Powered by Deep Web Technologies
Note: This page contains sample records for the topic "ocean energy task" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

An Act to Implement the Recommendations of the Governor's Ocean Energy Task  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

An Act to Implement the Recommendations of the Governor's An Act to Implement the Recommendations of the Governor&#039;s Ocean Energy Task Force (Maine) An Act to Implement the Recommendations of the Governor's Ocean Energy Task Force (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Water Buying & Making Electricity Program Info State Maine Program Type Siting and Permitting Provider Department of Environmental Protection This law was enacted to overcome economic, technical and regulatory

2

An Act to Implement the Recommendations of the Governor's Ocean Energy Task Force (Maine)  

Energy.gov (U.S. Department of Energy (DOE))

This law was enacted to overcome economic, technical and regulatory obstacles and to provide economic incentives for vigorous and efficient development of promising indigenous, renewable ocean...

3

Ocean Thermal Energy Conversion  

Energy.gov (U.S. Department of Energy (DOE))

A process called ocean thermal energy conversion (OTEC) uses the heat energy stored in the Earth's oceans to generate electricity.

4

Energy Basics: Ocean Resources  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Ocean Thermal Energy Conversion Tidal Energy Wave Energy...

5

Energy Basics: Ocean Energy Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Ocean Thermal Energy Conversion Tidal Energy Wave Energy...

6

Ocean Energy Technologies  

Energy.gov (U.S. Department of Energy (DOE))

Oceans cover more than 70% of the Earth's surface. As the world's largest solar collectors, oceans contain thermal energy from the sun and produce mechanical energy from tides and waves. Even...

7

Energy Basics: Ocean Energy Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Technologies Photo of low waves in the ocean. A dock is visible in the background. Oceans cover more than 70% of the Earth's surface. As the world's largest solar...

8

Energy Basics: Ocean Resources  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Resources Although the potential for ocean energy technologies is believed to be very large, no comprehensive studies have been conducted to date to determine an accurate resource...

9

Energy Basics: Ocean Thermal Energy Conversion  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Ocean Thermal Energy Conversion Tidal Energy Wave Energy...

10

Preliminary design for Ocean Thermal Energy Conversion (OTEC) Stationkeeping Subsystem (SKSS). Task IV. Development and testing recommendations  

DOE Green Energy (OSTI)

The preliminary designs of Stationkeeping Subsystems (SKSS) for the OTEC Modular Experiment Plant are being prepared for a barge and spar platform. The SKSS selected by NOAA for the barge is a multiple anchor leg mooring with active tensioning (MAL), while that for the spar is a tension anchor leg (TAL) moor. The development and testing program required to provide design data and to validate performance predictions is described. Basic assumptions are made with regard to site characteristics, behavior of the SKSS and platform in the sea state, and characteristics of SKSS components. The test program is intended to provide the data necessary to confirm assumptions or to support design revisions. The testing program for the multiple anchor leg system is considered first, followed by the tension anchor leg program. Development and testing are recommended in the areas of materials, components and procedures which are beyond modest extrapolation of current ocean engineering practice. (WHK)

None

1979-11-09T23:59:59.000Z

11

Preliminary designs for ocean thermal energy conversion (OTEC) stationkeeping subsystems (SKSS). Task I. Design requirements. Final report  

DOE Green Energy (OSTI)

The results of Task I, Design Requirements, are presented. Environmental conditions for the Punta Tuna, Puerto Rico site are reviewed and synthesized to provide definition of current, wind and wave severity, direction, and occurrence for service, operational, and extreme sea states. SKSS performance requirements, including design life and watch circle, are followed by interface considerations particularly for the electrical transmission riser cable, and design criteria including safety and load factors. The SKSS concepts will be analyzed to evaluate performance, reliability, and cost. Performance analysis conducted included catenary anchor leg static calculations to size components, as well as drag due to environmental loads in the operational and extreme sea states for both ship and spar platforms. Dynamic analyses and trade studies to be conducted in Task II are presented. A reliability and risk assessment analysis of the three basic SKSS types - single-, multiple-, and tension-anchor-leg moors - was completed, indicating that the multiple-anchor-leg/multiple-point rotary or turret moor has the lowest risk-criticality for the ship, while that for the spar is the multiple-anchor-leg/multiple-point moor. The catenary single-anchor-leg/single-point moor has insufficient reliability for both platforms. The life cycle cost analysis methodology, including work breakdown structure, cost estimating, and cost minimization define the approach to costing to be followed throughout the study. The results of these design trades and analyses will first be applied to concept ranking required for recommendation of a SKSS concept for each platform.

Not Available

1979-06-01T23:59:59.000Z

12

OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC ENVIRONMENTAL ASSESSMENT  

E-Print Network (OSTI)

Ocean Thermal Energy Conversion (OTEC) Draft Programmaticof ocean thermal energy conversion technology. U.S. Depart~on Ocean TherUial Energy Conversion, June 18, 1979. Ocean

Sands, M.Dale

2013-01-01T23:59:59.000Z

13

Energy Basics: Ocean Thermal Energy Conversion  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermal Energy Conversion A process called ocean thermal energy conversion (OTEC) uses the heat energy stored in the Earth's oceans to generate electricity. OTEC works best when...

14

Green Ocean Wave Energy | Open Energy Information  

Open Energy Info (EERE)

Ocean Wave Energy Jump to: navigation, search Name Green Ocean Wave Energy Sector Marine and Hydrokinetic Website http:http:www.greenoceanwa Region United States LinkedIn...

15

Ocean Energy Technology Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ocean Energy Technology Basics Ocean Energy Technology Basics Ocean Energy Technology Basics August 16, 2013 - 4:18pm Addthis Text Version Photo of low waves in the ocean. A dock is visible in the background. Oceans cover more than 70% of the Earth's surface. As the world's largest solar collectors, oceans contain thermal energy from the sun and produce mechanical energy from tides and waves. Even though the sun affects all ocean activity, the gravitational pull of the moon primarily drives tides, and wind powers ocean waves. Learn more about: Ocean Thermal Energy Conversion Tidal Energy Wave Energy Ocean Resources Addthis Related Articles Energy Department Releases New Energy 101 Video on Ocean Power A map generated by Georgia Tech's tidal energy resource database shows mean current speed of tidal streams. The East Coast, as shown above, has strong tides that could be tapped to produce energy. | Photo courtesy of Georgia Institute of Technology

16

Army Energy Initiatives Task Force  

Energy.gov (U.S. Department of Energy (DOE))

Presentation—given at the Fall 2011 Federal Utility Partnership Working Group (FUPWG) meeting—covers the Army Energy Initiatives Task Force.

17

Ocean Thermal Energy Conversion | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thermal Energy Conversion Ocean Thermal Energy Conversion August 16, 2013 - 4:22pm Addthis A process called ocean thermal energy conversion (OTEC) uses the heat energy stored in...

18

Ocean | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search TODO: Add description Related Links List of Ocean Thermal Incentives Retrieved from "http:en.openei.orgwindex.php?titleOcean&oldid273467"...

19

Open Ocean Energy Ltd | Open Energy Information  

Open Energy Info (EERE)

Energy Ltd Jump to: navigation, search Name Open Ocean Energy Ltd Sector Marine and Hydrokinetic Website http:http:www.open-ocean-e LinkedIn Connections CrunchBase Profile No...

20

NREL-Ocean Energy Thermal Conversion | Open Energy Information  

Open Energy Info (EERE)

Ocean Energy Thermal Conversion Jump to: navigation, search Logo: NREL-Ocean Energy Thermal Conversion Name NREL-Ocean Energy Thermal Conversion AgencyCompany Organization...

Note: This page contains sample records for the topic "ocean energy task" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Ocean Tidal and Wave Energy  

Science Conference Proceedings (OSTI)

First published in 2000, the annual Renewable Energy Technical Assessment Guide (TAG-RE) provides a consistent basis for evaluating the economic feasibility of renewable generation technologies. This excerpt from the 2005 TAG-RE addresses ocean tidal and wave energy conversion technologies, which offer promise for converting the significant energy potential available in ocean tidal currents and waves to electricity in the future.

2005-12-19T23:59:59.000Z

22

Alternative Fuels Data Center: Energy Task Force  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Energy Task Force to Energy Task Force to someone by E-mail Share Alternative Fuels Data Center: Energy Task Force on Facebook Tweet about Alternative Fuels Data Center: Energy Task Force on Twitter Bookmark Alternative Fuels Data Center: Energy Task Force on Google Bookmark Alternative Fuels Data Center: Energy Task Force on Delicious Rank Alternative Fuels Data Center: Energy Task Force on Digg Find More places to share Alternative Fuels Data Center: Energy Task Force on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Energy Task Force The Governor's Task Force on Energy Policy is developing a state energy plan to facilitate energy efficiency and the use of alternative and renewable fuels in Tennessee. The energy plan will include a summary of

23

OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC ENVIRONMENTAL ASSESSMENT  

E-Print Network (OSTI)

DOE-EPA Working Group on Ocean TherUial Energy Conversion,Sands, M.D. (editor) Ocean Thermal Energy Conversion (OTEC)r:he comnercialization of ocean thermal energy conversion

Sands, M.Dale

2013-01-01T23:59:59.000Z

24

Army Energy Initiatives Task Force  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

UNCLASSIFIED UNCLASSIFIED Army Energy Initiatives Task Force Kathy Ahsing Director, Planning and Development UNCLASSIFIED 2 Perfect Storm UNCLASSIFIED 3 U.S. Army Energy Consumption, 2010 23% 77% 42% 58%  Facilities  Vehicles & Equipment (Tactical and Non-tactical) Sources: Energy Information Agency, 2010 Annual Energy Review; Agency Annual Energy Management Data Reports submitted to DOE's Federal Energy Management Program (Preliminary FY 2010) 32% 68% DoD 80% Army 21% Federal Gov 1% Federal Government United States Department of Defense U.S. = 98,079 Trillion Btu DoD = 889 Trillion Btu Fed Gov = 1,108 Trillion Btu U.S. Army = 189 Trillion Btu FY10 Highlights - $2.5+B Operational Energy Costs - $1.2 B Facility Energy Costs

25

Ocean Energy Institute | Open Energy Information  

Open Energy Info (EERE)

Wind energy Product Ocean Energy Institute is a think tank established to accelerate offshore wind technology development that hopes to build a 5GW wind project off the coast...

26

Weardale Task Force | Open Energy Information  

Open Energy Info (EERE)

search Name Weardale Task Force Place England, United Kingdom Sector Biomass, Geothermal energy, Hydro, Solar, Wind energy Product Durham based project consortium that is...

27

OceanEnergyMMS.p65  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Minerals Management Service, U.S. Department of the Interior Ocean Energy PAGE 1 Minerals Management Service, U.S. Department of the Interior Ocean Energy PAGE 1 Teacher Guide .......................................................... 2 Related National Science Standards .......................... 3 Introduction to Ocean Energy .................................. 4 Petroleum & Natural Gas ......................................... 5 Natural Oil and Gas Seeps ........................................ 7 Methane Hydrates .................................................... 8 Solar Energy .............................................................. 9 Wind Energy ........................................................... 10 Wave Energy ........................................................... 11 OTEC: Ocean Thermal Energy Conversion .............

28

Federal Energy Management Program: Hydropower and Ocean Energy Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydropower and Hydropower and Ocean Energy Resources and Technologies to someone by E-mail Share Federal Energy Management Program: Hydropower and Ocean Energy Resources and Technologies on Facebook Tweet about Federal Energy Management Program: Hydropower and Ocean Energy Resources and Technologies on Twitter Bookmark Federal Energy Management Program: Hydropower and Ocean Energy Resources and Technologies on Google Bookmark Federal Energy Management Program: Hydropower and Ocean Energy Resources and Technologies on Delicious Rank Federal Energy Management Program: Hydropower and Ocean Energy Resources and Technologies on Digg Find More places to share Federal Energy Management Program: Hydropower and Ocean Energy Resources and Technologies on AddThis.com... Energy-Efficient Products

29

Ocean Renewable Power Company LLC | Open Energy Information  

Open Energy Info (EERE)

Ocean Renewable Power Company LLC Jump to: navigation, search Name Ocean Renewable Power Company LLC Place Portland, Maine Zip 4101 Sector Ocean, Renewable Energy Product Ocean...

30

Ocean Energy Company LLC | Open Energy Information  

Open Energy Info (EERE)

Ocean Energy Company LLC Address 505 Fifth Ave 800 Place Des Moines Zip 50309-2426 Sector Marine and Hydrokinetic Year founded 2011 Phone number (515) 246-1500 Region United States...

31

Ocean Energy Ltd | Open Energy Information  

Open Energy Info (EERE)

Ocean Energy Ltd Address 3 Casement Square Place Cobh Sector Marine and Hydrokinetic Phone number 00353-21-4816779 Website http:www.oceanenergy.ie Region Ireland LinkedIn...

32

OCEAN THERMAL ENERGY CONVERSION: AN OVERALL ENVIRONMENTAL ASSESSMENT  

E-Print Network (OSTI)

M.D. (editor). 1980. Ocean Thermal Energy Conversion Draft1980 :. i l OCEAN THERMAL ENERGY CONVERSION: ENVIRONMENTALDevelopment Plan. Ocean Thermal Energy Conversion. U.S. DOE

Sands, M.Dale

2013-01-01T23:59:59.000Z

33

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network (OSTI)

Thermal Energy Conversion Conference. Ocean Systems Branch,Thermal Energy Conversion Conference. Ocean Systems Branch,thermal energy conversion, June 18, 1979. Ocean Systems

Sands, M. D.

2011-01-01T23:59:59.000Z

34

NREL Job Task Analysis: Energy Auditor  

SciTech Connect

A summary of job task analyses for the position of energy auditor when evaluating a residence before and during weatherization work.

Kurnik, C.; Woodley, C.

2011-05-01T23:59:59.000Z

35

Ocean Circulation Kinetic Energy: Reservoirs, Sources,  

E-Print Network (OSTI)

. The coupling of the generation of different energy forms in the dynamics (in either balanced or wave motions are almost nonexistent in the ocean. www.annualreviews.org · Ocean Circulation Kinetic Energy 255 Annu.Rev.Fluid processes? Are the seemingly different dynamical ranges coupled? 2. THE OCEANIC ENERGY BUDGET We begin

Ferrari, Raffaele

36

Federal Energy Management Program: Interagency Energy Management Task Force  

NLE Websites -- All DOE Office Websites (Extended Search)

About the Program About the Program Site Map Printable Version Share this resource Send a link to Federal Energy Management Program: Interagency Energy Management Task Force Members to someone by E-mail Share Federal Energy Management Program: Interagency Energy Management Task Force Members on Facebook Tweet about Federal Energy Management Program: Interagency Energy Management Task Force Members on Twitter Bookmark Federal Energy Management Program: Interagency Energy Management Task Force Members on Google Bookmark Federal Energy Management Program: Interagency Energy Management Task Force Members on Delicious Rank Federal Energy Management Program: Interagency Energy Management Task Force Members on Digg Find More places to share Federal Energy Management Program: Interagency Energy Management Task Force Members on AddThis.com...

37

Ocean tide energy converter  

Science Conference Proceedings (OSTI)

A tide motor energy source includes a tidal piston with a valved chamber. The piston drives a hydraulic ram to generate electrical power through a pressure accumulator and hydraulic motor. The ram can be locked hydraulically to enable the tidal piston to be held fixed at a desired elevation and the valves in the chamber permit it to be filled with water or air. The piston with its chamber filled with air at its low tide position and then released for controlled ascent while submerged acts as a submerged float for driving the ram upwardly while the tide runs in during one phase of its operation. The piston with its chamber filled with water while locked at its highest position as the tide begins to run out, and then released to fall under control, acts as a weight suspended in air after the water level drops below the piston for driving the ram downwardly during the second phase of its operation. The rising and falling motion of the tidal piston is used as the energy source.

Rainey, D.E.

1980-06-24T23:59:59.000Z

38

AWS Ocean Energy Ltd | Open Energy Information  

Open Energy Info (EERE)

AWS Ocean Energy Ltd AWS Ocean Energy Ltd Jump to: navigation, search Name AWS Ocean Energy Ltd Place Inverness, Scotland, United Kingdom Zip IV17 1SN Product Inverness-based company established to commercialise the Archimedes Wave Swing. Coordinates 48.55324°, -110.689764° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.55324,"lon":-110.689764,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

39

Ocean Thermal | Open Energy Information  

Open Energy Info (EERE)

Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon Ocean Thermal Jump to: navigation, search TODO: Add description List of Ocean Thermal Incentives...

40

ocean energy | OpenEI  

Open Energy Info (EERE)

ocean energy ocean energy Dataset Summary Description This shapefile represents the seasonal winter depth profile to reach water at a temperature of 20ºC. Source NREL Date Released October 28th, 2012 (2 years ago) Date Updated Unknown Keywords depth profile hydrokinetic ocean ocean energy ocean thermal energy conversion OTEC seawater cooling thermal Data application/zip icon OTEC Seawater Cooling 20ºC Depth Profile - Winter Average (zip, 1.1 MiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Time Period March 2009 - February 2011 License License Other or unspecified, see optional comment below Comment This GIS data was developed by the National Renewable Energy Laboratory ("NREL"), which is operated by the Alliance for Sustainable Energy, LLC for the U.S. Department of Energy ("DOE"). The user is granted the right, without any fee or cost, to use, copy, modify, alter, enhance and distribute this data for any purpose whatsoever, provided that this entire notice appears in all copies of the data. Further, the user of this data agrees to credit NREL in any publications or software that incorporate or use the data. Access to and use of the GIS data shall further impose the following obligations on the User. The names DOE/NREL may not be used in any advertising or publicity to endorse or promote any product or commercial entity using or incorporating the GIS data unless specific written authorization is obtained from DOE/NREL. The User also understands that DOE/NREL shall not be obligated to provide updates, support, consulting, training or assistance of any kind whatsoever with regard to the use of the GIS data. THE GIS DATA IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL DOE/NREL BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER, INCLUDING BUT NOT LIMITED TO CLAIMS ASSOCIATED WITH THE LOSS OF DATA OR PROFITS, WHICH MAY RESULT FROM AN ACTION IN CONTRACT, NEGLIGENCE OR OTHER TORTIOUS CLAIM THAT ARISES OUT OF OR IN CONNECTION WITH THE ACCESS OR USE OF THE GIS DATA. The User acknowledges that access to the GIS data is subject to U.S. Export laws and regulations and any use or transfer of the GIS data must be authorized under those regulations. The User shall not use, distribute, transfer, or transmit GIS data or any products incorporating the GIS data except in compliance with U.S. export regulations. If requested by DOE/NREL, the User agrees to sign written assurances and other export-related documentation as may be required to comply with U.S. export regulations.

Note: This page contains sample records for the topic "ocean energy task" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

REPORT OF THE DARK ENERGY TASK FORCE  

E-Print Network (OSTI)

REPORT OF THE DARK ENERGY TASK FORCE Andreas Albrecht, University of California, Davis Gary. Suntzeff, Texas A&M University Dark energy appears to be the dominant component of the physical Universe a full understanding of the cosmic acceleration. For these reasons, the nature of dark energy ranks among

Hu, Wayne

42

Practical Ocean Energy Management Systems Inc POEMS | Open Energy  

Open Energy Info (EERE)

Ocean Energy Management Systems Inc POEMS Ocean Energy Management Systems Inc POEMS Jump to: navigation, search Name Practical Ocean Energy Management Systems Inc (POEMS) Place San Diego, California Zip 92138 Sector Ocean, Renewable Energy Product POEMS was formed to involve the public in providing support for the development of ocean energy as a viable component of the renewable energy market. References Practical Ocean Energy Management Systems Inc (POEMS)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Practical Ocean Energy Management Systems Inc (POEMS) is a company located in San Diego, California . References ↑ "Practical Ocean Energy Management Systems Inc (POEMS)" Retrieved from

43

Ocean Energy Technology Overview: Federal Energy Management Program (FEMP)  

DOE Green Energy (OSTI)

Introduction to and overview of ocean renewable energy resources and technologies prepared for the U.S. Department of Energy Federal Energy management Program.

Not Available

2009-07-01T23:59:59.000Z

44

OCEAN THERMAL ENERGY CONVERSION: AN OVERALL ENVIRONMENTAL ASSESSMENT  

E-Print Network (OSTI)

l OCEAN THERMAL ENERGY CONVERSION: ENVIRONMENTAL ASSESSMENTOcean Thermal Energy Conversion Draft Programmatic Environ-Ocean Thermal Energy Conversion. U.S. DOE Assistant Secre-

Sands, M.Dale

2013-01-01T23:59:59.000Z

45

Ocean Thermal Energy Conversion Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thermal Energy Conversion Basics Thermal Energy Conversion Basics Ocean Thermal Energy Conversion Basics August 16, 2013 - 4:22pm Addthis A process called ocean thermal energy conversion (OTEC) uses the heat energy stored in the Earth's oceans to generate electricity. OTEC works best when the temperature difference between the warmer, top layer of the ocean and the colder, deep ocean water is about 36°F (20°C). These conditions exist in tropical coastal areas, roughly between the Tropic of Capricorn and the Tropic of Cancer. To bring the cold water to the surface, ocean thermal energy conversion plants require an expensive, large-diameter intake pipe, which is submerged a mile or more into the ocean's depths. Some energy experts believe that if ocean thermal energy conversion can become cost-competitive with conventional power technologies, it could be

46

Ocean Thermal Energy Conversion Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thermal Energy Conversion Basics Thermal Energy Conversion Basics Ocean Thermal Energy Conversion Basics August 16, 2013 - 4:22pm Addthis A process called ocean thermal energy conversion (OTEC) uses the heat energy stored in the Earth's oceans to generate electricity. OTEC works best when the temperature difference between the warmer, top layer of the ocean and the colder, deep ocean water is about 36°F (20°C). These conditions exist in tropical coastal areas, roughly between the Tropic of Capricorn and the Tropic of Cancer. To bring the cold water to the surface, ocean thermal energy conversion plants require an expensive, large-diameter intake pipe, which is submerged a mile or more into the ocean's depths. Some energy experts believe that if ocean thermal energy conversion can become cost-competitive with conventional power technologies, it could be

47

Assessment of ocean thermal energy conversion  

E-Print Network (OSTI)

Ocean thermal energy conversion (OTEC) is a promising renewable energy technology to generate electricity and has other applications such as production of freshwater, seawater air-conditioning, marine culture and chilled-soil ...

Muralidharan, Shylesh

2012-01-01T23:59:59.000Z

48

Energy and task management in energy harvesting wireless sensor networks for structural health monitoring  

E-Print Network (OSTI)

Chapter 4. System Energy and Task Management . . 1. Systemof the energy and task management used on systems, a WSNChapter 4 System Energy and Task Management In contrast to

Steck, Jamie Bradley

2009-01-01T23:59:59.000Z

49

Ocean Thermal Energy Conversion: An overview  

DOE Green Energy (OSTI)

Ocean thermal energy conversion, or OTEC is a technology that extracts power from the ocean's natural thermal gradient. This technology is being pursued by researchers from many nations; in the United States, OTEC research is funded by the US Department of Energy's Ocean Energy Technology program. The program's goal is to develop the technology so that industry can make a competent assessment of its potential -- either as an alternative or as a supplement to conventional energy sources. Federally funded research in components and systems will help OTEC to the threshold of commercialization. This publication provides an overview of the OTEC technology. 47 refs., 25 figs.

Not Available

1989-11-01T23:59:59.000Z

50

Ocean Navitas | Open Energy Information  

Open Energy Info (EERE)

Navitas Navitas Jump to: navigation, search Name Ocean Navitas Address Nursery House Place United Kingdom Zip DN21 5BQ Sector Ocean Product Ocean Navitas was incorporated in May 2006 by experienced engineers, businessmen and sailing enthusiasts David Hunt, James McCague and Simon Condry. Website http://www.oceannavitas.com Region United Kingdom References Ocean NavitasUNIQ75db538f85b32404-ref-000014E2-QINU LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: Ocean Navitas NaREC This company is involved in the following MHK Technologies: Aegir Dynamo This article is a stub. You can help OpenEI by expanding it.

51

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network (OSTI)

for the commercialization of ocean thermal energy conversionR. E. Hathaway. Open cycle ocean thermal energy conversion.of sewage effluent in an ocean current. Inst. of Tech. ,

Sands, M. D.

2011-01-01T23:59:59.000Z

52

Interagency Energy Management Task Force Members | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Force Members Force Members Interagency Energy Management Task Force Members October 8, 2013 - 1:31pm Addthis The Interagency Energy Management Task Force is composed of Federal energy managers, members of Federal Energy Management Program (FEMP), and industry participants. The FEMP director serves as the executive director of the task force. Task Force Executive Director Dr. Timothy Unruh U.S. Department of Energy 202-586-5772 Task Force Members Mark Ewing General Services Administration 202-708-9296 Holger Fischer National Aeronautics and Space Administration 202-358-0416 Wayne Thalasinos National Aeronautics and Space Administration 202-358-3811 Mark Sprouse National Archives and Records Administration 301-837-3019 Leslie Ford Social Security Administration 410-594-0111 David Zimmerman

53

Ocean energy systems. Quarterly report, January-March 1983  

DOE Green Energy (OSTI)

Progress is reported on the development of Ocean Thermal Energy Conversion (OTEC) systems that will provide synthetic fuels (e.g., methanol), energy-intensive products such as ammonia (for fertilizers and chemicals), and aluminum. The work also includes assessment and design concepts for hybrid plants, such as geothermal-OTEC (GEOTEC) plants. Another effort that began in the spring of 1982 is a technical advisory role to DOE with respect to their management of the conceptual and preliminary design activity of industry teams that are designing a shelf-mounted offshore OTEC pilot plant that could deliver power to Oahu, Hawaii. In addition, a program is underway to evaluate and test the Pneumatic Wave-Energy Conversion System (PWECS), an ocean-energy device consisting of a turbine that is air-driven as a result of wave action in a chamber. This Quarterly Report summarizes the work on the various tasks as of 31 March 1983.

Not Available

1983-03-30T23:59:59.000Z

54

ocean energy | OpenEI Community  

Open Energy Info (EERE)

ocean energy ocean energy Home Kch's picture Submitted by Kch(24) Member 9 April, 2013 - 13:30 MHK Cost Breakdown Structure Draft CBS current energy GMREC LCOE levelized cost of energy marine energy MHK ocean energy The generalized Cost Breakdown Structure (CBS) for marine and hydrokinetic (MHK) projects is a hierarchical structure designed to facilitate the collection and organization of lifecycle costs of any type of MHK project, including wave energy converters and current energy convertners. At a high level, the categories in the CBS will be applicable to all projects; at a detailed level, however, the CBS includes many cost categories that will pertain to one project but not others. It is expected that many of the detailed levels of the CBS will be populated with "NA" or left blank.Upload

55

Ocean energy systems. Quarterly report, October-December 1982  

DOE Green Energy (OSTI)

Research progress is reported on developing Ocean Thermal Energy Conversion (OTEC) systems that will provide synthetic fuels (e.g., methanol), energy-intensive products such as ammonia (for fertilizers and chemicals), and aluminum. The work also includes assessment and design concepts for hybrid plants, such as geothermal-OTEC (GEOTEC) plants. Another effort that began in the spring of 1982 is a technical advisory role to DOE with respect to their management of the conceptual design activity of the two industry teams that are designing offshore OTEC pilot plants that could deliver power to Oahu, Hawaii. In addition, a program is underway in which tests of a different kind of ocean-energy device, a turbine that is air-driven as a result of wave action in a chamber, are being planned. This Quarterly Report summarizes the work on the various tasks as of 31 December 1982.

Not Available

1982-12-01T23:59:59.000Z

56

Ocean Motion International LLC | Open Energy Information  

Open Energy Info (EERE)

Ocean Motion International LLC Ocean Motion International LLC Jump to: navigation, search Name Ocean Motion International LLC Place Saulsbury, Tennessee Zip 38067 Sector Ocean Product Marine energy technology firm developing ocean/ wave powered generators. Coordinates 35.052242°, -89.083299° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.052242,"lon":-89.083299,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

57

Ocean energy contract list, fiscal year 1990  

DOE Green Energy (OSTI)

The purpose of the federal Ocean Energy Technology (OET) Program is to develop techniques that harness ocean energy (waves, currents, and thermal and salinity gradients) in a cost-effective and environmentally acceptable manner. The OET Program seeks to develop ocean energy technology to a point at which the commercial sector can assess whether applications of the technology are viable energy conversion alternatives or supplements to systems. The federal OET Program is conducted by DOE and is assigned to the Assistant Secretary for Conservation and Renewable Energy. Past studies conducted by the US Department of Energy (DOE) have identified ocean thermal energy conversion (OTEC) as the largest potential contributor to US energy supplies from the ocean resource. As a result, of the OET Program concentrates on research to advance OTEC technology. The FY 1990 contract overview comprises a list of all subcontracts begun, ongoing, or completed during FY 1990 (October 1, 1989, through September 30, 1990). Under each managing laboratory, projects are listed alphabetically by project area and then by subcontractor name.

Not Available

1991-08-01T23:59:59.000Z

58

Ocean Energy Projects Developing On and Off America's Shores | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ocean Energy Projects Developing On and Off America's Shores Ocean Energy Projects Developing On and Off America's Shores Ocean Energy Projects Developing On and Off America's Shores January 22, 2013 - 1:14pm Addthis Artist rendering of Ocean Power Technologies' proposed wave park off the coast of Oregon. | Photo courtesy of Ocean Power Technologies. Artist rendering of Ocean Power Technologies' proposed wave park off the coast of Oregon. | Photo courtesy of Ocean Power Technologies. Verdant testing its tidal energy device in New York's East River. | Photo courtesy of Verdant Power. Verdant testing its tidal energy device in New York's East River. | Photo courtesy of Verdant Power. Ocean Power Technologies wave energy device. | Photo courtesy of Ocean Power Technologies. Ocean Power Technologies wave energy device. | Photo courtesy of Ocean

59

Ocean Energy Projects Developing On and Off America's Shores | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ocean Energy Projects Developing On and Off America's Shores Ocean Energy Projects Developing On and Off America's Shores Ocean Energy Projects Developing On and Off America's Shores January 22, 2013 - 1:14pm Addthis Artist rendering of Ocean Power Technologies' proposed wave park off the coast of Oregon. | Photo courtesy of Ocean Power Technologies. Artist rendering of Ocean Power Technologies' proposed wave park off the coast of Oregon. | Photo courtesy of Ocean Power Technologies. Verdant testing its tidal energy device in New York's East River. | Photo courtesy of Verdant Power. Verdant testing its tidal energy device in New York's East River. | Photo courtesy of Verdant Power. Ocean Power Technologies wave energy device. | Photo courtesy of Ocean Power Technologies. Ocean Power Technologies wave energy device. | Photo courtesy of Ocean

60

Ocean Renewable Power Company | Open Energy Information  

Open Energy Info (EERE)

Power Company Power Company Jump to: navigation, search Name Ocean Renewable Power Company LLC Place Portland, Maine Zip 4101 Sector Ocean, Renewable Energy Product Ocean Renewable Power Company, LLC was founded in 2004 for the purpose of generating reliable, competitive, emission-free electricity from the energy resources of the oceans. Coordinates 45.511795°, -122.675629° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.511795,"lon":-122.675629,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "ocean energy task" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

MHK Technologies/Ocean | Open Energy Information  

Open Energy Info (EERE)

Ocean Ocean < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Ocean.jpg Technology Profile Primary Organization Hydro Green Energy LLC Project(s) where this technology is utilized *MHK Projects/Alaska 35 *MHK Projects/Maine 1 Project *MHK Projects/Mississippi 6 *MHK Projects/Mississippi 7 *MHK Projects/New York 1 *MHK Projects/New York 2 Technology Resource Click here Current/Tidal Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 4: Proof of Concept Technology Description Hydro Green Energy's HydroKinetic Turbine Arrays operate differently than a traditional hydropower plant. Like a traditional hydropower station, the electricity that we produce is clean and renewable, however, there are significant differences. Hydro Green Energy's Krouse Turbines are kinetic turbines. This means that the renewable power that is generated comes from the energy in the "motion" of the moving water, i.e. the velocity of the moving water be it river, tidal or ocean current to generate river, tidal energy or ocean energy, respectively.

62

NREL: Energy Analysis - Ocean Energy Results - Life Cycle Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

Ocean Energy Results - Life Cycle Assessment Review Ocean Energy Results - Life Cycle Assessment Review For more information, visit: Special Report on Renewable Energy Sources and Climate Change Mitigation: Ocean Energy OpenEI: Data, Visualization, and Bibliographies Chart that shows life cycle greenhouse gas emissions for ocean power technologies. For help reading this chart, please contact the webmaster. Estimates of life cycle greenhouse gas emissions of wave and tidal range technologies. Credit: Lewis, A., S. Estefen, J. Huckerby, W. Musial, T. Pontes, J. Torres-Martinez, 2011: Ocean Energy. In IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation [O. Edenhofer, R. Pichs-Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer, C. von Stechow (eds)], Cambridge University Press. Figure 6.11 Enlarge image

63

Ocean Energy Technology: Overview, Federal Energy Management Program (FEMP)  

NLE Websites -- All DOE Office Websites (Extended Search)

femp.energy.gov femp.energy.gov Ocean Energy Technology Overview Prepared for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Federal Energy Management Program July 2009 DOE/GO-102009-2823 Ocean Energy Technology Overview i Contacts Principal Investigators: Kari Burman Phone: 303-384-7558 E-mail: kari.burman@nrel.gov Andy Walker, PhD PE Phone: 303-384-7531 E-mail: andy.walker@nrel.gov Energy Management and Federal Markets Group National Renewable Energy Laboratory (NREL) MS 301 1617 Cole Boulevard Golden, CO 80401 Sponsor: U.S. Department of Energy Federal Energy Management Program Acknowledgements This work was sponsored by the U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP). Research regarding ocean energy resources, status of wave and tidal power technologies, and

64

Approximation of Ocean Heat Storage by Ocean–Atmosphere Energy Exchange: Implications for Seasonal Cycle Mixed Layer Ocean Formulations  

Science Conference Proceedings (OSTI)

The approximation of ocean heat storage by the net surface energy flux and the implications for zonal mean SST simulation using mixed layer ocean formulation are examined. The analysis considers both constant and variable depth mixed layers. ...

Robert G. Gallimore; David D. Houghton

1987-08-01T23:59:59.000Z

65

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network (OSTI)

for the commercialization of ocean thermal energy conversionOpen cycle ocean thermal energy conversion. A preliminary1978. 'Open cycle thermal energy converS1on. A preliminary

Sands, M. D.

2011-01-01T23:59:59.000Z

66

Makai Ocean Engineering Inc | Open Energy Information  

Open Energy Info (EERE)

Makai Ocean Engineering Inc Makai Ocean Engineering Inc Jump to: navigation, search Name Makai Ocean Engineering Inc Address PO Box 1206 Place Kailua Zip 96734-1206 Sector Marine and Hydrokinetic Year founded 1973 Number of employees 28 Phone number 808.259.8871 Website http://www.makai.com Region United States LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: Modeling the Physical and Biochemical Influence of Ocean Thermal Energy Conversion Plant Discharges into their Adjacent Waters This company is involved in the following MHK Technologies: Deep Water Pipelines This article is a stub. You can help OpenEI by expanding it.

67

Task Force Approach | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Task Force Approach Task Force Approach Task Force Approach Task Force Approach Results of the ARI Task Force: The purpose of the ARI Task Force is to 1) identify, prioritize, and resolve issues to enable sites and programs to implement revitalization efforts more effectively and 2) to facilitate programmatic incorporation of revitalization concepts into DOE's programmatic business environments. The Task Force must do this through coordinating and facilitating communication and connections, sharing lessons learned, broadening the general knowledge base, facilitating, analyzing problems, developing implementable solutions, and considering and incorporating broader perspectives and knowledge. The success of the Task Force can be evaluated by impacts to the Department upon its completion. These impacts

68

Ocean Wave Wind Energy Ltd OWWE | Open Energy Information  

Open Energy Info (EERE)

Wind Energy Ltd OWWE Jump to: navigation, search Name Ocean Wave Wind Energy Ltd OWWE Sector Marine and Hydrokinetic Website http:www.owwe.net Region Norway LinkedIn Connections...

69

Ocean Engineering and Energy Systems | Open Energy Information  

Open Energy Info (EERE)

and Energy Systems Jump to: navigation, search Name Ocean Engineering and Energy Systems Sector Marine and Hydrokinetic Website http:www.ocees.com Region United States LinkedIn...

70

Federal Smart Grid Task Force | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Federal Smart Federal Smart Grid Task Force Federal Smart Grid Task Force Task Force Background The Federal Smart Grid Task Force was established under Title XIII of the Energy Independence and Security Act of 2007 (EISA) and includes experts from eleven Federal agencies. The Department of Energy is represented by the Office of Electricity Delivery and Energy Reliability which is the Task Force lead, as well as the Office of Energy Efficiency and Renewable Energy and the National Energy Technology Laboratory. Task Force Mission The mission of the Task Force is to ensure awareness, coordination and integration of the diverse activities of the Federal Government related to smart grid technologies, practices, and services. The Task Force will collaborate with DOE's Electricity Advisory Committee and other relevant

71

Microsoft Word - Energy Code Enforcement Funding Task Force ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of EIA's Annual Energy Outlook 2010, including projected construction levels, energy consumption, and fuel prices. The task force conservatively assumed a 4-year payback period...

72

Ocean Thermal Energy Conversion: Potential Environmental Impacts and Fisheries  

E-Print Network (OSTI)

Ocean Thermal Energy Conversion: Potential Environmental Impacts and Fisheries Christina M Comfort Institute #12;Ocean Thermal Energy Conversion (OTEC) · Renewable energy ­ ocean thermal gradient · Large, M.Sc. Candidate University of Hawaii at Manoa Department of Oceanography Hawaii Natural Energy

Hawai'i at Manoa, University of

73

Ocean Resources | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

resource-assessment projects for advanced water power. Addthis Related Articles Glossary of Energy Related Terms Pamela Sydelko is the Deputy Associate Laboratory Director...

74

Energy and task management in energy harvesting wireless sensor networks for structural health monitoring  

E-Print Network (OSTI)

1. Energy Harvesting . . . . . . . . .2. Task Scheduling in Energy Harvesting WSNs 3. DataSensor Networks . . 2. Energy Harvesting . . . . . . . . 3.

Steck, Jamie Bradley

2009-01-01T23:59:59.000Z

75

Scott Wilson Oceans | Open Energy Information  

Open Energy Info (EERE)

Oceans Oceans Jump to: navigation, search Name Scott Wilson Oceans Place Chesterfield, United Kingdom Zip S30 1JF Sector Wind energy Product Specialist in the engineering of onshore and offshore wind farm technology. Coordinates 37.376844°, -77.508252° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.376844,"lon":-77.508252,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

76

Modeling the energy consumption for concurrent executions of parallel tasks  

Science Conference Proceedings (OSTI)

Programming models using parallel tasks provide portable performance and scalability for modular applications on many high-performance systems. This is achieved by the flexibility of a two-level programming structure supporting mixed task and data parallelism. ... Keywords: communication, energy model, task-based programming

Thomas Rauber; Gudula Rünger

2011-04-01T23:59:59.000Z

77

Hydropower and Ocean Energy Resources and Technologies | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydropower and Ocean Energy Resources and Technologies Hydropower and Ocean Energy Resources and Technologies Hydropower and Ocean Energy Resources and Technologies October 7, 2013 - 9:29am Addthis Photo of water flowing from several openings in a hydropower dam. Hydropower produces 10% of the nation's energy, including power from the Ice Harbor Dam in Burbank, Washington. This page provides a brief overview of hydropower and ocean energy resources and technologies supplemented by specific information to apply these technologies within the Federal sector. Overview Hydropower has been used for centuries to power machinery, but the application most commonly associated with hydropower is electricity production through dams. Ocean energy refers to various forms of renewable energy harnessed from the ocean. There are two primary types of ocean energy: mechanical and thermal.

78

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network (OSTI)

cycle ocean thermal difference power plant. M.S. Thesis,ocean thermal energy conversion power plants. M.S. Thesis.comments on the thermal effects of power plants on fish eggs

Sands, M. D.

2011-01-01T23:59:59.000Z

79

CHARTER, Price-Anderson Act Task Force | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CHARTER, Price-Anderson Act Task Force CHARTER, Price-Anderson Act Task Force CHARTER, Price-Anderson Act Task Force This charter establishes the responsibilities of the Price-Anderson Act Task Force (Task Force). The Secretary of Energy has approved formation of this Task Force to review the need for the continuation or modification of the Price-Anderson Act, section 170 of the Atomic Energy Act of 1954, as amended (AEA), and to prepare a detailed report for submission to Congress as required by section 170p. of the AEA by August 1, 1998. CHARTER, Price-Anderson Act Task Force More Documents & Publications MEMORANDUM FOR THE SECRETARY Report to Congress on the Price-Anderson Act Appendix A. Notice of Inquiry: Preparation of Report to Congress on Price-Anderson Act. 62 Federal Register 68,272 (December 31, 1997)

80

Ocean Renewable Energy Coalition OREC | Open Energy Information  

Open Energy Info (EERE)

Energy Coalition OREC Energy Coalition OREC Jump to: navigation, search Name Ocean Renewable Energy Coalition (OREC) Place Potomac, Maryland Zip 20859 Sector Ocean Product US trade association founded to promote energy technologies from ocean resources. Coordinates 39.017653°, -77.208337° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.017653,"lon":-77.208337,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "ocean energy task" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Finavera Renewables Ocean Energy Ltd | Open Energy Information  

Open Energy Info (EERE)

Renewables Ocean Energy Ltd Renewables Ocean Energy Ltd Jump to: navigation, search Name Finavera Renewables Ocean Energy Ltd Address 595 Burrard Street Suite 3113 Three Bentall Centre PO Box 49071 Place Vancouver Zip V7X 1G4 Sector Marine and Hydrokinetic Phone number 604-288-9051 Website http://www.finavera.com Region Canada LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: Coos County Offshore Wave Energy Power Plant Figueira da Foz Portugal Humboldt County Wave Project Makah Bay Offshore Wave Pilot Project South Africa Ucluelet BC Canada This company is involved in the following MHK Technologies: AquaBuoy This article is a stub. You can help OpenEI by expanding it.

82

Department of Energy Establishes Asset Revitalization Task Force |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Establishes Asset Revitalization Task Force Establishes Asset Revitalization Task Force Department of Energy Establishes Asset Revitalization Task Force February 17, 2011 - 12:00pm Addthis Media Contact (202) 586-4940 Washington, D.C. - Secretary of Energy Steven Chu today announced the establishment of a Task Force on Asset Revitalization to facilitate a discussion among the Department of Energy, communities around DOE sites, nonprofits, tribal governments, the private sector and other stakeholders to identify reuse approaches as environmental cleanup efforts reach completion. The task force will explore opportunities to reutilize DOE site assets for beneficial purposes, which may include clean energy development, environmental sustainability projects, open space or other uses. "For decades, Department of Energy sites and their surrounding

83

Massachusetts Ocean Management Plan (Massachusetts) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Massachusetts Ocean Management Plan (Massachusetts) Massachusetts Ocean Management Plan (Massachusetts) Massachusetts Ocean Management Plan (Massachusetts) < Back Eligibility Construction Industrial Installer/Contractor Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Savings Category Water Buying & Making Electricity Wind Program Info State Massachusetts Program Type Siting and Permitting Provider Executive Office of Energy and Environmental Affairs The Massachusetts Ocean Act of 2008 required the state's Secretary of Energy and Environmental Affairs to develop a comprehensive ocean management plan for the state by the end of 2009. That plan identified certain state waters that are eligible for offshore wind, wave and tidal energy development and other state waters where such development is

84

Dynamical Potential Energy: A New Approach to Ocean Energetics  

Science Conference Proceedings (OSTI)

The concept of available potential energy is supposed to indicate which part of the potential energy is available to transform into kinetic energy. Yet it is impossible to obtain a unique definition of available potential energy for the real ocean ...

Fabien Roquet

2013-02-01T23:59:59.000Z

85

Ocean energy conversion systems annual research report  

DOE Green Energy (OSTI)

Alternative power cycle concepts to the closed-cycle Rankine are evaluated and those that show potential for delivering power in a cost-effective and environmentally acceptable fashion are explored. Concepts are classified according to the ocean energy resource: thermal, waves, currents, and salinity gradient. Research projects have been funded and reported in each of these areas. The lift of seawater entrained in a vertical steam flow can provide potential energy for a conventional hydraulic turbine conversion system. Quantification of the process and assessment of potential costs must be completed to support concept evaluation. Exploratory development is being completed in thermoelectricity and 2-phase nozzles for other thermal concepts. Wave energy concepts are being evaluated by analysis and model testing with present emphasis on pneumatic turbines and wave focussing. Likewise, several conversion approaches to ocean current energy are being evaluated. The use of salinity resources requires further research in membranes or the development of membraneless processes. Using the thermal resource in a Claude cycle process as a power converter is promising, and a program of R and D and subsystem development has been initiated to provide confirmation of the preliminary conclusion.

Not Available

1981-03-01T23:59:59.000Z

86

MHK Technologies/Ocean Energy Rig | Open Energy Information  

Open Energy Info (EERE)

Rig Rig < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Ocean Energy Rig.jpg Technology Profile Primary Organization Free Flow 69 Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description The Ocean Energy Rig is a hybrid concept harnessing tidal stream with increased velocity from venturi system wave and wind power The rig also uses solar panels to power computers and warning lights Other unique features include a water ballasting system with automatic self levelling and wave ramps to maximize FreeFlow 69 s new wave power device It is envisaged that the Ocean Energy Rig would be assembled and maintained in dry docks and would be towed out into position before being semi submerged and anchored for operation Power output of the production model would be at least 10MW

87

Solving Energy-Latency Dilemma: Task Allocation for Parallel Applications  

E-Print Network (OSTI)

Parallel applications with energy and low-latency constraints are emerging in various networked embedded systems like digital signal processing, vehicle tracking, and infrastructure monitoring. However, conventional energy-driven task allocation schemes for a cluster of embedded nodes only concentrate on energy-saving when making allocation decisions. Consequently, the length of the schedules could be very long, which is unfavorable or in some situations even not tolerated. In this paper, we address the issue of allocating a group of parallel tasks on a heterogeneous embedded system with an objective of energy-saving and short-latency. A novel task allocation strategy, or BEATA (Balanced Energy-Aware Task Allocation), is developed to find an optimal allocation that minimizes overall energy consumption while confining the length of schedule to an ideal range. Experimental results show that BEATA significantly improves the performance of embedded systems in terms of energy-saving and schedule length over an existing allocation scheme. 1.

Tao Xie; Xiao Qin; Mais Nijim

2006-01-01T23:59:59.000Z

88

Upper Oceanic Energy Response to Tropical Cyclone Passage  

Science Conference Proceedings (OSTI)

The upper oceanic temporal response to tropical cyclone (TC) passage is investigated using a 6-yr daily record of data-driven analyses of two measures of upper ocean energy content based on the U.S. Navy’s Coupled Ocean Data Assimilation System ...

John A. Knaff; Mark DeMaria; Charles R. Sampson; James E. Peak; James Cummings; Wayne H. Schubert

2013-04-01T23:59:59.000Z

89

Open cycle ocean thermal energy conversion system  

DOE Patents (OSTI)

An improved open cycle ocean thermal energy conversion system including a flash evaporator for vaporizing relatively warm ocean surface water and an axial flow, elastic fluid turbine having a vertical shaft and axis of rotation. The warm ocean water is transmitted to the evaporator through a first prestressed concrete skirt-conduit structure circumferentially situated about the axis of rotation. The unflashed warm ocean water exits the evaporator through a second prestressed concrete skirt-conduit structure located circumferentially about and radially within the first skirt-conduit structure. The radially inner surface of the second skirt conduit structure constitutes a cylinder which functions as the turbine's outer casing and obviates the need for a conventional outer housing. The turbine includes a radially enlarged disc element attached to the shaft for supporting at least one axial row of radially directed blades through which the steam is expanded. A prestressed concrete inner casing structure of the turbine has upstream and downstream portions respectively situated upstream and downstream from the disc element. The radially outer surfaces of the inner casing portions and radially outer periphery of the axially interposed disc cooperatively form a downwardly radially inwardly tapered surface. An annular steam flowpath of increasing flow area in the downward axial direction is radially bounded by the inner and outer prestressed concrete casing structures. The inner casing portions each include a transversely situated prestressed concrete circular wall for rotatably supporting the turbine shaft and associated structure. The turbine blades are substantially radially coextensive with the steam flowpath and receive steam from the evaporator through an annular array of prestressed concrete stationary vanes which extend between the inner and outer casings to provide structural support therefor and impart a desired flow direction to the steam.

Wittig, J. Michael (West Goshen, PA)

1980-01-01T23:59:59.000Z

90

Ocean Energy Resource Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

resource-assessment projects for advanced water power. Addthis Related Articles Glossary of Energy-Related Terms Frequently Asked Questions Pamela Sydelko is the Deputy...

91

Category:Articles with outstanding TODO tasks | Open Energy Information  

Open Energy Info (EERE)

Articles with outstanding TODO tasks Articles with outstanding TODO tasks Jump to: navigation, search This category contains articles which have been flagged as requiring specific work. For higher-level TODO tasks which are not tied to specific articles, see OpenEI:TODO. Pages in category "Articles with outstanding TODO tasks" The following 177 pages are in this category, out of 177 total. 1 1st Light Energy, Inc. A A2BE Carbon Capture LLC Abbotsford, Australia Agricultural Equipment Ambient Control Systems American Solar Technology Amur Energy Division Anaerobic Digestion Anant Oorja Argonne, Illinois Askja Energy Austin Clean Energy Group B Bank of Italy Biodiesel Black Warrior, Nevada Boilers Boots on the Roof Bordeaux International Energy Consulting, LLC BP Statistical Review of World Energy

92

MHK Technologies/OceanStar | Open Energy Information  

Open Energy Info (EERE)

OceanStar OceanStar < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage OceanStar.jpg Technology Profile Primary Organization Bourne Energy Technology Resource Click here Wave Technology Type Click here Overtopping Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description The OceanStar device captures the underlying pressure wave through a series of small turbine generators The OceanStar relies upon a proprietary energy efficient process to smooth out the pulse characteristics common to wave energy in order to be electrical grid friendly The OceanStars high level of scalability is essential to reach the large surface areas required to reach utility scale ocean power generation Technology Dimensions

93

Ocean Shores, Washington: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Ocean Shores, Washington: Energy Resources Ocean Shores, Washington: Energy Resources (Redirected from Ocean Shores, WA) Jump to: navigation, search Equivalent URI DBpedia Coordinates 46.9736986°, -124.1562852° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.9736986,"lon":-124.1562852,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

94

Riding the Waves: Harnessing Ocean Wave Energy through ...  

Science Conference Proceedings (OSTI)

... The opportunities for ocean wave power to become a new, reliable and clean source of renewable energy will be discussed, as well as activities of ...

2012-04-04T23:59:59.000Z

95

University Research Reactor Task Force to the Nuclear Energy Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

University Research Reactor Task Force to the Nuclear Energy University Research Reactor Task Force to the Nuclear Energy Research Advisory Committee University Research Reactor Task Force to the Nuclear Energy Research Advisory Committee In mid-February, 2001 The University Research Reactor (URR) Task Force (TF), a sub-group of the Department of Energy (DOE) Nuclear Energy Research Advisory Committee (NERAC), was asked to: * Analyze information collected by DOE, the NERAC "Blue Ribbon Panel," universities, and other sources pertaining to university reactors including their research and training capabilities, costs to operate, and operating data, and * Provide DOE with clear, near-term recommendations as to actions that should be taken by the Federal Government and a long-term strategy to assure the continued operation of vital university reactor facilities in

96

An Observational Estimate of Inferred Ocean Energy Divergence  

Science Conference Proceedings (OSTI)

Monthly net surface energy fluxes (FS) over the oceans are computed as residuals of the atmospheric energy budget using top-of-atmosphere (TOA) net radiation (RT) and the complete atmospheric energy (AE) budget tendency (?AE/?t) and divergence ( ...

Kevin E. Trenberth; John T. Fasullo

2008-05-01T23:59:59.000Z

97

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network (OSTI)

for Western Gulf of Mexico. Energy Research and Developmentfor central Gulf of Mexico. Energy Research and DevelopmentGulf of Mexico, - IV-34 in Proc. Fourth Ocean Thermal Energy

Sands, M. D.

2011-01-01T23:59:59.000Z

98

Energy and task management in energy harvesting wireless sensor networks for structural health monitoring  

E-Print Network (OSTI)

Formulation of the Energy Constraint Problem ILP Formulationde?nes the energy and task management problem for a wirelesssolutions to the energy and time constraint problems are too

Steck, Jamie Bradley

2009-01-01T23:59:59.000Z

99

Task Order Awarded for Technical Support Services | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Task Order Awarded for Technical Support Services Task Order Awarded for Technical Support Services Task Order Awarded for Technical Support Services September 26, 2013 - 12:00pm Addthis Media Contact Lynette Chafin, 513-246-0461 Lynette.Chafin@emcbc.doe.gov Cincinnati - The Department of Energy (DOE) today awarded a Task Order for Technical Services to Project Enhancement Corporation, of Germantown, MD, for technical support services at the Environmental Management 13 (EM-13) office in Washington DC. The task order was a competitive small business set-aside for time-and-materials with an approximate value of $2.7 million, with a one-year base performance period and two additional 1-year options. Services to be performed under the task order include: D&D strategic planning; D&D mission planning, evaluation, and analysis;

100

COMMERCIAL FISHERY DATA FROM A PROPOSED OCEAN THERMAL ENERGY CONVERSION (OTEC) SITE IN PUERTO RICO  

E-Print Network (OSTI)

Ocean Thermal Energy Conversion (OTEC) sites to identify thethermal energy conversion (OTEC) program; preoperationalOCEAN THERHAL _ENERGY _CONVERSION(OTEC) --:siTE IN PUERTO

Ryan, Constance J.

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ocean energy task" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Smart Grid Task Force Presentations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Federal Smart Federal Smart Grid Task Force » Smart Grid Task Force Presentations Smart Grid Task Force Presentations Presentations about the Federal Smart Grid Task Force and it's activities will be posted as soon as they become available. May 7, 2008 - Smart Grid Activities at the Department of Energy (PDF 349 KB) May 19, 2008 - What is a Smart Grid? Edison Electric Institute E-Forum, Joe Miller, Horizon Energy Group (PDF 530 KB) June 16, 2008 - The Smart Grid: Benefits and Challenges, Edison Electric Institute E-Forum, Joe Miller, Horizon Energy Group (PDF 1.44 MB) June 20, 2008 - Smart Grid Implementation Workshop Opening Plenary Presentations Visions of the Smart Grid: Deconstructing the traditional utility to build the virtual utility, by Tom Standish, CenterPoint Energy (PDF 2.66

102

Energy Department Awards First Major Task Order Under Streamlined  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

First Major Task Order Under Streamlined First Major Task Order Under Streamlined Contracting System Energy Department Awards First Major Task Order Under Streamlined Contracting System October 17, 2005 - 11:59am Addthis New Mexico Firm Contracted for Ashtabula Clean-up WASHINGTON, DC - The Department of Energy (DOE) has awarded a Task Order for an estimated $19.4 million to LATA-SHARP Remediation Services, LLC for the completion of clean-up activities at the Ashtabula Closure Project (ACP) in Ashtabula, Ohio. This is the first major Task Order that has been issued under the Office of Environmental Management's Nationwide Indefinite Delivery, Indefinite Quantity (ID/IQ) Multiple Award Contract, which pre-qualifies companies to do work for DOE's EM program. Assistant Secretary for Environmental Management James Rispoli said. "We

103

Solar Energy Research and Education Foundation. Final reports by task  

DOE Green Energy (OSTI)

This document contains final reports for the following tasks: kiosk for the children`s museum renewable energy exhibit and display, internet promotional and educational material, Aurora renewable energy science and engineering, CD-ROM training materials, presentations and traveling display, radio show `Energy Matters`, and newspaper articles and weekly news column.

von Reis, K.; Waegel, A.S.; Totten, M.

1997-12-10T23:59:59.000Z

104

Turbine speed control for an ocean wave energy conversion system  

Science Conference Proceedings (OSTI)

In this work, a hydraulic turbine speed governor is proposed in view of its application in an isolated electric generation system based on an ocean wave energy converter (WEC). The proposed strategy is based on cascade closed-loop control combined with ... Keywords: Pelton turbine, cascade control, feedforward control, ocean wave energy, speed governor

Paula B. Garcia-Rosa; José Paulo V. S. Cunha; Fernando Lizarralde

2009-06-01T23:59:59.000Z

105

Grays Harbor Ocean Energy Company | Open Energy Information  

Open Energy Info (EERE)

Ocean Energy Company Ocean Energy Company Jump to: navigation, search Name Grays Harbor Ocean Energy Company Place Seattle, Washington Zip 98105 Sector Renewable Energy, Wind energy Product Grays Harbor has started a demonstration project for offshore wind/wave renewable power generation in Washington State and has applied for up to 1GW in permits for wave projects around the US. Coordinates 47.60356°, -122.329439° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.60356,"lon":-122.329439,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

106

Ocean Wave Energy Company OWECO | Open Energy Information  

Open Energy Info (EERE)

Energy Company OWECO Energy Company OWECO Jump to: navigation, search Name Ocean Wave Energy Company (OWECO) Place Bristol, Rhode Island Sector Ocean Product Wave energy device developer. The company has patented the OWEC Ocean Wave Energy Converter®., a device consisting of a submerged array, suspended at depths permitting full reciprocation of buoys and respective driveshafts. Coordinates 42.55678°, -88.050449° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.55678,"lon":-88.050449,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

107

Department of Energy Establishes Asset Revitalization Task Force  

NLE Websites -- All DOE Office Websites (Extended Search)

Thursday, February 17, 2011 Thursday, February 17, 2011 Department of Energy Establishes Asset Revitalization Task Force Washington, D.C. � Secretary of Energy Steven Chu today announced the establishment of a Task Force on Asset Revitalization to facilitate a discussion among the Department of Energy, communities around DOE sites, nonprofits, tribal governments, the private sector and other stakeholders to identify reuse approaches as environmental cleanup efforts reach completion. The task force will explore opportunities to reutilize DOE site assets for beneficial purposes, which may include clean energy development, environmental sustainability projects, open space or other uses. �For decades, Department of Energy sites and their surrounding communities have played a vital role in supporting the nation�s nuclear

108

Estimating the Meridional Energy Transports in the Atmosphere and Ocean  

Science Conference Proceedings (OSTI)

The poleward energy transports in the atmosphere–ocean system are estimated for the annual mean and the four seasons based on satellite measurements of the net radiation balance at the top of the atmosphere, atmospheric transports of energy at ...

B. C. Carissimo; A. H. Oort; T. H. Vonder Haar

1985-01-01T23:59:59.000Z

109

Estimating Internal Wave Energy Fluxes in the Ocean  

Science Conference Proceedings (OSTI)

Energy flux is a fundamental quantity for understanding internal wave generation, propagation, and dissipation. In this paper, the estimation of internal wave energy fluxes u?p? from ocean observations that may be sparse in either time or depth ...

Jonathan D. Nash; Matthew H. Alford; Eric Kunze

2005-10-01T23:59:59.000Z

110

Clinch River MRS Task Force Recommendations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clinch River MRS Task Force Recommendations Clinch River MRS Task Force Recommendations Clinch River MRS Task Force Recommendations The Clinch River HRS Task Force was appointed in July 1985 by the Roane County Executive and the Oak Ridge City Council to evaluate the Monitored Retrievable Storage (MRS) facility proposed by the Department of Energy to be constructed in the Roane County portion of Oak Ridge. After several months of study, numerous public meetings, site visits to relevant facilities, and careful evaluation of the integrated MRS concept, it is the considered opinion of the Task Force that the facility could be safely built and operated in Roane County/Oak Ridge. However, a MRS facility constructed in the Roane County portion of Oak Ridge would not be generally perceived as being safe by the citizens of Roane County and Oak Ridge

111

Clinch River MRS Task Force Recommendations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clinch River MRS Task Force Recommendations Clinch River MRS Task Force Recommendations Clinch River MRS Task Force Recommendations The Clinch River HRS Task Force was appointed in July 1985 by the Roane County Executive and the Oak Ridge City Council to evaluate the Monitored Retrievable Storage (MRS) facility proposed by the Department of Energy to be constructed in the Roane County portion of Oak Ridge. After several months of study, numerous public meetings, site visits to relevant facilities, and careful evaluation of the integrated MRS concept, it is the considered opinion of the Task Force that the facility could be safely built and operated in Roane County/Oak Ridge. However, a MRS facility constructed in the Roane County portion of Oak Ridge would not be generally perceived as being safe by the citizens of Roane County and Oak Ridge

112

AWS Ocean Energy formerly Oceanergia | Open Energy Information  

Open Energy Info (EERE)

formerly Oceanergia formerly Oceanergia Jump to: navigation, search Name AWS Ocean Energy formerly Oceanergia Address Redshank House Alness Point Business Park Place Alness Ross shire Zip IV17 0UP Sector Marine and Hydrokinetic Phone number 44 (0) 1349 88 44 22 Website http://www.awsocean.com Region United Kingdom LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: AWS II Portugal Pre Commercial Pilot Project This company is involved in the following MHK Technologies: Archimedes Wave Swing This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=AWS_Ocean_Energy_formerly_Oceanergia&oldid=678253

113

Energy-Aware Task Partitioning on Heterogeneous Multiprocessor Platforms  

E-Print Network (OSTI)

Efficient task partitioning plays a crucial role in achieving high performance at multiprocessor plat forms. This paper addresses the problem of energy-aware static partitioning of periodic real-time tasks on heterogeneous multiprocessor platforms. A Particle Swarm Optimization variant based on Min-min technique for task partitioning is proposed. The proposed approach aims to minimize the overall energy consumption, meanwhile avoid deadline violations. An energy-aware cost function is proposed to be considered in the proposed approach. Extensive simulations and comparisons are conducted in order to validate the effectiveness of the proposed technique. The achieved results demonstrate that the proposed partitioning scheme significantly surpasses previous approaches in terms of both number of iterations and energy savings.

Saad, Elsayed; Shalan, Mohamed; Elewi, Abdullah

2012-01-01T23:59:59.000Z

114

A fuzzy logic material selection methodology for renewable ocean energy applications.  

E-Print Network (OSTI)

??The purpose of this thesis is to develop a renewable ocean energy material selection methodology for use in FAU's Ocean Energy Projects. A detailed and… (more)

Welling, Donald Anthony.

2009-01-01T23:59:59.000Z

115

Joint Outreach Task Group Video Series | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Joint Outreach Task Group Video Series Joint Outreach Task Group Video Series Joint Outreach Task Group Video Series Greeting: Inter-Agency Partnership, Commitment, and Service to the American workers The purpose of this video series is to provide an overview of the roles and responsibilities of the federal government offices and entities involved in the Energy Employees Occupational Illness Compensation Program Act (EEOIOCPA) and the Former Worker Medical Screening Program (FWP), two programs that serve eligible workers from the Department of Energy (DOE). In the interest of combining resources, since both the EEOICPA and FWP serve a similar population of workers, the federal entities have partnered to hold local outreach meetings in and around active or closed DOE sites. These meetings have been very successful, but we realize not everyone can

116

Surface Energy Fluxes of the South Atlantic Ocean  

Science Conference Proceedings (OSTI)

Fluxes of sensible, latent and radiational energy and momentum across the surface of the South Atlantic Ocean have been calculated by substituting ship meteorological observations into bulk aerodynamic and empirical radiation equations. Upper-air ...

Andrew F. Bunker

1988-04-01T23:59:59.000Z

117

Mapping and Assessment of the United States Ocean Wave Energy...  

Open Energy Info (EERE)

TECHNICAL REPORT Mapping and Assessment of the United States Ocean Wave Energy Resource EPRI Project Manager P. Jacobson 3420 Hillview Avenue Palo Alto, CA 94304-1338 USA PO Box...

118

Mixing and Available Potential Energy in a Boussinesq Ocean  

Science Conference Proceedings (OSTI)

The commonly used definitions for available potential energy and its sources in the oceans are based on the quasigeostrophic approximation, so they are not suitable for the study of basin-scale circulation. Accurate definitions for the available ...

Rui Xin Huang

1998-04-01T23:59:59.000Z

119

How Much Energy Propagates Vertically in the Equatorial Oceans?  

Science Conference Proceedings (OSTI)

Vertically propagating linear wave calculations using realistic equatorial buoyancy profiles are presented which show the percentage of the downward surface energy flux that reaches the deep equatorial oceans. The percentages vary widely ...

Peter R. Gent; James R. Luyten

1985-07-01T23:59:59.000Z

120

Energy Department Releases New Energy 101 Video on Ocean Power | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Releases New Energy 101 Video on Ocean Power Energy Department Releases New Energy 101 Video on Ocean Power Energy Department Releases New Energy 101 Video on Ocean Power April 30, 2013 - 12:40pm Addthis See how marine and hydrokinetic technologies harness the energy of the ocean's waves, tides, and currents and convert it into electricity to power our homes, buildings and cities. Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy FIND OUT MORE Read about the Energy Department's assessments of wave and tidal energy resources. You've probably seen water at work generating electricity at dams and other hydropower facilities in your region. But an emerging clean energy technology called marine and hydrokinetic (MHK) energy -- or ocean power -- uses water to generate electricity in a different way, and has yet to get

Note: This page contains sample records for the topic "ocean energy task" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Energy-aware Operation and Task Allocation of Autonomous Robots  

E-Print Network (OSTI)

Energy-aware operation is one of the visionary goals in the area of autonomous systems research. This is especially the fact as small and mobile nodes become available and application scenarios emerge, which lead to much higher requirements in terms of reliability, longterm operability, adaptation, and self-organization. In this paper, we focus on energy control and battery management in mobile robot systems. We show an approximation technique to derive the remaining energy of the local system. The mechanism is based on a model of all energy-consuming parts of the robot system and the corresponding characteristic curves. The results are used for task allocation and behavior adaptation of each autonomously acting system. The proposed methodology increases the probability of completing globally assigned tasks. Therefore, the algorithm contributes to the performance and reliability of the global system. Additionally, each node in the overall system becomes able to employ its energy resources much more efficiently. We see this energy-aware concept for task allocation as a basis for further extensions used for studies on energy efficient communication in mobile sensor networks. 1

Falko Dressler Gerhard Fuchs

2005-01-01T23:59:59.000Z

122

Urban Consortium Energy Task Force - Year 21 Final Report  

Science Conference Proceedings (OSTI)

The Urban Consortium Energy Task Force (UCETF), comprised of representatives of large cities and counties in the United States, is a subgroup of the Urban Consortium, an organization of the nation's largest cities and counties joined together to identify, develop and deploy innovative approaches and technological solutions to pressing urban issues.

NONE

2003-04-01T23:59:59.000Z

123

Project Independence. Final task force report: geothermal energy  

SciTech Connect

This report contains the final technical analysis of the Project Independence Interagency Geothermal Task Force chaired by the National Science Foundation. The potential of geothermal energy, resources, fuel cycles, and the status of geothermal technology are outlined. Some constraints inhibiting rapid and widespread utilization and some Federal actions to remove utilization barriers are described. (MOW)

1974-11-01T23:59:59.000Z

124

Ocean Thermal Energy Conversion (OTEC) A New Secure Renewable Energy Source  

E-Print Network (OSTI)

Ocean Thermal Energy Conversion (OTEC) A New Secure Renewable Energy Source For Defense New Ventures #12;What is OTEC? OTEC B fiOTEC Benefits: Large Renewable Energy Source 3-5 Terawatts Water Temperature Delta 2 A New Clean Renewable 24/7 Energy Source #12;Ocean Thermal Energy Conversion

125

Ocean Thermal Energy Conversion Program Management Plan  

DOE Green Energy (OSTI)

The Office of the Associate Laboratory Director for Energy and Environmental Technology has established the OTEC Program Management Office to be responsible for the ANL-assigned tasks of the OTEC Program under DOE's Chicago Operations and Regional Office (DOE/CORO). The ANL OTEC Program Management Plan is essentially a management-by-objective plan. The principal objective of the program is to provide lead technical support to CORO in its capacity as manager of the DOE power-system program. The Argonne OTEC Program is divided into three components: the first deals with development of heat exchangers and other components of OTEC power systems, the second with development of biofouling counter-measures and corrosion-resistant materials for these components in seawater service, and the third with environmental and climatic impacts of OTEC power-system operation. The essential points of the Management Plan are summarized, and the OTEC Program is described. The organization of the OTEC Program at ANL is described including the functions, responsibilities, and authorities of the organizational groupings. The system and policies necessary for the support and control functions within the organization are discussed. These functions cross organizational lines, in that they are common to all of the organization groups. Also included are requirements for internal and external reports.

Combs, R E

1980-01-01T23:59:59.000Z

126

Open Ocean Aquaculture & Wave Energy Site | Open Energy Information  

Open Energy Info (EERE)

Aquaculture & Wave Energy Site Aquaculture & Wave Energy Site Jump to: navigation, search Basic Specifications Facility Name Open Ocean Aquaculture & Wave Energy Site Overseeing Organization University of New Hampshire Hydrodynamics Hydrodynamic Testing Facility Type Offshore Berth Depth(m) 52.0 Cost(per day) Contact POC Special Physical Features The Offshore Mooring System is placed in 52m water depth with a subsurface attachment grid at 20m. The entire mooring system covers 36 acres of bottom. There are four 'bays' into which devices can be attached. Each bay is approximately 130m on a side. There is a database with ~10 years of wave data and other environmental parameters available. Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes

127

THOR Turner Hunt Ocean Renewable LLC | Open Energy Information  

Open Energy Info (EERE)

Turner Hunt Ocean Renewable LLC Turner Hunt Ocean Renewable LLC Jump to: navigation, search Name THOR Turner Hunt Ocean Renewable LLC Address 3814 West St Place Cincinnati Zip 45227 Sector Marine and Hydrokinetic Year founded 2007 Phone number 513-527-4924 Website http://http://www.thorocean.co Region United States LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Technologies: THOR Ocean Current Turbine This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=THOR_Turner_Hunt_Ocean_Renewable_LLC&oldid=678473" Categories: Clean Energy Organizations Companies Organizations

128

Energy Department Releases New Energy 101 Video on Ocean Power | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy 101 Video on Ocean Power Energy 101 Video on Ocean Power Energy Department Releases New Energy 101 Video on Ocean Power April 30, 2013 - 12:40pm Addthis See how marine and hydrokinetic technologies harness the energy of the ocean's waves, tides, and currents and convert it into electricity to power our homes, buildings and cities. Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy FIND OUT MORE Read about the Energy Department's assessments of wave and tidal energy resources. You've probably seen water at work generating electricity at dams and other hydropower facilities in your region. But an emerging clean energy technology called marine and hydrokinetic (MHK) energy -- or ocean power -- uses water to generate electricity in a different way, and has yet to get

129

EnOcean Inc | Open Energy Information  

Open Energy Info (EERE)

EnOcean Inc EnOcean Inc Jump to: navigation, search Name EnOcean Inc Address 801 Boylston Street Place Boston, Massachusetts Zip 02116 Sector Efficiency Product Wireless sensor for building automation to improve efficiency Website http://www.enocean.com/ Coordinates 42.349048°, -71.082153° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.349048,"lon":-71.082153,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

130

Smart Grid Task Force Presentations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services Technology Development Smart Grid Federal Smart Grid Task Force Smart Grid Task Force Presentations Smart Grid Task Force Presentations Presentations about the...

131

Smart Grid Task Force Presentations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Smart Grid Federal Smart Grid Task Force Smart Grid Task Force Presentations Smart Grid Task Force Presentations Electricity Advisory Committee Technology Development...

132

Ocean Power Technologies | Open Energy Information  

Open Energy Info (EERE)

Power Technologies Power Technologies Jump to: navigation, search Logo: Ocean Power Technologies Name Ocean Power Technologies Address 1590 Reed Road Place Pennington, New Jersey Zip 08534 Year founded 1994 Number of employees 100 Website http://www.oceanpowertechnolog Coordinates 40.297652°, -74.794481° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.297652,"lon":-74.794481,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

133

Regional Energy and Water Cycles: Transports from Ocean to Land  

Science Conference Proceedings (OSTI)

The flows of energy and water from ocean to land are examined in the context of the land energy and water budgets, for land as a whole and for continents. Most atmospheric reanalyses have large errors of up to 15 W m?2 in the top-of-atmosphere (...

Kevin E. Trenberth; John T. Fasullo

2013-10-01T23:59:59.000Z

134

Regional energy and water cycles: Transports from ocean to land  

Science Conference Proceedings (OSTI)

The flows of energy and water from ocean to land are examined in the context of the land energy and water budgets, for land as a whole and for continents. Most atmospheric reanalyses have large errors of up to 15 W m-2 in the top-of-atmosphere (...

Kevin E. Trenberth; John T. Fasullo

135

Bartlett's Ocean View Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Bartlett's Ocean View Wind Farm Bartlett's Ocean View Wind Farm Jump to: navigation, search Name Bartlett's Ocean View Wind Farm Facility Bartlett's Ocean View Wind Farm Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Bartlett's Ocean View Wind Farm Energy Purchaser Bartlett's Ocean View Wind Farm Location Nantucket MA Coordinates 41.259168°, -70.131913° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.259168,"lon":-70.131913,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

136

MHK Technologies/Ocean Current Linear Turbine | Open Energy Information  

Open Energy Info (EERE)

Linear Turbine Linear Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Ocean Current Linear Turbine.jpg Technology Profile Primary Organization Ocean Energy Company LLC Technology Type Click here Seabed mooring system Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description Endless cable loop with parachutes spliced to cable which moored in an ocean current pulls the cable through rotors which in turn power conventional electricity generators See US Patent 3 887 817 Additional patent pending Technology Dimensions Device Testing Date Submitted 30:08.6 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Ocean_Current_Linear_Turbine&oldid=681618"

137

Strategy analysis for energy conservation. Task 1: economic studies  

SciTech Connect

Development and implementation of an analytical methodology to evaluate alternative research, development, and demonstration projects to allocate Federal funds in a manner consistent with overall DOE and National Energy Plan goals are presented. Documentation of the first step toward addressing these goals is presented. Historical consumption and efficiency of energy usage in the US are traced. Based on a variety of sources and assumptions, a set of no action projections of energy consumption through 2000 was developed. These projections were then compared to national goals derived from the NEP and other sources to identify specific requirements for energy conservation through efficiency improvements and fuel switching. These requirements will form the basis for development and implementation of the analytical methodology as part of Tasks 2 and 3. The methodology concept is discussed in detail.

1978-02-01T23:59:59.000Z

138

IEA Wind Task 26: The Past And Future Cost Of Wind Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

IEA Wind Task 26: The Past And Future Cost Of Wind Energy Title IEA Wind Task 26: The Past And Future Cost Of Wind Energy Publication Type Report Year of Publication 2012 Authors...

139

OCEAN THERMAL ENERGY CONVERSION PRELIMINARY DATA REPORT FOR THE NOVEMBER 1977 GOTEC-02 CRUISE TO THE GULF OF MEXICO MOBILE SITE  

E-Print Network (OSTI)

9437 GOTEC-02 OCEAN THERMAL ENERGY CONVERSION PRELIMINARYto potential Ocean Thermal Energy Conversion (OTEC) sites inThree Proposed Ocean Thermal Energy Conversion (OTEC) Sites:

Commins, M.L.

2010-01-01T23:59:59.000Z

140

List of Ocean Thermal Incentives | Open Energy Information  

Open Energy Info (EERE)

Thermal Incentives Thermal Incentives Jump to: navigation, search The following contains the list of 96 Ocean Thermal Incentives. CSV (rows 1 - 96) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Business Energy Investment Tax Credit (ITC) (Federal) Corporate Tax Credit United States Agricultural Commercial Industrial Utility Anaerobic Digestion Biomass CHP/Cogeneration Fuel Cells Fuel Cells using Renewable Fuels Geothermal Direct Use Geothermal Electric Ground Source Heat Pumps Hydroelectric energy Landfill Gas Microturbines Municipal Solid Waste Ocean Thermal Photovoltaics Small Hydroelectric Small Wind Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Water Heat Tidal Energy Wave Energy Wind energy Yes CCEF - Project 150 Initiative (Connecticut) State Grant Program Connecticut Commercial Solar Thermal Electric

Note: This page contains sample records for the topic "ocean energy task" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

IEA-Renewable Energy Technologies, Bioenergy Agreement Task 37: Energy from Biogas and Landfill Gas  

E-Print Network (OSTI)

and Landfill Gas Teknologiområde: Anvendt forskning og udvikling, herunder viden formidling, -udveksling og-Bioenergy, Task 37- Energy from Biogas and Landfill Gas", via samarbejde, informationsudveksling, fælles analyser and landfill gas. I dette tidsinterval er en række aktiviteter blevet gennemført, herunder deltagelse til task

142

Clean Air Task Force CATF | Open Energy Information  

Open Energy Info (EERE)

Task Force CATF Jump to: navigation, search Name Clean Air Task Force (CATF) Place Boston, Massachusetts Zip 2108 Product Massachusetts-based scientific research and legal advocacy...

143

Environmental programs for ocean thermal energy conversion (OTEC)  

Science Conference Proceedings (OSTI)

The environmental research effort in support of the US Department of Energy's Ocean Thermal Energy Conversion (OTEC) program has the goal of providing documented information on the effect of proposed operations on the ocean and the effect of oceanic conditions on the plant. The associated environment program consists of archival studies in potential areas serial oceanographic cruises to sites or regions of interest, studies from various fixed platforms at sites, and compilation of such information for appropriate legal compliance and permit requirements and for use in progressive design of OTEC plants. Site/regions investigated are south of Mobile and west of Tampa, Gulf of Mexico; Punta Tuna, Puerto Rico; St. Croix, Virgin Islands; Kahe Point, Oahu and Keahole Point, Hawaii, Hawaiian Islands; and off the Brazilian south Equatorial Coast. Four classes of environmental concerns identified are: redistribution of oceanic properties (ocean water mixing, impingement/entrainment etc.); chemical pollution (biocides, working fluid leaks, etc.); structural effects (artificial reef, aggregation, nesting/migration, etc.); socio-legal-economic (worker safety, enviromaritime law, etc.).

Wilde, P.

1981-07-01T23:59:59.000Z

144

Ocean Energy Technologies: The State of the Art  

Science Conference Proceedings (OSTI)

At present, ocean energy technologies are in various stages of development, ranging from theoretical to commercially available. Estimates made in this study indicate that these technologies are unlikely to be economical sources of power for U.S. utilities in the near term.

1986-11-25T23:59:59.000Z

145

Ocean thermal energy conversion plants : experimental and analytical study of mixing and recirculation  

E-Print Network (OSTI)

Ocean thermal energy conversion (OTEC) is a method of generating power using the vertical temperature gradient of the tropical ocean as an energy source. Experimental and analytical studies have been carried out to determine ...

Jirka, Gerhard H.

146

Ocean Wavemaster Ltd | Open Energy Information  

Open Energy Info (EERE)

Wavemaster Ltd Wavemaster Ltd Jump to: navigation, search Name Ocean Wavemaster Ltd Address CAPCIS House 1 Echo Street Place Manchester, United Kingdom Zip M1 2DP Sector Marine and Hydrokinetic Product String representation "WaveMaster expl ... water surface." is too long. Phone number 0161 933 4000 Website http://http://www.tnei.co.uk/p Coordinates 53.479605°, -2.248818° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":53.479605,"lon":-2.248818,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

147

MHK Technologies/Ocean Treader floating | Open Energy Information  

Open Energy Info (EERE)

Treader floating Treader floating < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Ocean Treader floating.jpg Technology Profile Primary Organization Green Ocean Energy Ltd Project(s) where this technology is utilized *MHK Projects/Development of Ocean Treader Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 4: Proof of Concept Technology Description The Ocean Treader is comprised of two sponsons at the fore and aft of the device and a spar buoy in the center. As a wave passes along the device, first the fore sponson lifts and falls, then the spar buoy, and then the aft sponson, respectively. The relative motion between these three floating bodies is harvested by hydraulic cylinders mounted between the tops of the arms and the spar buoy. The cylinders pressurize hydraulic fluid that spins hydraulic motors and an electric generator. The electricity is exported via a cable piggy-backed to the anchor cable. Ocean Treader is designed to passively weather-vane to face the wave direction; and in addition, the device has active onboard adjustment to allow for offset due to the effects of current.

148

Ocean Thermal Energy Conversion (OTEC) Program. Volume 1. Preoperatinal ocean test platform  

DOE Green Energy (OSTI)

An environmental impact assessment for the field test of the first preoperational Ocean Thermal Energy Conversion, referred to as OTEC-1, is presented. The conceptual design of OTEC-1 is described, and the existing environments at the four OTEC-1 study sites (Punta Tuna, Keahole Point, offshore New Orleans, and offshore Tampa) are discussed. The environmental impacts considered include organism impingement, organism entrainment, ocean water mixing, metallic ion release, chlorine release, ammonia leakage, oil release, and platform attraction. The development of a risk assessment model for credible accidents at OTEC-1 is discussed. Also, the federal and state legal, safety, and health policies pertinent to OTEC-1 are presented. A glossary is included. (WHK)

Not Available

1979-03-01T23:59:59.000Z

149

Ocean Thermal Energy Conversion LUIS A. VEGA  

E-Print Network (OSTI)

demand due to emerging economies like China, India, and Brazil. Coal and natural gas resources 7296 O. It seems sensible toconsider OTEC as one of the renewable energy technologies of the future. Introduction

150

Ocean Energy Program Overview, Fiscal years 1990--1991. Programs in utility technologies  

DOE Green Energy (OSTI)

The oceans are the world`s largest solar energy collector and storage system. Covering 71% of the earth`s surface, the oceans collect and store this energy as waves, currents, and thermal and salinity gradients. The purpose of the US Department of Energy`s (DOE) Ocean Energy Program is to develop techniques that harness ocean energy cost effectively and in ways that do not harm the environment. The program seeks to develop ocean energy technology to a point at which industry can accurately assess whether the applications of the technology are viable energy conversion alternatives, or supplements to current power-generating systems. In past studies, DOE identified ocean thermal energy conversion (OTEC), which uses the temperature difference between warm surface water and cold deep water, as the most promising of the ocean energy technologies. As a result, the Ocean Energy Program has concentrated research that advances OTEC technology. The program also monitored developments in wave energy, ocean current, and salinity gradient concepts. It is not actively developing these technologies now. The mission of the Ocean Energy Program is to develop techniques to harness the vast solar energy stored in the oceans` waves, currents, and thermal and salinity gradients.

Not Available

1992-05-01T23:59:59.000Z

151

Hawaii Energy Strategy Project 2: Fossil Energy Review. Task IV. Scenario development and analysis  

SciTech Connect

The Hawaii Energy Strategy (HES) Program is a seven-project effort led by the State of Hawaii Department of Business, Economic Development & Tourism (DBEDT) to investigate a wide spectrum of Hawaii energy issues. The East-West Center`s Program on Resources: Energy and Minerals, has been assigned HES Project 2, Fossil Energy Review, which focuses on fossil energy use in Hawaii and the greater regional and global markets. HES Project 2 has four parts: Task I (World and Regional Fossil Energy Dynamics) covers petroleum, natural gas, and coal in global and regional contexts, along with a discussion of energy and the environment. Task II (Fossil Energy in Hawaii) focuses more closely on fossil energy use in Hawaii: current utilization and trends, the structure of imports, possible future sources of supply, fuel substitutability, and energy security. Task III`s emphasis is Greenfield Options; that is, fossil energy sources not yet used in Hawaii. This task is divided into two sections: first, an in-depth {open_quotes}Assessment of Coal Technology Options and Implications for the State of Hawaii,{close_quotes} along with a spreadsheet analysis model, which was subcontracted to the Environmental Assessment and Information Sciences Division of Argonne National Laboratory; and second, a chapter on liquefied natural gas (LNG) in the Asia-Pacific market and the issues surrounding possible introduction of LNG into the Hawaii market.

Yamaguchi, N.D.; Breazeale, K. [ed.

1993-12-01T23:59:59.000Z

152

TASK 40: Sustainable International Bio Energy Trade: securing supply Overview of the task  

E-Print Network (OSTI)

the agenda and initiate a host of new activities relevant for developing biomass potentials worldwide, Rob Remmers from Essent had to withdraw from task leadership due to job changes within the company

153

Hawaii energy strategy project 2: Fossil energy review. Task 2: Fossil energy in Hawaii  

Science Conference Proceedings (OSTI)

In Task 2, the authors establish a baseline for evaluating energy use in Hawaii, and examine key energy and economic indicators. They provide a detailed look at fossil energy imports by type, current and possible sources of oil, gas and coal, quality considerations, and processing/transformation. They present time series data on petroleum product consumption by end-use sector, though they caution the reader that the data is imperfect. They discuss fuel substitutability to identify those end-use categories that are most easily switched to other fuels. They then define and analyze sequential scenarios of fuel substitution in Hawaii and their impacts on patterns of demand. They also discuss energy security--what it means to Hawaii, what it means to neighboring economies, whether it is possible to achieve energy security. 95 figs., 48 tabs.

Breazeale, K. [ed.; Yamaguchi, N.D.; Keeville, H. [and others

1993-12-01T23:59:59.000Z

154

Ocean Thermal Energy Conversion Mostly about USA  

E-Print Network (OSTI)

Structures (Plantships) · Bottom-Mounted Structures · Model Basin Tests/ At-Sea Tests · 210 kW OC-OTEC systems and with an investment payback period estimated at 3 to 4 years. #12;OTEC 12 Energy Carriers & Attachments #12;#12;#12;#12;Bottom-Mounted Structures · Fixed Towers · Guyed Towers · TLP not shown · Causeway

155

A PRELIMINARY EVALUATION OF IMPINGEMENT AND ENTRAINMENT BY OCEAN THERMAL ENERGY CONVERSION (OTEC) PLANTS  

E-Print Network (OSTI)

Thermal Energy Conversion (OTEC) Program PreoperationalOcean Thermal Energy Conversion (OTEC), U.S. Department ofOregon State University. Conversion Power Plants. Corvallis,

Sullivan, S.M.

2013-01-01T23:59:59.000Z

156

Ocean thermal energy. Quarterly report, April-June 1982  

DOE Green Energy (OSTI)

This quarterly report includes summaries of the following tasks: (1) OTEC pilot plant conceptual design review; (2) OTEC methanol; (3) management decision requirements for OTEC construction; (4) hybrid geothermal - OTEC (GEOTEC) power plant performance estimates; and (5) supervision of testing of pneumatic wave energy conversion system.

Not Available

1982-06-30T23:59:59.000Z

157

Ocean thermal energy. Quarterly report, January-March 1982  

DOE Green Energy (OSTI)

This quarterly report summarizes work of the following tasks as of March 31, 1982: OTEC pilot plant conceptual design review; OTEC methanol; review of electrolyzer development programs and requirements; financial and legal considerations in OTEC implementation; potential Navy sites for GEOTEC systems; hybrid geothermal-OTEC power plants: single-cycle performance estimates; and supervision of testing of pneumatic wave energy conversion system.

Not Available

1982-03-30T23:59:59.000Z

158

Ocean energy systems. Quarterly report, July-September 1982  

DOE Green Energy (OSTI)

This quarterly report summarizes work on the following tasks as of September 30, 1982: (1) OTEC pilot plant conceptual design review; (2) OTEC methanol; (3) financial and legal considerations in OTEC implementation; (4) GEOTEC resource exploration at Adak, Alaska, and Lualualei, Hawaii; (5) preliminary GEOTEC plant cost estimates; and (6) supervision of testing of pneumatic wave energy conversion system.

Not Available

1982-09-30T23:59:59.000Z

159

Multifamily Energy Auditor Job/Task Analysis and Report: September 2013  

Science Conference Proceedings (OSTI)

The development of job/task analyses (JTAs) is one of three components of the Guidelines for Home Energy Professionals project and will allow industry to develop training resources, quality assurance protocols, accredited training programs, and professional certifications. The Multifamily Energy Auditor JTA identifies and catalogs all of the tasks performed by multifamily energy auditors, as well as the knowledge, skills, and abilities (KSAs) needed to perform the identified tasks.

Owens, C. M.

2013-09-01T23:59:59.000Z

160

Energy-Efficient Speed Scheduling for Real-Time Tasks under Thermal Constraints  

E-Print Network (OSTI)

Energy-Efficient Speed Scheduling for Real-Time Tasks under Thermal Constraints Shengquan Wang. We develop energy-efficient speed scheduling schemes for frame-based real-time tasks under thermal in order to achieve thermal-constrained energy-efficient design. However, this does not work. The existing

Wang, Shengquan

Note: This page contains sample records for the topic "ocean energy task" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Geothermal: Sponsored by OSTI -- Solar energy task force report...  

Office of Scientific and Technical Information (OSTI)

task force report technical training guidelines Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications...

162

MHK Technologies/Ocean Wave Air Piston | Open Energy Information  

Open Energy Info (EERE)

Piston Piston < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Ocean Wave Air Piston.jpg Technology Profile Primary Organization Green Ocean Wave Energy Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description The OWAP captures power by continually raising or lowering a float which in turn raises or lowers one side of a lever arm about a stationary pivot point This therby raises or lowers a piston which is attached to the opposite side of the lever arm through a cylinder which in turn causes large volumes of air to move This air is funneled through drive turbines to produce power Mooring Configuration Monopile or platfrom

163

MHK Technologies/Ocean Powered Compressed Air Stations | Open Energy  

Open Energy Info (EERE)

Powered Compressed Air Stations Powered Compressed Air Stations < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Ocean Powered Compressed Air Stations.png Technology Profile Primary Organization Wave Power Plant Inc Technology Resource Click here Wave Technology Type Click here Point Absorber - Submerged Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description The Ocean Powered Compressed Air Station is a point absorber that uses an air pump to force air to a landbased generator The device only needs 4m water depth and electricity production fluctations through storing energy at a constant air pressure Technology Dimensions Device Testing Date Submitted 13:16.5 << Return to the MHK database homepage Retrieved from

164

Indiana University High Energy Physics Group, Task C  

Science Conference Proceedings (OSTI)

The Indiana University High Energy Physics Group, Task C has been actively involved in the MACRO experiment at Gran Sasso and the SSC experiment L during the current contract year. MACRO is a large US-Italian Monopole, Astrophysics, and Cosmic Ray Observatory being built under the Gran Sasso Mountain outside of Rome. Indiana University is in charge of organizing the United States software effort. We have built a state-of-the-art two-meter spectrophotometer for the MACRO liquid scintillator. We are in charge of ERP, the Event Reconstruction Processor online trigger processor for muons and stellar collapse. We are designing an air Cerenkov array to be placed on top of the Gran Sasso. Our other activity involves participation in the SSC experiment L. As long-standing members of L we have done proposal writing and have worked on important L planning and organization matters. We are now doing development work on the L Central Tracker straw drift tubes, including gas optimization, readout, and Monte Carlos. 12 refs., 20 figs., 1 tab.

Heinz, R.M.; Mufson, S.L.; Musser, J.

1991-01-01T23:59:59.000Z

165

Ocean Wave Energy-Driven Desalination Systems for Off-grid Coastal Communities in Developing Countries  

Science Conference Proceedings (OSTI)

Resolute Marine Energy, Inc. (RME) is based in Boston, MA and is developing ocean wave energy converters (WECs) to benefit remote off-grid communities in developing nations. Our two WEC technologies are based on the heaving and surging motion of a buoy ... Keywords: ocean wave energy, renewable energy, desalination, water, coastal communities

Eshwan Ramudu

2011-10-01T23:59:59.000Z

166

TARA OCEANS: A Global Analysis of Oceanic Plankton Ecosystems (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)  

SciTech Connect

Eric Karsenti of EMBL delivers the closing keynote on "TARA OCEANS: A Global Analysis of Oceanic Plankton Ecosystems" at the 8th Annual Genomics of Energy & Environment Meeting on March 28, 2013 in Walnut Creek, Calif.

Karsenti, Eric [EMBL Heidelberg

2013-03-01T23:59:59.000Z

167

Variability of the Thermohaline Circulation in an Ocean General Circulation Model Coupled to an Atmospheric Energy Balance Model  

Science Conference Proceedings (OSTI)

The variability of the ocean’s thermohaline circulation in an oceanic general circulation model (OGCM) coupled to a two-dimensional atmospheric energy balance model (EBM) is examined. The EBM calculates air temperatures by balancing heat fluxes, ...

David W. Pierce; K-Y. Kim; Tim P. Barnett

1996-05-01T23:59:59.000Z

168

Carbon dioxide release from ocean thermal energy conversion (OTEC) cycles  

DOE Green Energy (OSTI)

This paper presents the results of recent measurements of CO{sub 2} release from an open-cycle ocean thermal energy conversion (OTEC) experiment. Based on these data, the rate of short-term CO{sub 2} release from future open-cycle OTEC plants is projected to be 15 to 25 times smaller than that from fossil-fueled electric power plants. OTEC system that incorporate subsurface mixed discharge are expected to result in no long-term release. OTEC plants can significantly reduce CO{sub 2} emissions when substituted for fossil-fueled power generation. 12 refs., 4 figs., 3 tabs.

Green, H.J. (Solar Energy Research Inst., Golden, CO (USA)); Guenther, P.R. (Scripps Institution of Oceanography, La Jolla, CA (USA))

1990-09-01T23:59:59.000Z

169

An Act to Facilitate Testing and Demonstration of Renewable Ocean Energy Technology (Maine)  

Energy.gov (U.S. Department of Energy (DOE))

This law streamlines and coordinates State permitting and submerged lands leasing requirements for renewable ocean energy demonstration projects, aiding Maine's goal to become an international...

170

Open cycle ocean thermal energy conversion system structure  

DOE Patents (OSTI)

A generally mushroom-shaped, open cycle OTEC system and distilled water producer which has a skirt-conduit structure extending from the enlarged portion of the mushroom to the ocean. The enlarged part of the mushroom houses a toroidal casing flash evaporator which produces steam which expands through a vertical rotor turbine, partially situated in the center of the blossom portion and partially situated in the mushroom's stem portion. Upon expansion through the turbine, the motive steam enters a shell and tube condenser annularly disposed about the rotor axis and axially situated beneath the turbine in the stem portion. Relatively warm ocean water is circulated up through the radially outer skirt-conduit structure entering the evaporator through a radially outer portion thereof, flashing a portion thereof into motive steam, and draining the unflashed portion from the evaporator through a radially inner skirt-conduit structure. Relatively cold cooling water enters the annular condenser through the radially inner edge and travels radially outwardly into a channel situated along the radially outer edge of the condenser. The channel is also included in the radially inner skirt-conduit structure. The cooling water is segregated from the potable, motive steam condensate which can be used for human consumption or other processes requiring high purity water. The expansion energy of the motive steam is partially converted into rotational mechanical energy of the turbine rotor when the steam is expanded through the shaft attached blades. Such mechanical energy drives a generator also included in the enlarged mushroom portion for producing electrical energy. Such power generation equipment arrangement provides a compact power system from which additional benefits may be obtained by fabricating the enclosing equipment, housings and component casings from low density materials, such as prestressed concrete, to permit those casings and housings to also function as a floating support vessel.

Wittig, J. Michael (West Goshen, PA)

1980-01-01T23:59:59.000Z

171

OCEAN THERMAL ENERGY CONVERSION PRELIMINARY DATA REPORT FOR THE NOVEMBER 1977 GOTEC-02 CRUISE TO THE GULF OF MEXICO MOBILE SITE  

E-Print Network (OSTI)

02 OCEAN THERMAL ENERGY CONVERSION PRELIMINARY DATA REPORTOcean Thermal Energy Conversion (OTEC) sites in the Gulf ofOcean Thermal Energy Conversion (OTEC) Sites: Puerto Rico,

Commins, M.L.

2010-01-01T23:59:59.000Z

172

OCEAN THERMAL ENERGY CONVERSION ECOLOGICAL DATA REPORT FROM 0. S. S. RESEARCHER IN GULF OF MEXICO, JULY 12-23, 1977.  

E-Print Network (OSTI)

01 OCEAN THERMAL ENERGY CONVERSION ECOLOGICAL DATA REPORTOcean Thermal Energy Conversion (OTEC) Sites: Puerto Rico,Ocean Thermal Energy Conversion plant were in- itiated in

Quinby-Hunt, M.S.

2008-01-01T23:59:59.000Z

173

Cloud-radiative effects on implied oceanic energy transports as simulated by atmospheric general circulation models  

DOE Green Energy (OSTI)

This paper reports on energy fluxes across the surface of the ocean as simulated by fifteen atmospheric general circulation models in which ocean surface temperatures and sea-ice boundaries are prescribed. The oceanic meridional energy transport that would be required to balance these surface fluxes is computed, and is shown to be critically sensitive to the radiative effects of clouds, to the extent that even the sign of the Southern Hemisphere ocean energy transport can be affected by the errors in simulated cloud-radiation interactions.

Gleckler, P.J. [Lawrence Livermore National Lab., CA (United States); Randall, D.A. [Colorado State Univ., Fort Collins, CO (United States); Boer, G. [Canadian Climate Centre, Victoria (Canada)

1994-03-01T23:59:59.000Z

174

Turkey energy and environmental review - Task 7 energy sector modeling : executive summary.  

Science Conference Proceedings (OSTI)

Turkey's demand for energy and electricity is increasing rapidly. Since 1990, energy consumption has increased at an annual average rate of 4.3%. As would be expected, the rapid expansion of energy production and consumption has brought with it a wide range of environmental issues at the local, regional and global levels. With respect to global environmental issues, Turkey's carbon dioxide (CO2) emissions have grown along with its energy consumption. Emissions in 2000 reached 211 million metric tons. With GDP projected to grow at over 6% per year over the next 25 years, both the energy sector and the pollution associated with it are expected to increase substantially. This is expected to occur even if assuming stricter controls on lignite and hard coal-fired power generation. All energy consuming sectors, that is, power, industrial, residential, and transportation, will contribute to this increased emissions burden. Turkish Government authorities charged with managing the fundamental problem of carrying on economic development while protecting the environment include the Ministry of Environment (MOE), the Ministry of Energy and Natural Resources (MENR), and the Ministry of Health, as well as the Turkish Electricity Generation & Transmission Company (TEAS). The World Bank, working with these agencies, is planning to assess the costs and benefits of various energy policy alternatives under an Energy and Environment Review (EER). Eight individual studies have been conducted under this activity to analyze certain key energy technology issues and use this analysis to fill in the gaps in data and technical information. This will allow the World Bank and Turkish authorities to better understand the trade-offs in costs and impacts associated with specific policy decisions. The purpose of Task 7-Energy Sector Modeling, is to integrate information obtained in other EER tasks and provide Turkey's policy makers with an integrated systems analysis of the various options for addressing the various energy and environmental concerns. The work presented in this report builds on earlier analyses presented at the COP 6 conference in Bonn.

Conzelmann, G.; Koritarov, V.; Decision and Information Sciences

2008-02-28T23:59:59.000Z

175

Turbulent Vertical Kinetic Energy in the Ocean Mixed Layer  

Science Conference Proceedings (OSTI)

Vertical velocities in the ocean boundary layer were measured for two weeks at an open ocean, wintertime site using neutrally buoyant floats. Simultaneous measurements of the surface meteorology and surface waves showed a large variability in ...

Eric A. D'Asaro

2001-12-01T23:59:59.000Z

176

Lockheed Testing the Waters for Ocean Thermal Energy System  

Energy.gov (U.S. Department of Energy (DOE))

The company is working to develop a system to produce electricity using temperature differences in the ocean.

177

Scheduling Heterogeneous Delay Tolerant Tasks in Smart Grid with Renewable Energy  

E-Print Network (OSTI)

1 Scheduling Heterogeneous Delay Tolerant Tasks in Smart Grid with Renewable Energy Shengbo Chen sources of energy (e.g., harvested renewable energy), and allow for dynamic electricity price, or a business, which is equipped with renewable energy devices when electrical appliances allow different levels

Sinha, Prasun

178

Report of the Infrastructure Task Force of the Nuclear Energy Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of the Infrastructure Task Force of the Nuclear Energy of the Infrastructure Task Force of the Nuclear Energy Research Advisory Committee Report of the Infrastructure Task Force of the Nuclear Energy Research Advisory Committee On October 1, 2002 the DOE Nuclear Energy Research Advisory Committee was asked to provide specific, focused updates to its Nuclear Science and Technology Infrastructure Roadmap and review the specific issues at the DOE key nuclear energy research and development (R&D) laboratories. This activity was assigned to a five-member Infrastructure Task Force (ITF). After receiving extensive written materials from DOE, the Idaho Nuclear Engineering and Environmental Laboratory (INEEL) and Argonne National Laboratory-West (ANL-W), on November 6-8, 2002 the ITF visited the Idaho site and received briefings and tours of the INEEL and ANL-W facilities.

179

Outer Banks Ocean Energy Corporation | Open Energy Information  

Open Energy Info (EERE)

28370 Sector Wind energy Product Privately-held company that plans to develop a 200-600MW offshore wind farm in federal lease blocks near North Carolina's barrier islands, known as...

180

Air–Ice–Ocean Momentum Exchange. Part 1:Energy Transfer between Waves and Ice Floes  

Science Conference Proceedings (OSTI)

The energy exchange between ocean surface waves and ice floes in the marginal ice zone (MIZ) involves the scattering and attenuation of wave energy and the excitation of oscillation modes of the ice floes, as open ocean waves propagate into the ...

W. Perrie; Y. Hu

1996-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "ocean energy task" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Seawater pump study: Ocean Thermal Energy Conversion Program. Final report. [For ocean thermal power plants  

DOE Green Energy (OSTI)

The pumping power required to move cold seawater and warm seawater through an Ocean Thermal Energy Conversion (OTEC) power plant is a significant portion of the plant power output; therefore, seawater pump performance, sizing, and cost information are very influential inputs into any power plant system design optimizations. The analysis and evaluation of large seawater pumping systems selected specifically for the OTEC application are provided with a view toward judging the impact of pump selection on overall OTEC power plant performance. A self-contained bulb, direct drive, axial flow pump was found to have a distinct advantage in performance and arrangement flexibility. A design of a pump operating at a net total head rise of 3.5 meters and a flow capacity of 100 m/sup 3//s is presented including pump blade geometry (profiles), pump diffuser geometry, and pump/diffuser configuration and performance. Results are presented in terms of the geometric and power requirements of several related pump designs over a range of seawater capacity from 25 m/sup 3//s to 100 m/sup 3//s. Summary analysis and evaluations include pump design weights and cost estimates.

Little, T.E.

1978-01-01T23:59:59.000Z

182

Energy management in wireless healthcare systems using dynamic task assignment.  

E-Print Network (OSTI)

??Wireless healthcare systems are hierarchical and heterogeneous in nature with components that have different energy and performance capabilities. Ensuring the optimal energy consumption across all… (more)

Aghera, Priti

2010-01-01T23:59:59.000Z

183

Task Order Awarded for Audit and Review Services | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Task Order Awarded for Audit and Review Services Task Order Awarded for Audit and Review Services Task Order Awarded for Audit and Review Services September 30, 2013 - 12:00pm Addthis Media Contact Lynette Chafin, 513-246-0461 Lynette.Chafin@emcbc.doe.gov Cincinnati - The Department of Energy today awarded a Task Order to KPMG, LLP of McLean, VA for audit/review services that will cover a wide range of auditing services. These services will include: pricing proposals, requests for equitable adjustment, change order proposals, business systems (accounting, purchasing and billing systems), forward pricing rates, incurred costs audits, and terminations. The Task Order period will be from September 30, 2013 through March 31, 2015. The total not-to-exceed value of the task order is $2.9 million. The work locations of these services will include, but are not limited to

184

A Pointwise Energy Diagnostic Scheme for Multilayer, Nonisopycnic, Primitive Equation Ocean Models  

Science Conference Proceedings (OSTI)

Considered is a pointwise energy diagnostic scheme for a multilayer, primitive equation, nonisopycnic ocean model. Both conservative as well as nonconservative energy exchange terms are considered. Moreover, the scheme is worked out for both the ...

Lars Petter Røed

1999-08-01T23:59:59.000Z

185

The Mechanical Energy Input to the Ocean Induced by Tropical Cyclones  

Science Conference Proceedings (OSTI)

Wind stress and tidal dissipation are the most important sources of mechanical energy for maintaining the oceanic general circulation. The contribution of mechanical energy due to tropical cyclones can be a vitally important factor in regulating ...

Ling Ling Liu; Wei Wang; Rui Xin Huang

2008-06-01T23:59:59.000Z

186

Ocean City, New Jersey: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

City, New Jersey: Energy Resources City, New Jersey: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.2776156°, -74.5746001° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.2776156,"lon":-74.5746001,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

187

Ocean Gate, New Jersey: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Gate, New Jersey: Energy Resources Gate, New Jersey: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.926785°, -74.1337496° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.926785,"lon":-74.1337496,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

188

Ocean Ridge, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Ridge, Florida: Energy Resources Ridge, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 26.5270157°, -80.0483747° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.5270157,"lon":-80.0483747,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

189

Ocean Beach, New York: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Beach, New York: Energy Resources Beach, New York: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.6467664°, -73.1570589° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.6467664,"lon":-73.1570589,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

190

Ocean Bluff-Brant Rock, Massachusetts: Energy Resources | Open Energy  

Open Energy Info (EERE)

Bluff-Brant Rock, Massachusetts: Energy Resources Bluff-Brant Rock, Massachusetts: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.1080418°, -70.6633175° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.1080418,"lon":-70.6633175,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

191

Ocean Acres, New Jersey: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Acres, New Jersey: Energy Resources Acres, New Jersey: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.7434529°, -74.2809757° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.7434529,"lon":-74.2809757,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

192

United States of America Electric Energy Market Competition Task Force  

E-Print Network (OSTI)

Energy Information Administration EIR environmental impact review EIS environmental impact statement ELCC Panel on Climate Change IRP integrated resource planning ISET Institute for Solar Energy Technology (Institut für Solare Energieversorgungstechnik) ISO independent system operator 20% Wind Energy by 2030xii

Tesfatsion, Leigh

193

Joint Outreach Task Group (JOTG) Events | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Information Center » Worker » Former Worker Program » Joint Information Center » Worker » Former Worker Program » Joint Outreach Task Group (JOTG) Events Joint Outreach Task Group (JOTG) Events Upcoming Events Local Event X-10/Y-12 - Oak Ridge, TN January 21, 2014 12:00PM to 1:00PM EST Local Event Y-12 - Oak Ridge, TN January 21, 2014 5:00PM to 6:00PM EST FWP Event Mound - Miamisburg, OH February 4, 2014 8:00AM to 10:00AM EST Local Event Y-12 - Oak Ridge, TN February 4, 2014 9:00AM to 10:00AM EST Local Event X-10 - Oak Ridge, TN February 5, 2014 7:15AM to 8:15AM EST Local Event Y-12 - Oak Ridge, TN February 5, 2014 9:00AM to 10:00AM EST Local Event Y-12 - Oak Ridge, TN February 5, 2014 11:00AM to 12:00PM EST FWP Event X-10/Y-12 - Oak Ridge, TN February 5, 2014 4:30PM to 5:30PM EST Local Event X-10/Y-12 - Oak Ridge, TN

194

Experimental Analysis of Task-based Energy Consumption in Cloud Computing Systems  

E-Print Network (OSTI)

this model, we have conducted extensive experiments to profile the energy consumption in cloud computingExperimental Analysis of Task-based Energy Consumption in Cloud Computing Systems Feifei Chen, John is that large cloud data centres consume large amounts of energy and produce significant carbon footprints

Schneider, Jean-Guy

195

Task Order Awarded for Audit and Review Services | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Task Order Awarded for Audit and Review Services Task Order Awarded for Audit and Review Services Task Order Awarded for Audit and Review Services September 28, 2012 - 12:00pm Addthis Media Contact Bill Taylor bill.taylor@srs.gov 803-952-8564 Cincinnati - The Department of Energy today awarded a Task Order to KPMG, LLP of McLean, VA for audit/review services that will cover a wide range of auditing services. These services will include: pricing proposals, requests for equitable adjustment, change order proposals, business systems (accounting, purchasing and billing systems), forward pricing rates, incurred costs audits, and terminations. Individual subtask orders will be placed for each specific assignment as needed from October 1, 2012 through September 30, 2013. The total not-toexceed value of the task order is

196

Interagency Task Force on Carbon Capture and Storage | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Interagency Task Force on Carbon Interagency Task Force on Carbon Capture and Storage Interagency Task Force on Carbon Capture and Storage On February 3, 2010, President Obama sent a memorandum to the heads of fourteen Executive Departments and Federal Agencies establishing an Interagency Task Force on Carbon Capture and Storage. The goal was to develop a comprehensive and coordinated Federal strategy to speed the commercial development and deployment of clean coal technologies. The Task Force, co-chaired by the Department of Energy and the Environmental Protection Agency, was charged with proposing a plan to overcome the barriers to the widespread, cost-effective deployment of CCS within 10 years, with a goal of bringing five to 10 commercial demonstration projects online by 2016. Final Report

197

Task Order Awarded for Audit and Review Services | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Task Order Awarded for Audit and Review Services Task Order Awarded for Audit and Review Services Task Order Awarded for Audit and Review Services September 28, 2012 - 12:00pm Addthis Media Contact Bill Taylor bill.taylor@srs.gov 803-952-8564 Cincinnati - The Department of Energy today awarded a Task Order to KPMG, LLP of McLean, VA for audit/review services that will cover a wide range of auditing services. These services will include: pricing proposals, requests for equitable adjustment, change order proposals, business systems (accounting, purchasing and billing systems), forward pricing rates, incurred costs audits, and terminations. Individual subtask orders will be placed for each specific assignment as needed from October 1, 2012 through September 30, 2013. The total not-toexceed value of the task order is

198

V.P. Biden Hosts the Middle Class Task Force | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

V.P. Biden Hosts the Middle Class Task Force V.P. Biden Hosts the Middle Class Task Force V.P. Biden Hosts the Middle Class Task Force November 9, 2010 - 10:38am Addthis John Schueler John Schueler Former New Media Specialist, Office of Public Affairs Editor's Note: This event has concluded. Today at 11:45 AM EST, Secretary Chu will join Vice President Biden at the White House as he hosts a Middle Class Task Force event to announce a series of federal actions designed to lay the groundwork for a strong, self-sustaining home energy efficiency retrofit industry. The Vice President and Secretary Chu will be joined by CEQ Chair Nancy Sutley, Secretary of Labor Hilda Solis and Secretary of Housing and Urban Development Shaun Donovan to announce a series of initiatives that seek to address recommendations from the October 2009 Middle Class Task Force

199

Relations between Northward Ocean and Atmosphere Energy Transports in a Coupled Climate Model  

Science Conference Proceedings (OSTI)

The Third Hadley Centre Coupled Ocean–Atmosphere General Circulation Model (HadCM3) is used to analyze the relation between northward energy transports in the ocean and atmosphere at centennial time scales. In a transient water-hosing experiment, ...

Michael Vellinga; Peili Wu

2008-02-01T23:59:59.000Z

200

Ocean Heat Transport, Sea Ice, and Multiple Climate States: Insights from Energy Balance Models  

Science Conference Proceedings (OSTI)

Several extensions of energy balance models (EBMs) are explored in which (i) sea ice acts to insulate the atmosphere from the ocean and (ii) ocean heat transport is allowed to have some meridional structure controlled by the wind, with minima at ...

Brian E. J. Rose; John Marshall

2009-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "ocean energy task" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Draft environmental assessment: Ocean Thermal Energy Conversion (OTEC) Pilot Plants  

DOE Green Energy (OSTI)

This Environmental Assessment (EA) has been prepared, in accordance with the National Environmental Policy Act of 1969, for the deployment and operation of a commercial 40-Megawatt (MW) Ocean Thermal Energy Conversion (OTEC) Pilot Plant (hereafter called the Pilot Plant). A description of the proposed action is presented, and a generic environment typical of the candidate Pilot Plant siting regions is described. An assessment of the potential environmental impacts associated with the proposed action is given, and the risk of credible accidents and mitigating measures to reduce these risks are considered. The Federal and State plans and policies the proposed action will encompass are described. Alternatives to the proposed action are presented. Appendix A presents the navigation and environmental information contained in the US Coast Pilot for each of the candidate sites; Appendix B provides a brief description of the methods and calculations used in the EA. It is concluded that environmental disturbances associated with Pilot Plant activities could potentially cause significant environmental impacts; however, the magnitude of these potential impacts cannot presently be assessed, due to insufficient engineering and environmental information. A site- and design-specific OTEC Pilot Plant Environmental Impact Statement (EIS) is required to resolve the potentially significant environmental effects associated with Pilot Plant deployment and operation. (WHK)

Sullivan, S.M.; Sands, M.D.; Donat, J.R.; Jepsen, P.; Smookler, M.; Villa, J.F.

1981-02-01T23:59:59.000Z

202

Ocean Thermal Energy Conversion (OTEC) Programmatic Environmental Analysis--Appendices  

SciTech Connect

The programmatic environmental analysis is an initial assessment of Ocean Thermal Energy Conversion (OTEC) technology considering development, demonstration and commercialization. It is concluded that the OTEC development program should continue because the development, demonstration, and commercialization on a single-plant deployment basis should not present significant environmental impacts. However, several areas within the OTEC program require further investigation in order to assess the potential for environmental impacts from OTEC operation, particularly in large-scale deployments and in defining alternatives to closed-cycle biofouling control: (1) Larger-scale deployments of OTEC clusters or parks require further investigations in order to assess optimal platform siting distances necessary to minimize adverse environmental impacts. (2) The deployment and operation of the preoperational platform (OTEC-1) and future demonstration platforms must be carefully monitored to refine environmental assessment predictions, and to provide design modifications which may mitigate or reduce environmental impacts for larger-scale operations. These platforms will provide a valuable opportunity to fully evaluate the intake and discharge configurations, biofouling control methods, and both short-term and long-term environmental effects associated with platform operations. (3) Successful development of OTEC technology to use the maximal resource capabilities and to minimize environmental effects will require a concerted environmental management program, encompassing many different disciplines and environmental specialties. This volume contains these appendices: Appendix A -- Deployment Scenario; Appendix B -- OTEC Regional Characterization; and Appendix C -- Impact and Related Calculations.

Authors, Various

1980-01-01T23:59:59.000Z

203

Welcome to the second edition of C&W's Energy and Sustainability Task Force Ne  

NLE Websites -- All DOE Office Websites (Extended Search)

second edition of C&W's Energy and Sustainability Task Force Newsletter. This second edition of C&W's Energy and Sustainability Task Force Newsletter. This publication illustrates how C&W is delivering on its commitment to enhance the environmental performance of commercial real estate. C&W Managed Properties Earn LEED Volume Certification In January 2010, 18 properties under C&W management earned LEED (Leadership in Energy and Environmental Design) certification utilizing the U.S. Green Building Council's (USGBC) Portfolio Program and volume certification process. More than half of the properties certified at the Platinum and Gold levels. Working closely with our clients, C&W is

204

Solar energy task force report technical training guidelines  

DOE Green Energy (OSTI)

Guidelines are offered for programs oriented to commercial applications in solar energy, specifically water and space heating. These technologies are examined because they are, in some cases, economicaly feasible. Sample curricula and programs, technical jobs and skills, and equipment are suggested to assist those institutions contemplating the development of technical training. (MHR)

O'Connor, K

1979-10-01T23:59:59.000Z

205

MHK Projects/Greenwave Rhode Island Ocean Wave Energy Project | Open Energy  

Open Energy Info (EERE)

Greenwave Rhode Island Ocean Wave Energy Project Greenwave Rhode Island Ocean Wave Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.4501,"lon":-71.4495,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

206

MHK Projects/Grays Harbor Ocean Energy and Coastal Protection | Open Energy  

Open Energy Info (EERE)

Grays Harbor Ocean Energy and Coastal Protection Grays Harbor Ocean Energy and Coastal Protection < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.4651,"lon":-124.367,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

207

EA-1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

16: Ocean Renewable Power Company Maine, LLC Cobscook Bay 16: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot Project, Cobscook in Washington County, Maine EA-1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot Project, Cobscook in Washington County, Maine Summary This EA evaluates the environmental impacts of a project that would use the tidal currents of Cobscook Bay to generate electricity via cross-flow Kinetic System turbine generator units (TGU) mounted on the seafloor. The TGUs would capture energy from the flow in both ebb and flood directions. Public Comment Opportunities None available at this time. Documents Available for Download March 19, 2012 EA-1916: Finding of No Significant Impact Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot

208

EA-1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay 1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot Project, Cobscook in Washington County, Maine EA-1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot Project, Cobscook in Washington County, Maine Summary This EA evaluates the environmental impacts of a project that would use the tidal currents of Cobscook Bay to generate electricity via cross-flow Kinetic System turbine generator units (TGU) mounted on the seafloor. The TGUs would capture energy from the flow in both ebb and flood directions. Public Comment Opportunities None available at this time. Documents Available for Download March 19, 2012 EA-1916: Finding of No Significant Impact Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot

209

Trends of Variables and Energy Fluxes over the Atlantic Ocean from 1948 to 19721  

Science Conference Proceedings (OSTI)

Regression coefficients have been computed from monthly. seasonal and annual means of eleven meteorological variables and eight energy fluxes by 10° areas over the North and South Atlantic Oceans from January IMS through December 1972. Many ...

Andrew F. Bunker

1980-06-01T23:59:59.000Z

210

Gravitational Potential Energy Balance for the Thermal Circulation in a Model Ocean  

Science Conference Proceedings (OSTI)

The gravitational potential energy balance of the thermal circulation in a simple rectangular model basin is diagnosed from numerical experiments based on a mass-conserving oceanic general circulation model. The vertical mixing coefficient is ...

Rui Xin Huang; Xingze Jin

2006-07-01T23:59:59.000Z

211

Surface Circulation and Kinetic Energy Distributions in the Southern Hemisphere Oceans from FGGE Drifting Buoys  

Science Conference Proceedings (OSTI)

Trajectories of approximately 300 satellite-tracked drifting buoys deployed throughout the Southern Hemisphere oceans during the Fiat GARP Global Experiment (FGGE) have been analyzed to infer the mean surface circulation and kinetic energy ...

Steven L. Patterson

1985-07-01T23:59:59.000Z

212

Net Energy Dissipation Rates in the Tropical Ocean and ENSO Dynamics  

Science Conference Proceedings (OSTI)

How unstable is the tropical ocean–atmosphere system? Are two successive El Niño events independent, or are they part of a continual (perhaps weakly damped) cycle sustained by random atmospheric disturbances? How important is energy dissipation ...

Alexey V. Fedorov

2007-03-01T23:59:59.000Z

213

Current-Induced Modulation of the Ocean Wave Spectrum and the Role of Nonlinear Energy Transfer  

Science Conference Proceedings (OSTI)

Numerical simulations were performed to investigate current-induced modulation of the spectral and statistical properties of ocean waves advected by idealized and realistic current fields. In particular, the role of nonlinear energy transfer ...

Hitoshi Tamura; Takuji Waseda; Yasumasa Miyazawa; Kosei Komatsu

2008-12-01T23:59:59.000Z

214

A Coupled Dynamical Ocean–Energy Balance Atmosphere Model for Paleoclimate Studies  

Science Conference Proceedings (OSTI)

The Bern3D coupled three-dimensional dynamical ocean–energy balance atmosphere model is introduced and the atmospheric component is discussed in detail. The model is of reduced complexity, developed to perform extensive sensitivity studies and ...

Stefan P. Ritz; Thomas F. Stocker; Fortunat Joos

2011-01-01T23:59:59.000Z

215

Estimating Meridional Energy Transports by the Atmospheric and Oceanic General Circulations Using Boundary Fluxes  

Science Conference Proceedings (OSTI)

The annual-mean meridional energy transport in the atmosphere–ocean system (total transport) is estimated using 4-yr mean net radiative fluxes at the top of the atmosphere (TOA) calculated from the International Satellite Cloud Climatology ...

Y-C. Zhang; W. B. Rossow

1997-09-01T23:59:59.000Z

216

Design, construction and testing of an ocean renewable energy storage scaled prototype  

E-Print Network (OSTI)

The concept for a new form of pumped storage hydro is being developed within the Precision Engineering Research Group at MIT: the Ocean Renewable Energy Storage (ORES) project. Large, hollow concrete spheres are created, ...

Meredith, James D. C. (James Douglas Charles)

2012-01-01T23:59:59.000Z

217

The Annual Cycle of the Energy Budget. Part I: Global Mean and Land–Ocean Exchanges  

Science Conference Proceedings (OSTI)

The mean and annual cycle of energy flowing into the climate system and its storage, release, and transport in the atmosphere, ocean, and land surface are estimated with recent observations. An emphasis is placed on establishing internally ...

John T. Fasullo; Kevin E. Trenberth

2008-05-01T23:59:59.000Z

218

Major Characteristics of Southern Ocean Cloud Regimes and Their Effects on the Energy Budget  

Science Conference Proceedings (OSTI)

Clouds over the Southern Ocean are often poorly represented by climate models, but they make a significant contribution to the top-of-atmosphere (TOA) radiation balance, particularly in the shortwave portion of the energy spectrum. This study ...

John M. Haynes; Christian Jakob; William B. Rossow; George Tselioudis; Josephine Brown

2011-10-01T23:59:59.000Z

219

Ocean thermal energy conversion power system development-I. Phase I. Preliminary design report. Volume 1. Final report  

DOE Green Energy (OSTI)

The results of a conceptual and preliminary design study of Ocean Thermal Energy Conversion (OTEC) closed loop ammonia power system modules performed by Lockheed Missiles and Space Company, Inc. (LMSC) are presented. This design study is the second of 3 tasks in Phase I of the Power System Development-I Project. The Task 2 objectives were to develop: 1) conceptual designs for a 40 to 50-MW(e) closed cycle ammonia commercial plant size power module whose heat exchangers are immersed in seawater and whose ancillary equipments are in a shirt sleeve environment; preliminary designs for a modular application power system sized at 10-MW(e) whose design, construction and material selection is analogous to the 50 MW(e) module, except that titanium tubes are to be used in the heat exchangers; and 3) preliminary designs for heat exchanger test articles (evaporator and condenser) representative of the 50-MW(e) heat exchangers using aluminum alloy, suitable for seawater service, for testing on OTEC-1. The reference ocean platform was specified by DOE as a surface vessel with the heat exchanger immersed in seawater to a design depth of 0 to 20 ft measured from the top of the heat exchanger. For the 50-MW(e) module, the OTEC 400-MW(e) Plant Ship, defined in the Platform Configuration and Integration study, was used as the reference platform. System design, performance, and cost are presented. (WHK)

Not Available

1978-12-18T23:59:59.000Z

220

Energy Trapping near the Equator in a Numerical Ocean Model  

Science Conference Proceedings (OSTI)

The trapped equatorial standing modes described theoretically by Gent (1979) are reproduced in a single vertical-mode numerical ocean model. integrations are carried out in domains whose longitudinal extents are characteristic of the widths of ...

Peter R. Gent; Albert J. Semtner Jr.

1980-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "ocean energy task" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Mixed Boundary Conditions versus Coupling with an Energy–Moisture Balance Model for a Zonally Averaged Ocean Climate Model  

Science Conference Proceedings (OSTI)

The Wright and Stocker oceanic thermohaline circulation model is coupled to a recently developed zonally averaged energy moisture balance model for the atmosphere. The results obtained with this coupled model are compared with those from an ocean-...

H. Bjornsson; L. A. Mysak; G. A. Schmidt

1997-10-01T23:59:59.000Z

222

MHK Technologies/THOR Ocean Current Turbine | Open Energy Information  

Open Energy Info (EERE)

THOR Ocean Current Turbine THOR Ocean Current Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage THOR Ocean Current Turbine.jpg Technology Profile Primary Organization THOR Turner Hunt Ocean Renewable LLC Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description The THOR ocean current turbine ROCT is a tethered fully submersible hydrokinetic device with a single horizontal axis rotor that operates at constant speed by varying the depth of operation using a patented power feedback control technology Rotor diameters can reach 60 meters for a 2 0MW class turbine and operations can be conducted as deep as 250 meters Arrays of THOR s ROCTs can be located in outer continental shelf areas 15 to 100 miles offshore in well established ocean currents such as the Gulf Stream or the Kuroshio and deliver electrical power to onshore load centers via submarine transmission line

223

Model-predicted distribution of wind-induced internal wave energy in the world's oceans  

E-Print Network (OSTI)

Model-predicted distribution of wind-induced internal wave energy in the world's oceans Naoki 9 July 2008; published 30 September 2008. [1] The distribution of wind-induced internal wave energy-scaled kinetic energy are all consistent with the available observations in the regions of significant wind

Miami, University of

224

Type F: Oceanic-ridge, Basaltic Resource | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Type F: Oceanic-ridge, Basaltic Resource Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Type F: Oceanic-ridge, Basaltic Resource Dictionary.png Type F: Oceanic-ridge, Basaltic Resource: No definition has been provided for this term. Add a Definition Brophy Occurrence Models This classification scheme was developed by Brophy, as reported in Updating the Classification of Geothermal Resources.[1] Type A: Magma-heated, Dry Steam Resource Type B: Andesitic Volcanic Resource Type C: Caldera Resource Type D: Sedimentary-hosted, Volcanic-related Resource Type E: Extensional Tectonic, Fault-Controlled Resource

225

Ocean County Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

County Landfill Biomass Facility County Landfill Biomass Facility Jump to: navigation, search Name Ocean County Landfill Biomass Facility Facility Ocean County Landfill Sector Biomass Facility Type Landfill Gas Location Ocean County, New Jersey Coordinates 39.9652553°, -74.3118212° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.9652553,"lon":-74.3118212,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

226

MHK Projects/Ocean Trials Ver 2 | Open Energy Information  

Open Energy Info (EERE)

Ocean Trials Ver 2 Ocean Trials Ver 2 < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

227

Energy- and performance-aware scheduling of tasks on parallel and distributed systems  

Science Conference Proceedings (OSTI)

Enabled by high-speed networking in commercial, scientific, and government settings, the realm of high performance is burgeoning with greater amounts of computational and storage resources. Large-scale systems such as computational grids consume a significant ... Keywords: Energy-aware scheduling, dynamic power management, dynamic voltage and frequency scaling, task allocation algorithms

Hafiz Fahad Sheikh; Hengxing Tan; Ishfaq Ahmad; Sanjay Ranka; Phanisekhar Bv

2012-10-01T23:59:59.000Z

228

National Oceanic and Atmospheric Administration (NOAA) | Open Energy  

Open Energy Info (EERE)

Oceanic and Atmospheric Administration (NOAA) Oceanic and Atmospheric Administration (NOAA) Jump to: navigation, search Logo: National Oceanic and Atmospheric Administration (NOAA) Name National Oceanic and Atmospheric Administration (NOAA) Address 1401 Constitution Avenue, NW Room 5128 Washington, DC 20230 Zip 20230 Phone number (301) 713-4000. Website http://www.noaa.gov/index.html Coordinates 38.892111°, -77.031981° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.892111,"lon":-77.031981,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

229

Energy and task management in energy harvesting wireless sensor networks for structural health monitoring  

E-Print Network (OSTI)

on Average Execution Rate Utility per Execution Number ofenergy and task utility, static execution rates ranging fromExecution Rate on the Number of Maximum Utility Executions

Steck, Jamie Bradley

2009-01-01T23:59:59.000Z

230

MHK Technologies/Ocean Wave Energy Converter OWEC | Open Energy Information  

Open Energy Info (EERE)

Converter OWEC Converter OWEC < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Ocean Wave Energy Converter OWEC.jpg Technology Profile Primary Organization Ocean Wave Energy Company Technology Resource Click here Wave Technology Type Click here Point Absorber - Submerged Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description Neutrally suspended and positively buoyant modules are quick connected into open frame networks Submerged portions are stabilized by variable ballast buoyancy chambers and optional damper sheets situated at a relatively calm depth Frame members carry shaft components of linear rotary converters associated with large point absorber buoys Both directions of reciprocal wave motion i e vertical and horizontal motion directly drive components of counter rotating electrical generators Compared to standard generators wherein one is associated with upstroke and another of smaller proportion with downstroke this configuration increases relative speed with fewer parts Electromechanical loads are real time adjustable with respect to wave sensor web resulting in optimal energy conversion from near fully submerged wave following buoys Electrical conductors are series connected and further quick connected with those of other modules via upper frame members Through implementation of rep

231

An assessment of research and development leadership in ocean energy technologies  

SciTech Connect

Japan is clearly the leader in ocean energy technologies. The United Kingdom also has had many ocean energy research projects, but unlike Japan, most of the British projects have not progressed from the feasibility study stage to the demonstration stage. Federally funded ocean energy research in the US was stopped because it was perceived the technologies could not compete with conventional sources of fuel. Despite the probable small market for ocean energy technologies, the short sighted viewpoint of the US government regarding funding of these technologies may be harmful to US economic competitiveness. The technologies may have important uses in other applications, such as offshore construction and oil and gas drilling. Discontinuing the research and development of these technologies may cause the US to lose knowledge and miss market opportunities. If the US wishes to maintain its knowledge base and a market presence for ocean energy technologies, it may wish to consider entering into a cooperative agreement with Japan and/or the United Kingdom. Cooperative agreements are beneficial not only for technology transfer but also for cost-sharing.

Bruch, V.L.

1994-04-01T23:59:59.000Z

232

MHK Projects/Development of Ocean Treader | Open Energy Information  

Open Energy Info (EERE)

Ocean Treader Ocean Treader < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":57.1497,"lon":-2.09428,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

233

Export support of renewable energy industries. Task number 1, deliverable number 3. Final report  

DOE Green Energy (OSTI)

The United States Export Council for Renewable Energy (US/ECRE), a consortium of six industry associations, promotes the interests of the renewable energy and energy efficiency member companies which provide goods and services in biomass, geothermal, hydropower, passive solar, photovoltaics, solar thermal, wind, wood energy, and energy efficiency technologies. US/ECRE`s mission is to catalyze export markets for renewable energy and energy efficiency technologies worldwide. Under this grant, US/ECRE has conducted a number of in-house activities, as well as to manage activities by member trade associations, affiliate organizations and non-member contractors and consultants. The purpose of this document is to report on task coordination and effectiveness.

NONE

1998-01-14T23:59:59.000Z

234

Hawaii energy strategy project 2: Fossil energy review. Task 1: World and regional fossil energy dynamics  

SciTech Connect

This report in the Hawaii Energy Strategy Project examines world and regional fossil energy dynamics. The topics of the report include fossil energy characteristics, the world oil industry including reserves, production, consumption, exporters, importers, refining, products and their uses, history and trends in the global oil market and the Asia-Pacific market; world gas industry including reserves, production, consumption, exporters, importers, processing, gas-based products, international gas market and the emerging Asia-Pacific gas market; the world coal industry including reserves, classification and quality, utilization, transportation, pricing, world coal market, Asia-Pacific coal outlook, trends in Europe and the Americas; and environmental trends affecting fossil fuels. 132 figs., 46 tabs.

Breazeale, K. [ed.; Isaak, D.T.; Yamaguchi, N.; Fridley, D.; Johnson, C.; Long, S.

1993-12-01T23:59:59.000Z

235

Ocean thermal energy. Quarterly report, October-December 1981  

DOE Green Energy (OSTI)

This quarterly report summarizes work on the following tasks: OTEC methanol; approaches for financing OTEC proof-of-concept experimental vessels; investigation of OTEC-ammonia as an alternative fuel; review of electrolyzer development programs and requirements; hybrid geothermal-OTEC power plants: single-cycle performance; estimates; and hybrid geothermal-OTEC power plants: dual-cycle performance estimates.

Not Available

1981-12-30T23:59:59.000Z

236

Ocean thermal energy conversion cold water pipe preliminary design project. Task 2. Analysis for concept selection  

DOE Green Energy (OSTI)

The successful performance of the CWP is of crucial importance to the overall OTEC system; the pipe itself is considered the most critical part of the entire operation. Because of the importance the CWP, a project for the analysis and design of CWP's was begun in the fall of 1978. The goals of this project were to study a variety of concepts for delivering cold water to an OTEC plant, to analyze and rank these concepts based on their relative cost and risk, and to develop preliminary design for those concepts which seemed most promising. Two representative platforms and sites were chosen: a spar buoy of a Gibbs and Cox design to be moored at a site off Punta Tuna, Puerto Rico, and a barge designed by APL/Johns Hopkins University, grazing about a site approximately 200 miles east of the coast of Brazil. The approach was to concentrate on the most promising concepts and on those which were either of general interest or espoused by others (e.g., steel and concrete concepts). Much of the overall attention, therefore, focused on analyzing rigid and compliant wall design, while stockade (except for the special case of the FRP stockade) and bottom-mounted concepts received less attention. A total of 67 CWP concepts were initially generated and subjected to a screening process. Of these, 16 were carried through design analysis, costing, and ranking. Study results are presented in detail. (WHK)

None

1979-04-01T23:59:59.000Z

237

Mapping and Assessment of the United States Ocean Wave Energy Resource  

Open Energy Info (EERE)

TECHNICAL REPORT TECHNICAL REPORT Mapping and Assessment of the United States Ocean Wave Energy Resource EPRI Project Manager P. Jacobson 3420 Hillview Avenue Palo Alto, CA 94304-1338 USA PO Box 10412 Palo Alto, CA 94303-0813 USA 800.313.3774 650.855.2121 askepri@epri.com 1024637 www.epri.com Final Report, December 2011 Mapping and Assessment of the United States Ocean Wave Energy Resource DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITIES THIS DOCUMENT WAS PREPARED BY THE ORGANIZATION(S) NAMED BELOW AS AN ACCOUNT OF WORK SPONSORED OR COSPONSORED BY THE ELECTRIC POWER RESEARCH INSTITUTE, INC. (EPRI).

238

Dynamic Scheduling of Skippable Periodic Tasks with Energy Efficiency in Weakly Hard Real-Time System  

E-Print Network (OSTI)

Energy consumption is a critical design issue in real-time systems, especially in battery- operated systems. Maintaining high performance, while extending the battery life between charges is an interesting challenge for system designers. Dynamic Voltage Scaling (DVS) allows a processor to dynamically change speed and voltage at run time, thereby saving energy by spreading run cycles into idle time. Knowing when to use full power and when not, requires the cooperation of the operating system scheduler. Usually, higher processor voltage and frequency leads to higher system throughput while energy reduction can be obtained using lower voltage and frequency. Instead of lowering processor voltage and frequency as much as possible, energy efficient real-time scheduling adjusts voltage and frequency according to some optimization criteria, such as low energy consumption or high throughput, while it meets the timing constraints of the real-time tasks. As the quantity and functional complexity of battery powered porta...

Baskaran, Santhi

2010-01-01T23:59:59.000Z

239

IEA Wind Task 26: The Past and Future Cost of Wind Energy, Work Package 2  

DOE Green Energy (OSTI)

Over the past 30 years, wind power has become a mainstream source of electricity generation around the world. However, the future of wind power will depend a great deal on the ability of the industry to continue to achieve cost of energy reductions. In this summary report, developed as part of the International Energy Agency Wind Implementing Agreement Task 26, titled 'The Cost of Wind Energy,' we provide a review of historical costs, evaluate near-term market trends, review the methods used to estimate long-term cost trajectories, and summarize the range of costs projected for onshore wind energy across an array of forward-looking studies and scenarios. We also highlight the influence of high-level market variables on both past and future wind energy costs.

Lantz, E.; Wiser, R.; Hand, M.

2012-05-01T23:59:59.000Z

240

LED Surgical Task Lighting Scoping Study: A Hospital Energy Alliance Project  

SciTech Connect

Tungsten-halogen (halogen) lamps have traditionally been used to light surgical tasks in hospitals, even though they are in many respects ill-suited to the application due to the large percentage of radiant energy outside the visible spectrum and issues with color rendering/quality. Light-emitting diode (LED) technology offers potential for adjustable color and improved color rendition/quality, while simultaneously reducing side-effects from non-visible radiant energy. It also has the potential for significant energy savings, although this is a fairly narrow application in the larger commercial building energy use sector. Based on analysis of available products and Hospital Energy Alliance member interest, it is recommended that a product specification and field measurement procedure be developed for implementation in demonstration projects.

Tuenge, Jason R.

2011-01-17T23:59:59.000Z

Note: This page contains sample records for the topic "ocean energy task" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Sustainable Energy Solutions Task 1.0: Networked Monitoring and Control of Small Interconnected Wind Energy Systems  

SciTech Connect

EXECUTIVE SUMARRY This report presents accomplishments, results, and future work for one task of five in the Wichita State University Sustainable Energy Solutions Project: To develop a scale model laboratory distribution system for research into questions that arise from networked control and monitoring of low-wind energy systems connected to the AC distribution system. The lab models developed under this task are located in the Electric Power Quality Lab in the Engineering Research Building on the Wichita State University campus. The lab system consists of four parts: 1. A doubly-fed induction generator 2. A wind turbine emulator 3. A solar photovoltaic emulator, with battery energy storage 4. Distribution transformers, lines, and other components, and wireless and wired communications and control These lab elements will be interconnected and will function together to form a complete testbed for distributed resource monitoring and control strategies and smart grid applications testing. Development of the lab system will continue beyond this project.

Janet.twomey@wichita.edu

2010-04-30T23:59:59.000Z

242

The Vertical Partition of Oceanic Horizontal Kinetic Energy  

Science Conference Proceedings (OSTI)

To produce an interpretation of the surface kinetic energy as measured by altimeters, a survey is made of the vertical structure of kinetic energy profiles in a large number of globally distributed long current meter records. Although the data ...

Carl Wunsch

1997-08-01T23:59:59.000Z

243

Mesoscale Eddy Energy Locality in an Idealized Ocean Model  

Science Conference Proceedings (OSTI)

This paper investigates the energy budget of mesoscale eddies in wind-driven two-layer quasigeostrophic simulations. Intuitively, eddy energy can be generated, dissipated, and fluxed from place to place; regions where the budget balances ...

Ian Grooms; Louis-Philippe Nadeau; K. Shafer Smith

2013-09-01T23:59:59.000Z

244

Heat exchanger cleaning in support of ocean thermal energy conversion (OTEC) - electronics subsystems  

DOE Green Energy (OSTI)

Electronics systems supporting the development of biofouling countermeasures for Ocean Thermal Energy Conversion (OTEC) are described. Discussed are the thermistor/thermopile amplifiers, heaters, flowmeters, temperature measurement, control systems for chlorination, flow driven brushes, and recirculating sponge rubber balls. The operation and troubleshooting of each electronic subsystem is documented.

Lott, D.F.

1980-12-01T23:59:59.000Z

245

Meridional Energy Transport in the Coupled Atmosphere–Ocean System: Compensation and Partitioning  

Science Conference Proceedings (OSTI)

The variability and compensation of the meridional energy transport in the atmosphere and ocean are examined with the state-of-the-art GFDL Climate Model, version 2.1 (CM2.1), and the GFDL Intermediate Complexity Coupled Model (ICCM). On decadal ...

Riccardo Farneti; Geoffrey K. Vallis

2013-09-01T23:59:59.000Z

246

Simulation of Present-Day and Twenty-First-Century Energy Budgets of the Southern Oceans  

Science Conference Proceedings (OSTI)

The energy budget of the modern-day Southern Hemisphere is poorly simulated in both state-of-the-art reanalyses and coupled global climate models. The ocean-dominated Southern Hemisphere has low surface reflectivity and therefore its albedo is ...

Kevin E. Trenberth; John T. Fasullo

2010-01-01T23:59:59.000Z

247

Sustainable Energy Solutions Task 3.0:Life-Cycle Database for Wind Energy Systems  

SciTech Connect

EXECUTIVE SUMMARY The benefits of wind energy had previously been captured in the literature at an overview level with relatively low transparency or ability to understand the basis for that information. This has limited improvement and decision-making to larger questions such as wind versus other electrical sources (such as coal-fired plants). This research project has established a substantially different approach which is to add modular, high granularity life cycle inventory (lci) information that can be used by a wide range of decision-makers, seeking environmental improvement. Results from this project have expanded the understanding and evaluation of the underlying factors that can improve both manufacturing processes and specifically wind generators. The use of life cycle inventory techniques has provided a uniform framework to understand and compare the full range of environmental improvement in manufacturing, hence the concept of green manufacturing. In this project, the focus is on 1. the manufacturing steps that transform materials and chemicals into functioning products 2. the supply chain and end-of-life influences of materials and chemicals used in industry Results have been applied to wind generators, but also impact the larger U.S. product manufacturing base. For chemicals and materials, this project has provided a standard format for each lci that contains an overview and description, a process flow diagram, detailed mass balances, detailed energy of unit processes, and an executive summary. This is suitable for integration into other life cycle databases (such as that at NREL), so that broad use can be achieved. The use of representative processes allows unrestricted use of project results. With the framework refined in this project, information gathering was initiated for chemicals and materials in wind generation. Since manufacturing is one of the most significant parts of the environmental domain for wind generation improvement, this project research has developed a fundamental approach. The emphasis was place on individual unit processes as an organizing framework to understand the life cycle of manufactured products. The rearrangement of unit processes provides an efficient and versatile means of understanding improved manufactured products such as wind generators. The taxonomy and structure of unit process lci were developed in this project. A series of ten unit process lci were developed to sample the major segments of the manufacturing unit process taxonomy. Technical and economic effectiveness has been a focus of the project research in Task three. The use of repeatable modules for the organization of information on environmental improvement has a long term impact. The information developed can be used and reused in a variety of manufacturing plants and for a range of wind generator sizes and designs. Such a modular approach will lower the cost of life cycle analysis, that is often asked questions of carbon footprint, environmental impact, and sustainability. The use of a website for dissemination, linked to NREL, adds to the economic benefit as more users have access to the lci information. Benefit to the public has been achieved by a well-attended WSU conference, as well as presentations for the Kansas Wind Energy Commission. Attendees represented public interests, land owners, wind farm developers, those interested in green jobs, and industry. Another benefit to the public is the start of information flow from manufacturers that can inform individuals about products.

Janet M Twomey, PhD

2010-04-30T23:59:59.000Z

248

Assessment of Energy Production Potential from Ocean Currents along the United States Coastline  

SciTech Connect

Increasing energy consumption and depleting reserves of fossil fuels have resulted in growing interest in alternative renewable energy from the ocean. Ocean currents are an alternative source of clean energy due to their inherent reliability, persistence and sustainability. General ocean circulations exist in the form of large rotating ocean gyres, and feature extremely rapid current flow in the western boundaries due to the Coriolis Effect. The Gulf Stream system is formed by the western boundary current of the North Atlantic Ocean that flows along the east coastline of the United States, and therefore is of particular interest as a potential energy resource for the United States. This project created a national database of ocean current energy resources to help advance awareness and market penetration in ocean current energy resource assessment. The database, consisting of joint velocity magnitude and direction probability histograms, was created from data created by seven years of numerical model simulations. The accuracy of the database was evaluated by ORNL?s independent validation effort documented in a separate report. Estimates of the total theoretical power resource contained in the ocean currents were calculated utilizing two separate approaches. Firstly, the theoretical energy balance in the Gulf Stream system was examined using the two-dimensional ocean circulation equations based on the assumptions of the Stommel model for subtropical gyres with the quasi-geostrophic balance between pressure gradient, Coriolis force, wind stress and friction driving the circulation. Parameters including water depth, natural dissipation rate and wind stress are calibrated in the model so that the model can reproduce reasonable flow properties including volume flux and energy flux. To represent flow dissipation due to turbines additional turbine drag coefficient is formulated and included in the model. Secondly, to determine the reasonableness of the total power estimates from the Stommel model and to help determine the size and capacity of arrays necessary to extract the maximum theoretical power, further estimates of the available power based on the distribution of the kinetic power density in the undisturbed flow was completed. This used estimates of the device spacing and scaling to sum up the total power that the devices would produce. The analysis has shown that considering extraction over a region comprised of the Florida Current portion of the Gulf Stream system, the average power dissipated ranges between 4-6 GW with a mean around 5.1 GW. This corresponds to an average of approximately 45 TWh/yr. However, if the extraction area comprises the entire portion of the Gulf Stream within 200 miles of the US coastline from Florida to North Carolina, the average power dissipated becomes 18.6 GW or 163 TWh/yr. A web based GIS interface, http://www.oceancurrentpower.gatech.edu/, was developed for dissemination of the data. The website includes GIS layers of monthly and yearly mean ocean current velocity and power density for ocean currents along the entire coastline of the United States, as well as joint and marginal probability histograms for current velocities at a horizontal resolution of 4-7 km with 10-25 bins over depth. Various tools are provided for viewing, identifying, filtering and downloading the data.

Haas, Kevin

2013-09-15T23:59:59.000Z

249

Microsoft Word - Energy Code Enforcement Funding Task Force - Fact Sheet [Final].docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

By accepting State Energy Program funding under the American Recovery and Reinvestment Act (Recovery Act), states are required to submit and implement plans to By accepting State Energy Program funding under the American Recovery and Reinvestment Act (Recovery Act), states are required to submit and implement plans to achieve 90 percent compliance with building energy codes by 2017. 2 Yang, Brian, "Residential Energy Code Evaluations," Building Codes Assistance Project; 2005. More study is needed on current compliance rates and current spending on enforcement and compliance initiatives. DOE and the Pacific Northwest National Labs are developing a methodology to measure compliance rates. 3 Our model assumes an additional annual investment of $610 million, based on the task force estimate that under $200 million is currently being spent on compliance efforts.

250

Near and far field models of external fluid mechanics of Ocean Thermal Energy Conversion (OTEC) power plants  

E-Print Network (OSTI)

The world is facing the challenge of finding new renewable sources of energy - first, in response to fossil fuel reserve depletion, and second, to reduce greenhouse gas emissions. Ocean Thermal Energy Conversion (OTEC) can ...

Rodríguez Buño, Mariana

2013-01-01T23:59:59.000Z

251

Mapping and Assessment of the United States Ocean Wave Energy...  

Open Energy Info (EERE)

Resource This project estimates the naturally available and technically recoverable U.S. wave energy resources, using a 51-month Wavewatch III hindcast database developed...

252

Deep water pipe, pump, and mooring study: Ocean Thermal Energy Conversion program. Final report  

DOE Green Energy (OSTI)

The ocean engineering issues affecting the design, construction, deployment, and operation of Ocean Thermal Energy Conversion (OTEC) power plants are of key importance. This study addressed the problems associated with the conceptual design of the deep-water pipe, cold-water-pumping, and platform mooring arrangements. These subsystems fall into a natural grouping since the parameters affecting their design are closely related to each other and to the ocean environment. Analysis and evaluations are provided with a view toward judging the impact of the various subsystems on the overall plant concept and to provide an estimate of material and construction cost. Parametric data is provided that describes mooring line configurations, mooring line loads, cold water pipe configurations, and cold water pumping schemes. Selected parameters, issues, and evaluation criteria are used to judge the merits of candidate concepts over a range of OTEC plant size from 100 MWe to 1000 MWe net output power.

Little, T.E.; Marks, J.D.; Wellman, K.H.

1976-06-01T23:59:59.000Z

253

Energy use in the marine transportation industry: Task I, Industry Summary. Final report  

SciTech Connect

Task I, Industry Summary, defines the current marine transportation industry in terms of population, activities, and energy use. It identifies the various operating or service sectors of the marine transportation industry and determines the numbers and types of vessels, their operating characteristics, and energy consumption. The analysis includes all powered water-borne craft, with the exception of those owned or operated by a government organization and fixed offshore production platforms. The energy consumption analysis of the marine transportation industry concludes with 4 major findings: the marine transportation industry consumes 2.934 quads annually; energy consumption in the marine transportation sector represents 15% of the energy consumed for transportation services; the foreign trade sector consumes 80% of the estimated marine transportation energy requirements; and a minimum of 28% of the energy required by the marine transportation industry is purchased in the US. In each additional chapter (foreign trade, Great Lakes, coastal shipping, offshore, inland waterways, fishing sectors, and recreational boats) the subjects are described in terms of population, operating profiles, energy consumption, typical or generic vessels, costs, and cargo movements.

1977-09-01T23:59:59.000Z

254

MHK Technologies/The Ocean Hydro Electricity Generator Plant | Open Energy  

Open Energy Info (EERE)

MHK Technologies/The Ocean Hydro Electricity Generator Plant MHK Technologies/The Ocean Hydro Electricity Generator Plant < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage The Ocean Hydro Electricity Generator Plant.jpg Technology Profile Primary Organization Free Flow 69 Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The O H E G plant is a revolutionary concept using tidal energy designed by FreeFlow 69 The plant uses tidal energy to create electricity 24 hours a day making this a unique project 24 hour power is produced by using both the kinetic energy in tidal flow and the potential energy created by tidal height changes The O H E G plant is completely independent of the wind farm however it does make an ideal foundation for offshore wind turbines combining both tidal energy and wind energy The O H E G plant is not detrimental to the surrounding environment or ecosystem and due to its offshore location it will not be visually offensive

255

Spectral Energy Fluxes in Geostrophic Turbulence: Implications for Ocean Energetics  

Science Conference Proceedings (OSTI)

The energy pathways in geostrophic turbulence are explored using a two-layer, flat-bottom, f-plane, quasigeostrophic model forced by an imposed, horizontally homogenous, baroclinically unstable mean flow and damped by bottom Ekman friction. A ...

Robert B. Scott; Brian K. Arbic

2007-03-01T23:59:59.000Z

256

City energy plan: choices for saving energy in the industrial sector, Task 2. 3 B  

SciTech Connect

The following are covered: how energy is used today, ways to save energy, ways to implement, conservation choices, and impacts of price increases and supply cutbacks. (MHR)

1976-11-01T23:59:59.000Z

257

MHK Technologies/Deep Ocean Water Application Facility DOWAF | Open Energy  

Open Energy Info (EERE)

Water Application Facility DOWAF Water Application Facility DOWAF < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Deep Ocean Water Application Facility DOWAF.jpg Technology Profile Primary Organization Marc M Siah Associates Inc Technology Resource Click here OTEC Technology Type Click here OTEC - Hybrid Cycle Technology Description MOTEC systems utilize the temperature differential between the warm surface and the cold deep seawater The OTEC heat engine converts the thermal energy into usable mechanical energy which in turn is converted to electrical energy There are different types of OTEC system Technology Dimensions Device Testing Date Submitted 24:54.0 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Deep_Ocean_Water_Application_Facility_DOWAF&oldid=681561

258

Metrics and Task Scheduling Policies for Energy Saving in Multicore Computers J. Mair, K. Leung, Z. Huang  

E-Print Network (OSTI)

Metrics and Task Scheduling Policies for Energy Saving in Multicore Computers J. Mair, K. Leung, Z) in their schedules. Our experiments show that, on a modern multicore computer, the Hare Policy can save energy up to 20% of energy over standard scheduling policies. Keywords-Speedup per Watt (SPW), Power per Speedup

Huang, Zhiyi

259

Projected Impact of Climate Change on the Energy Budget of the Arctic Ocean by a Global Climate Model  

Science Conference Proceedings (OSTI)

The annual energy budget of the Arctic Ocean is characterized by a net heat loss at the air–sea interface that is balanced by oceanic heat transport into the Arctic. Two 150-yr simulations (1950–2099) of a global climate model are used to examine ...

James R. Miller; Gary L. Russell

2002-11-01T23:59:59.000Z

260

Design and cost of near-term OTEC (Ocean Thermal Energy Conversion) plants for the production of desalinated water and electric power. [Ocean Thermal Energy Conversion (OTEC)  

DOE Green Energy (OSTI)

There currently is an increasing need for both potable water and power for many islands in the Pacific and Caribbean. The Ocean Thermal Energy Conversion (OTEC) technology fills these needs and is a viable option because of the unlimited supply of ocean thermal energy for the production of both desalinated water and electricity. The OTEC plant design must be flexible to meet the product-mix demands that can be very different from site to site. This paper describes different OTEC plants that can supply various mixes of desalinated water and vapor -- the extremes being either all water and no power or no water and all power. The economics for these plants are also presented. The same flow rates and pipe sizes for both the warm and cold seawater streams are used for different plant designs. The OTEC plant designs are characterized as near-term because no major technical issues need to be resolved or demonstrated. The plant concepts are based on DOE-sponsored experiments dealing with power systems, advanced heat exchanger designs, corrosion and fouling of heat exchange surfaces, and flash evaporation and moisture removal from the vapor using multiple spouts. In addition, the mature multistage flash evaporator technology is incorporated into the plant designs were appropriate. For the supply and discharge warm and cold uncertainties do exist because the required pipe sizes are larger than the maximum currently deployed -- 40-inch high-density polyethylene pipe at Keahole Point in Hawaii. 30 refs., 6 figs., 8 tabs.

Rabas, T.; Panchal, C.; Genens, L.

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ocean energy task" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

In-situ biofouling of ocean thermal energy conversion (OTEC) evaporator tubes  

Science Conference Proceedings (OSTI)

The Puerto Rico Center for Energy and Environmental Research equipped a LCU facility in 1100 m of water near Punta Tuna, Puerto Rico to measure in situ biofouling of simulated Ocean Thermal Energy Conversion evaporator tubes. The system consisted of two 5052 aluminum alloy and two titanium tubes, through which a continuous flow of ocean water was maintained. The tubes were cleaned three times and the fouling resistance was measured, showing only slight differences between the tubes with respect to heat transfer loss resulting from biofouling. In all units, the average fouling rate after cleaning was greater than before cleaning, and only after the first cleaning did the aluminum units show greater fouling rates than did the titanium. The titanium units showed a progressive increase in the fouling rates with each cleaning. The subsequent average fouling rates for all units after eight months were between 4 and 4.6 x 0.000010 sq m-k/W-day.

Sasscer, D.S. (Univ. of Puerto Rico, Mayaguez); Morgan, T. (Argonne National Lab., IL)

1981-05-01T23:59:59.000Z

262

Ocean thermal energy conversion power system development-I. Phase I. Final report  

DOE Green Energy (OSTI)

The objective of the Ocean Thermal Energy Conversion (OTEC) Power System Development-I (PSD-I), Phase I, study was to develop conceptual and preliminary designs of closed-cycle ammonia power system modules for the 100-MW(e) OTEC Demonstration Plant, the 400-MW(e) Commercial Size Plant, and Heat Exchanger Test Articles representative of the full-size power system module design. Results are presented.

Not Available

1978-12-18T23:59:59.000Z

263

Ocean Viruses: Tiny entities with Global Impacts ( JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)  

Science Conference Proceedings (OSTI)

Matt Sullivan from the University of Arizona on "Ocean Viruses: Tiny Entities with Global Impacts" at the 7th Annual Genomics of Energy & Environment Meeting on March 22, 2012 in Walnut Creek, Calif.

Sullivan, Matthew B [University of Arizona

2012-03-22T23:59:59.000Z

264

Energy Transports by Ocean and Atmosphere Based on an Entropy Extremum Principle. Part 1: Zonal Averaged Transports  

Science Conference Proceedings (OSTI)

Required global energy transports determined from Nimbus-7 satellite net radiation measurements have been separated into atmospheric and oceanic components by applying a maximum entropy production principle to the atmospheric system. Strong ...

Byung-Ju Sohn; Eric A. Smith

1993-05-01T23:59:59.000Z

265

Evolution of the Lorenz Energy Cycle in the Intertropical Convergence Zone in the South American Sector of the Atlantic Ocean  

Science Conference Proceedings (OSTI)

The intertropical convergence zone (ITCZ) in the South American sector of the Atlantic Ocean is identified using outgoing longwave radiation (OLR) data in order to investigate the evolution of the Lorenz energy cycle in the region dominated by ...

Ligia A. Da Silva; Prakki Satyamurty

2013-05-01T23:59:59.000Z

266

Research on the external fluid mechanics of ocean thermal energy conversion plants : report covering experiments in a current  

E-Print Network (OSTI)

This report describes a set of experiments in a physical model study to explore plume transport and recirculation potential for a range of generic Ocean Thermal Energy Conversion (OTEC) plant designs and ambient conditions. ...

Fry, David J.

1981-01-01T23:59:59.000Z

267

Heat and Energy Balances in the Upper Ocean at 50°N, 140°W during November 1980 (STREX)  

Science Conference Proceedings (OSTI)

Subsurface temperature data and surface meteorological data are analyzed from thermistor chain moorings deployed near 50°N, 140°W during the Storm Transfer and Response Experiment (STREX). The upper-ocean heat and potential energy (PE) contents ...

S. D. Paduan; R. A. DeSzoeke

1986-01-01T23:59:59.000Z

268

Energy and task management in energy harvesting wireless sensor networks for structural health monitoring.  

E-Print Network (OSTI)

??Energy harvesting sensor nodes reduce the need for post- deployment physical human interaction by using environmental power and wireless communication; however, they must adapt performance… (more)

Steck, Jamie Bradley

2009-01-01T23:59:59.000Z

269

MORA: an Energy-Aware Slack Reclamation Scheme for Scheduling Sporadic Real-Time Tasks upon Multiprocessor Platforms  

E-Print Network (OSTI)

In this paper, we address the global and preemptive energy-aware scheduling problem of sporadic constrained-deadline tasks on DVFS-identical multiprocessor platforms. We propose an online slack reclamation scheme which profits from the discrepancy between the worst- and actual-case execution time of the tasks by slowing down the speed of the processors in order to save energy. Our algorithm called MORA takes into account the application-specific consumption profile of the tasks. We demonstrate that MORA does not jeopardize the system schedulability and we show by performing simulations that it can save up to 32% of energy (in average) compared to execution without using any energy-aware algorithm.

Nelis, Vincent

2009-01-01T23:59:59.000Z

270

Sustainable energy for all. Technical report of task force 2 in support of doubling the global rate of energy efficiency improvement and doubling the share of renewable energy in the global energy mix by 2030  

SciTech Connect

The UN Secretary General established the Sustainable Energy for All initiative in order to guide and support efforts to achieve universal access to modern energy, rapidly increase energy efficiency, and expand the use of renewable energies. Task forces were formed involving prominent energy leaders and experts from business, government, academia and civil society worldwide. The goal of the Task Forces is to inform the implementation of the initiative by identifying challenges and opportunities for achieving its objectives. This report contains the findings of Task Force Two which is dedicated energy efficiency and renewable energy objectives. The report shows that doubling the rate of energy efficiency improvements and doubling the share of energy from renewable sources by 2030 is challenging but feasible if sufficient actions are implemented. Strong and well-informed government policies as well as extensive private investment should focus on the high impact areas identified by the task force.

Nakicenovic, Nebojsa [International Institute for Applied Systems Analysis and Vienna University of Technology (Austria); Kammen, Daniel [Univ. of California, Berkeley, CA (United States); Jewell, Jessica [International Institute for Applied Systems Analysis (Austria)

2012-04-15T23:59:59.000Z

271

Carbon Issues Task Force Report for the Idaho Strategic Energy Alliance  

SciTech Connect

The Carbon Issues Task Force has the responsibility to evaluate emissions reduction and carbon offset credit options, geologic carbon sequestration and carbon capture, terrestrial carbon sequestration on forest lands, and terrestrial carbon sequestration on agricultural lands. They have worked diligently to identify ways in which Idaho can position itself to benefit from potential carbon-related federal legislation, including identifying opportunities for Idaho to engage in carbon sequestration efforts, barriers to development of these options, and ways in which these barriers can be overcome. These are the experts to which we will turn when faced with federal greenhouse gas-related legislation and how we should best react to protect and provide for Idaho’s interests. Note that the conclusions and recommended options in this report are not intended to be exhaustive, but rather form a starting point for an informed dialogue regarding the way-forward in developing Idaho energy resources.

Travis L. Mcling

2010-10-01T23:59:59.000Z

272

Biomass conversion Task 4 1988 program of work: International Energy Agency Bioenergy Agreement  

SciTech Connect

For biomass to meet its potential as an energy resource, conversion processes must be available which are both efficient and environmentally acceptable. Conversion can include direct production of heat and electricity as well as production of intermediate gaseous, liquid, and solid fuels. While many biomass conversion processes are commercially available at present, others are still in the conceptual stage. Additional research and development activities on these advanced concepts will be necessary to fully use biomass resources. Ongoing research on biomass conversion processes is being conducted by many nations throughout the world. In an effort to coordinate this research and improve information exchange, several countries have agreed to a cooperative effort through the International Energy Agency's Bioenergy Agreement (IEA/BA). Under this Agreement, Task IV deals specifically with biomass conversion topics. The cooperative activities consists of information exchange and coordination of national research programs on specific topics. The activities address biomass conversion in a systematic manner, dealing with the pretreatment of biomass prior to conversion, the subsequent conversion of the biomass to intermediate fuels or end-product energy, and then the environmental aspects of the conversion process. This document provides an outline of cooperative work to be performed in 1988. 1 fig., 2 tabs.

Stevens, D.J.

1987-12-01T23:59:59.000Z

273

Biomass conversion Task 4 1988 program of work: International Energy Agency Bioenergy Agreement  

DOE Green Energy (OSTI)

For biomass to meet its potential as an energy resource, conversion processes must be available which are both efficient and environmentally acceptable. Conversion can include direct production of heat and electricity as well as production of intermediate gaseous, liquid, and solid fuels. While many biomass conversion processes are commercially available at present, others are still in the conceptual stage. Additional research and development activities on these advanced concepts will be necessary to fully use biomass resources. Ongoing research on biomass conversion processes is being conducted by many nations throughout the world. In an effort to coordinate this research and improve information exchange, several countries have agreed to a cooperative effort through the International Energy Agency's Bioenergy Agreement (IEA/BA). Under this Agreement, Task IV deals specifically with biomass conversion topics. The cooperative activities consists of information exchange and coordination of national research programs on specific topics. The activities address biomass conversion in a systematic manner, dealing with the pretreatment of biomass prior to conversion, the subsequent conversion of the biomass to intermediate fuels or end-product energy, and then the environmental aspects of the conversion process. This document provides an outline of cooperative work to be performed in 1988. 1 fig., 2 tabs.

Stevens, D.J.

1987-12-01T23:59:59.000Z

274

Sustainable energy for all. Technical report of task force 1 in support of the objective to achieve universal access to modern energy services by 2030  

SciTech Connect

The UN Secretary General established the Sustainable Energy for All initiative in order to guide and support efforts to achieve universal access to modern energy, rapidly increase energy efficiency, and expand the use of renewable energies. Task forces were formed involving prominent energy leaders and experts from business, government, academia and civil society worldwide. The goal of the Task Forces is to inform the implementation of the initiative by identifying challenges and opportunities for achieving its objectives. This report contains the findings of Task Force One which is dedicated to the objective of achieving universal access to modern energy services by 2030. The report shows that universal energy access can be realized by 2030 with strong, focused actions set within a coordinated framework.

Birol, Fatih [International Energy Agency, Paris (France); Brew-Hammond, Abeeku (University of Science and Technology (Ghana

2012-04-15T23:59:59.000Z

275

Corrosion and biofouling on the non-heat-exchanger surfaces of an ocean thermal energy conversion power plant: a survey  

DOE Green Energy (OSTI)

Of the many foreseeable problems confronting economical ocean thermal energy conversion operation, two major items are the deterioration of the structural and functional components, which prevents efficient operation, and the biofouling of the surfaces, which adds excess weight to the floating ocean platform. The techniques required for effective long-term control of deterioration and corrosion have been investigated actively for many years, and successful solutions for most situations have been developed. For the most part, these solutions can be directly transferred to the ocean thermal energy conversion plant. The majority of problems in these areas are expected to be associated with scale-up and will require some advanced development due to the immensity of the ocean thermal energy conversion platform. Current antifouling control systems are not effective for long-term fouling prevention. Commercially available antifouling coatings are limited to a 3-year service life in temperate waters, and even shorter in tropical waters. However, underwater cleaning techniques and some fouling-control systems presently being used by conventional power plants may find utility on an ocean thermal energy conversion plant. In addition, some recent major advances in long-term antifouling coatings sponsored by the Navy may be applicable to ocean thermal energy conversion. 132 references.

Castelli, V.J. (ed.)

1979-05-01T23:59:59.000Z

276

On the Loss of Wind-Induced Near-Inertial Energy to Turbulent Mixing in the Upper Ocean  

E-Print Network (OSTI)

On the Loss of Wind-Induced Near-Inertial Energy to Turbulent Mixing in the Upper Ocean XIAOMING received 27 March 2009, in final form 23 June 2009) ABSTRACT Wind-induced near-inertial energy has been find that nearly 70% of the wind-induced near-inertial energy at the sea surface is lost to turbulent

Miami, University of

277

Estimates of wind energy input to the Ekman layer in the Southern Ocean from surface drifter data  

E-Print Network (OSTI)

Estimates of wind energy input to the Ekman layer in the Southern Ocean from surface drifter data the contribution from the anticyclonic frequencies dominate the wind energy input. The latitudinal and seasonal variations of the wind energy input to the Ekman layer are closely related to the variations of the wind

Gille, Sarah T.

278

Accelerating Ocean Energy to the Marketplace – Environmental Research at the U.S. Department of Energy National Laboratories  

SciTech Connect

The U.S. Department of Energy (US DOE) has mobilized its National Laboratories to address the broad range of environmental effects of ocean and river energy development. The National Laboratories are using a risk-based approach to set priorities among environmental effects, and to direct research activities. Case studies will be constructed to determine the most significant environmental effects of ocean energy harvest for tidal systems in temperate estuaries, for wave energy installations in temperate coastal areas, wave installations in sub-tropical waters, and riverine energy installations in large rivers. In addition, the National Laboratories are investigating the effects of energy removal from waves, tides and river currents using numerical modeling studies. Laboratory and field research is also underway to understand the effects of electromagnetic fields (EMF), acoustic noise, toxicity from anti-biofouling coatings, effects on benthic habitats, and physical interactions with tidal and wave devices on marine and freshwater organisms and ecosystems. Outreach and interactions with stakeholders allow the National Laboratories to understand and mitigate for use conflicts and to provide useful information for marine spatial planning at the national and regional level.

Copping, Andrea E.; Cada, G. F.; Roberts, Jesse; Bevelhimer, Mark

2010-10-06T23:59:59.000Z

279

Hawaii energy strategy project 2: Fossil energy review. Task 3 -- Greenfield options: Prospects for LNG use  

SciTech Connect

This paper begins with an overview of the Asia-Pacific LNG market, its major players, and the likely availability of LNG supplies in the region. The discussion then examines the possibilities for the economic supply of LNG to Hawaii, the potential Hawaiian market, and the viability of an LNG project on Oahu. This survey is far from a complete technical assessment or an actual engineering/feasibility study. The economics alone cannot justify LNG`s introduction. The debate may continue as to whether fuel diversification and environmental reasons can outweigh the higher costs. Several points are made. LNG is not a spot commodity. Switching to LNG in Hawaii would require a massive, long-term commitment and substantial investments. LNG supplies are growing very tight in the Asia-Pacific region. Some of the environmental benefits of LNG are not entirely relevant in Hawaii because Hawaii`s air quality is generally excellent. Any air quality benefits may be more than counterbalanced by the environmental hazards connected with large-scale coastal zone construction, and by the safety hazards of LNG carriers, pipelines, etc. Lastly, LNG is not suitable for all energy uses, and is likely to be entirely unsuitable for neighbor island energy needs.

Breazeale, K. [ed.; Fesharaki, F.; Fridley, D.; Pezeshki, S.; Wu, K.

1993-12-01T23:59:59.000Z

280

Task 5.1: Expand the Number of Faculty Working in Wind Energy: Wind Energy Storage  

DOE Green Energy (OSTI)

Energy storage to reduce peak-load demands on utilities is emerging as an important way to address the intermittency of renewable energy resources. Wind energy produced in the middle of the night may be wasted unless it can be stored, and conversely, solar energy production could be used after the sun goes down if we had an efficient way to store it. It is uses an electrochemical process to convert hydrogen gas into electricity. The role of fuel cells in energy storage is a very important criteria and it is compared with regular batteries for the advantages of fuel cells over the latter. For this reason fuel cells can be employed. PEM fuel cells can be effectively used for this reason. But the performance and durability of PEM fuel cells are significantly affected by the various components used in a PEM cell. Several parameters affect the performance and durability of fuel cells. They are water management, degradation of components, cell contamination, reactant starvation and thermal management. Water management is the parameter which plays a major role in the performance of a fuel cell. Based on the reviews, improvement of condensation on the cathode side of a fuel cell is expected to improve the performance of the fuel cell by reducing cathode flooding. Microchannels and minichannels can enhance condensation on the cathode side of a fuel cell. Computational fluid dynamics (CFD) analysis was performed to evaluate and compare the condensation of steam in mini and microchannels with hydraulic diameter of 2mm, 2.66mm, 200µm and 266µm respectively. The simulation was run at various mass flux values ranging from 0.5 kg/m2s and 4 kg/m2s. The length of the mini and microchannels were in the range of 20 mm to 100 mm. CFD software’s GAMBIT and FLUENT were used for simulating the condensation process through the mini and microchannels. Steam flowed through the channels, whose walls were cooled by natural convection of air at room temperature. The outlet temperature of the condensate was in the range of 25oC to 90oC. The condensation process in minichannels was observed to be different from that in microchannels. It was found that the outlet temperature of the condensate decreased as the diameter of the channel decreased. It was also evident that the increase in length of the channel further decreased the outlet temperature of the condensate and subsequently the condensation heat flux. The investigation also showed that the pressure drop along the channel length increased with decreasing hydraulic diameter and length of the mini and micro channel. Conversely, the pressure drop along the channel increased with increasing inlet velocity of the stream. It was then suggested to use microchannels on the cathode section of a fuel cell for improved condensation.

Janet M Twomey, PhD

2010-04-30T23:59:59.000Z

Note: This page contains sample records for the topic "ocean energy task" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

GEOTEC (Geothermal-Enhanced Ocean Thermal Energy Conversion) engineering concept study  

DOE Green Energy (OSTI)

The project was to provide a conceptual design for a modular state-of-the-art geothermal-enhanced ocean thermal energy conversion (GEOTEC) plant for implementation at a Navy site on Adak Island, Alaska. This report includes the following appendices: (1) statement of work; (2) geothermal resource assessment; (3) assessment of environmental issues; (4) design optimization program formulations for GEOTEC; (5) calculation of geofluid temperature drop in brine collection system; (6) pressure losses and pumping requirements for seawater pipeline system; (7) geocost comparison of single and dual binary cycle systems; (8) description of seawater pipeline system; and (9) plant system installed cost estimates. (ACR)

Not Available

1984-03-01T23:59:59.000Z

282

Mapping and Assessment of the United States Ocean Wave Energy Resource |  

Open Energy Info (EERE)

450 450 Varnish cache server Mapping and Assessment of the United States Ocean Wave Energy Resource Dataset Summary Description This project estimates the naturally available and technically recoverable U.S. wave energy resources, using a 51-month Wavewatch III hindcast database developed especially for this study by National Oceanographic and Atmospheric Administration's (NOAA's) National Centers for Environmental Prediction. For total resource estimation, wave power density in terms of kilowatts per meter is aggregated across a unit diameter circle. This approach is fully consistent with accepted global practice and includes the resource made available by the lateral transfer of wave energy along wave crests, which enables densities within a few kilometers of a linear array, even for fixed terminator devices.

283

Selected legal and institutional issues related to Ocean Thermal Energy Conversion (OTEC) development  

DOE Green Energy (OSTI)

Ocean Thermal Energy Conversion (OTEC), an attractive alternative to traditional energy sources, is still in the early stages of development. To facilitate OTEC commercialization, it is essential that a legal and institutional framework be designed now so as to resolve uncertainties related to OTEC development, primarily involving jurisdictional, regulatory, and environmental issues. The jurisdictional issues raised by OTEC use are dependent upon the site of an OTEC facility and its configuration; i.e., whether the plant is a semipermanent fixture located offshore or a migrating plant ship that provides a source of energy for industry at sea. These issues primarily involve the division of authority between the Federal Government and the individual coastal states. The regulatory issues raised are largely speculative: they involve the adaptation of existing mechanisms to OTEC operation. Finally, the environmental issues raised center around compliance with the National Environmental Policy Act (NEPA) as well as international agreements. 288 references.

Nanda, V. P.

1979-06-01T23:59:59.000Z

284

Compilation of reports prepared for the Secretary of Energy Advisory Board Task Force on Radioactive Waste Management  

SciTech Connect

This report contains reports prepared for the Secretary of Energy Advisory Board Task Force on Radioactive Waste Management, from experts in the United States. The contents of the report focus mainly on public opinion, and government policies as perceived by the public.

1993-11-01T23:59:59.000Z

285

An Estimate of the Lorenz Energy Cycle for the World Ocean Based on the STORM/NCEP Simulation  

Science Conference Proceedings (OSTI)

This paper presents an estimate of the oceanic Lorenz energy cycle derived from a simulation forced by 6-hourly fluxes obtained from NCEP–NCAR reanalysis-1. The total rate of energy generation amounts to 6.6 TW, of which 1.9 TW is generated by ...

Jin-Song von Storch; Carsten Eden; Irina Fast; Helmuth Haak; Daniel Hernández-Deckers; Ernst Maier-Reimer; Jochem Marotzke; Detlef Stammer

2012-12-01T23:59:59.000Z

286

Ocean Thermal Extractable Energy Visualization- Final Technical Report on Award DE-EE0002664. October 28, 2012  

DOE Green Energy (OSTI)

The Ocean Thermal Extractable Energy Visualization (OTEEV) project focuses on assessing the Maximum Practicably Extractable Energy (MPEE) from the world's ocean thermal resources. MPEE is defined as being sustainable and technically feasible, given today's state-of-the-art ocean energy technology. Under this project the OTEEV team developed a comprehensive Geospatial Information System (GIS) dataset and software tool, and used the tool to provide a meaningful assessment of MPEE from the global and domestic U.S. ocean thermal resources. The OTEEV project leverages existing NREL renewable energy GIS technologies and integrates extractable energy estimated from quality-controlled data and projected optimal achievable energy conversion rates. Input data are synthesized from a broad range of existing in-situ measurements and ground-truthed numerical models with temporal and spatial resolutions sufficient to reflect the local resource. Energy production rates are calculated for regions based on conversion rates estimated for current technology, local energy density of the resource, and sustainable resource extraction. Plant spacing and maximum production rates are then estimated based on a default plant size and transmission mechanisms. The resulting data are organized, displayed, and accessed using a multi-layered GIS mapping tool, http://maps.nrel.gov/mhk_atlas with a user-friendly graphical user interface.

Ascari, Matthew B.; Hanson, Howard P.; Rauchenstein, Lynn; Van Zwieten, James; Bharathan, Desikan; Heimiller, Donna; Langle, Nicholas; Scott, George N.; Potemra, James; Nagurny, N. John; Jansen, Eugene

2012-10-28T23:59:59.000Z

287

On the Loss of Wind-Induced Near-Inertial Energy to Turbulent Mixing in the Upper Ocean  

Science Conference Proceedings (OSTI)

Wind-induced near-inertial energy has been believed to be an important source for generating the ocean mixing required to maintain the global meridional overturning circulation. In the present study, the near-inertial energy budget in a realistic ...

Xiaoming Zhai; Richard J. Greatbatch; Carsten Eden; Toshiyuki Hibiya

2009-11-01T23:59:59.000Z

288

Nonlinear Cascades of Surface Oceanic Geostrophic Kinetic Energy in the Frequency Domain  

Science Conference Proceedings (OSTI)

Motivated by the ubiquity of time series in oceanic data, the relative lack of studies of geostrophic turbulence in the frequency domain, and the interest in quantifying the contributions of intrinsic nonlinearities to oceanic frequency spectra, ...

Brian K. Arbic; Robert B. Scott; Glenn R. Flierl; Andrew J. Morten; James G. Richman; Jay F. Shriver

2012-09-01T23:59:59.000Z

289

Explorations of Atmosphere–Ocean–Ice Climates on an Aquaplanet and Their Meridional Energy Transports  

Science Conference Proceedings (OSTI)

The degree to which total meridional heat transport is sensitive to the details of its atmospheric and oceanic components is explored. A coupled atmosphere, ocean, and sea ice model of an aquaplanet is employed to simulate very different climates—...

Daniel Enderton; John Marshall

2009-06-01T23:59:59.000Z

290

Task 3.0:Life-Cycle Database for Wind Energy Systems  

DOE Green Energy (OSTI)

Results have been applied to wind generators, but also impact the larger U.S. product manufacturing base. For chemicals and materials, this project has provided a standard format for each lci that contains an overview and description, a process flow diagram, detailed mass balances, detailed energy of unit processes, and an executive summary. This is suitable for integration into other life cycle databases (such as that at NREL), so that broad use can be achieved. The use of representative processes allows unrestricted use of project results. With the framework refined in this project, information gathering was initiated for chemicals and materials in wind generation. Since manufacturing is one of the most significant parts of the environmental domain for wind generation improvement, this project research has developed a fundamental approach. The emphasis was place on individual unit processes as an organizing framework to understand the life cycle of manufactured products. The rearrangement of unit processes provides an efficient and versatile means of understanding improved manufactured products such as wind generators. The taxonomy and structure of unit process lci were developed in this project. A series of ten unit process lci were developed to sample the major segments of the manufacturing unit process taxonomy. Technical and economic effectiveness has been a focus of the project research in Task three. The use of repeatable modules for the organization of information on environmental improvement has a long term impact. The information developed can be used and reused in a variety of manufacturing plants and for a range of wind generator sizes and designs. Such a modular approach will lower the cost of life cycle analysis, that is often asked questions of carbon footprint, environmental impact, and sustainability. The use of a website for dissemination, linked to NREL, adds to the economic benefit as more users have access to the lci information. Benefit to the public has been achieved by a well-attended WSU conference, as well as presentations for the Kansas Wind Energy Commission. Attendees represented public interests, land owners, wind farm developers, those interested in green jobs, and industry. Another benefit to the public is the start of information flow from manufacturers that can inform individuals about products.

Janet M Twomey, PhD

2010-04-30T23:59:59.000Z

291

MHK Technologies/Ocean Wave Power Spar Buoy Engine | Open Energy  

Open Energy Info (EERE)

Spar Buoy Engine Spar Buoy Engine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Ocean Wave Power Spar Buoy Engine.jpg Technology Profile Primary Organization Functional Design Engineering Inc Technology Resource Click here Wave Technology Type Click here Point Absorber - Submerged Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description A long period spar buoy supports a subsurface flow augmentor The augmentor directs water from the wave s submarine flow field to a free prime mover piston The prime mover is decoupled from the machine s PTO during times in the wave s cycle when there is little power available for conversion Wave energy is stored in the device until the is enough flow magnetude that power take off can efficiently take place Power can be taken off as high pressure water crankshaft torque or directly as DC electricity

292

Energy Basics: Tidal Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Ocean Thermal Energy Conversion Tidal Energy Wave Energy...

293

Energy Basics: Wave Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Ocean Thermal Energy Conversion Tidal Energy Wave Energy...

294

On the Effect of Ocean Waves on the Kinetic Energy Balance and Consequences for the Inertial Dissipation Technique  

Science Conference Proceedings (OSTI)

For large wind speed (in practice >15 m s?1) observations of the surface stress by means of the inertial dissipation technique are so close to the surface that effects of growing ocean waves on the turbulent kinetic energy budget should be taken ...

Peter A. E. M. Janssen

1999-03-01T23:59:59.000Z

295

Power-aware task motion for enhancing dynamic range of embedded systems with renewable energy sources  

Science Conference Proceedings (OSTI)

In this paper we propose a novel scheduling framework for a dynamic real-time environment that experiences power consumption constraints. This framework is capable of dynamically adjusting the voltage/ speed of the system, such that no task in the system ...

Jinfeng Liu; Pai H. Chou; Nader Bagherzadeh

2002-02-01T23:59:59.000Z

296

Regional systems development for geothermal energy resources: Pacific region (California and Hawaii). Task I: implementation plan development, topical report  

DOE Green Energy (OSTI)

Eleven implementation plans were prepared. They represent some 21 reservoir-site developments and 48 geothermal power plant developments. The plans consist of three integrated elements: (1) a bar-chart schedule that depicts interdependencies among activities and shows significant milestones on the path from initial exploration to power on-line, (2) task descriptions, and (3) the responsible performers. During the preparation of the implementation plans, the tasks required for resource development at each KGRA were defined on a generalized work breakdown structure (WBS) diagram. A generalized WBS dictionary (task descriptions) was also compiled. In addition, a specific WBS for each KGRA was prepared in a tabular and indented format. The tasks formed the basis for the schedular activities. Institutional responsibilities, based upon the WBS, were identified and are also shown on the tabular WBS. In this manner, implementation plans evolved whose schedular, task, and responsibility elements were integrated with one another. In order to provide logically consistent time estimates, and a reasonable basis for comparison, schedule modules were developed for some recurring activities which are essentially common to all KGRAs. In the preparation of multiple plant schedules for a given KGRA, the interactive effects of power development on the ancillary resources of the area were considered so that interfaces and constraining situations would be identified. Within Imperial County, this process was taken one step further to include the influence that development at the several close-lying KGRAs would have upon one another. A set of recommendations for the accelerated development of geothermal energy resources was prepared and the potential implementors were suggested.

Michler, D.W.

1979-03-26T23:59:59.000Z

297

Preliminary designs for ocean thermal energy conversion (OTEC) stationkeeping subsystems (SKSS). Task II. Conceptual design. Final report  

DOE Green Energy (OSTI)

The study is presented in five sections: design loads, conceptual designs, trade studies, cost analysis and concept evaluation and ranking. Extensive appendixes provide back up calculations and data to support the results. Environmental forces and yaw moments acting on the barge and spar in the various design sea states are presented including wave, wind and current effects. A parametric analysis illustrates the impact on holding power requirement of varying the return periods for operational and extreme sea state. The conceptual designs are presented for the barge followed by those for the spar, including configuration definition, performance characteristics, interfaces, areas for development, and deployment scenarios for selected concepts. The concept definition is followed by a set of trade studies that were performed to evaluate candidate anchor types and anchor leg materials. Parametric variations in anchor leg characteristics, wire-rope-to-chain length ratio for example, illustrate the influence of the significant design parameters on performance. An extensive cost analysis of the candidate SKSS concepts is presented, including cost estimates, life cycle cost scenarios leading to expected value of life cycle cost, and cost equivalence of operational failures. An evaluation of the eight SKSS concepts is presented, including assessment of performance and rankings based on risk versus cost and technology development. The appendixes include a report on the Electrical Transmission System interface, wave drift force, typical cost disbursement schedule and computer program listing, the IMODCO conceptual design report, and static configuration results.

Not Available

1979-07-27T23:59:59.000Z

298

Adaptive energy-efficient scheduling for real-time tasks on DVS-enabled heterogeneous clusters  

Science Conference Proceedings (OSTI)

Developing energy-efficient clusters not only can reduce power electricity cost but also can improve system reliability. Existing scheduling strategies developed for energy-efficient clusters conserve energy at the cost of performance. The performance ... Keywords: Adaptivity, Cluster, Dynamic voltage scaling, Energy-efficient, Real-time, Scheduling

Xiaomin Zhu; Chuan He; Kenli Li; Xiao Qin

2012-06-01T23:59:59.000Z

299

Task scheduling in an energy harvesting WSN for Structural Health Monitoring Literature Survey  

E-Print Network (OSTI)

Joint Voltage and Modulation Scaling for Energy Harvesting Sensor Networks Bo Zhang Robert Simon, aydin}@cs.gmu.edu Abstract Energy harvesting is rapidly becoming a critical archi- tectural component approach for energy management in resource- constrained WSNs that utilize energy harvesting techniques

Simunic, Tajana

300

Ocean Renewable Energy Storage (ORES) System: Analysis of an Undersea Energy Storage Concept  

E-Print Network (OSTI)

Due to its higher capacity factor and proximity to densely populated areas, offshore wind power with integrated energy storage could satisfy > 20% of U.S. electricity demand. Similar results could also be obtained in many ...

Slocum, Alexander H.

Note: This page contains sample records for the topic "ocean energy task" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Geothermal energy market study on the Atlantic Coastal Plain: Ocean City, Maryland geothermal energy evaluation  

DOE Green Energy (OSTI)

This report is one of a series of studies that have been made by the Applied Physics Laboratory, or its subcontractors, to examine the technical and economic feasibility of the utilization of geothermal energy at the request of potential users.

Schubert, C.E.

1981-08-01T23:59:59.000Z

302

Sustainable Energy Solutions Task 5.1: Expand the Number of Faculty Working in Wind Energy: Wind Energy Storage  

Science Conference Proceedings (OSTI)

EXECUTIVE SUMARRY Energy storage to reduce peak-load demands on utilities is emerging as an important way to address the intermittency of renewable energy resources. Wind energy produced in the middle of the night may be wasted unless it can be stored, and conversely, solar energy production could be used after the sun goes down if we had an efficient way to store it. It is uses an electrochemical process to convert hydrogen gas into electricity. The role of fuel cells in energy storage is a very important criteria and it is compared with regular batteries for the advantages of fuel cells over the latter. For this reason fuel cells can be employed. PEM fuel cells can be effectively used for this reason. But the performance and durability of PEM fuel cells are significantly affected by the various components used in a PEM cell. Several parameters affect the performance and durability of fuel cells. They are water management, degradation of components, cell contamination, reactant starvation and thermal management. Water management is the parameter which plays a major role in the performance of a fuel cell. Based on the reviews, improvement of condensation on the cathode side of a fuel cell is expected to improve the performance of the fuel cell by reducing cathode flooding. Microchannels and minichannels can enhance condensation on the cathode side of a fuel cell. Computational fluid dynamics (CFD) analysis was performed to evaluate and compare the condensation of steam in mini and microchannels with hydraulic diameter of 2mm, 2.66mm, 200µm and 266µm respectively. The simulation was run at various mass flux values ranging from 0.5 kg/m2s and 4 kg/m2s. The length of the mini and microchannels were in the range of 20 mm to 100 mm. CFD software’s GAMBIT and FLUENT were used for simulating the condensation process through the mini and microchannels. Steam flowed through the channels, whose walls were cooled by natural convection of air at room temperature. The outlet temperature of the condensate was in the range of 25oC to 90oC. The condensation process in minichannels was observed to be different from that in microchannels. It was found that the outlet temperature of the condensate decreased as the diameter of the channel decreased. It was also evident that the increase in length of the channel further decreased the outlet temperature of the condensate and subsequently the condensation heat flux. The investigation also showed that the pressure drop along the channel length increased with decreasing hydraulic diameter and length of the mini and micro channel. Conversely, the pressure drop along the channel increased with increasing inlet velocity of the stream. It was then suggested to use microchannels on the cathode section of a fuel cell for improved condensation.

Janet M Twomey, PhD

2010-04-30T23:59:59.000Z

303

Ocean Thermal Energy Conversion power system development. Phase I: preliminary design. Final report  

DOE Green Energy (OSTI)

Westinghouse has completed the Preliminary Design Phase for the Power System Development of the Ocean Thermal Energy Conversion (OTEC) Demonstration Plant project. This study included the development of a preliminary design for a Modular Application scaled power system (10MWe) and Heat Exchanger Test Articles, both based on the concept developed in the Conceptual Design Phase. The results of this study were used to improve the baseline design of the 50MWe module for the Commercial Size Power System, which was recommended for the demonstration plant by the conceptual design study. The 50MWe module was selected since it has the lowest cost, and since its size convincingly demonstrates that future economically viable commercial plants, having reliable operation with credible anticipated costs, are possible. Additional optimization studies on the size of the power system plus hull continue to identify 50MWe as the preferred minimum cost configuration. This study was limited to a closed cycle ammonia power system module, using a seawater temperature difference of 40/sup 0/F, and a surface platform/ship reference hull. This volume describes system operation, a complete test program to verify mechanical reliability and thermal performance, fabrication and installation operations, and a cost analysis. (WHK)

Not Available

1978-12-04T23:59:59.000Z

304

Development of plastic heat exchangers for ocean thermal energy conversion. Final report, August 1976--December 1978  

DOE Green Energy (OSTI)

Materials and processes have been selected and design information obtained for plastic ocean thermal energy conversion (OTEC) heat exchangers as the result of a program comprising five types of laboratory experiments. Tests to evaluate the chemical resistance of seven commercially available thermoplastics to sea water and several possible working fluids were conducted with emphasis placed on compatibility with ammonia. Environmental rupture tests involving exposure of stressed specimens to sea water or liquid ammonia indicated that the high density polyethylene (HDPE) is the best suited candidate and produced an extrapolated 100,000 hour failure stress of 1060 psi for HDPE. Long term durability tests of extruded HDPE plate-tube panel confirmed that plastic heat transfer surface is mechanically reliable in an OTEC environment. Thermal conductivity measurements of acetylene black filled HDPE indicated that conductivity may be increased by 50% with a 35% by weight filler loading. The permeability coefficient measured for liquid ammonia through HDPE was higher than previous estimates. Test showed that the rate can be significantly reduced by sulfonation of HDPE. A review of biofouling mechanisms revealed that the permeable nature of the plastic heat exchanger surface may be used to control primary biofouling form formation by allowing incorporation of non-toxic organic repellents into the plastic. A preliminary design and fabrication development program suggests that construction of an ammonia condenser test unit is feasible using currently available materials and manufacturing techniques.

Hart, G.K.; Lee, C.O.; Latour, S.R.

1979-01-01T23:59:59.000Z

305

Ocean Thermal Energy Conversion power system development. Phase I. Final report  

DOE Green Energy (OSTI)

This report covers the conceptual and preliminary design of closed-cycle, ammonia, ocean thermal energy conversion power plants by Westinghouse Electric Corporation. Preliminary designs for evaporator and condenser test articles (0.13 MWe size) and a 10 MWe modular experiment power system are described. Conceptual designs for 50 MWe power systems, and 100 MWe power plants are also descirbed. Design and cost algorithms were developed, and an optimized power system design at the 50 MWe size was completed. This design was modeled very closely in the test articles and in the 10 MWe Modular Application. Major component and auxiliary system design, materials, biofouling, control response, availability, safety and cost aspects are developed with the greatest emphasis on the 10 MWe Modular Application Power System. It is concluded that all power plant subsystems are state-of-practice and require design verification only, rather than continued research. A complete test program, which verifies the mechanical reliability as well as thermal performance, is recommended and described.

Not Available

1978-12-04T23:59:59.000Z

306

Ocean Thermal Energy Conversion power system development. Phase I: preliminary design. Final report  

DOE Green Energy (OSTI)

Westinghouse has completed the Preliminary Desigh Phase for the Power System Development of the Ocean Thermal Energy Conversion (OTEC) Demonstration Plant project. This study included the development of a preliminary design for a Modular Application scaled power system (10MWe) and Heat Exchanger Test Articles, both based on the concept developed in the Conceptual Design Phase. The results of this study were used to improve the baseline design of the 50MWe module for the Commercial Size Power System, which was recommended for the demonstration plant by the conceptual design study. The 50MWe module was selected since it has the lowest cost, and since its size convincingly demonstrates that future economically viable commercial plants, having reliable operation with credible anticipated costs, are possible. Additional optimization studies on the size of the power system plus hull continue to identify 50MWe as the preferred minimum cost configuration. This study was limited to a closed cycle ammonia power system module, using a seawater temperature difference of 40/sup 0/F, and a surface platform/ship reference hull. This volume presents the preliminary design configuration and system optimization. (WHK)

Not Available

1978-12-04T23:59:59.000Z

307

Closeout for U.S. Department of Energy Final Technical Report for University of Arizona grant DOE Award Number DE-FG03-95ER40906 From 1 February 1995 to 31 January 2004 Grant title: Theory and Phenomenology of Strong and Weak High Energy Physics (Task A) and Experimental Elementary Particle Physics (Task B)  

SciTech Connect

The following pages describe the high energy physics program at the University of Arizona which was funded by DOE grant DE-FG03-95ER40906, for the period 1 February 1995 to 31 January 2004. In this report, emphasis was placed on more recent accomplishments. This grant was divided into two tasks, a theory task (Task A) and an experimental task (Task B but called Task C early in the grant period) with separate budgets. Faculty supported by this grant, for at least part of this period, include, for the theory task, Adrian Patrascioiu (now deceased), Ina Sarcevic, and Douglas Toussaint., and, for the experimental task, Elliott Cheu, Geoffrey Forden, Kenneth Johns, John Rutherfoord, Michael Shupe, and Erich Varnes. Grant monitors from the Germantown DOE office, overseeing our grant, changed over the years. Dr. Marvin Gettner covered the first years and then he retired from the DOE. Dr. Patrick Rapp worked with us for just a few years and then left for a position at the University of Puerto Rico. Dr. Kathleen Turner took his place and continues as our grant monitor. The next section of this report covers the activities of the theory task (Task A) and the last section the activities of the experimental task (Task B).

Rutherfoord, John; Toussaint, Doug; Sarcevic, Ina

2005-03-03T23:59:59.000Z

308

Generation IV Nuclear Energy Systems Construction Cost Reductions through the Use of Virtual Environments - Task 4 Report: Virtual Mockup Maintenance Task Evaluation  

SciTech Connect

Task 4 report of 3 year DOE NERI-sponsored effort evaluating immersive virtual reality (CAVE) technology for design review, construction planning, and maintenance planning and training for next generation nuclear power plants. Program covers development of full-scale virtual mockups generated from 3D CAD data presented in a CAVE visualization facility. This report focuses on using Full-scale virtual mockups for nuclear power plant training applications.

Timothy Shaw; Anthony Baratta; Vaughn Whisker

2005-02-28T23:59:59.000Z

309

Comparison of Moist Static Energy and Budget between the GCM-Simulated Madden–Julian Oscillation and Observations over the Indian Ocean and Western Pacific  

Science Conference Proceedings (OSTI)

The moist static energy (MSE) anomalies and MSE budget associated with the Madden–Julian oscillation (MJO) simulated in the Iowa State University General Circulation Model (ISUGCM) over the Indian and Pacific Oceans are compared with observations. ...

Xiaoqing Wu; Liping Deng

2013-07-01T23:59:59.000Z

310

Task Plans  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Task Plans Task Plans This page contains links to a tentative listing of active and closed TEC Task Plans. Final status of these task plans will be determined after the July 2000 TEC meeting. Task Plan Number/Title DOE Lead Staff Last Update Comment Status/ New No. After 7/27/00 GP-1, Section 180(c) Coordination (begun 1/96) C. Macaluso 7/98 DOE published a Revised Proposed Policy and Procedures in April 1998; no final policy will be issued until a definitive date for NWPA shipments is determined, based on site suitability or other legislative direction. To the extent that any issues related to Section 180(c) arise in TEC meetings, they are being discussed in the context of the consolidated grant topic group which is covered by another task plan. Closed

311

Northwest Energy Policy Project. Institutional constraints and opportunities study module V, Report on tasks 4, 5, 6, and 7. Final report  

DOE Green Energy (OSTI)

State governments, along with their counties, cities, public utility districts, and other local units have important responsibilities in the energy field. Their institutions and policy processes offer both constraints and opportunities in the exercise of these responsibilities. The purpose of this study is to explore them in four rather different aspects: Task 4, Public Participation; Task 5, State Rate-Making; Task 6, Siting Energy Facilities; Task 7, Unconventional Energy Sources. Public participation is basic to democratic systems, which strive to develop policies in accord with, or at least not adverse to, the wishes of the people; participation in decision making can be in the market place as well as in the voting booth or the halls of government. The state public utility commissions set rates for investor-owned utilities which supply some 23% of the electricity consumed in Washington, 72% in Oregon, and 92% in Idaho. Rates for electricity supplied by publicly-owned systems are established by their elected governing bodies. For these and other reasons there are many and widely varying rates charged in the Northwest. Siting of energy facilities presents a widely varying framework in the Northwest states also. Task 7 focuses on the institutional constraints and opportunities the states confront in seeking alternatives to the traditional pattern of looking to greater supplies of the conventional sources. Geothermal energy appears to have potential mainly as a heat source in this region. Energy conservation is considered as a policy alternative, although not an energy source. (MCW)

Not Available

1977-01-01T23:59:59.000Z

312

Direct Evidence of an Oceanic Inverse Kinetic Energy Cascade from Satellite Altimetry  

Science Conference Proceedings (OSTI)

Sea surface height measurements from satellites reveal the turbulent properties of the South Pacific Ocean surface geostrophic circulation, both supporting and challenging different aspects of geostrophic turbulence theory. A near-universal shape ...

Robert B. Scott; Faming Wang

2005-09-01T23:59:59.000Z

313

The Partitioning of the Poleward Energy Transport between the Tropical Ocean and Atmosphere  

Science Conference Proceedings (OSTI)

The mass transport in the shallow, wind-driven, overturning cells in the tropical oceans is constrained to be close to the mass transport in the atmospheric Hadley cell, assuming that zonally integrated wind stresses on land are relatively small. ...

Isaac M. Held

2001-04-01T23:59:59.000Z

314

Energy use in the marine transportation industry: Task II. Regulations and Tariffs. Final report, Volume III  

SciTech Connect

The evaluation of the energy impacts of regulations and tariffs is structured around three sequential steps: identification of agencies and organizations that impact the commercial marine transportation industry; identification of existing or proposed regulations that were perceived to have a significant energy impact; and quantification of the energy impacts. Following the introductory chapter, Chapter II describes the regulatory structure of the commercial marine transportation industry and includes a description of the role of each organization and the legislative basis for their jurisdiction and an identification of major areas of regulation and those areas that have an energy impact. Chapters III through IX each address one of the 7 existing or proposed regulatory or legislative actions that have an energy impact. Energy impacts of the state of Washington's tanker regulations, of tanker segregated ballast requirements, of inland waterway user charges, of cargo pooling and service rationalization, of the availability of intermodal container transportation services, of capacity limitations at lock and dam 26 on the Mississippi River and the energy implications of the transportation alternatives available for the West Coast crude oil supplies are discussed. (MCW)

1977-12-01T23:59:59.000Z

315

Biomass Conversion Task IV 1987 program of work: International Energy Agency Bioenergy Agreement  

DOE Green Energy (OSTI)

Biomass is a major, renewable energy resource through out the world, and extensive research is being conducted by many countries on bioenergy technologies. In an effort to improve communications and cooperation in the area of biomass energy, several nations have agreed to a cooperative program of work under the International Energy Agency's Bioenergy Agreement (IEA/BA). Three areas of major importance have been identified including Short Rotation Forestry, Conventional Forestry, and Biomass Conversion. This document describes the 1987 Program of Work for cooperative activities in the area of Biomass Conversion. The background of the cooperation and descriptions of specific conversion projects are presented. Details of activity funding are also provided. 3 tabs.

Stevens, D.J.

1986-12-01T23:59:59.000Z

316

Assessment of Alternatives to Substation Batteries: Characterization of Energy Storage Technologies: Interim Report: Task 3  

Science Conference Proceedings (OSTI)

Backup power systems in electric company substations play a critical role in substation reliability. This product is intended to characterize energy storage technologies that can offer high reliability, measurable capacity, and low maintenance for substation backup power applications. Both new technologies, and better application of existing, energy storage technologies are covered. Reliability is the number one success criterion, while better condition monitoring and simplified maintenance requirements ...

2004-07-28T23:59:59.000Z

317

Climate and the Tropical Oceans  

Science Conference Proceedings (OSTI)

An attempt is made to determine the role of the ocean in establishing the mean tropical climate and its sensitivity to radiative perturbations. A simple two-box energy balance model is developed that includes ocean heat transports as an ...

Amy Clement; Richard Seager

1999-12-01T23:59:59.000Z

318

Effects of Localized Energy Extraction in an Idealized, Energetically Complete Numerical Model of an Ocean-Estuary Tidal System  

NLE Websites -- All DOE Office Websites (Extended Search)

localized energy extraction in an localized energy extraction in an idealized, energetically complete numerical model of an ocean-estuary tidal system MHK Instrumentation, Measurement & Computer Modeling Workshop, Broomfield CO, July 10 2012 Mitsuhiro Kawase and Marisa Gedney Northwest National Marine Renewable Energy Center / School of Oceanography University of Washington Seattle WA 98195 United States * Far-field (Estuary-wide) - Changes in the tidal range - Changes in tidal currents ï‚— Near-field (Vicinity of the Device) ï‚— Flow redirection ï‚— Interaction with marine life ï‚— Impact on bottom sediments and benthos Environmental Effects of Tidal Energy Extraction * Reduction in tidal range can permanently expose/submerge tidal flats, altering nearshore habitats * Reduction in kinetic energy of

319

Biomass Conversion Task IV 1986-1988 Program of Work. International Energy Agency Bioenergy Agreement  

DOE Green Energy (OSTI)

Biomass is a major, renewable energy resource throughout much of the world, and extensive research is being conducted on bioenergy technologies. In an effort to improve communications and cooperation in the area of biomass energy, several countries have agreed to a cooperative program of work under the International Energy Agency's Bioenergy Agreement (IEA/BA). Three areas of major importance have been identified including Short Rotation Forestry, Conventional Forestry, and Biomass Conversion. This document describes a Program of Work for cooperative activities in the area of Biomass Conversion. The background of the cooperation and general descriptions of specific conversion projects are presented. Details of activity funding are also provided. Finally, individual Activity Plans for specific cooperative activities are attached for reference. These plans describe projected work for the period 1986 to 1988.

Stevens, D.J.

1986-08-01T23:59:59.000Z

320

Research and development related to energy-storage systems, Task II. Final report  

DOE Green Energy (OSTI)

After a brief review of foreign research and development efforts in energy storage, various organizations are listed that were contacted to seek information relating to possible resource persons working in the area. A compendium of the literature search results covering energy storage research and development in 24 countries is provided. These countries are: Australia, Austria, Belgium, Brazil, Canada, Czechoslovakia, Denmark, Finland, France, Federal Republic of Germany, Great Britain, Greece, Ireland, Israel, Italy, Japan, The Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, Taiwan, and Russia. (LEW)

Beckmann, R.B.

1979-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ocean energy task" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

LoanSTAR Monitoring and Analysis Program Building Energy Monitoring Workbook Submitted to the Texas Governor’s Energy Office by the Improved Energy Audit Process Task (Aug. 1992)  

E-Print Network (OSTI)

This building energy monitoring workbook has been prepared for the Texas Governor's Energy Office by the Improved Energy Audit Task of the LoanSTAR Monitoring and Analysis Program. This workbook is intended to be a stand-alone survival guide to acquiring energy use and environmental data in buildings. It includes monitoring procedures and data analysis routines developed for the Texas LoanSTAR program and is copyrighted for distribution in the public domain.

Haberl, J. S.; Lopez, R.; Sparks, R. J.

1992-01-01T23:59:59.000Z

322

A Framework of Concurrent Task Scheduling and Dynamic Voltage and Frequency Scaling in Real-Time Embedded Systems with Energy Harvesting  

E-Print Network (OSTI)

harvesting module is comprised of a Photovoltaic (PV) panel for harvesting energy and a supercapacitor panel, state-of- charge management for the supercapacitor, and energy-harvesting- aware real-time task-leakage of the supercapacitor, and power losses in voltage converters, employs a cascaded feedback control structure

Pedram, Massoud

323

Assessing geothermal energy potential in upstate New York. Final report, Tasks 1, 3, and 4  

Science Conference Proceedings (OSTI)

New York State`s geothermal energy potential was evaluated based on a new resource assessment performed by the State University of New York at Buffalo (SUNY-Buffalo) and currently commercial technologies, many of which have become available since New York`s potential was last evaluated. General background on geothermal energy and technologies was provided. A life-cycle cost analysis was performed to evaluate the economics of using geothermal energy to generate electricity in upstate New York. A conventional rankine cycle, binary power system was selected for the economic evaluation, based on SUNY-Buffalo`s resource assessment. Binary power systems are the most technologically suitable for upstate New York`s resources and have the added advantage of being environmentally attractive. Many of the potential environmental impacts associated with geothermal energy are not an issue in binary systems because the geothermal fluids are contained in a closed-loop and used solely to heat a working fluid that is then used to generate the electricity Three power plant sizes were selected based on geologic data supplied by SUNY-Buffalo. The hypothetical power plants were designed as 5 MW modular units and sized at 5 MW, 10 MW and 15 MW. The life-cycle cost analysis suggested that geothermal electricity in upstate New York, using currently commercial technology, will probably cost between 14 and 18 cents per kilowatt-hour.

Manger, K.C.

1996-07-25T23:59:59.000Z

324

A Task Based Sensor-Centeric Model for overall Energy Consumption  

E-Print Network (OSTI)

Sensors have limited resources so it is important to manage the resources efficiently to maximize their use. A sensor's battery is a crucial resource as it singly determines the lifetime of sensor network applications. Since these devices are useful only when they are able to communicate with the world, radio transceiver of a sensor as an I/O and a costly unit plays a key role in its lifetime. This resource often consumes a big portion of the sensor's energy as it must be active most of the time to announce the existence of the sensor in the network. As such the radio component has to deal with its embedded sensor network whose parameters and operations have significant effects on the sensor's lifetime. In existing energy models, hardware is considered, but the environment and the network's parameters did not receive adequate attention. Energy consumption components of traditional network architecture are often considered individually and separately, and their influences on each other have not been considered...

Kamyabpour, Najmeh

2012-01-01T23:59:59.000Z

325

ILC Citizens' Task Force  

NLE Websites -- All DOE Office Websites (Extended Search)

the Fermilab ILC Citizens' Task Force June 2008 Report of the Fermilab ILC Citizens' Task Force 3 Contents 1 Executive Summary 3 Chapter 1 Purpose 7 Chapter 2 Origins and Purpose of the Fermilab Citizens' Task Force 15 Chapter 3 Setting the Stage 19 Chapter 4 Current Status of High Energy Physics Research 25 Chapter 5 Bringing the Next-Generation Accelerator to Fermilab 31 Chapter 6 Learning from Past Projects 37 Chapter 7 Location, Construction and Operation of Facilities Beyond Fermilab's Borders 45 Chapter 8 Health and Safety 49 Chapter 9 Environment 53 Chapter 10 Economics 59 Chapter 11 Political Considerations 65 Chapter 12 Community Engagement 77 Chapter 13 Summary 81 Appendices Appendix A. Task Force Members Appendix B. Task Force Meetings and Topics

326

Sustainable Energy Solutions Task 4.2: UV Degradation Prevention on Fiber-Reinforced Composite Blades  

Science Conference Proceedings (OSTI)

EXECUTIVE SUMARRY Use of wind energy has expanded very quickly because of the energy prices, environmental concerns and improved efficiency of wind generators. Rather than using metal and alloy based wind turbine blades, larger size fiber (glass and carbon) reinforced composite blades have been recently utilized to increase the efficiency of the wind energy in both high and low wind potential areas. In the current composite manufacturing, pre-preg and vacuum-assisted/heat sensitive resin transfer molding and resin infusion methods are employed. However, these lighter, stiffer and stronger composite blades experience ultraviolet (UV) light degradation where polymers (epoxies and hardeners) used for the blades manufacturing absorb solar UV lights, and cause photolytic, thermo-oxidative and photo-oxidative reactions resulting in breaking of carbon-hydrogen bonds, polymer degradation and internal and external stresses. One of the main reasons is the weak protective coatings/paints on the composite blades. This process accelerates the aging and fatigue cracks, and reduces the overall mechanical properties of the blades. Thus, the lack of technology on coatings for blade manufacturing is forcing many government agencies and private companies (local and national windmill companies) to find a better solution for the composite wind blades. Kansas has a great wind potential for the future energy demand, so efficient wind generators can be an option for continuous energy production. The research goal of the present project was to develop nanocomposite coatings using various inclusions against UV degradation and corrosion, and advance the fundamental understanding of degradation (i.e., physical, chemical and physiochemical property changes) on those coatings. In pursuit of the research goal, the research objective of the present program was to investigate the effects of UV light and duration on various nanocomposites made mainly of carbon nanotubes and graphene nanoflakes, contribute the valuable information to this emerging field of advanced materials and manufacturing and advance the Kansas economy through creation of engineering knowledge and products in the wind energy. The proposed work was involved in a multidisciplinary research program that incorporates nanocomposite fabrication, advanced coating, characterization, surface and colloidal chemistry, physicochemistry, corrosion science, and analysis with a simple and effective testing methodology. The findings were closely related to our hypothesis and approaches that we proposed in this proposal. The data produced in the study offered to advance the physical understanding of the behavior of nanostructured materials for the prevention of UV light at different exposure time and salt fogging. Founding of this proposal enabled the first UV resistive nanocomposite corrosion coating effort in Kansas to impact the local and national wind mill industry. Results of this program provided valuable opportunities for the multidisciplinary training of undergraduate and graduate students at Wichita State University (WSU), as well as a number of aircraft companies (e.g., Cessna, Hawker Beechcraft, Spirit, Boeing and Bombardier/Learjet) and other local and regional industries.

Janet M. Twomey, PhD

2010-04-30T23:59:59.000Z

327

DOE solar-thermal-energy program on-line budget analysis, 1983. Task II report  

DOE Green Energy (OSTI)

An overview is presented of the FY 1983 solar thermal energy budget. Recent trends are considered to comment on the transition to a new set of solar policy directives emanating from the Reagan Administration. The industry recommended budget is compared with those developed by the House and Senate Appropriations Committees. A budget allocation suggested by the solar thermal Technical Program Integrator at Sandia Laboratory, Livermore, California, is also reviewed with regard to balance among the technologies being developed and assignment of responsibility among the government institutions carrying out the program.

Not Available

1983-01-01T23:59:59.000Z

328

Report of the Task Group on operation Department of Energy tritium facilities  

SciTech Connect

This report discusses the following topics on the operation of DOE Tritium facilities: Environment, Safety, and Health Aspects of Tritium; Management of Operations and Maintenance Functions; Safe Shutdown of Tritium Facilities; Management of the Facility Safety Envelope; Maintenance of Qualified Tritium Handling Personnel; DOE Tritium Management Strategy; Radiological Control Philosophy; Implementation of DOE Requirements; Management of Tritium Residues; Inconsistent Application of Requirements for Measurement of Tritium Effluents; Interdependence of Tritium Facilities; Technical Communication among Facilities; Incorporation of Confinement Technologies into New Facilities; Operation/Management Requirements for New Tritium Facilities; and Safety Management Issues at Department of Energy Tritium Facilities.

1991-10-01T23:59:59.000Z

329

Seasonal Modulation of Eddy Kinetic Energy and Its Formation Mechanism in the Southeast Indian Ocean  

Science Conference Proceedings (OSTI)

Mesoscale eddy activity in the southeast Indian Ocean (15°–30°S, 60°–110°E) is investigated based on available satellite altimetry observations. The observed sea level anomaly data show that this region is the only eastern basin among the global ...

Fan Jia; Lixin Wu; Bo Qiu

2011-04-01T23:59:59.000Z

330

The dynamic response of oceanic hydrate deposits to ocean temperature change  

E-Print Network (OSTI)

during transit through the ocean water column Geophys. Res.hydrate in the world's oceans. Global Biogeochem. Cycles, 8,of methane hydrate in ocean sediment. Energy and Fuels, 19,

Reagan, Matthew T.

2008-01-01T23:59:59.000Z

331

An Assessment Of Atmospheric Water Budget Components Over Tropical Oceans  

Science Conference Proceedings (OSTI)

Balancing global moisture budgets is a difficult task that is even more challenging at regional scales. Atmospheric water budgets components are investigated within five tropical (15°S, 15°N) ocean regions, including the Indian Ocean, three ...

Paula J. Brown; Christian D. Kummerow

332

High energy physics program: Task A, Experiment and theory; Task B, Numerical simulation. Progress report, July 1, 1988--June 30, 1993  

Science Conference Proceedings (OSTI)

This report discusses research in High Energy Physics at Florida State University. Contained in this paper are: highlights of activities during the past few years; five year summary; fixed target experiments; collider experiments; SSC preparation, detector development and detector construction; computing, networking and VAX upgrade to ALPHA; and particle theory programs.

Not Available

1993-08-01T23:59:59.000Z

333

REPORT OF RESEARCH ACTIVITIES FOR THE YEARS 2000 - 2003; HIGH ENERGY PHYSICS GROUP; SOUTHERN METHODIST UNIVERSITY; EXPERIMENTAL TASK A AND THEORY TASK B  

SciTech Connect

The experimental program in High Energy Physics at SMU was initiated in 1992. Its main goal is the search for new physics phenomena beyond the Standard Model (SSC, LHC) and the study of the properties of heavy quarks and leptons (CLEO, BTeV).

Dr. Ryszard Stroynowski

2003-07-01T23:59:59.000Z

334

MHK Projects/Gulf of Mexico Ocean test | Open Energy Information  

Open Energy Info (EERE)

Gulf of Mexico Ocean test Gulf of Mexico Ocean test < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":28.9541,"lon":-95.3597,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

335

MHK Projects/SurgeWEC Ocean Testing 1 | Open Energy Information  

Open Energy Info (EERE)

SurgeWEC Ocean Testing 1 SurgeWEC Ocean Testing 1 < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.9574,"lon":-75.6241,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

336

Department of Defense Energy Security Initiatives ... 3 Prepared by the DoD Energy Security Task Force  

E-Print Network (OSTI)

's land area with 10% efficient solar cells is equal to that produced by 20,000 1-GWe nuclear fission................................................................................................... 89 Revolutionary Photovoltaic Devices: 50% Efficient Solar Cells ............................... 91.......................................................................................... 127 Solar-powered Catalysts for Energy-rich Fuels Formation

Azad, Abdul-Majeed

337

Design and manufacture study of Ocean Renewable Energy Storage (ORES) prototype  

E-Print Network (OSTI)

Utility scale energy storage is needed to balance rapidly varying outputs from renewable energy systems such as wind and solar. In order to address this need, an innovative utility scale energy storage concept has been ...

Dündar, Gökhan

2012-01-01T23:59:59.000Z

338

The Tropical Oceanic Energy Budget from the TRMM Perspective. Part I: Algorithm and Uncertainties  

Science Conference Proceedings (OSTI)

The earth's weather and climate is driven by the meridional transport of energy required to establish a global balance between incoming energy from the sun and outgoing thermal energy emitted by the atmosphere and surface. Clouds and ...

Tristan S. L'Ecuyer; Graeme L. Stephens

2003-06-01T23:59:59.000Z

339

Novel design and implementation of a permanent magnet linear tubular generator for ocean wave energy conversion.  

E-Print Network (OSTI)

??The world’s energy consumption is growing at an alarming rate and the need for renewable energy is apparent now more than ever. Estimates have shown… (more)

[No author

2007-01-01T23:59:59.000Z

340

Task 5.1:Expand the Number of Faculty Working in Wind Energy: Wind Energy Supply Chain and Logistics  

DOE Green Energy (OSTI)

Wind as a source of energy has gained a significant amount of attention because it is free and green. Construction of a wind farm involves considerable investment, which includes the cost of turbines, nacelles, and towers as well as logistical costs such as transportation of oversized parts and installation costs such as crane-rental costs. The terrain effects at the project site exert considerable influence on the turbine assembly rate and the project duration, which increases the overall installation cost. For higher capacity wind turbines (>3MW), the rental cost of the cranes is significant. In this study, the impact of interest rate, sales price of electricity, terrain effects and availability of cranes on the duration of installation and payback period for the project is analyzed. Optimization of the logistic activities involved during the construction phase of a wind farm contributes to the reduction of the project duration and also increases electricity generation during the construction phase.

Janet M Twomey, PhD

2010-04-30T23:59:59.000Z

Note: This page contains sample records for the topic "ocean energy task" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

The effect of biofouling in simulated Ocean Thermal Energy Conversion (OTEC) evaporator tubes at a potential site in Puerto Rico  

SciTech Connect

Since 29 January 1980, continuous flow of ocean surface water has been maintained through simulated Ocean Thermal Energy Conversion (OTEC) evaporator tubes in order to determine in situ, long-term effects of microbiofouling on heat exchanger efficiency. The experimental apparatus consists of two aluminum and two titanium modules mounted on a research platform moored at the potential OTEC site off Punta Tuna, Puerto Rico. The fouling resistance (R /SUB f/ ), a relative measure of heat transfer efficiency, is being monitored regularly, and the units have been cleaned four times. Postcleaning fouling rates (dR /SUB f/ /dt) for the aluminum units have not changed significantly but are considerably higher than the initial fouling rates. At first, post-cleaning fouling rates for the titanium units were less than for the aluminum units, but this value has been progressively increasing and now all units are fouling at approximately the same rate. Cleaning with manually operated M.A.N. brushes did not reduce R /SUB f/ to zero. On four occasions, flow velocity through the units has been increased. Results from these experiments suggest that initially the fouling layer is easily dislodged from the tube surface but that, with time, it becomes more firmly attached.

Sasscer, D.S.; Morgan, T.O.; Tosteson, T.R.

1980-12-01T23:59:59.000Z

342

Ocean Terracing  

E-Print Network (OSTI)

Artworks can improve humanity ability to apply macro-engineering principles which skirt or correct oceanographic problems impairing the economic usefulness of coastal land, the overhead airshed, and seawater temperature and salinity stability. A new form of Art, Ocean Art, is here proposed which centers on deliberate terracing of appropriate regions of our world ocean; a proposed example of macro-engineered useful Ocean Art is the technically possible 21-st Century terracing of the Mediterranean Sea. Ocean Art is applicable worldwide to places that might be practically improved by its judicious employment. Such Ocean Art may constitute an entirely unique category of solutions to coastal disaster prevention planning.

Richard Cathcart; Alexander Bolonkin

2007-01-09T23:59:59.000Z

343

Energy and environmental research emphasizing low-rank coal: Task 7.2, Resource data evaluation. Topical report, July 1994--May 1995  

SciTech Connect

The Resource Data Evaluation subtask of the US Department of Energy (DOE) base program represents an Energy & Environmental Research Center (EERC) initiative to promote the integration of geographic information system (GIS) technologies with other ongoing and planned EERC research in the areas of resource utilization, remediation, land use planning, and regulatory and policy assessment. Significant demand for GIS-based information already exists for energy resource evaluation, interpretation of remote sensing data, environmental assessment at the state and local levels, and use in strategic planning. The objective of this task was to determine the appropriate platform and approach upon which to develop GIS applications for optimizing resource evaluation and integrating this information with related areas of interest. Activities associated with Task 7.2, Resource Data Evaluation, were conducted primarily during the first half of the project year. These activities included tasks associated with the development and implementation of GIS databases and construction of digitized files for research pertaining to energy studies. As previously noted, database design was undertaken for two EERC projects: 1) coal occurrence in Bowman and adjacent counties in the Fort Union Coal Region of southwestern North Dakota and 2) energy resource utilization concerns for selected sites in Alaska.

Hartman, J.H.

1995-06-01T23:59:59.000Z

344

Responses to comments received on the draft final report of the Secretary of Energy Advisory Board Task Force on Radioactive Waste Management  

SciTech Connect

The Task Force solicited comments on its Draft Final Report from a variety of sources. Letters were sent to over 400 individuals who had expressed interest in the interest in the Department`s radioactive waste, management programs, a notice was placed in the Federal Register, the morning session of the January 1993 meeting of the full Secretary of Energy Advisory Board was given over to discussion of the draft, and Task Force members and staff presented the effort at several professional meetings. Altogether 32 written comments were received. They are reproduced here, followed in each case by the Task Force`s response to specific suggestions made to improve the draft. (The panel did not respond to comments that simply reflected policy preferences or that praised the group`s effort.) With one exception, those specific suggestions are highlighted and given a letter designation from {open_quotes}A{close_quotes} to {open_quotes}Z{close_quotes}. The Task Force`s responses, written in the Fall 1993, are labeled in a like manner. For the one exception, a comments submitted by Judy Treichel, the Task Force`s response is printed on copies of her annotated pages.

Not Available

1994-10-01T23:59:59.000Z

345

Conceptual design of an open-cycle ocean thermal energy conversion net power-producing experiment (OC-OTEC NPPE)  

DOE Green Energy (OSTI)

This report describes the conceptual design of an experiment to investigate heat and mass transfer and to assess the viability of open-cycle ocean thermal energy conversion (OC-OTEC). The experiment will be developed in two stages, the Heat- and Mass-Transfer Experimental Apparatus (HMTEA) and the Net Power-Producing Experiment (NPPE). The goal for the HMTEA is to test heat exchangers. The goal for the NPPE is to experimentally verify OC-OTEC's feasibility by installing a turbine and testing the power-generating system. The design effort met the goals of both the HMTEA and the NPPE, and duplication of hardware was minimal. The choices made for the design resource water flow rates are consistent with the availability of cold and warm seawater as a result of the seawater systems upgrade carried out by the US Department of Energy (DOE), the state of Hawaii, and the Pacific International Center for High Technology Research. The choices regarding configuration of the system were made based on projected performance, degree of technical risk, schedule, and cost. The cost for the future phase of the design and the development of the HMTEA/NPPE is consistent with the projected future program funding levels. The HMTEA and NPPE were designed cooperatively by PICHTR, Argonne National Laboratory, and Solar Energy Research Institute under the guidance of DOE. The experiment will be located at the DOE's Seacoast Test Facility at the Natural Energy Laboratory of Hawaii, Kailua-Kona, Hawaii. 71 refs., 41 figs., 34 tabs.

Bharathan, D.; Green, H.J.; Link, H.F.; Parsons, B.K.; Parsons, J.M.; Zangrando, F.

1990-07-01T23:59:59.000Z

346

Atmospheric Moisture Transports from Ocean to Land and Global Energy Flows in Reanalyses  

Science Conference Proceedings (OSTI)

An assessment is made of the global energy and hydrological cycles from eight current atmospheric reanalyses and their depiction of changes over time. A brief evaluation of the water and energy cycles in the latest version of the NCAR climate ...

Kevin E. Trenberth; John T. Fasullo; Jessica Mackaro

2011-09-01T23:59:59.000Z

347

Power system development: Ocean Thermal Energy Conversion (OTEC). Preliminary design report: appendices, Part 2 (Final)  

DOE Green Energy (OSTI)

The objective of this project is the development of a preliminary design for a full-sized, closed cycle, ammonia power system module for the 100 MWe OTEC demonstration plant. In turn, this demonstration plant is to demonstrate, by 1984, the operation and performance of an Ocean Thermal Power Plant having sufficiently advanced heat exchanger design to project economic viability for commercial utilization in the late 1980's and beyond. Included in this power system development are the preliminary designs for a proof-of-concept pilot plant and test article heat exchangers which are scaled in such a manner as to support a logically sequential, relatively low-cost development of the full-scale power system module. The conceptual designs are presented for the demonstration plant power module, the proof-of-concept pilot plant, and for a pair of test article heat exchangers. Costs associated with the design, development, fabrication, checkout, delivery, installation, and operation are included. The accompanying design and producibilty studies on the full-scale power system module project the performance/economics for the commercial plant. This section of the report contains appendices on the electrical system, instrumentation and control, ammonia pump evaluation study, ammonia and nitrogen support subsystems, piping and support design calculations, and plant availability. (WHK)

None

1978-12-04T23:59:59.000Z

348

Ocean thermal energy conversion (OTEC) power system development. Preliminary design report, Appendices, Part 1 (Final)  

DOE Green Energy (OSTI)

The objective of this project is the development of a preliminary design for a full-sized, closed cycle, ammonia power system module for the 100 MWe OTEC demonstration plant. In turn, this demonstration plant is to demonstrate, by 1984, the operation and performance of an Ocean Thermal Power Plant having sufficiently advanced heat exchanger design to project economic viability for commercial utilization in the late 1980's and beyond. Included in this power system development are the preliminary designs for a proof-of-concept pilot plant and test article heat exchangers which are scaled in such a manner as to support a logically sequential, relatively low-cost development of the full-scale power system module. The conceptual designs are presented for the demonstration plant power module, the proof-of-concept pilot plant, and for a pair of test article heat exchangers. Costs associated with the design, development, fabrication, checkout, delivery, installation, and operation are included. The accompanying design and producibilty studies on the full-scale power system module project the performance/economics for the commercial plant. This section of the report contains appendices on the developed computer models, water system dynamic studies, miscellaneous performance analysis, materials and processes, detailed equipment lists, turbine design studies, tube cleaner design, ammonia leak detection, and heat exchanger design supporting data. (WHK)

Not Available

1978-12-04T23:59:59.000Z

349

Uncertainty analysis routine for the Ocean Thermal Energy Conversion (OTEC) biofouling measurement device and data reduction procedure. [HTCOEF code  

DOE Green Energy (OSTI)

Biofouling and corrosion of heat exchanger surfaces in Ocean Thermal Energy Conversion (OTEC) systems may be controlling factors in the potential success of the OTEC concept. Very little is known about the nature and behavior of marine fouling films at sites potentially suitable for OTEC power plants. To facilitate the acquisition of needed data, a biofouling measurement device developed by Professor J. G. Fetkovich and his associates at Carnegie-Mellon University (CMU) has been mass produced for use by several organizations in experiments at a variety of ocean sites. The CMU device is designed to detect small changes in thermal resistance associated with the formation of marine microfouling films. An account of the work performed at the Pacific Northwest Laboratory (PNL) to develop a computerized uncertainty analysis for estimating experimental uncertainties of results obtained with the CMU biofouling measurement device and data reduction scheme is presented. The analysis program was written as a subroutine to the CMU data reduction code and provides an alternative to the CMU procedure for estimating experimental errors. The PNL code was used to analyze sample data sets taken at Keahole Point, Hawaii; St. Croix, the Virgin Islands; and at a site in the Gulf of Mexico. The uncertainties of the experimental results were found to vary considerably with the conditions under which the data were taken. For example, uncertainties of fouling factors (where fouling factor is defined as the thermal resistance of the biofouling layer) estimated from data taken on a submerged buoy at Keahole Point, Hawaii were found to be consistently within 0.00006 hr-ft/sup 2/-/sup 0/F/Btu, while corresponding values for data taken on a tugboat in the Gulf of Mexico ranged up to 0.0010 hr-ft/sup 2/-/sup 0/F/Btu. Reasons for these differences are discussed.

Bird, S.P.

1978-03-01T23:59:59.000Z

350

IEA Wind Task 26 - Multi-national Case Study of the Financial Cost of Wind Energy; Work Package 1 Final Report  

DOE Green Energy (OSTI)

The lifetime cost of wind energy is comprised of a number of components including the investment cost, operation and maintenance costs, financing costs, and annual energy production. Accurate representation of these cost streams is critical in estimating a wind plant's cost of energy. Some of these cost streams will vary over the life of a given project. From the outset of project development, investors in wind energy have relatively certain knowledge of the plant's lifetime cost of wind energy. This is because a wind energy project's installed costs and mean wind speed are known early on, and wind generation generally has low variable operation and maintenance costs, zero fuel cost, and no carbon emissions cost. Despite these inherent characteristics, there are wide variations in the cost of wind energy internationally, which is the focus of this report. Using a multinational case-study approach, this work seeks to understand the sources of wind energy cost differences among seven countries under International Energy Agency (IEA) Wind Task 26 - Cost of Wind Energy. The participating countries in this study include Denmark, Germany, the Netherlands, Spain, Sweden, Switzerland, and the United States. Due to data availability, onshore wind energy is the primary focus of this study, though a small sample of reported offshore cost data is also included.

Schwabe, P.; Lensink, S.; Hand, M.

2011-03-01T23:59:59.000Z

351

Observations of the Directional Distribution of Ocean-Wave Energy in Fetch-Limited Conditions  

Science Conference Proceedings (OSTI)

Directional energy distributions of wind-generated waves were observed with a relatively high directional resolution in fairly homogeneous and stationary wind fields in fetch-limited conditions using stereophotography of the sea surface. In a ...

L. H. Holthuijsen

1983-02-01T23:59:59.000Z

352

Experimental analysis of an energy self sufficient ocean buoy utilizing a bi-directional turbine  

E-Print Network (OSTI)

An experimental analysis of a Venturi shrouded hydro turbine for wave energy conversion. The turbine is designed to meet the specific power requirements of a, Woods Hole Oceanographic Institute offshore monitoring buoy ...

Gruber, Timothy J. (Timothy James)

2012-01-01T23:59:59.000Z

353

Sources of Eddy Energy Simulated by a Model of the Northeast Pacific Ocean  

Science Conference Proceedings (OSTI)

This paper examines the energy sources for eddy variability in the Gulf of Alaska using a numerical model and a novel form of data assimilation referred to as spectral nudging. Spectral nudging is distinguished from conventional nudging by its ...

Jennifer Shore; Michael W. Stacey; Daniel G. Wright

2008-10-01T23:59:59.000Z

354

Introduction to meteorological measurements and data handling for solar energy applications. Task IV-Development of an insolation handbook and instrument package  

DOE Green Energy (OSTI)

Recognizing a need for a coordinated approach to resolve energy problems, certain members of the Organization for Economic Cooperation and Development (OECD) met in September 1974 and agreed to develop an International Energy Program. The International Energy Agency (IEA) was established within the OECD to administer, monitor and execute this International Energy Program. In July 1975, Solar Heating and Cooling was selected as one of the sixteen technology fields for multilateral cooperation. Five project areas, called tasks, were identified for cooperative activities within the IEA Program to Develop and Test Solar Heating and Cooling Systems. The objective of one task was to obtain improved basic resource information for the design and operation of solar heating and cooling systems through a better understanding of the required insolation (solar radiation) and related weather data, and through improved techniques for measurement and evaluation of such data. At the February 1976 initial experts meeting in Norrkoeping, Sweden, the participants developed the objective statement into two subtasks. (1) an insolation handbook; and (2) a portable meteorological instrument package. This handbook is the product of the first subtask. The objective of this handbook is to provide a basis for a dialogue between solar scientists and meteorologists. Introducing the solar scientist to solar radiation and related meteorological data enables him to better express his scientific and engineering needs to the meteorologist; and introducing the meteorologist to the special solar radiation and meteorological data applications of the solar scientist enables him to better meet the needs of the solar energy community.

None

1980-10-01T23:59:59.000Z

355

Oak Ridge Reservation volume I. Y-12 mercury task force files: A guide to record series of the Department of Energy and its contractors  

Science Conference Proceedings (OSTI)

The purpose of this guide is to describe each of the series of records identified in the documents of the Y-12 Mercury Task Force Files that pertain to the use of mercury in the separation and enrichment of lithium isotopes at the Department of Energy`s (DOE) Y-12 Plant in Oak Ridge, Tennessee. History Associates Incorporated (HAI) prepared this guide as part of DOE`s Epidemiologic Records Inventory Project, which seeks to verify and conduct inventories of epidemiologic and health-related records at various DOE and DOE contractor sites. This introduction briefly describes the Epidemiologic Records Inventory Project and HAI`s role in the project. Specific attention will be given to the history of the DOE-Oak Ridge Reservation, the development of the Y-12 Plant, and the use of mercury in the production of nuclear weapons during the 1950s and early 1960s. This introduction provides background information on the Y-12 Mercury Task Force Files, an assembly of documents resulting from the 1983 investigation of the Mercury Task Force into the effects of mercury toxicity upon workplace hygiene and worker health, the unaccountable loss of mercury, and the impact of those losses upon the environment. This introduction also explains the methodology used in the selection and inventory of these record series. Other topics include the methodology used to produce this guide, the arrangement of the detailed record series descriptions, and information concerning access to the collection.

NONE

1995-02-17T23:59:59.000Z

356

The Connection between Bubble Size Spectra and Energy Dissipation Rates in the Upper Ocean  

Science Conference Proceedings (OSTI)

A formula for the maximum size of a bubble for which surface tension forces can prevent bubble breakup by inertial forces, combined with the observed sizes of air bubbles in breaking waves, implies an energy dissipation rate. One dataset from the ...

Chris Garrett; Ming Li; David Farmer

2000-09-01T23:59:59.000Z

357

Energy Flux from Traveling Hurricanes to the Oceanic Internal Wave Field  

Science Conference Proceedings (OSTI)

The generation of long interval waves by traveling hurricanes on an f plane is studied within the context of linear theory. The emphasis of the present work is on the interval wave power, that is, the fraction of the energy input from the ...

Johan Nilsson

1995-04-01T23:59:59.000Z

358

Comparison of wind stress algorithms, datasets and oceanic power input  

E-Print Network (OSTI)

If the ocean is in a statistically steady state, energy balance is a strong constraint, suggesting that the energy input into the world ocean is dissipated simultaneously at the same rate. Energy conservation is one of the ...

Yuan, Shaoyu

2009-01-01T23:59:59.000Z

359

Case Studies of integrated hydrogen systems. International Energy Agency Hydrogen Implementing Agreement, Final report for Subtask A of task 11 - Integrated Systems  

DOE Green Energy (OSTI)

Within the framework of the International Energy Agency Hydrogen Implementing Agreement, Task 11 was undertaken to develop tools to assist in the design and evaluation of existing and potential hydrogen demonstration projects. Emphasis was placed on integrated systems, from input energy to hydrogen end use. Included in the PDF document are the Executive Summary of the final report and the various case studies. The activities of task 11 were focused on near- and mid-term applications, with consideration for the transition from fossil-based systems to sustainable hydrogen energy systems. The participating countries were Canada, Italy, Japan, the Netherlands, Spain, Switzerland and the United States. In order for hydrogen to become a competitive energy carrier, experience and operating data need to be generated and collected through demonstration projects. A framework of scientific principles, technical expertise, and analytical evaluation and assessment needed to be developed to aid in the design and optimization of hydrogen demonstration projects to promote implementation. The task participants undertook research within the framework of three highly coordinated subtasks that focused on the collection and critical evaluation of data from existing demonstration projects around the world, the development and testing of computer models of hydrogen components and integrated systems, and the evaluation and comparison of hydrogen systems. While the Executive Summary reflects work on all three subtasks, this collection of chapters refers only to the work performed under Subtask A. Ten projects were analyzed and evaluated in detail as part of Subtask A, Case Studies. The projects and the project partners were: Solar Hydrogen Demonstration Project, Solar-Wasserstoff-Bayern, Bayernwerk, BMW, Linde, Siemens (Germany); Solar Hydrogen Plant on Residential House, M. Friedli (Switzerland); A.T. Stuart Renewable Energy Test Site; Stuart Energy Systems (Canada); PHOEBUS Juelich Demonstration Plant Research Centre, Juelich (FZJ) (Germany); Schatz Solar Hydrogen Project, Schatz Energy Research Centre, Humboldt State University (USA); INTA Solar Hydrogen Facility, INTA (Spain); Solar Hydrogen Fueled Trucks, Clean Air Now, Xerox (USA), Electrolyser (Canada); SAPHYS: Stand-Alone Small Size Photovoltaic Hydrogen Energy System, ENEA (Italy), IET (Norway), FZJ (Germany); Hydrogen Generation from Stand-Alone Wind-Powered Electrolysis Systems, RAL (United Kingdom), ENEA (Italy), DLR (Germany); Palm Desert Renewable Hydrogen Transportation Project; Schatz Energy Research Centre, City of Palm Desert (USA). Other demonstration projects are summarized in chapter 11.

Schucan, T. [Paul Scherrer Inst., Villigen PSI (Switzerland)

1999-12-31T23:59:59.000Z

360

Flexible ocean upwelling pipe  

DOE Patents (OSTI)

In an ocean thermal energy conversion facility, a cold water riser pipe is releasably supported at its upper end by the hull of the floating facility. The pipe is substantially vertical and has its lower end far below the hull above the ocean floor. The pipe is defined essentially entirely of a material which has a modulus of elasticity substantially less than that of steel, e.g., high density polyethylene, so that the pipe is flexible and compliant to rather than resistant to applied bending moments. The position of the lower end of the pipe relative to the hull is stabilized by a weight suspended below the lower end of the pipe on a flexible line. The pipe, apart from the weight, is positively buoyant. If support of the upper end of the pipe is released, the pipe sinks to the ocean floor, but is not damaged as the length of the line between the pipe and the weight is sufficient to allow the buoyant pipe to come to a stop within the line length after the weight contacts the ocean floor, and thereafter to float submerged above the ocean floor while moored to the ocean floor by the weight. The upper end of the pipe, while supported by the hull, communicates to a sump in the hull in which the water level is maintained below the ambient water level. The sump volume is sufficient to keep the pipe full during heaving of the hull, thereby preventing collapse of the pipe.

Person, Abraham (Los Alamitos, CA)

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ocean energy task" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Mapping and Assessment of the United States Ocean Wave Energy Resource  

Science Conference Proceedings (OSTI)

This project estimates the naturally available and technically recoverable U.S. wave energy resources, using a 51-month Wavewatch III hindcast database developed especially for this study by National Oceanographic and Atmospheric Administration's (NOAA's) National Centers for Environmental Prediction. For total resource estimation, wave power density in terms of kilowatts per meter is aggregated across a unit diameter circle. This approach is fully consistent with accepted global practice and more accura...

2011-12-01T23:59:59.000Z

362

Ocean Thermal Energy Conversion (OTEC) test facilities study program. Final report. Volume II. Part A  

DOE Green Energy (OSTI)

Results are presented of an 8-month study to develop alternative non-site-specific OTEC facilities/platform requirements for an integrated OTEC Test Program which may include land and floating test facilities. The document, Volume II - Appendixes is bound in three parts (A, B, and C) which together comprise a compendium of the most significant detailed data developed during the study. Part A contains definitions, baseline revisions, test plans, and energy utilization sections.

Not Available

1977-01-17T23:59:59.000Z

363

Mapping and Assessment of the United States Ocean Wave Energy Resource  

SciTech Connect

This project estimates the naturally available and technically recoverable U.S. wave energy resources, using a 51-month Wavewatch III hindcast database developed especially for this study by National Oceanographic and Atmospheric Administration�¢����s (NOAA�¢����s) National Centers for Environmental Prediction. For total resource estimation, wave power density in terms of kilowatts per meter is aggregated across a unit diameter circle. This approach is fully consistent with accepted global practice and includes the resource made available by the lateral transfer of wave energy along wave crests, which enables wave diffraction to substantially reestablish wave power densities within a few kilometers of a linear array, even for fixed terminator devices. The total available wave energy resource along the U.S. continental shelf edge, based on accumulating unit circle wave power densities, is estimated to be 2,640 TWh/yr, broken down as follows: 590 TWh/yr for the West Coast, 240 TWh/yr for the East Coast, 80 TWh/yr for the Gulf of Mexico, 1570 TWh/yr for Alaska, 130 TWh/yr for Hawaii, and 30 TWh/yr for Puerto Rico. The total recoverable wave energy resource, as constrained by an array capacity packing density of 15 megawatts per kilometer of coastline, with a 100-fold operating range between threshold and maximum operating conditions in terms of input wave power density available to such arrays, yields a total recoverable resource along the U.S. continental shelf edge of 1,170 TWh/yr, broken down as follows: 250 TWh/yr for the West Coast, 160 TWh/yr for the East Coast, 60 TWh/yr for the Gulf of Mexico, 620 TWh/yr for Alaska, 80 TWh/yr for Hawaii, and 20 TWh/yr for Puerto Rico.

Paul T. Jacobson; George Hagerman; George Scott

2011-12-01T23:59:59.000Z

364

Results of scoping tests for open-cycle OTEC (ocean thermal energy conversion) components operating with seawater  

DOE Green Energy (OSTI)

This report presents comprehensive documentation of the experimental research conducted on open-cycle ocean thermal energy conversion (OC-OTEC) components operating with seawater as a working fluid. The results of this research are presented in the context of previous analysis and fresh-water testing; they provide a basis for understanding and predicting with confidence the performance of all components of an OC-OTEC system except the turbine. Seawater tests have confirmed the results that were obtained in fresh-water tests and predicted by the analytical models of the components. A sound technical basis has been established for the design of larger systems in which net power will be produced for the first time from OC-OTEC technology. Design and operation of a complete OC-OTEC system that produces power will provide sufficient confidence to warrant complete transfer of OC-OTEC technology to the private sector. Each components performance is described in a separate chapter written by the principal investigator responsible for technical aspects of the specific tests. Chapters have been indexed separately for inclusion on the data base.

Zangrando, F; Bharathan, D; Green, H J; Link, H F; Parsons, B K; Parsons, J M; Pesaran, A A [Solar Energy Research Inst., Golden, CO (USA); Panchal, C B [Argonne National Lab., IL (USA)

1990-09-01T23:59:59.000Z

365

Ocean thermal energy conversion gas desorption studies. Volume 1. Design of experiments. [Open-cycle power systems  

Science Conference Proceedings (OSTI)

Seawater deaeration is a process affecting almost all proposed Ocean Thermal Energy Conversion (OTEC) open-cycle power systems. If the noncondensable dissolved air is not removed from a power system, it will accumulate in thecondenser, reduce the effectiveness of condensation, and result in deterioration of system performance. A gas desorption study is being conducted at Oak Ridge National Laboratory (ORNL) with the goal of mitigating these effects; this study is designed to investigate the vacuum deaeration process for low-temperature OTEC conditions where conventional steam stripping deaeration may not be applicable. The first in a series describing the ORNL studies, this report (1) considers the design of experiments and discusses theories of gas desorption, (2) reviews previous relevant studies, (3) describes the design of a gas desorption test loop, and (4) presents the test plan for achieving program objectives. Results of the first series of verification tests and the uncertainties encountered are also discussed. A packed column was employed in these verification tests and test data generally behaved as in previous similar studies. Results expressed as the height of transfer unit (HTU) can be correlated with the liquid flow rate by HTU = 4.93L/sup 0/ /sup 25/. End effects were appreciable for the vacuum deaeration system, and a correlation of them to applied vacuum pressure was derived.

Golshani, A.; Chen, F.C.

1980-10-01T23:59:59.000Z

366

Study of domestic social and economic impacts of ocean thermal energy conversion (OTEC) commercial development. Volume II. Industry profiles  

DOE Green Energy (OSTI)

Econoimc profiles of the industries most affected by the construction, deployment, and operation of Ocean Thermal Energy Conversion (OTEC) powerplants are presented. Six industries which will contribute materials and/or components to the construction of OTEC plants have been identified and are profiled here. These industries are: steel industry, concrete industry, titanium metal industry, fabricated structural metals industry, fiber glass-reinforced plastics industry, and electrical transmission cable industry. The economic profiles for these industries detail the industry's history, its financial and economic characteristics, its technological and production traits, resource constraints that might impede its operation, and its relation to OTEC. Some of the historical data collected and described in the profile include output, value of shipments, number of firms, prices, employment, imports and exports, and supply-demand forecasts. For most of the profiled industries, data from 1958 through 1980 were examined. In addition, profiles are included on the sectors of the economy which will actualy construct, deploy, and supply the OTEC platforms.

None

1981-12-22T23:59:59.000Z

367

Phase 1: conceptual design. Ocean thermal energy conversion power system development. Volume 2 of 3. Technical details. Final report  

DOE Green Energy (OSTI)

Westinghouse has completed the conceptual design of the Power System for the Ocean Thermal Energy Conversion (OTEC) Demonstration Plant project. This study included the development of a conceptual design for the following three items: first, a full-size power system module for the 100 MWe Demonstration Plant; second, a scaled proof of concept power system; and third, a heat exchanger test article. The study was limited to a closed cycle ammonia power system module, using a water temperature difference of 40/sup 0/F., and a surface platform/ship reference hull. Two power module of 50 MWe each are recommended for the demonstration plant. The 50 MWe module was selected since it has the lowest cost, and since it is of a size which convincingly demonstrates that future economically viable commercial plants, having reliable operation with credible anticipated costs, are possible. A modular, tube bundle approach to heat exchanger design makes large heat exchangers practical and economical. Other power module elements are considered to be within state-of-practice. Technological assessments of all subsystems indicate requirements for verification only, rather than continued research. A complete test program, which will verify the mechanical reliability as well as thermal performance, is recommended.

Not Available

1978-01-30T23:59:59.000Z

368

Microsoft Word - Milestone_Task7.2_Ran_032810.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

January - March 2010) January - March 2010) Mechanisms Leading to Co-Existence of Gas and Hydrate in Ocean Sediments Submitted by: Massachusetts Institute of Technology 77 Massachusetts Avenue, Room 48-319 Cambridge, MA 02139 and The University of Texas at Austin 1 University Station C0300 Austin, TX 78712-0228 Prepared for: United States Department of Energy National Energy Technology Laboratory March 31, 2010 Office of Fossil Energy 2 MECHANISMS LEADING TO CO-EXISTENCE OF GAS AND HYDRATE IN OCEAN SEDIMENTS CONTRACT NO. DE-FC26-06NT43067 Deliverable 7.2: Report on Task 7.0 "Coupled gas/water/sediment dynamics with hydrate formation," Subtask 7.2 "Coupled dynamics with fragile hydrate films" March 31, 2010 Prepared by Ruben Juanes

369

Ocean Thermal Energy Conversion (OTEC) test facilities study program. Final report. Volume II. Part C  

DOE Green Energy (OSTI)

Results are presented of an 8-month study to develop alternative non-site-specific OTEC facilities/platform requirements for an integrated OTEC Test Program which may include land and floating test facilities. Volume II--Appendixes is bound in three parts (A, B, and C) which together comprise a compendium of the most significant detailed data developed during the study. Part C describes test facility support, data acquisition and control system design, cost data, energy self-sufficiency, and test facility applications.

None

1977-01-17T23:59:59.000Z

370

Ocean thermal energy conversion (OTEC). Power system development. Preliminary design report, final  

DOE Green Energy (OSTI)

The preliminary design of the 10 MWe OTEC power module and the 200 kWe test articles is given in detail. System operation and performance; power system cost estimates; 10 MWe heat exchangers; 200 kWe heat exchanger articles; biofouling control;ammonia leak detection, and leak repair; rotating machinery; support subsystem; instrumentation and control; electrical subsystem; installation approach; net energy and resource analysis; and operability, maintainability, and safety are discussed. The conceptual design of the 40 MWe electrical power system includes four or five 10 MWe modules as designed for the 10 MWe pilot plant. (WHK)

Not Available

1978-12-04T23:59:59.000Z

371

Possibility of Using a Satellite-Based Detector for Recording Cherenkov Light from Ultrahigh-Energy Extensive Air Showers Penetrating into the Ocean Water  

E-Print Network (OSTI)

We have estimated the reflected component of Cherenkov radiation, which arises in developing of an extensive air shower with primary energy of 10^20 eV over the ocean surface. It has been shown that, under conditions of the TUS experiment, a flash of the reflected Cherenkov photons at the end of the fluorescence track can be identified in showers with zenith angles up to 20 degrees.

Shustova, O P; Khrenov, B A

2011-01-01T23:59:59.000Z

372

The magnesium silicide germanide stannide alloy: A new concept in ocean thermal energy conversion  

Science Conference Proceedings (OSTI)

In devices hitherto used for the direct conversion of heat into electricity, commonly known as ''thermoelectric energy converters'', the efficiency of conversion is appreciably lower than that of conventional reciprocating or rotary heat engines. This low efficiency is brought about by the physical properties of the materials selected for the manufacture of these devices. The materials that are currently being used for this purpose are either simple elements and alloys thereof, such as silicon and germanium, or intermetallic compounds, either simple or alloys and solid solutions thereof. Of the latter, mention may be made of bismuth telluride, antimony telluride, lead telluride, antimony silver telluride, lead selenide, bismuth selenide, antimony selenide, etc., as well as mixtures and solid solutions of these and other compounds. A search in respect of these materials carried out in the U.S. Patent literature indicates indeed a quite substantial and impressive record.

Nicolaou, M.C.

1983-12-01T23:59:59.000Z

373

Ocean Thermal Energy Conservation (OTEC) power system development (PDS) II. Preliminary design report  

DOE Green Energy (OSTI)

This report documents the results and conclusions of the PDS II, Phase I, preliminary design of a 10 MWe OTEC power system, using enhanced plate type heat exchangers, and of representative 0.2 MWe test articles. It further provides the documentation (specifications, drawings, trade studies, etc.) resulting from the design activities. The data and discussions of the technical concepts are organized to respond to the PDS II, Phase II proposal evaluation criteria. This volume, which specifically addresses the three evaluation categories (heat exchangers, rotating machinery, and power system configuration and performance) is an integral part of the Phase II plans (proposal) which describe the technical approach to delivering test articles to OTEC-1. In addition, there is a section which addresses power system cost and net energy analysis and another which discusses the results of stainless steel feasibility studies. Supporting documentation is contained in two appendix volumes.

Not Available

1979-08-10T23:59:59.000Z

374

Task 6  

NLE Websites -- All DOE Office Websites (Extended Search)

Reporting Period: Oct 1, 2008 - Mar 31, 2013 North Slope Decision Support for Water Resource Planning and Management Principal Investigator: William Schnabel, University of Alaska Fairbanks Co-Investigators: Kelly Brumbelow, Texas A&M University Stephen Bourne, PBS&J Project Number: DE-NT0005683 Report Date: July 2013 Name and Address of Submitting Organization: University of Alaska Fairbanks Dr. William Schnabel Institute of Northern Engineering PO Box 755910 Fairbanks, Alaska 99775-5910 Acknowledgement Acknowledgment: "This material is based upon work supported by the Department of Energy under Award Number DE- NT0005683." Disclaimer This report was prepared as an account of work sponsored by an agency of the United States

375

The Relative Importance of Clouds and Sea Ice for the Solar Energy Budget of the Southern Ocean  

Science Conference Proceedings (OSTI)

The effects of clouds and sea ice on the solar radiation budget are determined for the Southern Ocean around Antarctica between latitudes 50° and 80°S. Distributions of cloud optical depth are used, together with distributions of surface albedo, ...

Melanie F. Fitzpatrick; Stephen G. Warren

2007-03-01T23:59:59.000Z

376

Ocean Thermal Energy Conversion (OTEC) test facilities study program. Final report. Volume I  

DOE Green Energy (OSTI)

A comprehensive test program has been envisioned by ERDA to accomplish the OTEC program objectives of developing an industrial and technological base that will lead to the commercial capability to successfully construct and economically operate OTEC plants. This study was performed to develop alternative non-site specific OTEC test facilities/platform requirements for an integrated OTEC test program including both land and floating test facilities. A progression of tests was established in which OTEC power cycle component designs proceed through advanced research and technology, component, and systems test phases. This progression leads to the first OTEC pilot plant and provides support for following developments which potentially reduce the cost of OTEC energy. It also includes provisions for feedback of results from all test phases to enhance modifications to existing designs or development of new concepts. The tests described should be considered as representative of generic types since specifics can be expected to change as the OTEC plant design evolves. Emphasis is placed on defining the test facility which is capable of supporting the spectrum of tests envisioned. All test support facilities and equipment have been identified and included in terms of space, utilities, cost, schedule, and constraints or risks. A highly integrated data acquisition and control system has been included to improve test operations and facility effectiveness through a centralized computer system capable of automatic test control, real-time data analysis, engineering analyses, and selected facility control including safety alarms. Electrical power, hydrogen, and ammonia are shown to be technically feasible as means for transmitting OTEC power to a land-based distribution point. (WHK)

None

1977-01-17T23:59:59.000Z

377

Ocean Datasets | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Ocean Datasets Ocean Data Tools Technical Guide Map Gallery Regional Planning Feedback Ocean You are here Data.gov Communities Ocean Ocean, Coast, and Great Lakes Planning...

378

Switchable window modeling. Task 12: Building energy analysis and design tools for solar applications, Subtask A.1: High-performance glazing  

SciTech Connect

This document presents the work conducted as part of Subtask A.1, High-Performance Glazing, of Task 12 of the IEA Solar Heating and Cooling Program. At the start of the task, the participants agreed that chromogenic technology (switchable glazing) held considerable promise, and that algorithms to accurately model their dynamic behavior were needed. The purpose of this subtask was to develop algorithms that could be incorporated into building energy analysis programs for predicting the thermal and optical performance of switchable windows. The work entailed a review of current techniques for modelling switchable glazing in windows and switchable windows in buildings and methods for improving upon existing modeling approaches. The proposed approaches correct some of the shortcomings in the existing techniques, and could be adapted for use in other similar programs. The proposed approaches generally provide more detailed calculations needed for evaluating the short-term (hourly and daily) impact of switchable windows on the energy and daylighting performance of a building. Examples of the proposed algorithms are included.

Reilly, S.; Selkowitz, S.; Winkelmann, F.

1992-06-30T23:59:59.000Z

379

Multiple-task services for the Division of Geothermal Energy's hydrothermal-resources program. Annual report, November 1980-October 1981  

SciTech Connect

Work performed on two general tasks, resource definition and technical assistance, is reviewed briefly. (MHR)

1982-01-01T23:59:59.000Z

380

Database of Low-E Storm Window Energy Performance across U.S. Climate Zones (Task ET-WIN-PNNL-FY13-01_5.3)  

SciTech Connect

This report describes process, assumptions, and modeling results produced in support of the Emerging Technologies Low-e Storm Windows Task 5.3: Create a Database of U.S. Climate-Based Analysis for Low-E Storm Windows. The scope of the overall effort is to develop a database of energy savings and cost effectiveness of low-E storm windows in residential homes across a broad range of U.S. climates using the National Energy Audit Tool (NEAT) and RESFEN model calculations. This report includes a summary of the results, NEAT and RESFEN background, methodology, and input assumptions, and an appendix with detailed results and assumptions by cliamte zone. Both sets of calculation results will be made publicly available through the Building America Solution Center.

Cort, Katherine A.; Culp, Thomas D.

2013-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "ocean energy task" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

OCEAN DRILLING PROGRAM LEG 103 SCIENTIFIC PROSPECTUS  

E-Print Network (OSTI)

OCEAN DRILLING PROGRAM LEG 103 SCIENTIFIC PROSPECTUS GALICIA BANK Gilbert Boillot Edward L of Energy, Mines and Resources (Canada) Deutsche Forschungsgemeinschaft (Federal Republic of Germany

382

Sustainable Energy Solutions Task 5.1:Expand the Number of Faculty Working in Wind Energy: Wind Energy Supply Chain and Logistics  

SciTech Connect

EXECUTIVE SUMARRY Wind as a source of energy has gained a significant amount of attention because it is free and green. Construction of a wind farm involves considerable investment, which includes the cost of turbines, nacelles, and towers as well as logistical costs such as transportation of oversized parts and installation costs such as crane-rental costs. The terrain effects at the project site exert considerable influence on the turbine assembly rate and the project duration, which increases the overall installation cost. For higher capacity wind turbines (>3MW), the rental cost of the cranes is significant. In this study, the impact of interest rate, sales price of electricity, terrain effects and availability of cranes on the duration of installation and payback period for the project is analyzed. Optimization of the logistic activities involved during the construction phase of a wind farm contributes to the reduction of the project duration and also increases electricity generation during the construction phase.

Janet M Twomey, PhD

2010-04-30T23:59:59.000Z

383

Energy material transport, now through 2000, system characteristics and potential problems. Task 3. Final report - petroleum transportation  

SciTech Connect

This report contains a summary characterization of the petroleum transportation system and an assessment of some potential problems that may impact petroleum transportation in the United States during the balance of the century. A primary purpose of this task is to provide information and perspective that contribute to the evaluation of research and development needs and priorities in future programs. The system characterization in Section 3 includes a review of petroleum product movements, modal operations and comparisons, and transportation regulations and safety. This system overview summarizes domestic production and consumption scenarios to the year 2000. A median scenario based on published projections shows that the US will probably rely on foreign oil to supply between 40 and 50 percent of domestic petroleum needs throughout the balance of the century. Potential problems in petroleum transportation were identified by the analysis and prioritization of current issues. The relative priorities of problem concerns were judged on the basis of their overall impact on the system and the immediacy of this potential impact. Two classes of concern are distinguished: 1. Potential problems that appear to require new programmatic action, in addition to effort already committed, to minimize the possible future impact of these concerns. 2. Latent concerns that may increase or decrease in priority or entirely change in nature as they develop. While the trend of these concerns should be monitored, new program action does not appear necessary at this time.

DeSteese, J.G.

1979-03-01T23:59:59.000Z

384

Energy and environmental research emphasizing low-rank coal: Task 5.7, Coal char fuel evaporation canister sorbent  

SciTech Connect

Atomobile evaporative emission canisters contain activated carbon sorbents that trap and store fuel vapors emitted from automobile fuel tanks during periods of hot ambient temperatures and after engine operation. When a vehicle is started, combustion air is pulled through the canister, and adsorbed vapors are removed from the sorbent and routed to the intake manifold for combustion along with fuel from the tank. The two primary requirements of an effective canister sorbent are that (1) it must be a strong enough adsorbent to hold on to the fuel vapors that contact it and (2) it must be a weak enough adsorbent to release the captured vapors in the presence of the airflow required by the engine for fuel combustion. Most currently available commercial canister sorbents are made from wood, which is reacted with phosphoric acid and heat to yield an activated carbon with optimum pore size for gasoline vapor adsorption. The objectives of Task 5.7 were to (1) design and construct a test system for evaluating the performance of different sorbents in trapping and releasing butane, gasoline, and other organic vapors; (2) investigate the use of lignite char as an automobile fuel evaporation canister sorbent; (3) compare the adsorbing and desorbing characteristics of lignite chars with those of several commercial sorbents; and (4) investigate whether the presence of ethanol in fuel vapors affects sorbent performance in any way. Tests with two different sorbents (a wood-derived activated carbon and a lignite char) showed that with both sorbents, ethanol vapor breakthrough took about twice as long as hydrocarbon vapor breakthrough. Possible reasons for this, including an increased sorbent affinity for ethanol vapors, will be investigated. If this effect is real (i.e., reproducible over an extensive series of tests under varying conditions), it may help explain why ethanol vapor concentrations in SHED test evaporative emissions are often lower than would be expected.

Aulich, T.R.; Grisanti, A.A.; Knudson, C.L.

1995-08-01T23:59:59.000Z

385

Ocean thermal energy conversion ecological data report from OSS Researcher in Gulf of Mexico, (GOTEC-01), July 12-23, 1977  

DOE Green Energy (OSTI)

Ecological measurements important for environmental assessment of the effect of an operating Ocean Thermal Energy Conversion plant were initiated in July 1977 at the proposed Gulf of Mexico site off the coasts of Louisiana, Mississippi, Alabama and Florida. The initial cruise of the OSS Researcher, in a joint effort with the Atlantic Oceanic and Meteorological Laboratories (AOML) of the National Oceanic and Atmospheric Administration (NOAA), and Lawrence Berkeley Laboratory (LBL) took place from 12 to 23 July 1977. The measurements were taken at 15 oceanographic stations to a maximum depth of 1000 m. Water was analyzed for trace metals, nutrients and chlorophyll a and ATP. Physical data, salinity and dissolved oxygen measurements were supplied by NOAA-AOML. Two bioassays were carried out using indigenous phytoplankton to estimate the effect of deep water on the rates of /sup 14/CO/sub 2/ uptake of photic zone algae. The Deep Scattering Layer (DSL) was monitored at the site by a continuously recording 12 kHz depth sounder at the Mobile site. This report presents data collected during the cruise.

Quinby-Hunt, M.S. (comp.)

1979-06-01T23:59:59.000Z

386

Measurement of Vertical Kinetic Energy and Vertical Velocity Skewness in Oceanic Boundary Layers by Imperfectly Lagrangian Floats  

Science Conference Proceedings (OSTI)

The effects of upward buoyancy on the accuracy with which Lagrangian floats can measure the Eulerian mean variance wwE and skewness SwE of vertical fluid velocity w in the wind-driven upper-ocean boundary layer is investigated using both ...

Ramsey R. Harcourt; Eric A. D’Asaro

2010-11-01T23:59:59.000Z

387

Wind Supply Curves and Location Scenarios in the West: Summary of the Clean and Diverse Energy Wind Task Force Report; Preprint  

DOE Green Energy (OSTI)

This paper presents supply curves and scenarios that were developed by the Wind Task Force. Much of this information has been adapted from the original Wind Task Force report.

Milligan, M.; Parsons, B.; Shimshak, R.; Larson, D.; Carr, T.

2006-06-01T23:59:59.000Z

388

Task 3: PNNL Visit by JAEA Researchers to Participate in TODAM Code Applications to Fukushima Rivers and to Evaluate the Feasibility of Adaptation of FLESCOT Code to Simulate Radionuclide Transport in the Pacific Ocean Coastal Water Around Fukushima  

SciTech Connect

Four JAEA researchers visited PNNL for two weeks in February, 2013 to learn the PNNL-developed, unsteady, one-dimensional, river model, TODAM and the PNNL-developed, time-dependent, three dimensional, coastal water model, FLESCOT. These codes predict sediment and contaminant concentrations by accounting sediment-radionuclide interactions, e.g., adsorption/desorption and transport-deposition-resuspension of sediment-sorbed radionuclides. The objective of the river and coastal water modeling is to simulate • 134Cs and 137Cs migration in Fukushima rivers and the coastal water, and • their accumulation in the river and ocean bed along the Fukushima coast. Forecasting the future cesium behavior in the river and coastal water under various scenarios would enable JAEA to assess the effectiveness of various on-land remediation activities and if required, possible river and coastal water clean-up operations to reduce the contamination of the river and coastal water, agricultural products, fish and other aquatic biota. PNNL presented the following during the JAEA visit to PNNL: • TODAM and FLESCOT’s theories and mathematical formulations • TODAM and FLESCOT model structures • Past TODAM and FLESCOT applications • Demonstrating these two codes' capabilities by applying them to simple hypothetical river and coastal water cases. • Initial application of TODAM to the Ukedo River in Fukushima and JAEA researchers' participation in its modeling. PNNL also presented the relevant topics relevant to Fukushima environmental assessment and remediation, including • PNNL molecular modeling and EMSL computer facilities • Cesium adsorption/desorption characteristics • Experiences of connecting molecular science research results to macro model applications to the environment • EMSL tour • Hanford Site road tour. PNNL and JAEA also developed future course of actions for joint research projects on the Fukushima environmental and remediation assessments.

Onishi, Yasuo

2013-03-29T23:59:59.000Z

389

Task 3: PNNL Visit by JAEA Researchers to Participate in TODAM Code Applications to Fukushima Rivers and to Evaluate the Feasibility of Adaptation of FLESCOT Code to Simulate Radionuclide Transport in the Pacific Ocean Coastal Water Around Fukushima  

SciTech Connect

Four JAEA researchers visited PNNL for two weeks in February, 2013 to learn the PNNL-developed, unsteady, one-dimensional, river model, TODAM and the PNNL-developed, time-dependent, three dimensional, coastal water model, FLESCOT. These codes predict sediment and contaminant concentrations by accounting sediment-radionuclide interactions, e.g., adsorption/desorption and transport-deposition-resuspension of sediment-sorbed radionuclides. The objective of the river and coastal water modeling is to simulate • 134Cs and 137Cs migration in Fukushima rivers and the coastal water, and • their accumulation in the river and ocean bed along the Fukushima coast. Forecasting the future cesium behavior in the river and coastal water under various scenarios would enable JAEA to assess the effectiveness of various on-land remediation activities and if required, possible river and coastal water clean-up operations to reduce the contamination of the river and coastal water, agricultural products, fish and other aquatic biota. PNNL presented the following during the JAEA visit to PNNL: • TODAM and FLESCOT’s theories and mathematical formulations • TODAM and FLESCOT model structures • Past TODAM and FLESCOT applications • Demonstrating these two codes' capabilities by applying them to simple hypothetical river and coastal water cases. • Initial application of TODAM to the Ukedo River in Fukushima and JAEA researchers' participation in its modeling. PNNL also presented the relevant topics relevant to Fukushima environmental assessment and remediation, including • PNNL molecular modeling and EMSL computer facilities • Cesium adsorption/desorption characteristics • Experiences of connecting molecular science research results to macro model applications to the environment • EMSL tour • Hanford Site road tour. PNNL and JAEA also developed future course of actions for joint research projects on the Fukushima environmental and remediation assessments.

Onishi, Yasuo

2013-03-29T23:59:59.000Z

390

Compressed air energy storage: preliminary design and site development program in an aquifer. Final draft, Task 1: establish facility design criteria and utility benefits  

SciTech Connect

Compressed air energy storage (CAES) has been identified as one of the principal new energy storage technologies worthy of further research and development. The CAES system stores mechanical energy in the form of compressed air during off-peak hours, using power supplied by a large, high-efficiency baseload power plant. At times of high electrical demand, the compressed air is drawn from storage and is heated in a combustor by the burning of fuel oil, after which the air is expanded in a turbine. In this manner, essentially all of the turbine output can be applied to the generation of electricity, unlike a conventional gas turbine which expends approximately two-thirds of the turbine shaft power in driving the air compressor. The separation of the compression and generation modes in the CAES system results in increased net generation and greater premium fuel economy. The use of CAES systems to meet the utilities' high electrical demand requirements is particularly attractive in view of the reduced availability of premium fuels such as oil and natural gas. This volume documents the Task 1 work performed in establishing facility design criteria for a CAES system with aquifer storage. Information is included on: determination of initial design bases; preliminary analysis of the CAES system; development of data for site-specific analysis of the CAES system; detailed analysis of the CAES system for three selected heat cycles; CAES power plant design; and an economic analysis of CAES.

1980-10-01T23:59:59.000Z

391

Task Routing for Prediction Tasks Haoqi Zhang  

E-Print Network (OSTI)

Harvard SEAS Microsoft Research Cambridge, MA 02138, USA Redmond, WA 98052, USA {hq, yiling, parkes, Economics, Theory Keywords Scoring rules, task routing, social networks 1. INTRODUCTION Organizations rely is crucial for the suc- cess of an organization. Accomplishing a task may require the expertise of multiple

Chen, Yiling

392

Regional Systems Development for Geothermal Energy Resources Pacific Region (California and Hawaii). Task 3: water resources evaluation. Topical report  

DOE Green Energy (OSTI)

The fundamental objective of the water resources analysis was to assess the availability of surface and ground water for potential use as power plant make-up water in the major geothermal areas of California. The analysis was concentrated on identifying the major sources of surface and ground water, potential limitations on the usage of this water, and the resulting constraints on potentially developable electrical power in each geothermal resource area. Analyses were completed for 11 major geothermal areas in California: four in the Imperial Valley, Coso, Mono-Long Valley, Geysers-Calistoga, Surprise Valley, Glass Mountain, Wendel Amedee, and Lassen. One area in Hawaii, the Puna district, was also included in the analysis. The water requirements for representative types of energy conversion processes were developed using a case study approach. Cooling water requirements for each type of energy conversion process were estimated based upon a specific existing or proposed type of geothermal power plant. The make-up water requirements for each type of conversion process at each resource location were then estimated as a basis for analyzing any constraints on the megawatts which potentially could be developed.

Sakaguchi, J.L.

1979-03-19T23:59:59.000Z

393

Energy Basics: Solar Energy Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Concentrating Solar Power Solar...

394

Energy Basics: Solar Energy Resources  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Concentrating Solar Power Solar...

395

FEDERAL SMART GRID TASK FORCE - February 26, 2009 Task Force...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FEDERAL SMART GRID TASK FORCE - February 26, 2009 Task Force Meeting Agenda FEDERAL SMART GRID TASK FORCE - February 26, 2009 Task Force Meeting Agenda February 26, 2009 Task Force...

396

Ocean Map | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Map Ocean Data Tools Technical Guide Map Gallery Regional Planning Feedback Ocean You are here Data.gov Communities Ocean Map Gallery Planning for ocean, coastal, and Great...

397

Energy and environmental research emphasizing low-rank coal -- Task 3.10, Gas separation and hot-gas cleanup  

DOE Green Energy (OSTI)

Catalytic gasification of coal to produce H{sub 2}-, CO-, and CH{sub 4}-rich mixtures of gases for consumption in molten carbonate fuel cells is currently under development; however, to optimize the fuel cell performance and extend its operating life, it is desired to separate as much of the inert components (i.e., CO{sub 2} and N{sub 2}) and impurities (i.e., H{sub 2}S and NH{sub 3}) as possible from the fuel gas before it enters the fuel cell. In addition, the economics of the integrated gasification combined cycle (IGCC) can be improved by separating as much of the hydrogen as possible from the fuel, since hydrogen is a high-value product. Researchers at the Energy and Environmental Research Center (EERC) and Bend Research, Inc., investigated pressure-driven membranes as a method for accomplishing this gas separation and hot-gas cleanup. These membranes are operated at temperatures as high as 800 C and at pressures up to 300 psig. They have very small pore sizes that separate the undesirable gases by operating in the Knudsen diffusion region of mass transport or in the molecular sieving region of mass transport phenomena. In addition, H{sub 2} separation through a palladium metal membrane proceeds via a solution-diffusion mechanism for atomic hydrogen. This allows the membranes to exhibit extremely high selectivity for hydrogen separation. Specific questions to be answered in this project include: what are the effects of membrane properties (i.e., surface area, pore size, and coating thickness) on permeability and selectivity of the desired gases; what are the effects of operating conditions (i.e., temperature, pressure, and flow rate) on permeability and selectivity; what are the effects of impurities (i.e., small particulate, H{sub 2}S, HCl, NH{sub 3}, etc.) on membrane performance?

Swanson, M.L.

1995-08-01T23:59:59.000Z

398

Ocean Boundary Mixing during Ekman Layer Arrest  

Science Conference Proceedings (OSTI)

As a water parcel comes into contact with an ocean boundary, energy is dissipated within the boundary layer with some fraction directed into vertical mixing. In a stratified flow this increases the potential energy associated with the density ...

Scott A. Condie

1999-12-01T23:59:59.000Z

399

One-Dimensional, Ocean Surface Layer Modeling: A Problem and a Solution  

Science Conference Proceedings (OSTI)

The first part of this paper is generic; it demonstrates a problem associated with one-dimensional, ocean surface layer model comparisons with ocean observations. Unlike three-dimensional simulations or the real ocean, kinetic energy can ...

George L. Mellor

2001-03-01T23:59:59.000Z

400

International Energy Agency (IEA) Task 40 — Sustainable International Energy Trade: Securing Supply and Demand -- Country Report 2010 for the United States  

DOE Green Energy (OSTI)

This report updates the status of U.S. biomass resources currently and future potentials for domestic and export markets of residues, energy crops, and woody resources. Includes energy and fuel production and consumption statistics, driving policies, targets, and government investment in bioenergy industry development.

J. Richard Hess; Jacob J. Jacobson; Richard Nelson; Carl Wolf

2011-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "ocean energy task" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

International Energy Agency (IEA) Task 40 — Sustainable International Energy Trade: Securing Supply and Demand -- Country Report 2009 for the United States  

DOE Green Energy (OSTI)

This report outlines the status of U.S. biomass resources currently and future potentials for domestic and export markets of residues, energy crops, and woody resources. Includes energy and fuel production and consumption statistics, driving policies, targets, and government investment in bioenergy industry development.

J. Richard Hess; Jacob J. Jacobson; Richard Nelson; Carl Wolf

2009-06-01T23:59:59.000Z

402

Energy Basics: Renewable Energy Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Wind Renewable Energy Technologies Renewable energy...

403

Propagation of Low-Mode Internal Waves through the Ocean  

Science Conference Proceedings (OSTI)

The baroclinic tides play a significant role in the energy budget of the abyssal ocean. Although the basic principles of generation and propagation are known, a clear understanding of these phenomena in the complex ocean environment is only now ...

Luc Rainville; Robert Pinkel

2006-06-01T23:59:59.000Z

404

NETL: Releases & Briefs - Deep Ocean in the Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Deep Ocean in the Lab Deep Ocean in the Lab Researchers at DOEs National Energy Technology Laboratory have designed and constructed a high-pressure water tunnel that simulates...

405

On Scatterometer Ocean Stress  

Science Conference Proceedings (OSTI)

Scatterometers estimate the relative atmosphere–ocean motion at spatially high resolution and provide accurate inertial-scale ocean wind forcing information, which is crucial for many ocean, atmosphere, and climate applications. An empirical ...

M. Portabella; A. Stoffelen

2009-02-01T23:59:59.000Z

406

The Ventilated Ocean  

Science Conference Proceedings (OSTI)

Adiabatic theories of ocean circulation and density structure have a long tradition, from the concept of the ventilated thermocline to the notion that deep ocean ventilation is controlled by westerly winds over the Southern Ocean. This study ...

Patrick Haertel; Alexey Fedorov

2012-01-01T23:59:59.000Z

407

Modeling the Physical and Biochemical Influence of Ocean Thermal Energy Conversion Plant Discharges into their Adjacent Waters  

DOE Green Energy (OSTI)

This paper describes the modeling work by Makai Ocean Engineering, Inc. to simulate the biochemical effects of of the nutrient-enhanced seawater plumes that are discharged by one or several 100 megawatt OTEC plants. The modeling is needed to properly design OTEC plants that can operate sustainably with acceptably low biological impact. In order to quantify the effect of discharge configuration and phytoplankton response, Makai Ocean Engineering implemented a biological and physical model for the waters surrounding O`ahu, Hawai`i, using the EPA-approved Environmental Fluid Dynamics Code (EFDC). Each EFDC grid cell was approximately 1 square kilometer by 20 meters deep, and used a time step of three hours. The biological model was set up to simulate the biochemical response for three classes of organisms: Picoplankton (< 2 um) such as prochlorococccus, nanoplankton (2-20 um), and microplankton (> 20 um) e.g., diatoms. The dynamic biological phytoplankton model was calibrated using chemical and biological data collected for the Hawaii Ocean Time Series (HOTS) project. Peer review of the biological modeling was performed. The physical oceanography model uses boundary conditions from a surrounding Hawai'i Regional Ocean Model, (ROM) operated by the University of Hawai`i and the National Atmospheric and Oceanic Administration. The ROM provided tides, basin scale circulation, mesoscale variability, and atmospheric forcing into the edges of the EFDC computational domain. This model is the most accurate and sophisticated Hawai'ian Regional Ocean Model presently available, assimilating real-time oceanographic observations, as well as model calibration based upon temperature, current and salinity data collected during 2010 near the simulated OTEC site. The ROM program manager peer-reviewed Makai's implementation of the ROM output into our EFDC model. The supporting oceanographic data was collected for a Naval Facilities Engineering Command / Makai project. Results: The model was run for a 100 MW OTEC Plant consisting of four separate ducts, discharging a total combined flow rate of 420 m3/s of warm water and 320 m3/s of cold water in a mixed discharge at 70 meters deep. Each duct was assumed to have a discharge port diameter of 10.5m producing a downward discharge velocity of about 2.18 m/s. The natural system, as measured in the HOTS program, has an average concentration of 10-15 mgC/m3. To calibrate the biological model, we first ran the model with no OTEC plant and varied biological parameters until the simulated data was a good match to the HOTS observations. This modeling showed that phytoplankton concentration were patchy and highly dynamic. The patchiness was a good match with the data variability observed within the HOTS data sets. We then ran the model with simulated OTEC intake and discharge flows and associated nutrients. Directly under the OTEC plant, the near-field plume has an average terminal depth of 172 meters, with a volumetric dilution of 13:1. The average terminal plume temperature was 19.8oC. Nitrate concentrations are 1 to 2 umol/kg above ambient. The advecting plume then further dilutes to less than 1 umol/kg above ambient within a few kilometers downstream, while remaining at depth. Because this terminal near-field plume is well below the 1% light limited depths (~120m), no immediate biological utilization of the nutrients occurs. As the nitrate is advected and dispersed downstream, a fraction of the deep ocean nutrients (< 0.5 umol/kg perturbation) mix upward where they are utilized by the ambient phytoplankton population. This occurs approximately twenty-five kilometers downstream from the plant at 110 - 70 meters depth. For pico-phytoplankton, modeling results indicate that this nutrient perturbation causes a phytoplankton perturbation of approximately 1 mgC/m3 (~10% of average ambient concentrations) that covers an area 10x5 km in size at the 70 to 90m depth. Thus, the perturbations are well within the natural variability of the system, generally corresponding to a 10 to 15% increase above the a

PAT GRANDELLI, P.E.; GREG ROCHELEAU; JOHN HAMRICK, Ph.D.; MATT CHURCH, Ph.D.; BRIAN POWELL, Ph.D.

2012-09-29T23:59:59.000Z

408

Modeling the Physical and Biochemical Influence of Ocean Thermal Energy Conversion Plant Discharges into their Adjacent Waters  

Science Conference Proceedings (OSTI)

This paper describes the modeling work by Makai Ocean Engineering, Inc. to simulate the biochemical effects of of the nutrient-enhanced seawater plumes that are discharged by one or several 100 megawatt OTEC plants. The modeling is needed to properly design OTEC plants that can operate sustainably with acceptably low biological impact. In order to quantify the effect of discharge configuration and phytoplankton response, Makai Ocean Engineering implemented a biological and physical model for the waters surrounding O`ahu, Hawai`i, using the EPA-approved Environmental Fluid Dynamics Code (EFDC). Each EFDC grid cell was approximately 1 square kilometer by 20 meters deep, and used a time step of three hours. The biological model was set up to simulate the biochemical response for three classes of organisms: Picoplankton ( 20 um) e.g., diatoms. The dynamic biological phytoplankton model was calibrated using chemical and biological data collected for the Hawaii Ocean Time Series (HOTS) project. Peer review of the biological modeling was performed. The physical oceanography model uses boundary conditions from a surrounding Hawai'i Regional Ocean Model, (ROM) operated by the University of Hawai`i and the National Atmospheric and Oceanic Administration. The ROM provided tides, basin scale circulation, mesoscale variability, and atmospheric forcing into the edges of the EFDC computational domain. This model is the most accurate and sophisticated Hawai'ian Regional Ocean Model presently available, assimilating real-time oceanographic observations, as well as model calibration based upon temperature, current and salinity data collected during 2010 near the simulated OTEC site. The ROM program manager peer-reviewed Makai's implementation of the ROM output into our EFDC model. The supporting oceanographic data was collected for a Naval Facilities Engineering Command / Makai project. Results: The model was run for a 100 MW OTEC Plant consisting of four separate ducts, discharging a total combined flow rate of 420 m3/s of warm water and 320 m3/s of cold water in a mixed discharge at 70 meters deep. Each duct was assumed to have a discharge port diameter of 10.5m producing a downward discharge velocity of about 2.18 m/s. The natural system, as measured in the HOTS program, has an average concentration of 10-15 mgC/m3. To calibrate the biological model, we first ran the model with no OTEC plant and varied biological parameters until the simulated data was a good match to the HOTS observations. This modeling showed that phytoplankton concentration were patchy and highly dynamic. The patchiness was a good match with the data variability observed within the HOTS data sets. We then ran the model with simulated OTEC intake and discharge flows and associated nutrients. Directly under the OTEC plant, the near-field plume has an average terminal depth of 172 meters, with a volumetric dilution of 13:1. The average terminal plume temperature was 19.8oC. Nitrate concentrations are 1 to 2 umol/kg above ambient. The advecting plume then further dilutes to less than 1 umol/kg above ambient within a few kilometers downstream, while remaining at depth. Because this terminal near-field plume is well below the 1% light limited depths (~120m), no immediate biological utilization of the nutrients occurs. As the nitrate is advected and dispersed downstream, a fraction of the deep ocean nutrients (< 0.5 umol/kg perturbation) mix upward where they are utilized by the ambient phytoplankton population. This occurs approximately twenty-five kilometers downstream from the plant at 110 - 70 meters depth. For pico-phytoplankton, modeling results indicate that this nutrient perturbation causes a phytoplankton perturbation of approximately 1 mgC/m3 (~10% of average ambient concentrations) that covers an area 10x5 km in size at the 70 to 90m depth. Thus, the perturbations are well within the natural variability of the system, generally corresponding to a 10 to 15% increase above the a

PAT GRANDELLI, P.E.; GREG ROCHELEAU; JOHN HAMRICK, Ph.D.; MATT CHURCH, Ph.D.; BRIAN POWELL, Ph.D.

2012-09-29T23:59:59.000Z

409

Ocean thermal energy conversion preliminary data report for the November 1977 GOTEC-02 cruise to the Gulf of Mexico Mobile Site  

DOE Green Energy (OSTI)

This is the second in a series of preliminary data reports from cruises to potential Ocean Thermal Energy Conversion (OTEC) sites in the Gulf of Mexico. The data are from the GOTEC-02 cruise to a site at approximately 29/sup 0/N, 88/sup 0/W, the Mobile Site. Twelve oceanographic stations were visited. Due to bad weather, the results are scanty. The reader will note that much of the data is questionable. Current meter results are presented elsewhere (Molinari, Hazelworth and Ortman, 1979). Determinations of the biomass indicators - chlorophyll a, phaeophytins and adenosine triphosphate - and zooplankton, are presented. Results were generally those that might have been predicted from previous studies in the area.

Not Available

1980-03-01T23:59:59.000Z

410

Statistical mechanics and ocean circulation Rick Salmon  

E-Print Network (OSTI)

Statistical mechanics and ocean circulation Rick Salmon Scripps Institution of Oceanography, UCSD equilibrium statistical mechanics based upon the conservation of energy and potential enstrophy to the mass. The equilibrium state resembles the buoyancy structure actually observed. Key words: statistical mechanics, ocean

Salmon, Rick

411

Task Routing for Prediction Tasks Haoqi Zhang  

E-Print Network (OSTI)

Harvard SEAS Microsoft Research Cambridge, MA 02138, USA Redmond, WA 98052, USA {hq, yiling, parkes. INTRODUCTION Organizations rely on a mix of expertise and on means for identifying and harnessing expertise effectively is crucial for the success of an organization. Accomplishing a task may require the expertise

Chen, Yiling

412

Transient Climate Response in a Two-Layer Energy-Balance Model. Part II: Representation of the Efficacy of Deep-Ocean Heat Uptake and Validation for CMIP5 AOGCMs  

Science Conference Proceedings (OSTI)

In this second part of a series of two articles analyzing the global thermal properties of atmosphere–ocean coupled general circulation models (AOGCMs) within the framework of a two-layer energy-balance model (EBM), the role of the efficacy of ...

O. Geoffroy; D. Saint-Martin; G. Bellon; A. Voldoire; D. J. L. Olivié; S. Tytéca

2013-03-01T23:59:59.000Z

413

Wave-Turbulence interactions in the Upper Ocean. Part I: The Energy Balance of the Interacting Fields of Surface Wind Waves and Wind-Induced Three-Dimensional Turbulence  

Science Conference Proceedings (OSTI)

We analyze in detail the budget of total and fluctuating energy in the surface layer of the ocean. We suggest a rational scheme for separating the budget of turbulence from that of random wind-generated surface waves, and suggest in particular a ...

S. A. Kitaigorodskii; J. L. Lumley

1983-11-01T23:59:59.000Z

414

Multiple-task services for the Department of Energy's hydrothermal resources program. Final report, November 1980-August 1982  

SciTech Connect

The assignments under the task to define the geothermal resource potential in the eastern United States consist of the following subtasks: geothermal resource characterization; state-coupled liason; low-temperature geothermal assessment; user-coupled confirmation drilling program; ASTM geothermal coordination; and topical studies. The technical assistance assignments consist of information dissemination; geothermal reservoir engineering; and technical assistance to geothermal users. Activities under these tasks are summarized. (LS)

1982-11-01T23:59:59.000Z

415

Hawaii Ocean Current Resources and Tidal Turbine Assessment  

Science Conference Proceedings (OSTI)

Interest in converting the kinetic energy of ocean current and tidal flow into electrical power has increased in recent years. This report focuses on the ocean current resource in Hawaii, which includes tidal flows as well as uni-directional oceanic current flows around the main Hawaiian Islands, with the exception of Kauai, from the shoreline to approximately the 2000-m depth contour.

2008-09-02T23:59:59.000Z

416

Energy Basics: Wind Energy Resources  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Wind Wind Turbines Wind Resources Wind Energy...

417

Energy Basics: Wind Energy Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Wind Wind Turbines Wind Resources Wind Energy...

418

ocean | OpenEI  

Open Energy Info (EERE)

ocean ocean Dataset Summary Description This shapefile represents the seasonal winter depth profile to reach water at a temperature of 20ºC. Source NREL Date Released October 28th, 2012 (2 years ago) Date Updated Unknown Keywords depth profile hydrokinetic ocean ocean energy ocean thermal energy conversion OTEC seawater cooling thermal Data application/zip icon OTEC Seawater Cooling 20ºC Depth Profile - Winter Average (zip, 1.1 MiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Time Period March 2009 - February 2011 License License Other or unspecified, see optional comment below Comment This GIS data was developed by the National Renewable Energy Laboratory ("NREL"), which is operated by the Alliance for Sustainable Energy, LLC for the U.S. Department of Energy ("DOE"). The user is granted the right, without any fee or cost, to use, copy, modify, alter, enhance and distribute this data for any purpose whatsoever, provided that this entire notice appears in all copies of the data. Further, the user of this data agrees to credit NREL in any publications or software that incorporate or use the data. Access to and use of the GIS data shall further impose the following obligations on the User. The names DOE/NREL may not be used in any advertising or publicity to endorse or promote any product or commercial entity using or incorporating the GIS data unless specific written authorization is obtained from DOE/NREL. The User also understands that DOE/NREL shall not be obligated to provide updates, support, consulting, training or assistance of any kind whatsoever with regard to the use of the GIS data. THE GIS DATA IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL DOE/NREL BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER, INCLUDING BUT NOT LIMITED TO CLAIMS ASSOCIATED WITH THE LOSS OF DATA OR PROFITS, WHICH MAY RESULT FROM AN ACTION IN CONTRACT, NEGLIGENCE OR OTHER TORTIOUS CLAIM THAT ARISES OUT OF OR IN CONNECTION WITH THE ACCESS OR USE OF THE GIS DATA. The User acknowledges that access to the GIS data is subject to U.S. Export laws and regulations and any use or transfer of the GIS data must be authorized under those regulations. The User shall not use, distribute, transfer, or transmit GIS data or any products incorporating the GIS data except in compliance with U.S. export regulations. If requested by DOE/NREL, the User agrees to sign written assurances and other export-related documentation as may be required to comply with U.S. export regulations.

419

Southern Ocean Surface Characteristics from FGGE Buoys  

Science Conference Proceedings (OSTI)

In this analysis of satellite-tracked drifting surface buoys released in the Southern Ocean, buoy velocities are averaged along trajectories for 90 days to determine the mean circulation, and eddy kinetic energy is computed using perturbations ...

Mark Andrew Johnson

1989-05-01T23:59:59.000Z

420

The Energetics of Ocean Heat Transport  

Science Conference Proceedings (OSTI)

A number of recent papers have argued that the mechanical energy budget of the ocean places constraints on how the thermohaline circulation is driven. These papers have been used to argue that climate models, which do not specifically account for ...

Anand Gnanadesikan; Richard D. Slater; P. S. Swathi; Geoffrey K. Vallis

2005-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "ocean energy task" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

About Ocean Community | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

About Ocean Community Ocean Data Tools Technical Guide Map Gallery Regional Planning Feedback Ocean You are here Data.gov Communities Ocean About Ocean Community This...

422

Ocean Technical | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Ocean Data Tools Technical Guide Map Gallery Regional Planning Feedback Ocean You are here Data.gov Communities Ocean Technical Community of Practice Through a variety of...

423

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

utilities. Net metering is available to customers who generate electricity using solar energy, geothermal energy, wind energy, biomass energy, ocean energy, hydrogen,...

424

Renewable Energy: An Overview  

DOE Green Energy (OSTI)

This fact sheet provides an introduction to renewable energy technologies: hydropower, bioenergy, geothermal energy, solar energy, wind energy, hydrogen, and ocean energy.

Tromly, K.

2001-03-14T23:59:59.000Z

425

Fine Adjustment of Large Scale Air-Sea Energy Flux Parameterizations by Direct Estimates of Ocean Heat Transport  

Science Conference Proceedings (OSTI)

An inverse technique is used to adjust uncertain coefficients and parameters in the bulk formulae of climatological air-sea energy fluxes in order to obtain an agreement of indirect estimates of meridional heat transport with direct estimates in ...

Hans-Jörg Isemer; Jürgen Willebrand; Lutz Hasse

1989-10-01T23:59:59.000Z

426

Ocean thermal plantships for production of ammonia as the hydrogen carrier.  

Science Conference Proceedings (OSTI)

Conventional petroleum, natural gas, and coal are the primary sources of energy that have underpinned modern civilization. Their continued availability in the projected quantities required and the impacts of emission of greenhouse gases (GHGs) on the environment are issues at the forefront of world concerns. New primary sources of energy are being sought that would significantly reduce the emissions of GHGs. One such primary source that can help supply energy, water, and fertilizer without GHG emissions is available in the heretofore unexploited thermal gradients of the tropical oceans. The world's oceans are the largest natural collector and reservoir of solar energy. The potential of ocean energy is limitless for producing base-load electric power or ammonia as the hydrogen carrier and fresh water from seawater. However, until now, ocean energy has been virtually untapped. The general perception is that ocean thermal energy is limited to tropical countries. Therefore, the full potential of at-sea production of (1) ammonia as a hydrogen carrier and (2) desalinated water has not been adequately evaluated. Using ocean thermal plantships for the at-sea co-production of ammonia as a hydrogen carrier and desalinated water offer potential energy, environmental, and economic benefits that support the development of the technology. The introduction of a new widespread solution to our projected energy supply requires lead times of a decade or more. Although continuation of the ocean thermal program from the 1970s would likely have put us in a mitigating position in the early 2000s, we still have a window of opportunity to dedicate some of our conventional energy sources to the development of this renewable energy by the time new sources would be critically needed. The primary objective of this project is to evaluate the technical and economic viability of ocean thermal plantships for the production of ammonia as the hydrogen carrier. This objective is achieved by completing project tasks that consist of updating the John Hopkins University/Applied Physics Laboratory (JHU/APL) pilot plantship design and extrapolating it to commercial plantships, evaluating a new energy-efficient ammonia synthesis process, evaluating the co-production of desalinated water on plantships, and developing a conceptual design of a satellite plantships system for commercial-scale ammonia production. In addition, an industrial workshop was organized to present the results and develop future goals for commercialization of ocean thermal plantships by 2015. The following goals, arranged in chronological order, were examined at the workshop: (1) Global displacement of petroleum-fuel-based (diesel, fuel oil, naphtha) power generation for freeing up these fuels for transportation, chemical feedstock, and other high-valued uses; (2) At-sea production of desalinated water for regions of critical water shortages; (3) Displacement of carbon-based feed stocks and energy for production of ammonia fertilizers; (4) Development of hydrogen supply to allow economic processing of heavy crude oils and upgrading oil sands; (5) Development of ammonia-fueled distributed energy to displace natural-gas fueled power generation to free up natural gas for higher-value uses and the mitigation of issues associated with imported liquefied natural gas (LNG); and (6) Use of ammonia as a hydrogen carrier for transportation.

Panchal, C.B.; Pandolfini, P. P.; Kumm, W. H.; Energy Systems; Johns Hopkins Univ.; Arctic Energies, Ltd.

2009-12-02T23:59:59.000Z

427

NETL: News Release - Federal Task Force Sends Recommendations...  

NLE Websites -- All DOE Office Websites (Extended Search)

Obama told the nation's governors when establishing the task force, co-chaired by Energy Secretary Steven Chu and EPA Administrator Lisa Jackson. "These recommendations mark...

428

DOE Awards Small Business Task Order for Technical Support to...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and government-sponsored nuclear energy research. Addthis Related Articles DOE Awards Support Service Contract DOE Awards Small Business Task Order for Technical Support to...

429

Lighting Group: Sources and Ballasts: LED Task Light  

NLE Websites -- All DOE Office Websites (Extended Search)

light The goal of this project is to accelerate the use of energy efficient light emitting diode (LED) technology for general lighting applications by developing a task lamp...

430

Effects of Electromagnetic Fields on Fish and Invertebrates Task 2.1.3: Effects on Aquatic Organisms Fiscal Year 2012 Progress Report Environmental Effects of Marine and Hydrokinetic Energy  

SciTech Connect

Energy generated by the world’s oceans and rivers offers the potential to make substantial contributions to the domestic and global renewable energy supply. However, the marine and hydrokinetic (MHK) energy industry faces challenges related to siting, permitting, construction, and operation of pilotand commercial-scale facilities. One of the challenges is to understand the potential effects to marine organisms from electromagnetic fields, which are produced as a by-product of transmitting power from offshore to onshore locations through underwater transmission cables. This report documents the progress of the third year of research (fiscal year 2012) to investigate environmental issues associated with marine and hydrokinetic energy (MHK) generation. This work was conducted by Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy’s (DOE’s) Office of Energy Efficiency and Renewable Energy (EERE) Wind and Water Technologies Office. The report addresses the effects of electromagnetic fields (EMFs) on selected marine species where significant knowledge gaps exist. The species studied this fiscal year included one fish and two crustacean species: the Atlantic halibut (Hippoglossus hippoglossus), Dungeness crab (Metacarcinus magister), and American lobster (Homarus americanus).

Woodruff, Dana L.; Cullinan, Valerie I.; Copping, Andrea E.; Marshall, Kathryn E.

2013-05-20T23:59:59.000Z

431

National Oceanic and Atmospheric Administration US Department of Commerce  

E-Print Network (OSTI)

of an International Conference, Seattle, 10-14 July 1972. Vienna: International Atomic Energy Agency: Proceedings). Vienna: International Atomic Energy Agency: Proceedings Series. IAEA. 2005. Worldwide marine radioactivity studies (WOMARS): Radionuclide levels in oceans and seas. Vienna: International Atomic Energy

432

Ocean shell noises  

NLE Websites -- All DOE Office Websites (Extended Search)

Ocean shell noises Name: Rick A Cazzato Location: NA Country: NA Date: NA Question: Why do you here noises when you put a ocean shell to your ear? Does this happen because of...

433

Mixing by ocean eddies  

E-Print Network (OSTI)

Mesoscale eddies mix and transport tracers such as heat and potential vorticity laterally in the ocean. While this transport plays an important role in the climate system, especially in the Southern Ocean, we lack a, ...

Abernathey, Ryan (Ryan Patrick)

2012-01-01T23:59:59.000Z

434

Energy Basics: Photovoltaic Cells  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

435

Energy Basics: Geothermal Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Direct Use Electricity Production Geothermal Resources Hydrogen Hydropower Ocean...

436

Energy Basics: Photovoltaics  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

437

Energy Basics: Photovoltaic Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

438

Energy Basics: Geothermal Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Direct Use Electricity Production Geothermal Resources Hydrogen Hydropower Ocean...

439

Task Management Computer Science and Engineering, UCSD  

E-Print Network (OSTI)

solar cells and stored in a supercapacitor. With sunlight, SHiMmer can operate for long periods of time buffer ­ supercapacitor predictor ­ prediction of future energy harvesting rate controller the supercapacitor lacks sufficient energy to execute a given set of tasks, it is possible to put the device to sleep

Simunic, Tajana

440

Description of the system planning process at Florida Power Corporation. Task I. Report No. FC-5237-1  

DOE Green Energy (OSTI)

One of the means of evaluating a new technology is to have it considered by a utility company, run through the system planning, and thus scrutinized by a potential user of the new technology in a manner directly drawn from the user's methods of decision making on new capacity additions. By having Florida Power Corporation (FPC), a company with real potential for the future use of ocean thermal energy conversion (OTEC), exercise its system planning methods to consider this possible source of future generating capacity, a number of highly useful results will be obtained. The overall study of the application of system planning to OTEC is being carried out in four tasks. This report covers task-1 which provides a description of the existing system and the planning process of Florida Power Corporation. (WHK)

None

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ocean energy task" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Atmospheric and Oceanic Simulation  

E-Print Network (OSTI)

Introduction It is widely recognized that internal tides have strong influence on the global thermohaline circulation, because it contribute significantly to deep ocean mixing, the essential process for the maintenance of the thermohaline circulation [Munk and Wunsch, 1998]. Internal tides generated by strong tide-topography interactions occasionally break causing intense turbulent mixing [Lien and Gregg, 2001]. Turbulent mixing may also be induced far from wave generation sites, because propagating internal tides can nonlinearly interact with the background internal waves and cascade part of their energy down to small scales where breaking can occur. The East China Sea and adjacent seas are one of the most important generation regions of internal tides, and hence the associated turbulent mixing. Indeed, using a two-dimensional analytical model, Baines [1982] predicted that the continental shelf slope in the East China Sea is the second largest generator of the M 2 internal tide amon

Niwa; Group Representative

2003-01-01T23:59:59.000Z

442

Generation IV Nuclear Energy Systems Construction Cost Reductions through the Use of Virtual Environments - Task 5 Report: Generation IV Reactor Virtual Mockup Proof-of-Principle Study  

SciTech Connect

Task 5 report is part of a 3 year DOE NERI-sponsored effort evaluating immersive virtual reality (CAVE) technology for design review, construction planning, and maintenance planning and training for next generation nuclear power plants. Program covers development of full-scale virtual mockups generated from 3D CAD data presented in a CAVE visualization facility. Created a virtual mockup of PBMR reactor cavity and discussed applications of virtual mockup technology to improve Gen IV design review, construction planning, and maintenance planning.

Timothy Shaw; Anthony Baratta; Vaughn Whisker

2005-02-28T23:59:59.000Z

443

Ocean | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Ocean Ocean Ocean Data Tools Technical Guide Map Gallery Regional Planning Feedback Ocean Welcome to our COMMUNITY This is the National Ocean Council's portal for data, information, and decision tools to support people engaged in regional marine planning for the future use of the ocean, our coasts, and the Great Lakes. Our goal is to enhance discovery of and access to data and information for planners, stakeholders, and the public. Please visit our Feedback page to tell us what would make the site most useful to you as we expand our content. Start Here! Previous Pause Next PacIOOS - Pacific Islands Voyager PacIOOS - Pacific Islands Voyager View More West Coast Governors Alliance - Regional Data Framework West Coast Governors Alliance - Regional Data Framework View More Mid-Atlantic Ocean Data Portal

444

Review of Recent Literature Relevant to the Environmental Effects of Marine and Hydrokinetic Energy Devices Task 2.1.3: Effects on Aquatic Organisms – Fiscal Year 2011 Progress Report Environmental Effects of Marine and Hydrokinetic Energy  

SciTech Connect

A literature search was conducted by using the Web of Science® Databases component of the ISI Web of KnowledgeSM to identify recent articles that would be useful to help assess the potential environmental effects of renewable energy development in the ocean, with emphasis on marine mammals, seabirds, and fish. Several relatively recent general review articles that included possible effects of marine renewable energy devices on marine mammals and seabirds were examined to begin the search process (e.g., Boehlert et al. 2008; Thompson et al. 2008; Simas et al. 2009). From these articles, several general topics of potential environmental effects on marine mammals, seabirds, and fish were derived. These topics were used as the primary search factors. Searches were conducted with reference to the potential effects of offshore wind farms and MHK devices on marine mammals, seabirds, and fish. Additional sources were identified by cross-checking the Web of Science databases for articles that cited the review articles. It also became clear that often the potential effects were offered as hypotheses that often were not supported by the presentation of appropriate documentation. Therefore, the search was refined and focused on trying to obtain the necessary information to support or challenge a proposed potential effect to a specific concern. One of the expressed concerns regarding MHK devices is that placing wave parks in coastal waters could compromise the migration patterns of whales. Disruption of the annual migration of the gray whale (Eschrichtius robustus), which swims at least 30,000 km on its round trip from breeding grounds in Baja California to feeding areas in the Bering Sea, is of particular concern. Among the hypothesized effects on the migrating gray whales are increased predation risk by constricting migration corridor to between array and shore or by forcing the whales to swim into deeper waters, increased metabolic energy costs and delays in reaching the destinations, and interrupting feeding by blocking access to benthic areas under arrays. The literature search focused on identifying published studies that could provide information to evaluate these concerns. The results were developed into a case study that evaluated the potential effects of the placement of wave parks in coastal waters along the migration route of the gray whale. Wave parks and other MHK arrays may have additional effects on gray whales and other marine mammals, including entanglement in mooring lines and interference with communications among other effects, that were not included in this case study. The case study results were rewritten into a simpler form that would be suitable for placement on a web blog

Kropp, Roy K.

2011-09-30T23:59:59.000Z

445

Automated task allocation  

Science Conference Proceedings (OSTI)

The goal of the paradigm shift in Air Traffic Management (ATM) is to increase its overall performance by means of redesigning processes, evolving to a more automated, autonomous and predictable system. Nevertheless, when dealing with automation, it is ... Keywords: ATM, anticipatory, autonomous, centric, compensatory, decision support tools, level of automation, operations research, optimisation, performance metrics, task allocation

Rocío Barragán Montes, Eduardo García, Francisco Javier Sáez Nieto

2013-05-01T23:59:59.000Z

446

Format for Generic Task Description  

Science Conference Proceedings (OSTI)

Task: Submitting Proposals. Containing Scenario: Fast Tracking a Battery Standard Description: Review of the proposed ...

447

Energy Basics: Renewable Energy Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

quality, and contribute to a strong energy economy. Learn more about: Biomass Geothermal Hydrogen Hydropower Ocean Solar Energy Wind Contacts | Web Site Policies | U.S....

448

Net Metering | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

solar energy, wind energy, ocean-thermal energy, geothermal energy, small hydropower, biogas from anaerobic digestion, or fuel cells using any of these energy sources are...

449

oceans - Geodata icon | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

oceans - Geodata icon Ocean Data Tools Technical Guide Map Gallery Regional Planning Feedback Ocean You are here Data.gov Communities Ocean...

450

FAQS Job Task Analyses - Emergency Management  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emergency Management FAQS Emergency Management FAQS August 2010 STEP 1: Job Task Analysis for Tasks Task (and Number) Source Importance Frequency Plan, observe and evaluate emergency management activities and Federal and contractor technical performance to ensure the adequacy, effectiveness, and compliance with Department of Energy (DOE) Order 151.1B and other DOE Orders and Federal regulations. FAQS Duties and Responsibilities #3 5 3 Review, and/or approve emergency management documentation. FAQS Duties and Responsibilities #4 3 2 Facilitate the notification and reporting of emergencies under Department of Energy (DOE) Order 151.1B Comprehensive Emergency Management System. FAQS Duties and Responsibilities #6 4 1 Resolve, or facilitate the resolution of, emergency management issues.

451

Oceanic Heat Flux Calculation  

Science Conference Proceedings (OSTI)

The authors review the procedure for the direct calculation of oceanic heat flux from hydrographic measurements and set out the full “recipe” that is required.

Sheldon Bacon; Nick Fofonoff

1996-12-01T23:59:59.000Z

452

The Role of Internal Tides in Mixing the Deep Ocean  

Science Conference Proceedings (OSTI)

Internal wave theory is used to examine the generation, radiation, and energy dissipation of internal tides in the deep ocean. Estimates of vertical energy flux based on a previously developed model are adjusted to account for the influence of ...

Louis St. Laurent; Chris Garrett

2002-10-01T23:59:59.000Z

453

Advanced power assessment for Czech lignite, Task 3.6, Part 2. The 2nd international conference on energy and environment: Transitions in East Central Europe  

Science Conference Proceedings (OSTI)

On November 1-5, 1994, the Energy & Environmental Research Center (EERC) and Power Research Institute of Prague cosponsored their second conference since 1991 in the Czech Republic, entitled ``Energy and Environment: Transitions in East Central Europe.`` This conference was a continuation of the EERC`s joint commitment, initiated in 1190, to facilitate solutions to short- and long-term energy and environmental problems in East Central Europe. Production of energy from coal in an environmentally acceptable manner is a critical issue facing East Central Europe, because the region continues to rely on coal as its primary energy source. The goal of the conference was to develop partnerships between industry, government, and the research community in East Central Europe and the United States to solve energy and environmental issues in a manner that fosters economic development. Among the topics addressed at the conference were: conventional and advanced energy generation systems; economic operation of energy systems; air pollution controls; power system retrofitting and repowering, financing options; regulatory issues; energy resource options; waste utilization and disposal; and long-range environmental issues. Selected papers in the proceedings have been processed separately for inclusion in the Energy Science and Technology database.

Sondreal, E.A.; Mann, M.D.; Weber, G.W.; Young, B.C.

1995-12-01T23:59:59.000Z

454

Navigating Fragmented Ocean Law in the California Current: Tools to Identify and Measure Gaps and Overlaps for Ecosystem-Based Management  

E-Print Network (OSTI)

Resolving Mismatches in U.S. Ocean Governance. Science 313 :A. Yool. 2005. Anthropogenic ocean acidification over theAnthropogenic carbon and ocean pH. Nature California Energy

Ekstrom, Julia A.

2008-01-01T23:59:59.000Z

455

Review of Recent Literature Relevant to the Environmental Effects of Marine and Hydrokinetic Energy Devices; Task 2.1.3: Effects on Aquatic Organisms - Fiscal Year 2012 Progress Report  

SciTech Connect

A literature search was conducted by using the Web of Science® databases component of the ISI Web of KnowledgeSM to identify recent articles that would be useful to help assess the potential environmental effects of renewable energy development in the ocean, with emphasis on seabirds and fish. Several relatively recent general review articles that included possible effects on seabirds and fish were examined to begin the search process. From these articles, several general topics of potential environmental effects on seabirds and fish were derived. These topics were used as the primary search factors. Additional sources were identified by cross-checking the Web of Science databases for articles that cited the review articles. It also became clear that the potential effects frequently w

Kropp, Roy K.

2013-01-01T23:59:59.000Z

456

CX-006846: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

46: Categorical Exclusion Determination 46: Categorical Exclusion Determination CX-006846: Categorical Exclusion Determination National Marine Renewable Energy Center CX(s) Applied: A9 Date: 10/18/2011 Location(s): Oregon Office(s): Energy Efficiency and Renewable Energy, Golden Field Office Oregon State University (OSU) has rescoped several sub-tasks of their project and is proposing a completely rescoped design for its mobile ocean test berth (MOTS). OSU will now develop a mid-scale buoy MOTS rather than a full-scale barge MOTS. This National Environmental Policy Act (NEPA) review is being done for tasks 4.1 (a-d) and 10.1 which have been rescoped. The remaining tasks have been determined to qualify for a Department of Energy categorical exclusion in previous NEPA reviews. CX-006846.pdf More Documents & Publications

457

Natural Currents Energy Group | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Name Natural Currents Energy Group Place New York Sector Hydro, Ocean, Renewable Energy, Solar, Wind energy Product Design manufactures and...

458

Constraining oceanic dust deposition using surface ocean dissolved Al  

E-Print Network (OSTI)

Iron, manganese and lead at Hawaii Ocean Time-series stationof beryllium to the oceans, Earth Planet. Sci. Lett. , 114,organic carbon fluxes in the ocean based on the quantitative

Han, Qin; Moore, J. Keith; Zender, Charles; Measures, Chris; Hydes, David

2008-01-01T23:59:59.000Z

459

Hawaii Natural Energy Institute annual report, 1984  

DOE Green Energy (OSTI)

Research and development project summaries are given on: biomass energy, geothermal energy, ocean energy, solar energy, wind energy, hydrogen research, other renewable energy. (DLC)

Not Available

1984-01-01T23:59:59.000Z

460

Progress report on renewable energy in Hawaii  

DOE Green Energy (OSTI)

Renewable energy projects in Hawaii are reviewed as follows: geothermal energy, ocean energy, biomass, wind energy, direct solar energy, hydroelectric and other energy.

Troy, M.; Brown, N.E.

1982-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "ocean energy task" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

EA-1336: Ocean Sequestration of Carbon Dioxide Field Experiment,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

336: Ocean Sequestration of Carbon Dioxide Field Experiment, 336: Ocean Sequestration of Carbon Dioxide Field Experiment, Pittsburgh, Pennsylvania EA-1336: Ocean Sequestration of Carbon Dioxide Field Experiment, Pittsburgh, Pennsylvania SUMMARY This EA evaluates the environmental impacts for the U.S. Department of Energy National Energy Technology Laboratory's proposal to participate with a group of international organizations in an experiment to evaluate the dispersion and diffusion of liquid carbon dioxide droplets in ocean waters. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD May 4, 2001 EA-1336: Finding of No Significant Impact Ocean Sequestration of Carbon Dioxide Field Experiment May 4, 2001 EA-1336: Final Environmental Assessment Ocean Sequestration of Carbon Dioxide Field Experiment

462

Hanford Waste Treatment Plant Support Task Order Modified | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Treatment Plant Support Task Order Modified Waste Treatment Plant Support Task Order Modified Hanford Waste Treatment Plant Support Task Order Modified March 11, 2013 - 12:00pm Addthis Media Contact Lynette Chafin, 513-246-0461 Lynette.Chafin@emcbc.doe.gov Cincinnati - The Department of Energy (DOE) today awarded a modification to a task order to Aspen Resources Limited, Inc. of Boulder, Colorado for support of the Waste Treatment and Immobilization Plant (WTP) at the Hanford Site. The modification increased the value of the task order to $1.6 million from $833,499. The task order modification has a one-year performance period and two one-year option periods. The Task Order was awarded under an Indefinite Delivery/Indefinite Quantity (ID/IQ) master Contract. Aspen Resources Limited, Inc. is a small-disadvantaged business under the Small Business Administration's

463

Energy Basics: Geothermal Electricity Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Direct Use Electricity Production Geothermal Resources Hydrogen Hydropower Ocean...

464

Energy Basics: Photovoltaic Cell Structures  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

465

Energy Basics: Photovoltaic Cell Performance  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

466

Energy Basics: Concentrator Photovoltaic Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

467

Energy Basics: Photovoltaic System Performance  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

468

Energy Basics: Concentrating Solar Power  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Concentrating Solar Power Linear...

469

Energy Basics: Photovoltaic Cell Materials  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

470

A Comparison of Latent Heat Fluxes over Global Oceans for Four Flux Products  

Science Conference Proceedings (OSTI)

The ocean surface latent heat flux (LHF) plays an essential role in global energy and water cycle variability. In this study, monthly LHF over global oceans during 1992–93 are compared among Goddard Satellite-Based Surface Turbulent Fluxes, ...

Shu-Hsien Chou; Eric Nelkin; Joe Ardizzone; Robert M. Atlas

2004-10-01T23:59:59.000Z

471

Ocean Surface Roughness Spectrum in High Wind Condition for Microwave Backscatter and Emission Computations  

Science Conference Proceedings (OSTI)

Ocean surface roughness plays an important role in air-sea interaction and ocean remote sensing. Its primary contribution is from surface waves much shorter than the energetic wave components near the peak of the wave energy spectrum. Field ...

Paul A. Hwang; Derek M. Burrage; David W. Wang; Joel C. Wesson

472

Near-inertial and thermal to atmospheric forcing in the North Atlantic Ocean  

E-Print Network (OSTI)

Observational and modeling techniques are employed to investigate the thermal and inertial upper ocean response to wind and buoyancy forcing in the North Atlantic Ocean. First, the seasonal kinetic energy variability of ...

Silverthorne, Katherine E

2010-01-01T23:59:59.000Z

473

Ocean Surface Roughness Spectrum in High Wind Condition for Microwave Backscatter and Emission Computations  

Science Conference Proceedings (OSTI)

Ocean surface roughness plays an important role in air–sea interaction and ocean remote sensing. Its primary contribution is from surface waves much shorter than the energetic wave components near the peak of the wave energy spectrum. Field ...

Paul A. Hwang; Derek M. Burrage; David W. Wang; Joel C. Wesson

2013-09-01T23:59:59.000Z

474

Satellite Estimates of Wind Speed and Latent Heat Flux over the Global Oceans  

Science Conference Proceedings (OSTI)

Surface fluxes of momentum, freshwater, and energy across the air–sea interface determine