National Library of Energy BETA

Sample records for ocean energy task

  1. ocean energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy

  2. ocean energy technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Tribal Energy Program Intellectual Property Current EC Partnerships How to Partner Small ... SunShot Grand Challenge: Regional Test Centers ocean energy technologies HomeTag:ocean ...

  3. Ocean Energy Technology Overview

    SciTech Connect (OSTI)

    none,

    2009-08-05

    Introduction to and overview of ocean renewable energy resources and technologies prepared for the U.S. Department of Energy Federal Energy management Program.

  4. Ocean thermal energy conversion

    SciTech Connect (OSTI)

    Avery, W.H.

    1983-03-17

    A brief explanation of the Ocean Thermal Energy Conversion (OTEC) concept and an estimate of the amount of energy that can be produced from the ocean resource without introducing environmental concerns are presented. Use of the OTEC system to generate electric power and products which can replace fossil fuels is shown. The OTEC program status and its prospects for the future are discussed.

  5. Ocean energy program summary

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    The oceans are the world's largest solar energy collector and storage system. Covering 71% of the earth's surface, they collect and store this energy as waves, currents, and thermal and salinity gradients. The purpose of the US Department of Energy's (DOE) Ocean Energy Technology (OET) Program is to develop techniques that harness this ocean energy cost-effectively and in a way that does not harm the environment. The program seeks to develop ocean energy technology to a point where industry can accurately assess whether the technology is a viable energy conversion alternative, or supplement, to current power-generating systems. In past studies, DOE identified ocean thermal energy conversion (OTEC), which uses the temperature difference between warm surface water and cold deep water, as the most promising of the ocean energy technologies. As a result, the OET Program is concentrating on research that advances the OTEC technology. The program also continues to monitor and study developments in wave energy, ocean current, and salinity gradient concepts; but it is not actively developing these technologies now. 13 figs.

  6. Ocean energy program summary

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    The oceans are the world's largest solar energy collector and storage system. Covering 71{percent} of the earth's surface, this stored energy is realized as waves, currents, and thermal salinity gradients. The purpose of the federal Ocean Energy Technology (OET) Program is to develop techniques that harness this ocean energy in a cost-effective and environmentally acceptable manner. The OET Program seeks to develop ocean energy technology to a point where the commercial sector can assess whether applications of the technology are viable energy conversion alternatives or supplements to systems. Past studies conducted by the US Department of Energy (DOE) have identified ocean thermal energy conversion (OTEC) as the largest potential contributor to United States energy supplies from the ocean resource. As a result, the OET Program concentrates on research to advance OTEC technology. Current program emphasis has shifted to open-cycle OTEC power system research because the closed-cycle OTEC system is at a more advanced stage of development and has already attracted industrial interest. During FY 1989, the OET Program focused primarily on the technical uncertainties associated with near-shore open-cycle OTEC systems ranging in size from 2 to 15 MW{sub e}. Activities were performed under three major program elements: thermodynamic research and analysis, experimental verification and testing, and materials and structures research. These efforts addressed a variety of technical problems whose resolution is crucial to demonstrating the viability of open-cycle OTEC technology. This publications is one of a series of documents on the Renewable Energy programs sponsored by the US Department of Energy. An overview of all the programs is available, entitled Programs in Renewable Energy.

  7. Green Ocean Wave Energy | Open Energy Information

    Open Energy Info (EERE)

    Ocean Wave Energy Jump to: navigation, search Name: Green Ocean Wave Energy Region: United States Sector: Marine and Hydrokinetic Website: http: This company is listed in the...

  8. Ocean Energy Ltd | Open Energy Information

    Open Energy Info (EERE)

    Ocean Energy Ltd Jump to: navigation, search Name: Ocean Energy Ltd Address: 3 Casement Square Place: Cobh Region: Ireland Sector: Marine and Hydrokinetic Phone Number:...

  9. Ocean Flow Energy | Open Energy Information

    Open Energy Info (EERE)

    Energy Jump to: navigation, search Name: Ocean Flow Energy Place: United Kingdom Zip: NE29 6NL Product: Tidal energy device developer. References: Ocean Flow Energy1 This article...

  10. Army Energy Initiatives Task Force

    Broader source: Energy.gov [DOE]

    Presentation—given at the Fall 2011 Federal Utility Partnership Working Group (FUPWG) meeting—covers the Army Energy Initiatives Task Force.

  11. Sandia Energy - IEA PVPS Task 13 Activities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IEA PVPS Task 13 Activities Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics PV Modeling & Analysis IEA PVPS Task 13 Activities IEA PVPS Task 13...

  12. International Conference on Ocean Energy

    Broader source: Energy.gov [DOE]

    Join the Energy Department in Edinburgh, Scotland from February 23–25th for the International Conference on Ocean Energy (ICOE) conference.

  13. Ninth Annual Ocean Renewable Energy Conference

    Broader source: Energy.gov [DOE]

    The future of clean, renewable ocean wave energy will be discussed in depth at the 2014 Ocean Renewable Energy Conference.

  14. Ocean Energy Technology Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy » Ocean Energy Technology Basics Ocean Energy Technology Basics August 16, 2013 - 4:18pm Addthis Text Version Photo of low waves in the ocean. A dock is visible in the background. Oceans cover more than 70% of the Earth's surface. As the world's largest solar collectors, oceans contain thermal energy from the sun and produce mechanical energy from tides and waves. Even though the sun affects all ocean activity, the gravitational pull of the moon primarily drives tides, and wind

  15. Ocean Thermal Extractable Energy Visualization: Final Technical...

    Office of Environmental Management (EM)

    Ocean Thermal Extractable Energy Visualization: Final Technical Report Ocean Thermal Extractable Energy Visualization: Final Technical Report Report about the Ocean Thermal ...

  16. Open Ocean Energy Ltd | Open Energy Information

    Open Energy Info (EERE)

    Edit with form History Open Ocean Energy Ltd Jump to: navigation, search Name: Open Ocean Energy Ltd Sector: Marine and Hydrokinetic Website: http: This company is listed in the...

  17. Harnessing Energy from Ocean Waves

    SciTech Connect (OSTI)

    Lehmann, Marcus

    2015-05-06

    Berkeley Lab scientist Marcus Lehmann, a member of the Lab's Cyclotron Road cohort, discusses his research on harnessing energy from ocean waves.

  18. Ocean Thermal Extractable Energy Visualization

    SciTech Connect (OSTI)

    Ascari, Matthew

    2012-10-28

    The Ocean Thermal Extractable Energy Visualization (OTEEV) project focuses on assessing the Maximum Practicably Extractable Energy (MPEE) from the world’s ocean thermal resources. MPEE is defined as being sustainable and technically feasible, given today’s state-of-the-art ocean energy technology. Under this project the OTEEV team developed a comprehensive Geospatial Information System (GIS) dataset and software tool, and used the tool to provide a meaningful assessment of MPEE from the global and domestic U.S. ocean thermal resources.

  19. Ocean | Open Energy Information

    Open Energy Info (EERE)

    needs updating Image needs updating Reference needed Missing content Broken link Other Additional Comments Cancel Submit Categories: Articles with outstanding TODO tasks Sectors...

  20. ocean wave energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wave energy - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy

  1. Ocean Thermal | Open Energy Information

    Open Energy Info (EERE)

    the ability to produce 10000 TWh per year, which is greater than other types of ocean energy such as tides, marine currents and salinity gradient. OTEC functions best when...

  2. Ocean Renewable Energy Conference X

    Broader source: Energy.gov [DOE]

    The 10th annual Ocean Renewable Energy Conference provides attendees a forum to share new ideas and concepts, opportunity to learn from leading-edge practitioners and policy-makers, information...

  3. Green Ocean Energy | Open Energy Information

    Open Energy Info (EERE)

    Energy Jump to: navigation, search Name: Green Ocean Energy Place: Aberdeen, Scotland, United Kingdom Zip: AB10 1UP Product: Aberdeen, UK-based private developer of wave device....

  4. Interagency Energy Management Task Force Members

    Broader source: Energy.gov [DOE]

    The Interagency Energy Management Task Force is led by the Federal Energy Management Program director. Members include energy and sustainability managers from federal agencies.

  5. Ocean Wave Energy Company OWECO | Open Energy Information

    Open Energy Info (EERE)

    Energy Company OWECO Jump to: navigation, search Name: Ocean Wave Energy Company (OWECO) Place: Bristol, Rhode Island Sector: Ocean Product: Wave energy device developer. The...

  6. NREL-Ocean Energy Thermal Conversion | Open Energy Information

    Open Energy Info (EERE)

    Energy Laboratory Sector: Energy Topics: Resource assessment Website: www.nrel.govotec NREL-Ocean Energy Thermal Conversion Screenshot References: OTEC1 Logo: NREL-Ocean...

  7. Ocean Motion International LLC | Open Energy Information

    Open Energy Info (EERE)

    LLC Place: Saulsbury, Tennessee Zip: 38067 Sector: Ocean Product: Marine energy technology firm developing ocean wave powered generators. Coordinates: 35.052242,...

  8. Scott Wilson Oceans | Open Energy Information

    Open Energy Info (EERE)

    Wilson Oceans Jump to: navigation, search Name: Scott Wilson Oceans Place: Chesterfield, United Kingdom Zip: S30 1JF Sector: Wind energy Product: Specialist in the engineering of...

  9. Ocean current resource assessment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ocean current resource assessment Ocean current resource assessment Ocean current resource assessment 45_ocean_resource_gtrc_haas.ppt (531 KB) More Documents & Publications Tidal Energy Resource Assessment Free Flow Energy (TRL 1 2 3 Component) - Design and Development of a Cross-Platform Submersible Generator Optimized for the Conditions of Current Energy Conversion

  10. Ocean Energy Institute | Open Energy Information

    Open Energy Info (EERE)

    think tank established to accelerate offshore wind technology development that hopes to build a 5GW wind project off the coast of Maine. References: Ocean Energy Institute1 This...

  11. Sandia Energy - New Mexico Renewable Energy Storage Task Force

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Energy Storage Task Force Home Infrastructure Security Renewable Energy Energy Partnership News News & Events Energy Storage Systems Energy Storage New Mexico Renewable...

  12. Ocean thermal energy conversion (OTEC)

    SciTech Connect (OSTI)

    Lockerby, R.W.

    1981-01-01

    Ocean thermal energy conversion (OTEC) is reviewed briefly. The two types of OTEC system (open and closed) are described and limitations are pointed out. A bibliography of 148 references on OTEC is given for the time period 1975 to 1980. Entries are arranged alphabetically according to the author's name. (MJJ)

  13. Ocean Renewable Energy Coalition OREC | Open Energy Information

    Open Energy Info (EERE)

    Energy Coalition OREC Jump to: navigation, search Name: Ocean Renewable Energy Coalition (OREC) Place: Potomac, Maryland Zip: 20859 Sector: Ocean Product: US trade association...

  14. Practical Ocean Energy Management Systems Inc POEMS | Open Energy...

    Open Energy Info (EERE)

    Ocean Energy Management Systems Inc POEMS Jump to: navigation, search Name: Practical Ocean Energy Management Systems Inc (POEMS) Place: San Diego, California Zip: 92138 Sector:...

  15. Interagency Energy Management Task Force | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    About the Federal Energy Management Program » Interagency Energy Management Task Force Interagency Energy Management Task Force The Federal Interagency Energy Management Task Force was created by the Federal Energy Management Improvement Act of 1988 to coordinate federal government activities that encourage energy conservation and energy efficiency. Led by the Federal Energy Management Program director and composed of federal energy managers, this task force serves as a forum for: Sharing

  16. Interagency Energy Management Task Force Members | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Interagency Energy Management Task Force Members Interagency Energy Management Task Force Members The Interagency Energy Management Task Force is led by the Federal Energy Management Program director. Members include energy and sustainability managers from federal agencies. Task Force Executive Director Dr. Timothy Unruh U.S. Department of Energy 202-586-5772 Task Force Members Organization Primary Contact Alternate Contact General Services Administration Mark Ewing Karren Curran National

  17. NREL Job Task Analysis: Energy Auditor | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Auditor NREL Job Task Analysis: Energy Auditor A summary of job task analyses for the position of energy auditor when evaluating a residence before and during weatherization work. NREL Job Task Analysis: Energy Auditor (352.27 KB) More Documents & Publications NREL Job Task Analysis: Quality Control Inspector Training Self-Assessment

  18. Interagency Energy Management Task Force | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Management Task Force Interagency Energy Management Task Force The Federal Interagency Energy Management Task Force was created by the Federal Energy Management Improvement Act of 1988 to coordinate federal government activities that encourage energy conservation and energy efficiency. Led by the Federal Energy Management Program director and composed of federal energy managers, this task force serves as a forum for: Sharing lessons learned across agencies Providing analysis on technical

  19. NREL Job Task Analysis: Energy Auditor

    SciTech Connect (OSTI)

    Kurnik, C.; Woodley, C.

    2011-05-01

    A summary of job task analyses for the position of energy auditor when evaluating a residence before and during weatherization work.

  20. MHK Technologies/Ocean Energy Rig | Open Energy Information

    Open Energy Info (EERE)

    the MHK database homepage Ocean Energy Rig.jpg Technology Profile Primary Organization Free Flow 69 Technology Type Click here Axial Flow Turbine Technology Description The Ocean...

  1. Ocean Energy Technology Overview: Federal Energy Management Program (FEMP)

    SciTech Connect (OSTI)

    Not Available

    2009-07-01

    Introduction to and overview of ocean renewable energy resources and technologies prepared for the U.S. Department of Energy Federal Energy management Program.

  2. ocean energy | OpenEI Community

    Open Energy Info (EERE)

    ocean energy Home Kch's picture Submitted by Kch(24) Member 15 July, 2014 - 07:07 MHK Cost Breakdown Structure Draft CBS current energy GMREC LCOE levelized cost of energy marine...

  3. Ocean Electric Power | Open Energy Information

    Open Energy Info (EERE)

    Ocean Electric Power Place: United Kingdom Sector: Renewable Energy Product: UK-based offshore project developer. The firm is actively engaged in the development of offshore...

  4. Ocean Renewable Power Company | Open Energy Information

    Open Energy Info (EERE)

    LLC was founded in 2004 for the purpose of generating reliable, competitive, emission-free electricity from the energy resources of the oceans. Coordinates: 45.511795,...

  5. Makai Ocean Engineering Inc | Open Energy Information

    Open Energy Info (EERE)

    Southern CA Area Sector: Marine and Hydrokinetic, Ocean, Renewable Energy Product: OTEC Number of Employees: 28 Year Founded: 1973 Phone Number: 808.259.8871 Website:...

  6. Ocean Navitas | Open Energy Information

    Open Energy Info (EERE)

    Condry. Website: www.oceannavitas.com References: Ocean Navitas&127;UNIQ75db538f85b32404-ref-000014E2-QINU&127; This article is a stub. You can help OpenEI by expanding it. Ocean...

  7. MHK Technologies/Ocean Treader floating | Open Energy Information

    Open Energy Info (EERE)

    homepage Ocean Treader floating.jpg Technology Profile Primary Organization Green Ocean Energy Ltd Project(s) where this technology is utilized *MHK ProjectsDevelopment of Ocean...

  8. Open Ocean Aquaculture & Wave Energy Site | Open Energy Information

    Open Energy Info (EERE)

    Aquaculture & Wave Energy Site Jump to: navigation, search Basic Specifications Facility Name Open Ocean Aquaculture & Wave Energy Site Overseeing Organization University of New...

  9. Ocean Thermal Energy Conversion: An overview

    SciTech Connect (OSTI)

    Not Available

    1989-11-01

    Ocean thermal energy conversion, or OTEC is a technology that extracts power from the ocean's natural thermal gradient. This technology is being pursued by researchers from many nations; in the United States, OTEC research is funded by the US Department of Energy's Ocean Energy Technology program. The program's goal is to develop the technology so that industry can make a competent assessment of its potential -- either as an alternative or as a supplement to conventional energy sources. Federally funded research in components and systems will help OTEC to the threshold of commercialization. This publication provides an overview of the OTEC technology. 47 refs., 25 figs.

  10. Ocean floor mounting of wave energy converters

    DOE Patents [OSTI]

    Siegel, Stefan G

    2015-01-20

    A system for mounting a set of wave energy converters in the ocean includes a pole attached to a floor of an ocean and a slider mounted on the pole in a manner that permits the slider to move vertically along the pole and rotate about the pole. The wave energy converters can then be mounted on the slider to allow adjustment of the depth and orientation of the wave energy converters.

  11. Ocean Thermal Extractable Energy Visualization: Final Technical Report

    Office of Energy Efficiency and Renewable Energy (EERE)

    Report about the Ocean Thermal Extractable Energy Visualization project, which focuses on assessing the Maximum Practicably Extractable Energy from the world’s ocean thermal resources.

  12. Assessment of Energy Production Potential from Ocean Currents...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assessment of Energy Production Potential from Ocean Currents along the United States Coastline Assessment of Energy Production Potential from Ocean Currents along the United...

  13. Mapping and Assessment of the United States Ocean Wave Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mapping and Assessment of the United States Ocean Wave Energy Resource Mapping and Assessment of the United States Ocean Wave Energy Resource This report describes the analysis and ...

  14. MHK Technologies/Ocean | Open Energy Information

    Open Energy Info (EERE)

    the MHK database homepage Ocean.jpg Technology Profile Primary Organization Hydro Green Energy LLC Project(s) where this technology is utilized *MHK ProjectsAlaska 35 *MHK...

  15. Federal Smart Grid Task Force | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Smart Grid Task Force Federal Smart Grid Task Force Task Force Background The Federal Smart Grid Task Force was established under Title XIII of the Energy Independence and Security Act of 2007 (EISA) and includes experts from eleven Federal agencies. The Department of Energy is represented by the Office of Electricity Delivery and Energy Reliability which is the Task Force lead, as well as the Office of Energy Efficiency and Renewable Energy and the National Energy Technology Laboratory.

  16. NREL: Energy Analysis - Ocean Energy Results - Life Cycle Assessment...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    To better understand ocean energy systems, NREL completed a comprehensive review and analysis of life cycle assessments on wave and tidal power systems published between 1980 and ...

  17. Ocean energy systems. Quarterly report, January-March 1983

    SciTech Connect (OSTI)

    Not Available

    1983-03-30

    Progress is reported on the development of Ocean Thermal Energy Conversion (OTEC) systems that will provide synthetic fuels (e.g., methanol), energy-intensive products such as ammonia (for fertilizers and chemicals), and aluminum. The work also includes assessment and design concepts for hybrid plants, such as geothermal-OTEC (GEOTEC) plants. Another effort that began in the spring of 1982 is a technical advisory role to DOE with respect to their management of the conceptual and preliminary design activity of industry teams that are designing a shelf-mounted offshore OTEC pilot plant that could deliver power to Oahu, Hawaii. In addition, a program is underway to evaluate and test the Pneumatic Wave-Energy Conversion System (PWECS), an ocean-energy device consisting of a turbine that is air-driven as a result of wave action in a chamber. This Quarterly Report summarizes the work on the various tasks as of 31 March 1983.

  18. Ocean Energy Projects Developing On and Off America's Shores | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Ocean Energy Projects Developing On and Off America's Shores Ocean Energy Projects Developing On and Off America's Shores January 22, 2013 - 1:14pm Addthis Artist rendering of Ocean Power Technologies' proposed wave park off the coast of Oregon. | Photo courtesy of Ocean Power Technologies. Artist rendering of Ocean Power Technologies' proposed wave park off the coast of Oregon. | Photo courtesy of Ocean Power Technologies. Verdant testing its tidal energy device in New York's East

  19. Environmental impacts of ocean thermal energy conversion

    SciTech Connect (OSTI)

    Not Available

    1986-04-01

    Ocean thermal energy conversion (OTEC) is a promising technology for production of energy and usable by-products from solar-generated temperature gradients in the world's oceans. Although considered benign compared to alternative forms of energy generation, deployment of OTEC plants will result in interactions with marine, terrestrial, and atmospheric environments and in socioeconomic interactions with surrounding areas. The Ocean Energy Technology Program of the Department of Energy has funded research to improve the understanding of these interactions. No insurmountable environmental obstacle to OTEC deployment has been uncovered. This document contains a summary of that research for entrepreneurs, utility engineers, and others interested in pursuing OTEC's potential. In addition, it provides a guide to permits, regulations, and licenses applicable to construction of an OTEC plant.

  20. Ocean Power: Science Projects in Renewable Energy and Energy Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ocean Power (Four Activities) Grades: 5-8 Topic: Hydropower Owner: National Renewable Energy Laboratory This educational material is brought to you by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy. This lesson plan may contain links to other resources, including suggestions as to where to purchase materials. These links, product descriptions, and prices may change over time. Ocean Power For the Teacher The discussion of renewable energy sometimes focuses on

  1. Ocean Power (4 Activities) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ocean Power (4 Activities) Ocean Power (4 Activities) Below is information about the student activity/lesson plan from your search. Grades 5-8 Subject Water Summary Areas of the country that have an available coastline but are limited in other renewable resources can use the oceans to produce energy. We are familiar with the large hydroelectric dams that dot our nation, creating large reservoirs and flooding millions of acres of land. By turning to the restless seas we can find a source of

  2. Ocean energy systems. Quarterly report, October-December 1982

    SciTech Connect (OSTI)

    Not Available

    1982-12-01

    Research progress is reported on developing Ocean Thermal Energy Conversion (OTEC) systems that will provide synthetic fuels (e.g., methanol), energy-intensive products such as ammonia (for fertilizers and chemicals), and aluminum. The work also includes assessment and design concepts for hybrid plants, such as geothermal-OTEC (GEOTEC) plants. Another effort that began in the spring of 1982 is a technical advisory role to DOE with respect to their management of the conceptual design activity of the two industry teams that are designing offshore OTEC pilot plants that could deliver power to Oahu, Hawaii. In addition, a program is underway in which tests of a different kind of ocean-energy device, a turbine that is air-driven as a result of wave action in a chamber, are being planned. This Quarterly Report summarizes the work on the various tasks as of 31 December 1982.

  3. Ocean Wave Wind Energy Ltd OWWE | Open Energy Information

    Open Energy Info (EERE)

    Wind Energy Ltd OWWE Jump to: navigation, search Name: Ocean Wave Wind Energy Ltd OWWE Region: Norway Sector: Marine and Hydrokinetic Website: www.owwe.net This company is listed...

  4. Assessment of Energy Production Potential from Ocean Currents...

    Broader source: Energy.gov (indexed) [DOE]

    of ocean currents in the United States and the database created with that data. Assessment of Energy Production Potential from Ocean Currents along the United States Coastline...

  5. MHK Technologies/Ocean Wave Air Piston | Open Energy Information

    Open Energy Info (EERE)

    Ocean Wave Air Piston.jpg Technology Profile Primary Organization Green Ocean Wave Energy Technology Resource Click here Wave Technology Type Click here Attenuator...

  6. Finavera Renewables Ocean Energy Ltd | Open Energy Information

    Open Energy Info (EERE)

    Ocean Energy Ltd Address: 595 Burrard Street Suite 3113 Three Bentall Centre PO Box 49071 Place: Vancouver Zip: V7X 1G4 Region: Canada Sector: Marine and Hydrokinetic...

  7. Assessment of Energy Production Potential from Ocean Currents along the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    United States Coastline | Department of Energy Energy Production Potential from Ocean Currents along the United States Coastline Assessment of Energy Production Potential from Ocean Currents along the United States Coastline Report summarizing the results of seven years of numerical model simulations of ocean currents in the United States and the database created with that data. energy_production_ocean_currents_us.pdf (4.24 MB) More Documents & Publications Assessment of Energy

  8. Hydropower Vision Task Force Charter | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon Hydropower Vision Task Force Charter.pdf More Documents & Publications State Energy Advisory Board November 2011 Meeting Guide to Community Energy Strategic Planning State ...

  9. Microsoft Word - Energy Code Enforcement Funding Task Force - Fact Sheet

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    [Final].docx | Department of Energy Energy Code Enforcement Funding Task Force - Fact Sheet [Final].docx Microsoft Word - Energy Code Enforcement Funding Task Force - Fact Sheet [Final].docx Microsoft Word - Energy Code Enforcement Funding Task Force - Fact Sheet [Final].docx (221.19 KB) More Documents & Publications Sonoma County Solar Implementation Plan Final Report - Grow Solar Wisconsin Team Energy Industry Days Additional Information

  10. University Research Reactor Task Force to the Nuclear Energy Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advisory Committee | Department of Energy University Research Reactor Task Force to the Nuclear Energy Research Advisory Committee University Research Reactor Task Force to the Nuclear Energy Research Advisory Committee In mid-February, 2001 The University Research Reactor (URR) Task Force (TF), a sub-group of the Department of Energy (DOE) Nuclear Energy Research Advisory Committee (NERAC), was asked to: * Analyze information collected by DOE, the NERAC "Blue Ribbon Panel,"

  11. CCS Task Force - Executive Summary | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CCS Task Force - Executive Summary CCS Task Force - Executive Summary CCS Task Force - Executive Summary (90.47 KB) More Documents & Publications CCSTF - Final Report Before the Senate Energy and Natural Resources Committee Before the House Science, Space, and Technology Subcommittee on Energy and Environment

  12. Ocean Energy Resource Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    resource-assessment projects for advanced water power. Addthis Related Articles Glossary of Energy-Related Terms PNNL Reviews Wildlife-Interaction Monitoring for Offshore ...

  13. GeoVision Study Task Forces | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Study Task Forces GeoVision Study Task Forces The Energy Department's GeoVision Study is undertaking rigorous analysis in seven specific topic areas that are led by team members from our national labs. Each task force will produce a deliverable required by the scope of the project. Task forces will be coordinated by the National Renewable Energy Laboratory. I. Exploration: Lab Lead - Lawrence Berkeley National Laboratory How geothermal resources are identified today Exploration costs and risks

  14. Ocean Energy Program Overview, Fiscal years 1990--1991

    SciTech Connect (OSTI)

    Not Available

    1992-05-01

    The oceans are the world's largest solar energy collector and storage system. Covering 71% of the earth's surface, the oceans collect and store this energy as waves, currents, and thermal and salinity gradients. The purpose of the US Department of Energy's (DOE) Ocean Energy Program is to develop techniques that harness ocean energy cost effectively and in ways that do not harm the environment. The program seeks to develop ocean energy technology to a point at which industry can accurately assess whether the applications of the technology are viable energy conversion alternatives, or supplements to current power-generating systems. In past studies, DOE identified ocean thermal energy conversion (OTEC), which uses the temperature difference between warm surface water and cold deep water, as the most promising of the ocean energy technologies. As a result, the Ocean Energy Program has concentrated research that advances OTEC technology. The program also monitored developments in wave energy, ocean current, and salinity gradient concepts. It is not actively developing these technologies now. The mission of the Ocean Energy Program is to develop techniques to harness the vast solar energy stored in the oceans' waves, currents, and thermal and salinity gradients.

  15. Ocean energy technologies: The state of the art: Final report

    SciTech Connect (OSTI)

    Carmichael, A.D.; Adams, E.E.; Glucksman, M.A.

    1986-11-01

    A state-of-the-art study of ocean energy technologies has been conducted to evaluate their potential use for the generation of electrical power. The more developed technologies are tidal energy, ocean thermal energy conversion (OTEC), and wave energy. In addition there has been a demonstration of a small ocean current turbine, and proposals have been made for salinity gradient devices and ocean wind turbines. Energy costs were estimated for representative base case systems for tidal, OTEC, and wave energy projects. The tidal energy scheme was predicted to have the lowest energy costs.

  16. Sandia Energy - High-Fidelity Hydrostructural Analysis of Ocean...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrostructural Analysis of Ocean Renewable Power Company's (ORPC's) TidGen Turbine Home Renewable Energy Energy Water Power Partnership News News & Events Computational...

  17. Assessment of Energy Production Potential from Ocean Currents...

    Broader source: Energy.gov (indexed) [DOE]

    Assessment of Energy Production Potential from Ocean Currents along the United States ... Award Number: DE-EE0002661 Project Title: Assessment of Energy Production Potential from ...

  18. Weardale Task Force | Open Energy Information

    Open Energy Info (EERE)

    that is developing a sustainable community in the East gate area which will be run on wind, solar, biomass, geothermal and hydro power. References: Weardale Task Force1...

  19. Energy Department Awards First Major Task Order Under Streamlined

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Contracting System | Department of Energy First Major Task Order Under Streamlined Contracting System Energy Department Awards First Major Task Order Under Streamlined Contracting System October 17, 2005 - 11:59am Addthis New Mexico Firm Contracted for Ashtabula Clean-up WASHINGTON, DC - The Department of Energy (DOE) has awarded a Task Order for an estimated $19.4 million to LATA-SHARP Remediation Services, LLC for the completion of clean-up activities at the Ashtabula Closure Project (ACP)

  20. Ocean thermal energy conversion: report to congress - fiscal year 1982

    SciTech Connect (OSTI)

    Not Available

    1983-03-31

    National Oceanic and Atmospheric Administration (NOAA) activities related to ocean thermal energy conversion (OTEC) during fiscal year 1982 are described. The agency focus has been in the areas of providing ocean engineering and technical assistance to the Department of Energy (DOE), in streamlining the administration of the Federal OTEC licensing system, and in environmental assistance.

  1. Ocean energy conversion systems annual research report

    SciTech Connect (OSTI)

    Not Available

    1981-03-01

    Alternative power cycle concepts to the closed-cycle Rankine are evaluated and those that show potential for delivering power in a cost-effective and environmentally acceptable fashion are explored. Concepts are classified according to the ocean energy resource: thermal, waves, currents, and salinity gradient. Research projects have been funded and reported in each of these areas. The lift of seawater entrained in a vertical steam flow can provide potential energy for a conventional hydraulic turbine conversion system. Quantification of the process and assessment of potential costs must be completed to support concept evaluation. Exploratory development is being completed in thermoelectricity and 2-phase nozzles for other thermal concepts. Wave energy concepts are being evaluated by analysis and model testing with present emphasis on pneumatic turbines and wave focussing. Likewise, several conversion approaches to ocean current energy are being evaluated. The use of salinity resources requires further research in membranes or the development of membraneless processes. Using the thermal resource in a Claude cycle process as a power converter is promising, and a program of R and D and subsystem development has been initiated to provide confirmation of the preliminary conclusion.

  2. Energy Department Awards First Major Task Order Under Streamlined...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Department Awards First Major Task Order Under Streamlined Contracting System October 17, 2005 - 11:59am Addthis New Mexico Firm Contracted for Ashtabula Clean-up ...

  3. NM Renewable Energy Storage Task Force

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering ...

  4. Ocean thermal energy conversion: a review

    SciTech Connect (OSTI)

    Yuen, P.C.

    1981-10-01

    The OTEC principle is discussed along with general system and cycle types, specific OTEC designs, OTEC applications, and the ocean thermal resource. The historic development of OTEC is briefly reviewed, and the status of French, Japanese, EUROCEAN, and US programs is assessed. US efforts are detailed and DOE's strategy outlined with OTEC-1 and Mini-OTEC information. Power system components of the more technically advanced closed-cycle OTEC concept are discussed. These include: heat exchangers, corrosion and biofouling countermeasures, working fluids, ammonia power systems, and on-platform seawater systems. Several open-cycle features are also discussed. A critical review is presented of the ocean engineering aspects of OTEC power systems. Major subsystems such as platform, cold water pipe, mooring system, dynamic positioning system, power transmission cable system are assessed for their relationships with the ocean environment and with each other. Nine available studies of OTEC costs are reviewed. Tentative comparisons are made between OTEC and traditional fuel costs, and OTEC products and markets are considered. Possible environmental and social effects of OTEC development are discussed. International, national, and local laws regulating OTEC plants and OTEC energy products are reviewed. Tax incentives, attitudes of the utilities, and additional legislative needs are considered. (LEW)

  5. Hawaii Oceanic Technology Inc | Open Energy Information

    Open Energy Info (EERE)

    Oceanic Technology Inc Jump to: navigation, search Name: Hawaii Oceanic Technology Inc Region: United States Sector: Marine and Hydrokinetic Website: www.hioceanictech.com This...

  6. NREL Job Task Analysis: Quality Control Inspector | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Quality Control Inspector NREL Job Task Analysis: Quality Control Inspector A summary of job task analyses for the position of quality control inspector when evaluating weatherization work that has been done on a residence. NREL Job Task Analysis: Quality Control Inspector (332.56 KB) More Documents & Publications Training Self-Assessment Preparing for the Quality Control Inspector Certification Exam NREL Job Task Analysis: Energy Auditor

  7. Open cycle ocean thermal energy conversion system

    DOE Patents [OSTI]

    Wittig, J. Michael

    1980-01-01

    An improved open cycle ocean thermal energy conversion system including a flash evaporator for vaporizing relatively warm ocean surface water and an axial flow, elastic fluid turbine having a vertical shaft and axis of rotation. The warm ocean water is transmitted to the evaporator through a first prestressed concrete skirt-conduit structure circumferentially situated about the axis of rotation. The unflashed warm ocean water exits the evaporator through a second prestressed concrete skirt-conduit structure located circumferentially about and radially within the first skirt-conduit structure. The radially inner surface of the second skirt conduit structure constitutes a cylinder which functions as the turbine's outer casing and obviates the need for a conventional outer housing. The turbine includes a radially enlarged disc element attached to the shaft for supporting at least one axial row of radially directed blades through which the steam is expanded. A prestressed concrete inner casing structure of the turbine has upstream and downstream portions respectively situated upstream and downstream from the disc element. The radially outer surfaces of the inner casing portions and radially outer periphery of the axially interposed disc cooperatively form a downwardly radially inwardly tapered surface. An annular steam flowpath of increasing flow area in the downward axial direction is radially bounded by the inner and outer prestressed concrete casing structures. The inner casing portions each include a transversely situated prestressed concrete circular wall for rotatably supporting the turbine shaft and associated structure. The turbine blades are substantially radially coextensive with the steam flowpath and receive steam from the evaporator through an annular array of prestressed concrete stationary vanes which extend between the inner and outer casings to provide structural support therefor and impart a desired flow direction to the steam.

  8. Ocean energy program summary: Volume 1, Overview: Fiscal year 1988

    SciTech Connect (OSTI)

    Not Available

    1989-02-01

    Past studies conducted by the US Department of Energy (DOE) have identified ocean thermal energy conversion (OTEC) as the largest potential contributor to US energy supplies from the ocean resource. As a result, the OET Program concentrates on research to advance OTEC technology. The program also continues to monitor and study developments in wave energy, ocean current and salinity gradient concepts, but it is not actively developing these technologies at the present time. 8 figs.

  9. Report of the SEAB Hubs+ Task Force | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    the new Funding Constructs for Energy Research and Development (R&D) in the Department of Energy. The Task Force was charged with assisting the DOE in evaluating the management and...

  10. OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC ENVIRONMENTAL ASSESSMENT

    SciTech Connect (OSTI)

    Sands, M.Dale

    1980-08-01

    Significant achievements in Ocean Thermal Energy Conversion (OTEC) technology have increased the probability of producing OTEC-derived power in this decade with subsequent large-scale commercialization to follow by the turn of the century. Under U.S. Department of Energy funding, Interstate Electronics has prepared an OTEC Programmatic Environmental Assessment (EA) that considers tne development, demonstration, and commercialization of OTEC power systems. The EA considers several tecnnological designs (open cycle and closed cycle), plant configurations (land-based, moored, and plantship), and power usages (baseload electricity and production of ammonia and aluminum). Potencial environmental impacts, health and safety issues, and a status update of international, federal, and state plans and policies, as they may influence OTEC deployments, are included.

  11. Ocean thermal energy conversion: Perspective and status

    SciTech Connect (OSTI)

    Thomas, A.; Hillis, D.L.

    1990-01-01

    The use of the thermal gradient between the warm surface waters and the deep cold waters of tropical oceans was first proposed by J. A. d'Arsonval in 1881 and tried unsuccessfully be George Claude in 1930. Interest in Ocean Thermal Energy Conversion (OTEC) and other renewable energy sources revived in the 1970s as a result of oil embargoes. At that time, the emphasis was on large floating plants miles from shore producing 250--400 MW for maintained grids. When the problems of such plants became better understood and the price of oil reversed its upward trend, the emphasis shifted to smaller (10 MW) shore-based plants on tropical islands. Such plants would be especially attractive if they produce fresh water as a by-product. During the past 15 years, major progress has been made in converting OTEC unknowns into knowns. Mini-OTEC proved the closed-cycle concept. Cost-effective heat-exchanger concepts were identified. An effective biofouling control technique was discovered. Aluminum was determined to be promising for OTEC heat exchangers. Heat-transfer augmentation techniques were identified, which promised a reduction on heat-exchanger size and cost. Fresh water was produced by an OTEC open-cycle flash evaporator, using the heat energy in the seawater itself. The current R D emphasis is on the design and construction of a test facility to demonstrate the technical feasibility of the open-cycle process. The 10 MW shore-based, closed-cycle plant can be built with today's technology; with the incorporation of a flash evaporator, it will produce fresh water as well as electrical power -- both valuable commodities on many tropical islands. The open-cycle process has unknowns that require solution before the technical feasibility can be demonstrated. The economic viability of either cycle depends on reducing the capital costs of OTEC plants and on future trends in the costs of conventional energy sources. 7 refs.

  12. Assessment of Energy Production Potential from Ocean Currents...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report summarizing the results of seven years of numerical model simulations of ocean currents in the United States and the database created with that data. Assessment of Energy ...

  13. MHK Projects/Greenwave Rhode Island Ocean Wave Energy Project...

    Open Energy Info (EERE)

    Greenwave Rhode Island Ocean Wave Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":...

  14. Feasibility of Tital and Ocean Current Energy in False Pass,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Alaska Feasibility of Tidal and Ocean Current Energy in False Pass, Aleutian Islands, ... to seven sites to assess hazards to successful ADCP deployment and retrieval. ...

  15. Ocean Thermal Energy Conversion Act of 1980

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    A legislative proposal to develop ocean thermal energy conversion (OTEC) facilities for power generation was the subject of hearings held on April 10 and May 1, 1980. Following the test of S. 2492 are the statements of 20 witnesses and additional materials submitted for consideration. The need for a large-scale demonstration of OTEC and the need for a Federal regulatory, siting, and financial-assistance framework are the major commercialization issues. S. 2492 provides one-stop licensing by treating the facilities as vessels and making them eligible for loan guarantees. The bill complements S. 1430, which deals with the demonstration program. OTEC development in Hawaii has progressed to a second pilot project. (DCK)

  16. Task Force on Biofuels Infrastructure | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Task Force on Biofuels Infrastructure Task Force on Biofuels Infrastructure Under the federal Renewable Fuels Standard (RFS) adopted in 2005 and amended in 2007, the United States is committed to a substantial (five-fold) increase in its use of biofuels by 2022. The National Commission on Energy Policy (NCEP) convened a Biofuels Infrastructure Task Force in 2008 to examine the infrastructure implications of this relatively swift and unprecedented shift in the composition of the nation's

  17. DOE Awards Small Business Task Order | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    10:00am Addthis Media Contact Lynette Chafin, 513-246-0461, Lynette.Chafin@emcbc.doe.gov Cincinnati - The Department of Energy (DOE) today announced the award of a Firm-Fixed Unit Rate Task Order to Sage Energy Trading of Jenks, OK. Sage Energy Trading is a Woman Owned Small Business. The Task Order will have a maximum value of $3.5 million over 2 years. Work performed under this Task Order will be performed at the Portsmouth Gaseous Diffusion Plant in Piketon, OH. The contractor will be

  18. MHK Technologies/OceanStar | Open Energy Information

    Open Energy Info (EERE)

    energy efficient process to smooth out the pulse characteristics common to wave energy in order to be electrical grid friendly The OceanStars high level of scalability is...

  19. Ocean Thermal Energy Conversion Project: OTEC support services. Monthly technical status report, October 1-31, 1980

    SciTech Connect (OSTI)

    1980-11-14

    The objective of this project is to provide technical engineering and management support services for the Ocean Thermal Energy Conversion (OTEC) program of the Division of Ocean Energy Systems, DOE. The principal contributions made are outlined for the following tasks: (1) Survey, analysis and recommendation concerning program performance; (2) Program technical monitoring; (3) Technical assessments; (4) OTEC system integration; (5) Environment and siting considerations; and (6) Transmission subsystem considerations.

  20. Solar Energy Research and Education Foundation. Final reports by task

    SciTech Connect (OSTI)

    von Reis, K.; Waegel, A.S.; Totten, M.

    1997-12-10

    This document contains final reports for the following tasks: kiosk for the children`s museum renewable energy exhibit and display, internet promotional and educational material, Aurora renewable energy science and engineering, CD-ROM training materials, presentations and traveling display, radio show `Energy Matters`, and newspaper articles and weekly news column.

  1. Indiana University High Energy Physics, Task A

    SciTech Connect (OSTI)

    Brabson, B.; Crittenden, R.; Dzierba, A.; Hanson, G.; Martin, H.; Marshall, T.; Mir, R.; Mouthuy, T.; Ogren, H.; Rust, D.; Teige, S.; Zieminska, D.; Zieminski, A.

    1991-01-01

    This report discusses research in High Energy Physics under the following experiments: Meson spectroscopy at BNL; dimuon production at FNAL; the DO collider experiment at FNAL; the Mark II experiment at SLC and PEP; the OPAL experiment at CERN; and the superconducting supercollider.

  2. Ocean County, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    New Jersey Manahawkin, New Jersey Mantoloking, New Jersey Mystic Island, New Jersey New Egypt, New Jersey North Beach Haven, New Jersey Ocean Acres, New Jersey Ocean Gate, New...

  3. Department of Energy Establishes Asset Revitalization Task Force

    Broader source: Energy.gov [DOE]

    Washington, D.C. – Secretary of Energy Steven Chu today announced the establishment of a Task Force on Asset Revitalization to facilitate a discussion among the Department of Energy, communities around DOE sites, nonprofits, tribal governments, the private sector and other stakeholders to identify reuse approaches as environmental cleanup efforts reach completion.

  4. Ocean energy resources: the impact of OTEC

    SciTech Connect (OSTI)

    Ditmars, J.D.

    1980-01-01

    The status of OTEC technological development is summarized with emphasis on the potential impacts of OTEC power production on the ocean environment, including implications for impacts to climate. (MHR)

  5. Ocean Thermal Energy Conversion Program Management Plan

    SciTech Connect (OSTI)

    Combs, R E

    1980-01-01

    The Office of the Associate Laboratory Director for Energy and Environmental Technology has established the OTEC Program Management Office to be responsible for the ANL-assigned tasks of the OTEC Program under DOE's Chicago Operations and Regional Office (DOE/CORO). The ANL OTEC Program Management Plan is essentially a management-by-objective plan. The principal objective of the program is to provide lead technical support to CORO in its capacity as manager of the DOE power-system program. The Argonne OTEC Program is divided into three components: the first deals with development of heat exchangers and other components of OTEC power systems, the second with development of biofouling counter-measures and corrosion-resistant materials for these components in seawater service, and the third with environmental and climatic impacts of OTEC power-system operation. The essential points of the Management Plan are summarized, and the OTEC Program is described. The organization of the OTEC Program at ANL is described including the functions, responsibilities, and authorities of the organizational groupings. The system and policies necessary for the support and control functions within the organization are discussed. These functions cross organizational lines, in that they are common to all of the organization groups. Also included are requirements for internal and external reports.

  6. DOE Awards Small Business Task Order | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2:00pm Addthis Media Contact Lynette Chafin, 513-246-0461, Lynette.Chafin@emcbc.doe.gov Cincinnati - The Department of Energy (DOE) today announced the award of a Time and Materials Task Order to Industrial Economics, Incorporated, located in Cambridge, MA. Industrial Economics, Incorporated is a Small Business. The Task Order will have a maximum value of $1.77 million over 3 years. Work performed under this Task Order will be performed at the Los Alamos National Laboratory in Los Alamos, NM.

  7. Secretary of Energy Advisory Board (SEAB) Task Force on EM Technology...

    Energy Savers [EERE]

    Secretary of Energy Advisory Board (SEAB) Task Force on EM Technology Development Secretary of Energy Advisory Board (SEAB) Task Force on EM Technology Development Presentation...

  8. The Secretary of Energy Advisory Board (SEAB) Task Force on DOE...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Secretary of Energy Advisory Board (SEAB) Task Force on DOE National Laboratories The Secretary of Energy Advisory Board (SEAB) Task Force on DOE National Laboratories The...

  9. The Secretary of Energy Advisory Board (SEAB) Task Force to Support the Quadrennial Energy Review Process

    Broader source: Energy.gov [DOE]

    The Secretary of Energy Advisory Board (SEAB) Task Force to support the Quadrennial Energy Review Process is composed of SEAB members and independent experts, with experience in energy policy and...

  10. Urban Consortium Energy Task Force - Year 21 Final Report

    SciTech Connect (OSTI)

    2003-04-01

    The Urban Consortium Energy Task Force (UCETF), comprised of representatives of large cities and counties in the United States, is a subgroup of the Urban Consortium, an organization of the nation's largest cities and counties joined together to identify, develop and deploy innovative approaches and technological solutions to pressing urban issues.

  11. Joint Outreach Task Group Video Series | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Video Series Joint Outreach Task Group Video Series The purpose of this video series is to provide an overview of the roles and responsibilities of the federal government offices and entities involved in the Energy Employees Occupational Illness Compensation Program Act (EEOIOCPA) and the Former Worker Medical Screening Program (FWP), two programs that serve eligible workers from the Department of Energy (DOE). In the interest of combining resources, since both the EEOICPA and FWP serve a

  12. Proceedings of the ocean energy information dissemination workshop, December 1979

    SciTech Connect (OSTI)

    Petty, D.

    1980-04-01

    The workshop was held to discuss the status of marketing ocean energy information and to develop an understanding of information needs and how to satisfy them. Presentations were made by the Solar Energy Research Institute (SERI) staff and media consultants about the effective use of audio-visual and print products, the mass media, and audience needs. Industry and government representatives reported on current efforts in each of their communication programs and outlined future plans. Four target audiences (DOE contractors, researchers, influencers, and general public) were discussed with respect to developing priorities for projects to enhance the commercialization of ocean energy technology.

  13. FAQS Job Task Analyses Form | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Form FAQS Job Task Analyses Form Step 1, Identify and evaluate tasks; Step 2, Identify and evaluate competencies; and Step 3, Evaluate linkage between tasks and competencies. FAQS Job Task Analyses Form (18.57 KB) More Documents & Publications FAQS Job Task Analyses - Emergency Management FAQS Job Task Analyses - Environmental Compliance FAQS Job Task Analyses - Chemical Processing

  14. MHK Projects/Makai Ocean Energy Research Center | Open Energy...

    Open Energy Info (EERE)

    Project Details Makai Ocean Engineering has designed, owns, and operates a closed-cycle OTEC system in Kailua-Kona Hawaii. True deep cold seawater is drawn from a depth of about...

  15. Quantitative evaluation of ocean thermal energy conversion (OTEC): executive briefing

    SciTech Connect (OSTI)

    Gritton, E.C.; Pei, R.Y.; Hess, R.W.

    1980-08-01

    Documentation is provided of a briefing summarizing the results of an independent quantitative evaluation of Ocean Thermal Energy Conversion (OTEC) for central station applications. The study concentrated on a central station power plant located in the Gulf of Mexico and delivering power to the mainland United States. The evaluation of OTEC is based on three important issues: resource availability, technical feasibility, and cost.

  16. Task Order Price Evaluation Worksheet for ESPCs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Task Order Price Evaluation Worksheet for ESPCs Task Order Price Evaluation Worksheet for ESPCs Document lists a series of site-specific proposal data questions to answer for a task order. Download the Task Order Price Evaluation Worksheet. (73 KB) More Documents & Publications Task Order Price Evaluation Worksheet for Super ESPC Descriptions of ESPC Task Order Schedules and Placement of Pricing Information (IDIQ Attachment J-5) ESPC Task Order Financial Schedules (IDIQ Attachment J-6)

  17. Research and development on ocean thermal energy conversion in Japan

    SciTech Connect (OSTI)

    Uehara, H.

    1982-08-01

    The study of Ocean Thermal Energy Conversion (OTEC) in Japan has been conducted under the leadership of a team of the ''Sunshine Project'', a national new energy development project promoted by the Ministry of International Trade and Industries (MITI) since 1974. At present, two experimental OTEC power plants -Nauru's OTEC plant and Imari's OTEC plant are operating. In this paper, the review of research and development activity of these two OTEC plants in Japan is made.

  18. Federal Ocean Energy Technology: Program summary for fiscal year 1986

    SciTech Connect (OSTI)

    Not Available

    1987-10-01

    The Department of Energy's (DOE) Ocean Energy Technology (OET) Program is looking for cost-effective ways to harness ocean energy to help power tomorrow's world. Federally sponsored researchers are studying methods to transform the solar heat stored in the ocean's surface waters into electricity as well as new ways to convert wave energy into mechanical energy or electricity. This report provides a summary of research completed during FY 1986. Four major research areas are addressed in the work covered by this report: Thermodynamic Research and Analysis addresses the process and system analyses which provide the underlying understanding of physical effects which constitute the energy conversion processes, Experimental Verification and Testing provides confirmation of the analytical projections and empirical relationships, Materials and Structural Research addresses special materials compatibility issues related to operation in the sea. Much of its focus is on concepts for the system CWP which is a major technology cost driver, and Oceanographic, Environmental, and Geotechnical Research addresss those unique design requirements imposed by construction in steep slope coastal areas.

  19. Lockheed Testing the Waters for Ocean Thermal Energy System | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Lockheed Testing the Waters for Ocean Thermal Energy System Lockheed Testing the Waters for Ocean Thermal Energy System May 27, 2010 - 11:46am Addthis Paul Lester Paul Lester Digital Content Specialist, Office of Public Affairs A floating platform, simple turbine and tropical oceans could be the key to producing 30 percent or more of the total energy the world consumes today, according to Lockheed Martin. The technology in play: Ocean Thermal Energy Conversion (OTEC). Lockheed Martin

  20. Mapping and Assessment of the United States Ocean Wave Energy Resource |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Mapping and Assessment of the United States Ocean Wave Energy Resource Mapping and Assessment of the United States Ocean Wave Energy Resource This report describes the analysis and results of a rigorous assessment of the United States ocean wave energy resource. Mapping and Assessment of the United States Ocean Wave Energy Resource (8.4 MB) More Documents & Publications Assessment and Mapping of the Riverine Hydrokinetic Resource in the Continental United States

  1. Hawaii energy strategy project 2: Fossil energy review. Task 2: Fossil energy in Hawaii

    SciTech Connect (OSTI)

    Breazeale, K.; Yamaguchi, N.D.; Keeville, H.

    1993-12-01

    In Task 2, the authors establish a baseline for evaluating energy use in Hawaii, and examine key energy and economic indicators. They provide a detailed look at fossil energy imports by type, current and possible sources of oil, gas and coal, quality considerations, and processing/transformation. They present time series data on petroleum product consumption by end-use sector, though they caution the reader that the data is imperfect. They discuss fuel substitutability to identify those end-use categories that are most easily switched to other fuels. They then define and analyze sequential scenarios of fuel substitution in Hawaii and their impacts on patterns of demand. They also discuss energy security--what it means to Hawaii, what it means to neighboring economies, whether it is possible to achieve energy security. 95 figs., 48 tabs.

  2. Climate Change Task Force Webinar Series | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    State, Local, and Tribal Leaders Task Force on Climate Preparedness and Resilience. ... Task Force on Climate Preparedness and Resilience, established by an Executive Order in ...

  3. Indian National Institute of Ocean Technology | Open Energy Informatio...

    Open Energy Info (EERE)

    of Ocean Technology Jump to: navigation, search Name: Indian National Institute of Ocean Technology Place: Chennai, Tamil Nadu, India Sector: Ocean Product: Research institute...

  4. Hawaii Energy Strategy Project 2: Fossil Energy Review. Task IV. Scenario development and analysis

    SciTech Connect (OSTI)

    Yamaguchi, N.D.; Breazeale, K.

    1993-12-01

    The Hawaii Energy Strategy (HES) Program is a seven-project effort led by the State of Hawaii Department of Business, Economic Development & Tourism (DBEDT) to investigate a wide spectrum of Hawaii energy issues. The East-West Center`s Program on Resources: Energy and Minerals, has been assigned HES Project 2, Fossil Energy Review, which focuses on fossil energy use in Hawaii and the greater regional and global markets. HES Project 2 has four parts: Task I (World and Regional Fossil Energy Dynamics) covers petroleum, natural gas, and coal in global and regional contexts, along with a discussion of energy and the environment. Task II (Fossil Energy in Hawaii) focuses more closely on fossil energy use in Hawaii: current utilization and trends, the structure of imports, possible future sources of supply, fuel substitutability, and energy security. Task III`s emphasis is Greenfield Options; that is, fossil energy sources not yet used in Hawaii. This task is divided into two sections: first, an in-depth {open_quotes}Assessment of Coal Technology Options and Implications for the State of Hawaii,{close_quotes} along with a spreadsheet analysis model, which was subcontracted to the Environmental Assessment and Information Sciences Division of Argonne National Laboratory; and second, a chapter on liquefied natural gas (LNG) in the Asia-Pacific market and the issues surrounding possible introduction of LNG into the Hawaii market.

  5. NREL Job Task Analysis: Crew Leader | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Crew Leader NREL Job Task Analysis: Crew Leader A summary of job task analyses for the position of crew leader when conducting weatherization work on a residence. NREL Job Task Analysis: Crew Leader (284.29 KB) More Documents & Publications Training Self-Assessment NREL Job Task Analysis: Quality Control Inspector

  6. Ocean thermal energy. Quarterly report, January-March 1982

    SciTech Connect (OSTI)

    Not Available

    1982-03-30

    This quarterly report summarizes work of the following tasks as of March 31, 1982: OTEC pilot plant conceptual design review; OTEC methanol; review of electrolyzer development programs and requirements; financial and legal considerations in OTEC implementation; potential Navy sites for GEOTEC systems; hybrid geothermal-OTEC power plants: single-cycle performance estimates; and supervision of testing of pneumatic wave energy conversion system.

  7. Ocean energy systems. Quarterly report, July-September 1982

    SciTech Connect (OSTI)

    Not Available

    1982-09-30

    This quarterly report summarizes work on the following tasks as of September 30, 1982: (1) OTEC pilot plant conceptual design review; (2) OTEC methanol; (3) financial and legal considerations in OTEC implementation; (4) GEOTEC resource exploration at Adak, Alaska, and Lualualei, Hawaii; (5) preliminary GEOTEC plant cost estimates; and (6) supervision of testing of pneumatic wave energy conversion system.

  8. Ocean thermal energy. Quarterly report, April-June 1982

    SciTech Connect (OSTI)

    Not Available

    1982-06-30

    This quarterly report includes summaries of the following tasks: (1) OTEC pilot plant conceptual design review; (2) OTEC methanol; (3) management decision requirements for OTEC construction; (4) hybrid geothermal - OTEC (GEOTEC) power plant performance estimates; and (5) supervision of testing of pneumatic wave energy conversion system.

  9. FAQS Job Task Analyses - Instrument and Controls | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Instrument and Controls FAQS Job Task Analyses - Instrument and Controls FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies. FAQS JTA - Instrument and

  10. The Secretary of Energy Advisory Board (SEAB) Task Force on Methane

    Energy Savers [EERE]

    Hydrates | Department of Energy Methane Hydrates The Secretary of Energy Advisory Board (SEAB) Task Force on Methane Hydrates The Secretary of Energy Advisory Board (SEAB) Task Force on Methane Hydrates is composed of SEAB members and independent experts charged with recommending a framework for DOE methane hydrate research programs. Purpose of the Task Force: The purpose of this task force is to provide a framework for DOE's pre-commercial methane hydrate research effort, in particular, the

  11. OCEAN THERMAL ENERGY CONVERSION: AN OVERALL ENVIRONMENTAL ASSESSMENT

    SciTech Connect (OSTI)

    Sands, M.Dale

    1980-08-01

    Significant acccrmplishments in Ocean Thermal Energy Conversion (OTEC) technology have increased the probability of producing OTEC-derived power within this decade with subsequent large scale commercialization following by the turn of the century. Under U.S. Department of Energy funding, the Oceanic Engineering Operations of Interstate Electronics Corporation has prepared several OTEC Environmental Assessments over the past years, in particular, the OTEC Programmatic Environmental Assessment. The Programmatic EA considers several technological designs (open- and closed-cycle), plant configuratlons (land-based, moored, and plant-ship), and power usages (baseload electricity, ammonia and aluminum production). Potential environmental impacts, health and safetv issues and a status update of the institutional issues as they influence OTEC deployments, are included.

  12. Ocean Energy Program Overview, Fiscal years 1990--1991. Programs in utility technologies

    SciTech Connect (OSTI)

    Not Available

    1992-05-01

    The oceans are the world`s largest solar energy collector and storage system. Covering 71% of the earth`s surface, the oceans collect and store this energy as waves, currents, and thermal and salinity gradients. The purpose of the US Department of Energy`s (DOE) Ocean Energy Program is to develop techniques that harness ocean energy cost effectively and in ways that do not harm the environment. The program seeks to develop ocean energy technology to a point at which industry can accurately assess whether the applications of the technology are viable energy conversion alternatives, or supplements to current power-generating systems. In past studies, DOE identified ocean thermal energy conversion (OTEC), which uses the temperature difference between warm surface water and cold deep water, as the most promising of the ocean energy technologies. As a result, the Ocean Energy Program has concentrated research that advances OTEC technology. The program also monitored developments in wave energy, ocean current, and salinity gradient concepts. It is not actively developing these technologies now. The mission of the Ocean Energy Program is to develop techniques to harness the vast solar energy stored in the oceans` waves, currents, and thermal and salinity gradients.

  13. Grays Harbor Ocean Energy Company | Open Energy Information

    Open Energy Info (EERE)

    Energy, Wind energy Product: Grays Harbor has started a demonstration project for offshore windwave renewable power generation in Washington State and has applied for up...

  14. MHK Projects/Ocean Energy Galway Bay IE | Open Energy Information

    Open Energy Info (EERE)

    at the Irish Marine Institute-run test site in the waters off Galway, Ireland. Ocean Energy conducted a 2006-2007 winter sea trial on its 28 ton OEBuoy prototype at the Irish...

  15. Federal Smart Grid Task Force | Department of Energy

    Energy Savers [EERE]

    Department of Agriculture (USDA) - Rural Utility Service (RUS) Department of Defense (DOD) Federal Communications Commission (FCC) National Oceanic and Atmospheric Administration ...

  16. The Secretary of Energy Advisory Board Task Force to Support Evaluation of

    Energy Savers [EERE]

    the New Funding Constructs for Energy Research and Development (R&D) in the Department of Energy | Department of Energy Task Force to Support Evaluation of the New Funding Constructs for Energy Research and Development (R&D) in the Department of Energy The Secretary of Energy Advisory Board Task Force to Support Evaluation of the New Funding Constructs for Energy Research and Development (R&D) in the Department of Energy The Secretary of Energy Advisory Board Task Force to

  17. Energy Department Releases New Energy 101 Video on Ocean Power...

    Energy Savers [EERE]

    and currents and convert it into electricity to power our homes, buildings and cities. ... Read about the Energy Department's assessments of wave and tidal energy resources. You've ...

  18. Assessment of Energy Production Potential from Ocean Currents along the United States Coastline

    SciTech Connect (OSTI)

    Haas, Kevin A.

    2013-10-03

    Increasing energy consumption and depleting reserves of fossil fuels have resulted in growing interest in alternative renewable energy from the ocean. Ocean currents are an alternative source of clean energy due to their inherent reliability, persistence and sustainability. General ocean circulations exist in the form of large rotating ocean gyres, and feature extremely rapid current flow in the western boundaries due to the Coriolis Effect. The Gulf Stream system is formed by the western boundary current of the North Atlantic Ocean that flows along the east coastline of the United States, and therefore is of particular interest as a potential energy resource for the United States.

  19. MHK Technologies/Ocean Wave Energy Converter OWEC | Open Energy...

    Open Energy Info (EERE)

    with fewer parts Electromechanical loads are real time adjustable with respect to wave sensor web resulting in optimal energy conversion from near fully submerged wave following...

  20. Voith Hydro Ocean Current Technologies | Open Energy Information

    Open Energy Info (EERE)

    Ocean Current Technologies Jump to: navigation, search Name: Voith Hydro Ocean Current Technologies Place: Germany Sector: Hydro Product: Germany-based JV between Voith Hydro and...

  1. Ocean County Landfill Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    County Landfill Biomass Facility Jump to: navigation, search Name Ocean County Landfill Biomass Facility Facility Ocean County Landfill Sector Biomass Facility Type Landfill Gas...

  2. MHK Technologies/THOR Ocean Current Turbine | Open Energy Information

    Open Energy Info (EERE)

    THOR Ocean Current Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage THOR Ocean Current Turbine.jpg Technology Profile Primary...

  3. Carbon dioxide release from ocean thermal energy conversion (OTEC) cycles

    SciTech Connect (OSTI)

    Green, H.J. ); Guenther, P.R. )

    1990-09-01

    This paper presents the results of recent measurements of CO{sub 2} release from an open-cycle ocean thermal energy conversion (OTEC) experiment. Based on these data, the rate of short-term CO{sub 2} release from future open-cycle OTEC plants is projected to be 15 to 25 times smaller than that from fossil-fueled electric power plants. OTEC system that incorporate subsurface mixed discharge are expected to result in no long-term release. OTEC plants can significantly reduce CO{sub 2} emissions when substituted for fossil-fueled power generation. 12 refs., 4 figs., 3 tabs.

  4. Heat transfer research for ocean thermal energy conversion

    SciTech Connect (OSTI)

    Kreith, F.; Bharathan, D.

    1988-02-01

    In this lecture an overview of the heat and mass-transfer phenomena of importance in ocean thermal energy conversion (OTEC) is presented with particular emphasis on open-cycle OTEC systems. Also included is a short historical review of OTEC developments in the past century and a comparison of open and closed-cycle thermodynamics. Finally, results of system analyses, showing the effect of plant size on cost and the near-term potential of using OTEC for combined power production and desalination systems, are briefly discussed.

  5. Heat transfer research for ocean thermal energy conversion

    SciTech Connect (OSTI)

    Kreith, F.; Bharathan, D.

    1987-03-01

    In this lecture an overview of the heat- and mass-transfer phenomena of importance in ocean thermal energy conversion (OTEC) is presented with particular emphasis on open-cycle OTEC systems. Also included is a short historical review of OTEC developments in the past century and a comparison of open- and closed-cycle thermodynamics. Finally, results of system analyses, showing the effect of plant size on cost and the near-term potential of using OTEC for combined power production and desalination systems are briefly discussed.

  6. Clean Air Task Force CATF | Open Energy Information

    Open Energy Info (EERE)

    Force (CATF) Place: Boston, Massachusetts Zip: 2108 Product: Massachusetts-based scientific research and legal advocacy center. References: Clean Air Task Force (CATF)1 This...

  7. Multifamily Energy Auditor Job/Task Analysis and Report: September 2013

    SciTech Connect (OSTI)

    Owens, C. M.

    2013-09-01

    The development of job/task analyses (JTAs) is one of three components of the Guidelines for Home Energy Professionals project and will allow industry to develop training resources, quality assurance protocols, accredited training programs, and professional certifications. The Multifamily Energy Auditor JTA identifies and catalogs all of the tasks performed by multifamily energy auditors, as well as the knowledge, skills, and abilities (KSAs) needed to perform the identified tasks.

  8. The Secretary of Energy Advisory Board (SEAB) Task Force on Next Generation

    Energy Savers [EERE]

    High Performance Computing | Department of Energy Next Generation High Performance Computing The Secretary of Energy Advisory Board (SEAB) Task Force on Next Generation High Performance Computing The Secretary of Energy Advisory Board (SEAB) Task Force on Next Generation High Performance Computing is composed of SEAB members and independent experts charged with reviewing the mission and national capabilities related to next generation high performance computing. The Task Force will examine

  9. Outer Banks Ocean Energy Corporation | Open Energy Information

    Open Energy Info (EERE)

    Sector: Wind energy Product: Privately-held company that plans to develop a 200-600MW offshore wind farm in federal lease blocks near North Carolina's barrier islands, known as...

  10. Memorandum of Understanding On Weather-Dependent and Oceanic Renewable Energy Resources

    Broader source: Energy.gov [DOE]

    Memorandum of Understanding (MOU) On Weather-Dependent and Oceanic Renewable Energy Resources between the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy and the U.S. Department of Commerce, National Oceanic and Atmospheric Administration

  11. The Secretary of Energy Advisory Board (SEAB) Task Force on Nuclear Nonproliferation

    Broader source: Energy.gov [DOE]

    The Secretary of Energy Advisory Board (SEAB) Task Force on Nuclear Nonproliferation comprises SEAB members and individuals with expertise and experience in the technologies, institutions, and...

  12. Renewable energy from the ocean - a guide to OTEC

    SciTech Connect (OSTI)

    Avery, W.H.; Wu, C.

    1994-01-01

    An enormous renewable energy resource exists in the tropical oceans. The authors of this book state that this resource could be exploited to produce a large fraction of the world's energy needs in the form of methanol or ammonia and that any associated deleterious environmental effects would be minimal. Careful analyses of potential problems, detailed designs of OTEC plant ships, and consideration of costs occupy most of the book. Part of it is devoted to some limited practical experience. With the knowledge set forth a 40-MWe seagoing pilot plant could be constructed. Cost would be about $200 million in 1990 dollars. Construction could be relatively rapid, since most of the components would be commercially available. The authors provide extensive evidence that with experience costs of OTEC would be substantially reduced and that ultimately production of methanol and ammonia by OTEC could be made cost-competitive.

  13. Report of the Infrastructure Task Force of the Nuclear Energy Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advisory Committee | Department of Energy Report of the Infrastructure Task Force of the Nuclear Energy Research Advisory Committee Report of the Infrastructure Task Force of the Nuclear Energy Research Advisory Committee On October 1, 2002 the DOE Nuclear Energy Research Advisory Committee was asked to provide specific, focused updates to its Nuclear Science and Technology Infrastructure Roadmap and review the specific issues at the DOE key nuclear energy research and development (R&D)

  14. Open cycle ocean thermal energy conversion system structure

    DOE Patents [OSTI]

    Wittig, J. Michael

    1980-01-01

    A generally mushroom-shaped, open cycle OTEC system and distilled water producer which has a skirt-conduit structure extending from the enlarged portion of the mushroom to the ocean. The enlarged part of the mushroom houses a toroidal casing flash evaporator which produces steam which expands through a vertical rotor turbine, partially situated in the center of the blossom portion and partially situated in the mushroom's stem portion. Upon expansion through the turbine, the motive steam enters a shell and tube condenser annularly disposed about the rotor axis and axially situated beneath the turbine in the stem portion. Relatively warm ocean water is circulated up through the radially outer skirt-conduit structure entering the evaporator through a radially outer portion thereof, flashing a portion thereof into motive steam, and draining the unflashed portion from the evaporator through a radially inner skirt-conduit structure. Relatively cold cooling water enters the annular condenser through the radially inner edge and travels radially outwardly into a channel situated along the radially outer edge of the condenser. The channel is also included in the radially inner skirt-conduit structure. The cooling water is segregated from the potable, motive steam condensate which can be used for human consumption or other processes requiring high purity water. The expansion energy of the motive steam is partially converted into rotational mechanical energy of the turbine rotor when the steam is expanded through the shaft attached blades. Such mechanical energy drives a generator also included in the enlarged mushroom portion for producing electrical energy. Such power generation equipment arrangement provides a compact power system from which additional benefits may be obtained by fabricating the enclosing equipment, housings and component casings from low density materials, such as prestressed concrete, to permit those casings and housings to also function as a floating

  15. The Secretary of Energy Advisory Board Task Force to Support...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... SEAB Hubs + Report DOE Response to SEAB Hubs+ Report SEAB Task Force on HubsEFRCsBRCsARPA-E Members: Cherry Murray, Harvard University, TF Chair, * Rafael Bras, Georgia ...

  16. DE-EE0000319 Final Technical Report [National Open-ocean Energy Laboratory

    SciTech Connect (OSTI)

    Skemp, Susan

    2013-12-29

    , seasons and time durations; Design and implementation of instrumentation for the first phase of the offshore testing facility, the wet- and top-side data acquisition systems, and shore-based analysis systems; Implementation of a laboratory-scale dynamometer system to test generators of up to 25 kW capacity using real-world (simulated) forcing; Completion of 24 months of (airborne) marine vertebrate surveys and associated analysis of sea turtle offshore activity, marine mammal vocalization research, and ocean current turbine hydrodynamic noise characterization; Development of a secondary-school (nominally grade 10) curriculum about hydrokinetic MRE, “Energy from the Oceans: The New Renewable”, and training of over 200 high-school teachers in its use and in how to educate their colleagues in application of the material in the classroom; Presentations to over 50 interested civic groups in the region on various aspects of MRE in SE Florida A series of public lectures to over 600 residents of south Florida to provide broader education on MRE. Development of an interactive kiosk for installation in local science museums. These, and other accomplishments detailed in this report contribute to a comprehensive ongoing program at the SNMREC to support the affordable, responsible, and achievable commercialization of MRE. Many of the tasks of this award are continued or will be verified with follow-on funding DE-EE0004200, and its goal: the installation of the world’s first offshore ocean current turbine testing and validation capability.

  17. EERE Success Story-Establishing a Testing Center for Ocean Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Both universities' research efforts will help maximize the energy extracted by wave and tidal power installations and under-stand the potential impacts of ocean power development ...

  18. TARA OCEANS: A Global Analysis of Oceanic Plankton Ecosystems (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    SciTech Connect (OSTI)

    Karsenti, Eric [EMBL Heidelberg

    2013-03-01

    Eric Karsenti of EMBL delivers the closing keynote on "TARA OCEANS: A Global Analysis of Oceanic Plankton Ecosystems" at the 8th Annual Genomics of Energy & Environment Meeting on March 28, 2013 in Walnut Creek, Calif.

  19. Turkey energy and environmental review - Task 7 energy sector modeling : executive summary.

    SciTech Connect (OSTI)

    Conzelmann, G.; Koritarov, V.; Decision and Information Sciences

    2008-02-28

    Turkey's demand for energy and electricity is increasing rapidly. Since 1990, energy consumption has increased at an annual average rate of 4.3%. As would be expected, the rapid expansion of energy production and consumption has brought with it a wide range of environmental issues at the local, regional and global levels. With respect to global environmental issues, Turkey's carbon dioxide (CO2) emissions have grown along with its energy consumption. Emissions in 2000 reached 211 million metric tons. With GDP projected to grow at over 6% per year over the next 25 years, both the energy sector and the pollution associated with it are expected to increase substantially. This is expected to occur even if assuming stricter controls on lignite and hard coal-fired power generation. All energy consuming sectors, that is, power, industrial, residential, and transportation, will contribute to this increased emissions burden. Turkish Government authorities charged with managing the fundamental problem of carrying on economic development while protecting the environment include the Ministry of Environment (MOE), the Ministry of Energy and Natural Resources (MENR), and the Ministry of Health, as well as the Turkish Electricity Generation & Transmission Company (TEAS). The World Bank, working with these agencies, is planning to assess the costs and benefits of various energy policy alternatives under an Energy and Environment Review (EER). Eight individual studies have been conducted under this activity to analyze certain key energy technology issues and use this analysis to fill in the gaps in data and technical information. This will allow the World Bank and Turkish authorities to better understand the trade-offs in costs and impacts associated with specific policy decisions. The purpose of Task 7-Energy Sector Modeling, is to integrate information obtained in other EER tasks and provide Turkey's policy makers with an integrated systems analysis of the various options for

  20. Pelamis Wave Power Ocean Power Delivery Ltd | Open Energy Information

    Open Energy Info (EERE)

    Sector: Ocean Product: Scotland-based company specialising in the use of ocean power for electricity generation via its Pelamis convertor, which has been demonstrated up to 750kW....

  1. IEA Wind Task 26: The Past and Future Cost of Wind Energy, Work Package 2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IEA Wind Task 26 WP2 The Past and Future Cost of Wind Energy Leading Authors Eric Lantz: National Renewable Energy Laboratory Ryan Wiser: Lawrence Berkeley National Laboratory Maureen Hand: National Renewable Energy Laboratory NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 *

  2. Waterborne noise due to ocean thermal energy conversion plants

    SciTech Connect (OSTI)

    Janota, C.P.; Thompson, D.E.

    1983-07-01

    Public law reflects a United States national commitment to the rapid development of Ocean Thermal Energy Conversion (OTEC) as an alternate energy source. OTEC plants extract the stored solar energy from the world's tropical seas and in so doing pose a potential for altering the character of the ambient noise there. The sources of noise from an OTEC plant are analyzed in the context of four configurations, two of which were built and tested, and two which are concepts for future full-scale moored facilities. The analysis indicates that the noise resulting from the interaction of turbulence with the seawater pumps is expected to dominate in the frequency range 10 Hz to 1 kHz. Measured radiated noise data from the OTEC-I research plant, located near the island of Hawaii, are compared with the analysis. The measured data diverge from the predicted levels at frequencies above about 60 Hz because of dominant non-OTEC noise sources on this platform. However, at low frequency, the measured broadband noise is comparable to that predicted.

  3. Ocean thermal energy conversion: Historical highlights, status, and forecast

    SciTech Connect (OSTI)

    Dugger, G.L.; Avery, W.H.; Francis, E.J.; Richards, D.

    1983-07-01

    In 1881, d'Arsonval conceived the closed-Rankine-cycle ocean thermal energy conversion (OTEC) system in which a working fluid is vaporized by heat exchange with cold water drawn from a 700-1200 m depth. In 1930, Claude demonstrated an open-cycle process in Cuba. Surface water was flash-vaporized at 3 kPa to drive a turbine directly (no secondary working fluid) and then was condensed by direct contact with water drawn from a 700-m depth through a 1.6m-diam, 1.75-km-long cold-water pipe (CWP). From a delta T of 14/sup 0/C his undersized turbine generated 22 kW. In 1956 a French team designed a 3.5-MW (net) open-cycle plant for installation off Abidjan on the Ivory Coast of Africa and demonstrated the necessary CWP deployment. The at-sea demonstrations by Mini-OTEC and OTEC-1 and other recent advances in OTEC technology summarized herein represent great progress. All of the types of plants proposed for the DOE's PON program may be worthy of development; certainly work on a grazing plant is needed. Our estimates indicate that the U.S. goals established by Public Law 96-310 leading to 10 GW of OTEC power and energy product equivalents by 1999 are achievable, provided that adequate federal financial incentives are retained to assure the building of the first few plants.

  4. Capturing the Motion of the Ocean: Wave Energy Explained | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Capturing the Motion of the Ocean: Wave Energy Explained Capturing the Motion of the Ocean: Wave Energy Explained July 6, 2015 - 11:44am Addthis Energy Department-supported "Azura" wave energy converter is installed at a U.S. Navy test site in Hawaii. | Photo courtesy of Northwest Energy Innovations. Energy Department-supported "Azura" wave energy converter is installed at a U.S. Navy test site in Hawaii. | Photo courtesy of Northwest Energy Innovations. Matt

  5. Assessment of Energy Production Potential from Ocean Currents...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report summarizing the results of seven years of numerical model simulations of ocean currents in the United States and the database created with that data. energyproductionocean...

  6. List of Ocean Thermal Incentives | Open Energy Information

    Open Energy Info (EERE)

    Cells Fuel Cells using Renewable Fuels Geothermal Electric Ground Source Heat Pumps Hydrogen Landfill Gas Methanol Ocean Thermal Photovoltaics Renewable Fuels Small Hydroelectric...

  7. MHK Technologies/Ocean Current Linear Turbine | Open Energy Informatio...

    Open Energy Info (EERE)

    Current Linear Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Ocean Current Linear Turbine.jpg Technology Profile Primary...

  8. MHK Projects/Development of Ocean Treader | Open Energy Information

    Open Energy Info (EERE)

    Wave Treader fixed *MHK TechnologiesOcean Treader floating Project Licensing Environmental Monitoring and Mitigation Efforts See Tethys << Return to the MHK database...

  9. EERE Success Story-Establishing a Testing Center for Ocean Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies in the Pacific Northwest | Department of Energy Establishing a Testing Center for Ocean Energy Technologies in the Pacific Northwest EERE Success Story-Establishing a Testing Center for Ocean Energy Technologies in the Pacific Northwest April 9, 2013 - 12:00am Addthis The University of Washington (UW) and Oregon State University (OSU) have partnered with EERE to develop the Northwest National Marine Renewable Energy Center (NNMREC), as one of three National Marine Renewable

  10. Report of the Task Force on FracFocus 2.0 | Department of Energy

    Energy Savers [EERE]

    Task Force on FracFocus 2.0 Report of the Task Force on FracFocus 2.0 This report presents the findings and recommendations for the Secretary of Energy Advisory Board (SEAB) Task Force on FracFocus. The Task Force was charged with reviewing how FracFocus 2.0 houses the information Federal and State regulatory agencies require as part of their regulatory functions with regard to disclosure of the composition and quantities of fracturing fluids injected into unconventional oil and gas wells. This

  11. Energy requirements for metals production: comparison between ocean nodules and land-based resources. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-09-01

    A methodology was developed to compare the energy requirements of technologies for production of metals from ocean nodules with production of same metals from land based ores using conventional processes. The energy requirements for production of copper, nickel, cobalt, and manganese from ocean nodules are based on an ocean mining operation of 3 million tons per year of dry nodules. A linear relationship exists between the amount of nodules processed and the total energy so that the energy can be easily converted to other processing rates if desired.

  12. The Secretary of Energy Advisory Board (SEAB) Task Force on DOE National Laboratories

    Broader source: Energy.gov [DOE]

    The Secretary of Energy Advisory Board (SEAB) Task Force on DOE National Laboratories (Labs) was created to provide advice, guidance, and recommendations on important issues related to improving...

  13. The Secretary of Energy Advisory Board (SEAB) Task Force on FracFocus 2.0

    Broader source: Energy.gov [DOE]

    The Secretary of Energy Advisory Board (SEAB) Task Force on FracFocus 2.0 is composed of individuals with expertise and experience charged with reviewing how FracFocus 2.0 houses the information...

  14. Draft environmental assessment: Ocean Thermal Energy Conversion (OTEC) Pilot Plants

    SciTech Connect (OSTI)

    Sullivan, S.M.; Sands, M.D.; Donat, J.R.; Jepsen, P.; Smookler, M.; Villa, J.F.

    1981-02-01

    This Environmental Assessment (EA) has been prepared, in accordance with the National Environmental Policy Act of 1969, for the deployment and operation of a commercial 40-Megawatt (MW) Ocean Thermal Energy Conversion (OTEC) Pilot Plant (hereafter called the Pilot Plant). A description of the proposed action is presented, and a generic environment typical of the candidate Pilot Plant siting regions is described. An assessment of the potential environmental impacts associated with the proposed action is given, and the risk of credible accidents and mitigating measures to reduce these risks are considered. The Federal and State plans and policies the proposed action will encompass are described. Alternatives to the proposed action are presented. Appendix A presents the navigation and environmental information contained in the US Coast Pilot for each of the candidate sites; Appendix B provides a brief description of the methods and calculations used in the EA. It is concluded that environmental disturbances associated with Pilot Plant activities could potentially cause significant environmental impacts; however, the magnitude of these potential impacts cannot presently be assessed, due to insufficient engineering and environmental information. A site- and design-specific OTEC Pilot Plant Environmental Impact Statement (EIS) is required to resolve the potentially significant environmental effects associated with Pilot Plant deployment and operation. (WHK)

  15. Ocean Thermal Energy Conversion (OTEC) Programmatic Environmental Analysis--Appendices

    SciTech Connect (OSTI)

    Authors, Various

    1980-01-01

    The programmatic environmental analysis is an initial assessment of Ocean Thermal Energy Conversion (OTEC) technology considering development, demonstration and commercialization. It is concluded that the OTEC development program should continue because the development, demonstration, and commercialization on a single-plant deployment basis should not present significant environmental impacts. However, several areas within the OTEC program require further investigation in order to assess the potential for environmental impacts from OTEC operation, particularly in large-scale deployments and in defining alternatives to closed-cycle biofouling control: (1) Larger-scale deployments of OTEC clusters or parks require further investigations in order to assess optimal platform siting distances necessary to minimize adverse environmental impacts. (2) The deployment and operation of the preoperational platform (OTEC-1) and future demonstration platforms must be carefully monitored to refine environmental assessment predictions, and to provide design modifications which may mitigate or reduce environmental impacts for larger-scale operations. These platforms will provide a valuable opportunity to fully evaluate the intake and discharge configurations, biofouling control methods, and both short-term and long-term environmental effects associated with platform operations. (3) Successful development of OTEC technology to use the maximal resource capabilities and to minimize environmental effects will require a concerted environmental management program, encompassing many different disciplines and environmental specialties. This volume contains these appendices: Appendix A -- Deployment Scenario; Appendix B -- OTEC Regional Characterization; and Appendix C -- Impact and Related Calculations.

  16. Production of desalinated water using ocean thermal energy

    SciTech Connect (OSTI)

    Rabas, T.; Panchal, C.

    1991-01-01

    This paper describes an Ocean Thermal Energy Conversion (OTEC) desalination plant that consists of a multistage flash evaporator (MSF), a closed-cycle OTEC power plant, and an appropriate seawater system depending if the desalination plant is land based or floating. OTEC desalination plants of this type are preferred because the production of desalinated water far exceeds that obtained from other OTEC plant types employing the same size seawater system. The focus of the paper is on the multistage flash evaporator. The similarities and differences between conventional MSF and OTEC multistage flash evaporators (OTEC-MSF) are first described. Then the details of the OTEC-MSF evaporator design are discussed and preliminary correlations are recommended for the three major elements: the flash chamber, the moisture removal device, and the condenser. Recent advances such as enhanced condenser tubes, condensers of the compact type, and corrugated-plate moisture separators are introduced into the design. Comparisons of the water production capability, evaporator shell volume, and material cost are then presented for state-of-the-art and the new design concepts. 20 refs., 11 figs., 5 tabs.

  17. Microsoft Word - Energy Code Enforcement Funding Task Force ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Documents & Publications Webinar: Residential Energy Code Compliance National Electric Transmission Congestion Study - Draft for Public Comment August 2014 QER - Comment of IEEE

  18. Category:Articles with outstanding TODO tasks | Open Energy Informatio...

    Open Energy Info (EERE)

    D Data Center Equipment Daylighting Dehumidifiers Dishwasher DOE Doors DuctAir sealing E Efficiency Electric Power Board of Chattanooga Electric vehicles Emerging Energy...

  19. Department of Energy Establishes Asset Revitalization Task Force

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Corporate Overview - 2012 Department of Energy Corporate Overview - 2012 This book provides an overview of the Department of Energy (DOE). The opening sections describe the mission areas, organizational structure and upcoming critical issues of the Department, followed by brief descriptions of DOE's goals and programs. Later sections provide overviews of the Department's budget, staffing, contract management, project management, Congressional jurisdiction, Government Accountability Office (GAO)

  20. Modeling the Physical and Biochemical Influence of Ocean Thermal Energy Conversion Plant Discharges into their Adjacent Waters

    Broader source: Energy.gov [DOE]

    Modeling the Physical and Biochemical Influence of Ocean Thermal Energy Conversion Plant Discharges into their Adjacent Waters

  1. No Small Task: How Small Businesses are Critical to our Energy Future |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy No Small Task: How Small Businesses are Critical to our Energy Future No Small Task: How Small Businesses are Critical to our Energy Future July 3, 2012 - 1:25pm Addthis Shelton Clark, President of Eberline Services, receives the Small Business of the Year award from Dot Harris, Director of the Office of Economic Impact and Diversity. Eberline Services, a New Mexico-based small business, gets 90% of their business from the Energy Department. They specialize in

  2. OTEC (Ocean Thermal Energy Conversion) CWP (Cold Water Pipe) Laboratory Test Program. Ocean Systems Test Plan

    SciTech Connect (OSTI)

    Not Available

    1980-09-01

    This document presents the plan for validating the ocean systems response codes used in the OTEC community. Ocean systems used here includes the platform, the CWP, and the mooring system. The objectives of the present program are to acquire test data on the response of the ocean system to wave excitation available frequency domain computer codes. If the codes are not fully validated upon comparison of the test data with the calculations, the objectives are to identify discrepancies, establish the range of code usefulness and to recommend improvements. Model tests will be conducted in the OTC model basin with the CWP extending into the 30 foot deep pit. This limits the model scale to 1:110. Three types of prototype CWP's will be modeled: rigid, articulated and compliant. Two mooring stiffnesses will be tested based on the Lockheed mooring study. The model platform is a modified version of the APL barge redesigned to improve seakeeping performance. Computer code calculations will be made with the ROTEC and NOAA/DOE frequency domain codes. Standard response parameters will be compared with the test data (stress and motion maxima, significant and RMS magnitudes as well as selected RAO's). Wave drift forces will be estimated and compared to test data.

  3. Study to develop an inspection, maintenance, and repair plan for OTEC (Ocean Thermal Energy Conversion) modular experiment plants. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-04-01

    The inspection, maintenance and repair (IM and R) of the Ocean Thermal Energy Conversion (OTEC) Modular Experiment Plant (Pilot Plant) have been studied in two phases: Task I and Task II. Task I phase developed IM and R identification forms, identified requirements for routine and post casualty IM and R, and categorized and outlined potential procedures to perform IM and R activities. The efforts of the Task II phase have been directed to meet the following objectives: to provide feedback to the OTEC marine systems designs to assure that such designs reflect appropriate consideration of IM and R methods and unit costs, resulting in designs with reduced life cycle costs; to include technical information concerning OTEC IM and R possibilities to NOAA/DOE; to outline a basis in which the anticipated IM and R contributions to life cycle costs can be developed for any specific OTEC plant design; to identify IM and R methods within the state-of-the-art in the offshore industry; to determine the application of potential IM and R procedures for the commercial operation of OTEC 10/40 Pilot Plant(s); and input into the US government formulation of statutory and regulatory IM and R requirements for OTEC plants.

  4. Assessment of Energy Production Potential from Ocean Currents along the United States Coastline

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assessment of Energy Production Potential from Ocean Currents along the United States Coastline Final Project Report September 15, 2013 Georgia Tech Research Corporation Award Number: DE-EE0002661 Project Title: Assessment of Energy Production Potential from Ocean Currents along the United States Coastline Recipient: Georgia Tech Research Corporation Award Number: DE-EE0002661 Working Partners: PI: Dr. Kevin A. Haas - Georgia Institute of Technology, School of Civil and Environmental

  5. Mapping the Potential of U.S. Ocean Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    available in the nation's waves, tidal and river currents, and ocean thermal gradients. ... and global wave, tidal, ocean thermal, and continental U.S. river hydrokinetic resources. ...

  6. Hawaii energy strategy project 2: Fossil energy review. Task 1: World and regional fossil energy dynamics

    SciTech Connect (OSTI)

    Breazeale, K.; Isaak, D.T.; Yamaguchi, N.; Fridley, D.; Johnson, C.; Long, S.

    1993-12-01

    This report in the Hawaii Energy Strategy Project examines world and regional fossil energy dynamics. The topics of the report include fossil energy characteristics, the world oil industry including reserves, production, consumption, exporters, importers, refining, products and their uses, history and trends in the global oil market and the Asia-Pacific market; world gas industry including reserves, production, consumption, exporters, importers, processing, gas-based products, international gas market and the emerging Asia-Pacific gas market; the world coal industry including reserves, classification and quality, utilization, transportation, pricing, world coal market, Asia-Pacific coal outlook, trends in Europe and the Americas; and environmental trends affecting fossil fuels. 132 figs., 46 tabs.

  7. Ocean thermal energy. Quarterly report, October-December 1981

    SciTech Connect (OSTI)

    Not Available

    1981-12-30

    This quarterly report summarizes work on the following tasks: OTEC methanol; approaches for financing OTEC proof-of-concept experimental vessels; investigation of OTEC-ammonia as an alternative fuel; review of electrolyzer development programs and requirements; hybrid geothermal-OTEC power plants: single-cycle performance; estimates; and hybrid geothermal-OTEC power plants: dual-cycle performance estimates.

  8. An assessment of research and development leadership in ocean energy technologies

    SciTech Connect (OSTI)

    Bruch, V.L.

    1994-04-01

    Japan is clearly the leader in ocean energy technologies. The United Kingdom also has had many ocean energy research projects, but unlike Japan, most of the British projects have not progressed from the feasibility study stage to the demonstration stage. Federally funded ocean energy research in the US was stopped because it was perceived the technologies could not compete with conventional sources of fuel. Despite the probable small market for ocean energy technologies, the short sighted viewpoint of the US government regarding funding of these technologies may be harmful to US economic competitiveness. The technologies may have important uses in other applications, such as offshore construction and oil and gas drilling. Discontinuing the research and development of these technologies may cause the US to lose knowledge and miss market opportunities. If the US wishes to maintain its knowledge base and a market presence for ocean energy technologies, it may wish to consider entering into a cooperative agreement with Japan and/or the United Kingdom. Cooperative agreements are beneficial not only for technology transfer but also for cost-sharing.

  9. Export support of renewable energy industries. Task number 1, deliverable number 3. Final report

    SciTech Connect (OSTI)

    1998-01-14

    The United States Export Council for Renewable Energy (US/ECRE), a consortium of six industry associations, promotes the interests of the renewable energy and energy efficiency member companies which provide goods and services in biomass, geothermal, hydropower, passive solar, photovoltaics, solar thermal, wind, wood energy, and energy efficiency technologies. US/ECRE`s mission is to catalyze export markets for renewable energy and energy efficiency technologies worldwide. Under this grant, US/ECRE has conducted a number of in-house activities, as well as to manage activities by member trade associations, affiliate organizations and non-member contractors and consultants. The purpose of this document is to report on task coordination and effectiveness.

  10. MHK Projects/Grays Harbor Ocean Energy and Coastal Protection...

    Open Energy Info (EERE)

    Energy Company LLC Project Technology *MHK TechnologiesTitan Platform Project Licensing Environmental Monitoring and Mitigation Efforts See Tethys << Return to the MHK database...

  11. Establishing a Testing Center for Ocean Energy Technologies in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NNMREC offers a full range of capabilities to support wave and tidal energy development ... UW plans to deploy and test tidal turbines in Puget Sound, which provides a useful natural ...

  12. Sandia Energy - Dedication of University of Maine's W2 Ocean...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Program will be the first to use the W2 facility in their public prize challenge-the Wave Energy Prize. W2 will act as one of five facilities producing 150th scaled wave...

  13. Ocean Thermal Energy Conversion (OTEC) | Seawater Cooling - Depth...

    Open Energy Info (EERE)

    Author National Renewable Energy Laboratory Maintainer Nicholas Langle bureaucode 019:20 Catalog DOE harvestobjectid 3ba3acfd-d54a-4a3d-a971-1cf4ac97fcb0 harvestsourceid...

  14. Ocean Thermal Extractable Energy Visualization: Final Technical Report

    Broader source: Energy.gov (indexed) [DOE]

    Retrofit Product | Department of Energy DOE laboratories that are participating in the Lab-Corps pilot program have assembled entrepreneurial teams to identify private sector opportunities for commercializing promising sustainable energy technologies. Each Lab-Corps team has its own industry mentor. Oak Ridge National Laboratory's (ORNL's) CI-ReClad team evaluated the commercialization potential of a building envelope retrofit system for commercial buildings. The retrofit system is based on

  15. Sustainable Energy Solutions Task 3.0:Life-Cycle Database for Wind Energy Systems

    SciTech Connect (OSTI)

    Janet M Twomey, PhD

    2010-04-30

    research has developed a fundamental approach. The emphasis was place on individual unit processes as an organizing framework to understand the life cycle of manufactured products. The rearrangement of unit processes provides an efficient and versatile means of understanding improved manufactured products such as wind generators. The taxonomy and structure of unit process lci were developed in this project. A series of ten unit process lci were developed to sample the major segments of the manufacturing unit process taxonomy. Technical and economic effectiveness has been a focus of the project research in Task three. The use of repeatable modules for the organization of information on environmental improvement has a long term impact. The information developed can be used and reused in a variety of manufacturing plants and for a range of wind generator sizes and designs. Such a modular approach will lower the cost of life cycle analysis, that is often asked questions of carbon footprint, environmental impact, and sustainability. The use of a website for dissemination, linked to NREL, adds to the economic benefit as more users have access to the lci information. Benefit to the public has been achieved by a well-attended WSU conference, as well as presentations for the Kansas Wind Energy Commission. Attendees represented public interests, land owners, wind farm developers, those interested in green jobs, and industry. Another benefit to the public is the start of information flow from manufacturers that can inform individuals about products.

  16. Sustainable Energy Solutions Task 1.0: Networked Monitoring and Control of Small Interconnected Wind Energy Systems

    SciTech Connect (OSTI)

    Janet.twomey@wichita.edu

    2010-04-30

    EXECUTIVE SUMARRY This report presents accomplishments, results, and future work for one task of five in the Wichita State University Sustainable Energy Solutions Project: To develop a scale model laboratory distribution system for research into questions that arise from networked control and monitoring of low-wind energy systems connected to the AC distribution system. The lab models developed under this task are located in the Electric Power Quality Lab in the Engineering Research Building on the Wichita State University campus. The lab system consists of four parts: 1. A doubly-fed induction generator 2. A wind turbine emulator 3. A solar photovoltaic emulator, with battery energy storage 4. Distribution transformers, lines, and other components, and wireless and wired communications and control These lab elements will be interconnected and will function together to form a complete testbed for distributed resource monitoring and control strategies and smart grid applications testing. Development of the lab system will continue beyond this project.

  17. IEA Wind Task 26: The Past and Future Cost of Wind Energy, Work Package 2

    SciTech Connect (OSTI)

    Lantz, E.; Wiser, R.; Hand, M.

    2012-05-01

    Over the past 30 years, wind power has become a mainstream source of electricity generation around the world. However, the future of wind power will depend a great deal on the ability of the industry to continue to achieve cost of energy reductions. In this summary report, developed as part of the International Energy Agency Wind Implementing Agreement Task 26, titled 'The Cost of Wind Energy,' we provide a review of historical costs, evaluate near-term market trends, review the methods used to estimate long-term cost trajectories, and summarize the range of costs projected for onshore wind energy across an array of forward-looking studies and scenarios. We also highlight the influence of high-level market variables on both past and future wind energy costs.

  18. LED Surgical Task Lighting Scoping Study: A Hospital Energy Alliance Project

    SciTech Connect (OSTI)

    Tuenge, Jason R.

    2011-01-17

    Tungsten-halogen (halogen) lamps have traditionally been used to light surgical tasks in hospitals, even though they are in many respects ill-suited to the application due to the large percentage of radiant energy outside the visible spectrum and issues with color rendering/quality. Light-emitting diode (LED) technology offers potential for adjustable color and improved color rendition/quality, while simultaneously reducing side-effects from non-visible radiant energy. It also has the potential for significant energy savings, although this is a fairly narrow application in the larger commercial building energy use sector. Based on analysis of available products and Hospital Energy Alliance member interest, it is recommended that a product specification and field measurement procedure be developed for implementation in demonstration projects.

  19. Assessment of Energy Production Potential from Ocean Currents along the United States Coastline

    SciTech Connect (OSTI)

    Haas, Kevin

    2013-09-15

    Increasing energy consumption and depleting reserves of fossil fuels have resulted in growing interest in alternative renewable energy from the ocean. Ocean currents are an alternative source of clean energy due to their inherent reliability, persistence and sustainability. General ocean circulations exist in the form of large rotating ocean gyres, and feature extremely rapid current flow in the western boundaries due to the Coriolis Effect. The Gulf Stream system is formed by the western boundary current of the North Atlantic Ocean that flows along the east coastline of the United States, and therefore is of particular interest as a potential energy resource for the United States. This project created a national database of ocean current energy resources to help advance awareness and market penetration in ocean current energy resource assessment. The database, consisting of joint velocity magnitude and direction probability histograms, was created from data created by seven years of numerical model simulations. The accuracy of the database was evaluated by ORNL?s independent validation effort documented in a separate report. Estimates of the total theoretical power resource contained in the ocean currents were calculated utilizing two separate approaches. Firstly, the theoretical energy balance in the Gulf Stream system was examined using the two-dimensional ocean circulation equations based on the assumptions of the Stommel model for subtropical gyres with the quasi-geostrophic balance between pressure gradient, Coriolis force, wind stress and friction driving the circulation. Parameters including water depth, natural dissipation rate and wind stress are calibrated in the model so that the model can reproduce reasonable flow properties including volume flux and energy flux. To represent flow dissipation due to turbines additional turbine drag coefficient is formulated and included in the model. Secondly, to determine the reasonableness of the total power

  20. Ocean thermal energy conversion: environmental effects assessment program plan, 1981-85. [Monograph

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    The Ocean Thermal Energy Conversion (OTEC) Act of 1980 calls for a legal regime to encourage commercial OTEC while protecting the oceanic and coastal environments. The Act also requires a generic plan for assessing the environmental effects of OTEC development. The plan outlined in this report establishes a priority list of nine environmental effects and a research strategy for reducing uncertainties, with an emphasis on large-scale and long-term ecosystem implications and on the impacts of multiple facilities. 70 references, 4 figures, 4 tables. (DCK)

  1. Ocean thermal energy conversion report to congress: fiscal year 1981. public law 96-320

    SciTech Connect (OSTI)

    Not Available

    1982-02-01

    After a section on the background of Ocean Thermal Energy Conversion, which deals with the national interest and the nature of the industry, this report discusses OTEC technology, the legal regime, environmental considerations and the international impact and future of OTEC. At the current time no amendments to the ACT are recommended. NOAA is analyzing several areas in which technical amendments would clarify the original intent of the Act. The most significant of these relates to the specific requirements for issuance of OTEC licenses for facilities that are located partly on land and partly in ocean waters.

  2. Ocean Thermal Energy Conversion Life Cycle Cost Assessment, Final Technical Report, 30 May 2012

    SciTech Connect (OSTI)

    Martel, Laura; Smith, Paul; Rizea, Steven; Van Ryzin, Joe; Morgan, Charles; Noland, Gary; Pavlosky, Rick; Thomas, Michael; Halkyard, John

    2012-05-30

    The Ocean Thermal Energy Conversion (OTEC) Life Cycle Cost Assessment (OLCCA) is a study performed by members of the Lockheed Martin (LM) OTEC Team under funding from the Department of Energy (DOE), Award No. DE-EE0002663, dated 01/01/2010. OLCCA objectives are to estimate procurement, operations and maintenance, and overhaul costs for two types of OTEC plants: -Plants moored to the sea floor where the electricity produced by the OTEC plant is directly connected to the grid ashore via a marine power cable (Grid Connected OTEC plants) -Open-ocean grazing OTEC plant-ships producing an energy carrier that is transported to designated ports (Energy Carrier OTEC plants) Costs are developed using the concept of levelized cost of energy established by DOE for use in comparing electricity costs from various generating systems. One area of system costs that had not been developed in detail prior to this analysis was the operations and sustainment (O&S) cost for both types of OTEC plants. Procurement costs, generally referred to as capital expense and O&S costs (operations and maintenance (O&M) costs plus overhaul and replacement costs), are assessed over the 30 year operational life of the plants and an annual annuity calculated to achieve a levelized cost (constant across entire plant life). Dividing this levelized cost by the average annual energy production results in a levelized cost of electricity, or LCOE, for the OTEC plants. Technical and production efficiency enhancements that could result in a lower value of the OTEC LCOE were also explored. The thermal OTEC resource for Oahu, Hawaii and projected build out plan were developed. The estimate of the OTEC resource and LCOE values for the planned OTEC systems enable this information to be displayed as energy supplied versus levelized cost of the supplied energy; this curve is referred to as an Energy Supply Curve. The Oahu Energy Supply Curve represents initial OTEC deployment starting in 2018 and demonstrates the

  3. Design and cost of near-term OTEC (Ocean Thermal Energy Conversion) plants for the production of desalinated water and electric power. [Ocean Thermal Energy Conversion (OTEC)

    SciTech Connect (OSTI)

    Rabas, T.; Panchal, C.; Genens, L.

    1990-01-01

    There currently is an increasing need for both potable water and power for many islands in the Pacific and Caribbean. The Ocean Thermal Energy Conversion (OTEC) technology fills these needs and is a viable option because of the unlimited supply of ocean thermal energy for the production of both desalinated water and electricity. The OTEC plant design must be flexible to meet the product-mix demands that can be very different from site to site. This paper describes different OTEC plants that can supply various mixes of desalinated water and vapor -- the extremes being either all water and no power or no water and all power. The economics for these plants are also presented. The same flow rates and pipe sizes for both the warm and cold seawater streams are used for different plant designs. The OTEC plant designs are characterized as near-term because no major technical issues need to be resolved or demonstrated. The plant concepts are based on DOE-sponsored experiments dealing with power systems, advanced heat exchanger designs, corrosion and fouling of heat exchange surfaces, and flash evaporation and moisture removal from the vapor using multiple spouts. In addition, the mature multistage flash evaporator technology is incorporated into the plant designs were appropriate. For the supply and discharge warm and cold uncertainties do exist because the required pipe sizes are larger than the maximum currently deployed -- 40-inch high-density polyethylene pipe at Keahole Point in Hawaii. 30 refs., 6 figs., 8 tabs.

  4. Sustainable energy for all. Technical report of task force 2 in support of doubling the global rate of energy efficiency improvement and doubling the share of renewable energy in the global energy mix by 2030

    SciTech Connect (OSTI)

    Nakicenovic, Nebojsa; Kammen, Daniel; Jewell, Jessica

    2012-04-15

    The UN Secretary General established the Sustainable Energy for All initiative in order to guide and support efforts to achieve universal access to modern energy, rapidly increase energy efficiency, and expand the use of renewable energies. Task forces were formed involving prominent energy leaders and experts from business, government, academia and civil society worldwide. The goal of the Task Forces is to inform the implementation of the initiative by identifying challenges and opportunities for achieving its objectives. This report contains the findings of Task Force Two which is dedicated energy efficiency and renewable energy objectives. The report shows that doubling the rate of energy efficiency improvements and doubling the share of energy from renewable sources by 2030 is challenging but feasible if sufficient actions are implemented. Strong and well-informed government policies as well as extensive private investment should focus on the high impact areas identified by the task force.

  5. Ocean Viruses: Tiny entities with Global Impacts ( JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    ScienceCinema (OSTI)

    Sullivan, Matthew B [University of Arizona

    2013-01-15

    Matt Sullivan from the University of Arizona on "Ocean Viruses: Tiny Entities with Global Impacts" at the 7th Annual Genomics of Energy & Environment Meeting on March 22, 2012 in Walnut Creek, Calif.

  6. Ocean Viruses: Tiny entities with Global Impacts ( JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    SciTech Connect (OSTI)

    Sullivan, Matthew B [University of Arizona] [University of Arizona

    2012-03-22

    Matt Sullivan from the University of Arizona on "Ocean Viruses: Tiny Entities with Global Impacts" at the 7th Annual Genomics of Energy & Environment Meeting on March 22, 2012 in Walnut Creek, Calif.

  7. Accelerating Ocean Energy to the Marketplace – Environmental Research at the U.S. Department of Energy National Laboratories

    SciTech Connect (OSTI)

    Copping, Andrea E.; Cada, G. F.; Roberts, Jesse; Bevelhimer, Mark

    2010-10-06

    The U.S. Department of Energy (US DOE) has mobilized its National Laboratories to address the broad range of environmental effects of ocean and river energy development. The National Laboratories are using a risk-based approach to set priorities among environmental effects, and to direct research activities. Case studies will be constructed to determine the most significant environmental effects of ocean energy harvest for tidal systems in temperate estuaries, for wave energy installations in temperate coastal areas, wave installations in sub-tropical waters, and riverine energy installations in large rivers. In addition, the National Laboratories are investigating the effects of energy removal from waves, tides and river currents using numerical modeling studies. Laboratory and field research is also underway to understand the effects of electromagnetic fields (EMF), acoustic noise, toxicity from anti-biofouling coatings, effects on benthic habitats, and physical interactions with tidal and wave devices on marine and freshwater organisms and ecosystems. Outreach and interactions with stakeholders allow the National Laboratories to understand and mitigate for use conflicts and to provide useful information for marine spatial planning at the national and regional level.

  8. Sustainable energy for all. Technical report of task force 1 in support of the objective to achieve universal access to modern energy services by 2030

    SciTech Connect (OSTI)

    Birol, Fatih

    2012-04-15

    The UN Secretary General established the Sustainable Energy for All initiative in order to guide and support efforts to achieve universal access to modern energy, rapidly increase energy efficiency, and expand the use of renewable energies. Task forces were formed involving prominent energy leaders and experts from business, government, academia and civil society worldwide. The goal of the Task Forces is to inform the implementation of the initiative by identifying challenges and opportunities for achieving its objectives. This report contains the findings of Task Force One which is dedicated to the objective of achieving universal access to modern energy services by 2030. The report shows that universal energy access can be realized by 2030 with strong, focused actions set within a coordinated framework.

  9. An assessment of ocean thermal energy conversion as an advanced electric generation methodology

    SciTech Connect (OSTI)

    Heydt, G.T. . School of Electrical Engineering)

    1993-03-01

    Ocean thermal energy conversion (OTEC) is a process that employs the temperature difference between surface and deep ocean water to alternately evaporate and condense a working fluid. In the open-cycle OTEC configuration, the working fluid is seawater. In the closed-cycle configuration, a working fluid such as propane is used. In this paper, OTEC is assessed for its practical merits for electric power generation. The process is not new--and its history is reviewed. Because the OTEC principle operates under a small net temperature difference regime, rather large amounts of seawater and working fluid are required. The energy requirements for pumping these fluids may be greater than the energy recovered from the OTEC engine itself. The concept of net power production is discussed. The components of a typical OTEC plant are discussed with emphasis on the evaporator heat exchanger. Operation of an OTEC electric generating station is discussed, including transient operation. Perhaps the most encouraging aspect of OTEC is the recent experiments and efforts at the Natural Energy Laboratory--Hawaii (NELH). The NELH work is summarized in the paper. Remarks are made on bottlenecks and the future of OTEC as an advanced electric generation methodology.

  10. Carbon Issues Task Force Report for the Idaho Strategic Energy Alliance

    SciTech Connect (OSTI)

    Travis L. Mcling

    2010-10-01

    The Carbon Issues Task Force has the responsibility to evaluate emissions reduction and carbon offset credit options, geologic carbon sequestration and carbon capture, terrestrial carbon sequestration on forest lands, and terrestrial carbon sequestration on agricultural lands. They have worked diligently to identify ways in which Idaho can position itself to benefit from potential carbon-related federal legislation, including identifying opportunities for Idaho to engage in carbon sequestration efforts, barriers to development of these options, and ways in which these barriers can be overcome. These are the experts to which we will turn when faced with federal greenhouse gas-related legislation and how we should best react to protect and provide for Idaho’s interests. Note that the conclusions and recommended options in this report are not intended to be exhaustive, but rather form a starting point for an informed dialogue regarding the way-forward in developing Idaho energy resources.

  11. Hawaii energy strategy project 2: Fossil energy review. Task 3 -- Greenfield options: Prospects for LNG use

    SciTech Connect (OSTI)

    Breazeale, K.; Fesharaki, F.; Fridley, D.; Pezeshki, S.; Wu, K.

    1993-12-01

    This paper begins with an overview of the Asia-Pacific LNG market, its major players, and the likely availability of LNG supplies in the region. The discussion then examines the possibilities for the economic supply of LNG to Hawaii, the potential Hawaiian market, and the viability of an LNG project on Oahu. This survey is far from a complete technical assessment or an actual engineering/feasibility study. The economics alone cannot justify LNG`s introduction. The debate may continue as to whether fuel diversification and environmental reasons can outweigh the higher costs. Several points are made. LNG is not a spot commodity. Switching to LNG in Hawaii would require a massive, long-term commitment and substantial investments. LNG supplies are growing very tight in the Asia-Pacific region. Some of the environmental benefits of LNG are not entirely relevant in Hawaii because Hawaii`s air quality is generally excellent. Any air quality benefits may be more than counterbalanced by the environmental hazards connected with large-scale coastal zone construction, and by the safety hazards of LNG carriers, pipelines, etc. Lastly, LNG is not suitable for all energy uses, and is likely to be entirely unsuitable for neighbor island energy needs.

  12. Interagency Task Force on Carbon Capture and Storage | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Interagency Task Force on Carbon Capture and Storage Interagency Task Force on Carbon Capture and Storage On February 3, 2010, President Obama sent a memorandum to the heads of fourteen Executive Departments and Federal Agencies establishing an Interagency Task Force on Carbon Capture and Storage. The goal was to develop a comprehensive and coordinated Federal strategy to speed the commercial development and deployment of clean coal technologies. The Task Force, co-chaired by the Department of

  13. Secretary of Energy Advisory Board (SEAB) Task Force on EM Technology Development

    Broader source: Energy.gov [DOE]

    Presentation from the 2015 DOE National Cleanup Workshop by Gerald Boyd, Vice President, Stoller Newport News Nuclear; Task Force Member.

  14. Definitional mission: Ocean Thermal Energy Conversion, Republic of the Marshall Islands. Export trade information

    SciTech Connect (OSTI)

    Dean, S.R.; Ross, J.M.

    1990-09-01

    The objective of the study was to determine the commercial viability of an Ocean Thermal Energy Conversion (OTEC) electric power plant at the Majuro Atoll in the Marshall Islands. It was concluded that various technology improvements and economic factors have converged to present a feasible opportunity. United States industrial and research organizations are technically capable of developing a commercial OTEC industry for domestic and export markets. It is estimated that 100% of OTEC equipment and services could be supplied by United States firms. However, Japan has aggressively pursued OTEC development with an apparent goal of dominating the export market.

  15. Feasibility of Tidal and Ocean Current Energy in False Pass, Aleutian Islands, Alaska final report

    SciTech Connect (OSTI)

    Wright, Bruce Albert

    2014-05-07

    The Aleutian Pribilof Islands Association was awarded a U.S. Department of Energy Tribal Energy Program grant (DE-EE0005624) for the Feasibility of Tidal and Ocean Current Energy in False Pass, Aleutian Islands, Alaska (Project). The goal of the Project was to perform a feasibility study to determine if a tidal energy project would be a viable means to generate electricity and heat to meet long-term fossil fuel use reduction goals, specifically to produce at least 30% of the electrical and heating needs of the tribally-owned buildings in False Pass. The Project Team included the Aleut Region organizations comprised of the Aleutian Pribilof Island Association (APIA), and Aleutian Pribilof Island Community Development Association (APICDA); the University of Alaska Anchorage, ORPC Alaska a wholly-owned subsidiary of Ocean Renewable Power Company (ORPC), City of False Pass, Benthic GeoScience, and the National Renewable Energy Laboratory (NREL). The following Project objectives were completed: collected existing bathymetric, tidal, and ocean current data to develop a basic model of current circulation at False Pass, measured current velocities at two sites for a full lunar cycle to establish the viability of the current resource, collected data on transmission infrastructure, electrical loads, and electrical generation at False Pass, performed economic analysis based on current costs of energy and amount of energy anticipated from and costs associated with the tidal energy project conceptual design and scoped environmental issues. Utilizing circulation modeling, the Project Team identified two target sites with strong potential for robust tidal energy resources in Isanotski Strait and another nearer the City of False Pass. In addition, the Project Team completed a survey of the electrical infrastructure, which identified likely sites of interconnection and clarified required transmission distances from the tidal energy resources. Based on resource and electrical data

  16. TASK 2.5.4 DEVELOPMENT OF AN ENERGY SAVINGS CALCULATOR

    SciTech Connect (OSTI)

    Miller, William A; New, Joshua Ryan; Desjarlais, Andre Omer; Huang, Joe; Erdem, Ender; Ronnen, Levinson

    2010-03-01

    California s major energy utilities and the California Energy Commission (CEC) are seeking to allocate capital that yields the greatest return on investment for energy infrastructure that meets any part of the need for reliable supplies of energy. The utilities are keenly interested in knowing the amount of electrical energy savings that would occur if cool roof color materials are adopted in the building market. To meet this need the Oak Ridge National Laboratory and the Lawrence Berkeley National Laboratory (LBNL) have been collaborating on a Public Interest Energy Research (PIER) project to develop an industry-consensus energy-savings calculator. The task was coordinated with an ongoing effort supported by the DOE to develop one calculator to achieve both the DOE and the EPA objectives for deployment of cool roof products. Recent emphasis on domestic building energy use has made the work a top priority by the Department of Energy s (DOE) Building Technologies Program. The Roof Savings Calculator (RSC) tool is designed to help building owners, manufacturers, distributors, contractors and practitioners easily run complex simulations. The latest web technologies and usability design were employed to provide an easy input interface to an annual simulation of hour-by-hour, whole-building performance using the world-class simulation tools DOE-2.1E and AtticSim. Building defaults were assigned based on the best available statistical evidence and can provide energy and cost savings after the user selects nothing more than the building location. A key goal for the tool is to promote the energy benefits of cool color tile, metal and asphalt shingle roof products and other energy saving systems. The RSC tool focuses on applications for the roof and attic; however, the code conducts a whole building simulation that puts the energy and heat flows of the roof and attic into the perspective of the whole house. An annual simulation runs in about 30 sec. In addition to cool

  17. Ocean Thermal Extractable Energy Visualization- Final Technical Report on Award DE-EE0002664. October 28, 2012

    SciTech Connect (OSTI)

    Ascari, Matthew B.; Hanson, Howard P.; Rauchenstein, Lynn; Van Zwieten, James; Bharathan, Desikan; Heimiller, Donna; Langle, Nicholas; Scott, George N.; Potemra, James; Nagurny, N. John; Jansen, Eugene

    2012-10-28

    The Ocean Thermal Extractable Energy Visualization (OTEEV) project focuses on assessing the Maximum Practicably Extractable Energy (MPEE) from the world's ocean thermal resources. MPEE is defined as being sustainable and technically feasible, given today's state-of-the-art ocean energy technology. Under this project the OTEEV team developed a comprehensive Geospatial Information System (GIS) dataset and software tool, and used the tool to provide a meaningful assessment of MPEE from the global and domestic U.S. ocean thermal resources. The OTEEV project leverages existing NREL renewable energy GIS technologies and integrates extractable energy estimated from quality-controlled data and projected optimal achievable energy conversion rates. Input data are synthesized from a broad range of existing in-situ measurements and ground-truthed numerical models with temporal and spatial resolutions sufficient to reflect the local resource. Energy production rates are calculated for regions based on conversion rates estimated for current technology, local energy density of the resource, and sustainable resource extraction. Plant spacing and maximum production rates are then estimated based on a default plant size and transmission mechanisms. The resulting data are organized, displayed, and accessed using a multi-layered GIS mapping tool, http://maps.nrel.gov/mhk_atlas with a user-friendly graphical user interface.

  18. Ocean thermal energy at the Johns Hopkins University Applied Physics Laboratory, quarterly report. Report for Jan-Mar 82

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    The following are included: Ocean thermal energy conversion (OTEC)--OTEC pilot plant conceptual design review; OTEC methanol; review of electrolyzer development programs and requirements; financial and legal considerations in OTEC implementation; potential navy sites for GEOTEC systems; hybrid geothermal-OTEC power plants: single-cycle performance estimates; and supervision of testing of pneumatic wave energy conversion system.

  19. The Secretary of Energy Advisory Board (SEAB) Task Force on Federal...

    Broader source: Energy.gov (indexed) [DOE]

    Management Program (FEMP) and recommending a set of actions to advance it. The Task Force's work should be based on information provided by DOE's FEMP and related programs, ...

  20. DOE Response to the DNFSB Technical Report Task 2B | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Response to the DNFSB Technical Report Task 2B DOE Response to the DNFSB Technical Report Task 2B May 15, 2013 Presenter: Roger Claycomb, Work Control Program Manager, DOE Idaho Operations Office Topics Covered: Action 2 - Strengthen Guidance and Formality Associated with Contractor Implementation and Federal Monitoring of Activity-level WP&C Task 2B - Develop a DOE Guide on Federal Oversight and Evaluation of the Effectiveness of Activity-Level WP&C Task 2B - Guidance will Contain a

  1. Urban energy management today: Ten year compendium of UCETF programs. Products and expertise of the Urban Consortium Energy Task Force, 1979--1989

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    The reports listed in this Overview summarize projects conducted through the Urban Consortium Energy Task Force by local government staff who have defined and implemented many of the energy strategies described above. Reports from their projects illustrate effective approaches to plan and implement these strategies, as well as software tools, surveys, and technical instruments valuable to other local government officials conducting similar projects.

  2. Compilation of reports prepared for the Secretary of Energy Advisory Board Task Force on Radioactive Waste Management

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    This report contains reports prepared for the Secretary of Energy Advisory Board Task Force on Radioactive Waste Management, from experts in the United States. The contents of the report focus mainly on public opinion, and government policies as perceived by the public.

  3. Aquantis 2.5MW Ocean Current Generation Device | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Aquantis 2.5MW Ocean Current Generation Device Aquantis 2.5MW Ocean Current Generation Device Aquantis 2.5MW Ocean Current Generation Device 12_aquantisawp_da_alexfleming.pptx (2.06 MB) More Documents & Publications Dehlsen (TRL 5 6 System) - Aquantis C-Plane Ocean Current Turbine Project 2014 Water Power Program Peer Review Compiled Presentations: Marine and Hydrokinetic Technologies Pumped Storage Hydropower (Project Development Support)&mdash;Geotechnical Investigation and Value

  4. Potential impact of ocean thermal energy conversion (OTEC) on fisheries. Technical report

    SciTech Connect (OSTI)

    Myers, E.P.; Hoss, D.E.; Matsumoto, W.M.; Peters, D.S.; Seki, M.P.

    1986-06-01

    The commercial development of ocean thermal energy conversion (OTEC) operations will involve some environmental perturbations for which there is no precedent experience. The pumping of very large volumes of warm surface water and cold deep water and its subsequent discharge will result in the impingement, entrainment, and redistribution of biota. Additional stresses to biota will be caused by biocide usage and temperature depressions. However, the artificial upwelling of nutrients associated with the pumping of cold deep water, and the artificial reef created by an OTEC plant may have positive effects on the local environment. Although more detailed information is needed to assess the net effect of an OTEC operation on fisheries, certain assumptions and calculations are made, supporting the conclusion that the potential risk to fisheries is not signnificant enough to deter the early development of OTEC. It will be necessary to monitor a commercial-scale plant in order to remove many of the remaining uncertainties.

  5. Integration of ocean thermal energy conversion power plants with existing power systems

    SciTech Connect (OSTI)

    Arunasalam, N.

    1986-01-01

    The problem of integrating an Ocean Thermal Energy Conversion (OTEC) power plant with existing power systems is studied. A nonlinear model of an OTEC power system is developed. The dynamics of the large local induction motor load, and the coaxial cable connection to the mainland are included in the model. The effect of the motor load and the coaxial cable on the steady-state stability of the OTEC power plant is investigated using linearized analysis. The transient stability of the OTEC system is investigated through simulation. The contribution made by the motor load and the coaxial cable to the transient stability is studied. The occurrence of self excitation phenomena is analyzed using linear methods and simulation. The effects of wave and vessel motion on the electrical power output of the OTEC plant is investigated.

  6. Waterborne noise due to ocean thermal energy conversion plants. Technical memo

    SciTech Connect (OSTI)

    Janota, C.P.; Thompson, D.E.

    1982-06-17

    Public law reflects a United States national commitment to the rapid development of Ocean Thermal Energy Conversion (OTEC) as an alternate energy source. OTEC plants extract the stored solar energy from the world's tropical seas and in so doing pose a potential for altering the character of the ambient noise there. The sources of noise from an OTEC plant are analyzed in the context of four configurations, two of which were built and tested, and two which are concepts for future full-scale moored facilities. The analysis indicates that the noise resulting from the interaction of turbulence with the sea-water pumps is expected to dominate in the frequency range 10 Hz to 1 kHZ. Measured radiated noise data from the OTEC-I research plant, located near the island of Hawaii, are compared with the analysis. The measured data diverge from the predicted levels at frequencies above about 60 Hz because of dominant non-OTEC noise sources on this platform. However, at low frequency, the measured broadband noise is comparable to that predicted.

  7. Sustainable Energy Solutions Task 5.1: Expand the Number of Faculty Working in Wind Energy: Wind Energy Storage

    SciTech Connect (OSTI)

    Janet M Twomey, PhD

    2010-04-30

    EXECUTIVE SUMARRY Energy storage to reduce peak-load demands on utilities is emerging as an important way to address the intermittency of renewable energy resources. Wind energy produced in the middle of the night may be wasted unless it can be stored, and conversely, solar energy production could be used after the sun goes down if we had an efficient way to store it. It is uses an electrochemical process to convert hydrogen gas into electricity. The role of fuel cells in energy storage is a very important criteria and it is compared with regular batteries for the advantages of fuel cells over the latter. For this reason fuel cells can be employed. PEM fuel cells can be effectively used for this reason. But the performance and durability of PEM fuel cells are significantly affected by the various components used in a PEM cell. Several parameters affect the performance and durability of fuel cells. They are water management, degradation of components, cell contamination, reactant starvation and thermal management. Water management is the parameter which plays a major role in the performance of a fuel cell. Based on the reviews, improvement of condensation on the cathode side of a fuel cell is expected to improve the performance of the fuel cell by reducing cathode flooding. Microchannels and minichannels can enhance condensation on the cathode side of a fuel cell. Computational fluid dynamics (CFD) analysis was performed to evaluate and compare the condensation of steam in mini and microchannels with hydraulic diameter of 2mm, 2.66mm, 200µm and 266µm respectively. The simulation was run at various mass flux values ranging from 0.5 kg/m2s and 4 kg/m2s. The length of the mini and microchannels were in the range of 20 mm to 100 mm. CFD software’s GAMBIT and FLUENT were used for simulating the condensation process through the mini and microchannels. Steam flowed through the channels, whose walls were cooled by natural convection of air at room temperature. The

  8. Innovative turbine concepts for open-cycle OTEC (ocean thermal energy conversion)

    SciTech Connect (OSTI)

    Not Available

    1989-12-01

    This report summarizes the results of preliminary studies conducted to identify and evaluate three innovative concepts for an open-cycle ocean thermal energy conversion (OTEC) steam turbine that could significantly reduce the cost of OTEC electrical power plants. The three concepts are (1) a crossflow turbine, (2) a vertical-axis, axial-flow turbine, and (3) a double-flow, radial-inflow turbine with mixed-flow blading. In all cases, the innovation involves the use of lightweight, composite plastic blading and a physical geometry that facilitates efficient fluid flow to and from the other major system components and reduces the structural requirements for both the turbine or the system vacuum enclosure, or both. The performance, mechanical design, and cost of each of the concepts are developed to varying degrees but in sufficient detail to show that the potential exists for cost reductions to the goals established in the US Department of Energy's planning documents. Specifically, results showed that an axial turbine operating with 33% higher steam throughput and 7% lower efficiency than the most efficient configuration provides the most cost-effective open-cycle OTEC system. The vacuum enclosure can be significantly modified to reduce costs by establishing better interfaces with the system. 33 refs., 26 figs., 11 tabs.

  9. Renewables in Alaska Native Villages: Feasibility of Tidal and Ocean Current Energy in False Pass, Aleutian Islands, Alaska

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Funding: Feasibility of Tidal and Ocean Current Energy in False Pass, Aleutian Islands, AK Bruce Wright, APIA Monty Worthington, ORPC Wright, B. A., J. W. Short, T. J. Weingartner and P. J. Anderson. 2000. The Gulf of Alaska.. Pp 373-384 in Sheppard, C. R. C., ed., Seas at the Millennium: An Environmental, Evaluation Volume I Regional Chapters: Europe, The Americas and Wes Africa. Pergammon Press, Elsevier, Amsterdam. Aleutian Pribilof Islands Regional Energy Summit April 24-25, 2010 Anchorage,

  10. MHK ISDB/Instruments/TRDI Ocean Observer ADCP | Open Energy Informatio...

    Open Energy Info (EERE)

    TRDI Ocean Observer ADCP < MHK ISDB Jump to: navigation, search MHK Instrumentation & Sensor Database Menu Home Search Add Instrument Add Sensor Add Company Community FAQ Help...

  11. Assessment of Energy Production Potential from Ocean Currents along the United States Coastline

    Office of Energy Efficiency and Renewable Energy (EERE)

    Report summarizing the results of seven years of numerical model simulations of ocean currents in the United States and the database created with that data.

  12. MHK Projects/Gulf of Mexico Ocean test | Open Energy Information

    Open Energy Info (EERE)

    Gulf of Mexico Ocean test < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"R...

  13. MHK Projects/Ocean Navitas NaREC | Open Energy Information

    Open Energy Info (EERE)

    Number of Devices Deployed 1 Main Overseeing Organization Ocean Navitas Project Licensing Environmental Monitoring and Mitigation Efforts See Tethys << Return to the MHK database...

  14. A review and critique of the socioeconomic impact assessment for the Kahe Point Ocean Thermal Energy Conversion (OTEC) facility

    SciTech Connect (OSTI)

    Bowen, R; Gopalakrishnan, C; Samples, K

    1988-01-01

    This report addresses the adequacy of Ocean Thermal Corporation's socioeconomic impact assessment of its 40-MWe closed-cycle ocean thermal energy conversion (OTEC) pilot plant proposed for Kahe Point, Oahu, Hawaii. The socioeconomic impacts identified as relevant to the plant were assessed in detail, including potential economic-demographic, public-service and fiscal, ocean-use, aesthetic, cultural, and energy impacts. The economic-demographic impact assessment does not estimate the full extent of population and income changes or second-order effects associated with the plant. There is no subjective assessment of perceptions on the part of local communities concerning probable changes in land values, housing, and population. Anticipated public-service and fiscal impacts are found to be relatively unimportant; however, the measurement of the impact of the plant on tax revenues needs improvement. The assessment does not sufficiently consider the objective and subjective assessment of ocean-use, aesthetic, and cultural impacts, which are of major significance to the local communities. The quantification of physical impacts, perceptions of impacts, and potential mitigation measures is inadequate. The energy impacts need to be updated to reflect the recent declines in oil prices and price projections. An assessment of low-probability, high-risk occurrences may be necessary. 12 refs., 3 tabs.

  15. Characterization of U.S. Wave Energy Converter (WEC) Test Sites: A Catalogue of Met-Ocean Data.

    SciTech Connect (OSTI)

    Dallman, Ann Renee; Neary, Vincent Sinclair

    2014-10-01

    This report presents met - ocean data and wave energy characteristics at three U.S. wave energy converter (WEC) test and potential deployment sites . Its purpose is to enable the compari son of wave resource characteristics among sites as well as the select io n of test sites that are most suitable for a developer's device and that best meet their testing needs and objectives . It also provides essential inputs for the design of WEC test devices and planning WEC tests, including the planning of deployment and op eration s and maintenance. For each site, this report catalogues wave statistics recommended in the (draft) International Electrotechnical Commission Technical Specification (IEC 62600 - 101 TS) on Wave Energy Characterization, as well as the frequency of oc currence of weather windows and extreme sea states, and statistics on wind and ocean currents. It also provides useful information on test site infrastructure and services .

  16. THE SECRETARY OF ENERGY ADVISORY BOARD (SEAB) TASK FORCE ON BIOMEDICAL

    Energy Savers [EERE]

    INSTITUTIONAL ORIGINS OF THE DEPARTMENT OF ENERGY ManhattanEngineerDistrict (1942-1946) Ex ExecutiveOfficeof thePresident EnergyPolicyOffice(1973) Federal * .,.-, Office (1973-1974) AtomicEnergyCommission (1947 -1975) Federal Energy Administration (1974) -1977) Energy Research and DevelopmentAdministration3 (1975 - 1977) INCLUDES 1sPECIALEnergy Office ( t7J) tklr ... Energy Office(lt13) 2 Trea y-EnergyOffice ._ 011 Import Ad I 1 ,..,_All_ fMruC**n**'" 01or11 Oooa ... ,._.,. Oil and Gas 3

  17. Seawater test results of open-cycle ocean thermal energy conversion (OC-OTEC) components

    SciTech Connect (OSTI)

    Zangrando, F.; Bharathan, D.; Link, H. ); Panchal, C.B. )

    1994-01-01

    Key components of open-cycle ocean thermal energy conversion systems--the flash evaporator, mist eliminator, passive predeaerator, two surface condenser stages, and two direct-contact condenser stages--have been tested using seawater. These components operate at lower steam pressures and higher inlet noncondensable gas concentrations than do conventional power plant heat exchangers. The rate of heat exchanged between the evaporator and the condenser is on the order of 1.25MW-thermal, requiring a warm seawater flow of about 0.1 m[sup 3]/s; the cold seawater flow is on the order of half the warm water flow. In addition to characterizing the performance of the various components, the system has produced potable water from condensation of the steam produced in the evaporator. The information obtained in these tests is being used to design a larger scale experiment in which net power production is expected to be demonstrate for the first time using OC-OTEC technology.

  18. Ocean Thermal Energy Conversion moored pipe/mobile platform design study

    SciTech Connect (OSTI)

    Bullock, H.O.; McNatt, T.R.; Ross, J.M.; Stambaugh, K.A.; Watts, J.L.

    1982-07-30

    The Ocean Thermal Energy Conversion (OTEC) Moored Pipe/Mobile Platform (MP-Squared) Design Study was carried out to investigate an innovative approach to the moored floating OTEC plant. In the past, a number of concepts have been examined by NOAA for floating OTEC plants. These concepts have considered various configurations for platforms, cold water pipes and mooring systems. In most cases the cold water pipe (CWP) was permanently attached to the platform and the platform was permanently moored on station. Even though CWP concepts incorporating articulated joints or flexible pipes were used, the CWP stresses induced by platform motion were frequently excessive and beyond the design limits of the CWP. This was especially true in the survival (100-year storm) case. It may be feasible that the concept of a permanently moored CWP attached through a flexible transition CWP to the platform could reduce the degree of technical risk by de-coupling the CWP from the motions of the platform. In addition, if the platform is capable of disconnecting from the CWP during survival conditions, even less technical risk may be inherent in the OTEC system. The MP-Squared Design Study was an engineering evaluation of the concepts described above. The effort has been carried through to the conceptual design level, and culminated in model tests in an experimental wave basin.

  19. Open-cycle ocean thermal energy conversion surface-condenser design analysis and computer program

    SciTech Connect (OSTI)

    Panchal, C.B.; Rabas, T.J.

    1991-05-01

    This report documents a computer program for designing a surface condenser that condenses low-pressure steam in an ocean thermal energy conversion (OTEC) power plant. The primary emphasis is on the open-cycle (OC) OTEC power system, although the same condenser design can be used for conventional and hybrid cycles because of their highly similar operating conditions. In an OC-OTEC system, the pressure level is very low (deep vacuums), temperature differences are small, and the inlet noncondensable gas concentrations are high. Because current condenser designs, such as the shell-and-tube, are not adequate for such conditions, a plate-fin configuration is selected. This design can be implemented in aluminum, which makes it very cost-effective when compared with other state-of-the-art vacuum steam condenser designs. Support for selecting a plate-fin heat exchanger for OC-OTEC steam condensation can be found in the sizing (geometric details) and rating (heat transfer and pressure drop) calculations presented. These calculations are then used in a computer program to obtain all the necessary thermal performance details for developing design specifications for a plate-fin steam condenser. 20 refs., 5 figs., 5 tabs.

  20. Experiments on oxygen desorption from surface warm seawater under open-cycle ocean thermal energy conversion

    SciTech Connect (OSTI)

    Pesaran, A.A. )

    1992-11-01

    This paper presents the results of scoping deaeration experiments conducted with warm surface seawater under open-cycle ocean thermal energy conversion (OC-OTEC) conditions. Concentrations of dissolved oxygen in seawater at three locations (in the supply water, water leaving the predeaerator, and discharge water from an evaporator) were measured and used to estimate oxygen desorption levels. The results suggest that 7 percent to 60 percent of the dissolved oxygen in the supply water was desorbed from seawater in the predeaerator for pressures ranging from 35 to 9 kPa. Bubble injection in the upcomer increased the oxygen desorption rate by 20 percent to 60 percent. The data also indicated that at typical OC-OTEC evaporator pressures, when flash evaporation in the evaporator occurred, 75 percent to 95 percent of the dissolved oxygen was desorbed overall from the warm seawater. The results were used to find the impact of a single-stage predeaeration scheme on the power to remove noncondensable gases in an OC-OTEC plant.

  1. DOE Announces Webinars on Building Energy Optimization Tool Training, Placing Utility Energy Service Contract Task Orders, and More

    Broader source: Energy.gov [DOE]

    EERE offers webinars to the public on a range of subjects, from adopting the latest energy efficiency and renewable energy technologies to training for the clean energy workforce. View this week's webinars.

  2. Environmental Risk Evaluation System – An Approach to Ranking Risk of Ocean Energy Development on Coastal and Estuarine Environments

    SciTech Connect (OSTI)

    Copping, Andrea E.; Hanna, Luke A.; Van Cleve, Frances B.; Blake, Kara M.; Anderson, Richard M.

    2015-01-01

    Deployment and operation of ocean energy devices does not represent the first foray into industrialization of the oceans; shipping, nearshore development, waste disposal, subsea mining, oil and gas extraction, and large-scale commercial fishing all coexist in various states of equilibrium with the marine environment. In most cases these industries were developed without a clear understanding of the likely outcomes of large-scale development. In virtually every country where the harvest of ocean energy is emerging, regulators and stakeholders require that the industry examine potential effects of devices, minimize the footprint of effects, and provide management measures that either avoid the impacts or mitigate to further reduce the residual impacts. The ERES analysis is based on scenarios that are consistent with sequences of events that lead to adverse impacts, distinguishing between episodic, intermittent, and chronic risks. In the context of ocean energy development, an episodic scenario might involve the exceedingly rare but potentially devastating event of an oil spill from vessels caused by the presence of the device, while vulnerable receptors are present; understanding the risk of such a scenario involves determining the probability of the occurrence by examining factors such as the petroleum content of ocean energy devices, the vessel traffic volume and the proximity of shipping lanes to the ocean energy devices, the reliability of the control measures to avoid an episodic event, and the likely presence of seabirds, marine mammals, or fish that may be affected by oil. In contrast, chronic risk scenarios involve events or circumstances that are continuous, so that risk characterization involves assessing only the severity of the consequences. An example of a chronic risk scenario might be the toxicity to marine organisms due to low-level chemical releases from anti-biofouling paints and coatings that may be used on devices, and the effect that the level of

  3. Identification of types of businesses with potential interest in operating and/or exporting ocean thermal energy conversion (OTEC) plants

    SciTech Connect (OSTI)

    Not Available

    1982-09-01

    This study describes the characteristics of three selected Ocean Thermal Energy Conversion (OTEC)-based lines of business, examines other lines of business and identifies those with similar characteristics, and indicates the types of businesses/corporations that could be expected to have potential interest in operating and/or exporting OTEC plants. An OTEC line of business model is developed to assist companies in making an internal corporate assessment as to whether OTEC should be in their business plan.

  4. EERE Success Story-Mapping the Potential of U.S. Ocean Energy...

    Broader source: Energy.gov (indexed) [DOE]

    magnitude and location of U.S. and global wave, tidal, ocean thermal, and continental ... The Water Power Program is committed to developing and deploying a portfolio of innovative ...

  5. The Secretary of Energy Advisory Board (SEAB) Task Force to Support...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Steven Specker, Former President, EPRI Dr. Susan Tierney, Analysis Group Dan Yergin (ex-officio), IHS Cambridge Energy Research Associates* *SEAB Member Designated Federal Officer: ...

  6. SECRETARY OF ENERGY ADVISORY BOARD (SEAB) TASK FORCE ON THE FUTURE OF

    Energy Savers [EERE]

    SEAB_Minutes_1_20_11.pdf SEAB_Minutes_1_20_11.pdf (211.5 KB) More Documents & Publications January2011SEAB_Agenda.pdf Secretary of Energy Advisory Board - July 20, 2011 Meeting Minutes Secretary of Energy Advisory Board - August 15, 2011 Meeting Minutes of Energy

    SECA Fuel Cell Program Moves Two Key Projects Into Next Phase SECA Fuel Cell Program Moves Two Key Projects Into Next Phase February 5, 2009 - 12:00pm Addthis Washington, D.C. - The U.S. Department of Energy (DOE) has

  7. Hydropower Vision: Task Force Charter V2 06/09/2014 U.S. Department of Energy Wind and Water Power Technologies Office - Hydropower Vision Project 1

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydropower Vision: Task Force Charter V2 06/09/2014 U.S. Department of Energy Wind and Water Power Technologies Office - Hydropower Vision Project 1 Hydropower Vision: Task Force Charter Hydropower Vision Defined The U.S. Department of Energy (DOE) Wind and Water Power Technologies Office is looking toward the future of the hydropower community in developing a long-range national Hydropower Vision in close coordination with industry, agencies, and stakeholders. This landmark vision will

  8. Task Cover

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SOLICITATION NO. DE-SOL-0003641 Exhibit G The following item(s) are contained in this file: ITEM NAME NO. OF PAGES(S) Sample Task Order 1 Site Support Services 14 Sample Task Order 2 Health Program Services 16 Sample Task Order 3 Janitorial Services (including Child 30 Care Center Cleaning Standards) Task Order Transition 4 DE-SOL-0003641 Sample Task Order 1 (including Exhibit I) SAMPLE TASK ORDER 1 SITE OPERATIONS SUPPORT TASK ORDER REQUEST INFORMATION: a) Task Order Period of Performance -

  9. Secretary of Energy Advisory Board to Discuss Hubs+ and FracFocus Task Force Final Reports

    Broader source: Energy.gov [DOE]

    Washington, D.C. – On Friday, March 28, 2014, the Secretary of Energy Advisory Board (SEAB), which provides advice and recommendations on the Department’s activities, will meet to discuss and take...

  10. The Secretary of Energy Advisory Board (SEAB) Task Force on CO2 Utilization

    Energy Savers [EERE]

    Department of Energy The SUN Project Enhances STEM Education for Native American Youth The SUN Project Enhances STEM Education for Native American Youth April 2, 2014 - 1:25pm Addthis The SUN Project Enhances STEM Education for Native American Youth Annie Whatley Annie Whatley Deputy Director, Office of Minority Education and Community Development Last October, the Department of Energy awarded the American Indian Science and Engineering Society (AISES) a grant to implement a new program

  11. Report of the Interagency Task Force on High Energy Density Physics

    SciTech Connect (OSTI)

    2007-08-01

    Identifies the needs for improving Federal stewardship of specific aspects of high energy density physics, particularly the study of high energy density plasmas in the laboratory, and strengthening university activities in this latter discipline. The report articulates how HEDP fits into the portfolio of federally funded missions and includes agency actions to be taken that are necessary to further this area of study consistent with Federal priorities and plans, while being responsive to the needs of the scientific community.

  12. Report of the Secretary of Energy Task Force on DOE National Laboratories

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy on replacing pressure-reducing valves provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies. STEAM TIP SHEET #20 Replace Pressure-Reducing Valves with Backpressure Turbogenerators (January 2012) (451.58 KB) More Documents & Publications Consider Installing High-Pressure Boilers with Backpressure Turbine-Generators How to Calculate the True Cost of Steam Steam System Survey Guide Energy

    Belt drives

  13. Generation IV Nuclear Energy Systems Construction Cost Reductions through the Use of Virtual Environments - Task 4 Report: Virtual Mockup Maintenance Task Evaluation

    SciTech Connect (OSTI)

    Timothy Shaw; Anthony Baratta; Vaughn Whisker

    2005-02-28

    Task 4 report of 3 year DOE NERI-sponsored effort evaluating immersive virtual reality (CAVE) technology for design review, construction planning, and maintenance planning and training for next generation nuclear power plants. Program covers development of full-scale virtual mockups generated from 3D CAD data presented in a CAVE visualization facility. This report focuses on using Full-scale virtual mockups for nuclear power plant training applications.

  14. Closeout for U.S. Department of Energy Final Technical Report for University of Arizona grant DOE Award Number DE-FG03-95ER40906 From 1 February 1995 to 31 January 2004 Grant title: Theory and Phenomenology of Strong and Weak High Energy Physics (Task A) and Experimental Elementary Particle Physics (Task B)

    SciTech Connect (OSTI)

    Rutherfoord, John; Toussaint, Doug; Sarcevic, Ina

    2005-03-03

    The following pages describe the high energy physics program at the University of Arizona which was funded by DOE grant DE-FG03-95ER40906, for the period 1 February 1995 to 31 January 2004. In this report, emphasis was placed on more recent accomplishments. This grant was divided into two tasks, a theory task (Task A) and an experimental task (Task B but called Task C early in the grant period) with separate budgets. Faculty supported by this grant, for at least part of this period, include, for the theory task, Adrian Patrascioiu (now deceased), Ina Sarcevic, and Douglas Toussaint., and, for the experimental task, Elliott Cheu, Geoffrey Forden, Kenneth Johns, John Rutherfoord, Michael Shupe, and Erich Varnes. Grant monitors from the Germantown DOE office, overseeing our grant, changed over the years. Dr. Marvin Gettner covered the first years and then he retired from the DOE. Dr. Patrick Rapp worked with us for just a few years and then left for a position at the University of Puerto Rico. Dr. Kathleen Turner took his place and continues as our grant monitor. The next section of this report covers the activities of the theory task (Task A) and the last section the activities of the experimental task (Task B).

  15. Indiana University High Energy Physics, Task A. Technical progress report, 1992--1993

    SciTech Connect (OSTI)

    Brabson, B.; Crittenden, R.; Dzierba, A.

    1993-10-01

    This report discusses research at Indians University on the following high energy physics experiments: A search for mesons with unusual quantum numbers; hadronic states produced in association with high-mass dimuons; FNAL E740 (D0); superconducting super collider; and OPAL experiment at CERN.

  16. Establishing a Testing Center for Ocean Energy Technologies in the Pacific Northwest

    Broader source: Energy.gov [DOE]

    The University of Washington is researching tidal energy to maximize the energy extracted and understand potential marine ecosystem impacts.

  17. Far-field model of the regional influence of effluent plumes from ocean thermal energy conversion (OTEC) plants

    SciTech Connect (OSTI)

    Wang, D.P.

    1985-07-01

    Ocean thermal energy conversion (OTEC) plants discharge large volumes of cold water into the upper ocean. A three-dimensional, limited-area model was developed to investigate the regional influence of the far-field effluent plume created by the negatively buoyant discharge. The model was applied to discharges from a 40-MW/sub e/ OTEC plant into coastal waters characterized by various ambient ocean conditions. A typical ambient temperature structure and nutrient distribution, as well as the behavior of the effluent plume itself, were strongly modified by the discharge-induced circulation. Although temperature perturbations in the plume were small, upward entrainment of nutrients from below the thermocline was significant. The regional influence of discharges from an 80-MW/sub e/ OTEC plant, the interactions between the discharges from two adjacent 40-MW/sub e/ OTEC plants, and the effects of coastal boundary and bottom discharge were examined with respect to the regional influence of a 40-MW/sub e/ OTEC plant located in deep water off a coast (base case).

  18. Sustainable Energy Solutions Task 4.2: UV Degradation Prevention on Fiber-Reinforced Composite Blades

    SciTech Connect (OSTI)

    Janet M. Twomey, PhD

    2010-04-30

    EXECUTIVE SUMARRY Use of wind energy has expanded very quickly because of the energy prices, environmental concerns and improved efficiency of wind generators. Rather than using metal and alloy based wind turbine blades, larger size fiber (glass and carbon) reinforced composite blades have been recently utilized to increase the efficiency of the wind energy in both high and low wind potential areas. In the current composite manufacturing, pre-preg and vacuum-assisted/heat sensitive resin transfer molding and resin infusion methods are employed. However, these lighter, stiffer and stronger composite blades experience ultraviolet (UV) light degradation where polymers (epoxies and hardeners) used for the blades manufacturing absorb solar UV lights, and cause photolytic, thermo-oxidative and photo-oxidative reactions resulting in breaking of carbon-hydrogen bonds, polymer degradation and internal and external stresses. One of the main reasons is the weak protective coatings/paints on the composite blades. This process accelerates the aging and fatigue cracks, and reduces the overall mechanical properties of the blades. Thus, the lack of technology on coatings for blade manufacturing is forcing many government agencies and private companies (local and national windmill companies) to find a better solution for the composite wind blades. Kansas has a great wind potential for the future energy demand, so efficient wind generators can be an option for continuous energy production. The research goal of the present project was to develop nanocomposite coatings using various inclusions against UV degradation and corrosion, and advance the fundamental understanding of degradation (i.e., physical, chemical and physiochemical property changes) on those coatings. In pursuit of the research goal, the research objective of the present program was to investigate the effects of UV light and duration on various nanocomposites made mainly of carbon nanotubes and graphene nanoflakes

  19. Secretary of Energy Advisory Board FracFocus2.0 Task Force Public Meeting

    Broader source: Energy.gov (indexed) [DOE]

    Delivered | Department of Energy Thank you, Tanaka-san. We do indeed have a history together. In fact, his kind introduction was simply a repayment for my kind introduction of him at MIT a few years ago. I also want to thank Chairman Hanyu for his remarks, and for the hospitality of the Sasakawa Peace Foundation for hosting this event. I'll also go back with Mr. Tanaka and just note that it was a pleasure, certainly, working with him at the IEA and of course subsequently, and I just want to

  20. Report of the Task Group on operation Department of Energy tritium facilities

    SciTech Connect (OSTI)

    Not Available

    1991-10-01

    This report discusses the following topics on the operation of DOE Tritium facilities: Environment, Safety, and Health Aspects of Tritium; Management of Operations and Maintenance Functions; Safe Shutdown of Tritium Facilities; Management of the Facility Safety Envelope; Maintenance of Qualified Tritium Handling Personnel; DOE Tritium Management Strategy; Radiological Control Philosophy; Implementation of DOE Requirements; Management of Tritium Residues; Inconsistent Application of Requirements for Measurement of Tritium Effluents; Interdependence of Tritium Facilities; Technical Communication among Facilities; Incorporation of Confinement Technologies into New Facilities; Operation/Management Requirements for New Tritium Facilities; and Safety Management Issues at Department of Energy Tritium Facilities.

  1. Publication in Ocean Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publication in Ocean Engineering - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs

  2. Mapping and Assessment of the United States Ocean Wave Energy Resource

    SciTech Connect (OSTI)

    Hagerman, G.; Scott, G.

    2011-12-01

    This project estimates the naturally available and technically recoverable U.S. wave energy resources.

  3. REPORT OF RESEARCH ACTIVITIES FOR THE YEARS 2000 - 2003; HIGH ENERGY PHYSICS GROUP; SOUTHERN METHODIST UNIVERSITY; EXPERIMENTAL TASK A AND THEORY TASK B

    SciTech Connect (OSTI)

    Dr. Ryszard Stroynowski

    2003-07-01

    The experimental program in High Energy Physics at SMU was initiated in 1992. Its main goal is the search for new physics phenomena beyond the Standard Model (SSC, LHC) and the study of the properties of heavy quarks and leptons (CLEO, BTeV).

  4. Natural Energy Laboratory of Hawaii Authority (NELHA): Hawaii Ocean Science & Technology Park; Kailua-Kona, Hawaii

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Olson, K.; Andreas, A.

    2012-11-01

    A partnership with the Natural Energy Laboratory of Hawaii Authority and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.

  5. Natural Energy Laboratory of Hawaii Authority (NELHA): Hawaii Ocean Science & Technology Park; Kailua-Kona, Hawaii

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Olson, K.; Andreas, A.

    A partnership with the Natural Energy Laboratory of Hawaii Authority and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.

  6. TASK ORDER

    National Nuclear Security Administration (NNSA)

    NA0000XXX Task Order No: DE-DT000XXXX Statement of Work August 7, 2015 Task Order Title: Design, Integration, Construction, Communications, and Engineering (DICCE) Services for Port of Cat Lai, Vietnam. Scope: The Contractor shall design, construct, and integrate fully functional portal monitor and communications systems at designated sites in Vietnam. * Port of Cat Lai Requirements Documents: The following task order requirements describe key milestones and deliverables. For a more complete

  7. Task Cover

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... The task involves 1) occupational medicine; 2) Wellness; 3) Ergonomics; 4) Industrial Hygiene; 5) Personal Exposure and Workplace Monitoring; 6) Ventilation Program; 7) Radiation; ...

  8. Ocean thermal energy conversion power system development. Final design report: PSD-I, Phase II

    SciTech Connect (OSTI)

    1980-06-30

    The PSD-I program provides a heat exchanger sytem consisting of an evaporator, condenser and various ancillaries with ammonia used as a working fluid in a closed simulated Rankine cycle. It is to be installed on the Chepachet Research Vessel for test and evaluation of a number of OTEC concepts in a true ocean environment. It is one of several test articles to be tested. Primary design concerns include control of biofouling, corrosion and erosion of aluminum tubes, selection of materials, and the development of a basis for scale-up to large heat exchangers so as to ultimately demonstrate economic feasibility on a commercial scale. The PSD-I test article is devised to verify thermodynamic, environmental, and mechanical performance of basic design concepts. The detailed design, development, fabrication, checklist, delivery, installation support, and operation support for the Test Article Heat Exchangers are described. (WHK)

  9. Development of a demonstration power plant by ocean thermal energy conversion (OTEC)

    SciTech Connect (OSTI)

    Ito, F.; Takazawa, K.; Terayama, T.

    1984-01-01

    At the opening ceremony, the system was praised by leading figures invited from the Oceanic non-oil-producing countries. The power generation test of the OTEC demonstration plant was completed with many new records attained. As engineers who have participated in this project, the authors believe that they have gained confidence in their ability to construct a first-stage commercial OTEC plant of the built-on-land type, though admitting that there still remain some points to be improved. Subjects requiring further study are improvements of material and installation methods enabling the use of water intake piping with larger diameters, further improvement of heat transfer performance at the seawater side (tube inside) of the heat transfer tubes, etc. Since the commercialization of an OTEC system depends mainly on the economical level of the system, cost reduction in the manufacture of equipment and construction is also required.

  10. Conceptual design of an open-cycle ocean thermal energy conversion net power-producing experiment (OC-OTEC NPPE)

    SciTech Connect (OSTI)

    Bharathan, D.; Green, H.J.; Link, H.F.; Parsons, B.K.; Parsons, J.M.; Zangrando, F.

    1990-07-01

    This report describes the conceptual design of an experiment to investigate heat and mass transfer and to assess the viability of open-cycle ocean thermal energy conversion (OC-OTEC). The experiment will be developed in two stages, the Heat- and Mass-Transfer Experimental Apparatus (HMTEA) and the Net Power-Producing Experiment (NPPE). The goal for the HMTEA is to test heat exchangers. The goal for the NPPE is to experimentally verify OC-OTEC's feasibility by installing a turbine and testing the power-generating system. The design effort met the goals of both the HMTEA and the NPPE, and duplication of hardware was minimal. The choices made for the design resource water flow rates are consistent with the availability of cold and warm seawater as a result of the seawater systems upgrade carried out by the US Department of Energy (DOE), the state of Hawaii, and the Pacific International Center for High Technology Research. The choices regarding configuration of the system were made based on projected performance, degree of technical risk, schedule, and cost. The cost for the future phase of the design and the development of the HMTEA/NPPE is consistent with the projected future program funding levels. The HMTEA and NPPE were designed cooperatively by PICHTR, Argonne National Laboratory, and Solar Energy Research Institute under the guidance of DOE. The experiment will be located at the DOE's Seacoast Test Facility at the Natural Energy Laboratory of Hawaii, Kailua-Kona, Hawaii. 71 refs., 41 figs., 34 tabs.

  11. New Airborne Technology Measures Ocean Surface Currents for Offshore Energy Production and Emergency Rescue Missions

    Broader source: Energy.gov [DOE]

    In a breakthrough project sponsored by the Energy Department’s National Energy Technology Laboratory (NETL), private-sector partners Fugro and Areté Associates have developed, commercialized, and sold a system that can monitor offshore current conditions from the air, providing critical information in record time for oceanographic research and emergency situations, such as oil spills and search and rescue missions.

  12. Coupling Ocean Thermal Energy Conversion technology (OTEC) with nuclear power plants

    SciTech Connect (OSTI)

    Goldstein, M.K.; Rezachek, D.; Chen, C.S.

    1981-01-01

    The prospects of utilizing an OTEC Related Bottoming Cycle to recover waste heat generated by a large nuclear (or fossil) power plant are examined. With such improvements, OTEC can become a major energy contributor. 12 refs.

  13. Memorandum of Understanding On Weather-Dependent and Oceanic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    On Weather-Dependent and Oceanic Renewable Energy Resources Memorandum of Understanding On Weather-Dependent and Oceanic Renewable Energy Resources Memorandum of Understanding On ...

  14. Sandia Energy Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publication in Ocean Engineering http:energy.sandia.govpublication-in-ocean-engineering http:energy.sandia.govpublication-in-ocean-engineeringcomments Tue, 22 Dec 2015...

  15. Characterization of U.S. Wave Energy Converter (WEC) Test Sites: A Catalogue of Met-Ocean Data 2nd Edition (Part 2)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    . JENNETTE'S PIER WAVE ENERGY TEST CENTER 5.1. Site Description Jennette's Pier, owned by the State of North Carolina and managed by the NC Aquarium Division, is a unique public facility that provides education and outreach including displays of experimental data and monitoring equipment. The University of North Carolina Coastal Studies Institute (UNC CSI) began a partnership with Jennette's Pier in 2004 to foster research, ocean energy device testing and monitoring, outreach, and education.

  16. Heat transfer in ocean thermal energy conversion (OTEC) systems. Proceedings of the wanter mnnual Meeting, Chicago, IL, November 16-21, 1980

    SciTech Connect (OSTI)

    Owens, W.L.

    1980-01-01

    Among the topics discussed are: condensation heat transfer on long vertical, axially ridged tubes tests of the Applied Physics Laboratory of Johns Hopkins University (APL/JHU) folded-tube, Ocean Thermal Energy Conversion (OTEC) heat exchanger the design of a 1.0-MW OTEC heat exchanger for ocean testing and convective vaporization and condensation in serrated-fin channels. Also considered are: heat tranfer studies of an improved heat transfer monitor for OTEC an analysis of the mist lift process for mist flow, open-cycle OTEC the heat transfer characteristics of working fluids for OTEC and a comparison of major OTEC power system characteristics.

  17. First production of potable water by OTEC (ocean thermal energy conversion) and its potential applications

    SciTech Connect (OSTI)

    Thomas, A.; Hillis, D.L.

    1988-01-01

    An experiment--the Heat and Mass Transfer Scoping Test Apparatus--was built to obtain design data for a larger test that will assess the technical feasibility of the open-cycle OTEC process. (The closed-cycle concept was successfully demonstrated in 1979.) The DOE-funded project is a joint effort between Argonne National Laboratory (ANL) and the Solar Energy Research Institute (SERI). The apparatus was erected at the Natural Energy Laboratory of Hawaii and became operational in the summer of 1987. It is used by both ANL and SERI to conduct open-cycle OTEC experiments. After initial debugging, it produced 350 gallons per hour of potable water having a salinity of 86 ppM, one-fifth that of local tap water available at the test site. 6 refs., 6 figs.

  18. Mapping and Assessment of the United States Ocean Wave Energy Resource

    SciTech Connect (OSTI)

    Paul T. Jacobson; George Hagerman; George Scott

    2011-12-01

    This project estimates the naturally available and technically recoverable U.S. wave energy resources, using a 51-month Wavewatch III hindcast database developed especially for this study by National Oceanographic and Atmospheric Administration’s (NOAA’s) National Centers for Environmental Prediction. For total resource estimation, wave power density in terms of kilowatts per meter is aggregated across a unit diameter circle. This approach is fully consistent with accepted global practice and includes the resource made available by the lateral transfer of wave energy along wave crests, which enables wave diffraction to substantially reestablish wave power densities within a few kilometers of a linear array, even for fixed terminator devices. The total available wave energy resource along the U.S. continental shelf edge, based on accumulating unit circle wave power densities, is estimated to be 2,640 TWh/yr, broken down as follows: 590 TWh/yr for the West Coast, 240 TWh/yr for the East Coast, 80 TWh/yr for the Gulf of Mexico, 1570 TWh/yr for Alaska, 130 TWh/yr for Hawaii, and 30 TWh/yr for Puerto Rico. The total recoverable wave energy resource, as constrained by an array capacity packing density of 15 megawatts per kilometer of coastline, with a 100-fold operating range between threshold and maximum operating conditions in terms of input wave power density available to such arrays, yields a total recoverable resource along the U.S. continental shelf edge of 1,170 TWh/yr, broken down as follows: 250 TWh/yr for the West Coast, 160 TWh/yr for the East Coast, 60 TWh/yr for the Gulf of Mexico, 620 TWh/yr for Alaska, 80 TWh/yr for Hawaii, and 20 TWh/yr for Puerto Rico.

  19. ARM - Oceans

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ListOceans Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Oceans Water vapor in the air eventually condenses and falls as rain, snow, sleet, or hail. Water that falls on land collects in rivers which carry it back to the ocean. The return of water to the ocean may be slowed when water

  20. IEA Wind Task 26 - Multi-national Case Study of the Financial Cost of Wind Energy; Work Package 1 Final Report

    SciTech Connect (OSTI)

    Schwabe, P.; Lensink, S.; Hand, M.

    2011-03-01

    The lifetime cost of wind energy is comprised of a number of components including the investment cost, operation and maintenance costs, financing costs, and annual energy production. Accurate representation of these cost streams is critical in estimating a wind plant's cost of energy. Some of these cost streams will vary over the life of a given project. From the outset of project development, investors in wind energy have relatively certain knowledge of the plant's lifetime cost of wind energy. This is because a wind energy project's installed costs and mean wind speed are known early on, and wind generation generally has low variable operation and maintenance costs, zero fuel cost, and no carbon emissions cost. Despite these inherent characteristics, there are wide variations in the cost of wind energy internationally, which is the focus of this report. Using a multinational case-study approach, this work seeks to understand the sources of wind energy cost differences among seven countries under International Energy Agency (IEA) Wind Task 26 - Cost of Wind Energy. The participating countries in this study include Denmark, Germany, the Netherlands, Spain, Sweden, Switzerland, and the United States. Due to data availability, onshore wind energy is the primary focus of this study, though a small sample of reported offshore cost data is also included.

  1. Ocean thermal energy conversion gas desorption studies. Volume 1. Design of experiments. [Open-cycle power systems

    SciTech Connect (OSTI)

    Golshani, A.; Chen, F.C.

    1980-10-01

    Seawater deaeration is a process affecting almost all proposed Ocean Thermal Energy Conversion (OTEC) open-cycle power systems. If the noncondensable dissolved air is not removed from a power system, it will accumulate in thecondenser, reduce the effectiveness of condensation, and result in deterioration of system performance. A gas desorption study is being conducted at Oak Ridge National Laboratory (ORNL) with the goal of mitigating these effects; this study is designed to investigate the vacuum deaeration process for low-temperature OTEC conditions where conventional steam stripping deaeration may not be applicable. The first in a series describing the ORNL studies, this report (1) considers the design of experiments and discusses theories of gas desorption, (2) reviews previous relevant studies, (3) describes the design of a gas desorption test loop, and (4) presents the test plan for achieving program objectives. Results of the first series of verification tests and the uncertainties encountered are also discussed. A packed column was employed in these verification tests and test data generally behaved as in previous similar studies. Results expressed as the height of transfer unit (HTU) can be correlated with the liquid flow rate by HTU = 4.93L/sup 0/ /sup 25/. End effects were appreciable for the vacuum deaeration system, and a correlation of them to applied vacuum pressure was derived.

  2. Study of domestic social and economic impacts of ocean thermal energy conversion (OTEC) commercial development. Volume II. Industry profiles

    SciTech Connect (OSTI)

    1981-12-22

    Econoimc profiles of the industries most affected by the construction, deployment, and operation of Ocean Thermal Energy Conversion (OTEC) powerplants are presented. Six industries which will contribute materials and/or components to the construction of OTEC plants have been identified and are profiled here. These industries are: steel industry, concrete industry, titanium metal industry, fabricated structural metals industry, fiber glass-reinforced plastics industry, and electrical transmission cable industry. The economic profiles for these industries detail the industry's history, its financial and economic characteristics, its technological and production traits, resource constraints that might impede its operation, and its relation to OTEC. Some of the historical data collected and described in the profile include output, value of shipments, number of firms, prices, employment, imports and exports, and supply-demand forecasts. For most of the profiled industries, data from 1958 through 1980 were examined. In addition, profiles are included on the sectors of the economy which will actualy construct, deploy, and supply the OTEC platforms.

  3. Technology Development Plan: Geotechnical survey systems for OTEC (Ocean Thermal Energy Conversion) cold water pipes: Final subcontract report

    SciTech Connect (OSTI)

    Valent, P.J.; Riggins, M.

    1989-04-01

    This report provides an overview of current and developing technologies and techniques for performing geotechnical investigations for siting and designing Cold Water Pipes (CWP) for shelf-resting Ocean Thermal Energy Conversion (OTEC) power plants. The geotechnical in situ tools used to measure the required parameters and the equipment/systems used to deploy these tools are identified. The capabilities of these geotechnical tools and deployment systems are compared to the data requirements for the CWP foundation/anchor design, and shortfalls are identified. For the last phase of geotechnical data gathering for design, a drillship will be required to perform soil boring work, to obtain required high-quality sediment samples for laboratory dynamic testing, and to perform deep-penetration in situ tests. To remedy shortfalls and to reduce the future OTEC CWP geotechnical survey costs, it is recommended that a seafloor-resting machine be developed to advance the friction cone penetrometer, and also probably a pressuremeter, to provide geotechnical parameters to shallow subseafloor penetrations on slopes of 35/degree/ and in water depths to 1300 m. 74 refs., 19 figs., 6 tabs.

  4. Results of scoping tests for open-cycle OTEC (ocean thermal energy conversion) components operating with seawater

    SciTech Connect (OSTI)

    Zangrando, F; Bharathan, D; Green, H J; Link, H F; Parsons, B K; Parsons, J M; Pesaran, A A; Panchal, C B

    1990-09-01

    This report presents comprehensive documentation of the experimental research conducted on open-cycle ocean thermal energy conversion (OC-OTEC) components operating with seawater as a working fluid. The results of this research are presented in the context of previous analysis and fresh-water testing; they provide a basis for understanding and predicting with confidence the performance of all components of an OC-OTEC system except the turbine. Seawater tests have confirmed the results that were obtained in fresh-water tests and predicted by the analytical models of the components. A sound technical basis has been established for the design of larger systems in which net power will be produced for the first time from OC-OTEC technology. Design and operation of a complete OC-OTEC system that produces power will provide sufficient confidence to warrant complete transfer of OC-OTEC technology to the private sector. Each components performance is described in a separate chapter written by the principal investigator responsible for technical aspects of the specific tests. Chapters have been indexed separately for inclusion on the data base.

  5. Experiments on oxygen desorption from surface warm seawater under open-cycle ocean thermal energy conversion (OC-OTEC) conditions

    SciTech Connect (OSTI)

    Pesaran, A.A.

    1989-12-01

    This paper reports the results of scoping deaeration experiments conducted with warm surface seawater under open-cycle ocean thermal energy conversion (OC-OTEC). Concentrations of dissolved oxygen in seawater at three locations (in the supply water, water leaving a predeaerator, and discharge water from an evaporator) were measured and used to estimate oxygen desorption levels. The results suggest that 7% to 60% of dissolved oxygen in the supply water was desorbed from seawater in the predeaerator for pressures ranging from 9 to 35 kPa. Bubble injection in the upcomer increased the oxygen desorption rate by 20% to 60%. The dependence of oxygen desorption with flow rate could not be determined. The data also indicated that at typical OC-OTEC evaporator pressures when flashing occurred, 75% to 95% of dissolved oxygen was desorbed overall from the warm seawater. The uncertainty in results is larger than one would desire. These uncertainties are attributed to the uncertainties and difficulties in the dissolved oxygen measurements. Methods to improve the measurements for future gas desorption studies for warm surface and cold deep seawater under OC-OTEC conditions are recommended. 14 refs., 5 figs., 2 tabs.

  6. Optimization of energy window for {sup 90}Y bremsstrahlung SPECT imaging for detection tasks using the ideal observer with model-mismatch

    SciTech Connect (OSTI)

    Rong Xing; Ghaly, Michael; Frey, Eric C.

    2013-06-15

    Purpose: In yttrium-90 ({sup 90}Y) microsphere brachytherapy (radioembolization) of unresectable liver cancer, posttherapy {sup 90}Y bremsstrahlung single photon emission computed tomography (SPECT) has been used to document the distribution of microspheres in the patient and to help predict potential side effects. The energy window used during projection acquisition can have a significant effect on image quality. Thus, using an optimal energy window is desirable. However, there has been great variability in the choice of energy window due to the continuous and broad energy distribution of {sup 90}Y bremsstrahlung photons. The area under the receiver operating characteristic curve (AUC) for the ideal observer (IO) is a widely used figure of merit (FOM) for optimizing the imaging system for detection tasks. The IO implicitly assumes a perfect model of the image formation process. However, for {sup 90}Y bremsstrahlung SPECT there can be substantial model-mismatch (i.e., difference between the actual image formation process and the model of it assumed in reconstruction), and the amount of the model-mismatch depends on the energy window. It is thus important to account for the degradation of the observer performance due to model-mismatch in the optimization of the energy window. The purpose of this paper is to optimize the energy window for {sup 90}Y bremsstrahlung SPECT for a detection task while taking into account the effects of the model-mismatch. Methods: An observer, termed the ideal observer with model-mismatch (IO-MM), has been proposed previously to account for the effects of the model-mismatch on IO performance. In this work, the AUC for the IO-MM was used as the FOM for the optimization. To provide a clinically realistic object model and imaging simulation, the authors used a background-known-statistically and signal-known-statistically task. The background was modeled as multiple compartments in the liver with activity parameters independently following a

  7. Oak Ridge Reservation volume I. Y-12 mercury task force files: A guide to record series of the Department of Energy and its contractors

    SciTech Connect (OSTI)

    1995-02-17

    The purpose of this guide is to describe each of the series of records identified in the documents of the Y-12 Mercury Task Force Files that pertain to the use of mercury in the separation and enrichment of lithium isotopes at the Department of Energy`s (DOE) Y-12 Plant in Oak Ridge, Tennessee. History Associates Incorporated (HAI) prepared this guide as part of DOE`s Epidemiologic Records Inventory Project, which seeks to verify and conduct inventories of epidemiologic and health-related records at various DOE and DOE contractor sites. This introduction briefly describes the Epidemiologic Records Inventory Project and HAI`s role in the project. Specific attention will be given to the history of the DOE-Oak Ridge Reservation, the development of the Y-12 Plant, and the use of mercury in the production of nuclear weapons during the 1950s and early 1960s. This introduction provides background information on the Y-12 Mercury Task Force Files, an assembly of documents resulting from the 1983 investigation of the Mercury Task Force into the effects of mercury toxicity upon workplace hygiene and worker health, the unaccountable loss of mercury, and the impact of those losses upon the environment. This introduction also explains the methodology used in the selection and inventory of these record series. Other topics include the methodology used to produce this guide, the arrangement of the detailed record series descriptions, and information concerning access to the collection.

  8. Case Studies of integrated hydrogen systems. International Energy Agency Hydrogen Implementing Agreement, Final report for Subtask A of task 11 - Integrated Systems

    SciTech Connect (OSTI)

    Schucan, T.

    1999-12-31

    Within the framework of the International Energy Agency Hydrogen Implementing Agreement, Task 11 was undertaken to develop tools to assist in the design and evaluation of existing and potential hydrogen demonstration projects. Emphasis was placed on integrated systems, from input energy to hydrogen end use. Included in the PDF document are the Executive Summary of the final report and the various case studies. The activities of task 11 were focused on near- and mid-term applications, with consideration for the transition from fossil-based systems to sustainable hydrogen energy systems. The participating countries were Canada, Italy, Japan, the Netherlands, Spain, Switzerland and the United States. In order for hydrogen to become a competitive energy carrier, experience and operating data need to be generated and collected through demonstration projects. A framework of scientific principles, technical expertise, and analytical evaluation and assessment needed to be developed to aid in the design and optimization of hydrogen demonstration projects to promote implementation. The task participants undertook research within the framework of three highly coordinated subtasks that focused on the collection and critical evaluation of data from existing demonstration projects around the world, the development and testing of computer models of hydrogen components and integrated systems, and the evaluation and comparison of hydrogen systems. While the Executive Summary reflects work on all three subtasks, this collection of chapters refers only to the work performed under Subtask A. Ten projects were analyzed and evaluated in detail as part of Subtask A, Case Studies. The projects and the project partners were: Solar Hydrogen Demonstration Project, Solar-Wasserstoff-Bayern, Bayernwerk, BMW, Linde, Siemens (Germany); Solar Hydrogen Plant on Residential House, M. Friedli (Switzerland); A.T. Stuart Renewable Energy Test Site; Stuart Energy Systems (Canada); PHOEBUS Juelich

  9. Sustainable Energy Solutions Task 5.1:Expand the Number of Faculty Working in Wind Energy: Wind Energy Supply Chain and Logistics

    SciTech Connect (OSTI)

    Janet M Twomey, PhD

    2010-04-30

    EXECUTIVE SUMARRY Wind as a source of energy has gained a significant amount of attention because it is free and green. Construction of a wind farm involves considerable investment, which includes the cost of turbines, nacelles, and towers as well as logistical costs such as transportation of oversized parts and installation costs such as crane-rental costs. The terrain effects at the project site exert considerable influence on the turbine assembly rate and the project duration, which increases the overall installation cost. For higher capacity wind turbines (>3MW), the rental cost of the cranes is significant. In this study, the impact of interest rate, sales price of electricity, terrain effects and availability of cranes on the duration of installation and payback period for the project is analyzed. Optimization of the logistic activities involved during the construction phase of a wind farm contributes to the reduction of the project duration and also increases electricity generation during the construction phase.

  10. TASK ORDER

    National Nuclear Security Administration (NNSA)

    ... Page 4 of 6 U.S. DEPARTMENT OF ENERGY NATIONAL NUCLEAR SECURITY ... flash cards, or other media storage devices necessary for system operation shall also be provided; ...

  11. ESPC ENABLE Draft Task Order

    Broader source: Energy.gov [DOE]

    Document provides a draft for an agency to use when forming an ESPC ENABLE contract and making a task order award. This draft task order provides the framework for a contract that agencies and energy service companies can tailor to the particular needs of each site or project.

  12. Database of Low-E Storm Window Energy Performance across U.S. Climate Zones (Task ET-WIN-PNNL-FY13-01_5.3)

    SciTech Connect (OSTI)

    Cort, Katherine A.; Culp, Thomas D.

    2013-09-01

    This report describes process, assumptions, and modeling results produced in support of the Emerging Technologies Low-e Storm Windows Task 5.3: Create a Database of U.S. Climate-Based Analysis for Low-E Storm Windows. The scope of the overall effort is to develop a database of energy savings and cost effectiveness of low-E storm windows in residential homes across a broad range of U.S. climates using the National Energy Audit Tool (NEAT) and RESFEN model calculations. This report includes a summary of the results, NEAT and RESFEN background, methodology, and input assumptions, and an appendix with detailed results and assumptions by cliamte zone. Both sets of calculation results will be made publicly available through the Building America Solution Center.

  13. Status report on energy recovery from municipal solid waste: technologies, lessons and issues. Information bulletin of the energy task force of the urban consortium

    SciTech Connect (OSTI)

    1980-01-01

    A review is presented of the lessons learned and issues raised regarding the recovery of energy from solid wastes. The review focuses on technologies and issues significant to currently operating energy recovery systems in the US - waterwall incineration, modular incineration, refuse derived fuels systems, landfill gas recovery systems. Chapters are: Energy Recovery and Solid Waste Disposal; Energy Recovery Systems; Lessons in Energy Recovery; Issues in Energy Recovery. Some basic conclusions are presented concerning the state of the art of energy from waste. Plants in shakedown or under construction, along with technologies in the development stages, are briefly described. Sources of additional information and a bibliography are included. (MCW)

  14. Flexible ocean upwelling pipe

    DOE Patents [OSTI]

    Person, Abraham

    1980-01-01

    In an ocean thermal energy conversion facility, a cold water riser pipe is releasably supported at its upper end by the hull of the floating facility. The pipe is substantially vertical and has its lower end far below the hull above the ocean floor. The pipe is defined essentially entirely of a material which has a modulus of elasticity substantially less than that of steel, e.g., high density polyethylene, so that the pipe is flexible and compliant to rather than resistant to applied bending moments. The position of the lower end of the pipe relative to the hull is stabilized by a weight suspended below the lower end of the pipe on a flexible line. The pipe, apart from the weight, is positively buoyant. If support of the upper end of the pipe is released, the pipe sinks to the ocean floor, but is not damaged as the length of the line between the pipe and the weight is sufficient to allow the buoyant pipe to come to a stop within the line length after the weight contacts the ocean floor, and thereafter to float submerged above the ocean floor while moored to the ocean floor by the weight. The upper end of the pipe, while supported by the hull, communicates to a sump in the hull in which the water level is maintained below the ambient water level. The sump volume is sufficient to keep the pipe full during heaving of the hull, thereby preventing collapse of the pipe.

  15. How Hydropower Works | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    How Hydropower Works How Hydropower Works Content on this page requires a newer version of Adobe Flash Player. Get Adobe Flash player Hydropower is using water to power machinery or make electricity. Water constantly moves through a vast global cycle, evaporating from lakes and oceans, forming clouds, precipitating as rain or snow, then flowing back down to the ocean. The energy of this water cycle, which is driven by the sun, can be tapped to produce electricity or for mechanical tasks like

  16. ocean waves

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    waves - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  17. Measurements of gas sorption from seawater and the influence of gas release on open-cycle ocean thermal energy conversion (OC-OTEC) system performance

    SciTech Connect (OSTI)

    Penney, T.R.; Althof, J.A.

    1985-06-01

    The technical community has questioned the validity and cost-effectiveness of open-cycle ocean thermal energy conversion (OC-OTEC) systems because of the unknown effect of noncondensable gas on heat exchanger performance and the power needed to run vacuum equipment to remove this gas. To date, studies of seawater gas desorption have not been prototypical for system level analysis. This study gives preliminary gas desorption data on a vertical spout, direct contact evaporator and multiple condenser geometries. Results indicate that dissolved gas can be substantially removed before the seawater enters the heat exchange process, reducing the uncertainty and effect of inert gas on heat exchanger performance.

  18. Theoretical and experimental study of the intermediate field dynamics of ocean thermal energy conversion plants. Progress report 1978-1979

    SciTech Connect (OSTI)

    Jirka, G.H.; Jones, J.M.; Sargent, F.E.

    1980-03-01

    Results are described of a two-year research effort which has been conducted with the following objectives: (1) investigate analytically and experimentally the intermediate field spreading in a steady ocean current; (2) investigate analytically and experimentally the transient intermediate field spreading in a stagnant ocean; (3) compare the results with other available data on buoyancy driven currents in stratified surroundings, including the concurrent experimental program at MIT Parsons Laboratory; and (4) use the results in the formulation of preliminary siting guidelines for multiple OTEC plant interactions. The theoretical background for the intermediate field spreading is given including both steady-state and transient results. The experiments performed in the Stratified Flow Modeling Basin at Cornell University are described, and the data are compared to the theoretical results and to available experimental data from other sources. The application of the intermediate field results to the OTEC design problem is discussed. Typical intermediate field behavior is predicted for different plant sizes (100 MW/sub e/ and 1 MW/sub e/), designs and ambient ocean conditions. (WHK)

  19. Wind Supply Curves and Location Scenarios in the West: Summary of the Clean and Diverse Energy Wind Task Force Report; Preprint

    SciTech Connect (OSTI)

    Milligan, M.; Parsons, B.; Shimshak, R.; Larson, D.; Carr, T.

    2006-06-01

    This paper presents supply curves and scenarios that were developed by the Wind Task Force. Much of this information has been adapted from the original Wind Task Force report.

  20. NREL Job Task Analysis: Retrofit Installer Technician | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy NREL Job Task Analysis: Retrofit Installer Technician NREL Job Task Analysis: Retrofit Installer Technician A summary of job task analyses for the position of retrofit installer technician when conducting weatherization work on a residence. 51671.pdf (341.28 KB) More Documents & Publications NREL Job Task Analysis: Retrofit Installer Technician (Revised) NREL Job Task Analysis: Energy Auditor NREL Job Task Analysis: Quality Control Inspector

  1. International Energy Agency (IEA) Task 40 — Sustainable International Energy Trade: Securing Supply and Demand -- Country Report 2010 for the United States

    SciTech Connect (OSTI)

    J. Richard Hess; Jacob J. Jacobson; Richard Nelson; Carl Wolf

    2011-12-01

    This report updates the status of U.S. biomass resources currently and future potentials for domestic and export markets of residues, energy crops, and woody resources. Includes energy and fuel production and consumption statistics, driving policies, targets, and government investment in bioenergy industry development.

  2. International Energy Agency (IEA) Task 40 — Sustainable International Energy Trade: Securing Supply and Demand -- Country Report 2009 for the United States

    SciTech Connect (OSTI)

    J. Richard Hess; Jacob J. Jacobson; Richard Nelson; Carl Wolf

    2009-06-01

    This report outlines the status of U.S. biomass resources currently and future potentials for domestic and export markets of residues, energy crops, and woody resources. Includes energy and fuel production and consumption statistics, driving policies, targets, and government investment in bioenergy industry development.

  3. Energy and environmental research emphasizing low-rank coal: Task 6.2. Joining of advanced structural materials

    SciTech Connect (OSTI)

    Nowok, J.W.; Hurley, J.P.

    1995-03-01

    Silicon carbide (SiC) is considered an attractive material for structural applications in fossil energy systems because of its corrosion and wear resistance, high thermoconductivity, and high temperature strength. These same properties make it difficult to sinter or join SiC. Conventional sintering techniques require applying pressure and heating to temperatures near 2000{degree}C, or the use of binders with lower melting temperatures, or pressureless sintering with the aid of carbon and boron to near full density about 2100{degree}C. The sintering temperature can be reduced to 1850{degree}--2000{degree}C if SiC is sintered with the addition of small quantities of Al{sub 2}O{sub 3} and Al{sub 2}O{sub 3} {plus} Y{sub 2}O{sub 3}. In addition, reaction sintering has been used by mixing Si and C with SiC powder and heating the mixture to 1400{degree}C to cause the Si and C to react and form SiC, which bonds the aggregate together. Work proposed for this year was to center on determining gas compositions that could be used to increase the sinterability of oxide binders and on using the binder and gas combinations to join bars of SiC, alumina, and mullite (3Al{sub 2}O{center_dot}2SiO{sub 2}). During the course of the year the focus was shifted to SiC joining alone, because it was felt that alumina and mullite are too prone to thermal shock for use in structural applications in fossil energy systems. Because of a thermal expansion mismatch between alumina and SiC, only SiC and mullite were investigated as joining aides for SiC. Therefore, the objectives of this work evolved into examining the sintering phenomena of SiC and mullite-derived binders at and below 1500{degree}C in various atmospheres and determining which conditions are suitable to form strong joints in monolithic SiC structures to be used at temperatures of 1000{degree}--1400{degree}C.

  4. Hawaii Ocean Science and Technology Park

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Tribal Energy Program Intellectual Property Current EC Partnerships How to Partner Small ... SunShot Grand Challenge: Regional Test Centers Hawaii Ocean Science and Technology Park ...

  5. Task 3: PNNL Visit by JAEA Researchers to Participate in TODAM Code Applications to Fukushima Rivers and to Evaluate the Feasibility of Adaptation of FLESCOT Code to Simulate Radionuclide Transport in the Pacific Ocean Coastal Water Around Fukushima

    SciTech Connect (OSTI)

    Onishi, Yasuo

    2013-03-29

    Four JAEA researchers visited PNNL for two weeks in February, 2013 to learn the PNNL-developed, unsteady, one-dimensional, river model, TODAM and the PNNL-developed, time-dependent, three dimensional, coastal water model, FLESCOT. These codes predict sediment and contaminant concentrations by accounting sediment-radionuclide interactions, e.g., adsorption/desorption and transport-deposition-resuspension of sediment-sorbed radionuclides. The objective of the river and coastal water modeling is to simulate • 134Cs and 137Cs migration in Fukushima rivers and the coastal water, and • their accumulation in the river and ocean bed along the Fukushima coast. Forecasting the future cesium behavior in the river and coastal water under various scenarios would enable JAEA to assess the effectiveness of various on-land remediation activities and if required, possible river and coastal water clean-up operations to reduce the contamination of the river and coastal water, agricultural products, fish and other aquatic biota. PNNL presented the following during the JAEA visit to PNNL: • TODAM and FLESCOT’s theories and mathematical formulations • TODAM and FLESCOT model structures • Past TODAM and FLESCOT applications • Demonstrating these two codes' capabilities by applying them to simple hypothetical river and coastal water cases. • Initial application of TODAM to the Ukedo River in Fukushima and JAEA researchers' participation in its modeling. PNNL also presented the relevant topics relevant to Fukushima environmental assessment and remediation, including • PNNL molecular modeling and EMSL computer facilities • Cesium adsorption/desorption characteristics • Experiences of connecting molecular science research results to macro model applications to the environment • EMSL tour • Hanford Site road tour. PNNL and JAEA also developed future course of actions for joint research projects on the Fukushima environmental and remediation assessments.

  6. Ocean Power Technologies (TRL 7 8 System) - Reedsport PB150 Deployment and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ocean Test Project | Department of Energy Ocean Power Technologies (TRL 7 8 System) - Reedsport PB150 Deployment and Ocean Test Project Ocean Power Technologies (TRL 7 8 System) - Reedsport PB150 Deployment and Ocean Test Project Ocean Power Technologies (TRL 7 8 System) - Reedsport PB150 Deployment and Ocean Test Project 05_reed_ocean_power_technologies_inc_hart.ppt (1.48 MB) More Documents & Publications EA-1890: DOE Notice of Availability of the Finding of No Significant Impact

  7. 40-MW(e) OTEC (Ocean Thermal Energy Conversion) plant at Kahe Point, Oahu, Hawaii: a case study of potential biological impacts. Technical memo

    SciTech Connect (OSTI)

    Harrison, J.T.

    1987-02-01

    Construction and operation of an Ocean Thermal Energy Conversion (OTEC) facility will affect marine, terrestrial, and atmospheric environments. The nature and degree of OTEC environmental impacts have been subjects of numerous studies and reports. The proposed 40-MWe OTEC plant at Kahe Point, Oahu, Hawaii has been the focus of much of the work. The first section provides a summary of pertinent design features of the proposed plant, including standard operating parameters. Next, salient elements of the biological oceanography in the region of the proposed development are summarized. The following sections discuss expected impacts of construction and operation of the plant, and finally, significant aspects of modeling studies conducted in support of the Kahe OTEC plant development are presented.

  8. Oceans '86 conference record

    SciTech Connect (OSTI)

    Not Available

    1986-01-01

    These five volumes represent the proceedings of the Oceans '86 Conference Washington, DC, 23-25 September 1986. Volume 1 includes papers on Underwater Photography and Sensing; Marine Recreation; Diving; CTACTS (Charleston Tactical Aircrew Combat Training System); Offshore and Coastal Structures; Underwater Welding, Burning and Cutting; Advances in Ocean Mapping; Ocean Energy; Biofouling and Corrosion; Moorings, Cables and Connections; Marine Minerals; Remote Sensing and Satellites; and Acoustics Analysis. Volume 2 covers Data Base Management; Modeling and Simulation; Ocean Current Simulation; Instrumentation; Artificial Reefs and Fisheries; US Status and Trends; Education and Technology Transfer; Economic Potential and Coastal Zone Management; and Water Quality. Volume 3 includes papers on National and Regional Monitoring Strategies; New Techniques and Strategies for Monitoring; Indicator Parameters/Organisms; Historical Data; Crystal Cube for Coastal and Estuarine Degradation; and the Monitoring Gap. Volume 4 covers the Organotin Symposium - Chemistry; Toxicity Studies; and Environmental Monitoring and Modeling. Volume 5 includes papers on Advances in Oceanography; Applied Oceanography; Unmanned Vehicles and ROV's; Manned Vehicles; and Oceanographic Ships.

  9. Draft Report of the Task Force on Methane Hydrates

    Broader source: Energy.gov [DOE]

    This report presents the findings and recommendations for the Secretary of Energy Advisory Board (SEAB) Task Force on Methane Hydrates.

  10. Report of the Task Force on Methane Hydrates

    Broader source: Energy.gov [DOE]

    This report presents the findings and recommendations for the Secretary of Energy Advisory Board (SEAB) Task Force on Methane Hydrates.

  11. Tenax Energy | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Logo: Tenax Energy Name: Tenax Energy Place: Darwin, NT Country: Australia Zip: 0801 Sector: Marine and Hydrokinetic, Ocean, Renewable Energy Year Founded:...

  12. TaskFarmer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TaskFarmer TaskFarmer TaskFarmer is a utility developed in-house at NERSC to farm tasks onto a compute node - these can be single- or multi-core tasks. It tracks which tasks have completed successfully, and allows straightforward re-submission of failed or un-run jobs from a task list. The base functionality is contained within the runcommands.sh script which is provided by Taskfarmer. The script will be added to your path after loading the Taskfarmer module. This script launches a server on the

  13. Aquantis Ocean Current Turbine Development Project Report

    SciTech Connect (OSTI)

    Fleming, Alex J.

    2014-08-23

    The Aquantis® Current Plane (“C-Plane”) technology developed by Dehlsen Associates, LLC (DA) and Aquantis, Inc. is an ocean current turbine designed to extract kinetic energy from ocean currents. The technology is capable of achieving competitively priced base-load, continuous, and reliable power generation from a source of renewable energy not before possible in this scale or form.

  14. Paper and Presentation at OCEANS2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Paper and Presentation at OCEANS2015 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs

  15. Sandia Energy Andrea Penner

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Paper and Presentation at OCEANS2015 http:energy.sandia.govpaper-and-presentation-at-oceans2015 http:energy.sandia.govpaper-and-presentation-at-oceans2015comments Tue, 22...

  16. EA-1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot Project, Cobscook in Washington County, Maine

    Broader source: Energy.gov [DOE]

    Draft Environmental AssessmentThis EA evaluates the environmental impacts of a project that would use the tidal currents of Cobscook Bay to generate electricity via cross-flow Kinetic System turbine generator units (TGU) mounted on the seafloor. The TGUs would capture energy from the flow in both ebb and flood directions.

  17. Commercialization and cost-sharing potential for Ocean Thermal Energy Conversion (OTEC) plantships and facilities by industry, utilities and government

    SciTech Connect (OSTI)

    Francis, E.J.

    1980-01-01

    Following the introduction and summary on the US energy situation and the potential for OTEC, the remaining chapters deal with the OTEC-ammonia model; legal aspects of OTEC commercialization; the formation of SOLARAMCO, a joint venture of ammonia companies; electric power from OTEC, fuel cells and direct cables, potential cost-sharing; and OTEC production of ammonia for fertilizer.

  18. Ocean Power Technologies (TRL 5 6 System) - PB500, 500 kW Utility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Advanced, High Power, Next Scale, Wave Energy Conversion Device Ocean Power Technologies (TRL 7 8 System) - Reedsport PB150 Deployment and Ocean Test ...

  19. Tidal Energy Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Map Reveals U.S. Tidal Energy Resources Artist rendering of Ocean Power Technologies' proposed wave park off the coast of Oregon. | Photo courtesy of Ocean Power Technologies. ...

  20. Departmental Response: SEAB Task Force Recommendations on

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Departmental Response: SEAB Task Force Recommendations on Technology Development for Environmental Management Introduction In May 2014, Energy Secretary Ernest Moniz charged the Secretary of Energy Advisory Board (SEAB) to provide advice as to how the United States (U.S.) Department of Energy (DOE) could more effectively ensure the development of technology necessary for the Office of Environmental Management (EM) to complete its mission, cleanup of legacy waste sites. The SEAB formed a Task

  1. Regulatory Assistance, Stakeholder Outreach, and Coastal and Marine Spatial Planning Activities In Support Marine and Hydrokinetic Energy Deployment: Task 2.1.7 Permitting and Planning Fiscal Year 2012 Year-End Report

    SciTech Connect (OSTI)

    Geerlofs, Simon H.; Hanna, Luke A.; Judd, Chaeli R.; Blake, Kara M.

    2012-09-01

    This fiscal year 2012 year-end report summarizes activities carried out under DOE Water Power task 2.1.7, Permitting and Planning. Activities under Task 2.1.7 address the concerns of a wide range of stakeholders with an interest in the development of the MHK industry, including regulatory and resource management agencies, tribes, NGOs, and industry. Objectives for 2.1.7 are the following: • To work with stakeholders to streamline the MHK regulatory permitting process. • To work with stakeholders to gather information on needs and priorities for environmental assessment of MHK development. • To communicate research findings and directions to the MHK industry and stakeholders. • To engage in spatial planning processes in order to further the development of the MHK industry. These objectives are met through three subtasks, each of which are described in this report: • 2.1.7.1—Regulatory Assistance • 2.1.7.2—Stakeholder Outreach • 2.1.7.3—Coastal and Marine Spatial Planning As the MHK industry works with the regulatory community and stakeholders to plan, site, permit and license MHK technologies they have an interest in a predictable, efficient, and transparent process. Stakeholders and regulators have an interest in processes that result in sustainable use of ocean space with minimal effects to existing ocean users. Both stakeholders and regulators have an interest in avoiding legal challenges by meeting the intent of federal, state, and local laws that govern siting and operation of MHK technologies. The intention of work under 2.1.7 is to understand these varied interests, explore mechanisms to reduce conflict, identify efficiencies, and ultimately identify pathways to reduce the regulatory costs, time, and potential environmental impacts associated with developing, siting, permitting, and deploying MHK systems.

  2. Turbines in the ocean

    SciTech Connect (OSTI)

    Smith, F.G.W.; Charlier, R.H.

    1981-09-01

    It is noted that the relatively high-speed ocean currents flowing northward along the east coast of the U.S. may be able to supply a significant proportion of the future electric power requirements of urban areas. The Gulf Stream core lies only about 20 miles east of Miami here its near-surface water reaches velocities of 4.3 miles per hour. Attention is called to the estimate that the energy available in the current of the Gulf Stream adjacent to Florida is approximately equivalent to that generated by 25 1,000-megawatt power plants. It is also contended that this power could be produced at competitive prices during the 1980s using large turbines moored below the ocean surface near the center of the Stream. Assuming an average ocean-current speed between 4 and 5 knots at the current core, the power density of a hydroturbine could reach 410 watts per square foot, about 100 times that of a wind-driven device of similar scale operating in an airflow of approximately 11 knots.

  3. Natural Currents Energy Group | Open Energy Information

    Open Energy Info (EERE)

    Natural Currents Energy Group Jump to: navigation, search Name: Natural Currents Energy Group Place: New York Sector: Hydro, Ocean, Renewable Energy, Solar, Wind energy Product:...

  4. Task Time Tracker

    Energy Science and Technology Software Center (OSTI)

    2013-07-24

    This client-side web app tracks the amount of time spent on arbitrary tasks. It allosw the creation of an unlimited number of arbitrarily named tasks ans via simple interactions, tracks the amount of time spent working on the drfined tasks.

  5. Current practices and new technology in ocean engineering

    SciTech Connect (OSTI)

    McGuinness, T.; Shih, H.H.

    1986-01-01

    This book presents the papers given at a conference on wave power and marine engineering. Topics considered at the conference included remote sensing, ocean current measurement, air and spaceborne instrumentation, marine dynamics, real-time measurements, telemetry systems, seafloor measurement, computer-based data acquisition, materials and devices for underwater work systems, ocean system design analysis and reliability, ocean structure fatigue life prediction, underwater life support systems, sensor design, ocean thermal energy conversion, and wave energy converters.

  6. Task Order Awarded for Environmental Technical Services

    Broader source: Energy.gov [DOE]

    Cincinnati - The Department of Energy (DOE) today awarded a task order for environmental technical services to Professional Project Services, Inc., of Oak Ridge, TN, for support services at the Paducah Gaseous Diffusion Plant located near Paducah, KY.

  7. Contained Energy | Open Energy Information

    Open Energy Info (EERE)

    Bioenergy, Buildings, Efficiency, Hydro, Ocean, Renewable Energy, Services, Solar, Wind energy Year Founded: 2004 Phone Number: +62816858906 Website: www.containedenergy.com...

  8. NREL Job Task Analysis: Retrofit Installer Technician (Revised) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Retrofit Installer Technician (Revised) NREL Job Task Analysis: Retrofit Installer Technician (Revised) A summary of job task analyses for the position of retrofit installer technician when conducting weatherization work on a residence. retrofit_installer_jta_04112012.pdf (518.38 KB) More Documents & Publications NREL Job Task Analysis: Retrofit Installer Technician NREL Job Task Analysis: Energy Auditor Training Self-Assessment

  9. Review of Recent Literature Relevant to the Environmental Effects of Marine and Hydrokinetic Energy Devices Task 2.1.3: Effects on Aquatic Organisms – Fiscal Year 2011 Progress Report Environmental Effects of Marine and Hydrokinetic Energy

    SciTech Connect (OSTI)

    Kropp, Roy K.

    2011-09-30

    A literature search was conducted by using the Web of Science® Databases component of the ISI Web of KnowledgeSM to identify recent articles that would be useful to help assess the potential environmental effects of renewable energy development in the ocean, with emphasis on marine mammals, seabirds, and fish. Several relatively recent general review articles that included possible effects of marine renewable energy devices on marine mammals and seabirds were examined to begin the search process (e.g., Boehlert et al. 2008; Thompson et al. 2008; Simas et al. 2009). From these articles, several general topics of potential environmental effects on marine mammals, seabirds, and fish were derived. These topics were used as the primary search factors. Searches were conducted with reference to the potential effects of offshore wind farms and MHK devices on marine mammals, seabirds, and fish. Additional sources were identified by cross-checking the Web of Science databases for articles that cited the review articles. It also became clear that often the potential effects were offered as hypotheses that often were not supported by the presentation of appropriate documentation. Therefore, the search was refined and focused on trying to obtain the necessary information to support or challenge a proposed potential effect to a specific concern. One of the expressed concerns regarding MHK devices is that placing wave parks in coastal waters could compromise the migration patterns of whales. Disruption of the annual migration of the gray whale (Eschrichtius robustus), which swims at least 30,000 km on its round trip from breeding grounds in Baja California to feeding areas in the Bering Sea, is of particular concern. Among the hypothesized effects on the migrating gray whales are increased predation risk by constricting migration corridor to between array and shore or by forcing the whales to swim into deeper waters, increased metabolic energy costs and delays in reaching the

  10. Net Metering | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    solar energy, wind energy, ocean-thermal energy, geothermal energy, small hydropower, biogas from anaerobic digestion, or fuel cells using any of these energy sources are...

  11. Effects of Electromagnetic Fields on Fish and Invertebrates Task 2.1.3: Effects on Aquatic Organisms Fiscal Year 2012 Progress Report Environmental Effects of Marine and Hydrokinetic Energy

    SciTech Connect (OSTI)

    Woodruff, Dana L.; Cullinan, Valerie I.; Copping, Andrea E.; Marshall, Kathryn E.

    2013-05-20

    Energy generated by the world’s oceans and rivers offers the potential to make substantial contributions to the domestic and global renewable energy supply. However, the marine and hydrokinetic (MHK) energy industry faces challenges related to siting, permitting, construction, and operation of pilotand commercial-scale facilities. One of the challenges is to understand the potential effects to marine organisms from electromagnetic fields, which are produced as a by-product of transmitting power from offshore to onshore locations through underwater transmission cables. This report documents the progress of the third year of research (fiscal year 2012) to investigate environmental issues associated with marine and hydrokinetic energy (MHK) generation. This work was conducted by Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy’s (DOE’s) Office of Energy Efficiency and Renewable Energy (EERE) Wind and Water Technologies Office. The report addresses the effects of electromagnetic fields (EMFs) on selected marine species where significant knowledge gaps exist. The species studied this fiscal year included one fish and two crustacean species: the Atlantic halibut (Hippoglossus hippoglossus), Dungeness crab (Metacarcinus magister), and American lobster (Homarus americanus).

  12. An acoustically controlled tetherless underwater vehicle for installation and maintenance of neutrino detectors in the deep ocean

    SciTech Connect (OSTI)

    Ballou, Philip J.

    1997-02-01

    The task of installing and servicing high energy neutrino detectors in the deep ocean from a surface support vessel is problematic using conventional tethered systems. An array of multiple detector strings rising 500 m from the ocean floor, and forming a grid with 50 m spacing between the strings, presents a substantial entanglement hazard for equipment cables deployed from the surface. Such tasks may be accomplished with fewer risks using a tetherless underwater remotely operated vehicle that has a local acoustic telemetry link to send control commands and sensor data between the vehicle and a stationary hydrophone suspended above or just outside the perimeter of the work site. The Phase I effort involves the development of an underwater acoustic telemetry link for vehicle control and sensor feedback, the evaluation of video compression methods for real-time acoustic transmission of video through the water, and the defining of local control routines on board the vehicle to allow it to perform certain basic maneuvering tasks autonomously, or to initiate a self-rescue if the acoustic control link should be lost. In Phase II, a prototype tetherless vehicle system will be designed and constructed to demonstrate the ability to install cable interconnections within a detector array at 4 km depth. The same control technology could be used with a larger more powerful vehicle to maneuver the detector strings into desired positions as they are being lowered to the ocean floor.

  13. Ocean thermal plantships for production of ammonia as the hydrogen carrier.

    SciTech Connect (OSTI)

    Panchal, C.B.; Pandolfini, P. P.; Kumm, W. H.; Energy Systems; Johns Hopkins Univ.; Arctic Energies, Ltd.

    2009-12-02

    completing project tasks that consist of updating the John Hopkins University/Applied Physics Laboratory (JHU/APL) pilot plantship design and extrapolating it to commercial plantships, evaluating a new energy-efficient ammonia synthesis process, evaluating the co-production of desalinated water on plantships, and developing a conceptual design of a satellite plantships system for commercial-scale ammonia production. In addition, an industrial workshop was organized to present the results and develop future goals for commercialization of ocean thermal plantships by 2015. The following goals, arranged in chronological order, were examined at the workshop: (1) Global displacement of petroleum-fuel-based (diesel, fuel oil, naphtha) power generation for freeing up these fuels for transportation, chemical feedstock, and other high-valued uses; (2) At-sea production of desalinated water for regions of critical water shortages; (3) Displacement of carbon-based feed stocks and energy for production of ammonia fertilizers; (4) Development of hydrogen supply to allow economic processing of heavy crude oils and upgrading oil sands; (5) Development of ammonia-fueled distributed energy to displace natural-gas fueled power generation to free up natural gas for higher-value uses and the mitigation of issues associated with imported liquefied natural gas (LNG); and (6) Use of ammonia as a hydrogen carrier for transportation.

  14. Observations and Modeling of the Green Ocean Amazon : Nanoparticle...

    Office of Scientific and Technical Information (OSTI)

    ... Counter DMA Differential Mobility Analyzer DOE U.S. Department of Energy GoAmazon 201415 INPA Green Ocean Amazon 201415 Instituto Nacional de Pesquisas da Amazonia LBA ...

  15. Observations and Modeling of the Green Ocean Amazon: Sounding...

    Office of Scientific and Technical Information (OSTI)

    Observations and Modeling of the Green Ocean Amazon: Sounding Enhancement Field Campaign ... The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate ...

  16. Observations and Modeling of the Green Ocean Amazon (GOAMAZON...

    Office of Scientific and Technical Information (OSTI)

    Observations and Modeling of the Green Ocean Amazon (GOAMAZON). Particulate Matter and ... transmittance, elemental composition by energy dispersive x-ray fluorescence, and ionic ...

  17. Turner Hunt Ocean Renewable (TRL 4 System) - THOR's Power Method...

    Energy Savers [EERE]

    More Documents & Publications CX-004722: Categorical Exclusion Determination Vortex Hydro Energy (TRL 5 6 System) - Advanced Integration of Power Take-Off in VIVACE Ocean...

  18. New Airborne Technology Measures Ocean Surface Currents for Offshore...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Emergency Rescue Missions New Airborne Technology Measures Ocean Surface Currents for Offshore Energy Production and Emergency Rescue Missions April 11, 2016 - 10:40am ...

  19. Thermoacoustic engine simulations with lattice Boltzmann CFD. Tasks 3, 4 and 5 progress report

    SciTech Connect (OSTI)

    1995-02-06

    Advanced Projects Research Incorporated has completed tasks number 3, 4 and 5 of the specified tasks in the LANL subcontract. Task 3 required measurement of the acoustic attenuation for various thermoacoustic conditions and Task 4 involved the analysis of the energy transfer mechanisms for the geometries of Task 3. Finally, Task 5 specified that simulations of thermoacoustic engine configurations used at LANL were to be performed. Discussion of all 3 task results is presented.

  20. Advanced power assessment for Czech lignite, Task 3.6, Part 2. The 2nd international conference on energy and environment: Transitions in East Central Europe

    SciTech Connect (OSTI)

    Sondreal, E.A.; Mann, M.D.; Weber, G.W.; Young, B.C.

    1995-12-01

    On November 1-5, 1994, the Energy & Environmental Research Center (EERC) and Power Research Institute of Prague cosponsored their second conference since 1991 in the Czech Republic, entitled ``Energy and Environment: Transitions in East Central Europe.`` This conference was a continuation of the EERC`s joint commitment, initiated in 1190, to facilitate solutions to short- and long-term energy and environmental problems in East Central Europe. Production of energy from coal in an environmentally acceptable manner is a critical issue facing East Central Europe, because the region continues to rely on coal as its primary energy source. The goal of the conference was to develop partnerships between industry, government, and the research community in East Central Europe and the United States to solve energy and environmental issues in a manner that fosters economic development. Among the topics addressed at the conference were: conventional and advanced energy generation systems; economic operation of energy systems; air pollution controls; power system retrofitting and repowering, financing options; regulatory issues; energy resource options; waste utilization and disposal; and long-range environmental issues. Selected papers in the proceedings have been processed separately for inclusion in the Energy Science and Technology database.

  1. Marine Energy Technology Symposium METS2016

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Mexico, USA Peter Bachant Center for Ocean Renewable Energy University of New Hampshire Durham, NH, USA Martin Wosnik Center for Ocean Renewable Energy University of New ...

  2. Task Order Price Evaluation Worksheet for SUPER ESPC

    Broader source: Energy.gov [DOE]

    Document provides a worksheet for evaluating price for a task order as part of a Super Energy Savings Performance Contract (ESPC).

  3. Hawaii Natural Energy Institute annual report, 1984

    SciTech Connect (OSTI)

    Not Available

    1984-01-01

    Research and development project summaries are given on: biomass energy, geothermal energy, ocean energy, solar energy, wind energy, hydrogen research, other renewable energy. (DLC)

  4. Progress report on renewable energy in Hawaii

    SciTech Connect (OSTI)

    Troy, M.; Brown, N.E.

    1982-04-01

    Renewable energy projects in Hawaii are reviewed as follows: geothermal energy, ocean energy, biomass, wind energy, direct solar energy, hydroelectric and other energy.

  5. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Virgin Islands- Renewables Portfolio Targets Photovoltaic Energy, wind energy, hydroelectric energy, landfill gas, biomass, ocean and microturbine systems. Eligibility:...

  6. PROJECT TASK STATEMENT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PROJECT TASK STATEMENT BETWEEN Sandia Corporation AND British East India Company a corporation of the United Kingdom having a principal office in London, United Kingdom (hereinafter "Participant") Geothermal Dynamics This Project Task Statement (PTS) is under the authority and subject to all terms and conditions of Cooperative Research and Development Agreement (CRADA) No. SC##/####.##.##. A. PURPOSE Sandia National Laboratories (Sandia) and the British East India Company (BEIC) are

  7. Employee Job Task Analysis (EJTA) PIA, Richland Operations Office |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Job Task Analysis (EJTA) PIA, Richland Operations Office Employee Job Task Analysis (EJTA) PIA, Richland Operations Office Employee Job Task Analysis (EJTA) PIA, Richland Operations Office Employee Job Task Analysis (EJTA) PIA, Richland Operations Office (58.17 KB) More Documents & Publications Occupational Medicine - Assistant PIA, Idaho National Laboratory Occupational Injury & Illness System (01&15) PIA, Idaho National Laboratory PIA - GovTrip (DOE data)

  8. Review of Recent Literature Relevant to the Environmental Effects of Marine and Hydrokinetic Energy Devices; Task 2.1.3: Effects on Aquatic Organisms - Fiscal Year 2012 Progress Report

    SciTech Connect (OSTI)

    Kropp, Roy K.

    2013-01-01

    A literature search was conducted by using the Web of Science® databases component of the ISI Web of KnowledgeSM to identify recent articles that would be useful to help assess the potential environmental effects of renewable energy development in the ocean, with emphasis on seabirds and fish. Several relatively recent general review articles that included possible effects on seabirds and fish were examined to begin the search process. From these articles, several general topics of potential environmental effects on seabirds and fish were derived. These topics were used as the primary search factors. Additional sources were identified by cross-checking the Web of Science databases for articles that cited the review articles. It also became clear that the potential effects frequently w

  9. Analysis of selected energy security issues related to US crude oil and natural gas exploration, development, production, transportation and processing. Final report, Task 13

    SciTech Connect (OSTI)

    Not Available

    1990-10-01

    In July 1989, President Bush directed the Secretary of Energy to initiate the development of a comprehensive National Energy Strategy (NES) built upon a national consensus. The overall principle for the NES, as defined by the President and articulated by the Economic Policy Council (EPC), is the continuation of the successful policy of market reliance, consistent with the following goals: Balancing of energy, economic, and environmental concerns; and reduced dependence by the US and its friends and allies on potentially unreliable energy suppliers. The analyses presented in this report draw upon a large body of work previously conducted for DOE/Office of Fossil Energy, the US Department of Interior/Minerals Management Service (DOI/MMS), and the Gas Research Institute (GRI), referenced throughout the text of this report. This work includes assessments in the following areas: the potential of advanced oil and gas extraction technologies as improved through R&D, along with the successful transfer of these technologies to the domestic petroleum industry; the economic and energy impacts of environmental regulations on domestic oil and gas exploration, production, and transportation; the potential of tax incentives to stimulate domestic oil and gas development and production; the potential environmental costs associated with various options for leasing for US oil and gas resources in the Outer Continental Shelf (OCS); and the economic impacts of environmental regulations affecting domestic crude oil refining.

  10. NREL Job Task Analysis: Crew Leader

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Crew Leader Chuck Kurnik National Renewable Energy Laboratory Cynthia Woodley Professional Testing Inc. Technical Report NREL/TP-7A20-51673 May 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 NREL Job Task Analysis: Crew Leader Chuck

  11. AWS Ocean Energy Ltd | Open Energy Information

    Open Energy Info (EERE)

    Zip: IV17 1SN Product: Inverness-based company established to commercialise the Archimedes Wave Swing. Coordinates: 48.55324, -110.689764 Show Map Loading map......

  12. [Energy and environmental research emphasizing low-rank coal]: Task 7.1, Strategic planning. Topical report, February 1, 1994--June 30, 1995

    SciTech Connect (OSTI)

    1996-01-01

    The nations of East Central Europe regained their political and economic freedom in 1989, ending nearly a half century of centrally planned economies under the hegemony of the former Soviet Union (FSU). These nations are now emerging from economic conditions marked by price distortions and a focus on heavy industry, isolation from world markets, and a lack of occupational health and environmental safeguards. Economic recovery, environmental restoration, and political stability, as well as eventual entrance into the European Community (EC), require a reordering of policies and priorities, including those bearing on energy and the environment. This report, prepared as a background document for the Second International Conference on Energy and Environment to be held in Prague in November 1994, is composed of a summary table (Table 1) and supporting text and is intended to provide a concise review of issues related to energy and the environment for the Czech and Slovak Republics, Hungary, Poland, and Bulgaria. Organized by subject and country, Table 1 contains country profiles (Row A), information on the economy (Row B), primary energy consumption, environmental priorities, energy resources, production, and utilization (Rows C, D, F, G, H, and I), electrical generation and transmission (Rows J and K), district heating (Row L), briquettes (Row M), and environmental regulations (Row N). Pertinent policy goals, issues, and trends are noted. The reports is based largely on a review of documents published by the International Energy Agency (IEA) and the U.S. Department of Energy (DOE), as well as selected sources obtained from the countries of the region. Reference citations are keyed to information presented in Table 1.

  13. Hanford Waste Treatment Plant Support Task Order Modified | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Waste Treatment Plant Support Task Order Modified Hanford Waste Treatment Plant Support Task Order Modified March 11, 2013 - 12:00pm Addthis Media Contact Lynette Chafin, 513-246-0461 Lynette.Chafin@emcbc.doe.gov Cincinnati - The Department of Energy (DOE) today awarded a modification to a task order to Aspen Resources Limited, Inc. of Boulder, Colorado for support of the Waste Treatment and Immobilization Plant (WTP) at the Hanford Site. The modification increased the value of the

  14. Federal Task Force Sends Recommendations to President on Fostering Clean

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Coal Technology | Department of Energy Task Force Sends Recommendations to President on Fostering Clean Coal Technology Federal Task Force Sends Recommendations to President on Fostering Clean Coal Technology August 12, 2010 - 12:00am Addthis WASHINGTON - President Obama's Interagency Task Force on Carbon Capture and Storage (CCS), co-chaired by the U.S. Environmental Protection Agency (EPA) and the Department of Energy (DOE), delivered a series of recommendations to the president today on

  15. Numerical techniques for steady two-dimensional transcritical stratified flow problems, with an application to the intermediate field dynamics of Ocean Thermal Energy Conversion plants

    SciTech Connect (OSTI)

    Jones, J.M.; Jirka, G.H.; Caughey, D.A.

    1985-01-01

    The development of predictive techniques for the predominantly horizontal, layered fluid motions that result when a continuous buoyant source is discharged into an ambient fluid at a bounding surface, interface or equilibrium level is studied. Although the numerical techniques developed are applicable to general discharge configurations, the model development is focused on the particular case of a radial source of buoyancy and momentum discharged into a uniform ambient crossflow. The resulting density current is analyzed by application of the depth-integrated hydrodynamic equations. The density current dynamics are shown to vary with the relative intermediate- to near-field strengths, as characterized by the ratio of their respective length scales. The complete range of this interaction, from small near-field effects to large near-field effects, is investigated. Results are presented as the depth integrated velocity and current thickness distributions for different field strength values. The model predictions are compared to two sets of laboratory data and to limited field information, involving a river discharge and a submerged outfall into the ocean. Good agreement is obtained in all cases. Finally, the model results are applied to the prediction of a river plume into a coastal ocean current and to the continuous discharge from an OTEC plant operating in the stratified ocean. In both cases, the results indicate the significant horizontal extent (order of several kilometers) of the resulting current, together with their limited vertical extent (order of several meters). Their strong sensitivity to ambient current magnitude and stratification strength is demonstrated.

  16. ARM - Oceanic Properties

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oceanic Properties Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Oceanic Properties There are some other aspects that need to be examined regarding the imbalances in the current carbon cycle. First let's look at the effects of the ocean gaining 2 gigatonnes (1 gigatonne = 1x1012 kilograms)

  17. Chizu Task Mapping Tool

    Energy Science and Technology Software Center (OSTI)

    2014-07-01

    Chizu is a tool for Mapping MPI processes or tasks to physical processors or nodes for optimizing communication performance. It takes the communication graph of a High Performance Computing (HPC) application and the interconnection topology of a supercomputer as input. It outputs a new MPI rand to processor mapping, which can be used when launching the HPC application.

  18. Report on Project Action Sheet PP05 task 3 between the U.S. Department of Energy and the Republic of Korea Ministry of Education, Science, and Technology (MEST).

    SciTech Connect (OSTI)

    Snell, Mark Kamerer

    2013-01-01

    This report documents the results of Task 3 of Project Action Sheet PP05 between the United States Department of Energy (DOE) and the Republic of Korea (ROK) Ministry of Education, Science, and Technology (MEST) for Support with Review of an ROK Risk Evaluation Process. This task was to have Sandia National Laboratories collaborate with the Korea Institute of Nuclear Nonproliferation and Control (KINAC) on several activities concerning how to determine the Probability of Neutralization, PN, and the Probability of System Effectiveness, PE, to include: providing descriptions on how combat simulations are used to determine PN and PE; comparisons of the strengths and weaknesses of two neutralization models (the Neutralization.xls spreadsheet model versus the Brief Adversary Threat-Loss Estimator (BATLE) software); and demonstrating how computer simulations can be used to determine PN. Note that the computer simulation used for the demonstration was the Scenario Toolkit And Generation Environment (STAGE) simulation, which is a stand-alone synthetic tactical simulation sold by Presagis Canada Incorporated. The demonstration is provided in a separate Audio Video Interleave (.AVI) file.

  19. Descriptions of ESPC Task Order Schedules and Placement of Pricing Information (IDIQ Attachment J-5)

    Broader source: Energy.gov [DOE]

    Document provides task order schedule descriptions and information on the placement of pricing for energy savings performance contracts (ESPCs).

  20. January 6, 2014 SEAB FracFocus 2.0 Task Force Meeting

    Broader source: Energy.gov [DOE]

    SECRETARY OF ENERGY ADVISORY BOARDFRACFOCUS 2.0 TASK FORCE MEETINGJanuary 6, 20141000 Independence Avenue, SW, Washington, DC

  1. Hydro Alternative Energy | Open Energy Information

    Open Energy Info (EERE)

    Alternative Energy Jump to: navigation, search Name: Hydro Alternative Energy Place: Boca Raton, Florida Zip: 33486 Sector: Ocean Product: Marine project developer focusing on...

  2. Sustainable Energy Solutions Task 4.1 Intelligent Manufacturing of Hybrid Carbon-Glass Fiber-Reinforced Composite Wind Turbine Blades

    SciTech Connect (OSTI)

    Janet M Twomey, PhD

    2010-04-30

    EXECUTIVE SUMARY In this subtask, the manufacturability of hybrid carbon-glass fiber-reinforced composite wind turbine blades using Vacuum-Assisted Resin Transfer Molding (VARTM) was investigated. The objective of this investigation was to study the VARTM process and its parameters to manufacture cost-effective wind turbine blades with no defects (mainly eliminate dry spots and reduce manufacturing time). A 2.5-dimensional model and a 3-dimensional model were developed to simulate mold filling and part curing under different conditions. These conditions included isothermal and non-isothermal filling, curing of the part during and after filling, and placement of injection gates at different locations. Results from this investigation reveal that the process can be simulated and also that manufacturing parameters can be optimized to eliminate dry spot formation and reduce the manufacturing time. Using computer-based models is a cost-effective way to simulate manufacturing of wind turbine blades. The approach taken herein allows the design of the wind blade manufacturing processes without physically running trial-and-error experiments that are expensive and time-consuming; especially for larger blades needed for more demanding environmental conditions. This will benefit the wind energy industry by reducing initial design and manufacturing costs which can later be passed down to consumers and consequently make the wind energy industry more competitive.

  3. DOE Awards Research and Systems Engineering Task Order | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Research and Systems Engineering Task Order DOE Awards Research and Systems Engineering Task Order April 28, 2016 - 2:00pm Addthis Media Contact: Lynette Chafin (513) 246-0461 Lynette.Chafin@emcbc.doe.gov Cincinnati - The U.S. Department of Energy (DOE) today awarded a task order to the MITRE Corporation, of McLean Virginia. MITRE will provide research and development in support of DOE's Office of Environmental Management. The task order has an approximate value of $1.176 million,

  4. DOE Announces Up to $7.5 Million in Advanced Technology Research to Harness Energy Potential of Oceans, Tides and Rivers

    Broader source: Energy.gov [DOE]

    WASHINGTON, DC - As part of the Bush Administration's ongoing commitment to invest in clean energy technologies to meet growing energy demand while reducing greenhouse gas emissions, the U.S....

  5. Task Group report to the Assistant Secretary for Environment, Safety and Health on oversight of chemical safety at the Department of Energy. Volume 2, Appendices

    SciTech Connect (OSTI)

    Not Available

    1992-11-01

    This report presents the results of a preliminary review of chemical safety within the Department of Energy (DOE). The review was conducted by Chemical Safety Oversight Review (CSOR) Teams composed of Office of Environment, Safety and Health (EH) staff members and contractors. The primary objective of the CSOR was to assess, the safety status of DOE chemical operations and identify any significant deficiencies associated with such operations. Significant was defined as any situation posing unacceptable risk, that is, imminent danger or threat to workers, co-located workers, the general public, or the environment, that requires prompt action by EH or the line organizations. A secondary objective of the CSOR was to gather and analyze technical and programmatic information related to chemical safety to be used in conjunction with the longer-range EH Workplace Chemical Accident Risk Review (WCARR) Program. The WCARR Program is part of the ongoing EH oversight of nonnuclear safety at all DOE facilities. `` The program objective is to analyze DOE and industry chemical safety programs and performance and determine the need for additional or improved safety guidance for DOE. During the period June 6, 1992, through July 31, 1992, EH conducted CSORs at five DOE sites. The sites visited were Los Alamos National Laboratory (LANL), Savannah River Site (SRS), the Y-12 Plant (Y-12), Oak Ridge National Laboratory (ORNL), and Lawrence Livermore National Laboratory (LLNL).

  6. Collaborative Utility Task Force Partners with DOE to Develop Cyber

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Security Requirements for Advanced Metering Infrastructure | Department of Energy Collaborative Utility Task Force Partners with DOE to Develop Cyber Security Requirements for Advanced Metering Infrastructure Collaborative Utility Task Force Partners with DOE to Develop Cyber Security Requirements for Advanced Metering Infrastructure The Advanced Metering Infrastructure Security (AMI-SEC) Task Force announces the release of the AMI System Security Requirements, a first-of-its-kind for the

  7. Aqua Magnetics Inc | Open Energy Information

    Open Energy Info (EERE)

    Zip: 32937 Sector: Ocean Product: Manufactures patented system that converts ocean wave energy into electric power. References: Aqua-Magnetics Inc1 This article is a stub. You...

  8. Mainstream Renewable Power | Open Energy Information

    Open Energy Info (EERE)

    Name: Mainstream Renewable Power Place: Dublin, Ireland Zip: 18 Sector: Ocean, Solar, Wind energy Product: Developer of wind farms, solar, thermal and ocean stream projects....

  9. Surf City | Open Energy Information

    Open Energy Info (EERE)

    Resources Zero Carbon Wind Energy Corp Developer Pavilion Energy Resources Zero Carbon Wind Energy Corp Location Atlantic Ocean NJ Coordinates 39.38, -73.508 Show Map...

  10. U.S. Support Program tasks

    SciTech Connect (OSTI)

    Langner, D.G.

    1998-09-01

    In the fall of 1993, President Clinton announced before the United Nations General Assembly, that the US would voluntarily offer excess fissile material of weapons origin to International Atomic Energy Agency (IAEA) safeguards. There are presently five US Support Program tasks at work. Three are complete, and two are underway. Reports are available from two of the completed SP-1s; a draft is in preparation for the third. These tasks are: (1) plutonium scrap multiplicity counter at Hanford; (2) calorimeter authentication at Hanford; (3) large neutron multiplicity counter at Rocky Flats; (4) calorimeter authentication at Rocky Flats; and (5) safeguards approach support at the APSF, SRS. The status of the first four tasks above is described here. Information on the work at Savannah River is contained in a separate paper.

  11. DOE Awards Task Order for Lexington Project Office Audit

    Broader source: Energy.gov [DOE]

    Cincinnati - The U.S. Department of Energy (DOE) Office of Environmental Management today awarded a task order to KPMG LLP, of McLean, Virginia to perform audit services for the Portsmouth/Paducah Project Office in Lexington, Kentucky. The task order has an approximate value of $2.9 million over a two-year performance period.

  12. Simple ocean carbon cycle models

    SciTech Connect (OSTI)

    Caldeira, K.; Hoffert, M.I.; Siegenthaler, U.

    1994-02-01

    Simple ocean carbon cycle models can be used to calculate the rate at which the oceans are likely to absorb CO{sub 2} from the atmosphere. For problems involving steady-state ocean circulation, well calibrated ocean models produce results that are very similar to results obtained using general circulation models. Hence, simple ocean carbon cycle models may be appropriate for use in studies in which the time or expense of running large scale general circulation models would be prohibitive. Simple ocean models have the advantage of being based on a small number of explicit assumptions. The simplicity of these ocean models facilitates the understanding of model results.

  13. National Oceanic and Atmospheric Administration, Honolulu, Hawaii

    Broader source: Energy.gov [DOE]

    The staff residences at the Pacific Tsunami Warning Center in Hawaii now have solar water heating systems funded by the Federal Energy Management Program (FEMP). The Center is part of the Department of Commerce's National Oceanic and Atmospheric Administration (DOC-NOAA).

  14. U.S. - Canada Power System Outage Task Force: Final Report on the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Implementation of Task Force Recommendations | Department of Energy - Canada Power System Outage Task Force: Final Report on the Implementation of Task Force Recommendations U.S. - Canada Power System Outage Task Force: Final Report on the Implementation of Task Force Recommendations On August 14, 2003, the largest power blackout in North American history affected an area with an estimated 50 million people and 61,800 megawatts (MW) of electric load in the states of Ohio, Michigan,

  15. Energy Solutions Partners, LLC | Open Energy Information

    Open Energy Info (EERE)

    Missing content Broken link Other Additional Comments Cancel Submit Categories: Organizations Energy Distribution Organizations Companies Articles with outstanding TODO tasks...

  16. Characterization of U.S. Wave Energy Converter (WEC) Test Sites: A Catalogue of Met-Ocean Data 2nd Edition (Part 3)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CALWAVE PROPOSED CENTRAL COAST WEC TEST SITE AT VANDENBERG AIR FORCE BASE (VAFB) 9.1. Site Description The California Wave Energy Test Center (CalWave) Feasibility Study evaluated offshore test sites along the California coast for establishment of a national wave energy testing facility (Williams et al. 2015). The project originally considered two candidate areas, one offshore of Humboldt Bay, which is described in Chapter 9, and another Central Coast site offshore of Vandenberg Air Force Base

  17. NREL Job Task Analysis: Energy Auditor

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 phone: 800.553.6847 fax: 703.605.6900 email: orders@ntis.fedworld.gov online ordering: http:...

  18. Task Force Approach | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Breaking Down Stovepipes: This includes activities such as our coordination with other DOE wide teams such as the NEPA six sigma team and the Facilities and Infrastructure Steering ...

  19. IEA Wind Task 26 - Multi-national Case Study of the Financial...

    Open Energy Info (EERE)

    Wind Task 26 - Multi-national Case Study of the Financial Cost of Wind Energy, Work Package 1, Final Report Jump to: navigation, search Tool Summary LAUNCH TOOL Name: IEA Wind Task...

  20. Task Order Awarded for Audit and Review Services

    Broader source: Energy.gov [DOE]

    Cincinnati – The Department of Energy today awarded a Task Order to KPMG, LLP of McLean, VA for audit/review services that will cover a wide range of auditing services.

  1. ARI Task Force, ECA Work to Stimulate Regional Economies

    Broader source: Energy.gov [DOE]

    WASHINGTON, D.C. – DOE’s Asset Revitalization Initiative (ARI) Task Force met with the Energy Communities Alliance (ECA) this week to advance the Department’s processes for transferring excess land...

  2. DOE Awards Task Order Modification for Support Services to Office...

    Office of Environmental Management (EM)

    Cincinnati - The Department of Energy (DOE) today awarded a modification to Task Order DE-DT0005235 to J.G. Management Systems, Inc. of Grand Junction, CO for administrative and ...

  3. Preliminary Screening Analysis for the Environmental Risk Evaluation System: Task 2.1.1: Evaluating Effects of Stressors – Fiscal Year 2010 Progress Report: Environmental Effects of Marine and Hydrokinetic Energy

    SciTech Connect (OSTI)

    Anderson, Richard M.; Copping, Andrea E.; Van Cleve, Frances B.

    2010-11-15

    Possible environmental effects of marine and hydrokinetic (MHK) energy development are not well understood, and yet regulatory agencies are required to make decisions in spite of substantial uncertainty about environmental impacts and their long-term effects. An understanding of risk associated with likely interactions between MHK installations and aquatic receptors, including animals, habitats, and ecosystems, can help reduce the level of uncertainty and focus regulatory actions and scientific studies on interactions of most concern. As a first step in developing the Pacific Northwest National Laboratory (PNNL) Environmental Risk Evaluation System (ERES), PNNL scientists conducted a preliminary risk screening analysis on three initial MHK cases - a tidal project in Puget Sound using Open Hydro turbines, a wave project off the coast of Oregon using Ocean Power Technologies point attenuator buoys, and a riverine current project in the Mississippi River using Free Flow turbines. Through an iterative process, the screening analysis revealed that top-tier stressors in all three cases were the effects of the dynamic physical presence of the device (e.g., strike), accidents, and effects of the static physical presence of the device (e.g., habitat alteration). Receptor interactions with these stressors at the four highest tiers of risk were dominated by marine mammals (cetaceans and pinnipeds) and birds (diving and non-diving); only the riverine case (Free Flow) included different receptors in the third tier (fish) and the fourth tier (benthic invertebrates). Although this screening analysis provides a preliminary analysis of vulnerability of environmental receptors to stressors associated with MHK installations, probability analysis, especially of risk associated with chemical toxicity and accidents such as oil spills or lost gear, will be necessary to further understand high-priority risks. Subject matter expert review of this process and results is required and is

  4. Loan Programs | Open Energy Information

    Open Energy Info (EERE)

    using Renewable Fuels Geothermal Electric Ground Source Heat Pumps Hydroelectric energy Hydrogen Microturbines Ocean Thermal Photovoltaics Renewable Fuels Small Hydroelectric...

  5. Secretary Chu Tasks Environmental, Industry and State Leaders to Recommend

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Best Practices for Safe, Responsible Development of America's Onshore Natural Gas Resources | Department of Energy Tasks Environmental, Industry and State Leaders to Recommend Best Practices for Safe, Responsible Development of America's Onshore Natural Gas Resources Secretary Chu Tasks Environmental, Industry and State Leaders to Recommend Best Practices for Safe, Responsible Development of America's Onshore Natural Gas Resources May 5, 2011 - 12:00am Addthis Washington, D.C. -- U.S. Energy

  6. Interim Report of the Task Force on DOE National Laboratories | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Interim Report of the Task Force on DOE National Laboratories Interim Report of the Task Force on DOE National Laboratories The SEAB Task Force on DOE National Laboratories was established by the Secretary of Energy on June 16, 2014, to provide advice, guidance, and recommendations on important issues related to improving the health and management of the labs. The Task Force has been charged to review past studies, Congressional reports and direction, and Departmental deliberations

  7. COLLOQUIUM: Ocean Acoustic Ecology: Great Whales, Ocean Scales...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 23, 2016, 4:15pm to 5:30pm Colloquia MBG Auditorium COLLOQUIUM: Ocean Acoustic Ecology: Great Whales, Ocean Scales, Big Data Dr. Christopher Clark Cornell University ...

  8. National Oceanic and Atmospheric Administration (NOAA) | Open...

    Open Energy Info (EERE)

    National Oceanic and Atmospheric Administration (NOAA) Jump to: navigation, search Logo: National Oceanic and Atmospheric Administration (NOAA) Name: National Oceanic and...

  9. Climate, Ocean and Sea Ice Modeling (COSIM)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Earth, Space Sciences Climate, Ocean and Sea Ice Modeling (COSIM) Climate, Ocean and Sea Ice Modeling (COSIM) The COSIM project develops advanced ocean and ice models for ...

  10. Energy 101: Marine & Hydrokinetic Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Marine & Hydrokinetic Energy Energy 101: Marine & Hydrokinetic Energy August 13, 2013 - 10:54am Addthis See how marine and hydrokinetic technologies harness the energy of the ocean's waves, tides, and currents and convert it into electricity to power our homes, buildings, and cities. The oceans represent a largely untapped renewable energy resource with potential to provide clean electricity to coastal communities and cities across the United States. In this edition of Energy 101, learn

  11. Dehlsen (TRL 5 6 System) - Aquantis C-Plane Ocean Current Turbine Project |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Dehlsen (TRL 5 6 System) - Aquantis C-Plane Ocean Current Turbine Project Dehlsen (TRL 5 6 System) - Aquantis C-Plane Ocean Current Turbine Project Dehlsen (TRL 5 6 System) - Aquantis C-Plane Ocean Current Turbine Project 13_aquantismhk_da_alexfleming.pptx (2.33 MB) More Documents & Publications Aquantis 2.5MW Ocean Current Generation Device 2014 Water Power Program Peer Review Compiled Presentations: Marine and Hydrokinetic Technologies CX-005670: Categorical

  12. LLNL Ocean General Circulation Model

    Energy Science and Technology Software Center (OSTI)

    2005-12-29

    The LLNL OGCM is a numerical ocean modeling tool for use in studying ocean circulation over a wide range of space and time scales, with primary applications to climate change and carbon cycle science.

  13. Observations and Modeling of the Green Ocean Amazon 2014/15....

    Office of Scientific and Technical Information (OSTI)

    Observations and Modeling of the Green Ocean Amazon 201415. CHUVA Field Campaign Report ... consequently, improve knowledge of the water and energy budget and cloud microphysics. ...

  14. Energy 101: Marine and Hydrokinetic Energy

    ScienceCinema (OSTI)

    None

    2014-06-26

    See how marine and hydrokinetic technologies harness the energy of the ocean's waves, tides, and currents and convert it into electricity to power our homes, buildings and cities.

  15. Energy 101: Marine and Hydrokinetic Energy

    SciTech Connect (OSTI)

    2013-04-29

    See how marine and hydrokinetic technologies harness the energy of the ocean's waves, tides, and currents and convert it into electricity to power our homes, buildings and cities.

  16. Energy Department Announces $10 million for Wave Energy Demonstration...

    Broader source: Energy.gov (indexed) [DOE]

    million to test prototypes designed to generate clean, renewable electricity from ocean waves and help diversify America's energy portfolio. The Energy Department-supported...

  17. King County, Washington: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Ecology Environment Inc EnerG2 Energy Priorities Frybrid General Biodiesel General Biodiesel Incorporated Go Green Save Fuel LLC Grays Harbor Ocean Energy Company GreenFoot...

  18. Ohio's 1st congressional district: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    RBI Solar Inc SEMCO THOR Turner Hunt Ocean Renewable LLC The Utilities Group Inc Vision Energy Energy Generation Facilities in Ohio's 1st congressional district Melink Solar...

  19. NELHA Creates the 'Green Energy Zone.' | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    NELHA Creates the 'Green Energy Zone' (5.54 MB) More Documents & Publications EA-1336: Final Environmental Assessment Ocean Thermal Extractable Energy Visualization: Final ...

  20. Sea Solar Power International Inc | Open Energy Information

    Open Energy Info (EERE)

    21230 Region: United States Sector: Ocean Product: Ocean Thermal Energy Conversion (OTEC) technology developer. Website: www.seasolarpower.com Coordinates: 39.290555,...

  1. MHK Technologies/Deep Water Pipelines | Open Energy Information

    Open Energy Info (EERE)

    Makai Ocean Engineering Inc Project(s) where this technology is utilized *MHK ProjectsOTEC Technology Resource Click here Ocean Thermal Energy Conversion (OTEC) Technology Type...

  2. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Islands- Renewables Portfolio Targets Photovoltaic Energy, wind energy, hydroelectric energy, landfill gas, biomass, ocean and microturbine systems. Eligibility: Investor-Owned...

  3. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    U.S. Virgin Islands- Renewables Portfolio Targets Photovoltaic Energy, wind energy, hydroelectric energy, landfill gas, biomass, ocean and microturbine systems. Eligibility:...

  4. July 15, 2014 SEAB Task Force Meeting on Technology Development for Environmental Management

    Broader source: Energy.gov [DOE]

    The SEAB Task Force on Technology Development for Environmental Management met at U.S. Department of Energy in Washington, DC.

  5. Some ocean engineering considerations in the design of OTEC plants

    SciTech Connect (OSTI)

    McGuiness, T.

    1982-08-01

    An alternate energy resource using the temperature differences between warm surface waters and cool bottom waters of the world's oceans, Ocean Thermal Energy Conversion (OTEC) utilizes the solar energy potential of nearequatorial water masses and can be applied to generate electrical energy as a baseload augmentation of landside power plants or to process energy-intensive products at sea. Designs of OTEC plants include concepts of floating barge or shipshape structures with large (up to 100-foot diameter, 3,000 feet in length) pipes used to intake cool bottom waters and platforms located in 300-foot water depths similar to oil drilling rigs, also with a pipe to ingest cool waters, but in this case the pipe is laid on continental shelf areas in 25/sup 0/-30/sup 0/ slopes attaining a length of several miles. The ocean engineering design considerations, problem areas, and proposed solutions to data regarding various OTEC plant concepts are the topic of this presentation.

  6. Muon Collider Task Force Report

    SciTech Connect (OSTI)

    Ankenbrandt, C.; Alexahin, Y.; Balbekov, V.; Barzi, E.; Bhat, C.; Broemmelsiek, D.; Bross, A.; Burov, A.; Drozhdin, A.; Finley, D.; Geer, S.; /Fermilab /Argonne /Brookhaven /Jefferson Lab /LBL, Berkeley /MUONS Inc., Batavia /UCLA /UC, Riverside /Mississippi U.

    2007-12-01

    Muon Colliders offer a possible long term path to lepton-lepton collisions at center-of-mass energies {radical}s {ge} 1 TeV. In October 2006 the Muon Collider Task Force (MCTF) proposed a program of advanced accelerator R&D aimed at developing the Muon Collider concept. The proposed R&D program was motivated by progress on Muon Collider design in general, and in particular, by new ideas that have emerged on muon cooling channel design. The scope of the proposed MCTF R&D program includes muon collider design studies, helical cooling channel design and simulation, high temperature superconducting solenoid studies, an experimental program using beams to test cooling channel RF cavities and a 6D cooling demonstration channel. The first year of MCTF activities are summarized in this report together with a brief description of the anticipated FY08 R&D activities. In its first year the MCTF has made progress on (1) Muon Collider ring studies, (2) 6D cooling channel design and simulation studies with an emphasis on the HCC scheme, (3) beam preparations for the first HPRF cavity beam test, (4) preparations for an HCC four-coil test, (5) further development of the MANX experiment ideas and studies of the muon beam possibilities at Fermilab, (6) studies of how to integrate RF into an HCC in preparation for a component development program, and (7) HTS conductor and magnet studies to prepare for an evaluation of the prospects for of an HTS high-field solenoid build for a muon cooling channel.

  7. Radiative transfer in atmosphere-sea ice-ocean system

    SciTech Connect (OSTI)

    Jin, Z.; Stamnes, K.; Weeks, W.F.; Tsay, S.C.

    1996-04-01

    Radiative energy is critical in controlling the heat and mass balance of sea ice, which significantly affects the polar climate. In the polar oceans, light transmission through the atmosphere and sea ice is essential to the growth of plankton and algae and, consequently, to the microbial community both in the ice and in the ocean. Therefore, the study of radiative transfer in the polar atmosphere, sea ice, and ocean system is of particular importance. Lacking a properly coupled radiative transfer model for the atmosphere-sea ice-ocean system, a consistent study of the radiative transfer in the polar atmosphere, snow, sea ice, and ocean system has not been undertaken before. The radiative transfer processes in the atmosphere and in the ice and ocean have been treated separately. Because the radiation processes in the atmosphere, sea ice, and ocean depend on each other, this separate treatment is inconsistent. To study the radiative interaction between the atmosphere, clouds, snow, sea ice, and ocean, a radiative transfer model with consistent treatment of radiation in the coupled system is needed and is under development.

  8. Sandia National Laboratories Uses Its Wave Energy Converter ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Uses Its Wave Energy Converter (WEC) to Harness the Motion of the Ocean - Sandia Energy ... Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar ...

  9. Joint Outreach Task Group Former Workers Screening Program | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Former Workers Screening Program Joint Outreach Task Group Former Workers Screening Program The Joint Outreach Task Group (JOTG) includes representatives from DOE, Department of Labor (DOL), the National Institute for Occupational Safety and Health (NIOSH), the Offices of the Ombudsman for DOL and NIOSH, and the DOE-funded FWP projects. The JOTG was established in 2009 under the premise that agencies/programs with common goals can work together by combining resources and coordinating

  10. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear Energy

  11. Aquantis C-Plane Ocean Current Turbine Project

    SciTech Connect (OSTI)

    Fleming, Alex

    2015-09-16

    The Aquantis 2.5 MW Ocean Current Generation Device technology developed by Dehlsen Associates, LLC (DA) is a derivation of wind power generating technology (a means of harnessing a slow moving fluid) adapted to the ocean environment. The Aquantis Project provides an opportunity for accelerated technological development and early commercialization, since it involves the joining of two mature disciplines: ocean engineering and wind turbine design. The Aquantis Current Plane (C-Plane) technology is an ocean current turbine designed to extract kinetic energy from a current flow. The technology is capable of achieving competitively priced, continuous, base-load, and reliable power generation from a source of renewable energy not before possible in this scale or form.

  12. Oceanlinx | Open Energy Information

    Open Energy Info (EERE)

    GPP Namibia Greenwave Rhode Island Ocean Wave Energy Project Hawaii Oceanlinx Maui Port Kembla Portland This company is involved in the following MHK Technologies: Denniss...

  13. Screening Analysis for the Environmental Risk Evaluation System Task 2.1.1.2: Evaluating Effects of Stressors Fiscal Year 2011 Progress Report - Environmental Effects of Marine and Hydrokinetic Energy

    SciTech Connect (OSTI)

    Copping, Andrea E.; Blake, Kara M.; Anderson, Richard M.; Zdanski, Laura C.; Gill, Gary A.; Ward, Jeffrey A.

    2011-09-01

    Potential environmental effects of marine and hydrokinetic (MHK) energy development are not well understood, and yet regulatory agencies are required to make decisions in spite of substantial uncertainty about environmental impacts and their long-term consequences. An understanding of risks associated with interactions between MHK installations and aquatic receptors, including animals, habitats, and ecosystems, can help define key uncertainties and focus regulatory actions and scientific studies on interactions of most concern. As a first step in developing the Pacific Northwest National Laboratory (PNNL) Environmental Risk Evaluation System (ERES), PNNL scientists conducted a preliminary risk screening analysis on three initial MHK cases. During FY 2011, two additional cases were added: a tidal project in the Gulf of Maine using Ocean Renewable Power Company TidGenTM turbines and a wave project planned for the coast of Oregon using Aquamarine Oyster surge devices. Through an iterative process, the screening analysis revealed that top-tier stressors in the two FY 2011 cases were the dynamic effects of the device (e.g., strike), accidents/disasters, and effects of the static physical presence of the device (e.g., habitat alteration). Receptor interactions with these stressors at the highest tiers of risk were dominated by threatened and endangered animals. Risk to the physical environment from changes in flow regime also ranked high. Peer review of this process and results will be conducted in early FY 2012. The ERES screening analysis provides an analysis of vulnerability of environmental receptors to stressors associated with MHK installations, probability analysis is needed to determine specific risk levels to receptors. “Risk” has two components: (1) The likelihood, or “probability”, of the occurrence of a given interaction or event, and (2) the potential “consequence” if that interaction or event were to occur. During FY 2011, the ERES screening

  14. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  15. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  16. Task Order Awarded to Small Business for Natural Gas Services | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Task Order Awarded to Small Business for Natural Gas Services Task Order Awarded to Small Business for Natural Gas Services December 30, 2013 - 12:00pm Addthis Media Contact Lynette Chafin, 513-246-0461 Lynette.Chafin@emcbc.doe.gov Cincinnati - The Department of Energy (DOE) today awarded a task order to Sage Energy Trading LLC, of Jenks, Oklahoma for natural gas services. A firm fixed unit rate task order will be issued from the General Services Administration (GSA) Schedule with

  17. NREL Job Task Analysis: Quality Control Inspector

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Task 1: Maintain professional credentials Task 2: Confirm the allocation of ... * Conduct random sampling of worker credentials * Observe the workers * Interview the ...

  18. Nuclear Radiological Threat Task Force Established | National...

    National Nuclear Security Administration (NNSA)

    Nuclear Radiological Threat Task Force Established Washington, DC NNSA's Administrator Linton Brooks announces the establishment of the Nuclear Radiological Threat Reduction Task ...

  19. DOE Awards Small Business Task Order for Technical Support to the Office of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environmental Management | Department of Energy Task Order for Technical Support to the Office of Environmental Management DOE Awards Small Business Task Order for Technical Support to the Office of Environmental Management June 27, 2013 - 12:00pm Addthis Media Contact Lynette Chafin, 513-246-0461 Lynette.Chafin@emcbc.doe.gov Cincinnati - The Department of Energy (DOE) today awarded a task order for technical support services to TerranearPMC, LLC of Exton, Pennsylvania for support services

  20. Updates on the Interagency Task Force on Natural Gas Storage Safety -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Working with Stakeholders | Department of Energy Updates on the Interagency Task Force on Natural Gas Storage Safety - Working with Stakeholders Updates on the Interagency Task Force on Natural Gas Storage Safety - Working with Stakeholders June 7, 2016 - 1:11pm Addthis Updates on the Interagency Task Force on Natural Gas Storage Safety – Working with Stakeholders Franklin (Lynn) Orr Franklin (Lynn) Orr Under Secretary for Science and Energy Marie Therese Dominguez Marie Therese

  1. EnOcean Inc | Open Energy Information

    Open Energy Info (EERE)

    Zip: 02116 Region: Greater Boston Area Sector: Efficiency Product: Wireless sensor for building automation to improve efficiency Website: www.enocean.com Coordinates:...

  2. Ocean Power Technologies | Open Energy Information

    Open Energy Info (EERE)

    1590 Reed Road Place: Pennington, New Jersey Zip: 08534 Region: Northeast - NY NJ CT PA Area Year Founded: 1994 Website: www.oceanpowertechnologies.com Coordinates:...

  3. Ocean Prospect Ltd | Open Energy Information

    Open Energy Info (EERE)

    the Pelamis wave power device, and intends to commercialise it in the UK and Australia. Coordinates: 42.55678, -88.050449 Show Map Loading map... "minzoom":false,"map...

  4. Advanced Integration of Power Take-off in Vortex Induced Vibrations Aquatic Clean Energy

    SciTech Connect (OSTI)

    Simiao, Gus

    2011-11-01

    Presentation from the 2011 Water Peer Review of a river and ocean device converting hydrokinetic energy.

  5. Energy 101: Marine and Hydrokinetic Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Marine and Hydrokinetic Energy Energy 101: Marine and Hydrokinetic Energy Addthis Description See how marine and hydrokinetic technologies harness the energy of the ocean's waves, tides, and currents and convert it into electricity to power our homes, buildings and cities. Topic Water Text Version Below is the text version for the Energy 101: Marine & Hydrokinetic Energy video. The words "Energy 101: Marine & Hydrokinetic Energy" appear onscreen. Montage of renewable energy

  6. Task

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Noise exposure d) Application of cold coal tar coating to asphalt * Dermal contact ... up of high concentrations of carbon monoxide gas CO andor other by-products of combustion. ...

  7. Task

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IH Activity/Hazard Table - Does not include all construction activities. Review the rules of use on Page 1 before determining the applicable controls required for your work. 1/4/2016 REV 10 1 Rules for the use of this table 1. DO NOT just copy from the table without modifying the hazards and control sets to the specific scope of work, means and methods of how work will be performed, applying the requirements of approved CSSPs, and duration, frequency, location, and extent of work to be

  8. Marine Fuel Choice for Ocean- Going Vessels within Emissions Control Areas

    U.S. Energy Information Administration (EIA) Indexed Site

    Marine Fuel Choice for Ocean- Going Vessels within Emissions Control Areas June 2015 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Marine fuel choice for ocean going vessels within emissions control areas i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are

  9. Task Group 9 Update (Presentation)

    SciTech Connect (OSTI)

    Bosco, N.

    2014-04-01

    This presentation is a brief update of IEC TC82 QA Task Force, Group 9. Presented is an outline of the recently submitted New Work Item Proposal (NWIP) for a Comparative Thermal Cycling Test for CPV Modules to Differentiate Thermal Fatigue Durability.

  10. Assessment of Tidal Energy Removal Impacts on Physical Systems: Development of MHK Module and Analysis of Effects on Hydrodynamics

    SciTech Connect (OSTI)

    Yang, Zhaoqing; Wang, Taiping

    2011-09-01

    In this report we describe (1) the development, test, and validation of the marine hydrokinetic energy scheme in a three-dimensional coastal ocean model (FVCOM); and (2) the sensitivity analysis of effects of marine hydrokinetic energy configurations on power extraction and volume flux in a coastal bay. Submittal of this report completes the work on Task 2.1.2, Effects of Physical Systems, Subtask 2.1.2.1, Hydrodynamics and Subtask 2.1.2.3, Screening Analysis, for fiscal year 2011 of the Environmental Effects of Marine and Hydrokinetic Energy project.

  11. DOE ESPC Task Order Request for Proposal (TO-RFP) Template | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy ESPC Task Order Request for Proposal (TO-RFP) Template DOE ESPC Task Order Request for Proposal (TO-RFP) Template Template federal agencies may use for communicating specific terms and conditions to an energy services company regarding a U.S. Department of Energy energy savings performance contract (ESPC) project. Download the TO-RFP Template. (277.5 KB) More Documents & Publications Guide to Government Witnessing and Review of Measurement and Verification Activities Guidelines,

  12. FAQS Job Task Analyses- Radiation Protection

    Office of Energy Efficiency and Renewable Energy (EERE)

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  13. FAQS Job Task Analyses- Environmental Restoration

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  14. FAQS Job Task Analyses- Nuclear Safety Specialist

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  15. FAQS Job Task Analyses- Facility Representative

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  16. FAQS Job Task Analyses- Technical Program Manager

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  17. FAQS Job Task Analyses- General Technical Base

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  18. FAQS Job Task Analyses- Quality Assurance

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  19. FAQS Job Task Analyses- Weapons Quality Assurance

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  20. FAQS Job Task Analyses- Environmental Compliance

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  1. FAQS Job Task Analyses- Deactivation and Decommissioning

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  2. FAQS Job Task Analyses- Occupational Safety

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  3. FAQS Job Task Analyses- Emergency Management

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  4. FAQS Job Task Analyses- Technical Training

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  5. FAQS Job Task Analyses- DOE Aviation Manager

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  6. Functional Area Qualification Standard Job Task Analyses

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  7. FAQS Job Task Analyses- Safeguards and Security

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  8. FAQS Job Task Analyses- Chemical Processing

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  9. FAQS Job Task Analyses- Construction Management

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  10. FAQS Job Task Analyses- Industrial Hygiene

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  11. FAQS Job Task Analyses- Criticality Safety

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  12. Applied Science and Technology Task Order Fiscal Year 2008 Year-End Summary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report | Department of Energy 8 Year-End Summary Report Applied Science and Technology Task Order Fiscal Year 2008 Year-End Summary Report Applied Science and Technology Task Order Fiscal Year 2008 Year-End Summary Report Applied Science and Technology Task Order Fiscal Year 2008 Year-End Summary Report (359.12 KB) More Documents & Publications Applied Science and Technology Task Order Fiscal Year 2009 Year-End Summary Report Applied Science and Technology Task Order Fiscal Year 201

  13. Applied Science and Technology Task Order Fiscal Year 2009 Year-End Summary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report | Department of Energy 9 Year-End Summary Report Applied Science and Technology Task Order Fiscal Year 2009 Year-End Summary Report Applied Science and Technology Task Order Fiscal Year 2009 Year-End Summary Report Applied Science and Technology Task Order Fiscal Year 2009 Year-End Summary Report (242.82 KB) More Documents & Publications Applied Science and Technology Task Order Fiscal Year 2011 Year-End Summary Report Applied Science and Technology Task Order Fiscal Year 200

  14. Applied Science and Technology Task Order Fiscal Year 2010 Year-End Summary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report | Department of Energy 0 Year-End Summary Report Applied Science and Technology Task Order Fiscal Year 2010 Year-End Summary Report Applied Science and Technology Task Order Fiscal Year 2010 Year-End Summary Report Applied Science and Technology Task Order Fiscal Year 2010 Year-End Summary Report (704.34 KB) More Documents & Publications Applied Science and Technology Task Order Fiscal Year 2009 Year-End Summary Report Applied Science and Technology Task Order Fiscal Year 2011

  15. Applied Science and Technology Task Order Fiscal Year 2011 Year-End Summary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report | Department of Energy 1 Year-End Summary Report Applied Science and Technology Task Order Fiscal Year 2011 Year-End Summary Report Applied Science and Technology Task Order Fiscal Year 2011 Year-End Summary Report Applied Science and Technology Task Order Fiscal Year 2011 Year-End Summary Report (599.86 KB) More Documents & Publications Applied Science and Technology Task Order Fiscal Year 2009 Year-End Summary Report Applied Science and Technology Task Order Fiscal Year 2008

  16. 2001 ''You Have the Power'' campaign [Federal Energy Management Program]. Final technical report

    SciTech Connect (OSTI)

    2002-01-01

    The Tasks of 2001 ''You Have the Power'' campaign by the Federal Energy Management Program (FEMP) are: Task 1--Interagency Planning Meetings; Task 2--Ear Day Event; Task 3--Earth Day and Energy Awareness Month Activities; Task 4--Regional Target; Task 5--Outreach Tools and Campaign Products; Task 6--Private Sector Participation; Task 7--''You Have the Power'' on the FEMP Web Site; and Task 8--Effective Communications.

  17. Analyzing ocean mixing reveals insight on climate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analyzing ocean mixing reveals insight on climate Analyzing ocean mixing reveals insight on climate LANL scientists have developed a computer model that clarifies the complex processes driving ocean mixing in the vast eddies that swirl across hundreds of miles of open ocean. June 24, 2015 A three-dimensional spatial structure of mixing in an idealized ocean simulation, computed using Lagrangian particle statistics. A three-dimensional spatial structure of mixing in an idealized ocean simulation,

  18. Task XVIII. Technology base assessment

    SciTech Connect (OSTI)

    1980-06-30

    International Conservation and solar energy activities are discussed in view of the enormous increase in oil prices. The current economic outlook of non-oil producing countries is examined. The specific international US energy activities and programs relating to developed and developing countries are described. Problems facing international energy activities are examined. Information on the regional US solar energy centers is included. (MCW)

  19. Sustainable Energy Ventures | Open Energy Information

    Open Energy Info (EERE)

    from "http:en.openei.orgwindex.php?titleSustainableEnergyVentures&oldid765943" Categories: Organizations Financial Organizations Stubs Articles with outstanding TODO tasks...

  20. U.S. Department of Energy Secretary of Energy Advisory Board

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Secretary of Energy Advisory Board Report of the Task Force on Methane Hydrates January 26, 2016 ii Contents Executive Summary ...................................................................................................................................... iii Introduction .................................................................................................................................................. 1 Task Force Findings

  1. The Subcommittee on Water, Power, and Oceans House Committee on Natural

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resources | Department of Energy The Subcommittee on Water, Power, and Oceans House Committee on Natural Resources The Subcommittee on Water, Power, and Oceans House Committee on Natural Resources Testimony of Christopher M. Turner, Administrator Southwest Power Administration Before the Subcommittee on Water, Power, and Oceans House Committee on Natural Resources 3-24-15_Christopher_Turner FT HNR.pdf (59.99 KB) More Documents & Publications Before the House Natural Resources

  2. Fuel oil quality task force

    SciTech Connect (OSTI)

    Laisy, J.; Turk, V.

    1997-09-01

    In April, 1996, the R.W. Beckett Corporation became aware of a series of apparently unrelated symptoms that made the leadership of the company concerned that there could be a fuel oil quality problem. A task force of company employees and industry consultants was convened to address the topic of current No. 2 heating oil quality and its effect on burner performance. The task force studied changes in fuel oil specifications and trends in properties that have occurred over the past few years. Experiments were performed at Beckett and Brookhaven National Laboratory to understand the effect of changes in some fuel oil properties. Studies by other groups were reviewed, and field installations were inspected to gain information about the performance of fuel oil that is currently being used in the U.S. and Canada. There was a special concern about the use of red dye in heating oils and the impact of sulfur levels due to the October, 1993 requirement of low sulfur (<0.05%) for on-highway diesel fuel. The results of the task force`s efforts were published in July, 1996. The primary conclusion of the task force was that there is not a crisis or widespread general problem with fuel oil quality. Localized problems that were seen may have been related to refinery practices and/or non-traditional fuel sources. System cleanliness is very important and the cause of many oil burner system problems. Finally, heating oil quality should get ongoing careful attention by Beckett engineering personnel and heating oil industry groups.

  3. Energy Department Awards $7.4 Million to Develop Advanced Components...

    Broader source: Energy.gov (indexed) [DOE]

    ocean conditions and adjusts device settings accordingly to optimize power production for three different wave energy converter (WEC) devices: (1) the OE buoy developed by Ocean ...

  4. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Tidal, Wave, Ocean Thermal, Wind (Small), Anaerobic Digestion, Fuel Cells using Renewable Fuels Alternative Energy and Energy Conservation Patent Exemption (Corporate)...

  5. Grays Harbor Demonstration Project | Open Energy Information

    Open Energy Info (EERE)

    Project Facility Grays Harbor Demonstration Project Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Grays Harbor Ocean Energy Company LLC...

  6. Emergency Support Function #12 … Energy Annex

    Broader source: Energy.gov (indexed) [DOE]

    with the Department of Energy (DOE) as the primary agency, assists government and private sector stakeholders in ... Bureau of Ocean Energy Management, Regulation and ...

  7. Stoel Rives, LLP | Open Energy Information

    Open Energy Info (EERE)

    Address: 900 SW Fifth Avenue, Suite 2600 Place: Portland, Oregon Zip: 97204 Sector: Bioenergy, Biofuels, Biomass, Geothermal energy, Hydro, Ocean, Renewable energy, Services,...

  8. State Grant Program | Open Energy Information

    Open Energy Info (EERE)

    Solar Thermal Electric Photovoltaics Landfill Gas Wind Biomass Geothermal Electric Hydrogen Tidal Energy Wave Energy Ocean Thermal Fuel Cells using Renewable Fuels No...

  9. European Wave and Tidal Energy Conference

    Broader source: Energy.gov [DOE]

    The European Wave and Tidal Energy Conference (EWTEC) series are international, technical and scientific conferences, focussed on ocean renewable energy and widely respected for their commitment to...

  10. The Ocean Sampling Day Consortium

    SciTech Connect (OSTI)

    Kopf, Anna; Bicak, Mesude; Kottmann, Renzo; Schnetzer, Julia; Kostadinov, Ivaylo; Lehmann, Katja; Fernandez-Guerra, Antonio; Jeanthon, Christian; Rahav, Eyal; Ullrich, Matthias; Wichels, Antje; Gerdts, Gunnar; Polymenakou, Paraskevi; Kotoulas, Giorgos; Siam, Rania; Abdallah, Rehab Z.; Sonnenschein, Eva C.; Cariou, Thierry; O’Gara, Fergal; Jackson, Stephen; Orlic, Sandi; Steinke, Michael; Busch, Julia; Duarte, Bernardo; Caçador, Isabel; Canning-Clode, João; Bobrova, Oleksandra; Marteinsson, Viggo; Reynisson, Eyjolfur; Loureiro, Clara Magalhães; Luna, Gian Marco; Quero, Grazia Marina; Löscher, Carolin R.; Kremp, Anke; DeLorenzo, Marie E.; Øvreås, Lise; Tolman, Jennifer; LaRoche, Julie; Penna, Antonella; Frischer, Marc; Davis, Timothy; Katherine, Barker; Meyer, Christopher P.; Ramos, Sandra; Magalhães, Catarina; Jude-Lemeilleur, Florence; Aguirre-Macedo, Ma Leopoldina; Wang, Shiao; Poulton, Nicole; Jones, Scott; Collin, Rachel; Fuhrman, Jed A.; Conan, Pascal; Alonso, Cecilia; Stambler, Noga; Goodwin, Kelly; Yakimov, Michael M.; Baltar, Federico; Bodrossy, Levente; Van De Kamp, Jodie; Frampton, Dion M. F.; Ostrowski, Martin; Van Ruth, Paul; Malthouse, Paul; Claus, Simon; Deneudt, Klaas; Mortelmans, Jonas; Pitois, Sophie; Wallom, David; Salter, Ian; Costa, Rodrigo; Schroeder, Declan C.; Kandil, Mahrous M.; Amaral, Valentina; Biancalana, Florencia; Santana, Rafael; Pedrotti, Maria Luiza; Yoshida, Takashi; Ogata, Hiroyuki; Ingleton, Tim; Munnik, Kate; Rodriguez-Ezpeleta, Naiara; Berteaux-Lecellier, Veronique; Wecker, Patricia; Cancio, Ibon; Vaulot, Daniel; Bienhold, Christina; Ghazal, Hassan; Chaouni, Bouchra; Essayeh, Soumya; Ettamimi, Sara; Zaid, El Houcine; Boukhatem, Noureddine; Bouali, Abderrahim; Chahboune, Rajaa; Barrijal, Said; Timinouni, Mohammed; El Otmani, Fatima; Bennani, Mohamed; Mea, Marianna; Todorova, Nadezhda; Karamfilov, Ventzislav; ten Hoopen, Petra; Cochrane, Guy; L’Haridon, Stephane; Bizsel, Kemal Can; Vezzi, Alessandro; Lauro, Federico M.; Martin, Patrick; Jensen, Rachelle M.; Hinks, Jamie; Gebbels, Susan; Rosselli, Riccardo; De Pascale, Fabio; Schiavon, Riccardo; dos Santos, Antonina; Villar, Emilie; Pesant, Stéphane; Cataletto, Bruno; Malfatti, Francesca; Edirisinghe, Ranjith; Silveira, Jorge A. Herrera; Barbier, Michele; Turk, Valentina; Tinta, Tinkara; Fuller, Wayne J.; Salihoglu, Ilkay; Serakinci, Nedime; Ergoren, Mahmut Cerkez; Bresnan, Eileen; Iriberri, Juan; Nyhus, Paul Anders Fronth; Bente, Edvardsen; Karlsen, Hans Erik; Golyshin, Peter N.; Gasol, Josep M.; Moncheva, Snejana; Dzhembekova, Nina; Johnson, Zackary; Sinigalliano, Christopher David; Gidley, Maribeth Louise; Zingone, Adriana; Danovaro, Roberto; Tsiamis, George; Clark, Melody S.; Costa, Ana Cristina; El Bour, Monia; Martins, Ana M.; Collins, R. Eric; Ducluzeau, Anne-Lise; Martinez, Jonathan; Costello, Mark J.; Amaral-Zettler, Linda A.; Gilbert, Jack A.; Davies, Neil; Field, Dawn; Glöckner, Frank Oliver

    2015-06-19

    In this study, Ocean Sampling Day was initiated by the EU-funded Micro B3 (Marine Microbial Biodiversity, Bioinformatics, Biotechnology) project to obtain a snapshot of the marine microbial biodiversity and function of the world’s oceans. It is a simultaneous global mega-sequencing campaign aiming to generate the largest standardized microbial data set in a single day. This will be achievable only through the coordinated efforts of an Ocean Sampling Day Consortium, supportive partnerships and networks between sites. This commentary outlines the establishment, function and aims of the Consortium and describes our vision for a sustainable study of marine microbial communities and their embedded functional traits.

  11. 3rd Miami international conference on alternative energy sources...

    Office of Scientific and Technical Information (OSTI)

    The conference includes sessions on solar energy, ocean thermal energy, wind energy, hydro power, nuclear breeders and nuclear fusion, synthetic fuels from coal or wastes, hydrogen ...

  12. DOE Awards Task Order for Litigation Support Services

    Broader source: Energy.gov [DOE]

    Cincinnati - The Department of Energy (DOE) today announced the award of a task order to TLI Solutions, Inc., a large business, from Arvada, CO for Litigation Support Services to support the Environmental Management Consolidated Business Center (EMCBC) Office of Chief Counsel (OCC).

  13. ENERGY

    Broader source: Energy.gov (indexed) [DOE]

    U.S. Department of ENERGY Department of Energy Quadrennial Technology Review-2015 Framing Document http:energy.govqtr 2015-01-13 Page 2 The United States faces serious ...

  14. Wave Energy Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ocean » Wave Energy Basics Wave Energy Basics August 16, 2013 - 4:30pm Addthis Photo of a large wave. Wave energy technologies extract energy directly from surface waves or from pressure fluctuations below the surface. Renewable energy analysts believe there is enough energy in ocean waves to provide up to 2 terawatts of electricity. (A terawatt is equal to a trillion watts.) However, wave energy cannot be harnessed everywhere. Wave power-rich areas of the world include the western coasts of

  15. DOE Science Showcase - Tidal Energy | OSTI, US Dept of Energy...

    Office of Scientific and Technical Information (OSTI)

    The Department of Energy's Water Power Program Tapping into Wave and Tidal Ocean Power: 15% Water Power by 2030, Energy.gov News Assessment of Energy Production Potential from ...

  16. MPAS-Ocean Development Update

    SciTech Connect (OSTI)

    Jacobsen, Douglas W.; Ringler, Todd D.; Petersen, Mark R.; Jones, Philip W.; Maltrud, Mathew E.

    2012-06-13

    The Model for Prediction Across Scales (MPAS) is a modeling framework developed jointly between NCAR and LANL, built to allow core developers to: rapidly develop new dynamical cores, and leverage improvements made to shared codes. MPAS-Ocean (MPAS-O) is a functioning ocean model capable of high resolution, or highly vairable resolution simulations. The first MPAS-O publication is expected by the end of the year.

  17. Pennington, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Jersey's 12th congressional district.12 Registered Energy Companies in Pennington, New Jersey Ocean Power Technologies References US Census Bureau Incorporated place and...

  18. Map of Clean Energy Companies | Open Energy Information

    Open Energy Info (EERE)

    Maps: Solar Browse Companies by Sector: Bioenergy, Biofuels, Biomass, Buildings, Carbon, Efficiency, Geothermal energy, Hydro, Hydrogen, Marine and Hydrokinetic, Ocean, Renewable...

  19. Direct Drive Wave Energy Buoy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Direct Drive Wave Energy Buoy 15direcolumbiapowerrhinefrank.ppt (1.58 MB) More Documents & Publications Wave Tank WEC Array Analysis Ocean Power Technologies (TRL 7 8 System) - ...

  20. Transporation Energy

    SciTech Connect (OSTI)

    Clifford Mirman; Promod Vohra

    2012-06-30

    This Transportation Energy Project is comprised of four unique tasks which work within the railroad industry to provide solutions in various areas of energy conservation. These tasks addressed: energy reducing yard related decision issues; alternate fuels; energy education, and energy storage for railroad applications. The NIU Engineering and Technology research team examined these areas and provided current solutions which can be used to both provide important reduction in energy usage and system efficiency in the given industry. This project also sought a mode in which rural and long-distance education could be provided. The information developed in each of the project tasks can be applied to all of the rail companies to assist in developing efficiencies.

  1. Task Order Awarded for Audit and Review Services

    Broader source: Energy.gov [DOE]

    Cincinnati - The Department of Energy today awarded a Task Order to KPMG, LLP of McLean, VA for audit/review services that will cover a wide range of auditing services. These services will include: pricing proposals, requests for equitable adjustment, change order proposals, business systems (accounting, purchasing and billing systems), forward pricing rates, incurred costs audits, and terminations. Individual subtask orders will be placed for each specific assignment as needed from October 1, 2012 through September 30, 2013. The total not-toexceed value of the task order is $2,993,733.00.

  2. Multifamily Building Operator Job/Task Analysis and Report: September 2013

    SciTech Connect (OSTI)

    Owens, C. M.

    2013-09-01

    The development of job/task analyses (JTAs) is one of three components of the Guidelines for Home Energy Professionals project and will allow industry to develop training resources, quality assurance protocols, accredited training programs, and professional certifications. The Multifamily Building Operator JTA identifies and catalogs all of the tasks performed by multifamily building operators, as well as the knowledge, skills, and abilities (KSAs) needed to perform the identified tasks.

  3. Multifamily Retrofit Project Manager Job/Task Analysis and Report: September 2013

    SciTech Connect (OSTI)

    Owens, C. M.

    2013-09-01

    The development of job/task analyses (JTAs) is one of three components of the Guidelines for Home Energy Professionals project and will allow industry to develop training resources, quality assurance protocols, accredited training programs, and professional certifications. The Multifamily Retrofit Project Manager JTA identifies and catalogs all of the tasks performed by multifamily retrofit project managers, as well as the knowledge, skills, and abilities (KSAs) needed to perform the identified tasks.

  4. Multifamily Quality Control Inspector Job/Task Analysis and Report: September 2013

    SciTech Connect (OSTI)

    Owens, C. M.

    2013-09-01

    The development of job/task analyses (JTAs) is one of three components of the Guidelines for Home Energy Professionals project and will allow industry to develop training resources, quality assurance protocols, accredited training programs, and professional certifications. The Multifamily Quality Control Inspector JTA identifies and catalogs all of the tasks performed by multifamily quality control inspectors, as well as the knowledge, skills, and abilities (KSAs) needed to perform the identified tasks.

  5. PV QA Task Group #2: Thermal and Mechanical Fatigue Including Vibration |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy QA Task Group #2: Thermal and Mechanical Fatigue Including Vibration PV QA Task Group #2: Thermal and Mechanical Fatigue Including Vibration Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado pvmrw13_tmf_taskgroup2.pdf (500.28 KB) More Documents & Publications Linkage to Previous International PV Module QA Task Force Workshops: Proposal for Rating System Agenda for the PV Module Reliability Workshop, February 26 - 27 2013,

  6. DOE Awards Task Order to Northern New Mexico Small Business to Develop

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Documented Safety Analysis and Technical Safety Requirements Procedures | Department of Energy DOE Awards Task Order to Northern New Mexico Small Business to Develop Documented Safety Analysis and Technical Safety Requirements Procedures DOE Awards Task Order to Northern New Mexico Small Business to Develop Documented Safety Analysis and Technical Safety Requirements Procedures May 16, 2016 - 9:00am Addthis DOE Awards Task Order to Northern New Mexico Small Business to Develop Documented

  7. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    wind turbines in the plains and out in the ocean near the coast. Teacher background and assessment sheets are provided. http:energy.goveereeducationdownloadssee-wind...

  8. Bond Programs | Open Energy Information

    Open Energy Info (EERE)

    CHPCogeneration Biodiesel Biomass Ethanol Fuel Cells using Renewable Fuels Hydroelectric energy Landfill Gas Methanol Ocean Thermal Photovoltaics Renewable Fuels Solar Thermal...

  9. Fault-tolerant dynamic task graph scheduling

    SciTech Connect (OSTI)

    Kurt, Mehmet C.; Krishnamoorthy, Sriram; Agrawal, Kunal; Agrawal, Gagan

    2014-11-16

    In this paper, we present an approach to fault tolerant execution of dynamic task graphs scheduled using work stealing. In particular, we focus on selective and localized recovery of tasks in the presence of soft faults. We elicit from the user the basic task graph structure in terms of successor and predecessor relationships. The work stealing-based algorithm to schedule such a task graph is augmented to enable recovery when the data and meta-data associated with a task get corrupted. We use this redundancy, and the knowledge of the task graph structure, to selectively recover from faults with low space and time overheads. We show that the fault tolerant design retains the essential properties of the underlying work stealing-based task scheduling algorithm, and that the fault tolerant execution is asymptotically optimal when task re-execution is taken into account. Experimental evaluation demonstrates the low cost of recovery under various fault scenarios.

  10. DOE Webcast: Intra-organization Energy Efficiency Competitions

    Broader source: Energy.gov [DOE]

    The Maine Ocean & Wind Industry Initiative will host a webinar to provide an update on the Bureau of Ocean Energy Management's (BOEM's) Offshore Renewable Energy Program. The webinar will cover...

  11. Department of Energy Receives 2013 Partners in Conservation Award

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE), along with its partners the Bureau of Ocean Energy Management (BOEM) and the National Oceanic and Atmospheric Administration (NOAA), received the Department of Interiors Partners in Conservation Award.

  12. Technological challenges associated with the sequestration of CO{sub 2} in the ocean

    SciTech Connect (OSTI)

    Nihous, G.C.

    1998-07-01

    The specific technological challenges associated with the delivery of CO{sub 2} into the deep ocean are qualitatively discussed. Since the projected effectiveness of CO{sub 2} oceanic sequestration so far requires ocean depths of kilometer(s) and large flow rates, the necessary pipelines bear some similarities with the cold seawater conduits of Ocean Thermal Energy Conversion (OTEC). A unique perspective is thus provided by examining the history of OTEC seawater systems. Design criteria specific to CO{sub 2} delivery pipelines are also mentioned, as well as their impact on future design work.

  13. Measurements of Surface Ocean Carbon Dioxide Partial Pressure During WOCE

    SciTech Connect (OSTI)

    Weiss, R.F.

    1998-10-15

    All of the technical goals of the World Ocean Circulation Experiment (WOCE) field program which were supported under the Department of Energy research grant ''Measurements of Surface Ocean Carbon Dioxide Partial Pressure During WOCE'' (DE-FG03-90ER60981) have been met. This has included the measurement of the partial pressures of carbon dioxide (C0{sub 2}) and nitrous oxide (N{sub 2}O) in both the surface ocean and the atmosphere on 24 separate shipboard expedition legs of the WOCE Hydrographic Programme. These measurements were made in the Pacific, Indian and Atlantic Oceans over a six-and-a-half year period, and over a distance of nearly 200,000 kilometers of ship track. The total number of measurements, including ocean measurements, air measurements and standard gas measurements, is about 136,000 for each gas, or about 34,000 measurements of each gas in the ocean and in the air. This global survey effort is directed at obtaining a better understanding of the role of the oceans in the global atmospheric budgets of two important natural and anthropogenic modulators of climate through the ''greenhouse effect'', CO{sub 2} and N{sub 2}O, and an important natural and anthropogenic modulator of the Earth's protective ozone layer through catalytic processes in the stratosphere, N{sub 2}O. For both of these compounds, the oceans play a major role in their global budgets. In the case of CO{sub 2}, roughly half of the anthropogenic production through the combustion of fossil fuels has been absorbed by the world's oceans. In the case of N{sub 2}O, roughly a third of the natural flux to the atmosphere originates in the oceans. As the interpretation of the variability in the oceanic distributions of these compounds improves, measurements such as those supported by this research project are playing an increasingly important role in improving our understanding of natural and anthropogenic influences on climate and ozone. (B204)

  14. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Energy National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. Energy Overview Charlie McMillan, Director of Los Alamos National Laboratory 0:50 Director McMillan on energy security With energy use increasing across the nation and the world, Los Alamos National Laboratory is using its world-class scientific capabilities to enhance

  15. Secretary of Energy Advisory Board | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    You are here About Energy.gov » Leadership » Secretary of Energy Advisory Board Secretary of Energy Advisory Board Secretary of Energy Advisory Board SEAB Reports January 26, 2016 Report of the Task Force on Methane Hydrates This report presents the findings and recommendations for the Secretary of Energy Advisory Board (SEAB) Task Force on Methane Hydrates. June 17, 2015 Interim Report of the Task Force on DOE National Laboratories SEAB advice, guidance, and recommendations on important

  16. Energy Department Announces $10 million for Wave Energy Demonstration at Navy’s Hawaii Test Site

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Energy Department today announced $10 million to test prototypes designed to generate clean, renewable electricity from ocean waves and help diversify America’s energy portfolio.

  17. Hawaii Natural Energy Institute annual report, July 1981-June 1982

    SciTech Connect (OSTI)

    Brown, N.E.

    1982-01-01

    This report includes brief progress reports on the 35 research and development projects in geothermal energy, ocean energy, biomass energy, wind energy, solar energy, and other renewable energy sources. (DLC)

  18. Climate, Ocean and Sea Ice Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ocean and Sea Ice Modeling (COSIM) Summary The COSIM project develops advanced ocean and ice models for evaluating the role of ocean and ice in high-latitude climate change and projecting the impacts of high-latitude change on regions throughout the globe. COSIM researchers develop, test and apply ocean and ice models in support of DOE Climate Change Research and the broader international climate science community. Additional research includes developing a set of next-generation ocean and ice

  19. SEAB Subcommittees and Task Forces

    Office of Energy Efficiency and Renewable Energy (EERE)

    SEAB has four standing subcommittees that provide advice and recommendations to the Secretary on the Department's four major mission areas: science; energy; nuclear security; and environmental...

  20. Ocean FUSRAP: feasibility of ocean disposal of materials from the Formerly Utilized Sites Remedial Action Progam (FUSRAP)

    SciTech Connect (OSTI)

    Kupferman, S.L.; Anderson, D.R.; Brush, L.H.; Gomez, L.S.; Laul, J.C.; Shephard, L.E.

    1982-01-01

    The Formerly Utilized Sites Remedial Action Program (FUSRAP) of the Department of Energy is designed to identify and evaluate the radiological conditions at sites formerly used by the Corps of Engineers Manhattan Engineer District and the US Atomic Energy Commission. Where required, remedial action will be instituted to remove potential restrictions on the use of the sites due to residual low-level radioactive contamination. A total of 31 sites that may require remedial action has been identified. The purpose of the Ocean FUSRAP Program, which began in March 1981, is to assess the technical, environmental, and institutional feasibility of disposing, in the ocean and on the ocean floor, of FUSRAP soil and rubble which contains traces of natural radioactive materials. The initial focus has been on the Middlesex, New Jersey, Sampling Plant site and surrounding properties, which contain on the order of 100,000 metric tons of material. The Belgian Congo uranium ore and other uranium ores used by the United States were handled at the sampling plant site. In studying the feasibility of ocean disposal of FUSRAP material from Middlesex, New Jersey, we have begun to examine institutional requirements to be met, the composition of the source material with regard to its inventory of toxic chemical and radiochemical components and the impact of the source material in the marine environment. To date we have found nothing that would preclude safe and inexpensive disposal of this material in the ocean.