Powered by Deep Web Technologies
Note: This page contains sample records for the topic "ocean power technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Ocean Power Technologies | Open Energy Information  

Open Energy Info (EERE)

Power Technologies Power Technologies Jump to: navigation, search Logo: Ocean Power Technologies Name Ocean Power Technologies Address 1590 Reed Road Place Pennington, New Jersey Zip 08534 Year founded 1994 Number of employees 100 Website http://www.oceanpowertechnolog Coordinates 40.297652°, -74.794481° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.297652,"lon":-74.794481,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

2

Ocean Power Technologies (TRL 7 8 System) - Reedsport PB150 Deployment...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ocean Power Technologies (TRL 7 8 System) - Reedsport PB150 Deployment and Ocean Test Project Ocean Power Technologies (TRL 7 8 System) - Reedsport PB150 Deployment and Ocean Test...

3

MHK Technologies/Ocean Powered Compressed Air Stations | Open Energy  

Open Energy Info (EERE)

Powered Compressed Air Stations Powered Compressed Air Stations < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Ocean Powered Compressed Air Stations.png Technology Profile Primary Organization Wave Power Plant Inc Technology Resource Click here Wave Technology Type Click here Point Absorber - Submerged Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description The Ocean Powered Compressed Air Station is a point absorber that uses an air pump to force air to a landbased generator The device only needs 4m water depth and electricity production fluctations through storing energy at a constant air pressure Technology Dimensions Device Testing Date Submitted 13:16.5 << Return to the MHK database homepage Retrieved from

4

MHK Technologies/Turbo Ocean Power Generator MadaTech 17 | Open...  

Open Energy Info (EERE)

MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Turbo Ocean Power Generator MadaTech 17.jpg Technology Profile Primary Organization SeaNergy...

5

Ocean Power Technologies (TRL 5 6 System) - PB500, 500 kW Utility...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

technologiesinchart.ppt More Documents & Publications Advanced, High Power, Next Scale, Wave Energy Conversion Device Ocean Power Technologies (TRL 7 8 System) - Reedsport PB150...

6

MHK Technologies/Ocean Wave Power Spar Buoy Engine | Open Energy  

Open Energy Info (EERE)

Spar Buoy Engine Spar Buoy Engine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Ocean Wave Power Spar Buoy Engine.jpg Technology Profile Primary Organization Functional Design Engineering Inc Technology Resource Click here Wave Technology Type Click here Point Absorber - Submerged Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description A long period spar buoy supports a subsurface flow augmentor The augmentor directs water from the wave s submarine flow field to a free prime mover piston The prime mover is decoupled from the machine s PTO during times in the wave s cycle when there is little power available for conversion Wave energy is stored in the device until the is enough flow magnetude that power take off can efficiently take place Power can be taken off as high pressure water crankshaft torque or directly as DC electricity

7

Ocean Energy Technology Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ocean Energy Technology Basics Ocean Energy Technology Basics Ocean Energy Technology Basics August 16, 2013 - 4:18pm Addthis Text Version Photo of low waves in the ocean. A dock is visible in the background. Oceans cover more than 70% of the Earth's surface. As the world's largest solar collectors, oceans contain thermal energy from the sun and produce mechanical energy from tides and waves. Even though the sun affects all ocean activity, the gravitational pull of the moon primarily drives tides, and wind powers ocean waves. Learn more about: Ocean Thermal Energy Conversion Tidal Energy Wave Energy Ocean Resources Addthis Related Articles Energy Department Releases New Energy 101 Video on Ocean Power A map generated by Georgia Tech's tidal energy resource database shows mean current speed of tidal streams. The East Coast, as shown above, has strong tides that could be tapped to produce energy. | Photo courtesy of Georgia Institute of Technology

8

MHK Technologies/Ocean | Open Energy Information  

Open Energy Info (EERE)

Ocean Ocean < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Ocean.jpg Technology Profile Primary Organization Hydro Green Energy LLC Project(s) where this technology is utilized *MHK Projects/Alaska 35 *MHK Projects/Maine 1 Project *MHK Projects/Mississippi 6 *MHK Projects/Mississippi 7 *MHK Projects/New York 1 *MHK Projects/New York 2 Technology Resource Click here Current/Tidal Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 4: Proof of Concept Technology Description Hydro Green Energy's HydroKinetic Turbine Arrays operate differently than a traditional hydropower plant. Like a traditional hydropower station, the electricity that we produce is clean and renewable, however, there are significant differences. Hydro Green Energy's Krouse Turbines are kinetic turbines. This means that the renewable power that is generated comes from the energy in the "motion" of the moving water, i.e. the velocity of the moving water be it river, tidal or ocean current to generate river, tidal energy or ocean energy, respectively.

9

MHK Technologies/OceanStar | Open Energy Information  

Open Energy Info (EERE)

OceanStar OceanStar < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage OceanStar.jpg Technology Profile Primary Organization Bourne Energy Technology Resource Click here Wave Technology Type Click here Overtopping Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description The OceanStar device captures the underlying pressure wave through a series of small turbine generators The OceanStar relies upon a proprietary energy efficient process to smooth out the pulse characteristics common to wave energy in order to be electrical grid friendly The OceanStars high level of scalability is essential to reach the large surface areas required to reach utility scale ocean power generation Technology Dimensions

10

Hydropower and Ocean Energy Resources and Technologies | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydropower and Ocean Energy Resources and Technologies Hydropower and Ocean Energy Resources and Technologies Hydropower and Ocean Energy Resources and Technologies October 7, 2013 - 9:29am Addthis Photo of water flowing from several openings in a hydropower dam. Hydropower produces 10% of the nation's energy, including power from the Ice Harbor Dam in Burbank, Washington. This page provides a brief overview of hydropower and ocean energy resources and technologies supplemented by specific information to apply these technologies within the Federal sector. Overview Hydropower has been used for centuries to power machinery, but the application most commonly associated with hydropower is electricity production through dams. Ocean energy refers to various forms of renewable energy harnessed from the ocean. There are two primary types of ocean energy: mechanical and thermal.

11

Hydropower and Ocean Energy Resources and Technologies  

Energy.gov (U.S. Department of Energy (DOE))

This page provides a brief overview of hydropower and ocean energy resources and technologies supplemented by specific information to apply these technologies within the Federal sector.

12

MHK Technologies/Ocean Energy Rig | Open Energy Information  

Open Energy Info (EERE)

Rig Rig < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Ocean Energy Rig.jpg Technology Profile Primary Organization Free Flow 69 Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description The Ocean Energy Rig is a hybrid concept harnessing tidal stream with increased velocity from venturi system wave and wind power The rig also uses solar panels to power computers and warning lights Other unique features include a water ballasting system with automatic self levelling and wave ramps to maximize FreeFlow 69 s new wave power device It is envisaged that the Ocean Energy Rig would be assembled and maintained in dry docks and would be towed out into position before being semi submerged and anchored for operation Power output of the production model would be at least 10MW

13

MHK Technologies/Ocean Current Linear Turbine | Open Energy Information  

Open Energy Info (EERE)

Linear Turbine Linear Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Ocean Current Linear Turbine.jpg Technology Profile Primary Organization Ocean Energy Company LLC Technology Type Click here Seabed mooring system Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description Endless cable loop with parachutes spliced to cable which moored in an ocean current pulls the cable through rotors which in turn power conventional electricity generators See US Patent 3 887 817 Additional patent pending Technology Dimensions Device Testing Date Submitted 30:08.6 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Ocean_Current_Linear_Turbine&oldid=681618"

14

MHK Technologies/THOR Ocean Current Turbine | Open Energy Information  

Open Energy Info (EERE)

THOR Ocean Current Turbine THOR Ocean Current Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage THOR Ocean Current Turbine.jpg Technology Profile Primary Organization THOR Turner Hunt Ocean Renewable LLC Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description The THOR ocean current turbine ROCT is a tethered fully submersible hydrokinetic device with a single horizontal axis rotor that operates at constant speed by varying the depth of operation using a patented power feedback control technology Rotor diameters can reach 60 meters for a 2 0MW class turbine and operations can be conducted as deep as 250 meters Arrays of THOR s ROCTs can be located in outer continental shelf areas 15 to 100 miles offshore in well established ocean currents such as the Gulf Stream or the Kuroshio and deliver electrical power to onshore load centers via submarine transmission line

15

Changes in fishing power and fishing strategies driven by new technologies: The case of tropical tuna purse seiners in the eastern Atlantic Ocean  

Science Journals Connector (OSTI)

Abstract Technological advancements can influence both the fishing power of a fleet and the fishing strategies it employs. To investigate these potential linkages, we examined almost three decades of data (19812008) from French tropical tuna purse seiners operating in the eastern Atlantic Ocean. Applying a sequence of statistical methods at different temporal and spatial scales, we analyzed two indicators of fishing power (sets per boat-day on fish aggregating devices (FADs) and sets per boat-day on free-swimming schools) each of which represent a distinct fishing mode. Our results show that the increasing modernization of this fleet has led to increases in both fishing power and the available number of fishing strategies to choose from. A key output of this analysis was the breakdown of fishing power time series (for each fishing mode) into separate periods of continuous years during which catchability was assumed to be constant, thus identifying regime shifts. This partitioning allowed us to identify when key changes occurred in the fishery. Changes in FAD-associated fishing were mostly driven by the introduction of radio beacons (early 1990s) which lead to an increase in fishing effort and an expansion of fishing grounds (direct effect) and the implementation of time-area management measures which resulted in a fragmentation of the traditional fishing grounds in the 2000s (indirect effect). During the same period, fishing on free-swimming schools also increased despite the biomass of stocks decreasing and fishing grounds remaining unchanged. This suggests these increases were driven by improvements in fish detection technology (e.g., bird radars, sonar). These identified increases are not entirely unexpected: indeed it is widely recognized that fishing power in the purse seine tuna fishery has increased over time. However, these increases do not necessarily occur linearly. Thus, understanding how fishing power is changing over time (such as determining when regime shifts occur) is critical to improving the CPUE standardization procedure in tropical tuna purse seine fisheries.

Edgar Torres-Irineo; Daniel Gaertner; Emmanuel Chassot; Michel Dreyfus-Len

2014-01-01T23:59:59.000Z

16

MHK Technologies/Ocean Wave Air Piston | Open Energy Information  

Open Energy Info (EERE)

Piston Piston < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Ocean Wave Air Piston.jpg Technology Profile Primary Organization Green Ocean Wave Energy Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description The OWAP captures power by continually raising or lowering a float which in turn raises or lowers one side of a lever arm about a stationary pivot point This therby raises or lowers a piston which is attached to the opposite side of the lever arm through a cylinder which in turn causes large volumes of air to move This air is funneled through drive turbines to produce power Mooring Configuration Monopile or platfrom

17

Global ocean wind power sensitivity to surface layer stability  

E-Print Network (OSTI)

2009 Global ocean wind power sensitivity to surface layer1 May 2009. [ 1 ] Global ocean wind power has recently beenincreases mean global ocean wind power by +58% and 4%,

Capps, Scott B; Zender, Charles S

2009-01-01T23:59:59.000Z

18

Tapping into Wave and Tidal Ocean Power: 15% Water Power by 2030 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tapping into Wave and Tidal Ocean Power: 15% Water Power by 2030 Tapping into Wave and Tidal Ocean Power: 15% Water Power by 2030 Tapping into Wave and Tidal Ocean Power: 15% Water Power by 2030 January 27, 2012 - 11:30am Addthis A map generated by Georgia Tech's tidal energy resource database shows mean current speed of tidal streams. The East Coast, as shown above, has strong tides that could be tapped to produce energy. | Photo courtesy of Georgia Institute of Technology A map generated by Georgia Tech's tidal energy resource database shows mean current speed of tidal streams. The East Coast, as shown above, has strong tides that could be tapped to produce energy. | Photo courtesy of Georgia Institute of Technology Hoyt Battey Water Power Market Acceleration and Deployment Team Lead, Wind and Water Power Program

19

Turner Hunt Ocean Renewable (TRL 4 System) - THOR's Power Method...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Turner Hunt Ocean Renewable (TRL 4 System) - THOR's Power Method for Hydrokinetic Devices Turner Hunt Ocean Renewable (TRL 4 System) - THOR's Power Method for Hydrokinetic Devices...

20

Tensile stiffness analysis on ocean dynamic power umbilical  

Science Journals Connector (OSTI)

Tensile stiffness of ocean dynamic power umbilical is an important design parameter for ... for the estimation of tensile stiffness of the ocean dynamic power umbilical.

Ming-gang Tang ???; Jun Yan ? ?; Ye Wang ? ?; Qian-jin Yue ???

2014-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "ocean power technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Global ocean wind power sensitivity to surface layer stability  

E-Print Network (OSTI)

for the first time, the global ocean 80 m wind power and tofirst time, wind power at 80 m (typical wind turbine hub height) above the global ocean

Capps, Scott B; Zender, Charles S

2009-01-01T23:59:59.000Z

22

Ocean Renewable Power Company | Open Energy Information  

Open Energy Info (EERE)

Power Company Power Company Jump to: navigation, search Name Ocean Renewable Power Company LLC Place Portland, Maine Zip 4101 Sector Ocean, Renewable Energy Product Ocean Renewable Power Company, LLC was founded in 2004 for the purpose of generating reliable, competitive, emission-free electricity from the energy resources of the oceans. Coordinates 45.511795°, -122.675629° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.511795,"lon":-122.675629,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

23

Calling All Coders: Help Advance America's Ocean Power Industry |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Calling All Coders: Help Advance America's Ocean Power Industry Calling All Coders: Help Advance America's Ocean Power Industry Calling All Coders: Help Advance America's Ocean Power Industry December 10, 2013 - 3:57pm Addthis The Energy Department has launched a new coding competition to help industry develop new models and tools that improve the design, development, and optimization of marine and hydrokinetic devices. | Graphic courtesy of TopCoder The Energy Department has launched a new coding competition to help industry develop new models and tools that improve the design, development, and optimization of marine and hydrokinetic devices. | Graphic courtesy of TopCoder Alison LaBonte Marine and Hydrokinetic Technology Manager Brooke White Oceanographer, Water Power Program

24

Ocean Energy Technology: Overview, Federal Energy Management Program (FEMP)  

NLE Websites -- All DOE Office Websites (Extended Search)

femp.energy.gov femp.energy.gov Ocean Energy Technology Overview Prepared for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Federal Energy Management Program July 2009 DOE/GO-102009-2823 Ocean Energy Technology Overview i Contacts Principal Investigators: Kari Burman Phone: 303-384-7558 E-mail: kari.burman@nrel.gov Andy Walker, PhD PE Phone: 303-384-7531 E-mail: andy.walker@nrel.gov Energy Management and Federal Markets Group National Renewable Energy Laboratory (NREL) MS 301 1617 Cole Boulevard Golden, CO 80401 Sponsor: U.S. Department of Energy Federal Energy Management Program Acknowledgements This work was sponsored by the U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP). Research regarding ocean energy resources, status of wave and tidal power technologies, and

25

Vehicle Technologies Office: Power Electronics  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Electronics to Power Electronics to someone by E-mail Share Vehicle Technologies Office: Power Electronics on Facebook Tweet about Vehicle Technologies Office: Power Electronics on Twitter Bookmark Vehicle Technologies Office: Power Electronics on Google Bookmark Vehicle Technologies Office: Power Electronics on Delicious Rank Vehicle Technologies Office: Power Electronics on Digg Find More places to share Vehicle Technologies Office: Power Electronics on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Power Electronics Electrical Machines Thermal Control & System Integration Advanced Combustion Engines Fuels & Lubricants Materials Technologies Power Electronics The power electronics activity focuses on research and development (R&D)

26

METEOROLOGICAL Journal of Atmospheric and Oceanic Technology  

E-Print Network (OSTI)

that there is no10 isotopic fractionation between the liquid phase and the generated moist "air". The water11., A microdrop generator for the calibration of.... 1. Introduction1 2 Water vapor is a key element in the globalAMERICAN METEOROLOGICAL SOCIETY Journal of Atmospheric and Oceanic Technology EARLY ONLINE RELEASE

Paris-Sud XI, Université de

27

8.01 - Generating Electrical Power from Ocean Resources  

Science Journals Connector (OSTI)

Abstract Ocean energy resources derived from wind, waves, tidal or marine currents can be utilized and converted to large scale sustainable electrical power. Conversion technologies are easily adaptable and can be integrated within the current utility infrastructure. However, ocean energy has many forms - tides, surface waves, ocean circulation, salinity, and thermal gradients. The focus of this chapter is dedicated to two of these, namely waves and tidal energy. The first are the result of wind-driven waves derived ultimately from solar energy and the latter represents those found in tidal or marine currents, driven by gravitational effects. This chapter also gives an analysis of the current state of art of generating electricity from wave and tidal currents (termed ocean energy). Section 8.01.1 provides an overview of ocean wave and marine current energy conversion with more emphasis on the latter; Sections 8.01.2, 8.01.3, 8.01.4, and 8.01.5 address respectively the history of wave energy, wave resource assessment, wave device development, and air turbines; and Section 8.01.6 gives a review of the economics of ocean energy as applied to wave and tidal energy conversion technologies.

A.S. Bahaj

2012-01-01T23:59:59.000Z

28

Energy Department Releases New Energy 101 Video on Ocean Power | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy 101 Video on Ocean Power Energy 101 Video on Ocean Power Energy Department Releases New Energy 101 Video on Ocean Power April 30, 2013 - 12:40pm Addthis See how marine and hydrokinetic technologies harness the energy of the ocean's waves, tides, and currents and convert it into electricity to power our homes, buildings and cities. Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy FIND OUT MORE Read about the Energy Department's assessments of wave and tidal energy resources. You've probably seen water at work generating electricity at dams and other hydropower facilities in your region. But an emerging clean energy technology called marine and hydrokinetic (MHK) energy -- or ocean power -- uses water to generate electricity in a different way, and has yet to get

29

Energy Department Releases New Energy 101 Video on Ocean Power | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Releases New Energy 101 Video on Ocean Power Energy Department Releases New Energy 101 Video on Ocean Power Energy Department Releases New Energy 101 Video on Ocean Power April 30, 2013 - 12:40pm Addthis See how marine and hydrokinetic technologies harness the energy of the ocean's waves, tides, and currents and convert it into electricity to power our homes, buildings and cities. Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy FIND OUT MORE Read about the Energy Department's assessments of wave and tidal energy resources. You've probably seen water at work generating electricity at dams and other hydropower facilities in your region. But an emerging clean energy technology called marine and hydrokinetic (MHK) energy -- or ocean power -- uses water to generate electricity in a different way, and has yet to get

30

Alternative Energy Technologies Solar Power  

E-Print Network (OSTI)

#12;Alternative Energy Technologies Solar Power Photovoltaics Concentrating Solar Power (CSP) Power;Concentrating Solar Power (CSP) Reflector material is Aluminum or Silver Tube material ..... Several possible, Philippines Vanadium ........ Swaziland, Central Africa Zinc ................ Peru, Canada, Mexico Silver

Scott, Christopher

31

Ocean Energy Technology Overview: Federal Energy Management Program (FEMP)  

SciTech Connect

Introduction to and overview of ocean renewable energy resources and technologies prepared for the U.S. Department of Energy Federal Energy management Program.

Not Available

2009-07-01T23:59:59.000Z

32

Measuring Ocean Acidification: New Technology for a New Era of Ocean Chemistry  

Science Journals Connector (OSTI)

CO2 system changes in the upper ocean (wind-mixed layer) at stations in the Pacific (HOT) and Atlantic (BATS) oceans: the carbonate:bicarbonate concentration ratio and pH. ... Ocean alkalinity buffers the effects of oceanic CO2 uptake, but slowing and eventually reversing the trend of increasing ocean acidity will require increased continental weathering and dissolution of ocean carbonate sediments. ... (80) Each platform imposes different constraints on instrument design and performance in terms of measurement frequency, accuracy, and precision, as well as sensor size, power requirements, and endurance. ...

Robert H. Byrne

2014-04-07T23:59:59.000Z

33

SeaVolt Technologies formerly Sea Power Associates | Open Energy  

Open Energy Info (EERE)

SeaVolt Technologies formerly Sea Power Associates SeaVolt Technologies formerly Sea Power Associates Jump to: navigation, search Name SeaVolt Technologies (formerly Sea Power & Associates) Place San Francisco, California Zip CA 94111 Sector Ocean Product The company's Wave Rider system, which is still in prototype stages, uses buoys and hydraulic pumps to convert the movement of ocean waves into electricity. References SeaVolt Technologies (formerly Sea Power & Associates)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This article is a stub. You can help OpenEI by expanding it. SeaVolt Technologies (formerly Sea Power & Associates) is a company located in San Francisco, California .

34

MHK Technologies/Morild Power Plant | Open Energy Information  

Open Energy Info (EERE)

Morild Power Plant Morild Power Plant < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Morild Power Plant.jpg Technology Profile Primary Organization Hydra Tidal Energy Technology AS Project(s) where this technology is utilized *MHK Projects/MORILD Demonstration Plant Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description The Morild power plant is a floating, moored construction based on the same principle as horizontal axis wind turbines. The plant has 4 two-blade underwater turbines and can utilize the energy potential in tidal and ocean currents. The 4 turbines transmit power via hydraulic transmission to 2 synchronous generators. Can be pitched 180 degrees to utilize energy in both directions. A cable from the transformer on the prototype to shore transfers energy.

35

Classification of wind power technologies  

Science Journals Connector (OSTI)

Literature offers many possibilities to classify wind power technologies, for example with respect to their ... which materials are required for the construction of wind power plants and which of them may become....

Anja Brumme

2014-01-01T23:59:59.000Z

36

On the Wind Power Input to the Ocean General Circulation  

E-Print Network (OSTI)

The wind power input to the ocean general circulation is usually calculated from the time-averaged wind products. Here, this wind power input is reexamined using available observations, focusing on the role of the synoptically ...

Zhai, Xiaoming

37

Floating type ocean wave power station equipped with hydroelectric unit  

Science Journals Connector (OSTI)

The authors have invented the unique ocean wave power station, which is composed of the floating ... wave pitch and the counter-rotating type wave power unit, its runners are submerged in the ... as requested, be...

Shun Okamoto; Toshiaki Kanemoto; Toshihiko Umekage

2013-10-01T23:59:59.000Z

38

MHK Technologies/Direct Drive Power Generation Buoy | Open Energy  

Open Energy Info (EERE)

Power Generation Buoy Power Generation Buoy < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Direct Drive Power Generation Buoy.jpg Technology Profile Primary Organization Columbia Power Technologies Inc Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description Direct drive point absorber In 2005 Oregon State University entered into an exclusive license agreement with Columbia Power Technologies to jointly develop a direct drive wave energy conversion device Designed to be anchored 2 5 miles off the Oregon coast in 130 feet of water it uses the rise and fall of ocean waves to generate electricity Mooring Configuration Anchored

39

Vehicle Technologies Office: Power Electronics  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Electronics Power Electronics The power electronics activity focuses on research and development (R&D) for flexible, integrated, modular power electronics for power conditioning and control, including a power switch stage capable of running a variety of motors and loads. Efforts are underway to reduce overall system costs for these vehicles through the elimination of additional cooling loops to keep the power electronics within their safe operation ranges. These challenges are being met within the program through research in: Silicon carbide and Gallium Nitride semiconductors, which can be operated at much higher temperatures than current silicon semiconductors; Packaging innovations for higher temperature operation; Improved thermal control technologies; and

40

MHK Technologies/Current Power | Open Energy Information  

Open Energy Info (EERE)

Power Power < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Current Power.jpg Technology Profile Primary Organization Current Power AB Project(s) where this technology is utilized *MHK Projects/Norde lv Technology Resource Click here Current/Tidal Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The Current Power device is a slow speed vertical axis turbine that utilizes a direct drive permanent magnet rotating generator The concept is based on a vertical axle turbine directly coupled to a permanent magnet synchronous generator The system is intended to be placed on the bottom of the ocean or a river where it would be protected from storm surges and strong waves The output from the generator has to be rectified and inverted before connection to the grid Robustness is achived by the simple mechanical construction

Note: This page contains sample records for the topic "ocean power technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Student Academic Services School of Ocean & Earth Science Technology (SOEST)  

E-Print Network (OSTI)

Student Academic Services School of Ocean & Earth Science Technology (SOEST between academic advisors, faculty advisors, and students to implement a personal education plan that is consistent with the student's goals. DESCRIPTION Academic

42

Effect of ocean surface currents on wind stress, heat flux, and wind power input to the ocean  

E-Print Network (OSTI)

Effect of ocean surface currents on wind stress, heat flux, and wind power input to the ocean, J. T., and L. Thompson (2006), Effect of ocean surface currents on wind stress, heat flux, and wind power input to the ocean, Geophys. Res. Lett., 33, L09604, doi:10.1029/2006GL025784. 1. Introduction [2

Thompson, LuAnne

43

MHK Technologies/Ocean Treader floating | Open Energy Information  

Open Energy Info (EERE)

Treader floating Treader floating < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Ocean Treader floating.jpg Technology Profile Primary Organization Green Ocean Energy Ltd Project(s) where this technology is utilized *MHK Projects/Development of Ocean Treader Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 4: Proof of Concept Technology Description The Ocean Treader is comprised of two sponsons at the fore and aft of the device and a spar buoy in the center. As a wave passes along the device, first the fore sponson lifts and falls, then the spar buoy, and then the aft sponson, respectively. The relative motion between these three floating bodies is harvested by hydraulic cylinders mounted between the tops of the arms and the spar buoy. The cylinders pressurize hydraulic fluid that spins hydraulic motors and an electric generator. The electricity is exported via a cable piggy-backed to the anchor cable. Ocean Treader is designed to passively weather-vane to face the wave direction; and in addition, the device has active onboard adjustment to allow for offset due to the effects of current.

44

Ocean Renewable Power Co (ORPC) (TRL 7 8 System)- TidGen (TM) Power System Commercialization Project  

Energy.gov (U.S. Department of Energy (DOE))

Ocean Renewable Power Co (ORPC) (TRL 7 8 System) - TidGen (TM) Power System Commercialization Project

45

Ocean Energy  

Science Journals Connector (OSTI)

Some of these technologies are taking off from very low power capacities, although with an intense activity....4, 5] including La Rance tidal power station calculate a capacity of ocean energy facilities worldwid...

Ricardo Guerrero-Lemus; Jos Manuel Martnez-Duart

2013-01-01T23:59:59.000Z

46

Ocean Renewable Power Co (ORPC) (TRL 7 8 System) - TidGen (TM...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ocean Renewable Power Co (ORPC) (TRL 7 8 System) - TidGen (TM) Power System Commercialization Project Ocean Renewable Power Co (ORPC) (TRL 7 8 System) - TidGen (TM) Power System...

47

MHK Technologies/Oregon State University Columbia Power Technologies Direct  

Open Energy Info (EERE)

State University Columbia Power Technologies Direct State University Columbia Power Technologies Direct Drive Point Absorber < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Oregon State University Columbia Power Technologies Direct Drive Point Absorber.jpg Technology Profile Primary Organization Oregon State University OSU Project(s) where this technology is utilized *MHK Projects/OSU Direct Drive Power Generation Buoys Technology Resource Click here Wave Technology Type Click here Point Absorber Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description When the coil experiences a changing magnetic field created by the heaving magnets voltage is generated Technology Dimensions

48

Challenges in Ocean Energy Utilization  

Science Journals Connector (OSTI)

Ocean is a reservoir of energy. It is ... . Development of suitable cost effective technologies for power generation from different forms of ocean energy (like wave energy, tidal energy, Ocean Thermal Energy Conv...

S. Neelamani

2013-01-01T23:59:59.000Z

49

Ocean Thermal Power for Hydrogen Production  

Science Journals Connector (OSTI)

Roughly three-fourths of the earths surface is covered by the oceans and thus receives the major share of the Suns radiant energy falling on the planet. Allowing for the loss of part of this energy income by...

M. V. C. Sastri

1987-01-01T23:59:59.000Z

50

MHK Technologies/SyncWave Power Resonator | Open Energy Information  

Open Energy Info (EERE)

Power Resonator Power Resonator < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage SyncWave Power Resonator.jpg Technology Profile Primary Organization Marinus Power Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The SyncWave Power Resonator makes power by capturing the motion differential due to the phase lag between the two concentric float structures the Float and the Spar each having a very different resonance characteristic in waves The power generated from this phase lag is maximized under varying ocean wave conditions via a proprietary variable inertia tuning system SWELS located inside the central Spar Power is captured by an hydraulic power take off which drives a variable speed generator Power outputs conditioned by modern power electronics from several SyncWave Units in a wave farm will be collected and converted to in farm power in a sea bed mounted collector hub then transmitted ashore by subsea cable for interconnection to a shoreside load

51

MHK Technologies/The Ocean Hydro Electricity Generator Plant | Open Energy  

Open Energy Info (EERE)

MHK Technologies/The Ocean Hydro Electricity Generator Plant MHK Technologies/The Ocean Hydro Electricity Generator Plant < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage The Ocean Hydro Electricity Generator Plant.jpg Technology Profile Primary Organization Free Flow 69 Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The O H E G plant is a revolutionary concept using tidal energy designed by FreeFlow 69 The plant uses tidal energy to create electricity 24 hours a day making this a unique project 24 hour power is produced by using both the kinetic energy in tidal flow and the potential energy created by tidal height changes The O H E G plant is completely independent of the wind farm however it does make an ideal foundation for offshore wind turbines combining both tidal energy and wind energy The O H E G plant is not detrimental to the surrounding environment or ecosystem and due to its offshore location it will not be visually offensive

52

Ocean Energy Projects Developing On and Off America's Shores | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ocean Energy Projects Developing On and Off America's Shores Ocean Energy Projects Developing On and Off America's Shores Ocean Energy Projects Developing On and Off America's Shores January 22, 2013 - 1:14pm Addthis Artist rendering of Ocean Power Technologies' proposed wave park off the coast of Oregon. | Photo courtesy of Ocean Power Technologies. Artist rendering of Ocean Power Technologies' proposed wave park off the coast of Oregon. | Photo courtesy of Ocean Power Technologies. Verdant testing its tidal energy device in New York's East River. | Photo courtesy of Verdant Power. Verdant testing its tidal energy device in New York's East River. | Photo courtesy of Verdant Power. Ocean Power Technologies wave energy device. | Photo courtesy of Ocean Power Technologies. Ocean Power Technologies wave energy device. | Photo courtesy of Ocean

53

Ocean Energy Projects Developing On and Off America's Shores | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ocean Energy Projects Developing On and Off America's Shores Ocean Energy Projects Developing On and Off America's Shores Ocean Energy Projects Developing On and Off America's Shores January 22, 2013 - 1:14pm Addthis Artist rendering of Ocean Power Technologies' proposed wave park off the coast of Oregon. | Photo courtesy of Ocean Power Technologies. Artist rendering of Ocean Power Technologies' proposed wave park off the coast of Oregon. | Photo courtesy of Ocean Power Technologies. Verdant testing its tidal energy device in New York's East River. | Photo courtesy of Verdant Power. Verdant testing its tidal energy device in New York's East River. | Photo courtesy of Verdant Power. Ocean Power Technologies wave energy device. | Photo courtesy of Ocean Power Technologies. Ocean Power Technologies wave energy device. | Photo courtesy of Ocean

54

Vehicle Technologies Office: 2010 Advanced Power Electronics...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research is focused on developing revolutionary new power electronics (PE) and electric motor technologies that will leapfrog current on-the-road technologies....

55

Vehicle Technologies Office: 2013 Advanced Power Electronics...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor, and traction drive system (TDS) technologies that...

56

Vehicle Technologies Office: 2009 Advanced Power Electronics...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Power Electronics R&D Annual Progress Report Vehicle Technologies Office: 2009 Advanced Power Electronics R&D Annual Progress Report Annual report focusing on understanding and...

57

Vehicle Technologies Office: 2012 Advanced Power Electronics...  

Energy Savers (EERE)

2 Advanced Power Electronics and Electric Motors R&D Annual Progress Report Vehicle Technologies Office: 2012 Advanced Power Electronics and Electric Motors R&D Annual Progress...

58

Fuel Cycle Comparison for Distributed Power Technologies  

Fuel Cell Technologies Publication and Product Library (EERE)

This report examines backup power and prime power systems and addresses the potential energy and environmental effects of substituting fuel cells for existing combustion technologies based on microtur

59

Marine & Hydrokinetic Technologies (Fact Sheet), Wind And Water Power Program (WWPP)  

NLE Websites -- All DOE Office Websites (Extended Search)

Water Power Program Water Power Program supports the development of advanced water power devices that capture energy from waves, tides, ocean currents, rivers, streams, and ocean thermal gradients. The program works to promote the development and deployment of these new tech- nologies, known as marine and hydrokinetic technologies, to assess the potential extractable energy from rivers, estuaries, and coastal waters, and to help industry harness this renew- able, emissions-free resource to generate environmentally sustainable and cost-effective electricity. The program's research and development efforts fall under two categories: Technology Development and Market Acceleration. Technology Development The Water Power Program works with industry partners, universities, and the Department of Energy's national

60

Nuclear Power Technology: A Mandate for Change  

Science Journals Connector (OSTI)

Technical Paper / NSF Workshop on the Research Needs of the Next Generation Nuclear Power Technology / Fission Reactor

Kunmo Chung; George A. Hazelrigg

Note: This page contains sample records for the topic "ocean power technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Estimated global ocean wind power potential from QuikSCAT observations, accounting for turbine characteristics and siting  

E-Print Network (OSTI)

C. S. Zender (2009), Global ocean wind power sensitivity toAND ZENDER: GLOBAL OCEAN WIND POWER POTENTIAL Serpetzoglou,Estimated global ocean wind power potential from QuikSCAT

Capps, Scott B; Zender, Charles S

2010-01-01T23:59:59.000Z

62

MHK Technologies/Oxygen Releasing and Carbon Absorbing Ocean Based  

Open Energy Info (EERE)

Releasing and Carbon Absorbing Ocean Based Releasing and Carbon Absorbing Ocean Based Renewable Energy System < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Oxygen Releasing and Carbon Absorbing Ocean Based Renewable Energy System.jpg Technology Profile Technology Description The benefits of the system developed and patented by AEEA are 1 exploitation of the greater wave energy density in the more remote off shore locations 2 usage of existing industrial fuel storage and distribution infrastructure 3 provision for a gradual transition to widespread electric vehicle use 4 avoidance of environmental destruction and visual impairment with minimal impact on commercial fishing and recreation uses 5 fostering the development of a new maritime and energy industry 6 avoidance of the high capital investment in mooring and anchoring seabed electrical cable installation and seabed restoration 7 development of flexibility by deployment of fleets of these vessels to supply widely separated market locations using coastal and national waterways and 8 provision for the addition of fleets without depletion of primary feed stocks as in nuclear energy systems 2 Fig 1 In summary the system converts wave energy from the nearly unlimited world wide

63

Chapter 14 - Marine Power Generation Technologies  

Science Journals Connector (OSTI)

Abstract There are four ways in which the worlds oceans can provide an energy source for power generation. Marine currents around coastlines, inlets, and estuaries can be exploited with underwater turbines. Ocean waves are also a source of energy that can be tapped using a variety of different devices that convert the oscillating motion of waves into a motion that can be used to provide electricity generation. The worlds oceans, particularly in the tropical regions, are massive solar collectors, absorbing heat that creates a hot layer on the surface of the sea. This hot water can be used to drive a heat engine, with cooling taken from the ocean depths where the temperature remains low. The mixing of fresh and salt water also releases energy, and this too can be tapped in a number of ways to generate electricity. All of these are being developed as means of power generation.

Paul Breeze

2014-01-01T23:59:59.000Z

64

NREL Power Technologies Energy Data Book (2006): Technology Profiles |  

Open Energy Info (EERE)

Power Technologies Energy Data Book (2006): Technology Profiles Power Technologies Energy Data Book (2006): Technology Profiles Dataset Summary Description The National Renewable Energy Laboratory (NREL) publishes a wide selection of data and statistics on renewable energy power technologies from a variety of sources (e.g. EIA, Oak Ridge National Laboratory, Sandia National Laboratory, EPRI and AWEA). In 2006, NREL published the 4th edition, presenting market and performance data for over a dozen technologies from publications from 1997 - 2004. The technologies covered are: biomass, geothermal, concentrating solar power (CSP), wind, hydro, solar buildings, reciprocating engines, microturbines, fuel cells, batteries, advanced energy storage, and super conducting power technology. Depending on the technology, data may go as far back as 1980 and projections may go as far into the future as 2020.

65

Cyclone Power Technologies Inc | Open Energy Information  

Open Energy Info (EERE)

Cyclone Power Technologies Inc Cyclone Power Technologies Inc Jump to: navigation, search Name Cyclone Power Technologies Inc Place Pompano Beach, Florida Zip 33064 Product Florida-based research and development company. The Company holds exclusive commercial rights to the Schoell Cycle Engine, an external combustion, heat-regenerative engine capable of running on any fuel source. References Cyclone Power Technologies Inc[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Cyclone Power Technologies Inc is a company located in Pompano Beach, Florida . References ↑ "Cyclone Power Technologies Inc" Retrieved from "http://en.openei.org/w/index.php?title=Cyclone_Power_Technologies_Inc&oldid=344013

66

NREL: Geothermal Technologies - Financing Geothermal Power Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies Technologies Search More Search Options Site Map Guidebook to Geothermal Power Finance Thumbnail of the Guidebook to Geothermal Power Finance NREL's Guidebook to Geothermal Power Finance provides an overview of the strategies used to raise capital for geothermal power projects that: Use conventional, proven technologies Are located in the United States Produce utility power (roughly 10 megawatts or more). Learn more about the Guidebook to Geothermal Power Finance. NREL's Financing Geothermal Power Projects website, funded by the U.S. Department of Energy's Geothermal Technologies Program, provides information for geothermal power project developers and investors interested in financing utility-scale geothermal power projects. Read an overview of how financing works for geothermal power projects, including

67

Fuel Cell Comparison of Distributed Power Generation Technologies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Cell Comparison of Distributed Power Generation Technologies Fuel Cell Comparison of Distributed Power Generation Technologies This report examines backup power and prime power...

68

Estimating the potential of ocean wave power resources  

Science Journals Connector (OSTI)

The realistic assessment of an ocean wave energy resource that can be converted to an electrical power at various offshore sites depends upon many factors, and these include estimating the resource recognizing the random nature of the site-specific wave field, and optimizing the power conversion from particular wave energy conversion devices. In order to better account for the uncertainty in wave power resource estimates, conditional probability distribution functions of wave power in a given sea-state are derived. Theoretical expressions for the deep and shallow water limits are derived and the role of spectral width is studied. The theoretical model estimates were compared with the statistics obtained from the wave-by-wave analysis of JONSWAP based ocean wave time-series. It was shown that the narrow-band approximation is appropriate when the variability due to wave period is negligible. The application of the short-term models in evaluating the long-term wave power resource at a site was illustrated using wave data measured off the California coast. The final example illustrates the procedure for incorporating the local wave data and the sea-state model together with a wave energy device to obtain an estimate of the potential wave energy that could be converted into a usable energy resource.

Amir H. Izadparast; John M. Niedzwecki

2011-01-01T23:59:59.000Z

69

A numerical study for the optimal arrangement of ocean current turbine generators in the ocean current power parks  

Science Journals Connector (OSTI)

The present paper deals with the investigation of the flow distribution in the ocean current power park in order to optimize the arrangement of the turbine generators in the sea and the lake sides. To produce more reliable results, the detailed geometry of the ocean current generators is included in the computational domain with frozen rotor method to consider rotating effect. The numerical results show the details of flow distribution in the ocean current power park and propose the appropriate arrangement of the turbine generators for the efficient operation, which is essential for possible maximum power generation.

Seung Ho Lee; Sang Hyuk Lee; Kyungsoo Jang; Jungeun Lee; Nahmkeon Hur

2010-01-01T23:59:59.000Z

70

Concentrating Solar Power Resources and Technologies  

Energy.gov (U.S. Department of Energy (DOE))

This page provides a brief overview of concentrating solar power (CSP) technologies supplemented by specific information to apply CSP within the Federal sector.

71

Surface Power Technologies | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Name: Surface Power Technologies Place: Ireland Sector: Solar, Wind energy Product: An Irish company supplying solar and micro-wind energy systems...

72

Microturbine Power Conversion Technology Review, April 2003  

Energy.gov (U.S. Department of Energy (DOE))

A technology review to assess the market for power electronic converters to connect microturbines to the electric grid or local loads.

73

Fuel Cell Backup Power Technology Validation (Presentation)  

SciTech Connect

Presentation about fuel cell backup power technology validation activities at the U.S. Department of Energy's National Renewable Energy Laboratory.

Kurtz, J.; Sprik, S.; Ramsden, T.; Saur, G.

2012-10-01T23:59:59.000Z

74

Announcements Science Policy Geology Technology Terrestrial/Ocean  

NLE Websites -- All DOE Office Websites (Extended Search)

what'S inSide? what'S inSide? Sequestration in the News Announcements Science Policy Geology Technology Terrestrial/Ocean Trading Recent Publications Events Subscription Information hiGhliGhtS Fossil Energy Techline, "Climate Technology: DOE Readies First Big U.S. Projects in CO 2 Capture and Storage. The US Department of Energy (DOE) is currently reviewing Phase III proposals for large-scale geologic sequestration projects in support of the Regional Carbon Sequestration Partnership Program. The program, which was formed in 2003 to research the best approaches to capture and permanently store the greenhouse gas, carbon dioxide (CO 2 ), will enter its next phase in October with announcements of Phase III deployment projects. The new stage of the Regional Partnerships' work will follow as a logical extension of work

75

MHK Technologies/Submergible Power Generator | Open Energy Information  

Open Energy Info (EERE)

Submergible Power Generator Submergible Power Generator < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Submergible Power Generator.jpg Technology Profile Primary Organization Current to Current Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description The design of the SPG leverages water flows in varying scenarios to generate electricity While the focus of the C2C deployments is ocean currents the SPG works in a bi directional manner Therefore the SPG can be deployed to generate electricity from tidal differential tidal streams In areas where currents and tidal differential streams converge the SPG with remote control and telemetry systems will track the water velocity In this manner the SPG can be maneuver in three dimensions to optimize water flow Each tube of the catamaran is approximately 150 feet in length The inner tube contains the electronic components and the outer tube is the rotating impeller system comprising a generator with a four blade turbine which measures approximately 100 feet in diameter The total area covered by each SPG is about the size of a football field

76

HVDC power transmission technology assessment  

SciTech Connect

The purpose of this study was to develop an assessment of the national utility system`s needs for electric transmission during the period 1995-2020 that could be met by future reduced-cost HVDC systems. The assessment was to include an economic evaluation of HVDC as a means for meeting those needs as well as a comparison with competing technologies such as ac transmission with and without Flexible AC Transmission System (FACTS) controllers. The role of force commutated dc converters was to be assumed where appropriate. The assessment begins by identifying the general needs for transmission in the U.S. in the context of a future deregulated power industry. The possible roles for direct current transmission are then postulated in terms of representative scenarios. A few of the scenarios are illustrated with the help of actual U.S. system examples. non-traditional applications as well as traditional applications such as long lines and asynchronous interconnections are discussed. The classical ``break-even distance`` concept for comparing HVDC and ac lines is used to assess the selected scenarios. The impact of reduced-cost converters is reflected in terms of the break-even distance. This report presents a comprehensive review of the functional benefits of HVDC transmission and updated cost data for both ac and dc system components. It also provides some provocative thoughts on how direct current transmission might be applied to better utilize and expand our nation`s increasingly stressed transmission assets.

Hauth, R.L.; Tatro, P.J.; Railing, B.D. [New England Power Service Co., Westborough, MA (United States); Johnson, B.K.; Stewart, J.R. [Power Technologies, Inc., Schenectady, NY (United States); Fink, J.L.

1997-04-01T23:59:59.000Z

77

Hydropower and Ocean Energy Resources and Technologies | Department...  

Energy Savers (EERE)

Several people are photographed standing on the barge. The Ocean Thermal Energy Conversion project at Hawaii's Natural Energy Lab was one of the first successful thermal ocean...

78

MHK Technologies/Yongsoo Wave Power Plant | Open Energy Information  

Open Energy Info (EERE)

Yongsoo Wave Power Plant < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Yongsoo Wave Power Plant.jpg Technology Profile Technology Type Click...

79

Software framework for prognostic health monitoring of ocean-based power generation.  

E-Print Network (OSTI)

??On August 5, 2010 the U.S. Department of Energy (DOE) has designated the Center for Ocean Energy Technology (COET) at Florida Atlantic University (FAU) as (more)

Bowren, Mark.

2012-01-01T23:59:59.000Z

80

Data gateway for prognostic health monitoring of ocean-based power generation.  

E-Print Network (OSTI)

??On August 5, 2010 the U.S. Department of Energy (DOE) has designated the Center for Ocean Energy Technology (COET) at Florida Atlantic University (FAU) as (more)

Gundel, Joseph.

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ocean power technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Thermal power plant efficiency enhancement with Ocean Thermal Energy Conversion  

Science Journals Connector (OSTI)

Abstract In addition to greenhouse gas emissions, coastal thermal power plants would gain further opposition due to their heat rejection distressing the local ecosystem. Therefore, these plants need to enhance their thermal efficiency while reducing their environmental offense. In this study, a hybrid plant based on the principle of Ocean Thermal Energy Conversion was coupled to a 740MW coal-fired power plant project located at latitude 28S where the surface to deepwater temperature difference would not suffice for regular OTEC plants. This paper presents the thermodynamical model to assess the overall efficiency gained by adopting an ammonia Rankine cycle plus a desalinating unit, heated by the power plant condenser discharge and refrigerated by cold deep seawater. The simulation allowed us to optimize a system that would finally enhance the plant power output by 2537MW, depending on the season, without added emissions while reducing dramatically the water temperature at discharge and also desalinating up to 5.8 million tons per year. The supplemental equipment was sized and the specific emissions reduction was estimated. We believe that this approach would improve the acceptability of thermal and nuclear power plant projects regardless of the plant location.

Rodrigo Soto; Julio Vergara

2014-01-01T23:59:59.000Z

82

Ocean conditions and Columbia River salmon Testimony provided for the House Subcommittee on Power and Water  

E-Print Network (OSTI)

Ocean conditions and Columbia River salmon Testimony provided for the House Subcommittee on Power Institute for the Study of the Atmosphere and Oceans/School of Marine Affairs Climate Impacts Group Box controlling salmon marine survival in the Pacific Northwest, several ocean-climate events have been linked

Mantua, Nathan

83

A power analysis and data acquisition system for ocean wave energy device testing  

Science Journals Connector (OSTI)

In the testing of ocean wave energy devices, the demand for a portable and robust data acquisition and electrical loading system has become apparent. This paper investigates the development of a 30kW inclusive system combining loading capabilities, real-time power analysis, and data acquisition for the testing of deployed ocean wave energy devices. Hardware results for ocean testing are included.

Ean Amon; Ted K.A. Brekken; Annette von Jouanne

2011-01-01T23:59:59.000Z

84

Electrical power generation from ocean currents in the Straits of Florida: Some environmental considerations  

Science Journals Connector (OSTI)

Ocean currents contain a remarkable amount of kinetic energy and have potential worldwide capability. Initial tests to harness current power focus on the Straits of Florida where the Florida Current has a total flow capacity of about 30נ106m3s?1. Generation of clean electricity from ocean currents off southeast Florida is based on a power extractor comprising open-center turbine technology. This innovative turbine provides safe passage for fish and other aquatic species. The water-column array of energy production units (EPUs) will have a 350km2 footprint, based on a 600m (10 rotor diameters) downstream separation distance between \\{EPUs\\} with a lateral separation of 400m. Water depths for the EPU field are in the range of 100500m. With such a large area of water column and benthic habitat utilized, environmental concerns must be overcome, including routing of transmission lines to shore. Risks and vulnerabilities of the proposed ocean current generated electricity include failure of individual \\{EPUs\\} and damage to sensitive coastal marine environments during installation.

Charles W. Finkl; Roger Charlier

2009-01-01T23:59:59.000Z

85

Small Power Technology for Tetrahedral Rovers  

Science Journals Connector (OSTI)

The Small Power Technology (SPOT) being studied at GSFC has the potential to be an efficient and compact radioisotope based electrical power system. Such a system would provide power for innovative tetrahedral robotic arms and walkers to support the lunar exploration initiative within the next decade. Presently NASA has designated two flight qualified Radioisotope Power Supplies (RPS): the Multi?Mission RTG (MMRTG) which uses thermocouple technology and the more efficient but more massive Stirling RTG (SRTG) which uses a mechanical heat (Stirling) engine technology. With SPOT thermal output from a radioisotope source is converted to electrical power using a combination of shape memory material and piezoelectric crystals. The SPOT combined energy conversion technologies are potentially more efficient than thermocouples and do not require moving parts thus keeping efficiency high with an excellent mass to power ratio. Applications of particular interest are highly modular addressable reconfigurable arrays of tetrahedral structural components designed to be arms or rovers with high mobility in rough terrain. Such prototypes are currently being built at GSFC. Missions requiring long?lived operation in unilluminated environments preclude the use of solar cells as the main power source and must rely on the use of RPS technology. The design concept calls for a small motor and battery assembly for each strut and thus a distributed power system. We estimate based on performance of our current tetrahedral prototypes and power scaling for small motors that such devices require tens of watts of power output per kilogram of power supply. For these reasons SPOT is a good candidate for the ART (addressable Reconfigurable Technology) baseline power system.

P. E. Clark; S. R. Floyd; C. D. Butler; Y. Flom

2006-01-01T23:59:59.000Z

86

NREL: Advanced Power Electronics - Technology Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Basics Technology Basics Graphic of a small hydrogen-fueled fuel cell vehicle. Check out the interactive graphic of the power electronic components of a hydrogen-fueled fuel cell vehicle. If you drive a car, use a computer, cook with a microwave oven, talk on any type of telephone, listen to a stereo, or use a cordless drill, you use power electronics. Thanks to power electronics, the electricity that runs the things we use every day is processed, filtered, and delivered with maximum efficiency and minimum size and weight. Inside a vehicle's electronic power steering system, power electronics control motors and help move the steering rack. This translates into improved steering response and lower energy consumption. In broad terms, power electronics control the flow of electric power via

87

Porous Power Technologies LLC | Open Energy Information  

Open Energy Info (EERE)

Porous Power Technologies LLC Porous Power Technologies LLC Jump to: navigation, search Logo: Porous Power Technologies LLC Name Porous Power Technologies LLC Address 2765 Dagny Way, Suite 200 Place Lafayette, Colorado Zip 80026 Sector Efficiency Product Laminable, porous, absorbent Li-ion batteries Website http://www.porouspower.com/ Coordinates 40.0130129°, -105.1327972° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.0130129,"lon":-105.1327972,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

88

Distribution Power Flow for Smart Grid Technologies  

SciTech Connect

Smart Grid technologies hold the promise of being able to solve many of the problems currently facing in the electric power industry. However, the large scale deployment of these new technologies has been limited due to an inability to accurately model their effects or to quantify their potential benefits. GridLAB-D is a new open source power system modeling and simulation environment developed by the United States Department of Energy specifically to integrate detailed power systems and end-use models. In order to effectively model the vast array of possible smart grid technologies GridLAB-D was developed as a general simulation environment. This paper describes the basic design concept, the power flow solutions implemented, and a detailed example of the type of analysis that can be performed within the simulation environment in order to support the evaluation of smart grid technologies.

Schneider, Kevin P.; Chassin, David P.; Chen, Yousu; Fuller, Jason C.

2009-03-18T23:59:59.000Z

89

New England Wind Forum: Wind Power Technology  

Wind Powering America (EERE)

Wind Power Technology Wind Power Technology Modern wind turbines have become sophisticated power plants while the concept of converting wind energy to electrical energy remains quite simple. Follow these links to learn more about the science behind wind turbine technology. Wind Power Animation An image of a scene from the wind power animation. The animation shows how moving air rotates a wind turbine's blades and describes how the internal components work to produce electricity. It shows small and large wind turbines and the differences between how they are used, as stand alone or connected to the utility grid. How Wind Turbines Work Learn how wind turbines make electricity; what are the types, sizes, and applications of wind turbines; and see an illustration of the components inside a wind turbine.

90

Study on 10 kVDC powered junction box for a cabled ocean observatory system  

Science Journals Connector (OSTI)

A cabled ocean observatory system that can provide abundant power and broad bandwidth communication for undersea instruments ... current (kVDC) with up to 10 kW power, along with 1 Gigabit/sec Ethernet communicat...

Yan-hu Chen ???; Can-jun Yang ???; De-jun Li ???; Bo Jin ? ?

2013-04-01T23:59:59.000Z

91

Concentrating Solar Power: Technology Overview  

SciTech Connect

Concentrating Solar Power (CSP) has the potential to contribute significantly to the generation of electricity by renewable energy resources in the U.S.. Thermal storage can extend the duty cycle of CSP beyond daytime hours to early evening where the value of electricity is often the highest. The potential solar resource for the southwest U.S. is identified, along with the need to add power lines to bring the power to consumers. CSP plants in the U.S. and abroad are described. The CSP cost of electricity at the busbar is discussed. With current incentives, CSP is approaching competiveness with conventional gas-fired systems during peak-demand hours when the price of electricity is the highest. It is projected that a mature CSP industry of over 4 GWe will be able to reduce the energy cost by about 50%, and that U.S. capacity could be 120 GW by 2050.

Mehos, M.

2008-01-01T23:59:59.000Z

92

Power sources manufactures association : power technology roadmap workshop - 2006.  

SciTech Connect

The Power Sources Manufacturers Association (PSMA) is pleased to announce the release of the latest Power Technology Roadmap Workshop Report. This Fifth Edition Workshop Report includes presentations and discussions from the workshop as seen by the participants that included many of the industry's most influential members representing end-users, power supply manufacturers, component suppliers, consultants and academia. This report provides detailed projections for the next three to four years of various technologies in a quantitative form. There was special emphasis on how the increasing use of digital technologies will affect the industry in the next four years. The technology trend analysis and the roadmap is provided for the following specific product families expected to be the areas of largest market growth: (1) Ac-dc front end power supplies--1 kW from a single phase ac source; (2) External ac-dc power supplies; (3) Dc-dc bus converters; and (4) Non-isolated dc-dc converters. Bruce Miller, Chairman of PSMA, stated that 'the Power Technology Roadmap Workshop Report is an extensive document that analyzes and provides projections for most major technical parameters for a specific power supply. It is a unique document as it contains technology/parametric trends in a roadmap fashion from a variety of diverse sources, giving significant depth to its content. No such information is available from any other source'. The Power Technology Roadmap Workshop Report is available at no cost as to PSMA Regular and Associate members and at a reduced price to Affiliate members as a benefit of membership. The report will be offered to non-members at a price of $2490. For further information or to buy a copy of the report, please visit the publications page or the PSMA website or contact the Association Office.

Bowers, John S.

2006-03-01T23:59:59.000Z

93

Comparison of wind stress algorithms, datasets and oceanic power input  

E-Print Network (OSTI)

If the ocean is in a statistically steady state, energy balance is a strong constraint, suggesting that the energy input into the world ocean is dissipated simultaneously at the same rate. Energy conservation is one of the ...

Yuan, Shaoyu

2009-01-01T23:59:59.000Z

94

FUSION POWER PLANTS GOALS AND TECHNOLOGICAL CHALLENGES  

E-Print Network (OSTI)

FUSION POWER PLANTS ­ GOALS AND TECHNOLOGICAL CHALLENGES Farrokh Najmabadi Dept. of Electrical & Computer Eng. and Fusion Energy Research Program, University of California, San Diego, La Jolla, CA 92093-0417 619-534-7869 (619-534-7716, Fax) ABSTRACT Fusion is one of a few future power sources with the poten

Najmabadi, Farrokh

95

Two-Phase Cooling Technology for Power Electronics with Novel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Two-Phase Cooling Technology for Power Electronics with Novel Coolants Two-Phase Cooling Technology for Power Electronics with Novel Coolants 2011 DOE Hydrogen and Fuel Cells...

96

Air Cooling Technology for Advanced Power Electronics and Electric...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Air Cooling Technology for Advanced Power Electronics and Electric Machines Air Cooling Technology for Advanced Power Electronics and Electric Machines 2009 DOE Hydrogen Program...

97

Combined Heat & Power Technology Overview and Federal Sector...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Combined Heat & Power Technology Overview and Federal Sector Deployment Combined Heat & Power Technology Overview and Federal Sector Deployment Presentation covers the Combined...

98

Overview of Thermoelectric Power Generation Technologies in Japan...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of Thermoelectric Power Generation Technologies in Japan Discusses thermoelectric power generation technologies as applied to waste heat recovery, renewable thermal energy...

99

Overview of Progress in Thermoelectric Power Generation Technologies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Overview of Progress in Thermoelectric Power Generation Technologies in Japan Overview of Progress in Thermoelectric Power Generation Technologies in Japan Presents progress in...

100

Porous Power Technologies | Open Energy Information  

Open Energy Info (EERE)

Porous Power Technologies Porous Power Technologies Jump to: navigation, search Name Porous Power Technologies Place Lafayette, Colorado Zip 80026 Product Porous Power is a Colorado-based developer of microporous, laminatable battery separators. Coordinates 42.706102°, -88.48126° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.706102,"lon":-88.48126,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "ocean power technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

On the Variability of Wind Power Input to the Oceans with a Focus on the Subpolar North Atlantic  

E-Print Network (OSTI)

Variations in power input to the ocean using a recent global reanalysis extending back to 1871 show a strong trend in the net power input since then, a trend dominated by the Southern Ocean region. This trend is interpreted ...

Zhai, Xiaoming

102

Establishing a Testing Center for Ocean Energy Technologies in...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Marine Renewable Energy Centers. NNMREC offers a full range of capabilities to support wave and tidal energy development for the United States. Ocean energy, generated from...

103

Technology projections for solar dynamic power  

Science Journals Connector (OSTI)

Solar Dynamic power systems can offer many potential benefits to Earth orbiting satellites including high solar-to-electric efficiency long life without performance degradation and high power capability. A recent integrated system test of a 2 kilowatt SD power system in a simulated space environment has successfully demonstrated technology readiness for space flight. Conceptual design studies of SD power systems have addressed several potential mission applications: a 10 kilowatt LEO satellite a low power Space Based Radar and a 30 kilowatt GEO communications satellite. The studies show that with moderate component development SD systems can exhibit excellent mass and deployed area characteristics. Using the conceptual design studies as a basis a SD technology roadmap was generated which identifies the component advances necessary to assure SD systems a competitive advantage for future NASA DOD and commercial missions.

Lee S. Mason

1999-01-01T23:59:59.000Z

104

Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean Current, and In-Stream Hydrokinetic Power  

Energy.gov (U.S. Department of Energy (DOE))

Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean Current, and In-Stream Hydrokinetic Power

105

Combined Heat and Power: A Technology Whose Time Has Come  

E-Print Network (OSTI)

energy efficient and environmentally friendly technology.Combined Heat and Power: A Technology Whose Time Has Comesteps to utilize the technology. 9 The average increase in

Ferraina, Steven

2014-01-01T23:59:59.000Z

106

Power Tagging Technologies | Open Energy Information  

Open Energy Info (EERE)

Tagging Technologies Tagging Technologies Jump to: navigation, search Name Power Tagging Technologies Place Superior, Colorado Zip 80027 Product Colorado-based developer of advanced digital signal processing technologies that enable real-time "power tagging" on the grid. Coordinates 41.761495°, -108.967894° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.761495,"lon":-108.967894,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

107

Engineered Sequestration and Advanced Power Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Sequestration and Advanced Power Technologies. Klaus Lackner, Columbia Sequestration and Advanced Power Technologies. Klaus Lackner, Columbia University. Predictions of innovative energy technologies for the next century usually include everything from fusion to photovoltaics with the one notable exception of fossil fuels. Because of fears of diminishing supplies, pollution and climate change, the public is reluctant to consider these hydrocarbon fuels for the energy needs of the twenty- first century. An energy strategy for the new century, however, cannot ignore fossil fuels. Contrary to popular belief, they are plentiful and inexpensive. While it is true that fossil fuels are limited by their environmental impact, new technologies to eliminate environmental concerns are currently being developed. Managing the emission of

108

Pulsed Power Technology at Sandia National Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

Z-Machine Time-exposure photograph of electrical flashover arcs produced over the surface of the water in the accelerator tank as a byproduct of Z operation. These flashovers are much like strokes of lightning Related links Electromagnetic Technology at Sandia National Laboratories Pulsed Power Technology Published Papers Inertial Fusion Energy C. L. Olson, "Inertial Fusion Energy with Pulsed Power," 2000 Codes: ALEGRA K. C. Cochrane, "Aluminum Equation of State Validation and Verification for the ALEGRA HEDP Simulation Code," 2006 T. Trucano, "ALEGRA-HEDP Validation Strategy," 2005 C. Garasi , "Multi-dimensional high energy density physics modeling and simulation of wire array z-pinch physics," 2003 Equation of State (EOS)

109

ZERO EMISSION POWER GENERATION TECHNOLOGY DEVELOPMENT  

SciTech Connect

Clean Energy Systems (CES) was previously funded by DOE's ''Vision 21'' program. This program provided a proof-of-concept demonstration that CES' novel gas generator (combustor) enabled production of electrical power from fossil fuels without pollution. CES has used current DOE funding for additional design study exercises which established the utility of the CES-cycle for retrofitting existing power plants for zero-emission operations and for incorporation in zero-emission, ''green field'' power plant concepts. DOE funding also helped define the suitability of existing steam turbine designs for use in the CES-cycle and explored the use of aero-derivative turbines for advanced power plant designs. This work is of interest to the California Energy Commission (CEC) and the Norwegian Ministry of Petroleum & Energy. California's air quality districts have significant non-attainment areas in which CES technology can help. CEC is currently funding a CES-cycle technology demonstration near Bakersfield, CA. The Norwegian government is supporting conceptual studies for a proposed 40 MW zero-emission power plant in Stavager, Norway which would use the CES-cycle. The latter project is called Zero-Emission Norwegian Gas (ZENG). In summary, current engineering studies: (1) supported engineering design of plant subsystems applicable for use with CES-cycle zero-emission power plants, and (2) documented the suitability and availability of steam turbines for use in CES-cycle power plants, with particular relevance to the Norwegian ZENG Project.

Ronald Bischoff; Stephen Doyle

2005-01-20T23:59:59.000Z

110

Use of Ocean Energies  

Science Journals Connector (OSTI)

For converting the current of water for the production of electricity, there is a wide range of technological approaches. The Italian ocean current power plant named Kobold (Fig.6.2) was the first commercial o...

Prof. Dr.-Ing Hermann-Josef Wagner

2011-01-01T23:59:59.000Z

111

Power Technology Inc | Open Energy Information  

Open Energy Info (EERE)

Power Technology Inc Power Technology Inc Place Houston, Texas Zip 77024 Product R&D company focused on alternative battery technology. Coordinates 29.76045°, -95.369784° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.76045,"lon":-95.369784,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

112

EA-1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

16: Ocean Renewable Power Company Maine, LLC Cobscook Bay 16: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot Project, Cobscook in Washington County, Maine EA-1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot Project, Cobscook in Washington County, Maine Summary This EA evaluates the environmental impacts of a project that would use the tidal currents of Cobscook Bay to generate electricity via cross-flow Kinetic System turbine generator units (TGU) mounted on the seafloor. The TGUs would capture energy from the flow in both ebb and flood directions. Public Comment Opportunities None available at this time. Documents Available for Download March 19, 2012 EA-1916: Finding of No Significant Impact Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot

113

On the Patterns of Wind-Power Input to the Ocean Circulation  

E-Print Network (OSTI)

Pathways of wind-power input into the ocean general circulation are analyzed using Ekman theory. Direct rates of wind work can be calculated through the wind stress acting on the surface geostrophic flow. However, because ...

Roquet, Fabien

114

Development of a direct current power system for a multi-node cabled ocean observatory system  

Science Journals Connector (OSTI)

Due to the shortage of suitable research methods for real-time and long-term observation of oceans, an innovative approach that can provide abundant power and wide bandwidth is being developed worldwide ... , we ...

Yan-hu Chen; Can-jun Yang; De-jun Li; Bo Jin

2012-08-01T23:59:59.000Z

115

An ocean kinetic energy converter for low-power applications using piezoelectric disk elements  

Science Journals Connector (OSTI)

The main problem facing long-term electronic system deployments in the sea, is to find a feasible way to supply them with the power they require. Harvesting mechanical energy from the ocean wave oscillations and ...

C. Violo; D. Toma; A. Mnuel; J. del Rio

2013-09-01T23:59:59.000Z

116

EA-1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay 1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot Project, Cobscook in Washington County, Maine EA-1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot Project, Cobscook in Washington County, Maine Summary This EA evaluates the environmental impacts of a project that would use the tidal currents of Cobscook Bay to generate electricity via cross-flow Kinetic System turbine generator units (TGU) mounted on the seafloor. The TGUs would capture energy from the flow in both ebb and flood directions. Public Comment Opportunities None available at this time. Documents Available for Download March 19, 2012 EA-1916: Finding of No Significant Impact Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot

117

IEEE JOURNAL OF OCEANIC ENGINEERING, VOL. 27, NO. 2, APRIL 2002 267 Power System Considerations for  

E-Print Network (OSTI)

IEEE JOURNAL OF OCEANIC ENGINEERING, VOL. 27, NO. 2, APRIL 2002 267 Power System Considerations are explored in this paper. First, design questions including whether the power delivery should be alternating for Undersea Observatories Bruce M. Howe, Harold Kirkham, Senior Member, IEEE, and Vatché Vorpérian Abstract--Power

Frandsen, Jannette B.

118

MHK Technologies/Deep Ocean Water Application Facility DOWAF | Open Energy  

Open Energy Info (EERE)

Water Application Facility DOWAF Water Application Facility DOWAF < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Deep Ocean Water Application Facility DOWAF.jpg Technology Profile Primary Organization Marc M Siah Associates Inc Technology Resource Click here OTEC Technology Type Click here OTEC - Hybrid Cycle Technology Description MOTEC systems utilize the temperature differential between the warm surface and the cold deep seawater The OTEC heat engine converts the thermal energy into usable mechanical energy which in turn is converted to electrical energy There are different types of OTEC system Technology Dimensions Device Testing Date Submitted 24:54.0 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Deep_Ocean_Water_Application_Facility_DOWAF&oldid=681561

119

Journal of Atmospheric and Oceanic Technology EARLY ONLINE RELEASE  

E-Print Network (OSTI)

uncertainty associated with winter storm precipitation type, accumulation, and29 timing is a major forecasting hydrometeor classification algorithm for winter precipitation. J. Atmos. Oceanic Technol. doi:10.1175/JTECH classification algorithm for1 winter precipitation2 Elizabeth J. Thompson, Steven A. Rutledge, Brenda Dolan

Rutledge, Steven

120

Building Technologies Office: Battery Chargers and External Power Supplies  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Chargers and Battery Chargers and External Power Supplies Framework Document Public Meeting to someone by E-mail Share Building Technologies Office: Battery Chargers and External Power Supplies Framework Document Public Meeting on Facebook Tweet about Building Technologies Office: Battery Chargers and External Power Supplies Framework Document Public Meeting on Twitter Bookmark Building Technologies Office: Battery Chargers and External Power Supplies Framework Document Public Meeting on Google Bookmark Building Technologies Office: Battery Chargers and External Power Supplies Framework Document Public Meeting on Delicious Rank Building Technologies Office: Battery Chargers and External Power Supplies Framework Document Public Meeting on Digg Find More places to share Building Technologies Office: Battery

Note: This page contains sample records for the topic "ocean power technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Wireless electricity (Power) transmission using solar based power satellite technology  

Science Journals Connector (OSTI)

In the near future due to extensive use of energy, limited supply of resources and the pollution in environment from present resources e.g. (wood, coal, fossil fuel) etc, alternative sources of energy and new ways to generate energy which are efficient, cost effective and produce minimum losses are of great concern. Wireless electricity (Power) transmission (WET) has become a focal point as research point of view and nowadays lies at top 10 future hot burning technologies that are under research these days. In this paper, we present the concept of transmitting power wirelessly to reduce transmission and distribution losses. The wired distribution losses are 70 75% efficient. We cannot imagine the world without electric power which is efficient, cost effective and produce minimum losses is of great concern. This paper tells us the benefits of using WET technology specially by using Solar based Power satellites (SBPS) and also focuses that how we make electric system cost effective, optimized and well organized. Moreover, attempts are made to highlight future issues so as to index some emerging solutions.

M Maqsood; M Nauman Nasir

2013-01-01T23:59:59.000Z

122

Global ocean wind power sensitivity to surface layer stability  

E-Print Network (OSTI)

Evaluation of global wind power, J. Geophys. Res. , 110,W. Tang, and X. Xie (2008), Wind power distribution over theApproach to Short-Term Wind Power Prediction, 1st ed. ,

Capps, Scott B; Zender, Charles S

2009-01-01T23:59:59.000Z

123

Guodian Longyuan Power Technology Engineering Co Ltd | Open Energy  

Open Energy Info (EERE)

Power Technology Engineering Co Ltd Power Technology Engineering Co Ltd Jump to: navigation, search Name Guodian Longyuan Power Technology Engineering Co Ltd Place Beijing Municipality, China Sector Biomass Product Beijing-based power plant developer, active as biomass platform of Guodian Technology & Environment. References Guodian Longyuan Power Technology Engineering Co Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Guodian Longyuan Power Technology Engineering Co Ltd is a company located in Beijing Municipality, China . References ↑ "Guodian Longyuan Power Technology Engineering Co Ltd" Retrieved from "http://en.openei.org/w/index.php?title=Guodian_Longyuan_Power_Technology_Engineering_Co_Ltd&oldid=346304

124

Helping Ensure High-Quality Installation of Solar Power Technologies...  

Energy Savers (EERE)

Ensure High-Quality Installation of Solar Power Technologies Helping Ensure High-Quality Installation of Solar Power Technologies April 15, 2013 - 12:00am Addthis The Midwest...

125

Columbia Power Technologies, Inc. Deploys its Direct Drive Wave...  

Energy Savers (EERE)

Columbia Power Technologies, Inc. Deploys its Direct Drive Wave Energy Buoy Columbia Power Technologies, Inc. Deploys its Direct Drive Wave Energy Buoy April 9, 2013 - 12:00am...

126

Estimated global ocean wind power potential from QuikSCAT observations, accounting for turbine characteristics and siting  

E-Print Network (OSTI)

Evaluation of global wind power, J. Geophys. Res. , 110,2009), Global ocean wind power sensitivity to surface layerCO 2 reductions via offshore wind power matched to inherent

Capps, Scott B; Zender, Charles S

2010-01-01T23:59:59.000Z

127

Overview of Thermoelectric Power Generation Technologies in Japan  

Energy.gov (U.S. Department of Energy (DOE))

Discusses thermoelectric power generation technologies as applied to waste heat recovery, renewable thermal energy sources, and energy harvesting

128

Nuclear Power Technology for the Future  

SciTech Connect

Ensuring sufficient energy for electricity, fresh water and transportation represents a major challenge for this century. Energy demand will increase dramatically as developing countries improve their standards of living. Nuclear power will become an increasingly important source of energy for production of electricity, fresh water and hydrogen as transportation fuel. Hydrocarbon sources of energy are not acceptable in the long term because of global warming and uneven supply. To ensure that nuclear power can meet this challenge, improved technologies are required to address the problems of nuclear waste, management of nuclear materials and safety as many more nuclear plants are built. These technologies are being developed at Argonne National Laboratory as part of the DOE international program of Generation IV reactors. Essential to meeting these challenges is the development of fast-spectrum nuclear reactors for which fuel and fission products are recycled to the reactor to be 'burned'. I will discuss work on fast-spectrum reactor and fuel-cycle design. The technologies discussed will be 'passively safe' reactor design and 'pyroprocessing' for fuel reprocessing.

Sackett, John I. (ANL) [ANL

2003-07-23T23:59:59.000Z

129

Development of two-variable maximum power point tracking control for ocean wave energy converters utilizing a power analysis and data acquisition system.  

E-Print Network (OSTI)

??Ocean wave energy shows great potential as a developing form of renewable energy. However, challenges arise in maturing this technology to achieve cost-effective energy conversion. (more)

Amon, Ean A.

2010-01-01T23:59:59.000Z

130

On the Patterns of Wind-Power Input to the Ocean Circulation FABIEN ROQUET AND CARL WUNSCH  

E-Print Network (OSTI)

On the Patterns of Wind-Power Input to the Ocean Circulation FABIEN ROQUET AND CARL WUNSCH received 1 February 2011, in final form 12 July 2011) ABSTRACT Pathways of wind-power input into the ocean pumping, with a pattern determined by the wind curl rather than the wind itself. Regions of power

Wunsch, Carl

131

Combined Heat and Power: A Technology Whose Time Has Come  

E-Print Network (OSTI)

for Combined Heat and Power, U.S. E NVTL . P ROT . A GENCY CCombined Heat and Power: A Technology Whose Time Has ComeD.C. COMBINED HEAT AND POWER A. Create an Organization to

Ferraina, Steven

2014-01-01T23:59:59.000Z

132

Guodian United Power Technology Co Ltd formerly Guodian Union Power | Open  

Open Energy Info (EERE)

United Power Technology Co Ltd formerly Guodian Union Power United Power Technology Co Ltd formerly Guodian Union Power Jump to: navigation, search Name Guodian United Power Technology Co Ltd (formerly Guodian Union Power) Place Beijing, Beijing Municipality, China Zip 100044 Sector Wind energy Product China-based wind turbine maker and daughter company of state-owned power generator China Guodian. References Guodian United Power Technology Co Ltd (formerly Guodian Union Power)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Guodian United Power Technology Co Ltd (formerly Guodian Union Power) is a company located in Beijing, Beijing Municipality, China . References ↑ "Guodian United Power Technology Co Ltd (formerly Guodian

133

Guangdong Mingyang Wind Power Technology Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Mingyang Wind Power Technology Co Ltd Mingyang Wind Power Technology Co Ltd Jump to: navigation, search Name Guangdong Mingyang Wind Power Technology Co Ltd Place Zhongshan City, Guangdong Province, China Sector Wind energy Product Subsidiary of privately owned Guangdong Mingyang Electric that manufacturers 1.5MW wind turbines. References Guangdong Mingyang Wind Power Technology Co Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Guangdong Mingyang Wind Power Technology Co Ltd is a company located in Zhongshan City, Guangdong Province, China . References ↑ "Guangdong Mingyang Wind Power Technology Co Ltd" Retrieved from "http://en.openei.org/w/index.php?title=Guangdong_Mingyang_Wind_Power_Technology_Co_Ltd&oldid=346230

134

NREL: TroughNet - Parabolic Trough Power Plant System Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Parabolic Trough Power Plant System Technology Parabolic Trough Power Plant System Technology A parabolic trough solar power plant uses a large field of collectors to supply thermal energy to a conventional power plant. Because they use conventional power cycles, parabolic trough power plants can be hybridized-other fuels can be used to back up the solar power. Like all power cycles, trough power plants also need a cooling system to transfer waste heat to the environment. Parabolic trough power plant technologies include: Direct steam generation Fossil-fired (hybrid) backup Operation and maintenance Power cycles Steam Rankine Organic Rankine Combined Wet and dry cooling Power Cycles A photo of an aerial view of a power plant in the middle of a solar field with rows and rows of parabolic troughs tracking. The cooling towers can be seen with the water plume rising into the air. The white water tanks can be seen in the background.

135

Power Technologies Energy Data Book | Open Energy Information  

Open Energy Info (EERE)

Power Technologies Energy Data Book Power Technologies Energy Data Book Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Power Technologies Energy Data Book Agency/Company /Organization: United States Department of Energy Partner: National Renewable Energy Laboratory Sector: Energy Focus Area: Solar, Wind Topics: Resource assessment, Pathways analysis Resource Type: Dataset Website: www.nrel.gov/analysis/power_databook/ References: Program Website[1] Logo: Power Technologies Energy Data Book The data book compiles a comprehensive set of data about power technologies from diverse sources. "The main purpose of the data book is to compile, in one central document, a comprehensive set of data about power technologies from diverse sources. The need for policy makers and analysts to be well-informed about power

136

MHK Technologies/MORILD 2 Floating Tidal Power System | Open Energy  

Open Energy Info (EERE)

MORILD 2 Floating Tidal Power System MORILD 2 Floating Tidal Power System < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage MORILD 2 Floating Tidal Power System.jpg Technology Profile Primary Organization Hydra Tidal Energy Technology AS Project(s) where this technology is utilized *MHK Projects/Morild 2 Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 7/8: Open Water System Testing & Demonstration & Operation Technology Description Hydra Tidal´s Morild II tidal power plant technology at-a-glance: - A unique and patented floating tidal power plant - Prototype has an installed effect of 1,5 MW - Turbine diameter of 23 meters - Each turbine is pitchable - 4 turbines with a total of 8 turbine blades - Unique wooden turbine blades - The MORILD II can be anchored at different depths, thus it can be positioned in spots with ideal tidal stream conditions - The plant carries a sea vessel verification, and is both towable and dockable - The floating installation enables maintenance in surface position, and on site - The MORILD II will be remotely operated, and has on-shore surveillance systems - Technology patented for all relevant territories The Morild power plant is a floating, moored construction based on the same principle as horizontal axis wind turbines. The plant has 4 two-blade underwater turbines and can utilize the energy potential in tidal and ocean currents. The 4 turbines transmit power via hydraulic transmission to 2 synchronous generators. Can be pitched 180 degrees to utilize energy in both directions. A cable from the transformer on the prototype to shore transfers energy.

137

Smart Technology Brings Power to the People  

SciTech Connect

Imagine youre at home one Saturday morning on the computer, as your son takes a shower, your daughter is watching TV, and a load of laundry is in your washer and dryer. Meanwhile, the fragrance of fresh-brewed coffee fills the house. You hear a momentary beep from the dryer that tells you that if you were to look, a high-energy price indicator would be displayed on the front panels of some of your favorite appliances. This tells you that you could save money right now by using less energy. (Youve agreed to this arrangement to help your utility avoid a substation upgrade. In return, you get a lower rate most of the time.) So you turn off some of the unneeded lights in your home and opt to wait until evening to run the dishwasher. Meanwhile, some of your largest appliances have automatically responded to this signal and have already reduced your homes energy consumption, saving you money. On January 11, 2006, demonstration projects were launched in 200 homes in the Pacific Northwest region of the United States to test and speed adoption of new smart grid technologies that can make the power grid more resilient and efficient. Pacific Northwest National Laboratory, a U.S. Department of Energy national laboratory in Richland, Washington, is managing the yearlong study called the Pacific Northwest GridWise Testbed Demonstration, a project funded primarily by DOE. Through the GridWise Demonstration projects, researchers are gaining insight into energy consumers behavior while testing new technologies designed to bring the electric transmission system into the information age. Northwest utilities, appliance manufacturers and technology companies are also supporting this effort to demonstrate the devices and assess the resulting consumer response. A combination of devices, software and advanced analytical tools will give homeowners more information about their energy use and cost, and we want to know if this will modify their behavior. Approximately 100 homes on the Olympic Peninsula in Washington State receive energy price information through a broadband Internet connection and have received automated demand-response thermostats and water heaters that can adjust energy use based on price. Fifty of those homes and an additional 50 homes in Yakima, Washington, and 50 homes in Gresham, Oregon, have computer chips helping control their dryers. These chips sense when the power transmission system is under stress and automatically turn off certain functions briefly until the grid can be stabilized by power operators.

Hammerstrom, Donald J.; Gephart, Julie M.

2006-12-01T23:59:59.000Z

138

Vehicle Technologies Office: Power Electronics | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Finally, power electronics convert and distribute electrical power to other vehicle systems such as heating and ventilation, lighting, and infotainment. Power electronics...

139

(Nuclear power plant control and instrumentation technology)  

SciTech Connect

While on vacation, the traveler attended the European Nuclear Conference in Lyon, France. This trip was part of an outside activity approved by DOE. The traveler is a consultant to Loyola College, serving as chairman of a panel to assess the state of the art in the controls and instrumentation technology in the European nuclear community. This study is being conducted by Loyola College under subcontract to the National Science Foundation. The traveler was surprised by the level of automation claimed (by the company Siemens AG KWU) to be present in the German Konvoi nuclear power plants. The claim was that this was done to improve the safety of the plant by keeping the operator out of the loop'' for the first 30 minutes of some transients or accidents.

White, J.D.

1990-10-10T23:59:59.000Z

140

Laser power beaming applications and technology  

SciTech Connect

Beaming laser energy to spacecraft has important economic potential. It promises significant reduction in the cost of access to space, for commercial and government missions. While the potential payoff is attractive, existing technologies perform the same missions and the keys to market penetration for power beaming are a competitive cost and a schedule consistent with customers` plans. Rocketdyne is considering these questions in the context of a commercial enterprise -- thus, evaluation of the requirements must be done based on market assessments and recognition that significant private funding will be involved. It is in the context of the top level business considerations that the technology requirements are being assessed and the program being designed. These considerations result in the essential elements of the development program. Since the free electron laser is regarded as the ``long pole in the tent``, this paper summarizes Rocketdyne`s approach for a timely, cost-effective program to demonstrate an FEL capable of supporting an initial operating capability (IOC).

Burke, R.J.; Cover, R.A.; Curtin, M.S.; Dinius, R.W.; Lampel, M.C. [Rockwell International Corp., Canoga Park, CA (United States). Rocketdyne Division

1994-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "ocean power technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

MHK Technologies/Hydrokinetic Power Barge | Open Energy Information  

Open Energy Info (EERE)

Power Barge Power Barge < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Hydrokinetic Power Barge.jpg Technology Profile Primary Organization Onsite Recovered Energy LP Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description The Vurbine proprietary technology design and assembly mounted on a horizontal shaft on a twin hull pontoon or barge CAT or SWATH combines reaction and impulse technologies which can efficiently harvest hydrokinetic energy from flowing water in a low impact application Technology Dimensions Device Testing Date Submitted 36:51.7 << Return to the MHK database homepage

142

Concentrating Solar Power Resources and Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Concentrating Solar Power Resources and Technologies Concentrating Solar Power Resources and Technologies Concentrating Solar Power Resources and Technologies October 7, 2013 - 11:47am Addthis Photo of a CSP dish glistening in the sun. Multiple solar mirrors reflect sunlight onto a collector. CSP systems concentrate solar heat onto a collector, which powers a turbine to generate electricity. This page provides a brief overview of concentrating solar power (CSP) technologies supplemented by specific information to apply CSP within the Federal sector. Overview Concentrating solar power technologies produce electricity by concentrating the sun's energy using reflective devices, such as troughs or mirror panels, to reflect sunlight onto a receiver. The resulting high-temperature heat is used to power a conventional turbine to produce electricity.

143

MHK Technologies/Jiangxia Tidal Power Station | Open Energy Information  

Open Energy Info (EERE)

Jiangxia Tidal Power Station Jiangxia Tidal Power Station < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Jiangxia Tidal Power Station.jpg Technology Profile Primary Organization China Guodian Corporation Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 9 Commercial Scale Production Application Technology Description There are 6 bulb turbine generator units operating in both ebb and flood tides with a total installed capacity up to 3 9 MW Technology Dimensions Technology Nameplate Capacity (MW) 3 9 Device Testing Date Submitted 14:15.7 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Jiangxia_Tidal_Power_Station&oldid=681601

144

MHK Technologies/Ocean Wave Energy Converter OWEC | Open Energy Information  

Open Energy Info (EERE)

Converter OWEC Converter OWEC < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Ocean Wave Energy Converter OWEC.jpg Technology Profile Primary Organization Ocean Wave Energy Company Technology Resource Click here Wave Technology Type Click here Point Absorber - Submerged Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description Neutrally suspended and positively buoyant modules are quick connected into open frame networks Submerged portions are stabilized by variable ballast buoyancy chambers and optional damper sheets situated at a relatively calm depth Frame members carry shaft components of linear rotary converters associated with large point absorber buoys Both directions of reciprocal wave motion i e vertical and horizontal motion directly drive components of counter rotating electrical generators Compared to standard generators wherein one is associated with upstroke and another of smaller proportion with downstroke this configuration increases relative speed with fewer parts Electromechanical loads are real time adjustable with respect to wave sensor web resulting in optimal energy conversion from near fully submerged wave following buoys Electrical conductors are series connected and further quick connected with those of other modules via upper frame members Through implementation of rep

145

Global ocean wind power sensitivity to surface layer stability  

E-Print Network (OSTI)

observa- tions, vertical wind speed profile estimation givenspeed differences compared to over the Gulf Stream, 80 m wind power is relatively smaller because of reduced verticalvertical momentum transfer over the Gulf Stream and North Atlantic Current results in sub-logarithmic wind profiles, reduced 80 10 m wind speed

Capps, Scott B; Zender, Charles S

2009-01-01T23:59:59.000Z

146

2014 Water Power Program Peer Review Compiled Presentations: Hydropower Technologies  

Energy.gov (U.S. Department of Energy (DOE))

This document contains the compiled hydropower technologies presentations from the U.S. Department of Energy 2014 Water Power Program Peer Review, held February 25-27, 2014.

147

Rapid Modeling of Power Electronics Thermal Management Technologies: Preprint  

SciTech Connect

Describes a method of rapidly evaluating trade-offs associated with alternative packaging configurations and thermal management technologies for power electronics packaging.

Bennion, K.; Kelly, K.

2009-08-01T23:59:59.000Z

148

Demonstration of Air-Power-Assist (APA) Engine Technology for...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Combustion and Direct Energy Recovery in Heavy Duty Application Demonstration of Air-Power-Assist (APA) Engine Technology for Clean Combustion and Direct Energy Recovery in...

149

Backup Power Cost of Ownership Analysis and Incumbent Technology...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of battery and diesel generator systems. The analysis compares three different backup power technologies (diesel, battery, and fuel cell) operating in similar circumstances in...

150

Sinomatech Wind Power Blade aka Sinoma Science Technology Wind...  

Open Energy Info (EERE)

Page Edit History Facebook icon Twitter icon Sinomatech Wind Power Blade aka Sinoma Science Technology Wind Turbine Blade Co Ltd Jump to: navigation, search Name: Sinomatech...

151

Vehicle Technologies Office Merit Review 2014: Power Electronics Packaging  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Power...

152

MHK Technologies/W2 POWER | Open Energy Information  

Open Energy Info (EERE)

POWER POWER < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage W2 POWER.jpg Technology Profile Primary Organization Pelagic Power AS Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description Point absorbers for waves pump water to a Peltor turbine But on the same platform we also combine this with offshore wind mills Mooring Configuration Slack mooring but allowed to sway 90 degree around prevailing wind direction All within a frame mooring with capasity of i e 10 units This is similar to the type of mooring used by modern type ferrfloting fish faring i Norway but in larger scale Optimum Marine/Riverline Conditions Offshore deep water with average significant wave hight 2 5 m and periode average 5 6 Sice we combine wave and offshore wind power we also desired good wind conditions

153

Guidance for Deployment of Mobile Technologies for Nuclear Power Plant  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Guidance for Deployment of Mobile Technologies for Nuclear Power Guidance for Deployment of Mobile Technologies for Nuclear Power Plant Field Workers Guidance for Deployment of Mobile Technologies for Nuclear Power Plant Field Workers This report is a guidance document prepared for the benefit of commercial nuclear power plants' (NPPs) supporting organizations and personnel who are considering or undertaking deployment of mobile technology for the purpose of improving human performance and plant status control (PSC) for field workers in an NPP setting. This document especially is directed at NPP business managers, Electric Power Research Institute, Institute of Nuclear Power Operations, and other non-Information Technology personnel. This information is not intended to replace basic project management practices or reiterate these processes, but is to support decision-making,

154

MHK Technologies/Oscillating Cascade Power System OCPS | Open Energy  

Open Energy Info (EERE)

Oscillating Cascade Power System OCPS Oscillating Cascade Power System OCPS < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Oscillating Cascade Power System OCPS.jpg Technology Profile Primary Organization New Energy Solutions LLC Technology Resource Click here Current Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description The OCPS generator consists of a cascade of vertical hydrofoils submerged in moving water This array of hydrofoils oscillates in antiphase at resonance flutter in a slow swimming motion resulting in maximum power transfer from flowing water to electricity The system efficiently converts the oscillating mechanical energy into a steady electric current A 60 overall water to wire efficiency was demonstrated at the proof of concept test and 65 or better overall efficiency is projected using the new engineering advances incorporated since the test in the commercial model

155

MHK Technologies/SurfPower | Open Energy Information  

Open Energy Info (EERE)

SurfPower SurfPower < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage SurfPower.jpg Technology Profile Primary Organization Seawood Designs Inc Project(s) where this technology is utilized *MHK Projects/Lake Huron Technology Resource Click here Wave Technology Type Click here Point Absorber Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The SurfPower is a constant pressure, fluid operated rectangular plate point absorber. The device is anchored to the seabed via hydraulic cylinders that operate as piston pumps. The upward and lateral motion of a pontoon forces fluid from the piston pump, at high pressure (200 bar), to a collection main on the seabed. This high pressure fluid is delivered to an onshore Pelton turbine that drives an asynchronous electrical generator.

156

MHK Technologies/Sea Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Plant Plant < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Technology Profile Technology Resource Click here Ocean Thermal Energy Conversion (OTEC) Technology Type Click here Closed-cycle Technology Description A stationary floating plant skims off a small percentage of the surface layer to use as the heat source. For the heat sink, the plant has a large diameter submerged pipe to pump up the heavier frigid water below. A small amount of heat is extracted from the warm water and a lesser amount is put into the cold water. The net difference in energy flow is turned into electricity and fresh water and/or fuels and other useful products. Electricity is transmitted to shore through an underwater cable.The warm surface ocean water is pumped to the boiler, which transfers heat to the working fluid, turning it into a high-pressure vapor. The turbine generator spins as the vapor rushes through it to reach the low-pressure condenser, which is cooled by the nearly freezing water brought up from the ocean depths. After condensing, the working fluid is sent back to the boiler to be reused and to repeat the cycle.

157

EIS-0140: Ocean State Power Project, Tennessee Gas Pipeline Company  

Energy.gov (U.S. Department of Energy (DOE))

The Federal Energy Regulatory Commission prepared this statement to evaluate potential impacts of construction and operation of a new natural gas-fired, combined-cycle power plant which would be located on a 40.6-acre parcel in the town of Burrillville, Rhode Island, as well as construction of a 10-mile pipeline to transport process and cooling water to the plant from the Blackstone River and a 7.5-mile pipeline to deliver No. 2 fuel oil to the site for emergency use when natural gas may not be available. The Economic Regulatory Administration adopted the EIS on 7/15/1988.

158

Solar electricity-a low power technology  

Science Journals Connector (OSTI)

The author examines the future potential of solar power with regard to its applications. He suggests that although the large size and small power output of solar cell electric systems are obstacles to high power usage, realistic low power applications can make a valuable contribution to world energy needs

L.B. Harris

1982-01-01T23:59:59.000Z

159

MHK Technologies/Float Wave Electric Power Station | Open Energy  

Open Energy Info (EERE)

Wave Electric Power Station Wave Electric Power Station < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Float Wave Electric Power Station.jpg Technology Profile Primary Organization Applied Technologies Company Ltd Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description The module of FWEPS is an oblong axisymmetrical capsule float which is located on the sea surface Inside the capsule there is a mechanical wave energy converter consisting of an oscillatory system and drive and an electric generator and energy accumulator Under the wave effect the capsule float and inner oscillatory system of the mechanical converter are in continuous oscillatory motion while the drive engaged with the system provides a continuous turn for the electric generator

160

EWEC 2006, Athens, The Anemos Wind Power Forecasting Platform Technology The Anemos Wind Power Forecasting Platform Technology -  

E-Print Network (OSTI)

EWEC 2006, Athens, The Anemos Wind Power Forecasting Platform Technology 1 The Anemos Wind Power a professional, flexible platform for operating wind power prediction models, laying the main focus on state models from all over Europe are able to work on this platform. Keywords: wind energy, wind power

Boyer, Edmond

Note: This page contains sample records for the topic "ocean power technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Aquantis Ocean Current Turbine Development Project Report  

SciTech Connect

The Aquantis Current Plane (C-Plane) technology developed by Dehlsen Associates, LLC (DA) and Aquantis, Inc. is an ocean current turbine designed to extract kinetic energy from ocean currents. The technology is capable of achieving competitively priced base-load, continuous, and reliable power generation from a source of renewable energy not before possible in this scale or form.

Fleming, Alex J.

2014-08-23T23:59:59.000Z

162

Vehicle Technologies Office: 2008 Advanced Power Electronics...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

More Documents & Publications Characterization and Development of Advanced Heat Transfer Technologies An integrated approach towards efficient, scalable, and low...

163

IEA-Technology Roadmap: Concentrating Solar Power | Open Energy Information  

Open Energy Info (EERE)

IEA-Technology Roadmap: Concentrating Solar Power IEA-Technology Roadmap: Concentrating Solar Power Jump to: navigation, search Tool Summary Name: IEA-Technology Roadmap: Concentrating Solar Power Agency/Company /Organization: International Energy Agency Sector: Energy Focus Area: Solar, - Concentrating Solar Power Topics: Implementation, Pathways analysis Resource Type: Guide/manual Website: www.iea.org/papers/2010/csp_roadmap.pdf Cost: Free IEA-Technology Roadmap: Concentrating Solar Power Screenshot References: IEA-CSP Roadmap[1] "This roadmap identifies technology, economy and policy goals and milestones needed to support the development and deployment of CSP, as well as ongoing advanced research in CSF. It also sets out the need for governments to implement strong, balanced policies that favour rapid

164

The Industrialization of Thermoelectric Power Generation Technology...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

system requirements for high volume power generation with thermoelectrics such desirable thermoelectric properties, low material toxicity, interface compatibility, cost...

165

MHK Technologies/Gyroscopic wave power generation system | Open Energy  

Open Energy Info (EERE)

Gyroscopic wave power generation system Gyroscopic wave power generation system < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Technology Profile Primary Organization Gyrodynamics Corporation Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description This gyroscopic wave power generation system is a pure rotational mechanical system that does not use conventional air turbines and is housed on a unique floating platform float In particular its outstanding feature is that it utilizes the gyroscopic spinning effect A motor is used to turn a 1 meter diameter steel disc flywheel inside the apparatus and when the rolling action of waves against the float tilts it at an angle the gyroscopic effect causes the disc to rotate longitudinally This energy turns a generator producing electricity

166

MHK Technologies/PowerBuoy | Open Energy Information  

Open Energy Info (EERE)

PowerBuoy PowerBuoy < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage PowerBuoy.jpg Technology Profile Primary Organization Oregon Wave Energy Partners LLC Project(s) where this technology is utilized *MHK Projects/Coos Bay OPT Wave Park *MHK Projects/Cornwall Wave Hub *MHK Projects/Griffin Project *MHK Projects/NJBPU 1 5 MW Demonstration Program *MHK Projects/Orkney *MHK Projects/Reedsport OPT Wave Park *MHK Projects/Reedsport OPT Wave Park Expanded Project *MHK Projects/Santona Wave Energy Park *MHK Projects/US Navy Wave Energy Technology WET Program at Marine Corps Base Hawaii MCBH Technology Resource Click here Wave Technology Type Click here Point Absorber Technology Readiness Level Click here TRL 9: Commercial-Scale Production / Application

167

Backup Power Cost of Ownership Analysis and Incumbent Technology Comparison  

SciTech Connect

This cost of ownership analysis identifies the factors impacting the value proposition for fuel cell backup power and presents the estimated annualized cost of ownership for fuel cell backup power systems compared with the incumbent technologies of battery and diesel generator systems. The analysis compares three different backup power technologies (diesel, battery, and fuel cell) operating in similar circumstances in four run time scenarios (8, 52, 72, and 176 hours).

Kurtz, J.; Saur, G.; Sprik, S.; Ainscough, C.

2014-09-01T23:59:59.000Z

168

Management of Bonneville Power Administration's Information Technology Program, IG-0861  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Management of Bonneville Power Management of Bonneville Power Administration's Information Technology Program DOE/IG-0861 March 2012 U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Department of Energy Washington, DC 20585 March 26, 2012 MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman Inspector General SUBJECT: INFORMATION: Audit Report on "Management of Bonneville Power Administration's Information Technology Program" INTRODUCTION AND OBJECTIVE The Bonneville Power Administration provides about 30 percent of wholesale electric power to regional utilities that service homes, hospitals, financial institutions, commercial entities and military installations in the Pacific Northwest. Bonneville makes extensive use of various

169

PNNL's Community Science & Technology Seminar Series Nuclear Power in a  

E-Print Network (OSTI)

PNNL's Community Science & Technology Seminar Series Nuclear Power in a Post-Fukushima World generated by nuclear power. What will the U.S. energy portfolio look like, and how will the energy demand is focused on longer- term operation of nuclear power plants, including measurements to detect

170

A Technology Overview of the PowerChip Development Program  

E-Print Network (OSTI)

The PowerChip research program is developing technologies to radically improve the size, integration, and performance of power electronics operating at up to grid-scale voltages (e.g., up to 200V) and low-to-moderate power ...

Araghchini, Mohammad

171

World Power Technologies | Open Energy Information  

Open Energy Info (EERE)

NJ Information About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL National Wind Technology Center...

172

Wind-Generated Power Input to the Deep Ocean: An Estimate Using a 1/10 General Circulation Model  

Science Journals Connector (OSTI)

Recent studies on the wind-generated power input to the geostrophic and nongeostrophic ocean circulation components have used expressions derived from Ekman dynamics. The present work extends and unifies previous studies by deriving an expression ...

Jin-Song von Storch; Hideharu Sasaki; Jochem Marotzke

2007-03-01T23:59:59.000Z

173

Effects of thermal pollution on the soft-bottoms surrounding a power station in the Canary Islands (NE Atlantic ocean)  

Science Journals Connector (OSTI)

The spatial and temporal effects of hot seawater (6070C) from a power station on nearby soft-bottom communities were ... coast of Tenerife, Canary Islands, NE Atlantic Ocean). The samples were taken during summ...

Rodrigo Riera; Jorge Nez; Daniel Martn

2011-12-01T23:59:59.000Z

174

Novel Dry Cooling Technology for Power Plants  

Energy.gov (U.S. Department of Energy (DOE))

This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 2325, 2013 near Phoenix, Arizona.

175

Vehicle Technologies Office: 2011 Advanced Power Electronics...  

Energy Savers (EERE)

2012 Advanced Power Electronics and Electric Motors R&D Annual Progress Report Electro-thermal-mechanical Simulation and Reliability for Plug-in Vehicle Converters and Inverters...

176

Hybrid Combustion-Gasification Chemical Looping Coal Power Technology Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Gasification Gasification Technologies contacts Gary J. stiegel Gasification Technology Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-4499 gary.stiegel@netl.doe.gov Ronald Breault Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4486 ronald.breault@netl.doe.gov Herbert E. andrus, Jr. Principal Investigator ALSTOM Power 2000 Day Hill Rd. Windsor, CT 06095 860-285-4770 herbert.e.andrus@power.alstom.com Hybrid Combustion-GasifiCation CHemiCal loopinG Coal power teCHnoloGy development Description Gasification technologies can provide a stable, affordable energy supply for the nation, while also providing high efficiencies and near zero pollutants. With coal

177

The impacts of technological learning on the optimum technology mix: simulations for the Indian power sector  

Science Journals Connector (OSTI)

For the investigation of the optimum technology mix of any country, which is clearly an issue of dynamic nature, technological learning and economies of scale play a significant role. Hence, in this paper's long term planning exercise for the Indian power sector (2000-2025), our simulation analysis specifically includes the impacts of technological learning on the optimal inter-temporal choice of power generation technologies. Based on dynamic linear programming methods and MARKAL, a software tool for power generation capacity planning, the most significant result of our analysis is that among various renewable energy technologies, technological learning will favour wind and small hydropower generation, while pressurised fluidised bed combustion-based coal power plants appear to be the favourite conventional fossil fuel-based technology in India.

Jyotirmay Mathur; Narendra Kumar Bansal; Hermann-Joseh Wagner

2004-01-01T23:59:59.000Z

178

526 IEEE JOURNAL OF OCEANIC ENGINEERING, VOL. 26, NO. 4, OCTOBER 2001 Power Systems for Autonomous Underwater Vehicles  

E-Print Network (OSTI)

526 IEEE JOURNAL OF OCEANIC ENGINEERING, VOL. 26, NO. 4, OCTOBER 2001 Power Systems for Autonomous will be required. We first examine the issues related to power systems for the current and future generations Abstract--In this paper, we examine the issues involved in de- signing battery systems and power

Singh, Hanumant

179

Practical limits to the power that can be captured from ocean waves by oscillating bodies  

Science Journals Connector (OSTI)

Abstract The maximum average power that can be captured from ocean waves by an idealised and unconstrained oscillating body depends on two hydrodynamic properties: the wave radiation pattern and the radiation resistance (also called added damping or wave damping coefficient). These properties depend on the body geometry and the mode of oscillation. For such unconstrained motion the limits of absorbed power are well described. Power bounds due to physical restrictions like limited volume stroke or machinery stroke length has also received some attention, but has not been sufficiently explored. This paper looks at such physical bounds to the achievable absorbed power. It is done by physical reasoning leading to analytical expressions for the upper bounds, treating heave, surge and pitch motions separately. It is shown how size, oscillation mode and volume stroke of the oscillating body inherently influence the absorption ability. Furthermore, implications for the practical and economical design of wave energy are identified and discussed.

Jrgen Hals Todalshaug

2013-01-01T23:59:59.000Z

180

MHK Technologies/PowerGin | Open Energy Information  

Open Energy Info (EERE)

PowerGin PowerGin < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage PowerGin.jpg Technology Profile Primary Organization Kinetic Wave Power Technology Resource Click here Wave Technology Type Click here Overtopping Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The energy conversion rate of the PowerGin is 20 30 The PowerGin makes use of both vertical and horizontal energy which allows the device to operate effectively in low wave states Buckets are mounted in a dense spiral pattern around the perimeter similar to hydro electric turbine blades which provide a high surface area to catch wave energy As the buckets on the ramp side of the rotor fill with wave water the rotors begin to turn Water is emptied out of the bucket instantaneously when it is submerged under the water by a patented gravity driven flap on the bottom The flap slams shut in one direction and opens in the other The two rotors rotate in opposite directions which maintain balance and continuous rotary power flow

Note: This page contains sample records for the topic "ocean power technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

The Industrialization of Thermoelectric Power Generation Technology  

Energy.gov (U.S. Department of Energy (DOE))

Presents module and system requirements for high volume power generation with thermoelectrics such desirable thermoelectric properties, low material toxicity, interface compatibility, cost scalability, raw material availability and module reliability

182

Application of IGCC Technology to Power Generation  

Science Journals Connector (OSTI)

Improved efficiency and low cost are two of the objectives in the development and commercialization of power generation cycles. With the advent of todays commercial advanced gas turbines and high-temperature gas

R. E. Ayala

1998-01-01T23:59:59.000Z

183

OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC ENVIRONMENTAL ASSESSMENT  

E-Print Network (OSTI)

Ocean Thermal Energy Conversion (OTEC) Draft Programmaticof ocean thermal energy conversion technology. U.S. Depart~on Ocean TherUial Energy Conversion, June 18, 1979. Ocean

Sands, M.Dale

2013-01-01T23:59:59.000Z

184

Combined Heat & Power Technology Overview and Federal Sector Deployment  

Energy.gov (U.S. Department of Energy (DOE))

Presentation covers the Combined Heat & Power Technology Overview and Federal Sector Deployment from Oakridge National Laboratory. The presentation is from the FUPWG Spring Meeting, held on May 22, 2013 in San Francisco, California.

185

High-power LED Technology and Solid State Lighting  

Science Journals Connector (OSTI)

The rapid adoption of LEDs in general illumination is fueled by high-power phosphor-conversion and direct color blue and red LED technology. Over the last several years...

Goetz, Werner

186

Coal Technology for Power, Liquid Fuels, and Chemicals  

Science Journals Connector (OSTI)

Several large demonstrations of FBC technology for electric power generation have proven ... -MW(e) atmospheric pressure circulating fluidized-bed boiler at the Colorado-Ute Electric Associations...21].

Burtron H. Davis; James Hower

2012-01-01T23:59:59.000Z

187

Energy Department Announces New Concentrating Solar Power Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Concentrating Solar Power New Concentrating Solar Power Technology Investments to American Industry, Universities Energy Department Announces New Concentrating Solar Power Technology Investments to American Industry, Universities June 13, 2012 - 2:28pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - Building off investments in innovative solar photovoltaic technologies announced at the SunShot Grand Challenge Summit in Denver, Colorado earlier today, the Energy Department announced new investments for 21 total projects to further advance cutting-edge concentrating solar power technologies (CSP). The awards span 13 states for a total of $56 million over three years, subject to congressional appropriations. The research projects, conducted in partnership with private industry, national

188

Zhiyu Jiang, Department of Marine Technology & Centre for Ships and Ocean Structures Dynamic response of wind turbines in fault and  

E-Print Network (OSTI)

response of wind turbines in fault and shutdown conditions Zhiyu Jiang Deptartment of Marine Technology://www.newscientist.com/blogs/onepercent/2011/12/why-did-a-wind-turbine-self-co.html #12;3 Zhiyu Jiang, Department of Marine Technology & Centre & Centre for Ships and Ocean Structures Control and protection of wind turbines Emergency shutdown Pitch

Nørvåg, Kjetil

189

Distribution of oceanic 137Cs from the Fukushima Dai-ichi Nuclear Power Plant simulated numerically by a regional ocean model  

Science Journals Connector (OSTI)

Radioactive materials were released to the environment from the Fukushima Dai-ichi Nuclear Power Plant as a result of the reactor accident after the Tohoku earthquake and tsunami of 11 March 2011. The measured 137Cs concentration in a seawater sample near the Fukushima Dai-ichi Nuclear Power Plant site reached 68kBqL?1 (6.8נ104BqL?1) on 6 April. The two major likely pathways from the accident site to the ocean existed: direct release of high radioactive liquid wastes to the ocean and the deposition of airborne radioactivity to the ocean surface. By analysis of the 131I/137Cs activity ratio, we determined that direct release from the site contributed more to the measured 137Cs concentration than atmospheric deposition did. We then used a regional ocean model to simulate the 137Cs concentrations resulting from the direct release to the ocean off Fukushima and found that from March 26 to the end of May the total amount of 137Cs directly released was 3.50.7PBq ((3.50.7)נ1015Bq). The simulated temporal change in 137Cs concentrations near the Fukushima Daini Nuclear Power Plant site agreed well with observations. Our simulation results showed that (1) the released 137Cs advected southward along the coast during the simulation period; (2) the eastward-flowing Kuroshio and its extension transported 137C during May 2011; and (3) 137Cs concentrations decreased to less than 10BqL?1 by the end of May 2011 in the whole simulation domain as a result of oceanic advection and diffusion. We compared the total amount and concentration of 137Cs released from the Fukushima Dai-ichi reactors to the ocean with the 137Cs released to the ocean by global fallout. Even though the measured 137Cs concentration from the Fukushima accident was the highest recorded, the total released amount of 137Cs was not very large. Therefore, the effect of 137Cs released from the Fukushima Dai-ichi reactors on concentration in the whole North Pacific was smaller than that of past release events such as global fallout, and the amount of 137Cs expected to reach other oceanic basins is negligible comparing with the past radioactive input.

Daisuke Tsumune; Takaki Tsubono; Michio Aoyama; Katsumi Hirose

2012-01-01T23:59:59.000Z

190

Clean coal technologies in electric power generation: a brief overview  

SciTech Connect

The paper talks about the future clean coal technologies in electric power generation, including pulverized coal (e.g., advanced supercritical and ultra-supercritical cycles and fluidized-bed combustion), integrated gasification combined cycle (IGCC), and CO{sub 2} capture technologies. 6 refs., 2 tabs.

Janos Beer; Karen Obenshain [Massachusetts Institute of Technology (MIT), MA (United States)

2006-07-15T23:59:59.000Z

191

Wind and Water Power Technologies FY'14 Budget At-a-Glance |...  

Energy Savers (EERE)

Wind and Water Power Technologies FY'14 Budget At-a-Glance Wind and Water Power Technologies FY'14 Budget At-a-Glance Wind and Water Power Technologies FY'14 Budget At-a-Glance, a...

192

Backup Power Cost of Ownership Analysis and Incumbent Technology Comparison  

Energy.gov (U.S. Department of Energy (DOE))

This cost of ownership analysis identifies the factors impacting the value proposition for fuel cell backup power and presents the estimated annualized cost of ownership for fuel cell backup power systems compared with the incumbent technologies of battery and diesel generator systems.

193

High Power Electrodynamics (HPE): Accelerator Operations and Technology,  

NLE Websites -- All DOE Office Websites (Extended Search)

CONTACTS CONTACTS Group Leader Bruce Carlsten Deputy Group Leader Ellen Guenette Administrator Josephine (Jo) Torres High-Power Electrodynamics (HPE) The High-Power Electrodynamics (AOT-HPE) Group applies accelerator and beam technologies to national-security-directed energy missions. AOT-HPE has three programmatic thrusts: free-electron lasers (FELs), high-power microwaves (HPM), and compact radiography. To maintain a vigorous and robust technical base for addressing DOE and DoD needs, the group's project portfolio is balanced between exploratory research, infrastructure development, and programmatic deliverables for sponsors. Funding is roughly 25% from the Lab's Directed Research and Development Program, 65% from DoD, and 10% from DOE. Technology Focus Areas AOT-HPE is the Laboratory's main vehicle for applying accelerator-based technologies to directed-energy mission needs. The group recognizes that many directed-energy missions are enabled by compact high-brightness electron accelerators and mm-wave and THz technologies.

194

Argonne Lab's Breakthrough Cathode Technology Powers Electric Vehicles of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Argonne Lab's Breakthrough Cathode Technology Powers Electric Argonne Lab's Breakthrough Cathode Technology Powers Electric Vehicles of Today Argonne Lab's Breakthrough Cathode Technology Powers Electric Vehicles of Today February 14, 2011 - 6:15pm Addthis Jeff Chamberlain Speaks at Brookings Battery Forum | Photo Courtesy of Audra Capas, 5StarPR Jeff Chamberlain Speaks at Brookings Battery Forum | Photo Courtesy of Audra Capas, 5StarPR David Moore Presidential Management Fellow, Office of Energy Efficiency & Renewable Energy The Department of Energy has been investing in vehicle electrification for more than a decade, with results that speak for themselves: The battery technologies in almost all of the electric vehicles and hybrids on the road today were developed with support from the Department. As you may have read

195

Inspection technologies protect and enhance materials for power plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Inspection technologies protect and enhance materials for power plants Inspection technologies protect and enhance materials for power plants Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library About Nuclear Energy Nuclear Reactors Designed by Argonne Argonne's Nuclear Science and Technology Legacy Opportunities within NE Division Visit Argonne Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Celebrating the 70th Anniversary of Chicago Pile 1 (CP-1) Argonne OutLoud on Nuclear Energy Argonne Energy Showcase 2012 Highlights Bookmark and Share Inspection technologies protect and enhance materials for power plants A researcher makes thermal images of ceramic defects THERMAL IMAGING - Julian Benz uses Argonne's thermal imaging system

196

Cape Peninsula University of Technology - Centre for Distributed Power and  

Open Energy Info (EERE)

Peninsula University of Technology - Centre for Distributed Power and Peninsula University of Technology - Centre for Distributed Power and Electronic Systems Jump to: navigation, search Name Cape Peninsula University of Technology Address Symphony way, Bellville Place Cape Town, South Africa Zip 7535 Region Western cape Number of employees 11-50 Year founded 2004 Phone number +27219596563 Website http://www.cput.ac.za References Dr Atanda Raji[1] Prof. Kahn MTE[2] Dr Marco Adonis[3] Dr Wilfred Fritz[4] LinkedIn Connections This article is a stub. You can help OpenEI by expanding it. Cape Peninsula University of Technology - Centre for Distributed Power and Electronic Systems is a research institution based in Cape Town, South Africa. References ↑ "Dr Atanda Raji" ↑ "Prof. Kahn MTE" ↑ "Dr Marco Adonis"

197

MHK Technologies/Pelagic Power 1 | Open Energy Information  

Open Energy Info (EERE)

1 1 < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Pelagic Power 1.jpg Technology Profile Primary Organization Pelagic Power AS Technology Resource Click here Wave Technology Type Click here Point Absorber - Submerged Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The technology of Pelagic Power has on a simple working principle based on a wave pump In its simplest form the wave pump consists of thre components a linear piston pump a water anchor and a surface bouy Pumps that are afloat 20 40 meters under the surface of the sea are key elements in Pelagic Power s wave energy concept In a submerged position the pumps are not at risk of being exposed to storm waves Within the new installations lie either so called absorbers or buoys upon the surface These devices gather energy from the waves and send it to the pumps located further down The pumps movement occurs between the absorber and a water anchor placed on each pump These pumps are called pelagic wave pumps and are not anchored to the seabed

198

Water Power Technologies Office FY 2015 Budget At-A-Glance  

Energy Savers (EERE)

Water Power Technologies Office leads efforts in developing innovative water power technologies to help the United States meet its growing energy demand. The Office is pioneering...

199

Innovative Energy Storage Technologies Enabling More Renewable Power |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Storage Technologies Enabling More Renewable Energy Storage Technologies Enabling More Renewable Power Innovative Energy Storage Technologies Enabling More Renewable Power November 15, 2011 - 3:45pm Addthis The PNM Prosperity Energy Storage Project is the nation’s first combined solar generation and storage facility to be fully integrated into a utility’s power grid. Pictured above are the facility's solar panels, including an aerial view in the upper left. | Image courtesy of PNM The PNM Prosperity Energy Storage Project is the nation's first combined solar generation and storage facility to be fully integrated into a utility's power grid. Pictured above are the facility's solar panels, including an aerial view in the upper left. | Image courtesy of PNM Dr. Imre Gyuk Dr. Imre Gyuk Energy Storage Program Manager, Office of Electricity Delivery and Energy

200

Poster presented at the OCEANS'11 Conference, September, 2011 Seeking Optimal Geometry of a Heaving Body for Improved Wave Power  

E-Print Network (OSTI)

1 Poster presented at the OCEANS'11 Conference, September, 2011 Seeking Optimal Geometry of a Heaving Body for Improved Wave Power Absorption Efficiency Rachael Hager, Nelson Fernandez and Michelle H power absorption efficiency with various shaped bodies. The goal is to optimize the geometry of a two

Note: This page contains sample records for the topic "ocean power technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

New and Underutilized Technology: Computer Power Management Systems |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Computer Power Management Systems Computer Power Management Systems New and Underutilized Technology: Computer Power Management Systems October 7, 2013 - 9:08am Addthis The following information outlines key deployment considerations for computer power management systems within the Federal sector. Benefits Computer power management systems include network-based software that manages computer power consumption by automatically putting them in standby, hibernation, or other low energy consuming state without interfering with user productivity or IT functions. Application Computer power management systems are applicable in most building categories with high computer counts. Key Factors for Deployment Life-cycle cost effectiveness studies are recommended prior to deployment. Ranking Criteria Federal energy savings, cost-effectiveness, and probability of success are

202

MHK Technologies/Vert Network Power Station | Open Energy Information  

Open Energy Info (EERE)

Network Power Station Network Power Station < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Vert Network Power Station.jpg Technology Profile Primary Organization Vert Labs LLP Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description Vert Network is 1st cost effective wave power system that brings profit with the current level of pricing for renewable electricity The technology of Vert Network is based on an array of plastic floats that produce compressed air from the torque that is created from levers attached to the floats The compressed air is then sent to the shore by rubber pipe which is significantly cheaper and easier to maintain than underwater copper cables Consequently the generation is done on land using a standard turbine generator rather than requiring highly bespoke and overly robust generation devices which have to be specially designed for the marine environment and require specialist skills to maintain The marine based device is therefore made entirely from plastic carbon fibre and rubber so all the components are made from standard materials using mouldings and can be produced very cheaply VERT Labs estimates show that it can provide electricity at about 0 10 kWh When VERT Labs reache

203

Introduction: Political and Technological Visions In Chile, I know that I am making the maximum effort towards the devolution of power. The  

E-Print Network (OSTI)

effort towards the devolution of power. The government made their revolution about it; I find it good, one political and one technological. The first was an attempt to implement socialist change peacefully by the Andean cordillera on one side and the Pacific Ocean on the other (figure I.1). In 1970 Chilean voters

Jackson, Daniel

204

Pulsed Power Technology at Sandia National Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

News and Reviews News and Reviews Pulsed Power in the News Nuclear fusion simulation shows high-gain energy output (March 2012) Rapid-fire pulse brings Sandia Z method closer to goal of high-yield fusion reactor (April 2007) Ice created in nanoseconds by Sandia's Z machine (March 2007) Z-Machine Shockwaves Melt Diamond (November 2006) Phase diagram of water revised by Sandia researchers (October 2006) Z fires objects faster than Earth moves through space (June 6, 2005) Sandia imagists view imploding wire arrays on Z (November 10, 2004) Z's $61.7 million refurbishment to advance capabilities (October 21, 2004) Z produces fusion neutrons (April 7, 2003) Former shock physics manager (Asay) elected to NAE (February 20, 2003) Z-Beamlet image shows Z evenly compresses pellet (August 30, 2001)

205

Fuel cycle comparison of distributed power generation technologies.  

SciTech Connect

The fuel-cycle energy use and greenhouse gas (GHG) emissions associated with the application of fuel cells to distributed power generation were evaluated and compared with the combustion technologies of microturbines and internal combustion engines, as well as the various technologies associated with grid-electricity generation in the United States and California. The results were primarily impacted by the net electrical efficiency of the power generation technologies and the type of employed fuels. The energy use and GHG emissions associated with the electric power generation represented the majority of the total energy use of the fuel cycle and emissions for all generation pathways. Fuel cell technologies exhibited lower GHG emissions than those associated with the U.S. grid electricity and other combustion technologies. The higher-efficiency fuel cells, such as the solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC), exhibited lower energy requirements than those for combustion generators. The dependence of all natural-gas-based technologies on petroleum oil was lower than that of internal combustion engines using petroleum fuels. Most fuel cell technologies approaching or exceeding the DOE target efficiency of 40% offered significant reduction in energy use and GHG emissions.

Elgowainy, A.; Wang, M. Q.; Energy Systems

2008-12-08T23:59:59.000Z

206

Solution nebulization into a low-power argon microwave-induced plasma for atomic emission spectrometry: study of synthetic ocean water  

Science Journals Connector (OSTI)

Solution nebulization into a low-power argon microwave-induced plasma for atomic emission spectrometry: study of synthetic ocean water ...

Kin C. Ng; Wei Lung Shen

1986-08-01T23:59:59.000Z

207

Beijing PowerU Technology | Open Energy Information  

Open Energy Info (EERE)

Beijing PowerU Technology Beijing PowerU Technology Jump to: navigation, search Name Beijing PowerU Technology Place Beijing, Beijing Municipality, China Zip 100089 Sector Buildings, Efficiency Product An energy efficiency service company provide energy savings for large commercial and public buildings such as airport, hospitals and factories. Coordinates 39.90601°, 116.387909° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.90601,"lon":116.387909,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

208

Kinmac Solar formerly Lucky Power Technology Co Ltd | Open Energy  

Open Energy Info (EERE)

Kinmac Solar formerly Lucky Power Technology Co Ltd Kinmac Solar formerly Lucky Power Technology Co Ltd Jump to: navigation, search Name Kinmac Solar (formerly Lucky Power Technology Co Ltd) Place Hsinchu, Taiwan Sector Solar Product Taiwan-based manufacturer of solar modules, chargers, inverters, batteries and related products. Coordinates 24.69389°, 121.148064° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":24.69389,"lon":121.148064,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

209

Magnet Technology for Power Converters: Nanocomposite Magnet Technology for High Frequency MW-Scale Power Converters  

SciTech Connect

Solar ADEPT Project: CMU is developing a new nanoscale magnetic material that will reduce the size, weight, and cost of utility-scale PV solar power conversion systems that connect directly to the grid. Power converters are required to turn the energy that solar power systems create into useable energy for the grid. The power conversion systems made with CMUs nanoscale magnetic material have the potential to be 150 times lighter and significantly smaller than conventional power conversion systems that produce similar amounts of power.

None

2012-02-27T23:59:59.000Z

210

Important technology considerations for space nuclear power systems  

SciTech Connect

This paper discusses the technology considerations that guide the development of space nuclear power sources (NPS) by the Department of Energy (DOE) to meet a wide variety of applications. The Department and its predecessor agencies have been developing NPS since the 1950s and producing NPS for spacecraft for the National Aeronautics and Space Administration (NASA) and the Department of Defense (DOD) since the early 1960s. No one nuclear power type, isotope or reactor, will suffice over the entire range of mission power required. Nor is one type of power conversion system, be it static or dynamic, the optimum choice of all space nuclear power system applications. There is a need for DOE, in partnership with its users, NASA and DOD, to develop a variety of types of space nuclear power sources -- isotope-static, isotope-dynamic, reactor-static, and reactor-dynamic -- to meet mission requirements well into the next century. 2 figs., 1 tab.

Kuspa, J.P.; Wahlquist, E.J.; Bitz, D.A.

1988-03-01T23:59:59.000Z

211

Space power technology into the 21st century  

SciTech Connect

This paper discusses the space power systems of the early 21st century. The focus is on those capabilities which are anticipated to evolve from today's state-of-the-art and the technology development programs presently in place or planned for the remainder of the century. The power system technologies considered include solar thermal, nuclear, radioisotope, photovoltaic, thermionic, thermoelectric, and dynamic conversion systems such as the Brayton and Stirling cycles. Energy storage technologies considered include nickel hydrogen biopolar batteries, advanced high energy rechargeable batteries, regenerative fuel cells, and advanced primary batteries. The present state-of-the-art of these space power and energy technologies is discussed along with their projections, trends and goals. A speculative future mission model is postulated which includes manned orbiting space stations, manned lunar bases, unmanned earth orbital and interplanetary spacecraft, manned interplanetary missions, military applications, and earth to space and space to space transportation systems. The various space power/energy system technologies anticipated to be operational by the early 21st century are matched to these missions.

Faymon, K.A.; Fordyce, J.S.

1984-01-01T23:59:59.000Z

212

A methodology for evaluating ``new`` technologies in nuclear power plants  

SciTech Connect

As obsolescence and spare parts issues drive nuclear power plants to upgrade with new technology (such as optical fiber communication systems), the ability of the new technology to withstand stressors present where it is installed needs to be determined. In particular, new standards may be required to address qualification criteria and their application to the nuclear power plants of tomorrow. This paper discusses the failure modes and age-related degradation mechanisms of fiber optic communication systems, and suggests a methodology for identifying when accelerated aging should be performed during qualification testing.

Korsah, K.; Clark, R.L.; Holcomb, D.E.

1994-06-01T23:59:59.000Z

213

Columbia Power Technologies, Inc. Deploys its Direct Drive Wave Energy Buoy  

Office of Energy Efficiency and Renewable Energy (EERE)

Columbia Power Technologies, Inc. is working to advance their wave energy buoy to commercial readiness.

214

An update on the wind power input to the surface geostrophic flow of the World Ocean  

Science Journals Connector (OSTI)

The rate of working of the surface wind stress on the geostrophic component of the surface flow of the World Ocean is revisited. The global mean is found to be about 0.85 to 1.0TW. Consistent with previous estimates, about 0.75 to 0.9TW comes from outside the equatorial region (poleward of 3 ? ). The rate of forcing of fluctuating currents integrates to only about 0.02TW when the equatorial region is included, or close to zero over the extratropical region. Uncertainty in wind power input due to uncertainty in the surface currents is negligible. Results from several different wind stress products are compared, suggesting that uncertainty in wind stress is the dominant source of error. Ignoring the surface currents influence upon wind stress leads to a systematic bias in net wind power input; an overestimate of about 10 to 30%. (In previous estimates this positive bias was offset by too weak winds.) Small-scale, zonally elongated structures in the wind power input were found, but have both positive and negative contributions and lead to little net wind power input.

Robert B. Scott; Yongsheng Xu

2009-01-01T23:59:59.000Z

215

Innovative applications of technology for nuclear power plant productivity improvements  

SciTech Connect

The nuclear power industry in several countries is concerned about the ability to maintain high plant performance levels due to aging and obsolescence, knowledge drain, fewer plant staff, and new requirements and commitments. Current plant operations are labor-intensive due to the vast number of operational and support activities required by commonly used technology in most plants. These concerns increase as plants extend their operating life. In addition, there is the goal to further improve performance while reducing human errors and increasingly focus on reducing operations and maintenance costs. New plants are expected to perform more productively than current plants. In order to achieve and increase high productivity, it is necessary to look at innovative applications of modern technologies and new concepts of operation. The Electric Power Research Inst. is exploring and demonstrating modern technologies that enable cost-effectively maintaining current performance levels and shifts to even higher performance levels, as well as provide tools for high performance in new plants. Several modern technologies being explored can provide multiple benefits for a wide range of applications. Examples of these technologies include simulation, visualization, automation, human cognitive engineering, and information and communications technologies. Some applications using modern technologies are described. (authors)

Naser, J. A. [Electric Power Research Inst., 3420 Hillview Avenue, Palo Alto, CA 94303 (United States)

2012-07-01T23:59:59.000Z

216

Modeling The Potential For Thermal Concentrating Solar Power Technologies  

SciTech Connect

In this paper we explore the tradeoffs between thermal storage capacity, cost, and other system parameters in order to examine possible evolutionary pathways for thermal Concen-trating Solar Power (CSP) technologies. A representation of CSP performance that is suit-able for incorporation into economic modeling tools is developed. We find that, as the fraction of electricity supplied by CSP technologies grows, the application of thermal CSP technologies might progress from current hybrid plants, to plants with a modest amount of thermal storage, and potentially even to plants with sufficient thermal storage to provide base load generation capacity. The representation of CSP cost and performance developed here was implemented in the ObjECTS MiniCAM long-term integrated assessment model. Datasets for global solar resource characteristics as applied to CSP technology were also developed. The regional and global potential of thermal CSP technologies is examined.

Zhang, Yabei; Smith, Steven J.; Kyle, G. Page; Stackhouse, Jr., Paul W.

2010-10-25T23:59:59.000Z

217

Surface Analysis and Computer Technology Optics and Power Supplies  

E-Print Network (OSTI)

Surface Analysis and Computer Technology Optics and Power Supplies ErLEED User Manual 1.2 #12;All for this manual: 78000144. SPECS GmbH Voltastr. 5 13355 Berlin Germany phone +49 30 467824-0, fax +49 30 4642083 determination of thin films and of clean and adsorbate covered crystal surfaces. In addition, LEED is used

Gellman, Andrew J.

218

Climate VISION: Private Sector Initiatives: Electric Power - Technology  

Office of Scientific and Technical Information (OSTI)

Technology Pathways Technology Pathways Industry Vision & Roadmaps The following documents are available for download as Adobe PDF documents. Download Acrobat Reader A Climate Contingency Roadmap for the U.S. Electricity Sector: Phase II (PDF 192 KB) This roadmap examines the role of the electric sector in climate change and the sectoral impacts of alternative climate policy designs. The document explores the capabilities and costs of emissions reduction options and the influence of company-specific circumstances on the design of cost-effective response strategies. It also investigates mechanisms to create incentives for support of advanced climate-related technology research, development, and demonstration. Electric Power Research Institute Roadmap The Electric Power Research Institute is initiating an effort to develop an

219

Beijing Four Seasons Solar Power Technology Co Ltd | Open Energy  

Open Energy Info (EERE)

Beijing Four Seasons Solar Power Technology Co Ltd Beijing Four Seasons Solar Power Technology Co Ltd Place Beijing, Beijing Municipality, China Sector Solar Product Company involved in selling solar power equipment in China. Coordinates 39.90601°, 116.387909° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.90601,"lon":116.387909,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

220

Baoding Tianwei Wind Power Technology Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Baoding Tianwei Wind Power Technology Co Ltd Baoding Tianwei Wind Power Technology Co Ltd Place Baoding, Hebei Province, China Zip 71051 Sector Wind energy Product A subsidary company of Tianwei Baobian, focuses on developing, designing, producing and selling wind turbines and core components of wind power systems. Coordinates 38.855011°, 115.480217° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.855011,"lon":115.480217,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "ocean power technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Water Power for a Clean Energy Future (Fact Sheet)  

SciTech Connect

Water power technologies harness energy from rivers and oceans to generate electricity for the nation's homes and businesses, and can help the United States meet its pressing energy, environmental, and economic challenges. Water power technologies; fall into two broad categories: conventional hydropower and marine and hydrokinetic technologies. Conventional hydropower uses dams or impoundments to store river water in a reservoir. Marine and hydrokinetic technologies capture energy from waves, tides, ocean currents, free-flowing rivers, streams, and ocean thermal gradients.

Not Available

2010-07-01T23:59:59.000Z

222

NREL: Advanced Power Electronics - Modeling of Cooling Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeling of Cooling Technologies Improves Performance Modeling of Cooling Technologies Improves Performance Thermal modeling image of spray cooling of inverter chip surface shows the liquid breaking up into fine droplets that impinge on the liquid wall, which enhances the spacial uniformity of heat removal. Modeling Cooling Technologies-Spray Cooling The NREL advanced power electronics team is modeling cooling technologies that would enhance performance of the inverters and motors in hybrid-electric and fuel cell vehicles. The team is modeling two-phase spray cooling, jet impingement, and mini- and micro-channel cooling, and has successfully used Fluent software to show a good comparison between numerical models and published experimental data. Currently, the team is conducting modeling to simulate real life conditions such as those that

223

Shenyang Huaren Wind Power Technology Development Co Ltd | Open Energy  

Open Energy Info (EERE)

Huaren Wind Power Technology Development Co Ltd Huaren Wind Power Technology Development Co Ltd Jump to: navigation, search Name Shenyang Huaren Wind Power Technology Development Co Ltd Place Shenyang, Liaoning Province, China Sector Wind energy Product China-based technology provider of 1MW, 1.5MW and 3MW wind turbines. Coordinates 41.788509°, 123.40612° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.788509,"lon":123.40612,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

224

NETL Coal Power Systems & Technology: Interactive Project Map  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal & Power Systems Coal & Power Systems Project Portfolio Web Map Welcome to the Strategic Center for Coal Project Portfolio Web Map assembled by NETL. The web map includes projects across all Coal & Power Systems technologies including Advanced Energy Systems, Carbon Capture, Carbon Storage, Cross-Cutting Research, Futuregen 2.0, Industrial Carbon Capture and Storage (ICCS), Clean Coal Power Initiative (CCPI), Geologic Sequestration Training and Research (GSTR), Geologic Sequestration Site Characterization (GSSC), and ICCS (Research). This active web map is updated frequently and provided for informational purposes only. The NETL Strategic Center for Coal Project Portfolio Web Map requires Microsoft Silverlight, a free downloadable browser plug-in. If Silverlight has not been installed previously you will be prompted to do so when the link is clicked to initiate the web map. Microsoft Silverlight is also available at: http://www.microsoft.com/getsilverlight/Get-Started/Install/Default.aspx.

225

On the application of circularcylindrical waves to ocean wave power absorption  

Science Journals Connector (OSTI)

This study derives mathematical forms for the waves radiated from a heaving, surging and swaying point source on the surface of a three dimensional ocean. The interactions between a monochromatic plane wave and monochromatic circularcylindrical radiated waves are examined, and solutions to the time averaged power are calculated. These calculations confirm pre-existing theoretical maximum absorption lengths for both a heaving and surging point source. The derivations also lead to the definition of the amplitude, phase and form of the radiated waves required to achieve these maximums. Two experimental case studies match measured radiated wave with circular waves. These matches demonstrate a correlation between the body motions and the dominant form of radiated waves as well as higher frequency waves. The study develops three general guidelines for the design of efficient point absorber wave energy converters (PAWECs). Optimum power absorption occurs when the PAWEC radiates theoretical heave and surge waves of the appropriate amplitude and phase. Theoretical sway type waves should be minimized as these radiate energy and do not interact with the incident wave. Similarly, the radiation of higher harmonic waves should also be minimized for the same reasons.

Matthew Wypych; Lan Le-Ngoc; Keith Alexander; Alister Gardner

2012-01-01T23:59:59.000Z

226

A Review of Sloped Solar Updraft Power Technology  

Science Journals Connector (OSTI)

Abstract The Solar Updraft Power Plant (SUPP) concept was successfully proven in the last few decades through many experimental and analytical approaches. However, the high investment cost compared to the plant efficiency and the limited height of the chimney due to the technological constraints are considered the main disadvantages of the SUPP. In order to overcome these problems, many novel concepts were proposed; One being the Sloped Solar Updraft Power Plant (SSUPP). This paper provides a comprehensive overall review for all SSUPP researches up-to-date including the principle with a description of the plant, physical process, theoretical and experimental studies.

Shadi Kalash; Wajih Naimeh; Salman Ajib

2014-01-01T23:59:59.000Z

227

Technology status and project development risks of advanced coal power generation technologies in APEC developing economies  

SciTech Connect

The report reviews the current status of IGCC and supercritical/ultrasupercritical pulverized-coal power plants and summarizes risks associated with project development, construction and operation. The report includes an economic analysis using three case studies of Chinese projects; a supercritical PC, an ultrasupercritical PC, and an IGCC plant. The analysis discusses barriers to clean coal technologies and ways to encourage their adoption for new power plants. 25 figs., 25 tabs.

Lusica, N.; Xie, T.; Lu, T.

2008-10-15T23:59:59.000Z

228

An Act to Facilitate Testing and Demonstration of Renewable Ocean Energy Technology (Maine)  

Energy.gov (U.S. Department of Energy (DOE))

This law streamlines and coordinates State permitting and submerged lands leasing requirements for renewable ocean energy demonstration projects, aiding Maine's goal to become an international...

229

Tennessee, Pennsylvania: Porous Power Technologies Improves Lithium Ion Battery, Wins R&D 100 Award  

Office of Energy Efficiency and Renewable Energy (EERE)

Porous Power Technologies, partnered with Oak Ridge National Laboratory (ORNL), developed SYMMETRIX HPX-F, a nanocomposite separator for improved lithium-ion battery technology.

230

Understanding the adoption of solar power technologies in the UK domestic sector.  

E-Print Network (OSTI)

??The aim of this thesis was to provide new insights into the adoption of solar power technologies. Policy has identified solar technologies capable of providing (more)

Faiers, Adam

2009-01-01T23:59:59.000Z

231

Net Power Technology NP Holdings or NPH | Open Energy Information  

Open Energy Info (EERE)

Net Power Technology NP Holdings or NPH Net Power Technology NP Holdings or NPH Jump to: navigation, search Name Net Power Technology (NP Holdings or NPH) Place Chanchun, Jilin Province, China Sector Efficiency, Renewable Energy Product China-based company, focused on electricity storage systems based on zinc-bromide redox flow cells for renewable energy and energy efficiency applications. Coordinates 40.911701°, 45.354198° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.911701,"lon":45.354198,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

232

Sinomatech Wind Power Blade aka Sinoma Science Technology Wind Turbine  

Open Energy Info (EERE)

Sinomatech Wind Power Blade aka Sinoma Science Technology Wind Turbine Sinomatech Wind Power Blade aka Sinoma Science Technology Wind Turbine Blade Co Ltd Jump to: navigation, search Name Sinomatech Wind Power Blade (aka Sinoma Science & Technology Wind Turbine Blade Co Ltd) Place Nanjing, Jiangsu Province, China Zip 210012 Sector Wind energy Product Jiangsu-based wind turbine blade manufactuer. Coordinates 32.0485°, 118.778969° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.0485,"lon":118.778969,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

233

EA-1890: Reedsport PB150 Deployment and Ocean Test Project, Oregon |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0: Reedsport PB150 Deployment and Ocean Test Project, Oregon 0: Reedsport PB150 Deployment and Ocean Test Project, Oregon EA-1890: Reedsport PB150 Deployment and Ocean Test Project, Oregon Overview The U.S. Department of Energy has selected Ocean Power Technologies (OPT) for approximately $2.4 million in financial assistance and proposes to authorize the expenditure of federal funding to OPT for the construction, deployment, and ocean testing of a single, full scale 150kW PB150 PowerBuoy. Public Comment Opportunities No public comment opportunities available at this time. Documents Available for Download August 24, 2011 EA-1890: Finding of No Significant Impact Reedsport PB150 Deployment and Ocean Test Project, Oregon August 24, 2011 EA-1890: DOE Notice of Availability of the Finding of No Significant Impact Ocean Power Technologies, Inc. (OPT), Reedsport PB150 Deployment and Ocean

234

GridWise: Transforming the Power Grid with Information Technology  

SciTech Connect

GridWise is a vision for the future electric system shared by a new DOE initiative and an industry alliance. GridWise is built upon the fundamental premise that information technology will profoundly transform the planning and operation of the power grid, just at is has changed business, education, and entertainment. The electric power system has served us remarkably well for over half a century. However, with business-as-usual solutions, the U.S. will invest around $450 billion in conventional electric infrastructuregeneration, transmission, and distributionover the next 20 years just to meet demand for a growing population and economy. Even more investment will be needed to relieve the growing backlog of deferred transmission additions. Since the mortgage on infrastructure is a major component of electric rates, economic prosperity and our way of life depend upon minimizing the need for new infrastructure by increasing the utilization of these assets. This paper discusses the GridWise vision and describes some example technologies and how they are woven together to fundamentally alter the way the power grid works. The benefits of an information-rich power system and key elements of the DOEs new GridWise initiative are also presented.

Pratt, Robert G.; Lightner, Eric M.

2004-10-28T23:59:59.000Z

235

Wind power project siting workshop: emerging issues and technologies  

SciTech Connect

With wind power development extending more broadly across the various regions of the United States, and with new participants entering the wind development business, AWEA developed a workshop on the various ways in which wind power projects affect--and don't affect--elements of the human and natural environment. Over 180 people gathered in Portland, OR on October 13-14, 2004 to participate in a day and a half of presentations by 20 leading industry specialists. Their presentations covered emerging issues of project siting, such as bat interactions and wildlife survey techniques, and methods of generating local support for wind projects. Workshop topics included: Avian and Bat Research Updates; Wildlife Survey Technologies & Techniques; Technical Issues such as Noise, Aesthetics, and Lighting; National Environmental Policy Act (NEPA) Scenarios and Federal Land Policies; Tribal & Community Relations; Federal & State Permitting Process; and Bureau of Land Management Wind Power Developments.

anon.

2004-12-01T23:59:59.000Z

236

Ocean Acidification  

Science Journals Connector (OSTI)

Ocean Acidification ... The first assignment I give my students in Environmental Modeling class is to calculate the mass of the oceans versus the mass of the atmosphere and the living soil. ... As a young chemical engineer in the early 1970s, I remember discussing the horrors of sulfur and particulate pollution from steel mills, smelters, and power plants. ...

Jerald L. Schnoor

2013-11-05T23:59:59.000Z

237

STUDY AND ANALYSIS ON TECHNOLOGY AND DEVELOPMENT OF INFORMATION NETWORK OF RURAL POWER GRID  

Science Journals Connector (OSTI)

This paper describes the technology and transferring mode of rural power grids information network, analyses technology of communication system of electric power grid in rural area, chooses a new develop ... on ...

Weiying Li

2009-01-01T23:59:59.000Z

238

Sustainable solar thermal power generation (STPG) technologies in Indian context  

SciTech Connect

India is a fast developing country. Some of the factors like population growth, industrialization, liberalization in economic policies, green revolution and awareness toward the environment, are increasing the electricity demand rapidly. As per the 14th Power Survey Report, an energy deficit of (+) 9% and peak demand deficit of (+) 18% have been estimated. Keeping in view the liberalization in economic policies, this deficit may be higher by the year 2000 AD. An estimation indicates that India is blessed with solar energy to the tune of 5 x 10{sup 15} kWh/yr. Being clean and inexhaustible source of energy, it can be used for large-scale power generation in the country. Keeping in view the present state-of-art technologies for STPG in MW range, best possible efforts are required to be made by all the concerned, to develop sustainable STPG technology of the future, specially for tropical regions. Standardization of vital equipment is an important aspect. There are a few required criteria like simple and robust technology, its transfer and adaptation in tropical climate conditions; high plant load factor without fossil-fired backup; availability of plant during evening peak and night hours; least use of fragile components, and capacity optimization for MW plants as per solar irradiance and environmental factors. In this paper, efforts have been made to compare the different STPG technologies. On the basis, of literature surveyed and studies carried out by the author, it may be stated that Central Receiver System technologies using molten salt and volumetric air receiver, along with molten salt and ceramic thermal storage respectively seems to be suitable and comparable in Indian context. Performance of SOLAR-TWO and PHOEBUS plants may be decisive.

Sharma, R.S. [Ministry of Non-Conventional Energy Sources, New Delhi (India). Solar Energy Centre

1996-12-31T23:59:59.000Z

239

Ocean acoustic noise budgets: Application to the environmental assessment of offshore wind power generation.  

Science Journals Connector (OSTI)

A noise budget is a listing of the various sources of acoustic noise and their associated ranking by importance. A number of different types of budgets can be conceived using various acoustic measures such as intensity energy or duration of maximum amplitude level. These budgets are typically parameterized by frequency and are usually computed over 1/3 octave bands. As part of the environmental assessment of the proposed offshore wind powergeneration project under the Rhode Island Special Area Management Plan (SAMP) noise measurements were made using the Passive Acoustic Listener (PAL) systems off the coast of Rhode Island prior to the installation of any wind power facilities. Two PALs were deployed within two miles of Block Island in water depths of 20 m from October 6 to November 11 2008. The data included noise spectra and source identification every 3 min. Short snapshots of unusual sounds were also recorded. From this data the ocean acoustic noise budget is computed with contributions from shipping wind/waves marine mammals and rain from 500 Hz to 50 kHz. The shipnoise data is correlated with ship traffic data from the Automatic Identification System (AIS). [Funding provided by the Rhode Island Office of Energy Resources.

2009-01-01T23:59:59.000Z

240

Performance analysis of an absorption power cycle for ocean thermal energy conversion  

Science Journals Connector (OSTI)

Abstract An absorption power cycle with two ejectors is proposed for ocean thermal energy conversion. The ammoniawater is used as the working fluid. The ejectors are driven by vapor and solution from the sub-generator. Based on the first and second law, the mathematical model for this cycle is developed and theoretical analysis is conducted to evaluate the effects of thermodynamic parameters on the performance of this cycle. Results show that the absorption temperature is increased by 2.06.5C by employing the two-stage ejector sub-cycle, which indicates that this proposed cycle can be driven with a lower temperature difference. Further, the thermal efficiency, net thermal efficiency and exergy efficiency of this cycle can reach to 4.17%, 3.10% and 39.92% respectively. Besides, the generation pressure, the heating source temperature, the solution concentration, and the expansion ratio, as well as the entrainment ratio of the first stage ejector have significant effects on the absorption temperature, the thermal efficiency, the exergy efficiency and the exergy loss of this cycle. In addition, 49.80% of exergy loss in this proposed cycle occurs in the generators and reheater, followed by the ejectors of 36.12%.

Han Yuan; Ning Mei; Peilin Zhou

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ocean power technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Powered by technology or powering technology? Belief-based decision-making in nuclear power and synthetic fuel.  

E-Print Network (OSTI)

?? The overarching question in this study is how and why technical-fixes in energy policy failed. In the post-WWII era, civilian nuclear power and synthetic (more)

Yang, Chi-Jen

2008-01-01T23:59:59.000Z

242

Vehicle Technologies Office: 2008 Advanced Power Electronics and Electric Machinery R&D Annual Progress Report  

Energy.gov (U.S. Department of Energy (DOE))

The Advanced Power Electronics and Electric Machinery subprogram within the DOE Vehicle Technologies Office provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE) and electric machinery technologies that will leapfrog current on-the-road technologies.

243

Combined Heat & Power Technology Overview and Federal Sector Deployment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Overview and Overview and Federal Sector Deployment Federal Utility Partnership Working Group Spring 2013 - May 22-23 San Francisco, CA Hosted by: Pacific Gas and Electric Company Bob Slattery Oak Ridge National Laboratory CHP is an integrated energy system that:  is located at or near a facility  generates electrical and/or mechanical power  recovers waste heat for ◦ heating ◦ cooling ◦ dehumidification  can utilize a variety of technologies and fuels  is also referred to as cogeneration The on-site simultaneous generation of two forms of energy (heat and electricity) from a single fuel/energy source Defining Combined Heat and Power (CHP) Steam Electricity Fuel Prime Mover & Generator Heat Recovery Steam Boiler Conventional CHP

244

Ocean governance in a competitive world. The BRIC countries as emerging maritime powersbuilding new geopolitical scenarios  

Science Journals Connector (OSTI)

Owing to their style and economic impact, Brazil, Russia, India and China (the BRIC countries) are destined to become relevant actors in the new ocean governance. The following working hypothesis is sustained: the BRIC countries, due to the potential of their maritime territories, can be considered to be emerging maritime powers capable of displacing some of the historical maritime powers. This would also entail a shift of strategic maritime space towards the southern hemisphere. Other emerging maritime scenarios associated with the BRIC countries include the Russian Arctic, and the Indo-Pacific ocean belt, or string of pearls, as it is known. Factors such as competitiveness, maritime leadership and ocean governance are thus placed in a new economic and political context where they might be redefined and adapted to the circumstances of the BRIC block and other emerging countries, the majority of which are subject to demographic pressure and a high degree of poverty. The most relevant conclusions point to the emergence of a new type of neo-navalism, on the one handa BRIC version of traditional sea power and, on the other, a possible threat to the EU's Integrated Maritime Policy under pressure from strong competitiveness in a highly internationalised environment, forcing changes in its original approach with its distinct social profiles and commitment to latest generation rights.

Juan L. Surez de Vivero; Juan C. Rodrguez Mateos

2010-01-01T23:59:59.000Z

245

Dysprosium, the balance problem, and wind power technology  

Science Journals Connector (OSTI)

Abstract Wind power technology is one of the cleanest electricity generation technologies that are expected to have a substantial share in the future electricity mix. Nonetheless, the expected increase in the market share of wind technology has led to an increasing concern of the availability, production capacity and geographical concentration of the metals required for the technology, especially the rear earth elements (REE) neodymium (Nd) and the far less abundant dysprosium (Dy), and the impacts associated with their production. Moreover, Nd and Dy are coproduced with other rare earth metals mainly from iron, titanium, zirconium, and thorium deposits. Consequently, an increase in the demand for Nd and Dy in wind power technology and in their traditional applications may lead to an increase in the production of the host metals and other companion REE, with possible implications on their supply and demand. In this regard, we have used a dynamic material flow and stock model to study the impacts of the increasing demand for Nd and Dy on the supply and demand of the host metals and other companion REE. In one scenario, when the supply of Dy is covered by all current and expected producing deposits, the increase in the demand for Dy leads to an oversupply of 255 Gg of total REE and an oversupply of the coproduced REE Nd, La, Ce and Y. In the second and third scenarios, however, when the supply of Dy is covered by critical REE rich deposits or Dy rich deposits, the increase in Dy demand results in an oversupply of Ce and Y only, while the demand for Nd and La exceeds their supply. In the case of an oversupply of REEs, the environmental impacts associated with the \\{REEs\\} production should be allocated to Dy and consequently to the technologies that utilize the metal. The results also show that very large quantities of thorium will be co-produced as a result of the demand for Dy. The thorium would need to be carefully disposed of, or significant thorium applications would need to be found.

Ayman Elshkaki; T.E. Graedel

2014-01-01T23:59:59.000Z

246

1224 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 20, NO. 3, AUGUST 2005 Topology Error Identification for the  

E-Print Network (OSTI)

into the Pacific Ocean. The power system associated with the proposed observatory is unlike conventional terrestrial power systems due to the unique under ocean operating conditions. The operating requirements, topology, un- derwater equipment, underwater technology. I. INTRODUCTION SUPPLYING power to under ocean

Frandsen, Jannette B.

247

Modeling the Benefits of Storage Technologies to Wind Power  

SciTech Connect

Rapid expansion of wind power in the electricity sector is raising questions about how wind resource variability might affect the capacity value of wind farms at high levels of penetration. Electricity storage, with the capability to shift wind energy from periods of low demand to peak times and to smooth fluctuations in output, may have a role in bolstering the value of wind power at levels of penetration envisioned by a new Department of Energy report ('20% Wind by 2030, Increasing Wind Energy's Contribution to U.S. Electricity Supply'). This paper quantifies the value storage can add to wind. The analysis was done employing the Regional Energy Deployment System (ReEDS) model, formerly known as the Wind Deployment System (WinDS) model. ReEDS was used to estimate the cost and development path associated with 20% penetration of wind in the report. ReEDS differs from the WinDS model primarily in that the model has been modified to include the capability to build and use three storage technologies: pumped-hydroelectric storage (PHS), compressed-air energy storage (CAES), and batteries. To assess the value of these storage technologies, two pairs of scenarios were run: business-as-usual, with and without storage; 20% wind energy by 2030, with and without storage. This paper presents the results from those model runs.

Sullivan, P.; Short, W.; Blair, N.

2008-06-01T23:59:59.000Z

248

Ocean Thermal Energy Conversion Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thermal Energy Conversion Basics Thermal Energy Conversion Basics Ocean Thermal Energy Conversion Basics August 16, 2013 - 4:22pm Addthis A process called ocean thermal energy conversion (OTEC) uses the heat energy stored in the Earth's oceans to generate electricity. OTEC works best when the temperature difference between the warmer, top layer of the ocean and the colder, deep ocean water is about 36°F (20°C). These conditions exist in tropical coastal areas, roughly between the Tropic of Capricorn and the Tropic of Cancer. To bring the cold water to the surface, ocean thermal energy conversion plants require an expensive, large-diameter intake pipe, which is submerged a mile or more into the ocean's depths. Some energy experts believe that if ocean thermal energy conversion can become cost-competitive with conventional power technologies, it could be

249

Ocean Thermal Energy Conversion Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thermal Energy Conversion Basics Thermal Energy Conversion Basics Ocean Thermal Energy Conversion Basics August 16, 2013 - 4:22pm Addthis A process called ocean thermal energy conversion (OTEC) uses the heat energy stored in the Earth's oceans to generate electricity. OTEC works best when the temperature difference between the warmer, top layer of the ocean and the colder, deep ocean water is about 36°F (20°C). These conditions exist in tropical coastal areas, roughly between the Tropic of Capricorn and the Tropic of Cancer. To bring the cold water to the surface, ocean thermal energy conversion plants require an expensive, large-diameter intake pipe, which is submerged a mile or more into the ocean's depths. Some energy experts believe that if ocean thermal energy conversion can become cost-competitive with conventional power technologies, it could be

250

MHK Technologies/Uldolmok Pilot Tidal Current Power Plant | Open Energy  

Open Energy Info (EERE)

Uldolmok Pilot Tidal Current Power Plant Uldolmok Pilot Tidal Current Power Plant < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Uldolmok Pilot Tidal Current Power Plant.jpg Technology Profile Primary Organization Korea East West Power Co LTD Technology Resource Click here Current Technology Type Click here Overtopping Technology Readiness Level Click here TRL 9 Commercial Scale Production Application Technology Description The tidal current power plant uses current energy that can be differentiated from a typical tidal power plant using marine energy The latter confines water in a dam and when released it gets processed in a turbine to produce electric power The tidal current power plant on the other hand does not need a dam thus concerns of social dislocations and degradation of ecosystems primarily endangering marine life can be avoided

251

HEMP emergency planning and operating procedures for electric power systems. Power Systems Technology Program  

SciTech Connect

Investigations of the impact of high-altitude electromagnetic pulse (HEMP) on electric power systems and electrical equipment have revealed that HEMP creates both misoperation and failures. These events result from both the early time E{sub 1} (steep-front pulse) component and the late time E{sub 3} (geomagnetic perturbations) component of HEMP. In this report a HEMP event is viewed in terms of its marginal impact over classical power system disturbances by considering the unique properties and consequences of HEMP. This report focuses on system-wide electrical component failures and their potential consequences from HEMP. In particular, the effectiveness of planning and operating procedures for electric systems is evaluated while under the influence of HEMP. This assessment relies on published data and characterizes utilities using the North American Electric Reliability Council`s regions and guidelines to model electric power system planning and operations. Key issues addressed by the report include how electric power systems are affected by HEMP and what actions electric utilities can initiate to reduce the consequences of HEMP. The report also reviews the salient features of earlier HEMP studies and projects, examines technology trends in the electric power industry which are affected by HEMP, characterizes the vulnerability of power systems to HEMP, and explores the capability of electric systems to recover from a HEMP event.

Reddoch, T.W.; Markel, L.C. [Electrotek Concepts, Inc., Knoxville, TN (United States)

1991-12-31T23:59:59.000Z

252

Terra-Gen Power and TAS Celebrate Innovative Binary Geothermal Technology |  

Open Energy Info (EERE)

and TAS Celebrate Innovative Binary Geothermal Technology and TAS Celebrate Innovative Binary Geothermal Technology Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Terra-Gen Power and TAS Celebrate Innovative Binary Geothermal Technology Abstract N/A Authors Terra-Gen Power and LLC Published Publisher Not Provided, Date Not Provided DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Terra-Gen Power and TAS Celebrate Innovative Binary Geothermal Technology Citation Terra-Gen Power, LLC. Terra-Gen Power and TAS Celebrate Innovative Binary Geothermal Technology [Internet]. [updated 2011;cited 2011]. Available from: http://www.terra-genpower.com/News/TERRA-GEN-POWER-AND-TAS-CELEBRATE-INNOVATIVE-BINAR.aspx Retrieved from "http://en.openei.org/w/index.php?title=Terra-Gen_Power_and_TAS_Celebrate_Innovative_Binary_Geothermal_Technology&oldid=682514

253

MHK Technologies/Sihwa tidal barrage power plant | Open Energy Information  

Open Energy Info (EERE)

Sihwa tidal barrage power plant Sihwa tidal barrage power plant < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Sihwa tidal barrage power plant.jpg Technology Profile Technology Type Click here Overtopping Technology Readiness Level Click here TRL 9 Commercial Scale Production Application Technology Description Sihwa TBPP operates only on flood tide generation which produces electrical power during the flood tide the water is discharged back from basin to sea during ebb tide Technology Dimensions Technology Nameplate Capacity (MW) 254 Device Testing Date Submitted 59:41.3 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Sihwa_tidal_barrage_power_plant&oldid=681654

254

Combined Heat and Power: A Technology Whose Time Has Come  

E-Print Network (OSTI)

Williams, & Jonas Monast, Wind Power: Barriers and Policyheat, photovoltaics, wind power, biomass, and hydroelectrictechnology. 183 Including wind power in states Renewable

Ferraina, Steven

2014-01-01T23:59:59.000Z

255

Barriers to the adoption of renewable and energy-efficient technologies in the Vietnamese power sector  

E-Print Network (OSTI)

coal power generation technologies in Vietnam. It ranks their severity by applying the analytical sites. For advanced coal power technologies, the barriers are weak industrial capability, high cost Institute of Technology, Thailand. 1 halshs-00444826,version1-7Jan2010 #12;1. Introduction There are many

Boyer, Edmond

256

Barriers to the adoption of renewable and energy-efficient technologies in the Vietnamese power sector  

E-Print Network (OSTI)

coal power generation technologies in Vietnam. It ranks their severity by applying the analytical sites. For advanced coal power technologies, the barriers are weak industrial capability, high cost Institute of Technology, Thailand. 1 halshs-00444826,version1-7Jan2010 Author manuscript, published

Boyer, Edmond

257

An Open Ocean Trial of Controlled Upwelling Using Wave Pump Technology  

Science Journals Connector (OSTI)

In 1976, John D. Isaacs proposed to use wave energy to invert the density structure of the ocean and pump deep, nutrient-rich water into the sunlit surface layers. The basic principle is simple: a length of tubing attached to a surface buoy at ...

Angelicque White; Karin Bjrkman; Eric Grabowski; Ricardo Letelier; Steve Poulos; Blake Watkins; David Karl

2010-02-01T23:59:59.000Z

258

Mesoscale Coupled Ocean-Atmosphere Interaction  

E-Print Network (OSTI)

heat flux, and wind power input to the ocean. Geophys. Res.Powers and Stoelinga (2000). They developed a comprehensive atmosphere-ocean-

Seo, Hyodae

2007-01-01T23:59:59.000Z

259

Mesoscale coupled ocean-atmosphere interaction  

E-Print Network (OSTI)

heat flux, and wind power input to the ocean. Geophys. Res.Powers and Stoelinga (2000). They developed a comprehensive atmosphere-ocean-

Seo, Hyodae

2007-01-01T23:59:59.000Z

260

This introduction to wind power technology is meant to help communities begin considering or  

E-Print Network (OSTI)

This introduction to wind power technology is meant to help communities begin considering or planning wind power. It focuses on commercial and medium-scale wind turbine technology available in the United States. We also recommend a visit to a modern wind power installation ­ it will answer many

Massachusetts at Amherst, University of

Note: This page contains sample records for the topic "ocean power technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Power and Performance of Native and Java Benchmarks on 130nm to 32nm Process Technologies  

E-Print Network (OSTI)

Power and Performance of Native and Java Benchmarks on 130nm to 32nm Process Technologies Hadi with chip power reduc- tions. This paper examines how well process technology and mi- croarchitecture delivered on this assumption. This paper evalu- ates power and performance of native and Java workloads

Paris-Sud XI, Université de

262

Advanced coal technologies in Czech heat and power systems  

SciTech Connect

Coal is the only domestic source of fossil fuel in the Czech Republic. The coal reserves are substantial and their share in total energy use is about 60%. Presently necessary steps in making coal utilisation more friendly towards the environment have been taken and fairly well established, and an interest to develop and build advanced coal units has been observed. One IGCC system has been put into operation, and circa 10 AFBC units are in operation or under construction. Preparatory steps have been taken in building an advanced combustion unit fuelled by pulverised coal and retrofit action is taking place in many heating plants. An actual experience has shown two basic problems: (1) Different characteristic of domestic lignite, especially high content of ash, cause problems applying well-tried foreign technologies and apparently a more focused attention shall have to be paid to the quality of coal combusted. (2) Low prices of lignite (regarding energy, lignite is four times cheaper then coal) do not oblige to increase efficiency of the standing equipment applying advanced technologies. It will be of high interest to observe the effect of the effort of the European Union to establish a kind of carbon tax. It could dramatically change the existing scene in clean coal power generation by the logical pressure to increase the efficiency of energy transformation. In like manner the gradual liberalisation of energy prices might have similar consequences and it is a warranted expectation that, up to now not the best, energy balance will improve in near future.

Noskievic, P.; Ochodek, T. [VSB-Technical Univ., Ostrava (Czechoslovakia)

1998-04-01T23:59:59.000Z

263

Wave Energy Conversion Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Wave Energy Conversion Technology Wave Energy Conversion Technology Speaker(s): Mirko Previsic Date: August 2, 2001 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Julie Osborn Scientists have been working on wave power conversion for the past twenty years, but recent advances in offshore and IT technologies have made it economically competitive. Sea Power & Associates is a Berkeley-based renewable energy technology company. We have developed patented technology to generate electricity from ocean wave energy using a system of concrete buoys and highly efficient hydraulic pumps. Our mission is to provide competitively priced, non-polluting, renewable energy for coastal regions worldwide. Mirko Previsic, founder and CEO, of Sea Power & Associates will discuss ocean wave power, existing technologies for its conversion into

264

Technology verification phase. Dynamic isotope power system. Final report  

SciTech Connect

The Phase I requirements of the Kilowatt Isotope Power System (KIPS) program were to make a detailed Flight System Conceptual Design (FSCD) for an isotope fueled organic Rankine cycle power system and to build and test a Ground Demonstration System (GDS) which simulated as closely as possible the operational characteristics of the FSCD. The activities and results of Phase II, the Technology Verification Phase, of the program are reported. The objectives of this phase were to increase system efficiency to 18.1% by component development, to demonstrate system reliability by a 5000 h endurance test and to update the flight system design. During Phase II, system performance was improved from 15.1% to 16.6%, an endurance test of 2000 h was performed while the flight design analysis was limited to a study of the General Purpose Heat Source, a study of the regenerator manufacturing technique and analysis of the hardness of the system to a laser threat. It was concluded from these tests that the GDS is basically prototypic of a flight design; all components necessary for satisfactory operation were demonstrated successfully at the system level; over 11,000 total h of operation without any component failure attested to the inherent reliability of this type of system; and some further development is required, specifically in the area of performance. (LCL)

Halsey, D.G.

1982-03-10T23:59:59.000Z

265

Part of the Climate Change Problem . . . and the Solution? Chinese-Made Wind Power Technology and Opportunities for Dissemination  

E-Print Network (OSTI)

2004. Grid Connected Wind Power in China. NREL/Commercialization of Wind Power Technology in China. Coal and Candles: Wind Powerin China. EnergyPolicy

Lewis, Joanna I.

2005-01-01T23:59:59.000Z

266

Power Europe: EU and the illegal, unreported and unregulated tuna fisheries regulation in the West and Central Pacific Ocean  

Science Journals Connector (OSTI)

Abstract Illegal, unreported and unregulated (IUU) fishing activities are widely considered a main cause of unsustainable fisheries across the globe. The EU has taken a leading role in the fight against IUU fishing, using both its market and normative power to advance its EU IUU Regulation (no. 1005/2008) and wider fisheries sustainability agenda outside its territory. This paper examines how successful the EU has been in using its market and normative power to influence regulatory strategies and frameworks governing tuna fisheries in the Pacific Islands region of the Western Pacific Ocean. The results indicate that while the market power of the EU remains an influential factor, the diminishing normative power of the EU in WCPO is weakening any attempts to implement its IUU fishing regulation and Pacific Island nations have promoted their own regulatory agenda. We conclude that the changing asymmetries between market and normative power has led to a differentiated geography of regulatory uptake, and while market power will remain a dominant strategy for the EU, normative power, when exercised should focus on cooperation rather than teaching the benefits of an EU regulatory approach.

Alice M.M. Miller; Simon R. Bush; Arthur P.J. Mol

2014-01-01T23:59:59.000Z

267

NREL: Water Power Research Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

Aerial photo of ocean waves breaking as they near the shore. Aerial photo of ocean waves breaking as they near the shore. NREL's water power technologies research leverages 35 years of experience developing renewable energy technologies to support the U.S. Department of Energy Water Power Program's efforts to research, test, evaluate, develop and demonstrate deployment of innovative water power technologies. These include marine and hydrokinetic technologies, a suite of renewable technologies that harness the energy from untapped wave, tidal, current and ocean thermal resources, as well as technologies and processes to improve the efficiency, flexibility, and environmental performance of hydropower generation. The vision of the water power team at NREL is to be an essential partner for the technical development and deployment of water power technologies.

268

MHK Technologies/FRI El Sea Power System | Open Energy Information  

Open Energy Info (EERE)

El Sea Power System El Sea Power System < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage FRI El Sea Power System.jpg Technology Profile Primary Organization FRI EL Sea Power S r l Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description The device is composed of a floating structure vessel and various horizontal axis turbines positioned at regular intervals on a horizontal adjustable and modular tube the so called line This tube also functions as transmission shaft for the power captured from water flows and transferred to the electric generator which eventually transforms it into electrical energy

269

Solar Trough Power Plants: Office of Power Technologies (OPT) Success Stories Series Fact Sheet  

NLE Websites -- All DOE Office Websites (Extended Search)

Concentrating Solar Power Program Concentrating Solar Power Program Office of Solar Energy Technologies operate for 80% of the summer mid-peak hours and 66% of the winter mid-peak hours. A natural gas backup system supplements the solar capacity and contributes 25% of the plants' annual output. The SEGS plants use parabolic-trough solar collectors to capture the sun's energy and convert it to heat. In the SEGS design, the curved solar collectors focus sunlight onto a receiver pipe. Mechanical controls slowly rotate the collectors during the day, keeping them aimed at the sun as it travels across the sky. Synthetic oil flowing through the receiver pipe serves as the heat transfer medium. The collectors concentrate sunlight 30 to 60 times the normal intensity on the receiver, heating the oil as high as 735°F (390°C).

270

FTT:Power : A global model of the power sector with induced technological change and natural resource depletion  

E-Print Network (OSTI)

This work introduces a model of Future Technology Transformations for the power sector (FTT:Power), a representation of global power systems based on market competition, induced technological change (ITC) and natural resource use and depletion. It is the first component of a family of sectoral bottom-up models of technology, designed for integration into the global macroeconometric model E3MG. ITC occurs as a result of technological learning produced by cumulative investment and leads to highly nonlinear, irreversible and path dependent technological transitions. The model uses a dynamic coupled set of logistic differential equations. As opposed to traditional bottom-up energy models based on systems optimisation, such differential equations offer an appropriate treatment of the times and structure of change involved in sectoral technology transformations, as well as a much reduced computational load. Resource use and depletion are represented by local cost-supply curves, which give rise to different regional...

Mercure, J -F

2012-01-01T23:59:59.000Z

271

Technology investment decisions under uncertainty : a new modeling framework for the electric power sector  

E-Print Network (OSTI)

Effectively balancing existing technology adoption and new technology development is critical for successfully managing carbon dioxide (CO2) emissions from the fossil-dominated electric power generation sector. The long ...

Santen, Nidhi

2013-01-01T23:59:59.000Z

272

Vehicle Technologies Office: 2010 Advanced Power Electronics and Electric Motors R&D Annual Progress Report  

Energy.gov (U.S. Department of Energy (DOE))

The APEEM subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE) and electric motor technologies that will leapfrog current on-the-road technologies.

273

Photovoltaics for Bulk Power Applications: Cost/Performance Targets and Technology Prospects  

Science Journals Connector (OSTI)

Photovoltaic (PV) power technology has shown steady progress over the past ten years toward its ultimate use in bulk i.e., energy-significant electric power applications, including demonstration of highly ...

Edgar A. DeMeo

1991-01-01T23:59:59.000Z

274

Work for the DOE Office of Power Technology - Nuclear Engineering Division  

NLE Websites -- All DOE Office Websites (Extended Search)

of Power of Power Technology Capabilities Sensors and Instrumentation and Nondestructive Evaluation Overview Energy System Applications Overview DOE Office of Fossil Energy DOE Office of Transportation Technologies Ion-mobility Spectrometry Based NOx Sensor DOE Office of Power Technology Work for Others Safety-Related Applications Homeland Security Applications Biomedical Applications Millimiter Wave Group Papers Other NPNS Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Sensors and Instrumentation and Nondestructive Evaluation Energy System Applications Bookmark and Share DOE Office of Power Technology NDE for Ceramics in Microturbines The concept of distributed energy systems using small gas turbines (< 500

275

2014 Water Power Program Peer Review Compiled Presentations: Marine and Hydrokinetic Technologies  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy Water Power Program conducted the 2014 peer review meeting on marine and hydrokinetic technologies February 2427.

276

Vehicle Technologies Office: 2013 Advanced Power Electronics and Electric Motors R&D Annual Progress Report  

Energy.gov (U.S. Department of Energy (DOE))

This report describes the progress made on the research and development projects funded by the Advanced Power Electronics and Electric Motors subprogram in the Vehicle Technologies Office.

277

High Reliability, High TemperatureThermoelectric Power Generation Materials and Technologies  

Energy.gov (U.S. Department of Energy (DOE))

Key technologies and system approaches to excellent record of thermoelectric power sources in deep space missions and development of higher performance TE materials for the next generation systems

278

DOE Fuel Cell Technologies Office Record 14009: Industry Deployed Fuel Cell Backup Power (BuP)  

Energy.gov (U.S. Department of Energy (DOE))

This program record from the U.S. Department of Energy's Fuel Cell Technologies Office provides information about fuel cell backup power deployed by industry.

279

Vehicle Technologies Office Merit Review 2014: North American Power Electronics Supply Chain Analysis  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Synthesis Partners at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about North American power...

280

Improving the liquid-cooling systems of power units and technological equipment  

Science Journals Connector (OSTI)

Processes in the liquid cooling systems of power units and technological equipment are considered. Criteria ... of the energy and resource aspects of the cooling systems.

V. A. Zhukov

2011-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "ocean power technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

DOE Fuel Cell Technologies Office Record 14010: Industry Deployed Fuel Cell Powered Lift Trucks  

Energy.gov (U.S. Department of Energy (DOE))

This program record from the U.S. Department of Energy's Fuel Cell Technologies Office provides information about fuel cell powered lift trucks deployed by industry.

282

An engineering-economic analysis of combined heat and power technologies in a (mu)grid application  

E-Print Network (OSTI)

Economic Analysis of Combined Heat and Power Technologies inEconomic Analysis of Combined Heat and Power Technologies inAgency (1998). Combined Heat and Power in Denmark. Version

Bailey, Owen; Ouaglal, Boubekeur; Bartholomew, Emily; Marnay, Chris; Bourassa, Norman

2002-01-01T23:59:59.000Z

283

Conventional Hydropower Technologies, Wind And Water Power Program...  

Office of Environmental Management (EM)

Power for a Clean Energy Future (Fact Sheet), Wind and Water Power Program (WWPP) Hydropower Projects Environmental Impacts of Increased Hydroelectric Development at Existing Dams...

284

Customizable Fuel Processor Technology Benefits Fuel Cell Power...  

NLE Websites -- All DOE Office Websites (Extended Search)

and Industries Automotive - range extenders for electric vehicles Residential heat and power Remote and portable power More Information Fuel processors have been...

285

Ocean Motion International LLC | Open Energy Information  

Open Energy Info (EERE)

Ocean Motion International LLC Ocean Motion International LLC Jump to: navigation, search Name Ocean Motion International LLC Place Saulsbury, Tennessee Zip 38067 Sector Ocean Product Marine energy technology firm developing ocean/ wave powered generators. Coordinates 35.052242°, -89.083299° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.052242,"lon":-89.083299,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

286

Advanced Acid Gas Separation Technology for Clean Power and Syngas  

NLE Websites -- All DOE Office Websites (Extended Search)

Syngas Processing Systems Syngas Processing Systems Advanced Acid Gas Separation Technology for Clean Power and Syngas Applications Air Products and Chemicals, Inc. Project Number: FE0013363 Project Description In this project, Air Products will operate a two-bed mobile system at the National Carbon Capture Center (NCCC) facility. A slipstream of authentic, high-hydrogen syngas based on low-rank coal will be evaluated as the feedstock. Testing will be conducted for approximately eight weeks, thereby providing far longer adsorbent exposure data than demonstrated to date. By utilizing real-world, high- hydrogen syngas, information necessary to understand the utility of the system for methanol production will be made available. In addition, Air Products will also operate a multi-bed PSA process development unit (PDU), located at its Trexlertown, PA headquarters, to evaluate the impact of incorporating pressure equalization steps in the process cycle. This testing will be conducted utilizing a sulfur-free, synthetic syngas, and will improve the reliability of the prediction of the system's operating performance at commercial scale.

287

Electric Power Esearch Institute: Environmental Control Technology Center  

SciTech Connect

Operations and maintenance continued this month at the Electric Power Research Institute`s (EPRI`s) Environmental Control Technology Center (ECTC). Testing for the month involved the EPRI Integrated SO{sub x}/NO{sub x} removal process, the DOE PRDA testing of the B&W/Condensing Heat Exchanger (CHX), and support for the Semi-Continuous On-line Mercury Analyzer. The test configuration utilized in the EPRI Integrated SO{sub x}/NO{sub x} removal process included the 4.0 MW Spray Dryer Absorber (SDA), the Pulse-jet Fabric Filter (PJFF), and a new Selective Catalytic Reduction (SCR) reactor installed at the ECTC. During this testing, O&M support was also required to conclude the test efforts under the EPRI Hazardous Air Pollutant (HAP) test block. This included the on-site development efforts for the Semi-Continuous On-line Mercury Analyzer. In the DOE PRDA project with the B&W/Condensing Heat Exchanger (CHX), the effects of the increased particulate loading to the unit were monitored throughout the month. Also, the 1.0 MW Cold-Side Selective Catalytic Reduction (SCR) unit and the 4.0 MW Pilot Wet Scrubber remained idle this month in a cold-standby mode and were inspected regularly.

NONE

1996-11-01T23:59:59.000Z

288

The Solar Power Tower Jlich A Solar Thermal Power Plant for Test and Demonstration of Air Receiver Technology  

Science Journals Connector (OSTI)

The open volumetric receiver technology allows the use of air as heat transfer medium at high temperatures in solar thermal power tower plants. It combines porous ceramic ... a strictly modular receiver design. H...

K. Hennecke; P. Schwarzbzl; G. Koll

2009-01-01T23:59:59.000Z

289

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network (OSTI)

of ocean thermal energy conversion technology. U.S. DOE.ocean thermal energy conversion. A preliminary engineeringCompany. Ocean thermal energy conversion mission analysis

Sands, M. D.

2011-01-01T23:59:59.000Z

290

Frequency selection of an inductive contactless power transmission system for ocean observing  

Science Journals Connector (OSTI)

Inductive Contactless Power Transmission (ICPT) may suffer considerable power loss due to eddy currents in seawater when applied undersea rather than on land. The loss of power, which is harmful to transmission efficiency, is closely related to the transmission frequency. However, the relationship between the transmission frequency and the efficiency has rarely been studied. In this paper, we analytically deduce the power transmission efficiency in air and the power loss of ICPT in seawater. Based on the theoretical calculation and analysis, guidelines are provided to select the optimum frequency to maximise the efficiency. A case study is then performed to numerically determine the optimum frequency for an undersea ICPT system. Laboratory experiments are conducted to confirm the theoretical results. A prototype ICPT system power is designed and built. A lake trial demonstrates that the designed system is able to transmit power contactless to actual undersea observation network equipment underwater with an efficiency of approximately 85% and a 5mm gap distance.

Jie Zhou; De-jun Li; Ying Chen

2013-01-01T23:59:59.000Z

291

Air Cooling Technology for Power Electronic Thermal Control  

Energy.gov (U.S. Department of Energy (DOE))

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

292

Air Cooling Technology for Power Electronic Thermal Control  

Energy.gov (U.S. Department of Energy (DOE))

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

293

Two-Phase Cooling Technology for Power Electronics  

Energy.gov (U.S. Department of Energy (DOE))

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

294

MHK Technologies/Small power take off module | Open Energy Information  

Open Energy Info (EERE)

power take off module power take off module < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Small power take off module.jpg Technology Profile Primary Organization Wavegen subsidiary of Voith Siemens Hydro Power Generation Technology Resource Click here Wave Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The 18 5kW power modules consist of a 5th generation Wells turbine valve and noise attenuator The complete modules weigh less than a tonne so installation or removal is easily achievable using a small mobile crane The modules are very simple and rugged the blades are fixed onto the rotor have no pitching mechanism no gearbox and have no contact with seawater

295

Fuel Cell Technologies Office: Procuring Fuel Cells for Stationary Power: A  

NLE Websites -- All DOE Office Websites (Extended Search)

Procuring Fuel Cells Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers (Text Version) to someone by E-mail Share Fuel Cell Technologies Office: Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers (Text Version) on Facebook Tweet about Fuel Cell Technologies Office: Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers (Text Version) on Twitter Bookmark Fuel Cell Technologies Office: Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers (Text Version) on Google Bookmark Fuel Cell Technologies Office: Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers (Text Version) on Delicious Rank Fuel Cell Technologies Office: Procuring Fuel Cells for

296

Assessment of postcombustion carbon capture technologies for power generation  

Science Journals Connector (OSTI)

A significant proportion of power generation stems from coal-combustion processes and accordingly represents one of the largest point sources of CO2 emissions worldwide. Coal power plants are major assets with la...

Mikel C. Duke; Bradley Ladewig; Simon Smart

2010-06-01T23:59:59.000Z

297

Advances in steam turbine technology for the power generation industry. PWR-Volume 26  

SciTech Connect

This is a collection of the papers on advances in steam turbine technology for the power generation industry presented at the 1994 International Joint Power Generation Conference. The topics include advances in steam turbine design, application of computational fluid dynamics to turbine aerodynamic design, life extension of fossil and nuclear powered steam turbine generators, solid particle erosion control technologies, and artificial intelligence, monitoring and diagnostics.

Moore, W.G. [ed.

1994-12-31T23:59:59.000Z

298

V2G Technology for Designing Active Filter System to Improve Wind Power Quality  

E-Print Network (OSTI)

V2G Technology for Designing Active Filter System to Improve Wind Power Quality F. R. Islam, H. R factor correction and harmonics current compensation. Index Terms--PHEVs, V2G, Wind Power, Battery Scheme to design active filter is proposed here to improve the quality of wind power output. Harmonics is one

Pota, Himanshu Roy

299

Programme A. Nuclear Power Subprogramme A.4 Technology Development for Advanced Reactor Lines  

E-Print Network (OSTI)

Programme A. Nuclear Power Subprogramme A.4 Technology Development for Advanced Reactor Lines the databases that will be produced in the course of the CRP and make them accessible through the IAEA's nuclear-Electrical Applications of Nuclear Power Project A.5.02: Nuclear hydrogen production CRP Title: Advances in nuclear power

De Cindio, Fiorella

300

Air Cooling Technology for Power Electronic Thermal Control  

Energy.gov (U.S. Department of Energy (DOE))

2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

Note: This page contains sample records for the topic "ocean power technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Harnessing the Power of Data, Technology and Innovation for a...  

Office of Environmental Management (EM)

Moniz Secretary of Energy Dr. John P. Holdren Dr. John P. Holdren Director of the White House Office of Science and Technology Policy Editor's note: This article originally...

302

New High-Power Laser Technology | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

edge technology developers to pioneer applications that accelerate the adoption of geothermal energy. In 2013, Foro Energy, Inc. (Foro) partnered with the GTO, through a 50...

303

Internal variability of the tropical Pacific ocean Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA  

E-Print Network (OSTI)

Internal variability of the tropical Pacific ocean M. Jochum Earth, Atmospheric and Planetary model of the tropical Pacific ocean is analyzed to quantify the interannual variability caused by internal variability of ocean dynamics. It is found that along the Pacific cold tongue internal variability

Jochum, Markus

304

Ocean thermal energy conversion power system development. Final design report: PSD-I, Phase II  

SciTech Connect

The PSD-I program provides a heat exchanger sytem consisting of an evaporator, condenser and various ancillaries with ammonia used as a working fluid in a closed simulated Rankine cycle. It is to be installed on the Chepachet Research Vessel for test and evaluation of a number of OTEC concepts in a true ocean environment. It is one of several test articles to be tested. Primary design concerns include control of biofouling, corrosion and erosion of aluminum tubes, selection of materials, and the development of a basis for scale-up to large heat exchangers so as to ultimately demonstrate economic feasibility on a commercial scale. The PSD-I test article is devised to verify thermodynamic, environmental, and mechanical performance of basic design concepts. The detailed design, development, fabrication, checklist, delivery, installation support, and operation support for the Test Article Heat Exchangers are described. (WHK)

None

1980-06-30T23:59:59.000Z

305

Technology transfer: solar power and distributed rural electrification  

Science Journals Connector (OSTI)

The research objective is to assess and transfer high efficiency multi-junction photovoltaic cell technology developed at the National Renewable Energy Lab to a start-up venture. The technology integrates a rooftop satellite-dish sized reflector that tracks and concentrates solar energy onto the target cell. There are still rural communities in the world where

Stephen W. Jordan; Tugrul U. Daim

2012-01-01T23:59:59.000Z

306

Power Consumption in Bufferless Optical Packet Switches in SOA Technology  

Science Journals Connector (OSTI)

Increase in data transmission and processing speed unavoidably leads to high requirements on power supply. Especially in the case of high-capacity electronic routers, the question of...

Eramo, V; Listanti, M

2009-01-01T23:59:59.000Z

307

1995 Asia investment survey - coal, private power, and technology  

SciTech Connect

An investment survey for Asia is presented. The market for fossil-fuel power plants and air pollution control are discussed.

Johnson, C.J.; Binsheng Li

1995-06-01T23:59:59.000Z

308

Air Cooling Technology for Advanced Power Electronics and Electric...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

OF AIR COOLING FOR USE WITH AUTOMOTIVE POWER ELECTRONICS Desikan Bharathan, Kenneth Kelly National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado, 80401...

309

Potential of the Power-to-Heat Technology in District Heating Grids in Germany  

Science Journals Connector (OSTI)

Abstract The increasing amount of power generation from weather-dependent renewable sources in Germany is projected to lead to a considerable number of hours in which power generation exceeds power demand. One possibility to take advantage of this power surplus is through the Power-to-Heat technology. As combined heat and power (CHP)-plants can be upgraded relatively easily with a Power-to-Heat facility, a huge potential can be developed in German district heating grids which are mainly served by CHP-plants. In this paper the potential of the Power-to-Heat technology in district heating grids in Germany is evaluated for the years 2015 to 2030 under different assumptions.

Diana Bttger; Mario Gtz; Nelly Lehr; Hendrik Kondziella; Thomas Bruckner

2014-01-01T23:59:59.000Z

310

New method to obtain the power spectra of hidden variables and its application to ocean data  

Science Journals Connector (OSTI)

A novel method is proposed to obtain the power spectra of hidden variables in a chaotic time series. By embedding the data in phase space, and recording the conditional probability density of points that the t...

Wei en-bo; Tian Ji-wei; Xu Jin-shan

2001-03-01T23:59:59.000Z

311

Wind and Water Power Technologies FY'14 Budget At-a-Glance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 WIND & WATER POWER TECHNOLOGIES WIND POWER PROGRAM FY14 BUDGET AT-A-GLANCE Wind and Water Power Technologies accelerates U.S. deployment of clean, affordable and reliable domestic wind power through research, development and demonstration. These advanced technology investments directly contribute to the President's goals for the United States to double renewable electricity generation again by 2020 and to achieve 80 percent of its electricity from clean, carbon-free energy sources by 2035 through reducing costs and increasing performance of wind energy systems. Wind power currently provides 3.5 percent of the nation's electricity, and more wind-powered electricity generation capacity was installed in the United States in 2012 than

312

Coal-fired power generation: Proven technologies and pollution control systems  

SciTech Connect

During the last two decades, significant advances have been made in the reduction of emissions from coal-fired power generating plants. New technologies include better understanding of the fundamentals of the formation and destruction of criteria pollutants in combustion processes (low nitrogen oxides burners) and improved methods for separating criteria pollutants from stack gases (FGD technology), as well as efficiency improvements in power plants (clean coal technologies). Future demand for more environmentally benign electric power, however, will lead to even more stringent controls of pollutants (sulphur dioxide and nitrogen oxides) and greenhouse gases such as carbon dioxide.

Balat, M. [University of Mah, Trabzon (Turkey)

2008-07-01T23:59:59.000Z

313

Reactive Power Compensation Technologies, State-of-the-Art Review  

E-Print Network (OSTI)

at all levels of power transmission, it improves HVDC (High Voltage Direct Current) conversion terminal performance, increases transmission efficiency, controls steady-state and temporary overvoltages [4], and can the performance of the overall ac power system. Traditionally, rotating synchronous condensers and fixed

Catholic University of Chile (Universidad Católica de Chile)

314

RF power potential of 45 nm CMOS technology  

E-Print Network (OSTI)

This paper presents the first measurements of the RF power performance of 45 nm CMOS devices with varying device widths and layouts. We find that 45 nm CMOS can deliver a peak output power density of around 140 mW/mm with ...

Putnam, Christopher

315

Major Environmental Aspects of Gasification-Based Power Generation Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Detailed Evaluation of the Environmental Performance of Gasification-Based Power Systems Detailed Evaluation of the Environmental Performance of Gasification-Based Power Systems DECEMBER 2002 U.S. DOE/NETL 2-1 2. DETAILED EVALUATION OF THE ENVIRONMENTAL PERFORMANCE OF GASIFICATION-BASED POWER SYTEMS 2.1 Introduction and Summary of Information Presented The single most compelling reason for utilities to consider coal gasification for electric power generation is superior environmental performance. 1 As shown in Figure 2-1, gasification has fundamental environmental advantages over direct coal combustion. Commercial-scale plants for both integrated gasification combined cycle (IGCC) electric power generation and chemicals applications have already successfully demonstrated these advantages. The superior environmental capabilities of coal gasification apply to all three areas of concern: air emissions,

316

Solar Thermionic Space Power Technology Testing: A Historical Perspective  

Science Journals Connector (OSTI)

This paper provides a brief overview of both the past and recent efforts aimed at the development and testing of solar thermionic space power systems. Recently the Air Force has been investigating the feasibility of developing a thermionic generator heated with a large inflatable solar concentrator for orbital space power missions with electrical power requirements that exceed 50 kWe. This concept analysis follows a similar study by the NASA Jet Propulsion Laboratory in the 1960s where the objective was a 500 We power generator for interplanetary probes. Details of the potential missions system designs and power specifications as well as results of ground tests and demonstrations are detailed and compared for each era.

Steven F. Adams

2006-01-01T23:59:59.000Z

317

V2G Technology to Improve Wind Power Quality and Stability F. R. Islam and H. R. Pota  

E-Print Network (OSTI)

V2G Technology to Improve Wind Power Quality and Stability F. R. Islam and H. R. Pota Abstract an implementation of V2G technology is proposed here to improve the quality and stability of wind power output

Pota, Himanshu Roy

318

NREL: Energy Analysis - Ocean Energy Results - Life Cycle Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

Ocean Energy Results - Life Cycle Assessment Review Ocean Energy Results - Life Cycle Assessment Review For more information, visit: Special Report on Renewable Energy Sources and Climate Change Mitigation: Ocean Energy OpenEI: Data, Visualization, and Bibliographies Chart that shows life cycle greenhouse gas emissions for ocean power technologies. For help reading this chart, please contact the webmaster. Estimates of life cycle greenhouse gas emissions of wave and tidal range technologies. Credit: Lewis, A., S. Estefen, J. Huckerby, W. Musial, T. Pontes, J. Torres-Martinez, 2011: Ocean Energy. In IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation [O. Edenhofer, R. Pichs-Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer, C. von Stechow (eds)], Cambridge University Press. Figure 6.11 Enlarge image

319

Vehicle Technologies Office: 2011 Advanced Power Electronics and Electric Motors R&D Annual Progress Report  

Energy.gov (U.S. Department of Energy (DOE))

The Advanced Power Electronics and Electric Motors (APEEM) program within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor (EM), thermal management, and traction drive system technologies that will leapfrog current on-the-road technologies. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrows automobiles will function as a unified system to improve fuel efficiency.

320

Vehicle Technologies Office: 2012 Advanced Power Electronics and Electric Motors R&D Annual Progress Report  

Energy.gov (U.S. Department of Energy (DOE))

The Advanced Power Electronics and Electric Motors (APEEM) program within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor (EM), thermal management, and traction drive system technologies that will leapfrog current on-the-road technologies. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrows automobiles will function as a unified system to improve fuel efficiency.

Note: This page contains sample records for the topic "ocean power technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

DOE Awards $20 Million to Develop Geothermal Power Technologies  

Energy.gov (U.S. Department of Energy (DOE))

DOE announced on September 15 its selection of seven projects to research, develop, and demonstrate cutting-edge geothermal energy technologies involving low-temperature fluids, geothermal fluids recovered from oil and gas wells, and highly pressurized geothermal fluids.

322

Market Power and Technological Bias: The Case of Electricity Generation  

E-Print Network (OSTI)

, the intermittent nature of output from wind turbines and solar panels is frequently discussed as a potential obstacle to larger scale application of these tech- nologies. Contributions of 10-20% of electrical energy from individual intermittent technologies create... , Cambridge CB3 9DE, UK, Tel: ++ 44 1223 335200, paul.twomey@econ.cam.ac.uk, karsten.neuhoff@econ.cam.ac.uk. 1 1 Introduction Renewable energy technologies are playing an increasingly important role in the portfolio mix of electricity generation. However...

Twomey, Paul; Neuhoff, Karsten

2006-03-14T23:59:59.000Z

323

ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network (OSTI)

screens for ocean thermal energy conversion power plants.cold deep-ocean waters to produce electric power via eitherOffice of Solar Power Applications. Division of Ocean Energy

Sullivan, S.M.

2014-01-01T23:59:59.000Z

324

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network (OSTI)

of an open cycle ocean thermal difference power plant. M.S.screens for ocean thermal energy conversion power plants.1958. Ocean cooling water system for 800 MW power station.

Sands, M. D.

2011-01-01T23:59:59.000Z

325

Major Environmental Aspects of Gasification-Based Power Generation Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Detailed Detailed Evaluation of the Environmental Performance of Gasification-Based Power Systems DECEMBER 2002 U.S. DOE/NETL 2-1 2. DETAILED EVALUATION OF THE ENVIRONMENTAL PERFORMANCE OF GASIFICATION-BASED POWER SYTEMS 2.1 Introduction and Summary of Information Presented The single most compelling reason for utilities to consider coal gasification for electric power generation is superior environmental performance. 1 As shown in Figure 2-1, gasification has fundamental environmental advantages over direct coal combustion. Commercial-scale plants for both integrated gasification combined cycle (IGCC) electric power generation and chemicals applications have already successfully demonstrated these advantages. The superior environmental capabilities of coal gasification apply to all three areas of concern: air emissions, water discharges, and solid

326

Thermoelectric power generation materials: Technology and application opportunities  

Science Journals Connector (OSTI)

Thermoelectric power sources have consistently demonstrated their extraordinary reliability and longevity for deep space missions (67 missions to date, more than 30 years of life) as well as terrestrial applic...

Jean-Pierre Fleurial

2009-04-01T23:59:59.000Z

327

Gasifier-based power generation: Technology and economics  

Science Journals Connector (OSTI)

The paper describes a 100 kW power generation system installed at Port Blair, Andaman and Nicobar Islands, under a project sponsored by the Department of Non-Conventional Energy Sources, Government of India. The ...

B N Baliga; S Dasappa; U Shrinivasa; H S Mukunda

1993-03-01T23:59:59.000Z

328

Carbon Dioxide Capture Technology for the Coal-Powered Electricity Industry: A Systematic Prioritization of Research Needs  

E-Print Network (OSTI)

Carbon Dioxide Capture Technology for the Coal-Powered Electricity Industry: A Systematic and Policy Program #12;- 2 - #12;Carbon Dioxide Capture Technology for the Coal-Powered Electricity Industry must be developed for capturing CO2 from power plants. Current CO2 capture technology is expensive

329

Photo of the Week: Improving Power Plant Technology... in 3-D | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Improving Power Plant Technology... in 3-D Improving Power Plant Technology... in 3-D Photo of the Week: Improving Power Plant Technology... in 3-D June 6, 2013 - 12:58pm Addthis This week, Secretary Ernest Moniz experienced the 3-D visualizations at the Consortium for the Advanced Simulation of Light Water Reactors (CASL), one of the Department's Energy Innovation Hubs. The facility, located at Oak Ridge National Laboratory, develops computer models that simulate nuclear power plant operations. The researchers at CASL are developing technology that could accelerate upgrades at existing nuclear plants while improving the plants' reliability and safety. Check out more photos from Secretary Moniz's visit to CASL. | Photo courtesy of Oak Ridge National Laboratory.

330

A Explanatory Model of Public Acceptance for Nuclear Power Technology: From Low-Carbon Perspective  

Science Journals Connector (OSTI)

There are not so many literature about nuclear power technology of public acceptance in China, but different scholars have different opinions about the determinants of public acceptance. Xi and Xue studied that w...

Yuan-hua Yang; Li Li; Guo-hua Niu

2013-01-01T23:59:59.000Z

331

Vehicle Technologies Office Merit Review 2014: High Energy High Power Battery Exceeding PHEV-40 Requirements  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by [company name] at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy high power battery...

332

Study on the use of VLSI ASIC technology for generic power system computer relay architectures  

E-Print Network (OSTI)

This thesis discusses the feasibility of improving power system computer relay devices using Very Large Scale Integration technology. It outlines the functionality that is required of this equipment A high-level design that attempts to use dedicated...

Faulkner, Kenneth Ray

2012-06-07T23:59:59.000Z

333

Emerging Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emerging Technologies Emerging Technologies Emerging Technologies Last January, we took a look at how ARPA-E performer, 1366 Technologies is working to dramatically reduce the cost of solar energy. A year later, we revisited their headquarters in Lexington, MA to see the progress they've made. Featured Maine Project Takes Historic Step Forward in U.S. Tidal Energy Deployment Cobscook Bay, Maine, is the site of a tidal energy pilot project led by Ocean Renewable Power Company. | Photo courtesy of Ocean Renewable Power Company. A pilot project that will generate electricity from Maine's ocean tides could be a game-changer for America's tidal energy industry at-large. Advanced Battery Manufacturing Making Strides in Oregon EnerG2 Ribbon Cutting Ceremony for new battery materials plant in Albany, Oregon. Photo courtesy of the Vehicle Technologies Program

334

Clean Coal Technology and the Clean Coal Power Initiative | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean Clean Coal Technology and the Clean Coal Power Initiative Clean Coal Technology and the Clean Coal Power Initiative "Clean coal technology" describes a new generation of energy processes that sharply reduce air emissions and other pollutants from coal-burning power plants. In the late 1980s and early 1990s, the U.S. Department of Energy conducted a joint program with industry and State agencies to demonstrate the best of these new technologies at scales large enough for companies to make commercial decisions. More than 20 of the technologies tested in the original program achieved commercial success. The early program, however, was focused on the environmental challenges of the time - primarily concerns over the impact of acid rain on forests and

335

MHK Technologies/IVEC Floating Wave Power Plant | Open Energy Information  

Open Energy Info (EERE)

IVEC Floating Wave Power Plant IVEC Floating Wave Power Plant < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage IVEC Floating Wave Power Plant.jpg Technology Profile Primary Organization Ivec Pty Ltd Technology Resource Click here Wave Technology Readiness Level Click here TRL 7 8 Open Water System Testing Demonstration and Operation Technology Description FWP design is based on an array of linked OWC s or chambers Similar to the cylinders of a combustion engine each FWP chamber has inlet low pressure flaps valves and outlet high pressure flaps valves As a wave passes through the FWP the water level and thus the air pressure within each chamber oscillates depending on its position within the wave cycle Mooring Configuration single point

336

Nuclear Technology & Canadian Oil Sands: Integration of Nuclear Power with In-Situ Oil Extraction  

E-Print Network (OSTI)

Nuclear Technology & Canadian Oil Sands: Integration of Nuclear Power with In-Situ Oil Extraction A.E. FINAN, K. MIU, A.C. KADAK Massachusetts Institute of Technology Department of Nuclear Science the technical aspects and the economics of utilizing nuclear reactors to provide the energy needed

337

Oceans '88  

SciTech Connect

These proceedings discuss the following papers: Solid waste disposal crisis; Plastics in Ocean; Continental shelf environmental research; Seafood technology advancements; Gulf of Mexico chemosynthetic petroleum seep communities; Water reuse on onshore mariculture and processing facilities; Oil and gas industry conflicts on the outer continental shelf; Cumulative environmental effects of the oil and gas leasing program; Oil and gas exploration; and Oil and gas resource management; Aids to navigation systems and equipment; and Surveillance experiments.

Not Available

1988-01-01T23:59:59.000Z

338

IEEE/ASME TRANSACTIONS ON MECHATRONICS 1 Technologies for Powered Ankle-Foot Orthotic  

E-Print Network (OSTI)

IEEEProof IEEE/ASME TRANSACTIONS ON MECHATRONICS 1 Technologies for Powered Ankle-Foot Orthotic-Wecksler, Member, IEEE, William K. Durfee, and G´eza F. Kogler 3 4 Abstract--Ankle-foot orthoses (AFOs) can be used Index Terms--Active assist, ankle-foot orthosis (AFO), fluid17 power, gait.18 I. MOTIVATION19 FOR MOST

Durfee, William K.

339

Hydroelectric power: Technology and planning. (Latest citations from the Selected Water Resources Abstracts database). Published Search  

SciTech Connect

The bibliography contains citations concerning hydroelectric power technology and planning. Reservoir, dam, water tunnel, and hydraulic gate design, construction, and operation are discussed. Water supply, flood control, irrigation programs, and environmental effects of hydroelectric power plants are presented. Mathematical modeling and simulation analysis are also discussed. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1994-05-01T23:59:59.000Z

340

Hydroelectric power: Technology and planning. (Latest citations from the Selected Water Resources Abstracts database). Published Search  

SciTech Connect

The bibliography contains citations concerning hydroelectric power technology and planning. Reservoir, dam, water tunnel, and hydraulic gate design, construction, and operation are discussed. Water supply, flood control, irrigation programs, and environmental effects of hydroelectric power plants are presented. Mathematical modeling and simulation analysis are also discussed. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1993-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "ocean power technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

5. annual clean coal technology conference: powering the next millennium. Volume 2  

SciTech Connect

The Fifth Annual Clean Coal Technology Conference focuses on presenting strategies and approaches that will enable clean coal technologies to resolve the competing, interrelated demands for power, economic viability, and environmental constraints associated with the use of coal in the post-2000 era. The program addresses the dynamic changes that will result from utility competition and industry restructuring, and to the evolution of markets abroad. Current projections for electricity highlight the preferential role that electric power will have in accomplishing the long-range goals of most nations. Increase demands can be met by utilizing coal in technologies that achieve environmental goals while keeping the cost- per-unit of energy competitive. Results from projects in the DOE Clean Coal Technology Demonstration Program confirm that technology is the pathway to achieving these goals. The industry/government partnership, cemented over the past 10 years, is focused on moving the clean coal technologies into the domestic and international marketplaces. The Fifth Annual Clean Coal Technology Conference provides a forum to discuss these benchmark issues and the essential role and need for these technologies in the post-2000 era. This volume contains technical papers on: advanced coal process systems; advanced industrial systems; advanced cleanup systems; and advanced power generation systems. In addition, there are poster session abstracts. Selected papers from this proceedings have been processed for inclusion in the Energy Science and Technology database.

NONE

1997-06-01T23:59:59.000Z

342

Generating electricity from the oceans  

Science Journals Connector (OSTI)

Ocean energy has many forms, encompassing tides, surface waves, ocean circulation, salinity and thermal gradients. This paper will considers two of these, namely those found in the kinetic energy resource in tidal streams or marine currents, driven by gravitational effects, and the resources in wind-driven waves, derived ultimately from solar energy. There is growing interest around the world in the utilisation of wave energy and marine currents (tidal stream) for the generation of electrical power. Marine currents are predictable and could be utilised without the need for barrages and the impounding of water, whilst wave energy is inherently less predictable, being a consequence of wind energy. The conversion of these resources into sustainable electrical power offers immense opportunities to nations endowed with such resources and this work is partially aimed at addressing such prospects. The research presented conveys the current status of wave and marine current energy conversion technologies addressing issues related to their infancy (only a handful being at the commercial prototype stage) as compared to others such offshore wind. The work establishes a step-by-step approach that could be used in technology and project development, depicting results based on experimental and field observations on device fundamentals, modelling approaches, project development issues. It includes analysis of the various pathways and approaches needed for technology and device or converter deployment issues. As most technology developments are currently UK based, the paper also discusses the UK's financial mechanisms available to support this area of renewable energy, highlighting the needed economic approaches in technology development phases. Examination of future prospects for wave and marine current ocean energy technologies are also discussed.

AbuBakr S. Bahaj

2011-01-01T23:59:59.000Z

343

Examination of incentive mechanisms for innovative technologies applicable to utility and nonutility power generators  

SciTech Connect

Innovative technologies, built by either utility or nonutility power generators, have the potential to lower costs with less environmental emissions than conventional technologies. However, the public-good nature of information, along with uncertain costs, performance, and reliability, discourages rapid adoption of these technologies. The effect of regulation of electricity production may also have an adverse impact on motivation to innovate. Slower penetration of cleaner, more efficient technologies could result in greater levels of pollution, higher electricity prices, and a reduction in international competitiveness. Regulatory incentives could encourage adoption and deployment of innovative technologies of all kinds, inducting clean coal technologies. Such incentives must be designed to offset risks inherent in innovative technology and encourage cost-effective behavior. To evaluate innovative and conventional technologies equally, the incremental cost of risk (ICR) of adopting the innovative technology must be determined. Through the ICR, the magnitude of incentive required to make a utility (or nonutility) power generator equally motivated to use either conventional or innovative technologies can be derived. Two technology risks are examined: A construction risk, represented by a 15% cost overrun, and an operating risk, represented by a increased forced outage rate (decreased capacity factor). Different incentive mechanisms and measurement criteria are used to assess the effects of these risks on ratepayers and shareholders. In most cases, a regulatory incentive could offset the perceived risks while encouraging cost-effective behavior by both utility and nonutility power generators. Not only would the required incentive be recouped, but the revenue requirements would be less for the innovative technology; also, less environmental pollution would be generated. In the long term, ratepayers and society would benefit from innovative technologies.

McDermott, K.A. [Illinois Commerce Commission, Springfield, IL (United States); Bailey, K.A.; South, D.W. [Argonne National Lab., IL (United States). Environmental Assessment and Information Sciences Div.

1993-08-01T23:59:59.000Z

344

Applications of high-temperature superconductors in power technology  

Science Journals Connector (OSTI)

Since the discovery of the first high-temperature superconductors (HTSs) in the late 1980s, many materials and families of materials have been discovered that exhibit superconductivity at temperatures well above 20?K. Of these, several families of HTSs have been developed for use in electrical power applications. Demonstration of devices such as motors, generators, transmission lines, transformers, fault-current limiters, and flywheels in which HTSs and bulk HTSs have been used has proceeded to ever larger scales. First-generation wire, made from bismuth-based copper oxides, was used in many demonstrations. The rapid development of second-generation wire, made by depositing thin films of yttrium-based copper oxide on metallic substrates, is expected to further accelerate commercial applications. Bulk HTSs, in which large single-grain crystals are used as basic magnetic components, have also been developed and have potential for electrical power applications.

John R Hull

2003-01-01T23:59:59.000Z

345

Concentrating Solar Power Program Technology Overview (Fact Sheet)  

SciTech Connect

Concentrating solar power systems use the heat from the sun's rays to generate electricity. Reflective surfaces concentrate the sun's rays up to 10,000 times to heat a receiver filled with a heat-exchange fluid, such as oil. The heated fluid is then used to generate electricity in a steam turbine or heat engine. Mechanical drives slowly turn the reflective surfaces during the day to keep the solar radiation focused on the receiver.

Not Available

2001-04-01T23:59:59.000Z

346

Fuel Cell Technologies Office: Transportation and Stationary Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation and Stationary Power Integration Workshop Transportation and Stationary Power Integration Workshop On October 27, 2008, more than 55 participants from industry, state and federal government, utilities, national laboratories, and other groups met to discuss the topic of integrating stationary fuel cell combined heat and power (CHP) systems and hydrogen production infrastructure for vehicles. The workshop was co-hosted by the U.S. Department of Energy, the U.S. Fuel Cell Council, and the National Renewable Energy Laboratory, and was held in conjunction with the Fuel Cell Seminar in Phoenix, Arizona. Plenary presentations provided an overview of the integration concept and perspective on the opportunity from federal, state and industry organizations. Workshop participants met in breakout sessions to consider the potential to leverage early hydrogen vehicle refueling infrastructure requirements by co-producing hydrogen in stationary fuel cell CHP applications at select facilities (e.g., military bases, postal facilities, airports, hospitals, etc.). The efficiency, reliability, and emissions benefits of these CHP systems have the potential to offset the up-front capital costs and financial risks associated with producing hydrogen for early vehicle markets.

347

Parametric study for the penetration of combined cycle technologies into Cyprus power system  

Science Journals Connector (OSTI)

In this work, a parametric study concerning the use of combined cycle technologies for power generation, by independent power producers in Cyprus, is carried out. The costbenefit analysis is carried out using the Independent Power Producers optimization algorithm in which the electricity unit cost is calculated. Various conventional generation options are examined, such as, steam turbines and open cycle gas turbines, and compared with a parametric study (variations in fuel type, capital cost and efficiency) for combined cycle technologies. The results indicate that the future use of combined cycle technology with natural gas as fuel is recommended. Furthermore, it is estimated that by the use of natural gas combined cycle, the CO2 emissions environmental indicator of Cyprus power industry would be significantly reduced.

Andreas Poullikkas

2004-01-01T23:59:59.000Z

348

Novel Thermal Storage Technologies for Concentrating Solar Power Generation  

SciTech Connect

The technologies that are to be developed in this work will enable storage of thermal energy in 100 MWe solar energy plants for 6-24 hours at temperatures around 300oC and 850oC using encapsulated phase change materials (EPCM). Several encapsulated phase change materials have been identified, fabricated and proven with calorimetry. Two of these materials have been tested in an airflow experiment. A cost analysis for these thermal energy storage systems has also been conducted that met the targets established at the initiation of the project.

Neti, Sudhakar; Oztekin, Alparslan; Chen, John; Tuzla, Kemal; Misiolek, Wojciech

2013-06-20T23:59:59.000Z

349

Application of membrane technology to power generation waters  

SciTech Connect

Three membrane technlogies (reverse osmosis, ultrafiltration, and electrodialysis) for wastewater treatment and reuse at electric generating power plants were examined. Recirculating condenser water, ash sluice water, coal pile drainage, boiler blowdown and makeup treatment wastes, chemical cleaning wastes, wet SO/sub 2/ scrubber wastes, and miscellaneous wastes were studied. In addition, membrane separation of toxic substances in wastewater was also addressed. Waste characteristics, applicable regulations, feasible membrane processes, and cost information were analyzed for each waste stream. A users' guide to reverse osmosis was developed and is provided in an appendix.

Tang, T.L.D.; Chu, T.J.; Boroughs, R.D.

1980-03-01T23:59:59.000Z

350

INDIAN INSTITUTE TECHNOLOGY BOMBAY 1 MW SOLAR THEMAL POWER PROJECT  

E-Print Network (OSTI)

THERMAL POWER PROJECT #12;PIPING MTO 1089-202-108 1 2 1 BE,7.1Thk.,Welded To ANSI B-36.10 12" 165 M/4" 6 2.2 12" 12" 4 3" 3" 1 2" 2" 2 Equal Tee, SW, 3000#, ANSI B-16.11 1½" 1½" 5 ASTM A105 12" 6" 4 3" 2" 2 Reducing Tee, SW, 3000#, ANSI B-16.11 1½" 3/4" 2 ASTM A105 1½" 2 3/4" 15 Threaded pipet (NPT) 1" 6

Narayanan, H.

351

Preliminary exploration on low-carbon technology roadmap of Chinas power sector  

Science Journals Connector (OSTI)

Climate change poses huge challenges to the sustainable development of human society. As a major CO2 emission source, decarbonization of power sector is fundamental for CO2 emission abatement. Therefore, considering the carbon lock-in effects, its critical to formulate an appropriate roadmap for low-carbon generation technologies. In this paper, key low-carbon technology solutions are firstly identified according to their developing prospects and the fundamental realities of Chinas power sector. Then, costs, reduction effects and potentials for the key technology options are evaluated. On this basis, typical scenarios are selected and a scenario set is established which identifies and incorporates the key low carbon factors, and a multi-scenario analysis is implemented to Chinas power sector based on a comprehensive power mix planning model. Then, contributions of CO2 reduction among the key technology solutions are revealed. Prospect for CO2 emission reduction is discussed, which informs the possible emission trajectories towards 2030. Finally, low-carbon technology roadmaps under specific scenarios are elaborated, which implies corresponding optimal evolution of power generation mix.

Qixin Chen; Chongqing Kang; Qing Xia; Dabo Guan

2011-01-01T23:59:59.000Z

352

Application of the integrated gasification combined cycle technology and BGL gasification design for power generation  

SciTech Connect

Integrated gasification combined cycle (IGCC) technology promises to be the power generation technology of choice in the late 1990s and beyond. Based on the principle that almost any fuel can be burned more cleanly and efficiently if first turned into a gas, an IGCC plant extracts more electricity from a ton of coal by burning it as a gas in a turbine rather than as a solid in a boiler. Accordingly, coal gasification is the process of converting coal to a clean-burning synthetic gas. IGCC technology is the integration of the coal-gasification plant with a conventional combined-cycle plant to produce electricity. The benefits of this technology merger are many and result in a highly efficient and environmentally superior energy production facility. The lGCC technology holds significant implications for Asia-Pacific countries and for other parts of the world. High-growth regions require additional baseload capacity. Current low prices for natural gas and minimal emissions that result from its use for power generation favor its selection as the fuel source for new power generation capacity. However, fluctuations in fuel price and fuel availability are undermining the industry`s confidence in planning future capacity based upon gas-fueled generation. With the world`s vast coal reserves, there is a continuing effort to provide coal-fueled power generation technologies that use coal cleanly and efficiently. The lGCC technology accomplishes this objective. This chapter provides a summary of the status of lGCC technology and lGCC projects known to date. It also will present a technical overview of the British Gas/Lurgi (BGL) technology, one of the leading and most promising coal gasifier designs.

Edmonds, R.F. Jr.; Hulkowich, G.J.

1993-12-31T23:59:59.000Z

353

NOAA's autonomous balloons, capable of crossing oceans and sampling at very low altitudes, use advanced instrument and communication technology  

E-Print Network (OSTI)

NOAA's autonomous balloons, capable of crossing oceans and sampling at very low altitudes, use- grams. This paper traces the innovations in design and gains in capability of the autonomous Lagrangian

Businger, Steven

354

Workshop on Carbon Sequestration Science - Ocean Carbon Sequestration  

NLE Websites -- All DOE Office Websites (Extended Search)

Ocean Carbon Ocean Carbon Sequestration Howard Herzog MIT Energy Laboratory May 24, 2001 Ocean Carbon Sequestration Options * The direct injection of a relatively pure CO 2 stream that has been generated, for example, at a power plant or from an industrial process * The enhancement of the net oceanic uptake from the atmosphere, for example, through iron fertilization The DOE Center for Research on Ocean Carbon Sequestration (DOCS) * Established July 1999 * Centered at LBNL and LLNL * Participants S Eric Adams MIT S Jim Barry MBARI S Jim Bishop DOCS Scientific Co-director LBNL S Ken Caldeira DOCS Scientific Co-director LLNL S Sallie Chisholm MIT S Kenneth Coale Moss Landing Marine Laboratory S Russ Davis Scripps Institution of Oceanography S Paul Falkowski Rutgers S Howard Herzog MIT S Gerard Nihous Pacific International Center for High Technology Research

355

Power load forecasting using data mining and knowledge discovery technology  

Science Journals Connector (OSTI)

Considering the importance of the peak load to the dispatching and management of the electric system, the error of peak load is proposed in this paper as criteria to evaluate the effect of the forecasting model. This paper proposes a systemic framework that attempts to use data mining and knowledge discovery (DMKD) to pretreat the data. And a new model is proposed which combines artificial neural networks with data mining and knowledge discovery for electric load forecasting. With DMKD technology, the system not only could mine the historical daily loading which had the same meteorological category as the forecasting day to compose data sequence with highly similar meteorological features, but also could eliminate the redundant influential factors. Then an artificial neural network is constructed to predict according to its characteristics. Using this new model, it could eliminate the redundant information, accelerate the training speed of neural network and improve the stability of the convergence. Compared with single BP neural network, this new method can achieve greater forecasting accuracy.

Yongli Wang; Dongxiao Niu; Ling Ji

2011-01-01T23:59:59.000Z

356

Marine & Hydrokinetic Technologies (Fact Sheet)  

SciTech Connect

This fact sheet describes the U.S. Department of Energy's Water Power Program. The program supports the development of advanced water power devices that capture energy from waves, tides, ocean currents, rivers, streams, and ocean thermal gradients. The program works to promote the development and deployment of these new technologies, known as marine and hydrokinetic technologies, to assess the potential extractable energy from rivers, estuaries, and coastal waters, and to help industry harness this renewable, emissions-free resource to generate environmentally sustainable and cost-effective electricity.

Not Available

2010-04-01T23:59:59.000Z

357

Beijing Wende Xingye Wind Power Technology Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Xingye Wind Power Technology Co Ltd Xingye Wind Power Technology Co Ltd Jump to: navigation, search Name Beijing Wende Xingye Wind Power Technology Co Ltd Place Beijing, China Sector Wind energy Product Beijing-based wind project developer. It has plans to develop Alateng Wind Farm, located in Inner Mongolia, China. Coordinates 39.90601°, 116.387909° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.90601,"lon":116.387909,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

358

DOE Selects Projects to Advance Technologies for the Co-Production of Power  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advance Technologies for the Co-Production Advance Technologies for the Co-Production of Power and Hydrogen, Fuels or Chemicals from Coal-Biomass Feedstocks DOE Selects Projects to Advance Technologies for the Co-Production of Power and Hydrogen, Fuels or Chemicals from Coal-Biomass Feedstocks August 18, 2010 - 1:00pm Addthis Washington, DC - Eight projects that will focus on gasification of coal/biomass to produce synthetic gas (syngas) have been selected for further development by the U.S. Department of Energy (DOE). The total value of the projects is approximately $8.2 million, with $6.4 million of DOE funding and $1.8 million of non-Federal cost sharing. Syngas is a mixture of predominantly carbon monoxide and hydrogen which can subsequently be converted either to power, fuels, or chemicals. The

359

WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)  

SciTech Connect

The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), a company of Global Energy Inc., and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution over several years, including: (1) Feasibility study and conceptual design for an integrated demonstration facility, and for fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing to define any technology gaps or critical design and integration issues (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana.

Albert Tsang

2003-03-14T23:59:59.000Z

360

Historical development of concentrating solar power technologies to generate clean electricity efficiently A review  

Science Journals Connector (OSTI)

Abstract The conventional ways for generating electricity around the world face two main problems, which are gradual increase in the earth?s average surface temperature (global warming) and depleting fossil fuel reserves. So switching to renewable energy technologies is an urgent need. Concentrating solar power (CSP) technologies are one of renewable technologies that are able to solve the present and future electricity problems. In this paper the historical evolution for the cornerstone plants of CSP technologies to generate clean electricity was reviewed and the current projects worldwide of CSP technologies were presented to show that the CSP technologies are technically and commercially proven and have the possibility for hybridization with fossil fuel or integration with storage systems to sustain continuous operation similar to conventional plants. Among all solar thermal technologies parabolic trough is the most technically and commercially proven. It also has the possibility for hybridization since it is proven by operating in several commercial projects for more than 28 years. It has a high maturity level and able to provide the required operating heat energy either as a stand-alone or in hybrid systems at the lowest cost and lower economic risks. For this reason, this technology is dominant in the operational and under-construction projects. However, currently there is a trend toward employing the other CSP technologies in the future projects as a result of the improvement in their performance. The use of PTC technology in the operational CSP projects is 95.7% and has decreased to 73.4% for the under-construction projects. Meanwhile, the uses of Fresnel collector (LFC), Tower power (TSP) and Stirling dish (SDC) technologies in the operational projects are 2.07%, 2.24%, and 0% respectively and have increased to 5.74%, 20.82% and 0.052% respectively for the under-construction projects. For the development projects, the use of TSP technology has reached to 71.43%, compared to 28.57% for PTC.

Dhyia Aidroos Baharoon; Hasimah Abdul Rahman; Wan Zaidi Wan Omar; Saeed Obaid Fadhl

2015-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ocean power technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Demonstration of Recessed Downlight Technologies: Power and Illumination Assessment  

SciTech Connect

Solid state lighting (SSL), specifically light-emitting diodes (LED), has been advancing at a rapid pace, and there are presently multiple products available that serve as direct replacements for traditional luminaires. In this demonstration, conventional recessed lights in a conference room were used to compare conventional incandescent A-lamps, incandescent reflector R-lamps, dimming compact fluorescent lamps (CFL), to an LED replacement product. The primary focus during the study was on light delivered to the task plane as provided by the power required by the lighting system. Vertical illuminance, dimming range, and color shift are also important indicators of lighting quality and are discussed in the report. The results clearly showed that LEDs, with dimming-capable drivers, are much more efficient than incandescent and CFLs. Further, LEDs provide much smoother and consistent dimming than dimmable CFLs. On the potential negative side, it is important that the dimming switch be identified as compatible with the LED driver. A wide variety of dimmer switches are capable of dimming LEDs down to 15% of full light output, while select others can be capable of dimming LEDs down to 5%. In addition, LEDs can be intensive light sources, which can result in uncomfortable glare in some applications and to some occupants. Higher ceiling (9-foot or greater) or non-specular reflectors can act to alleviate the potential for glare.

Parker, Steven A.; Beeson, Tracy A.

2009-11-20T23:59:59.000Z

362

DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network (OSTI)

screens for ocean thermal energy conversion power plants.cold deep-ocean waters to produce electric power via eitherpower from the temperature differential between warm surface and cold deep-ocean

Sullivan, S.M.

2014-01-01T23:59:59.000Z

363

An Evolutionary Path for Concentrating Thermal Solar Power Technologies: A New Approach for Modeling CSP Power Costs and Potential  

SciTech Connect

Concentrating thermal solar power (CSP) technology is a potentially competitive power generation option, particularly in arid regions where direct sunlight is abundant. We examine the potential role of CSP power plants and their contribution to carbon emissions reduction. The answers to these questions depend on the cost of electricity generated by CSP plants. Although a few studies have projected future CSP costs based on assumptions for technology advancement and the effect of economies of scale and learning curves, few studies have considered the combined effects of intermittency, solar irradiance changes by season, and diurnal and seasonal system load changes. Because the generation of a solar plant varies over a day and by season, the interactions between CSP generators and other generators in the electric system can play an important role in determining costs. In effect, CSP electricity generation cost will depend on the CSP market penetration. This paper examines this relationship and explores possible evolutionary paths for CSP technologies with and without thermal storage.

Zhang, Yabei; Smith, Steven J.

2008-05-08T23:59:59.000Z

364

Grid-friendly wind power systems based on the synchronverter technology  

Science Journals Connector (OSTI)

Abstract Back-to-back PWM converters are becoming a realistic alternative to conventional converters in high-power wind power applications. In this paper, a control strategy based on the synchronverter technology is proposed for back-to-back PWM converters. Both converters are run as synchronverters, which are mathematically equivalent to the conventional synchronous generators. The rotor-side converter is responsible for maintaining the DC link voltage and the grid-side converter is responsible for the maximum power point tracking (MPPT). As the two converters are operated using the synchronverter technology, the formed wind power system becomes more friendly to the grid. Extensive real-time digital simulation results are presented to verify the effectiveness of the proposed method under normal operation and grid-fault scenarios.

Qing-Chang Zhong; Zhenyu Ma; Wen-Long Ming; George C. Konstantopoulos

2015-01-01T23:59:59.000Z

365

Federal Energy Management Program: Hydropower and Ocean Energy Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydropower and Hydropower and Ocean Energy Resources and Technologies to someone by E-mail Share Federal Energy Management Program: Hydropower and Ocean Energy Resources and Technologies on Facebook Tweet about Federal Energy Management Program: Hydropower and Ocean Energy Resources and Technologies on Twitter Bookmark Federal Energy Management Program: Hydropower and Ocean Energy Resources and Technologies on Google Bookmark Federal Energy Management Program: Hydropower and Ocean Energy Resources and Technologies on Delicious Rank Federal Energy Management Program: Hydropower and Ocean Energy Resources and Technologies on Digg Find More places to share Federal Energy Management Program: Hydropower and Ocean Energy Resources and Technologies on AddThis.com... Energy-Efficient Products

366

Clean Coal Power Initiative Round 1 Demonstration Projects Applying Advanced Technologies to Lower Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

7 JUNE 2012 7 JUNE 2012 Clean Coal Power Initiative Round 1 Demonstration Projects Applying Advanced Technologies to Lower Emissions and Improve Efficiency 2 Cover Photos: * Top left: Great River Energy's Coal Creek Station * Top right: We Energy's Presque Isle Power Plant * Bottom: Dynegy's Baldwin Energy Complex A report on three projects conducted under separate cooperative agreements between the U.S. Department of Energy and: * Great River Energy * NeuCo. , Inc. * WeEnergies 3 Executive Summary 4 Clean Coal Technology Demonstration Program 5 CCPI Program 6 Demonstration of Integrated Optimization Software at

367

Applying Learning Curves to Modeling Future Coal and Gas Power Generation Technologies  

Science Journals Connector (OSTI)

Other potential improvements to the model include an expansion to cover competing energy technologies not included in the current model such as nuclear, wind, and solar. ... Given the dominance of power plant emissions of greenhouse gases, and the growing worldwide interest in CO2 capture and storage (CCS) as a potential climate change mitigation option, the expected future cost of power plants with CO2 capture is of significant interest. ... Bergek, A.; Tell, F.; Berggren, C.; Watson, J.Technological Capabilities and Late Shakeouts: Industrial Dynamics in the Advanced Gas Turbine Industry, 19872002 Industrial and Corporate Change 2008, 17 ( 2) 335 392 ...

Chris Ordowich; John Chase; Daniel Steele; Ripudaman Malhotra; Michiaki Harada; Keiji Makino

2011-11-28T23:59:59.000Z

368

Electromagnetic pulse research on electric power systems: Program summary and recommendations. Power Systems Technology Program  

SciTech Connect

A single nuclear detonation several hundred kilometers above the central United States will subject much of the nation to a high-altitude electromagnetic pulse (BENT). This pulse consists of an intense steep-front, short-duration transient electromagnetic field, followed by a geomagnetic disturbance with tens of seconds duration. This latter environment is referred to as the magnetohydrodynamic electromagnetic pulse (NMENT). Both the early-time transient and the geomagnetic disturbance could impact the operation of the nation`s power systems. Since 1983, the US Department of Energy has been actively pursuing a research program to assess the potential impacts of one or more BENT events on the nation`s electric energy supply. This report summarizes the results of that program and provides recommendations for enhancing power system reliability under HENT conditions. A nominal HENP environment suitable for assessing geographically large systems was developed during the program and is briefly described in this report. This environment was used to provide a realistic indication of BEMP impacts on electric power systems. It was found that a single high-altitude burst, which could significantly disturb the geomagnetic field, may cause the interconnected power network to break up into utility islands with massive power failures in some areas. However, permanent damage would be isolated, and restoration should be possible within a few hours. Multiple bursts would likely increase the blackout areas, component failures, and restoration time. However, a long-term blackout of many months is unlikely because major power system components, such as transformers, are not likely to be damaged by the nominal HEND environment. Moreover, power system reliability, under both HENT and normal operating conditions, can be enhanced by simple, and often low cost, modifications to current utility practices.

Barnes, P.R.; McConnell, B.W.; Van Dyke, J.W. [Oak Ridge National Lab., TN (United States); Tesche, F.M. [Tesche (F.M.), Dallas, TX (United States); Vance, E.F. [Vance (E.F.), Fort Worth, TX (United States)

1993-01-01T23:59:59.000Z

369

An engineering-economic analysis of combined heat and power technologies in a (mu)grid application  

E-Print Network (OSTI)

Technologies in a Grid Application heat, usually in thethe Grid. In this Grid the heat loads are not that great,Combined Heat and Power Technologies in a Grid Application

Bailey, Owen; Ouaglal, Boubekeur; Bartholomew, Emily; Marnay, Chris; Bourassa, Norman

2002-01-01T23:59:59.000Z

370

LBNLs Low-NOx Combustion Technologies for Heat and Power Generation  

NLE Websites -- All DOE Office Websites (Extended Search)

Swirl Injectors for Swirl Injectors for High Hydrogen Fuel Gas Turbines Robert K. Cheng Environmental Energy Technologies Division Lawrence Berkeley National Laboratory Berkeley, CA 94720 Research supported by NETL - Fossil Energy, US Dept. of Energy Presentation at UTSR Workshop - Oct. 20, 2010 Participants and Collaborators  LBNL - Environmental Energy Technology Div.  Robert Cheng, David Littlejohn, Peter Therkelsen, Ken Smith & Sy Ali  United Tech. Research Center - Pratt & Whitney Power Systems  Dustin Davis, Catalin Fotache & Richard Tuthill  Florida Turbine Technologies  Russell Jones & Joe Brostmeyer  LBNL - Computational Research Div.  John Bell & Marc Day  Siemens Energy Inc.  Scott Martin & Enrique Portillo Bilbao  University of Iowa

371

Status of Rankine-cycle technology for space nuclear power applications  

SciTech Connect

A substantial effort on the development of the liquid metal Rankine cycle space nuclear power system was carried out in programs jointly sponsored by the National Aeronautics and Space Administration (NASA) and the Atomic Energy Commission (AEC) during the period of 1960--1972. Component tests were conducted which have established a considerable technology base for the concept. The development effort and technology status of each component are presented. The key technology issues remaining for development of the system are: refractory metal parts fabrication, turbine blade endurance, turbine bearings and seals, and generator winding seal. 5 refs.

Holcomb, R.S.

1991-01-01T23:59:59.000Z

372

Silicic acid leakage from the Southern Ocean: Opposing effects of nutrient uptake and oceanic circulation  

E-Print Network (OSTI)

to the thermocline region of low latitudes. The power of Southern Ocean intermediate waters to affect phytoplanktonSilicic acid leakage from the Southern Ocean: Opposing effects of nutrient uptake and oceanic in formation rate of Southern Ocean intermediate waters. Comparison of d30 Si records from the Southern Ocean

Pahnke, Katharina

373

Conventional Hydropower Technologies (Fact Sheet), Wind And Water Power Program (WWPP)  

NLE Websites -- All DOE Office Websites (Extended Search)

Water Power Water Power Program supports the development of technologies that harness the nation's renewable hydropower resources to generate environmentally sustainable and cost-effective electricity. Most conventional hydropower plants use a diver- sion structure, such as a dam, to capture water's potential energy via a turbine for electricity generation. The program's conventional hydropower activities focus on increasing generating capacity and efficiency at existing hydroelectric facilities, adding hydroelectric generating capacity to exist- ing non-powered dams, adding new low impact hydropower, increasing advanced pumped-storage hydropower capacity, and reducing potential environmental impacts of conven- tional hydropower production. The program's research and

374

Development of Molten-Salt Heat Trasfer Fluid Technology for Parabolic Trough Solar Power Plants  

Energy.gov (U.S. Department of Energy (DOE))

"This PowerPoint presentation was originally given by Dylan Grogan, principal investigator at Abengoa Solar, during a SunShot Initiative Concentrating Solar Power program review on April 24, 2013. The project, Development of Molten-Salt Heat Transfer Fluid Technology for Parabolic Trough Solar Power Plants, seeks to determine whether the inorganic fluids (molten salts) offer a sufficient reduction in levelized energy costs to pursue further development, and to develop the components required for their use. The presentation focuses on presenting conclusions from Phase 1 of the program and looks ahead to review Phase 2 activities."

375

How Wireless Power Charging Technology Affects Sensor Network Deployment and Routing  

E-Print Network (OSTI)

of environmental energy such as sunlight and acoustic vibra- tions [6]­[9]. However, the energy that a solar cell with a large solar cell; the low harvesting efficiency of small solar cells, together with uncontrollableHow Wireless Power Charging Technology Affects Sensor Network Deployment and Routing Bin Tong, Zi

Wang, Guiling

376

Renewable Energy Powered Membrane Technology. 1. Development and Characterization of a Photovoltaic Hybrid Membrane System  

Science Journals Connector (OSTI)

Renewable Energy Powered Membrane Technology. 1. Development and Characterization of a Photovoltaic Hybrid Membrane System ... In isolated communities where potable water sources as well as energy grids are limited or nonexistent, treating brackish groundwater aquifers with small-scale desalination systems can be a viable alternative to existing water infrastructures. ...

A.I. Schfer; A. Broeckmann; B.S. Richards

2006-12-29T23:59:59.000Z

377

NREL's Hydrogen-Powered Bus Serves as Showcase for Advanced Vehicle Technologies (AVT) (Brochure)  

SciTech Connect

Brochure describes the hydrogen-powered internal combustion engine (H2ICE) shuttle bus at NREL. The U.S. Department of Energy (DOE) is funding the lease of the bus from Ford to demonstrate market-ready advanced technology vehicles to visitors at NREL.

Not Available

2010-08-01T23:59:59.000Z

378

An evaluation of the dismantling technologies for decommissioning of nuclear power plants  

Science Journals Connector (OSTI)

Abstract This paper is to suggest an evaluation method on the dismantling technologies for decommissioning of nuclear power plants. The parameters of evaluation are performance impacts, site-specific impacts, safety impacts, and cost impacts. The evaluation model was provided and applied for dismantling of a steam generator.

KwanSeong Jeong; ByungSeon Choi; Jeikwon Moon; Dongjun Hyun; JongHwan Lee; IkJune Kim; GeunHo Kim; JaeSeok Seo

2014-01-01T23:59:59.000Z

379

Ocean Thermal Energy Conversion  

Science Journals Connector (OSTI)

A pertinent question, however, is: what is the worldwide power resource that could be extracted with OTEC plants without affecting the thermohaline ocean circulation? The estimate is that the maximum steady-state...

Dr. Luis A. Vega Ph.D.

2013-01-01T23:59:59.000Z

380

Ocean Thermal Energy Conversion  

Science Journals Connector (OSTI)

A pertinent question, however, is: what is the worldwide power resource that could be extracted with OTEC plants without affecting the thermohaline ocean circulation? The estimate is that the maximum steady-state...

Dr. Luis A. Vega Ph.D.

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ocean power technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

MHK Technologies/Device for the Power Advantage of Sea Currents | Open  

Open Energy Info (EERE)

for the Power Advantage of Sea Currents for the Power Advantage of Sea Currents < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Device for the Power Advantage of Sea Currents.jpg Technology Profile Primary Organization Carmelo Vell n Technology Resource Click here Current Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The project is a device for connection of turbines or hydraulic wheels in order to obtain energy from a water current variable in depth and direction of flow Its installation is executed by a mechanism of pivots in a direct way or a ballast at the sub aqueous bottom Its particular hydrodynamic morphology contributes to the direction and stabilization of all the set in the direction and sine of the current It has a series of devices able to measure the intensity of the current flow to orient the equipment towards the most favorable angle of attack of that flow towards the turbine It s applicable to any type of water current but it s especially suitable for the location in a basic sea current It allows to lodge different types from turbines or hydraulic wheels with the main object of the obtaining of energy preferably electrical which can be obtained by the combination of the turbine installed with a generator The project is placed then in the scope of the ecological and rene

382

WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)  

SciTech Connect

The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead previously by Gasification Engineering Corporation (GEC). The project is now under the leadership of ConocoPhillips Company (COP) after it acquired GEC and the E-Gas{trademark} gasification technology from Global Energy in July 2003. The Phase I of this project was supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation, while the Phase II is supported by Gas Technology Institute, TDA Research, Inc., and Nucon International, Inc. The two project phases planned for execution include: (1) Feasibility study and conceptual design for an integrated demonstration facility at Global Energy's existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana, and for a fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing (RD&T) to define any technology gaps or critical design and integration issues. The WREL facility was designed, constructed, and operated under a project selected and co-funded under the Round IV of the United States Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now acquired and offered commercially by COP as the E-GAS{trademark} technology. In a joint effort with the DOE, a Cooperative Agreement was awarded under the Early Entrance Coproduction Plant (EECP) solicitation. GEC, and now COP and the industrial partners are investigating the use of synthesis gas produced by the E-GAS{trademark} technology in a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. The objectives of this effort are to determine the feasibility of an EECP located at a specific site which produces some combination of electric power (or heat), fuels, and/or chemicals from synthesis gas derived from coal, or, coal in combination with some other carbonaceous feedstock. The project's intended result is to provide the necessary technical, economic, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry.

Thomas Lynch

2004-01-07T23:59:59.000Z

383

Application of CFB technology for large power generating units and CO{sub 2} capture  

SciTech Connect

Data on the development of the circulating fluidized bed (CFB) technology for combustion of fuels in large power generating units are examined. The problems with raising the steam parameters and unit power of boilers with a circulating fluidized bed are examined. With the boiler system at the 460 MW unit at Lagisza (Poland) as an example, the feasibility of raising the efficiency of units with CFB boilers through deep recovery of the heat of the effluent gases and reducing expenditure for in-house needs is demonstrated. Comparative estimates of the capital and operating costs of 225 and 330 MW units are used to determine the conditions for optimum use of CFB boilers in the engineering renovation of thermal power plants in Russia. New areas for the application of CFB technology in CO{sub 2} capture are analyzed in connection with the problem of reducing greenhouse gas emissions.

Ryabov, G. A., E-mail: georgy.ryabov@gmail.com; Folomeev, O. M.; Sankin, D. A.; Khaneev, K. V.; Bondarenko, I. G.; Mel'nikov, D. A. [JSC 'All-Russian Thermotechnical Institute' ('VTI') (Russian Federation)

2010-07-15T23:59:59.000Z

384

Solar Hot Water Technology: Office of Power Technologies (OPT) Success Stories Series Fact Sheet  

NLE Websites -- All DOE Office Websites (Extended Search)

Buildings Program Buildings Program Office of Solar Energy Technologies Every home, commercial building, and indus- trial facility requires hot water. An enormous amount of energy is consumed in the United States producing and maintaining our supply of on-demand hot water; the residential and commercial sectors combined use 3 quads (quadrillion Btus) of energy per year, roughly 3% of the total U.S. energy consumption. As of 1998, 1.2 million systems have been installed on homes in the United States, with 6000 currently being added each year. Yet the potential for growth is huge, as solar hot water systems are supplying less than 2% of the nation's hot water. For industrial applications, the growth potential lies in large-scale systems, using flat-plate and trough-type collectors which are being installed in increasing numbers in

385

MHK Technologies/Centipod | Open Energy Information  

Open Energy Info (EERE)

Centipod Centipod < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Centipod.jpg Technology Profile Primary Organization Ecomerit Technologies LLC see Dehlsen Associates LLC Technology Resource Click here Wave Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The Centipod ocean wave generating system a horizontally stable floating platform optimally yawed active to wavefront exposure has flotation pods driving hydraulic rams Fluid drives the hydroelectric generating system providing cost competitive electric power Mooring Configuration Proprietary Technology Dimensions Device Testing

386

ECE 437/537 -Smart Grid Catalog Description: Fundamentals of smart power grids. Technology advances in transmission  

E-Print Network (OSTI)

ECE 437/537 - Smart Grid Catalog Description: Fundamentals of smart power grids. Technology advances in transmission and distribution systems. Policy drivers. Assets and demand management. Smart grid Cotilla-Sanchez Course content: · Introduction to smart power grids. Technology and policy background

387

Understanding the Impact of Large-Scale Penetration of Micro Combined Heat & Power Technologies within Energy Systems  

E-Print Network (OSTI)

Understanding the Impact of Large-Scale Penetration of Micro Combined Heat & Power Technologies of Micro Combined Heat & Power Technologies within Energy Systems by Karen de los Ángeles Tapia for this purpose. Co-generation of electricity and heat at the residential level, known as micro

Catholic University of Chile (Universidad Católica de Chile)

388

Prospects of Smart Grid Technologies for a Sustainable and Secure Power  

Open Energy Info (EERE)

Prospects of Smart Grid Technologies for a Sustainable and Secure Power Prospects of Smart Grid Technologies for a Sustainable and Secure Power Supply Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Prospects of Smart Grid Technologies for a Sustainable and Secure Power Supply Focus Area: Crosscutting Topics: Potentials & Scenarios Website: www.worldenergy.org/documents/p001546.pdf Equivalent URI: cleanenergysolutions.org/content/prospects-smart-grid-technologies-sus Language: English Policies: "Deployment Programs,Regulations" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Technical Assistance Regulations: "Resource Integration Planning,Enabling Legislation,Net Metering & Interconnection" is not in the list of possible values (Agriculture Efficiency Requirements, Appliance & Equipment Standards and Required Labeling, Audit Requirements, Building Certification, Building Codes, Cost Recovery/Allocation, Emissions Mitigation Scheme, Emissions Standards, Enabling Legislation, Energy Standards, Feebates, Feed-in Tariffs, Fuel Efficiency Standards, Incandescent Phase-Out, Mandates/Targets, Net Metering & Interconnection, Resource Integration Planning, Safety Standards, Upgrade Requirements, Utility/Electricity Service Costs) for this property.

389

Utility-Scale Concentrating Solar Power and Photovoltaic Projects: A Technology and Market Overview  

SciTech Connect

Over the last several years, solar energy technologies have been, or are in the process of being, deployed at unprecedented levels. A critical recent development, resulting from the massive scale of projects in progress or recently completed, is having the power sold directly to electric utilities. Such 'utility-scale' systems offer the opportunity to deploy solar technologies far faster than the traditional 'behind-the-meter' projects designed to offset retail load. Moreover, these systems have employed significant economies of scale during construction and operation, attracting financial capital, which in turn can reduce the delivered cost of power. This report is a summary of the current U.S. utility-scale solar state-of-the-market and development pipeline. Utility-scale solar energy systems are generally categorized as one of two basic designs: concentrating solar power (CSP) and photovoltaic (PV). CSP systems can be further delineated into four commercially available technologies: parabolic trough, central receiver (CR), parabolic dish, and linear Fresnel reflector. CSP systems can also be categorized as hybrid, which combine a solar-based system (generally parabolic trough, CR, or linear Fresnel) and a fossil fuel energy system to produce electric power or steam.

Mendelsohn, M.; Lowder, T.; Canavan, B.

2012-04-01T23:59:59.000Z

390

Sensors and nuclear power. Report by the Technology Transfer Sensors Task Team  

SciTech Connect

The existing sensor systems for the basic process parameters in nuclear power plant operation have limitations with respect to accuracy, ease of maintenance and signal processing. These limitations comprise the economy of nuclear power generation. To reduce the costs and improve performance of nuclear power plant fabrication, operation, maintenance and repair we need to advance the sensor technology being applied in the nuclear industry. The economic viability and public acceptance of nuclear power will depend on how well we direct and apply technological advances to the industry. This report was prepared by a team with members representing a wide range of the nuclear industry embracing the university programs, national laboratories, architect engineers and reactor manufacturers. An intensive effort was made to survey current sensor technology, evaluate future trends and determine development needs. This included literature surveys, visits with utilities, universities, laboratories and organizations outside the nuclear industry. Several conferences were attended to take advantage of the access to experts in selected topics and to obtain opinions. Numerous telephone contacts and exchanges by mail supplemented the above efforts. Finally, the broad technical depth of the team members provided the basis for the stimulating working sessions during which this report was organized and drafted.

Not Available

1985-06-01T23:59:59.000Z

391

Estimated global ocean wind power potential from QuikSCAT observations, accounting for turbine characteristics and siting  

E-Print Network (OSTI)

3. The sensitivity of wind power to height is then evaluatedthe sensitivity of wind power to height. At a height z37 ] The sensitivity of wind power to height is evaluated

Capps, Scott B; Zender, Charles S

2010-01-01T23:59:59.000Z

392

Federal strategies to increase the implementation of combined heat and power technologies in the United States  

SciTech Connect

Recent interest in combined heat and power (CHP) is providing momentum to efforts aimed at increasing the capacity of this highly-efficient technology. Factors driving this increase in interest include the need to increase the efficiency of the nation's electricity generation infrastructure, DOE Assistant Secretary Dan Reicher's challenge to double the capacity of CHP by 2010, the success of DOE's Advanced Turbine Systems Program in supporting ultra-efficient CHP technologies, and the necessity of finding cost-effective solutions to address climate change and air quality issues. The federal government is committed to increasing the penetration of CHP technologies in the US. The ultimate goal is to build a competitive market for CHP in which policies and regulations support the implementation of a full suite of technologies for multiple applications. Specific actions underway at the federal level include technology strategies to improve CHP data collection and assessment and work with industry to encourage the development of advanced CHP technologies. Policy strategies include changes to federal environmental permitting procedures including CHP-friendly strategies in federal restructuring legislation, supporting tax credits and changes to depreciation requirements as economic incentives to CHP, working with industry to leverage resources in the development of advanced CHP technologies, educating state officials about the things they can do to encourage CHP, and increasing awareness about the benefits of CHP and the barriers limiting its increased implementation.

Laitner, J.; Parks, W.; Schilling, J.; Scheer, R.

1999-07-01T23:59:59.000Z

393

Day, night and all-weather security surveillance automation synergy from combining two powerful technologies  

SciTech Connect

Thermal imaging is rightfully a real-world technology proven to bring confidence to daytime, night-time and all weather security surveillance. Automatic image processing intrusion detection algorithms are also a real world technology proven to bring confidence to system surveillance security solutions. Together, day, night and all weather video imagery sensors and automated intrusion detection software systems create the real power to protect early against crime, providing real-time global homeland protection, rather than simply being able to monitor and record activities for post event analysis. These solutions, whether providing automatic security system surveillance at airports (to automatically detect unauthorized aircraft takeoff and landing activities) or at high risk private, public or government facilities (to automatically detect unauthorized people or vehicle intrusion activities) are on the move to provide end users the power to protect people, capital equipment and intellectual property against acts of vandalism and terrorism. As with any technology, infrared sensors and automatic image intrusion detection systems for global homeland security protection have clear technological strengths and limitations compared to other more common day and night vision technologies or more traditional manual man-in-the-loop intrusion detection security systems. This paper addresses these strength and limitation capabilities. False Alarm (FAR) and False Positive Rate (FPR) is an example of some of the key customer system acceptability metrics and Noise Equivalent Temperature Difference (NETD) and Minimum Resolvable Temperature are examples of some of the sensor level performance acceptability metrics. (authors)

Morellas, Vassilios; Johnson, Andrew [Honeywell Labs, 3660, Technology Drive, Minneapolis MN 5518 (United States); Johnston, Chris [Honeywell ACS, 1985 Douglas Drive North, Golden Valley MN 55422 (United States); Roberts, Sharon D.; Francisco, Glen L. [L-3 Communications Infrared Products, 13532 N. Central Expressway, Dallas TX 75243 (United States)

2006-07-01T23:59:59.000Z

394

Reliable, Efficient and Cost-Effective Electric Power Converter for Small Wind Turbines Based on AC-link Technology  

SciTech Connect

Grid-tied inverter power electronics have been an Achilles heel of the small wind industry, providing opportunity for new technologies to provide lower costs, greater efficiency, and improved reliability. The small wind turbine market is also moving towards the 50-100kW size range. The unique AC-link power conversion technology provides efficiency, reliability, and power quality advantages over existing technologies, and Princeton Power will adapt prototype designs used for industrial asynchronous motor control to a 50kW small wind turbine design.

Darren Hammell; Mark Holveck; DOE Project Officer - Keith Bennett

2006-08-01T23:59:59.000Z

395

Regime for Marine Scientific Research in the Indian Ocean Region  

Science Journals Connector (OSTI)

Structural leadership by power-based actors was seen as fundamental by ... IOGOOS members to the successful establishment of an Ocean Observing System in the Indian Ocean.

Manoj Gupta

2010-01-01T23:59:59.000Z

396

Respiration and ammonium excretion by open ocean gelatinous  

Science Journals Connector (OSTI)

Mar 26, 1976 ... divers in the western North Atlantic Ocean. In situ rates of ... open ocean regions, however, there is little ..... power functions of body protein (mg.

2000-01-05T23:59:59.000Z

397

Spectral characterization of Ekman velocities in the Southern Ocean based on surface drifter trajectories  

E-Print Network (OSTI)

that Period (days) Ocean Currents Power Spectral Density !2.2 Power rotary spectra of wind stress and ocean velocity2.2 Power rotary spectra of wind stress and ocean ve- locity

Elipot, Shane

2006-01-01T23:59:59.000Z

398

MHK Technologies/SeaWEED | Open Energy Information  

Open Energy Info (EERE)

SeaWEED SeaWEED < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage SeaWEED.jpg Technology Profile Primary Organization Grey Island Energy Inc Technology Resource Click here Wave Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description The Sea Wave Energy Extraction Device is designed to maximize power production while maintaining a high degree of survivability in some of the world s harshest environments The device is designed to harness power generated by ocean surface waves by adjusting to varying wave conditions and utilizing a hydraulic takeoff system to transmit mechanical power Technology Dimensions Device Testing Scale Test *In water tests of the system were successfully completed in the tow tank of NRC Institute for Ocean Technology

399

Utility-Scale Concentrating Solar Power and Photovoltaic Projects: A Technology and Market Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Utility-Scale Concentrating Utility-Scale Concentrating Solar Power and Photovoltaics Projects: A Technology and Market Overview Michael Mendelsohn, Travis Lowder, and Brendan Canavan Technical Report NREL/TP-6A20-51137 April 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Utility-Scale Concentrating Solar Power and Photovoltaics Projects: A Technology and Market Overview Michael Mendelsohn, Travis Lowder, and Brendan Canavan Prepared under Task No. SM10.2442

400

Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT)  

SciTech Connect

The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project was established to evaluate integrated electrical power generation and methanol production through clean coal technologies. The project was under the leadership of ConocoPhillips Company (COP), after it acquired Gasification Engineering Corporation (GEC) and the E-Gas gasification technology from Global Energy Inc. in July 2003. The project has completed both Phase 1 and Phase 2 of development. The two project phases include the following: (1) Feasibility study and conceptual design for an integrated demonstration facility at SG Solutions LLC (SGS), previously the Wabash River Energy Limited, Gasification Facility located in West Terre Haute, Indiana, and for a fence-line commercial embodiment plant (CEP) operated at the Dow Chemical Company or Dow Corning Corporation chemical plant locations. (2) Research, development, and testing (RD&T) to define any technology gaps or critical design and integration issues. Phase 1 of this project was supported by a multi-industry team consisting of Air Products and Chemicals, Inc., The Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation, while Phase 2 was supported by Gas Technology Institute, TDA Research Inc., and Nucon International, Inc. The SGS integrated gasification combined cycle (IGCC) facility was designed, constructed, and operated under a project selected and co-funded under the Round IV of the United States Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other carbonaceous fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas (syngas) is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now acquired and offered commercially by COP as the E-Gas technology. In a joint effort with the DOE, a Cooperative Agreement was awarded under the Early Entrance Coproduction Plant (EECP) solicitation. GEC, and later COP and the industrial partners investigated the use of syngas produced by the E-Gas technology in a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. The objectives of this effort were to determine the feasibility of an EECP located at a specific site which produces some combination of electric power (or heat), fuels, and/or chemicals from syngas derived from coal, or, coal in combination with some other carbonaceous feedstock. The intended result of the project was to provide the necessary technical, economic, and environmental information that would be needed to move the EECP forward to detailed design, construction, and operation by industry. The EECP study conducted in Phase 1 of the IMPPCCT Project confirmed that the concept for the integration of gasification-based (E-Gas) electricity generation from coal and/or petroleum coke and methanol production (Liquid Phase Methanol or LPMEOH{trademark}) processes was feasible for the coproduction of power and chemicals. The results indicated that while there were minimal integration issues that impact the deployment of an IMPPCCT CEP, the major concern was the removal of sulfur and other trace contaminants, which are known methanol catalyst poisons, from the syngas. However, economic concerns in the domestic methanol market which is driven by periodic low natural gas prices and cheap offshore supplies limit the commercial viability of this more capital intensive concept. The objective of Phase 2 was to conduct RD&T as outlined in the Phase 1 RD&T Plan to enhance the development and commercial acceptance of coproduction technology. Studies were designed to address the technical concerns that would mak

Conocophillips

2007-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "ocean power technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Power Supply Optimization in Sub-130 nm Leakage Dominant Technologies Man L Mui Kaustav Banerjee Amit Mehrotra  

E-Print Network (OSTI)

behaviour as a function of power supply and temperature. We use these models to calculate the full, it is essential to control the leakage power and the temperature of the die. One viable method for optimizingPower Supply Optimization in Sub-130 nm Leakage Dominant Technologies Man L Mui Kaustav Banerjee

402

WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)  

SciTech Connect

The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), a company of Global Energy Inc., and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution over a three year period, including: (1) Feasibility study and conceptual design for an integrated demonstration facility, and for fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing to define any technology gaps or critical design and integration issues (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana. The WREL facility is a project selected and co-funded under the Round IV of the U.S. Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now offered commercially by Global Energy, Inc., as the E-GAS{trademark} technology. In a joint effort with the DOE, a Cooperative Agreement was awarded under the Early Entrance Coproduction Plant (EECP) solicitation. GEC and an Industrial Consortium are investigating the use of synthesis gas produced by the E-GAS{trademark} technology in a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. During the reporting period, various methods to remove low-level contaminants for the synthesis gas were reviewed. In addition, there was a transition of the project personnel for GEC which has slowed the production of the outstanding project reports.

Gary Harmond; Albert Tsang

2003-03-14T23:59:59.000Z

403

Renewable energy technologies for the Indian power sector: mitigation potential and operational strategies  

Science Journals Connector (OSTI)

The future economic development trajectory for India is likely to result in rapid and accelerated growth in energy demand, with attendant shortages and problems. Due to the predominance of fossil fuels in the generation mix, there are large negative environmental externalities caused by electricity generation. The power sector alone has a 40 percent contribution to the total carbon emissions. In this context, it is imperative to develop and promote alternative energy sources that can lead to sustainability of the energyenvironment system. There are opportunities for renewable energy technologies under the new climate change regime as they meet the two basic conditions to be eligible for assistance under UNFCCC mechanisms: they contribute to global sustainability through GHG mitigation; and, they conform to national priorities by leading to the development of local capacities and infrastructure. This increases the importance of electricity generation from renewables. Considerable experience and capabilities exist in the country on renewable electricity technologies. But a number of technoeconomic, market-related, and institutional barriers impede technology development and penetration. Although at present the contribution of renewable electricity is small, the capabilities promise the flexibility for responding to emerging economic, socioenvironmental and sustainable development needs. This paper discusses the renewable and carbon market linkages and assesses mitigation potential of power sector renewable energy technologies under global environmental intervention scenarios for GHG emissions reduction. An overall energy system framework is used for assessing the future role of renewable energy in the power sector under baseline and different mitigation scenarios over a time frame of 35 years, between 2000 to 2035. The methodology uses an integrated bottom-up modelling framework. Looking into past performance trends and likely future developments, analysis results are compared with officially set targets for renewable energy. The paper also assesses the CDM investment potential for power sector renewables. It outlines specific policy interventions for overcoming the barriers and enhancing deployment of renewables for the future.

Debyani Ghosh; P.R. Shukla; Amit Garg; P.Venkata Ramana

2002-01-01T23:59:59.000Z

404

Insuring Electric Power for Critical Services After Disasters with Building-Sited Electric Generating Technologies  

E-Print Network (OSTI)

of traditional emergency generator applications, these technologies are integrated in building energy systems to provide some portion of a facilitys electricity and thermal energy needs including space heating and air conditioning. In the event of a power.... These CHP systems provide electricity and utilize waste heat from the generation process in existing building thermal applications such as space heating, domestic water heating. Thermal energy can also be used in an absorption refrigeration cycle...

Jackson, J.

2006-01-01T23:59:59.000Z

405

ClearEdge Power formerly Quantum Leap Technology | Open Energy Information  

Open Energy Info (EERE)

ClearEdge Power formerly Quantum Leap Technology ClearEdge Power formerly Quantum Leap Technology Jump to: navigation, search Name ClearEdge Power (formerly Quantum Leap Technology) Place Hillsboro, Oregon Zip 97124 Sector Hydro, Hydrogen Product Develops small scale (~2.0kW) hydrogen fuel cells using silicon wafers. Coordinates 43.651735°, -90.341144° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.651735,"lon":-90.341144,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

406

Mesoscale coupled ocean-atmosphere feedbacks in boundary current systems  

E-Print Network (OSTI)

response of the ocean eddies . The power spectrum of thethe ocean. As such, the larger energy in the power spectrumocean eddies. On the other hand, Smoothed ROMS has higher power

Putrasahan, Dian Ariyani

2012-01-01T23:59:59.000Z

407

Status of an advanced radioisotope space power system using free-piston Stirling technology  

SciTech Connect

This paper describes a free-piston Stirling engine technology project to demonstrate a high efficiency power system capable of being further developed for deep space missions using a radioisotope (RI) heat source. The key objective is to develop a power system with an efficiency exceeding 20% that can function with a high degree of reliability for 10 years or longer on deep space missions. Primary issues being addressed for Stirling space power systems are weight and the vibration associated with reciprocating pistons. Similar weight and vibration issues have been successfully addressed with Stirling cryocoolers, which are the accepted standard for cryogenic cooling in space. Integrated long-life Stirling engine-generator (or convertor) operation has been demonstrated by the terrestrial Radioisotope Stirling Generator (RSG) and other Stirling Technology Company (STC) programs. Extensive RSG endurance testing includes more than 40,000 maintenance-free, degradation-free hours for the complete convertor, in addition to several critical component and subsystem endurance tests. The Stirling space power convertor project is being conducted by STC under DOE Contract, and NASA SBIR Phase II contracts. The DOE contract objective is to demonstrate a two-convertor module that represents half of a nominal 150-W(e) power system. Each convertor is referred to as a Technology Demonstration Convertor (TDC). The ultimate Stirling power system would be fueled by three general purpose heat source (GPHS) modules, and is projected to produce substantially more electric power than the 150-watt target. The system is capable of full power output with one failed convertor. One NASA contract, nearing completion, uses existing 350-W(e) RG-350 convertors to evaluate interactivity of two back-to-back balanced convertors with various degrees of electrical and mechanical interaction. This effort has recently provided the first successful synchronization of two convertors by means of parallel alternator electrical connections, thereby reducing vibration levels by more than an order of magnitude. It will also demonstrate use of an artificial neural network to monitor system health without invasive instrumentation. The second NASA contract, begun in January 1998, will develop an active adaptive vibration reduction system to be integrated with the DOE-funded TDC convertors. Preliminary descriptions and specifications of the Stirling convertor design, as well as program status and plans, are included.

White, M.A,; Qiu, S.; Erbeznik, R.M.; Olan, R.W.; Welty, S.C.

1998-07-01T23:59:59.000Z

408

Chapter 16 - Ocean Engines  

Science Journals Connector (OSTI)

Publisher Summary Ocean thermal energy converters (OTECs) took advantage of the ocean acting as an immense collector and storer of solar radiation, thus delivering a steady flow of low-grade thermal energy. The ocean plays a similar role in relation to the wind energy, which is transformed into waves far steadier than the air currents that created them. Nevertheless, waves are neither steady nor concentrated enough to constitute a highly attractive energy source notwithstanding their large total power. There is little net horizontal motion of water in a surface ocean wave. A floating object drifts in the direction of the wave with about 1% of the wave velocity. A given elementary cell of water will move in a vertical circle, surging forward near the crest of the wave but receding by an almost equal amount at the trough. Any system in which the wave velocity depends on wavelength is called dispersive; hence the deep ocean is dispersive.

Aldo Vieira da Rosa

2009-01-01T23:59:59.000Z

409

Thermoelectric Power Generation as an Alternative Green Technology of Energy Harvesting  

E-Print Network (OSTI)

The vast majority of heat that is generated from computer processor chips to car engines to electric power plants, the need to use of excess heat creates a major source of inefficiency. Energy harvesters are thermoelectric materials which are solid-state energy converters used to convert waste heat into electricity. Significant improvements to the thermoelectric materials measured by figure of merit (ZT).forconverting waste-heat energy directly into electrical power, application of this alternative green technology can be made and also it will improve the overall efficiencies of energy conversion systems. In this paper, the basic concepts of thermoelectric material and its power generation is presented and recent patents of thermoelectric material are reviewed and discussed.

Ravi R. Nimbalkar; Sanket S. Kshirsagar

410

The oceanic excitation hypothesis for the continuous oscillations of the Earth  

E-Print Network (OSTI)

15. Top: Integrated ocean-wave power (square of wave height)Bottom: The integrated ocean-wave power for the whole region

Tanimoto, T

2005-01-01T23:59:59.000Z

411

Effects of thermocline on performance of underwater gliders power system propelled by ocean thermal energy  

Science Journals Connector (OSTI)

The thermal gliders changeable volume produces propelling force to power the gliders descending and ascending through ... affect the working processes of the gliders power system. Based on the enthalpy method,...

Hai Yang; Jie Ma

2009-12-01T23:59:59.000Z

412

Estimated global ocean wind power potential from QuikSCAT observations, accounting for turbine characteristics and siting  

E-Print Network (OSTI)

A r ) and specific turbine efficiency value (C e , a maximumand individual turbine power and efficiency which maximizes

Capps, Scott B; Zender, Charles S

2010-01-01T23:59:59.000Z

413

WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)  

SciTech Connect

The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution, including: (1) Feasibility study and conceptual design for an integrated demonstration facility, and for fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing (RD&T) to define any technology gaps or critical design and integration issues (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana. The WREL facility is a project selected and co-funded under the Round IV of the United States Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now offered commercially by Global Energy, Inc., parent company of GEC and WREL, as the E-GAS{trademark} technology. In a joint effort with the DOE, a Cooperative Agreement was awarded under the Early Entrance Coproduction Plant (EECP) solicitation. GEC and an Industrial Consortium are investigating the use of synthesis gas produced by the E-GAS{trademark} technology in a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. The objectives of this effort are to determine the feasibility of an EECP located at a specific site which produces some combination of electric power (or heat), fuels, and/or chemicals from synthesis gas derived from coal, or, coal in combination with some other carbonaceous feedstock. The project's intended result is to provide the necessary technical, economic, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry. During the reporting period, effort continues on identifying potential technologies for removing contaminants from synthesis gas to the level required by methanol synthesis. A liquid phase Claus process and a direct sulfur oxidation process were evaluated. Preliminary discussion was held with interested parties on cooperating on RD&T in Phase II of the project. Also, significant progress was made during the period in the submission of project deliverables. A meeting was held at DOE's National Energy Technology Laboratory in Morgantown between GEC and the DOE IMPPCCT Project Manager on the status of the project, and reached an agreement on the best way to wrap up Phase I and transition into the Phase II RD&T. Potential projects for the Phase II, cost, and fund availability were also discussed.

Albert Tsang

2003-03-14T23:59:59.000Z

414

Finavera Renewables Ocean Energy Ltd | Open Energy Information  

Open Energy Info (EERE)

Renewables Ocean Energy Ltd Renewables Ocean Energy Ltd Jump to: navigation, search Name Finavera Renewables Ocean Energy Ltd Address 595 Burrard Street Suite 3113 Three Bentall Centre PO Box 49071 Place Vancouver Zip V7X 1G4 Sector Marine and Hydrokinetic Phone number 604-288-9051 Website http://www.finavera.com Region Canada LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: Coos County Offshore Wave Energy Power Plant Figueira da Foz Portugal Humboldt County Wave Project Makah Bay Offshore Wave Pilot Project South Africa Ucluelet BC Canada This company is involved in the following MHK Technologies: AquaBuoy This article is a stub. You can help OpenEI by expanding it.

415

WABASH RIVER IMPPCCT, INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES  

SciTech Connect

In a joint effort with the U.S. Department of Energy, working under a Cooperative Agreement Award from the ''Early Entrance Coproduction Plant'' (EECP) initiative, the Gasification Engineering Corporation and an Industrial Consortium are investigating the application of synthesis gas from the E-GAS{trademark} technology to a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. The objectives of this effort are to determine the feasibility of an Early Entrance Coproduction Plant located at a specific site which produces some combination of electric power (or heat), fuels, and/or chemicals from synthesis gas derived from coal, or, coal in combination with some other carbonaceous feedstock. The project's intended result is to provide the necessary technical, financial, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry. The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), and supported by Air Products and Chemicals Inc., The Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution, including: (1) Feasibility Study and conceptual design for an integrated demonstration facility and for fence-line commercial plants operated at The Dow Chemical Company or Dow Corning Corporation chemical plant locations (i.e. the Commercial Embodiment Plant or CEP) (2) Research, development, and testing to address any technology gaps or critical design and integration issues (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Ltd., plant in West Terre Haute, Indiana. During the reporting period work was furthered to support the development of capital and operating cost estimates associated with the installation of liquid or gas phase methanol synthesis technology in a Commercial Embodiment Plant (CEP) utilizing the six cases previously defined. In addition, continued development of the plant economic model was accomplished by providing combined cycle performance data. Performance and emission estimates for gas turbine combined cycles was based on revised methanol purge gas information. The economic model was used to evaluate project returns with various market conditions and plant configurations and was refined to correct earlier flaws. Updated power price projections were obtained and incorporated in the model. Sensitivity studies show that break-even methanol prices which provide a 12% return are 47-54 cents/gallon for plant scenarios using $1.25/MM Btu coal, and about 40 cents/gallon for most of the scenarios with $0.50/MM Btu petroleum coke as the fuel source. One exception is a high power price and production case which could be economically attractive at 30 cents/gallon methanol. This case was explored in more detail, but includes power costs predicated on natural gas prices at the 95th percentile of expected price distributions. In this case, the breakeven methanol price is highly sensitive to the required project return rate, payback period, and plant on-line time. These sensitivities result mainly from the high capital investment required for the CEP facility ({approx}$500MM for a single train IGCC-methanol synthesis plant). Finally, during the reporting period the Defense Contractor Audit Agency successfully executed an accounting audit of Global Energy Inc. for data accumulated over the first year of the IMPPCCT project under the Cooperative Agreement.

Doug Strickland

2001-09-28T23:59:59.000Z

416

Financial valuation of investments in future power generation technologies: nuclear fusion and CCS in an emissions trading system  

Science Journals Connector (OSTI)

This paper outlines a model approach for the financial valuation of future power generation technologies, such as nuclear fusion or carbon capture and storage (CCS) under an emissions trading regime. Since on imp...

Heinz Eckart Klingelhfer; Peter Kurz

2011-12-01T23:59:59.000Z

417

Marine & Hydrokinetic Technologies  

Energy.gov (U.S. Department of Energy (DOE))

This fact sheet describes the U.S. Department of Energys Wind and Water Power Program efforts to develop advanced water power devices that capture energy from waves, tides, ocean currents, rivers, streams, and ocean thermal gradients.

418

Estimated global ocean wind power potential from QuikSCAT observations, accounting for turbine characteristics and siting  

E-Print Network (OSTI)

envisioned floating offshore wind turbines. Finally, global35 ] For the three turbines considered, offshore wind farmsusable wind power is evaluated for modern offshore turbine

Capps, Scott B; Zender, Charles S

2010-01-01T23:59:59.000Z

419

WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)  

SciTech Connect

The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution over a three year period, including: (1) Feasibility study and conceptual design for an integrated demonstration facility, and for fence-line commercial plants operated at Dow Chemical or Dow Corning chemical plant locations; (2) Research, development, and testing to define any technology gaps or critical design and integration issues; and (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana. This report describes management planning, work breakdown structure development, and feasibility study activities by the IMPPCCT consortium in support of the first project phase. Project planning activities have been completed, and a project timeline and task list has been generated. Requirements for an economic model to evaluate the West Terre Haute implementation and for other commercial implementations are being defined. Specifications for methanol product and availability of local feedstocks for potential commercial embodiment plant sites have been defined. The WREL facility is a project selected and co-funded under the fifth phase solicitation of the U.S. Department of Energy's Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now offered commercially by Global Energy, Inc., as the E-GAS{trademark} technology. In a joint effort with the U.S. Department of Energy, working under a Cooperative Agreement Award from the ''Early Entrance Coproduction Plant'' (EECP) initiative, the GEC and an Industrial Consortia are investigating the application of synthesis gas from the E-GAS{trademark} technology to a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. The objectives of this effort are to determine the feasibility of an EECP located at a specific site which produces some combination of electric power (or heat), fuels, and/or chemicals from synthesis gas derived from coal, or, coal in combination with some other carbonaceous feedstock. The project's intended result is to provide the necessary technical, economic, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry.

Doug Strickland; Albert Tsang

2002-10-14T23:59:59.000Z

420

Coupling Mineral Carbonation and Ocean Liming  

Science Journals Connector (OSTI)

systems suggests that, unless air capture significantly outperforms these systems, it is likely to require more than 400 kJ of work per mol of CO2, requiring it to be powered by CO2-neutral power sources in order to be CO2 neg. ... by the oceans at an increased rate if ocean alky. ... Oceanic uptake of anthropogenic carbon dioxide (CO2) is altering the seawater chem. of the world's oceans with consequences for marine biota. ...

P. Renforth; T. Kruger

2013-01-23T23:59:59.000Z

Note: This page contains sample records for the topic "ocean power technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

MHK Technologies/Current Catcher | Open Energy Information  

Open Energy Info (EERE)

Catcher Catcher < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Current Catcher.png Technology Profile Primary Organization Offshore Islands Ltd Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Description The Current Catcher harnesses the power and fluctuations of the ocean s currents to generate energy It uses cones to increase the velocity of the ocean current and to direct it to the turbine blades to maximize the production of energy which in turn is transferred through electrical swivels The Current Catcher uses conventional low cost steel tubular frames These frames can support both ocean and tidal current power generators rigidly fixed to the seabed or moored to the seabed

422

IMPACTS: Industrial Technologies Program, Summary of Program Results for CY2009, Appendix 6: Method of Calculating Results from DOE's Combined Heat and Power Activities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

87 DOE Industrial Technologies Program 87 DOE Industrial Technologies Program Appendix 6: Method of Calculating Results from DOE's Combined Heat and Power Activities u CHP Table........................................................................................................................................................................................... 189 Method of Calculating Results from DOE's Combined Heat and Power Activities Industrial Distributed Energy, a cross-cutting activity within the Industrial Technologies Program (ITP), builds on activities conducted by DOE's Office of Industrial Technologies

423

Electric Power Research Institute Environmental Control Technology Center Report to the Steering Committee  

SciTech Connect

Operations and maintenance continued this month at the Electric Power Research Institute's (EPRI?s) Environmental Control Technology Center (ECTC). Testing for the month involved the Dry Sorbent Injection (DSI) test block with the Carbon Injection System. Also, several installation activities were initiated this month for the testing of a new EPRI/ADA Technologies sorbent sampling system in December. The 1.0 MW Cold-Side Selective Catalytic Reduction (SCR) unit, the 0.4 MW Mini Pilot Wet Scrubber, and the 4.0 MW Pilot Wet Scrubber remained idle this month in a cold-standby mode and were inspected regularly. These units remain available for testing as future work is identified.

None

1997-11-01T23:59:59.000Z

424

NREL Power Technologies Energy Data Book (2006) : U.S. Electricity  

Open Energy Info (EERE)

: U.S. Electricity : U.S. Electricity Generation Dataset Summary Description The National Renewable Energy Laboratory (NREL) publishes a wide selection of data and statistics on energy power technologies from a variety of sources (e.g. EIA, Oak Ridge National Laboratory, Sandia National Laboratory, EPRI and AWEA). In 2006, NREL published the 4th edition, presenting, among other things, electricity generation. The series of datasets included are: electricity net generation (1980 - 2030); generation and transmission/distribution losses (1980 - 2030); and electricity trade (e.g. gross domestic firm power trade, gross imports from Mexico and Canada). Source NREL Date Released March 06th, 2011 (3 years ago) Date Updated Unknown Keywords EIA Electricity Generation NREL Data

425

Hydrogen Gas Production from Nuclear Power Plant in Relation to Hydrogen Fuel Cell Technologies Nowadays  

Science Journals Connector (OSTI)

Recently world has been confused by issues of energy resourcing including fossil fuel use global warming and sustainable energy generation. Hydrogen may become the choice for future fuel of combustion engine. Hydrogen is an environmentally clean source of energy to end?users particularly in transportation applications because without release of pollutants at the point of end use. Hydrogen may be produced from water using the process of electrolysis. One of the GEN?IV reactors nuclear projects (HTGRs HTR VHTR) is also can produce hydrogen from the process. In the present study hydrogen gas production from nuclear power plant is reviewed in relation to commercialization of hydrogen fuel cell technologies nowadays.

2010-01-01T23:59:59.000Z

426

MHK Technologies/Pelamis | Open Energy Information  

Open Energy Info (EERE)

Pelamis Pelamis < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Pelamis.jpg Technology Profile Primary Organization Pelamis Wave Power formerly Ocean Power Delivery Project(s) where this technology is utilized *MHK Projects/Aguçadoura *MHK Projects/Orcadian Wave Farm Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description The Pelamis Wave Energy Converter is a semi-submerged, articulated structure composed of cylindrical sections linked by hinged joints. The wave-induced motion of these joints is resisted by hydraulic rams, which pump high-pressure fluid through hydraulic motors via smoothing accumulators. The hydraulic motors drive electrical generators to produce electricity. Power from all the joints is fed down a single umbilical cable to a junction on the sea bed. Several devices can be connected together and linked to shore through a single seabed cable.

427

MEMORANDUM OF MUTUAL UNDERSTANDING FOR RESEARCH COOPERATION BETWEEN SCHOOL OF OCEAN & EARTH SCIENCES & TECHNOLOGY (SOEST), UNI  

NLE Websites -- All DOE Office Websites (Extended Search)

AGREEMENT AGREEMENT FOR INTERNATIONAL RESEARCH COOPERATION USING THE EARTH SIMULATOR BETWEEN THE EARTH SIMULATOR CENTER OF JAPAN MARINE SCIENCE & TECHNOLOGY CENTER (ESC/JAMSTEC) AND NATIONAL ENERGY RESEARCH SCEINTIFIC COMPUTING (NERSC) CENTER AT LAWRENCE BERKELEY NATIONAL LABORATORY WHEREAS, the Earth Simulator Center of Japan Marine Science and Technology Center (hereinafter referred to as "ESC/JAMSTEC") and the National Energy Research Scientific Computing Center (hereinafter referred to as "NERSC") desire to cooperate in international research activities in computational science. Cooperation under this Agreement shall be carried out only for peaceful purposes and aforementioned research activities and its results shall not be

428

assumed, with no inter-district transport.) If the conventional technology coal-fired power plant is used  

E-Print Network (OSTI)

assumed, with no inter-district transport.) If the conventional technology coal-fired power plant-fired power plant is used for comparison, then lower SO2, NOx or particulate emissions can be expected in 9 of diesel captive plants in the Mangalore division is a matter of particular concern because the division

429

Comparative analysis of concentrating solar power and photovoltaic technologies: Technical and environmental evaluations  

Science Journals Connector (OSTI)

Solar energy is an important alternative energy source to fossil fuels and theoretically the most available energy source on the earth. Solar energy can be converted into electric energy by using two different processes: by means of thermodynamic cycles and the photovoltaic conversion. Solar thermal technologies, sometimes called thermodynamic solar technologies, operating at medium (about 500C) and high temperatures (about 1000C), have recently attracted a renewed interest and have become one of the most promising alternatives in the field of solar energy utilization. Photovoltaic conversion is very interesting, although still quite expensive, because of the absence of moving components and the reduced operating and management costs. The main objectives of the present work are: to carry out comparative technical evaluations on the amount of electricity produced by two hypothetical plants, located on the same site, for which a preliminary design was made: a solar thermal power plant with parabolic trough collectors and a photovoltaic plant with a single-axis tracking system; to carry out a comparative analysis of the environmental impact derived from the processes of electricity generation during the whole life cycle of the two hypothetical power plants. First a technical comparison between the two plants was made assuming that they have the same nominal electric power and then the same total covered surface. The methodology chosen to evaluate the environmental impact associated with the power plants is the Life Cycle Assessment (LCA). It allows to analyze all the phases of the life cycle of the plants, from the extraction of raw materials until their disposal, following the from cradle to grave perspective. The environmental impact of the two power plants was simulated by using the software SimaPro 7.1, elaborated by PR Consultants and using the Eco-Indicator 99 methodology. Finally, the results of the analysis of the environmental impact are used to calculate the following parameters associated to the power plants: EPBT (Energy Pay-Back Time), CO2 emissions and GWP100 (Global Warming Potential over a 100year time horizon).

U. Desideri; F. Zepparelli; V. Morettini; E. Garroni

2013-01-01T23:59:59.000Z

430

Evaluation of the Materials Technology Required for a 760?C Power Steam Boiler  

SciTech Connect

The U.S. Ultra-supercritical (USC) Steam Boiler Consortium, funded by the U.S. Department of Energy and the Ohio Coal Development Office, has been working to develop the necessary materials technology to construct a steam power boiler with maximum steam conditions of 760 C and 35MPa. One large component of this work is to evaluate the properties of the materials chosen for such a boiler. While long-term creep strength of base metal is initially used to set temperatures, stresses, and simple design rules, it is clear that base metal creep strength is not always the material property of most importance when selecting an alloy. The fabrication issues (typically weldability), the properties of materials after fabrication, the corrosion resistance of the material, and material cost all need to be considered in addition to baseline mechanical properties. Work is ongoing at Oak Ridge National Laboratory to evaluate the material technologies being developed by the USC Steam Boiler Consortium and perform additional advanced research activities in areas where new materials developments and better fundamental understanding are needed to ensure the long-term success of a 760 C power steam boiler.

Shingledecker, John P [ORNL; Wright, Ian G [ORNL

2006-01-01T23:59:59.000Z

431

Off-shore wind power potential evaluation and economy analysis of entire Japan using GIS technology  

Science Journals Connector (OSTI)

Off-shore wind energy has been drawing interest recently. This research is focusing on the potential analysis of off-shore wind energy surrounding entire Japan coast using GIS technology. Base on the economy and environment assessment, this research is evaluating the current situation and forecasting on future of wind energy technology in Japan. In order to reduce the green-house gas emission, renewable energy (such as wind energy, solar energy, fuel cell) will gradually substitute can be installed the primary energy resource (such as coal, oil, scale gas). Based on GIS technique, wind power turbines in the surrounding area of Japanese coast-line. In the study, 2,000 kW rated wind turbines are considered for further installation. As the result of this study, we have determined that 108,067 in 330 places number of off-shore with annual generation of 180.0 TWh are expected. This is equal to 20% of annual total generated power of Japan in 2010. Wind speed 6 m/s or more of the coastline, the average cost of electricity is about generation cost is within 10 to 17 Japanese Yen/kWh and construction cost is within 139,445 Japanese Yen/kW to 240,366 Japanese Yen/kW.

Asifujiang Abudureyimu; Yoshiki Hayashi; Zulati Litifu; Ken Nagasaka

2012-01-01T23:59:59.000Z

432

On the creation and development of future underwater power supply during reclamation of continental shelf and World Ocean  

Science Journals Connector (OSTI)

A description is given of an environmentally friendly electric motor and transformer that operate in seawater and have no analogs in the world, as well as of the future underwater power supply during the developm...

V. I. Vetokhin

2010-08-01T23:59:59.000Z

433

Numerical simulation of propagation of radioactive pollution in the ocean from the Fukushima Dai-ichi nuclear power plant  

Science Journals Connector (OSTI)

Numerical simulation of the large-scale horizontal mixing and transport of radioactive water from the Fukushima Dai-ichi nuclear power plant (NPP) (14102? E, 3727? N, east coast of Honshu Island, Japan) and ...

S. V. Prants; M. Yu. Uleysky; M. V. Budyansky

2011-08-01T23:59:59.000Z

434

Numerical study and prediction of nuclear contaminant transport from Fukushima Daiichi nuclear power plant in the North Pacific Ocean  

Science Journals Connector (OSTI)

On March 11, 2011, a large earthquake and subsequent tsunami near the east coast of Japan destroyed the Fukushima Daiichi nuclear power plant (FD-NPP), causing a massive ... Pacific circulation model, based on th...

Hui Wang; ZhaoYi Wang; XueMing Zhu; DaKui Wang; GuiMei Liu

2012-09-01T23:59:59.000Z

435

Thermodynamic Optimization in Ocean Thermal Energy Conversion  

Science Journals Connector (OSTI)

As alternative energy sources to oil and uranium, we can consider well known alternative sources such as solar power, geothermal power and wind power. However when we consider the 21st century energy sources, ocean

Y. Ikegami; H. Uehara

1999-01-01T23:59:59.000Z

436

Evaluation of Solid Sorbents as a Retrofit Technology for CO2 Capture from Coal-Fired Power Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Solid Sorbents as a Solid Sorbents as a Retrofit Technology for CO 2 Capture from Coal-fired Power Plants Background Retrofitting the current fleet of pulverized coal (PC)-fired power plants for the separation and sequestration of carbon dioxide (CO 2 ) is one of the most significant challenges for effective, long-term carbon management. Post-combustion CO 2 capture using solid-sorbent based technologies is a potential resolution to this challenge that could be appropriate for both new and existing PC-fired power plant

437

Assessing employment in renewable energy technologies: A case study for wind power in Brazil  

Science Journals Connector (OSTI)

Abstract Environmental concerns and the search for climate change mitigation have led to the deployment of renewable energy technologies (RET) in several countries. The adoption of incentive policies, especially those based on heavy subsides, has motivated the discussion of social and economic benefits brought about by these technologies, mainly on the impact on employment rates. In this context, several studies have been conducted to quantify job creation by RET, concluding that the latter are more labor intensive than traditional fossil fueled technologies. However, results for different assessments vary largely due to distinct methodological approaches, and are frequently highly aggregated. Thus, results are not comparable or applicable to other contexts. Previous studies have failed to quantify the effects of imports and exports of RET equipment in total employment, usually associating employment and installed capacity in the year studied. This study has aimed to address these issues, creating an index for employment quantification based on production, instead of installed, capacity. We have estimated both direct jobs in manufacture, construction, and operation and management, and indirect jobs both in the upstream supply chains of materials and inputs to manufacture of wind turbines and construction of wind farms. We have also performed an assessment of jobs created in wind energy projects which are expected to begin operation in Brazil until 2017. The resulting job potential in Brazil corresponds to13.5 persons-year equivalent for each MW installed between manufacture and first year of operation of a wind power plant, and 24.5 persons-year equivalent over the wind farm lifetime. Results show that major contribution from wind power for job creation are in the construction stage and, despite of the low amount of jobs created in operation and maintenance relative to new installed capacity, those stable jobs stand out as they persist over the entire wind farm's life time.

Moana Simas; Sergio Pacca

2014-01-01T23:59:59.000Z

438

Electric Power Research Institute Environmental Control Technology Center: Report to the Steering Committee, June 1996  

SciTech Connect

Operations and maintenance continued this month at the Electric Power Research Institute`s (EPRI`s) Environmental Control Technology Center (ECTC). Testing for the Hazardous Air Pollutant (HAP) test block was conducted using the 4.0 MW Spray Dryer Absorber System (SDA) and Pulse Jet Fabric Filter (PJFF) - Carbon Injection System. Investigations also continued across the B&W/CHX Heat Exchanger unit, while the 1.0 MW Selective Catalytic Reduction (SCR) unit remained idle this month in a cold-standby mode as monthly inspections were conducted. Pilot Testing Highlights Testing efforts in June were focused on the HAP test block and the Trace Elements Removal (TER) test block. Both programs were conducted on the 4.0 MW wet FGD pilot unit and PJFF unit. The HAP test block was temporarily concluded in June to further review the test data. This program began in March as part of the DOE Advanced Power Systems Program; the mission of this program is to accelerate the commercialization of affordable, high-efficiency, low-emission, coal-fueled electric generating technologies. The 1996 HAP test block focuses on three research areas, including: Catalytic oxidation of vapor-phase elemental mercury; Enhanced particulate-phase HAPs removal by electrostatic charging of liquid droplets; and Enhanced mercury removal by addition of additives to FGD process liquor. The TER test block is part of EPRI`s overall program to develop control technology options for reduction of trace element emissions. This experimental program investigates mercury removal and mercury speciation under different operating conditions.

NONE

1996-06-01T23:59:59.000Z

439

Blue energy: Current technologies for sustainable power generation from water salinity gradient  

Science Journals Connector (OSTI)

Abstract Salinity energy stored as the salinity difference between seawater and freshwater is a large-scale renewable resource that can be harvested and converted to electricity, but extracting it efficiently as a form of useful energy remains a challenge. With the development of membrane science and technology, membrane-based techniques for energy extraction from water salinity, such as pressure-retarded osmosis and reverse electro-dialysis, have seen tremendous development in recent years. Meanwhile, many other novel methods for harvesting exergy from water mixing processes, such as electrochemical capacitor and nano-fluidic energy harvesting systems, have been proposed. In this work, an overview and state-of-the-art of the current technologies for sustainable power generation from the water salinity gradient are presented. Characteristics of these technologies are analyzed and compared for this particular application. Based on these entropic energy extracting methods, the water salinity, as the blue energy, will be another source of renewable energy to satisfy the ever-growing energy demand of human society.

Zhijun Jia; Baoguo Wang; Shiqiang Song; Yongsheng Fan

2014-01-01T23:59:59.000Z

440

ORNL Superconducting Technology Program for electric power systems: Annual report for FY 1997  

SciTech Connect

The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the US Department of Energy`s Office of Energy Efficiency and Renewable Energy to develop the science and technology base needed by US industry for commercial development of electric power applications of high temperature superconductivity. The two major elements of this program are wire development and applications development. This document describes the major research and developments activities for this program together with related accomplishments. The technical progress reported was summarized from recent open literature publications, presentations, and information prepared for the FY 1997 Annual Program Review held July 21--23, 1997. This ORNL program is highly leveraged by the staff and other resources of US industry and universities. In fact, nearly three-fourths of the ORNL effort is devoted to cooperative projects with private companies. Interlaboratory teams are also in place on a number of industry-driven projects. Patent disclosures, working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer with US industry. Working together, the collaborative teams are making rapid progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high temperature superconductor wire and wire-using systems.

Koncinski, W.S.; O`Hara, L.M. [eds.; Hawsey, R.A.; Murphy, A.W. [comps.

1998-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "ocean power technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

ORNL Superconducting Technology Program for electric power systems. Annual report for FY 1995  

SciTech Connect

The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the U.S. Department of Energy`s Office of Energy Efficiency and Renewable Energy to develop the science and technology base needed by U.S. industry for commercial development of electric power applications of high-temperature superconductivity. The two major elements of this program are wire development and systems development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from information prepared for the FY 1995 Annual Program Review held August 1-2, 1995. This ORNL program is highly leveraged by the staff and other resources of U.S. industry and universities. In fact, nearly three-fourths of the ORNL effort is devoted to cooperative projects with private companies. Interlaboratory teams are also in place on a number of industry-driven projects. Patent disclosures, working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer with U.S. industry. Working together, the collaborative teams are making rapid progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high-temperature superconductor wire and wire-using systems.

Hawsey, R.A. [comp.; Turner, J.W. [ed.

1996-05-01T23:59:59.000Z

442

ORNL Superconducting Technology Program for electric power systems. Annual report for FY 1996  

SciTech Connect

The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the US Department of Energy`s Office of Energy Efficiency and Renewable Energy to develop the science and technology base needed by US industry for commercial development of electric power applications of high temperature superconductivity. The two major elements of this program are wire development and applications development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from recent open literature publications, presentations, and information prepared for the FY 1996 Annual Program Review held July 31 and August 1, 1996. This ORNL program is highly leveraged by the staff and other resources of US industry and universities. In fact, nearly three-fourths of the ORNL effort is devoted to cooperative projects with private companies. Interlaboratory teams are also in place on a number of industry-driven projects. Patent disclosures, working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer with US industry. Working together, the collaborative teams are making rapid progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high temperature superconductor wire and wire-using systems.

Koncinski, W.S. [ed.; Hawsey, R.A. [comp.

1997-05-01T23:59:59.000Z

443

ORNL Superconducting Technology Program for Electric Power Systems, Annual Report for FY 1998  

SciTech Connect

The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy to develop the science and technology base needed by U.S. industry for commercial development of electric power applications of high temperature superconductivity. The two major elements of this program are wire development and applications development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from recent open literature publications, presentations, and information prepared for the FY 1998 Annual Program Review held July 20-22, 1998. Aspects of ORNL's work that were presented at the Applied Superconductivity Conference (September 1998) are included in this report, as well. This ORNL program is highly leveraged by the staff and other resources of U.S. industry and universities. In fact, nearly three-fourths of the ORNL effort is devoted to cooperative projects. Patent disclosures, working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer with U.S. industry. Working together, the collaborative teams are making rapid progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high temperature superconductor wire and wire-using systems.

Hawsey, R.A.; Murphy, A.W.

1999-04-01T23:59:59.000Z

444

ORNL superconducting technology program for electric power systems. Annual report for FY 1993  

SciTech Connect

The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the US Department of Energy`s Office of Energy Efficiency and Renewable Energy to develop the technology base needed by US industry for commercial development of electric power applications of high-temperature superconductivity. The two major elements of this program are conductor development and applications development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from information prepared for the FY 1993 Annual Program Review held July 28--29, 1993. This ORNL program is highly leveraged by the staff and other resources of US industry and universities. In fact, nearly three-fourths of the ORNL effort is devoted to industrial competitiveness projects with private companies. Interlaboratory teams are also in place on a number of industry-driven projects. Patent disclosures, working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer to US industry. Working together, the collaborative teams are making rapid progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high-temperature superconductor wire and wire products.

Hawsey, R.A. [comp.

1994-04-01T23:59:59.000Z

445

Technology Roadmap Analysis 2013: Assessing Automotive Technology R&D Relevant to DOE Power Electronics Cost Targets  

Energy.gov (U.S. Department of Energy (DOE))

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

446

Biomimetic Electrostatics for Submerged Oceanic Sensing, Communication, and Coordination  

E-Print Network (OSTI)

potential) to inject power into the ocean as salinity isocean waters eliminates virtually all of the output power aspower losses expected for an electromagnetic wave propagat- ing in the ocean

Friedman, Jonathan Katzenstein

2012-01-01T23:59:59.000Z

447

E-Print Network 3.0 - arctic ocean sediments Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

sediments Search Powered by Explorit Topic List Advanced Search Sample search results for: arctic ocean sediments...

448

E-Print Network 3.0 - arctic ocean sediment Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

sediment Search Powered by Explorit Topic List Advanced Search Sample search results for: arctic ocean sediment...

449

Improved global bathymetry, global sea floor roughness, and deep ocean mixing  

E-Print Network (OSTI)

ocean and the increased mixing over rough topography by proposing that tidal dissipation was a power

Becker, Joseph Jeffrey

2008-01-01T23:59:59.000Z

450

Improved Global Bathymetry, Global Sea Floor Roughness, and Deep Ocean Mixing  

E-Print Network (OSTI)

ocean and the increased mixing over rough topography by proposing that tidal dissipation was a power

Becker, Joseph J

2008-01-01T23:59:59.000Z

451

Emergence of energy storage technologies as the solution for reliable operation of smart power systems: A review  

Science Journals Connector (OSTI)

Abstract The ever increasing penetration of renewable energy systems (RESs) in today deregulated intelligent power grids, necessitates the use of electrical storage systems. Energy storage systems (ESSs) are helpful to make balance between generation and demand improving the performance of whole power grid. In collaboration with RESs, energy storage devices can be integrated into the power networks to bring ancillary service for the power system and hence enable an increased penetration of distributed generation (DG) units. This paper presents different applications of electrical energy storage technologies in power systems emphasizing on the collaboration of such entities with RESs. The role of \\{ESSs\\} in intelligent micropower grids is also discussed where the stochastic nature of renewable energy sources may affect the power quality. Particular attention is paid to flywheel storage, electrochemical storage, pumped hydroelectric storage, and compressed air storage and their operating principle are discussed as well. The application of each type in the area of power system is investigated and compared to others.

Sam Koohi-Kamali; V.V. Tyagi; N.A. Rahim; N.L. Panwar; H. Mokhlis

2013-01-01T23:59:59.000Z

452

MHK Technologies/Tunkey OTEC | Open Energy Information  

Open Energy Info (EERE)

Tunkey OTEC Tunkey OTEC < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tunkey OTEC.png Technology Profile Primary Organization Congeneration Technologies Technology Resource Click here OTEC Technology Type Click here OTEC - Open Cycle Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description OTEC systems use the ocean s natural thermal gradient the fact that the ocean s layers of water have different temperatures to drive a power producing cycle Technology Dimensions Device Testing Date Submitted 50:54.9 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Tunkey_OTEC&oldid=681045"

453

Analysis of variations in ocean color  

Science Journals Connector (OSTI)

Aug 9, 1976 ... mote sensing values of the color of the ocean .... its spectral variations, we must first study ... tering can be expressed in terms of a power.

2000-01-05T23:59:59.000Z

454

Ocean Navitas | Open Energy Information  

Open Energy Info (EERE)

Navitas Navitas Jump to: navigation, search Name Ocean Navitas Address Nursery House Place United Kingdom Zip DN21 5BQ Sector Ocean Product Ocean Navitas was incorporated in May 2006 by experienced engineers, businessmen and sailing enthusiasts David Hunt, James McCague and Simon Condry. Website http://www.oceannavitas.com Region United Kingdom References Ocean NavitasUNIQ75db538f85b32404-ref-000014E2-QINU LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: Ocean Navitas NaREC This company is involved in the following MHK Technologies: Aegir Dynamo This article is a stub. You can help OpenEI by expanding it.

455

Ocean Thermal Energy Conversion LUIS A. VEGA  

E-Print Network (OSTI)

Ocean Thermal Energy Conversion LUIS A. VEGA Hawaii Natural Energy Institute, School of Ocean depths of 20 m (surface water) and 1,000 m. OTEC Ocean Thermal Energy Conversion, the process Energy Conversion. At first, OTEC plantships providing electricity, via submarine power cables, to shore

456

Including Ocean Model Uncertainties in Climate Predictions  

E-Print Network (OSTI)

Including Ocean Model Uncertainties in Climate Predictions Chris Brierley, Alan Thorpe, Mat Collins's to perform the integrations Currently uses a `slab' ocean #12;An Ocean Model Required to accurately model transient behaviour Will have its own uncertainties Requires even more computing power Create new models

Jones, Peter JS

457

Vehicle Technologies Office Merit Review 2014: Novel Manufacturing Technologies for High Power Induction and Permanent Magnet Electric Motors  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about novel...

458

Climate and energy: a comparative assessment of the Satellite Power System (SPS) and alternative energy technologies  

SciTech Connect

The potential effects of five energy technologies on global, regional, and local climate were assessed. The energy technologies examined were coal combustion, light water nuclear reactors, satellite power systems, terrestrial photovoltaics, and fusion. The assessment focused on waste heat rejection, production of particulate aerosols, and emissions of carbon dioxide. The current state of climate modeling and long-range climate prediction introduces considerable uncertainty into the assessment, but it may be concluded that waste heat will not produce detectable changes in global climate until world energy use increases 100-fold, although minor effects on local weather may occur now; that primary particulate emissions from coal combustion constitute a small percentage of total atmospheric particulates; that carbon dioxide from coal combustion in the US alone accounts for about 30% of the current increase in global atmospheric CO/sub 2/, which may, by about 2050, increase world temperature 2 to 3/sup 0/C, with pronounced effects on world climate; that rocket exhaust from numerous launches during construction of an SPS may affect the upper atmosphere, with uncertain consequences; and that much research in climatology is needed before potential effects can be quantitatively predicted with any confidence. Although climatic impact is an appropriate concern in formulating long-term energy policy, the level of uncertainty about it suggests that it is not currently useful as a decision criterion. 88 references.

Kellermeyer, D.A.

1980-01-01T23:59:59.000Z

459

Developing Effective Continuous On-Line Monitoring Technologies to Manage Service Degradation of Nuclear Power Plants  

SciTech Connect

Recently, there has been increased interest in using prognostics (i.e, remaining useful life (RUL) prediction) for managing and mitigating aging effects in service-degraded passive nuclear power reactor components. A vital part of this philosophy is the development of tools for detecting and monitoring service-induced degradation. Experience with in-service degradation has shown that rapidly-growing cracks, including several varieties of stress corrosion cracks (SCCs), can grow through a pipe in less than one fuel outage cycle after they initiate. Periodic inspection has limited effectiveness at detecting and managing such degradation requiring a more versatile monitoring philosophy. Acoustic emission testing (AET) and guided wave ultrasonic testing (GUT) are related technologies with potential for on-line monitoring applications. However, harsh operating conditions within NPPs inhibit the widespread implementation of both technologies. For AET, another hurdle is the attenuation of passive degradation signals as they travel though large components, relegating AET to targeted applications. GUT is further hindered by the complexity of GUT signatures limiting its application to the inspection of simple components. The development of sensors that are robust and inexpensive is key to expanding the use of AET and GUT for degradation monitoring in NPPs and improving overall effectiveness. Meanwhile, the effectiveness of AET and GUT in NPPs can be enhanced through thoughtful application of tandem AET-GUT techniques.

Meyer, Ryan M.; Ramuhalli, Pradeep; Bond, Leonard J.; Cumblidge, Stephen E.

2011-09-30T23:59:59.000Z

460

DOE/EA-1621: Oregon Institute of Technology Deep Geothermal Well and Power Plant Project (September 2008)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oregon Institute of Technology (OIT) Oregon Institute of Technology (OIT) Deep Geothermal Well and Power Plant Project Final Environmental Assessment September 2008 Prepared for: U.S. Department of Energy 1617 Cole Boulevard Golden, CO 80401 Prepared by: MHA Environmental Consulting, An RMT Business 4 West Fourth Avenue, Suite 303 San Mateo, CA 94402 www.mha-inc.com - www.rmtinc.com Geo-Heat Center Oregon Institute of Technology (OIT) Klamath Falls, OR 97601 Oregon Institute of Technology (OIT) Deep Geothermal Well and Power Plant Project Final Environmental Assessment September 2008 Prepared for: U.S. Department of Energy 1617 Cole Boulevard Golden, CO 80401 Prepared by: MHA Environmental Consulting, An RMT Business 4 West Fourth Avenue, Suite 303 San Mateo, CA 94402 www.mha-inc.com - www.rmtinc.com Geo-Heat Center

Note: This page contains sample records for the topic "ocean power technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

2012 SG Peer Review - The Perfect Power Prototype for the Illinois Institute of Technology - Mohmmad Shahidehpour, IIT  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Perfect Power Progress Report Perfect Power Progress Report Dr. Mohammad Shahidehpour DOE Peer Review | June 2012 Perfect Power @ IIT Perfect Power @ IIT Funded by the U.S. Department of Energy * $13.6M ($7.6M from DOE, $6M Cost Share) * 5 year project * Located at Illinois Institute of Technology (IIT) * Involves the entire campus * Partners: IIT, Exelon, S&C Electric, Schweitzer, IPS, Eaton Corporation, ZBB, CIYCOR, Continental Electric, Intelligent Generation This project aligns with the OE mission and the Smart Grid program goals to develop technologies to modernize the electric grid, enhance security and reliability of the energy infrastructure, and facilitate recovery from disruptions to energy supply. Leadership Mohammad Shahidehpour (Principal Investigator) Project Advisor ComEd/Exelon

462

Overview of current development in electrical energy storage technologies and the application potential in power system operation  

Science Journals Connector (OSTI)

Abstract Electrical power generation is changing dramatically across the world because of the need to reduce greenhouse gas emissions and to introduce mixed energy sources. The power network faces great challenges in transmission and distribution to meet demand with unpredictable daily and seasonal variations. Electrical Energy Storage (EES) is recognized as underpinning technologies to have great potential in meeting these challenges, whereby energy is stored in a certain state, according to the technology used, and is converted to electrical energy when needed. However, the wide variety of options and complex characteristic matrices make it difficult to appraise a specific EES technology for a particular application. This paper intends to mitigate this problem by providing a comprehensive and clear picture of the state-of-the-art technologies available, and where they would be suited for integration into a power generation and distribution system. The paper starts with an overview of the operation principles, technical and economic performance features and the current research and development of important EES technologies, sorted into six main categories based on the types of energy stored. Following this, a comprehensive comparison and an application potential analysis of the reviewed technologies are presented.

Xing Luo; Jihong Wang; Mark Dooner; Jonathan Clarke

2015-01-01T23:59:59.000Z

463

Technology, safety and costs of decommissioning a Reference Boiling Water Reactor Power Station. Main report. Volume 1  

SciTech Connect

Technology, safety and cost information is given for the conceptual decommissioning of a large (1100MWe) boiling water reactor (BWR) power station. Three approaches to decommissioning, immediate dismantlement, safe storage with deferred dismantlement and entombment, were studied to obtain comparisons between costs, occupational radiation doses, potential dose to the public and other safety impacts. It also shows the sensitivity of decommissioning safety and costs to the power rating of a BWR in the range of 200 to 1100 MWe.

Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

1980-06-01T23:59:59.000Z

464

IEEE PHOTONICS TECHNOLOGY LETTERS 1 High-Power 2.3-m GaSb-Based Linear Laser Array  

E-Print Network (OSTI)

2.3-m laser. Al Ga As Sb cladding layers. Details of the lasers' heterostructure design can be foundIEEE PHOTONICS TECHNOLOGY LETTERS 1 High-Power 2.3-m GaSb-Based Linear Laser Array L. Shterengas, G--High-power 2.3- m In(Al)GaAsSb­GaSb type-I double quantum-well diode laser arrays were fabricated

465

Wave Power Demonstration Project at Reedsport, Oregon  

SciTech Connect

Ocean wave power can be a significant source of large?scale, renewable energy for the US electrical grid. The Electrical Power Research Institute (EPRI) conservatively estimated that 20% of all US electricity could be generated by wave energy. Ocean Power Technologies, Inc. (OPT), with funding from private sources and the US Navy, developed the PowerBuoy? to generate renewable energy from the readily available power in ocean waves. OPT's PowerBuoy converts the energy in ocean waves to electricity using the rise and fall of waves to move the buoy up and down (mechanical stroking) which drives an electric generator. This electricity is then conditioned and transmitted ashore as high?voltage power via underwater cable. OPT's wave power generation system includes sophisticated techniques to automatically tune the system for efficient conversion of random wave energy into low cost green electricity, for disconnecting the system in large waves for hardware safety and protection, and for automatically restoring operation when wave conditions normalize. As the first utility scale wave power project in the US, the Wave Power Demonstration Project at Reedsport, OR, will consist of 10 PowerBuoys located 2.5 miles off the coast. This U.S. Department of Energy Grant funding along with funding from PNGC Power, an Oregon?based electric power cooperative, was utilized for the design completion, fabrication, assembly and factory testing of the first PowerBuoy for the Reedsport project. At this time, the design and fabrication of this first PowerBuoy and factory testing of the power take?off subsystem are complete; additionally the power take?off subsystem has been successfully integrated into the spar.

Mekhiche, Mike [Principal Investigator] [Principal Investigator; Downie, Bruce [Project Manager] [Project Manager

2013-10-21T23:59:59.000Z

466

World experience with development of combined-cycle and gas turbine technologies and prospects for employing them in the thermal power engineering of Russia using the capacities of the countrys industry producing power machinery and equipment  

Science Journals Connector (OSTI)

World experience gained from using combined-cycle and gas-turbine technologies in power engineering is analyzed. The technical and production capacities of the Russian industry constructing power machinery and...

O. N. Favorskii; V. L. Polishchuk; I. M. Livshits

2007-09-01T23:59:59.000Z

467

Commercialization possibilities of Stirling engine technology for microscale power generation in Sweden; MicroStirling.  

E-Print Network (OSTI)

?? The presented masters thesis has evaluated the possibility of commercializing a research project at the Royal Institute of Technologys (KTH) Department of Energy Technology (more)

Backman, Peter

2012-01-01T23:59:59.000Z

468

Technological developments to improve combustion efficiency and pollution control in coal-fired power stations in Japan  

SciTech Connect

In 1975, approximately 60 percent of all power generating facilities in Japan were oil fired. The oil crisis in the 1970s, however, led Japanese power utilities to utilize alternatives to oil as energy sources, including nuclear power, coal, LNG, and others. As a result, by 1990, the percentage of oil-fired power generation facilities had declined to approximately 31 percent. On the other hand, coal-fired power generation, which accounted for 5.7 percent of all facilities in 1975, increased its share to 7.5 percent in 1990 and is anticipated to expand further to 13 percent by the year 2000. In order to increase the utilization of coal-fired power generation facilities in Japan, it is necessary to work out thorough measures to protect the environment, mainly to control air pollution. The technologies that are able to do this are already available. The second issue is how to improve efficiency. In this chapter, I would like to introduce technological developments that improve efficiency and that protect the environment which have been implemented in coal-fired power stations in Japan. Examples of the former, include the atmospheric fluidized bed combustion (AFBC) boiler, the pressurized fluidized bed combustion (PFBC) boiler, and the ultra super-critical (USC) steam condition turbine, and an example of the latter is the dry deSOx/deNOx. Although details are not provided in this paper, there are also ongoing projects focusing on the development of technology for integrated gasification combined cycle generation, fuel cells and other systems undertaken by the government, i.e., the Ministry of International Trade and Industry (MITI), which is committed to the New Energy and Industrial Technology Development Organization (NEDO).

Miyasaka, Tadahisa

1993-12-31T23:59:59.000Z

469

Data Movement Dominates: Advanced Memory Technology to Address the Real Exascale Power Problem  

SciTech Connect

Energy is the fundamental barrier to Exascale supercomputing and is dominated by the cost of moving data from one point to another, not computation. Similarly, performance is dominated by data movement, not computation. The solution to this problem requires three critical technologies: 3D integration, optical chip-to-chip communication, and a new communication model. The central goal of the Sandia led "Data Movement Dominates" project aimed to develop memory systems and new architectures based on these technologies that have the potential to lower the cost of local memory accesses by orders of magnitude and provide substantially more bandwidth. Only through these transformational advances can future systems reach the goals of Exascale computing with a manageable power budgets. The Sandia led team included co-PIs from Columbia University, Lawrence Berkeley Lab, and the University of Maryland. The Columbia effort of Data Movement Dominates focused on developing a physically accurate simulation environment and experimental verification for optically-connected memory (OCM) systems that can enable continued performance scaling through high-bandwidth capacity, energy-efficient bit-rate transparency, and time-of-flight latency. With OCM, memory device parallelism and total capacity can scale to match future high-performance computing requirements without sacrificing data-movement efficiency. When we consider systems with integrated photonics, links to memory can be seamlessly integrated with the interconnection network-in a sense, memory becomes a primary aspect of the interconnection network. At the core of the Columbia effort, toward expanding our understanding of OCM enabled computing we have created an integrated modeling and simulation environment that uniquely integrates the physical behavior of the optical layer. The PhoenxSim suite of design and software tools developed under this effort has enabled the co-design of and performance evaluation photonics-enabled OCM architectures on Exascale computing systems.

Bergman, Keren

2014-08-28T23:59:59.000Z

470

Integrated Underground Gas Storage of CO2 and CH4 to Decarbonise the Power-to-gas-to-gas-to-power Technology  

Science Journals Connector (OSTI)

Abstract Excess energy produced from renewables can be stored and reused via the power-to-gas-to-power (PGP) technology. We present an innovative idea which represents a decarbonised extension of PGP based on a closed carbon cycle. Our show case for the cities Potsdam and Brandenburg/Havel (Germany) outlines an overall efficiency for the entire process chain of 28% with total costs of electricity of 20 eurocents/kWh. If existing locations in Europe, where natural gas storage in porous formations is performed, were to be extended by CO2 storage sites, a significant quantity of wind and solar energy could be stored economically as methane.

Michael Khn; Martin Streibel; Natalie Nakaten; Thomas Kempka

2014-01-01T23:59:59.000Z

471

Renewable Energy Powered Membrane Technology. 1. Development and Characterization of a Photovoltaic Hybrid Membrane System  

E-Print Network (OSTI)

the unavailability of power in many such situations, renewable energy is an obvious solution to power such systems. However, renewable energy is an intermittent power supply and with regards to the performance of intermittently operated desalination systems, only...

Schfer, Andrea; Broeckmann, Andreas; Richards, Bryce

2007-01-01T23:59:59.000Z

472

Om Ocean Energy Centre Vrt uppdrag r att frmja havsenergiindustrin i Sverige  

E-Print Network (OSTI)

test med uppankring av "slangen" i havet) Waves4Power Vigor WaveEnergy Ocean Harvester Deep Green simulation · Power from the ocean Ocean Mechanical system Electrical System · Power take-off · ElectricOm Ocean Energy Centre Vårt uppdrag är att främja havsenergiindustrin i Sverige och

Lemurell, Stefan

473

The DOE Wide Area Measurement System (WAMS) Project: Demonstration of dynamic information technology for the future power system  

SciTech Connect

In 1989 the Bonneville Power Administration (BPA) and the Western Area Power Administration (WAPA) joined the US Department of Energy (DOE) in an assessment of longer-term research and development needs for future electric power system operation. The effort produced a progressively sharper vision of a future power system in which enhanced control and operation are the primary means for serving new customer demands, in an environment where increased competition, a wider range of services and vendors, and much narrower operating margins all contribute to increased system efficiencies and capacity. Technology and infrastructure for real time access to wide area dynamic information were identified as critical path elements in realizing that vision. In 1995 the DOE accordingly launched the Wide Area Measurement System (WAMS) Project jointly with the two Power Marketing Administrations (PMAs) to address these issues in a practical operating environment--the western North America power system. The Project draws upon many years of PMA effort and related collaboration among the western utilities, plus an expanding infrastructure that includes regionally involved contractors, universities, and National Laboratories plus linkages to the Electric Power Research Institute (EPRI). The WAMS project also brings added focus and resources to the evolving Western System Dynamic Information Network, or WesDINet. This is a collective response of the Western Systems Coordinating Council (WSCC) member utilities to their shared needs for direct information about power system characteristics, model fidelity, and operational performance. The WAMS project is a key source of the technology and backbone communications needed to make WesDINet a well integrated, cost effective enterprise network demonstrating the role of dynamic information technology in the emerging utility environment.

Mittelstadt, W.A. [USDOE Bonneville Power Administration, Portland, OR (United States); Krause, P.E.; Wilson, R.E. [USDOE Western Area Power Administration, Golden, CO (United States); Overholt, P.N. [USDOE, Washington, DC (United States); Sobajic, D.J. [Electric Power Research Inst., Palo Alto, CA (United States); Hauer, J.F. [Pacific Northwest National Lab., Richland, WA (United States); Rizy, D.T. [Oak Ridge National Lab., TN (United States)

1996-07-01T23:59:59.000Z

474

MW-class hybrid power system based on planar solid oxide stack technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Scale-Up of Planar SOFC Stack Scale-Up of Planar SOFC Stack Technology for MW-Level Combined Cycle System Final Report TIAX LLC Acorn Park Cambridge, Massachusetts 02140-2390 Reference: D0136 Submitted to NETL October 3, 2003 1 NETL-Hybrid Scale-UP/D0136/SS/V1 1 Executive Summary 2 Background, Objectives & Approach 3 SOFC Cell Geometry and Modeling 4 SOFC Power Scale-up 5 System Design and Costs 6 Conclusions & Recommendations A Appendix 2 NETL-Hybrid Scale-UP/D0136/SS/V1 Executive Summary SECA Strategy NETL wanted to understand if and how SECA-style anode-supported SOFC stacks could be scaled-up for use in MW-level combined cycle plants. * SECA strategy relies on the use of modular, mass produced, SOFC stacks in the 3 - 10 kW capacity range for a wide range of applications. * Technical feasibility small-scale applications has been evaluated by SECA:

475

Potential environmental consequences of ocean thermal energy conversion (OTEC) plants. A workshop  

SciTech Connect

The concept of generating electrical power from the temperature difference between surface and deep ocean waters was advanced over a century ago. A pilot plant was constructed in the Caribbean during the 1920's but commercialization did not follow. The US Department of Energy (DOE) earlier planned to construct a single operational 10MWe Ocean Thermal Energy Conversion (OTEC) plant by 1986. However, Public Law P.L.-96-310, the Ocean Thermal Energy Conversion Research, Development and Demonstration Act, and P.L.-96-320, the Ocean Thermal Energy Conversion Act of 1980, now call for acceleration of the development of OTEC plants, with capacities of 100 MWe in 1986, 500 MWe in 1989, and 10,000 MWe by 1999 and provide for licensing and permitting and loan guarantees after the technology has been demonstrated.

Walsh, J.J. (ed.)

1981-05-01T23:59:59.000Z

476

Impact of Wire Geometry in Energy Extraction from Salinity Differences Using Capacitive Technology  

Science Journals Connector (OSTI)

Department of Chemistry, NTNU - Norwegian University of Science and Technology, N-7491 Trondheim, Norway ... The oceans have long been considered a great source of energy available in many different forms,(1) but the vast research effort has focused on waves, tidal, and offshore wind power. ... to power output only, would generally give a low energetic efficiency. ...

Bruno B. Sales; Odne S. Burheim; Fei Liu; Olivier Schaetzle; Cees J. N. Buisman; Hubertus V. M. Hamelers

2012-09-10T23:59:59.000Z

477

Energy Efficiency Evaluation of Refrigeration Technologies in Combined Cooling, Heating and Power Systems  

E-Print Network (OSTI)

With development of absorption refrigeration technology, the cooling requirement can be met using various optional refrigeration technologies in a CCHP system, including compression refrigeration, steam double-effect absorption refrigeration, steam...

Zuo, Z.; Hu, W.

2006-01-01T23:59:59.000Z

478

Technological assessment and evaluation of high power batteries and their commercial values  

E-Print Network (OSTI)

Lithium Ion (Li-ion) battery technology has the potential to compete with the more matured Nickel Metal Hydride (NiMH) battery technology in the Hybrid Electric Vehicle (HEV) energy storage market as it has higher specific ...

Teo, Seh Kiat

2006-01-01T23:59:59.000Z

479

Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks  

Energy.gov (U.S. Department of Energy (DOE))

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

480

Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks  

Energy.gov (U.S. Department of Energy (DOE))

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

Note: This page contains sample records for the topic "ocean power technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.