National Library of Energy BETA

Sample records for ocean test project

  1. MHK Projects/Gulf of Mexico Ocean test | Open Energy Information

    Open Energy Info (EERE)

    Gulf of Mexico Ocean test < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"R...

  2. OTEC (Ocean Thermal Energy Conversion) CWP (Cold Water Pipe) Laboratory Test Program. Materials Project Test Report

    SciTech Connect (OSTI)

    Not Available

    1981-04-01

    Fiberglass sandwich wall structures emerged as leading candidates for the OTEC cold water pipe because of their high strength to weight ratio, their flexibility in selecting directional properties, their resistance to electrochemical interaction, their ease of deployment and their relative low cost. A review of the literature established reasonable confidence that FRP laminates could meet the OTEC requirements; however, little information was available on the performance of core materials suitable for OTEC applications. Syntactic foam cores of various composition and density were developed and tested for mechanical properties and seawater absorption.

  3. EA-1890: Reedsport PB150 Deployment and Ocean Test Project, Oregon

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy has selected Ocean Power Technologies (OPT) for approximately $2.4 million in financial assistance and proposes to authorize the expenditure of federal funding to OPT...

  4. Ocean Energy Projects Developing On and Off America's Shores | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Ocean Energy Projects Developing On and Off America's Shores Ocean Energy Projects Developing On and Off America's Shores January 22, 2013 - 1:14pm Addthis Artist rendering of Ocean Power Technologies' proposed wave park off the coast of Oregon. | Photo courtesy of Ocean Power Technologies. Artist rendering of Ocean Power Technologies' proposed wave park off the coast of Oregon. | Photo courtesy of Ocean Power Technologies. Verdant testing its tidal energy device in New York's East

  5. MHK Projects/Greenwave Rhode Island Ocean Wave Energy Project...

    Open Energy Info (EERE)

    Greenwave Rhode Island Ocean Wave Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":...

  6. Ocean Power Technologies (TRL 7 8 System) - Reedsport PB150 Deployment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7 8 System) - Reedsport PB150 Deployment and Ocean Test Project Ocean Power Technologies (TRL 7 8 System) - Reedsport PB150 Deployment and Ocean Test Project Ocean Power ...

  7. MHK Projects/Development of Ocean Treader | Open Energy Information

    Open Energy Info (EERE)

    Wave Treader fixed *MHK TechnologiesOcean Treader floating Project Licensing Environmental Monitoring and Mitigation Efforts See Tethys << Return to the MHK database...

  8. Aquantis Ocean Current Turbine Development Project Report

    SciTech Connect (OSTI)

    Fleming, Alex J.

    2014-08-23

    The Aquantis® Current Plane (“C-Plane”) technology developed by Dehlsen Associates, LLC (DA) and Aquantis, Inc. is an ocean current turbine designed to extract kinetic energy from ocean currents. The technology is capable of achieving competitively priced base-load, continuous, and reliable power generation from a source of renewable energy not before possible in this scale or form.

  9. MHK Projects/Makai Ocean Energy Research Center | Open Energy...

    Open Energy Info (EERE)

    Project Details Makai Ocean Engineering has designed, owns, and operates a closed-cycle OTEC system in Kailua-Kona Hawaii. True deep cold seawater is drawn from a depth of about...

  10. OTEC (Ocean Thermal Energy Conversion) CWP (Cold Water Pipe) Laboratory Test Program. Ocean Systems Test Plan

    SciTech Connect (OSTI)

    Not Available

    1980-09-01

    This document presents the plan for validating the ocean systems response codes used in the OTEC community. Ocean systems used here includes the platform, the CWP, and the mooring system. The objectives of the present program are to acquire test data on the response of the ocean system to wave excitation available frequency domain computer codes. If the codes are not fully validated upon comparison of the test data with the calculations, the objectives are to identify discrepancies, establish the range of code usefulness and to recommend improvements. Model tests will be conducted in the OTC model basin with the CWP extending into the 30 foot deep pit. This limits the model scale to 1:110. Three types of prototype CWP's will be modeled: rigid, articulated and compliant. Two mooring stiffnesses will be tested based on the Lockheed mooring study. The model platform is a modified version of the APL barge redesigned to improve seakeeping performance. Computer code calculations will be made with the ROTEC and NOAA/DOE frequency domain codes. Standard response parameters will be compared with the test data (stress and motion maxima, significant and RMS magnitudes as well as selected RAO's). Wave drift forces will be estimated and compared to test data.

  11. GLobal Ocean Data Analysis Project (GLODAP): Data and Analyses

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sabine, C. L.; Key, R. M.; Feely, R. A.; Bullister, J. L.; Millero, F. J.; Wanninkhof, R.; Peng, T. H.; Kozyr, A.

    The GLobal Ocean Data Analysis Project (GLODAP) is a cooperative effort to coordinate global synthesis projects funded through NOAA, DOE, and NSF as part of the Joint Global Ocean Flux Study - Synthesis and Modeling Project (JGOFS-SMP). Cruises conducted as part of the World Ocean Circulation Experiment (WOCE), JGOFS, and the NOAA Ocean-Atmosphere Exchange Study (OACES) over the decade of the 1990s have created an important oceanographic database for the scientific community investigating carbon cycling in the oceans. The unified data help to determine the global distributions of both natural and anthropogenic inorganic carbon, including radiocarbon. These estimates provide an important benchmark against which future observational studies will be compared. They also provide tools for the direct evaluation of numerical ocean carbon models. GLODAP information available through CDIAC includes gridded and bottle data, a live server, an interactive atlas that provides access to data plots, and other tools for viewing and interacting with the data. [from http://cdiac.esd.ornl.gov/oceans/glodap/Glopintrod.htm](Specialized Interface)

  12. Aquantis C-Plane Ocean Current Turbine Project

    SciTech Connect (OSTI)

    Fleming, Alex

    2015-09-16

    The Aquantis 2.5 MW Ocean Current Generation Device technology developed by Dehlsen Associates, LLC (DA) is a derivation of wind power generating technology (a means of harnessing a slow moving fluid) adapted to the ocean environment. The Aquantis Project provides an opportunity for accelerated technological development and early commercialization, since it involves the joining of two mature disciplines: ocean engineering and wind turbine design. The Aquantis Current Plane (C-Plane) technology is an ocean current turbine designed to extract kinetic energy from a current flow. The technology is capable of achieving competitively priced, continuous, base-load, and reliable power generation from a source of renewable energy not before possible in this scale or form.

  13. Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean Current, and In-Stream Hydrokinetic Power Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean Current, ...

  14. Dehlsen (TRL 5 6 System) - Aquantis C-Plane Ocean Current Turbine Project |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Dehlsen (TRL 5 6 System) - Aquantis C-Plane Ocean Current Turbine Project Dehlsen (TRL 5 6 System) - Aquantis C-Plane Ocean Current Turbine Project Dehlsen (TRL 5 6 System) - Aquantis C-Plane Ocean Current Turbine Project 13_aquantismhk_da_alexfleming.pptx (2.33 MB) More Documents & Publications Aquantis 2.5MW Ocean Current Generation Device 2014 Water Power Program Peer Review Compiled Presentations: Marine and Hydrokinetic Technologies CX-005670: Categorical

  15. Project W-320, combined pump winch assembly test - Test report

    SciTech Connect (OSTI)

    Bellomy, J.R., Westinghouse Hanford

    1996-05-15

    Test report documenting results of the Project W-320 combined pump/winch test performed at Lawrence Pumps.

  16. Ocean Power Technologies (TRL 7 8 System) - Reedsport PB150 Deployment and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ocean Test Project | Department of Energy Ocean Power Technologies (TRL 7 8 System) - Reedsport PB150 Deployment and Ocean Test Project Ocean Power Technologies (TRL 7 8 System) - Reedsport PB150 Deployment and Ocean Test Project Ocean Power Technologies (TRL 7 8 System) - Reedsport PB150 Deployment and Ocean Test Project 05_reed_ocean_power_technologies_inc_hart.ppt (1.48 MB) More Documents & Publications EA-1890: DOE Notice of Availability of the Finding of No Significant Impact

  17. MHK Projects/Ocean Navitas NaREC | Open Energy Information

    Open Energy Info (EERE)

    Number of Devices Deployed 1 Main Overseeing Organization Ocean Navitas Project Licensing Environmental Monitoring and Mitigation Efforts See Tethys << Return to the MHK database...

  18. Evaluation of Dredged Material Proposed for Ocean Disposal from Federal Projects in New York and New Jersey and the Military Ocean Terminal (MOTBY)

    SciTech Connect (OSTI)

    Barrows, E.S.; Antrim, L.D.; Pinza, M.R.; Gardiner, W.W.; Kohn, N.P.; Gruendell, B.D.; Mayhew, H.L.; Word, J.Q.; Rosman, L.B.

    1996-08-01

    The U.S. Army Corps of Engineers (USACE) is authorized by Section 103 of the Marine Protection, Research, and Sanctuaries Act of 1972 (MPRSA), Public Law 92-532, and by the Clean Water Act of 1972 (CWA) and Amendments of 1977 to permit, evaluate, and regulate the disposal of dredged material in ocean waters to minimize adverse environmental effects. Compliance with the regulations of the MPRSA calls for physical and biological testing of sediment proposed for dredging prior to its disposal in ocean waters. The testing required by the MPRSA criteria is conducted under a testing manual developed by the USACE and the U.S. Environmental Protection Agency (EPA), Evaluation of Dredged Material Proposed for Ocean Disposal (Testing Manual), commonly referred to as the `Green Book.` Testing protocols in the Green Book include bulk sediment analysis, grain size analysis, elutriate testing, and biological testing. The biological testing includes bioassays for acute toxicity as well as analysis to determine bioaccumulation of certain contaminants by marine organisms. The objective of the USACE-NYD Federal Projects Program was to evaluate sediment proposed for dredging and unconfined ocean disposal at the Mud Dump Site. The results of analytical measurements and bioassays performed on the test sediments were compared with analyses of sediment from the Mud Dump Reference Site to determine whether the test sediments were acutely toxic to marine organisms or resulted in statistically significantly greater bioaccumulation of contaminants in marine organisms, relative to the reference sediment. Testing for the federal project areas was performed according to the requirements.

  19. Ocean acidification over the next three centuries using a simple global climate carbon-cycle model: projections and sensitivities

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hartin, Corinne A.; Bond-Lamberty, Benjamin; Patel, Pralit; Mundra, Anupriya

    2016-08-01

    Continued oceanic uptake of anthropogenic CO2 is projected to significantly alter the chemistry of the upper oceans over the next three centuries, with potentially serious consequences for marine ecosystems. Relatively few models have the capability to make projections of ocean acidification, limiting our ability to assess the impacts and probabilities of ocean changes. In this study we examine the ability of Hector v1.1, a reduced-form global model, to project changes in the upper ocean carbonate system over the next three centuries, and quantify the model's sensitivity to parametric inputs. Hector is run under prescribed emission pathways from the Representative Concentrationmore » Pathways (RCPs) and compared to both observations and a suite of Coupled Model Intercomparison (CMIP5) model outputs. Current observations confirm that ocean acidification is already taking place, and CMIP5 models project significant changes occurring to 2300. Hector is consistent with the observational record within both the high- (> 55°) and low-latitude oceans (< 55°). The model projects low-latitude surface ocean pH to decrease from preindustrial levels of 8.17 to 7.77 in 2100, and to 7.50 in 2300; aragonite saturation levels (ΩAr) decrease from 4.1 units to 2.2 in 2100 and 1.4 in 2300 under RCP 8.5. These magnitudes and trends of ocean acidification within Hector are largely consistent with the CMIP5 model outputs, although we identify some small biases within Hector's carbonate system. Of the parameters tested, changes in [H+] are most sensitive to parameters that directly affect atmospheric CO2 concentrations – Q10 (terrestrial respiration temperature response) as well as changes in ocean circulation, while changes in ΩAr saturation levels are sensitive to changes in ocean salinity and Q10. We conclude that Hector is a robust tool well suited for rapid ocean acidification projections and sensitivity analyses, and it is capable of emulating both current observations

  20. Fallon Test Ranges Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Test Ranges Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Fallon Test Ranges Geothermal Project Project Location Information...

  1. Ocean Renewable Power Co (ORPC) (TRL 7 8 System)- TidGen (TM) Power System Commercialization Project

    Broader source: Energy.gov [DOE]

    Ocean Renewable Power Co (ORPC) (TRL 7 8 System) - TidGen (TM) Power System Commercialization Project

  2. Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean Current,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and In-Stream Hydrokinetic Power | Department of Energy Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean Current, and In-Stream Hydrokinetic Power Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean Current, and In-Stream Hydrokinetic Power Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean Current, and In-Stream Hydrokinetic Power 16_life_revision_previsic_update.ppt (2.64 MB) More Documents & Publications 2014 Water Power Program Peer Review

  3. Lockheed Testing the Waters for Ocean Thermal Energy System | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Lockheed Testing the Waters for Ocean Thermal Energy System Lockheed Testing the Waters for Ocean Thermal Energy System May 27, 2010 - 11:46am Addthis Paul Lester Paul Lester Digital Content Specialist, Office of Public Affairs A floating platform, simple turbine and tropical oceans could be the key to producing 30 percent or more of the total energy the world consumes today, according to Lockheed Martin. The technology in play: Ocean Thermal Energy Conversion (OTEC). Lockheed Martin

  4. Ocean Power: Science Projects in Renewable Energy and Energy Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ocean Power (Four Activities) Grades: 5-8 Topic: Hydropower Owner: National Renewable Energy Laboratory This educational material is brought to you by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy. This lesson plan may contain links to other resources, including suggestions as to where to purchase materials. These links, product descriptions, and prices may change over time. Ocean Power For the Teacher The discussion of renewable energy sometimes focuses on

  5. MHK Projects/Grays Harbor Ocean Energy and Coastal Protection...

    Open Energy Info (EERE)

    Energy Company LLC Project Technology *MHK TechnologiesTitan Platform Project Licensing Environmental Monitoring and Mitigation Efforts See Tethys << Return to the MHK database...

  6. MHK Projects/Ocean Trials Ver 2 | Open Energy Information

    Open Energy Info (EERE)

    Project Technology *MHK TechnologiesSurgeWEC *MHK TechnologiesAirWEC Project Licensing Environmental Monitoring and Mitigation Efforts See Tethys << Return to the MHK database...

  7. Yeager Airport Hydrogen Vehicle Test Project

    SciTech Connect (OSTI)

    Davis, Williams

    2015-10-01

    The scope of this project was changed during the course of the project. Phase I of the project was designed to have the National Alternative Fuels Training Consortium (NAFTC), together with its partners, manage the Hydrogen Vehicle Test Project at the Yeager Airport in conjunction with the Central West Virginia Regional Airport Authority (CWVRAA) in coordination with the United States Department of Energy National Energy Technology Laboratory (U.S. DOE NETL). This program would allow testing and evaluation of the use of hydrogen vehicles in the state of West Virginia utilizing the hydrogen fueling station at Yeager Airport. The NAFTC and CWVRAA to raise awareness and foster a greater understanding of hydrogen fuel and hydrogen-powered vehicles through a targeted utilization and outreach and education effort. After initial implementation of the project, the project added, determine the source(s) of supply for hydrogen powered vehicles that could be used for the testing. After completion of this, testing was begun at Yeager Airport. During the course of the project, the station at Yeager Airport was closed and moved to Morgantown and the West Virginia University Research Corporation. The vehicles were then moved to Morgantown and a vehicle owned by the CWVRAA was purchased to complete the project at the new location. Because of a number of issues detailed in the report for DE-FE0002994 and in this report, this project did not get to evaluate the effectiveness of the vehicles as planned.

  8. GLobal Ocean Data Analysis Project (GLODAP): Data and Analyses

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sabine, C. L.; Key, R. M.; Feely, R. A.; Bullister, J. L.; Millero, F. J.; Wanninkhof, R.; Peng, T. H.; Kozyr, A.

    GLODAP information available through CDIAC includes gridded and bottle data, a live server, an interactive atlas that provides access to data plots, and other tools for viewing and interacting with the data. [from http://cdiac.esd.ornl.gov/oceans/glodap/Glopintrod.htm](Specialized Interface)

  9. Testing, Manufacturing, and Component Development Projects

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report covers the Wind and Water Power Technologies Office's testing, manufacturing, and component development projects for utility-scale and distributed wind energy from fiscal years 2006 to 2014.

  10. Fast Flux Test Facility Closure Project - Project Management Plan

    SciTech Connect (OSTI)

    BEACH, R.R.

    2002-09-26

    The Fast Flux Test Facility (FFTF) Closure Project, Project Management Plan, Revision 5, provides the scope, cost, and schedule to achieve the most cost effective and expeditious closure of the FFTF to an assumed final end-state with the reactor vessel and the containment building, below the 5504 grade level, being entombed in place. Closure will be completed by December 2009 at a cost of $547 million.

  11. National Oceanic and Atmospheric Administration's Honolulu Laboratory Renewal Project, Honolulu, Hawaii

    SciTech Connect (OSTI)

    Not Available

    2002-08-01

    This brochure provides an overview of The National Oceanic and Atmospheric Administration's Honolulu Laboratory Renewal Project, a project designed to adhere to the U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED) rating system. Diagrams of the HVAC system and the rainwater collection system are included.

  12. Oceanic Communities in a Changing Planet - The Tara Oceans Project (GSC8 Meeting)

    ScienceCinema (OSTI)

    Raes, Jeroen [University of Brussels

    2011-04-28

    The Genomic Standards Consortium was formed in September 2005. It is an international, open-membership working body which promotes standardization in the description of genomes and the exchange and integration of genomic data. The 2009 meeting was an activity of a five-year funding "Research Coordination Network" from the National Science Foundation and was organized held at the DOE Joint Genome Institute with organizational support provided by the JGI and by the University of California - San Diego. Jeroen Raes of the University of Brussels discusses the Tara-Oceans expedition at the Genomic Standards Consortium's 8th meeting at the DOE JGI in Walnut Creek, Calif. on Sept. 9, 2009

  13. MHK Projects/Ocean Energy Galway Bay IE | Open Energy Information

    Open Energy Info (EERE)

    at the Irish Marine Institute-run test site in the waters off Galway, Ireland. Ocean Energy conducted a 2006-2007 winter sea trial on its 28 ton OEBuoy prototype at the Irish...

  14. Alabama Injection Project Aimed at Enhanced Oil Recovery, Testing...

    Office of Environmental Management (EM)

    Injection Project Aimed at Enhanced Oil Recovery, Testing Important Geologic CO2 Storage Alabama Injection Project Aimed at Enhanced Oil Recovery, Testing Important Geologic CO2 ...

  15. Project Profile: National Solar Thermal Test Facility Operations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Profile: National Solar Thermal Test Facility Operations and Maintenance (SuNLaMP) Project Profile: National Solar Thermal Test Facility Operations and Maintenance (SuNLaMP) ...

  16. Final Report Limited Soil Investigation of Project Chariot Test...

    Office of Legacy Management (LM)

    Limited Soil Investigation of Project Chariot Test Holes Cape Thompson, Alaska December ... Soil Investigation of Project Chariot Test Holes, Cape Thompson, Alaska Fairbanks ...

  17. Project Impact Assessments: Building America FY14 Field Test...

    Energy Savers [EERE]

    Project Impact Assessments: Building America FY14 Field Test Technical Support - 2014 BTO Peer Review Project Impact Assessments: Building America FY14 Field Test Technical Support ...

  18. Property:Did The Test Results Demonstrate Projected Performance...

    Open Energy Info (EERE)

    Did The Test Results Demonstrate Projected Performance? Jump to: navigation, search Property Name Did The Test Results Demonstrate Projected Performance? Property Type Text...

  19. Climate, Ocean and Sea Ice Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ocean and Sea Ice Modeling (COSIM) Summary The COSIM project develops advanced ocean and ice models for evaluating the role of ocean and ice in high-latitude climate change and projecting the impacts of high-latitude change on regions throughout the globe. COSIM researchers develop, test and apply ocean and ice models in support of DOE Climate Change Research and the broader international climate science community. Additional research includes developing a set of next-generation ocean and ice

  20. EERE Success Story-Establishing a Testing Center for Ocean Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies in the Pacific Northwest | Department of Energy Establishing a Testing Center for Ocean Energy Technologies in the Pacific Northwest EERE Success Story-Establishing a Testing Center for Ocean Energy Technologies in the Pacific Northwest April 9, 2013 - 12:00am Addthis The University of Washington (UW) and Oregon State University (OSU) have partnered with EERE to develop the Northwest National Marine Renewable Energy Center (NNMREC), as one of three National Marine Renewable

  1. Future projection of mean and variability of the Asian Summer Monsoon and Indian Ocean Climate systems

    SciTech Connect (OSTI)

    Annamalai, H

    2014-09-15

    The overall goal of this project is to assess the ability of the CMIP3/5 models to simulate the Indian-Ocean monsoon systems. The PI along with post-docs investigated research issues ranging from synoptic systems to long-term trends over the Asian monsoon region. The PI applied diagnostic tools such as moist static energy (MSE) to isolate: the moist and radiative processes responsible for extended monsoon breaks over South Asia, precursors in the ENSO-monsoon association, reasons for the drying tendency over South Asia and the possible effect on tropical Indian Ocean climate anomalies influencing certain aspects of ENSO characteristics. By diagnosing various observations and coupled model simulations, we developed working hypothesis and tested them by carrying out sensitivity experiments with both linear and nonlinear models. Possible physical and dynamical reasons for model sensitivities were deduced. On the teleconnection front, the ability of CMIP5 models in representing the monsoon-desert mechanism was examined recently. Further more, we have applied a suite of diagnostics and have performed an in depth analysis on CMIP5 integrations to isolate the possible reasons for the ENSO-monsoon linkage or lack thereof. The PI has collaborated with Dr. K.R. Sperber of PCMDI and other CLIVAR Asian-Australian monsoon panel members in understanding the ability of CMIP3/5 models in capturing monsoon and its spectrum of variability. The objective and process-based diagnostics aided in selecting models that best represent the present-day monsoon and its variability that are then employed for future projections. Two major highlights were an invitation to write a review on present understanding monsoons in a changing climate in Nature Climate Change, and identification of an east-west shift in observed monsoon rainfall (more rainfall over tropical western Pacific and drying tendency over South Asia) in the last six decades and attributing that shift to SST rise over the tropical

  2. Mk12A/W78 ground test project (u)

    SciTech Connect (OSTI)

    Stokes, Kyle R

    2010-12-01

    The slides present the scope, objectives and status of the Mk12A1W78 Ground Test Project for the purpose of updating the ICBM Project Officers Group. In addition, project constraints and risks are discussed.

  3. Establishing a Testing Center for Ocean Energy Technologies in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NNMREC offers a full range of capabilities to support wave and tidal energy development ... UW plans to deploy and test tidal turbines in Puget Sound, which provides a useful natural ...

  4. Final Test and Evaluation Results from the Solar Two Project...

    Office of Scientific and Technical Information (OSTI)

    Final Test and Evaluation Results from the Solar Two Project Citation Details In-Document Search Title: Final Test and Evaluation Results from the Solar Two Project You are ...

  5. Advanced Wind Energy Projects Test Facility Moving to Texas Tech...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Energy Projects Test Facility Moving to Texas Tech University Advanced Wind Energy Projects Test Facility Moving to Texas Tech University December 19, 2011 - 1:32pm Addthis ...

  6. LANL LDRD-funded project: Test particle simulations of energetic...

    Office of Scientific and Technical Information (OSTI)

    Test particle simulations of energetic ions in natural and artificial radiation belts Citation Details In-Document Search Title: LANL LDRD-funded project: Test particle ...

  7. Fast flux test facility, transition project plan

    SciTech Connect (OSTI)

    Guttenberg, S.

    1994-11-15

    The FFTF Transition Project Plan, Revision 1, provides changes and project baseline for the deactivation activities necessary to transition the FFTF to a radiologically and industrially safe shutdown condition.

  8. Project Profile: National Solar Thermal Test Facility Operations and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Maintenance (SuNLaMP) | Department of Energy Project Profile: National Solar Thermal Test Facility Operations and Maintenance (SuNLaMP) Project Profile: National Solar Thermal Test Facility Operations and Maintenance (SuNLaMP) Funding Program: SuNLaMP SunShot Subprogram: CSP Location: Sandia National Laboratory, Albuquerque, NM SunShot Award Amount: $2,250,000 This project maintains the National Solar Thermal Test Facility (NSTTF), which provides the CSP industry with established test

  9. Project Profile: National Solar Thermal Test Facility | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Concentrating Solar Power » Project Profile: National Solar Thermal Test Facility Project Profile: National Solar Thermal Test Facility SNL logo The first solar receivers ever tested in the world were tested at the National Solar Thermal Test Facility (NSTTF). The receivers were each rated up to 5 megawatts thermal (MWt). Receivers with various working fluids have been tested here over the years, including air, water-steam, molten salt, liquid sodium, and solid particles. The NSTTF

  10. Fast Flux Test Facility project plan. Revision 2

    SciTech Connect (OSTI)

    Hulvey, R.K.

    1995-11-01

    The Fast Flux Test Facility (FFTF) Transition Project Plan, Revision 2, provides changes to the major elements and project baseline for the deactivation activities necessary to transition the FFTF to a radiologically and industrially safe shutdown condition.

  11. Ocean Thermal Energy Conversion Project: OTEC support services. Monthly technical status report, October 1-31, 1980

    SciTech Connect (OSTI)

    1980-11-14

    The objective of this project is to provide technical engineering and management support services for the Ocean Thermal Energy Conversion (OTEC) program of the Division of Ocean Energy Systems, DOE. The principal contributions made are outlined for the following tasks: (1) Survey, analysis and recommendation concerning program performance; (2) Program technical monitoring; (3) Technical assessments; (4) OTEC system integration; (5) Environment and siting considerations; and (6) Transmission subsystem considerations.

  12. MHK Projects/Leancon Real Sea Test | Open Energy Information

    Open Energy Info (EERE)

    Leancon Real Sea Test < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"ROADM...

  13. Final environmental impact statement/environmental impact report for the California Acoustic Thermometry of Ocean Climate Project and its associated marine mammal research program. Volume 2: Final report

    SciTech Connect (OSTI)

    1995-04-01

    This EIS/EIR presents a detailed description of the proposed project, in addition to other information required by the National Environmental Policy Act (NEPA) and California Environmental Quality Act (CEQA). The overall Acoustic Thermometry of Ocean Climate (ATOC) project is an international research effort to observe the ocean on the large space scales (3,000 to 10,000 km) which characterize climate, which will enable climate models to be tested against the average ocean temperature changes seen by ATOC over a few years and if, and when, the models prove adequate, use those same observations to initialize the models to make meaningful predictions. The basic principle behind ATOC is simple. Sounds travels faster in warm water than in cold water. The travel time is a direct measure of the large-scale average temperature between the source and receiver. Measuring average ocean temperatures is necessary to validate global climate computer models being used and developed to answer the question of whether the earth is warming as a result of the greenhouse effect.

  14. Final environmental impact statement/environmental impact report for the California Acoustic Thermometry of Ocean Climate Project and its associated marine mammal research program. Volume 1: Final report

    SciTech Connect (OSTI)

    1995-04-01

    This EIS/EIR presents a detailed description of the proposed project, in addition to other information required by the National Environmental Policy Act (NEPA) and California Environmental Quality Act (CEQA). The overall Acoustic Thermometry of Ocean Climate (ATOC) project is an international research effort to observe the ocean on the large space scales (3,000 to 10,000 km) which characterize climate, which will enable climate models to be tested against the average ocean temperature changes seen by ATOC over a few years and if, and when, the models prove adequate, use those same observations to initialize the models to make meaningful predictions. The basic principle behind ATOC is simple. Sounds travels faster in warm water than in cold water. The travel time is a direct measure of the large-scale average temperature between the source and receiver. Measuring average ocean temperatures is necessary to validate global climate computer models being used and developed to answer the question of whether the earth is warming as a result of the greenhouse effect.

  15. Large-Scale Industrial CCS Projects Selected for Continued Testing |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy CCS Projects Selected for Continued Testing Large-Scale Industrial CCS Projects Selected for Continued Testing June 10, 2010 - 1:00pm Addthis Washington, DC - Three Recovery Act funded projects have been selected by the U.S. Department of Energy (DOE) to continue testing large-scale carbon capture and storage (CCS) from industrial sources. The projects - located in Texas, Illinois, and Louisiana - were initially selected for funding in October 2009 as part of a $1.4

  16. Collaborative project. Ocean-atmosphere interaction from meso- to planetary-scale. Mechanics, parameterization, and variability

    SciTech Connect (OSTI)

    Saravanan, Ramalingam; Small, Justin

    2015-12-01

    Most climate models are currently run with grid spacings of around 100km, which, with today’s computing power, allows for long (up to 1000 year) simulations, or ensembles of simulations to explore climate change and variability. However this grid spacing does not resolve important components of the weather/climate system such as atmospheric fronts and mesoscale systems, and ocean boundary currents and eddies. The overall aim of this project has been to look at the effect of these small-scale features on the weather/climate system using a suite of high and low resolution climate models, idealized models and observations. High-resolution global coupled integrations using CAM/CESM were carried out at NCAR by the lead PI. At TAMU, we have complemented the work at NCAR by analyzing datasets from the high-resolution (28km) CESM integrations (Small et al., 2014) as well as very high resolution (9km, 3km) runs using a coupled regional climate (CRCM) carried out locally. The main tasks carried out were: 1. Analysis of surface wind in observations and high-resolution CAM/CCSM simulations 2. Development of a feature-tracking algorithm for studying midlatitude air-sea interaction by following oceanic mesoscale eddies and creating composites of the atmospheric response overlying the eddies. 3. Applying the Lagrangian analysis technique in the Gulf Stream region to compare data from observational reanalyses, global CESM coupled simulations, 9km regional coupled simulations and 3km convection-resolving regional coupled simulations. Our main findings are that oceanic mesoscale eddies influence not just the atmospheric boundary layer above them, but also the lower portions of the free troposphere above the boundary layer. Such a vertical response could have implications for a remote influence of Gulf Stream oceanic eddies on North Atlantic weather patterns through modulation of the storm track, similar to what has been noted in the North Pacific. The coarse resolution

  17. Project Impact Assessments: Building America FY14 Field Test Technical

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Support - 2014 BTO Peer Review | Department of Energy Project Impact Assessments: Building America FY14 Field Test Technical Support - 2014 BTO Peer Review Project Impact Assessments: Building America FY14 Field Test Technical Support - 2014 BTO Peer Review Presenter: Lieko Earle, National Renewable Energy Laboratory The goal of this project is for the National Renewable Energy Laboratory to provide extensive, hands-on technical support to Building America teams in the areas of experiment

  18. Project W-151 checkout-testing report

    SciTech Connect (OSTI)

    Nordquist, E.M.

    1997-01-31

    This document contains the completed checkout testing plan along with the exception log documenting exceptions which occurred during the test and their closure. This document also contains several minor open exceptions which will be closed upon installation of the radiation-sensitive equipment.

  19. Project W320 52-inch diameter equipment container load test: Test report

    SciTech Connect (OSTI)

    Bellomy, J.R.

    1995-02-22

    This test report summarizes testing activities and documents the results of the load tests performed on-site and off-site to structural qualify the 52-inch equipment containers designed and fabricated under Project W-320.

  20. Integrated Performance Testing for Nonproliferation Support Project

    SciTech Connect (OSTI)

    Johns, Russell; Bultz, Garl Alan; Byers, Kenneth R.; Yaegle, William

    2013-08-20

    The objective of this workshop is to provide participants with training in testing techniques and methodologies for assessment of the performance of: Physical Protection system elements; Material Control and Accounting (MC&A) system elements.

  1. Nondestructive Evaluation and Monitoring Projects NASA White Sands Test

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facility (WSTF) | Department of Energy Nondestructive Evaluation and Monitoring Projects NASA White Sands Test Facility (WSTF) Nondestructive Evaluation and Monitoring Projects NASA White Sands Test Facility (WSTF) These slides were presented at the Onboard Storage Tank Workshop on April 29, 2010. nondestructiveevaluation_nasa_ostw.pdf (1.93 MB) More Documents & Publications Non Destructive Evaluation (NDE) Methods for Certification and Production/Performance Monitoring of Composite

  2. Mobile Ocean Test Berth Support: Cooperative Research and Development Final Report, CRADA Number CRD-10-413

    SciTech Connect (OSTI)

    LiVecchi, Albert

    2015-12-01

    The Northwest National Marine Renewable Energy Center (NNMREC), headquartered at the Oregon State University, is establishing the capabilities to test prototype wave energy conversion devices in the ocean. This CRADA will leverage the technical expertise and resources at NREL in the wind industry and in ocean engineering to support and enhance the development of the NNMREC Mobile Ocean Test Berth (MOTB). This CRADA will provide direct support to NNMREC by providing design evaluation and review of the MOTB, developing effective protocols for testing of the MOTB and wave energy conversion devices in the ocean, assisting in the specification of appropriate instrumentation and data acquisition packages, and providing guidance on obtaining and maintaining A2LA (American Association for Laboratory Accreditation) accreditation.

  3. Project Manager, Nevada Test Site | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) Project Manager, Nevada Test Site Susan Livenick, NTS Project Manager Susan Livenick August 2009 U.S. Department of Energy's Management Award On August 12, Susan Livenick, a Project Manager at the Nevada Test Site received the 2009 U.S. Department of Energy's Management Award at a special awards ceremony in Providence, R.I. The awards honor outstanding achievements in energy and water management. Susan oversaw Bldg. B3's abatement and renovation from 2005-2008, making

  4. Underground Test Area Subproject Project Management Plan, Revision 1

    SciTech Connect (OSTI)

    1998-06-03

    This Project Management Plan (PMP) describes the manner in which the US Department of Energy Nevada Operations Office (DOE/NV) will manage the Underground Test Area (UGTA) Subproject at the Nevada Test Site (NTS). It provides the basic guidance for implementation and the organizational structure for meeting the UGTA objectives.

  5. Collaborative project. Ocean-atmosphere interaction from meso-to planetary-scale. Mechanisms, parameterization, and variability

    SciTech Connect (OSTI)

    Small, Richard; Bryan, Frank; Tribbia, Joseph; Park, Sungsu; Dennis, John; Saravanan, R.; Schneider, Niklas; Kwon, Young-Oh

    2015-06-11

    This project aims to improve long term global climate simulations by resolving ocean mesoscale activity and the corresponding response in the atmosphere. The main computational objectives are; i) to perform and assess Community Earth System Model (CESM) simulations with the new Community Atmospheric Model (CAM) spectral element dynamical core; ii) use static mesh refinement to focus on oceanic fronts; iii) develop a new Earth System Modeling tool to investigate the atmospheric response to fronts by selectively filtering surface flux fields in the CESM coupler. The climate research objectives are 1) to improve the coupling of ocean fronts and the atmospheric boundary layer via investigations of dependency on model resolution and stability functions: 2) to understand and simulate the ensuing tropospheric response that has recently been documented in observations: and 3) to investigate the relationship of ocean frontal variability to low frequency climate variability and the accompanying storm tracks and extremes in high resolution simulations. This is a collaborative multi-institution project consisting of computational scientists, climate scientists and climate model developers. It specifically aims at DOE objectives of advancing simulation and predictive capability of climate models through improvements in resolution and physical process representation.

  6. PROJECT PROFILE: Regional Test Center Operations | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Regional Test Center Operations PROJECT PROFILE: Regional Test Center Operations Funding Opportunity: SuNLaMP SunShot Subprogram: Photovoltaics Location: Sandia National Laboratories, Albuquerque, NM SunShot Award Amount: $6,999,432 Location: National Renewable Energy Laboratory, Golden, CO SunShot Award Amount: $1,250,000 The Regional Test Center (RTC) program aims to support technical innovation in the U.S. solar sector by validating the performance of new PV products in multiple climates. The

  7. MHK Technologies/Ocean Treader floating | Open Energy Information

    Open Energy Info (EERE)

    homepage Ocean Treader floating.jpg Technology Profile Primary Organization Green Ocean Energy Ltd Project(s) where this technology is utilized *MHK ProjectsDevelopment of Ocean...

  8. Characterization of U.S. Wave Energy Converter (WEC) Test Sites: A Catalogue of Met-Ocean Data.

    SciTech Connect (OSTI)

    Dallman, Ann Renee; Neary, Vincent Sinclair

    2014-10-01

    This report presents met - ocean data and wave energy characteristics at three U.S. wave energy converter (WEC) test and potential deployment sites . Its purpose is to enable the compari son of wave resource characteristics among sites as well as the select io n of test sites that are most suitable for a developer's device and that best meet their testing needs and objectives . It also provides essential inputs for the design of WEC test devices and planning WEC tests, including the planning of deployment and op eration s and maintenance. For each site, this report catalogues wave statistics recommended in the (draft) International Electrotechnical Commission Technical Specification (IEC 62600 - 101 TS) on Wave Energy Characterization, as well as the frequency of oc currence of weather windows and extreme sea states, and statistics on wind and ocean currents. It also provides useful information on test site infrastructure and services .

  9. Regional Test Centers Project Expands U.S. Small Wind Certification Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capability - News Releases | NREL Regional Test Centers Project Expands U.S. Small Wind Certification Testing Capability Organizations in Kansas, New York, Texas, and Utah to receive support to conduct small wind turbine tests March 5, 2010 On Feb. 9, 2010, The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) and DOE's Wind and Hydropower Technologies Program announced the selection of four partners to establish small wind Regional Test Centers (RTCs) to conduct

  10. EA-1917: Wave Energy Test Facility Project, Newport, OR

    Broader source: Energy.gov [DOE]

    This EA will evaluate the potential environmental impacts of a Wave Energy Test Facility that will be located near Newport, Oregon. The testing facility will be located within Oregon territorial waters, near the Hatfield Marine Science Center and close to onshore roads and marine support services. The site will not only allow testing of new wave energy technologies, but will also be used to help study any potential environmental impacts on sediments, invertebrates and fish. The project is being jointly funded by the State of Oregon and DOE.

  11. ocean energy technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Tribal Energy Program Intellectual Property Current EC Partnerships How to Partner Small ... SunShot Grand Challenge: Regional Test Centers ocean energy technologies HomeTag:ocean ...

  12. Seawater test results of open-cycle ocean thermal energy conversion (OC-OTEC) components

    SciTech Connect (OSTI)

    Zangrando, F.; Bharathan, D.; Link, H. ); Panchal, C.B. )

    1994-01-01

    Key components of open-cycle ocean thermal energy conversion systems--the flash evaporator, mist eliminator, passive predeaerator, two surface condenser stages, and two direct-contact condenser stages--have been tested using seawater. These components operate at lower steam pressures and higher inlet noncondensable gas concentrations than do conventional power plant heat exchangers. The rate of heat exchanged between the evaporator and the condenser is on the order of 1.25MW-thermal, requiring a warm seawater flow of about 0.1 m[sup 3]/s; the cold seawater flow is on the order of half the warm water flow. In addition to characterizing the performance of the various components, the system has produced potable water from condensation of the steam produced in the evaporator. The information obtained in these tests is being used to design a larger scale experiment in which net power production is expected to be demonstrate for the first time using OC-OTEC technology.

  13. EERE Success Story-Establishing a Testing Center for Ocean Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Both universities' research efforts will help maximize the energy extracted by wave and tidal power installations and under-stand the potential impacts of ocean power development ...

  14. Climate, Ocean and Sea Ice Modeling (COSIM)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Earth, Space Sciences Climate, Ocean and Sea Ice Modeling (COSIM) Climate, Ocean and Sea Ice Modeling (COSIM) The COSIM project develops advanced ocean and ice models for ...

  15. Permits and regulations applicable to United States ocean thermal energy conversion projects

    SciTech Connect (OSTI)

    Not Available

    1982-04-01

    This guide, covering permits and regulations applicable to U.S. OTEC projects, is another step in NOAA's process of providing the tools needed for OTEC project sponsors to design, develop, and implement commercial OTEC operations in the most efficient and cost-effective way. Its purpose is to provide OTEC project sponsors with an overview of potentially required licenses, permits, and authorizations, at both the Federal and State level, to give guidance on information about the proposed project needed to determine what permits are required, and to list, in a single reference, the agencies potentially involved in project review.

  16. Underground test area quality assurance project plan, Nevada test site, Nevada. Revision 1

    SciTech Connect (OSTI)

    1997-04-01

    This Quality Assurance Project Plan (QAPP) is one of the planning documents used for the Underground Test Area (UGTA) Subproject at the Nevada Test Site (NTS) which falls under the oversight of the U.S. Department of Energy, Nevada Operations Office (DOE/NV) Nevada Environmental Restoration Project (NV ERP). The Nevada ERP consists of environmental restoration activities on the NTS, Tonopah Test Range, Nellis Air Force Range, and eight sites in five other states. The UGTA Subproject constitutes a component of the Nevada Environmental Restoration Project. The purposes of the UGTA Subproject are to define boundaries around each Corrective Action Unit (CAU), as defined by the Federal Facility Agreement and Consent Order (FFACO), that establish areas containing water that may be unsafe for domestic or municipal use and to establish monitoring programs for each CAU that will verify modeling upon which the boundaries are based.

  17. CERTS Microgrid Laboratory Test Bed - PIER Final Project Report

    SciTech Connect (OSTI)

    Eto, Joseph H.; Eto, Joseph H.; Lasseter, Robert; Schenkman, Ben; Klapp, Dave; Linton, Ed; Hurtado, Hector; Roy, Jean; Lewis, Nancy Jo; Stevens, John; Volkommer, Harry

    2008-07-25

    The objective of the CERTS Microgrid Laboratory Test Bed project was to enhance the ease of integrating small energy sources into a microgrid. The project accomplished this objective by developing and demonstrating three advanced techniques, collectively referred to as the CERTS Microgrid concept, that significantly reduce the level of custom field engineering needed to operate microgrids consisting of small generating sources. The techniques comprising the CERTS Microgrid concept are: 1) a method for effecting automatic and seamless transitions between grid-connected and islanded modes of operation; 2) an approach to electrical protection within the microgrid that does not depend on high fault currents; and 3) a method for microgrid control that achieves voltage and frequency stability under islanded conditions without requiring high-speed communications. The techniques were demonstrated at a full-scale test bed built near Columbus, Ohio and operated by American Electric Power. The testing fully confirmed earlier research that had been conducted initially through analytical simulations, then through laboratory emulations, and finally through factory acceptance testing of individual microgrid components. The islanding and resychronization method met all Institute of Electrical and Electronics Engineers 1547 and power quality requirements. The electrical protections system was able to distinguish between normal and faulted operation. The controls were found to be robust and under all conditions, including difficult motor starts. The results from these test are expected to lead to additional testing of enhancements to the basic techniques at the test bed to improve the business case for microgrid technologies, as well to field demonstrations involving microgrids that involve one or mroe of the CERTS Microgrid concepts.

  18. Final Test and Evaluation Results from the Solar Two Project

    SciTech Connect (OSTI)

    BRADSHAW, ROBERT W.; DAWSON, DANIEL B.; DE LA ROSA, WILFREDO; GILBERT, ROCKWELL; GOODS, STEVEN H.; HALE, MARY JANE; JACOBS, PETER; JONES, SCOTT A.; KOLB, GREGORY J.; PACHECO, JAMES E.; PRAIRIE, MICHAEL R.; REILLY, HUGH E.; SHOWALTER, STEVEN K.; VANT-HULL, LORIN L.

    2002-01-01

    Solar Two was a collaborative, cost-shared project between 11 U. S. industry and utility partners and the U. S. Department of Energy to validate molten-salt power tower technology. The Solar Two plant, located east of Barstow, CA, comprised 1926 heliostats, a receiver, a thermal storage system, a steam generation system, and steam-turbine power block. Molten nitrate salt was used as the heat transfer fluid and storage media. The steam generator powered a 10-MWe (megawatt electric), conventional Rankine cycle turbine. Solar Two operated from June 1996 to April 1999. The major objective of the test and evaluation phase of the project was to validate the technical characteristics of a molten salt power tower. This report describes the significant results from the test and evaluation activities, the operating experience of each major system, and overall plant performance. Tests were conducted to measure the power output (MW) of the each major system, the efficiencies of the heliostat, receiver, thermal storage, and electric power generation systems and the daily energy collected, daily thermal-to-electric conversion, and daily parasitic energy consumption. Also included are detailed test and evaluation reports.

  19. Final project report: High energy rotor development, test and evaluation

    SciTech Connect (OSTI)

    1996-09-01

    Under the auspices of the {open_quotes}Government/Industry Wind Technology Applications Project{close_quotes} [{open_quotes}Letter of Interest{close_quotes} (LOI) Number RC-1-11101], Flo Wind Corp. has successfully developed, tested, and delivered a high-energy rotor upgrade candidate for their 19-meter Vertical Axis Wind Turbine. The project included the demonstration of the innovative extended height-to-diameter ratio concept, the development of a continuous span single-piece composite blade, the demonstration of a continuous blade manufacturing technique, the utilization of the Sandia National Laboratories developed SNLA 2150 natural laminar flow airfoil and the reuse of existing wind turbine and wind power plant infrastructure.

  20. Status and Aims of the DUMAND Neutrino Project: the Ocean as a Neutrino Detector

    DOE R&D Accomplishments [OSTI]

    Roberts, A.; Blood, H.; Learned, J.; Reines, F.

    1976-07-01

    The possibility of using the ocean as a neutrino detector is considered. Neutrino-produced interactions result in charged particles that generate Cherenkov radiation in the water, which can be detected by light-gathering equipment and photomultipliers. The properties of the ocean as seen from this standpoint are critically examined, and the advantages and disadvantages pointed out. Possible uses for such a neutrino detector include (1) the detection of neutrinos emitted in gravitational collapse of stars (supernova production), not only in our own galaxy, but in other galaxies up to perhaps twenty-million light-years away, (2) the extension of high-energy neutrino physics, as currently practiced up to 200 GeV at high-energy accelerators, to energies up to 50 times higher, using neutrinos generated in the atmosphere by cosmic rays, and (3) the possible detection of neutrinos produced by cosmic-ray interactions outside the earth`s atmosphere. The technology for such an undertaking seems to be within reach.

  1. Test Plan: Sludge Treatment Project Corrosion Process Chemistry Follow-on Testing

    SciTech Connect (OSTI)

    Delegard, Calvin H.; Schmidt, Andrew J.; Poloski, Adam P.

    2007-08-17

    This test plan was prepared by the Pacific Northwest National Laboratory (PNNL) under contract with Fluor Hanford (FH). The test plan describes the scope and conditions to be used to perform laboratory-scale testing of the Sludge Treatment Project (STP) hydrothermal treatment of K Basin sludge. The STP, managed for the U. S. Department of Energy (DOE) by FH, was created to design and operate a process to eliminate uranium metal from the sludge prior to packaging for Waste Isolation Pilot Plant (WIPP) by using high temperature liquid water to accelerate the reaction, produce uranium dioxide from the uranium metal, and safely discharge the hydrogen. The proposed testing builds on the approach and laboratory test findings for both K Basin sludge and simulated sludge garnered during prior testing from September 2006 to March 2007. The outlined testing in this plan is designed to yield further understanding of the nature of the chemical reactions, the effects of compositional and process variations and the effectiveness of various strategies to mitigate the observed high shear strength phenomenon observed during the prior testing. These tests are designed to provide process validation and refinement vs. process development and design input. The expected outcome is to establish a level of understanding of the chemistry such that successful operating strategies and parameters can be implemented within the confines of the existing STP corrosion vessel design. In July 2007, the DOE provided direction to FH regarding significant changes to the scope of the overall STP. As a result of the changes, FH directed PNNL to stop work on most of the planned activities covered in this test plan. Therefore, it is unlikely the testing described here will be performed. However, to preserve the test strategy and details developed to date, the test plan has been published.

  2. DOE Announces $11 Million for Seven New Projects to Test New...

    Energy Savers [EERE]

    for Seven New Projects to Test New Options for Optimal Efficiency of the U.S. Electric Grid DOE Announces 11 Million for Seven New Projects to Test New Options for Optimal ...

  3. Recovery Efficiency Test Project: Phase 1, Activity report

    SciTech Connect (OSTI)

    Overbey, W.K. Jr.; Carden, R.S.; Kirr, J.N.

    1987-04-01

    The recovery Efficiency Test well project addressed a number of technical issues. The primary objective was to determine the increased efficiency gas recovery of a long horizontal wellbore over that of a vertical wellbore and, more specifically, what improvements can be expected from inducing multiple hydraulic fractures from such a wellbore. BDM corporation located, planned, and drilled a long radius turn horizontal well in the Devonian shale Lower Huron section in Wayne County, West Virginia, demonstrating that state-of-the-art technology is capable of drilling such wells. BDM successfully tested drilling, coring, and logging in a horizontal well using air as the circulating medium; conducted reservoir modeling studies to protect flow rates and reserves in advance of drilling operations; observed two phase flow conditions in the wellbore not observed previously; cored a fracture zone which produced gas; observed that fractures in the core and the wellbore were not systematically spaced (varied from 5 to 68 feet in different parts of the wellbore); observed that highest gas show rates reported by the mud logger corresponded to zone with lowest fracture spacing (five feet) or high fracture frequency. Four and one-half inch casting was successfully installed in the borehole and was equipped to isolate the horizontal section into eight (8) zones for future testing and stimulation operations. 6 refs., 48 figs., 10 tabs.

  4. Recovery Efficiency Test Project Phase 2 activity report, Volume 1

    SciTech Connect (OSTI)

    Overbey, W.K. Jr.; Salamy, S.P.; Locke, C.D.

    1989-02-01

    The purpose of Phase II operations of the Recovery Efficiency Test Project is to enhance the natural production of the well and evaluate the relative improvement as a function of the type of stimulation conducted. Another purpose is to compare the stimulated production performance of the horizontal well with vertical wells in the field. The objectives considered for Phase II operations and plans were: (1) Develop a rationale for a systematic approach to designing stimulations for the well. (2) Conduct a series of stimulations designed to optimize the fluids, injection rates, proppant volumes and general approach to stimulating a horizontal well with similar geologic conditions. (3) Develop and test a method or methods for determining the geometry of stimulation-induced fractures. (4) Conduct tests and analyze the results to determine the efficiency of stimulation operations. The technical approach pursued in developing plans to accomplish three objectives was to: (1) Review the data needs for all objectives and obtain that data first. (2) Identify the operating geologic, geomechanical, and reservoir parameters that need additional clarification or definition. (3) Investigate existing models which could be used to plan or evaluate stimulation on the well and the reservoir. (4) Plan for analysis and verification of models and approaches.

  5. MHK Projects/QSEIF Grant Sea Testing | Open Energy Information

    Open Energy Info (EERE)

    Organization Tidal Energy Pty Ltd Project Technology *MHK TechnologiesDavidson Hill Venturi DHV Turbine Project Licensing Environmental Monitoring and Mitigation Efforts See...

  6. The intermountain power project commissioning - Subsynchronous torsional interaction tests

    SciTech Connect (OSTI)

    Wu, C.T.; Peterson, K.J. ); Pinko, R.J.; Kankam, M.D.; Baker, D.H. )

    1988-10-01

    Subsyncronous torsional vibration as a result of electrochemical interaction between the HVDC controls and a turbine-generator was first discovered during the commissioning of the Square Butte Project in 1977. The level of interaction between the HVDC controls and the turbine-generator depends on several interacting factors: the characteristic torsional frequencies of the turbine-generator, the bandwidth of the HVDC controls and the relative strength of the connecting ac system. For the Intermountain Power Project (IPP), early analysis of these interacting factors indicated that there exist definite potential for subsynchronous oscillation to occur. The calculated torsional frequencies of the IPP units showed that the first mode frequency is 14.0 Hz and is within the typical bandwidth of an HVDC control which is between 10-20 Hz. The HVDC controls, therefore, can influence the torsional stability of the IPP units. Further, the IPP turbine-generators are required to operate isolated on the HVDC rectifier terminal, with no other interconnecting ac network. This ''radial'' mode of operation will result in maximum interaction between the converter station and the IPP units. It became obvious that special measure must be implemented in the design of the IPP HVDC control system to modify its typical characteristics to avoid the occurrence of the subsynchronous oscillation. This paper presents the results of the subsynchronous torsional interaction (SSTI) tests that were performed during the commissioning of the IPP Unit 1 and the HVDC Transmission system.

  7. Environmental Assessment -- Test Area North pool stabilization project update

    SciTech Connect (OSTI)

    1997-08-01

    The purpose of this Environmental Assessment (EA) is to update the ``Test Area North Pool Stabilization Project`` EA (DOE/EA-1050) and finding of no significant impact (FONSI) issued May 6, 1996. This update analyzes the environmental and health impacts of a drying process for the Three Mile Island (TMI) nuclear reactor core debris canisters now stored underwater in a facility on the Idaho National Engineering and Environmental Laboratory (INEEL). A drying process was analyzed in the predecision versions of the EA released in 1995 but that particular process was determined to be ineffective and dropped from the EA/FONSI issued May 6, 1996. A new drying process was subsequently developed and is analyzed in Section 2.1.2 of this document. As did the 1996 EA, this update analyzes the environmental and health impacts of removing various radioactive materials from underwater storage, dewatering these materials, constructing a new interim dry storage facility, and transporting and placing the materials into the new facility. Also, as did the 1996 EA, this EA analyzes the removal, treatment and disposal of water from the pool, and placement of the facility into a safe, standby condition. The entire action would take place within the boundaries of the INEEL. The materials are currently stored underwater in the Test Area North (TAN) building 607 pool, the new interim dry storage facility would be constructed at the Idaho Chemical Processing Plant (ICPP) which is about 25 miles south of TAN.

  8. Ocean Thermal Energy Conversion cold water pipe at-sea test program status report. Design, fabrication, materials testing

    SciTech Connect (OSTI)

    Not Available

    1982-02-01

    This report describes the selection, testing, fabrication, and eventual deployment of a piping system for an OTEC platform.

  9. Recovery efficiency test project, Phase 2 activity report

    SciTech Connect (OSTI)

    Overbey, W.K. Jr.; Salamy, S.P.; Locke, C.D.

    1989-02-01

    The Recovery Efficiency Test well project addressed a number of technical issues. The primary objective was to determine the increased efficiency of gas recovery of a long horizontal wellbore over that of a vertical wellbore and, more specifically, what improvements can be expected from inducing multiple hydraulic fractures from such a wellbore. This volume contains appendices for: (1) supporting material and procedures for data frac'' stimulation of zone 6 using nitrogen and nitrogen foam; (2) supporting material and procedures for stimulation no. 1 nitrogen gas frac on zone no. 1; (3) supporting material and procedures for stimulation no. 2 in zone no. 1 using liquid CO{sub 2}; (4) supporting material and procedures for frac no. 3 on zone no.1 using nitrogen foam and proppant; (5) supporting material and procedures for stimulation no. 4 in zones 2--3 and 4 using nitrogen foam and proppant; (6) supporting materials and procedures for stimulation no. 5 in zones 5 and 8; and (7) fracture diagnostics reports and supporting materials.

  10. Nondestructive Evaluation and Monitoring Projects NASA White Sands Test Facility (WSTF)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workshop Sandia National Laboratories Livermore, CA Nondestructive Evaluation and Monitoring Projects NASA White Sands Test Facility (WSTF) POCs: NASA WSTF: Regor Saulsberry (575) 524-5518 Overview * Background and Projects Overview * Survey of Test Projects of Interest * NASA Nondestructive Evaluation (NDE) Working Group (NNWG) Testing * Orbiter Testing - NNWG Piggyback Efforts 2 Background and Issues * Safe applications of Composite Pressure Vessels (CPVs) is major concern - The NASA

  11. Advanced Test Reactor Design Basis Reconstitution Project Issue Resolution Process

    SciTech Connect (OSTI)

    Steven D. Winter; Gregg L. Sharp; William E. Kohn; Richard T. McCracken

    2007-05-01

    The Advanced Test Reactor (ATR) Design Basis Reconstitution Program (DBRP) is a structured assessment and reconstitution of the design basis for the ATR. The DBRP is designed to establish and document the ties between the Document Safety Analysis (DSA), design basis, and actual system configurations. Where the DBRP assessment team cannot establish a link between these three major elements, a gap is identified. Resolutions to identified gaps represent configuration management and design basis recovery actions. The proposed paper discusses the process being applied to define, evaluate, report, and address gaps that are identified through the ATR DBRP. Design basis verification may be performed or required for a nuclear facility safety basis on various levels. The process is applicable to large-scale design basis reconstitution efforts, such as the ATR DBRP, or may be scaled for application on smaller projects. The concepts are applicable to long-term maintenance of a nuclear facility safety basis and recovery of degraded safety basis components. The ATR DBRP assessment team has observed numerous examples where a clear and accurate link between the DSA, design basis, and actual system configuration was not immediately identifiable in supporting documentation. As a result, a systematic approach to effectively document, prioritize, and evaluate each observation is required. The DBRP issue resolution process provides direction for consistent identification, documentation, categorization, and evaluation, and where applicable, entry into the determination process for a potential inadequacy in the safety analysis (PISA). The issue resolution process is a key element for execution of the DBRP. Application of the process facilitates collection, assessment, and reporting of issues identified by the DBRP team. Application of the process results in an organized database of safety basis gaps and prioritized corrective action planning and resolution. The DBRP team follows the ATR

  12. CoolCab Truck Testing Project Update (Presentation)

    SciTech Connect (OSTI)

    Proc, K.

    2007-10-31

    Presentation describes the CoolCab project, a DOE/NREL initiative to design efficient thermal management systems in heavy trucks to eliminate idling and reduce petroleum consumption.

  13. Project Impact Assessments … Building America FY14 Field Test...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Impact Assessments - Building America FY14 Field Test Technical Support 2014 Building ... 9302014 Key Milestones : 1. Launch Field Test Best Practices web- based facilitated ...

  14. MHK Projects/Wave Star Energy 1 10 Scale Model Test | Open Energy...

    Open Energy Info (EERE)

    Star Energy 1 10 Scale Model Test < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","...

  15. Results of scoping tests for open-cycle OTEC (ocean thermal energy conversion) components operating with seawater

    SciTech Connect (OSTI)

    Zangrando, F; Bharathan, D; Green, H J; Link, H F; Parsons, B K; Parsons, J M; Pesaran, A A; Panchal, C B

    1990-09-01

    This report presents comprehensive documentation of the experimental research conducted on open-cycle ocean thermal energy conversion (OC-OTEC) components operating with seawater as a working fluid. The results of this research are presented in the context of previous analysis and fresh-water testing; they provide a basis for understanding and predicting with confidence the performance of all components of an OC-OTEC system except the turbine. Seawater tests have confirmed the results that were obtained in fresh-water tests and predicted by the analytical models of the components. A sound technical basis has been established for the design of larger systems in which net power will be produced for the first time from OC-OTEC technology. Design and operation of a complete OC-OTEC system that produces power will provide sufficient confidence to warrant complete transfer of OC-OTEC technology to the private sector. Each components performance is described in a separate chapter written by the principal investigator responsible for technical aspects of the specific tests. Chapters have been indexed separately for inclusion on the data base.

  16. Experimental Wave Tank Test for Reference Model 3 Floating-Point Absorber Wave Energy Converter Project

    SciTech Connect (OSTI)

    Yu, Y. H.; Lawson, M.; Li, Y.; Previsic, M.; Epler, J.; Lou, J.

    2015-01-01

    The U.S. Department of Energy established a reference model project to benchmark a set of marine and hydrokinetic technologies including current (tidal, open-ocean, and river) turbines and wave energy converters. The objectives of the project were to first evaluate the status of these technologies and their readiness for commercial applications. Second, to evaluate the potential cost of energy and identify cost-reduction pathways and areas where additional research could be best applied to accelerate technology development to market readiness.

  17. Initial field testing definition of subsurface sealing and backfilling tests in unsaturated tuff; Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    Fernandez, J.A.; Case, J.B.; Tyburski, J.R.

    1993-05-01

    This report contains an initial definition of the field tests proposed for the Yucca Mountain Project repository sealing program. The tests are intended to resolve various performance and emplacement concerns. Examples of concerns to be addressed include achieving selected hydrologic and structural requirements for seals, removing portions of the shaft liner, excavating keyways, emplacing cementitious and earthen seals, reducing the impact of fines on the hydraulic conductivity of fractures, efficient grouting of fracture zones, sealing of exploratory boreholes, and controlling the flow of water by using engineered designs. Ten discrete tests are proposed to address these and other concerns. These tests are divided into two groups: Seal component tests and performance confirmation tests. The seal component tests are thorough small-scale in situ tests, the intermediate-scale borehole seal tests, the fracture grouting tests, the surface backfill tests, and the grouted rock mass tests. The seal system tests are the seepage control tests, the backfill tests, the bulkhead test in the Calico Hills unit, the large-scale shaft seal and shaft fill tests, and the remote borehole sealing tests. The tests are proposed to be performed in six discrete areas, including welded and non-welded environments, primarily located outside the potential repository area. The final selection of sealing tests will depend on the nature of the geologic and hydrologic conditions encountered during the development of the Exploratory Studies Facility and detailed numerical analyses. Tests are likely to be performed both before and after License Application.

  18. Recovery Efficiency Test Project: Phase 1, Activity report

    SciTech Connect (OSTI)

    Overbey, W.K. Jr.; Wilkins, D.W.; Keltch, B.; Saradji, B.; Salamy, S.P.

    1988-04-01

    This report is the second volume of the Recovery Efficiency Test Phase I Report of Activities. Volume 1 covered selection, well planning, drilling, coring, logging and completion operations. This volume reports on well testing activities, reclamation activities on the drilling site and access roads, and the results of physical and mechanical properties tests on the oriented core material obtained from a horizontal section of the well. 3 refs., 21 figs., 10 tabs.

  19. Project W320 heel jet secondary catch mechanism lateral load test - test report

    SciTech Connect (OSTI)

    Bellomy, J.R.

    1994-12-01

    This test report summarizes testing activities and documents the results of the lateral load test performed on the Heel Jet Secondary Catch Mechanism.

  20. Acid Pit Stabilization Project (Volume 1 - Cold Testing) and (Volume 2 - Hot Testing)

    SciTech Connect (OSTI)

    G. G. Loomis; A. P. Zdinak; M. A. Ewanic; J. J. Jessmore

    1998-01-01

    During the summer and fall of Fiscal Year 1997, a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Treatability Study was performed at the Idaho National Engineering and Environmental Laboratory. The study involved subsurface stabilization of a mixed waste contaminated soil site called the Acid Pit. This study represents the culmination of a successful technology development effort that spanned Fiscal Years 1994-1996. Research and development of the in situ grout stabilization technique was conducted. Hardware and implementation techniques are currently documented in a patent pending with the United States Patent and Trademark Office. The stabilization technique involved using jet grouting of an innovative grouting material to form a monolith out of the contamination zone. The monolith simultaneously provides a barrier to further contaminant migration and closes voids in the soil structure against further subsidence. This is accomplished by chemical incorporation of contaminants into less soluble species and achieving a general reduction in hydraulic conductivity within the monolith. The grout used for this study was TECT-HG, a relatively dense iron oxide-based cementitious grout. The treatability study involved cold testing followed by in situ stabilization of the Acid Pit. Volume 1 of this report discusses cold testing, performed as part of a ''Management Readiness Assessment'' in preparation for going hot. Volume 2 discusses the results of the hot Acid Pit Stabilization phase of this project. Drilling equipment was specifically rigged to reduce the spread of contamination, and all grouting was performed under a concrete block containing void space to absorb any grout returns. Data evaluation included examination of implementability of the grouting process and an evaluation of the contaminant spread during grouting. Following curing of the stabilized pit, cores were obtained and evaluated for toxicity characteristic leach ing

  1. Manhattan Project: Safety and the Trinity Test, July 1945

    Office of Scientific and Technical Information (OSTI)

    Bunker at S-10,000 The "Trinity" atomic test was the most violent man-made explosion in history to that date. It also posed the single most significant safety hazard of the entire ...

  2. The John Deere E diesel Test & Research Project

    SciTech Connect (OSTI)

    Fields, Nathan; Mitchell, William E.

    2008-09-23

    Three non-road Tier II emissions compliant diesel engines manufactured by John Deere were placed on a durability test plan of 2000 hours each at full load, rated speed (FLRS). The fuel was a blend of 10% fuel ethanol and 90% low sulfur #2 diesel fuel. Seven operational failures involving twenty seven fuel system components occurred prior to completion of the intended test plan. Regulated emissions measured prior to component failure indicated compliance to Tier II certification goals for the observed test experience. The program plan included operating three non-road Tier II diesel engines for 2000 hours each monitoring the regulated emissions at 500 hour intervals for changes/deterioration. The program was stopped prematurely due to number and frequency of injection system failures. The failures and weaknesses observed involved injector seat and valve wear, control solenoid material incompatibility, injector valve deposits and injector high pressure seal cavitation erosion. Future work should target an E diesel fuel standard that emphasizes minimum water content, stability, lubricity, cetane neutrality and oxidation resistance. Standards for fuel ethanol need to require water content no greater than the base diesel fuel standard. Lubricity bench test standards may need new development for E diesel.

  3. Enhanced Cover Assessment Project:Soil Manipulation and Revegetation Tests

    SciTech Connect (OSTI)

    Waugh, W. Joseph; Albright, Dr. Bill; Benson, Dr. Craig

    2014-02-01

    The U.S. Department of Energy Office of Legacy Management is evaluating methods to enhance natural changes that are essentially converting conventional disposal cell covers for uranium mill tailings into water balance covers. Conventional covers rely on a layer of compacted clayey soil to limit exhalation of radon gas and percolation of rainwater. Water balance covers rely on a less compacted soil “sponge” to store rainwater, and on soil evaporation and plant transpiration (evapotranspiration) to remove stored water and thereby limit percolation. Over time, natural soil-forming and ecological processes are changing conventional covers by increasing hydraulic conductivity, loosening compaction, and increasing evapotranspiration. The rock armor on conventional covers creates a favorable habitat for vegetation by slowing soil evaporation, increasing soil water storage, and trapping dust and organic matter, thereby providing the water and nutrients needed for plant germination, survival, and sustainable transpiration. Goals and Objectives Our overall goal is to determine if allowing or enhancing these natural changes could improve cover performance and reduce maintenance costs over the long term. This test pad study focuses on cover soil hydrology and ecology. Companion studies are evaluating effects of natural and enhanced changes in covers on radon attenuation, erosion, and biointrusion. We constructed a test cover at the Grand Junction disposal site to evaluate soil manipulation and revegetation methods. The engineering design, construction, and properties of the test cover match the upper three layers of the nearby disposal cell cover: a 1-foot armoring of rock riprap, a 6-inch bedding layer of coarse sand and gravel, and a 2-foot protection layer of compacted fine soil. The test cover does not have a radon barrier—cover enhancement tests leave the radon barrier intact. We tested furrowing and ripping as means for creating depressions parallel to the slope

  4. Generic TriBITS PRoject, Build, Test, and Install Quick Reference Guide

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Generic TriBITS PRoject, Build, Test, and Install Quick Reference Guide Ross Bartlett Oak Ridge National Laboratory CASL-U-2014-0075-000-a CASL-U-2014-0075-000-a Generic TriBITS PRoject, Build, Test, and Install Quick Reference Guide Author: Roscoe A. Bartlett Contact: bartlett.roscoe@gmail.com Abstract This document is generated from the generic template body docu- ment TribitsBuildQickRefBody.rst and provides a general project- independent quick reference on how to configure, build, test, and

  5. Characterization of U.S. Wave Energy Converter (WEC) Test Sites: A Catalogue of Met-Ocean Data 2nd Edition (Part 2)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    . JENNETTE'S PIER WAVE ENERGY TEST CENTER 5.1. Site Description Jennette's Pier, owned by the State of North Carolina and managed by the NC Aquarium Division, is a unique public facility that provides education and outreach including displays of experimental data and monitoring equipment. The University of North Carolina Coastal Studies Institute (UNC CSI) began a partnership with Jennette's Pier in 2004 to foster research, ocean energy device testing and monitoring, outreach, and education.

  6. Underground Test Area Quality Assurance Project Plan Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Irene Farnham

    2011-05-01

    This Quality Assurance Project Plan (QAPP) provides the overall quality assurance (QA) program requirements and general quality practices to be applied to the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) Underground Test Area (UGTA) Sub-Project (hereafter the Sub-Project) activities. The requirements in this QAPP are consistent with DOE Order 414.1C, Quality Assurance (DOE, 2005); U.S. Environmental Protection Agency (EPA) Guidance for Quality Assurance Project Plans for Modeling (EPA, 2002); and EPA Guidance on the Development, Evaluation, and Application of Environmental Models (EPA, 2009). The QAPP Revision 0 supersedes DOE--341, Underground Test Area Quality Assurance Project Plan, Nevada Test Site, Nevada, Revision 4.

  7. Generic TriBITS Project, Build, Test, and Install Reference Guide

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Generic TriBITS Project, Build, Test, and Install Reference Guide Author: Roscoe A. Bartlett Contact: bartlett.roscoe@gmail.com Date: 2015-08-27 Version: tribitsstart-1317-g4908e4...

  8. High Burnup Dry Storage Cask Research and Development Project: Final Test Plan

    Broader source: Energy.gov [DOE]

    This Test Plan for the High Burnup Dry Storage Research Project (HDRP) outlines the data to be collected, the high burnup fuel to be included, and the storage system design, procedures, and licensing necessary for implementation.

  9. NREL and Sandia National Laboratories (SNL) Support of Ocean Renewable Power Company's TidGen™ Power System Technology Readiness Advancement Initiative Project

    SciTech Connect (OSTI)

    LiVecchi, Al

    2015-05-07

    This document summarizes the tasks identified for National Laboratory technical support of Ocean Renewable Power Corporation (ORPC) DOE grant awarded under the FY10 Industry Solicitation DE-FOA-0000293: Technology Readiness Advancement Initiative. The system ORPC will deploy in Cobscook Bay, ME is known as the TidGen™ Power System. The Turbine Generator Unit (TGU) each have a rated capacity of 150 to 175 kW, and they are mounted on bottom support frames and connected to an onshore substation using an underwater power and control cable. This system is designed for tidal energy applications in water depths from 60 to 150 feet. In funding provided separately by DOE, National Laboratory partners NREL and SNL will provide in-kind resources and technical expertise to help ensure that industry projects meet DOE WWPP (Wind and Water Power Program) objectives by reducing risk to these high value projects.

  10. Project W-151 flexible receiver radiation detector system acceptance test plan. Revision 1

    SciTech Connect (OSTI)

    Troyer, G.L.

    1994-12-06

    The attached document is the Acceptance Test Plan for the portion of Project W-151 dealing with acceptance of gamma-ray detectors and associated electronics manufactured at the Idaho National Engineering Laboratory (INEL). The document provides a written basis for testing the detector system, which will take place in the 305 building (300 Area).

  11. NSF final project report planning and implementation of the U.S. Joint Global Ocean Flux Study (U.S. JGOFS)

    SciTech Connect (OSTI)

    Livingston, Hugh D.

    1996-07-01

    Conducted planning and implementation of ocean carbon dioxide hydrographic surveys ocean process studies, time-series studies of Bermuda and Hawaii, and sponsored scientific workshops for those activities.

  12. Subsea processing and control system in the GASP project; Testing of the prototype system

    SciTech Connect (OSTI)

    Nordvik, H.S. )

    1992-03-01

    The subsea production and processing system developed under the Goodfellow Assocs. Subsea Production (GASP) project involved two stages of separation that led to the production of exportable-quality crude oil by pipeline. The produced gas is transported along a separate line. This paper described key elements of the subsea process system. A prototype system was developed during the second phase of the project. The system was tested under dry and submerged conditions in a dry dock. Key features of the prototype system and the tests carried out are described. Prototype testing proved the viability of the GASP system and helped identify areas requiring particular attention and improvement for future applications.

  13. Idaho Cleanup Project completes work at Test Area North complex at DOE�s

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Idaho site Idaho Cleanup Project completes work at Test Area North complex at DOE�s Idaho site Loss-Of-Fluid Test Reactor Facility (before) Idaho Cleanup Project workers have completed all the original contract work scope at the U.S. Department of Energy�s Idaho Site�s Test Area North (TAN) complex. The work involved close cooperation among the Department of Energy, the Environmental Protection Agency and the Idaho Department of Environmental Quality, with public input incorporated

  14. EA-1965: Florida Atlantic University Southeast National Marine Renewable Energy Center’s Offshore Marine Hydrokinetic Technology Testing Project, Florida

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Department of Energy (DOE), through its Wind and Water Power Technologies Office (WWPTO), is proposing to provide federal funding to Florida Atlantic University’s South-East National Marine Renewable Energy Center (FAU SNMREC) to support the at sea testing of FAU SNMREC’s experimental current generation turbine and the deployment and operation of their Small-Scale Ocean Current Turbine Test Berth, sited on the outer continental shelf (OCS) in waters off the coast of Ft Lauderdale, Florida. SNMREC would demonstrate the test berth site readiness by testing their pilot-scale experimental ocean current turbine unit at that location. The Bureau of Ocean Energy Management (BOEM) conducted an Environmental Assessment to analyze the impacts associated with leasing OCS lands to FAU SNMREC, per their jurisdictional responsibilities under the Outer Continental Shelf Lands Act. DOE was a cooperating agency in this process and based on the EA, DOE issued a Finding of No Significant Impact.

  15. NREL Small Wind Turbine Test Project: Mariah Power's Windspire Wind Turbine Test Chronology

    SciTech Connect (OSTI)

    Huskey, A.; Forsyth, T.

    2009-06-01

    This report presents a chronology of tests conducted at NREL's National Wind Technology Center on Mariah Power's Windspire 1.2-kW wind turbine and a letter of response from Mariah Power.

  16. Healy Clean Coal Project: Healy coal firing at TRW Cleveland Test Facility. Final report

    SciTech Connect (OSTI)

    Koyama, T.; Petrill, E.; Sheppard, D.

    1991-08-01

    A test burn of two Alaskan coals was conducted at TRW`s Cleveland test facility in support of the Healy Clean Coal Project, as part of Clean Coal Technology III Program in which a new power plant will be constructed using a TRW Coal Combustion System. This system features ash slagging technology combined with NO{sub x} and SO{sub x} control. The tests, funded by the Alaska Industrial Development and Export Authority (AIDEA) and TRW, were conducted to verify that the candidate Healy station coals could be successfully fired in the TRW coal combustor, to provide data required for scale-up to the utility project size requirements, and to produce sufficient flash-calcined material (FCM) for spray dryer tests to be conducted by Joy/NIRO. The tests demonstrated that both coals are viable candidates for the project, provided the data required for scale-up, and produced the FCM material. This report describes the modifications to the test facility which were required for the test burn, the tests run, and the results of the tests.

  17. Healy Clean Coal Project: Healy coal firing at TRW Cleveland Test Facility

    SciTech Connect (OSTI)

    Koyama, T.; Petrill, E.; Sheppard, D.

    1991-08-01

    A test burn of two Alaskan coals was conducted at TRW's Cleveland test facility in support of the Healy Clean Coal Project, as part of Clean Coal Technology III Program in which a new power plant will be constructed using a TRW Coal Combustion System. This system features ash slagging technology combined with NO{sub x} and SO{sub x} control. The tests, funded by the Alaska Industrial Development and Export Authority (AIDEA) and TRW, were conducted to verify that the candidate Healy station coals could be successfully fired in the TRW coal combustor, to provide data required for scale-up to the utility project size requirements, and to produce sufficient flash-calcined material (FCM) for spray dryer tests to be conducted by Joy/NIRO. The tests demonstrated that both coals are viable candidates for the project, provided the data required for scale-up, and produced the FCM material. This report describes the modifications to the test facility which were required for the test burn, the tests run, and the results of the tests.

  18. The Yucca Mountain Project prototype air-coring test, U12g tunnel, Nevada test site

    SciTech Connect (OSTI)

    Ray, J.M.; Newsom, J.C.

    1994-12-01

    The Prototype Air-Coring Test was conducted at the Nevada Test Site (NTS) G-Tunnel facility to evaluate standard coring techniques, modified slightly for air circulation, for use in testing at a prospective nuclear waste repository at Yucca Mountain, Nevada. Air-coring technology allows sampling of subsurface lithology with minimal perturbation to ambient characteristic such as that required for exploratory holes near aquifers, environmental applications, and site characterization work. Two horizontal holes were cored, one 50 ft long and the other 150 ft long, in densely welded fractured tuff to simulate the difficult drilling conditions anticipated at Yucca Mountain. Drilling data from seven holes on three other prototype tests in nonwelded tuff were also collected for comparison. The test was used to establish preliminary standards of performance for drilling and dust collection equipment and to assess procedural efficiencies. The Longyear-38 drill achieved 97% recovery for HQ-size core (-2.5 in.), and the Atlas Copco dust collector (DCT-90) captured 1500 lb of fugitive dust in a mine environment with only minor modifications. Average hole production rates were 6-8 ft per 6-h shift in welded tuff and almost 20 ft per shift on deeper holes in nonwelded tuff. Lexan liners were successfully used to encapsulate core samples during the coring process and protect core properties effectively. The Prototype Air-Coring Test demonstrated that horizontal air coring in fractured welded tuff (to at least 150 ft) can be safely accomplished by proper selection, integration, and minor modification of standard drilling equipment, using appropriate procedures and engineering controls. The test also indicated that rig logistics, equipment, and methods need improvement before attempting a large-scale dry drilling program at Yucca Mountain.

  19. Recovery Act Funds Test Reactor Dome Removal in Historic D&D Project |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Funds Test Reactor Dome Removal in Historic D&D Project Recovery Act Funds Test Reactor Dome Removal in Historic D&D Project February 1, 2011 - 12:00pm Addthis Media Contacts Jim Giusti, DOE (803) 952-7697 james-r.giusti@srs.gov Paivi Nettamo, SRNS (803) 646-6075 paivi.nettamo@srs.gov AIKEN, S.C. - The landscape of the Savannah River Site (SRS) is a little flatter and a little less colorful with the removal today of the 75-foot-tall rusty-orange dome from the

  20. Action Memorandum for the Engineering Test Reactor under the Idaho Cleanup Project

    SciTech Connect (OSTI)

    A. B. Culp

    2007-01-26

    This Action Memorandum documents the selected alternative for decommissioning of the Engineering Test Reactor at the Idaho National Laboratory under the Idaho Cleanup Project. Since the missions of the Engineering Test Reactor Complex have been completed, an engineering evaluation/cost analysis that evaluated alternatives to accomplish the decommissioning of the Engineering Test Reactor Complex was prepared adn released for public comment. The scope of this Action Memorandum is to encompass the final end state of the Complex and disposal of the Engineering Test Reactor vessol. The selected removal action includes removing and disposing of the vessel at the Idaho CERCLA Disposal Facility and demolishing the reactor building to ground surface.

  1. AVTA: Chrysler RAM Experimental PHEV Pickup Truck Recovery Act Project Testing Results Phase 1

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The American Recovery and Reinvestment Act supported a number of projects that together made up the largest ever deployment of plug-in electric vehicles and charging infrastructure in the U.S. The following reports describe results of testing done on a 2011 Chrysler RAM PHEV, a demonstration vehicle not currently available for sale. The baseline performance testing provides a point of comparison for the other test results. Taken together, these reports give an overall view of how this vehicle functions under extensive testing. This research was conducted by Idaho National Laboratory.

  2. Ocean Thermal Extractable Energy Visualization: Final Technical Report

    Office of Energy Efficiency and Renewable Energy (EERE)

    Report about the Ocean Thermal Extractable Energy Visualization project, which focuses on assessing the Maximum Practicably Extractable Energy from the world’s ocean thermal resources.

  3. Characterization of U.S. Wave Energy Converter (WEC) Test Sites: A Catalogue of Met-Ocean Data 2nd Edition (Part 3)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CALWAVE PROPOSED CENTRAL COAST WEC TEST SITE AT VANDENBERG AIR FORCE BASE (VAFB) 9.1. Site Description The California Wave Energy Test Center (CalWave) Feasibility Study evaluated offshore test sites along the California coast for establishment of a national wave energy testing facility (Williams et al. 2015). The project originally considered two candidate areas, one offshore of Humboldt Bay, which is described in Chapter 9, and another Central Coast site offshore of Vandenberg Air Force Base

  4. EA-1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot Project, Cobscook in Washington County, Maine

    Broader source: Energy.gov [DOE]

    Draft Environmental AssessmentThis EA evaluates the environmental impacts of a project that would use the tidal currents of Cobscook Bay to generate electricity via cross-flow Kinetic System turbine generator units (TGU) mounted on the seafloor. The TGUs would capture energy from the flow in both ebb and flood directions.

  5. Resource Conservation and Recovery Act Industrial Sites quality assurance project plan: Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    This quality assurance project plan (QAPjP) describes the measures that shall be taken to ensure that the environmental data collected during characterization and closure activities of Resource Conservation and Recovery Act (RCRA) Industrial Sites at the Nevada Test Site (NTS) are meaningful, valid, defensible, and can be used to achieve project objectives. These activities are conducted by the US Department of Energy Nevada Operations Office (DOE/NV) under the Nevada Environmental Restoration (ER) Project. The Nevada ER Project consists of environmental restoration activities on the NTS, Tonopah Test Range, Nellis Air Force Range, and eight sites in five other states. The RCRA Industrial Sites subproject constitutes a component of the Nevada ER Project. Currently, this QAPjP is limited to the seven RCRA Industrial Sites identified within this document that are to be closed under an interim status and pertains to all field-investigation, analytical-laboratory, and data-review activities in support of these closures. The information presented here supplements the RCRA Industrial Sites Project Management Plan and is to be used in conjunction with the site-specific subproject sampling and analysis plans.

  6. High Burnup Dry Storage Cask Research and Development Project, Final Test Plan

    SciTech Connect (OSTI)

    2014-02-27

    EPRI is leading a project team to develop and implement the first five years of a Test Plan to collect data from a SNF dry storage system containing high burnup fuel.12 The Test Plan defined in this document outlines the data to be collected, and the storage system design, procedures, and licensing necessary to implement the Test Plan.13 The main goals of the proposed test are to provide confirmatory data14 for models, future SNF dry storage cask design, and to support license renewals and new licenses for ISFSIs. To provide data that is most relevant to high burnup fuel in dry storage, the design of the test storage system must mimic real conditions that high burnup SNF experiences during all stages of dry storage: loading, cask drying, inert gas backfilling, and transfer to the ISFSI for multi-year storage.15 Along with other optional modeling, SETs, and SSTs, the data collected in this Test Plan can be used to evaluate the integrity of dry storage systems and the high burnup fuel contained therein over many decades. It should be noted that the Test Plan described in this document discusses essential activities that go beyond the first five years of Test Plan implementation.16 The first five years of the Test Plan include activities up through loading the cask, initiating the data collection, and beginning the long-term storage period at the ISFSI. The Test Plan encompasses the overall project that includes activities that may not be completed until 15 or more years from now, including continued data collection, shipment of the Research Project Cask to a Fuel Examination Facility, opening the cask at the Fuel Examination Facility, and examining the high burnup fuel after the initial storage period.

  7. Test and evaluation plan for Project W-314 tank farm restoration and safe operations

    SciTech Connect (OSTI)

    Hays, W.H.

    1998-06-25

    The ``Tank Farm Restoration and Safe Operations`` (TFRSO), Project W-314 will restore and/or upgrade existing Hanford Tank Farm facilities and systems to ensure that the Tank Farm infrastructure will be able to support near term TWRS Privatization`s waste feed delivery and disposal system and continue safe management of tank waste. The capital improvements provided by this project will increase the margin of safety for Tank Farms operations, and will aid in aligning affected Tank Farm systems with compliance requirements from applicable state, Federal, and local regulations. Secondary benefits will be realized subsequent to project completion in the form of reduced equipment down-time, reduced health and safety risks to workers, reduced operating and maintenance costs, and minimization of radioactive and/or hazardous material releases to the environment. The original regulatory (e.g., Executive Orders, WACS, CFRS, permit requirements, required engineering standards, etc.) and institutional (e.g., DOE Orders, Hanford procedures, etc.) requirements for Project W-314 were extracted from the TWRS S/RIDs during the development of the Functions and Requirements (F and Rs). The entire family of requirements were then validated for TWRS and Project W-314. This information was contained in the RDD-100 database and used to establish the original CDR. The Project Hanford Management Contract (PHMC) team recognizes that safety, quality, and cost effectiveness in the Test and Evaluation (T and E) program is achieved through a planned systematic approach to T and E activities. It is to this end that the Test and Evaluation Plan (TEP) is created. The TEP for the TFRSO Project, was developed based on the guidance in HNF-IP-0842, and the Good Practice Guide GPG-FM-005, ``Test and Evaluation,`` which is derived from DOE Order 430.1, ``Life Cycle Asset Management.`` It describes the Test and Evaluation program for the TFRSO project starting with the definitive design phase and ending

  8. Phase 2 Reese River Geothermal Project Slim Well 56-4 Drilling and Testing

    SciTech Connect (OSTI)

    Henkle, William R.; Ronne, Joel

    2008-06-15

    This report covers the drilling and testing of the slim well 56-4 at the Reese River Geothermal Project in Lander County, Nevada. This well was partially funded through a GRED III Cooperative Funding Agreement # DE-FC36-04GO14344, from USDOE.

  9. Fast Flux Test Facility transition project resource loaded schedule. Revision 1

    SciTech Connect (OSTI)

    Hulvey, R.K.

    1994-10-31

    Revision 1 of the Fast Flux Test Facility (FFTF) Transition Project Resource Loaded Schedule (RLS) provides detail to manage the major elements, project baseline and cost estimate for the FFF Transition Project within the Advanced Reactors Transition Program, comprised of Activity Data Sheets (ADS) 6640, 6641, and 6642. The scope includes all work in the Budget and Reporting categories of Program Integration (PI), Surveillance and Maintenance (S and M), and Deactivation/Compliance (D/C). The transition activities are necessary to bring the FFTF and related facilities to a safe deactivation state, while maintaining worker health and safety. The scope of ADS 6640 and 6642 is the FFTF Transition Project while the scope of ADS 6641 is the Hanford Site Nuclear Energy Legacies.

  10. ARM - Oceans

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ListOceans Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Oceans Water vapor in the air eventually condenses and falls as rain, snow, sleet, or hail. Water that falls on land collects in rivers which carry it back to the ocean. The return of water to the ocean may be slowed when water

  11. Ocean Thermal Extractable Energy Visualization

    SciTech Connect (OSTI)

    Ascari, Matthew

    2012-10-28

    The Ocean Thermal Extractable Energy Visualization (OTEEV) project focuses on assessing the Maximum Practicably Extractable Energy (MPEE) from the world’s ocean thermal resources. MPEE is defined as being sustainable and technically feasible, given today’s state-of-the-art ocean energy technology. Under this project the OTEEV team developed a comprehensive Geospatial Information System (GIS) dataset and software tool, and used the tool to provide a meaningful assessment of MPEE from the global and domestic U.S. ocean thermal resources.

  12. Quality Assurance Project Plan for the Gas Generation Testing Program at the INEL

    SciTech Connect (OSTI)

    NONE

    1994-10-01

    The data quality objectives (DQOs) for the Program are to evaluate compliance with the limits on total gas generation rates, establish the concentrations of hydrogen and methane in the total gas flow, determine the headspace concentration of VOCs in each drum prior to the start of the test, and obtain estimates of the concentrations of several compounds for mass balance purposes. Criteria for the selection of waste containers at the INEL and the parameters that must be characterized prior to and during the tests are described. Collection of gaseous samples from 55-gallon drums of contact-handled transuranic waste for the gas generation testing is discussed. Analytical methods and calibrations are summarized. Administrative quality control measures described in this QAPjP include the generation, review, and approval of project documentation; control and retention of records; measures to ensure that personnel, subcontractors or vendors, and equipment meet the specifications necessary to achieve the required data quality for the project.

  13. Wind-electric icemaking project: Analysis and dynamometer testing. Volume 1

    SciTech Connect (OSTI)

    Holz, R; Gervorgian, V; Drouilhet, S; Muljadi, E

    1998-07-01

    The wind/hybrid systems group at the National Renewable Energy Laboratory has been researching the most practical and cost-effective methods for producing ice from off-grid wind-electric power systems. The first phase of the project, conducted in 1993--1994, included full-scale dynamometer and field testing of two different electric ice makers directly connected to a permanent magnet alternator. The results of that phase were encouraging and the second phase of the project was launched in which steady-state and dynamic numerical models of these systems were developed and experimentally validated. The third phase of the project was the dynamometer testing of the North Star ice maker, which is powered by a 12-kilowatt Bergey Windpower Company, Inc., alternator. This report describes both the second and third project phases. Also included are detailed economic analyses and a discussion of the future prospects of wind-electric ice-making systems. The main report is contained in Volume 1. Volume 2 consists of the report appendices, which include the actual computer programs used in the analysis and the detailed test results.

  14. Testing, Manufacturing, and Component Development Projects for Utility-Scale and Distributed Wind Energy, Fiscal Years 2006-2014

    SciTech Connect (OSTI)

    None, None

    2014-04-01

    This report covers the Wind and Water Power Technologies Office's Testing, Manufacturing, and Component Development Projects for Utility-Scale and Distributed Wind Energy from 2006 to 2014.

  15. Selected Examples of LDRD Projects Supporting Test Ban Treaty Verification and Nonproliferation

    SciTech Connect (OSTI)

    Jackson, K.; Al-Ayat, R.; Walter, W. R.

    2015-02-23

    The Laboratory Directed Research and Development (LDRD) Program at the DOE National Laboratories was established to ensure the scientific and technical vitality of these institutions and to enhance the their ability to respond to evolving missions and anticipate national needs. LDRD allows the Laboratory directors to invest a percentage of their total annual budget in cutting-edge research and development projects within their mission areas. We highlight a selected set of LDRD-funded projects, in chronological order, that have helped provide capabilities, people and infrastructure that contributed greatly to our ability to respond to technical challenges in support of test ban treaty verification and nonproliferation.

  16. MHK Technologies/Ocean | Open Energy Information

    Open Energy Info (EERE)

    the MHK database homepage Ocean.jpg Technology Profile Primary Organization Hydro Green Energy LLC Project(s) where this technology is utilized *MHK ProjectsAlaska 35 *MHK...

  17. Hydro-Kansas (HK) Research Project: Tests of a Physical Basis of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Statistical Self-Similarity in Peak Flows in the Whitewater Basin, Kansas Hydro-Kansas (HK) Research Project: Tests of a Physical Basis of Statistical Self-Similarity in Peak Flows in the Whitewater Basin, Kansas Gupta, Vijay University of Colorado Furey, Peter Colorado Research Associates Mantila, Ricardo University of Colorado Krajewski, Witold University of Iowa Kruger, Anton The University of Iowa Clayton, Jordan US Geological Survey and University of Iowa Category: Atmospheric State and

  18. Public comment sought on soil cleanup project at the Idaho Site�s Test

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Area North Complex Public comment sought on soil cleanup project at the Idaho Site�s Test Area North Complex The U.S. Department of Energy (DOE) is seeking public comment on a small-scale soil cleanup at the Idaho Site�s Test Area North (TAN) complex. An Engineering Evaluation/Cost Analysis (EE/CA) document with three proposed alternatives for the soil cleanup is under evaluation by DOE, the U.S. Environmental Protection Agency, and Idaho�s Department of Environmental Quality.

  19. Safety Design Strategy for the Advanced Test Reactor Emergency Firewater Injection System Replacement Project

    SciTech Connect (OSTI)

    Noel Duckwitz

    2011-06-01

    In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3B, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3B and DOE Order 420.1B, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Advanced Test Reactor Reliability Sustainment Project. While this project does not introduce new hazards to the ATR, it has the potential for significant impacts to safety-related systems, structures, and components that are credited in the ATR safety basis and are being replaced. Thus the project has been determined to meet the definition of a major modification and is being managed accordingly.

  20. Safety Design Strategy for the Advanced Test Reactor Primary Coolant Pump and Motor Replacement Project

    SciTech Connect (OSTI)

    Noel Duckwitz

    2011-06-01

    In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3B, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3B and DOE Order 420.1B, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Advanced Test Reactor Reliability Sustainment Project. While this project does not introduce new hazards to the ATR, it has the potential for significant impacts to safety-related systems, structures, and components that are credited in the ATR safety basis and are being replaced. Thus the project has been determined to meet the definition of a major modification and is being managed accordingly.

  1. Safety Design Strategy for the Advanced Test Reactor Diesel Bus (E-3) and Switchgear Replacement Project

    SciTech Connect (OSTI)

    Noel Duckwitz

    2011-06-01

    In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3B, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3B and DOE Order 420.1B, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Advanced Test Reactor Reliability Sustainment Project. While this project does not introduce new hazards to the ATR, it has the potential for significant impacts to safety-related systems, structures, and components that are credited in the ATR safety basis and are being replaced. Thus the project has been determined to meet the definition of a major modification and is being managed accordingly.

  2. Testing the performance of real-time incinerator emission monitors. Project report

    SciTech Connect (OSTI)

    Ghorishi, S.B.; Whitworth, W.E.; Goldman, C.G.; Waterland, L.R.

    1997-03-01

    Ten prototypes of continuous emission monitors (CEMs) for measuring trace metal or trace organic species concentrations were tested. Of the 10 CEMs tested, four measured incinerator flue gas concentrations of several specific volatile organic compounds (VOCs), one measured total particulate-bound polynuclear aromatic hydrocarbon (PAH) concentrations, two measured flue gas concentrations of several (up to 14) trace metals, and three measured mercury concentrations. While the testing consisted of obtaining quantitative measurement data on the four measures of CEM performance checked in a relative accuracy test audit (RATA) as described in 40 CFR 60 Appendix F -- relative accuracy (RA), calibration drift (CD), zero drift (ZD), and response time - the primary project objective focused on the RA measurement. Four series of tests were performed, each simultaneously testing up to three monitors measuring the same or similar analyte type. Each test series consisted of performing triplicate Reference Method (RM) measurements at each of three target flue gas monitored analyte concentrations while the tested CEMs were in operation.

  3. Puget Sound Tidal Energy In-Water Testing and Development Project Final Technical Report

    SciTech Connect (OSTI)

    Craig W. Collar

    2012-11-16

    Tidal energy represents potential for the generation of renewable, emission free, environmentally benign, and cost effective energy from tidal flows. A successful tidal energy demonstration project in Puget Sound, Washington may enable significant commercial development resulting in important benefits for the northwest region and the nation. This project promoted the United States Department of Energy’s Wind and Hydropower Technologies Program’s goals of advancing the commercial viability, cost-competitiveness, and market acceptance of marine hydrokinetic systems. The objective of the Puget Sound Tidal Energy Demonstration Project is to conduct in-water testing and evaluation of tidal energy technology as a first step toward potential construction of a commercial-scale tidal energy power plant. The specific goal of the project phase covered by this award was to conduct all activities necessary to complete engineering design and obtain construction approvals for a pilot demonstration plant in the Admiralty Inlet region of the Puget Sound. Public Utility District No. 1 of Snohomish County (The District) accomplished the objectives of this award through four tasks: Detailed Admiralty Inlet Site Studies, Plant Design and Construction Planning, Environmental and Regulatory Activities, and Management and Reporting. Pre-Installation studies completed under this award provided invaluable data used for site selection, environmental evaluation and permitting, plant design, and construction planning. However, these data gathering efforts are not only important to the Admiralty Inlet pilot project. Lessons learned, in particular environmental data gathering methods, can be applied to future tidal energy projects in the United States and other parts of the world. The District collaborated extensively with project stakeholders to complete the tasks for this award. This included Federal, State, and local government agencies, tribal governments, environmental

  4. Ecological evaluation of proposed discharge of dredged material from Oakland Harbor into ocean waters (Phase 3 B of -42-foot project)

    SciTech Connect (OSTI)

    Kohn, N.P.; Ward, J.A.; Mayhew, H.L.; Word, J.Q.; Barrows, E.S.; Goodwin, S.M.; Lefkovitz, L.F. )

    1992-06-01

    The Water Resources Development Act of 1986 (Public Law 99-662) authorized the US Army Corps of Engineers (USACE) San Francisco District, to deepen and widen the navigational channels of the Oakland Inner and Outer Harbors to accomodate deeper-draft vessels. The USACE is considering several disposal options for the dredged material removed during these channel improvements including open-water disposal. Dredged material proposed for open-water disposal must be evaluated to determine the potential impacts of the disposal activity on the water column and disposal site enviromments. The USACE requested that Battelle/Marine Sciences Laboratory (MSL) conduct studies to evaluate open-water disposal options for Oakland Harbor sediments. This request developed into the Oakland Harbor Phase III Program. This is Volume 1 of a two-volume report that presents information gathered to determine the suitability of ocean disposal of sediments dredged from Oakland Harbor. This volume contains project background, materials and methods, results, discussion, and conclusions.

  5. Ecological evaluation of proposed discharge of dredged material from Oakland Harbor into ocean waters (Phase 3 B of -42-foot project). Volume 1, Analyses and discussion

    SciTech Connect (OSTI)

    Kohn, N.P.; Ward, J.A.; Mayhew, H.L.; Word, J.Q.; Barrows, E.S.; Goodwin, S.M.; Lefkovitz, L.F.

    1992-06-01

    The Water Resources Development Act of 1986 (Public Law 99-662) authorized the US Army Corps of Engineers (USACE) San Francisco District, to deepen and widen the navigational channels of the Oakland Inner and Outer Harbors to accomodate deeper-draft vessels. The USACE is considering several disposal options for the dredged material removed during these channel improvements including open-water disposal. Dredged material proposed for open-water disposal must be evaluated to determine the potential impacts of the disposal activity on the water column and disposal site enviromments. The USACE requested that Battelle/Marine Sciences Laboratory (MSL) conduct studies to evaluate open-water disposal options for Oakland Harbor sediments. This request developed into the Oakland Harbor Phase III Program. This is Volume 1 of a two-volume report that presents information gathered to determine the suitability of ocean disposal of sediments dredged from Oakland Harbor. This volume contains project background, materials and methods, results, discussion, and conclusions.

  6. Transferability of Data Related to the Underground Test Area Project, Nevada Test Site, Nye County, Nevada: Revision 0

    SciTech Connect (OSTI)

    Stoller-Navarro Joint Venture

    2004-06-24

    This document is the collaborative effort of the members of an ad hoc subcommittee of the Underground Test Area (UGTA) Technical Working Group (TWG). The UGTA Project relies on data from a variety of sources; therefore, a process is needed to identify relevant factors for determining whether material-property data collected from other areas can be used to support groundwater flow, radionuclide transport, and other models within a Corrective Action Unit (CAU), and for documenting the data transfer decision and process. This document describes the overall data transfer process. Separate Parameter Descriptions will be prepared that provide information for selected specific parameters as determined by the U.S. Department of Energy (DOE) UGTA Project Manager. This document and its accompanying appendices do not provide the specific criteria to be used for transfer of data for specific uses. Rather, the criteria will be established by separate parameter-specific and model-specific Data Transfer Protocols. The CAU Data Documentation Packages and data analysis reports will apply the protocols and provide or reference a document with the data transfer evaluations and decisions.

  7. Ocean Electric Power | Open Energy Information

    Open Energy Info (EERE)

    Ocean Electric Power Place: United Kingdom Sector: Renewable Energy Product: UK-based offshore project developer. The firm is actively engaged in the development of offshore...

  8. Grand Junction Projects Office Remedial Action Project: Feasibility test of real-time radiation monitoring during removal of surface contamination from concrete floors

    SciTech Connect (OSTI)

    Leino, R.; Corle, S.

    1995-10-01

    This feasibility test was conducted to determine if real-time radiation-monitoring instruments could be mounted on decontamination machines during remediation activities to provide useful and immediate feedback to equipment operators. The U.S. Department of Energy (DOE) sponsored this field test under the Grand Junction Projects Office Remedial Action Project (GJPORAP) to identify a more efficient method to remove radiological contamination from concrete floor surfaces. This test demonstrated that project durations and costs may be reduced by combining radiation-monitoring equipment with decontamination machines. The test also demonstrated that a microprocessor-based instrument such as a radiation monitor can withstand the type of vibration that is characteristic of floor scabblers with no apparent damage. Combining radiation-monitoring equipment with a decontamination machine reduces the time and costs required to decontaminate concrete surfaces. These time and cost savings result from the reduction in the number of interim radiological surveys that must be conducted to complete remediation. Real-time radiation monitoring allows equipment operators to accurately monitor contamination during the decontamination process without support from radiological technicians, which also reduces the project duration and costs. The DOE Grand Junction Projects Office recommends more extensive and rigorous testing of this real-time radiation monitoring to include a variety of surfaces and decontamination machines. As opportunities arise, additional testing will be conducted under GJPORAP.

  9. The Rosetta Resources CO2 Storage Project - A WESTCARB GeologicPilot Test

    SciTech Connect (OSTI)

    Trautz, Robert; Benson, Sally; Myer, Larry; Oldenburg, Curtis; Seeman, Ed; Hadsell, Eric; Funderburk, Ben

    2006-01-30

    WESTCARB, one of seven U.S. Department of Energypartnerships, identified (during its Phase I study) over 600 gigatonnesof CO2 storage capacity in geologic formations located in the Westernregion. The Western region includes the WESTCARB partnership states ofAlaska, Arizona, California, Nevada, Oregon and Washington and theCanadian province of British Columbia. The WESTCARB Phase II study iscurrently under way, featuring three geologic and two terrestrial CO2pilot projects designed to test promising sequestration technologies atsites broadly representative of the region's largest potential carbonsinks. This paper focuses on two of the geologic pilot studies plannedfor Phase II -referred to-collectively as the Rosetta-Calpine CO2 StorageProject. The first pilot test will demonstrate injection of CO2 into asaline formation beneath a depleted gas reservoir. The second test willgather data for assessing CO2 enhanced gas recovery (EGR) as well asstorage in a depleted gas reservoir. The benefit of enhanced oil recovery(EOR) using injected CO2 to drive or sweep oil from the reservoir towarda production well is well known. EaR involves a similar CO2 injectionprocess, but has received far less attention. Depleted natural gasreservoirs still contain methane; therefore, CO2 injection may enhancemethane production by reservoir repressurization or pressure maintenance.CO2 injection into a saline formation, followed by injection into adepleted natural gas reservoir, is currently scheduled to start inOctober 2006.

  10. Chemical Reactivity Testing for the National Spent Nuclear Fuel Program. Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Newsom, H.C.

    1999-01-24

    This quality assurance project plan (QAPjP) summarizes requirements used by Lockheed Martin Energy Systems, Incorporated (LMES) Development Division at Y-12 for conducting chemical reactivity testing of Department of Energy (DOE) owned spent nuclear fuel, sponsored by the National Spent Nuclear Fuel Program (NSNFP). The requirements are based on the NSNFP Statement of Work PRO-007 (Statement of Work for Laboratory Determination of Uranium Hydride Oxidation Reaction Kinetics.) This QAPjP will utilize the quality assurance program at Y-12, QA-101PD, revision 1, and existing implementing procedures for the most part in meeting the NSNFP Statement of Work PRO-007 requirements, exceptions will be noted.

  11. Experimental Wave Tank Test for Reference Model 3 Floating-Point Absorber Wave Energy Converter Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experimental Wave Tank Test for Reference Model 3 Floating- Point Absorber Wave Energy Converter Project Y.-H. Yu, M. Lawson, and Y. Li National Renewable Energy Laboratory M. Previsic and J. Epler Re Vision Consulting J. Lou Oregon State University Technical Report NREL/TP-5000-62951 January 2015 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no

  12. Prototypical Rod Consolidation Demonstration Project. Phase 3, Final report: Volume 1, Cold checkout test report, Book 1

    SciTech Connect (OSTI)

    Not Available

    1993-05-01

    The objective of Phase 3 of the Prototypical Rod consolidation Demonstration Project (PRCDP) was to procure, fabricate, assemble, and test the Prototypical Rod consolidation System as described in the NUS Phase 2 Final Design Report. This effort required providing the materials, components, and fabricated parts which makes up all of the system equipment. In addition, it included the assembly, installation, and setup of this equipment at the Cold Test Facility. During the Phase 3 effort the system was tested on a component, subsystem, and system level. This volume 1, discusses the PRCDP Phase 3 Test Program that was conducted by the HALLIBURTON NUS Environmental Corporation under contract AC07-86ID12651 with the United States Department of Energy. This document, Volume 1, Book 1 discusses the following topics: the background of the project; test program description; summary of tests and test results; problem evaluation; functional requirements confirmation; recommendations; and completed test documentation for tests performed in Phase 3.

  13. MHK Projects/CETO3 Garden Island | Open Energy Information

    Open Energy Info (EERE)

    Project Country Australia Project Resource Click here Wave Project Nearest Body of Water Exposed Open Ocean Coordinates -32.2509, 115.651 Project Phase Phase ? Project...

  14. Hydrothermal Testing of K Basin Sludge and N Reactor Fuel at Sludge Treatment Project Operating Conditions

    SciTech Connect (OSTI)

    Delegard, Calvin H.; Schmidt, Andrew J.; Thornton, Brenda M.

    2007-03-30

    The Sludge Treatment Project (STP), managed for the U. S. DOE by Fluor Hanford (FH), was created to design and operate a process to eliminate uranium metal from K Basin sludge prior to packaging for Waste Isolation Pilot Plant (WIPP). The STP process uses high temperature liquid water to accelerate the reaction, produce uranium dioxide from the uranium metal, and safely discharge the hydrogen. Under nominal process conditions, the sludge will be heated in pressurized water at 185°C for as long as 72 hours to assure the complete reaction (corrosion) of up to 0.25-inch diameter uranium metal pieces. Under contract to FH, the Pacific Northwest National Laboratory (PNNL) conducted bench-scale testing of the STP hydrothermal process in November and December 2006. Five tests (~50 ml each) were conducted in sealed, un-agitated reaction vessels under the hydrothermal conditions (e.g., 7 to 72 h at 185°C) of the STP corrosion process using radioactive sludge samples collected from the K East Basin and particles/coupons of N Reactor fuel also taken from the K Basins. The tests were designed to evaluate and understand the chemical changes that may be occurring and the effects that any changes would have on sludge rheological properties. The tests were not designed to evaluate engineering aspects of the process. The hydrothermal treatment affected the chemical and physical properties of the sludge. In each test, significant uranium compound phase changes were identified, resulting from dehydration and chemical reduction reactions. Physical properties of the sludge were significantly altered from their initial, as-settled sludge values, including, shear strength, settled density, weight percent water, and gas retention.

  15. Recovery Efficiency Test Project Phase 2 activity report, Volume 1. Final report

    SciTech Connect (OSTI)

    Overbey, W.K. Jr.; Salamy, S.P.; Locke, C.D.

    1989-02-01

    The purpose of Phase II operations of the Recovery Efficiency Test Project is to enhance the natural production of the well and evaluate the relative improvement as a function of the type of stimulation conducted. Another purpose is to compare the stimulated production performance of the horizontal well with vertical wells in the field. The objectives considered for Phase II operations and plans were: (1) Develop a rationale for a systematic approach to designing stimulations for the well. (2) Conduct a series of stimulations designed to optimize the fluids, injection rates, proppant volumes and general approach to stimulating a horizontal well with similar geologic conditions. (3) Develop and test a method or methods for determining the geometry of stimulation-induced fractures. (4) Conduct tests and analyze the results to determine the efficiency of stimulation operations. The technical approach pursued in developing plans to accomplish three objectives was to: (1) Review the data needs for all objectives and obtain that data first. (2) Identify the operating geologic, geomechanical, and reservoir parameters that need additional clarification or definition. (3) Investigate existing models which could be used to plan or evaluate stimulation on the well and the reservoir. (4) Plan for analysis and verification of models and approaches.

  16. City of North Bonneville, Washington: Geothermal Exploration Project, production test well, Phase II. Final report

    SciTech Connect (OSTI)

    Not Available

    1982-06-01

    Based on discussions with the City of North Bonneville, the production test well was drilled to a depth that would also explore for ground water temperatures near 130/sup 0/F (54.4/sup 0/C). Depth projections to a 130/sup 0/F bottom hole temperature were made by assuming a constant ground water temperature rise greater than 50/sup 0/C per kilometer, and by assuming that essentially homogeneous or equivalent conductive rock units would be encountered. Minimum water production requirements were not set, although the City determined that about 800 gpm would be acceptable. Large upper casing diameters of 16 and 12 inches were installed in order to provide the future use of either a vertical turbine or submersible pump, as desired by the city. The scope of work included interpretation of well characteristics, evaluation of ground water as a geothermal resource, geologic analysis of data from drilling and testing, drilling supervision, daily drilling cost accounting, and preparation of a final report. The report includes geologic evaluation of the drilling and test data, ground water and geothermal potential.

  17. Steam atmosphere dryer project: System development and field test. Final report

    SciTech Connect (OSTI)

    NONE

    1999-02-01

    The objective of this project was to develop and demonstrate the use of a superheated steam atmosphere dryer as a highly improved alternative to conventional hot air-drying systems, the present industrial standard method for drying various wet feedstocks. The development program plan consisted of three major activities. The first was engineering analysis and testing of a small-scale laboratory superheated steam dryer. This dryer provided the basic engineering heat transfer data necessary to design a large-scale system. The second major activity consisted of the design, fabrication, and laboratory checkout testing of the field-site prototype superheated steam dryer system. The third major activity consisted of the installation and testing of the complete 250-lb/hr evaporation rate dryer and a 30-kW cogeneration system in conjunction with an anaerobic digester facility at the Village of Bergen, NY. Feedstock for the digester facility at the Village of Bergen, NY. Feedstock for the digester was waste residue from a nearby commercial food processing plant. The superheated steam dryer system was placed into operation in August 1996 and operated successfully through March 1997. During this period, the dryer processed all the material from the digester to a powdered consistency usable as a high-nitrogen-based fertilizer.

  18. Improved test method to verify the power rating of a photovoltaic (PV) project.

    SciTech Connect (OSTI)

    Panchula, A.; Pligavko, A.; King, D.; Marion, B.; Townsend, T.; Mitchell, L.; Dierauf, T.; Kimber, A.; Osterwald, C. R.; Newmiller, Jeff; Emery, K.; Talmud, F.; Whitaker, Chuck; Myers, D.; Forbess, J.; Granata, Jennifer E.; Levitsky, T.

    2010-03-01

    This paper reviews the PVUSA power rating method and presents two additional methods that seek to improve this method in terms of model precision and increased seasonal applicability. It presents the results of an evaluation of each method based upon regression analysis of over 12 MW of operating photovoltaic (PV) systems located in a wide variety of climates. These systems include a variety of PV technologies, mounting configurations, and array sizes to ensure the conclusions are applicable to a wide range of PV designs and technologies. The work presented in this paper will be submitted to ASTM for use in the development of a standard test method for certifying the power rating of PV projects.

  19. Global warming and changes in ocean circulation

    SciTech Connect (OSTI)

    Duffy, P.B.; Caldeira, K.C.

    1998-02-01

    This final report provides an overview of the goals and accomplishments of this project. Modeling and observational work has raised the possibility that global warming may cause changes in the circulation of the ocean. If such changes would occur they could have important climatic consequences. The first technical goal of this project was to investigate some of these possible changes in ocean circulation in a quantitative way, using a state-of -the-art numerical model of the ocean. Another goal was to develop our ocean model, a detailed three-dimensional numerical model of the ocean circulation and ocean carbon cycles. A major non-technical goal was to establish LLNL as a center of excellence in modelling the ocean circulation and carbon cycle.

  20. An overview of the Yucca Mountain Site Characterization Project field test program for evaluating seal performance

    SciTech Connect (OSTI)

    Fernandez, J.A.; Case, J.B.

    1993-12-31

    Sandia National Laboratories (SNL), a participant in the Yucca Mountain Site Characterization Project, is responsible for implementing the repository sealing program. One aspect of this program is the definition and fielding of tests related to sealing components which comprise the sealing subsystem. The sealing components are identified in the Site Characterization Plan (U.S. DOE, 1988) and Fernandez et al. (1987). These include an anchor-to-bedrock plug, single dams (or single bulkheads with not settlement), general shaft fill, drift backfill, station and shaft plugs, double bulkheads, backfilled sumps, and channels in a backfilled room. The materials used to create these components are cementitious and earthen. Earthen materials will be used for as many applications as possible to minimize potential degradation of physical properties and potential adverse effects on ground-water chemistry in the repository environment. In places where low strength is acceptable, earthen materials may be used. The most likely application for cementitious materials is where high strength and low deformability may be required. (Hinkebein and Fernandez, 1989). The basis for performing seal component testing is divided into two parts: regulatory requirements and technical requirements. The regulatory requirements are derived primarily from Title 10 Code of Federal Regulations, Part 60 (10 CFR 60) (U.S. Nuclear Regulatory Commission, 1986). The technical requirements are defined by the uncertainties associated with seal performance and seal emplacement. Both categories of requirements are discussed below.

  1. Conceptual Design Report: Nevada Test Site Mixed Waste Disposal Facility Project

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2009-01-31

    Environmental cleanup of contaminated nuclear weapons manufacturing and test sites generates radioactive waste that must be disposed. Site cleanup activities throughout the U.S. Department of Energy (DOE) complex are projected to continue through 2050. Some of this waste is mixed waste (MW), containing both hazardous and radioactive components. In addition, there is a need for MW disposal from other mission activities. The Waste Management Programmatic Environmental Impact Statement Record of Decision designates the Nevada Test Site (NTS) as a regional MW disposal site. The NTS has a facility that is permitted to dispose of onsite- and offsite-generated MW until November 30, 2010. There is not a DOE waste management facility that is currently permitted to dispose of offsite-generated MW after 2010, jeopardizing the DOE environmental cleanup mission and other MW-generating mission-related activities. A mission needs document (CD-0) has been prepared for a newly permitted MW disposal facility at the NTS that would provide the needed capability to support DOE's environmental cleanup mission and other MW-generating mission-related activities. This report presents a conceptual engineering design for a MW facility that is fully compliant with Resource Conservation and Recovery Act (RCRA) and DOE O 435.1, 'Radioactive Waste Management'. The facility, which will be located within the Area 5 Radioactive Waste Management Site (RWMS) at the NTS, will provide an approximately 20,000-cubic yard waste disposal capacity. The facility will be licensed by the Nevada Division of Environmental Protection (NDEP).

  2. US-VISIT Independent Verification and Validation Project: Test Bed Establishment Report

    SciTech Connect (OSTI)

    Jensen, N W; Gansemer, J D

    2011-01-21

    This document describes the computational and data systems available at the Lawrence Livermore National Laboratory for use on the US-VISIT Independent Verification and Validation (IV&V) project. This system - composed of data, software and hardware - is designed to be as close as a representation of the operational ADIS system as is required to verify and validate US-VISIT methodologies. It is not required to reproduce the computational capabilities of the enterprise-class operational system. During FY10, the test bed was simplified from the FY09 version by reducing the number of database host computers from three to one, significantly reducing the maintenance and overhead while simultaneously increasing system throughput. During the current performance period, a database transfer was performed as a set of Data Pump Export files. The previous RMAN backup from 2007 required the availability of an AIX system which is not required when using data pump. Due to efficiencies in the new system and process, loading of the database refresh was able to be accomplished in a much shorter time frame than was previously required. The FY10 Oracle Test Bed now consists of a single Linux platform hosting two Oracle databases including the 2007 copy as well as the October 2010 refresh.

  3. Analysis Of Ductile Crack Growth In Pipe Test In STYLE Project

    SciTech Connect (OSTI)

    Yin, Shengjun; Williams, Paul T; Klasky, Hilda B; Bass, Bennett Richard

    2012-01-01

    The Oak Ridge National Laboratory (ORNL) is conducting structural analyses, both deterministic and probabilistic, to simulate a large scale mock-up experiment planned within the European Network for Structural Integrity for Lifetime Management non-RPV Components (STYLE). The paper summarizes current ORNL analyses of STYLE s Mock-up3 experiment to simulate/evaluate ductile crack growth in a cladded ferritic pipe. Deterministic analyses of the large-scale bending test of ferritic surge pipe, with an internal circumferential crack, are simulated with a number of local micromechanical approaches, such as Gurson-Tvergaard-Needleman (GTN) model and cohesive-zone model. Both WARP 3D and ABAQUS general purpose finite element programs are being used to predict the failure load and the failure mode, i.e. ductile tearing or net-section collapse, as part of the pre-test phase of the project. Companion probabilistic analyses of the experiment are utilizing the ORNL developed open-source Structural Integrity Assessment Modular - Probabilistic Fracture Mechanics (SIAM-PFM) framework. SIAM-PFM contains engineering assessment methodology such as the tearing instability (J-T analysis) module developed for inner surface cracks under bending load. The driving force J-integral estimations are based on the SC.ENG1 or SC.ENG2 models. The J-A2 methodology is used to transfer (constraint-adjust) J-R curve material data from standard test specimens to the Mock-up3 experiment configuration. The probabilistic results of the Mock-Up3 experiment obtained from SIAM-PFM will be compared to those generated using the deterministic finite element modeling approach. The objective of the probabilistic analysis is to provide uncertainty bounds that will assist in assessing the more detailed 3D finite-element solutions and to also assess the level of confidence that can be placed in the best-estimate finite-element solutions.

  4. The Ocean Sampling Day Consortium

    SciTech Connect (OSTI)

    Kopf, Anna; Bicak, Mesude; Kottmann, Renzo; Schnetzer, Julia; Kostadinov, Ivaylo; Lehmann, Katja; Fernandez-Guerra, Antonio; Jeanthon, Christian; Rahav, Eyal; Ullrich, Matthias; Wichels, Antje; Gerdts, Gunnar; Polymenakou, Paraskevi; Kotoulas, Giorgos; Siam, Rania; Abdallah, Rehab Z.; Sonnenschein, Eva C.; Cariou, Thierry; O’Gara, Fergal; Jackson, Stephen; Orlic, Sandi; Steinke, Michael; Busch, Julia; Duarte, Bernardo; Caçador, Isabel; Canning-Clode, João; Bobrova, Oleksandra; Marteinsson, Viggo; Reynisson, Eyjolfur; Loureiro, Clara Magalhães; Luna, Gian Marco; Quero, Grazia Marina; Löscher, Carolin R.; Kremp, Anke; DeLorenzo, Marie E.; Øvreås, Lise; Tolman, Jennifer; LaRoche, Julie; Penna, Antonella; Frischer, Marc; Davis, Timothy; Katherine, Barker; Meyer, Christopher P.; Ramos, Sandra; Magalhães, Catarina; Jude-Lemeilleur, Florence; Aguirre-Macedo, Ma Leopoldina; Wang, Shiao; Poulton, Nicole; Jones, Scott; Collin, Rachel; Fuhrman, Jed A.; Conan, Pascal; Alonso, Cecilia; Stambler, Noga; Goodwin, Kelly; Yakimov, Michael M.; Baltar, Federico; Bodrossy, Levente; Van De Kamp, Jodie; Frampton, Dion M. F.; Ostrowski, Martin; Van Ruth, Paul; Malthouse, Paul; Claus, Simon; Deneudt, Klaas; Mortelmans, Jonas; Pitois, Sophie; Wallom, David; Salter, Ian; Costa, Rodrigo; Schroeder, Declan C.; Kandil, Mahrous M.; Amaral, Valentina; Biancalana, Florencia; Santana, Rafael; Pedrotti, Maria Luiza; Yoshida, Takashi; Ogata, Hiroyuki; Ingleton, Tim; Munnik, Kate; Rodriguez-Ezpeleta, Naiara; Berteaux-Lecellier, Veronique; Wecker, Patricia; Cancio, Ibon; Vaulot, Daniel; Bienhold, Christina; Ghazal, Hassan; Chaouni, Bouchra; Essayeh, Soumya; Ettamimi, Sara; Zaid, El Houcine; Boukhatem, Noureddine; Bouali, Abderrahim; Chahboune, Rajaa; Barrijal, Said; Timinouni, Mohammed; El Otmani, Fatima; Bennani, Mohamed; Mea, Marianna; Todorova, Nadezhda; Karamfilov, Ventzislav; ten Hoopen, Petra; Cochrane, Guy; L’Haridon, Stephane; Bizsel, Kemal Can; Vezzi, Alessandro; Lauro, Federico M.; Martin, Patrick; Jensen, Rachelle M.; Hinks, Jamie; Gebbels, Susan; Rosselli, Riccardo; De Pascale, Fabio; Schiavon, Riccardo; dos Santos, Antonina; Villar, Emilie; Pesant, Stéphane; Cataletto, Bruno; Malfatti, Francesca; Edirisinghe, Ranjith; Silveira, Jorge A. Herrera; Barbier, Michele; Turk, Valentina; Tinta, Tinkara; Fuller, Wayne J.; Salihoglu, Ilkay; Serakinci, Nedime; Ergoren, Mahmut Cerkez; Bresnan, Eileen; Iriberri, Juan; Nyhus, Paul Anders Fronth; Bente, Edvardsen; Karlsen, Hans Erik; Golyshin, Peter N.; Gasol, Josep M.; Moncheva, Snejana; Dzhembekova, Nina; Johnson, Zackary; Sinigalliano, Christopher David; Gidley, Maribeth Louise; Zingone, Adriana; Danovaro, Roberto; Tsiamis, George; Clark, Melody S.; Costa, Ana Cristina; El Bour, Monia; Martins, Ana M.; Collins, R. Eric; Ducluzeau, Anne-Lise; Martinez, Jonathan; Costello, Mark J.; Amaral-Zettler, Linda A.; Gilbert, Jack A.; Davies, Neil; Field, Dawn; Glöckner, Frank Oliver

    2015-06-19

    In this study, Ocean Sampling Day was initiated by the EU-funded Micro B3 (Marine Microbial Biodiversity, Bioinformatics, Biotechnology) project to obtain a snapshot of the marine microbial biodiversity and function of the world’s oceans. It is a simultaneous global mega-sequencing campaign aiming to generate the largest standardized microbial data set in a single day. This will be achievable only through the coordinated efforts of an Ocean Sampling Day Consortium, supportive partnerships and networks between sites. This commentary outlines the establishment, function and aims of the Consortium and describes our vision for a sustainable study of marine microbial communities and their embedded functional traits.

  5. MHK Projects/Portugal Pre Commercial Pilot Project | Open Energy...

    Open Energy Info (EERE)

    AWS Ocean Energy formerly Oceanergia Project Technology *MHK TechnologiesArchimedes Wave Swing Project Licensing Environmental Monitoring and Mitigation Efforts See...

  6. MHK Projects/Humboldt County Wave Project | Open Energy Information

    Open Energy Info (EERE)

    Ocean Energy Ltd Project Technology *MHK TechnologiesAquaBuoy Project Licensing Environmental Monitoring and Mitigation Efforts See Tethys << Return to the MHK database...

  7. MHK Projects/Maine 1 Project | Open Energy Information

    Open Energy Info (EERE)

    Project Technology *MHK TechnologiesOcean *MHK TechnologiesKensington Project Licensing Environmental Monitoring and Mitigation Efforts See Tethys << Return to the MHK database...

  8. MHK Projects/Griffin Project | Open Energy Information

    Open Energy Info (EERE)

    Ocean Power Technologies Project Technology *MHK TechnologiesPowerBuoy Project Licensing Environmental Monitoring and Mitigation Efforts See Tethys << Return to the MHK database...

  9. Interim reclamation report, Basalt Waste Isolation Project Near Surface Test Facility 1990

    SciTech Connect (OSTI)

    Brandt, C.A.; Rickard, W.H. Jr.; Hefty, M.G.; Cadoret, N.A.

    1991-01-01

    This report describes the development of the reclamation project for the Hanford Site Near Surface Test Facility (NSTF), its implementation, and preliminary estimates of its success. The goal of the reclamation project is to return disturbed sites as nearly as practicable to their original conditions using native species. Gable Mountain is dominated by two plant communities: a big sagebrush (Artemisia tridentata) -- Sandberg's bluegrass (Poa sandbergii) community and a stiff sagebrush (Artemisia rigida) -- Sandberg's bluegrass community. Disassembly of the site installations began on March 15, 1988, and the site was returned to original contours by December 12, 1988. Two separate revegetation methods were employed at the NSTF to meet differing site constraints. Vegetative cover and density in the revegetation plots were assessed in April 1989 and again in June 1989 and 1990. It is extremely unlikely that the sand pit, borrow pit, box cuts, generator pad area, or ventilation fan area will reach the reclamation objectives set for these areas within the next 50 years without further intervention. These areas currently support few living plants. Vegetation on revegetated native soils appears to be growing as expected. Vegetation growth on the main waterline is well below the objective. To date, no shrubs have grown on the area, growth of native grasses is well below the objective, and much of the area has been covered with the pit run material, which may not support adequate growth. Without further treatments, the areas without the pit run material will likely revert to a nearly pure cheatgrass condition. 44 refs., 13 figs., 7 tabs.

  10. A predictive ocean oil spill model

    SciTech Connect (OSTI)

    Sanderson, J.; Barnette, D.; Papodopoulos, P.; Schaudt, K.; Szabo, D.

    1996-07-01

    This is the final report of a two-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Initially, the project focused on creating an ocean oil spill model and working with the major oil companies to compare their data with the Los Alamos global ocean model. As a result of this initial effort, Los Alamos worked closely with the Eddy Joint Industry Project (EJIP), a consortium oil and gas producing companies in the US. The central theme of the project was to use output produced from LANL`s global ocean model to look in detail at ocean currents in selected geographic areas of the world of interest to consortium members. Once ocean currents are well understood this information could be used to create oil spill models, improve offshore exploration and drilling equipment, and aid in the design of semi-permanent offshore production platforms.

  11. Recovery efficiency test project, Phase 2 activity report. Volume 2, Final report

    SciTech Connect (OSTI)

    Overbey, W.K. Jr.; Salamy, S.P.; Locke, C.D.

    1989-02-01

    The Recovery Efficiency Test well project addressed a number of technical issues. The primary objective was to determine the increased efficiency of gas recovery of a long horizontal wellbore over that of a vertical wellbore and, more specifically, what improvements can be expected from inducing multiple hydraulic fractures from such a wellbore. This volume contains appendices for: (1) supporting material and procedures for ``data frac`` stimulation of zone 6 using nitrogen and nitrogen foam; (2) supporting material and procedures for stimulation no. 1 nitrogen gas frac on zone no. 1; (3) supporting material and procedures for stimulation no. 2 in zone no. 1 using liquid CO{sub 2}; (4) supporting material and procedures for frac no. 3 on zone no.1 using nitrogen foam and proppant; (5) supporting material and procedures for stimulation no. 4 in zones 2--3 and 4 using nitrogen foam and proppant; (6) supporting materials and procedures for stimulation no. 5 in zones 5 and 8; and (7) fracture diagnostics reports and supporting materials.

  12. Advanced Test Reactor Core Modeling Update Project Annual Report for Fiscal Year 2013

    SciTech Connect (OSTI)

    David W. Nigg

    2013-09-01

    Legacy computational reactor physics software tools and protocols currently used for support of Advanced Test Reactor (ATR) core fuel management and safety assurance, and to some extent, experiment management, are inconsistent with the state of modern nuclear engineering practice, and are difficult, if not impossible, to verify and validate (V&V) according to modern standards. Furthermore, the legacy staff knowledge required for effective application of these tools and protocols from the 1960s and 1970s is rapidly being lost due to staff turnover and retirements. In late 2009, the Idaho National Laboratory (INL) initiated a focused effort, the ATR Core Modeling Update Project, to address this situation through the introduction of modern high-fidelity computational software and protocols. This aggressive computational and experimental campaign will have a broad strategic impact on the operation of the ATR, both in terms of improved computational efficiency and accuracy for support of ongoing DOE programs as well as in terms of national and international recognition of the ATR National Scientific User Facility (NSUF).

  13. West Pearl Queen CO2 sequestration pilot test and modeling project 2006-2008.

    SciTech Connect (OSTI)

    Engler, Bruce Phillip; Cooper, Scott Patrick; Symons, Neill Phillip; Bartel, Lewis Clark; Byrer, Charles; Elbring, Gregory Jay; McNemar, Andrea; Aldridge, David Franklin; Lorenz, John Clay

    2008-08-01

    The West Pearl Queen is a depleted oil reservoir that has produced approximately 250,000 bbl of oil since 1984. Production had slowed prior to CO{sub 2} injection, but no previous secondary or tertiary recovery methods had been applied. The initial project involved reservoir characterization and field response to injection of CO{sub 2}; the field experiment consisted of injection, soak, and venting. For fifty days (December 20, 2002, to February 11, 2003) 2090 tons of CO{sub 2} were injected into the Shattuck Sandstone Member of the Queen Formation at the West Pearl Queen site. This technical report highlights the test results of the numerous research participants and technical areas from 2006-2008. This work included determination of lateral extents of the permeability units using outcrop observations, core results, and well logs. Pre- and post-injection 3D seismic data were acquired. To aid in interpreting seismic data, we performed numerical simulations of the effects of CO{sub 2} replacement of brine where the reservoir model was based upon correlation lengths established by the permeability studies. These numerical simulations are not intended to replicate field data, but to provide insight of the effects of CO{sub 2}.

  14. A West Valley Demonstration Project Milestone - Achieving Certification to Ship Waste to the Nevada Test Site

    SciTech Connect (OSTI)

    Jackson, J. P.; Pastor, R. S.

    2002-02-28

    The West Valley Demonstration Project (WVDP) has successfully pretreated and vitrified nearly all of the 600,000 gallons of liquid high-level radioactive waste that was generated at the site of the only commercial nuclear fuel reprocessing plant to have operated in the United States. Low-level waste (LLW) generated during the course of the cleanup effort now requires disposal. Currently the WVDP only ships Class A LLW for off-site disposal. It has been shipping Class A wastes to Envirocare of Utah, Inc. since 1997. However, the WVDP may also have a future need to ship Class B and Class C waste, which Envirocare is not currently authorized to accept. The Nevada Test Site (NTS), a U.S. Department of Energy (DOE) facility, can accept all three waste classifications. The WVDP set a goal to receive certification to begin shipping Class A wastes to NTS by 2001. Formal certification/approval was granted by the DOE Nevada Operations Office on July 12, 2001. This paper discusses how the WVDP contractor, West Valley Nuclear Services Company (WVNSCO), completed the activities required to achieve NTS certification in 2001 to ship waste to its facility. The information and lessons learned provided are significant because the WVDP is the only new generator receiving certification based on an NTS audit in January 2001 that resulted in no findings and only two observations--a rating that is unparalleled in the DOE Complex.

  15. Hawaii Ocean Science and Technology Park

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Tribal Energy Program Intellectual Property Current EC Partnerships How to Partner Small ... SunShot Grand Challenge: Regional Test Centers Hawaii Ocean Science and Technology Park ...

  16. Ocean energy program summary

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    The oceans are the world's largest solar energy collector and storage system. Covering 71{percent} of the earth's surface, this stored energy is realized as waves, currents, and thermal salinity gradients. The purpose of the federal Ocean Energy Technology (OET) Program is to develop techniques that harness this ocean energy in a cost-effective and environmentally acceptable manner. The OET Program seeks to develop ocean energy technology to a point where the commercial sector can assess whether applications of the technology are viable energy conversion alternatives or supplements to systems. Past studies conducted by the US Department of Energy (DOE) have identified ocean thermal energy conversion (OTEC) as the largest potential contributor to United States energy supplies from the ocean resource. As a result, the OET Program concentrates on research to advance OTEC technology. Current program emphasis has shifted to open-cycle OTEC power system research because the closed-cycle OTEC system is at a more advanced stage of development and has already attracted industrial interest. During FY 1989, the OET Program focused primarily on the technical uncertainties associated with near-shore open-cycle OTEC systems ranging in size from 2 to 15 MW{sub e}. Activities were performed under three major program elements: thermodynamic research and analysis, experimental verification and testing, and materials and structures research. These efforts addressed a variety of technical problems whose resolution is crucial to demonstrating the viability of open-cycle OTEC technology. This publications is one of a series of documents on the Renewable Energy programs sponsored by the US Department of Energy. An overview of all the programs is available, entitled Programs in Renewable Energy.

  17. MHK Projects/ITRI WEC | Open Energy Information

    Open Energy Info (EERE)

    Taiwan Project Country Taiwan Project Resource Click here Wave Project Nearest Body of Water Pacific Ocean Coordinates 25.152354814016, 121.77842617035 Project...

  18. Project Management Plan for the Idaho National Engineering Laboratory Waste Isolation Pilot Plant Experimental Test Program

    SciTech Connect (OSTI)

    Connolly, M.J.; Sayer, D.L.

    1993-11-01

    EG&G Idaho, Inc. and Argonne National Laboratory-West (ANL-W) are participating in the Idaho National Engineering Laboratory`s (INEL`s) Waste Isolation Pilot Plant (WIPP) Experimental Test Program (WETP). The purpose of the INEL WET is to provide chemical, physical, and radiochemical data on transuranic (TRU) waste to be stored at WIPP. The waste characterization data collected will be used to support the WIPP Performance Assessment (PA), development of the disposal No-Migration Variance Petition (NMVP), and to support the WIPP disposal decision. The PA is an analysis required by the Code of Federal Regulations (CFR), Title 40, Part 191 (40 CFR 191), which identifies the processes and events that may affect the disposal system (WIPP) and examines the effects of those processes and events on the performance of WIPP. A NMVP is required for the WIPP by 40 CFR 268 in order to dispose of land disposal restriction (LDR) mixed TRU waste in WIPP. It is anticipated that the detailed Resource Conservation and Recovery Act (RCRA) waste characterization data of all INEL retrievably-stored TRU waste to be stored in WIPP will be required for the NMVP. Waste characterization requirements for PA and RCRA may not necessarily be identical. Waste characterization requirements for the PA will be defined by Sandia National Laboratories. The requirements for RCRA are defined in 40 CFR 268, WIPP RCRA Part B Application Waste Analysis Plan (WAP), and WIPP Waste Characterization Program Plan (WWCP). This Project Management Plan (PMP) addresses only the characterization of the contact handled (CH) TRU waste at the INEL. This document will address all work in which EG&G Idaho is responsible concerning the INEL WETP. Even though EG&G Idaho has no responsibility for the work that ANL-W is performing, EG&G Idaho will keep a current status and provide a project coordination effort with ANL-W to ensure that the INEL, as a whole, is effectively and efficiently completing the requirements for WETP.

  19. Advanced Test Reactor Core Modeling Update Project Annual Report for Fiscal Year 2011

    SciTech Connect (OSTI)

    David W. Nigg; Devin A. Steuhm

    2011-09-01

    Legacy computational reactor physics software tools and protocols currently used for support of Advanced Test Reactor (ATR) core fuel management and safety assurance and, to some extent, experiment management are obsolete, inconsistent with the state of modern nuclear engineering practice, and are becoming increasingly difficult to properly verify and validate (V&V). Furthermore, the legacy staff knowledge required for application of these tools and protocols from the 1960s and 1970s is rapidly being lost due to staff turnover and retirements. In 2009 the Idaho National Laboratory (INL) initiated a focused effort to address this situation through the introduction of modern high-fidelity computational software and protocols, with appropriate V&V, within the next 3-4 years via the ATR Core Modeling and Simulation and V&V Update (or 'Core Modeling Update') Project. This aggressive computational and experimental campaign will have a broad strategic impact on the operation of the ATR, both in terms of improved computational efficiency and accuracy for support of ongoing DOE programs as well as in terms of national and international recognition of the ATR National Scientific User Facility (NSUF). The ATR Core Modeling Update Project, targeted for full implementation in phase with the anticipated ATR Core Internals Changeout (CIC) in the 2014 time frame, began during the last quarter of Fiscal Year 2009, and has just completed its first full year. Key accomplishments so far have encompassed both computational as well as experimental work. A new suite of stochastic and deterministic transport theory based reactor physics codes and their supporting nuclear data libraries (SCALE, KENO-6, HELIOS, NEWT, and ATTILA) have been installed at the INL under various permanent sitewide license agreements and corresponding baseline models of the ATR and ATRC are now operational, demonstrating the basic feasibility of these code packages for their intended purpose. Furthermore, a

  20. LANL LDRD-funded project: Test particle simulations of energetic ions in natural and artificial radiation belts

    SciTech Connect (OSTI)

    Cowee, Misa; Liu, Kaijun; Friedel, Reinhard H.; Reeves, Geoffrey D.

    2012-07-17

    We summarize the scientific problem and work plan for the LANL LDRD-funded project to use a test particle code to study the sudden de-trapping of inner belt protons and possible cross-L transport of debris ions after a high altitude nuclear explosion (HANE). We also discuss future application of the code for other HANE-related problems.

  1. Performance analysis and pilot plant test results for the Komorany fluidized bed retrofit project

    SciTech Connect (OSTI)

    Snow, G.C.

    1995-12-01

    Detailed heat and mass balance calculations and emission performance projections are presented for an atmospheric fluidized bed boiler bottom retrofit at the 927 MWt (steam output) Komorany power station and district heating plant in the Czech Republic. Each of the ten existing boilers are traveling grate stoker units firing a local, low-rank brown coal. This fuel, considered to be representative of much of the coal deposits in Central Europe, is characterized by an average gross calorific value of 10.5 MJ/kg (4,530 Btu/lb), an average dry basis ash content of 47 %, and a maximum dry basis sulfur content of 1.8 % (3.4 % on a dry, ash free basis). The same fuel supply, together with limestone supplied from the region will be utilized in the retrofit fluidized bed boilers. The primary objectives of this retrofit program are, (1) reduce emissions to a level at or below the new Czech Clean Air Act, and (2) restore plant capacity to the original specification. As a result of the AFBC retrofit and plant upgrade, the particulate matter emissions will be reduced by over 98 percent, SO{sub 2} emissions will be reduced by 88 percent, and NO{sub x} emissions will be reduced by 38 percent compared to the present grate-fired configuration. The decrease in SO{sub 2} emissions resulting from the fluidized bed retrofit was initially predicted based on fuel sulfur content, including the distribution among organic, pyritic, and sulfate forms; the ash alkalinity; and the estimated limestone calcium utilization efficiency. The methodology and the results of this prediction were confirmed and extended by pilot scale combustion trials at a 1.0 MWt (fuel input), variable configuration test facility in France.

  2. Publication in Ocean Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publication in Ocean Engineering - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs

  3. Q-Sync Motors in Commercial Refrigeration. Preliminary Test Results and Projected Benefits

    SciTech Connect (OSTI)

    Fricke, Brian A.; Becker, Bryan R.

    2015-09-01

    This report provides background information on various fractional-horsepower electric motor technologies, summarizes initial data from a DOE-sponsored Q-Sync motor demonstration project, and extrapolates that data to project the potential economic and environmental benefits resulting from upgrading the current installed base of 9–12 W evaporator fan motors to Q-Sync motors.

  4. DOE-Funded Project Testing Laser CO2 Monitoring at Carbon Storage Site

    Broader source: Energy.gov [DOE]

    A project that uses lasers to monitor carbon dioxide (CO2) is being analyzed as part of the U.S. Department of Energy’s (DOE) drive to improve greenhouse gas-monitoring abilities at CO2 storage sites. The project is managed by the DOE Office of Fossil Energy’s National Energy Technology Laboratory (NETL).

  5. Identification and Characterization of Hydrogeologic Units at the Nevada Test Site Using Geophysical Logs: Examples from the Underground Test Area Project

    SciTech Connect (OSTI)

    Lance Prothro, Sigmund Drellack, Margaret Townsend

    2009-03-25

    The diverse and complex geology of the Nevada Test Site region makes for a challenging environment for identifying and characterizing hydrogeologic units penetrated by wells drilled for the U.S. Department of Energy, National Nuclear Security Administration, Underground Test Area (UGTA) Environmental Restoration Sub-Project. Fortunately, UGTA geoscientists have access to large and robust sets of subsurface geologic data, as well as a large historical knowledge base of subsurface geological analyses acquired mainly during the underground nuclear weapons testing program. Of particular importance to the accurate identification and characterization of hydrogeologic units in UGTA boreholes are the data and interpretation principles associated with geophysical well logs. Although most UGTA participants and stakeholders are probably familiar with drill hole data such as drill core and cuttings, they may be less familiar with the use of geophysical logs; this document is meant to serve as a primer on the use of geophysical logs in the UGTA project. Standard geophysical logging tools used in the UGTA project to identify and characterize hydrogeologic units are described, and basic interpretation principles and techniques are explained. Numerous examples of geophysical log data from a variety of hydrogeologic units encountered in UGTA wells are presented to highlight the use and value of geophysical logs in the accurate hydrogeologic characterization of UGTA wells.

  6. Hydrologic Resources Management Program and Underground Test Area Project FY 2006 Progress Report

    SciTech Connect (OSTI)

    Culham, H W; Eaton, G F; Genetti, V; Hu, Q; Kersting, A B; Lindvall, R E; Moran, J E; Blasiyh Nuno, G A; Powell, B A; Rose, T P; Singleton, M J; Williams, R W; Zavarin, M; Zhao, P

    2008-04-08

    This report describes FY 2006 technical studies conducted by the Chemical Biology and Nuclear Science Division (CBND) at Lawrence Livermore National Laboratory (LLNL) in support of the Hydrologic Resources Management Program (HRMP) and the Underground Test Area Project (UGTA). These programs are administered by the U.S. Department of Energy, National Nuclear Security Administration, Nevada Site Office (NNSA/NSO) through the Defense Programs and Environmental Restoration Divisions, respectively. HRMP-sponsored work is directed toward the responsible management of the natural resources at the Nevada Test Site (NTS), enabling its continued use as a staging area for strategic operations in support of national security. UGTA-funded work emphasizes the development of an integrated set of groundwater flow and contaminant transport models to predict the extent of radionuclide migration from underground nuclear testing areas at the NTS. The report is organized on a topical basis and contains four chapters that highlight technical work products produced by CBND. However, it is important to recognize that most of this work involves collaborative partnerships with the other HRMP and UGTA contract organizations. These groups include the Energy and Environment Directorate at LLNL (LLNL-E&E), Los Alamos National Laboratory (LANL), the Desert Research Institute (DRI), the U.S. Geological Survey (USGS), Stoller-Navarro Joint Venture (SNJV), and National Security Technologies (NSTec). Chapter 1 is a summary of FY 2006 sampling efforts at near-field 'hot' wells at the NTS, and presents new chemical and isotopic data for groundwater samples from four near-field wells. These include PM-2 and U-20n PS 1DDh (CHESHIRE), UE-7ns (BOURBON), and U-19v PS No.1ds (ALMENDRO). Chapter 2 is a summary of the results of chemical and isotopic measurements of groundwater samples from three UGTA environmental monitoring wells. These wells are: ER-12-4 and U12S located in Area 12 on Rainier Mesa and

  7. Project W-320 acceptance test report for AY-farm electrical distribution

    SciTech Connect (OSTI)

    Bevins, R.R.

    1998-04-02

    This Acceptance Test Procedure (ATP) has been prepared to demonstrate that the AY-Farm Electrical Distribution System functions as required by the design criteria. This test is divided into three parts to support the planned construction schedule; Section 8 tests Mini-Power Pane AY102-PPI and the EES; Section 9 tests the SSS support systems; Section 10 tests the SSS and the Multi-Pak Group Control Panel. This test does not include the operation of end-use components (loads) supplied from the distribution system. Tests of the end-use components (loads) will be performed by other W-320 ATPs.

  8. Advanced Test Reactor Core Modeling Update Project Annual Report for Fiscal Year 2012

    SciTech Connect (OSTI)

    David W. Nigg, Principal Investigator; Kevin A. Steuhm, Project Manager

    2012-09-01

    Legacy computational reactor physics software tools and protocols currently used for support of Advanced Test Reactor (ATR) core fuel management and safety assurance, and to some extent, experiment management, are inconsistent with the state of modern nuclear engineering practice, and are difficult, if not impossible, to properly verify and validate (V&V) according to modern standards. Furthermore, the legacy staff knowledge required for application of these tools and protocols from the 1960s and 1970s is rapidly being lost due to staff turnover and retirements. In late 2009, the Idaho National Laboratory (INL) initiated a focused effort, the ATR Core Modeling Update Project, to address this situation through the introduction of modern high-fidelity computational software and protocols. This aggressive computational and experimental campaign will have a broad strategic impact on the operation of the ATR, both in terms of improved computational efficiency and accuracy for support of ongoing DOE programs as well as in terms of national and international recognition of the ATR National Scientific User Facility (NSUF). The ATR Core Modeling Update Project, targeted for full implementation in phase with the next anticipated ATR Core Internals Changeout (CIC) in the 2014-2015 time frame, began during the last quarter of Fiscal Year 2009, and has just completed its third full year. Key accomplishments so far have encompassed both computational as well as experimental work. A new suite of stochastic and deterministic transport theory based reactor physics codes and their supporting nuclear data libraries (HELIOS, KENO6/SCALE, NEWT/SCALE, ATTILA, and an extended implementation of MCNP5) has been installed at the INL under various licensing arrangements. Corresponding models of the ATR and ATRC are now operational with all five codes, demonstrating the basic feasibility of the new code packages for their intended purpose. Of particular importance, a set of as-run core

  9. Ocean Energy Institute | Open Energy Information

    Open Energy Info (EERE)

    think tank established to accelerate offshore wind technology development that hopes to build a 5GW wind project off the coast of Maine. References: Ocean Energy Institute1 This...

  10. Final Technical Resource Confirmation Testing at the Raft River Geothermal Project, Cassia County, Idaho

    SciTech Connect (OSTI)

    Glaspey, Douglas J.

    2008-01-30

    Incorporates the results of flow tests for geothermal production and injection wells in the Raft River geothermal field in southern Idaho. Interference testing was also accomplished across the wellfield.

  11. Dehlsen (TRL 5 6 System) - Aquantis C-Plane Ocean Current Turbine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dehlsen (TRL 5 6 System) - Aquantis C-Plane Ocean Current Turbine Project Dehlsen (TRL 5 6 System) - Aquantis C-Plane Ocean Current Turbine Project Dehlsen (TRL 5 6 System) - ...

  12. Tank monitor and control system (TMACS) software project Westronics Driver acceptance test

    SciTech Connect (OSTI)

    Glasscock, J.A.

    1998-08-18

    The acceptance test for the Westronics driver. This driver connects the Westronics Smart Multiplexer with the TMACS monitoring system.

  13. Hydrologic Resources Management Program and Underground Test Area Project FY 2001-2002 Progress Report

    SciTech Connect (OSTI)

    Rose, T P; Kersting, A B; Harris, L J; Hudson, G B; Smith, D K; Williams, R W; Loewen, D R; Nelson, E J; Allen, P G; Ryerson, F J; Pawloski, G A; Laue, C A; Moran, J E

    2003-08-15

    This report contains highlights of FY 2001 and 2002 technical studies conducted by the Analytical and Nuclear Chemistry Division (ANCD) at Lawrence Livermore National Laboratory (LLNL) in support of the Hydrologic Resources Management Program (HRMP) and the Underground Test Area (UGTA) Project. These programs are administered by the U.S. Department of Energy, National Nuclear Security Administration, Nevada Site Office (NNSA/NSO) through the Defense Programs and Environmental Restoration Divisions, respectively. HRMP-sponsored work emphasizes the Defense Programs goal of responsible management of natural resources at the NTS, while UGTA-funded work focuses on defining the extent of radionuclide contamination in NTS groundwater resulting from underground nuclear testing. The report is organized on a topical basis, and contains eight chapters that reflect the range of technical work performed by LLNL-ANCD in support of HRMP and UGTA. Chapter 1 describes recent hot well sampling efforts at the NTS, and presents the results of chemical and isotopic analyses of groundwater samples from six near-field wells. These include the Cambric (UE-5n), Bilby (U-3cn PS No.2), Bourbon (UE-7nS), Nash (UE-2ce), Tybo/Benham (ER-20-5 No.3), and Almendro (U-19v PS No.1ds) sites. The data generated by the hot well program is vital to the development and validation of contaminant transport models at the NTS. Chapter 2 discusses the results of xenon isotope measurements of groundwater samples from the six near-field wells described in Chapter 1. This work demonstrates that fission xenon is present in the water at levels that are readily measurable and highlights the significant differences in xenon concentrations and isotopic abundances at different sites. These differences provide insight into the early cooling history of nuclear test cavities, and may assist in predicting the distribution of the source term in the near-field environment. Chapter 3 is an investigation of the distribution

  14. Assessment of Energy Production Potential from Ocean Currents...

    Broader source: Energy.gov (indexed) [DOE]

    Assessment of Energy Production Potential from Ocean Currents along the United States ... Award Number: DE-EE0002661 Project Title: Assessment of Energy Production Potential from ...

  15. Testing, Evaluation, and Qualification of Bio-Oil for Heating Presentation for BETO 2015 Project Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing, Evaluation, and Qualification of Bio-Oil for Heating March 26, 2015 Dr. Thomas A. Butcher Brookhaven National Laboratory This presentation does not contain any proprietary, confidential, or otherwise restricted information Goal Statement 2 * The goal of this project is to enable the replacement of 20% of the petroleum-derived heating oil in the Northeast with infrastructure compatible bio-oil by 2020 thereby stabilizing the supply and cost peaks for heating oil. * Heating oil and diesel

  16. Global Ocean Storage of Anthropogenic Carbon (GOSAC)

    SciTech Connect (OSTI)

    Orr, J C

    2002-04-02

    GOSAC was an EC-funded project (1998-2001) focused on improving the predictive capacity and accelerating development of global-scale, three-dimensional, ocean carbon-cycle models by means of standardized model evaluation and model intercomparison. Through the EC Environment and Climate Programme, GOSAC supported the participation of seven European modeling groups in the second phase of the larger international effort OCMIP (the Ocean Carbon-Cycle Model Intercomparison Project). OCMIP included model comparison and validation for both CO{sub 2} and other ocean circulation and biogeochemical tracers. Beyond the international OCMIP effort, GOSAC also supported the same EC ocean carbon cycle modeling groups to make simulations to evaluate the efficiency of purposeful sequestration of CO{sub 2} in the ocean. Such sequestration, below the thermocline has been proposed as a strategy to help mitigate the increase of CO{sub 2} in the atmosphere. Some technical and scientific highlights of GOSAC are given.

  17. AVTA: Chrysler RAM Experimental PHEV Pickup Truck Recovery Act Project Testing Results- Phase 2

    Broader source: Energy.gov [DOE]

    The following reports describe results of testing done on a 2011 Chrysler RAM PHEV, a demonstration vehicle not currently available for sale.

  18. Waste Tank Size Determination for the Hanford River Protection Project Cold Test, Training, and Mockup Facility

    SciTech Connect (OSTI)

    Onishi, Yasuo; Wells, Beric E.; Kuhn, William L.

    2001-03-30

    The objective of the study was to determine the minimum tank size for the Cold Test Facility process testing of Hanford tank waste. This facility would support retrieval of waste in 75-ft-diameter DSTs with mixer pumps and SSTs with fluidic mixers. The cold test model will use full-scale mixer pumps, transfer pumps, and equipment with simulated waste. The study evaluated the acceptability of data for a range of tank diameters and depths and included identifying how the test data would be extrapolated to predict results for a full-size tank.

  19. Ocean Power Technologies (TRL 5 6 System) - PB500, 500 kW Utility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Advanced, High Power, Next Scale, Wave Energy Conversion Device Ocean Power Technologies (TRL 7 8 System) - Reedsport PB150 Deployment and Ocean Test ...

  20. OCGen Module Mooring Project

    SciTech Connect (OSTI)

    McEntee, Jarlath

    2015-02-06

    Ocean Renewable Power Company's OCGen Module Mooring Project provided an extensive research, design, development, testing and data collection effort and analysis conducted with respect to a positively buoyant, submerged MHK device secured to the seabed using a tensioned mooring system. Different analytic tools were evaluated for their utility in the design of submerged systems and their moorings. Deployment and testing of a prototype OCGen® system provided significant data related to mooring line loads and system attitude and station keeping. Mooring line loads were measured in situ and reported against flow speeds. The Project made a significant step in the development of designs, methodologies and practices related to floating and mooring of marine hydrokinetic (MHK) devices. Importantly for Ocean Renewable Power Company, the Project provided a sound basis for advancing a technically and commercially viable OCGen® Power System. The OCGen® Power System is unique in the MHK industry and, in itself, offers distinct advantages of MHK devices that are secured to the seabed using fixed structural frames. Foremost among these advantages are capital and operating cost reductions and increased power extraction by allowing the device to be placed at the most energetic level of the water column.

  1. Fabrication and testing for solar detoxification project. Final report, October 1996-August 1997

    SciTech Connect (OSTI)

    Doty, S.; Widmer, N.; Beninga, K.; Cole, J.

    1997-12-01

    A demonstration of a solar detoxification system was conducted for the U.S. Army Environmental Center (USAEC) at Science Applications International Corporation`s (SAIC`s) test site near Golden, Colorado, in June 1997. The purpose of this demonstration test was to evaluate the use of solar energy for thermally detoxifying organic compounds representative of soil contamination found at U.S. Army sites. The demonstration test was carried out under the third of three tasks conducted under contract by SAIC. Under Tasks I and II, the conceptual and detailed design of a pilot-scale system was completed. Under Task III, fabrication and testing of the system were accomplished. This document presents the results obtained during the Task III demonstration test. The purpose of this demonstration test was to evaluate the use of solar energy to thermally detoxify organic compounds removed from contaminated media by ex situ (such as thermal desorption) or in situ (such as soil vapor extraction) treatment systems, or desorbed from pretreatment matrices (such as activated carbon). Extraction systems are commercially available so the step of directly extracting organic from contaminated soil was excluded from the pilot-scale demonstration. Rather, the pilot-scale demonstration test focused on evaluating ultraviolet (UV)-rich solar destruction of volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOCs) by a solar incinerator and the environmental control of the resulting off gases.

  2. DOE-Sponsored Project Tests Novel Method to Increase Oil Recovery

    Office of Energy Efficiency and Renewable Energy (EERE)

    Successful laboratory tests at the Energy Department’s National Energy Technology Laboratory (NETL) have verified that the use of a brine-soluble ionic surfactant could improve the efficiency of carbon dioxide enhanced oil recovery (CO2-EOR).

  3. Advanced Wind Energy Projects Test Facility Moving to Texas Tech University

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Department of Energy (DOE) Sandia National Laboratories (SNL) is moving its wind energy test facility to a new location near the campus of Texas Tech University in Lubbock, Texas.

  4. Alabama Project Testing Potential for Combining CO2 Storage with Enhanced Methane Recovery

    Broader source: Energy.gov [DOE]

    Field testing the potential for combining geologic carbon dioxide storage with enhanced methane recovery is underway at a site in Alabama by a U.S. Department of Energy team of regional partners.

  5. The Ocean Sampling Day Consortium

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kopf, Anna; Bicak, Mesude; Kottmann, Renzo; Schnetzer, Julia; Kostadinov, Ivaylo; Lehmann, Katja; Fernandez-Guerra, Antonio; Jeanthon, Christian; Rahav, Eyal; Ullrich, Matthias; et al

    2015-06-19

    In this study, Ocean Sampling Day was initiated by the EU-funded Micro B3 (Marine Microbial Biodiversity, Bioinformatics, Biotechnology) project to obtain a snapshot of the marine microbial biodiversity and function of the world’s oceans. It is a simultaneous global mega-sequencing campaign aiming to generate the largest standardized microbial data set in a single day. This will be achievable only through the coordinated efforts of an Ocean Sampling Day Consortium, supportive partnerships and networks between sites. This commentary outlines the establishment, function and aims of the Consortium and describes our vision for a sustainable study of marine microbial communities and theirmore » embedded functional traits.« less

  6. Grays Harbor Demonstration Project | Open Energy Information

    Open Energy Info (EERE)

    Project Facility Grays Harbor Demonstration Project Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Grays Harbor Ocean Energy Company LLC...

  7. OECD MCCI project long-term 2-D molten core concrete interaction test design report, Rev. 0. September 30, 2002.

    SciTech Connect (OSTI)

    Farmer, M. T.; Kilsdonk, D. J.; Lomperski, S.; Aeschliman, R. W.; Basu, S. (Nuclear Engineering Division); (NRC)

    2011-05-23

    The Melt Attack and Coolability Experiments (MACE) program at Argonne National Laboratory addressed the issue of the ability of water to cool and thermally stabilize a molten core-concrete interaction when the reactants are flooded from above. These tests provided data regarding the nature of corium interactions with concrete, the heat transfer rates from the melt to the overlying water pool, and the role of noncondensable gases in the mixing processes that contribute to melt quenching. As a follow-on program to MACE, The Melt Coolability and Concrete Interaction Experiments (MCCI) project is conducting reactor material experiments and associated analysis to achieve the following two technical objectives: (1) resolve the ex-vessel debris coolability issue through a program that focuses on providing both confirmatory evidence and test data for the coolability mechanisms identified in MACE integral effects tests, and (2) address remaining uncertainties related to long-term two-dimensional molten core-concrete interactions under both wet and dry cavity conditions. Achievement of these two objectives will demonstrate the efficacy of severe accident management guidelines for existing plants, and provide the technical basis for better containment designs for future plants. In terms of the first program objective, the Small-Scale Water Ingression and Crust Strength (SSWICS) test series has been initiated to provide fundamental information on the ability of water to ingress into cracks and fissures that form in the debris during quench, thereby augmenting the otherwise conduction-limited heat transfer process. A test plan for Melt Eruption Separate Effects Tests (MESET) has also been developed to provide information on the extent of crust growth and melt eruptions as a function of gas sparging rate under well-controlled experiment conditions. In terms of the second program objective, the project Management Board (MB) has approved startup activities required to carry out

  8. The Nevada Test Site Legacy TRU Waste - The WIPP Central Characterization Project

    SciTech Connect (OSTI)

    Norton, J. F.; Lahoud, R. G.; Foster, B. D.; VanMeighem, J.

    2003-02-25

    This paper discusses the Central Characterization Project (CCP) designed by the Waste Isolation Pilot Plant (WIPP) to aid sites, especially those sites with small quantities of transuranic (TRU) waste streams, in disposing of legacy waste at their facility. Because of the high cost of contracting vendors with the characterization capabilities necessary to meet the WIPP Waste Acceptance Criteria, utilizing the CCP is meant to simplify the process for small quantity sites. The paper will describe the process of mobilization of the vendors through CCP, the current production milestones that have been met, and the on-site lessons learned.

  9. Energy Efficiency Pilot Projects in Jaipur: Testing the Energy Conservation Building Code

    SciTech Connect (OSTI)

    Evans, Meredydd; Mathur, Jyotirmay; Yu, Sha

    2014-03-26

    The Malaviya National Institute of Technology (MNIT) in Jaipur, India is constructing two new buildings on its campus that allow it to test implementation of the Energy Conservation Building Code (ECBC), which Rajasthan made mandatory in 2011. PNNL has been working with MNIT to document progress on ECBC implementation in these buildings.

  10. HANFORD MEDIUM-LOW CURIE WASTE PRETREATMENT ALTERNATIVES PROJECT FRACTIONAL CRYSTALLIZATION PILOT SCALE TESTING FINAL REPORT

    SciTech Connect (OSTI)

    HERTING DL

    2008-09-16

    The Fractional Crystallization Pilot Plant was designed and constructed to demonstrate that fractional crystallization is a viable way to separate the high-level and low-activity radioactive waste streams from retrieved Hanford single-shell tank saltcake. The focus of this report is to review the design, construction, and testing details of the fractional crystallization pilot plant not previously disseminated.

  11. Ocean Thermal Energy Conversion Act of 1980

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    A legislative proposal to develop ocean thermal energy conversion (OTEC) facilities for power generation was the subject of hearings held on April 10 and May 1, 1980. Following the test of S. 2492 are the statements of 20 witnesses and additional materials submitted for consideration. The need for a large-scale demonstration of OTEC and the need for a Federal regulatory, siting, and financial-assistance framework are the major commercialization issues. S. 2492 provides one-stop licensing by treating the facilities as vessels and making them eligible for loan guarantees. The bill complements S. 1430, which deals with the demonstration program. OTEC development in Hawaii has progressed to a second pilot project. (DCK)

  12. ocean waves

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    waves - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  13. ocean energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy

  14. The Waveform Correlation Event Detection System project, Phase II: Testing with the IDC primary network

    SciTech Connect (OSTI)

    Young, C.J.; Beiriger, J.I.; Moore, S.G.

    1998-04-01

    Further improvements to the Waveform Correlation Event Detection System (WCEDS) developed by Sandia Laboratory have made it possible to test the system on the accepted Comprehensive Test Ban Treaty (CTBT) seismic monitoring network. For our test interval we selected a 24-hour period from December 1996, and chose to use the Reviewed Event Bulletin (REB) produced by the Prototype International Data Center (PIDC) as ground truth for evaluating the results. The network is heterogeneous, consisting of array and three-component sites, and as a result requires more flexible waveform processing algorithms than were available in the first version of the system. For simplicity and superior performance, we opted to use the spatial coherency algorithm of Wagner and Owens (1996) for both types of sites. Preliminary tests indicated that the existing version of WCEDS, which ignored directional information, could not achieve satisfactory detection or location performance for many of the smaller events in the REB, particularly those in the south Pacific where the network coverage is unusually sparse. To achieve an acceptable level of performance, we made modifications to include directional consistency checks for the correlations, making the regions of high correlation much less ambiguous. These checks require the production of continuous azimuth and slowness streams for each station, which is accomplished by means of FK processing for the arrays and power polarization processing for the three-component sites. In addition, we added the capability to use multiple frequency-banded data streams for each site to increase sensitivity to phases whose frequency content changes as a function of distance.

  15. Wind-To-Hydrogen Project: Operational Experience, Performance Testing, and Systems Integration

    SciTech Connect (OSTI)

    Harrison, K. W.; Martin, G. D.; Ramsden, T. G.; Kramer, W. E.; Novachek, F. J.

    2009-03-01

    The Wind2H2 system is fully functional and continues to gather performance data. In this report, specifications of the Wind2H2 equipment (electrolyzers, compressor, hydrogen storage tanks, and the hydrogen fueled generator) are summarized. System operational experience and lessons learned are discussed. Valuable operational experience is shared through running, testing, daily operations, and troubleshooting the Wind2H2 system and equipment errors are being logged to help evaluate the reliability of the system.

  16. OECD MCCI project 2-D Core Concrete Interaction (CCI) tests : CCI-3 test data report-thermalhydraulic results. Rev. 0 October 15, 2005.

    SciTech Connect (OSTI)

    Farmer, M. T.; Lomperski, S.; Kilsdonk, D. J.; Aeschlimann, R. W.; Basu, S.

    2011-05-23

    The Melt Attack and Coolability Experiments (MACE) program addressed the issue of the ability of water to cool and thermally stabilize a molten core-concrete interaction when the reactants are flooded from above. These tests provided data regarding the nature of corium interactions with concrete, the heat transfer rates from the melt to the overlying water pool, and the role of noncondensable gases in the mixing processes that contribute to melt quenching. As a follow-on program to MACE, The Melt Coolability and Concrete Interaction Experiments (MCCI) project is conducting reactor material experiments and associated analysis to achieve the following objectives: (1) resolve the ex-vessel debris coolability issue through a program that focuses on providing both confirmatory evidence and test data for the coolability mechanisms identified in MACE integral effects tests, and (2) address remaining uncertainties related to long-term two-dimensional molten core-concrete interactions under both wet and dry cavity conditions. Achievement of these two program objectives will demonstrate the efficacy of severe accident management guidelines for existing plants, and provide the technical basis for better containment designs for future plants. In terms of satisfying these objectives, the Management Board (MB) approved the conduct of a third long-term 2-D Core-Concrete Interaction (CCI) experiment designed to provide information in several areas, including: (i) lateral vs. axial power split during dry core-concrete interaction, (ii) integral debris coolability data following late phase flooding, and (iii) data regarding the nature and extent of the cooling transient following breach of the crust formed at the melt-water interface. This data report provides thermal hydraulic test results from the CCI-3 experiment, which was conducted on September 22, 2005. Test specifications for CCI-3 are provided in Table 1-1. This experiment investigated the interaction of a fully oxidized 375

  17. EERC pilot-scale CFBC evaluation facility Project CFB test results. Topical report, Task 7.30

    SciTech Connect (OSTI)

    Mann, M.D.; Hajicek, D.R.; Henderson, A.K.; Moe, T.A.

    1992-09-01

    Project CFB was initiated at the University of North Dakota Energy and Environmental Research Center (EERC) in May 1988. Specific goals of the project were to (1) construct a circulating fluidized-bed combustor (CFBC) facility representative of the major boiler vendors` designs with the capability of producing scalable data, (2) develop a database for use in making future evaluations of CFBC technology, and (3) provide a facility for evaluating fuels, free of vendor bias for use in the - energy industry. Five coals were test-burned in the 1-MWth unit: North Dakota and Asian lignites, a Wyoming subbituminous, and Colorado and Pennsylvania bituminous coats. A total of 54 steady-state test periods were conducted, with the key test parameters being the average combustor temperature, excess air, superficial gas velocity, calcium-to-sulfur molar ratio, and the primary air-to-secondary air split. The capture for a coal fired in a CFBC is primarily dependent upon the total alkali-to-sulfur ratio. The required alkali-to ratio for 90% sulfur retention ranged from 1.4 to 4.9, depending upon coal type. While an alkali-to-ratio of 4.9 was required to meet 90% sulfur retention for the Salt Creek coal versus 1.4 for the Asian lignite, the total amount of sorbent addition required is much less for the Salt Creek coal, 4.2 pound sorbent per million Btu coal input, versus 62 pound/million Btu for the Asian lignite. The bituminous coals tested show optimal capture at combustor temperatures of approximately 1550{degree}F, with low-rank coals having optimal sulfur capture approximately 100{degree}F lower.

  18. Ocean energy conversion systems annual research report

    SciTech Connect (OSTI)

    Not Available

    1981-03-01

    Alternative power cycle concepts to the closed-cycle Rankine are evaluated and those that show potential for delivering power in a cost-effective and environmentally acceptable fashion are explored. Concepts are classified according to the ocean energy resource: thermal, waves, currents, and salinity gradient. Research projects have been funded and reported in each of these areas. The lift of seawater entrained in a vertical steam flow can provide potential energy for a conventional hydraulic turbine conversion system. Quantification of the process and assessment of potential costs must be completed to support concept evaluation. Exploratory development is being completed in thermoelectricity and 2-phase nozzles for other thermal concepts. Wave energy concepts are being evaluated by analysis and model testing with present emphasis on pneumatic turbines and wave focussing. Likewise, several conversion approaches to ocean current energy are being evaluated. The use of salinity resources requires further research in membranes or the development of membraneless processes. Using the thermal resource in a Claude cycle process as a power converter is promising, and a program of R and D and subsystem development has been initiated to provide confirmation of the preliminary conclusion.

  19. Biological testing of sediment for the Olympia Harbor Navigation Improvement Project, 1988: Geoduck, amphipod, and echinoderm bioassays

    SciTech Connect (OSTI)

    Ward, J.A.; Word, J.Q.; Antrim, L.D.

    1989-05-01

    The Olympia Harbor Navigation Improvement Project requires the dredging of approximately 330,000 cubic yards (cy) of sediment from the harbor entrance channel and 205,185 cy from the turning basin. Puget Sound Dredged Disposal Analysis (PSDDA) partial characterization studies were used to plan a full sediment characterization in which chemical analyses and biological testing of sediments evaluated the suitability of the dredged material for unconfined, open-water disposal. The US Army Corps of Engineers (COE), Seattle District, contracted with NOAA/NMFS, Environmental Conservation Division, to perform the chemical analysis and Microtox bioassay tests, and with the Battelle/Marine Sciences Laboratory (MSL) in Sequim to perform flow-through solid-phase bioassays utilizing juvenile (8 to 10 mm) geoduck clams, Panopea generosa, and static solid phase bioassays using the phoxocephalid amphipod, Rhepoxynius abronius, developing embryos and gametes of the purple sea urchin, Strongylocentrotus purpuratus, and the larvae of the Pacific oyster Crassostrea gigas. When the results of the biological tests were evaluated under PSDDA guidelines, it was found that all the tested sediment treatments from Olympia Harbor are suitable for unconfined open-water disposal. 14 refs., 12 figs., 3 tabs.

  20. System design description for SY-101 hydrogen mitigation test project data acquisition and control system (DACS-1)

    SciTech Connect (OSTI)

    Truitt, R.W.; Pounds, T.S.; Smith, S.O.

    1994-08-24

    This document describes the hardware subsystems of the data acquisition and control system (DACS) used in mitigation tests conducted on waste tank SY-101 at the Hanford Nuclear Reservation. The system was designed and implemented by Los Alamos National Laboratory (LANL) and supplied to Westinghouse Hanford Company (WHC). The mitigation testing uses a pump immersed in the waste tank, directed at certain angles and operated at different speeds and time durations. The SY-101 tank has experienced recurrent periodic gas releases of hydrogen, nitrous oxide, ammonia, and (recently discovered) methane. The hydrogen gas represents a danger, as some of the releases are in amounts above the lower flammability limit (LFL). These large gas releases must be mitigated. Several instruments have been added to the tank to monitor the gas compositions, the tank level, the tank temperature, and other parameters. A mixer pump has been developed to stir the tank waste to cause the gases to be released at a slow rate. It is the function of the DACS to monitor those instruments and to control the mixer pump in a safe manner. During FY93 and FY94 the mixer pump was installed with associated testing operations support equipment and a mitigation test project plan was implemented. These activities successfully demonstrated the mixer pump`s ability to mitigate the SY-101 tank hydrogen gas hazard.

  1. TFTR D&D Project: Final Examination and Testing of the TFTR TF-Coils

    SciTech Connect (OSTI)

    Irving J. Zatz

    2003-01-31

    In operation for nearly 15 years, TFTR (Tokamak Fusion Test Reactor) was not only a fusion science milestone, but a milestone of achievement in engineering as well. The TFTR D&D (Decommissioning and Decontamination) program provided a rare opportunity to examine machine components that had been exposed to a unique performance environment of greater than 100,000 mechanical and thermal load cycles. In particular, the possible examination of the TFTR toroidal-field (TF) coils, which met, then exceeded, the 5.2 Tesla magnetic field machine specification, could supply the answers to many questions that have been asked and debated since the coils were originally designed and built. A test program conducted in parallel with the D&D effort was the chance to look inside and examine, in detail, the TFTR TF coils for the first time since they were delivered encased to PPPL (Princeton Plasma Physics Laboratory). The results from such a program would provide data and insight that would not only be nefit PPPL and the fusion community, but the broader scientific community as well.

  2. Ocean current wave interaction study

    SciTech Connect (OSTI)

    Hayes, J.G.

    1980-09-20

    A numerical model has been developed to incorporate refraction of ocean surface gravity waves by major ocean currents. The model is initialized with directional wave spectra and verified with aircraft synthetic aperture radar X band spectra, laser profilometer spectra, and pitch and roll buoy data. Data collected during the Marineland test experiment are used as surface truth observations for the wave-current study. Evidence of Gulf Stream refraction and trapping of surface waves as well as caustics in the current is shown and modeled assuming a nonuniform Gulf Stream distribution. Frequency and directional resolution of the wave spectral distribution and the current refraction patterns illustrates the need for further study of ocean current-wave interaction in wave refraction studies.

  3. Irradiation Test Plan for the ATR National Scientific User Facility - University of Wisconsin Pilot Project

    SciTech Connect (OSTI)

    Heather J. MacLean; Kumar Sridharan; Timothy A. Hyde

    2008-06-01

    The performance of advanced nuclear systems critically relies on the performance of the materials used for cladding, duct, and other structural components. In many proposed advanced systems, the reactor design pushes the temperature and the total radiation dose higher than typically seen in a light water reactor. Understanding the stability of these materials under radiation is critical. There are a large number of materials or material systems that have been developed for greater high temperature or high dose performance for which little or no information on radiation response exists. The goal of this experiment is to provide initial data on the radiation response of these materials. The objective of the UW experiment is to irradiate materials of interest for advanced reactor applications at a variety of temperatures (nominally 300°C, 400°C, 500°C, and 700°C) and total dose accumulations (nominally 3 dpa and 6 dpa). Insertion of this irradiation test is proposed for September 2008 (ATR Cycle 143A).

  4. Guarantee Testing Results from the Greenidge Mult-Pollutant Control Project

    SciTech Connect (OSTI)

    Connell, Daniel P; Locke, James E

    2008-02-01

    CONSOL Energy Inc. Research & Development (CONSOL R&D) performed flue gas sampling at AES Greenidge to verify the performance of the multi-pollutant control system recently installed by Babcock Power Environmental Inc. (BPEI) on the 107-megawatt (MW) Unit 4 (Boiler 6). The multi-pollutant control system includes combustion modifications and a hybrid selective non-catalytic reduction (SNCR)/induct selective catalytic reduction (SCR) system to reduce NO{sub x} emissions, followed by a Turbosorp{reg_sign} circulating fluidized bed dry scrubber system and baghouse to reduce emissions of SO{sub 2}, SO{sub 3}, HCl, HF, and particulate matter. Mercury removal is provided via the co-benefits afforded by the in-duct SCR, dry scrubber, and baghouse and by injection of activated carbon upstream of the scrubber, as required. Testing was conducted through ports located at the inlet and outlet of the SCR reactor to evaluate the performance of the hybrid NO{sub x} control system, as well as through ports located at the air heater outlet and baghouse outlet or stack to determine pollutant removal efficiencies across the Turbosorp{reg_sign} scrubber and baghouse. Data from the unit's stack continuous emission monitor (CEM) were also used for determining attainment of the performance targets for NO{sub x} emissions and SO{sub 2} removal efficiency.

  5. Recovery Efficiency Test Project: Phase 1, Activity report. Volume 1: Site selection, drill plan preparation, drilling, logging, and coring operations

    SciTech Connect (OSTI)

    Overbey, W.K. Jr.; Carden, R.S.; Kirr, J.N.

    1987-04-01

    The recovery Efficiency Test well project addressed a number of technical issues. The primary objective was to determine the increased efficiency gas recovery of a long horizontal wellbore over that of a vertical wellbore and, more specifically, what improvements can be expected from inducing multiple hydraulic fractures from such a wellbore. BDM corporation located, planned, and drilled a long radius turn horizontal well in the Devonian shale Lower Huron section in Wayne County, West Virginia, demonstrating that state-of-the-art technology is capable of drilling such wells. BDM successfully tested drilling, coring, and logging in a horizontal well using air as the circulating medium; conducted reservoir modeling studies to protect flow rates and reserves in advance of drilling operations; observed two phase flow conditions in the wellbore not observed previously; cored a fracture zone which produced gas; observed that fractures in the core and the wellbore were not systematically spaced (varied from 5 to 68 feet in different parts of the wellbore); observed that highest gas show rates reported by the mud logger corresponded to zone with lowest fracture spacing (five feet) or high fracture frequency. Four and one-half inch casting was successfully installed in the borehole and was equipped to isolate the horizontal section into eight (8) zones for future testing and stimulation operations. 6 refs., 48 figs., 10 tabs.

  6. Aquantis 2.5MW Ocean Current Generation Device | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Aquantis 2.5MW Ocean Current Generation Device Aquantis 2.5MW Ocean Current Generation Device Aquantis 2.5MW Ocean Current Generation Device 12_aquantisawp_da_alexfleming.pptx (2.06 MB) More Documents & Publications Dehlsen (TRL 5 6 System) - Aquantis C-Plane Ocean Current Turbine Project 2014 Water Power Program Peer Review Compiled Presentations: Marine and Hydrokinetic Technologies Pumped Storage Hydropower (Project Development Support)&mdash;Geotechnical Investigation and Value

  7. Manhattan Project: Places

    Office of Scientific and Technical Information (OSTI)

    Other Places Columbia University University of California, Berkeley The Dayton Project, 1943-1945 The Dayton Project, 1945 and Beyond Bomb Casing and Drop Test Sites Trinity Test ...

  8. Property:ProjectTechnology | Open Energy Information

    Open Energy Info (EERE)

    Ocean +, MHK TechnologiesKensington + MHK ProjectsBW2 Tidal + MHK TechnologiesRED HAWK + MHK ProjectsBioSTREAM Pilot Plant + MHK TechnologiesbioSTREAM + MHK Projects...

  9. An investigation of Bjerknes Compensation in the Southern Ocean in the CCSM4

    SciTech Connect (OSTI)

    Weijer, Wilbert; Kinstle, Caroline M.

    2012-08-28

    This project aims to understand the relationship between poleward oceanic and atmospheric heat transport in the Southern Ocean by analyzing output from the community Climate System Model Version 4 (CCSM4). In particular, time series of meridional heat transport in both the atmosphere and the ocean are used to study whether variability in ocean heat transport is balanced by opposing changes in atmospheric heat transport, called Bjerknes Compensation. It is shown that the heat storage term in the Southern Ocean has a significant impact on the oceanic heat budget; as a result, no robust coherences between oceanic and atmospheric heat transports could be found at these southern latitudes.

  10. Wave Energy Research, Testing and Demonstration Center

    SciTech Connect (OSTI)

    Batten, Belinda

    2014-09-30

    The purpose of this project was to build upon the research, development and testing experience of the Northwest National Marine Renewable Energy Center (NNMREC) to establish a non-grid connected open-ocean testing facility for wave energy converters (WECs) off the coast of Newport, Oregon. The test facility would serve as the first facility of its kind in the continental US with a fully energetic wave resource where WEC technologies could be proven for west coast US markets. The test facility would provide the opportunity for self-contained WEC testing or WEC testing connected via an umbilical cable to a mobile ocean test berth (MOTB). The MOTB would act as a “grid surrogate” measuring energy produced by the WEC and the environmental conditions under which the energy was produced. In order to realize this vision, the ocean site would need to be identified through outreach to community stakeholders, and then regulatory and permitting processes would be undertaken. Part of those processes would require environmental baseline studies and site analysis, including benthic, acoustic and wave resource characterization. The MOTB and its myriad systems would need to be designed and constructed.The first WEC test at the facility with the MOTB was completed within this project with the WET-NZ device in summer 2012. In summer 2013, the MOTB was deployed with load cells on its mooring lines to characterize forces on mooring systems in a variety of sea states. Throughout both testing seasons, studies were done to analyze environmental effects during testing operations. Test protocols and best management practices for open ocean operations were developed. As a result of this project, the non-grid connected fully energetic WEC test facility is operational, and the MOTB system developed provides a portable concept for WEC testing. The permitting process used provides a model for other wave energy projects, especially those in the Pacific Northwest that have similar

  11. Federal Ocean Energy Technology: Program summary for fiscal year 1986

    SciTech Connect (OSTI)

    Not Available

    1987-10-01

    The Department of Energy's (DOE) Ocean Energy Technology (OET) Program is looking for cost-effective ways to harness ocean energy to help power tomorrow's world. Federally sponsored researchers are studying methods to transform the solar heat stored in the ocean's surface waters into electricity as well as new ways to convert wave energy into mechanical energy or electricity. This report provides a summary of research completed during FY 1986. Four major research areas are addressed in the work covered by this report: Thermodynamic Research and Analysis addresses the process and system analyses which provide the underlying understanding of physical effects which constitute the energy conversion processes, Experimental Verification and Testing provides confirmation of the analytical projections and empirical relationships, Materials and Structural Research addresses special materials compatibility issues related to operation in the sea. Much of its focus is on concepts for the system CWP which is a major technology cost driver, and Oceanographic, Environmental, and Geotechnical Research addresss those unique design requirements imposed by construction in steep slope coastal areas.

  12. ARM - Oceanic Properties

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oceanic Properties Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Oceanic Properties There are some other aspects that need to be examined regarding the imbalances in the current carbon cycle. First let's look at the effects of the ocean gaining 2 gigatonnes (1 gigatonne = 1x1012 kilograms)

  13. The Navajo scrubber project -- Start up and performance testing of the largest FGD system in the USA

    SciTech Connect (OSTI)

    Lusko, J.; Massion, R.; Sekhar, N.

    1998-07-01

    The Navajo Scrubber Project located in Page, Arizona is the largest Flue Gas Desulfurization (FGD) system in the USA. Limestone based FGD system producing disposable grade gypsum is being installed on Units 1,2 and 3 (3 x 750 MWe) at the Navajo Generating Station (NGS) to comply with an EPA ruling mandating SO{sub 2} emission reduction to improve visibility in the Grand Canyon National Park. Compliance will be phased-in by unit in 1997, 1998 and 1999. The NGS burns low-sulfur coal with a sulfur content of approximately 0.5%. The FGD system is designed to treat a total flue gas flow of 11.25 million acfm, at an SO{sub 2} removal efficiency of 92% for an emission of 0.1 lb. per million BTU. Unique features of the FGD system include, a totally closed loop water balance system, 775 ft. chimney with C-276 alloy clad designed to handle both wet and hot dry gas, solid C-276 alloy absorber vessels and the use of existing ID fans, with suitable modification, to overcome the additional pressure drop of the FGD system. The start-up sequence/operation and performance tests of Unit 3 of this unique FGD system is described in this paper. Performance tests include, removal efficiency determination at 0.6 and 0.8% sulfur coal at normal and 60,000 PPM chloride in the slurry, particulate carry over determination under normal as well as upset ESP conditions, and determination of mist eliminator carry-over using Video Droplet Analyzer.

  14. Ocean Energy Technology Overview

    SciTech Connect (OSTI)

    none,

    2009-08-05

    Introduction to and overview of ocean renewable energy resources and technologies prepared for the U.S. Department of Energy Federal Energy management Program.

  15. MHK Projects/Orcadian Wave Farm | Open Energy Information

    Open Energy Info (EERE)

    Deployed 4 Main Overseeing Organization Pelamis Wave Power formerly Ocean Power Delivery Project Technology *MHK TechnologiesPelamis Project Licensing Environmental...

  16. MHK Projects/Mississippi 7 | Open Energy Information

    Open Energy Info (EERE)

    Project Technology *MHK TechnologiesOcean *MHK TechnologiesKensington Project Licensing Environmental Monitoring and Mitigation Efforts See Tethys << Return to the MHK database...

  17. MHK Projects/New York 2 | Open Energy Information

    Open Energy Info (EERE)

    Project Technology *MHK TechnologiesOcean *MHK TechnologiesKensington Project Licensing Environmental Monitoring and Mitigation Efforts See Tethys << Return to the MHK database...

  18. MHK Projects/New York 1 | Open Energy Information

    Open Energy Info (EERE)

    Project Technology *MHK TechnologiesOcean *MHK TechnologiesKensington Project Licensing Environmental Monitoring and Mitigation Efforts See Tethys << Return to the MHK database...

  19. MHK Projects/South Africa | Open Energy Information

    Open Energy Info (EERE)

    Ocean Energy Ltd Project Technology *MHK TechnologiesAquaBuoy Project Licensing Environmental Monitoring and Mitigation Efforts See Tethys << Return to the MHK database...

  20. MHK Projects/Mississippi 6 | Open Energy Information

    Open Energy Info (EERE)

    Project Technology *MHK TechnologiesOcean *MHK TechnologiesKensington Project Licensing Environmental Monitoring and Mitigation Efforts See Tethys << Return to the MHK database...

  1. Molten-Caustic-Leaching (Gravimelt) System Integration Project, Phase 2. Topical report for test circuit maintenance, refurbishment, modification, and off-line operation

    SciTech Connect (OSTI)

    Not Available

    1993-03-01

    This is a report of the maintenance, refurbishment, modifications, and off-line circuit component testing of the integrated test circuit of the Molten-Caustic-Leaching (MCL or Gravimelt) process for the desulfurization and demineralization of coal. The project is sponsored by the Pittsburgh Energy Technology Center of the US Department of Energy under Contract No. DE-AC22-86-PC91257.

  2. Ocean thermal energy conversion

    SciTech Connect (OSTI)

    Avery, W.H.

    1983-03-17

    A brief explanation of the Ocean Thermal Energy Conversion (OTEC) concept and an estimate of the amount of energy that can be produced from the ocean resource without introducing environmental concerns are presented. Use of the OTEC system to generate electric power and products which can replace fossil fuels is shown. The OTEC program status and its prospects for the future are discussed.

  3. Property:Project Nearest Body of Water | Open Energy Information

    Open Energy Info (EERE)

    this property. (previous 25) (next 25) M MHK Projects + The Solent + MHK Projects40MW Lewis project + North Atlantic Ocean + MHK ProjectsADM 3 + Galway Bay site close to Spiddal...

  4. Ocean energy technologies: The state of the art: Final report

    SciTech Connect (OSTI)

    Carmichael, A.D.; Adams, E.E.; Glucksman, M.A.

    1986-11-01

    A state-of-the-art study of ocean energy technologies has been conducted to evaluate their potential use for the generation of electrical power. The more developed technologies are tidal energy, ocean thermal energy conversion (OTEC), and wave energy. In addition there has been a demonstration of a small ocean current turbine, and proposals have been made for salinity gradient devices and ocean wind turbines. Energy costs were estimated for representative base case systems for tidal, OTEC, and wave energy projects. The tidal energy scheme was predicted to have the lowest energy costs.

  5. Ocean energy program summary

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    The oceans are the world's largest solar energy collector and storage system. Covering 71% of the earth's surface, they collect and store this energy as waves, currents, and thermal and salinity gradients. The purpose of the US Department of Energy's (DOE) Ocean Energy Technology (OET) Program is to develop techniques that harness this ocean energy cost-effectively and in a way that does not harm the environment. The program seeks to develop ocean energy technology to a point where industry can accurately assess whether the technology is a viable energy conversion alternative, or supplement, to current power-generating systems. In past studies, DOE identified ocean thermal energy conversion (OTEC), which uses the temperature difference between warm surface water and cold deep water, as the most promising of the ocean energy technologies. As a result, the OET Program is concentrating on research that advances the OTEC technology. The program also continues to monitor and study developments in wave energy, ocean current, and salinity gradient concepts; but it is not actively developing these technologies now. 13 figs.

  6. EA-1792-S1: University of Maine's Deepwater Offshore Floating Wind Turbine Testing and Demonstration Project – Castine Harbor Test Site

    Broader source: Energy.gov [DOE]

    This Supplemental EA evaluates the environmental impacts of the University of Maine proposal to use Congressionally directed federal funding, from DOE, to deploy, test and retrieve one 1/8-scale floating wind turbine (20kw) prototype in Castine Harbor, offshore of Castine Maine. This test would be conducted prior to testing at the site 2 miles from Monhegan Island (evaluated under DOE EA-1792).

  7. Hanfords Supplemental Treatment Project: Full-Scale Integrated Testing of In-Container-Vitrification and a 10,000-Liter Dryer

    SciTech Connect (OSTI)

    Witwer, Keith S.; Dysland, Eric J.; Garfield, J. S.; Beck, T. H.; Matyas, Josef; Bagaasen, Larry M.; Cooley, Scott K.; Pierce, Eric M.; Kim, Dong-Sang; Schweiger, Michael J.

    2008-02-22

    The GeoMelt In-Container Vitrification (ICV) process was selected by the U.S. Department of Energy (DOE) in 2004 for further evaluation as the supplemental treatment technology for Hanfords low-activity waste (LAW). Also referred to as bulk vitrification, this process combines glass forming minerals, LAW, and chemical amendments; dries the mixture; and then vitrifies the material in a refractory-lined steel container. AMEC Nuclear Ltd. (AMEC) is adapting its GeoMelt ICV technology for this application with technical and analytical support from Pacific Northwest National Laboratory (PNNL). The DVBS project is funded by the DOE Office of River Protection and administered by CH2M HILL Hanford Group, Inc. The Demonstration Bulk Vitrification Project (DBVS) was initiated to engineer, construct, and operate a full-scale bulk vitrification pilot-plant to treat up to 750,000 liters of LAW from Waste Tank 241-S-109 at the DOE Hanford Site. Since the beginning of the DBVS project in 2004, testing has used laboratory, crucible-scale, and engineering-scale equipment to help establish process limitations of selected glass formulations and identify operational issues. Full-scale testing has provided critical design verification of the ICV process before operating the Hanford pilot-plant. In 2007, the projects fifth full-scale test, called FS-38D, (also known as the Integrated Dryer Melter Test, or IDMT,) was performed. This test had three primary objectives: 1) Demonstrate the simultaneous and integrated operation of the ICV melter with a 10,000-liter dryer, 2) Demonstrate the effectiveness of a new feed reformulation and change in process methodology towards reducing the production and migration of molten ionic salts (MIS), and, 3) Demonstrate that an acceptable glass product is produced under these conditions. Testing was performed from August 8 to 17, 2007. Process and analytical results demonstrated that the primary test objectives, along with a dozen supporting

  8. Global Ocean Circulation Modeling with an Isopycnic Coordinate Model. Final Report for May 1, 1998 - April 30, 2002

    SciTech Connect (OSTI)

    Bleck, R.

    2004-05-19

    The overall aim of this project was to continue development of a global version of the Miami Isopycnic Coordinate Ocean Model (MICOM) with the intent of turning it into a full-fledged oceanic component of an earth system model.

  9. Wave Power Demonstration Project at Reedsport, Oregon

    SciTech Connect (OSTI)

    Mekhiche, Mike; Downie, Bruce

    2013-10-21

    Ocean wave power can be a significant source of large‐scale, renewable energy for the US electrical grid. The Electrical Power Research Institute (EPRI) conservatively estimated that 20% of all US electricity could be generated by wave energy. Ocean Power Technologies, Inc. (OPT), with funding from private sources and the US Navy, developed the PowerBuoy to generate renewable energy from the readily available power in ocean waves. OPT's PowerBuoy converts the energy in ocean waves to electricity using the rise and fall of waves to move the buoy up and down (mechanical stroking) which drives an electric generator. This electricity is then conditioned and transmitted ashore as high‐voltage power via underwater cable. OPT's wave power generation system includes sophisticated techniques to automatically tune the system for efficient conversion of random wave energy into low cost green electricity, for disconnecting the system in large waves for hardware safety and protection, and for automatically restoring operation when wave conditions normalize. As the first utility scale wave power project in the US, the Wave Power Demonstration Project at Reedsport, OR, will consist of 10 PowerBuoys located 2.5 miles off the coast. This U.S. Department of Energy Grant funding along with funding from PNGC Power, an Oregon‐based electric power cooperative, was utilized for the design completion, fabrication, assembly and factory testing of the first PowerBuoy for the Reedsport project. At this time, the design and fabrication of this first PowerBuoy and factory testing of the power take‐off subsystem are complete; additionally the power take‐off subsystem has been successfully integrated into the spar.

  10. Flexible ocean upwelling pipe

    DOE Patents [OSTI]

    Person, Abraham

    1980-01-01

    In an ocean thermal energy conversion facility, a cold water riser pipe is releasably supported at its upper end by the hull of the floating facility. The pipe is substantially vertical and has its lower end far below the hull above the ocean floor. The pipe is defined essentially entirely of a material which has a modulus of elasticity substantially less than that of steel, e.g., high density polyethylene, so that the pipe is flexible and compliant to rather than resistant to applied bending moments. The position of the lower end of the pipe relative to the hull is stabilized by a weight suspended below the lower end of the pipe on a flexible line. The pipe, apart from the weight, is positively buoyant. If support of the upper end of the pipe is released, the pipe sinks to the ocean floor, but is not damaged as the length of the line between the pipe and the weight is sufficient to allow the buoyant pipe to come to a stop within the line length after the weight contacts the ocean floor, and thereafter to float submerged above the ocean floor while moored to the ocean floor by the weight. The upper end of the pipe, while supported by the hull, communicates to a sump in the hull in which the water level is maintained below the ambient water level. The sump volume is sufficient to keep the pipe full during heaving of the hull, thereby preventing collapse of the pipe.