Powered by Deep Web Technologies
Note: This page contains sample records for the topic "ocean resources solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Ocean Energy Resource Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Hydrogen & Fuel Cells Hydropower Ocean Ocean Thermal Energy Conversion Tidal Energy Wave Energy Ocean Resources Solar Wind Homes & Buildings Industry Vehicles & Fuels...

2

Solar Resource Assessment  

SciTech Connect (OSTI)

This report covers the solar resource assessment aspects of the Renewable Systems Interconnection study. The status of solar resource assessment in the United States is described, and summaries of the availability of modeled data sets are provided.

Renne, D.; George, R.; Wilcox, S.; Stoffel, T.; Myers, D.; Heimiller, D.

2008-02-01T23:59:59.000Z

3

Sandia National Laboratories: Solar Resource Assessment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tagged with: Energy * photovoltaic * Photovoltaics * PV * Renewable Energy * solar * Solar Energy * Solar Research * Solar Resource Assessment Comments are closed. Renewable...

4

Hydropower and Ocean Energy Resources and Technologies  

Broader source: Energy.gov [DOE]

This page provides a brief overview of hydropower and ocean energy resources and technologies supplemented by specific information to apply these technologies within the Federal sector.

5

Solar Energy Resource Center | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy Resource Center Solar Energy Resource Center The SunShot Initiative's Solar Energy Resource Center contains work developed by DOE, national laboratories and SunShot...

6

Solar Energy Resource Center | Department of Energy  

Office of Environmental Management (EM)

Solar Energy Resource Center Solar Energy Resource Center Sub Program Topic Resource Search Results Title Date Author SubProgram Topic Description...

7

SunShot Initiative: Solar Resource Assessment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solar Resource Assessment to Solar Resource Assessment to someone by E-mail Share SunShot Initiative: Solar Resource Assessment on Facebook Tweet about SunShot Initiative: Solar Resource Assessment on Twitter Bookmark SunShot Initiative: Solar Resource Assessment on Google Bookmark SunShot Initiative: Solar Resource Assessment on Delicious Rank SunShot Initiative: Solar Resource Assessment on Digg Find More places to share SunShot Initiative: Solar Resource Assessment on AddThis.com... Concentrating Solar Power Photovoltaics Systems Integration Research, Development, & Demonstration Distribution Grid Integration Transmission Grid Integration Solar Resource Assessment Technology Validation Power Electronics & Balance of System Hardware Technologies Competitive Awards Balance of Systems

8

ANALYSIS OF THE CALIFORNIA SOLAR RESOURCE  

E-Print Network [OSTI]

SECTION ANALYSIS OF THE CALIFORNIA SOLAR RESOURCE' Volume 1:Analysis of the California Solar Resource is a three-volumeUC-62 ANALYSIS OF THE CALIFORNIA SOLAR RESOURCE VOLUME 1:

Berdahl, P.

2011-01-01T23:59:59.000Z

9

NREL: Learning - Student Resources on Solar Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solar Energy The following resources can provide you with more information on solar energy. Solar Energy Technology Basics U.S. Department of Energy Office of Energy Efficiency &...

10

Federal Energy Management Program: Hydropower and Ocean Energy Resources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydropower and Hydropower and Ocean Energy Resources and Technologies to someone by E-mail Share Federal Energy Management Program: Hydropower and Ocean Energy Resources and Technologies on Facebook Tweet about Federal Energy Management Program: Hydropower and Ocean Energy Resources and Technologies on Twitter Bookmark Federal Energy Management Program: Hydropower and Ocean Energy Resources and Technologies on Google Bookmark Federal Energy Management Program: Hydropower and Ocean Energy Resources and Technologies on Delicious Rank Federal Energy Management Program: Hydropower and Ocean Energy Resources and Technologies on Digg Find More places to share Federal Energy Management Program: Hydropower and Ocean Energy Resources and Technologies on AddThis.com... Energy-Efficient Products

11

Solar Energy Resource Center | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Resource Center Solar Energy Resource Center Sub Program Topic Resource Search Results Title Date Author SubProgram Topic Description...

12

8.01 - Generating Electrical Power from Ocean Resources  

Science Journals Connector (OSTI)

Abstract Ocean energy resources derived from wind, waves, tidal or marine currents can be utilized and converted to large scale sustainable electrical power. Conversion technologies are easily adaptable and can be integrated within the current utility infrastructure. However, ocean energy has many forms - tides, surface waves, ocean circulation, salinity, and thermal gradients. The focus of this chapter is dedicated to two of these, namely waves and tidal energy. The first are the result of wind-driven waves derived ultimately from solar energy and the latter represents those found in tidal or marine currents, driven by gravitational effects. This chapter also gives an analysis of the current state of art of generating electricity from wave and tidal currents (termed ocean energy). Section 8.01.1 provides an overview of ocean wave and marine current energy conversion with more emphasis on the latter; Sections 8.01.2, 8.01.3, 8.01.4, and 8.01.5 address respectively the history of wave energy, wave resource assessment, wave device development, and air turbines; and Section 8.01.6 gives a review of the economics of ocean energy as applied to wave and tidal energy conversion technologies.

A.S. Bahaj

2012-01-01T23:59:59.000Z

13

NextEra Energy Resources, LLC (Genesis Solar) | Department of...  

Energy Savers [EERE]

NextEra Energy Resources, LLC (Genesis Solar) NextEra Energy Resources, LLC (Genesis Solar) NextEra Energy Resources, LLC (Genesis Solar) Location: Riverside County, CA...

14

Solar Energy Resources for Homebuilders | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Solar Energy Resources for Homebuilders Solar Energy Resources for Homebuilders Solar Energy Resources for Homebuilders Across the country more homebuilders are realizing that...

15

Solar Resource and PV Systems Performance  

E-Print Network [OSTI]

Solar Resource and PV Systems Performance at Selected Test Sites Prepared for the U.S. Department Subtask 11.1 Deliverables 2 and 4: Report on Solar Resource and PV Systems Performance at Selected Test agency thereof. #12;1 Solar Resource and PV Systems Performance at Selected Test Sites Contents 1

16

Solar Energy Resource Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Solar Energy Resource Basics Solar Energy Resource Basics Solar Energy Resource Basics August 21, 2013 - 11:40am Addthis Solar radiation, often called the solar resource, is a general term for the electromagnetic radiation emitted by the sun. Solar radiation can be captured and turned into useful forms of energy, such as heat and electricity, using a variety of technologies. However, the technical feasibility and economical operation of these technologies at a specific location depends on the available solar resource. Basic Principles Every location on Earth receives sunlight at least part of the year. The amount of solar radiation that reaches any one spot on the Earth's surface varies according to: Geographic location Time of day Season Local landscape Local weather. Because the Earth is round, the sun strikes the surface at different

17

Hydropower and Ocean Energy Resources and Technologies | Department of  

Broader source: Energy.gov (indexed) [DOE]

Hydropower and Ocean Energy Resources and Technologies Hydropower and Ocean Energy Resources and Technologies Hydropower and Ocean Energy Resources and Technologies October 7, 2013 - 9:29am Addthis Photo of water flowing from several openings in a hydropower dam. Hydropower produces 10% of the nation's energy, including power from the Ice Harbor Dam in Burbank, Washington. This page provides a brief overview of hydropower and ocean energy resources and technologies supplemented by specific information to apply these technologies within the Federal sector. Overview Hydropower has been used for centuries to power machinery, but the application most commonly associated with hydropower is electricity production through dams. Ocean energy refers to various forms of renewable energy harnessed from the ocean. There are two primary types of ocean energy: mechanical and thermal.

18

Workplan and Annex: Solar Resource Knowledge Management  

SciTech Connect (OSTI)

''Solar Resource Knowledge Management'' will be a new task under the International Energy Agency's Solar Heating and Cooling Programme. The task development has involved researchers from Germany, France, Switzerland, Spain, Portugal, Italy, Canada, the U.S. that have been engaged in the use of satellite imagery to develop solar resource maps and datasets around the world. The task will address three major areas: (1) ''Benchmarking'' of satellite-based solar resource methods so that resource information derived from approaches developed in one country or based on a specific satellite can be quantitatively intercompared with methods from other countries using different satellites, as well as with ground data; (2) Data archiving and dissemination procedures, especially focusing on access to the data by end users; and (3) basic R&D for improving the reliability and usability of the data, and for examining new types of products important to the solar industry, such as solar resource forecasts.

Renne, D.

2005-01-01T23:59:59.000Z

19

Type F: Oceanic-ridge, Basaltic Resource | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Type F: Oceanic-ridge, Basaltic Resource Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Type F: Oceanic-ridge, Basaltic Resource Dictionary.png Type F: Oceanic-ridge, Basaltic Resource: No definition has been provided for this term. Add a Definition Brophy Occurrence Models This classification scheme was developed by Brophy, as reported in Updating the Classification of Geothermal Resources.[1] Type A: Magma-heated, Dry Steam Resource Type B: Andesitic Volcanic Resource Type C: Caldera Resource Type D: Sedimentary-hosted, Volcanic-related Resource Type E: Extensional Tectonic, Fault-Controlled Resource

20

Sandia National Laboratories: Solar Energy Forecasting and Resource...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy, Modeling & Analysis, News, News & Events, Partnership, Photovoltaic, Renewable Energy, Solar, Systems Analysis The book, Solar Energy Forecasting and Resource...

Note: This page contains sample records for the topic "ocean resources solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Foundational Solar Resource Research (Poster)  

SciTech Connect (OSTI)

SunShot Initiative awardee posters describing the different technologies within the four subprograms of the DOE Solar Program (Photovoltaics, Concentrating Solar Power, Soft Costs, and Systems Integration).

Orwig, K.; Wilcox, S.; Sengupta, M.; Habte, A.; Anderberg, M.; Stoffel, T.

2012-07-01T23:59:59.000Z

22

Federal Energy Management Program: Solar Energy Resources and Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solar Energy Solar Energy Resources and Technologies to someone by E-mail Share Federal Energy Management Program: Solar Energy Resources and Technologies on Facebook Tweet about Federal Energy Management Program: Solar Energy Resources and Technologies on Twitter Bookmark Federal Energy Management Program: Solar Energy Resources and Technologies on Google Bookmark Federal Energy Management Program: Solar Energy Resources and Technologies on Delicious Rank Federal Energy Management Program: Solar Energy Resources and Technologies on Digg Find More places to share Federal Energy Management Program: Solar Energy Resources and Technologies on AddThis.com... Energy-Efficient Products Technology Deployment Renewable Energy Federal Requirements Renewable Resources & Technologies

23

Other Solar Resources from the Federal Government | Department...  

Energy Savers [EERE]

Other Solar Resources from the Federal Government Other Solar Resources from the Federal Government Department of the Interior Bureau of Land Management logo The multiple-use...

24

India Solar Resource Data: Enhanced Data for Accelerated Deployment...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

India Solar Resource Data Enhanced Data for Accelerated Deployment Identifying potential locations for solar photovoltaic (PV) and concentrating solar power (CSP) projects requires...

25

Federal Energy Management Program: Solar Ventilation Preheating Resources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solar Ventilation Solar Ventilation Preheating Resources and Technologies to someone by E-mail Share Federal Energy Management Program: Solar Ventilation Preheating Resources and Technologies on Facebook Tweet about Federal Energy Management Program: Solar Ventilation Preheating Resources and Technologies on Twitter Bookmark Federal Energy Management Program: Solar Ventilation Preheating Resources and Technologies on Google Bookmark Federal Energy Management Program: Solar Ventilation Preheating Resources and Technologies on Delicious Rank Federal Energy Management Program: Solar Ventilation Preheating Resources and Technologies on Digg Find More places to share Federal Energy Management Program: Solar Ventilation Preheating Resources and Technologies on AddThis.com... Energy-Efficient Products

26

NREL: International Activities - India Solar Resource Maps  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

International Activities International Activities Search More Search Options Site Map Printable Version UPDATED India Solar Resource Maps This page provides 10-kilometer (km) solar resource maps and data for India. The 10-km hourly solar resource data were developed using weather satellite (METEOSAT) measurements incorporated into a site-time specific solar modeling approach developed at the U.S. State University of New York at Albany. The data is made publicly available in geographic information system (GIS) format and as static maps below. The hourly data can also be downloaded for specific locations from NREL's Renewable Resource Data Center. The new maps and data were released in June 2013. The new data expands the time period of analysis from 2002-2007 to 2002-2011 and incorporates

27

Maritime support for ocean-resources development. Final report  

SciTech Connect (OSTI)

The issues associated with ocean development to determine their implication for the US maritime industry have been examined. The examination embraced ocean energy systems, offshore oil and gas activities, food from the sea, deep seabed mining, and the use of ocean space. The requirements that ocean-resource development places on the maritime industry do not show sharp differences from one resource to the next. While the technological base on which the means of recovery and use of the resources can be built and deployed has been developed, more scientific work and technological development are needed. However, it is the committee's opinion that the true factors pacing the effort to bring many of the resources into use and to achieve the many benefits are of an economic, legal, and public-policy nature.

Not Available

1981-06-01T23:59:59.000Z

28

Analysis of the California Solar Resource--Volume 3: Appendices  

E-Print Network [OSTI]

6782, ANALYSIS OF THE CALIFORNIA SOLAR RESOURCE Volume 3:Analysis of the California Solar Resource is a three-volume~). Table F-2. of California's solar data statiQns Period of

erdahl, P.

2011-01-01T23:59:59.000Z

29

NREL's FY09 CSP Resource Assessment Plans: Solar Resource Assessment Workshop  

SciTech Connect (OSTI)

Solar Resource Assessment Workshop, Denver CO, Oct 29, 2008 presentation: NREL's FY09 CSP Resource Assessment Plans

Renne, D.

2008-10-29T23:59:59.000Z

30

Solar Energy Resources and Technologies  

Broader source: Energy.gov [DOE]

Solar energy provides electricity, heating, and cooling for Federal facilities through four primary technology types. The four technologies are broken into two categories; technologies for electricity production and thermal energy technologies.

31

Solar Resource and Forecasting QuestionnaireSolar Resource and Forecasting QuestionnaireSolar Resource and Forecasting QuestionnaireSolar Resource and Forecasting Questionnaire As someone who is familiar with solar energy issues, we hope that you will tak  

E-Print Network [OSTI]

is familiar with solar energy issues, we hope that you will take a few moments to answer this short survey on your needs for information on solar energy resources and forecasting. This survey is conducted with the California Solar Energy Collaborative (CSEC) and the California Solar Initiative (CSI) our objective

Islam, M. Saif

32

SWERA/Solar Resource Information | Open Energy Information  

Open Energy Info (EERE)

Resource Information Resource Information < SWERA Jump to: navigation, search SWERA logo.png Solar and Wind Energy Resource Assessment (SWERA) Interactive Web PortalPowered by OpenEI Getting Started Data Sets Analysis Tools About SWERA Solar Resource Information SWERA solar products provide information on the solar resource at a specific location that is available for use by solar technologies. These products include maps and data of available solar resource, as well as documentation on the methodology employed to generate these solar resource estimates. The data products and resource maps are derived from models and satellite and global weather observations and do not contain site-specific measurement information. SWERA solar products are classified by the radiation components they describe. Applicability of the different

33

Federal Energy Management Program: Solar Hot Water Resources and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solar Hot Water Solar Hot Water Resources and Technologies to someone by E-mail Share Federal Energy Management Program: Solar Hot Water Resources and Technologies on Facebook Tweet about Federal Energy Management Program: Solar Hot Water Resources and Technologies on Twitter Bookmark Federal Energy Management Program: Solar Hot Water Resources and Technologies on Google Bookmark Federal Energy Management Program: Solar Hot Water Resources and Technologies on Delicious Rank Federal Energy Management Program: Solar Hot Water Resources and Technologies on Digg Find More places to share Federal Energy Management Program: Solar Hot Water Resources and Technologies on AddThis.com... Energy-Efficient Products Technology Deployment Renewable Energy Federal Requirements Renewable Resources & Technologies

34

Solar and Wind Energy Resource Assessment (SWERA)  

Open Energy Info (EERE)

Wiki Page Wiki Page Solar and Wind Energy Resource Assessment A United Nations Environment Programme facilitated effort. Getting Started Data Sets Analysis Tools About SWERA Loading.. Country Name Analyze Layer Data in OpenCarto View Country Profile in OpenEI Latitude Longitude Homer XML Get HOMER Data What am I seeing? This visualization shows international solar DNI, wind and climate resources. Click on one of the layer buttons below to view the resource layer. For more detailed information on each country, select the country by clicking it on the map below and then select 'View in OpenCarto' or 'View Country Page in OpenEI' to explore more data for that country. For HOMER, select a point to populate the latitude/longitude or provide your own, then press the button to send this information to HOMER.

35

DOE Solar Decathlon: 2007 Technical Resources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

This photo offers a birds-eye view of a two-part house. On the roof of the house's rectangular core shimmers a pool of water. To the right of the pool slants a row of windows over the house's open living space. The rooftop pond reflects light back into the open space. Visitors to the Solar Decathlon can be seen entering the house and in the background. This photo offers a birds-eye view of a two-part house. On the roof of the house's rectangular core shimmers a pool of water. To the right of the pool slants a row of windows over the house's open living space. The rooftop pond reflects light back into the open space. Visitors to the Solar Decathlon can be seen entering the house and in the background. The 2007 Solar Decathlon New York Institute of Technology house features a rooftop pond for the house's geothermal heat pump, rather than a traditional underground source, which can't be used on the National Mall. Solar Decathlon 2007 Technical Resources From journal entries, final scores, and a summary of media hits, to technology innovations and house drawings, the 2007 Solar Decathlon technical resources posted on this page provide insight and guidance to the

36

Ocean Shores, Washington: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Ocean Shores, Washington: Energy Resources Ocean Shores, Washington: Energy Resources (Redirected from Ocean Shores, WA) Jump to: navigation, search Equivalent URI DBpedia Coordinates 46.9736986°, -124.1562852° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.9736986,"lon":-124.1562852,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

37

Solar and Wind Energy Resource Assessment Programme's Renewable Energy  

Open Energy Info (EERE)

Solar and Wind Energy Resource Assessment Programme's Renewable Energy Solar and Wind Energy Resource Assessment Programme's Renewable Energy Resource Explorer Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Solar and Wind Energy Resource Assessment Programme's Renewable Energy Resource Explorer Focus Area: Solar Topics: Opportunity Assessment & Screening Website: en.openei.org/apps/SWERA/ Equivalent URI: cleanenergysolutions.org/content/solar-and-wind-energy-resource-assess Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance The Solar and Wind Energy Resource Assessment (SWERA) programme's Renewable Energy Resource Explorer (RREX) is a Web-based map viewer that displays data from SWERA, the United Nations Environment Programme (UNEP) renewable resource assessment program. The viewer allows users to select any location

38

Resource Letter SE?2: Solar Energy  

Science Journals Connector (OSTI)

This resource letter provides a source of information about the main types of solar energy and their uses updating Resource Letter SE?1 issued seven years ago. It is intended for the use of high school and college teachers both in developing courses and in guiding students to the literature of solar energy applications. Articles marked with an asterisk have been selected for publication in an accompanying reprint book. The letter E after the reference number denotes a relatively elementary item useful for high school and introductory college use and the educated public; the letter I denotes intermediate level references sophomore to senior level; and the letter A denotes advanced material principally for senior and graduate?level courses.

Laurent Hodges

1982-01-01T23:59:59.000Z

39

Mapping and Assessment of the United States Ocean Wave Energy Resource  

Broader source: Energy.gov [DOE]

This report describes the analysis and results of a rigorous assessment of the United States ocean wave energy resource.

40

NREL: Learning - Student Resources on Solar Hot Water  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solar Hot Water Solar Hot Water Photo of a school building next to a pond. Roy Lee Walker Elementary School in Texas incorporates many renewable energy design features, including solar hot water heating. The following resources will help you learn more about solar water heating systems. If you are unfamiliar with this technology, see the introduction to solar hot water. Grades 7-12 NREL Educational Resources Educational resources available to students from the National Renewable Energy Laboratory. High School and College Level U.S. Department of Energy's Energy Savers: Solar Water Heaters Features comprehensive basic information and resources. U.S. Department of Energy's Energy Savers: Solar Swimming Pool Heaters Features comprehensive basic information and resources. U.S. Department of Energy Solar Decathlon

Note: This page contains sample records for the topic "ocean resources solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Characterization of the Solar Power Resource in Europe and  

E-Print Network [OSTI]

;1 Characterization of the Solar Power Resource in Europe and Assessing Benefits of Co-Location with Wind Power Europe from a companion assessment, we assess the benefits of co-location of solar and wind powerCharacterization of the Solar Power Resource in Europe and Assessing Benefits of Co

42

Federal Energy Management Program: Solar Energy Resources and Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solar Energy Resources and Technologies Solar Energy Resources and Technologies Photo of a square, tracking, standalone photovoltaic array stands in front of a tree and body of water. The Environmental Protection Agency uses this photovoltaic array as part of its Manchester Laboratory Solar Project. Solar energy provides electricity, heating, and cooling for Federal facilities through four primary technology types. The four technologies are broken into two categories; technologies for electricity production and thermal energy technologies. The following pages provide a brief overview of each solar energy technology supplemented by specific information to apply solar energy within the Federal sector. Technologies for electricity production include: Photovoltaics Concentrating Solar Power Thermal energy technologies include:

43

Estimating the potential of ocean wave power resources  

Science Journals Connector (OSTI)

The realistic assessment of an ocean wave energy resource that can be converted to an electrical power at various offshore sites depends upon many factors, and these include estimating the resource recognizing the random nature of the site-specific wave field, and optimizing the power conversion from particular wave energy conversion devices. In order to better account for the uncertainty in wave power resource estimates, conditional probability distribution functions of wave power in a given sea-state are derived. Theoretical expressions for the deep and shallow water limits are derived and the role of spectral width is studied. The theoretical model estimates were compared with the statistics obtained from the wave-by-wave analysis of JONSWAP based ocean wave time-series. It was shown that the narrow-band approximation is appropriate when the variability due to wave period is negligible. The application of the short-term models in evaluating the long-term wave power resource at a site was illustrated using wave data measured off the California coast. The final example illustrates the procedure for incorporating the local wave data and the sea-state model together with a wave energy device to obtain an estimate of the potential wave energy that could be converted into a usable energy resource.

Amir H. Izadparast; John M. Niedzwecki

2011-01-01T23:59:59.000Z

44

Characterization of the solar light field within the ocean mesopelagic zone based on radiative transfer simulations  

E-Print Network [OSTI]

Characterization of the solar light field within the ocean mesopelagic zone based on radiative t The solar light field within the ocean from the sea surface to the bottom of the mesopelagic zone there is sufficient amount of solar light to support the process of photosynthesis, and below by the aphotic

Stramski, Dariusz

45

Sustainable Energy Resources for Consumers (SERC)- Solar Photovoltaics  

Broader source: Energy.gov [DOE]

This presentation, aimed at Sustainable Energy Resources for Consumers (SERC) grantees, provides information on Monitoring Checklists for the installation of Solar Photovoltaics.

46

Solar Resource Measurements in 1400 JR Lynch Street, Jackson...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solar Resource Measurements in 1400 JR Lynch Street, Jackson, Mississippi Cooperative Research and Development Final Report CRADA Number: CRD-07-254 NREL Technical Contact: Tom...

47

2007 Survey of Energy Resources World Energy Council 2007 Ocean Thermal Energy Conversion COUNTRY NOTES  

E-Print Network [OSTI]

2007 Survey of Energy Resources World Energy Council 2007 Ocean Thermal Energy Conversion 573 and personal communication. Valuable inputs were provided by Don Lennard of Ocean Thermal Energy Conversion in the technology. #12;2007 Survey of Energy Resources World Energy Council 2007 Ocean Thermal Energy Conversion 574

48

Solar Technology Acceleration Center (SolarTAC): Solar Resource & Meteorological Assessment Project (SOLRMAP); Aurora, Colorado (Data)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Located in Colorado, near Denver International Airport, SolarTAC is a private, member-based, 74-acre outdoor facility where the solar industry tests, validates, and demonstrates advanced solar technologies. SolarTAC was launched in 2008 by a public-private consortium, including Midwest Research Institute (MRI). As a supporting member of SolarTAC, the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) has established a high quality solar and meteorological measurement station at this location. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

Wilcox, S.; Andreas, A.

49

Solar Technology Acceleration Center (SolarTAC): Solar Resource & Meteorological Assessment Project (SOLRMAP); Aurora, Colorado (Data)  

SciTech Connect (OSTI)

Located in Colorado, near Denver International Airport, SolarTAC is a private, member-based, 74-acre outdoor facility where the solar industry tests, validates, and demonstrates advanced solar technologies. SolarTAC was launched in 2008 by a public-private consortium, including Midwest Research Institute (MRI). As a supporting member of SolarTAC, the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) has established a high quality solar and meteorological measurement station at this location. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

Wilcox, S.; Andreas, A.

2011-02-11T23:59:59.000Z

50

NREL: Concentrating Solar Power Research - Data and Resources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Data and Resources Data and Resources For concentrating solar power technologies, NREL features the following online solar radiation resource data and solar resource maps, as well as data for renewable energy power plants. Also see TroughNet's data and resources specifically for parabolic trough technology. Concentrating Solar Power Projects around the World NREL, in conjunction with SolarPACES (Solar Power and Chemical Energy Systems), maintains a database of CSP projects around the world with plants that are either operational, under construction, or under development. CSP technologies include parabolic trough, linear Fresnel reflector, power tower, and dish/engine systems. Each project profile includes background information, a listing of project participants, and data on the power-plant

51

NREL Webinar: Treatment of Solar Generation in Electric Utility Resource  

Broader source: Energy.gov (indexed) [DOE]

NREL Webinar: Treatment of Solar Generation in Electric Utility NREL Webinar: Treatment of Solar Generation in Electric Utility Resource Planning NREL Webinar: Treatment of Solar Generation in Electric Utility Resource Planning January 14, 2014 2:00PM to 3:00PM EST Online Today's utility planners have a different market and economic context than their predecessors, including planning for the growth of renewable energy. State and federal support policies, solar photovoltaic (PV) price declines, and the introduction of new business models for solar PV "ownership" are leading to increasing interest in solar technologies, especially PV. In this free webinar, you will hear how utilities are incorporating solar generation into their resource planning processes. Analysts from the National Renewable Energy Laboratory (NREL) and the Solar Electric Power

52

Solar Hot Water Resources and Technologies | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Solar Hot Water Resources and Technologies Solar Hot Water Resources and Technologies Solar Hot Water Resources and Technologies October 7, 2013 - 11:49am Addthis Photo of a standalone solar hot water system standing in front of a clothesline with a backdrop of evergreen trees. This solar hot water system tracks sunlight using a standalone, single-axis mount to optimize hot water production for residential applications. This page provides a brief overview of solar hot water (SHW) technologies supplemented by specific information to apply SHW within the Federal sector. Overview Although a large variety of solar hot water systems exist, the basic technology is simple. A collector absorbs and transfers heat from the sun to water, which is stored in a tank until needed. Active solar heating systems use circulating pumps and controls. These are more expensive but

53

Preliminary Geospatial Analysis of Arctic Ocean Hydrocarbon Resources  

SciTech Connect (OSTI)

Ice coverage of the Arctic Ocean is predicted to become thinner and to cover less area with time. The combination of more ice-free waters for exploration and navigation, along with increasing demand for hydrocarbons and improvements in technologies for the discovery and exploitation of new hydrocarbon resources have focused attention on the hydrocarbon potential of the Arctic Basin and its margins. The purpose of this document is to 1) summarize results of a review of published hydrocarbon resources in the Arctic, including both conventional oil and gas and methane hydrates and 2) develop a set of digital maps of the hydrocarbon potential of the Arctic Ocean. These maps can be combined with predictions of ice-free areas to enable estimates of the likely regions and sequence of hydrocarbon production development in the Arctic. In this report, conventional oil and gas resources are explicitly linked with potential gas hydrate resources. This has not been attempted previously and is particularly powerful as the likelihood of gas production from marine gas hydrates increases. Available or planned infrastructure, such as pipelines, combined with the geospatial distribution of hydrocarbons is a very strong determinant of the temporal-spatial development of Arctic hydrocarbon resources. Significant unknowns decrease the certainty of predictions for development of hydrocarbon resources. These include: 1) Areas in the Russian Arctic that are poorly mapped, 2) Disputed ownership: primarily the Lomonosov Ridge, 3) Lack of detailed information on gas hydrate distribution, and 4) Technical risk associated with the ability to extract methane gas from gas hydrates. Logistics may control areas of exploration more than hydrocarbon potential. Accessibility, established ownership, and leasing of exploration blocks may trump quality of source rock, reservoir, and size of target. With this in mind, the main areas that are likely to be explored first are the Bering Strait and Chukchi Sea, in spite of the fact that these areas do not have highest potential for future hydrocarbon reserves. Opportunities for improving the mapping and assessment of Arctic hydrocarbon resources include: 1) Refining hydrocarbon potential on a basin-by-basin basis, 2) Developing more realistic and detailed distribution of gas hydrate, and 3) Assessing the likely future scenarios for development of infrastructure and their interaction with hydrocarbon potential. It would also be useful to develop a more sophisticated approach to merging conventional and gas hydrate resource potential that considers the technical uncertainty associated with exploitation of gas hydrate resources. Taken together, additional work in these areas could significantly improve our understanding of the exploitation of Arctic hydrocarbons as ice-free areas increase in the future.

Long, Philip E.; Wurstner, Signe K.; Sullivan, E. C.; Schaef, Herbert T.; Bradley, Donald J.

2008-10-01T23:59:59.000Z

54

High Resolution Solar Energy Resource Assessment within the UNEP Project  

Open Energy Info (EERE)

High Resolution Solar Energy Resource Assessment within the UNEP Project High Resolution Solar Energy Resource Assessment within the UNEP Project SWERA Dataset Summary Description (Abstract): To expand the world wide use of renewable energy a consistent, reliable, verifiable, and easily accessible database of solar energy resources is needed. Within the UNEP (United Nations Environment Programme) Project SWERA (Solar and Wind Energy Resource Assessment, http://swera.unep.net), funded by GEF (Global Environment Facility), a global database of solar and wind energy resources will be set up. SWERA will provide, beside the wind products, global horizontal irradiance, which is mostly used to plan photovoltaic systems, and direct normal irradiance, which is needed for solar concentrating systems. For selected countries throughout the world, additionally high resolution data will be produced which is required to plan solar energy systems in detail. Within SWERA, the partners DLR, SUNY and INPE calculate solar irradiance with high temporal resolution of 1 hour and with a spatial resolution of 10km x 10km. By processing data from geostationary satellites we provide solar irradiance data for Cuba, El Salvador, Honduras, Nicaragua, Guatemala, Brazil, Ghana, Ethiopia, Kenya, China, Sri Lanka, Nepal, and Bangladesh. In this paper we describe the ongoing work of developing this high resolution solar irradiance tx_metadatatool and cross-checking of the used solar irradiance algorithms for various satellite data.

55

Solar Resource Characterization; Session: Modeling and Analysis (Presentation)  

SciTech Connect (OSTI)

This project supports the Solar America Initiative by: (1) meeting increasing demands for expertise in and products on solar radiation data and models--production and distribution of reliable, accurate domestic and international solar resource data, benchmarking and cross-comparison of solar irradiance models; and coordination with the international community (IEA/SHC Task 36, WMO); (2) reducing data uncertainties and increasing temporal and spatial data resolutions; (3) developing and testing short term solar resource forecasts; (4) evaluating methods for producing long term data sets from short term observations; and (5) conducting measurement activities at selected sites.

Renne, D.

2008-04-01T23:59:59.000Z

56

Solar Energy Resources and Technologies | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Solar Energy Resources and Technologies Solar Energy Resources and Technologies Solar Energy Resources and Technologies October 7, 2013 - 9:21am Addthis Photo of a square, tracking, standalone photovoltaic array stands in front of a tree and body of water. The Environmental Protection Agency uses this photovoltaic array as part of its Manchester Laboratory Solar Project. Solar energy provides electricity, heating, and cooling for Federal facilities through four primary technology types. The four technologies are broken into two categories; technologies for electricity production and thermal energy technologies. The following pages provide a brief overview of each solar energy technology supplemented by specific information to apply solar energy within the Federal sector. Technologies for electricity production include:

57

Concentrating Solar Power Resources and Technologies | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Concentrating Solar Power Resources and Technologies Concentrating Solar Power Resources and Technologies Concentrating Solar Power Resources and Technologies October 7, 2013 - 11:47am Addthis Photo of a CSP dish glistening in the sun. Multiple solar mirrors reflect sunlight onto a collector. CSP systems concentrate solar heat onto a collector, which powers a turbine to generate electricity. This page provides a brief overview of concentrating solar power (CSP) technologies supplemented by specific information to apply CSP within the Federal sector. Overview Concentrating solar power technologies produce electricity by concentrating the sun's energy using reflective devices, such as troughs or mirror panels, to reflect sunlight onto a receiver. The resulting high-temperature heat is used to power a conventional turbine to produce electricity.

58

Solar and Wind Energy Resource Assessment (SWERA) | Open Energy Information  

Open Energy Info (EERE)

Energy Resource Assessment (SWERA) Energy Resource Assessment (SWERA) Jump to: navigation, search SWERA logo.png Solar and Wind Energy Resource Assessment (SWERA) Interactive Web PortalPowered by OpenEI Getting Started Data Sets Analysis Tools About SWERA Tool Summary LAUNCH TOOL Name: Solar and Wind Energy Resource Assessment Agency/Company /Organization: United Nations Environment Programme Partner: National Renewable Energy Laboratory, German Aerospace Center (DLR), Risoe National Laboratory for Sustainable Energy, Brazil's National Institute for Space Research (INPE), State University of New York (SUNY), Technical University of Denmark (DTU), United Nations Environment Programme (UNEP), National Aeronautics and Space Administration, Global Environment Facility (GEF) Sector: Energy Focus Area: Solar, Wind

59

Solar Resource Assessment: Databases, Measurements, Models, and Information Sources (Fact Sheet)  

SciTech Connect (OSTI)

Fact sheet for Solar Resource Assessment Workshop, Denver CO, Oct 29, 2008: ?Solar Resource Assessment Databases, Measurements, Models, and Information Sources

Not Available

2008-10-01T23:59:59.000Z

60

NREL: Photovoltaics Research - Updated Solar Resource Maps Available for  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Updated Solar Resource Maps Available for India Updated Solar Resource Maps Available for India July 15, 2013 Through funding from the U.S. Department of Energy and U.S. Department of State, and in collaboration with India's Ministry of New and Renewable Energy, NREL has updated its 10-kilometer (km) solar resource maps for India. The new maps incorporate updated 10-km hourly solar resource data developed using weather satellite measurements combined with site-time specific solar modeling. Additionally, the maps expand the time of analysis by four years, from 2002-2007 to 2002-2011 and include enhanced aerosols information to improve estimates of direct normal irradiance. The data is available in both geographic information system and static map formats on NREL's website for both global horizontal irradiance and

Note: This page contains sample records for the topic "ocean resources solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Voluntary Solar Resource Development Fund | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Voluntary Solar Resource Development Fund Voluntary Solar Resource Development Fund Voluntary Solar Resource Development Fund < Back Eligibility Commercial Nonprofit Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Commercial Heating & Cooling Heating Water Heating Program Info State Virginia Program Type Public Benefits Fund Provider Virginia Division of Energy In April 2011, the Virginia legislature created the Voluntary Solar Resource Development Fund. The fund is administered by the Department of Mines, Minerals and Energy (DMME). All utilities are required to provide a link on their web site to the DMME web site, where customers can make contributions to the fund. Utilities must also provide opportunities for customers to donate through their paper newsletters, emails or bills.

62

NREL: Technology Deployment - Updated Solar Resource Maps Available for  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Updated Solar Resource Maps Available for India Updated Solar Resource Maps Available for India July 15, 2013 Through funding from the U.S. Department of Energy and U.S. Department of State, and in collaboration with India's Ministry of New and Renewable Energy, NREL has updated its 10-kilometer (km) solar resource maps for India. The new maps incorporate updated 10-km hourly solar resource data developed using weather satellite measurements combined with site-time specific solar modeling. Additionally, the maps expand the time of analysis by four years, from 2002-2007 to 2002-2011 and include enhanced aerosols information to improve estimates of direct normal irradiance. The data is available in both geographic information system and static map formats on NREL's website for both global horizontal irradiance and

63

Hydropower and Ocean Energy Resources and Technologies | Department...  

Energy Savers [EERE]

Several people are photographed standing on the barge. The Ocean Thermal Energy Conversion project at Hawaii's Natural Energy Lab was one of the first successful thermal ocean...

64

Solar Resource Assessment for Sri Lanka and Maldives  

SciTech Connect (OSTI)

The countries of Sri Lanka and the Maldives lie within the equatorial belt, a region where substantial solar energy resources exist throughout much of the year in adequate quantities for many applications, including solar water heating, solar electricity, and desalination. The extent of solar resources in Sri Lanka has been estimated in the past based on a study of the daily total direct sunshine hours recorded at a number of weather and agricultural stations throughout the country. These data have been applied to the well-known Angstrom relationship in order to obtain an estimate of the distribution of monthly average daily total solar resources at these stations. This study is an effort in improve on these estimates in two ways: (1) to apply a gridded cloud cover database at a 40-km resolution to produce updated monthly average daily total estimates of all solar resources (global horizontal, DNI, and diffuse) for the country, and (2) to input hourly or three-hourly cloud cover observations made at nine weather stations in Sri Lanka and two in the Maldives into a solar model that produces estimates of hourly solar radiation values of the direct normal, global, and diffuse resource covering the length of the observational period. Details and results of these studies are summarized in this report.

Renne, D.; George, R.; Marion, B.; Heimiller, D.; Gueymard, C.

2003-08-01T23:59:59.000Z

65

Using Satellite Ocean Color Data to Derive an Empirical Model for the Penetration Depth of Solar Radiation (Hp) in the Tropical Pacific Ocean  

E-Print Network [OSTI]

Radiation (Hp) in the Tropical Pacific Ocean RONG-HUA ZHANG State Key Laboratory of Satellite OceanUsing Satellite Ocean Color Data to Derive an Empirical Model for the Penetration Depth of Solar Environment Dynamics, Second Institute of Oceanography, State Oceanic Administration, Hangzhou, Zhejiang

Chen, .Dake

66

Potential for Development of Solar and Wind Resource in Bhutan  

SciTech Connect (OSTI)

With support from the U.S. Agency for International Development (USAID), the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) produced maps and data of the wind and solar resources in Bhutan. The solar resource data show that Bhutan has an adequate resource for flat-plate collectors, with annual average values of global horizontal solar radiation ranging from 4.0 to 5.5 kWh/m2-day (4.0 to 5.5 peak sun hours per day). The information provided in this report may be of use to energy planners in Bhutan involved in developing energy policy or planning wind and solar projects, and to energy analysts around the world interested in gaining an understanding of Bhutan's wind and solar energy potential.

Gilman, P.; Cowlin, S.; Heimiller, D.

2009-09-01T23:59:59.000Z

67

Property:NumberOfSolarResources | Open Energy Information  

Open Energy Info (EERE)

NumberOfSolarResources NumberOfSolarResources Jump to: navigation, search This is a property of type Number. Pages using the property "NumberOfSolarResources" Showing 25 pages using this property. (previous 25) (next 25) A Afghanistan + 1 + Albania + 0 + Algeria + 1 + Andorra + 0 + Angola + 0 + Anguilla + 0 + Antigua and Barbuda + 0 + Argentina + 2 + Armenia + 0 + Aruba + 0 + Australia + 0 + Austria + 0 + Azerbaijan + 0 + B Bahamas + 0 + Bahrain + 0 + Bangladesh + 0 + Barbados + 0 + Belarus + 0 + Belgium + 0 + Belize + 0 + Benin + 0 + Bermuda + 0 + Bhutan + 2 + Bolivia + 0 + Bosnia and Herzegovina + 0 + (previous 25) (next 25) Retrieved from "http://en.openei.org/w/index.php?title=Property:NumberOfSolarResources&oldid=313617#SMWResults" What links here

68

Treatment of Solar Generation in Electric Utility Resource Planning  

SciTech Connect (OSTI)

Today's utility planners have a different market and economic context than their predecessors, including planning for the growth of renewable energy. State and federal support policies, solar photovoltaic (PV) price declines, and the introduction of new business models for solar PV 'ownership' are leading to increasing interest in solar technologies (especially PV); however, solar introduces myriad new variables into the utility resource planning decision. Most, but not all, utility planners have less experience analyzing solar than conventional generation as part of capacity planning, portfolio evaluation, and resource procurement decisions. To begin to build this knowledge, utility staff expressed interest in one effort: utility exchanges regarding data, methods, challenges, and solutions for incorporating solar in the planning process. Through interviews and a questionnaire, this report aims to begin this exchange of information and capture utility-provided information about: 1) how various utilities approach long-range resource planning; 2) methods and tools utilities use to conduct resource planning; and, 3) how solar technologies are considered in the resource planning process.

Sterling, J.; McLaren, J.; Taylor, M.; Cory, K.

2013-10-01T23:59:59.000Z

69

NREL: TroughNet - Parabolic Trough Technology Solar Resource Data and Tools  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solar Resource Data and Tools Solar Resource Data and Tools Here you'll find resources on solar radiation data and tools for siting parabolic trough power plants. This includes solar radiation data for power plants in the United States and worldwide. You'll also find resources for direct solar radiation instrumentation. For an overview on solar resource terms and direct beam radiation used for concentrating solar power technologies, see NREL's Shining On Web site. U.S. Solar Radiation Resource Data The following resources include maps, and hourly metrological and solar resource data for parabolic trough power plants sites in the United States. NREL Concentrating Solar Power Resource Maps Features direct normal solar radiation maps of the southwestern United States, including state maps for Arizona, California, Colorado, New Mexico,

70

Concentrating Solar Power Resources and Technologies  

Broader source: Energy.gov [DOE]

This page provides a brief overview of concentrating solar power (CSP) technologies supplemented by specific information to apply CSP within the Federal sector.

71

Solar Ventilation Preheating Resources and Technologies  

Broader source: Energy.gov [DOE]

This page provides a brief overview of solar ventilation preheating (SVP) technologies supplemented by specific information to apply SVP within the Federal sector.

72

Solar Hot Water Resources and Technologies  

Broader source: Energy.gov [DOE]

This page provides a brief overview of solar hot water (SHW) technologies supplemented by specific information to apply SHW within the Federal sector.

73

Documentation of high resolution solar resource assessment for Sri Lanka  

Open Energy Info (EERE)

Sri Lanka Sri Lanka provided by DLR Dataset Summary Description (Abstract): Documentation of the satellite-based high resolution solar resource assessment for Sri Lanka provided by DLR. The high resolution solar data (10kmx10km) provide country maps of the annual and monthly sums of hourly global horizontal and direct normal irradiance (GHI and DNI) for the year 2000, 2002 and 2003. Additionally, for selected sites hourly values of GHI and DNI are provided.The Documentation gives an overview about the used input data and used methodology, shows example maps and describes a comparison with ground data (if provided by the country) (Purpose): The data are helpful for the assessment of the solar potential of the country and can give project developer a first impression of the solar resource of the country. For the selected sites, the hourly time series can be used for the simulation of Photovoltaic (PV)-systems or Concentrating Solar Power (CSP)-systems.

74

Treatment of Solar Generation in Electric Utility Resource Planning (Presentation)  

SciTech Connect (OSTI)

Today's utility planners have a different market and economic context than their predecessors, including planning for the growth of renewable energy. Through interviews and a questionnaire, the authors gathered information on utility supply planning and how solar is represented. Utilities were asked to provide their resource planning process details, key assumptions (e.g. whether DG is represented as supply or negative load), modeling methodology (e.g. type of risk analytics and candidate portfolio development), capacity expansion and production simulation model software, and solar project representation (project size, capacity value and integration cost adder). This presentation aims to begin the exchange of information between utilities, regulators and other stakeholders by capturing utility-provided information about: 1) how various utilities approach long-range resource planning; 2) methods and tools utilities use to conduct resource planning; and, 3) how solar technologies are considered in the resource planning process.

Cory, K.; Sterling, J.; Taylor, M.; McLaren, J.

2014-01-01T23:59:59.000Z

75

Solar Resource Modelling for Energy Applications  

Science Journals Connector (OSTI)

Solar energy is the main driver of natural processes on the Earth surface. It is an important input parameter into environmental, ecological and risksimulation models as the energy budget at the land surface a...

Marcel ri; Thomas Huld; Ewan D. Dunlop; Jaroslav Hofierka

2007-01-01T23:59:59.000Z

76

Solar Energy Resource Assessment of the Geba Catchment, Northern Ethiopia  

Science Journals Connector (OSTI)

Abstract The global shift towards renewable energy is manifested in developing countries such as Ethiopia primarily because of continuous economic growth in the last two decades and secondly due to the vast untapped potential resources. In addition to other factors, the lack of accurate data of the resources has, however, hampered the development of solar energy technologies. The aim of this paper is to investigate the resource estimation by undertaking direct measurements at selected sites in the Northern part of Ethiopia. This paper presents an assessment of the solar energy resource based on the primary data collected between January 2011 and December 2012. The daily and monthly average global solar radiation is analyzed based on the 10minute interval measurement retrieved from the data loggers. From the analysis it is seen that the measured values give a better accuracy and distribution of the global solar radiation than earlier Fig.s that were based on satellite images and model calculations. Furthermore, these results can be used to determine the solar resource potential of Northern Ethiopia for further energy development.

Anwar Mustefa Mahmud; Mulu Bayray Kahsay; Asfafaw Hailesilasie; Ftwi Yohaness Hagos; Petros Gebray; Hailay Kiros Kelele; Kindeya Gebrehiwot; Hans Bauer; Seppe Deckers; Josse De Baerdemaeker; Johan Driesen

2014-01-01T23:59:59.000Z

77

Solar Resources By Class Per Country | OpenEI  

Open Energy Info (EERE)

Resources By Class Per Country Resources By Class Per Country Dataset Summary Description These estimates are derived from the best available solar resource datasets available to NREL by country. These vary in spatial resolution from 1 km to 1 degree (approximately 100 km) depending on the data source. High spatial resolution datasets (1 km to 40 km cells) were modeled to support country or regional projects. Where high resolution datasets were not available, data from NASA's Surface Meteorology and Solar Energy (SSE) version 6 database were used. The data represents total potential solar energy per year as a function of land area per solar class (KWh/m²/day). Each solar class correlates to a specific 0.5 kWh/m²/day range. Energy is calculated by multiplying the productive land by the class, conversion efficiency and number of days per year. In this case, a standard calendar year of 365 days was used. The conversion efficiency rate applied was 10%. (E = Productive Land * kWh/m²/day * 365 days * 10% efficiency). The solar data has been derived from solar data measured or modeled between 1961 and 2008, depending on the dataset.

78

Solar and Wind Resource Assessments for Afghanistan and Pakistan  

SciTech Connect (OSTI)

The U.S. National Renewable Energy Laboratory (NREL) has recently completed the production of high-resolution wind and solar energy resource maps and related data products for Afghanistan and Pakistan. The resource data have been incorporated into a geospatial toolkit (GsT), which allows the user to manipulate the resource information along with country-specific geospatial information such as highway networks, power facilities, transmission corridors, protected land areas, etc. The toolkit allows users to then transfer resource data for specific locations into NREL's micropower optimization model known as HOMER.

Renne, D. S.; Kelly, M.; Elliott, D.; George, R.; Scott, G.; Haymes, S.; Heimiller, D.; Milbrandt, A.; Cowlin, S.; Gilman, P.; Perez, R.

2007-01-01T23:59:59.000Z

79

Memorandum of Understanding On Weather-Dependent and Oceanic Renewable Energy Resources  

Broader source: Energy.gov [DOE]

Memorandum of Understanding (MOU) On Weather-Dependent and Oceanic Renewable Energy Resources between the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy and the U.S. Department of Commerce, National Oceanic and Atmospheric Administration

80

Documentation of high resolution solar resource assessment (10km) for  

Open Energy Info (EERE)

for for Ethiopia provided by DLR Dataset Summary Description (Abstract): Documentation of the satellite-based high resolution solar resource assessment for Ethiopia provided by DLR. The high resolution solar data (10kmx10km) provide country maps of the annual and monthly sums of hourly global horizontal and direct normal irradiance (GHI and DNI) for the year 2000, 2001 and 2002. Additionally, for selected sites hourly values of GHI and DNI are provided.The Documentation gives an overview about the used input data and used methodology, shows example maps and describes a comparison with ground data (if provided by the country) (Purpose): The data are helpful for the assessment of the solar potential of the country and can give project developer a first impression of the solar resource of the country. For the selected

Note: This page contains sample records for the topic "ocean resources solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Documentation of high resolution solar resource assessment for Ghana  

Open Energy Info (EERE)

Ghana Ghana provided by DLR Dataset Summary Description (Abstract): Documentation of the satellite-based high resolution solar resource assessment for Ghana provided by DLR. The high resolution solar data (10kmx10km) provide country maps of the annual and monthly sums of hourly global horizontal and direct normal irradiance (GHI and DNI) for the year 2000, 2001 and 2002. Additionally, for selected sites hourly values of GHI and DNI are provided.The Documentation gives an overview about the used input data and used methodology, shows example maps and describes a comparison with ground data (if provided by the country) (Purpose): The data are helpful for the assessment of the solar potential of the country and can give projet developer a first impression of the solar resource of the country. For the selected

82

Solar and Wind Energy Resource Assessment (SWERA) | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Solar and Wind Energy Resource Assessment (SWERA) (Redirected from SWERA) Jump to: navigation, search SWERA logo.png Solar and Wind Energy Resource Assessment (SWERA) Interactive Web PortalPowered by OpenEI Getting Started Data Sets Analysis Tools About SWERA Tool Summary LAUNCH TOOL Name: Solar and Wind Energy Resource Assessment Agency/Company /Organization: United Nations Environment Programme Partner: National Renewable Energy Laboratory, German Aerospace Center (DLR), Risoe National Laboratory for Sustainable Energy, Brazil's National Institute for Space Research (INPE), State University of New York (SUNY), Technical University of Denmark (DTU), United Nations Environment Programme (UNEP), National Aeronautics and Space Administration, Global Environment Facility (GEF)

83

The feasibility of creating private property rights in ocean fisheries resources  

E-Print Network [OSTI]

THE FEASIBILITY OF CREATING PRIVATE PPOPERTY RIGHTS IN OCEAN FISHERIES RESOURCES A Thesis by Gordon Mathews Euler Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requiremerts for the degree of MASTER... OF SCIENCE December 1976 Major Subject: Management THE I EASIGILITY OF CREATING PRIVATE PROPERTY RIGHTS IN OCEAN FISHERIES RESOURCES A Thesis by Gordon Mathews Euler Approved as to style and content by: ' (Chairman of Co, ittee) ( (Head...

Euler, Gordon Mathews

1976-01-01T23:59:59.000Z

84

Resource Letter SE?1: Solar energy  

Science Journals Connector (OSTI)

Prepared at the request of the AAPT Editorial Board for Resource Letters. This is one of a series of Resource Letters on different topics intended to guide college physicists astronomers and other scientists to some of the literature and other teaching aids that may help improve course contents in specified fields. No Resource Letter is meant to be exhaustive and complete; in time there may be more than one letter on some of the main subjects of interest. Comments on these materials as well as suggestions for future topics will be welcomed. Please send such communications to Professor Aaron Owens Editor Resource Letter Board Department of Physics Lake Forest College Lake Forest IL 60045.

D. K. McDaniels; M. J. Throop

1976-01-01T23:59:59.000Z

85

GroSolar formerly Global Resource Options Inc | Open Energy Information  

Open Energy Info (EERE)

GroSolar formerly Global Resource Options Inc GroSolar formerly Global Resource Options Inc Jump to: navigation, search Name groSolar (formerly Global Resource Options Inc) Place Vermont Zip VT 05001 Sector Solar Product A solar integration firm that designs, distributes, and installs solar electric, hot water and air systems in the USA. References groSolar (formerly Global Resource Options Inc)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. groSolar (formerly Global Resource Options Inc) is a company located in Vermont . References ↑ "groSolar (formerly Global Resource Options Inc)" Retrieved from "http://en.openei.org/w/index.php?title=GroSolar_formerly_Global_Resource_Options_Inc&oldid=346141

86

Solar Resource & Meteorological Assessment Project (SOLRMAP): Observed Atmospheric and Solar Information System (OASIS); Tucson, Arizona (Data)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

Wilcox, S.; Andreas, A.

87

Alternative Water Resources for Utility-scale Solar Energy Development  

Science Journals Connector (OSTI)

Abstract Electricity generated from solar energy continues to increase throughout the United States, and several states in the southwestern United States are interested in the development of utility-scale solar energy to meet their established renewable energy portfolios. Water use by utility-scale solar facilities can be quite significant for some technologies, however, which is problematic considering that the best location for solar energy developmentthe southwestern United Statestends to be an arid environment. The goal of this study was to examine the feasibility of using alternative water resources (reclaimed wastewater and produced water in this study) to meet water demands for utility-scale solar energy development, focusing specifically on Solar Energy Zones (SEZs) and Competitive Renewable Energy Zones (CREZs). Our results indicate that, on average, 100% of the projected demand for water at most \\{SEZs\\} and \\{CREZs\\} could be met by reclaimed wastewater if photovoltaics (PV) are installed. If concentrating solar power (CSP) is installed, fewer \\{SEZs\\} could meet their potential water demand from alternative sources. Only 10 of the \\{CREZs\\} were located near sources of produced water, but of those, 100% of the water demand at the CREZ was met in 8 cases, regardless of the technology installed. Overall, the results from this analysis indicate that alternative waters can play a prominent role in meeting water demand at solar zones in the arid southwest.

D.J. Murphy; B.L. OConnor; D.T. Mayhorn; L.I. Almer; E.E. Bowen; E.M. White; C. Kim

2014-01-01T23:59:59.000Z

88

An assessment of the solar resource for Durban, South Africa  

Science Journals Connector (OSTI)

Renewable energys role as an alternative to fossil-based power is growing in the developing world. The city of Durban, South Africa, is an example of a rapidly expanding urban center which can benefit from the implementation of solar energy technologies. This paper presents a year-long data record of the solar flux intensity for the city of Durban (2958?N 3055?E). Global horizontal irradiance (Gt), direct normal irradiance (GDN), diffuse horizontal irradiance (Gd) and daily average clearness index (KT) are used. The data were recorded at the Solar Thermal Applications Research Laboratory (STARlab) at Mangosuthu University of Technology. Ground-based measurements obtained from \\{STARlab\\} are compared with data from a variety of sources including NASAs SSE database and the literature. The aim of this study is to build a reliable record of the solar resource for urban planning, engineering design and effective operation of solar energy systems and applications. Results show that Durban has a considerable solar energy resource, which remains to be exploited.

E. Zawilska; M.J. Brooks

2011-01-01T23:59:59.000Z

89

Treatment of Solar Generation in Electric Utility Resource Planning  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Treatment of Solar Generation Treatment of Solar Generation in Electric Utility Resource Planning John Sterling Solar Electric Power Association Joyce McLaren National Renewable Energy Laboratory Mike Taylor Solar Electric Power Association Karlynn Cory National Renewable Energy Laboratory Technical Report NREL/TP-6A20-60047 October 2013 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Contract No. DE-AC36-08GO28308 National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401 303-275-3000 * www.nrel.gov

90

NREL GIS Data: Alaska Low Resolution Concentrating Solar Power Resource |  

Open Energy Info (EERE)

Alaska Low Resolution Concentrating Solar Power Resource Alaska Low Resolution Concentrating Solar Power Resource Dataset Summary Description Abstract: Monthly and annual average solar resource potential for Alaska. Purpose: Provide information on the solar resource potential for Alaska. The insolation values represent the average solar energy available to a flat plate collector, such as a photovoltaic panel, oriented due south at an angle from horizontal equal to the latitude of the collector location. Supplemental_Information: This data provides monthly average and annual average daily total solar resource averaged over surface cells of approximatley 40 km by 40 km in size. This data was developed from the Climatological Solar Radiation (CSR) Model. The CSR model was developed by the National Renewable Energy Laboratory for the U.S. Department of Energy. Specific information about this model can be found in Maxwell, George and Wilcox (1998) and George and Maxwell (1999). This model uses information on cloud cover, atmostpheric water vapor and trace gases, and the amount of aerosols in the atmosphere to calculate the monthly average daily total insolation (sun and sky) falling on a horizontal surface. The cloud cover data used as input to the CSR model are an 7-year histogram (1985-1991) of monthly average cloud fraction provided for grid cells of approximately 40km x 40km in size. Thus, the spatial resolution of the CSR model output is defined by this database. The data are obtained from the National Climatic Data Center in Ashville, North Carolina, and were developed from the U.S. Air Force Real Time Nephanalysis (RTNEPH) program. Atmospheric water vapor, trace gases, and aerosols are derived from a variety of sources. The procedures for converting the collector at latitude tilt are described in Marion and Wilcox (1994). Where possible, existing ground measurement stations are used to validate the data. Nevertheless, there is uncertainty associated with the meterological input to the model, since some of the input parameters are not avalible at a 40km resolution. As a result, it is believed that the modeled values are accurate to approximately 10% of a true measured value within the grid cell. Due to terrain effects and other micoclimate influences, the local cloud cover can vary significantly even within a single grid cell. Furthermore, the uncertainty of the modeled estimates increase with distance from reliable measurement sources and with the complexity of the terrain. Units are in watt hours.

91

NREL GIS Data: Hawaii Low Resolution Concentrating Solar Power Resource |  

Open Energy Info (EERE)

Low Resolution Concentrating Solar Power Resource Low Resolution Concentrating Solar Power Resource Dataset Summary Description Abstract: Monthly and annual average solar resource potential for Hawaii. Purpose: Provide information on the solar resource potential for Hawaii. The insolation values represent the average solar energy available to a flat plate collector, such as a photovoltaic panel, oriented due south at an angle from horizontal equal to the latitude of the collector location. Supplemental_Information: This data provides monthly average and annual average daily total solar resource averaged over surface cells of approximately 40 km by 40 km in size. This data was developed from the Climatological Solar Radiation (CSR) Model. The CSR model was developed by the National Renewable Energy Laboratory for the U.S. Department of Energy. Specific information about this model can be found in Maxwell, George and Wilcox (1998) and George and Maxwell (1999). This model uses information on cloud cover, atmostpheric water vapor and trace gases, and the amount of aerosols in the atmosphere to calculate the monthly average daily total insolation (sun and sky) falling on a horizontal surface. The cloud cover data used as input to the CSR model are an 7-year histogram (1985-1991) of monthly average cloud fraction provided for grid cells of approximately 40km x 40km in size. Thus, the spatial resolution of the CSR model output is defined by this database. The data are obtained from the National Climatic Data Center in Ashville, North Carolina, and were developed from the U.S. Air Force Real Time Nephanalysis (RTNEPH) program. Atmospheric water vapor, trace gases, and aerosols are derived from a variety of sources. The procedures for converting the collector at latitude tilt are described in Marion and Wilcox (1994). Where possible, existing ground measurement stations are used to validate the data. Nevertheless, there is uncertainty associated with the meterological input to the model, since some of the input parameters are not avalible at a 40km resolution. As a result, it is believed that the modeled values are accurate to approximately 10% of a true measured value within the grid cell. Due to terrain effects and other micoclimate influences, the local cloud cover can vary significantly even within a single grid cell. Furthermore, the uncertainty of the modeled estimates increase with distance from reliable measurement sources and with the complexity of the terrain.

92

Concentrating Solar Power: Best Practices Handbook for the Collection and Use of Solar Resource Data (CSP)  

SciTech Connect (OSTI)

As the world looks for low-carbon sources of energy, solar power stands out as the most abundant energy resource. Harnessing this energy is the challenge for this century. Photovoltaics and concentrating solar power (CSP) are two primary forms of electricity generation using sunlight. These use different technologies, collect different fractions of the solar resource, and have different siting and production capabilities. Although PV systems are most often deployed as distributed generation sources, CSP systems favor large, centrally located systems. Accordingly, large CSP systems require a substantial investment, sometimes exceeding $1 billion in construction costs. Before such a project is undertaken, the best possible information about the quality and reliability of the fuel source must be made available. That is, project developers need to have reliable data about the solar resource available at specific locations to predict the daily and annual performance of a proposed CSP plant. Without these data, no financial analysis is possible. This handbook presents detailed information about solar resource data and the resulting data products needed for each stage of the project.

Stoffel, T.; Renne, D.; Myers, D.; Wilcox, S.; Sengupta, M.; George, R.; Turchi, C.

2010-09-01T23:59:59.000Z

93

Kauai, Hawaii: Solar Resource Analysis and High Penetration PV Potential  

SciTech Connect (OSTI)

Overview of the solar resource assessment conducted by the National Renewable Energy Laboratory (NREL) in cooperation with Kauai Island Utility Cooperative (KIUC) in Hawaii to determine the technical feasibility of increasing the contribution of solar renewable energy generation on the island of Kauaii through the use of photovoltaic (PV) arrays. The analysis, which was performed using a custom version of NREL's In My Back Yard (IMBY) software tool, showed that there is potential to generate enough energy to cover the peak load as reported for Kauai in 2007.

Helm, C.; Burman, K.

2010-04-01T23:59:59.000Z

94

Mapping and Assessment of the United States Ocean Wave Energy Resource  

Open Energy Info (EERE)

TECHNICAL REPORT TECHNICAL REPORT Mapping and Assessment of the United States Ocean Wave Energy Resource EPRI Project Manager P. Jacobson 3420 Hillview Avenue Palo Alto, CA 94304-1338 USA PO Box 10412 Palo Alto, CA 94303-0813 USA 800.313.3774 650.855.2121 askepri@epri.com 1024637 www.epri.com Final Report, December 2011 Mapping and Assessment of the United States Ocean Wave Energy Resource DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITIES THIS DOCUMENT WAS PREPARED BY THE ORGANIZATION(S) NAMED BELOW AS AN ACCOUNT OF WORK SPONSORED OR COSPONSORED BY THE ELECTRIC POWER RESEARCH INSTITUTE, INC. (EPRI).

95

U.S. Department of Energy Workshop Report: Solar Resources and Forecasting  

SciTech Connect (OSTI)

This report summarizes the technical presentations, outlines the core research recommendations, and augments the information of the Solar Resources and Forecasting Workshop held June 20-22, 2011, in Golden, Colorado. The workshop brought together notable specialists in atmospheric science, solar resource assessment, solar energy conversion, and various stakeholders from industry and academia to review recent developments and provide input for planning future research in solar resource characterization, including measurement, modeling, and forecasting.

Stoffel, T.

2012-06-01T23:59:59.000Z

96

The state of solar energy resource assessment in Chile  

Science Journals Connector (OSTI)

The Chilean government has determined that a renewable energy quota of up to 10% of the electrical energy generated must be met by 2024. This plan has already sparked interest in wind, geothermal, hydro and biomass power plants in order to introduce renewable energy systems to the country. Solar energy is being considered only for demonstration, small-scale CSP plants and for domestic water heating applications. This apparent lack of interest in solar energy is partly due to the absence of a valid solar energy database, adequate for energy system simulation and planning activities. One of the available solar radiation databases is 2040 years old, with measurements taken by pyranographs and CampbellStokes devices. A second database from the Chilean Meteorological Service is composed by pyranometer readings, sparsely distributed along the country and available from 1988, with a number of these stations operating intermittently. The Chilean government through its National Energy Commission (CNE) has contracted the formulation of a simulation model and also the deployment of network of measurement stations in northern Chile. Recent efforts by the authors have resulted in a preliminary assessment by satellite image processing. Here, we compare the existing databases of solar radiation in Chile. Monthly mean solar energy maps are created from ground measurements and satellite estimations and compared. It is found that significant deviation exists between sources, and that all ground-station measurements display unknown uncertainty levels, thus highlighting the need for a proper, country-wide long-term resource assessment initiative. However, the solar energy levels throughout the countrycan be considered as high, and it is thought that they are adequate for energy planning activities although not yet for proper power plant design and dimensioning.

Alberto Ortega; Rodrigo Escobar; Sergio Colle; Samuel Luna de Abreu

2010-01-01T23:59:59.000Z

97

Ocean Energy Technology Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Ocean Energy Technology Basics Ocean Energy Technology Basics Ocean Energy Technology Basics August 16, 2013 - 4:18pm Addthis Text Version Photo of low waves in the ocean. A dock is visible in the background. Oceans cover more than 70% of the Earth's surface. As the world's largest solar collectors, oceans contain thermal energy from the sun and produce mechanical energy from tides and waves. Even though the sun affects all ocean activity, the gravitational pull of the moon primarily drives tides, and wind powers ocean waves. Learn more about: Ocean Thermal Energy Conversion Tidal Energy Wave Energy Ocean Resources Addthis Related Articles Energy Department Releases New Energy 101 Video on Ocean Power A map generated by Georgia Tech's tidal energy resource database shows mean current speed of tidal streams. The East Coast, as shown above, has strong tides that could be tapped to produce energy. | Photo courtesy of Georgia Institute of Technology

98

Solar Energy: As the Cost of This Resource Becomes More Competitive With  

E-Print Network [OSTI]

Solar Energy: As the Cost of This Resource Becomes More Competitive With Other Renewable Resources, Applications to Construct New Solar Power Plants Should Increase January 2008 Report 2007-119 C A L I F O R N I audit report concerning the siting and permitting of large solar power plants--those of at least 50

99

DOE Solar Decathlon: Educational Resources for Building Professionals  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Building Professionals Building Professionals The U.S. Department of Energy Solar Decathlon provides educational opportunities for building professionals of all disciplines. Visiting the Solar Decathlon, touring the team houses, and participating in Building Industry Day are great ways to learn about new building technologies and techniques. Until the next event, you can learn more about renewable energy and energy-efficiency topics for building professionals by exploring the links below. EERE Building Technologies Program The Department of Energy Office of Energy Efficiency and Renewable Energy's (EERE's) Building Technologies Program funds research and technology development to reduce commercial and residential building energy use. Its website offers a variety of programs, tools, and resources for building

100

Ocean City, New Jersey: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

City, New Jersey: Energy Resources City, New Jersey: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.2776156°, -74.5746001° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.2776156,"lon":-74.5746001,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "ocean resources solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Ocean Gate, New Jersey: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Gate, New Jersey: Energy Resources Gate, New Jersey: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.926785°, -74.1337496° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.926785,"lon":-74.1337496,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

102

Ocean Ridge, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Ridge, Florida: Energy Resources Ridge, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 26.5270157°, -80.0483747° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.5270157,"lon":-80.0483747,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

103

Ocean Beach, New York: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Beach, New York: Energy Resources Beach, New York: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.6467664°, -73.1570589° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.6467664,"lon":-73.1570589,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

104

Ocean Bluff-Brant Rock, Massachusetts: Energy Resources | Open Energy  

Open Energy Info (EERE)

Bluff-Brant Rock, Massachusetts: Energy Resources Bluff-Brant Rock, Massachusetts: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.1080418°, -70.6633175° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.1080418,"lon":-70.6633175,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

105

Ocean Acres, New Jersey: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Acres, New Jersey: Energy Resources Acres, New Jersey: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.7434529°, -74.2809757° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.7434529,"lon":-74.2809757,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

106

The Relative Importance of Clouds and Sea Ice for the Solar Energy Budget of the Southern Ocean  

Science Journals Connector (OSTI)

The effects of clouds and sea ice on the solar radiation budget are determined for the Southern Ocean around Antarctica between latitudes 50 and 80S. Distributions of cloud optical depth are used, together with distributions of surface albedo, ...

Melanie F. Fitzpatrick; Stephen G. Warren

2007-03-01T23:59:59.000Z

107

Chapter 1.12: Solar Radiation Resource Assessment for Renewable Energy Conversion  

SciTech Connect (OSTI)

This chapter addresses measurements, modeling, and databases of solar energy potential that may serve as fuel for solar energy conversion systems. Developing innovative designs for capturing and converting solar radiation is only one part of the equation for solar system deployment. Identifying, locating, and prospecting for the appropriate quantity and quality of solar resources to fuel these systems is critical to system designers, investors, financial backers, utilities, governments, and owner/operators. This chapter addresses the fundamentals and state of the art for measuring, modeling, and applying solar radiation resource data to meet decision-making needs.

Myers, D. R.

2012-01-01T23:59:59.000Z

108

1.12 - Solar Radiation Resource Assessment for Renewable Energy Conversion  

Science Journals Connector (OSTI)

Abstract This chapter addresses measurements, modeling, and databases of solar energy potential that may serve as fuel for solar energy conversion systems. Developing innovative designs for capturing and converting solar radiation is only one part of the equation for solar system deployment. Identifying, locating, and prospecting for the appropriate quantity and quality of solar resources to fuel these systems is critical to system designers, investors, financial backers, utilities, governments, and owner/operators. This chapter addresses the fundamentals and state of the art for measuring, modeling, and applying solar radiation resource data to meet decision-making needs.

D.R. Myers

2012-01-01T23:59:59.000Z

109

Assessment of wind and solar energy resources in Batna, Algeria  

Science Journals Connector (OSTI)

Due to several climate changes caused by greenhouse gas and to the increasing need for clean energies, scientists drew attention to renewable energy sources, which are the most suitable solution in the future. Sparsely populated and flat open terrains observed in Batna region (North East of Algeria) and its semi-arid climate, make it a promising region for the development of solar and wind energies. In this article, we analyzed ten years of daily wind speed data in a remote area of Batna: Mustafa Ben Boulaid Airport. Wind power availability, as well as annual mean values of wind speed and power, were estimated. Frequency distribution of daily totals of wind speed data were counted and illustrated too. The results have been used to estimate net energy output of different wind turbines. This simulation shows a difference in wind generators production and allows us to choose the best wind turbine adapted to site conditions. Since solar and wind energy resources may be used to compensate each other, we evaluated also the solar potential of the same area.

Mounir Aksas; Amor Gama

2011-01-01T23:59:59.000Z

110

Mapping and Assessment of the United States Ocean Wave Energy Resource |  

Open Energy Info (EERE)

450 450 Varnish cache server Mapping and Assessment of the United States Ocean Wave Energy Resource Dataset Summary Description This project estimates the naturally available and technically recoverable U.S. wave energy resources, using a 51-month Wavewatch III hindcast database developed especially for this study by National Oceanographic and Atmospheric Administration's (NOAA's) National Centers for Environmental Prediction. For total resource estimation, wave power density in terms of kilowatts per meter is aggregated across a unit diameter circle. This approach is fully consistent with accepted global practice and includes the resource made available by the lateral transfer of wave energy along wave crests, which enables densities within a few kilometers of a linear array, even for fixed terminator devices.

111

India Solar Resource Data: Enhanced Data for Accelerated Deployment (Fact Sheet)  

SciTech Connect (OSTI)

Identifying potential locations for solar photovoltaic (PV) and concentrating solar power (CSP) projects requires an understanding of the underlying solar resource. Under a bilateral partnership between the United States and India - the U.S.-India Energy Dialogue - the National Renewable Energy Laboratory has updated Indian solar data and maps using data provided by the Ministry of New and Renewable Energy (MNRE) and the National Institute for Solar Energy (NISE). This fact sheet overviews the updated maps and data, which help identify high-quality solar energy projects. This can help accelerate the deployment of solar energy in India.

Not Available

2014-08-01T23:59:59.000Z

112

A limited assessment and characterization of the solar radiation energy resources in the Caribbean region  

SciTech Connect (OSTI)

The objective of our work was to produce a preliminary assessment and characterization of the Caribbean region (Barbados, Dominican Republic, Guatemala, Jamaica, and Panama) solar radiation energy resources. Such information will be used to estimate the performance of, and identify the most promising applications of, solar heat technologies in the Caribbean region. We expect the solar radiation resources in the Caribbean region to be very location specific. Sunny areas will have an annual direct-beam resource of about 3,000 kWhm/sup /minus 2// and a global solar radiation resource of about 2,500 kWhm/sup /minus 2//. Cloud-covered areas will have annual solar radiation resources of about 1,500 kWhm/sup /minus 2/ for both the direct-beam and the global solar radiation. Monthly levels of solar radiaion will vary markedly, ranging from an average of 9 to 3 kWhm/sup /minus 2//day/sup /minus 1// for the direct-beam and from an average of 7 to 4 kWhm/sup /minus 2//day/sup /minus 1// for the global solar radiation. The Caribbean region is comparable to the Great Plains region of the US, in terms of annual solar radiation resources; however, thorough ''prospecting'' is required to avoid areas having very low amounts of solar radiation.

Hulstrom, R.L.

1988-02-01T23:59:59.000Z

113

Impact of increased penetration of wind and PV solar resources on the  

E-Print Network [OSTI]

Impact of increased penetration of wind and PV solar resources on the bulk power system Vijay the impact of increased penetration of wind and solar resources on the bulk energy system (BES) · The BES Vittal Ira A. Fulton Chair Professor School of Electrical, Computer and Energy Engineering Arizona State

114

DOE Hydrogen Program Record 5011 - Hydrogen Potential from Solar and Wind Resources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DOE Hydrogen Program Record Record #: 5011 Date: December 15, 2005 Title: Hydrogen Potential from Solar and Wind Resources Items: - Data/resource maps indicate that the potential exists to use wind and solar resources to produce more than 15 times the amount of hydrogen needed to displace the petroleum used by light duty vehicles in 2040. - About one billion metric tons of hydrogen could be produced by renewable electrolysis annually, based upon solar and wind resource potential. - The other three solar pathways - thermochemical, photoelectrochemical, and photobiological - would have similar or possibly higher productivity per unit of land area. Data: Figure 1: Hydrogen Potential from Solar Resources Note: Map shows total kilograms of hydrogen per county, normalized by

115

Solar Radiation Resources Applications in Agriculture Based on GIS in Ningxia YanChi  

Science Journals Connector (OSTI)

In order to exploit solar energy resources, and improve agricultural production and, this paper make a analyses and calculation about the distribution of direct solar radiation in in Yanchi country of Ningxia by using the geographic information system(ViewGIS3.0). ... Keywords: direct solar radiation, agricultural meteorological, GIS, distribution pattern, YanChi

Wang ZhenHua; Yang JianYing

2011-03-01T23:59:59.000Z

116

Solar Energy Resources and Technologies | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

array as part of its Manchester Laboratory Solar Project. Solar energy provides electricity, heating, and cooling for Federal facilities through four primary technology types....

117

IIFET 2010 Montpellier Proceedings7 In the context of Ocean resource depletion and marine biodiversity erosion, most of initiatives  

E-Print Network [OSTI]

IIFET 2010 Montpellier Proceedings7 In the context of Ocean resource depletion and marine biodiversity erosion, most of initiatives focus on value chain promotion in addition and in combination : inside the Marine Protected Areas, strong constraints in terms of resources access and uses are imposed

Paris-Sud XI, Université de

118

Satellite-Based Solar Resource Data Sets for India 2002-2012  

SciTech Connect (OSTI)

A new 10-km hourly solar resource product was created for India. This product was created using satellite radiances from the Meteosat series of satellites. The product contains global horizontal irradiances (GHI) and direct normal irradiances (DNI) for the period from 2002 to 2011. An additional solar resource data set covering the period from January 2012 to June 2012 was created solely for validation because this period overlaps ground measurements that were made available from the Indian Ministry of New and Renewable Energy's (MNRE's) National Institute for Solar Energy for five stations that are part of MNRE's solar resource network. These measurements were quality checked using the SERI QC software and used to validate the satellite product. A comparison of the satellite product to the ground measurements for the five stations shows good agreement. This report also presents a comparison of the new version of solar resource data to the previous version, which covered the period from 2002 to 2008.

Sengupta, M.; Perez, R.; Gueymard, C.; Anderberg, M.; Gotseff, P.

2014-02-01T23:59:59.000Z

119

Improving the assessment of wave energy resources by means of coupled wave-ocean numerical modeling  

Science Journals Connector (OSTI)

Abstract Sea waves energy represents a renewable and sustainable energy resource, that nevertheless needs to be further investigated to make it more cost-effective and economically appealing. A key step in the process of Wave Energy Converters (WEC) deployment is the energy resource assessment at a sea site either measured or obtained through numerical model analysis. In these kind of studies, some approximations are often introduced, especially in the early stages of the process, viz. waves are assumed propagating in deep waters without underneath ocean currents. These aspects are discussed and evaluated in the Adriatic Sea and its northern part (Gulf of Venice) using locally observed and modeled wave data. In particular, to account for a state of the art treatment of the WaveCurrent Interaction (WCI) we have implemented the Simulating \\{WAves\\} Nearshore (SWAN) model and the Regional Ocean Modeling System (ROMS), fully coupled within the Coupled Ocean Atmosphere Wave Sediment Transport (COAWST) system. COAWST has been applied to a computational grid covering the whole Adriatic Sea and off-line nested to a high-resolution grid in the Gulf of Venice. A 15-year long wave data set collected at the oceanographic tower Acqua Alta, located approximately 15km off the Venice coast, has also been analyzed with the dual purpose of providing a reference to the model estimates and to locally assess the wave energy resource. By using COAWST, we have quantified for the first time to our best knowledge the importance of the WCI effect on wave power estimation. This can vary up to 30% neglecting the current effect. Results also suggest the Gulf of Venice as a suitable testing site for WECs, since it is characterized by periods of calm (optimal for safe installation and maintenance) alternating with severe storms, whose wave energy potentials are comparable to those ordinarily encountered in the energy production sites.

Francesco Barbariol; Alvise Benetazzo; Sandro Carniel; Mauro Sclavo

2013-01-01T23:59:59.000Z

120

Wind and Solar Resource Assessment of Sri Lanka and the Maldives (CD-ROM)  

SciTech Connect (OSTI)

The Wind and Solar Resource Assessment of Sri Lanka and the Maldives CD contains an electronic version of Wind Energy Resource Atlas of Sri Lanka and the Maldives (NREL/TP-500-34518), Solar Resource Assessment for Sri Lanka and the Maldives (NREL/TO-710-34645), Sri Lanka Wind Farm Analysis and Site Selection Assistance (NREL/SR-500-34646), GIS Data Viewer (software and data files with a readme file), and Hourly Solar and Typical Meteorological Year Data with a readme file.

Elliott, D.; Schwartz, M.; Scott, G.; Haymes, S.; Heimiller, D.; George, R.

2003-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "ocean resources solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Analysis of the California Solar Resource--Volume 3: Appendices  

E-Print Network [OSTI]

and well-maintained solar sensors for a number of years.Sensor Leads Level n/a n/a n/a S-an-F[aJic~sco, Contact for Station History: Solar

erdahl, P.

2011-01-01T23:59:59.000Z

122

Solar Resource & Meteorological Assessment Project (SOLRMAP): Southwest Solar Research Park (Formerly SolarCAT) Rotating Shadowband Radiometer (RSR); Phoenix, Arizona (Data)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

Wilcox, S.; Andreas, A.

123

Solar energy resource assessment in Mexican states along the Gulf of Mexico  

Science Journals Connector (OSTI)

Abstract The development of renewable energy has increased over the past few years due to the high cost of fossil fuels and our great dependence on them. Solar energy has been evaluated in the majority of developed countries. Mexico is known to possess large quantities of renewable energy resources, for example, approximately 6000MW of wind energy resources. Nevertheless, solar energy is not sufficiently developed in Mexico. In this work, the global solar resources in Mexican states along the Gulf of Mexico were assessed. The data used in the analysis were obtained from the Automatic Meteorological Stations (AMEs) of the National Meteorological Service of Mexico (NMS) every 10min over a period of 10 years, as well as from the Surface Meteorology and Solar Energy (SMSE) of the National Aeronautics and Space Administration (NASA) every month over 22 years. \\{AMEs\\} and SMSE validation data were compared to calculate their determination coefficient, R2, which was above 90%. A total of 13 maps generated by a Geographic Information System (GIS), one per month, and annually averaged global solar resources were used to determine the areas and the periods of the year with the greatest global solar energy resources. According to the results obtained in this study, the highest amount of solar energy, i.e., greater than 6.22kWh/m2/day, was registered on July in the state of Tamaulipas. Based on the average annual energy map, the southern region of Veracruz State registered the largest resource, i.e., greater than 5.03kWh/m2/day. From the foregoing analysis, the primary conclusion arrived at in the present work is that solar energy has significant potential for complementing energetic requirements in Mexican states along the Gulf of Mexico. It is recommended that the government adopt policies supporting and promoting the utilization of solar energy to maintain fossil fuel reserves and to reduce greenhouse gases.

Q. Hernndez-Escobedo; E. Rodrguez-Garca; R. Saldaa-Flores; A. Fernndez-Garca; F. Manzano-Agugliaro

2015-01-01T23:59:59.000Z

124

CHINA'S DUST AFFECTS SOLAR RESOURCE IN THE U.S.: A CASE STUDY Christian A. Gueymard Nels S. Laulainen  

E-Print Network [OSTI]

a significant im- pact. Concentrating systems such as parabolic troughs and solar tower plants utilize onlyCHINA'S DUST AFFECTS SOLAR RESOURCE IN THE U.S.: A CASE STUDY Christian A. Gueymard Nels S of how long- range aerosol transport may temporarily affect the U.S. solar resource. Broadband

Oregon, University of

125

Documentation of high resolution solar resource assessment (10km) for Kenya  

Open Energy Info (EERE)

Kenya Kenya provided by DLR Dataset Summary Description (Abstract): Documentation of the satellite-based high resolution solar resource assessment for Kenya provided by DLR. The high resolution solar data (10kmx10km) provide country maps of the annual and monthly sums of hourly global horizontal and direct normal irradiance (GHI and DNI) for the year 2000, 2001 and 2002. Additionally, for selected sites hourly values of GHI and DNI are provided.The Documentation gives an overview about the used input data and used methodology, shows example maps and describes a comparison with ground data (if provided by the country) (Purpose): The data are helpful for the assessment of the solar potential of the country and can give project developer a first impression of the solar resource of the country. For the selected sites, the hourly time series can be used for the simulation of Photovoltaic (PV)-systems or Concentrating Solar Power (CSP)-systems.

126

Documentation of high resolution solar resource assessment (10km) for Nepal  

Open Energy Info (EERE)

Nepal Nepal provided by DLR Dataset Summary Description (Abstract): Documentation of the satellite-based high resolution solar resource assessment for Nepal provided by DLR. The high resolution solar data (10kmx10km) provide country maps of the annual and monthly sums of hourly global horizontal and direct normal irradiance (GHI and DNI) for the year 2000, 2002 and 2003. Additionally, for selected sites hourly values of GHI and DNI are provided.The Documentation gives an overview about the used input data and used methodology, shows example maps and describes a comparison with ground data (if provided by the country) (Purpose): The data are helpful for the assessment of the solar potential of the country and can give project developer a first impression of the solar resource of the country. For the selected sites, the hourly time series can be used for the simulation of Photovoltaic (PV)-systems or Concentrating Solar Power (CSP)-systems.

127

Documentation of high resolution solar resource assessment (10km) for China  

Open Energy Info (EERE)

China China provided by DLR Dataset Summary Description (Abstract): Documentation of the satellite-based high resolution solar resource assessment for China provided by DLR. The high resolution solar data (10kmx10km) provide country maps of the annual and monthly sums of hourly global horizontal and direct normal irradiance (GHI and DNI) for the year 2000, 2002 and 2003. Additionally, for selected sites hourly values of GHI and DNI are provided.The Documentation gives an overview about the used input data and used methodology, shows example maps and describes a comparison with ground data (if provided by the country) (Purpose): The data are helpful for the assessment of the solar potential of the country and can give project developer a first impression of the solar resource of the country. For the selected sites, the hourly time series can be used for the simulation of Photovoltaic (PV)-systems or Concentrating Solar Power (CSP)-systems.

128

Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); Kalaeloa Oahu, Hawaii (Data)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

Wilcox, S.; Andreas, A.

129

Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); La Ola Lanai, Hawaii (Data)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

Wilcox, S.; Andreas, A.

130

Evaluating Solar Resource Data Obtained from Multiple Radiometers Deployed at the National Renewable Energy Laboratory: Preprint  

SciTech Connect (OSTI)

Solar radiation resource measurements from radiometers are used to predict and evaluate the performance of photovoltaic and concentrating solar power systems, validate satellite-based models for estimating solar resources, and advance research in solar forecasting and climate change. This study analyzes the performance of various commercially available radiometers used for measuring global horizontal irradiances (GHI) and direct normal irradiances (DNI). These include pyranometers, pyrheliometers, rotating shadowband irradiometers, and a pyranometer with a shading ring deployed at the National Renewable Energy Laboratory's Solar Radiation Research Laboratory (SRRL). The radiometers in this study were deployed for one year (from April 1, 2011, through March 31, 2012) and compared to measurements from radiometers with the lowest values of estimated measurement uncertainties for producing reference GHI and DNI.

Habte, A.; Sengupta, M.; Andreas, A.; Wilcox, S.; Stoffel, T.

2014-09-01T23:59:59.000Z

131

Solar and wind resource complementarity: Advancing options for renewable electricity integration in Ontario, Canada  

Science Journals Connector (OSTI)

In Ontario (Canada), the integration of renewable power is a priority policy goal. Since 2004, the circumstances under which the integration of renewable power is evaluated have changed due to successive changes in price as well as concerns that its over-production may add to grid congestion. This research investigates the value of increasing complementarity (both proximate and geographically dispersed) of wind and solar resources as a means by which electricity planners and researchers might advance electricity sustainability in Ontario. More specifically, this paper asks the following questions: 1) Does the combination of solar and wind resources in selected locations in Ontario serve to smooth out power production, i.e., decrease instances of both high and low values, as compared to either resource producing individually? 2) Can this smoothness be further improved by dispersing these resources geographically amongst locations? and 3) Does increasing the number of locations with solar and wind resources further smooth out power production? Three years (20032005) of synchronous, hourly measurements of solar irradiance and wind speeds from Environment Canadas Canadian Weather Energy and Engineering Data Sets (CWEEDS) are used to derive dimensionless indices for four locations in Ontario (Toronto, Wiarton, Sault Ste. Marie and Ottawa). These indices are used to develop three transparent and accessible methods of analysis: (1) graphical representation; (2) percentile ranking; and (3) using a theoretical maximum as a proxy for capacity. The article concludes that the combination of solar and wind within locations and amongst two locations improves smoothness in power production, as compared to when each resource is produced on its own; moreover, it is further improved once more than two resources and two locations are combined. However, there is neither further benefit, nor drawback, associated with the geographic dispersion of complementarity between solar in one location and wind in another, when compared to both resources in one location.

Christina E. Hoicka; Ian H. Rowlands

2011-01-01T23:59:59.000Z

132

Solar and Wind Energy Resource Assessment Programme's Renewable...  

Open Energy Info (EERE)

& Screening Website: en.openei.orgappsSWERA Equivalent URI: cleanenergysolutions.orgcontentsolar-and-wind-energy-resource-assess Language: English Policies: Deployment...

133

SunShot Initiative: Solar Energy Resource Center  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

the City University of New York and its partners developed a first-of-its kind web portal capable of analyzing billions of data points that serve as key solar market...

134

Brazilian Atlas for Solar Energy Resource: Swera Results  

Science Journals Connector (OSTI)

The solar energy assessment in SWERA project was prepared by using BRASIL-SR radiative transfer model and satellite database acquired from 1995 till 2005 a full decade dataset. The annual and seasonal maps p...

Fernando Ramos Martins; Enio Bueno Pereira

2009-01-01T23:59:59.000Z

135

Assessment of Wind and Solar Energy Resources in Bangladesh  

Science Journals Connector (OSTI)

Wind and solar energy are the alternative energy sources that can be used to supplement the conventional energy sources particularly in Bangladesh. In this work, the aim was to assess the current wind and sola...

Sanjoy Kumar Nandi; Mohammad Nasirul Hoque

2013-11-01T23:59:59.000Z

136

UNEP/DTIE Solar and Wind Energy Resource Assessment (SWERA) Project  

Open Energy Info (EERE)

UNEP/DTIE Solar and Wind Energy Resource Assessment (SWERA) Project UNEP/DTIE Solar and Wind Energy Resource Assessment (SWERA) Project Document Dataset Summary Description (Abstract): This project will provide solar and wind resource data and geographic information assessment tools to public and private sector executives who are involved in energy market development. It will demonstrate the use of these instruments in investment and policy decision making and build local capacities for their continuous use. The project will enable private investors and public policy makers to assess the technical, economic and environmental potential for large-scale investments in technologies that enable the exploitation of two increasingly important sources of renewable energy. During this pilot project, tools for analysis and use of resource information will be developed, a global tx_metadatatool and review mechanism will be initiated, regional/national solar and wind resource maps generated and national assessment demonstrations performed. The overall goal is to promote the integration of wind and solar alternatives in national and regional energy planning and sector restructuring as well as related policy making. The project will enable informed decision making and enhance the ability of participating governments to attract increased investor interest in renewable energy. Thirteen countries will be directly involved in the pilot stage of the project. Global and regional maps will be available to all developing countries.

137

Large resource development projects as markets for passive solar technologies. Final report  

SciTech Connect (OSTI)

A basic premise of this study is that large resource development projects provide a major market opportunity for passive solar manufactured buildings. The primary objectives of the work are to document selected resource development projects and identify their potential housing needs and development schedules, to contact resource industry representatives and assess some of the processes and motivations behind their involvement in housing decisions, and to provide passive solar manufactured buildings producers with results of these steps as early initial market intelligence. The intent is to identify not only the industries, location of their planned projects, and their likely worker housing needs, but also the individuals involved in making housing-related decisions. The 56 identified projects are located within 18 states and cover 11 types of resources. The report documents individual projects, provides protections of total worker-related housing needs, and presents overviews of resource development company involvement in the new construction market. In addition, the report profiles three organizations that expressed a strong interest in implementing the use of low-cost passive solar manufactured buildings in resource-development-related activities.

Roze-Benson, R V

1980-12-01T23:59:59.000Z

138

Ocean circulation plays a key role in distributing solar energy and maintaining climate, by moving heat from Earth's equator to the poles. At  

E-Print Network [OSTI]

heat from Earth's equator to the poles. At the ocean surface, currents are primarily driven by windOcean circulation plays a key role in distributing solar energy and maintaining climate, by moving. Deep below the surface however, currents are controlled by water density, which depends

Waliser, Duane E.

139

Long-Distance Interconnection as Solar Resource Intermittency Solution: Optimizing the Use of Energy Storage and the Geographic  

E-Print Network [OSTI]

of Energy Storage and the Geographic Dispersion + Interconnection of Solar Generating Facilities. Marc J. R energy targets. Variability of the solar resource occurs across many different temporal scales: from energy storage and Long-distance interconnection coupled with geographic dispersion of solar generating

140

Comparison of Historical Satellite-Based Estimates of Solar Radiation Resources with Recent Rotating Shadowband Radiometer Measurements: Preprint  

SciTech Connect (OSTI)

The availability of rotating shadow band radiometer measurement data at several new stations provides an opportunity to compare historical satellite-based estimates of solar resources with measurements. We compare mean monthly daily total (MMDT) solar radiation data from eight years of NSRDB and 22 years of NASA hourly global horizontal and direct beam solar estimates with measured data from three stations, collected after the end of the available resource estimates.

Myers, D. R.

2009-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "ocean resources solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Air Resources Laboratory The Air Resources Laboratory (ARL) is a research laboratory within the National Oceanic and Atmospheric Administration  

E-Print Network [OSTI]

and the atmospheric transport, transformation and fate of air pollutants. To support air quality decision makers, ARL the interaction of air pollutants in the atmosphere and between the atmosphere and the underlying land and water the National Oceanic and Atmospheric Administration (NOAA). ARL is headquartered at the NOAA Center for Weather

142

Kauai, Hawaii: Solar Resource Analysis and High-Penetration PV Potential  

Broader source: Energy.gov (indexed) [DOE]

956 956 April 2010 Kauai, Hawaii: Solar Resource Analysis and High-Penetration PV Potential Chris Helm and Kari Burman National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 Technical Report NREL/TP-7A2-47956 April 2010 Kauai, Hawaii: Solar Resource Analysis and High-Penetration PV Potential Chris Helm and Kari Burman Prepared under Task No. IDHW.9170 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any

143

Solar Energy Resource Assessment in Chile: Satellite Estimation and Ground Station Measurement  

Science Journals Connector (OSTI)

Abstract The progress from the last four years in solar energy resource assessment for Chile is reported, including measurements from a ground station network spanning from two to three years of data, and satellite estimations from the recently developed Chile-SR model including two full years of data. The model introduces different treatments for the meteorological variables and the effective cloud cover computations which allow estimation of the global horizontal irradiation on an hourly basis. The BRL model of diffuse radiation is then applied in order to estimate the diffuse fraction and diffuse irradiation, from which the Direct horizontal irradiation is then computed. Direct normal irradiation is computed by applying proper solar geometry corrections to the direct horizontal irradiation. The satellite estimation model was developed as an adaptation from Brazil-SR model, with an improved formulation for altitude-corrected atmospheric parameters, and a novel formulation for calculating effective cloud covers while at the same time detecting and differentiating it from snow covers and salt lakes. The model is validated by comparison with ground station data. The results indicate that there are high radiation levels throughout the country. In particular, northern Chile is endowed with one of the highest solar resources in the world, although the resource variability is higher than previously thought.

Rodrigo A. Escobar; Alberto Ortega; Cristin Corts; Alan Pinot; Enio Bueno Pereira; Fernando Ramos Martins; John Boland

2014-01-01T23:59:59.000Z

144

NREL GIS Data: Alaska Low Resolution Photovoltaic Solar Resource | OpenEI  

Open Energy Info (EERE)

8 8 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142278078 Varnish cache server NREL GIS Data: Alaska Low Resolution Photovoltaic Solar Resource Dataset Summary Description Abstract: Monthly and annual average solar resource potential for Alaska. Purpose: Provide information on the solar resource potential for Alaska. The insolation values represent the average solar energy available to a flat plate collector, such as a photovoltaic panel, oriented due south at an angle from horizontal equal to the latitude of the collector location. Supplemental_Information: This data provides monthly average and annual average daily total solar resource averaged over surface cells of approximatley 40 km by 40 km in size. This data was developed from the Climatological Solar Radiation (CSR) Model. The CSR model was developed by the National Renewable Energy Laboratory for the U.S. Department of Energy. Specific information about this model can be found in Maxwell, George and Wilcox (1998) and George and Maxwell (1999). This model uses information on cloud cover, atmostpheric water vapor and trace gases, and the amount of aerosols in the atmosphere to calculate the monthly average daily total insolation (sun and sky) falling on a horizontal surface. The cloud cover data used as input to the CSR model are an 7-year histogram (1985-1991) of monthly average cloud fraction provided for grid cells of approximately 40km x 40km in size. Thus, the spatial resolution of the CSR model output is defined by this database. The data are obtained from the National Climatic Data Center in Ashville, North Carolina, and were developed from the U.S. Air Force Real Time Nephanalysis (RTNEPH) program. Atmospheric water vapor, trace gases, and aerosols are derived from a variety of sources. The procedures for converting the collector at latitude tilt are described in Marion and Wilcox (1994). Where possible, existing ground measurement stations are used to validate the data. Nevertheless, there is uncertainty associated with the meterological input to the model, since some of the input parameters are not avalible at a 40km resolution. As a result, it is believed that the modeled values are accurate to approximately 10% of a true measured value within the grid cell. Due to terrain effects and other micoclimate influences, the local cloud cover can vary significantly even within a single grid cell. Furthermore, the uncertainty of the modeled estimates increase with distance from reliable measurement sources and with the complexity of the terrain.

145

Solar Energy | Department of Energy  

Office of Environmental Management (EM)

Solar Energy Solar Energy Below are resources for Tribes on solar energy technologies. A Guide to Community Solar: Utility, Private, and Nonprofit Project Development A resource...

146

2008 Solar Technologies Market Report  

E-Print Network [OSTI]

levelized cost of energy, solar resource, and capacitySolar Energy Technologies Program. www.solaramericacities.energy.gov/resources.Renewable Energy System Analysis, Solar Resource Assessment,

Price, S.

2010-01-01T23:59:59.000Z

147

Solar energy resource assessment in Chile: Satellite estimation and ground station measurements  

Science Journals Connector (OSTI)

Abstract The progress from the last four years in solar energy resource assessment for Chile is reported, including measurements from a ground station network spanning from two to three years of data, and satellite estimations from the recently developed Chile-SR model including two full years of data. The model introduces different procedures for the meteorological variables and the effective cloud cover computations that allow estimation of the global horizontal and diffuse irradiation on an hourly basis. Direct normal irradiation is computed by applying proper solar geometry corrections to the direct horizontal irradiation. The satellite estimation model was developed as an adaptation from Brazil-SR model, with an improved formulation for altitude-corrected atmospheric parameters, and a novel formulation for calculating effective cloud covers while at the same time detecting and differentiating it from snow covers and salt lakes. The model is validated by comparison with ground station data. The results indicate that there are high radiation levels throughout the country. In particular, northern Chile is endowed with one of the highest solar resources in the world.

Rodrigo A. Escobar; Cristin Corts; Alan Pino; Enio Bueno Pereira; Fernando Ramos Martins; Jos Miguel Cardemil

2014-01-01T23:59:59.000Z

148

Solar Resource and Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); Escalante Tri-State - Prewitt, New Mexico (Data)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

Wilcox, S.; Andreas, A.

149

Solar and Wind Energy Resource Assessment (SWERA) - Bangladesh | OpenEI  

Open Energy Info (EERE)

(SWERA) - Bangladesh (SWERA) - Bangladesh Dataset Summary Description Reduction of global greenhouse gas emission to arrest global warming requires minimizing the use of fossil fuels. To achieve this a large scale use of renewable energies must be made over the globe for production of electrical and thermal energy. Success of wind and solar energy projects require detailed and precise information on the resources. For most developing countries adequate information on the resources are not available.UNEP supported by GEF has started a program to assess solar and wind resources for a number of countries including Bangladesh, China, Brazil, Nepal and Sri Lanka in the initial program.World resources of oil, gas and coal are limited and there is a global concern about this but for Bangladesh the situation appears to be extremely unhappy as per capita reserve of fossil fuels is only 1/50th to 1/100th of world per capita. A close look at Bangladesh energy scenario is presented before going to an overview of the results of resource assessments for wind and solar energy under the SWERA Program carried out for Bangladesh withRERC as the local partner. Data and maps for Bangladesh are available in the SWERA website. Details of assessment techniques and results will be presented in the following sections together with the possible applications of the resources.A spin-off from the SWERA Project is development of manpower trained at home and abroad in WAsP techniques, RETScreen and HOMER analyses and the capability development for using GIS Toolkit.NREL, RISOE and DLR produced modeled maps and data sets for Bangladesh and NREL developed the GIS Toolkit. RERC measured and collected ground data and standardized the maps and data sets.Mr. Tom Hamlin of UNEP who has been the project manager for SWERA activities always extended his helping hands to RERC which enabled the completion of the project.TERI has played a vital role as the Regional Coordinator.

150

Dynamical Response of the Tropical Pacific Ocean to Solar Forcing During the Early Holocene  

Science Journals Connector (OSTI)

...greatest mismatch between Soledad Basin and the solar proxies, the cave records...record correlates with Soledad Basin SSTs even more strongly than do the...trap results from the San Pedro Basin, Southern California Bight . Paleoceanography 6 , 307 ( 1991...

Thomas M. Marchitto; Raimund Muscheler; Joseph D. Ortiz; Jose D. Carriquiry; Alexander van Geen

2010-12-03T23:59:59.000Z

151

Mapping and Assessment of the United States Ocean Wave Energy Resource  

SciTech Connect (OSTI)

This project estimates the naturally available and technically recoverable U.S. wave energy resources, using a 51-month Wavewatch III hindcast database developed especially for this study by National Oceanographic and Atmospheric Administration?¢????s (NOAA?¢????s) National Centers for Environmental Prediction. For total resource estimation, wave power density in terms of kilowatts per meter is aggregated across a unit diameter circle. This approach is fully consistent with accepted global practice and includes the resource made available by the lateral transfer of wave energy along wave crests, which enables wave diffraction to substantially reestablish wave power densities within a few kilometers of a linear array, even for fixed terminator devices. The total available wave energy resource along the U.S. continental shelf edge, based on accumulating unit circle wave power densities, is estimated to be 2,640 TWh/yr, broken down as follows: 590 TWh/yr for the West Coast, 240 TWh/yr for the East Coast, 80 TWh/yr for the Gulf of Mexico, 1570 TWh/yr for Alaska, 130 TWh/yr for Hawaii, and 30 TWh/yr for Puerto Rico. The total recoverable wave energy resource, as constrained by an array capacity packing density of 15 megawatts per kilometer of coastline, with a 100-fold operating range between threshold and maximum operating conditions in terms of input wave power density available to such arrays, yields a total recoverable resource along the U.S. continental shelf edge of 1,170 TWh/yr, broken down as follows: 250 TWh/yr for the West Coast, 160 TWh/yr for the East Coast, 60 TWh/yr for the Gulf of Mexico, 620 TWh/yr for Alaska, 80 TWh/yr for Hawaii, and 20 TWh/yr for Puerto Rico.

Paul T. Jacobson; George Hagerman; George Scott

2011-12-01T23:59:59.000Z

152

Energy and exergy analyses of hydrogen production via solar-boosted ocean thermal energy conversion and PEM electrolysis  

Science Journals Connector (OSTI)

Energy and exergy analyses are reported of hydrogen production via an ocean thermal energy conversion (OTEC) system coupled with a solar-enhanced proton exchange membrane (PEM) electrolyzer. This system is composed of a turbine, an evaporator, a condenser, a pump, a solar collector and a PEM electrolyzer. Electricity is generated in the turbine, which is used by the PEM electrolyzer to produce hydrogen. A simulation program using Matlab software is developed to model the PEM electrolyzer and OTEC system. The simulation model for the PEM electrolyzer used in this study is validated with experimental data from the literature. The amount of hydrogen produced, the exergy destruction of each component and the overall system, and the exergy efficiency of the system are calculated. To better understand the effect of various parameters on system performance, a parametric analysis is carried out. The energy and exergy efficiencies of the integrated OTEC system are 3.6% and 22.7% respectively, and the exergy efficiency of the PEM electrolyzer is about 56.5% while the amount of hydrogen produced by it is 1.2kg/h.

Pouria Ahmadi; Ibrahim Dincer; Marc A. Rosen

2013-01-01T23:59:59.000Z

153

Implementing Best Practices for Data Quality Assessment of the National Renewable Energy Laboratory's Solar Resource and Meteorological Assessment Project  

SciTech Connect (OSTI)

Effective solar radiation measurements for research and economic analyses require a strict protocol for maintenance, calibration, and documentation to minimize station down-time and data corruption. The National Renewable Energy Laboratory's Concentrating Solar Power: Best Practices Handbook for the Collection and Use of Solar Resource Data (1) includes guidelines for operating a solar measure-ment station. This paper describes a suite of automated and semi-automated routines based on the best practices hand-book as developed for the National Renewable Energy La-boratory Solar Resource and Meteorological Assessment Project. These routines allow efficient inspection and data flagging to alert operators of conditions that require imme-diate attention. Although the handbook is targeted for con-centrating solar power applications, the quality-assessment procedures described are generic and should benefit many solar measurement applications. The routines use data in one-minute measurement resolution, as suggested by the handbook, but they could be modified for other time scales.

Wilcox, S. M.; McCormack, P.

2011-01-01T23:59:59.000Z

154

World Renewable Energy Congress VII, Cologne, Germany, 29 June -5 July, 2002 SOLAR RESOURCE ASSESSMENT AND SITE EVALUATION  

E-Print Network [OSTI]

World Renewable Energy Congress VII, Cologne, Germany, 29 June - 5 July, 2002 SOLAR RESOURCE, Germany ** German Aerospace Center (DLR), Institute of Atmospheric Physics, Oberpfaffenhofen, Germany VII, Cologne, Germany, 29 June - 5 July, 2002 and diffuse irradiance model of Dumortier [5]. Both use

Heinemann, Detlev

155

Resources | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Filter by Audience Filter by Resource Type Solar Powering America supports solar energy use for a variety of stakeholders in the United States. Here you will find resources...

156

Sustainable Energy Resources for Consumers Webinar on Building Design & Passive Solar Transcript  

Broader source: Energy.gov [DOE]

Video recording transcript of a Webinar on Nov. 16, 2010 about residential passive solar building design and solar thermal heating applications

157

Sustainable Energy Resources for Consumers Webinar on Solar Water Heating Transcript  

Broader source: Energy.gov [DOE]

Video recording transcript of a Webinar on Nov. 16, 2010 about residential solar water heating applications

158

Mapping and Assessment of the United States Ocean Wave Energy...  

Broader source: Energy.gov (indexed) [DOE]

Mapping and Assessment of the United States Ocean Wave Energy Resource Mapping and Assessment of the United States Ocean Wave Energy Resource This report describes the analysis and...

159

Solar  

Science Journals Connector (OSTI)

With sharp drop in costs for photovoltaic and solar thermal processes, solar energy has become more attractive alternative ... Almost half the total was earmarked for PV and solar thermal projects. ...

WARD WORTHY

1991-06-17T23:59:59.000Z

160

Resources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Resources / Related Web Sites Resources / Related Web Sites Buildings-Related Resources Windows & Glazing Resources Energy-Related Resources International Resources Telephone Directories Buildings-Related Resources California Institute for Energy Efficiency (CIEE) Center for Building Science (CBS) at LBNL Department of Energy (DOE) DOE Energy Efficiency home page Energy Efficiency and Renewable Energy Clearinghouse Fact sheets in both HTML for standard web browsers and PDF format using Adobe Acrobat Reader (free). National Fenestration Rating Council home page Office of Energy Efficiency and Renewable Energy (EREN) back to top... Windows & Glazing Resources National Glass Association (NGA) LBNL Building Technologies Fenestration R&D news LBNL Center for Building Science (CBS) Newsletter

Note: This page contains sample records for the topic "ocean resources solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Implementing Best Practices for Data Quality Assessment of the National Renewable Energy Laboratory?s Solar Resource and Meteorological Assessment Project: Preprint  

SciTech Connect (OSTI)

Effective solar radiation measurements for research and economic analyses require a strict protocol for maintenance, calibration, and documentation to minimize station downtime and data corruption. The National Renewable Energy Laboratory's Concentrating Solar Power: Best Practices Handbook for the Collection and Use of Solar Resource Data includes guidelines for operating a solar measurement station. This paper describes a suite of automated and semi-automated routines based on the best practices handbook as developed for the National Renewable Energy Laboratory Solar Resource and Meteorological Assessment Project. These routines allow efficient inspection and data flagging to alert operators of conditions that require immediate attention. Although the handbook is targeted for concentrating solar power applications, the quality-assessment procedures described are generic and should benefit many solar measurement applications. The routines use data in one-minute measurement resolution, as suggested by the handbook, but they could be modified for other time scales.

Wilcox, S. M.; McCormack, P.

2011-04-01T23:59:59.000Z

162

Solar Resource Measurements in El Paso, Texas (Equipment CRADA Only): Cooperative Research and Development Final Report, CRADA Number CRD-08-273  

SciTech Connect (OSTI)

Site-specific, long-term, continuous, and high-resolution measurements of solar irradiance are important for developing renewable resource data. These data are used for several research and development activities consistent with the NREL mission: establish a national 30-year climatological database of measured solar irradiances; provide high quality ground-truth data for satellite remote sensing validation; support development of radiative transfer models for estimating solar irradiance from available meteorological observations; provide solar resource information needed for technology deployment and operations.

Andreas, A.

2013-11-01T23:59:59.000Z

163

CALIFORNIA SOLAR DATA MANUAL  

E-Print Network [OSTI]

room )I I( I I ,i I CALIFORNIA SOLAR DATA MANUAL I. ! I ienergy resource. The California Solar Data Manual describestowards fulfilling California's solar data needs is the

Berdahl, P.

2010-01-01T23:59:59.000Z

164

Final Report for Annex II--Assessment of Solar Radiation Resources In Saudi Arabia, 1998-2000  

SciTech Connect (OSTI)

The Final Report for Annex II - Assessment of Solar Radiation Resources in Saudi Arabia 1998-2000 summarizes the accomplishment of work performed, results achieved, and products produced under Annex II, a project established under the Agreement for Cooperation in the Field of Renewable Energy Research and Development between the Kingdom of Saudi Arabia and the United States. The report covers work and accomplishments from January 1998 to December 2000. A previous progress report, Progress Report for Annex II - Assessment of Solar Radiation Resources in Saudi Arabia 1993-1997, NREL/TP-560-29374, summarizes earlier work and technical transfer of information under the project. The work was performed in at the National Renewable Energy Laboratory (NREL) in Golden, Colorado, at the King Abdulaziz City for Science and Technology (KACST) in Riyadh, Saudi Arabia, and at selected weather stations of the Saudi Meteorological and Environmental Protection Administration (MEPA).

Myers, D. R.; Wilcox, S. M.; Marion, W. F.; Al-Abbadi, N. M.; Mahfoodh, M.; Al-Otaibi, Z.

2002-04-01T23:59:59.000Z

165

So You Have Questions About...Value of Solar Tariffs: Resources...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for their solar PV generation at a separate VOS rate (kWh). The VOS rate accounts for solar PVs benefits to stakeholders net its costs. Factors that affect this value may...

166

Intra-hour Direct Normal Irradiance solar forecasting using genetic programming  

E-Print Network [OSTI]

of renewable resources, including solar energy, to achieveof renewable resources. Solar energy has seen considerable

Queener, Benjamin Daniel

2012-01-01T23:59:59.000Z

167

The Pacific Oceans Acidification Laboratory  

Science Journals Connector (OSTI)

The Pacific Oceans Acidification Laboratory ... Five years ago, at the quadrennial International Coral Reef Symposium in Okinawa, Japan, a poll of the scientists and resource managers present ranked ocean acidification 38th out of a list of 39 possible threats facing reefs, recalls Rusty Brainard, head of the National Oceanic and Atmospheric Administrations (NOAAs) Coral Reef Ecosystem Division. ... As the oceans absorb CO2 from the atmosphere at the rate of one million tons per hour, the pH of the water is changing. ...

Christopher Pala

2009-08-05T23:59:59.000Z

168

SOLAR ENERGY FOR ACADEMIC INSTITUTIONS Solar Suitability Assessment  

E-Print Network [OSTI]

SOLAR ENERGY FOR ACADEMIC INSTITUTIONS Solar Suitability Assessment of Dalhousie University.................................................................................................. 2 2.2 Solar Radiation Data for Calculating Solar Energy Resource .................... 3 3 Campus.1 Evaluation of Suitability for Solar Energy Generation................................ 12 4.2 Solar

Brownstone, Rob

169

Resources  

Broader source: Energy.gov [DOE]

Case studies and additional resources on implementing renewable energy in Federal new construction and major renovations are available.

170

Solar irradiance forecasting at multiple time horizons and novel methods to evaluate uncertainty  

E-Print Network [OSTI]

Solar irradiance data . . . . . . . . . . . . .Accuracy . . . . . . . . . . . . . . . . . Solar Resourcev Uncertainty In Solar Resource: Forecasting

Marquez, Ricardo

2012-01-01T23:59:59.000Z

171

Allocating resources and products in multi-hybrid multi-cogeneration: What fractions of heat and power are renewable in hybrid fossil-solar CHP?  

Science Journals Connector (OSTI)

Abstract A general method for the allocation of resources and products in multi-resource/multi-product facilities is developed with particular reference to the important two-resource/two-product case of hybrid fossil & solar/heat & power cogeneration. For a realistic case study, we show how the method allows to assess what fractions of the power and heat should be considered as produced from the solar resource and hence identified as renewable. In the present scenario where the hybridization of fossil power plants by solar-integration is gaining increasing attention, such assessment is of great importance in the fair and balanced development of local energy policies based on granting incentives to renewables resources. The paper extends to the case of two-resource/two-product hybrid cogeneration, as well as to general multi-resource/multi-generation, three of the allocation methods already available for single-resource/two-product cogeneration and for two-resource/single-product hybrid facilities, namely, the ExRR (Exergy-based Reversible-Reference) method, the SRSPR (Single Resource Separate Production Reference) method, and the STALPR (Self-Tuned-Average-Local-Productions-Reference) method. For the case study considered we show that, unless the SRSPR reference efficiencies are constantly updated, the differences between the STALPR and SRSPR methods become important as hybrid and cogeneration plants take up large shares of the local energy production portfolio.

Gian Paolo Beretta; Paolo Iora; Ahmed F. Ghoniem

2014-01-01T23:59:59.000Z

172

Day-Ahead Solar Resource Prediction Method Using Weather Forecasts for Peak Shaving.  

E-Print Network [OSTI]

??Due to recent concerns about energy sustainability, solar power is becoming more prevalent in distributed power generation. There are still obstacles which need to be (more)

Greenwood, Wesley

2014-01-01T23:59:59.000Z

173

Impact of Solar Resource and Atmospheric Constituents on Energy Yield Models for Concentrated Photovoltaic Systems .  

E-Print Network [OSTI]

??Global economic trends suggest that there is a need to generate sustainable renewable energy to meet growing global energy demands. Solar energy harnessed by concentrated (more)

Mohammed, Jafaru

2013-01-01T23:59:59.000Z

174

Off-design performance analysis of a closed-cycle ocean thermal energy conversion system with solar thermal preheating and superheating  

Science Journals Connector (OSTI)

Abstract This article reports the off-design performance analysis of a closed-cycle ocean thermal energy conversion (OTEC) system when a solar thermal collector is integrated as an add-on preheater or superheater. Design-point analysis of a simple OTEC system was numerically conducted to generate a gross power of 100kW, representing a base OTEC system. In order to improve the power output of the OTEC system, two ways of utilizing solar energy are considered in this study: (1) preheating of surface seawater to increase its input temperature to the cycle and (2) direct superheating of the working fluid before it enters a turbine. Obtained results reveal that both preheating and superheating cases increase the net power generation by 2025% from the design-point. However, the preheating case demands immense heat load on the solar collector due to the huge thermal mass of the seawater, being less efficient thermodynamically. The superheating case increases the thermal efficiency of the system from 1.9% to around 3%, about a 60% improvement, suggesting that this should be a better approach in improving the OTEC system. This research provides thermodynamic insight on the potential advantages and challenges of adding a solar thermal collection component to OTEC power plants.

Hakan Aydin; Ho-Saeng Lee; Hyeon-Ju Kim; Seung Kyoon Shin; Keunhan Park

2014-01-01T23:59:59.000Z

175

Solar Resource Measurements in Humboldt State University, Arcata, California: Cooperative Research and Development Final Report, CRADA Number CRD-08-262  

SciTech Connect (OSTI)

Site-specific, long-term, continuous, and high-resolution measurements of solar irradiance are important for developing renewable resource data. These data are used for several research and development activities consistent with the NREL mission: establish a national 30-year climatological database of measured solar irradiances; provide high quality ground-truth data for satellite remote sensing validation; support development of radiative transfer models for estimating solar irradiance from available meteorological observations; provide solar resource information needed for technology deployment and operations. Data acquired under this agreement will be available to the public through NREL's Measurement & Instrumentation Data Center - MIDC (www.nrel.gov/midc) or the Renewable Resource Data Center - RReDC (http://rredc.nrel.gov). The MIDC offers a variety of standard data display, access, and analysis tools designed to address the needs of a wide user audience (e.g., industry, academia, and government interests).

Stoffel, T.; Andreas, A.

2014-01-01T23:59:59.000Z

176

Solar Resource Measurements in Canyon, Texas - Equipment Only Loan: Cooperative Research and Development Final Report, CRADA Number CRD-07-233  

SciTech Connect (OSTI)

Site-specific, long-term, continuous, and high-resolution measurements of solar irradiance are important for developing renewable resource data. These data are used for several research and development activities consistent with the NREL mission: establish a national 30-year climatological database of measured solar irradiances; provide high-quality ground-truth data for satellite remote sensing validation; support development of radiative transfer models for estimating solar irradiance from available meteorological observations; and provide solar resource information needed for technology deployment and operations. Data acquired under this agreement will be available to the public through NREL's Measurement & Instrumentation Data Center (MIDC) or the Renewable Resource Data Center (RReDC). The MIDC offers a variety of standard data display, access, and analysis tools designed to address the needs of a wide user audience (e.g., industry, academia, and government interests).

Andreas, A.

2014-07-01T23:59:59.000Z

177

Resources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Resources News & Events Expand News & Events Skip navigation links Smart Grid Demand Response Agricultural Residential Demand Response Commercial & Industrial Demand Response...

178

Solar and Wind Energy Resource Assessment in Nepal | OpenEI  

Open Energy Info (EERE)

in Nepal in Nepal Dataset Summary Description (Abstract): Global Horizontal Solar Irradiance is developed based on a linear regression model that has been developed to correlate the theoretical and ground measured solar irradiance on the basis of available ground measured Global Horizontal Solar Irradiance at three locations: a) Syangboche (Solukhumbu) b) Pulchowk (Lalitpur) and c) Prakashpur (Sunsari). These locations represent the three different geographical regions: Mountain, Hill and Plain. The model is used for converting the theoretical Global Horizontal Solar Irradiance to actual solar irradiance in 15 meteorological stations spread throughout the country. Interpolating the data obtained at these stations, a map has been developed using ArcView GIS software. The existing methodology for projecting wind speedat 2m height from DHM meteorological station data to 10m height, shows a deviated figures. In other to develop wind map, valid methodology is required which can project the low height wind speed to higher heights. The projected data (Thini and Thakmarpha) when

179

Sandia National Laboratories: solar forecasting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy, Modeling & Analysis, News, News & Events, Partnership, Photovoltaic, Renewable Energy, Solar, Systems Analysis The book, Solar Energy Forecasting and Resource...

180

Solar Pricing Trends  

Broader source: Energy.gov (indexed) [DOE]

SB 2 1X SB 2 1X Category % of Retail Sales From Eligible Renewable Resources Date by Which Compliance Must Occur Category or Compliance Period 1 20% Dec. 31, 2013 Category or Compliance Period 2 25% Dec. 31, 2016 Category or Compliance Period 3 33% Dec. 31, 2020 2 Solar Pricing Trends 3 U.S. Grid-Connected PV Capacity Additions 4 U.S. Renewable Additions wind, 7537 MW biogas, 91 MW biomass, 330 MW geothermal, 910 MW ocean, 0 MW small hydro, 38 MW solar thermal, 3804 MW solar photovoltaic, 5778 MW CA IOU's Total Renewable Energy Capacity Currently Under Contract from Contracts Signed Since 2002, by Technology 5 CA IOU's Renewable Portfolio 6 CA IOU's Future Renewable Portfolio

Note: This page contains sample records for the topic "ocean resources solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

3.06 - Vulnerability of Solar Energy Resources under Climate Variability  

Science Journals Connector (OSTI)

Abstract Energy plays a very important role in society. It has been one of the main drivers in the organization of civilization and, before that, in evolution. The availability of relatively inexpensive energy could solve many other problems, for example supplying fresh water through desalination. An economy based on solar energy has been the dream of many for many years. It would be great to only depend on the freely distributed energy of the sun, which is available everywhere. While solar energy might include a wide range of potential energy sources, the solar energy considered here is restricted to solar concentrators, solar photovoltaics, and artificial solar chemical processes. After these are considered, both the related uncertainties and the possible range of climate variability are explored. Characteristics of the various technologies, uncertainties, and potential climate effects are also identified. An analysis explores the solar energy technologies, uncertainties, and vulnerabilities related to climate. Finally, an integrated analysis method of real options analysis provides a potential semiquantitative framework for discussion and interpretation.

D.J. LePoire

2013-01-01T23:59:59.000Z

182

Oceans '88  

SciTech Connect (OSTI)

These proceedings discuss the following papers: Solid waste disposal crisis; Plastics in Ocean; Continental shelf environmental research; Seafood technology advancements; Gulf of Mexico chemosynthetic petroleum seep communities; Water reuse on onshore mariculture and processing facilities; Oil and gas industry conflicts on the outer continental shelf; Cumulative environmental effects of the oil and gas leasing program; Oil and gas exploration; and Oil and gas resource management; Aids to navigation systems and equipment; and Surveillance experiments.

Not Available

1988-01-01T23:59:59.000Z

183

Renewable Energy Resources and Technologies | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Resources and Resources and Technologies Renewable Energy Resources and Technologies October 7, 2013 - 9:18am Addthis Photo of multiple photovoltaic arrays stand tilted on a rooftop with the Boston skyline as a backdrop. The General Services Administration completed a roof-mounted, grid-connected photovoltaic system on the Metcalfe Federal Building. Explore the following renewable energy technology areas for resources and information focusing on Federal application opportunities. Solar Wind Geothermal Biomass Landfill Gas Municipal Solid Waste Hydropower and Ocean These technology areas align with the Energy Policy Act of 2005, which defines renewable energy as "electric energy generated from solar, wind, biomass, landfill gas, ocean (including tidal, wave, current, and thermal),

184

Generating electricity from the oceans  

Science Journals Connector (OSTI)

Ocean energy has many forms, encompassing tides, surface waves, ocean circulation, salinity and thermal gradients. This paper will considers two of these, namely those found in the kinetic energy resource in tidal streams or marine currents, driven by gravitational effects, and the resources in wind-driven waves, derived ultimately from solar energy. There is growing interest around the world in the utilisation of wave energy and marine currents (tidal stream) for the generation of electrical power. Marine currents are predictable and could be utilised without the need for barrages and the impounding of water, whilst wave energy is inherently less predictable, being a consequence of wind energy. The conversion of these resources into sustainable electrical power offers immense opportunities to nations endowed with such resources and this work is partially aimed at addressing such prospects. The research presented conveys the current status of wave and marine current energy conversion technologies addressing issues related to their infancy (only a handful being at the commercial prototype stage) as compared to others such offshore wind. The work establishes a step-by-step approach that could be used in technology and project development, depicting results based on experimental and field observations on device fundamentals, modelling approaches, project development issues. It includes analysis of the various pathways and approaches needed for technology and device or converter deployment issues. As most technology developments are currently UK based, the paper also discusses the UK's financial mechanisms available to support this area of renewable energy, highlighting the needed economic approaches in technology development phases. Examination of future prospects for wave and marine current ocean energy technologies are also discussed.

AbuBakr S. Bahaj

2011-01-01T23:59:59.000Z

185

Solar Energy  

Science Journals Connector (OSTI)

The sun is the main source of all alternative energies on the earths surface. Wind energy, bioenergy, ocean energy, and hydro energy are derived from the sun. However,...solar energy refers to the energy that is...

Tushar K. Ghosh; Mark A. Prelas

2011-01-01T23:59:59.000Z

186

State-Ocean City Beach Erosion Control District (Maryland) | Department of  

Broader source: Energy.gov (indexed) [DOE]

State-Ocean City Beach Erosion Control District (Maryland) State-Ocean City Beach Erosion Control District (Maryland) State-Ocean City Beach Erosion Control District (Maryland) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Maryland Program Type Siting and Permitting Provider Maryland Department of Natural Resources

187

Advanced Materials and Nano Technology for Solar Cells  

E-Print Network [OSTI]

Therefore, solar energy is a very promising resource toand the solar energy is a sort of inexhaustible resource. In

Han, Tao

2014-01-01T23:59:59.000Z

188

Solar Resources Measurements in Elizabeth City, North Carolina - Equipment Only: Cooperative Research and Development Final Report, CRADA Number CRD-07-217  

SciTech Connect (OSTI)

Site-specific, long-term, continuous, and high-resolution measurements of solar irradiance are important for developing renewable resource data. These data are used for several research and development activities consistent with the NREL mission: establish a national 30-year climatological database of measured solar irradiances; provide high quality ground-truth data for satellite remote sensing validation; support development of radiative transfer models for estimating solar irradiance from available meteorological observations; provide solar resource information needed for technology deployment and operations. Data acquired under this agreement will be available to the public through NREL's Measurement & Instrumentation Data Center - MIDC (www.nrel.gov/midc). The MIDC offers a variety of standard data display, access, and analysis tools designed to address the needs of a wide user audience (e.g., industry, academia, and government interests).

Stoffel, T.; Andreas, A.

2014-01-01T23:59:59.000Z

189

Solar and Wind Energy Resource Assessment - Kenya Country Report | OpenEI  

Open Energy Info (EERE)

- Kenya Country Report - Kenya Country Report Dataset Summary Description (Abstract): The Kenya Country Report describes the energy situation in Kenys and identifies solar and wind energy opportunities. (Purpose): To influence investment decisions by promoting and supporting renewable energy by overcoming informational barriers in solar and wind energy financing. Source Daniel Theuri - SWERA National Team Date Released November 23rd, 2008 (6 years ago) Date Updated Unknown Keywords documentation Kenya renewable energy solar SWERA UNEP wind Data application/pdf icon Download Report (pdf, 9.3 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period 2008 License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment

190

Ocean Thermal Energy Conversion  

Science Journals Connector (OSTI)

A pertinent question, however, is: what is the worldwide power resource that could be extracted with OTEC plants without affecting the thermohaline ocean circulation? The estimate is that the maximum steady-state...

Dr. Luis A. Vega Ph.D.

2013-01-01T23:59:59.000Z

191

Ocean Thermal Energy Conversion  

Science Journals Connector (OSTI)

A pertinent question, however, is: what is the worldwide power resource that could be extracted with OTEC plants without affecting the thermohaline ocean circulation? The estimate is that the maximum steady-state...

Dr. Luis A. Vega Ph.D.

2012-01-01T23:59:59.000Z

192

ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

screens for ocean thermal energy conversion power plants.cold deep-ocean waters to produce electric power via eitherOffice of Solar Power Applications. Division of Ocean Energy

Sullivan, S.M.

2014-01-01T23:59:59.000Z

193

Exploration of Resource and Transmission Expansion Decisions in the Western Renewable Energy Zone Initiative  

E-Print Network [OSTI]

their renewable resources from solar energy; wind makes upenergy demand. Solar energy is the second largest resource,in this paper. Solar energy is the second largest resource,

Mills, Andrew

2010-01-01T23:59:59.000Z

194

Ocean Thermal Extractable Energy Visualization: Final Technical Report  

Broader source: Energy.gov [DOE]

Report about the Ocean Thermal Extractable Energy Visualization project, which focuses on assessing the Maximum Practicably Extractable Energy from the worlds ocean thermal resources.

195

Commercial and Industrial Base Intermittent Resource Management Pilot  

E-Print Network [OSTI]

Renewable energy resources, such as wind, solar, geothermal,good resource to integrate wind and solar energy. Accordingresources will be either wind or solar, which provide energy

Kiliccote, Sila

2011-01-01T23:59:59.000Z

196

Supporting Solar Power in Renewables Portfolio Standards: Experience from the United States  

E-Print Network [OSTI]

that distributed solar energy resources are sited at acontribution from solar energy resources. In contrast, theof solar energy and to renewable resource diversity, more

Wiser, Ryan

2010-01-01T23:59:59.000Z

197

Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid  

E-Print Network [OSTI]

54 SolarphotovoltaicDistributedEnergyResources(DER)Clearly, solar energy is a sustainable resource, with energyof distributed energy resources such as solar PV, treating

Hill, Steven Craig

2013-01-01T23:59:59.000Z

198

Solar Works! In Seattle: Introduction to Solar Electric (PV)  

Broader source: Energy.gov [DOE]

Presentation slides from residential PV workshop. Also covers general solar resource assessment, siting and financial incentives.

199

Final Environmental Impact Statement for the Quartzsite Solar Energy Project and Proposed Yuma Field Office Resource Management Plan Amendment  

Broader source: Energy.gov (indexed) [DOE]

Final Environmental Impact Statement for the Quartzsite Solar Energy Project and Proposed Yuma Field Office Resource Management Plan Amendment DOE/EIS - 0440 Lead Federal Agency: U.S. Department of Energy, Western Area Power Administration Cooperating Agencies: U.S. Department of the Interior, Bureau of Land Management, Yuma Field Office U.S. Army Corps of Engineers U.S. Army Garrison Yuma Proving Ground Arizona Department of Environmental Quality Arizona Game and Fish Department December 2012 COVER SHEET Lead Federal Agency: U.S. Department of Energy, Western Area Power Administration Cooperating Agencies: U.S. Department of the Interior, Bureau of Land Management U.S. Army Corps of Engineers U.S. Army Garrison-Yuma Proving Ground Arizona Department of Environmental Quality

200

Evaluation of solar energy resources by establishing empirical models for diffuse solar radiation on tilted surface and analysis for optimum tilt angle for a prospective location in southern region of Sindh, Pakistan  

Science Journals Connector (OSTI)

Abstract Diffuse solar radiation data is very important and is required for solar energy system implementations. The main purpose of the present study is to evaluate solar energy resources by establishing diffuse solar radiation models and obtaining optimum tilt angle fora prospective location is southern region of Sindh, Pakistan. Due to the unavailability of measured diffuse solar radiation data, nine new models, based on available data from local agency and values obtain from existing models, to predict diffuse solar radiation on tilted surface has been established. The best model was chosen based on test results from statistical indicators. The optimum tilt angle for monthly, seasonally, half-yearly and yearly adjustment was determined. The optimum tilt angle varies from 0 in May, June and July to 49 in December. The yearly optimum tilt angle was found as 23, which is close to latitude of investigated location (2507?N). The monthly average total, beam and diffuse solar radiations were calculated for optimum and vertical tilted surfaces and were compared with those obtain for horizontal surfaces. The half-yearly adjustment of optimum tilt angle is recommended for the investigated location because very small difference in annual solar energy gains in comparison with monthly or seasonal adjustment. The total annual energy for completer year and for four seasons of the year was calculated and found that maximum total annual energy is obtained at optimum tilt angle.

Shahnawaz Farhan Khahro; Kavita Tabbassum; Shahnawaz Talpur; Mohammad Bux Alvi; Xiaozhong Liao; Lei Dong

2015-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ocean resources solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Solar Resource Measurements in 1400 JR Lynch Street, Jackson, Mississippi: Cooperative Research and Development Final Report, CRADA Number CRD-07-254  

SciTech Connect (OSTI)

Site-specific, long-term, continuous, and high-resolution measurements of solar irradiance are important for developing renewable resource data. These data are used for several research and development activities consistent with the NREL mission: Equipment will be used by Jackson State University for solar radiation data monitoring. This is a continuing effort of the Historically Black Colleges and Universities Solar Measurement Network; Provide high quality ground-truth data for satellite remote sensing validation; Support development of radiative transfer models for estimating solar irradiance from available meteorological observations; Provide solar resource information needed for technology deployment and operations. Data acquired under this agreement will be available to the public through NREL's Measurement & Instrumentation Data Center (MIDC) (www.nrel.gov/midc) or the Renewable Resource Data Center (RReDC ) (http://rredc.nrel.gov). The MIDC offers a variety of standard data display, access, and analysis tools designed to address the needs of a wide user audience (e.g., industry, academia, and government interests.

Stoffel, T.

2014-01-01T23:59:59.000Z

202

Inherent optical properties of the ocean  

Science Journals Connector (OSTI)

Atlantic Ocean, the Gulf of Mexico, and Monterey Bay, and includes Gulf Stream, Loop Current, slope, shelf, and ... The solar-induced fluorescence of CDOM...

1999-12-24T23:59:59.000Z

203

Assessing Passive and Active Solar Energy Resources in Cities Using 3D City Models  

Science Journals Connector (OSTI)

Abstract Many cities today are committed to increasing the energy efficiency of buildings and the fraction of renewables. However, quantitative data on urban energy performance are rarely available during the design stage of new towns or for rehabilitation scenarios of existing cities. Three dimensional city models based on the spatio-semantic data format CityGML offer powerful new methods for the quantitative evaluation of urban energy demand and costs, and simultaneously allow the simulation of renewable energy systems. Such a semantically enriched models was used in this work for energy demand diagnostics, refurbishment forecast and renewable supply scenarios. A case study was done using this method in an existing urban quarter in Ludwigsburg/Germany. Based on its three dimensional representation, the photovoltaic potential has been calculated and compared with the electricity demand to establish the photovoltaic fraction. On the thermal side, the passive solar gains were simulated for each building in the city quarter to analyse the solar contribution for heating demand reduction. The simulations were validated with measured gas consumptions. Some rehabilitation scenarios have also been simulated. In such a moderately dense post-war district, the calculated energy savings potential reach in total 65%, equally distributed between heat savings following building envelope refurbishment, and electricity savings due to the installation of PV on the roofs.

Ursula Eicker; Romain Nouvel; Eric Duminil; Volker Coors

2014-01-01T23:59:59.000Z

204

Solar Works in Seattle: Domestic Hot Water  

Broader source: Energy.gov [DOE]

Seattle's residential solar hot water workshop. Content also covers general solar resource assessment, siting, and financial incentives.

205

Solar radiation management impacts on agriculture in China: A case study in the Geoengineering  

E-Print Network [OSTI]

Solar radiation management impacts on agriculture in China: A case study in the Geoengineering, Environment Canada, Toronto, Ontario, Canada, 3 School of Earth and Ocean Sciences, University of Victoria, Victoria, British Columbia, Canada, 4 State Key Laboratory of Earth Surface Processes and Resource Ecology

Robock, Alan

206

Impact of Transmission on Resource Adequacy in Systems with Wind and Solar Power: Preprint  

SciTech Connect (OSTI)

Variable generation is on track to become a significant contributor to electric power systems worldwide. Thus, it is important to analyze the effect that renewables will have on the reliability of systems. In this paper we present a new tool being implemented at the National Renewable Energy Laboratory, which allows the inclusion of variable generation in the power system resource adequacy. The tool is used to quantify the potential contribution of transmission to reliability in highly interconnected systems and an example is provided using the Western Interconnection footprint.

Ibanez, E.; Milligan, M.

2012-02-01T23:59:59.000Z

207

MHK Technologies/Ocean Energy Rig | Open Energy Information  

Open Energy Info (EERE)

Rig Rig < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Ocean Energy Rig.jpg Technology Profile Primary Organization Free Flow 69 Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description The Ocean Energy Rig is a hybrid concept harnessing tidal stream with increased velocity from venturi system wave and wind power The rig also uses solar panels to power computers and warning lights Other unique features include a water ballasting system with automatic self levelling and wave ramps to maximize FreeFlow 69 s new wave power device It is envisaged that the Ocean Energy Rig would be assembled and maintained in dry docks and would be towed out into position before being semi submerged and anchored for operation Power output of the production model would be at least 10MW

208

Solar forecasting review  

E-Print Network [OSTI]

to solar thermal power pants energy production planning,to solar ther- mal power plants energy production planning [solar resource, seasonal deviations in production and load profiles, the high cost of energy

Inman, Richard Headen

2012-01-01T23:59:59.000Z

209

Chapter 16 - Ocean Engines  

Science Journals Connector (OSTI)

Publisher Summary Ocean thermal energy converters (OTECs) took advantage of the ocean acting as an immense collector and storer of solar radiation, thus delivering a steady flow of low-grade thermal energy. The ocean plays a similar role in relation to the wind energy, which is transformed into waves far steadier than the air currents that created them. Nevertheless, waves are neither steady nor concentrated enough to constitute a highly attractive energy source notwithstanding their large total power. There is little net horizontal motion of water in a surface ocean wave. A floating object drifts in the direction of the wave with about 1% of the wave velocity. A given elementary cell of water will move in a vertical circle, surging forward near the crest of the wave but receding by an almost equal amount at the trough. Any system in which the wave velocity depends on wavelength is called dispersive; hence the deep ocean is dispersive.

Aldo Vieira da Rosa

2009-01-01T23:59:59.000Z

210

DOE Solar Decathlon: Solar Decathlon Videos  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Consumer Workshops Consumer Workshops Building Industry Workshops Technical Resources Sponsors Where Are the Houses Now? Quick Links Solar Decathlon Home Solar Decathlon 2011 Solar Decathlon 2009 Solar Decathlon 2007 Solar Decathlon 2005 Solar Decathlon 2002 Solar Decathlon 2011 Solar Decathlon Videos For video of the U.S. Department of Energy Solar Decathlon 2011, see the collections listed below or visit the U.S. Department of Energy Solar Decathlon YouTube Channel. General Solar Decathlon Videos Watch these videos to learn about the Solar Decathlon competition and event. Solar Decathlon House Video Tours Learn about each of the U.S. Department of Energy Solar Decathlon teams and their houses in these video tours. Solar Decathlon Team-Produced Videos Watch videos produced by the teams themselves for the Solar Decathlon

211

Exploration of Resource and Transmission Expansion Decisions in the Western Renewable Energy Zone Initiative  

E-Print Network [OSTI]

of nearby solar, geothermal, and wind energy resources toenergy demand. Solar energy is the second largest resource,

Mills, Andrew D

2011-01-01T23:59:59.000Z

212

Mapping and Assessment of the United States Ocean Wave Energy...  

Open Energy Info (EERE)

Mapping and Assessment of the United States Ocean Wave Energy Resource This project estimates the naturally available and technically recoverable U.S. wave energy resources, using...

213

Energy Office Grant Helps the Virgin Islands Environmental Resource Station Install Solar Panels, Improve Efficiency, and Cut Monthly Energy Use Nearly 30% (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet highlights the energy challenges faced by the Virgin Islands Environmental Resource Station (VIERS), the renewable energy and energy efficiency solutions implemented, the resulting energy efficiency savings, and other project benefits. In 2011, VIERS installed a 9.4 kW solar system funded by a $50,000 American Recovery and Reinvestment Act (ARRA) grant, which was administered by VIEO. To identify additional energy-saving opportunities, VIERS performed an energy audit of appliances, which resulted in the removal of two water coolers and the installation of a water meter to monitor water use and how it relates to electric pump use. VIERS also added an educational component to the project, developing a solar classroom near the original solar system. By building on previous energy conservation measures and making additional investments in renewable energy technology, VIERS has lowered its average monthly energy consumption nearly 30%, even with an increase in guests. The VIERS efforts are not limited to the technology installations, however. They also serve to impact the youth of the U.S. Virgin Islands (USVI) by educating young people about energy efficiency and renewable energy technologies and their energy and environmental impacts. VIERS solar system is connected to the Web via a live feed that posts solar output data in real time, increasing the VIERS solar classroom's potential educational impact exponentially.

Not Available

2012-03-01T23:59:59.000Z

214

Solar Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solar Power Solar Power Project Opportunities Abound in the Region The WIPP site is receives abundant solar energy with 6-7 kWh/sq meter power production potential As the accompanying map of New Mexico shows, the WIPP site enjoys abundant year-round sunshine. With an average solar power production potential of 6-7 kWh/sq meter per day, one exciting project being studied for location at WIPP is a 30-50 MW Solar Power Tower: The American Solar Energy Society (ASES) is is a national trade association promoting solar energy as a clean source of electricity, and provides a comprehensive resource for additional information. DOE's Office of Energy Efficiency and Renewable Energy is also a comprehensive resource for more information on renewable energy.

215

Management and exploitation of direct normal irradiance resources for concentrating solar collectors: Algeria as a case study  

Science Journals Connector (OSTI)

The use of concentrating solar collectors which are used in solar thermal power plant and concentrated photovoltaic systems implies that these systems only work with the direct normal irradiance (DNI). Unfortu...

Mohamed Salah Mecibah; Taqiy Eddine Boukelia

2014-11-01T23:59:59.000Z

216

Characterization of the Solar Power Resource in Europe and Assessing Benefits of Co-Location with Wind Power Installations  

E-Print Network [OSTI]

The extent, availability and reliability of solar power generation are assessed over Europe, andfollowing a previously developed methodologyspecial attention is given to the intermittency of solar power. Combined with ...

Bozonnat, C.

217

Solar Resource Measurements in Cocoa, Florida (FSEC) - Equipment Loaned to NREL: Cooperative Research and Development Final Report, CRADA Number CRD-08-318  

SciTech Connect (OSTI)

Site-specific measurements of global and diffuse solar irradiance components, passively separated by alternate shading and unshading of a pyranometer mounted under a shading band with alternating opaque and open panels (for a site other than NREL) are needed to verify the underlying theory and mathematical techniques for developing direct, global and diffuse renewable resource data from such a system. These data are used for several research and development activities consistent with the NREL mission: Establish a national 30-year climatological database of measured solar irradiances; Support development of radiative transfer models for estimating solar irradiance from available meteorological observations; Provide solar resource information needed for technology deployment and operations. NREL will provide the supporting equipment (Shadow Bank Stand) for the specially designed shading band. FSEC will provide the calibrated pyranometer and perform data acquisition of the radiometer signal. Data acquired under this agreement will be shared with the NREL Principle Investigator for the purposes of validating techniques for estimating direct radiation from global and diffuse components measured with the ZEBRA system.

Stoffel, T.; Afshin, A.

2014-01-01T23:59:59.000Z

218

Solar and Wind Energy Resource Assessment (SWERA) Data from the National Renewable Energy Library and the United Nations Environment Program (UNEP)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The SWERA Programme provides easy access to credible renewable energy data to stimulate investment in, and development of, renewable energy technologies. The Solar and Wind Energy Resource Assessment (SWERA) started in 2001 to advance the large-scale use of renewable energy technologies by increasing the availability and accessibility of high-quality solar and wind resource information. SWERA began as a pilot project with funding from the Global Environment Facility (GEF) and managed by the United Nations Environment Programme's (UNEP) Division of Technology, Industry and Economics (DTIE) in collaboration with more than 25 partners around the world. With the success of the project in 13 pilot countries SWERA expanded in 2006 into a full programme. Its expanded mission is to provide high quality information on renewable energy resources for countries and regions around the world, along with the tools needed to apply these data in ways that facilitate renewable energy policies and investments.[from the SWERA Guide at http://swera.unep.net/index.php?id=sweraguide_chp1] DOE and, in particular, the National Renewable Energy Laboratory, has been a functioning partner from the beginning. NREL was part of the original technical team involved in mapping, database, and GIS activities. Solar, wind, and meteorological data for selected countries can be accessed through a variety of different tools and interfaces.

219

Sandia National Laboratories: solar power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solar Resource Assessment Facilities Contacts About Photovoltaics at Sandia Sandia's solar photovoltaic (PV) work is focused on developing cost-effective, reliable...

220

Hybrid application of biogas and solar resources to fulfill household energy needs: A potentially viable option in rural areas of developing countries  

Science Journals Connector (OSTI)

Abstract The absence of clean cooking facilities and electricity means billions of rural people are deprived of much needed socioeconomic development. Livestock residues (dung) and solar radiation are two renewable energy resources that are abundantly available in rural areas of developing countries. Although it is not feasible for these two resources separately to meet both thermal (cooking) and electricity demands, hybrid applications have not been given due attention. To facilitate integrating these two resources in rural energy planning, and to promote their dissemination through hybrid applications, it is necessary to evaluate their economic merits, and assess their ability to deal with the demands. In this paper, we examine the techno-economic performance of hybrid applications of these two resources by applying a simulation technique using the HOMER tool, and by giving derived cost-saving equations. We also quantify the monetary savings from replacing traditional fuels, and perform a sensitivity analysis on a number of variables (e.g. dung cost, fuelwood cost) to see how they affect the performance of different energy supply alternatives. Furthermore, we examine the practical applicability of the biogas system in the households through a structured survey of 72 ongoing household biogas plants. This study finds that households that have between three and six cattle can potentially meet their cooking and electricity loads through a hybrid implementation of biogas and solar PV (Photovoltaic) system. By replacing conventional fuels households can achieve savings that are more than the total annualized costs incurred for installing new services.

Md. Mizanur Rahman; Mohammad Mahmodul Hasan; Jukka V. Paatero; Risto Lahdelma

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ocean resources solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

OceanEnergyMMS.p65  

Broader source: Energy.gov (indexed) [DOE]

Minerals Management Service, U.S. Department of the Interior Ocean Energy PAGE 1 Minerals Management Service, U.S. Department of the Interior Ocean Energy PAGE 1 Teacher Guide .......................................................... 2 Related National Science Standards .......................... 3 Introduction to Ocean Energy .................................. 4 Petroleum & Natural Gas ......................................... 5 Natural Oil and Gas Seeps ........................................ 7 Methane Hydrates .................................................... 8 Solar Energy .............................................................. 9 Wind Energy ........................................................... 10 Wave Energy ........................................................... 11 OTEC: Ocean Thermal Energy Conversion .............

222

Foundations for Evaluating Solar Photovoltaic Energy as a Viable Resource in Hawai'i: Technical, Policy, and Business Investigations .  

E-Print Network [OSTI]

??Solar photo voltaic technology (PV) has great potential to facilitate a transition to sustainable energy generation in the state of Hawai'i. In addition, it may (more)

Madey, Andrew John

2014-01-01T23:59:59.000Z

223

ACR 891 (?) Ocean Policy: Current Issues seminar  

E-Print Network [OSTI]

ACR 891 (?) Ocean Policy: Current Issues seminar Fall, 2013 (2 cr, + 1 cr optional) Professor of a common pool resource than the world's oceans it can only be the atmosphere. The latter is currently neglected. This seminar is intended to introduce students to some of the current issues in ocean policy

224

The Solar Energy Resource  

Science Journals Connector (OSTI)

Though all substances continuously emit electromagnetic radiation, the dominant form that such energy takes depends upon its nature and the form of the applied external excitation; electrical conductors emit r...

Brian Norton BSc; MSc; PhD; F Inst E; C Eng

1992-01-01T23:59:59.000Z

225

Protecting Solar Rights in California Through an Exploration of the California Water Doctrine  

E-Print Network [OSTI]

andsolarenergyareshared commonresources. Inthecasenaturalresource. Waterandsolarenergyshareseveralsolarenergy system. SolarShade Providesprotectionsagainst PublicResources

Fedman, Anna

2011-01-01T23:59:59.000Z

226

Rural Solar Cookers, an Alternative to Reduce the Timber Resource Extraction through the Use of Renewable Energy Sources: Technology Transfer and Monitoring Project  

Science Journals Connector (OSTI)

Abstract In this paper, it's presented an integral project of technology transfer. Based in the development of several prototypes of solar cookers, all of them with our own design and construction, whose functionality is to compound parabolic concentrators of revolution, this project performed how to implement this ecotechnology. The prototype implemented uses mirror polished aluminum reflectors, aluminum pressure cooker manual tracking device and solar tilt. With the help of social programs, 70 solar cookers were implemented in an indigenous community in Michoacn, Mxico; previously it was implemented a diagnostic of timber resources consumption to each beneficiary family. Also, firing tests were performed with various prototypes plots to select the best one with thermal and ergonomic characteristics. The project expects to reduce the consumption of timber as fuel used for cooking by 30%; to encourage the use of renewable energy, to mitigate respiratory diseases caused by the inhalation of combustion smoke and help the family's economy. Currently we are working with the monitoring to quantify the improvements achieved in consumption-appropriation. There is already an user manual of maintenance and construction of solar cookers in the indigenous language and the project wants to be the basis for future Eco technologies implementations.

Luis Bernardo Lpez Sosa; Mauricio Gonzlez Avils; Dante Gonzlez Prez; Yuritzi Sols Gutirrez

2014-01-01T23:59:59.000Z

227

Sandia National Laboratories: virtual time series of solar power...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy, Modeling & Analysis, News, News & Events, Partnership, Photovoltaic, Renewable Energy, Solar, Systems Analysis The book, Solar Energy Forecasting and Resource...

228

Sandia National Laboratories: simulating solar-power-plant output...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy, Modeling & Analysis, News, News & Events, Partnership, Photovoltaic, Renewable Energy, Solar, Systems Analysis The book, Solar Energy Forecasting and Resource...

229

Commercial and Industrial Base Intermittent Resource Management Pilot  

E-Print Network [OSTI]

Hawkins 2010). Solar resources in California can be dividedwind and solar generation into the Californias electricitywind and solar generation into the Californias electricity

Kiliccote, Sila

2011-01-01T23:59:59.000Z

230

Status of Solar Thermal Conversion in China  

Science Journals Connector (OSTI)

China has an abundant solar energy resource. Solar thermal conversion systems have been studied for more than 25 years and solar thermal industry has been developing since 1990s....2 solar collectors were sold a...

Yin Zhiqiang

2009-01-01T23:59:59.000Z

231

Solar Hot Water Market Development in Knoxville, TN | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Information Resources Solar Hot Water Market Development in Knoxville, TN Solar Hot Water Market Development in Knoxville, TN Assessment of local solar hot water markets, market...

232

Solar access of residential rooftops in four California cities  

E-Print Network [OSTI]

rooftops in four California cities Solar access ofcomputed. Solar access violation California Public ResourcesSolar access of residential rooftops in four California

Levinson, Ronnen

2010-01-01T23:59:59.000Z

233

NREL: Solar Research - News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

News The following news stories highlight solar research, technologies, and resources. Subscribe to the RSS feed RSS . Learn about RSS. December 16, 2014 NREL Demonstrates 45.7%...

234

Luma Resources LLC | Open Energy Information  

Open Energy Info (EERE)

search Name: Luma Resources LLC Place: Rochester Hills, Michigan Zip: 48309 Sector: Solar Product: Michigan-based developer and installer of solar roof kits for the...

235

NREL: International Activities - Afghanistan Resource Maps and...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The high-resolution (10-km) annual and seasonal solar resource maps were developed using weather satellite data incorporated into a site-time specific solar mapping approach...

236

Building Technologies Office: Resources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Resources to someone by Resources to someone by E-mail Share Building Technologies Office: Resources on Facebook Tweet about Building Technologies Office: Resources on Twitter Bookmark Building Technologies Office: Resources on Google Bookmark Building Technologies Office: Resources on Delicious Rank Building Technologies Office: Resources on Digg Find More places to share Building Technologies Office: Resources on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Home Energy Score Home Performance with ENERGY STAR Better Buildings Neighborhood Program Challenge Home Partner Log In Become a Partner Criteria Partner Locator Resources Housing Innovation Awards Events Guidelines for Home Energy Professionals Technology Research, Standards, & Codes

237

Thermodynamic Optimization in Ocean Thermal Energy Conversion  

Science Journals Connector (OSTI)

As alternative energy sources to oil and uranium, we can consider well known alternative sources such as solar power, geothermal power and wind power. However when we consider the 21st century energy sources, ocean

Y. Ikegami; H. Uehara

1999-01-01T23:59:59.000Z

238

Final report for %22High performance computing for advanced national electric power grid modeling and integration of solar generation resources%22, LDRD Project No. 149016.  

SciTech Connect (OSTI)

Design and operation of the electric power grid (EPG) relies heavily on computational models. High-fidelity, full-order models are used to study transient phenomena on only a small part of the network. Reduced-order dynamic and power flow models are used when analysis involving thousands of nodes are required due to the computational demands when simulating large numbers of nodes. The level of complexity of the future EPG will dramatically increase due to large-scale deployment of variable renewable generation, active load and distributed generation resources, adaptive protection and control systems, and price-responsive demand. High-fidelity modeling of this future grid will require significant advances in coupled, multi-scale tools and their use on high performance computing (HPC) platforms. This LDRD report demonstrates SNL's capability to apply HPC resources to these 3 tasks: (1) High-fidelity, large-scale modeling of power system dynamics; (2) Statistical assessment of grid security via Monte-Carlo simulations of cyber attacks; and (3) Development of models to predict variability of solar resources at locations where little or no ground-based measurements are available.

Reno, Matthew J.; Riehm, Andrew Charles; Hoekstra, Robert John; Munoz-Ramirez, Karina; Stamp, Jason Edwin; Phillips, Laurence R.; Adams, Brian M.; Russo, Thomas V.; Oldfield, Ron A.; McLendon, William Clarence, III; Nelson, Jeffrey Scott; Hansen, Clifford W.; Richardson, Bryan T.; Stein, Joshua S.; Schoenwald, David Alan; Wolfenbarger, Paul R.

2011-02-01T23:59:59.000Z

239

NREL: Climate Neutral Research Campuses - Solar Thermal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

cooling system in 2006. Back to Top Technology Basics The following resources explain the fundamentals of solar thermal technologies: NREL Solar Energy Basics: Descriptive overview...

240

Sandia National Laboratories: Concentrating Solar Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Concentrating Solar Power (CSP) On April 13, 2011, in CSP R&D at Sandia Testing Facilities Software & Tools Resources Contacts News Concentrating Solar Power ANNOUNCEMENT: Sandia's...

Note: This page contains sample records for the topic "ocean resources solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Solar Energy - It's Growth, Development, and Use  

Office of Scientific and Technical Information (OSTI)

Solar Energy Resources with Additional Information Solar Energy Courtesy of National Renewable Energy Laboratory Credit-Robb Williamson The Department of Energy has played a major...

242

Solar Energy Market Forecast | Open Energy Information  

Open Energy Info (EERE)

Solar Energy Market Forecast Solar Energy Market Forecast Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Solar Energy Market Forecast Agency/Company /Organization: United States Department of Energy Sector: Energy Focus Area: Solar Topics: Market analysis, Technology characterizations Resource Type: Publications Website: giffords.house.gov/DOE%20Perspective%20on%20Solar%20Market%20Evolution References: Solar Energy Market Forecast[1] Summary " Energy markets / forecasts DOE Solar America Initiative overview Capital market investments in solar Solar photovoltaic (PV) sector overview PV prices and costs PV market evolution Market evolution considerations Balance of system costs Silicon 'normalization' Solar system value drivers Solar market forecast Additional resources"

243

Ocean - FAQ | Data.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FAQ FAQ Ocean Data Tools Technical Guide Map Gallery Regional Planning Feedback Ocean You are here Data.gov » Communities » Ocean Frequently Asked Questions Following are some Frequently Asked Questions, we hope to add to this list as we hear from you. Questions What is Ocean.data.gov? How can I use this resource? What data can I expect to find here? Where do these data come from? Can data from State and academic sources be included in this portal? Who can suggest data and information to be included in Ocean.data.gov? Who decides what data are included? How do I get involved? How does this differ from other data efforts such as regional data portals? Where do I find information about data standards, metadata standards, and formats? Can we provide feedback about a particular dataset?

244

On the probability and spatial distribution of ocean surface currents  

E-Print Network [OSTI]

On the probability and spatial distribution of ocean surface currents Yosef Ashkenazy Solar Energy into the probability distribution of ocean currents are important for various applications such as the chance. Our results show that the distribution of ocean currents' speed can be approximated by a Weibull

Ashkenazy, Yossi "Yosef"

245

Ocean Acidification  

Science Journals Connector (OSTI)

Ocean Acidification ... The first assignment I give my students in Environmental Modeling class is to calculate the mass of the oceans versus the mass of the atmosphere and the living soil. ... As a young chemical engineer in the early 1970s, I remember discussing the horrors of sulfur and particulate pollution from steel mills, smelters, and power plants. ...

Jerald L. Schnoor

2013-11-05T23:59:59.000Z

246

Optimizing Distributed Energy Resources and Building Retrofits with the Strategic DER-CAModel  

E-Print Network [OSTI]

with distributed energy resources as PV or solar thermal. Aswith distributed energy resources as PV or solar thermal.energy resources (DER) as e.g. photovoltaic, solar thermal

Stadler, Michael

2014-01-01T23:59:59.000Z

247

A. Oumbe, Ph. Blanc, T. Ranchin, M. Schroedter-Homscheidt, L. Wald, 2009. A new method for estimating solar energy resource. In Proceedings of the ISRSE 33, held in Stresa, Italy, 4-9 May 2009. Published by Joint Research Center, Ispra,  

E-Print Network [OSTI]

for estimating solar energy resource. In Proceedings of the ISRSE 33, held in Stresa, Italy, 4-9 May 2009. Published by Joint Research Center, Ispra, USBKey, paper 773. A new method for estimating solar energy sources of energy should be better exploited to meet demand. Among them, solar energy offers a great

Paris-Sud XI, Université de

248

Distributed Energy Resources for Carbon Emissions Mitigation  

E-Print Network [OSTI]

solar electric and thermal equipment, and energy storage - collectively termed distributed energy resources (energy resources (DER) such as on-site fossil-fuel based combined heat and power (CHP), thermally- activated cooling, photovoltaics, solar

Firestone, Ryan; Marnay, Chris

2008-01-01T23:59:59.000Z

249

Countermeasures to Microbiofouling in Simulated Ocean Thermal Energy Conversion Heat Exchangers with Surface and Deep Ocean Waters in Hawaii  

Science Journals Connector (OSTI)

...thermal energy from warm ocean waters. A small fraction...converted to electrical power and waste heat is rejected...water pumped from the ocean depth. Solar energy absorbed by the ocean surface provides the heat...Thermal losses, the power requirements to pump large...

Leslie Ralph Berger; Joyce A. Berger

1986-06-01T23:59:59.000Z

250

Ocean Energy Technology Overview: Federal Energy Management Program (FEMP)  

SciTech Connect (OSTI)

Introduction to and overview of ocean renewable energy resources and technologies prepared for the U.S. Department of Energy Federal Energy management Program.

Not Available

2009-07-01T23:59:59.000Z

251

Energy Office Grant Helps the Virgin Islands Environmental Resource Station Install Solar Panels, Improve Efficiency, and Cut Monthly Energy Use Nearly 30% (Fact Sheet), Energy Development in Island Nations, U.S. Virgin Islands (EDIN)  

Broader source: Energy.gov (indexed) [DOE]

Office Grant Helps the Virgin Islands Environmental Office Grant Helps the Virgin Islands Environmental Resource Station Install Solar Panels, Improve Efficiency, and Cut Monthly Energy Use Nearly 30% Organization Virgin Islands Energy Office www.vienergy.org Industry/Sector Government/Nonprofit Deployment Location St. John, U.S. Virgin Islands This project is such a great learning tool, and I am excited about its progress and being able to show students visiting either VIERS or our website the impact of solar energy. -Randy Brown VIERS Administrator The Virgin Islands Environmental Resource Station developed a solar classroom to educate young people in the U.S. Virgin Islands about renewable energy technologies and their energy and environmental impacts. Photo from Don Buchanan, Virgin Islands Energy Office,

252

Ocean acidification in a geoengineering context  

Science Journals Connector (OSTI)

...Schmidt, H. , 2012 Can a reduction in solar irradiance counteract CO2-induced climate...Santillo, and C. Vivian). Montreal, Canada: CBD. 140 Crutzen, P. J. 2006 Albedo...or elsewhere in the ocean interior. If solar radiation management were to be the main...

2012-01-01T23:59:59.000Z

253

Developing a solar energy industry in Egypt .  

E-Print Network [OSTI]

??This paper assesses Egypt's current energy infrastructure and its problems, the available solar energy resource, and the technologies required to harness this resource. After this (more)

AbdelMessih, Sherife (Sherife Mohsen)

2009-01-01T23:59:59.000Z

254

Supporting Solar Power in Renewables Portfolio Standards: Experience from the United States  

E-Print Network [OSTI]

require that solar resources are connected to the in-stateIn-state multiplier for all RPS resources, including solar;from solar energy resources. In contrast, the states

Wiser, Ryan

2010-01-01T23:59:59.000Z

255

Ocean Energy  

Science Journals Connector (OSTI)

Some of these technologies are taking off from very low power capacities, although with an intense activity....4, 5] including La Rance tidal power station calculate a capacity of ocean energy facilities worldwid...

Ricardo Guerrero-Lemus; Jos Manuel Martnez-Duart

2013-01-01T23:59:59.000Z

256

[The Story of the Solar System] The Solar System -II  

E-Print Network [OSTI]

-TauriPhase SolarNebula #12;Giant Molecular Cloud o About 50-100 light years across o more than a million times[The Story of the Solar System] The Solar System - II Alexei Gilchrist #12;Some resources o Section of the Solar System, M Garlick, (Cambridge Uni. Press, 2002) #12;Timeline Today Big Bang Earliest Fossils Birth

Wardle, Mark

257

Tidal Energy Resource Assessment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

dalresourcegtrchaas.ppt More Documents & Publications Ocean current resource assessment Free Flow Energy (TRL 1 2 3 Component) - Design and Development of a Cross-Platform...

258

Renewable Resource Integration Project - Scoping Study of Strategic Transmission, Operations, and Reliability Issues  

E-Print Network [OSTI]

MapofSolarResourcePotentialinCalifornia, [http://maps/solar_potential.html]. CaliforniaEnergySolarThermalBarstow,Mohave,andCentralCalifornia For

Budhraja, Vikram

2008-01-01T23:59:59.000Z

259

Exploration of Resource and Transmission Expansion Decisions in the Western Renewable Energy Zone Initiative  

E-Print Network [OSTI]

from southern California solar and geothermal resources andwind and solar from southern California. The technology thatVariability of Solar Power. Berkeley, California: Lawrence

Mills, Andrew

2010-01-01T23:59:59.000Z

260

Pasteurization of naturally contaminated water with solar energy.  

Science Journals Connector (OSTI)

...G. 0. G. 1979. Solar energy in less developed countries...In N. L. Brown (ed.), Renewable energy resources and rural applications...Logvin. 1981. Solar now; an energy primer and guide to low cost solar cooking, solar tea...

D A Ciochetti; R H Metcalf

1984-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "ocean resources solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Hydrogen Production from Solar Energy  

Science Journals Connector (OSTI)

Solar energy is potentially the most abundant renewable energy resource available to us and hydrogen production from solar energy is considered to be ... ultimate solution for sustainable energy. The various methods

Engin Ture

2007-01-01T23:59:59.000Z

262

Investigation of the Role of Trap States in Solar Cell Reliability using Photothermal Deflection Spectroscopy  

E-Print Network [OSTI]

Simons and J. McCabe, California solar resources. Technicalscale solar power can now be delivered in California atSacramento, California (2005). 4) Solar Market Research and

Bezryadina, Anna Sergeyevna

2012-01-01T23:59:59.000Z

263

Review: Solar Revolution: The Economic Transformation of the Global Energy Industry by Travis Bradford  

E-Print Network [OSTI]

are renewable as well. Solar energy, one such resource, isThe Inevitability of Solar Energy," contains one chapter inenergy system, introduces solar energy with its merits and

Mirza, Umar Karim

2007-01-01T23:59:59.000Z

264

SunShot Initiative: Solar Innovation Timeline  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Information Resources Information Resources Printable Version Share this resource Send a link to SunShot Initiative: Solar Innovation Timeline to someone by E-mail Share SunShot Initiative: Solar Innovation Timeline on Facebook Tweet about SunShot Initiative: Solar Innovation Timeline on Twitter Bookmark SunShot Initiative: Solar Innovation Timeline on Google Bookmark SunShot Initiative: Solar Innovation Timeline on Delicious Rank SunShot Initiative: Solar Innovation Timeline on Digg Find More places to share SunShot Initiative: Solar Innovation Timeline on AddThis.com... Publications Newsletter Resource Center Multimedia Meetings & Workshops Solar Innovation Timeline Solar Career Map Glossary Solar Innovation Timeline This timeline features the key innovations that have advanced the solar

265

Solar Policy Environment: Ann Arbor  

Broader source: Energy.gov [DOE]

The goal for Ann Arbors Solar America Cities program is to utilize a wide range of community partners and resources to remove market barriers to the adoption of solar energy while simultaneously increasing consumer awareness and demand, and helping solar energy manufacturers and contractors to succeed. Expected outcomes include a Solar Plan for Ann Arbor, one or more large-scale photovoltaic demonstration projects, more small-scale solar hot water and photovoltaic demonstration projects, greater consumer awareness of solar options, a simpler permitting process for solar projects, and proof that solar energy works even in cloudy cities.

266

Solar Radiation and Pyranometry Studies for Solar Energy Applications: an Overview of IEA Task IX  

Science Journals Connector (OSTI)

With increased activity in the field of solar energy research and application, there is a need for accurate solar radiation and meteorological data to aid in resource assessment, solar system design evaluation, a...

D. C. McKay

1984-01-01T23:59:59.000Z

267

Renewable Energy Resources and Technologies | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Policy Act of 2005, which defines renewable energy as "electric energy generated from solar, wind, biomass, landfill gas, ocean (including tidal, wave, current, and thermal),...

268

NREL: International Activities - Pakistan Resource Maps and Toolkit  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The high-resolution (10-km) annual and seasonal solar resource maps were developed using weather satellite data incorporated into a site-time specific solar mapping approach...

269

NREL: International Activities - Bhutan Resource Maps and Toolkit  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The high-resolution (10-km) annual and seasonal solar resource maps were developed using weather satellite data incorporated into a site-time specific solar mapping approach...

270

DOE Solar Decathlon: Solar Decathlon Team-Produced Videos  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Video Walkthroughs Video Walkthroughs Animated Walkthroughs Architecture Presentations Engineering Presentations Sales Presentations Consumer Workshops Building Industry Workshops Technical Resources Sponsors Where Are the Houses Now? Quick Links Solar Decathlon Home Solar Decathlon 2011 Solar Decathlon 2009 Solar Decathlon 2007 Solar Decathlon 2005 Solar Decathlon 2002 Solar Decathlon 2011 Solar Decathlon Team-Produced Videos Watch videos produced by the teams themselves for the U.S. Department of Energy Solar Decathlon 2011 competition. Solar Decathlon 2011 Team Video Walkthroughs See inside the Solar Decathlon 2011 houses in these team-produced video tours. Solar Decathlon 2011 Team Computer-Animated Walkthroughs Learn about the teams' plans and concepts by watching these team-produced

271

A Call for Deep-Ocean Stewardship  

Science Journals Connector (OSTI)

...quantities of untapped energy resources, precious...marine resources, energy, and minerals from...as a long-term storage site for CO 2 to...fishing and mineral or energy extraction industries...knowledge as restoration tools. Yet-to-be-discovered...disturbance, as is valuation of deep-ocean...

Kathryn J. Mengerink; Cindy L. Van Dover; Jeff Ardron; Maria Baker; Elva Escobar-Briones; Kristina Gjerde; J. Anthony Koslow; Eva Ramirez-Llodra; Ana Lara-Lopez; Dale Squires; Tracey Sutton; Andrew K. Sweetman; Lisa A. Levin

2014-05-16T23:59:59.000Z

272

Ocean priOrities fOr the Obama administratiOn and cOngress  

E-Print Network [OSTI]

Commission Pietro Parravano, President, Institute for Fisheries Resources; Member, Pew Oceans Commission John Marine Fisheries Commission; Member, Pew Oceans Commission #12;1Charting the Course 1 Contents executive communities and ocean ecosystems to dramatic changes underway in our oceans and on our coasts 13 action 2

Acton, Scott

273

Effort on Developing Cabled Ocean Observatories Research Assitant, Institute of Mechatronics Control Engineering, Zhejiang University  

E-Print Network [OSTI]

Effort on Developing Cabled Ocean Observatories in China Yanhu Chen Research Assitant, Institute and Resources Engineering, University of Hawaii Abstract Cabled ocean observatory that enables abundant power cabled ocean observatories to support ocean scientific research in China, Zhejiang University has been

Frandsen, Jannette B.

274

New Mexico Water Resources Research Institute, New Mexico State University http://wrri.nmsu.edu Solar Desalination of Brackish Water Using  

E-Print Network [OSTI]

the best and worst solar energy season in New Mexico. Two membrane distillation modules: flat sheet from brackish water by using solar energy assisted membrane distillation processes. Problem a cost-effective solar desalination process for New Mexico brackish water using membrane distillation

Johnson, Eric E.

275

Tool to Compare Solar Energy Program Financing Options | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Information Resources Tool to Compare Solar Energy Program Financing Options Tool to Compare Solar Energy Program Financing Options This model is intended to be used for...

276

Catching some rays: Organic solar cells make a leap forward ...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Additional resources Primer on solar power See also Argonne Now Magazine - Summer 2014 Argonne Now Magazine - Summer 2013 Solar Energy Research at Argonne Catching some rays:...

277

Solar Technical Assistance Team (STAT) Summer Webinar Series: Webinar 3  

Broader source: Energy.gov [DOE]

This document details the Solar Technical Assistance Team (STAT) Summer Webinar Series: Webinar 3: Solar Technology Options and Resource Assessment Question & Answer Session on August 15, 2012.

278

Solar design T-square | Open Energy Information  

Open Energy Info (EERE)

Summary LAUNCH TOOL Name: Solar Design T-Square AgencyCompany Organization: Brian White Sector: Energy Focus Area: Renewable Energy, Solar Resource Type: Training materials,...

279

Solar and Wind Energy Utilization and Project Development Scenarios...  

Open Energy Info (EERE)

Solar and Wind Energy Utilization and Project Development Scenarios (Abstract): Solar and wind energy resources in Ethiopia have not been given due attention in the past. Some of...

280

2008 Solar Technologies Market Report | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » 2008 Solar Technologies Market Report Jump to: navigation, search Tool Summary Name: 2008 Solar Technologies Market Report Agency/Company /Organization: United States Department of Energy Sector: Energy Focus Area: Renewable Energy, Solar, - Concentrating Solar Power, - Solar PV Topics: Market analysis, Resource assessment Resource Type: Publications Website: www1.eere.energy.gov/solar/pdfs/46025.pdf Cost: Free 2008 Solar Technologies Market Report Screenshot References: 2008 Solar Technologies Market Report[1] Logo: 2008 Solar Technologies Market Report "The focus of this report is the U.S. solar electricity market, including photovoltaic (PV) and concentrating solar power (CSP) technologies. The

Note: This page contains sample records for the topic "ocean resources solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Solar Power Beginner | Open Energy Information  

Open Energy Info (EERE)

Solar Power Beginner Solar Power Beginner Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Solar Power Beginner Agency/Company /Organization: Solar Power Beginner Sector: Energy Focus Area: Renewable Energy, Solar Topics: Resource assessment Website: www.solarpowerbeginner.com/index.html References: Solar Power Beginner[1] Solar Power Beginner is a website that specializes in providing simple solar information to people who are new to solar power. The site features information on photovoltaic panels[2], solar thermal energy[3], and everyday uses for solar power. Also included are interviews[4] with various experts in the solar industry. References ↑ "Solar Power Beginner" ↑ Solar Panels Page ↑ Solar Thermal Page ↑ Solar Interviews Page Retrieved from

282

Explore Solar Careers  

K-12 Energy Lesson Plans and Activities Web site (EERE)

Policy: There has been a national initiative to double renewable energy resources in three years. Sixteen states and the District of Columbia have renewable portfolio standards with solar energy...

283

Definition: Solar radiation | Open Energy Information  

Open Energy Info (EERE)

radiation radiation Jump to: navigation, search Dictionary.png Solar radiation Electromagnetic energy emitted from the sun.[1][2][3] View on Wikipedia Wikipedia Definition View on Reegle Reegle Definition Solar radiant energy impinging on the earth in any given region or area. Also Known As Solar energy, Solar resource Related Terms Solar energy, Solar cell, Photovoltaics, PV array, PV module, Passive solar, Passive solar heating, energy, bioenergy References ↑ http://www.eere.energy.gov/basics/renewable_energy/solar_resources.html ↑ http://www1.eere.energy.gov/solar/solar_glossary.html#S ↑ http://rredc.nrel.gov/solar/glossary/gloss_s.html Retrieved f LikeLike UnlikeLike You like this.Sign Up to see what your friends like. rom "http://en.openei.org/w/index.php?title=Definition:Solar_radiation&oldid=502602"

284

Astonfield Renewable Resources Ltd ARRL | Open Energy Information  

Open Energy Info (EERE)

Astonfield Renewable Resources Ltd ARRL Jump to: navigation, search Name: Astonfield Renewable Resources Ltd. (ARRL) Place: New York, New York Zip: 10017 Sector: Biomass, Solar...

285

Atlas Brasileiro de Energia Solar (Brazilian Atlas of Solar Energy) |  

Open Energy Info (EERE)

Atlas Brasileiro de Energia Solar (Brazilian Atlas of Solar Energy) Atlas Brasileiro de Energia Solar (Brazilian Atlas of Solar Energy) Dataset Summary Description (Abstract): The Brazilian Atlas of Solar Energy is divided into five distinct sections. The first section describes the methodology used to obtain the solar radiation data and to produce the solar maps. The second section contains information on the confidence levels of the methodology employed, obtained by comparing solar estimates provided by BRASIL- SR model with estimates provided by other models and ground data. The third section presents the maps of various solar radiation components (global, direct, diffuse, tilted plane, and PAR). The fourth section analyzes the temporal and spatial variations and trends of solar energy resources and, (Purpose): The Brazilian Atlas of Solar Energy is designed to supply for a portion of the demand for information

286

Solar Policy Environment: Seattle  

Broader source: Energy.gov [DOE]

The objective of the Emerald City Solar Initiative is to overcome the barriers to widespread deployment of solar energy technology, dramatically increasing residential, commercial, City-owned, and community-scale solar energy use. The City has assembled a strong team of partners that have proven track records in the fields of public planning, renewable energy resource mapping, financial analysis, site analysis, education and outreach, policy analysis and advocacy, community organizing and renewable energy project development.

287

Solar Circuitry  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solar Circuitry" with the Solar Powered Energy Kit Curriculum: Solar Power- (lightelectromagnetic radiation, electricity, circuitry, efficiency, energy transformation, subatomic...

288

Detailed Renewable Energy Resource Assessment Data Inventory (US) | OpenEI  

Open Energy Info (EERE)

Detailed Renewable Energy Resource Assessment Data Inventory (US) Detailed Renewable Energy Resource Assessment Data Inventory (US) Dataset Summary Description Detailed inventory of available renewable energy (RE) resource assessment data. Although the type, amount, and regional distribution of resource information vary by resource, assessments are available for each RE category (conducted by DOE and various private and public organizations). Solar, wind and geothermal resources have assessment products available at numerous scales (national, regional, and site specific). Assessments are available for biomass and hydropower resources at a national level, with only limited information available at the regional and site-specific levels. Ocean energy has the least resource assessment information available. This information was compiled by NREL and initially published in the 2006 Report to Congress on Renewable Energy Resource Assessment Information for the United States (Original document courtesy of archive.org). This datasets was last updated in January, 2011. For each assessment, the inventory includes: data name, data type, source, period of record, spatial coverage, spatial resolution, temporal scale, units, stated accuracy, availability, URL, update frequency, and additional notes.

289

Concentrating Solar Power: Best Practices Handbook for the Collection and  

Open Energy Info (EERE)

Concentrating Solar Power: Best Practices Handbook for the Collection and Concentrating Solar Power: Best Practices Handbook for the Collection and Use of Solar Resource Data Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Concentrating Solar Power: Best Practices Handbook for the Collection and Use of Solar Resource Data Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Solar Topics: Resource assessment, Technology characterizations Resource Type: Dataset, Guide/manual, Lessons learned/best practices Website: www.nrel.gov/docs/fy10osti/47465.pdf Concentrating Solar Power: Best Practices Handbook for the Collection and Use of Solar Resource Data Screenshot References: CSP Guide[1] Logo: Concentrating Solar Power: Best Practices Handbook for the Collection and Use of Solar Resource Data

290

2010 Teacher's Resource Fair October 13, 2010  

E-Print Network [OSTI]

2010 Teacher's Resource Fair October 13, 2010 Montana Space Grant Geology of the Solar System. The interactive SPOT presentations utilize slides in their classrooms. Casey Kanode spot@spacegrant.montana.edu http://solar

Maxwell, Bruce D.

291

Passive solar homes. [Glossary  

SciTech Connect (OSTI)

The concept of passive solar energy is described; the various functions which passive solar systems must perform are explained; and the various types of passive systems found in the Cycle 5 projects are discussed. Each of 91 solar home designs are discussed and some of the key points raised in the discussion of passive solar concepts are indicated in these descriptions and on the illustrations. Additional detail on issues of climate requirements and site design concerns, examples of building construction details showing good practice, and suggestions on how to market solar homes are included. The appendices address more technical aspects of the design and evaluation of passive solar homes, and provide information on other resources available to those involved in passive solar housing. (MHR)

McPhillips, M.; Powell, P.C. (eds.)

1982-01-01T23:59:59.000Z

292

On the Probability and Spatial Distribution of Ocean Surface Currents YOSEF ASHKENAZY  

E-Print Network [OSTI]

On the Probability and Spatial Distribution of Ocean Surface Currents YOSEF ASHKENAZY Solar Energy distribution of ocean currents are important for various applications such as the chance to encounter extreme show that the distribution of ocean current speeds can be approximated by a Weibull distri- bution

Ashkenazy, Yossi "Yosef"

293

Assessment of Microbial Fouling in an Ocean Thermal Energy Conversion Experiment  

Science Journals Connector (OSTI)

...Proceedings of the Ocean Thermal Energy Conversion...Claude, G. 1930. Power from the tropical seas...Metz, W. D. 1977. Ocean thermal energy: the biggest gamble in solar power. Science 198:178-180...studies, p. 1-53. In Ocean Thermal Energy Conversion...

R. Paul Aftring; Barrie F. Taylor

1979-10-01T23:59:59.000Z

294

Doctoral Programs Atmospheric, Oceanic & Space Sciences  

E-Print Network [OSTI]

Professor; Recipient, Teaching Innovation Prize; Michigan Distinguished Professor of the Year Allison Mission to Comet 67P / Churyumov- Gerasimenko · Solar and Heliospheric Physics Group · STEREO Mission,OceanicandSpaceSciences Atmospheric, Oceanic & Space Sciences University of Michigan Space Research Building 2455 Hayward Street Ann

Eustice, Ryan

295

Impact of Solar PV Laminate Membrane Systems on Roofs | Department...  

Office of Environmental Management (EM)

Information Resources Impact of Solar PV Laminate Membrane Systems on Roofs Impact of Solar PV Laminate Membrane Systems on Roofs In 2008, CH2M HILL performed a solar site...

296

Ocean | Open Energy Information  

Open Energy Info (EERE)

Related Links List of Ocean Thermal Incentives Retrieved from "http:en.openei.orgwindex.php?titleOcean&oldid273467" Categories: Articles with outstanding TODO tasks Sectors...

297

Ocean Observing Ocean Observing Systems (OOS)  

E-Print Network [OSTI]

, national, and global scales. · Ocean Observing Systems serve: Fishing industry National security Coastal properties, such as salinity, temperature, and waves Satellite maps of sea surface temperature NATIONAL Integrated Ocean Observing System (IOOS) 11 REGIONAL Systems, including: MANY LOCAL Systems

Schladow, S. Geoffrey

298

E-Print Network 3.0 - arctic ocean freshwater Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8. Forecasting Environmental Resilience of Arctic Freshwater Resources... and persistent ocean currents to feed energy ... Source: Wagner, Diane - Institute of Arctic Biology,...

299

Computer resources Computer resources  

E-Print Network [OSTI]

Computer resources 1 Computer resources available to the LEAD group Cédric David 30 September 2009 #12;Ouline · UT computer resources and services · JSG computer resources and services · LEAD computers· LEAD computers 2 #12;UT Austin services UT EID and Password 3 https://utdirect.utexas.edu #12;UT Austin

Yang, Zong-Liang

300

Tribal Solar Energy Partnerships  

Broader source: Energy.gov (indexed) [DOE]

SOLAR ENERGY PARTNERSHIPS SOLAR ENERGY PARTNERSHIPS Chairman Timothy Williams - Fort Mojave Indian Tribe Perry Fontana - First Solar Fort Mojave Indian Reservation Fort Mojave Project Site Mohave Generating Station (MGS) RESERVATION FARM LAND HISTORY * DOE funded renewable energy Feasibility Study found wind resource on Fort Mojave reservation marginal, but solar resource significant * Project was to be developed on 640 acres of Fort Mojave land in Arizona * Other parties included Tax and Equity financing entities, and solar developers (NEXT Light) * Group bid the project into the 2007 AZ and CA Utility PPA Request for Offers * Project was not shortlisted by any of the AZ or CA utility companies. * Fort Mojave made more land available in CA and partnered with NextLight to bid a

Note: This page contains sample records for the topic "ocean resources solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Renewable & Appropriate Energy Laboratory Energy & Resources Group  

E-Print Network [OSTI]

Renewable & Appropriate Energy Laboratory Energy & Resources Group University of California Goldman School of Public Policy Renewable and Appropriate Energy Laboratory University of California ------------------------------------------------------------------------------------------------------------ 23 2.4 Solar

Kammen, Daniel M.

302

Assessing Energy Resources Webinar Presentation Slides | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Web Mapping and Online GIS Applications for Renewable Energy Solar Energy - Capturing and Using Power and Heat from the Sun Assessing Energy Resources Webinar Text Version...

303

NREL: Concentrating Solar Power Research - Concentrating Solar Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Concentrating Solar Power Resource Maps Concentrating Solar Power Resource Maps These direct-normal solar radiation maps-filtered by solar resource and land availability-identify the most economically suitable lands available for deploying of large-scale concentrating solar power plants in the southwestern United States. Each of the following seven states, as well as the southwestern U.S. region, has two maps: the left and right maps represent analyses excluding land with slopes >1% and >3%, respectively. Lower-resolution jpg versions are available below; much higher-resolution pdf files, suitable for plotting large-scale posters, can be requested. You can also access an unfiltered direct-normal solar radiation map of the southwestern United States. Download Adobe Reader. Southwestern U.S.

304

Impacts of light shading and nutrient enrichment geo-engineering approaches on the productivity of a stratified, oligotrophic ocean ecosystem  

Science Journals Connector (OSTI)

...geo-engineering approaches on the productivity...Environmental Earth Science, Hokkaido...geo-engineering approaches on ocean ecosystem...solar radiation management|South Atlantic...geo-engineering approaches, solar radiation management (SRM), could...

2013-01-01T23:59:59.000Z

305

SolarDS | Open Energy Information  

Open Energy Info (EERE)

SolarDS SolarDS Jump to: navigation, search Tool Summary LAUNCH TOOL Name: SolarDS Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Solar Phase: Evaluate Options, Develop Goals, Prepare a Plan Topics: Market analysis, Pathways analysis, Resource assessment Resource Type: Guide/manual, Training materials, Software/modeling tools Website: www.nrel.gov/analysis/analysis_tools_tech_sol.html Web Application Link: www.nrel.gov/docs/fy10osti/45832.pdf Language: English References: SolarDS[1] Logo: SolarDS The Solar Deployment System (SolarDS) model evaluates the potential market penetration of solar photovoltaic (PV) technology. SolarDS examines the market competitiveness of Solar PV technologies from the building user's

306

Resource Analysis  

Broader source: Energy.gov [DOE]

Resource Analysis determines the quantity and location of resources needed to produce hydrogen. Additionally, resource analysis quantifies the cost of the resources, as a function of the amount...

307

Simulating Temperature, Salinity and Currents in the Ocean  

Science Journals Connector (OSTI)

Effective use of scarce resources requires a coherent and rational approach to oceanic system development. Included in this approach is the simulation of the performance of the proposed system, be it oceanogra...

Kim David Saunders; David B. King

1991-01-01T23:59:59.000Z

308

SunShot Initiative: Information Resources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Information Resources Information Resources We've organized links and information on solar energy technologies and the SunShot Initiative to make it easier for you to find what you're looking for. Publications Library The solar publications library includes fact sheets, reports, and technical papers about the DOE Solar Office's activities on photovoltaics (PV), concentrating solar power (CSP), systems integration, and market transformation. Solar Energy Technologies Office Newsletters Solar-focused newsletters highlight the key activities, events, funding opportunities, and publications that the SunShot Initiative supports. Solar Energy Resource Center Resources include articles, case studies, fact sheets, how-to guides, model rules and ordinances, presentations, sample government documents, technical reports, tools, and webinars.

309

Subsidizing Solar: The Case for an Environmental Goods and Services Carve-out from the Global Subsidies Regime  

E-Print Network [OSTI]

electricity from solar energy resources. While privateFirst, solar is the most abundant energy resource on Earthresources, falling within the scope of paragraph (g). 204 While solar energy

Simmons, Zachary Scott

2014-01-01T23:59:59.000Z

310

MHK Technologies/OceanStar | Open Energy Information  

Open Energy Info (EERE)

OceanStar OceanStar < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage OceanStar.jpg Technology Profile Primary Organization Bourne Energy Technology Resource Click here Wave Technology Type Click here Overtopping Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description The OceanStar device captures the underlying pressure wave through a series of small turbine generators The OceanStar relies upon a proprietary energy efficient process to smooth out the pulse characteristics common to wave energy in order to be electrical grid friendly The OceanStars high level of scalability is essential to reach the large surface areas required to reach utility scale ocean power generation Technology Dimensions

311

Contributions of Renewable Energy Resources to Re-source Diversity  

E-Print Network [OSTI]

of sources such as wind, solar, photovoltaic, biofuels, geo- thermal and hydro for energy supply analysis, economics and operations, utility regulatory policy, renewable resource integration and industry, Berkeley. Dr. Gross has consulted on electricity issues with utilities, government organizations

Gross, George

312

Where does solar-aided seawater desalination make sense? A method for identifying sustainable sites  

Science Journals Connector (OSTI)

Abstract Global water planners are increasingly considering seawater desalination as an alternative to traditional freshwater supplies. Since desalination is both expensive and energy intensive, taking advantage of favorable natural and societal conditions while siting desalination facilities can provide significant financial and environmental returns. Currently, policy makers do not use a location-specific integrated analytical framework to determine where natural and societal conditions are conducive to desalination. This analysis seeks to fill that gap by demonstrating a multi-criteria, geographically-resolved methodology for identifying suitable regions for desalination infrastructure where 1) available renewable resources can offset part of the fossil energy load; 2) feedwater characteristics reduce the total energy needed for desalination; and 3) human populations have capacity and willingness to pay for desalinated water. This work demonstrates the method with a quantitative global analysis that identifies favorable sites for solar-aided seawater reverse osmosis desalination (SWRO) based on specific target criteria. Location-based data about natural conditions (solar insolation, ocean salinity, and ocean temperature) are integrated and mapped with social indicators (water stress, prevailing water prices, and population) to identify regions where solar-aided SWRO has the highest potential. This work concludes that water-stressed tropical and subtropical cities show the highest potential for economically sustainable solar-aided SWRO.

Emily A. Grubert; Ashlynn S. Stillwell; Michael E. Webber

2014-01-01T23:59:59.000Z

313

NREL: Dynamic Maps, GIS Data, and Analysis Tools - Solar Maps  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

For more PV resource maps, access the MapSearch site. For Geographic Information System (GIS) solar resource data, access the Data Resources page. For interactive maps and tools...

314

Ocean Renewable Power Company | Open Energy Information  

Open Energy Info (EERE)

Power Company Power Company Jump to: navigation, search Name Ocean Renewable Power Company LLC Place Portland, Maine Zip 4101 Sector Ocean, Renewable Energy Product Ocean Renewable Power Company, LLC was founded in 2004 for the purpose of generating reliable, competitive, emission-free electricity from the energy resources of the oceans. Coordinates 45.511795°, -122.675629° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.511795,"lon":-122.675629,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

315

Reconstructing Past Ocean Salinity ((delta)18Owater)  

SciTech Connect (OSTI)

Temperature and salinity are two of the key properties of ocean water masses. The distribution of these two independent but related characteristics reflects the interplay of incoming solar radiation (insolation) and the uneven distribution of heat loss and gain by the ocean, with that of precipitation, evaporation, and the freezing and melting of ice. Temperature and salinity to a large extent, determine the density of a parcel of water. Small differences in temperature and salinity can increase or decrease the density of a water parcel, which can lead to convection. Once removed from the surface of the ocean where 'local' changes in temperature and salinity can occur, the water parcel retains its distinct relationship between (potential) temperature and salinity. We can take advantage of this 'conservative' behavior where changes only occur as a result of mixing processes, to track the movement of water in the deep ocean (Figure 1). The distribution of density in the ocean is directly related to horizontal pressure gradients and thus (geostrophic) ocean currents. During the Quaternary when we have had systematic growth and decay of large land based ice sheets, salinity has had to change. A quick scaling argument following that of Broecker and Peng [1982] is: the modern ocean has a mean salinity of 34.7 psu and is on average 3500m deep. During glacial maxima sea level was on the order of {approx}120m lower than present. Simply scaling the loss of freshwater (3-4%) requires an average increase in salinity a similar percentage or to {approx}35.9psu. Because much of the deep ocean is of similar temperature, small changes in salinity have a large impact on density, yielding a potentially different distribution of water masses and control of the density driven (thermohaline) ocean circulation. It is partly for this reason that reconstructions of past salinity are of interest to paleoceanographers.

Guilderson, T P; Pak, D K

2005-11-23T23:59:59.000Z

316

First satellite tracks of neonate sea turtles redefine the lost years oceanic niche  

Science Journals Connector (OSTI)

...PTT-100 9.5 g solar-powered satellite...required 48 h of solar charging. All turtles...satellite data processing system and Kalman filtering...specifications) and solar cell charge (volt...using the Global Hybrid Coordinate Ocean...sunrise and sunset, wind speed and humidity...

2014-01-01T23:59:59.000Z

317

Type C: Caldera Resource | Open Energy Information  

Open Energy Info (EERE)

C: Caldera Resource C: Caldera Resource Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Type C: Caldera Resource Dictionary.png Type C: Caldera Resource: No definition has been provided for this term. Add a Definition Brophy Occurrence Models This classification scheme was developed by Brophy, as reported in Updating the Classification of Geothermal Resources. Type A: Magma-heated, Dry Steam Resource Type B: Andesitic Volcanic Resource Type C: Caldera Resource Type D: Sedimentary-hosted, Volcanic-related Resource Type E: Extensional Tectonic, Fault-Controlled Resource Type F: Oceanic-ridge, Basaltic Resource Caldera resources may be found in many tectonic settings but are defined by their caldera structures which control the flow of the fluids in the system.

318

Using RPS Policies to Grow the Solar Market in the United States  

E-Print Network [OSTI]

basis, then the solar targets in New Mexico, Arizona, Newand New Mexico, as well as areas where the solar resource is

Wiser, Ryan H

2008-01-01T23:59:59.000Z

319

Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid  

E-Print Network [OSTI]

the 20 th European Photovoltaic Solar Energy Conference and54 SolarphotovoltaicDistributedEnergyResources(DER)M. International Energy Agency Photovoltaic Power Systems

Hill, Steven Craig

2013-01-01T23:59:59.000Z

320

Uncertainty for Satellite and Station Solar Data in the Updated NSRDB  

SciTech Connect (OSTI)

Solar Resource Assessment Workshop, Denver CO, Oct 29, 2008 presentation: Uncertainty for Satellite and Station Solar Data in the Updated NSRDB,

Myers, D. R.

2008-10-29T23:59:59.000Z

Note: This page contains sample records for the topic "ocean resources solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

SunShot Initiative: Concentrating Solar Power Newsletter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Information Resources Information Resources Printable Version Share this resource Send a link to SunShot Initiative: Concentrating Solar Power Newsletter to someone by E-mail Share SunShot Initiative: Concentrating Solar Power Newsletter on Facebook Tweet about SunShot Initiative: Concentrating Solar Power Newsletter on Twitter Bookmark SunShot Initiative: Concentrating Solar Power Newsletter on Google Bookmark SunShot Initiative: Concentrating Solar Power Newsletter on Delicious Rank SunShot Initiative: Concentrating Solar Power Newsletter on Digg Find More places to share SunShot Initiative: Concentrating Solar Power Newsletter on AddThis.com... Publications Newsletter Resource Center Multimedia Meetings & Workshops Solar Innovation Timeline Solar Career Map Glossary Concentrating Solar Power Newsletter

322

List of Ocean Thermal Incentives | Open Energy Information  

Open Energy Info (EERE)

Thermal Incentives Thermal Incentives Jump to: navigation, search The following contains the list of 96 Ocean Thermal Incentives. CSV (rows 1 - 96) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Business Energy Investment Tax Credit (ITC) (Federal) Corporate Tax Credit United States Agricultural Commercial Industrial Utility Anaerobic Digestion Biomass CHP/Cogeneration Fuel Cells Fuel Cells using Renewable Fuels Geothermal Direct Use Geothermal Electric Ground Source Heat Pumps Hydroelectric energy Landfill Gas Microturbines Municipal Solid Waste Ocean Thermal Photovoltaics Small Hydroelectric Small Wind Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Water Heat Tidal Energy Wave Energy Wind energy Yes CCEF - Project 150 Initiative (Connecticut) State Grant Program Connecticut Commercial Solar Thermal Electric

323

Causes of ocean currents  

Science Journals Connector (OSTI)

In the foregoing analysis of the ocean and the atmosphere as two interacting subsystems, we have identified two major energy inputs into the ocean. These are the wind stress over the sea surface and heat fluxe...

David Tolmazin

1985-01-01T23:59:59.000Z

324

Solar Policy Environment: Madison  

Broader source: Energy.gov [DOE]

The City of Madisons Solar America Cities project, MadiSUN, will coordinate and galvanize substantial local and state resources to showcase how a U.S. Midwest city can dramatically increase the use of solar energy. Madisons approach includes a comprehensive review of zoning and land use planning, streamlining the permitting processes, development of the local workforce, and assessment of city-owned buildings for solar PV and thermal applications. The City of Madison objective is to make Madison a green capital city and a national leader in energy efficiency and renewable energy.

325

Solar thermal power generation: a bibliography with abstracts. Quarterly update, October-December 1979  

SciTech Connect (OSTI)

This annotated bibliography contains the following subjects: energy overviews, solar overviews, energy conservation, economics and law, solar thermal power, thermionic and thermoelectric, ocean thermal energy conversion, biomass and photochemical energy, and large-scale photovoltaics. (MHR)

Not Available

1980-04-01T23:59:59.000Z

326

Delaware Community Saves with Solar | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Delaware Community Saves with Solar Delaware Community Saves with Solar Delaware Community Saves with Solar November 28, 2012 - 4:41pm Addthis With a grant from the Energy Department's Energy Efficiency and Conservation Block Grant Program, the community of Ocean View, Delaware, installed a carport-mounted solar array that is saving taxpayers money on town utility bills. | Photo courtesy of the Town of Ocean View. With a grant from the Energy Department's Energy Efficiency and Conservation Block Grant Program, the community of Ocean View, Delaware, installed a carport-mounted solar array that is saving taxpayers money on town utility bills. | Photo courtesy of the Town of Ocean View. Christina Stowers Communications Specialist in the Office of Weatherization and Intergovernmental Program

327

Solar Energy for Village Development  

Science Journals Connector (OSTI)

...solar technologies (mini-hydroelectric generators...from the national grid. Each of the five...Bethel et al., "Renewable Resources for Industrial...solar technologies (mini-hydroelectric generators...from the national grid. Each of the five...tech-nologies that use renewable energy sources coming...

Norman L. Brown; James W. Howe

1978-02-10T23:59:59.000Z

328

Marine and Hydrokinetic Resources | Open Energy Information  

Open Energy Info (EERE)

Marine and Hydrokinetic Resources Marine and Hydrokinetic Resources Jump to: navigation, search << Return to the MHK database homepage Contents 1 Marine and Hydrokinetic Resource Assessment and Characterization 2 Current/Tidal/Riverine 3 Wave 4 Ocean Thermal Energy Conversion (OTEC) Marine and Hydrokinetic Resource Assessment and Characterization To find out more about Marine and Hydrokinetic Resource Assessment and Characterization click on this link. Current/Tidal/Riverine Tile Current.jpg To find out more about Tidal Energy click on this link and for Current Energy this link. Wave Wave 02.jpg To find out more about Wave Energy click on this link. Ocean Thermal Energy Conversion (OTEC) Ocean Thermo 04.jpg To find out more about OTEC Energy click on this link. << Return to the MHK database homepage

329

Marine and Hydrokinetic Resources | Open Energy Information  

Open Energy Info (EERE)

Marine and Hydrokinetic Resources Marine and Hydrokinetic Resources (Redirected from Wave) Jump to: navigation, search << Return to the MHK database homepage Contents 1 Marine and Hydrokinetic Resource Assessment and Characterization 2 Current/Tidal/Riverine 3 Wave 4 Ocean Thermal Energy Conversion (OTEC) Marine and Hydrokinetic Resource Assessment and Characterization To find out more about Marine and Hydrokinetic Resource Assessment and Characterization click on this link. Current/Tidal/Riverine Tile Current.jpg To find out more about Tidal Energy click on this link and for Current Energy this link. Wave Wave 02.jpg To find out more about Wave Energy click on this link. Ocean Thermal Energy Conversion (OTEC) Ocean Thermo 04.jpg To find out more about OTEC Energy click on this link. << Return to the MHK database homepage

330

Small Solar Electric Systems | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Small Solar Electric Systems Small Solar Electric Systems Small Solar Electric Systems July 15, 2012 - 4:11pm Addthis A small solar electric or photovoltaic system can be a reliable and pollution-free producer of electricity for your home or office. What are the key facts? Because PV technologies use both direct and scattered sunlight to create electricity, the solar resource across the United States is ample for home solar electric systems. Solar cells-the basic building blocks of a PV system -- consist of semiconductor materials. A typical home solar electric, or PV, system consists solar cells, modules or panels (which consist of solar cells), arrays (which consist of modules), and balance-of-system parts. A small solar electric or photovoltaic (PV) system can be a reliable and pollution-free producer of electricity for your home or office. Small PV

331

Small Solar Electric Systems | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Small Solar Electric Systems Small Solar Electric Systems Small Solar Electric Systems July 15, 2012 - 4:11pm Addthis A small solar electric or photovoltaic system can be a reliable and pollution-free producer of electricity for your home or office. What are the key facts? Because PV technologies use both direct and scattered sunlight to create electricity, the solar resource across the United States is ample for home solar electric systems. Solar cells-the basic building blocks of a PV system -- consist of semiconductor materials. A typical home solar electric, or PV, system consists solar cells, modules or panels (which consist of solar cells), arrays (which consist of modules), and balance-of-system parts. A small solar electric or photovoltaic (PV) system can be a reliable and pollution-free producer of electricity for your home or office. Small PV

332

Renewable Resource Integration Project - Scoping Study of Strategic Transmission, Operations, and Reliability Issues  

E-Print Network [OSTI]

ES. CaliforniaEnergyCommission. MapofSolarResourceEnergy Resource Type MW Additional MW MW Production BkWh Geothermal Biomass Small Hydro 830 est Wind Solar

Budhraja, Vikram

2008-01-01T23:59:59.000Z

333

Solar Radiation and Meteorological Data Support  

E-Print Network [OSTI]

Characterize the solar resource potential for feasibility assessment of centralized PV solarfeasibility assessment of centralized PV solar gene ating facilities in the No theastgene ating facilities in the No theastgenerating facilities in the Northeastgenerating facilities in the Northeast ·· Expansion of the national PV solar data

Homes, Christopher C.

334

Solar sailing: mission applications and engineering challenges  

Science Journals Connector (OSTI)

...structures required for future solar-sail missions and for...indicated some missions where solar sailing is used to its optimum advantage. High-energy and/or long-duration missions are the key to solar sailing where it can...which will then lead to resources flowing towards the development...

2003-01-01T23:59:59.000Z

335

Ocean | Data.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ocean Ocean Ocean Data Tools Technical Guide Map Gallery Regional Planning Feedback Ocean Welcome to our COMMUNITY This is the National Ocean Council's portal for data, information, and decision tools to support people engaged in regional marine planning for the future use of the ocean, our coasts, and the Great Lakes. Our goal is to enhance discovery of and access to data and information for planners, stakeholders, and the public. Please visit our Feedback page to tell us what would make the site most useful to you as we expand our content. Start Here! Previous Pause Next PacIOOS - Pacific Islands Voyager PacIOOS - Pacific Islands Voyager View More West Coast Governors Alliance - Regional Data Framework West Coast Governors Alliance - Regional Data Framework View More Mid-Atlantic Ocean Data Portal

336

Marketing Resources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Expand Utility Resources News & Events Expand News & Events Skip navigation links Marketing Resources Reports, Publications, and Research Utility Toolkit Informational...

337

A U.S. and China Regional Analysis of Distributed Energy Resources in Buildings  

E-Print Network [OSTI]

solar energy into other useable forms. PV technology converts solar resourcesresource distribution and other factors (e.g. energy transportation cost). Solarsolar resources and thus these areas are candidates for distributed solar energy

Feng, Wei

2014-01-01T23:59:59.000Z

338

Siting Your Solar Water Heating System | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Siting Your Solar Water Heating System Siting Your Solar Water Heating System Siting Your Solar Water Heating System May 30, 2012 - 2:46pm Addthis Solar water heaters should be placed facing due south. Solar water heaters should be placed facing due south. Before you buy and install a solar water heating system, you need to first consider your site's solar resource, as well as the optimal orientation and tilt of your solar collector. The efficiency and design of a solar water heating system depends on how much of the sun's energy reaches your building site. Solar water heating systems use both direct and diffuse solar radiation. Even if you don't live in a climate that's warm and sunny most of the time -- like the southwestern United States -- your site still might have an adequate solar resource. If your building site has unshaded areas and

339

Siting Your Solar Water Heating System | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Siting Your Solar Water Heating System Siting Your Solar Water Heating System Siting Your Solar Water Heating System May 30, 2012 - 2:46pm Addthis Solar water heaters should be placed facing due south. Solar water heaters should be placed facing due south. Before you buy and install a solar water heating system, you need to first consider your site's solar resource, as well as the optimal orientation and tilt of your solar collector. The efficiency and design of a solar water heating system depends on how much of the sun's energy reaches your building site. Solar water heating systems use both direct and diffuse solar radiation. Even if you don't live in a climate that's warm and sunny most of the time -- like the southwestern United States -- your site still might have an adequate solar resource. If your building site has unshaded areas and

340

OpenEI - solar radiation  

Open Energy Info (EERE)

monthly and monthly and annual average latitude tilt GIS data at 40km resolution for Mexico, Central America, and the Caribbean Islands from NREL http://en.openei.org/datasets/node/500 (Abstract):  Monthly Average Solar Resource for flat-plate collectors tilted at latitude, for Mexico, Central America,
and the Caribbean Islands. (Purpose):  Provide information on the solar resource potential for the data domain. The insolation values represent the average solar energy available to a flat plate collector, such as a photovoltaic panel, oriented due south at an angle from horizontal equal to the latitude of the

Note: This page contains sample records for the topic "ocean resources solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Coastal and Marine Resources Centre  

E-Print Network [OSTI]

to develop an Eco-systems Approach to Fisheries Management in Ireland. The Griffith Geomatics for Geo of Ireland, Cork Institute of Technology, the Port of Cork, the Industrial Development Authority, the Marine resources, with a focus on sectors such as ocean energy, marine IT and maritime space observations. Section

Schellekens, Michel P.

342

New Report Summarizes Climate Change Impacts on U.S. Oceans, Marine  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

New Report Summarizes Climate Change Impacts on U.S. Oceans, Marine Resources Print E-mail New Report Summarizes Climate Change Impacts on U.S. Oceans, Marine Resources Print E-mail New Report Summarizes Climate Change Impacts on U.S. Oceans, Marine Resources Thursday, September 19, 2013 Featured by NOAA, a member of the U.S. Global Change Research Program According to a new technical report prepared for the 2013 National Climate Assessment, the nation's valuable ocean ecosystems and marine resources are already being affected by a changing climate. These impacts are expected to increase in the coming years, putting marine resources - and the people and economies that depend on them - at high risk in a changing world. The report, Oceans and Marine Resources in a Changing Climate reviews how climate variability is affecting the physical, chemical, and biological conditions of ocean ecosystems, and how these changes are already having societal impacts by affecting fisheries and other valuable ocean products and services. It also synthesizes information on projected climate-driven changes in U.S. ocean ecosystems over the next 25 to 100 years.

343

Solar Power Potential in SE New Mexico  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solar Power Potential in Southeast New Mexico Solar Power Potential in Southeast New Mexico Solar Power Project Opportunities Abound in the Region The WIPP site is receives abundant solar energy with 6-7 kWh/sq meter power production potential As the accompanying map of New Mexico shows, the WIPP site enjoys abundant year-round sunshine. With an average solar power production potential of 6-7 kWh/sq meter per day, one exciting project being studied for location at WIPP is a 30-50 MW Solar Power Tower: The American Solar Energy Society (ASES) is is a national trade association promoting solar energy as a clean source of electricity, and provides a comprehensive resource for additional information. DOE's Office of Energy Efficiency and Renewable Energy is also a comprehensive resource for more information on renewable energy.

344

Title: CEL Solar Photovoltaic Power Project in El Salvador Principal Investigator: Abbas Ghassemi  

E-Print Network [OSTI]

Title: CEL Solar Photovoltaic Power Project in El Salvador Principal Investigator: Abbas Ghassemi solar resource, studying different technology options, anticipating performance, and evaluating the economics of the solar power technologies. The NMSU team is evaluating the potential environmental impacts

Johnson, Eric E.

345

OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC ENVIRONMENTAL ASSESSMENT  

E-Print Network [OSTI]

Ocean Thermal Energy Conversion (OTEC) Draft Programmaticof ocean thermal energy conversion technology. U.S. Depart~on Ocean TherUial Energy Conversion, June 18, 1979. Ocean

Sands, M.Dale

2013-01-01T23:59:59.000Z

346

Solar Easements  

Broader source: Energy.gov [DOE]

New Jersey law provides for the creation of solar easements to ensure that proper sunlight is available to those who operate solar-energy systems. The term "solar energy device" is not defined by...

347

Solar Easements  

Broader source: Energy.gov [DOE]

Virginia's solar easement law is similar to those in effect in other states. The Virginia Solar Easements Act of 1978 allows property owners to create binding solar easements for the purpose of...

348

solar radiation | OpenEI  

Open Energy Info (EERE)

radiation radiation Dataset Summary Description (Abstract): Monthly Average Solar Resource for flat-plate collectors tilted at latitude, for Mexico, Central America, and the Caribbean Islands. (Purpose): Provide information on the solar resource potential for the data domain. The insolation values represent the average solar energy available to a flat plate collector, such as a photovoltaic panel, oriented due south at an angle from horizontal equal to the latitude of the collector location. Source NREL Date Released January 31st, 2004 (10 years ago) Date Updated October 30th, 2007 (7 years ago) Keywords atmospheric water vapor Carribean Central America GEF. latitude tilt GIS Mexico NREL solar solar radiation SWERA TILT UNEP Data application/zip icon Download Shapefile (zip, 241.3 KiB)

349

resource assessment | OpenEI  

Open Energy Info (EERE)

resource assessment resource assessment Dataset Summary Description Reduction of global greenhouse gas emission to arrest global warming requires minimizing the use of fossil fuels. To achieve this a large scale use of renewable energies must be made over the globe for production of electrical and thermal energy. Success of wind and solar energy projects require detailed and precise information on the resources. For most developing countries adequate information on the resources are not available. Source Renewable Energy Research Centre, University of Dhaka Date Released February 19th, 2007 (7 years ago) Date Updated Unknown Keywords Feasibility Study resource assessment Solar Energy SWERA Bangladesh Wind Energy Data application/pdf icon swera_bangladesh_fullreport.pdf (pdf, 2.7 MiB)

350

BURNING BURIED SUNSHINE: HUMAN CONSUMPTION OF ANCIENT SOLAR ENERGY  

E-Print Network [OSTI]

BURNING BURIED SUNSHINE: HUMAN CONSUMPTION OF ANCIENT SOLAR ENERGY JEFFREY S. DUKES Department of as a vast store of solar energy from which society meets >80% of its current energy needs. Here, using of ancient solar energy decline, humans are likely to use an increasing share of modern solar resources. I

Dukes, Jeffrey

351

Short term forecasting of solar radiation based on satellite data  

E-Print Network [OSTI]

Short term forecasting of solar radiation based on satellite data Elke Lorenz, Annette Hammer University, D-26111 Oldenburg Forecasting of solar irradiance will become a major issue in the future integration of solar energy resources into existing energy supply structures. Fluctuations of solar irradiance

Heinemann, Detlev

352

Solar Photovoltaic Capacity F t P f d P li  

E-Print Network [OSTI]

6/19/2013 1 Solar Photovoltaic ­ Capacity F t P f d P li Generating Resources Advisory Committee Advisor Model (SAM), version 2013.1.15 Technology: Solar PV (PVWatts system model)Technology: Solar PV (MWh) (First year output, each year thereafter degrades 0.5%) 6 #12;6/19/2013 4 Shape of PNW Solar PV

353

Solar Atlas for the Mediterranean Carsten Hoyer-Klick  

E-Print Network [OSTI]

Solar Atlas for the Mediterranean Carsten Hoyer-Klick 1 , Lucien Wald 2 , Lionel Menard 2 Transvalor, Sophia Antipolis, France 4 GeoModel Solar, Bratislava, Slovak Republic, 5 Joint Research Center The solar resource is the "fuel" of solar energy applications and its availability is a key economic

Boyer, Edmond

354

Assessment of Microbial Fouling in an Ocean Thermal Energy Conversion Experiment  

Science Journals Connector (OSTI)

...publication 23 July 1979 A project to investigate biofouling...to ocean thermal energy conversion heat exchangers...in ocean thermal energy conversion heat exchangers...for man to harvest solar energy involves exploitation...exchanger units. The project was conducted from...

R. Paul Aftring; Barrie F. Taylor

1979-10-01T23:59:59.000Z

355

C h a p t e r Toward a Global Ocean System for  

E-Print Network [OSTI]

. The technologies explained here involve a variety of optical sensors and systems and ocean observing platforms data ob- tained from state-of-the-art and emerging optical sensors and oceanographic platforms and stratification of the upper ocean are driven by the penetration of solar radiation. Absorption and scattering

Chang, Grace C.

356

Improved irradiances for use in ocean heating, primary production, and photo-oxidation calculations  

E-Print Network [OSTI]

computed by a radiative transfer code that can be used to convert above-surface values in either energy- plankton affect upper-ocean thermal structure via absorption of solar irradiance at visible wavelengthsImproved irradiances for use in ocean heating, primary production, and photo-oxidation calculations

Boss, Emmanuel S.

357

solar | OpenEI  

Open Energy Info (EERE)

solar solar Dataset Summary Description No description given. Source NCDC Date Released November 01st, 2012 (2 years ago) Date Updated Unknown Keywords dataset NSRDB solar Data application/pdf icon NSRDB User Manual (pdf, 8.1 MiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote Overall rating Average vote Your vote Comments Login or register to post comments If you rate this dataset, your published comment will include your rating. Dataset Summary Description Abstract: Monthly and annual average solar resource potential for the lower 48 states of the United States of America.

358

Solar Radiation Mapping from NOAA AVHRR Data in Catalonia, Spain  

Science Journals Connector (OSTI)

A statistical model is presented for the determination of hourly global solar radiation from the National Oceanic and Atmospheric Administration advanced very high resolution radiometer (NOAA AVHRR) satellite data, which provide wide coverage ...

Henry Flores Tovar; Jose M. Baldasano

2001-11-01T23:59:59.000Z

359

Research on Development of Solar Energy and Ecology Building  

Science Journals Connector (OSTI)

Our countrys solar energy resources are extremely rich. This paper mainly introduces the research on development of solar energy and ecological building. Based on the literature ... the development and the appli...

Sheng Qingqing; Zhang Xuelai; Lv Leilei

2009-01-01T23:59:59.000Z

360

Energy Office Grant Helps the Virgin Islands Environmental Resource...  

Office of Environmental Management (EM)

Office Grant Helps the Virgin Islands Environmental Resource Station Install Solar Panels, Improve Efficiency, and Cut Monthly Energy Use Nearly 30% Energy Office Grant Helps the...

Note: This page contains sample records for the topic "ocean resources solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Sustainable Energy Resources for Consumers (SERC) Idaho Highlight...  

Broader source: Energy.gov (indexed) [DOE]

Energy Resources for Consumers (SERC) through Tankless Hot Water Systems, Solar Photovoltaics and Behavioral Changes. sercidhighlight.pdf More Documents & Publications...

362

Comparing Resource Adequacy Metrics: Preprint  

SciTech Connect (OSTI)

As the penetration of variable generation (wind and solar) increases around the world, there is an accompanying growing interest and importance in accurately assessing the contribution that these resources can make toward planning reserve. This contribution, also known as the capacity credit or capacity value of the resource, is best quantified by using a probabilistic measure of overall resource adequacy. In recognizing the variable nature of these renewable resources, there has been interest in exploring the use of reliability metrics other than loss of load expectation. In this paper, we undertake some comparisons using data from the Western Electricity Coordinating Council in the western United States.

Ibanez, E.; Milligan, M.

2014-09-01T23:59:59.000Z

363

Ocean - Data Quality and Documentation | Data.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Quality and Documentation Quality and Documentation Ocean Data Tools Technical Guide Map Gallery Regional Planning Feedback Ocean You are here Data.gov » Communities » Ocean Data Quality and Documentation This section contains information highlighting Ocean.data.gov metadata standards and requirements as well as links to existing Agency data quality information. Metadata Standards Metadata Requirements Data Quality Standards Spatial Data Standards Metadata Standards - Recommended Metadata, data which describes an information resource, is critical for the use and discovery of the datasets which are retrievable by Ocean.data.gov. Within information management communities, a distinction is often made between place-based geospatial data and non-geospatial data. Likewise, a similar distinction holds for "structured" versus

364

MHK Technologies/Ocean | Open Energy Information  

Open Energy Info (EERE)

Ocean Ocean < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Ocean.jpg Technology Profile Primary Organization Hydro Green Energy LLC Project(s) where this technology is utilized *MHK Projects/Alaska 35 *MHK Projects/Maine 1 Project *MHK Projects/Mississippi 6 *MHK Projects/Mississippi 7 *MHK Projects/New York 1 *MHK Projects/New York 2 Technology Resource Click here Current/Tidal Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 4: Proof of Concept Technology Description Hydro Green Energy's HydroKinetic Turbine Arrays operate differently than a traditional hydropower plant. Like a traditional hydropower station, the electricity that we produce is clean and renewable, however, there are significant differences. Hydro Green Energy's Krouse Turbines are kinetic turbines. This means that the renewable power that is generated comes from the energy in the "motion" of the moving water, i.e. the velocity of the moving water be it river, tidal or ocean current to generate river, tidal energy or ocean energy, respectively.

365

NREL: Renewable Resource Data Center Home Page  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Photo of a man and a woman checking solar measurement instruments. Photo of a man and a woman checking solar measurement instruments. The Renewable Resource Data Center (RReDC) provides access to an extensive collection of renewable energy resource data, maps, and tools. Biomass, geothermal, solar, and wind resource data for locations throughout the United States can be found through the RReDC. Almost every area of the country can take advantage of renewable energy technologies, but some technologies are better suited for particular areas than others. Knowing the resources of a region, state, city, or neighborhood is therefore critical to renewable energy planning and siting. RReDC provides detailed resource information through tools, reports, maps, and data collections. Additional resource data can be found on the NREL

366

Resource Energy Systems LLC | Open Energy Information  

Open Energy Info (EERE)

Energy Systems LLC Energy Systems LLC Jump to: navigation, search Name Resource Energy Systems, LLC Place Rochelle Park, New Jersey Zip 7662 Sector Services, Solar Product Resource Energy Systems (RES) provides property owners with turn-key solar energy services. RES completes all phases of solar design, installation, and completion. References Resource Energy Systems, LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Resource Energy Systems, LLC is a company located in Rochelle Park, New Jersey . References ↑ "Resource Energy Systems, LLC" Retrieved from "http://en.openei.org/w/index.php?title=Resource_Energy_Systems_LLC&oldid=350391" Categories: Clean Energy Organizations

367

Teacher Resource Center: Curricular Resources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Curricular Resources Curricular Resources TRC Home TRC Fact Sheet Library Curricular Resources Science Fair Resources Bibliographies sciencelines The Best of sciencelines Archives Annotated List of URLs Catalog Teacher's Lounge Full Workshop Catalog Customized Workshops Scheduled Workshops Special Opportunities Teacher Networks Science Lab Fermilab Science Materials Samplers Order Form Science Safety Issues Tech Room Fermilab Web Resources The Teacher Resource Center provides workshops and consultations on Mathematics and Science Curriculum development. Here are a list of resources for educators. See the 'Customized Workshops" link in the "Teacher's Lounge" for information about more workshops available through the TRC. Key Science Resources for Curriculum Planning Key Science Resources for Curriculum Planning

368

Community Shared Solar with Solarize  

Broader source: Energy.gov [DOE]

An overview of the concept behind The Solarize Guidebook, which offers neighborhoods a plan for getting volume discounts when making group purchases of rooftop solar energy systems.

369

How ocean currents are studied  

Science Journals Connector (OSTI)

How infinite and boundless the ocean must have seemed to the first man to set foot upon its shore. Kind or stern, shallow or steep, the oceans shores have always held a peculiar fascination for man. The moist...

David Tolmazin

1985-01-01T23:59:59.000Z

370

Challenges in Ocean Energy Utilization  

Science Journals Connector (OSTI)

Ocean is a reservoir of energy. It is ... . Development of suitable cost effective technologies for power generation from different forms of ocean energy (like wave energy, tidal energy, Ocean Thermal Energy Conv...

S. Neelamani

2013-01-01T23:59:59.000Z

371

Solar Energy Program: Chapter from the Energy and EnvironmentalDivision Annual Report 1980  

SciTech Connect (OSTI)

Solar energy has become a major alternative for supplying a substantial fraction of the nation's future energy needs. The U.S. Department of Energy (DOE) supports activities ranging from the demonstration of existing technology to research on future possibilities. At Lawrence Berkeley Laboratory (LBL), projects are in progress that span a wide range of activities, with the emphasis on research to extend the scientific basis for solar energy applications, and on preliminary development of new approaches to solar energy conversion. To assess various solar applications, it is important to quantify the solar resource. Special instruments have been developed and are now in use to measure both direct solar radiation and circum-solar radiation, i.e., the radiation from near the sun resulting from the scattering of sunlight by small particles in the atmosphere. These measurements serve to predict the performance of solar designs that use focusing collectors employing mirrors or lenses to concentrate the sunlight. Efforts have continued at a low level to assist DOE in demonstrating existing solar technology by providing the San Francisco Operations Office (SAN) with technical support for its management of commercial-building solar demonstration projects. Also, a hot water and space-heating system has been installed on an LBL building as part of the DOE facilities Solar Demonstration Program. LBL continues to provide support for the DOE Appropriate Energy Technology grants program. Evaluations are made of the program's effectiveness by, for example, estimating the resulting potential energy savings. LBL also documents innovative features and improvements in economic feasibility as compared to existing conventional systems or applications. In the near future, we expect that LBL research will have a substantial impact in the areas of solar heating and cooling. Conventional and new types of high-performance absorption air conditioners are being developed that are air-cooled and suitable for use with flat plate or higher-temperature collectors. Operation of the controls test facility and computer modeling of collector loop and building load dynamics are yielding quantitative evaluations of the performance of different control strategies for active solar-heating systems. Research is continuing on ''passive'' approaches to solar heating and cooling, where careful considerations of architectural design, construction materials, and the environment are used to moderate a building's interior climate. Computer models of passive concepts are being developed and incorporated into building energy analysis computer programs which are in the public domain. The resulting passive analysis capabilities are used in systems studies leading to design tools and in the design of commercial buildings on a case study basis. The investigation of specific passive cooling methods is an ongoing project; for example, a process is being studied in which heat-storage material would be cooled by radiation to the night sky, and would then provide ''coolness'' to the building. Laboratory personnel involved in the solar cooling, controls, and passive projects are also providing technical support to the Active Heating and Cooling Division and the Passive and Hybrid Division of DOE in developing program plans, evaluating proposals, and making technical reviews of projects at other institutions and in industry. Low-grade heat is a widespread energy resource that could make a significant contribution to energy needs if economical methods can be developed for converting it to useful work. Investigations continued this year on the feasibility of using the ''shape-memory'' alloy, Nitinol, as a basis for constructing heat engines that could operate from energy sources, such as solar-heated water, industrial waste heat, geothermal brines, and ocean thermal gradients. Several projects are investigating longer-term possibilities for utilizing solar energy. One project involves the development of a new type of solar thermal receiver that would be placed at the focus of a central

Energy and Environment Division

1981-03-01T23:59:59.000Z

372

Thermodynamic Analysis And Simulation Of A Solar Thermal Power System.  

E-Print Network [OSTI]

??Solar energy is a virtually inexhaustible energy resource, and thus, has great potential in helping meet many of our future energy requirements. Current technology used (more)

Harith, Akila

2012-01-01T23:59:59.000Z

373

Modeling Urban Solar Energy with High Spatiotemporal Resolution.  

E-Print Network [OSTI]

??Alternative sources of energy are being sought after in the world today, as the availability of fossil fuels and other non-renewable resources are declining. Solar (more)

Chow, Annie

2012-01-01T23:59:59.000Z

374

Milwaukee Installer Reflects on His Career In Solar | Department...  

Energy Savers [EERE]

Specialist, Office of Public Affairs How can I participate? The Midwest Renewable Energy Association and Solar Instructor Training Network offer resources for launching...

375

Solar in Remote Applications in the United States | Department...  

Energy Savers [EERE]

in Remote Applications in the United States Solar in Remote Applications in the United States Renewable energy and distributed generation resources have a critical role to play in...

376

Assembly and characterization of quantum-dot solar cells.  

E-Print Network [OSTI]

??Environmentally clean renewable energy resources such as solar energy have gained significant attention due to a continual increase in worldwide energy demand. A variety of (more)

Leschkies, Kurtis Siegfried

2009-01-01T23:59:59.000Z

377

Potential Federal On-Site Solar Aggregation in Washington, D...  

Broader source: Energy.gov (indexed) [DOE]

Requirements * On-site Renewable Energy Purchase Overview * Washington DCMaryland Solar Options * Case Studies * Federal Interest * Q&A * Resources 2 3 Federal Renewable...

378

Concentrating Solar Power (Fact Sheet), SunShot Initiative, U...  

Broader source: Energy.gov (indexed) [DOE]

concentrating reflectors. The laboratories also perform resource assessment of accurate weather and solar insolation data captured through improved satellite imaging, additional...

379

Comparative Study on Michigan Solar Photovoltaic Promotion Policies.  

E-Print Network [OSTI]

??State of Michigan has relatively little solar resources but substantial installation capacity. Three governmental promotional policies are currently in position or have high potential to (more)

Yang, Shiming

2013-01-01T23:59:59.000Z

380

Ocean General Circulation Models  

SciTech Connect (OSTI)

1. Definition of Subject The purpose of this text is to provide an introduction to aspects of oceanic general circulation models (OGCMs), an important component of Climate System or Earth System Model (ESM). The role of the ocean in ESMs is described in Chapter XX (EDITOR: PLEASE FIND THE COUPLED CLIMATE or EARTH SYSTEM MODELING CHAPTERS). The emerging need for understanding the Earths climate system and especially projecting its future evolution has encouraged scientists to explore the dynamical, physical, and biogeochemical processes in the ocean. Understanding the role of these processes in the climate system is an interesting and challenging scientific subject. For example, a research question how much extra heat or CO2 generated by anthropogenic activities can be stored in the deep ocean is not only scientifically interesting but also important in projecting future climate of the earth. Thus, OGCMs have been developed and applied to investigate the various oceanic processes and their role in the climate system.

Yoon, Jin-Ho; Ma, Po-Lun

2012-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "ocean resources solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Philadelphia, Pennsylvania: Solar in Action (Brochure), Solar...  

Broader source: Energy.gov (indexed) [DOE]

(Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) Boston Massachusetts: Solar in Action (Brochure), Solar America Cities, Energy Efficiency &...

382

Land-Use Efficiency of Big Solar  

Science Journals Connector (OSTI)

(8) When realized generation data are available, some studies have reported generation-based LUE (e.g., m2 GWh1), which is a function of a plants location (e.g., climatic conditions and solar resources), technological efficiency, and thermal energy storage, the latter enabling the instantaneous capacity to exceed the nameplate (turbine) capacity. ... For example, in the western United States, oil and gas energy systems have impacted approximately 2 orders of magnitude more land (?21 million ha) than solar (?100?000 ha), but given the regions vast solar resources, solar energy development could impact up to 18.6 million hectares of land. ...

Rebecca R. Hernandez; Madison K. Hoffacker; Christopher B. Field

2013-12-18T23:59:59.000Z

383

Solar Easement and the Solar Shade Control Act | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Easement and the Solar Shade Control Act Easement and the Solar Shade Control Act Solar Easement and the Solar Shade Control Act < Back Eligibility Commercial Industrial Residential Savings Category Heating & Cooling Commercial Heating & Cooling Solar Heating Buying & Making Electricity Swimming Pool Heaters Water Heating Program Info State California Program Type Solar/Wind Access Policy California's solar access laws appear in the state's Civil, Government, Health and Safety, and Public Resources Codes. California's Civil Code (801.5) ensures that neighbors may voluntarily sign solar easements to ensure that proper sunlight is available to those who operate solar energy systems. California's Government Code (65850.5) provides that subdivisions may include solar easements applicable to all plots within the

384

Solar and Wind Easements and Rights Laws and Local Option Solar Rights Law  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » Solar and Wind Easements and Rights Laws and Local Option Solar Rights Law Solar and Wind Easements and Rights Laws and Local Option Solar Rights Law < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Solar Heating Buying & Making Electricity Swimming Pool Heaters Water Heating Wind Program Info State Oregon Program Type Solar/Wind Access Policy Oregon has several laws that protect access to solar and wind resources and the use of solar energy systems. Oregon's solar access laws date back to 1979 and state that no person conveying or contracting to convey a property title can include provisions that prohibit the use of solar energy systems

385

Solar Keymark Testing of Solar Thermal Products  

Science Journals Connector (OSTI)

The Solar Keymark is the official CEN certification scheme for thermal solar collectors and factory made thermal solar systems. The Solar Keymark requires that the products fulfil the...

Harald Drck; Stephan Fischer

2009-01-01T23:59:59.000Z

386

Chapter 4 - Ocean Thermal Energy Converters  

Science Journals Connector (OSTI)

Publisher Summary The most plentiful renewable energy source on the planet is solar radiation. Harvesting this energy is difficult because of its dilute and erratic nature. Large collecting areas and large storage capacities are needed. These two requirements are satisfied by the tropical oceans. Oceans cover 71% of Earth's surface. In the tropics, they absorb sunlight, and the top layers heat up to some 25C. Warm surface waters from the equatorial belt flow poleward, melting both the Arctic and the Antarctic ice. The resulting cold waters return to the equator at great depth, completing a huge planetary thermosyphon. Two basic configurations have been proposed for ocean thermal energy converters (OTECs)those using hydraulic turbines and those using vapor turbines. The first uses the temperature difference between the surface and bottom waters to create a hydraulic head that drives a conventional water turbine. The advantages of this proposal include the absence of heat exchangers. It is easier to find warm surface water than sufficiently cool abyssal waters, which are not readily available in continental shelf regions. This limits the possible sitings of ocean thermal energy converters.

Aldo Vieira da Rosa

2009-01-01T23:59:59.000Z

387

Sandia National Laboratories: Wave Energy Resource Characterization...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Impacts of Ivanpah Solar Power Site Sandia Funded to Model Power Pods for Utility-Scale Wave-Energy Converter Wave Energy Resource Characterization at US Test Sites On September...

388

Production Hall and Inventory Shade Lighting by Solar Energy System and Economical Lighting (LEDs)  

Science Journals Connector (OSTI)

Due to the increasing energy and environmental concern in the world, one must look for alternatives to nonrenewable energy resources and the polluting fossil fuels. The renewable energy sources play an important role in electricity generation as well as many other useful applications. Various renewable energy sources like wind, solar, geothermal, ocean thermal and biomass can be used for generating electricity and meeting our daily energy demands. The solar energy can produce most of the world's requirements of the energy that is produced by the sun and collected on earth. Clean and sustainable energy protect our environment. The solar energy system with economical lighting (LEDs) can be used for lighting the production hall and inventory stores to reduce the energy consumption (watts) to less than a quarter of the normal consumption (high pressure, light HPL) and that will reduce the cost of energy. In addition, using the sun tracker will increase the efficiency of overall daily output of the solar panels more than 34% of the fixed panel. This will make the system more reliable and more economical.

Ahmad K. Jassim; Fouad K. Abood

2012-01-01T23:59:59.000Z

389

Constraining oceanic dust deposition using surface ocean dissolved Al  

E-Print Network [OSTI]

Constraining oceanic dust deposition using surface ocean dissolved Al Qin Han,1 J. Keith Moore,1; accepted 7 December 2007; published 12 April 2008. [1] We use measurements of ocean surface dissolved Al (DEAD) model to constrain dust deposition to the oceans. Our Al database contains all available

Zender, Charles

390

Solar: monthly and annual average direct normal (DNI), global horizontal  

Open Energy Info (EERE)

East Asia from NREL East Asia from NREL Dataset Summary Description (Abstract): Monthly Average Solar Resource for horizontal and tilted flat-plates, and 2-axis tracking concentrating collectors. (Purpose): Provide information on the solar resource potential for the data domain. The insolation values represent the average solar energy available to solar collectors. (Supplemental Information): These data provide monthly average and annual average daily total solar resource averaged over surface cells of approximately 40 km by 40 km in size. The solar resource value is represented as watt-hours per square meter per day for each month. The data were developed from NREL's Climatological Solar Radiation (CSR) Model. This model uses information on cloud cover, atmospheric water

391

Solar: monthly and annual average direct normal (DNI), global horizontal  

Open Energy Info (EERE)

Africa from NREL Africa from NREL Dataset Summary Description (Abstract): Monthly Average Solar Resource for horizontal and tilted flat-plates, and 2-axis tracking concentrating collectors. (Purpose): Provide information on the solar resource potential for the data domain. The insolation values represent the average solar energy available to solar collectors. (Supplemental Information): These data provide monthly average and annual average daily total solar resource averaged over surface cells of approximately 40 km by 40 km in size. The solar resource value is represented as watt-hours per square meter per day for each month. The data were developed from NREL's Climatological Solar Radiation (CSR) Model. This model uses information on cloud cover, atmospheric water

392

Concentrating Solar Power  

Science Journals Connector (OSTI)

Concentrating Solar Power (CSP) has the potential to contribute significantly to the generation of electricity by renewable energy resources in the U.S.. Thermal storage can extend the duty cycle of CSP beyond daytime hours to early evening where the value of electricity is often the highest. The potential solar resource for the southwest U.S. is identified along with the need to add power lines to bring the power to consumers. CSP plants in the U.S. and abroad are described. The CSP cost of electricity at the busbar is discussed. With current incentives CSP is approaching competiveness with conventional gas?fired systems during peak?demand hours when the price of electricity is the highest. It is projected that a mature CSP industry of over 4 GWe will be able to reduce the energy cost by about 50% and that U.S. capacity could be 120 GW by 2050.

Mark Mehos

2008-01-01T23:59:59.000Z

393

Survey of Climate Conditions for Demonstration of a Large Scale of Solar Energy Heating in Xi'an  

E-Print Network [OSTI]

-scale solar energy heating applications in urban residential buildings. In this paper, Xi'an's geographical situation and climate conditions are fully analyzed. The survey on solar energy resources, and the feasibility of solar energy heating on a large scale...

Li, A.; Liu, Y.

2006-01-01T23:59:59.000Z

394

Solar Policy Environment: New York  

Broader source: Energy.gov [DOE]

The New York City Solar America Cities (SAC) team hopes to foster a local solar energy market that will be economically sustainable while providing the City with clean, reliable, affordable electricity by reducing barriers and educating the workforce, using the Citys resources to spur the market and create economies of scale to lower prices, and creating institutions to plan and monitor future growth.

395

Exploring the Deep... Exploring the Ocean Environment Unit 4Marine Productivity  

E-Print Network [OSTI]

. NOAA The ocean provides up to 20 percent of the world's food supply. #12;Exploring the Ocean percent of the world's food supply, with over one billion people depending on its resources for survival's health is primary productivity, or the rate at which new organic material is produced through

Wright, Dawn Jeannine

396

SunShot Initiative: Solar Instructor Training Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Instructor Training Network Instructor Training Network Get the Adobe Flash Player to see this video. The Solar Instructor Training Network promotes high-quality training in the installation of solar technologies. Nine regional resource and training providers support the professional development of trainers and instructors of solar photovoltaic (PV) and solar heating and cooling (SHC) technologies across the country. The goals of Solar Instructor Training are to accelerate market adoption of solar technologies by ensuring that high-quality installations are standard and to create sustainable jobs within the solar installation industry. Background National Administrator of the Solar Instructor Training Network Funding for Regional Resource and Training Providers Regional Resource and Training Provider Network

397

Simple ocean carbon cycle models  

SciTech Connect (OSTI)

Simple ocean carbon cycle models can be used to calculate the rate at which the oceans are likely to absorb CO{sub 2} from the atmosphere. For problems involving steady-state ocean circulation, well calibrated ocean models produce results that are very similar to results obtained using general circulation models. Hence, simple ocean carbon cycle models may be appropriate for use in studies in which the time or expense of running large scale general circulation models would be prohibitive. Simple ocean models have the advantage of being based on a small number of explicit assumptions. The simplicity of these ocean models facilitates the understanding of model results.

Caldeira, K. [Lawrence Livermore National Lab., CA (United States); Hoffert, M.I. [New York Univ., NY (United States). Dept. of Earth System Sciences; Siegenthaler, U. [Bern Univ. (Switzerland). Inst. fuer Physik

1994-02-01T23:59:59.000Z

398

SC-RISE LECTURE SERIES BRIGHT HORIZONS IN SOLAR ENERGY  

E-Print Network [OSTI]

are being developed including biomass, geothermal, hydropower, ocean thermal energy conversion, solar the role energy storage can play. Many complex environmental factors must also be fully addressed earlySC-RISE LECTURE SERIES BRIGHT HORIZONS IN SOLAR ENERGY Sustainable Energy Opportunities, Options

399

Use of Ocean Energies  

Science Journals Connector (OSTI)

For converting the current of water for the production of electricity, there is a wide range of technological approaches. The Italian ocean current power plant named Kobold (Fig.6.2) was the first commercial o...

Prof. Dr.-Ing Hermann-Josef Wagner

2011-01-01T23:59:59.000Z

400

Type E: Extensional Tectonic, Fault-Controlled Resource | Open Energy  

Open Energy Info (EERE)

Type E: Extensional Tectonic, Fault-Controlled Resource Type E: Extensional Tectonic, Fault-Controlled Resource Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Type E: Extensional Tectonic, Fault-Controlled Resource Dictionary.png Type E: Extensional Tectonic, Fault-Controlled Resource: No definition has been provided for this term. Add a Definition Brophy Occurrence Models This classification scheme was developed by Brophy, as reported in Updating the Classification of Geothermal Resources.[1] Type A: Magma-heated, Dry Steam Resource Type B: Andesitic Volcanic Resource Type C: Caldera Resource Type D: Sedimentary-hosted, Volcanic-related Resource Type E: Extensional Tectonic, Fault-Controlled Resource Type F: Oceanic-ridge, Basaltic Resource Extensional-tectonic, fault-controlled resources typically result from a

Note: This page contains sample records for the topic "ocean resources solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Sandia National Laboratories: Concentrating Solar Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CSP Resources On September 26, 2012, in CSP Images & Videos On September 26, 2012, in Image Gallery Videos Concentrating Solar Power Image Gallery A picture says a thousand words,...

402

Carter aims at 20% solar energy  

Science Journals Connector (OSTI)

... legislative measures designed, he said, towards meeting a national goal of 20% of US energy needs coming from ... needs coming from solar and renewable resources by the end of the century.

1979-06-28T23:59:59.000Z

403

NASA Surface meteorology and Solar Energy: Methodology  

E-Print Network [OSTI]

1 NASA Surface meteorology and Solar Energy: Methodology Energy Technology (RET) projects. These climatological profiles are used for designing systems that have for implementing RETs, there are inherent problems in using them for resource assessment. Ground measurement

Firestone, Jeremy

404

Flexible ocean upwelling pipe  

DOE Patents [OSTI]

In an ocean thermal energy conversion facility, a cold water riser pipe is releasably supported at its upper end by the hull of the floating facility. The pipe is substantially vertical and has its lower end far below the hull above the ocean floor. The pipe is defined essentially entirely of a material which has a modulus of elasticity substantially less than that of steel, e.g., high density polyethylene, so that the pipe is flexible and compliant to rather than resistant to applied bending moments. The position of the lower end of the pipe relative to the hull is stabilized by a weight suspended below the lower end of the pipe on a flexible line. The pipe, apart from the weight, is positively buoyant. If support of the upper end of the pipe is released, the pipe sinks to the ocean floor, but is not damaged as the length of the line between the pipe and the weight is sufficient to allow the buoyant pipe to come to a stop within the line length after the weight contacts the ocean floor, and thereafter to float submerged above the ocean floor while moored to the ocean floor by the weight. The upper end of the pipe, while supported by the hull, communicates to a sump in the hull in which the water level is maintained below the ambient water level. The sump volume is sufficient to keep the pipe full during heaving of the hull, thereby preventing collapse of the pipe.

Person, Abraham (Los Alamitos, CA)

1980-01-01T23:59:59.000Z

405

The circulation of the ocean is usually divided into two parts, a wind-driven circulation that  

E-Print Network [OSTI]

, Princeton, NJ 08540 #12;2 the solar energy reaching the lowest layers of the atmosphere during the winter southward through the Atlantic, around the tip of Africa, and into the ocean beyond. The Atlantic conveyor

406

Solar Energy  

Science Journals Connector (OSTI)

There are major advantages to using solar energy for a variety of energy needs including electrical generation and space heating. The availability of solar radiation is extremely high in some localities of the...

Charles E. Brown Ph.D.

2002-01-01T23:59:59.000Z

407

Solar Easements  

Broader source: Energy.gov [DOE]

Idahos solar easement provisions allow for the access rights to sunlight for a solar energy device. The easement is transferred with the property title. Only a few Idaho communities have passed...

408

Solar Easements  

Broader source: Energy.gov [DOE]

Alaska's solar easement provisions are similar to those in many other states. They do not create an automatic right to sunlight. Rather, they allow parties to voluntarily enter into solar...

409

Solar Easements  

Broader source: Energy.gov [DOE]

Rhode Island allows property owners to establish solar easements in the same manner and with the same effect as a conveyance of an interest in real property. Solar easements must be created in...

410

Solar Easements  

Broader source: Energy.gov [DOE]

Ohio's solar-easement provisions are similar to those in effect in other states. Ohio law allows property owners to create binding solar easements for the purpose of protecting and maintaining...

411

Solar Easements  

Broader source: Energy.gov [DOE]

In determining that the use of solar energy "can help reduce the nation's reliance upon imported fuels," Georgia encourages the development of solar-energy systems. Accordingly, under Georgia's...

412

Solar energy  

Science Journals Connector (OSTI)

... good book and certainly can be recommended as an introductory text for a course on solar ...solarenergy ...

D.O. Hall

1980-02-28T23:59:59.000Z

413

Recent oppositely directed trends in solar climate forcings and the global mean surface air temperature  

Science Journals Connector (OSTI)

...102 and 108 years. Recently, solar effects on climate on time scales...becoming feasible to detect genuine solar forcing in climate records (Haigh 2003). The thermal capacity of the Earth's oceans is large...decadal-scale (and hence solar cycle) variations in global...

2007-01-01T23:59:59.000Z

414

The Long Island Solar Farm  

Broader source: Energy.gov [DOE]

This technical report provides an in-depth look at the one SunShot Initiative success story, the Long Island Solar Farm project, which is a utility-scale solar array located at Brookhaven National Laboratory in Eastern Long Island, New York. Three aspects of this project make it remarkable: first, it is the largest utility-scale solar power plant in the Eastern United States; second, it is a commercial project built on federally administered public lands; and third, the project was very unlikely to have started in the first place. It is a valuable resource for solar energy research, which will greatly inform large-scale PV solar development in the East.

415

Afghanistan-NREL Resource Maps and Toolkits | Open Energy Information  

Open Energy Info (EERE)

Afghanistan-NREL Resource Maps and Toolkits Afghanistan-NREL Resource Maps and Toolkits Jump to: navigation, search Logo: Afghanistan Resources Maps and Toolkits Name Afghanistan Resources Maps and Toolkits Agency/Company /Organization National Renewable Energy Laboratory Sector Energy Focus Area Solar, Wind Topics Resource assessment, Background analysis Resource Type Dataset, Maps, Software/modeling tools Website http://www.nrel.gov/internatio Country Afghanistan Southern Asia References NREL International Activities Website [1] Abstract NREL partnered with Afghanistan to develop high-resolution wind and solar resource maps and data products for Afghanistan. NREL partnered with Afghanistan to develop high-resolution wind and solar resource maps and data products for Afghanistan. The data were output in

416

Solar Energy Education. Renewable energy: a background text. [Includes glossary  

SciTech Connect (OSTI)

Some of the most common forms of renewable energy are presented in this textbook for students. The topics include solar energy, wind power hydroelectric power, biomass ocean thermal energy, and tidal and geothermal energy. The main emphasis of the text is on the sun and the solar energy that it yields. Discussions on the sun's composition and the relationship between the earth, sun and atmosphere are provided. Insolation, active and passive solar systems, and solar collectors are the subtopics included under solar energy. (BCS)

Not Available

1985-01-01T23:59:59.000Z

417

Solar Energy Assessment for Community Energy Planning (Webinar) | Open  

Open Energy Info (EERE)

Solar Energy Assessment for Community Energy Planning (Webinar) Solar Energy Assessment for Community Energy Planning (Webinar) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Solar Energy Assessment for Community Energy Planning (Webinar) Focus Area: Solar Topics: Opportunity Assessment & Screening Website: www.leonardo-energy.org/webinar-solar-energy-assessment-community-ener Equivalent URI: cleanenergysolutions.org/content/solar-energy-assessment-community-ene Language: English Policies: Deployment Programs DeploymentPrograms: Project Development This video reviews three different methods of assessing solar resources at a site so viewers will better understand the citing and planning process. A multi-step approach is used to ensure accuracy of data. First, solar resource mapping is used to identify communities where deployment of solar

418

NASA-Surface Meteorology and Solar Energy | Open Energy Information  

Open Energy Info (EERE)

NASA-Surface Meteorology and Solar Energy NASA-Surface Meteorology and Solar Energy Jump to: navigation, search Tool Summary Name: NASA-Surface Meteorology and Solar Energy Agency/Company /Organization: National Aeronautics and Space Administration Sector: Energy, Land Focus Area: Renewable Energy, Solar Topics: Resource assessment Resource Type: Dataset, Maps Website: eosweb.larc.nasa.gov/sse/ NASA-Surface Meteorology and Solar Energy Screenshot References: Surface Meteorology and Solar Energy[1] Main Points Over 200 satellite-derived meteorology and solar energy parameters Monthly averaged from 22 years of data Data tables for a particular location Color plots on both global and regional scales Global solar energy data for 1195 ground sites References ↑ "Surface Meteorology and Solar Energy"

419

Resources & Links  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Project Western Interconnection Synchrophasor Project Resources & Links Demand Response Energy Efficiency Emerging Technologies Smart grid fact sheet Department of...

420

Generating Resources Combined Cycle Combustion Turbine  

E-Print Network [OSTI]

turbine (s) Heat recovery steam generator (s) - HRSG with or without duct firing Natural gas supply11/17/2014 1 Generating Resources Combined Cycle Combustion Turbine Utility Scale Solar PV Steven doing recently around two key supply-side resource technologies 1. Combined Cycle Combustion Turbine

Note: This page contains sample records for the topic "ocean resources solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

STATE OF CALIFORNIA ENERGY RESOURCES CONSERVATION  

E-Print Network [OSTI]

1 STATE OF CALIFORNIA ENERGY RESOURCES CONSERVATION AND DEVELOPMENT COMMISSION In the Matter of ) ____________________________________) Order No. 10-1201-20 I. AUTHORITY AND PURPOSE Pursuant to Pub. Resources Code, § 25210 and Cal. Code will explore the lessons learned from the Commission's review and action on the solar thermal projects

422

Photosynthetic Solar Energy: Rediscovering Biomass Fuels  

Science Journals Connector (OSTI)

...readily converted to methane by anaero-bic...feed-stock for methane production. An...ocean as sources of methane, animal feeds...proposals, the economics of most biomass...organic wastes with steam generated by solar...part because steam reforming makes use of the...

ALLEN L. HAMMOND

1977-08-19T23:59:59.000Z

423

Alfvn Waves in the Solar Corona  

Science Journals Connector (OSTI)

...Department of Atmospheric, Oceanic, and...of magnetized plasma in 1942. Of...temperature of the solar atmosphere rise from 5000...observation in coronal plasma is lacking for...observe over a large enough field of...C), 3.5-mHz filtered Doppler velocity...to capture all areas of high correlation...

S. Tomczyk; S. W. McIntosh; S. L. Keil; P. G. Judge; T. Schad; D. H. Seeley; J. Edmondson

2007-08-31T23:59:59.000Z

424

Tucson Public Building Solar Arrays Final Report  

SciTech Connect (OSTI)

The City of Tucson installed photovoltaic panels on parking structures at a library/police substation and developed a county-wide solar education program based in the public library system, including numerous new solar resources for the libraries and training for library staff.

Bruce Plenk

2002-12-17T23:59:59.000Z

425

Sacramento, California: Solar in Action (Brochure)  

SciTech Connect (OSTI)

This brochure provides an overview of the challenges and successes of Sacramento, CA, a 2008 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

Not Available

2011-10-01T23:59:59.000Z

426

Philadelphia, Pennsylvania: Solar in Action (Brochure)  

SciTech Connect (OSTI)

This brochure provides an overview of the challenges and successes of Philadelphia, PA, a 2008 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

Not Available

2011-10-01T23:59:59.000Z

427

Portland, Oregon: Solar in Action (Brochure)  

SciTech Connect (OSTI)

This brochure provides an overview of the challenges and successes of Portland, OR, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

Not Available

2011-10-01T23:59:59.000Z

428

Madison, Wisconsin: Solar in Action (Brochure)  

SciTech Connect (OSTI)

This brochure provides an overview of the challenges and successes of Madison, WI, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

Not Available

2011-10-01T23:59:59.000Z

429

San Diego, California: Solar in Action (Brochure)  

SciTech Connect (OSTI)

This brochure provides an overview of the challenges and successes of San Diego, CA, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

Not Available

2011-10-01T23:59:59.000Z

430

San Antonio, Texas: Solar in Action (Brochure)  

SciTech Connect (OSTI)

This brochure provides an overview of the challenges and successes of San Antonio, TX, a 2008 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

Not Available

2011-10-01T23:59:59.000Z

431

Pittsburgh, Pennsylvania: Solar in Action (Brochure)  

SciTech Connect (OSTI)

This brochure provides an overview of the challenges and successes of Pittsburgh, PA, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

Not Available

2011-10-01T23:59:59.000Z

432

Santa Rosa, California: Solar in Action (Brochure)  

SciTech Connect (OSTI)

This brochure provides an overview of the challenges and successes of Santa Rosa, CA, a 2008 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

Not Available

2011-10-01T23:59:59.000Z

433

Orlando, Florida: Solar in Action (Brochure)  

SciTech Connect (OSTI)

This brochure provides an overview of the challenges and successes of Orlando, FL, a 2008 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

Not Available

2011-10-01T23:59:59.000Z

434

Houston, Texas: Solar in Action (Brochure)  

SciTech Connect (OSTI)

This brochure provides an overview of the challenges and successes of Houston, TX, a 2008 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

Not Available

2011-10-01T23:59:59.000Z

435

San Jose, California: Solar in Action (Brochure)  

SciTech Connect (OSTI)

This brochure provides an overview of the challenges and successes of San Jose, CA, a 2008 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

Not Available

2011-10-01T23:59:59.000Z

436

Milwaukee, Wisconsin: Solar in Action (Brochure)  

SciTech Connect (OSTI)

This brochure provides an overview of the challenges and successes of Milwaukee, WI, a 2008 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

Not Available

2011-10-01T23:59:59.000Z

437

Austin, Texas: Solar in Action (Brochure)  

SciTech Connect (OSTI)

This brochure provides an overview of the challenges and successes of Austin, Texas, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

Not Available

2011-10-01T23:59:59.000Z

438

Ann Arbor, Michigan: Solar in Action (Brochure)  

SciTech Connect (OSTI)

This brochure provides an overview of the challenges and successes of Ann Arbor, Michigan, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

Not Available

2011-10-01T23:59:59.000Z

439

Knoxville, Tennessee: Solar in Action (Brochure)  

SciTech Connect (OSTI)

This brochure provides an overview of the challenges and successes of Knoxville, TN, a 2008 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

Not Available

2011-10-01T23:59:59.000Z

440

Tucson, Arizona: Solar in Action (Brochure)  

SciTech Connect (OSTI)

This brochure provides an overview of the challenges and successes of Tucson, AZ, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

Not Available

2011-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "ocean resources solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Denver, Colorado: Solar in Action (Brochure)  

SciTech Connect (OSTI)

This brochure provides an overview of the challenges and successes of Denver, Colorado, a 2008 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

Not Available

2011-10-01T23:59:59.000Z

442

Berkeley, California: Solar in Action (Brochure)  

SciTech Connect (OSTI)

This brochure provides an overview of the challenges and successes of Berkeley, CA, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

Not Available

2011-10-01T23:59:59.000Z

443

Seattle, Washington: Solar in Action (Brochure)  

SciTech Connect (OSTI)

This brochure provides an overview of the challenges and successes of Seattle, WA, a 2008 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

Not Available

2011-10-01T23:59:59.000Z

444

New Orleans, Louisiana: Solar in Action (Brochure)  

SciTech Connect (OSTI)

This brochure provides an overview of the challenges and successes of New Orleans, LA, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

Not Available

2011-10-01T23:59:59.000Z

445

San Francisco, California: Solar in Action (Brochure)  

SciTech Connect (OSTI)

This brochure provides an overview of the challenges and successes of San Francisco, CA, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

Not Available

2011-10-01T23:59:59.000Z

446

Ocean Thermal Extractable Energy Visualization: Final Technical...  

Office of Environmental Management (EM)

Ocean Thermal Extractable Energy Visualization: Final Technical Report Ocean Thermal Extractable Energy Visualization: Final Technical Report Report about the Ocean Thermal...

447

Solar Easements and Rights Laws | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Solar Easements and Rights Laws Solar Easements and Rights Laws Solar Easements and Rights Laws < Back Eligibility Commercial Fed. Government Industrial Local Government Nonprofit Residential Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Solar Heating Buying & Making Electricity Swimming Pool Heaters Water Heating Program Info State New Mexico Program Type Solar/Wind Access Policy Provider New Mexico Energy, Minerals and Natural Resources Department New Mexico's Solar Rights and Solar Recordation Acts (both contained in NMSA § 47-3) allow property owners to create solar easements for the purpose of protecting and maintaining proper access to sunlight. The Solar Rights Act established the right to use solar energy as a property right. The solar right prevents neighboring property owners from constructing new

448

Renewable Energy Resources Inc | Open Energy Information  

Open Energy Info (EERE)

Renewable Energy Resources, Inc. Renewable Energy Resources, Inc. Place Las Vegas, Nevada Sector Hydro, Renewable Energy, Solar, Wind energy Product Renewable Energy is a privately-held consultancy with proprietary technology in the solar, wind and hydro fields. References Renewable Energy Resources, Inc.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Renewable Energy Resources, Inc. is a company located in Las Vegas, Nevada . References ↑ "Renewable Energy Resources, Inc." rated format, with renewable energy as its base, insuring a successful project throughout construction and commissioning. |Number of employees= |Coordinates= |References=Renewable Energy Resources, Inc.[1] }}

449

Federal Energy Management Program: Wind Energy Resources and Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wind Energy Wind Energy Resources and Technologies to someone by E-mail Share Federal Energy Management Program: Wind Energy Resources and Technologies on Facebook Tweet about Federal Energy Management Program: Wind Energy Resources and Technologies on Twitter Bookmark Federal Energy Management Program: Wind Energy Resources and Technologies on Google Bookmark Federal Energy Management Program: Wind Energy Resources and Technologies on Delicious Rank Federal Energy Management Program: Wind Energy Resources and Technologies on Digg Find More places to share Federal Energy Management Program: Wind Energy Resources and Technologies on AddThis.com... Energy-Efficient Products Technology Deployment Renewable Energy Federal Requirements Renewable Resources & Technologies Solar

450

Federal Energy Management Program: Geothermal Resources and Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Geothermal Geothermal Resources and Technologies to someone by E-mail Share Federal Energy Management Program: Geothermal Resources and Technologies on Facebook Tweet about Federal Energy Management Program: Geothermal Resources and Technologies on Twitter Bookmark Federal Energy Management Program: Geothermal Resources and Technologies on Google Bookmark Federal Energy Management Program: Geothermal Resources and Technologies on Delicious Rank Federal Energy Management Program: Geothermal Resources and Technologies on Digg Find More places to share Federal Energy Management Program: Geothermal Resources and Technologies on AddThis.com... Energy-Efficient Products Technology Deployment Renewable Energy Federal Requirements Renewable Resources & Technologies Solar Wind

451

Ocean energy conversion systems annual research report  

SciTech Connect (OSTI)

Alternative power cycle concepts to the closed-cycle Rankine are evaluated and those that show potential for delivering power in a cost-effective and environmentally acceptable fashion are explored. Concepts are classified according to the ocean energy resource: thermal, waves, currents, and salinity gradient. Research projects have been funded and reported in each of these areas. The lift of seawater entrained in a vertical steam flow can provide potential energy for a conventional hydraulic turbine conversion system. Quantification of the process and assessment of potential costs must be completed to support concept evaluation. Exploratory development is being completed in thermoelectricity and 2-phase nozzles for other thermal concepts. Wave energy concepts are being evaluated by analysis and model testing with present emphasis on pneumatic turbines and wave focussing. Likewise, several conversion approaches to ocean current energy are being evaluated. The use of salinity resources requires further research in membranes or the development of membraneless processes. Using the thermal resource in a Claude cycle process as a power converter is promising, and a program of R and D and subsystem development has been initiated to provide confirmation of the preliminary conclusion.

Not Available

1981-03-01T23:59:59.000Z

452

Energy Efficiency Resource Standards Resources  

Broader source: Energy.gov [DOE]

Energy efficiency resource standards mandate a quantified energy efficiency goal for an energy provider or jurisdiction within a predetermined timeframe.

453

Infrasonic ambient ocean noise: Northeast Pacific Ocean  

Science Journals Connector (OSTI)

Measurements of ocean ambient noise were made at three widely separated deep?water bottom locations in the N. E. Pacific at eight frequencies in the range from 2.520.0 Hz for 40 consecutive days. Concurrent data on wind speed and wave height were collected. Analysis indicates that the spectrum level of infrasonicnoise is linearly related to the log of the wind speed above a threshold level. There is evidence that the noise can be directly associated with the wind rather than through the surface waves it produces. [Work supported by ONR.

Rudolph H. Nichols

1985-01-01T23:59:59.000Z

454

Solar: monthly global horizontal (GHI) GIS data at 10km resolution for  

Open Energy Info (EERE)

Central America from SUNY Central America from SUNY Dataset Summary Description (Abstract): Monthly Average Solar Resource for horizontal flat-plate solar collectors for Central America (Purpose): Provide information on the solar resource potential for the data domain. The insolation values represent the average solar energy available to a horizontal flat-plate solar collector, such as a Photovoltaic (PV) solar panel. (Supplemental Information): These data provide monthly average and annual average daily total solar resource averaged over surface cells of approximately 10 km by 10 km in size. The solar resource value is represented as kilowatt-hours per square meter per day for each month. The data were developed from the State University of New York's (SUNY) GOES satellite solar model.

455

Solar-aware Routing in Wireless Sensor Networks  

E-Print Network [OSTI]

Solar-aware Routing in Wireless Sensor Networks Thiemo Voigt, Hartmut Ritter and Jochen Schiller energy sources such as solar power may provide unlimited energy resources to a changing subset these nodes is appealing. In this paper, we present solar-aware routing, a rout- ing protocol for wireless

456

Solar-Assisted Technology Provides Heat for California Industries  

E-Print Network [OSTI]

Solar-Assisted Technology Provides Heat for California Industries Industrial/Agriculture/Water End 2011 The Issue Solar thermal technology focuses the Sun's rays to heat water, and is a promising renewable resource for California's industrial sector. Commercially available solar water heating

457

Powering the planet: Chemical challenges in solar energy utilization  

Science Journals Connector (OSTI)

...Chemical challenges in solar energy utilization 10...Department of Chemistry, Massachusetts Institute of Technology...renewable energy resources, solar energy is by far the...Future of Nuclear Power ( Massachusetts Institute of Technology...Washington, DC ). 13 Solar Energy Utilization Workshop...

Nathan S. Lewis; Daniel G. Nocera

2006-01-01T23:59:59.000Z

458

Incursion of the Pacific Ocean Water into the Indian Ocean  

Science Journals Connector (OSTI)

Using the data collected during the International Indian Ocean Expedition, maps showing the distribution of depth ... became clear that low-salinity water from the Pacific intrudes into the western Indian Ocean t...

G S Sharma; A D Gouveia

1978-03-01T23:59:59.000Z

459

Norathyriol Suppresses Skin Cancers Induced by Solar Ultraviolet Radiation by Targeting ERK Kinases  

Science Journals Connector (OSTI)

...Research Animal Resources, University of...induced using a solar UV irradiation system. The solar UV radiation source...mice exposed to solar UV. The inhibition...Center for Research Resources at the NIH. Use...Department of Energy, Office of Basic...

Jixia Li; Margarita Malakhova; Madhusoodanan Mottamal; Kanamata Reddy; Igor Kurinov; Andria Carper; Alyssa Langfald; Naomi Oi; Myoung Ok Kim; Feng Zhu; Carlos P. Sosa; Keyuan Zhou; Ann M. Bode; and Zigang Dong

2012-01-01T23:59:59.000Z

460

Abengoa Solar, Inc. (Mojave Solar) | Department of Energy  

Energy Savers [EERE]

Solar, Inc. (Mojave Solar) Abengoa Solar, Inc. (Mojave Solar) Abengoa Solar, Inc. (Mojave Solar) Location: San Bernardino County, CA Eligibility: 1705 Snapshot In September 2011,...

Note: This page contains sample records for the topic "ocean resources solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Hydrogen from renewable resources research  

SciTech Connect (OSTI)

In 1986 the Hawaii Natural Energy Institute (HNEI) and the Florida Solar Energy Center (FSEC) were contracted by the Solar Energy Research Institute (SERI) to conduct an assessment of hydrogen production technologies and economic feasibilities of the production and use of hydrogen from renewable resources. In the 1989/90 period all monies were directed toward research and development with an emphasis on integration of tasks, focusing on two important issues, production and storage. The current year's efforts consisted of four tasks, one task containing three subtasks: Hydrogen Production by Gasification of Glucose and Wet Biomass in Supercritical Water; Photoelectrochemical Production of Hydrogen; Photoemission and Photoluminescence Studies of Catalyzed Photoelectrode Surfaces for Hydrogen Production; Solar Energy Chemical Conversion by Means of Photoelectrochemical (PEC) Methods Using Coated Silicon Electrodes; Assessment of Impedance Spectroscopy Methods for Evaluation of Semiconductor-Electrolyte Interfaces; Solar Energy Conversion with Cyanobacteria; Nonclassical Polyhydride Metal Complexes as Hydrogen Storage Materials. 61 refs., 22 figs., 11 tabs.

Takahashi, P.K.; McKinley, K.R.

1990-07-01T23:59:59.000Z

462

CALIFORNIA SOLAR DATA MANUAL  

E-Print Network [OSTI]

Estimating Unmeasured Solar Radiation Quantities . . . . . .Weather Data . . . . . , . , . . . . . . . . . .Solar DataB. l'he Solar Constant. . . . . . C. Solar Time and Standard

Berdahl, P.

2010-01-01T23:59:59.000Z

463

Sandia National Laboratories: Solar Tower  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solar Thermal Test Facility * NSTTF * Renewable Energy * SAND2012-8086W * solar * Solar Energy * solar power * Solar Research * Solar Tower Comments are closed. Renewable...

464

Energy from the Ocean [and Discussion  

Science Journals Connector (OSTI)

...development among the ocean energy options, and other relatively...paper focuses on ocean thermal energy conversion (OTEC). However, much of the paper's content has relevance to the use of the other ocean energy sources. Techniques of ocean...

1982-01-01T23:59:59.000Z

465

Solar Two Performance Evaluation Methodology  

SciTech Connect (OSTI)

Solar Two is a 10-MWe prototype central-receiver plant east of Barstow, California. Solar Two, which is sponsored by a consortium of utilities and industry in partnership with the U.S. Department of Energy, began regular electricity production in February 1997. The objective of Solar Two's performance evaluation activity is to understand the plant's performance and to use the evaluation information for the following purposes: optimize plant performance, extrapolate Solar Two's performance to general performance of molten-salt central-receiver technology, and recommend revisions to predictive models and engineering design methods for Solar Two and future-generation molten-salt central-receiver technology. The primary aspect of the performance evaluation is the lost-electricity analysis. This analysis compares the actual generation with the generation predicted by the Solar Two model. (SOLERGY, a computer program designed by Sandia National Laboratories to simulate the operation and power output of a solar central-receiver power plant is the code used to model Solar Two.) The difference between the predicted and the actual generation (i.e., the lost electricity) is broken down into the different efficiency and availability categories responsible for the loss. Having the losses broken down by system and in terms of electricity is useful for understanding and improving the plant's performance; it provides a tool for determining the best operating procedures for plant performance and the allocation of operation and maintenance resources for the best performance payback.

Mary Jane Hale

1999-11-01T23:59:59.000Z

466

Concentrating Solar Power (Fact Sheet), Electricity, Resources...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of parabolic trough modules. * At the Receiver Test Laboratory, we can measure heat loss as a function of temperature to establish the thermal per- formance of receiver...

467

Solar Electric Light Fund | Open Energy Information  

Open Energy Info (EERE)

Solar Electric Light Fund Solar Electric Light Fund Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Solar Electric Light Fund Agency/Company /Organization: Solar Electric Light Fund Sector: Energy Focus Area: Solar Phase: Create Early Successes Resource Type: Publications, Training materials Website: www.self.org/ Locality: US, Africa, Asia, Latin America Cost: Free The mission of the Solar Electric Light Fund (SELF) is to empower people in developing countries to rise from poverty using energy from the sun. What We Do The Solar Electric Light Fund (SELF) has been working in the field of renewable energy, household energy and decentralized rural electrification for over 18 years. We have a proven track record of managing complex, multi-disciplinary international projects and have worked on renewable

468

DOE Solar Decathlon: 2007 Consumer Workshops  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

man presents information about energy-efficient buildings to a group of people seated under a canopy at the 2007 Solar Decathlon. man presents information about energy-efficient buildings to a group of people seated under a canopy at the 2007 Solar Decathlon. Workshops on energy efficiency and solar technologies drew large crowds during the 2007 Solar Decathlon. Solar Decathlon 2007 Consumer Workshops Below are descriptions of the consumer workshops offered at the 2007 Solar Decathlon. Energy Efficiency for the Homeowner Presenter: Lew Pratsch, DOE The workshop focuses on ways to reduce energy bills for new and older homes by discussing topics such as energy efficient mortgages and other resources. Solar for the Homeowner Presenter: Glenn Strahs, DOE Are you ready to add a system onto your home and enjoy the benefits of clean, quiet power whose cost will not increase over time? The workshop

469

Sunshot Initiative High Penetration Solar Portal  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The DOE SunShot Initiative is a collaborative national initiative to make solar energy cost-competitive with other forms of energy by the end of the decade. Reducing the installed cost of solar energy systems by about 75% will drive widespread large-scale adoption of this renewable energy and restore U.S. leadership in the global clean energy race. The High Penetration Solar Portal was created as a resource to aggregate the most relevant and timely information related to high penetration solar scenarios and integrating solar into the grid. The site is designed so that utilities, grant awardees, regulators, researchers, and other solar professionals can easily share data, case studies, lessons learned, and demonstration project findings. [from https://solarhighpen.energy.gov/about_the_high_penetration_solar_portal

470

Water Resources Research Center Annual Technical Report  

E-Print Network [OSTI]

Quality, Microbial Methods · Wastewater Treatment Technology · Wastewater Reuse/Disposal · Watershed. Subjects cover, in general, water resources sustainability, climate and climate change influence on water/Non-Point/Runoff · Ocean Outfall Biomonitoring · General Marine Water Quality · Economics/Policy/Law · Climate

471

Ethiopia-DLR Resource Assessments | Open Energy Information  

Open Energy Info (EERE)

Ethiopia-DLR Resource Assessments Ethiopia-DLR Resource Assessments Jump to: navigation, search Name Ethiopia-DLR Cooperation Agency/Company /Organization German Aerospace Center (DLR) Sector Energy Focus Area Renewable Energy Topics Background analysis, Resource assessment Resource Type Software/modeling tools, Dataset, Maps Website http://www.dlr.de/tt/desktopde Program Start 2001 Program End 2004 Country Ethiopia Eastern Africa References DLR-SWERA Resource Assessments[1] From 2001 to 2004 the German Aerospace Center (DLR) worked with Ethiopia on solar resource and GIS analysis as part of UNEP's Solar and Wind Energy Resource Assessment (SWERA) Programme. References ↑ "DLR-SWERA Resource Assessments" Retrieved from "http://en.openei.org/w/index.php?title=Ethiopia-DLR_Resource_Assessments&oldid=328651"

472

Solar Physics A Journal for Solar and Solar-  

E-Print Network [OSTI]

. With society's increased dependence on space-based technology, much of which is at risk due to solar activity1 23 Solar Physics A Journal for Solar and Solar- Stellar Research and the Study of Solar-010-9653- x Solar Polar Fields During Cycles 21??? 23: Correlation with Meridional Flows #12;1 23 Your article

Padmanabhan, Janardhan

473

Ocean Circulation Lynne D Talley  

E-Print Network [OSTI]

to the topography, with low pressure in the center. Ocean currents transport heat from the tropics to the poles have gone to sea. As knowledge about ocean currents and capabilities to observe it below the surfaceOcean Circulation Lynne D Talley Volume 1, The Earth system: physical and chemical dimensions

Talley, Lynne D.

474

Solar Decathlon  

Broader source: Energy.gov (indexed) [DOE]

U.S. Department of Energy U.S. Department of Energy Solar Decathlon Sara Farrar-Nagy National Renewable Energy Laboratory sara.farrar-nagy@nrel.gov, 303-384-7514 April 3, 2013 Solar Decathlon 2009 Solar Decathlon 2011 Solar Decathlon 2013 & XPO Washington, D.C. Washington, D.C. Irvine, California 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: How to provide workforce training, improve building science instruction, foster innovation in whole-building design, and

475

Solar Energy.  

E-Print Network [OSTI]

??This thesis is about Photovoltaic (PV) cells and its stresses in various directions by calculating the power generated using solar cells under different conditions to (more)

Bafana, Ramzi

2014-01-01T23:59:59.000Z

476

Solar Mapper  

Broader source: Energy.gov [DOE]

Interactive, online mapping tool providing access to spatial data related to siting utility-scale solar facilities in the southwestern United States.

477

Solar News  

Broader source: Energy.gov (indexed) [DOE]

news Office of Energy Efficiency & Renewable news Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en Energy Department Announces $19 Million to Drive Down Solar Soft Costs, Increase Hardware Efficiency http://energy.gov/eere/articles/energy-department-announces-19-million-drive-down-solar-soft-costs-increase-hardware solar-soft-costs-increase-hardware" class="title-link">Energy Department Announces $19 Million to Drive Down Solar Soft Costs, Increase Hardware Efficiency

478

Solar/Wind Access Policy | Open Energy Information  

Open Energy Info (EERE)

Solar/Wind Access Policy Solar/Wind Access Policy < Solar Jump to: navigation, search Solar and wind access laws are designed to establish a right to install and operate a solar or wind energy system at a home or other facility. Some solar access laws also ensure a system owner's access to sunlight. These laws may be implemented at both the state and local levels. In some states, access rights prohibit homeowners associations, neighborhood covenants and local ordinances from restricting a homeowner's right to use solar energy. Easements, the most common form of solar access law, allow for the rights to existing access to a renewable resource on the part of one property owner to be secured from an owner whose property could be developed in such a way as to restrict that resource. An easement is

479

Additional Resources  

Broader source: Energy.gov [DOE]

The following resources are focused on Federal new construction and major renovation projects, sustainable construction, and the role of renewable energy technologies in such facilities. These...

480

Raymond Davis Jr., Solar Neutrinos, and the Solar Neutrino Problems  

Office of Scientific and Technical Information (OSTI)

Raymond Davis, Jr., Solar Neutrinos, Raymond Davis, Jr., Solar Neutrinos, and the Solar Neutrino Problem Resources with Additional Information Raymond Davis, Jr. Photo Courtesy of Brookhaven National Laboratory (BNL) Raymond Davis, Jr., who conducted research in the Chemistry Department at Brookhaven National Laboratory (BNL) from 1948 through 1984, was awarded the 2002 Nobel Prize in Physics "for pioneering contributions to astrophysics, in particular for the detection of cosmic neutrinos." Dr. Davis is also a recipient of the 2003 Fermi Award. He was the first scientist to detect solar neutrinos, ghostlike particles produced in the nuclear reactions that power the sun. "Neutrinos are fascinating particles, so tiny and fast that they can pass straight through everything, even the earth itself, without even slowing down," said Davis. "When I began my work, I was intrigued by the idea of learning something new. The interesting thing about doing new experiments is that you never know what the answer is going to be!"

Note: This page contains sample records for the topic "ocean resources solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Information Resources  

Broader source: Energy.gov [DOE]

We've organized links and information on solar energy technologies and the SunShot Initiative to make it easier for you to find what you're looking for.

482

Quantitative analysis of the influence of dust sea surface forcing on the primary production of the subtropical Atlantic Ocean  

E-Print Network [OSTI]

] Dust aerosols that are not deposited over oceans are able to significantly reduce the solar energy in the atmospheric layer could also contribute to reduce the solar energy reach- ing the sea surface thus leading tendency (0.22% per year) is found near Africa in summer. Thus, dust aerosol events might induce a major

Antoine, David

483

Solar Energy | OpenEI  

Open Energy Info (EERE)

Energy Energy Dataset Summary Description Reduction of global greenhouse gas emission to arrest global warming requires minimizing the use of fossil fuels. To achieve this a large scale use of renewable energies must be made over the globe for production of electrical and thermal energy. Success of wind and solar energy projects require detailed and precise information on the resources. For most developing countries adequate information on the resources are not available. Source Renewable Energy Research Centre, University of Dhaka Date Released February 19th, 2007 (7 years ago) Date Updated Unknown Keywords Feasibility Study resource assessment Solar Energy SWERA Bangladesh Wind Energy Data application/pdf icon swera_bangladesh_fullreport.pdf (pdf, 2.7 MiB)

484

Solar energy conversion.  

SciTech Connect (OSTI)

If solar energy is to become a practical alternative to fossil fuels, we must have efficient ways to convert photons into electricity, fuel, and heat. The need for better conversion technologies is a driving force behind many recent developments in biology, materials, and especially nanoscience. The Sun has the enormous untapped potential to supply our growing energy needs. The barrier to greater use of the solar resource is its high cost relative to the cost of fossil fuels, although the disparity will decrease with the rising prices of fossil fuels and the rising costs of mitigating their impact on the environment and climate. The cost of solar energy is directly related to the low conversion efficiency, the modest energy density of solar radiation, and the costly materials currently required. The development of materials and methods to improve solar energy conversion is primarily a scientific challenge: Breakthroughs in fundamental understanding ought to enable marked progress. There is plenty of room for improvement, since photovoltaic conversion efficiencies for inexpensive organic and dye-sensitized solar cells are currently about 10% or less, the conversion efficiency of photosynthesis is less than 1%, and the best solar thermal efficiency is 30%. The theoretical limits suggest that we can do much better. Solar conversion is a young science. Its major growth began in the 1970s, spurred by the oil crisis that highlighted the pervasive importance of energy to our personal, social, economic, and political lives. In contrast, fossil-fuel science has developed over more than 250 years, stimulated by the Industrial Revolution and the promise of abundant fossil fuels. The science of thermodynamics, for example, is intimately intertwined with the development of the steam engine. The Carnot cycle, the mechanical equivalent of heat, and entropy all played starring roles in the development of thermodynamics and the technology of heat engines. Solar-energy science faces an equally rich future, with nanoscience enabling the discovery of the guiding principles of photonic energy conversion and their use in the development of cost-competitive new technologies.

Crabtree, G. W.; Lewis, N. S. (Materials Science Division); (California Inst. of Tech.)

2008-03-01T23:59:59.000Z

485

Portland, Oregon: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)  

Broader source: Energy.gov [DOE]

This brochure provides an overview of the challenges and successes of Portland, OR, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

486

Ann Arbor, Michigan: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)  

Broader source: Energy.gov [DOE]

This brochure provides an overview of the challenges and successes of Ann Arbor, Michigan, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

487

Philadelphia, Pennsylvania: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)  

Broader source: Energy.gov [DOE]

This brochure provides an overview of the challenges and successes of Philadelphia, PA, a 2008 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

488

San Diego, California: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)  

Broader source: Energy.gov [DOE]

This brochure provides an overview of the challenges and successes of San Diego, CA, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

489

San Francisco, California: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)  

Broader source: Energy.gov [DOE]

This brochure provides an overview of the challenges and successes of San Francisco, CA, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

490

Berkeley, California: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)  

Broader source: Energy.gov [DOE]

This brochure provides an overview of the challenges and successes of Berkeley, CA, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

491

Sacramento, California: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)  

Broader source: Energy.gov [DOE]

This brochure provides an overview of the challenges and successes of Sacramento, CA, a 2008 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

492

Santa Rosa, California: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)  

Broader source: Energy.gov [DOE]

This brochure provides an overview of the challenges and successes of Santa Rosa, CA, a 2008 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

493

Boston Massachusetts: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)  

Broader source: Energy.gov [DOE]

This brochure provides an overview of the challenges and successes of Boston, MA, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

494

Knoxville, Tennessee: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)  

Broader source: Energy.gov [DOE]

This brochure provides an overview of the challenges and successes of Knoxville, TN, a 2008 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

495

San Antonio, Texas: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)  

Broader source: Energy.gov [DOE]

This brochure provides an overview of the challenges and successes of San Antonio, TX, a 2008 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

496

Houston, Texas: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)  

Broader source: Energy.gov [DOE]

This brochure provides an overview of the challenges and successes of Houston, TX, a 2008 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

497

Madison, Wisconsin: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)  

Broader source: Energy.gov [DOE]

This brochure provides an overview of the challenges and successes of Madison, WI, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

498

Austin, Texas: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)  

Broader source: Energy.gov [DOE]

This brochure provides an overview of the challenges and successes of Austin, Texas, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

499

New Orleans, Louisiana: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)  

Broader source: Energy.gov [DOE]

This brochure provides an overview of the challenges and successes of New Orleans, LA, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

500

Seattle, Washington: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)  

Broader source: Energy.gov [DOE]

This brochure provides an overview of the challenges and successes of Seattle, WA, a 2008 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.