a number of OTEC concepts in a true ocean environment. It is one of several test articles to be tested. Primary design concerns include control of biofouling, corrosion and erosion of aluminum tubes, selection of materials, and the development of a basis for scale-up to large heat exchangers so as to ultimately demonstrate economic feasibility on a commercial scale. The PSD-I test article is devised to verify thermodynamic, environmental, and mechanical performance of basic design concepts. The detailed design, development, fabrication, checklist, delivery, installation support, and operation support for the Test Article Heat Exchangers are described. (WHK)

None

1980-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "ocean thermal energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Study of domestic social and economic impacts of ocean thermal energy conversion (OTEC) commercial development. Volume II. Industry profiles  

SciTech Connect (OSTI)

Econoimc profiles of the industries most affected by the construction, deployment, and operation of Ocean Thermal Energy Conversion (OTEC) powerplants are presented. Six industries which will contribute materials and/or components to the construction of OTEC plants have been identified and are profiled here. These industries are: steel industry, concrete industry, titanium metal industry, fabricated structural metals industry, fiber glass-reinforced plastics industry, and electrical transmission cable industry. The economic profiles for these industries detail the industry's history, its financial and economic characteristics, its technological and production traits, resource constraints that might impede its operation, and its relation to OTEC. Some of the historical data collected and described in the profile include output, value of shipments, number of firms, prices, employment, imports and exports, and supply-demand forecasts. For most of the profiled industries, data from 1958 through 1980 were examined. In addition, profiles are included on the sectors of the economy which will actualy construct, deploy, and supply the OTEC platforms.

None

1981-12-22T23:59:59.000Z

82

The magnesium silicide germanide stannide alloy: A new concept in ocean thermal energy conversion  

SciTech Connect (OSTI)

In devices hitherto used for the direct conversion of heat into electricity, commonly known as ''thermoelectric energy converters'', the efficiency of conversion is appreciably lower than that of conventional reciprocating or rotary heat engines. This low efficiency is brought about by the physical properties of the materials selected for the manufacture of these devices. The materials that are currently being used for this purpose are either simple elements and alloys thereof, such as silicon and germanium, or intermetallic compounds, either simple or alloys and solid solutions thereof. Of the latter, mention may be made of bismuth telluride, antimony telluride, lead telluride, antimony silver telluride, lead selenide, bismuth selenide, antimony selenide, etc., as well as mixtures and solid solutions of these and other compounds. A search in respect of these materials carried out in the U.S. Patent literature indicates indeed a quite substantial and impressive record.

Nicolaou, M.C.

1983-12-01T23:59:59.000Z

83

Near-inertial and thermal to atmospheric forcing in the North Atlantic Ocean  

E-Print Network [OSTI]

Observational and modeling techniques are employed to investigate the thermal and inertial upper ocean response to wind and buoyancy forcing in the North Atlantic Ocean. First, the seasonal kinetic energy variability of ...

Silverthorne, Katherine E

2010-01-01T23:59:59.000Z

84

Ninth Annual Ocean Renewable Energy Conference  

Broader source: Energy.gov [DOE]

The future of clean, renewable ocean wave energy will be discussed in depth at the 2014 Ocean Renewable Energy Conference.

85

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network [OSTI]

using aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"ings of Aquifer Thermal Energy Storage Workshop, Lawrence

Tsang, C.-F.

2011-01-01T23:59:59.000Z

86

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network [OSTI]

aquifers for thermal energy storage. Problems outlined aboveModeling of Thermal Energy Storage in Aquifers," Proceed-ings of Aquifer Thermal Energy Storage Workshop, Lawrence

Tsang, C.-F.

2011-01-01T23:59:59.000Z

87

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network [OSTI]

using aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"Proceed- ings of Aquifer Thermal Energy Storage Workshop,

Tsang, C.-F.

2011-01-01T23:59:59.000Z

88

Measurements of gas sorption from seawater and the influence of gas release on open-cycle ocean thermal energy conversion (OC-OTEC) system performance  

SciTech Connect (OSTI)

The technical community has questioned the validity and cost-effectiveness of open-cycle ocean thermal energy conversion (OC-OTEC) systems because of the unknown effect of noncondensable gas on heat exchanger performance and the power needed to run vacuum equipment to remove this gas. To date, studies of seawater gas desorption have not been prototypical for system level analysis. This study gives preliminary gas desorption data on a vertical spout, direct contact evaporator and multiple condenser geometries. Results indicate that dissolved gas can be substantially removed before the seawater enters the heat exchange process, reducing the uncertainty and effect of inert gas on heat exchanger performance.

Penney, T.R.; Althof, J.A.

1985-06-01T23:59:59.000Z

89

Alternative Energy Sources Myths and Realities  

E-Print Network [OSTI]

Tidal power Fusion Ocean thermal energy conversion Need Forelectricity. Ocean Thermal energy Conversion (OTEC) Within

Youngquist, Walter

1998-01-01T23:59:59.000Z

90

Seasonal thermal energy storage  

SciTech Connect (OSTI)

This report describes the following: (1) the US Department of Energy Seasonal Thermal Energy Storage Program, (2) aquifer thermal energy storage technology, (3) alternative STES technology, (4) foreign studies in seasonal thermal energy storage, and (5) economic assessment.

Allen, R.D.; Kannberg, L.D.; Raymond, J.R.

1984-05-01T23:59:59.000Z

91

California Small Hydropower and Ocean Wave Energy  

E-Print Network [OSTI]

California Small Hydropower and Ocean Wave Energy Resources IN SUPPORT OF THE 2005 INTEGRATED....................................................................................................................... 9 Ocean Wave Energy................................................................. 21 #12;ii List of Tables Table 1 California Small Hydropower And Ocean Wave Energy Resources Table 2

92

Ocean thermal energy conversion preliminary data report for the November 1977 GOTEC-02 cruise to the Gulf of Mexico Mobile Site  

SciTech Connect (OSTI)

This is the second in a series of preliminary data reports from cruises to potential Ocean Thermal Energy Conversion (OTEC) sites in the Gulf of Mexico. The data are from the GOTEC-02 cruise to a site at approximately 29/sup 0/N, 88/sup 0/W, the Mobile Site. Twelve oceanographic stations were visited. Due to bad weather, the results are scanty. The reader will note that much of the data is questionable. Current meter results are presented elsewhere (Molinari, Hazelworth and Ortman, 1979). Determinations of the biomass indicators - chlorophyll a, phaeophytins and adenosine triphosphate - and zooplankton, are presented. Results were generally those that might have been predicted from previous studies in the area.

Commins, M. L; Duncan, C. P.; Estrella, D. J.; Frisch, J. D.; Horne, A. J.; Jones, K.; Johnson, P. W.; Oldson, J. C.; Quinby-Hunt, M. S.; Ryan, C. J.; Sandusky, J. C.; Tatro, M.; Wilde, P.

1980-03-01T23:59:59.000Z

93

ENERGY ANALYSIS PROGRAM FY-1979.  

E-Print Network [OSTI]

trade winds, biomass, ocean thermal energy gradients, andfrom biomass ocean thermal energy conversion geothermalelectric plants, ocean thermal energy plants (OTEC) and

Authors, Various

2013-01-01T23:59:59.000Z

94

HEATS: Thermal Energy Storage  

SciTech Connect (OSTI)

HEATS Project: The 15 projects that make up ARPA-Es HEATS program, short for High Energy Advanced Thermal Storage, seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

None

2012-01-01T23:59:59.000Z

95

Modeling the Physical and Biochemical Influence of Ocean Thermal Energy Conversion Plant Discharges into their Adjacent Waters  

SciTech Connect (OSTI)

This paper describes the modeling work by Makai Ocean Engineering, Inc. to simulate the biochemical effects of of the nutrient-enhanced seawater plumes that are discharged by one or several 100 megawatt OTEC plants. The modeling is needed to properly design OTEC plants that can operate sustainably with acceptably low biological impact. In order to quantify the effect of discharge configuration and phytoplankton response, Makai Ocean Engineering implemented a biological and physical model for the waters surrounding O`ahu, Hawai`i, using the EPA-approved Environmental Fluid Dynamics Code (EFDC). Each EFDC grid cell was approximately 1 square kilometer by 20 meters deep, and used a time step of three hours. The biological model was set up to simulate the biochemical response for three classes of organisms: Picoplankton (< 2 um) such as prochlorococccus, nanoplankton (2-20 um), and microplankton (> 20 um) e.g., diatoms. The dynamic biological phytoplankton model was calibrated using chemical and biological data collected for the Hawaii Ocean Time Series (HOTS) project. Peer review of the biological modeling was performed. The physical oceanography model uses boundary conditions from a surrounding Hawai'i Regional Ocean Model, (ROM) operated by the University of Hawai`i and the National Atmospheric and Oceanic Administration. The ROM provided tides, basin scale circulation, mesoscale variability, and atmospheric forcing into the edges of the EFDC computational domain. This model is the most accurate and sophisticated Hawai'ian Regional Ocean Model presently available, assimilating real-time oceanographic observations, as well as model calibration based upon temperature, current and salinity data collected during 2010 near the simulated OTEC site. The ROM program manager peer-reviewed Makai's implementation of the ROM output into our EFDC model. The supporting oceanographic data was collected for a Naval Facilities Engineering Command / Makai project. Results: The model was run for a 100 MW OTEC Plant consisting of four separate ducts, discharging a total combined flow rate of 420 m3/s of warm water and 320 m3/s of cold water in a mixed discharge at 70 meters deep. Each duct was assumed to have a discharge port diameter of 10.5m producing a downward discharge velocity of about 2.18 m/s. The natural system, as measured in the HOTS program, has an average concentration of 10-15 mgC/m3. To calibrate the biological model, we first ran the model with no OTEC plant and varied biological parameters until the simulated data was a good match to the HOTS observations. This modeling showed that phytoplankton concentration were patchy and highly dynamic. The patchiness was a good match with the data variability observed within the HOTS data sets. We then ran the model with simulated OTEC intake and discharge flows and associated nutrients. Directly under the OTEC plant, the near-field plume has an average terminal depth of 172 meters, with a volumetric dilution of 13:1. The average terminal plume temperature was 19.8oC. Nitrate concentrations are 1 to 2 umol/kg above ambient. The advecting plume then further dilutes to less than 1 umol/kg above ambient within a few kilometers downstream, while remaining at depth. Because this terminal near-field plume is well below the 1% light limited depths (~120m), no immediate biological utilization of the nutrients occurs. As the nitrate is advected and dispersed downstream, a fraction of the deep ocean nutrients (< 0.5 umol/kg perturbation) mix upward where they are utilized by the ambient phytoplankton population. This occurs approximately twenty-five kilometers downstream from the plant at 110 - 70 meters depth. For pico-phytoplankton, modeling results indicate that this nutrient perturbation causes a phytoplankton perturbation of approximately 1 mgC/m3 (~10% of average ambient concentrations) that covers an area 10x5 km in size at the 70 to 90m depth. Thus, the perturbations are well within the natural variability of the system, generally corresponding to a 10 to 15% increase above the a

PAT GRANDELLI, P.E.; GREG ROCHELEAU; JOHN HAMRICK, Ph.D.; MATT CHURCH, Ph.D.; BRIAN POWELL, Ph.D.

2012-09-29T23:59:59.000Z

96

ENERGY & ENVIRONMENT DIVISION ANNUAL REPORT, 1977  

E-Print Network [OSTI]

Ocean Thermal Energy Conversion: Environmental Program P.during 1978. OCEAN THERMAL ENERGY CONVERSION: ENVIRONMENTALof the Ocean Thermal Energy Conversion (OTEC) program. The

Budnitz, R.J.

2011-01-01T23:59:59.000Z

97

ENERGY & ENVIRONMENT DIVISION ANNUAL REPORT, 1977  

E-Print Network [OSTI]

Ocean Thermal Energy Conversion: Environmental Program P.during 1978. OCEAN THERMAL ENERGY CONVERSION: ENVIRONMENTALaspects of the Ocean Thermal Energy Conversion (OTEC)

Budnitz, R.J.

2011-01-01T23:59:59.000Z

98

ENERGY & ENVIRONMENT DIVISION ANNUAL REPORT 1979  

E-Print Network [OSTI]

trade winds, biomass, ocean thermal energy gradients, andfrom biomass ocean thermal energy conversion geothermalelectric plants, ocean thermal energy plants (OTEC) and

Cairns, E.J.

2010-01-01T23:59:59.000Z

99

OCEAN THERMAL ENERGY CONVERSION ECOLOGICAL DATA REPORT FROM 0. S. S. RESEARCHER IN GULF OF MEXICO, JULY 12-23, 1977.  

E-Print Network [OSTI]

Biofouling and Corrosion of OTEC Plants at Selected Sites.the Placement of a Moored OTEC Plant. Atlantic OceanographicThermal Energy Conversion (OTEC) Sites: Puerto Rico, St.

Quinby-Hunt, M.S.

2008-01-01T23:59:59.000Z

100

Ocean energy conversion systems annual research report  

SciTech Connect (OSTI)

Alternative power cycle concepts to the closed-cycle Rankine are evaluated and those that show potential for delivering power in a cost-effective and environmentally acceptable fashion are explored. Concepts are classified according to the ocean energy resource: thermal, waves, currents, and salinity gradient. Research projects have been funded and reported in each of these areas. The lift of seawater entrained in a vertical steam flow can provide potential energy for a conventional hydraulic turbine conversion system. Quantification of the process and assessment of potential costs must be completed to support concept evaluation. Exploratory development is being completed in thermoelectricity and 2-phase nozzles for other thermal concepts. Wave energy concepts are being evaluated by analysis and model testing with present emphasis on pneumatic turbines and wave focussing. Likewise, several conversion approaches to ocean current energy are being evaluated. The use of salinity resources requires further research in membranes or the development of membraneless processes. Using the thermal resource in a Claude cycle process as a power converter is promising, and a program of R and D and subsystem development has been initiated to provide confirmation of the preliminary conclusion.

Not Available

1981-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "ocean thermal energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

www.hboi.fau.edu Ocean Energy  

E-Print Network [OSTI]

www.hboi.fau.edu Ocean Energy Collaboration: A Charge for Engineers BULLETIN Summer 2012 Beginning the State of Florida provided $5 million to establish the Center for Ocean Energy Technology at FAU. In 2010 to ocean energy research; the others are in Hawaii and the Pacific Northwest. Bill Baxley is the SNMREC

Fernandez, Eduardo

102

Career Opportunity in Ocean Energy POSITION TITLE: Director of Renewable Ocean Energy Research Program  

E-Print Network [OSTI]

Career Opportunity in Ocean Energy POSITION TITLE: Director of Renewable Ocean Energy Research: The Coastal Studies Institute (CSI) is seeking a dynamic individual to lead its Renewable Ocean Energy Program for a multi-institutional and multi-disciplinary renewable ocean energy research program. The position

103

DISTRIBUTED ENERGY SYSTEMS IN CALIFORNIA'S FUTURE: A PRELIMINARY REPORT, VOLUME I  

E-Print Network [OSTI]

alternative. Ocean thermal energy conversion requires anpresent designs of ocean thermal energy systems are intendedthat ocean thermal gradients will contribute energy supplies

Authors, Various

2010-01-01T23:59:59.000Z

104

Thermal Processes | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Hydrogen Production Current Technology Thermal Processes Thermal Processes Some thermal processes use the energy in various resources, such as natural gas, coal, or biomass,...

105

Hydropower and Ocean Energy Resources and Technologies  

Broader source: Energy.gov [DOE]

This page provides a brief overview of hydropower and ocean energy resources and technologies supplemented by specific information to apply these technologies within the Federal sector.

106

Ocean Energy Technology Overview: Federal Energy Management Program (FEMP)  

SciTech Connect (OSTI)

Introduction to and overview of ocean renewable energy resources and technologies prepared for the U.S. Department of Energy Federal Energy management Program.

Not Available

2009-07-01T23:59:59.000Z

107

Ammonia as an Alternative Energy Storage Medium for Hydrogen Fuel Cells: Scientific and Technical Review for Near-Term Stationary Power Demonstration Projects, Final Report  

E-Print Network [OSTI]

W. , Non-Equatorial Ocean Thermal Energy Conversion (OTC)1988. Tanner, D. , Ocean Thermal Energy Conversion: Currentproduced by ocean thermal energy conversion (OTEC) systems,

Lipman, Tim; Shah, Nihar

2007-01-01T23:59:59.000Z

108

Ammonia as an Alternative Energy Storage Medium for Hydrogen Fuel Cells: Scientific and Technical Review for Near-Term Stationary Power Demonstration Projects, Final Report  

E-Print Network [OSTI]

W. , Non-Equatorial Ocean Thermal Energy Conversion (OTC)1988. Tanner, D. , Ocean Thermal Energy Conversion: Currenthydrogen produced by ocean thermal energy conversion (OTEC)

Lipman, Tim; Shah, Nihar

2007-01-01T23:59:59.000Z

109

International Conference on Ocean Energy | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

International Conference on Ocean Energy International Conference on Ocean Energy November 4, 2014 1:00PM EST to November 6, 2014 10:00PM EST Halifax, Nova Scotia, Canada http:...

110

AWS Ocean Energy Ltd | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende NewSowitecAWS Ocean Energy Ltd Jump to: navigation, search

111

Ocean Energy Technology Basics | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the ContributionsArmsSpeedingSpeedingUnderOccupational HealthOcean Aerosols: The

112

Mapping and Assessment of the United States Ocean Wave Energy...  

Office of Environmental Management (EM)

States Ocean Wave Energy Resource Mapping and Assessment of the United States Ocean Wave Energy Resource This report describes the analysis and results of a rigorous assessment of...

113

Ocean and Resources Engineering is the application of ocean science and engineering to the challenging conditions  

E-Print Network [OSTI]

engineering, mixing and transport, water quality, ocean thermal energy conversion, hydrogen. GENO PAWLAK

Frandsen, Jannette B.

114

A review of global ocean temperature observations: Implications for ocean heat content estimates and climate change  

E-Print Network [OSTI]

oceans; their extensive total volume and large thermal capacity require a larger injection of energy

2013-01-01T23:59:59.000Z

115

Legislative Developments in Solar Energy during 1980  

E-Print Network [OSTI]

law the Ocean Thermal Energy Conversion Act of 1980124 (OTECof the century. ' 0 6 VI. OCEAN THERMAL ENERGY CONVERSIONOcean Thermal Energy Conversion (OTEC) systems tap the so-

Krueger, Robert B.; Hoffman, Peter C.

1981-01-01T23:59:59.000Z

116

Article for thermal energy storage  

DOE Patents [OSTI]

A thermal energy storage composition is provided which is in the form of a gel. The composition includes a phase change material and silica particles, where the phase change material may comprise a linear alkyl hydrocarbon, water/urea, or water. The thermal energy storage composition has a high thermal conductivity, high thermal energy storage, and may be used in a variety of applications such as in thermal shipping containers and gel packs.

Salyer, Ival O. (Dayton, OH)

2000-06-27T23:59:59.000Z

117

Ocean thermal plantships for production of ammonia as the hydrogen carrier.  

SciTech Connect (OSTI)

Conventional petroleum, natural gas, and coal are the primary sources of energy that have underpinned modern civilization. Their continued availability in the projected quantities required and the impacts of emission of greenhouse gases (GHGs) on the environment are issues at the forefront of world concerns. New primary sources of energy are being sought that would significantly reduce the emissions of GHGs. One such primary source that can help supply energy, water, and fertilizer without GHG emissions is available in the heretofore unexploited thermal gradients of the tropical oceans. The world's oceans are the largest natural collector and reservoir of solar energy. The potential of ocean energy is limitless for producing base-load electric power or ammonia as the hydrogen carrier and fresh water from seawater. However, until now, ocean energy has been virtually untapped. The general perception is that ocean thermal energy is limited to tropical countries. Therefore, the full potential of at-sea production of (1) ammonia as a hydrogen carrier and (2) desalinated water has not been adequately evaluated. Using ocean thermal plantships for the at-sea co-production of ammonia as a hydrogen carrier and desalinated water offer potential energy, environmental, and economic benefits that support the development of the technology. The introduction of a new widespread solution to our projected energy supply requires lead times of a decade or more. Although continuation of the ocean thermal program from the 1970s would likely have put us in a mitigating position in the early 2000s, we still have a window of opportunity to dedicate some of our conventional energy sources to the development of this renewable energy by the time new sources would be critically needed. The primary objective of this project is to evaluate the technical and economic viability of ocean thermal plantships for the production of ammonia as the hydrogen carrier. This objective is achieved by completing project tasks that consist of updating the John Hopkins University/Applied Physics Laboratory (JHU/APL) pilot plantship design and extrapolating it to commercial plantships, evaluating a new energy-efficient ammonia synthesis process, evaluating the co-production of desalinated water on plantships, and developing a conceptual design of a satellite plantships system for commercial-scale ammonia production. In addition, an industrial workshop was organized to present the results and develop future goals for commercialization of ocean thermal plantships by 2015. The following goals, arranged in chronological order, were examined at the workshop: (1) Global displacement of petroleum-fuel-based (diesel, fuel oil, naphtha) power generation for freeing up these fuels for transportation, chemical feedstock, and other high-valued uses; (2) At-sea production of desalinated water for regions of critical water shortages; (3) Displacement of carbon-based feed stocks and energy for production of ammonia fertilizers; (4) Development of hydrogen supply to allow economic processing of heavy crude oils and upgrading oil sands; (5) Development of ammonia-fueled distributed energy to displace natural-gas fueled power generation to free up natural gas for higher-value uses and the mitigation of issues associated with imported liquefied natural gas (LNG); and (6) Use of ammonia as a hydrogen carrier for transportation.

Panchal, C.B.; Pandolfini, P. P.; Kumm, W. H.; Energy Systems; Johns Hopkins Univ.; Arctic Energies, Ltd.

2009-12-02T23:59:59.000Z

118

AQUIFER THERMAL ENERGY STORAGE-A SURVEY  

E-Print Network [OSTI]

High temperature underground thermal energy storage, inProceedings, Thermal Energy Storage in Aquifers Workshop:underground thermal energy storage, in ATES newsletter:

Tsang, Chin Fu

2012-01-01T23:59:59.000Z

119

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network [OSTI]

Survey of Thermal Energy Storage in Aquifers Coupled withconcept of thermal energy storage in aquifers was suggestedLow Temperature Thermal Energy Storage Program of Oak Ridge

Authors, Various

2011-01-01T23:59:59.000Z

120

AQUIFER THERMAL ENERGY STORAGE-A SURVEY  

E-Print Network [OSTI]

1978, High temperature underground thermal energy storage,in Proceedings, Thermal Energy Storage in Aquifers Workshop:High temperature underground thermal energy storage, in ATES

Tsang, Chin Fu

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ocean thermal energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network [OSTI]

density, making direct thermal energy storage methods, e.g.reduced. Conventional thermal energy harvesting and storageharvesting, storage, and utilization of thermal energy has

Lim, Hyuck

2011-01-01T23:59:59.000Z

122

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network [OSTI]

the portion of thermal energy that can be converted toof high-performance thermal energy harvesting systems, butreferred to as the thermal energy from low- temperature heat

Lim, Hyuck

2011-01-01T23:59:59.000Z

123

Hawaii Oceanic Technology Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:Greer CountyCorridor | OpenOpen EnergyOpenOceanic Technology Inc

124

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network [OSTI]

biological thermal energy, geothermal energy, wasted heatpower plants, solar thermal energy, geothermal energy, oceansolar radiation, and the geothermal energy. [16] Fig. 1.1.

Lim, Hyuck

2011-01-01T23:59:59.000Z

125

Ocean Power (4 Activities) | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment of Energy(National1 -OSSGasof Energy Ocean Energy

126

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network [OSTI]

CALIFORNIA, SAN DIEGO Recycling of Wasted Energy : ThermalOF THE DISSERTATION Recycling of Wasted Energy : Thermal to

Lim, Hyuck

2011-01-01T23:59:59.000Z

127

Ocean Navitas | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(Utility Company)ReferencesNuiqsut,Place,Oakmont,ObionAcres,LLC Jump to:3Navitas

128

Makai Ocean Engineering, Inc. Otec Plume Biochemical Simulation of a 100MW  

E-Print Network [OSTI]

the Physical and Biochemical Influence of Ocean Thermal Energy Conversion Plant Discharges into their Adjacent

129

Establishing a Testing Center for Ocean Energy Technologies in...  

Broader source: Energy.gov (indexed) [DOE]

range of capabilities to support wave and tidal energy development for the United States. Ocean energy, generated from waves, tides, and currents, can be harnessed wherever...

130

ENERGY & ENVIRONMENT DIVISION. ANNUAL REPORT FY 1980  

E-Print Network [OSTI]

MSW) and 40 MWe of ocean thermal energy conversion (OTEC)ocean thermal, Ruderman wind, solar, and geothermal energy,energy sources, such as solar-heated water, indus- trial waste heat, geothermal brines, and ocean thermal

Authors, Various

2010-01-01T23:59:59.000Z

131

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network [OSTI]

Other LGH sources include solar thermal energy, geo-thermalThe heat source can be solar thermal energy, biologicalsources include the coolants in coal and nuclear power plants, solar thermal energy,

Lim, Hyuck

2011-01-01T23:59:59.000Z

132

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network [OSTI]

and J. Schwarz, Survey of Thermal Energy Storage in AquifersLow Temperature Thermal Energy Storage Program of Oak RidgeAquifers for Seasonal Thermal Energy Storage: An Overview of

Authors, Various

2011-01-01T23:59:59.000Z

133

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network [OSTI]

and J. Schwarz, Survey of Thermal Energy Storage in AquifersB. Quale. Seasonal storage of thermal energy in water in theSecond Annual Thermal Energy Storage Contractors'

Authors, Various

2011-01-01T23:59:59.000Z

134

Lih thermal energy storage device  

DOE Patents [OSTI]

A thermal energy storage device for use in a pulsed power supply to store waste heat produced in a high-power burst operation utilizes lithium hydride as the phase change thermal energy storage material. The device includes an outer container encapsulating the lithium hydride and an inner container supporting a hydrogen sorbing sponge material such as activated carbon. The inner container is in communication with the interior of the outer container to receive hydrogen dissociated from the lithium hydride at elevated temperatures.

Olszewski, Mitchell (Knoxville, TN); Morris, David G. (Knoxville, TN)

1994-01-01T23:59:59.000Z

135

Ocean Power Technologies | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico:CommunityNorthwest BasinOahu, Hawaii:EnergyOpenTheOcean Power

136

Ocean Renewable Power Company | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico:CommunityNorthwest BasinOahu, Hawaii:EnergyOpenTheOcean

137

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network [OSTI]

of Discharge Using Ground- Water Storage," Transactions1971. "Storage of Solar Energy in a Sandy-Gravel Ground,"

Tsang, C.-F.

2011-01-01T23:59:59.000Z

138

Green Ocean Wave Energy | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio: EnergyGrasslands RenewableGreatwood,GreenFalls, Colorado:United

139

Assessment of Energy Production Potential from Ocean Currents...  

Broader source: Energy.gov (indexed) [DOE]

of ocean currents in the United States and the database created with that data. energyproductionoceancurrentsus.pdf More Documents & Publications Assessment of Energy...

140

OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC ENVIRONMENTAL ASSESSMENT  

E-Print Network [OSTI]

l l,eve l Ventil.u:ion ( el OTEC H . . ard Level (f) Type ofW.E. and R.N. Manley, 1979. OTEC Commercialization Analysis.Assessment for Operational OTEC Platforms A Progress Report.

Sands, M.Dale

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ocean thermal energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Ocean Thermal Energy Conversion Mostly about USA  

E-Print Network [OSTI]

-OTEC Experimental Plant · Designs/ Lessons Learned/ EIA · Economics/Updated Resource Data · Revival (New Century) 2 offshore end 4th Attempt: CWP working some thermodynamic data obtained 5luisvega@hawaii.edu #12;#12;#12;Claude's Off Rio de Janeiro (1933) · Floating Ice Plant: 2.2 MW OC- OTEC to produce 2000 tonnes of Ice

142

Ocean Energy Company LLC | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(Utility Company)ReferencesNuiqsut,Place,Oakmont,ObionAcres,LLC Jump to:

143

Ocean Energy Ltd | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(Utility Company)ReferencesNuiqsut,Place,Oakmont,ObionAcres,LLC Jump to:3 Casement

144

A survey of state clean energy fund support for biomass  

E-Print Network [OSTI]

ocean thermal energy, wave or tidal energy, fuel cells, landfill gas, hydrogen production and hydrogen conversion

Fitzgerald, Garrett; Bolinger, Mark; Wiser, Ryan

2004-01-01T23:59:59.000Z

145

Response of oceanic hydrate-bearing sediments to thermal stresses  

E-Print Network [OSTI]

are often observed in unconsolidated oceanic sediments11.wellbore assembly if a weak unconsolidated porous medium isevidence, because of the unconsolidated, unlithified nature

Moridis, G.J.; Kowalsky, M.B.

2006-01-01T23:59:59.000Z

146

Thermal and non-thermal energies in solar flares  

E-Print Network [OSTI]

The energy of the thermal flare plasma and the kinetic energy of the non-thermal electrons in 14 hard X-ray peaks from 9 medium-sized solar flares have been determined from RHESSI observations. The emissions have been carefully separated in the spectrum. The turnover or cutoff in the low-energy distribution of electrons has been studied by simulation and fitting, yielding a reliable lower limit to the non-thermal energy. It remains the largest contribution to the error budget. Other effects, such as albedo, non-uniform target ionization, hot target, and cross-sections on the spectrum have been studied. The errors of the thermal energy are about equally as large. They are due to the estimate of the flare volume, the assumption of the filling factor, and energy losses. Within a flare, the non-thermal/thermal ratio increases with accumulation time, as expected from loss of thermal energy due to radiative cooling or heat conduction. Our analysis suggests that the thermal and non-thermal energies are of the same magnitude. This surprising result may be interpreted by an efficient conversion of non-thermal energy to hot flare plasma.

Pascal Saint-Hilaire; Arnold O. Benz

2005-03-03T23:59:59.000Z

147

786 IEEE JOURNAL OF OCEANIC ENGINEERING, VOL. 32, NO. 4, OCTOBER 2007 Peer-Reviewed Technical Communication  

E-Print Network [OSTI]

acknowledged as a vast renewable energy source. The energy is stored in oceans partly as thermal energy, partly: wave energy, marine and tidal current energy, ocean thermal energy, energy from salinity gradients have been suggested. Ocean thermal energy conversion is possible in locations with large temperature

Paris-Sud XI, Université de

148

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants  

E-Print Network [OSTI]

PHASE CHANGE THERMAL ENERGY STORAGE FOR CONCENTRATING SOLARChange Materials for Thermal Energy Storage in ConcentratedChange Materials for Thermal Energy Storage in Concentrated

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

149

Guide to Setting Thermal Comfort Criteria and Minimizing Energy Use in Delivering Thermal Comfort  

E-Print Network [OSTI]

including cost, energy and thermal comfort analysis, whichfor greatest energy benefits, prioritize thermal comfortSetting Thermal Comfort Criteria and Minimizing Energy Use

Regnier, Cindy

2014-01-01T23:59:59.000Z

150

Microwavable thermal energy storage material  

DOE Patents [OSTI]

A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene-vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments.

Salyer, Ival O. (Dayton, OH)

1998-09-08T23:59:59.000Z

151

Microwavable thermal energy storage material  

DOE Patents [OSTI]

A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments. 3 figs.

Salyer, I.O.

1998-09-08T23:59:59.000Z

152

Thermal Energy Storage for Cooling of Commercial Buildings  

E-Print Network [OSTI]

of Commercial Building Thermal Energy _Storage in ASEANGas Electric Company, "Thermal Energy Storage for Cooling,"LBL--25393 DE91 ,THERMAL ENERGY STORAGE FOR COOLING OF

Akbari, H.

2010-01-01T23:59:59.000Z

153

Thermal Energy Storage for Cooling of Commercial Buildings  

E-Print Network [OSTI]

Building Thermal Energy _Storage in ASEAN Countries,"Company, "Thermal Energy Storage for Cooling," SeminarTHERMAL FOR COOLING ENERGY STORAGE BUILDINGS OF COMMERCIAL

Akbari, H.

2010-01-01T23:59:59.000Z

154

A Magnetomechanical Thermal Energy Harvester With A Reversible Liquid Interface  

E-Print Network [OSTI]

and Mechanical Model of a Thermal Energy Harvesting Device,M, and Ferrari V. , Thermal energy harvesting throughand G. P. Carman, Thermal energy harvesting device using

He, Hong

2012-01-01T23:59:59.000Z

155

Thermal Energy Storage in Adsorbent Beds .  

E-Print Network [OSTI]

??Total produced energy in the world is mostly consumed as thermal energy which is used for space or water heating. Currently, more than 85% of (more)

Ugur, Burcu

2013-01-01T23:59:59.000Z

156

Thermal Energy Storage Potential in Supermarkets.  

E-Print Network [OSTI]

?? The objective of this research is to evaluate the potential of thermal energy storage in supermarkets with CO2 refrigeration systems. Suitable energy storage techniques (more)

Ohannessian, Roupen

2014-01-01T23:59:59.000Z

157

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network [OSTI]

of Thermal Energy Energy Sources o Solar Heat o Winter Coldusual Solar Energy System which uses only a heat source andsources and heat sinks not found anywhere else. Furthermore even where Solar energy

Authors, Various

2011-01-01T23:59:59.000Z

158

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network [OSTI]

electrode surfaces, and electric energy is stored as surfacetemperature end and electric energy is generated, thermalbeing the generated electric energy and the consumed thermal

Lim, Hyuck

2011-01-01T23:59:59.000Z

159

SOLAR ENERGY PROGRAM. CHAPTER FROM THE ENERGY AND ENVIRONMENT ANNUAL REPORT 1978  

E-Print Network [OSTI]

energy sources such as solar heated industrial waste heat, geothermal water, brines, and ocean thermal

authors, Various

2011-01-01T23:59:59.000Z

160

SOLAR ENERGY PROGRAM: CHAPTER FROM THE ENERGY AND ENVIRONMENT ANNUAL REPORT 1979  

E-Print Network [OSTI]

energy sources such as solar heated water, indus- trial waste heat, geothermal brines, and ocean thermal

Authors, Various

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ocean thermal energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

An Observational Estimate of Inferred Ocean Energy Divergence KEVIN E. TRENBERTH AND JOHN T. FASULLO  

E-Print Network [OSTI]

An Observational Estimate of Inferred Ocean Energy Divergence KEVIN E. TRENBERTH AND JOHN T, in final form 25 September 2007) ABSTRACT Monthly net surface energy fluxes (FS) over the oceans ocean energy content" are compared with the directly observed ocean energy content (OE) and tendency

Fasullo, John

162

Solar energy thermalization and storage device  

DOE Patents [OSTI]

A passive solar thermalization and thermal energy storage assembly which is visually transparent. The assembly consists of two substantial parallel, transparent wall members mounted in a rectangular support frame to form a liquid-tight chamber. A semitransparent thermalization plate is located in the chamber, substantially paralled to and about equidistant from the transparent wall members to thermalize solar radiation which is stored in a transparent thermal energy storage liquid which fills the chamber. A number of the devices, as modules, can be stacked together to construct a visually transparent, thermal storage wall for passive solar-heated buildings.

McClelland, John F. (Ames, IA)

1981-09-01T23:59:59.000Z

163

Ocean current resource assessment | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLC OrderEfficiencyOcean current resource assessment Ocean

164

Upper Oceanic Energy Response to Tropical Cyclone Passage JOHN A. KNAFF AND MARK DEMARIA  

E-Print Network [OSTI]

Upper Oceanic Energy Response to Tropical Cyclone Passage JOHN A. KNAFF AND MARK DEMARIA NOAA is investigated using a 6-yr daily record of data-driven analyses of two measures of upper ocean energy content information and the upper ocean response. Upper oceanic energy decreases in these metrics are shown to persist

Schubert, Wayne H.

165

Performance evaluation of thermal energy storage systems;.  

E-Print Network [OSTI]

??Solar thermal technologies are promising, given the fact that solar newlineenergy is the cheapest and most widely available of all renewable energy newlinetechnologies. The recent (more)

Ramana A S

2014-01-01T23:59:59.000Z

166

Makai Ocean Engineering, Inc.'s Recent OTEC Activities at NELHA  

E-Print Network [OSTI]

, and operator of an Ocean Thermal Energy Conversion (OTEC) power plant and heat exchanger test facility at NELHA

Frandsen, Jannette B.

167

Short Communication Three ocean state indices implemented in  

E-Print Network [OSTI]

), the tropical cyclone heat potential, showing the thermal energy available in the ocean to enhance or decreaseShort Communication Three ocean state indices implemented in the Mercator-Ocean operational suite L., and Soulat, F. 2008. Three ocean state indices implemented in the Mercator-Ocean operational suite. ­ ICES

Ribes, Aurélien

168

Improved Calculation of Thermal Fission Energy  

E-Print Network [OSTI]

Thermal fission energy is one of the basic parameters needed in the calculation of antineutrino flux for reactor neutrino experiments. It is useful to improve the precision of the thermal fission energy calculation for current and future reactor neutrino experiments, which are aimed at more precise determination of neutrino oscillation parameters. In this article, we give new values for thermal fission energies of some common thermal reactor fuel iso-topes, with improvements on two aspects. One is more recent input data acquired from updated nuclear databases. The other, which is unprecedented, is a consideration of the production yields of fission fragments from both thermal and fast incident neutrons for each of the four main fuel isotopes. The change in calculated antineutrino flux due to the new values of thermal fission energy is about 0.33%, and the uncertainties of the new values are about 30% smaller.

Ma, X B; Wang, L Z; Chen, Y X; Cao, J

2013-01-01T23:59:59.000Z

169

Experimental Testing and Model Validation for Ocean Wave Energy Harvesting Buoys  

E-Print Network [OSTI]

Experimental Testing and Model Validation for Ocean Wave Energy Harvesting Buoys Douglas A. Gemme1 are presented for numerical simulations and field experiments using point absorption ocean wave energy and experimental data. Index Terms ­ energy conversion, wave energy harvesting, linear generator, ocean energy

Grilli, Stéphan T.

170

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network [OSTI]

Key to Large-Scale Cogeneration?" Public Power, v, 35, no.Thermal Energy Storage for Cogeneration and Solar Systems,"Energy Storage for Cogeneration and Solar Systems, tion from

Authors, Various

2011-01-01T23:59:59.000Z

171

EnOcean Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The followingDirectLow CarbonOpen1Model |RuralKansas)EnOcean Inc

172

OceanEnergyMMS.p65  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLC OrderEfficiencyOcean current resource assessment

173

Final Technical Report Modeling the Physical and Biochemical Influence of Ocean  

E-Print Network [OSTI]

Influence of Ocean Thermal Energy Conversion Plant Discharges into their Adjacent Waters DOE AWARD NO. DE sustainably with acceptably low biological impact. Ocean Thermal Energy Conversion (OTEC) uses large flowsFinal Technical Report Modeling the Physical and Biochemical Influence of Ocean Thermal Energy

174

Hydrogen Energy Stations: Poly-Production of Electricity, Hydrogen, and Thermal Energy  

E-Print Network [OSTI]

Electricity, Hydrogen, and Thermal Energy Timothy E. LipmanElectricity, Hydrogen, and Thermal Energy Timothy E. Lipmanof electricity, hydrogen, and thermal energy; 2) a survey of

Lipman, Timothy; Brooks, Cameron

2006-01-01T23:59:59.000Z

175

Wing Wave: Feasible, Alternative, Renewable, Electrical Energy Producing Ocean Floor System  

E-Print Network [OSTI]

Wing Wave: Feasible, Alternative, Renewable, Electrical Energy Producing Ocean Floor System Mark, alternative energy system to convert the circular motion of ocean waves as they propagate through the sea and feasible alternative, renewable, electrical energy producing subsea system. Index Terms--ocean energy, wave

Wood, Stephen L.

176

Estimation of OTEC Global Resources with an Ocean General Circulation Model  

E-Print Network [OSTI]

Ocean Thermal Energy Conversion (OTEC) relies on the availability of temperature differencesEstimation of OTEC Global Resources with an Ocean General Circulation Model Krishnakumar Rajagopalan Postdoctoral Fellow Department of Ocean and Resources Engineering University of Hawai'i Abstract

Frandsen, Jannette B.

177

LABORATORY VI ENERGY AND THERMAL PROCESSES  

E-Print Network [OSTI]

LABORATORY VI ENERGY AND THERMAL PROCESSES Lab VI - 1 The change of the internal energy of a system temperature. In this lab you will concentrate on quantifying the changes in internal energy within the framework of conservation of energy. In the problems of this lab, you will master the relation

Minnesota, University of

178

Thermal Energy Storage for Vacuum Precoolers  

E-Print Network [OSTI]

radically creating high peak demands and low load factors. An ice bank thermal energy storage (TES) and ice water vapor condenser were installed. The existing equipment and TES system were computer monitored to determine energy consumption and potential... efficiency at night. The ice bank thermal energy storage system has a 4.4 year simple payback. While building ice, the refrigeration system operated at a 6.26 Coefficient of Performance (COP). The refrigeration system operated more efficiently at night...

Nugent, D. M.

179

Development and Demonstration of a Relocatable Ocean OSSE System: Optimizing Ocean Observations for Hurricane Forecast  

E-Print Network [OSTI]

forecasts for individual storms and improved seasonal forecast of the ocean thermal energy availableDevelopment and Demonstration of a Relocatable Ocean OSSE System: Optimizing Ocean Observations in the Gulf of Mexico is being extended to provide NOAA the ability to evaluate new ocean observing systems

180

EXPERIMENTAL AND THEORETICAL STUDIES OF THERMAL ENERGY STORAGE IN AQUIFERS  

E-Print Network [OSTI]

In Proceed- ings of Thermal Energy Storage in Aquifers Work-Mathematical Modeling of Thermal Energy storage in Aquifers.In Proceed- ings of Thermal Energy Storage in Aquifers Work-

Tsang, Chin Fu

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ocean thermal energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Energy for biologic sulfate reduction in a hydrothermally formed ocean on Europa  

E-Print Network [OSTI]

Energy for biologic sulfate reduction in a hydrothermally formed ocean on Europa Mikhail Y. Zolotov, chemical energy is suggested as a more likely source for oceanic life [Jakosky and Shock, 1998; Mc of chemical energy in the ocean [e.g., McCollom, 1999; Kargel et al., 2000; Chyba and Phillips, 2001; Schulze

Rhoads, James

182

CHARACTERIZING DANGEROUS WAVES FOR OCEAN WAVE ENERGY CONVERTER SURVIVABILITY Justin Hovland  

E-Print Network [OSTI]

CHARACTERIZING DANGEROUS WAVES FOR OCEAN WAVE ENERGY CONVERTER SURVIVABILITY Justin Hovland ABSTRACT Ocean Wave Energy Converters (OWECs) operating on the water surface are subject to storms gradient technologies. This paper is focused on Ocean Wave Energy Converters (OWECs) and the need

Haller, Merrick

183

AQUIFER THERMAL ENERGY STORAGE-A SURVEY  

E-Print Network [OSTI]

solid-fluid heat storage systems in the ground; extractions0 Thermal storage of cold water in ground water aquifers forA. 8 1971, Storage of solar energy in a sandy-gravel ground:

Tsang, Chin Fu

2012-01-01T23:59:59.000Z

184

Ocean Energy Projects Developing On and Off America's Shores | Department  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment of Energy(National1 -OSSGasof Energy Ocean Energy Projects

185

Project Profile: Reducing the Cost of Thermal Energy Storage...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Reducing the Cost of Thermal Energy Storage for Parabolic Trough Solar Power Plants Project Profile: Reducing the Cost of Thermal Energy Storage for Parabolic Trough Solar Power...

186

Project Profile: Degradation Mechanisms for Thermal Energy Storage...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Degradation Mechanisms for Thermal Energy Storage and Heat Transfer Fluid Containment Materials Project Profile: Degradation Mechanisms for Thermal Energy Storage and Heat Transfer...

187

Evaluation of Thermal to Electrical Energy Conversion of High...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermal to Electrical Energy Conversion of High Temperature Skutterudite-Based Thermoelectric Modules Evaluation of Thermal to Electrical Energy Conversion of High Temperature...

188

Project Profile: Innovative Phase Change Thermal Energy Storage...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Phase Change Thermal Energy Storage Solution for Baseload Power Project Profile: Innovative Phase Change Thermal Energy Storage Solution for Baseload Power Infinia logo Infinia,...

189

Project Profile: Sensible Heat, Direct, Dual-Media Thermal Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Sensible Heat, Direct, Dual-Media Thermal Energy Storage Module Project Profile: Sensible Heat, Direct, Dual-Media Thermal Energy Storage Module Acciona logo Acciona Solar, under...

190

Project Profile: Innovative Thermal Energy Storage for Baseload...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermal Energy Storage for Baseload Solar Power Generation Project Profile: Innovative Thermal Energy Storage for Baseload Solar Power Generation University of South Florida logo...

191

Thermal Bypass Air Barriers in the 2009 International Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermal Bypass Air Barriers in the 2009 International Energy Conservation Code - Building America Top Innovation Thermal Bypass Air Barriers in the 2009 International Energy...

192

Scott Wilson Oceans | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende New EnergyAnatoliaScira Offshore Energy Jump to:Wind

193

Ocean Wavemaster Ltd | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(Utility

194

Sandia National Laboratories: ocean energy converters  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbine bladelifetime ismobile testnationalnuclear reactor

195

The Energetics of Ocean Heat Transport ANAND GNANADESIKAN  

E-Print Network [OSTI]

between mechanical energy supply and thermal energy transport associated with the ocean circulation modeling studies of ocean tide generation and energy conversion (Simmons et al. 2004; Arbic et al. 2004a of recent papers have argued that the mechanical energy budget of the ocean places constraints on how

Vallis, Geoff

196

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants  

E-Print Network [OSTI]

UNIVERSITY OF CALIFORNIA RIVERSIDE Phase Change Materials for Thermal Energy Storage in Concentrated Solar

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

197

Permanent magnet thermal energy system  

SciTech Connect (OSTI)

An improved rotary magnet thermal generator system of the type having an array of magnets in alternating disposition coaxially disposed about and parallel with the shaft of a motor driving the rotary array and having a copper heat absorber and a ferro-magnetic plate fixed on a face of the heat absorber, includes as efficiency improver a plurality of heat sink plates extending beyond the ferro-magnet plate into a plenum through a respective plurality of close-fitting apertures. In a further embodimetn the heat sink plates are in thermal contact with sinusoidally convoluted tubing that both increases surface area and provides for optional heating of gases and/or fluids at the same time.

Gerard, F.

1985-04-16T23:59:59.000Z

198

Ocean Motion International LLC | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico:CommunityNorthwest BasinOahu, Hawaii:EnergyOpenThe

199

Environmental siting suitability analysis for commercial scale ocean renewable energy| A southeast Florida case study.  

E-Print Network [OSTI]

?? This thesis aims to facilitate the siting and implementation of Florida Atlantic University Southeast National Marine Renewable Energy Center (FAU SNMREC) ocean current energy (more)

Mulcan, Amanda

2015-01-01T23:59:59.000Z

200

An energy-diagnostics intercomparison of coupled ice-ocean Arctic models  

E-Print Network [OSTI]

An energy-diagnostics intercomparison of coupled ice-ocean Arctic models Petteri Uotila a,*, David. Understanding the Arctic Ocean energy balance is important because it can strengthen our understanding for Atmosphere-Ocean Science, Courant Institute of Mathematical Sciences, New York University, NYU, 200 Water

Zhang, Jinlun

Note: This page contains sample records for the topic "ocean thermal energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Energy pathways and structures of oceanic eddies from the ECCO2 State Estimate and Simplified Models  

E-Print Network [OSTI]

Studying oceanic eddies is important for understanding and predicting ocean circulation and climate variability. The central focus of this dissertation is the energy exchange between eddies and mean ow and banded structures ...

Chen, Ru, Ph. D. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

202

EXPERIMENTAL AND THEORETICAL STUDIES OF THERMAL ENERGY STORAGE IN AQUIFERS  

E-Print Network [OSTI]

Department of Energy, Energy Storage Division through thegeneration and energy storage, Presented at Frontiers ofIn Proceed- ings of Thermal Energy Storage in Aquifers Work-

Tsang, Chin Fu

2011-01-01T23:59:59.000Z

203

Ammonia as an Alternative Energy Storage Medium for Hydrogen Fuel Cells: Scientific and Technical Review for Near-Term Stationary Power Demonstration Projects, Final Report  

E-Print Network [OSTI]

Ocean Thermal Energy Conversion (OTC) Applications, William Kumm, Arctic Energies, Ltd, Ammonia - The Key to US Energy Independence Conference

Lipman, Tim; Shah, Nihar

2007-01-01T23:59:59.000Z

204

THE ONLY SOURCE OF ENERGY  

E-Print Network [OSTI]

ocean thermal gradients); on absorptive materials (solar cells and similar collectors); and that unparallei led factory for energy conversion,

Calvin, Genevieve J.

2011-01-01T23:59:59.000Z

205

THE ONLY SOURCE OF ENERGY  

E-Print Network [OSTI]

ocean thermal gradients); on absorptive materials (solar cells and similar collectors); and that unparallei led factory for energy

Calvin, Genevieve J.

2011-01-01T23:59:59.000Z

206

Cost-Effective Solar Thermal Energy Storage: Thermal Energy Storage With Supercritical Fluids  

SciTech Connect (OSTI)

Broad Funding Opportunity Announcement Project: UCLA and JPL are creating cost-effective storage systems for solar thermal energy using new materials and designs. A major drawback to the widespread use of solar thermal energy is its inability to cost-effectively supply electric power at night. State-of-the-art energy storage for solar thermal power plants uses molten salt to help store thermal energy. Molten salt systems can be expensive and complex, which is not attractive from a long-term investment standpoint. UCLA and JPL are developing a supercritical fluid-based thermal energy storage system, which would be much less expensive than molten-salt-based systems. The teams design also uses a smaller, modular, single-tank design that is more reliable and scalable for large-scale storage applications.

None

2011-02-01T23:59:59.000Z

207

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants.  

E-Print Network [OSTI]

??Experimental studies are presented that aim to utilize phase change materials (PCM's) to enhance thermal energy storage systems for concentrated solar thermal power (CSP) systems. (more)

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

208

Energy Department Releases New Energy 101 Video on Ocean Power...  

Broader source: Energy.gov (indexed) [DOE]

and Renewable Energy FIND OUT MORE Read about the Energy Department's assessments of wave and tidal energy resources. You've probably seen water at work generating electricity...

209

BRUCE HOWE Chair and Professor , PhD 1986, UC San Diego. Ocean observatories, ocean acoustic tomography, sensor webs  

E-Print Network [OSTI]

. NIHOUS Associate Professor, PhD 1983, UC Berkeley. Ocean Thermal Energy Conversion (OTEC), marineFaculty BRUCE HOWE Chair and Professor , PhD 1986, UC San Diego. Ocean observatories, ocean in the ocean, atmospheric and ionospheric tomography. KWOK FAI CHEUNG Professor , PhD 1991, British Columbia

Frandsen, Jannette B.

210

Aquifer thermal energy (heat and chill) storage  

SciTech Connect (OSTI)

As part of the 1992 Intersociety Conversion Engineering Conference, held in San Diego, California, August 3--7, 1992, the Seasonal Thermal Energy Storage Program coordinated five sessions dealing specifically with aquifer thermal energy storage technologies (ATES). Researchers from Sweden, The Netherlands, Germany, Switzerland, Denmark, Canada, and the United States presented papers on a variety of ATES related topics. With special permission from the Society of Automotive Engineers, host society for the 1992 IECEC, these papers are being republished here as a standalone summary of ATES technology status. Individual papers are indexed separately.

Jenne, E.A. (ed.)

1992-11-01T23:59:59.000Z

211

LiH thermal energy storage device  

DOE Patents [OSTI]

A thermal energy storage device for use in a pulsed power supply to store waste heat produced in a high-power burst operation utilizes lithium hydride as the phase change thermal energy storage material. The device includes an outer container encapsulating the lithium hydride and an inner container supporting a hydrogen sorbing sponge material such as activated carbon. The inner container is in communication with the interior of the outer container to receive hydrogen dissociated from the lithium hydride at elevated temperatures. 5 figures.

Olszewski, M.; Morris, D.G.

1994-06-28T23:59:59.000Z

212

Thermal dileptons at SPS energies  

E-Print Network [OSTI]

Clear signs of excess dileptons above the known sources were found at the SPS since long. However, a real clarification of these observations was only recently achieved by NA60, measuring dimuons with unprecedented precision in 158A GeV, In-In collisions. The excess mass spectrum in the region M rho -> mu+mu- annihilation. The associated rho spectral function shows a strong broadening, but essentially no shift in mass. In the region M>1 GeV, the excess is found to be prompt, not due to enhanced charm production. The inverse slope parameter Teff associated with the transverse momentum spectra rises with mass up to the rho, followed by a sudden decline above. While the initial rise, coupled to a hierarchy in hadron freeze-out, points to radial flow of a hadronic decay source, the decline above signals a transition to a low-flow source, presumably of partonic origin. The mass spectra show at low transverse momenta the steep rise towards low masses characteristic for Planck-like radiation. The polarization of the excess referred to the Collins Soper frame is found to be isotropic. All observations are consistent with the interpretation of the excess as thermal radiation.

S. Damjanovic; for the NA60 Collaboration

2008-05-27T23:59:59.000Z

213

Project Profile: Novel Thermal Energy Storage Systems for Concentratin...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Solar Power Project Profile: Novel Thermal Energy Storage Systems for Concentrating Solar Power University of Connecticut logo The University of Connecticut, under the Thermal...

214

Guide to Setting Thermal Comfort Criteria and Minimizing Energy Use  

E-Print Network [OSTI]

1 Guide to Setting Thermal Comfort Criteria and Minimizing Energy Use in Delivering Thermal Comfort-AC02-05CH11231. #12;Guide to Setting Thermal Comfort Criteria and Minimizing Energy Use in Delivering thermal comfort through a different low energy space conditioning mechanism than would otherwise

215

Estimating Internal Wave Energy Fluxes in the Ocean JONATHAN D. NASH  

E-Print Network [OSTI]

Estimating Internal Wave Energy Fluxes in the Ocean JONATHAN D. NASH College of Oceanic FE u p cgE is a fundamental quan- tity in internal wave energetics to identify energy sources, wave propagation, and energy sinks. Internal wave radiation transports energy from the boundaries

Kurapov, Alexander

216

STATE OF CALIFORNIA THERMAL ENERGY STORAGE (TES) SYSTEM ACCEPTANCE  

E-Print Network [OSTI]

STATE OF CALIFORNIA THERMAL ENERGY STORAGE (TES) SYSTEM ACCEPTANCE CEC-MECH-15A (Revised 07/10) CALIFORNIA ENERGY COMMISSION CERTIFICATE OF ACCEPTANCE MECH-15A NA7.5.14 Thermal Energy Storage (TES) System THERMAL ENERGY STORAGE (TES) SYSTEM ACCEPTANCE CEC-MECH-15A (Revised 07/10) CALIFORNIA ENERGY COMMISSION

217

Grays Harbor Ocean Energy Company | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:Photon Place: Golden, COIndiana JumpGray County Wind FarmOcean

218

Aquifer thermal energy storage. International symposium: Proceedings  

SciTech Connect (OSTI)

Aquifers have been used to store large quantities of thermal energy to supply process cooling, space cooling, space heating, and ventilation air preheating, and can be used with or without heat pumps. Aquifers are used as energy sinks and sources when supply and demand for energy do not coincide. Aquifer thermal energy storage may be used on a short-term or long-term basis; as the sole source of energy or as a partial storage; at a temperature useful for direct application or needing upgrade. The sources of energy used for aquifer storage are ambient air, usually cold winter air; waste or by-product energy; and renewable energy such as solar. The present technical, financial and environmental status of ATES is promising. Numerous projects are operating and under development in several countries. These projects are listed and results from Canada and elsewhere are used to illustrate the present status of ATES. Technical obstacles have been addressed and have largely been overcome. Cold storage in aquifers can be seen as a standard design option in the near future as it presently is in some countries. The cost-effectiveness of aquifer thermal energy storage is based on the capital cost avoidance of conventional chilling equipment and energy savings. ATES is one of many developments in energy efficient building technology and its success depends on relating it to important building market and environmental trends. This paper attempts to provide guidance for the future implementation of ATES. Individual projects have been processed separately for entry onto the Department of Energy databases.

NONE

1995-05-01T23:59:59.000Z

219

Phase change thermal energy storage material  

DOE Patents [OSTI]

A thermal energy storge composition is disclosed. The composition comprises a non-chloride hydrate having a phase change transition temperature in the range of 70.degree.-95.degree. F. and a latent heat of transformation of at least about 35 calories/gram.

Benson, David K. (Golden, CO); Burrows, Richard W. (Conifer, CO)

1987-01-01T23:59:59.000Z

220

TARA OCEANS: A Global Analysis of Oceanic Plankton Ecosystems (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)  

SciTech Connect (OSTI)

Eric Karsenti of EMBL delivers the closing keynote on "TARA OCEANS: A Global Analysis of Oceanic Plankton Ecosystems" at the 8th Annual Genomics of Energy & Environment Meeting on March 28, 2013 in Walnut Creek, Calif.

Karsenti, Eric [EMBL Heidelberg

2013-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "ocean thermal energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Modeling of Thermal Storage Systems in MILP Distributed Energy Resource Models  

E-Print Network [OSTI]

potential materials for thermal energy storage in buildingcoupled with thermal energy storage," Applied Energy, vol.N. Fumo, "Benefits of thermal energy storage option combined

Steen, David

2014-01-01T23:59:59.000Z

222

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network [OSTI]

reclamation and solar thermal energy," Energy [accepted]. [and M Dennis, "Solar thermal energy systems in Australia,"and M Dennis, "Solar thermal energy systems in Australia,"

Ho, Tony

2012-01-01T23:59:59.000Z

223

Om Ocean Energy Centre Vrt uppdrag r att frmja havsenergiindustrin i Sverige  

E-Print Network [OSTI]

Om Ocean Energy Centre Vårt uppdrag är att främja havsenergiindustrin i Sverige och Teknik är värd för Ocean Energy Centre För utförligare information ­ besök www.oceanenergycentre.org och test med uppankring av "slangen" i havet) Waves4Power Vigor WaveEnergy Ocean Harvester Deep Green

Lemurell, Stefan

224

An Act to Facilitate Testing and Demonstration of Renewable Ocean Energy Technology (Maine)  

Broader source: Energy.gov [DOE]

This law streamlines and coordinates State permitting and submerged lands leasing requirements for renewable ocean energy demonstration projects, aiding Maine's goal to become an international...

225

Seasonal Modulation of Eddy Kinetic Energy and Its Formation Mechanism in the Southeast Indian Ocean  

E-Print Network [OSTI]

energy and exert profound impacts on large-scale ocean circulations. Satellite altimeter ob- servations- sociations with the large-scale oceanic circulations and the climate. The global eddy kinetic energy (EKESeasonal Modulation of Eddy Kinetic Energy and Its Formation Mechanism in the Southeast Indian

Qiu, Bo

226

Improving Ocean Model Initialization for Coupled Tropical Cyclone Forecast Models Using GODAE Nowcasts  

E-Print Network [OSTI]

in available thermal energy associated with energetic boundary currents and ocean eddies require their accurate temperature (SST) cooling. The potential for the ocean to support intensification depends on the thermal energy available to the storm, which in turn depends on both the temperature and thickness of the upper-ocean

Shay, Lynn K. "Nick"

227

Thermal Sciences The thermal sciences area involves the study of energy conversion and transmission, power  

E-Print Network [OSTI]

Thermal Sciences The thermal sciences area involves the study of energy conversion and transmission, power generation, the flow of liquids and gases, and the transfer of thermal energy (heat) by means in virtually all energy conversion devices and systems. One may think of the jet engine as a mechanical device

New Hampshire, University of

228

Solar Thermal Energy Storage Device: Hybrid Nanostructures for High-Energy-Density Solar Thermal Fuels  

SciTech Connect (OSTI)

HEATS Project: MIT is developing a thermal energy storage device that captures energy from the sun; this energy can be stored and released at a later time when it is needed most. Within the device, the absorption of sunlight causes the solar thermal fuels photoactive molecules to change shape, which allows energy to be stored within their chemical bonds. A trigger is applied to release the stored energy as heat, where it can be converted into electricity or used directly as heat. The molecules would then revert to their original shape, and can be recharged using sunlight to begin the process anew. MITs technology would be 100% renewable, rechargeable like a battery, and emissions-free. Devices using these solar thermal fuelscalled Hybrisolcan also be used without a grid infrastructure for applications such as de-icing, heating, cooking, and water purification.

None

2012-01-09T23:59:59.000Z

229

Ocean Acidification Workshop in Anchorage | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Ocean Acidification Workshop in Anchorage Ocean Acidification Workshop in Anchorage December 2, 2014 9:00AM to 6:00PM AKST This workshop aims to bring concerned andor interested...

230

Sandia National Laboratories: solar thermal energy storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbineredox-activeNational Solar Thermal Test Facilitysolarsolarenergy

231

Ocean Acres, New Jersey: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(Utility Company)ReferencesNuiqsut,Place,Oakmont,ObionAcres, New Jersey: Energy

232

Ocean Shores, Washington: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(Utility Company)ReferencesNuiqsut,Place,Oakmont,ObionAcres,LLCWashington: Energy

233

Open Ocean Aquaculture & Wave Energy Site | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(UtilityCounty, Michigan: Energy ResourcesCoMaine:OmOnley,OntarioOpTICOpelen)

234

Energy Efficient Proactive Thermal Management in Memory Subsystem  

E-Print Network [OSTI]

Energy Efficient Proactive Thermal Management in Memory Subsystem Raid Ayoub rayoub management of memory subsystem is challenging due to performance and thermal constraints. Big energy gains appreciable energy savings in memory sub-system and mini- mize thermal problems. We adopt the consolidation

Simunic, Tajana

235

AQUIFER THERMAL ENERGY STORAGE. A NUMERICAL SIMULATION OF AUBURN UNIVERSITY FIELD EXPERIMENTS  

E-Print Network [OSTI]

Auburn University Thermal Energy Storage , LBL No. 10194.Mathematical modeling of thermal energy storage in aquifers,of Current Aquifer Thermal Energy Storage Programs (in

Tsang, Chin Fu

2013-01-01T23:59:59.000Z

236

Optimal Deployment of Thermal Energy Storage under Diverse Economic and Climate Conditions  

E-Print Network [OSTI]

Deployment of Thermal Energy Storage under Diverse Dincer I. On thermal energy storage systems and applicationsin research on cold thermal energy storage, International

DeForest, Nicolas

2014-01-01T23:59:59.000Z

237

THEORETICAL STUDIES IN LONG-TERM THERMAL ENERGY STORAGE IN AQUIFERS  

E-Print Network [OSTI]

Mathematical Modeling of Thermal Energy Storage in Aquifers.of Aquifer Thermal Energy Storage Workshop, Lawrencewithin the Seasonal Thermal Energy Storage program managed

Tsang, C.F.

2013-01-01T23:59:59.000Z

238

Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications  

E-Print Network [OSTI]

on Sustainable thermal Energy Storage Technologies, Part I:2009, Review on Thermal Energy Storage with Phase Change2002, Survey of Thermal Energy Storage for Parabolic Trough

Coso, Dusan

2013-01-01T23:59:59.000Z

239

SEASONAL THERMAL ENERGY STORAGE IN AQUIFERS-MATHEMATICAL MODELING STUDIES IN 1979  

E-Print Network [OSTI]

of Aquifer Thermal Energy Storage." Lawrence Berkeleythe Auburn University Thermal Energy Storage Experiment."LBL~l0208 SEASONAL THERMAL ENERGY STORAGE IN AQUIFERS~

Tsang, Chin Fu

2013-01-01T23:59:59.000Z

240

THEORETICAL STUDIES IN LONG-TERM THERMAL ENERGY STORAGE IN AQUIFERS  

E-Print Network [OSTI]

Mathematical Modeling of Thermal Energy Storage in Aquifers.of Aquifer Thermal Energy Storage Workshop, Lawrencethe Seasonal Thermal Energy Storage program managed by

Tsang, C.F.

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ocean thermal energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Optimal Deployment of Thermal Energy Storage under Diverse Economic and Climate Conditions  

E-Print Network [OSTI]

2012. [8] Dincer I. On thermal energy storage systems andin research on cold thermal energy storage, InternationalLF. Overview of thermal energy storage (TES) potential

DeForest, Nicolas

2014-01-01T23:59:59.000Z

242

SEASONAL THERMAL ENERGY STORAGE IN AQUIFERS-MATHEMATICAL MODELING STUDIES IN 1979  

E-Print Network [OSTI]

Aspects of Aquifer Thermal Energy Storage." Lawrencethe Auburn University Thermal Energy Storage Experiment."LBL~l0208 SEASONAL THERMAL ENERGY STORAGE IN AQUIFERS~

Tsang, Chin Fu

2013-01-01T23:59:59.000Z

243

Modeling of Thermal Storage Systems in MILP Distributed Energy Resource Models  

E-Print Network [OSTI]

potential materials for thermal energy storage in buildingcogeneration coupled with thermal energy storage," AppliedN. Fumo, "Benefits of thermal energy storage option combined

Steen, David

2014-01-01T23:59:59.000Z

244

Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications  

E-Print Network [OSTI]

Review on Sustainable thermal Energy Storage Technologies,D. , 2009, Review on Thermal Energy Storage with PhaseW. , 2002, Survey of Thermal Energy Storage for Parabolic

Coso, Dusan

2013-01-01T23:59:59.000Z

245

THEORETICAL STUDIES IN LONG-TERM THERMAL ENERGY STORAGE IN AQUIFERS  

E-Print Network [OSTI]

Mathematical Modeling of Thermal Energy Storage in Aquifers.Proceedings of Aquifer Thermal Energy Storage Workshop,within the Seasonal Thermal Energy Storage program managed

Tsang, C.F.

2013-01-01T23:59:59.000Z

246

Implications of optical properties of ocean, lake, and ice for ultrahigh-energy neutrino detection  

E-Print Network [OSTI]

Implications of optical properties of ocean, lake, and ice for ultrahigh-energy neutrino detection P. Buford Price The collecting power and imaging ability of planned ultrahigh-energy neutrino, and for deep seawater. The effective scattering coefficient is smallest for the clearest deep ocean sites

Price, P. Buford

247

Energy Conversion and Thermal Efficiency Sales Tax Exemption  

Broader source: Energy.gov [DOE]

Ohio may provide a sales and use tax exemption for certain tangible personal property used in energy conversion, solid waste energy conversion, or thermal efficiency improvement facilities designed...

248

Thermal Energy Storage Technology for Transportation and Other...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Storage Technology for Transportation and Other Applications D. Bank, M. Maurer, J. Penkala, K. Sehanobish, A. Soukhojak Thermal Energy Storage Technology for Transportation...

249

GECCO Ocean Energy System Luis Maristany, Nicole Waters, Billy W. Wells Jr., Mario Suarez, Richard Gestewitz, Alexej Wiest,  

E-Print Network [OSTI]

GECCO Ocean Energy System Luis Maristany, Nicole Waters, Billy W. Wells Jr., Mario Suarez, Richard and to invent ways of harvesting these energies by designing new systems. The ocean is a major resource for all Operation) is a wave energy converter that extracts kinetic energy from ocean waves using a rugged

Wood, Stephen L.

250

DISTRIBUTED ENERGY SYSTEMS IN CALIFORNIA'S FUTURE: A PRELIMINARY REPORT, VOLUME I  

E-Print Network [OSTI]

Other Solar Technologies HYDROELECTRIC AND PUMPED STORAGEand Solar Thermal Hydroelectric Power Geothermal . Land UseOcean Wind Geothermal Hydroelectric Ocean Energy Fossil

Authors, Various

2010-01-01T23:59:59.000Z

251

Maximizing Thermal Efficiency and Optimizing Energy Management (Fact Sheet)  

SciTech Connect (OSTI)

Researchers at the Thermal Test Facility (TTF) on the campus of the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) in Golden, Colorado, are addressing maximizing thermal efficiency and optimizing energy management through analysis of efficient heating, ventilating, and air conditioning (HVAC) strategies, automated home energy management (AHEM), and energy storage systems.

Not Available

2012-03-01T23:59:59.000Z

252

Ocean Beach, New York: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(Utility Company)ReferencesNuiqsut,Place,Oakmont,ObionAcres, New Jersey:

253

Ocean Bluff-Brant Rock, Massachusetts: Energy Resources | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(Utility Company)ReferencesNuiqsut,Place,Oakmont,ObionAcres, New

254

Ocean City, New Jersey: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(Utility Company)ReferencesNuiqsut,Place,Oakmont,ObionAcres, New56°,

255

Ocean County, New Jersey: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(Utility Company)ReferencesNuiqsut,Place,Oakmont,ObionAcres,

256

Ocean Gate, New Jersey: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(Utility Company)ReferencesNuiqsut,Place,Oakmont,ObionAcres,LLC Jump to:3

257

Ocean Renewable Energy Coalition OREC | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(Utility Company)ReferencesNuiqsut,Place,Oakmont,ObionAcres,LLC Jump

258

Ocean Ridge, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(Utility Company)ReferencesNuiqsut,Place,Oakmont,ObionAcres,LLC

259

Ocean Wave Energy Company OWECO | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(Utility Company)ReferencesNuiqsut,Place,Oakmont,ObionAcres,LLCWashington:

260

Ocean Wave Wind Energy Ltd OWWE | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(Utility Company)ReferencesNuiqsut,Place,Oakmont,ObionAcres,LLCWashington:OWWE

Note: This page contains sample records for the topic "ocean thermal energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

The distribution of eddy kinetic and potential energies in the global ocean  

E-Print Network [OSTI]

Understanding of the major sources, sinks, and reservoirs of energy in the ocean is briefly updated in a diagram. The nature of the dominant kinetic energy reservoir, that of the balanced variablity, is then found to be ...

Ferrari, Raffaele

262

Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications  

E-Print Network [OSTI]

Thermal Energy Storage, Renewable and Sustainable EnergyReview on Sustainable thermal Energy Storage Technologies,Energy Storage Using Phase Change Materials, Renewable and Sustainable Energy

Coso, Dusan

2013-01-01T23:59:59.000Z

263

Ocean thermal energy. Quarterly report, October-December 1981  

SciTech Connect (OSTI)

This quarterly report summarizes work on the following tasks: OTEC methanol; approaches for financing OTEC proof-of-concept experimental vessels; investigation of OTEC-ammonia as an alternative fuel; review of electrolyzer development programs and requirements; hybrid geothermal-OTEC power plants: single-cycle performance; estimates; and hybrid geothermal-OTEC power plants: dual-cycle performance estimates.

Not Available

1981-12-30T23:59:59.000Z

264

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network [OSTI]

skipjack tuna, Katsuwonnus pelamis, in an offshore area oflittle tuna), Katsuwonus pelamis (skipj ack), spp. ,

Sands, M. D.

2011-01-01T23:59:59.000Z

265

OCEAN THERMAL ENERGY CONVERSION: AN OVERALL ENVIRONMENTAL ASSESSMENT  

E-Print Network [OSTI]

Environmental Assessment OTEC Pilot Plant. Prepared forDraft Environmental Assessment Mini-OTEC Second Deployment.matic EA are within the OTEC technology and include the

Sands, M.Dale

2013-01-01T23:59:59.000Z

266

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network [OSTI]

SCENARIO . . . . . . . . . . OTEC RESOURCE REGIONALC-1 ILLUSTRATIONS Number Title OTEC Systems Development Gulfof Mexico Moored OTEC Resource Area . . . . . . . . . . .

Sands, M. D.

2011-01-01T23:59:59.000Z

267

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network [OSTI]

industrial users. Costs and per kWh increased from to 2.7rf-30, 1978, the average cost per kWh was 6.09i for residential

Sands, M. D.

2011-01-01T23:59:59.000Z

268

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network [OSTI]

Occupational Safety and Health Administration (OSHA) safety, and the Coast Guard covers mar1ne covers some offshore

Sands, M. D.

2011-01-01T23:59:59.000Z

269

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

SciTech Connect (OSTI)

This programmatic environmental analysis is an initial assessment of OTEC technology considering development, demonstration and commercialization; it is concluded that the OTEC development program should continue because the development, demonstration, and commercialization on a single-plant deployment basis should not present significant environmental impacts. However, several areas within the OTEC program require further investigation in order to assess the potential for environmental impacts from OTEC operation, particularly in large-scale deployments and in defining alternatives to closed-cycle biofouling control: (1) Larger-scale deployments of OTEC clusters or parks require further investigations in order to assess optimal platform siting distances necessary to minimize adverse environmental impacts. (2) The deployment and operation of the preoperational platform (OTEC-1) and future demonstration platforms must be carefully monitored to refine environmental assessment predictions, and to provide design modifications which may mitigate or reduce environmental impacts for larger-scale operations. These platforms will provide a valuable opportunity to fully evaluate the intake and discharge configurations, biofouling control methods, and both short-term and long-term environmental effects associated with platform operations. (3) Successful development of OTEC technology to use the maximal resource capabilities and to minimize environmental effects will require a concerted environmental management program, encompassing many different disciplines and environmental specialties.

Sands, M. D.

1980-01-01T23:59:59.000Z

270

The Potential Impact of Ocean Thermal Energy Conversion (OTEC)  

E-Print Network [OSTI]

The major responsibilities of the National Marine Fisheries Service (NMFS) are to monitor and assess the abundance and geographic distribution of fishery resources, to understand and predict fluctuations in the quantity and distribution of these resources, and to establish levels for their optimum use. NMFS is also charged with the development and implementation of policies for managing national fishing grounds, development and enforcemeJlt of domestic fisheries regulations, surveillance of foreign fishing off United States coastal waters, and the development and enforcement of international fishery agreements and policies. NMFS also assists the fishing industry through marketing service and economic analysis programs, and mortgage insurance and vessel cunstruction subsidies. It collects, analyzes, and publishes statistics on various phases of the industry.

On Fisheries; Edward P. Myers; Donald E. Hoss; Walter M. Matsumoto; David S. Peters; Michael P. Seki; Richard N. Uchida; John D. Ditmars; Robert A. Paddock

1986-01-01T23:59:59.000Z

271

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network [OSTI]

aspects of siting OTEC plants offshore the United States ongas. phosgene Offshore ammonia plant-ships will presentan facility offshore may expose the plant to power outages

Sands, M. D.

2011-01-01T23:59:59.000Z

272

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network [OSTI]

by liquifaction and fractional distillation of air (EPA, Thefractional elements nitrogen pure form. Nitrogen \\'lill be extracted from the atmosphere by means of liquefaction and distillation,

Sands, M. D.

2011-01-01T23:59:59.000Z

273

List of Ocean Thermal Incentives | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place:KeystoneSolarList of GeothermalMethanol

274

AWS Ocean Energy formerly Oceanergia | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWater Rights,InformationWind EnergyPublicASTER JumpAVGOceanergia

275

Ocean Engineering and Energy Systems | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico:CommunityNorthwest BasinOahu, Hawaii:EnergyOpenThe Needles

276

Thermal tolerant avicelase from Acidothermus cellulolyticus - Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAboutManusScienceThe LifeNewThermal Neutron

277

Thermal tolerant cellulase from Acidothermus cellulolyticus - Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAboutManusScienceThe LifeNewThermal NeutronInnovation

278

Thermal tolerant exoglucanase from Acidothermus cellulolyticus - Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAboutManusScienceThe LifeNewThermal

279

Thermal tolerant mannanase from acidothermus cellulolyticus - Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAboutManusScienceThe LifeNewThermalInnovation Portal

280

Plasma-Thermal Synthesis - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006Photovoltaic Theory andVelocity Profile During TheThermal Synthesis

Note: This page contains sample records for the topic "ocean thermal energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Tunable Thermal Link - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2TopoPortalBRDFTunable Thermal Link Lawrence

282

On the Loss of Wind-Induced Near-Inertial Energy to Turbulent Mixing in the Upper Ocean  

E-Print Network [OSTI]

On the Loss of Wind-Induced Near-Inertial Energy to Turbulent Mixing in the Upper Ocean XIAOMING-inertial energy available for ocean mixing at depth is, at most, 0.1 TW. This confirms a recent suggestion energy source for the diapycnal mixing in the ocean required to maintain the meridional over- turning

Miami, University of

283

Boosting CSP Production with Thermal Energy Storage  

SciTech Connect (OSTI)

Combining concentrating solar power (CSP) with thermal energy storage shows promise for increasing grid flexibility by providing firm system capacity with a high ramp rate and acceptable part-load operation. When backed by energy storage capability, CSP can supplement photovoltaics by adding generation from solar resources during periods of low solar insolation. The falling cost of solar photovoltaic (PV) - generated electricity has led to a rapid increase in the deployment of PV and projections that PV could play a significant role in the future U.S. electric sector. The solar resource itself is virtually unlimited; however, the actual contribution of PV electricity is limited by several factors related to the current grid. The first is the limited coincidence between the solar resource and normal electricity demand patterns. The second is the limited flexibility of conventional generators to accommodate this highly variable generation resource. At high penetration of solar generation, increased grid flexibility will be needed to fully utilize the variable and uncertain output from PV generation and to shift energy production to periods of high demand or reduced solar output. Energy storage is one way to increase grid flexibility, and many storage options are available or under development. In this article, however, we consider a technology already beginning to be used at scale - thermal energy storage (TES) deployed with concentrating solar power (CSP). PV and CSP are both deployable in areas of high direct normal irradiance such as the U.S. Southwest. The role of these two technologies is dependent on their costs and relative value, including how their value to the grid changes as a function of what percentage of total generation they contribute to the grid, and how they may actually work together to increase overall usefulness of the solar resource. Both PV and CSP use solar energy to generate electricity. A key difference is the ability of CSP to utilize high-efficiency TES, which turns CSP into a partially dispatchable resource. The addition of TES produces additional value by shifting the delivery of solar energy to periods of peak demand, providing firm capacity and ancillary services, and reducing integration challenges. Given the dispatchability of CSP enabled by TES, it is possible that PV and CSP are at least partially complementary. The dispatchability of CSP with TES can enable higher overall penetration of the grid by solar energy by providing solar-generated electricity during periods of cloudy weather or at night, when PV-generated power is unavailable. Such systems also have the potential to improve grid flexibility, thereby enabling greater penetration of PV energy (and other variable generation sources such as wind) than if PV were deployed without CSP.

Denholm, P.; Mehos, M.

2012-06-01T23:59:59.000Z

284

Warm ocean anomaly, air sea fluxes, and the rapid intensification of tropical cyclone Nargis (2008)  

E-Print Network [OSTI]

's coasts great danger. As ocean is the energy source for intensification [Emanuel, 1999; Shay et al., 2000; Lin et al., 2005, 2008; Wu et al., 2007; I.-I. Lin et al., Upper ocean thermal structure to Monthly Weather Review, 2008], in this work we investigate the role of upper ocean thermal structure (UOTS

Texas at Austin. University of

285

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network [OSTI]

and M Dennis, "Solar thermal energy systems in Australia,"and M Dennis, "Solar thermal energy systems in Australia,"

Ho, Tony

2012-01-01T23:59:59.000Z

286

Tuning energy transport in solar thermal systems using nanostructured materials  

E-Print Network [OSTI]

Solar thermal energy conversion can harness the entire solar spectrum and theoretically achieve very high efficiencies while interfacing with thermal storage or back-up systems for dispatchable power generation. Nanostructured ...

Lenert, Andrej

2014-01-01T23:59:59.000Z

287

Memorandum of Understanding On Weather-Dependent and Oceanic Renewable Energy Resources  

E-Print Network [OSTI]

recognize that development of renewable energy offers benefits that include economic growth and creationMemorandum of Understanding On Weather-Dependent and Oceanic Renewable Energy Resources between the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy and the U.S. Department

288

Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications  

E-Print Network [OSTI]

S. a. , 2004, Solar Thermal Collectors and Applications,86] Schnatbaum L. , 2009, Solar Thermal Power Plants, Thefor Storage of Solar Thermal Energy, Solar Energy, 18 (3),

Coso, Dusan

2013-01-01T23:59:59.000Z

289

Transport across 48N in the Atlantic Ocean RICK LUMPKIN  

E-Print Network [OSTI]

. Introduction The partition of energy and freshwater flux between the ocean and the atmosphere and among various decomposition of ocean heat transport into thermal wind, gyre, and Ekman components for a rough estimateTransport across 48°N in the Atlantic Ocean RICK LUMPKIN NOAA/Atlantic Oceanographic

290

Advanced Thermal Energy Storage: Novel Tuning of Critical Fluctuations for Advanced Thermal Energy Storage  

SciTech Connect (OSTI)

HEATS Project: NAVITASMAX is developing a novel thermal energy storage solution. This innovative technology is based on simple and complex supercritical fluids substances where distinct liquid and gas phases do not exist, and tuning the properties of these fluid systems to increase their ability to store more heat. In solar thermal storage systems, heat can be stored in NAVITASMAXs system during the day and released at nightwhen the sun is not shiningto drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in NAVITASMAXs system at night and released to produce electricity during daytime peak-demand hours.

None

2011-12-01T23:59:59.000Z

291

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network [OSTI]

Thermally-Chargeable Supercapacitor Fluctuating Low-GradeThermally-Chargeable Supercapacitor for Fluctuating Low-Thermally-Chargeable Supercapacitor for Fluctuating Low-

Lim, Hyuck

2011-01-01T23:59:59.000Z

292

Effect of phantom dark energy on the holographic thermalization  

E-Print Network [OSTI]

Gravitational collapse of a shell of charged dust surrounded by the phantom dark energy is probed by the minimal area surface, which is dual to probe the thermalization in the boundary quantum field by expectation values of Wilson loop in the framework of the AdS/CFT correspondence. We investigated mainly the effect of the phantom dark energy parameter and chemical potential on the thermalization. The result shows that the smaller the phantom dark energy parameter is, the easier the plasma thermalizes as the chemical potential is fixed, and the larger the chemical potential is, the harder the plasma thermalizes as the dark energy parameter is fixed. We get the fitting function of the thermalization curve and with it, the thermalization velocity and thermalization acceleration are discussed.

Zeng, Xiao-Xiong; Li, Li-Fang

2015-01-01T23:59:59.000Z

293

Effect of phantom dark energy on the holographic thermalization  

E-Print Network [OSTI]

Gravitational collapse of a shell of charged dust surrounded by the phantom dark energy is probed by the minimal area surface, which is dual to probe the thermalization in the boundary quantum field by expectation values of Wilson loop in the framework of the AdS/CFT correspondence. We investigated mainly the effect of the phantom dark energy parameter and chemical potential on the thermalization. The result shows that the smaller the phantom dark energy parameter is, the easier the plasma thermalizes as the chemical potential is fixed, and the larger the chemical potential is, the harder the plasma thermalizes as the dark energy parameter is fixed. We get the fitting function of the thermalization curve and with it, the thermalization velocity and thermalization acceleration are discussed.

Xiao-Xiong Zeng; Xin-Yun Hu; Li-Fang Li

2015-03-16T23:59:59.000Z

294

MEMS based pyroelectric thermal energy harvester  

DOE Patents [OSTI]

A pyroelectric thermal energy harvesting apparatus for generating an electric current includes a cantilevered layered pyroelectric capacitor extending between a first surface and a second surface, where the first surface includes a temperature difference from the second surface. The layered pyroelectric capacitor includes a conductive, bimetal top electrode layer, an intermediate pyroelectric dielectric layer and a conductive bottom electrode layer. In addition, a pair of proof masses is affixed at a distal end of the layered pyroelectric capacitor to face the first surface and the second surface, wherein the proof masses oscillate between the first surface and the second surface such that a pyroelectric current is generated in the pyroelectric capacitor due to temperature cycling when the proof masses alternately contact the first surface and the second surface.

Hunter, Scott R; Datskos, Panagiotis G

2013-08-27T23:59:59.000Z

295

Carbon Foam Infused with Pentaglycerine for Thermal Energy Storage Applications.  

E-Print Network [OSTI]

??A thermal energy storage device that uses pentaglycerine as a phase change material was developed. This solid-state phase change material was embedded in a carbon (more)

Johnson, Douglas James

2011-01-01T23:59:59.000Z

296

Performance investigation of various cold thermal energy storages.  

E-Print Network [OSTI]

??This study deals with solidification and melting of some typical encapsulated ice thermal energy storage geometries. Using ANSYS GAMBIT and FLUENT 6.0 software, HTF fluid (more)

MacPhee, David

2008-01-01T23:59:59.000Z

297

Macroencapsulation of Phase Change Materials for Thermal Energy Storage.  

E-Print Network [OSTI]

??The use of a latent heat storage system using phase change materials (PCMs) is an effective way of storing thermal energy. Latent heat storage enables (more)

Pendyala, Swetha

2012-01-01T23:59:59.000Z

298

Design, construction and testing of an ocean renewable energy storage scaled prototype  

E-Print Network [OSTI]

The concept for a new form of pumped storage hydro is being developed within the Precision Engineering Research Group at MIT: the Ocean Renewable Energy Storage (ORES) project. Large, hollow concrete spheres are created, ...

Meredith, James D. C. (James Douglas Charles)

2012-01-01T23:59:59.000Z

299

Global energy conversion rate from geostrophic flows into internal lee waves in the deep ocean  

E-Print Network [OSTI]

A global estimate of the energy conversion rate from geostrophic flows into internal lee waves in the ocean is presented. The estimate is based on a linear theory applied to bottom topography at O(110) km scales obtained ...

Nikurashin, Maxim

300

Collaborative Research: Barotropic Radiation Experiment (BARX) The question of how energy flows through the oceans, especially how energy is lost from the currents  

E-Print Network [OSTI]

flows through the oceans, especially how energy is lost from the currents comprising the general and vorticity. Intellectual Merit. A fundamental process by which ocean currents lose the energy acquired from Variability in the Central North Atlantic Ocean 1. Motivations and Objectives The paths along which energy

Dushaw, Brian

Note: This page contains sample records for the topic "ocean thermal energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

MHK Projects/Makai Ocean Energy Research Center | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowell Point, Alaska:LuzClick here CurrentMakai Ocean Energy

302

Energy Partitions and Evolution in a Purely Thermal Solar Flare  

E-Print Network [OSTI]

This paper presents a solely thermal flare, which we detected in the microwave range from the thermal gyro- and free-free emission it produced. An advantage of analyzing thermal gyro emission is its unique ability to precisely yield the magnetic field in the radiating volume. When combined with observationally-deduced plasma density and temperature, these magnetic field measurements offer a straightforward way of tracking evolution of the magnetic and thermal energies in the flare. For the event described here, the magnetic energy density in the radio-emitting volume declines over the flare rise phase, then stays roughly constant during the extended peak phase, but recovers to the original level over the decay phase. At the stage where the magnetic energy density decreases, the thermal energy density increases; however, this increase is insufficient, by roughly an order of magnitude, to compensate for the magnetic energy decrease. When the magnetic energy release is over, the source parameters come back to ne...

Fleishman, Gregory D; Gary, Dale E

2015-01-01T23:59:59.000Z

303

Technical and economic feasibility of a Thermal Gradient Utilization Cycle (TGUC) power plant  

E-Print Network [OSTI]

Energy Conversion unit mass mass flow rate life of system Ocean Thermal Energy Conversion power pressure heat flow Rl R4 TGUC TP T2 total primary energy subsidy expressed as BTU input per 1000 BTU output thermal energy subsidy expressed... has grown in energy technologies that use renewable resources such as solar (thermal conversion, ocean thermal energy conversion, photovoltaics, wind and biomass conversion), geothermal and magnetohydrodynamics (MHD) . A new concept that can...

Raiji, Ashok

1980-01-01T23:59:59.000Z

304

Improving simulations of the upper ocean by inclusion of surface waves in the MellorYamada turbulence scheme  

E-Print Network [OSTI]

mixing. Surface waves can enhance turbulence kinetic energy and mixing of the upper ocean via wave interaction on the MellorYamada scheme and upper ocean thermal structure are examined and compared with each scheme. The behaviors of the MellorYamada scheme, as well as the simulated upper ocean thermal structure

Ezer,Tal

305

Hydrogen Energy Stations: Poly-Production of Electricity, Hydrogen, and Thermal Energy  

E-Print Network [OSTI]

re-use of thermal energy waste heat for building heating/and thermal energy waste heat, as well as purifiedare used to capture waste heat for productive purposes. Use

Lipman, Timothy; Brooks, Cameron

2006-01-01T23:59:59.000Z

306

Energy conversion of fully random thermal relaxation times Franois Barriquand  

E-Print Network [OSTI]

1 Energy conversion of fully random thermal relaxation times François Barriquand proba5050@hotmail.com ABSTRACT. Thermodynamic random processes in thermal systems are generally associated with one or several relaxation times, the inverse of which are formally homogeneous with energy. Here, we show in a precise way

Paris-Sud XI, Université de

307

Lyapunov Exponents of a Simple Stochastic Model of the Thermally and Wind-Driven Ocean Circulation  

E-Print Network [OSTI]

August 8, 2002 Present Address: School of Earth and Ocean Sciences, University of Victoria, P.O. Box 3055 STN CSC,Victoria BC, Canada, V8P 5C2 0 #12;Abstract A reformulation of the simple model

Monahan, Adam Hugh

308

Modeling of thermal energy storage in groundwater aquifers  

E-Print Network [OSTI]

MODELING OF THERMAL ENERGY STORAGE IN GROUNDWATER AQUIFERS A Thesis by DAVID BRYAN REED Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE December 1979... ABSTRACT Modeling of Thermal Energy Storage in Groundwater Aquifers. (December 1979) David Bryan Reed, B. S. , Texas A&M University Chairman of Advisory Committee: Dr. Donald L. Reddell Solar energy is a promising alternate energy source for space heat...

Reed, David Bryan

2012-06-07T23:59:59.000Z

309

Arctic ocean long-term acoustic monitoring : ambient noise, environmental correlates, and transients north of Barrow, Alaska  

E-Print Network [OSTI]

Ocean namely the thickness and concentration of perennial ice coverage is crucial in allowing the water column to retain thermal energy

Roth, Ethan H.

2008-01-01T23:59:59.000Z

310

SEASONAL THERMAL ENERGY STORAGE IN AQUIFERS-MATHEMATICAL MODELING STUDIES IN 1979  

E-Print Network [OSTI]

of Aquifer Thermal Energy Storage." Lawrence BerkeleyP, Andersen, "'rhermal Energy Storage in a Confined Aquifer~University Thermal Energy Storage Experiment." Lawrence

Tsang, Chin Fu

2013-01-01T23:59:59.000Z

311

Model-predicted distribution of wind-induced internal wave energy in the world's oceans  

E-Print Network [OSTI]

Model-predicted distribution of wind-induced internal wave energy in the world's oceans Naoki 9 July 2008; published 30 September 2008. [1] The distribution of wind-induced internal wave energy-scaled kinetic energy are all consistent with the available observations in the regions of significant wind

Miami, University of

312

The Annual Cycle of the Energy Budget. Part I: Global Mean and LandOcean Exchanges  

E-Print Network [OSTI]

The Annual Cycle of the Energy Budget. Part I: Global Mean and Land­Ocean Exchanges JOHN T. FASULLO and thus with OE, and between RT and atmospheric total energy divergence over land, are documented both March, in final form 1 October 2007) ABSTRACT The mean and annual cycle of energy flowing

Fasullo, John

313

Atmospheric Moisture Transports from Ocean to Land and Global Energy Flows in Reanalyses  

E-Print Network [OSTI]

Atmospheric Moisture Transports from Ocean to Land and Global Energy Flows in Reanalyses KEVIN E energy and hydrological cycles from eight current atmospheric reanalyses and their depiction of changes over time. A brief evaluation of the water and energy cycles in the latest version of the NCAR climate

Fasullo, John

314

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network [OSTI]

waste heat reclamation and solar thermal energy," Energy [K Lovegrove and M Dennis, "Solar thermal energy systems inK Lovegrove and M Dennis, "Solar thermal energy systems in

Ho, Tony

2012-01-01T23:59:59.000Z

315

Composite materials for thermal energy storage  

DOE Patents [OSTI]

A composite material for thermal energy storage based upon polyhydric alcohols, such as pentaerythritol, trimethylol ethane (also known as pentaglycerine), neopentyl glycol and related compounds including trimethylol propane, monoaminopentaerythritol, diamino-pentaerythritol and tris(hydroxymethyl)acetic acid, separately or in combinations, which provide reversible heat storage through crystalline phase transformations. These PCM's do not become liquid during use and are in contact with at least one material selected from the group consisting of metals, carbon, siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, porous rock, and mixtures thereof. Particulate additions such as aluminum or graphite powders, as well as metal and carbon fibers can also be incorporated therein. Particulate and/or fibrous additions can be introduced into molten phase change materials which can then be cast into various shapes. After the phase change materials have solidified, the additions will remain dispersed throughout the matrix of the cast solid. The polyol is in contact with at least one material selected from the group consisting of metals, carbon, siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, and mixtures thereof.

Benson, D.K.; Burrows, R.W.; Shinton, Y.D.

1985-01-04T23:59:59.000Z

316

Composite materials for thermal energy storage  

DOE Patents [OSTI]

The present invention discloses composite material for thermal energy storage based upon polyhydric alcohols, such as pentaerythritol, trimethylol ethane (also known as pentaglycerine), neopentyl glycol and related compounds including trimethylol propane, monoaminopentaerythritol, diamino-pentaerythritol and tris(hydroxymethyl)acetic acid, separately or in combinations, which provide reversible heat storage through crystalline phase transformations. These phase change materials do not become liquid during use and are in contact with at least one material selected from the group consisting of metals, carbon siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, porous rock, and mixtures thereof. Particulate additions, such as aluminum or graphite powders, as well as metal and carbon fibers can also be incorporated therein. Particulate and/or fibrous additions can be introduced into molten phase change materials which can then be cast into various shapes. After the phase change materials have solidified, the additions will remain dispersed throughout the matrix of the cast solid. The polyol is in contact with at least one material selected from the group consisting of metals, carbon siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, and mixtures thereof.

Benson, David K. (Golden, CO); Burrows, Richard W. (Conifer, CO); Shinton, Yvonne D. (Northglenn, CO)

1986-01-01T23:59:59.000Z

317

PCM energy storage during defective thermal cycling:.  

E-Print Network [OSTI]

??Incomplete thermal cycling affects storage capacities of phase change materials (PCMs). Existing PCM measuring methods are presented with their drawbacks. A new device named the (more)

Koekenbier, S.F.

2011-01-01T23:59:59.000Z

318

Thermal Energy Storage:Analysis and Application.  

E-Print Network [OSTI]

??The purpose of this paper is to analyze and determine the feasibility of a cold thermal storage system in manufacturing Industries. Cooling loads and actual (more)

Ogunkoya, Dolanimi Olugbenga

2009-01-01T23:59:59.000Z

319

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network [OSTI]

Chargeable Double-Layer Supercapacitors to be submitted toon Thermally-Chargeable Double- Layer Supercapacitors 2.1.of Thermally-Chargeable Supercapacitors in Various Solvents

Lim, Hyuck

2011-01-01T23:59:59.000Z

320

Guide to Setting Thermal Comfort Criteria and Minimizing Energy Use in Delivering Thermal Comfort  

SciTech Connect (OSTI)

Historically thermal comfort in buildings has been controlled by simple dry bulb temperature settings. As we move into more sophisticated low energy building systems that make use of alternate systems such as natural ventilation, mixed mode system and radiant thermal conditioning strategies, a more complete understanding of human comfort is needed for both design and control. This guide will support building designers, owners, operators and other stakeholders in defining quantifiable thermal comfort parameters?these can be used to support design, energy analysis and the evaluation of the thermal comfort benefits of design strategies. This guide also contains information that building owners and operators will find helpful for understanding the core concepts of thermal comfort. Whether for one building, or for a portfolio of buildings, this guide will also assist owners and designers in how to identify the mechanisms of thermal comfort and space conditioning strategies most important for their building and climate, and provide guidance towards low energy design options and operations that can successfully address thermal comfort. An example of low energy design options for thermal comfort is presented in some detail for cooling, while the fundamentals to follow a similar approach for heating are presented.

Regnier, Cindy

2012-08-31T23:59:59.000Z

Note: This page contains sample records for the topic "ocean thermal energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Thermal Energy Storage at a Federal Facility  

SciTech Connect (OSTI)

Utility partnership upgrades energy system to help meet the General Services Administration's (GSA) energy-saving goals

Not Available

2000-07-01T23:59:59.000Z

322

AQUIFER THERMAL ENERGY STORAGE-A SURVEY  

E-Print Network [OSTI]

source of energy, proceedings, International Solar Energybuilding and solar energy could be used as sources of heat

Tsang, Chin Fu

2012-01-01T23:59:59.000Z

323

Hybrid Dynamic Energy and Thermal Management in Heterogeneous Embedded Multiprocessor SoCs  

E-Print Network [OSTI]

Hybrid Dynamic Energy and Thermal Management in Heterogeneous Embedded Multiprocessor SoCs Shervin propose a joint thermal and energy management technique specifically designed for heterogeneous MPSo technique simultaneously reduces the thermal hot spots, temperature gradients, and energy consumption

Simunic, Tajana

324

AQUIFER THERMAL ENERGY STORAGE. A NUMERICAL SIMULATION OF AUBURN UNIVERSITY FIELD EXPERIMENTS  

E-Print Network [OSTI]

C.F. , 1980, "Aquifer Thermal Energy - Parameter Study" (infrom the Auburn University Thermal Energy Storage , LBL No.studies in aquifer thermal energy , Presented at the ~~~~~~~

Tsang, Chin Fu

2013-01-01T23:59:59.000Z

325

Thermal Energy Storage for Electricity Peak-demand Mitigation: A Solution in Developing and Developed World Alike  

E-Print Network [OSTI]

N ATIONAL L ABORATORY Thermal Energy Storage for Electricity20, 2012. I. Dincer, On thermal energy storage systems andin research on cold thermal energy storage, International

DeForest, Nicholas

2014-01-01T23:59:59.000Z

326

MULTIPLE WELL VARIABLE RATE WELL TEST ANALYSIS OF DATA FROM THE AUBURN UNIVERSITY THERMAL ENERGY STORAGE PROGRAM  

E-Print Network [OSTI]

experimental Thermal energy storage in confined aquifers. lAUBURN UNIVERSITY THERMAL ENERGY STORAGE PROGRM1 Christineseries of aquifer thermal energy storage field experiments.

Doughty, Christine

2012-01-01T23:59:59.000Z

327

Thermal Energy Storage for Electricity Peak-demand Mitigation: A Solution in Developing and Developed World Alike  

E-Print Network [OSTI]

20, 2012. I. Dincer, On thermal energy storage systems andin research on cold thermal energy storage, Internationalpp177189, 2002. [PG&E] Thermal Energy Storage Strategies

DeForest, Nicholas

2014-01-01T23:59:59.000Z

328

E-Print Network 3.0 - atmosphere-ocean thermal contrast Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

thermal orbits at two contrasting grid locations in the millennial simulation of the ECHO-G coupled... Characterizing land surface processes: A quantitative analysis using...

329

Towards Energy-Efficient Reactive Thermal Management in Instrumented Datacenters  

E-Print Network [OSTI]

Towards Energy-Efficient Reactive Thermal Management in Instrumented Datacenters Ivan Rodero, Eun techniques used to alleviate thermal anomalies (i.e., hotspots) in cloud datacenter's servers of by reducing such as voltage scaling that also can be applied to reduce the temperature of the servers in datacenters. Because

Pompili, Dario

330

Energy Management and RD & D Activities for Energy Conservation in TEPCO  

E-Print Network [OSTI]

for some time, and 778 now coal is added to start COM based thermal power development. For all other energy sources natural energies such as geothermal, solar, wind power, tide, ocean thermal energy conversion (OTEC), small scale hydraulic, etc., fuel...

Ohmori, M.; Yoshihama, K.

1981-01-01T23:59:59.000Z

331

Designing a Thermal Energy Storage Program for Electric Utilities  

E-Print Network [OSTI]

Electric utilities are looking at thermal energy storage technology as a viable demand side management (DSM) option. In order for this DSM measure to be effective, it must be incorporated into a workable, well-structured utility program. This paper...

Niehus, T. L.

1994-01-01T23:59:59.000Z

332

On the spatial distribution of thermal energy in equilibrium  

E-Print Network [OSTI]

The equipartition theorem states that in equilibrium thermal energy is equally distributed among uncoupled degrees of freedom which appear quadratically in the system's Hamiltonian. However, for spatially coupled degrees of freedom --- such as interacting particles --- one may speculate that the spatial distribution of thermal energy may differ from the value predicted by equipartition, possibly quite substantially in strongly inhomogeneous/disordered systems. Here we show that in general the averaged thermal energy may indeed be inhomogeneously distributed, but is universally bounded from above by $\\frac{1}{2}k_BT$. In addition, we show that in one-dimensional systems with short-range interactions, the thermal energy is equally partitioned even for coupled degrees of freedom in the thermodynamic limit.

Bar-Sinai, Yohai

2015-01-01T23:59:59.000Z

333

Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications  

E-Print Network [OSTI]

Storage of Solar Thermal Energy, Solar Energy, 18 (3), pp.Power Plants, Journal of Solar Energy Engineering, 124 (2),Cycle Storage of Solar Energy, Energy & Environmental

Coso, Dusan

2013-01-01T23:59:59.000Z

334

Renewable Energies III Photovoltaics, Solar & Geo-Thermal  

E-Print Network [OSTI]

Renewable Energies III Photovoltaics, Solar & Geo-Thermal 21st August - 2nd September 2011 on the principles of solar energy conversion. Theoretical knowledge will be complemented with practical workshops of solar energy conversion. Theoretical knowledge will be comple- mented with practical workshops

335

MHK Technologies/THOR Ocean Current Turbine | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay IEOWC <SurgeWEC < MHKTETRON < MHKTHOR Ocean

336

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network [OSTI]

III, "Man-made Geothermal Energy," presented at MiamiA.C.Meyers III; "Manmade Geothermal Energy", Proc. of Miamiin soils extraction of geothermal energy heat storage in the

Authors, Various

2011-01-01T23:59:59.000Z

337

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network [OSTI]

III, "Man-made Geothermal Energy," presented at MiamiA.C.Meyers III; "Manmade Geothermal Energy", Proc. of MiamiBlack is director of Geothermal Energy Systems, Fox Parry is

Authors, Various

2011-01-01T23:59:59.000Z

338

Improving simulations of the upper-ocean by inclusion of4 surface waves in the Mellor-Yamada turbulence scheme5  

E-Print Network [OSTI]

kinetic energy and mixing of the upper ocean33 via wave breaking and non-breaking wave35 upper-ocean thermal structure are examined and compared with each other using36 one. The behaviors of the Mellor-Yamada39 scheme, as well as the simulated upper-ocean thermal structure

Ezer,Tal

339

Influence of upper-ocean stratification on tropical cyclone-induced surface cooling in the Bay of Bengal  

E-Print Network [OSTI]

in oceanic stratification rather than to differences in TC wind energy input. During the postmonsoon season, a deeper thermal stratification combined with a considerable upper-ocean freshening strongly inhibits that TCs primarily draw their energy from evaporation at the ocean surface [Riehl, 1950]. TCs generally

340

Legal and regulatory issues affecting aquifer thermal energy storage  

SciTech Connect (OSTI)

This document updates and expands the report with a similar title issued in October 1980. This document examines a number of legal and regulatory issues that potentially can affect implementation of the aquifer thermal energy storage (ATES) concept. This concept involves the storage of thermal energy in an underground aquifer until a later date when it can be effectively utilized. Either heat energy or chill can be stored. Potential end uses of the energy include district space heating and cooling, industrial process applications, and use in agriculture or aquaculture. Issues are examined in four categories: regulatory requirements, property rights, potential liability, and issues related to heat or chill delivery.

Hendrickson, P.L.

1981-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "ocean thermal energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Pulse thermal energy transport/storage system  

DOE Patents [OSTI]

A pulse-thermal pump having a novel fluid flow wherein heat admitted to a closed system raises the pressure in a closed evaporator chamber while another interconnected evaporator chamber remains open. This creates a large pressure differential, and at a predetermined pressure the closed evaporator is opened and the opened evaporator is closed. This difference in pressure initiates fluid flow in the system.

Weislogel, Mark M. (23133 Switzer Rd., Brookpark, OH 44142)

1992-07-07T23:59:59.000Z

342

Aquifer thermal energy storage reference manual: seasonal thermal energy storage program  

SciTech Connect (OSTI)

This is the reference manual of the Seasonal Thermal Energy Storage (STES) Program, and is the primary document for the transfer of technical information of the STES Program. It has been issued in preliminary form and will be updated periodically to include more technical data and results of research. As the program progresses and new technical data become available, sections of the manual will be revised to incorporate these data. This primary document contains summaries of: the TRW, incorporated demonstration project at Behtel, Alaska, Dames and Moore demonstration project at Stony Brook, New York, and the University of Minnesota demonstration project at Minneapolis-St. Paul, Minnesota; the technical support programs including legal/institutional assessment; economic assessment; environmental assessment; field test facilities; a compendia of existing information; numerical simulation; and non-aquifer STES concepts. (LCL)

Prater, L.S.

1980-01-01T23:59:59.000Z

343

Arnold Schwarzenegger CALIFORNIA OCEAN WAVE  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor CALIFORNIA OCEAN WAVE ENERGY ASSESSMENT Prepared For: California this report as follows: Previsic, Mirko. 2006. California Ocean Wave Energy Assessment. California Energy Systems Integration · Transportation California Ocean Wave Energy Assessment is the final report

344

Effect of thermalized charm on heavy quark energy loss  

E-Print Network [OSTI]

The recent experimental results on the flow of $J/\\psi$ at LHC show that ample amount of charm quarks is present in the quark gluon plasma and probably they are thermalized. In the current study we investigate the effect of thermalized charm quarks on the heavy quark energy loss to leading order in the QCD coupling constant. It is seen that the energy loss of charm quark increases considerably due to the inclusion of thermal charm quarks. Running coupling has also been implemented to study heavy quark energy loss and we find substantial increase in the heavy quark energy loss due to heavy-heavy scattering at higher temperature to be realized at LHC energies.

Souvik Priyam Adhya; Mahatsab Mandal; Sreemoyee Sarkar; Pradip K. Roy; Sukalyan Chattopadhyay

2014-08-28T23:59:59.000Z

345

Sea ice floes dissipate the energy of steep ocean waves  

E-Print Network [OSTI]

Wave attenuation by ice floes is an important parameter for modelling the Arctic Oceans. At present, attenuation coefficients are extracted from linear models as a function of the incident wave period and floe thickness. Recent explorations in the Antarctic Mixed Ice Zone (MIZ) revealed a further dependence on wave amplitude, suggesting that nonlinear contributions are non-negligible. An experimental model for wave attenuation by a single ice floe in a wave flume is here presented. Observations are compared with linear predictions based on wave scattering. Results indicate that linear models perform well under the effect of gently sloping waves. For more energetic wave fields, however, transmitted wave height is normally over predicted. Deviations from linearity appear to be related to an enhancement of wave dissipation induced by unaccounted wave-ice interaction processes, including the floe over wash.

Toffoli, Alessandro; Meylan, Michael H; Cavaliere, Claudio; Alberello, Alberto; Elsnab, John; Monty, Jason P

2015-01-01T23:59:59.000Z

346

Thermal conductor for high-energy electrochemical cells  

DOE Patents [OSTI]

A thermal conductor for use with an electrochemical energy storage device is disclosed. The thermal conductor is attached to one or both of the anode and cathode contacts of an electrochemical cell. A resilient portion of the conductor varies in height or position to maintain contact between the conductor and an adjacent wall structure of a containment vessel in response to relative movement between the conductor and the wall structure. The thermal conductor conducts current into and out of the electrochemical cell and conducts thermal energy between the electrochemical cell and thermally conductive and electrically resistive material disposed between the conductor and the wall structure. The thermal conductor may be fabricated to include a resilient portion having one of a substantially C-shaped, double C-shaped, Z-shaped, V-shaped, O-shaped, S-shaped, or finger-shaped cross-section. An elastomeric spring element may be configured so as to be captured by the resilient conductor for purposes of enhancing the functionality of the thermal conductor. The spring element may include a protrusion that provides electrical insulation between the spring conductor and a spring conductor of an adjacently disposed electrochemical cell in the presence of relative movement between the cells and the wall structure. The thermal conductor may also be fabricated from a sheet of electrically conductive material and affixed to the contacts of a number of electrochemical cells.

Hoffman, Joseph A. (Minneapolis, MN); Domroese, Michael K. (South St. Paul, MN); Lindeman, David D. (Hudson, WI); Radewald, Vern E. (Austin, TX); Rouillard, Roger (Beloeil, CA); Trice, Jennifer L. (Eagan, MN)

2000-01-01T23:59:59.000Z

347

Advanced Thermal Control | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement3-- ------------------------------ChapterJuly 20142 U.S.AdvancedThermal Control

348

Overview of Ocean Wave and Tidal Energy Lingchuan Mei  

E-Print Network [OSTI]

resources such as solar and wind energy, waves and tides have the advantages of having much higher power stronger energy conversion devices lower in capital cost than for other renewable technologies and creating more job opportunities. For these major benefits the marine energy can provide us with, a great

Lavaei, Javad

349

Explorations of AtmosphereOceanIce Climates on an Aquaplanet and Their Meridional Energy Transports  

E-Print Network [OSTI]

Explorations of Atmosphere­Ocean­Ice Climates on an Aquaplanet and Their Meridional Energy climates--some with polar ice caps, some without--even though they are driven by the same incoming solar is a useful guide. In cold climates with significant polar ice caps, however, meridional gradients in albedo

Miami, University of

350

Aero-Acoustic Analysis of Wells Turbine for Ocean Wave Energy Conversion  

E-Print Network [OSTI]

Aero-Acoustic Analysis of Wells Turbine for Ocean Wave Energy Conversion Ralf Starzmann Fluid the water wave motion into a bi-directional air flow, which in turn drives an air turbine. The Wells turbine the environmental impact of an in situ Wells turbine in more detail requires an in depth understanding

Frandsen, Jannette B.

351

Thermal Regenerator Testing | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe EnergyDepartment of Energy TheAged byEnergy

352

Assessment of Energy Production Potential from Ocean Currents along the United States Coastline  

SciTech Connect (OSTI)

Increasing energy consumption and depleting reserves of fossil fuels have resulted in growing interest in alternative renewable energy from the ocean. Ocean currents are an alternative source of clean energy due to their inherent reliability, persistence and sustainability. General ocean circulations exist in the form of large rotating ocean gyres, and feature extremely rapid current flow in the western boundaries due to the Coriolis Effect. The Gulf Stream system is formed by the western boundary current of the North Atlantic Ocean that flows along the east coastline of the United States, and therefore is of particular interest as a potential energy resource for the United States. This project created a national database of ocean current energy resources to help advance awareness and market penetration in ocean current energy resource assessment. The database, consisting of joint velocity magnitude and direction probability histograms, was created from data created by seven years of numerical model simulations. The accuracy of the database was evaluated by ORNL?s independent validation effort documented in a separate report. Estimates of the total theoretical power resource contained in the ocean currents were calculated utilizing two separate approaches. Firstly, the theoretical energy balance in the Gulf Stream system was examined using the two-dimensional ocean circulation equations based on the assumptions of the Stommel model for subtropical gyres with the quasi-geostrophic balance between pressure gradient, Coriolis force, wind stress and friction driving the circulation. Parameters including water depth, natural dissipation rate and wind stress are calibrated in the model so that the model can reproduce reasonable flow properties including volume flux and energy flux. To represent flow dissipation due to turbines additional turbine drag coefficient is formulated and included in the model. Secondly, to determine the reasonableness of the total power estimates from the Stommel model and to help determine the size and capacity of arrays necessary to extract the maximum theoretical power, further estimates of the available power based on the distribution of the kinetic power density in the undisturbed flow was completed. This used estimates of the device spacing and scaling to sum up the total power that the devices would produce. The analysis has shown that considering extraction over a region comprised of the Florida Current portion of the Gulf Stream system, the average power dissipated ranges between 4-6 GW with a mean around 5.1 GW. This corresponds to an average of approximately 45 TWh/yr. However, if the extraction area comprises the entire portion of the Gulf Stream within 200 miles of the US coastline from Florida to North Carolina, the average power dissipated becomes 18.6 GW or 163 TWh/yr. A web based GIS interface, http://www.oceancurrentpower.gatech.edu/, was developed for dissemination of the data. The website includes GIS layers of monthly and yearly mean ocean current velocity and power density for ocean currents along the entire coastline of the United States, as well as joint and marginal probability histograms for current velocities at a horizontal resolution of 4-7 km with 10-25 bins over depth. Various tools are provided for viewing, identifying, filtering and downloading the data.

Haas, Kevin

2013-09-15T23:59:59.000Z

353

Flexible ocean upwelling pipe  

DOE Patents [OSTI]

In an ocean thermal energy conversion facility, a cold water riser pipe is releasably supported at its upper end by the hull of the floating facility. The pipe is substantially vertical and has its lower end far below the hull above the ocean floor. The pipe is defined essentially entirely of a material which has a modulus of elasticity substantially less than that of steel, e.g., high density polyethylene, so that the pipe is flexible and compliant to rather than resistant to applied bending moments. The position of the lower end of the pipe relative to the hull is stabilized by a weight suspended below the lower end of the pipe on a flexible line. The pipe, apart from the weight, is positively buoyant. If support of the upper end of the pipe is released, the pipe sinks to the ocean floor, but is not damaged as the length of the line between the pipe and the weight is sufficient to allow the buoyant pipe to come to a stop within the line length after the weight contacts the ocean floor, and thereafter to float submerged above the ocean floor while moored to the ocean floor by the weight. The upper end of the pipe, while supported by the hull, communicates to a sump in the hull in which the water level is maintained below the ambient water level. The sump volume is sufficient to keep the pipe full during heaving of the hull, thereby preventing collapse of the pipe.

Person, Abraham (Los Alamitos, CA)

1980-01-01T23:59:59.000Z

354

Eurotherm Seminar #99 Advances in Thermal Energy Storage  

E-Print Network [OSTI]

Eurotherm Seminar #99 Advances in Thermal Energy Storage 1 EUROTHERM99-01-103 Convection Energy Storage 2 Nussel number. This study shows that an increase in the convection coefficient leads in this paper consists in horizontal PCM plates separated by an air flow. This is a storage system dedicated

Boyer, Edmond

355

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network [OSTI]

128] V Minea, "Using Geothermal Energy and Industrial Wastesuch as solar thermal and geothermal energy will become ansolar field, and geothermal energy, where energy is obtained

Ho, Tony

2012-01-01T23:59:59.000Z

356

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network [OSTI]

such as in solar energy and geothermal energy [183]. Solar128] V Minea, "Using Geothermal Energy and Industrial Wastesuch as solar thermal and geothermal energy will become an

Ho, Tony

2012-01-01T23:59:59.000Z

357

AQUIFER THERMAL ENERGY STORAGE-A SURVEY  

E-Print Network [OSTI]

energy storage for cogeneration and solar systems, inTwin City district cogeneration system, in Proceedings,proposed system, based on cogeneration of power and heat by

Tsang, Chin Fu

2012-01-01T23:59:59.000Z

358

Studies of switching field and thermal energy barrier distributions in a FePt nanoparticle system  

E-Print Network [OSTI]

Studies of switching field and thermal energy barrier distributions in a FePt nanoparticle system X dependence of the thermal stability factor, the width of the thermal energy barrier distribution- ropy energy distribution and the interaction and the thermal energy barrier distribution determined

Laughlin, David E.

359

Motor Thermal Control | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOE TribaltheMyMinutesDepartmentCharacteristics | MotorThermal

360

Hydropower and Ocean Energy Resources and Technologies | Department...  

Energy Savers [EERE]

is typically not cost-effective unless the site has ready access to an existing hydroelectric dam. However, it is important for Federal energy managers to be knowledgeable...

Note: This page contains sample records for the topic "ocean thermal energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Title COMBINATION OF THERMAL SOLAR COLLECTORS, HEAT PUMP AND THERMAL ENERGY STORAGE FOR DWELLINGS IN BELGIUM.  

E-Print Network [OSTI]

The amount of available solar energy in Belgium is more than sufficient to meet local heat demand for space heating and domestic hot water in a dwelling. However, the timing of both the availability of solar energy and the need for thermal energy, match only to a limited extent. Therefore, compact storage of the surplus of thermal energy is a critical issue. Depending on the temperature at which this energy is available, directly from the sun or indirectly through the storage, different combinations with a heat pump can be considered. By combining solar energy with a heat pump one may benefit on both sides since the fraction of solar energy increases as well as the performance of the heat pump. The aim of this thesis is to select the best out of three configurations that combine thermal solar collectors, heat pump and thermal energy storage for heating purposes in dwellings in Belgium, based on model simulations. Energetic, exergetic and economic criteria are used to evaluate the different configurations, while thermal comfort and domestic hot water tap profiles should be met. One (or more) performance index (indices) is (are) defined enabling an objective comparison between different systems. Today several systems are already commercially available on the international market [4]. Since these systems consist of different components, the system design is a crucial issue. Therefore, special attention should be paid to the sizing of the individual components, the interaction of the components within the global system, and the strategy for operational control. To study the interaction with the building, three types of buildings (already defined in a previous project) are considered.

Contact Raf; De Herdt; Roel De Coninck; Filip Van Den Schoor; Lieve Helsen

362

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network [OSTI]

Direct energy conversion ..developed. Typically, direct energy conversion is achievedTechnologies 1.2.1. Direct energy conversion In a direct

Lim, Hyuck

2011-01-01T23:59:59.000Z

363

Assessment and Prediction of the Thermal Performance of a Centralized Latent Heat Thermal Energy Storage Utilizing Artificial Neural Network  

E-Print Network [OSTI]

A simulation tool is developed to analyze the thermal performance of a centralized latent heat thermal energy storage system (LHTES) using computational fluid dynamics (CFD). The LHTES system is integrated with a mechanical ventilation system...

El-Sawi, A.; Haghighat, F.; Akbari, H.

2013-01-01T23:59:59.000Z

364

Hydropower and Ocean Energy Resources and Technologies | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andof EnergyHydrogen-Powered Buses Brochure -Energy

365

Futurestock'2003 9 International Conference on Thermal Energy Storage, Warsaw, POLAND  

E-Print Network [OSTI]

is also needed when designing a BTES (Borehole Thermal Energy Storage) system. The ground thermal381 Futurestock'2003 9 th International Conference on Thermal Energy Storage, Warsaw, POLAND, BTES, TED-measurement ABSTRACT The thermal conductivity of the ground and thermal resistance

366

ENERGY & ENVIRONMENT DIVISION ANNUAL REPORT, 1977  

E-Print Network [OSTI]

programs at potential OTEC sites, and providing technicalof the Ocean Thermal Energy Conversion (OTEC) program.The OTEC program is an attempt to generate useful power

Budnitz, R.J.

2011-01-01T23:59:59.000Z

367

Global Energetics of Solar Flares: II. Thermal Energies  

E-Print Network [OSTI]

We present the second part of a project on the global energetics of solar flares and CMEs that includes about 400 M- and X-class flares observed with AIA/SDO during the first 3.5 years of its mission. In this Paper II we compute the differential emission measure (DEM) distribution functions and associated multi-thermal energies, using a spatially-synthesized Gaussian DEM forward-fitting method. The multi-thermal DEM function yields a significantly higher (by an average factor of $\\approx 14$), but more comprehensive (multi-)thermal energy than an isothermal energy estimate from the same AIA data. We find a statistical energy ratio of $E_{th}/E_{diss} \\approx 2\\%-40\\%$ between the multi-thermal energy $E_{th}$ and the magnetically dissipated energy $E_{diss}$, which is an order of magnitude higher than the estimates of Emslie et al.~2012. For the analyzed set of M and X-class flares we find the following physical parameter ranges: $L=10^{8.2}-10^{9.7}$ cm for the length scale of the flare areas, $T_p=10^{5.7}-...

Aschwanden, M J; Ryan, D; Caspi, A; McTiernan, J M; Warren, H P

2015-01-01T23:59:59.000Z

368

DE-EE0000319 Final Technical Report [National Open-ocean Energy Laboratory  

SciTech Connect (OSTI)

Under the authorization provided by Section 634 of the Energy Independence and Security Act of 2007 (P.L. 110-140), in 2009 FAU was awarded U.S. Congressionally Directed Program (CDP) funding through the U.S. Department of Energy (DOE) to investigate and develop technologies to harness the energy of the Florida Current as a source of clean, renewable, base-load power for Florida and the U.S. A second CDP award in 2010 provided additional funding in order to enhance and extend FAUs activities. These two CDPs in 2009 and 2010 were combined into a single DOE grant, DE-EE0000319, and are the subject of this report. Subsequently, in July 2010 funding was made available under a separate contract, DE-EE0004200. Under that funding, DOEs Wind and Water Power Program designated FAUs state of Florida marine renewable energy (MRE) center as the Southeast National Marine Renewable Energy Center (SNMREC). This report discusses SNMREC activities funded by the DE-EE0000319 grant, but will make reference, as appropriate, to activities that require further investigation under the follow-on grant. The concept of extracting energy from the motions of the oceans has a long history. However, implementation on large scales of the technologies to effect renewable energy recovery from waves, tides, and open-ocean currents is relatively recent. DOEs establishment of SNMREC recognizes a significant potential for ocean current energy recovery associated with the (relatively) high-speed Florida Current, the reach of the Gulf Stream System flowing through the Straits of Florida, between the Florida Peninsula and the Bahamas Archipelago. The proximity of the very large electrical load center of southeast Floridas metropolitan area to the resource itself makes this potential all the more attractive. As attractive as this potential energy source is, it is not without its challenges. Although the technology is conceptually simple, its design and implementation in a commercially-viable fashion presents a variety of challenges. Beyond the technology itself (and, especially, the effects on the technology of the harsh oceanic environment), it is important to consider the possible environmental impacts of commercial-scale implementation of oceanic energy extraction. Further, because such implementation represents a completely new undertaking, the human resources required do not exist, so education and training programs are critical to eventual success. This project, establishing a national open-ocean energy laboratory, was designed to address each of these three challenges in a flexible framework allowing for adaptive management as the project proceeded. In particular: ? the technology challenge, including resource assessment, evolved during the project to recognize and address the need for a national testing facility in the ocean for small-scale prototype MRE systems developed by industry; ? the environmental challenge became formalized and expanded during the permitting process for such a testing facility; and ? the human resources/societal challenges, both in terms of the need for education and training and in terms of public acceptance of MRE, stimulated a robust outreach program far beyond that originally envisioned at SNMREC. While all of these activities at SNMREC are ongoing, a number of significant milestones (in addition to the contributions listed in the appendices) were achieved under the auspices of this award. These include: ? Planning and site selection for the first-phase test facility, offshore of Dania Beach, FL, including some equipment for the facility, submission of an Interim Policy Lease Application to the U.S. Department of Interiors Bureau of Ocean Energy Management (BOEM), and completion of an Environmental Assessment by BOEM and a positive Consistency Determination by the State of Florida; ? Measurements using acoustic profilers of the current structure and variability in the vicinity of the site under a variety of weather conditions, seasons and time durations; ? Design and implementation of instrument

Skemp, Susan

2013-12-29T23:59:59.000Z

369

Energy conservation in dissipative processes: Teacher expectations and strategies associated with imperceptible thermal energy  

E-Print Network [OSTI]

Research has demonstrated that many students and some teachers do not consistently apply the conservation of energy principle when analyzing mechanical scenarios. In observing elementary and secondary teachers engaged in learning activities that require tracking and conserving energy, we find that challenges to energy conservation often arise in dissipative scenarios in which kinetic energy transforms into thermal energy (e.g., a ball rolls to a stop). We find that teachers expect that when they can see the motion associated with kinetic energy, they should be able to perceive the warmth associated with thermal energy. Their expectations are violated when the warmth produced is imperceptible. In these cases, teachers reject the idea that the kinetic energy transforms to thermal energy. Our observations suggest that apparent difficulties with energy conservation may have their roots in a strong and productive association between forms of energy and their perceptible indicators. We see teachers resolve these ch...

Daane, Abigail R; Vokos, Stamatis; Scherr, Rachel E

2014-01-01T23:59:59.000Z

370

Thermal energy storage technical progress report, April 1992--March 1993  

SciTech Connect (OSTI)

The Department of Energy (DOE) is supporting development of thermal energy storage (TES) as a means of efficiently coupling energy supplies to variable heating or cooling demands. Uses of TES include electrical demand-side management in buildings and industry, extending the utilization of renewable energy resources such as solar, and recovery of waste heat from periodic industrial processes. Technical progress to develop TES for specific diurnal and industrial applications under the Oak Ridge National Laboratory`s TES program from April 1992 to March 1993 is reported and covers research in the areas of low temperature sorption, thermal energy storage water heater, latent heat storage wallboard and latent/sensible heat regenerator technology development.

Olszewski, M.

1993-05-01T23:59:59.000Z

371

Local Thermal Equilibrium States and Quantum Energy Inequalities  

E-Print Network [OSTI]

In this paper we investigate the energy distribution of states of a linear scalar quantum field with arbitrary curvature coupling on a curved spacetime which fulfill some local thermality condition. We find that this condition implies a quantum energy inequality for these states, where the (lower) energy bounds depend only on the local temperature distribution and are local and covariant (the dependence of the bounds other than on temperature is on parameters defining the quantum field model, and on local quantities constructed from the spacetime metric). Moreover, we also establish the averaged null energy condition (ANEC) for such locally thermal states, under growth conditions on their local temperature and under conditions on the free parameters entering the definition of the renormalized stress-energy tensor. These results hold for a range of curvature couplings including the cases of conformally coupled and minimally coupled scalar field.

Jan Schlemmer; Rainer Verch

2008-02-15T23:59:59.000Z

372

Overview of Thermal Management | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLCDieselEnergy Joining| Department of Energy

373

Semi-transparent solar energy thermal storage device  

DOE Patents [OSTI]

A visually transmitting solar energy absorbing thermal storage module includes a thermal storage liquid containment chamber defined by an interior solar absorber panel, an exterior transparent panel having a heat mirror surface substantially covering the exterior surface thereof and associated top, bottom and side walls, Evaporation of the thermal storage liquid is controlled by a low vapor pressure liquid layer that floats on and seals the top surface of the liquid. Porous filter plugs are placed in filler holes of the module. An algicide and a chelating compound are added to the liquid to control biological and chemical activity while retaining visual clarity. A plurality of modules may be supported in stacked relation by a support frame to form a thermal storage wall structure.

McClelland, John F. (Ames, IA)

1985-06-18T23:59:59.000Z

374

Semi-transparent solar energy thermal storage device  

DOE Patents [OSTI]

A visually transmitting solar energy absorbing thermal storage module includes a thermal storage liquid containment chamber defined by an interior solar absorber panel, an exterior transparent panel having a heat mirror surface substantially covering the exterior surface thereof and associated top, bottom and side walls. Evaporation of the thermal storage liquid is controlled by a low vapor pressure liquid layer that floats on and seals the top surface of the liquid. Porous filter plugs are placed in filler holes of the module. An algicide and a chelating compound are added to the liquid to control biological and chemical activity while retaining visual clarity. A plurality of modules may be supported in stacked relation by a support frame to form a thermal storage wall structure.

McClelland, John F. (Ames, IA)

1986-04-08T23:59:59.000Z

375

Molten Glass for Thermal Storage: Advanced Molten Glass for Heat Transfer and Thermal Energy Storage  

SciTech Connect (OSTI)

HEATS Project: Halotechnics is developing a high-temperature thermal energy storage system using a new thermal-storage and heat-transfer material: earth-abundant and low-melting-point molten glass. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at nightwhen the sun is not outto drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours. Halotechnics new thermal storage material targets a price that is potentially cheaper than the molten salt used in most commercial solar thermal storage systems today. It is also extremely stable at temperatures up to 1200Chundreds of degrees hotter than the highest temperature molten salt can handle. Being able to function at high temperatures will significantly increase the efficiency of turning heat into electricity. Halotechnics is developing a scalable system to pump, heat, store, and discharge the molten glass. The company is leveraging technology used in the modern glass industry, which has decades of experience handling molten glass.

None

2012-01-01T23:59:59.000Z

376

Progress from DOE EF RC: Solid-State Solar-Thermal Energy Conversion...  

Broader source: Energy.gov (indexed) [DOE]

Energy Frontier Research Center of the DOE Office of Basic Energy Sciences SOLID-STATE SOLAR-THERMAL ENERGY CONVERSION CENTER Progress from DOE EFRC: Solid-State Solar-Thermal...

377

Clean energy funds: An overview of state support for renewable energy  

E-Print Network [OSTI]

ocean thermal, wave, or tidal energy; fuel cells; landfill gas; naturally flowing water and hydroelectric; low emission, advanced biomass power conversion

Bolinger, Mark; Wiser, Ryan; Milford, Lew; Stoddard, Michael; Porter, Kevin

2001-01-01T23:59:59.000Z

378

Research and Technology in Wave Energy for Electric Mobility  

E-Print Network [OSTI]

generated by ocean current and energy extraction through ocean thermal conversion (OTEC). For wave energy renewable energy in the oceans, the utilization of such power has been far from full or even effectiveResearch and Technology in Wave Energy for Electric Mobility Reza Ghorbani Assistant Professor

Frandsen, Jannette B.

379

Combined Thermal and Power Energy Management Optimization  

E-Print Network [OSTI]

, 'various types of prime movers (e.g. boilers, waste heat recovery, steam and gas turbines, etc.), and varying requirements for process heat and electrical power, particularly if bulk power is being dispatched to a utility grid. The ability... plants are generally characterized by multiple sources of energy, 'various types of prime movers (e.g. boilers, waste heat recovery. steam and gas turbines. etc.), and varying requirements for process heat and electrical power, particularly if bulk power...

Ahner, D. J.; Priestley, R. R.

380

Property:ThermalInfo | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: EnergyPotentialUrbanUtilityScalePVCapacity Jump to: navigation,WebsiteRenewableBiofuelTechnology Property

Note: This page contains sample records for the topic "ocean thermal energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Ocean County Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(Utility Company)ReferencesNuiqsut,Place,Oakmont,ObionAcres, New56°,Landfill

382

Bartlett's Ocean View Wind Farm | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre Biomass Facility Jump to: navigation,and Cooling

383

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network [OSTI]

total energy received by todays solar panels and is beings best solar panels can convert only ~16% of solar energy to

Lim, Hyuck

2011-01-01T23:59:59.000Z

384

Thermal energy storage technical progress report, April 1990--March 1991  

SciTech Connect (OSTI)

The Department of Energy (DOE) is supporting development of thermal energy storage (TES) as a means of efficiently coupling energy supplies to variable heating or cooling demands. Uses of TES include electrical demand-side management in buildings and industry, extending the utilization of renewable energy resources such as solar, and recovery of waste heat from periodic industrial processes. Technical progress to develop TES for specific diurnal and industrial applications under Oak Ridge National Laboratory's TES program from April 1990 to March 1992 is reported and covers research in the areas of low temperature sorption, direct contact ice making, latent heat storage plasterboard and latent/sensible heat regenerator technology development.

Tomlinson, J.J.

1992-03-01T23:59:59.000Z

385

Thermal energy storage technical progress report, April 1990--March 1991  

SciTech Connect (OSTI)

The Department of Energy (DOE) is supporting development of thermal energy storage (TES) as a means of efficiently coupling energy supplies to variable heating or cooling demands. Uses of TES include electrical demand-side management in buildings and industry, extending the utilization of renewable energy resources such as solar, and recovery of waste heat from periodic industrial processes. Technical progress to develop TES for specific diurnal and industrial applications under Oak Ridge National Laboratory`s TES program from April 1990 to March 1992 is reported and covers research in the areas of low temperature sorption, direct contact ice making, latent heat storage plasterboard and latent/sensible heat regenerator technology development.

Tomlinson, J.J.

1992-03-01T23:59:59.000Z

386

Amulaire Thermal Technology | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende NewSowitecAWSAgri-EnergyAmbene JumpWindAmrite Ltd Jump

387

Parallel Integrated Thermal Management - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006 TheSteven Ashby Dr.presentations Papers &Parade Parade

388

Thermal Scout Software - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 andThe1 Members

389

Thermal tolerant avicelase from acidothermus cellulolyticus - Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 andThe1 MembersStability of MnBiTiO2(110) . |for

390

Thermal tolerant cellulase from acidothermus cellulolyticus - Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 andThe1 MembersStability of MnBiTiO2(110) .

391

Thermal tolerant exoglucanase from acidothermus cellulolyticus - Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 andThe1 MembersStability of MnBiTiO2(110) .Innovation

392

Thermal tolerant mannanase from acidothermus cellulolyticus - Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 andThe1 MembersStability of MnBiTiO2(110)

393

NRG Thermal LLC | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: EnergyMithun JumpMuscoy, California:NewNREL/Ventyx UtilityLLC Jump

394

Integrated Vehicle Thermal Management | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S.IndianaofPilot ProjectDepartment of Energy

395

Stewart Thermal Ltd | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen, Minnesota: Energy Resources JumpStepover orSteward, Illinois:

396

Thermal Ion Dispersion | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump JumpAl., 1978) | Open Energy Information Date

397

Solar Thermal Success Stories - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus Tom Fletcher,Future | Department ofSolarSolarSuccess Stories

398

Solar Thermal Technologies - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus Tom Fletcher,Future | Department ofSolarSolarSuccess

399

High Energy Density Thermal Batteries: Thermoelectric Reactors for Efficient Automotive Thermal Storage  

SciTech Connect (OSTI)

HEATS Project: Sheetak is developing a new HVAC system to store the energy required for heating and cooling in EVs. This system will replace the traditional refrigerant-based vapor compressors and inefficient heaters used in todays EVs with efficient, light, and rechargeable hot-and-cold thermal batteries. The high energy density thermal batterywhich does not use any hazardous substancescan be recharged by an integrated solid-state thermoelectric energy converter while the vehicle is parked and its electrical battery is being charged. Sheetaks converters can also run on the electric battery if needed and provide the required cooling and heating to the passengerseliminating the space constraint and reducing the weight of EVs that use more traditional compressors and heaters.

None

2011-11-15T23:59:59.000Z

400

Optimal Energy Management Strategy including Battery Health through Thermal  

E-Print Network [OSTI]

: Energy management strategy, Plug-in hybrid electric vehicles, Li-ion battery aging, thermal management process of Li-ion batteries is very intricate and is currently the subject of many studies, Gyan et al interested in a thorough analysis on Li-ion battery aging can refer to Vetter et al. (2005), Broussely et al

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "ocean thermal energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

An investigation of the efficiency of the receiver of a solar thermal cooker with thermal energy storage.  

E-Print Network [OSTI]

??A small scale solar concentrator cooker with a thermal energy storage system was designed, constructed and tested on the roof of the Physics building at (more)

Heilgendorff, Heiko Martin.

2015-01-01T23:59:59.000Z

402

THOR Turner Hunt Ocean Renewable LLC | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g GrantAtlas (PACAOpenSummersideJumpSyria: EnergyTEST UTILITY

403

National Oceanic and Atmospheric Administration (NOAA) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: EnergyMithun JumpMuscoy,Jump9 CaseNatElInformation Atmospheric

404

MHK Projects/Development of Ocean Treader | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowell Point, Alaska:Luz IILynnM Setek8512 Project CityTreader

405

Encapsulation of High Temperature Phase Change Materials for Thermal Energy Storage.  

E-Print Network [OSTI]

??Thermal energy storage is a major contributor to bridge the gap between energy demand (consumption) and energy production (supply) by concentrating solar power. The utilization (more)

Nath, Rupa

2012-01-01T23:59:59.000Z

406

Renewables for Energy Conservation  

E-Print Network [OSTI]

;Renewable Energy Options Wind Solar Small Hydro Biomass Tidal Energy Wave Energy Ocean Thermal Energy SolarRenewables for Energy Conservation Rangan Banerjee Energy Systems Engineering IIT Bombay National Conference on "Energy Efficiency", Pune , 28th June2005 #12;ENERGY FLOW DIAGRAM PRIMARY ENERGY ENERGY

Banerjee, Rangan

407

Thermal Energy Storage/Heat Recovery and Energy Conservation in Food Processing  

E-Print Network [OSTI]

discharges can be made more economically attrac tank holding several thousand gallons of water tive by incorporating thermal energy storage in a maintained at 128-130?F. This scald tank is con heat recovery system. Thermal energy storage can stantly... the ultimate energy end use. of wasting this hot water to the plant drain, a heat A project conducted by the Georgia Tech exchanger was installed at the Gold Kist plant to Engineering Experiment Station to demonstrate preheat scald tank makeup water...

Combes, R. S.; Boykin, W. B.

1980-01-01T23:59:59.000Z

408

Ocean Viruses: Tiny entities with Global Impacts ( JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)  

SciTech Connect (OSTI)

Matt Sullivan from the University of Arizona on "Ocean Viruses: Tiny Entities with Global Impacts" at the 7th Annual Genomics of Energy & Environment Meeting on March 22, 2012 in Walnut Creek, Calif.

Sullivan, Matthew B [University of Arizona] [University of Arizona

2012-03-22T23:59:59.000Z

409

Ocean Viruses: Tiny entities with Global Impacts ( JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)  

ScienceCinema (OSTI)

Matt Sullivan from the University of Arizona on "Ocean Viruses: Tiny Entities with Global Impacts" at the 7th Annual Genomics of Energy & Environment Meeting on March 22, 2012 in Walnut Creek, Calif.

Sullivan, Matthew B [University of Arizona

2013-01-15T23:59:59.000Z

410

Ris Energy Report 5 Hydro, ocean and geothermal 4 This chapter gives an overview of the development of  

E-Print Network [OSTI]

in 2003. [1] OECD, 47% Latin America, 20% China, 11% Former USSR, 9% Other Asia, 7% Africa, 3% Non of the development of other renewable energy technologies such as hydro, ocean and geothermal. These technologies

411

Solar thermal energy contract list, fiscal year 1990  

SciTech Connect (OSTI)

The federal government has conducted the national Solar Thermal Technology Program since 1975. Its purpose is to provide focus, direction, and funding for the development of solar thermal technology as an energy option for the United States. This year's document is more concise than the summaries of previous years. The FY 1990 contract overview comprises a list of all subcontracts begun, ongoing, or completed during FY 1990 (October 1, 1989, through September 30, 1990). Under each managing laboratory projects are listed alphabetically by project area and then by subcontractor name. Amount of funding milestones are listed.

Not Available

1991-09-01T23:59:59.000Z

412

DDbar Correlations probing Thermalization in High-Energy Nuclear Collisions  

E-Print Network [OSTI]

We propose to measure azimuthal correlations of heavy-flavor hadrons to address the status of thermalization at the partonic stage of light quarks and gluons in high-energy nuclear collisions. In particular, we show that hadronic interactions at the late stage cannot significantly disturb the initial back-to-back azimuthal correlations of DDbar pairs. Thus, a decrease or the complete absence of these initial correlations does indicate frequent interactions of heavy-flavor quarks and also light partons in the partonic stage, which are essential for the early thermalization of light partons.

K. Schweda; X. Zhu; M. Bleicher; S. L. Huang; H. Stoecker; N. Xu; P. Zhuang

2006-10-30T23:59:59.000Z

413

Thermalization in collisions of large nuclei at high energies  

E-Print Network [OSTI]

Hydrodynamical analysis of experimental data of ultrarelativistic heavy ion collisions seems to indicate that the hot QCD matter created in the collisions thermalizes very quickly. Theoretically, we have no idea why this should be true. In this proceeding, I will describe how the thermalization takes place in the most theoretically clean limit -- that of large nuclei at asymptotically high energy per nucleon, where the system is described by weak-coupling QCD. In this limit, plasma instabilities dominate the dynamics from immediately after the collision until well after the plasma becomes nearly in equilibrium at time t \\alpha^(-5/2)Q^(-1).

Aleksi Kurkela

2013-03-19T23:59:59.000Z

414

Value of Concentrating Solar Power and Thermal Energy Storage  

SciTech Connect (OSTI)

This paper examines the value of concentrating solar power (CSP) and thermal energy storage (TES) in four regions in the southwestern United States. Our analysis shows that TES can increase the value of CSP by allowing more thermal energy from a CSP plant?s solar field to be used, by allowing a CSP plant to accommodate a larger solar field, and by allowing CSP generation to be shifted to hours with higher energy prices. We analyze the sensitivity of CSP value to a number of factors, including the optimization period, price and solar forecasting, ancillary service sales, capacity value and dry cooling of the CSP plant. We also discuss the value of CSP plants and TES net of capital costs.

Sioshansi, R.; Denholm, P.

2010-02-01T23:59:59.000Z

415

Energy Conversion of Fully Random Thermal Relaxation Times  

E-Print Network [OSTI]

Thermodynamic random processes in thermal systems are generally associated with one or several relaxation times, the inverse of which are formally homogeneous with energy. Here, we show in a precise way that the periodic modification of relaxation times during temperature-constant thermodynamic cycles can be thermodynamically beneficiary to the operator. This result holds as long as the operator who adjusts relaxation times does not attempt to control the randomness associated with relaxation times itself as a Maxwell 'demon' would do. Indirectly, our result also shows that thermal randomness appears satisfactorily described within a conventional quantum-statistical framework, and that the attempts advocated notably by Ilya Prigogine to go beyond a Hilbert space description of quantum statistics do not seem justified - at least according to the present state of our knowledge. Fundamental interpretation of randomness, either thermal or quantum mechanical, is briefly discussed.

Franois Barriquand

2005-07-26T23:59:59.000Z

416

Initiative Guides Hawaii to the Path of Energy Independence ...  

Broader source: Energy.gov (indexed) [DOE]

renewable energy sources to choose from, including hydroelectric, geothermal, wind, solar, wave, ocean thermal and biomass. Many of these are already generating small amounts...

417

Progress from DOE EF RC: Solid-State Solar-Thermal Energy Conversion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

from DOE EF RC: Solid-State Solar-Thermal Energy Conversion Center (S3TEC ) Progress from DOE EF RC: Solid-State Solar-Thermal Energy Conversion Center (S3TEC ) Introduction to the...

418

Energy Transport by Nonlinear Internal Waves College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon  

E-Print Network [OSTI]

Energy Transport by Nonlinear Internal Waves J. N. MOUM College of Oceanic and Atmospheric Sciences in the bottom bound- ary layer. In the nonlinear internal waves that were observed, the kinetic energy. The energy transported by these waves includes a nonlinear advection term uE that is negligible in linear

Kurapov, Alexander

419

Estimates of wind energy input to the Ekman layer in the Southern Ocean from surface drifter data  

E-Print Network [OSTI]

Estimates of wind energy input to the Ekman layer in the Southern Ocean from surface drifter data the contribution from the anticyclonic frequencies dominate the wind energy input. The latitudinal and seasonal variations of the wind energy input to the Ekman layer are closely related to the variations of the wind

Gille, Sarah T.

420

Nonanalyticity of the free energy in thermal field theory  

E-Print Network [OSTI]

We study, in a d-dimensional space-time, the nonanalyticity of the thermal free energy in the scalar phi^4 theory as well as in QED. We find that the infrared divergent contributions induce, when d is even, a nonanalyticity in the coupling alpha of the form (alpha)^[(d-1)/2] whereas when d is odd the nonanalyticity is only logarithmic.

F. T. Brandt; J. Frenkel; J. B. Siqueira

2012-11-13T23:59:59.000Z

Note: This page contains sample records for the topic "ocean thermal energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Thermalization at lowest energies? A view from a transport model  

E-Print Network [OSTI]

Using the Isospin Quantum Molecular Dynamics (IQMD) model we analyzed the production of pions and kaons in the energy range of 1-2 AGeV in order to study the question why thermal models could achieve a successful description. For this purpose we study the variation of pion and kaon yields using different elementary cross sections. We show that several ratios appear to be rather robust versus their variations.

C Hartnack; H Oeschler; J Aichelin

2010-10-05T23:59:59.000Z

422

Accelerating Ocean Energy to the Marketplace Environmental Research at the U.S. Department of Energy National Laboratories  

SciTech Connect (OSTI)

The U.S. Department of Energy (US DOE) has mobilized its National Laboratories to address the broad range of environmental effects of ocean and river energy development. The National Laboratories are using a risk-based approach to set priorities among environmental effects, and to direct research activities. Case studies will be constructed to determine the most significant environmental effects of ocean energy harvest for tidal systems in temperate estuaries, for wave energy installations in temperate coastal areas, wave installations in sub-tropical waters, and riverine energy installations in large rivers. In addition, the National Laboratories are investigating the effects of energy removal from waves, tides and river currents using numerical modeling studies. Laboratory and field research is also underway to understand the effects of electromagnetic fields (EMF), acoustic noise, toxicity from anti-biofouling coatings, effects on benthic habitats, and physical interactions with tidal and wave devices on marine and freshwater organisms and ecosystems. Outreach and interactions with stakeholders allow the National Laboratories to understand and mitigate for use conflicts and to provide useful information for marine spatial planning at the national and regional level.

Copping, Andrea E.; Cada, G. F.; Roberts, Jesse; Bevelhimer, Mark

2010-10-06T23:59:59.000Z

423

Environmental risk assessment for aquifer thermal energy storage  

SciTech Connect (OSTI)

This report has been prepared by Pacific Northwest Laboratory at the request of the International Energy Agency (IEA). The US Department of Energy represents the United States in the IEA for Annex IV, the IEA task for research and development in aquifer thermal energy storage (ATES). Installation and operation of an ATES system is necessarily intrusive to ground-water resources. Therefore, governmental authorities usually require an environmental risk assessment to be performed before permission to construct an ATES system is granted. Writing an accurate statement of risk presupposes a knowledge of aquifer and ground-water characteristics and that an engineering feasibility study has taken place. Effective and logical presentation of the results of the risk assessment can expedite the grant of approval. Introductory remarks should address questions regarding why the ATES project has been proposed, what it is expected to accomplish, and what the expected benefits are. Next, the system configuration, including the aquifer, ATES plant, and well field, should be described in terms of size and location, design components, and thermal and hydraulic capacity. The final element of system design, the predicted annual operating cycle, needs to be described in sufficient detail to allow the reviewer to appreciate the net hydraulic, thermal, and hydrochemical effects imposed on the aquifer. Risks may be environmental or legal. Only after a reviewer has been introduced to the proposed system's design, operation, and scale can risk issues can be identified and weighed against the benefits of the proposed ATES system.

Hall, S.H.

1993-01-01T23:59:59.000Z

424

Environmental risk assessment for aquifer thermal energy storage  

SciTech Connect (OSTI)

This report has been prepared by Pacific Northwest Laboratory at the request of the International Energy Agency (IEA). The US Department of Energy represents the United States in the IEA for Annex IV, the IEA task for research and development in aquifer thermal energy storage (ATES). Installation and operation of an ATES system is necessarily intrusive to ground-water resources. Therefore, governmental authorities usually require an environmental risk assessment to be performed before permission to construct an ATES system is granted. Writing an accurate statement of risk presupposes a knowledge of aquifer and ground-water characteristics and that an engineering feasibility study has taken place. Effective and logical presentation of the results of the risk assessment can expedite the grant of approval. Introductory remarks should address questions regarding why the ATES project has been proposed, what it is expected to accomplish, and what the expected benefits are. Next, the system configuration, including the aquifer, ATES plant, and well field, should be described in terms of size and location, design components, and thermal and hydraulic capacity. The final element of system design, the predicted annual operating cycle, needs to be described in sufficient detail to allow the reviewer to appreciate the net hydraulic, thermal, and hydrochemical effects imposed on the aquifer. Risks may be environmental or legal. Only after a reviewer has been introduced to the proposed system`s design, operation, and scale can risk issues can be identified and weighed against the benefits of the proposed ATES system.

Hall, S.H.

1993-01-01T23:59:59.000Z

425

A New Thermal-Conscious System-Level Methodology for Energy-Efficient Processor Voltage Selection  

E-Print Network [OSTI]

A New Thermal-Conscious System-Level Methodology for Energy-Efficient Processor Voltage Selection a thermal-conscious system-level methodology to make energy-efficient voltage selection (VS) for nanometer), thermal resistance, are integrated and considered in our system models, and their impacts on energy

Wang, Yu

426

Thermal and Microcanonical Rates of Unimolecular Reactions from an Energy Diffusion Theory Approach  

E-Print Network [OSTI]

Thermal and Microcanonical Rates of Unimolecular Reactions from an Energy Diffusion Theory Approach; In Final Form: September 13, 1999 We present an energy diffusion theory approach for computing thermal compared to the thermal energy. The weak-collision limit has been extensively studied.1-9 However

Miller, William H.

427

PTEC: A System for Predictive Thermal and Energy Control in Data Centers  

E-Print Network [OSTI]

1 PTEC: A System for Predictive Thermal and Energy Control in Data Centers Jinzhu Chen Rui Tan presents the design and evaluation of PTEC ­ a system for predictive thermal and energy control in data energy consumption by more than 30%, compared with baseline thermal control strategies. I. INTRODUCTION

Xing, Guoliang

428

A Coupled Airflow-and-Energy Simulation Program for Indoor Thermal Environment Studies (RP-927)  

E-Print Network [OSTI]

1 A Coupled Airflow-and-Energy Simulation Program for Indoor Thermal Environment Studies (RP-927 the thermal environment in a house and an atrium. The coupled flow-and-energy program is recommended to calculate unsteady room airflow and thermal environment. Our study has developed a coupled airflow-and-energy

Chen, Qingyan "Yan"

429

A HEAVY ISOTOPE IN A SOLID DRIFTS DOWN A THERMAL ENERGY GRADIENT  

E-Print Network [OSTI]

183 A HEAVY ISOTOPE IN A SOLID DRIFTS DOWN A THERMAL ENERGY GRADIENT R. V. HESKETH CEGB Berkeley, and indeed, related to the second law ; to the familar statement that thermal energy diffuses from hot to cold we merely add the corollary even when the carriers of thermal energy are isotopic defects

Paris-Sud XI, Université de

430

PROCESS DESIGN AND CONTROL Efficient Conversion of Thermal Energy into Hydrogen: Comparing Two Methods  

E-Print Network [OSTI]

PROCESS DESIGN AND CONTROL Efficient Conversion of Thermal Energy into Hydrogen: Comparing Two for the production of hydrogen from water and high temperature thermal energy are presented and compared. Increasing for the production of hydrogen from water has received considerable attention.1 High temperature thermal energy

Kjelstrup, Signe

431

Quantifying the Value of CSP with Thermal Energy Storage  

Broader source: Energy.gov [DOE]

This PowerPoint slide deck was originally presented at the SunShot Concentrating Solar Power Program Review by Paul Denholm and Mark Mehos of NREL on April 23, 2013. Entitled "Quantifying the Value of CSP with Thermal Energy Storage," the presenters seek to answer the question, "What is the addition of TES to a CSP plant actually worth?" Ultimately they conclude that CSP with TES can actually complement other variable generation sources including solar PV and act as an enabling technology to achieve higher overall penetration of renewable energy.

432

OBSERVING SYSTEM SIMULATION EXPERIMENTS ON THE OAH'U REGIONAL OCEAN MODEL  

E-Print Network [OSTI]

Thermal Energy Conversion (OTEC) site off the south coast of Oah'u as well as the circulation of Mamala analyses of the observing systems were conducted at the outflow plume depth of a potential pilot Ocean

Luther, Douglas S.

433

Ocean Thermal Energy Conversion (OTEC) A New Secure Renewable Energy Source  

E-Print Network [OSTI]

gradients to drive a steam engine * A Preliminary Assessment of OTEC Resources ASME 3/2007 g Surface vs Deep

434

Evaluation and Sensitivity Analysis of an Ocean Model Response to Hurricane Ivan G. R. HALLIWELL JR.,* L. K. SHAY, AND J. K. BREWSTER  

E-Print Network [OSTI]

provides the thermal energy for intensification, errors and biases in the ocean compo- nent of coupled TCEvaluation and Sensitivity Analysis of an Ocean Model Response to Hurricane Ivan G. R. HALLIWELL JR December 2009) ABSTRACT An ocean model response to Hurricane Ivan (2004) over the northwest Caribbean Sea

435

Advanced Reactors Thermal Energy Transport for Process Industries  

SciTech Connect (OSTI)

The operation temperature of advanced nuclear reactors is generally higher than commercial light water reactors and thermal energy from advanced nuclear reactor can be used for various purposes such as liquid fuel production, district heating, desalination, hydrogen production, and other process heat applications, etc. Some of the major technology challenges that must be overcome before the advanced reactors could be licensed on the reactor side are qualification of next generation of nuclear fuel, materials that can withstand higher temperature, improvement in power cycle thermal efficiency by going to combined cycles, SCO2 cycles, successful demonstration of advanced compact heat exchangers in the prototypical conditions, and from the process side application the challenge is to transport the thermal energy from the reactor to the process plant with maximum efficiency (i.e., with minimum temperature drop). The main focus of this study is on doing a parametric study of efficient heat transport system, with different coolants (mainly, water, He, and molten salts) to determine maximum possible distance that can be achieved.

P. Sabharwall; S.J. Yoon; M.G. McKellar; C. Stoots; George Griffith

2014-07-01T23:59:59.000Z

436

Biomass Thermal Energy Council (BTEC) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre BiomassTHIS PAGE IS UNDER(Redirected

437

Thermal Energy Harvesting with Thermoelectrics for Self-powered Sensors: With Applications to Implantable Medical Devices, Body Sensor Networks and Aging in Place  

E-Print Network [OSTI]

thermal expansion of polymer composites filled with ceramicas thermal energy generation and refrigeration. Ceramic&

Chen, Alic

2011-01-01T23:59:59.000Z

438

Feasibility of Tidal and Ocean Current Energy in False Pass, Aleutian Islands, Alaska FINAL REPORT  

SciTech Connect (OSTI)

The Aleutian Pribilof Islands Association was awarded a U.S. Department of Energy Tribal Energy Program grant (DE-EE0005624) for the Feasibility of Tidal and Ocean Current Energy in False Pass, Aleutian Islands, Alaska (Project). The goal of the Project was to perform a feasibility study to determine if a tidal energy project would be a viable means to generate electricity and heat to meet long-term fossil fuel use reduction goals, specifically to produce at least 30% of the electrical and heating needs of the tribally-owned buildings in False Pass. The Project Team included the Aleut Region organizations comprised of the Aleutian Pribilof Island Association (APIA), and Aleutian Pribilof Island Community Development Association (APICDA); the University of Alaska Anchorage, ORPC Alaska a wholly-owned subsidiary of Ocean Renewable Power Company (ORPC), City of False Pass, Benthic GeoScience, and the National Renewable Energy Laboratory (NREL). The following Project objectives were completed: collected existing bathymetric, tidal, and ocean current data to develop a basic model of current circulation at False Pass, measured current velocities at two sites for a full lunar cycle to establish the viability of the current resource, collected data on transmission infrastructure, electrical loads, and electrical generation at False Pass, performed economic analysis based on current costs of energy and amount of energy anticipated from and costs associated with the tidal energy project conceptual design and scoped environmental issues. Utilizing circulation modeling, the Project Team identified two target sites with strong potential for robust tidal energy resources in Isanotski Strait and another nearer the City of False Pass. In addition, the Project Team completed a survey of the electrical infrastructure, which identified likely sites of interconnection and clarified required transmission distances from the tidal energy resources. Based on resource and electrical data, the Project Team developed a conceptual tidal energy project design utilizing ORPCs TidGen Power System. While the Project Team has not committed to ORPC technology for future development of a False Pass project, this conceptual design was critical to informing the Projects economic analysis. The results showed that power from a tidal energy project could be provided to the City of False at a rate at or below the cost of diesel generated electricity and sold to commercial customers at rates competitive with current market rates, providing a stable, flat priced, environmentally sound alternative to the diesel generation currently utilized for energy in the community. The Project Team concluded that with additional grants and private investment a tidal energy project at False Pass is well-positioned to be the first tidal energy project to be developed in Alaska, and the first tidal energy project to be interconnected to an isolated micro grid in the world. A viable project will be a model for similar projects in coastal Alaska.

Wright, Bruce Albert [Aleutian Pribilof Islands Association] [Aleutian Pribilof Islands Association

2014-05-07T23:59:59.000Z

439

MEMS-Based Pyroelectric Thermal Energy Scavenger - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and InterfacesAdministration -Lowell L. Wood,3,March 26,MEMS Switches Are

440

Holographic thermalization and gravitational collapse in the spacetime dominated by quintessence dark energy  

E-Print Network [OSTI]

In this paper, the thermalization has been studied holographically. Explicitly in the gravity side, we consider the gravitational collapse of a thin shell of dust in a spacetime dominated by quintessence dark energy. With the thermalization probes such as the normalized geodesic length and minimal area surface, we study the effect of the state parameter for the quintessence dark energy on the thermalization. Our results show that the smaller the state parameter of quintessence is, the harder the plasma to thermalize. We also investigate the thermalization velocity and thermalization acceleration. We hope our results here can shed light on the nature of the quintessence dark energy.

Xiao-Xiong Zeng; De-You Chen; Li-Fang Li

2014-12-21T23:59:59.000Z

Note: This page contains sample records for the topic "ocean thermal energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants  

E-Print Network [OSTI]

COST REDUCTION STUDY FOR SOLAR THERMAL POWER PLANTS, Ottawa,Storage in Concentrated Solar Thermal Power Plants A ThesisStorage in Concentrated Solar Thermal Power Plants by Corey

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

442

Evaluation of diurnal thermal energy storage combined with cogeneration systems  

SciTech Connect (OSTI)

This report describes the results of an evaluation of thermal energy storage (TES) integrated with simple gas turbine cogeneration systems. The TES system captures and stores thermal energy from the gas turbine exhaust for immediate or future generation of process heat. Integrating thermal energy storage with conventional cogeneration equipment increases the initial cost of the combined system; but, by decoupling electric power and process heat production, the system offers the following two significant advantages: (1) Electric power can be generated on demand, irrespective of the process heat load profile, thus increasing the value of the power produced; (2) Although supplementary firing could be used to serve independently varying electric and process heat loads, this approach is inefficient. Integrating TES with cogeneration can serve the two independent loads while firing all fuel in the gas turbine. The study evaluated the cost of power produced by cogeneration and cogeneration/TES systems designed to serve a fixed process steam load. The value of the process steam was set at the levelized cost estimated for the steam from a conventional stand-alone boiler. Power costs for combustion turbine and combined-cycle power plants were also calculated for comparison. The results indicated that peak power production costs for the cogeneration/TES systems were between 25% and 40% lower than peak power costs estimated for a combustion turbine and between 15% and 35% lower than peak power costs estimated for a combined-cycle plant. The ranges reflect differences in the daily power production schedule and process steam pressure/temperature assumptions for the cases evaluated. Further cost reductions may result from optimization of current cogeneration/TES system designs and improvement in TES technology through future research and development.

Somasundaram, S.; Brown, D.R.; Drost, M.K.

1992-11-01T23:59:59.000Z

443

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants  

E-Print Network [OSTI]

STORAGE FOR CONCENTRATING SOLAR POWER PLANTS, Eurosun 2010,COST REDUCTION STUDY FOR SOLAR THERMAL POWER PLANTS, Ottawa,heat transfer in solar thermal power plants utilizing phase

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

444

Thermal Energy Corporation Combined Heat and Power Project  

SciTech Connect (OSTI)

To meet the planned heating and cooling load growth at the Texas Medical Center (TMC), Thermal Energy Corporation (TECO) implemented Phase 1 of a Master Plan to install an additional 32,000 tons of chilled water capacity, a 75,000 ton-hour (8.8 million gallon) Thermal Energy Storage (TES) tank, and a 48 MW Combined Heat and Power (CHP) system. The Department of Energy selected TMC for a $10 million grant award as part of the Financial Assistance Funding Opportunity Announcement, U.S. Department of Energy National Energy Technology, Recovery Act: Deployment of Combined Heat and Power (CHP) Systems, District Energy Systems, Waste Energy Recovery Systems, and Efficiency Industrial Equipment Funding Opportunity Number: DE-FOA-0000044 to support the installation of a new 48 MW CHP system at the TMC located just outside downtown Houston. As the largest medical center in the world, TMC is home to many of the nation??s best hospitals, physicians, researchers, educational institutions, and health care providers. TMC provides care to approximately six million patients each year, and medical instruction to over 71,000 students. A medical center the size of TMC has enormous electricity and thermal energy demands to help it carry out its mission. Reliable, high-quality steam and chilled water are of utmost importance to the operations of its many facilities. For example, advanced medical equipment, laboratories, laundry facilities, space heating and cooling all rely on the generation of heat and power. As result of this project TECO provides this mission critical heating and cooling to TMC utilizing a system that is both energy-efficient and reliable since it provides the capability to run on power independent of the already strained regional electric grid. This allows the medical center to focus on its primary mission ?? providing top quality medical care and instruction ?? without worrying about excessive energy costs or the loss of heating and cooling due to the risk of power outages. TECO??s operation is the largest Chilled Water District Energy System in the United States. The company used DOE??s funding to help install a new high efficiency CHP system consisting of a Combustion Turbine and a Heat Recovery Steam Generator. This CHP installation was just part of a larger project undertaken by TECO to ensure that it can continue to meet TMC??s growing needs. The complete efficiency overhaul that TECO undertook supported more than 1,000 direct and indirect jobs in manufacturing, engineering, and construction, with approximately 400 of those being jobs directly associated with construction of the combined heat and power plant. This showcase industrial scale CHP project, serving a critical component of the nation??s healthcare infrastructure, directly and immediately supported the energy efficiency and job creation goals established by ARRA and DOE. It also provided an unsurpassed model of a district energy CHP application that can be replicated within other energy intensive applications in the industrial, institutional and commercial sectors.

E. Bruce Turner; Tim Brown; Ed Mardiat

2011-12-31T23:59:59.000Z

445

Bibliography of the seasonal thermal energy storage library  

SciTech Connect (OSTI)

The Main Listing is arranged alphabetically by the last name of the first author. Each citation includes the author's name, title, publisher, publication date, and where applicable, the National Technical Information Service (NTIS) number or other document number. The number preceding each citation is the identification number for that document in the Seasonal Thermal Energy Storage (STES) Library. Occasionally, one or two alphabetic characters are added to the identification number. These alphabetic characters indicate that the document is contained in a collection of papers, such as the proceedings of a conference. An Author Index and an Identification Number Index are included. (WHK)

Prater, L.S.; Casper, G.; Kawin, R.A.

1981-08-01T23:59:59.000Z

446

Solar-thermal-energy collection/storage-pond system  

DOE Patents [OSTI]

A solar thermal energy collection and storage system is disclosed. Water is contained, and the water surface is exposed directly to the sun. The central part of an impermeable membrane is positioned below the water's surface and above its bottom with a first side of the membrane pointing generally upward in its central portion. The perimeter part of the membrane is placed to create a watertight boundary separating the water into a first volume which is directly exposable to the sun and which touches the membranes first side, and a second volumn which touches the membranes second side. A salt is dissolved in the first water volume.

Blahnik, D.E.

1982-03-25T23:59:59.000Z

447

NREL: Energy Systems Integration Facility - Thermal Distribution Bus  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | National NuclearoverAcquisition System SupervisoryThermal

448

Solar Thermal Technologies Available for Licensing - Energy Innovation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Highlights SuccessSmartPortal Thermal Site

449

Efficient Thermally Variable Cooling System | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPC ENABLE: ECM Summary ECMWearthe ApplicationEnergy 1Thermally

450

Thermal Product Solutions aka Kayex | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump JumpAl., 1978) | Open Energy Information DateThermal

451

Biomass Gasification using Solar Thermal Energy M. Munzinger and K. Lovegrove  

E-Print Network [OSTI]

. In the first step, pyrolysis, volatile components of the biomass are vaporised at elevated temperatures from. #12;Biomass gasification using solar thermal energy Munzinger Figure 1 Pyrolysis pathways (Milne et alBiomass Gasification using Solar Thermal Energy M. Munzinger and K. Lovegrove Solar Thermal Group

452

Relation between thermal expansion and interstitial formation energy in pure Fe and Cr  

E-Print Network [OSTI]

Relation between thermal expansion and interstitial formation energy in pure Fe and Cr Janne potentials give lower interstitial formation energy, but predict too small thermal expansion. We also show University, Uppsala, Sweden Abstract By fitting a potential of modified Finnis­Sinclair type to the thermal

453

Thermal energy storage for cooling of commercial buildings  

SciTech Connect (OSTI)

The storage of coolness'' has been in use in limited applications for more than a half century. Recently, because of high electricity costs during utilities' peak power periods, thermal storage for cooling has become a prime target for load management strategies. Systems with cool storage shift all or part of the electricity requirement from peak to off-peak hours to take advantage of reduced demand charges and/or off-peak rates. Thermal storage technology applies equally to industrial, commercial, and residential sectors. In the industrial sector, because of the lack of economic incentives and the custom design required for each application, the penetration of this technology has been limited to a few industries. The penetration rate in the residential sector has been also very limited due to the absence of economic incentives, sizing problems, and the lack of compact packaged systems. To date, the most promising applications of these systems, therefore, appear to be for commercial cooling. In this report, the current and potential use of thermal energy storage systems for cooling commercial buildings is investigated. In addition, a general overview of the technology is presented and the applicability and cost-effectiveness of this technology for developed and developing countries are discussed. 28 refs., 12 figs., 1 tab.

Akbari, H. (Lawrence Berkeley Lab., CA (USA)); Mertol, A. (Science Applications International Corp., Los Altos, CA (USA))

1988-07-01T23:59:59.000Z

454

Energy Storage R&D: Thermal Management Studies and Modeling (Presentation)  

SciTech Connect (OSTI)

Here we summarize NREL's FY09 energy storage R&D studies in the areas of 1. thermal characterization and analysis, 2. cost, life, and performance trade-off studies, and 3. thermal abuse modeling.

Pesaran, A. A.

2009-05-01T23:59:59.000Z

455

Thermal Transport in Nanoporous Materials for Energy Applications  

E-Print Network [OSTI]

Theory of thermal conduction in thin ceramic ?lms,Thermal resistance of grain boundaries in alumina ceramicsThermal conduc- tivity of highly porous zirconia, Journal of the European Ceramic

Fang, Jin

2012-01-01T23:59:59.000Z

456

Molecular dynamics simulation of thermal energy transport in polydimethylsiloxane (PDMS)  

E-Print Network [OSTI]

Heat transfer across thermal interface materials is a critical issue for microelectronics thermal management. Polydimethylsiloxane (PDMS), one of the most important components of thermal interface materials presents a large ...

Luo, Tengfei

457

Direct numerical simulation of an iron rain in the magma ocean  

E-Print Network [OSTI]

investigate the conversion of gravitational energy into viscous heating and the thermal equilibration betweenDirect numerical simulation of an iron rain in the magma ocean H. Ichikawa,1,2 S. Labrosse,1 and K of metal in a magma ocean. The model, using a fully Lagrangian approach called the moving particle semi

Paris-Sud XI, Université de

458

Ocean Heat Transport , Overturning Circulations, and some fine-resolution ASOF dynamics  

E-Print Network [OSTI]

thermal agitation -internal energy of the fluid is typically 10 orders of magnitude greater thanOcean Heat Transport , Overturning Circulations, and some fine-resolution ASOF dynamics P.B. Rhines & S. Häkkinen #12;· Many basic tenets of ocean circulation are being challenged, and they relate

459

Predictive Power Control of Doubly-Fed Induction Generator for Wave Energy Converters  

E-Print Network [OSTI]

energy resource plan. An extremely abundant and promising source of energy exists in oceans of the following categories: wave energy, marine and tidal current energy, ocean thermal energy, energy fromPredictive Power Control of Doubly-Fed Induction Generator for Wave Energy Converters M.S. Lagoun1

Paris-Sud XI, Université de

460

Microwave impregnation of porous materials with thermal energy storage materials  

DOE Patents [OSTI]

A method for impregnating a porous, non-metallic construction material with a solid phase-change material is described. The phase-change material in finely divided form is spread onto the surface of the porous material, after which the porous material is exposed to microwave energy for a time sufficient to melt the phase-change material. The melted material is spontaneously absorbed into the pores of the porous material. A sealing chemical may also be included with the phase-change material (or applied subsequent to the phase-change material) to seal the surface of the porous material. Fire retardant chemicals may also be included with the phase-change materials. The treated construction materials are better able to absorb thermal energy and exhibit increased heat storage capacity.

Benson, David K. (Golden, CO); Burrows, Richard W. (Conifer, CO)

1993-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ocean thermal energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Microwave impregnation of porous materials with thermal energy storage materials  

DOE Patents [OSTI]

A method for impregnating a porous, non-metallic construction material with a solid phase-change material is described. The phase-change material in finely divided form is spread onto the surface of the porous material, after which the porous material is exposed to microwave energy for a time sufficient to melt the phase-change material. The melted material is spontaneously absorbed into the pores of the porous material. A sealing chemical may also be included with the phase-change material (or applied subsequent to the phase-change material) to seal the surface of the porous material. Fire retardant chemicals may also be included with the phase-change materials. The treated construction materials are better able to absorb thermal energy and exhibit increased heat storage capacity.

Benson, D.K.; Burrows, R.W.

1993-04-13T23:59:59.000Z

462

PHASE CHANGE MATERIALS IN FLOOR TILES FOR THERMAL ENERGY STORAGE  

SciTech Connect (OSTI)

Passive solar systems integrated into residential structures significantly reduce heating energy consumption. Taking advantage of latent heat storage has further increased energy savings. This is accomplished by the incorporation of phase change materials into building materials used in passive applications. Trombe walls, ceilings and floors can all be enhanced with phase change materials. Increasing the thermal storage of floor tile by the addition of encapsulated paraffin wax is the proposed topic of research. Latent heat storage of a phase change material (PCM) is obtained during a change in phase. Typical materials use the latent heat released when the material changes from a liquid to a solid. Paraffin wax and salt hydrates are examples of such materials. Other PCMs that have been recently investigated undergo a phase transition from one solid form to another. During this process they will release heat. These are known as solid-state phase change materials. All have large latent heats, which makes them ideal for passive solar applications. Easy incorporation into various building materials is must for these materials. This proposal will address the advantages and disadvantages of using these materials in floor tile. Prototype tile will be made from a mixture of quartz, binder and phase change material. The thermal and structural properties of the prototype tiles will be tested fully. It is expected that with the addition of the phase change material the structural properties will be compromised to some extent. The ratio of phase change material in the tile will have to be varied to determine the best mixture to provide significant thermal storage, while maintaining structural properties that meet the industry standards for floor tile.

Douglas C. Hittle

2002-10-01T23:59:59.000Z

463

Potential for supplying solar thermal energy to industrial unit operations  

SciTech Connect (OSTI)

Previous studies have identified major industries deemed most appropriate for the near-term adoption of solar thermal technology to provide process heat; these studies have been based on surveys that followed standard industrial classifications. This paper presents an alternate, perhaps simpler analysis of this potential, considered in terms of the end-use of energy delivered to industrial unit operations. For example, materials, such as animal feed, can be air dried at much lower temperatures than are currently used. This situation is likely to continue while economic supplies of natural gas are readily available. However, restriction of these supplies could lead to the use of low-temperature processes, which are more easily integrated with solar thermal technology. The adoption of solar technology is also favored by other changes, such as the relative rates of increase of the costs of electricity and natural gas, and by energy conservation measures. Thus, the use of low-pressure steam to provide process heat could be replaced economically with high-temperature hot water systems, which are more compatible with solar technology. On the other hand, for certain operations such as high-temperature catalytic and distillation processes employed in petroleum refining, there is no ready alternative to presently employed fluid fuels.

May, E.K.

1980-04-01T23:59:59.000Z

464

New phase-change thermal energy storage materials for buildings  

SciTech Connect (OSTI)

A new class of phase-change thermal energy storage materials is under development at SERI. These materials are unusual in two ways. They reversibly absorb large amounts of heat during a solid-state, crystal transformation more than 70/sup 0/C below their melting temperatures, and their solid-state transformation temperatures may be adjusted over a range from 7/sup 0/C to 188/sup 0/C by varying the ratios of binary mixtures of the components. Because these storage materials remain solid throughout the range of their service temperatures, unique opportunities exist for incorporating them into building materials. Composites have been made with ordinary, porous construction materials such as wood, gypsum board, and lightweight concrete as the matrix and with the solid-state phase change materials (SS PCM) filling the void space. The thermal storage capacities of such composites are thereby increased by more than 100% without changing the basic nature and workability of the matrix, construction material. Parametric analyses have been conducted to determine what combination of properties would be optimum for certain solar and energy conserving building applications including Trombe wall, direct gain, and distributed cool storage (combined with night ventilation).

Benson, D.K.; Christensen, C.B.; Burrows, R.W.

1985-10-01T23:59:59.000Z

465

Explorations of AtmosphereOceanIce Climates on an Aquaplanet and Their Meridional Energy Transports  

E-Print Network [OSTI]

The degree to which total meridional heat transport is sensitive to the details of its atmospheric and oceanic components is explored. A coupled atmosphere, ocean, and sea ice model of an aquaplanet is employed to simulate ...

Marshall, John C.

466

Thermal Energy Storage in Metal Foams filled with Paraffin Wax.  

E-Print Network [OSTI]

??Phase change materials (PCM) such as paraffin wax are known to exhibit slow thermal response due to their relatively low thermal conductivity. In this study, (more)

Vadwala, Pathik

2012-01-01T23:59:59.000Z

467

Atmosphere and Ocean: Water (drought topic begins at slide 26)  

E-Print Network [OSTI]

Atmosphere and Ocean: Water (drought topic begins at slide 26) UW Hon220c Energy & Environment in the atmosphere: 50-70% of the greenhouse effect; ½ the flow of thermal energy from laEtude (like SeaXle and its sister city, Bergen Norway. Meehl et al. Geophysical

468

Review of simulation techniques for aquifer thermal energy storage (ATES)  

SciTech Connect (OSTI)

The storage of thermal energy in aquifers has recently received considerable attention as a means to conserve and more efficiently use energy supplies. The analysis of aquifer thermal energy storage (ATES) systems will rely on the results from mathematical and geochemical models. Therefore, the state-of-the-art models relevant to ATES was reviewed and evaluated. These models describe important processes active in ATES including ground-water flow, heat transport (heat flow), solute transport (movement of contaminants), and geochemical reactions. In general, available models of the saturated ground-water environment are adequate to address most concerns associated with ATES; that is, design, operation, and environmental assessment. In those cases where models are not adequate, development should be preceded by efforts to identify significant physical phenomena and relate model parameters to measurable quantities. Model development can then proceed with the expectation of an adequate data base existing for the model's eventual use. Review of model applications to ATES shows that the major emphasis has been on generic sensitivity analysis and site characterization. Assuming that models are applied appropriately, the primary limitation on model calculations is the data base used to construct the model. Numerical transport models are limited by the uncertainty of subsurface data and the lack of long-term historical data for calibration. Geochemical models are limited by the lack of thermodynamic data for the temperature ranges applicable to ATES. Model applications undertaken with data collection activities on ATES sites should provide the most important contributions to the understanding and utilization of ATES. Therefore, the primary conclusion of this review is that model application to field sites in conjunction with data collection activities is essential to the development of this technology.

Mercer, J.W.; Faust, C.R.; Miller, W.J.; Pearson, F.J. Jr.

1981-03-01T23:59:59.000Z

469

Hydrogen Energy Stations: Poly-Production of Electricity, Hydrogen, and Thermal Energy  

E-Print Network [OSTI]

Exhaust (CO 2 ) Grid electricity Cogen Heat Natural gas Airutility grid, 2) re-use of thermal energy waste heat forGrid electricity Exhaust (CO 2 ) Recycled Reformate Natural gas Air Water H2 Purifier Source: Weinert, 2005 Cogen Heat

Lipman, Timothy; Brooks, Cameron

2006-01-01T23:59:59.000Z

470

Reducing Energy Costs And Minimizing Capital Requirements: Case Studies of Thermal Energy Storage (TES)  

E-Print Network [OSTI]

, and thus during those times when power has its highest cost or value. Thermal Energy Storage (TES) provides a means of de-coupling the generation of cooling from the provision of cooling to the peak cooling loads. In this manner, peak power demand...

Andrepont, J. S.

2007-01-01T23:59:59.000Z

471

Predictive control and thermal energy storage for optimizing a multi-energy district boiler  

E-Print Network [OSTI]

and used when demand is high, instead of engaging the gas-fuel oil boiler. Keywords: multi-energy district believe that by 2015 the supply of oil and natural gas will be unable to keep up with demand [1 of La Rochelle (France) adding to the plant a controlled thermal storage tank. This plant supplies

Paris-Sud XI, Université de

472

Energy-Efficient Speed Scheduling for Real-Time Tasks under Thermal Constraints  

E-Print Network [OSTI]

Energy-Efficient Speed Scheduling for Real-Time Tasks under Thermal Constraints Shengquan Wang. We develop energy-efficient speed scheduling schemes for frame-based real-time tasks under thermal- sumption with comparison to the reactive schemes in the literature. Keywords: Energy-efficient scheduling

Wang, Shengquan

473

technology offer SandTES -High Temperature Sand Thermal Energy Storage  

E-Print Network [OSTI]

technology offer SandTES - High Temperature Sand Thermal Energy Storage key words: High Temperature Energy Storage | Fluidized Bed | Sand | The invention consists of a fluidized bed with internal heat together with Dr. Eisl of ENRAG GmbH. Background Thermal energy storage (TES) systems are essential

Szmolyan, Peter

474

JETC: Joint Energy Thermal and Cooling Management for Memory and CPU Subsystems in Servers  

E-Print Network [OSTI]

JETC: Joint Energy Thermal and Cooling Management for Memory and CPU Subsystems in Servers Raid In this work we propose a joint energy, thermal and cooling management technique (JETC) that significantly re- duces per server cooling and memory energy costs. Our analysis shows that decoupling the optimization

Simunic, Tajana

475

Energy landscape and thermally activated switching of submicron-sized ferromagnetic elements  

E-Print Network [OSTI]

Energy landscape and thermally activated switching of submicron-sized ferromagnetic elements Weinan September 2002; accepted 18 November 2002 Thermally activated switching and the energy landscape films. The energy landscape of such a system is nicely summarized on the plane spanned by the average

Van Den Eijnden, Eric

476

Femtosecond Chemically Activated Reactions: Concept of Nonstatistical Activation at High Thermal Energies  

E-Print Network [OSTI]

Femtosecond chemical activation of reactions at very high thermal energies, much above the bond energyFemtosecond Chemically Activated Reactions: Concept of Nonstatistical Activation at High Thermal Energies Sang Kyu Kim, Ju Guo, J. Spencer Baskin, and Ahmed H. Zewail* Arthur Amos Noyes Chemical Physics

Kim, Sang Kyu

477

ENERGY SCAVENGING BASED ON TRANSIENT THERMAL GRADIENTS: APPLICATION TO STRUCTURAL HEALTH MONITORING OF AIRCRAFTS  

E-Print Network [OSTI]

ENERGY SCAVENGING BASED ON TRANSIENT THERMAL GRADIENTS: APPLICATION TO STRUCTURAL HEALTH MONITORING from its environment [2]. A possible source of energy could be thermal gradients. This paper, INSA 3 Thalès Alenia Space, Toulouse, France Abstract: Results about energy capture from

Paris-Sud XI, Université de

478

P h y s i c a l O c e a n o g r a p h y D i v i s i o n Optimizing Ocean Observations for Hurricane Forecast Improvement  

E-Print Network [OSTI]

forecasts for individual storms and improved seasonal forecast of the ocean thermal energy availableP h y s i c a l O c e a n o g r a p h y D i v i s i o n Optimizing Ocean Observations for Hurricane to provide NOAA the ability to evaluate new ocean observing systems, and alternate deployments of existing

479

Low-Energy Thermal Photons from Meson-Meson Bremsstrahlung  

E-Print Network [OSTI]

Within an effective hadronic model including electromagnetic interactions via a U$_{\\rm em}$(1) gauge, we reinvestigate photon Bremsstrahlung from a hot hadronic gas as expected to be formed in relativistic heavy-ion collisions at SPS energies. We calculate photon emission from the reactions $\\pi\\pi\\to\\pi\\pi\\gamma$ and $\\pi K \\to\\pi K\\gamma$ by an explicit (numerical) evaluation of the multi-dimensional phase space integral. This, in particular, allows to avoid the commonly employed soft photon approximation (SPA), as well as to incorporate final-state thermal enhancement factors. % during the hadronic stage of the fireball. Both improvements are shown to result in an appreciable increase of the photon production rate over previous hadronic calculations. Upon convolution over a thermal fireball we find an improvement in the description of recent low transverse-momentum WA98 data at SPS. The influence of both Landau-Pomeranchuk-Migdal and in-medium effects on "$\\sigma$" and $\\rho$-meson exchanges are briefly discussed.

W. Liu; R. Rapp

2007-09-04T23:59:59.000Z

480

Designing an Optimal Urban Community Mix for an Aquifer Thermal Energy Storage System.  

E-Print Network [OSTI]

??This research examined what mix of building types result in the most efficient use of a technology known as Aquifer Thermal Energy Storage (ATES). Hourly (more)

Zizzo, Ryan

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ocean thermal energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

BismuthCeramic Nanocomposites with Unusual Thermal Stability via High-Energy Ball Milling**  

E-Print Network [OSTI]

Bismuth±Ceramic Nanocomposites with Unusual Thermal Stability via High-Energy Ball Milling, nanostructured bismuth±ceramic nanocomposites with unusual thermal stabil- ity. These materials contain a high. Important for electrical and thermoelectric applications, the ceramic phase is electrically and thermally

Braun, Paul

482

JETC: Joint Energy, Thermal and Cooling Management for CPU and Memory  

E-Print Network [OSTI]

JETC: Joint Energy, Thermal and Cooling Management for CPU and Memory Subsystems in Servers Raid Ayoub, Rajib Nath, Tajana Rosing, UCSD 2052.002 Observation Model of Thermal Coupling Between CPU: No Memory Management NCM: No CPU Migration DLB: Dynamic Load Balancing DTM-CM+PI: Dynamic Thermal Management

Simunic, Tajana

483

Thermal Expansion Models of Viscous Fluids Based on Limits of Free Energy  

E-Print Network [OSTI]

Thermal Expansion Models of Viscous Fluids Based on Limits of Free Energy S.E. Bechtel Department March 25, 2002 Abstract Many viscous uid ows are mechanically incompressible, yet thermally expand associated with sound waves. The Boussi- nesq model for laboratory-scale, buoyancy-driven thermal convection

Aluffi, Paolo

484

Correlation of energy and free energy for the thermal Casimir force between real metals  

E-Print Network [OSTI]

The energy of fluctuating electromagnetic field is investigated for the thermal Casimir force acting between parallel plates made of real metal. It is proved that for nondissipative media with temperature independent dielectric permittivity the energy at nonzero temperature comprises of the (renormalized) energies of the zero-point and thermal photons. In this manner photons can be considered as collective elementary excitations of the matter of plates and electromagnetic field. If the dielectric permittivity depends on temperature the energy contains additional terms proportional to the derivatives of dielectric permittivity with respect to temperature, and the quasiparticle interpretation of the fluctuating field is not possible. The correlation between energy and free energy is considered. Previous calculations of the Casimir energy in the framework of the Lifshitz formula at zero temperature and optical tabulated data supplemented by the Drude model at room temperature are analysed. It is demonstrated that this quantity is not a good approximation either for the free energy or the energy. A physical interpretation of this hybrid quantity is suggested. The contradictory results in the recent literature on whether the zero-frequency term of the Lifshitz formula for the perpendicular polarized modes has any effective contribution to the physical quantities are discussed. Four main approaches to the resolution of this problem are specified. The precise expressions for entropy of the fluctuating field between plates made of real metal are obtained, which helps to decide between the different approaches. The conclusion is that the Lifshitz formula supplemented by the plasma model and the surface impedance approach are best suited to describe the thermal Casimir force between real metals.

V. B. Bezerra; G. L. Klimchitskaya; V. M. Mostepanenko

2002-10-31T23:59:59.000Z

485

Energy conversion using thermal transpiration : optimization of a Knudsen compressor  

E-Print Network [OSTI]

Knudsen compressors are devices without any moving parts that use the nanoscale phenomenon of thermal transpiration to pump or compress a gas. Thermal transpiration takes place when a gas is in contact with a solid boundary ...

Klein, Toby A. (Toby Anna)

2012-01-01T23:59:59.000Z

486

Space Science: Atmosphere Thermal Structure  

E-Print Network [OSTI]

Space Science: Atmosphere Part -2 Thermal Structure Review tropospheres Absorption of Radiation Adiabatic Lapse Rate ~ 9 K/km Slightly smaller than our estimate Pressure ~3000ft under ocean surface thickness (positive up) is the solar zenith angle Fs is the solar energy flux at frequency (when

Johnson, Robert E.

487

An Act to Implement the Recommendations of the Governor's Ocean Energy Task Force (Maine)  

Broader source: Energy.gov [DOE]

This law was enacted to overcome economic, technical and regulatory obstacles and to provide economic incentives for vigorous and efficient development of promising indigenous, renewable ocean...

488

Design and installation manual for thermal energy storage  

SciTech Connect (OSTI)

The purpose of this manual is to provide information on the design and installation of thermal energy storage in active solar systems. It is intended for contractors, installers, solar system designers, engineers, architects, and manufacturers who intend to enter the solar energy business. The reader should have general knowledge of how solar heating and cooling systems operate and knowledge of construction methods and building codes. Knowledge of solar analysis methods such as f-Chart, SOLCOST, DOE-1, or TRNSYS would be helpful. The information contained in the manual includes sizing storage, choosing a location for the storage device, and insulation requirements. Both air-based and liquid-based systems are covered with topics on designing rock beds, tank types, pump and fan selection, installation, costs, and operation and maintenance. Topics relevant to latent heat storage include properties of phase-change materials, sizing the storage unit, insulating the storage unit, available systems, and cost. Topics relevant to heating domestic water include safety, single- and dual-tank systems, domestic water heating with air- and liquid-based space heating systems, and stand alone domestics hot water systems. Several appendices present common problems with storage systems and their solutions, heat transfer fluid properties, economic insulation thickness, heat exchanger sizing, and sample specifications for heat exchangers, wooden rock bins, steel tanks, concrete tanks, and fiberglass-reinforced plastic tanks.

Cole, R L; Nield, K J; Rohde, R R; Wolosewicz, R M

1980-01-01T23:59:59.000Z

489

Research and Development for Novel Thermal Energy Storage Systems (TES) for Concentrating Solar Power (CSP)  

SciTech Connect (OSTI)

The overall objective was to develop innovative heat transfer devices and methodologies for novel thermal energy storage systems for concentrating solar power generation involving phase change materials (PCMs). Specific objectives included embedding thermosyphons and/or heat pipes (TS/HPs) within appropriate phase change materials to significantly reduce thermal resistances within the thermal energy storage system of a large-scale concentrating solar power plant and, in turn, improve performance of the plant. Experimental, system level and detailed comprehensive modeling approaches were taken to investigate the effect of adding TS/HPs on the performance of latent heat thermal energy storage (LHTES) systems.

Faghri, Amir; Bergman, Theodore L; Pitchumani, Ranga

2013-09-26T23:59:59.000Z

490

Ocean Renewable Energy Storage (ORES) System: Analysis of an Undersea Energy Storage Concept  

E-Print Network [OSTI]

Due to its higher capacity factor and proximity to densely populated areas, offshore wind power with integrated energy storage could satisfy > 20% of U.S. electricity demand. Similar results could also be obtained in many ...

Slocum, Alexander H.

491

Thermal Energy Storage: It's not Just for Electric Cost Savings Anymore  

E-Print Network [OSTI]

Large cool Thermal Energy Storage (TES), typically ice TES or chilled water (CHW) TES, has traditionally been thought of, and used for, managing time-of-day electricity use to reduce the cost associated with electric energy and demand charges...

Andrepont, J. S.

2014-01-01T23:59:59.000Z

492

Implementations of electric vehicle system based on solar energy in Singapore assessment of solar thermal technologies  

E-Print Network [OSTI]

To build an electric car plus renewable energy system for Singapore, solar thermal technologies were investigated in this report in the hope to find a suitable "green" energy source for this small island country. Among all ...

Liu, Xiaogang, M. Eng. Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

493

Characterization of U.S. Wave Energy Converter (WEC) Test Sites: A Catalogue of Met-Ocean Data.  

SciTech Connect (OSTI)

This report presents met - ocean data and wave energy characteristics at three U.S. wave energy converter (WEC) test and potential deployment sites . Its purpose is to enable the compari son of wave resource characteristics among sites as well as the select io n of test sites that are most suitable for a developer's device and that best meet their testing needs and objectives . It also provides essential inputs for the design of WEC test devices and planning WEC tests, including the planning of deployment and op eration s and maintenance. For each site, this report catalogues wave statistics recommended in the (draft) International Electrotechnical Commission Technical Specification (IEC 62600 - 101 TS) on Wave Energy Characterization, as well as the frequency of oc currence of weather windows and extreme sea states, and statistics on wind and ocean currents. It also provides useful information on test site infrastructure and services .

Dallman, Ann Renee; Neary, Vincent Sinclair

2014-10-01T23:59:59.000Z

494

A Novel Integrated Frozen Soil Thermal Energy Storage and Ground-Source Heat Pump System  

E-Print Network [OSTI]

In this paper, a novel integrated frozen soil thermal energy storage and ground-source heat pump (IFSTS&GSHP) system in which the GHE can act as both cold thermal energy storage device and heat exchanger for GSHP is first presented. The IFSTS...

Jiang, Y.; Yao, Y.; Rong, L.; Ma, Z.

2006-01-01T23:59:59.000Z

495

Graphene-based photovoltaic cells for near-field thermal energy conversion  

E-Print Network [OSTI]

Graphene-based photovoltaic cells for near-field thermal energy conversion Riccardo Messina to a photovoltaic cell can be largely enhanced because of the contribution of evanescent photons, in particular important source of energy. By approaching a photovoltaic (PV) cell3 in proximity of a thermal emitter

Paris-Sud XI, Université de

496

Comparison of closed and open thermochemical processes, for long-term thermal energy storage applications  

E-Print Network [OSTI]

1 Comparison of closed and open thermochemical processes, for long-term thermal energy storage-term thermal storage, second law analysis * Corresponding author: E-mail: mazet@univ-perp.fr Nomenclature c Energy Tecnosud, Rambla de la thermodynamique, 66100 Perpignan, France b Université de Perpignan Via

Paris-Sud XI, Université de

497

Similarity and generalized analysis of efficiencies of thermal energy storage systems  

SciTech Connect (OSTI)

This paper examined the features of three typical thermal storage systems including: (1) direct storage of heat transfer fluid in containers, (2) storage of thermal energy in a packed bed of solid filler material, with energy being carried in/out by a flowing heat transfer fluid which directly contacts the packed bed, and (3) a system in which heat transfer fluid flows through tubes that are imbedded into a thermal storage material which may be solid, liquid, or a mixture of the two. The similarity of the three types of thermal storage systems was discussed, and generalized energy storage governing equations were introduced in both dimensional and dimensionless forms. The temperatures of the heat transfer fluid during energy charge and discharge processes and the overall energy storage efficiencies were studied through solution of the energy storage governing equations. Finally, provided in the paper are a series of generalized charts bearing curves for energy storage effectiveness against four dimensionless parameters grouped up from many of the thermal storage system properties including dimensions, fluid and thermal storage material properties, as well as the operational conditions including mass flow rate of the fluid, and the ratio of energy charge and discharge time periods. Engineers can conveniently look up the charts to design and calibrate the size of thermal storage tanks and operational conditions without doing complicated individual modeling and computations. It is expected that the charts will serve as standard tools for thermal storage system design and calibration.

Peiwen Li; Jon Van Lew; Cholik Chan; Wafaa Karaki; Jake Stephens; J. E. O'Brien

2012-03-01T23:59:59.000Z

498

Short term thermal energy storage Institut fr Kernenergetik und Energiesysteme, University of Stuttgart, Stuttgart, FRG  

E-Print Network [OSTI]

477 Short term thermal energy storage A. Abhat Institut für Kernenergetik und Energiesysteme the problem of short term thermal energy storage for low temperature solar heating applications. The techniques of sensible and latent heat storage are discussed, with particular emphasis on the latter

Paris-Sud XI, Université de

499

Thermal and Economic Analyses of Energy Saving by Enclosing Gas Turbine Combustor Section  

E-Print Network [OSTI]

) thermography inspection indicated a high-temperature area (500~560F) at the combustor section of the GE Frame 5 gas turbine of Dynegy Gas Processing Plant at Venice, Louisiana. To improve the thermal efficiency and reduce energy cost, thermal... within the natural gas industry, the Venice plant is seeking various means to reduce cost. As part of the project to improve the energy efficiency of the plant and thus reduce energy costs, Dynegy contracted the Energy Conversion & Conservation...

Li, X.; Wang, T.; Day, B.

2006-01-01T23:59:59.000Z

500

Ocean circulation plays a key role in distributing solar energy and maintaining climate, by moving heat from Earth's equator to the poles. At  

E-Print Network [OSTI]

Ocean circulation plays a key role in distributing solar energy and maintaining climate, by moving get cold and salty enough to sink to great depths. This globally interconnected process of "overturning circulation" occurs in all ocean basins and helps to regulate Earth's climate. Aquarius

Waliser, Duane E.