Powered by Deep Web Technologies
Note: This page contains sample records for the topic "occurring radioactive materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Introduction to naturally occurring radioactive material  

SciTech Connect (OSTI)

Naturally occurring radioactive material (NORM) is everywhere; we are exposed to it every day. It is found in our bodies, the food we eat, the places where we live and work, and in products we use. We are also bathed in a sea of natural radiation coming from the sun and deep space. Living systems have adapted to these levels of radiation and radioactivity. But some industrial practices involving natural resources concentrate these radionuclides to a degree that they may pose risk to humans and the environment if they are not controlled. Other activities, such as flying at high altitudes, expose us to elevated levels of NORM. This session will concentrate on diffuse sources of technologically-enhanced (TE) NORM, which are generally large-volume, low-activity waste streams produced by industries such as mineral mining, ore benefication, production of phosphate Fertilizers, water treatment and purification, and oil and gas production. The majority of radionuclides in TENORM are found in the uranium and thorium decay chains. Radium and its subsequent decay products (radon) are the principal radionuclides used in characterizing the redistribution of TENORM in the environment by human activity. We will briefly review other radionuclides occurring in nature (potassium and rubidium) that contribute primarily to background doses. TENORM is found in many waste streams; for example, scrap metal, sludges, slags, fluids, and is being discovered in industries traditionally not thought of as affected by radionuclide contamination. Not only the forms and volumes, but the levels of radioactivity in TENORM vary. Current discussions about the validity of the linear no dose threshold theory are central to the TENORM issue. TENORM is not regulated by the Atomic Energy Act or other Federal regulations. Control and regulation of TENORM is not consistent from industry to industry nor from state to state. Proposed regulations are moving from concentration-based standards to dose-based standards. So when is TENORM a problem? Where is it a problem? That depends on when, where, and whom you talk to! We will start by reviewing background radioactivity, then we will proceed to the geology, mobility, and variability of these radionuclides. We will then review some of the industrial sectors affected by TENORM, followed by a brief discussion on regulatory aspects of the issue.

Egidi, P.

1997-08-01T23:59:59.000Z

2

Naturally Occurring Radioactive Materials in Cargo at US Borders  

SciTech Connect (OSTI)

In the U.S. and other countries, large numbers of vehicles pass through border crossings each day. The illicit movement of radioactive sources is a concern that has resulted in the installation of radiation detection and identification instruments at border crossing points. This activity is judged to be necessary because of the possibility of an act of terrorism involving a radioactive source that may include any number of dangerous radionuclides. The problem of detecting, identifying, and interdicting illicit radioactive sources is complicated by the fact that many materials present in cargo are somewhat radioactive. Some cargo contains naturally occurring radioactive material or technologically-enhanced naturally occurring radioactive material that may trigger radiation portal monitor alarms. Man-made radioactive sources, especially medical isotopes, are also frequently observed and produce alarms. Such nuisance alarms can be an operational limiting factor for screening of cargo at border crossings. Information about the nature of the radioactive materials in cargo that can interfere with the detection of radionuclides of concern is necessary. This paper provides such information for North American cargo, but the information may also be of use to border control officials in other countries. (PIET-43741-TM-361)

Kouzes, Richard T.; Ely, James H.; Evans, John C.; Hensley, Walter K.; Lepel, Elwood A.; McDonald, Joseph C.; Schweppe, John E.; Siciliano, Edward R.; Strom, Daniel J.; Woodring, Mitchell L.

2006-01-01T23:59:59.000Z

3

Management of Naturally Occurring Radioactive Materials (NORM) in Canada  

SciTech Connect (OSTI)

In Canada, nuclear and radiological regulatory responsibilities are shared between the provinces/territories and the federal government. The Canadian Nuclear Safety Commission (CNSC) regulates nuclear fuel cycle materials and man-made radionuclides under the Nuclear Safety and Control Act (2000). The provinces and territories regulate NORM arising from industrial activities, not involving the nuclear fuel cycle materials. Present guideline--Canadian Guidelines for the Management of Naturally Occurring Radioactive Materials (NORM)--was published in 2000 in order to bring uniformity to the management of NORM-related procedures to provide adequate radiation protection for workers and the general public. The basic premise of these guidelines is that the NORM-related activities should not be posing any greater hazard than those activities regulated under the Nuclear Safety and Control Act; these concepts are described in this paper.

Baweja, Anar S.; Tracy, Bliss L. [Radiation Protection Bureau, Health Canada, Ottawa, Ontario (Canada)

2008-08-07T23:59:59.000Z

4

In-situ remediation of naturally occurring radioactive materials with high-permeability hydraulic fracturing  

E-Print Network [OSTI]

IN-SITU REMEDIATION OF NATURALLY OCCURRING RADIOACTIVE MATERIALS WITH HIGH-PERMEABILITY HYDRAULIC FRACTURING A Thesis by ANDRONIKOS STAVROS DEMARCHOS Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Approved as to style and content by: Michael J. Economides (Chair of Committee) ulat D. Mamora (Member...

Demarchos, Andronikos Stavros

1998-01-01T23:59:59.000Z

5

Regulatory Initiatives for Control and Release of Technologically Enhanced Naturally-Occurring Radioactive Materials  

SciTech Connect (OSTI)

Current drafts of proposed standards and suggested State regulations for control and release of technologically-enhanced naturally-occurring radioactive material (TENORM), and standards for release of volumetrically-contaminated material in the US are reviewed. These are compared to the recommendations of the International Atomic Energy Association (IAEA) Safety Series and the European Commission (EC) proposals. Past regulatory efforts with respect to TENORM in the US dealt primarily with oil-field related wastes. Currently, nine states (AK, GA, LA, MS, NM, OH, OR SC, TX) have specific regulations pertaining to TENORM, mostly based on uranium mill tailings cleanup criteria. The new US proposals are dose- or risk-based, as are the IAEA and EC recommendations, and are grounded in the linear no threshold hypothesis (LNT). TENORM wastes involve extremely large volumes, particularly scrap metal and mine wastes. Costs to control and dispose of these wastes can be considerable. The current debate over the validity of LNT at low doses and low dose rates is particularly germane to this discussion. Most standards setting organizations and regulatory agencies base their recommendations on the LNT. The US Environmental Protection Agency has released a draft Federal Guidance Report that recommends calculating health risks from low-level exposure to radionuclides based on the LNT. However, some scientific and professional organizations are openly questioning the validity of LNT and its basis for regulations, practices, and costs to society in general. It is not clear at this time how a non-linear regulatory scheme would be implemented.

Egidi, P.V.

1999-03-02T23:59:59.000Z

6

An overview of naturally occurring radioactive materials (NORM) in the petroleum industry  

SciTech Connect (OSTI)

Oil and gas extraction and processing operations sometimes accumulate naturally occurring radioactive materials (NORM) at concentrations above normal in by-product waste streams. Results from NORM surveys indicate that radionuclide concentrations can be quite variable, ranging from undetectable to extremely high levels. To date, efforts to characterize the geographic distribution of NORM have been limited by poor statistical representation. In addition, the fate of NORM in the environment has not been fully defined, and few human health risk assessment have been conducted. Both the petroleum industry and regulators are becoming increasingly concerned about the presence of NORM. At present, most existing federal environmental regulations do not address oil and gas NORM, and only a few states have developed regulatory programs. Available data suggest that the occurrence of NORM (and associated health risks) is significant enough to warrant increased regulatory control. However, before these regulations can be developed, additional research is needed to (1) better characterize the occurrence and distribution of NORM throughout the industry, (2) quantify hazards posed by NORM to industry workers and the general public, and (3) develop effective waste treatment and minimization technologies that will lower the risk associated with NORM and reduce disposal costs.

Smith, K.P.

1992-12-01T23:59:59.000Z

7

Radiological Impact Associated to Technologically Enhanced Naturally Occurring Radioactive Materials (TENORM) from Coal-Fired Power Plants Emissions - 13436  

SciTech Connect (OSTI)

Certain materials used and produced in a wide range of non-nuclear industries contain enhanced activity concentrations of natural radionuclides. In particular, electricity production from coal is one of the major sources of increased human exposure to naturally occurring radioactive materials. A methodology was developed to assess the radiological impact due to natural radiation background. The developed research was applied to a specific case study, the Sines coal-fired power plant, located in the southwest coastline of Portugal. Gamma radiation measurements were carried out with two different instruments: a sodium iodide scintillation detector counter (SPP2 NF, Saphymo) and a gamma ray spectrometer with energy discrimination (Falcon 5000, Canberra). Two circular survey areas were defined within 20 km of the power plant. Forty relevant measurements points were established within the sampling area: 15 urban and 25 suburban locations. Additionally, ten more measurements points were defined, mostly at the 20-km area. The registered gamma radiation varies from 20 to 98.33 counts per seconds (c.p.s.) corresponding to an external gamma exposure rate variable between 87.70 and 431.19 nGy/h. The highest values were measured at locations near the power plant and those located in an area within the 6 and 20 km from the stacks. In situ gamma radiation measurements with energy discrimination identified natural emitting nuclides as well as their decay products (Pb-212, Pb-2142, Ra-226, Th-232, Ac-228, Th-234, Pa-234, U- 235, etc.). According to the results, an influence from the stacks emissions has been identified both qualitatively and quantitatively. The developed methodology accomplished the lack of data in what concerns to radiation rate in the vicinity of Sines coal-fired power plant and consequently the resulting exposure to the nearby population. (authors)

Dinis, Maria de Lurdes; Fiuza, Antonio; Soeiro de Carvalho, Jose; Gois, Joaquim [Geo-Environment and Resources Research Centre (CIGAR), Porto University, Faculty of Engineering - FEUP, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal)] [Geo-Environment and Resources Research Centre (CIGAR), Porto University, Faculty of Engineering - FEUP, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal); Meira Castro, Ana Cristina [School of Engineering Polytechnic of Porto - ISEP, Rua Dr. Antonio Bernardino de Almeida, 431, 4200-072, Porto (Portugal)] [School of Engineering Polytechnic of Porto - ISEP, Rua Dr. Antonio Bernardino de Almeida, 431, 4200-072, Porto (Portugal)

2013-07-01T23:59:59.000Z

8

Characterization of the National Petroleum Reserve No. 3 (NPR-3) Site for Naturally Occurring Radioactive Material(NORM)  

SciTech Connect (OSTI)

The National Petroleum Reserve No. 3 site (NPR-3) near Casper, Wyoming is being prepared for transfer to private industry. Remediation of the NPR-3 site has already begun in anticipation of this transfer. This document describes the characterization of the NPR-3 site for Naturally Occurring Radioactive Materials (NORM). Data generated on radionuclide concentrations and radon emanation may be used to determine disposal options and the need for remediation at this site. A preliminary gamma survey of the NPR-3 site was conducted to identify areas of potential NORM contamination. Based on these gamma surveys, two general areas of NORM contamination were found: the North Water Flood area and the BTP-10 produced water discharge steam. A maximum surface exposure rate of 120 {micro}R h{sup -1} was observed in the North Water Flood area, with the highest readings found along the drainage channel from the area. Exposure rates dropped to background quickly with increasing distance from the center of the drainage. The maximum observed exposure rate in the BTP-10 produced water drainage was 40 {micro}R h{sup -1}. Soil and sediment sampling were concentrated in these two areas. All samples were analyzed for concentration of {sup 226}Ra, {sup 228}Ra, and {sup 40}K. Maximum {sup 226}Ra concentrations observed in the samples collected were 46 pCi g{sup -1} for soil and 78 pCi g{sup -1} for sediment. Concentrations in most samples were considerably lower than these values. Radon emanation fraction was also measured for a randomly selected fraction of the samples. The mean Rn emanation fraction measured was 0.10, indicating that on average only 10 percent of the Rn produced is released from the medium. Based on the results of these analyses, NORM contamination at the NPR-3 site is minimal, and appears to be restricted to the two general areas sampled. Concentrations of NORM radionuclides found soils and sediments in these two locations do not justify remedial actions at present. However, continued discharge of NORM-contaminated produced waters from the BTP-10 area will likely result in the continued accumulation of NORM in sediment. It is therefore recommended that the sediments in the BTP-10 discharge stream be monitored periodically for NORM.

White, G.J; Rood, A.S.

1999-01-21T23:59:59.000Z

9

Radioactive Material Transportation Practices  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Establishes standard transportation practices for Departmental programs to use in planning and executing offsite shipments of radioactive materials including radioactive waste. Does not cancel other directives.

2002-09-23T23:59:59.000Z

10

Radioactive Materials License Commitments  

E-Print Network [OSTI]

Radioactive Materials License Commitments for The University of Texas at Austin May 2009 July 2009 in the use of radioactive materials. In July 1963, the State of Texas granted The University of Texas at Austin a broad radioactive materials license for research, development and instruction. While this means

11

Container for radioactive materials  

DOE Patents [OSTI]

A container is claimed for housing a plurality of canister assemblies containing radioactive material. The several canister assemblies are stacked in a longitudinally spaced relation within a carrier to form a payload concentrically mounted within the container. The payload package includes a spacer for each canister assembly, said spacer comprising a base member longitudinally spacing adjacent canister assemblies from each other and sleeve surrounding the associated canister assembly for centering the same and conducting heat from the radioactive material in a desired flow path. 7 figures.

Fields, S.R.

1984-05-30T23:59:59.000Z

12

Radioactive Material Transportation Practices Manual  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Manual establishes standard transportation practices for the Department of Energy, including National Nuclear Security Administration to use in planning and executing offsite shipments of radioactive materials and waste. The revision reflects ongoing collaboration of DOE and outside organizations on the transportation of radioactive material and waste. Cancels DOE M 460.2-1.

2008-06-04T23:59:59.000Z

13

Radioactive waste material melter apparatus  

DOE Patents [OSTI]

An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another.

Newman, Darrell F. (Richland, WA); Ross, Wayne A. (Richland, WA)

1990-01-01T23:59:59.000Z

14

Radioactive waste material melter apparatus  

DOE Patents [OSTI]

An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another. 8 figs.

Newman, D.F.; Ross, W.A.

1990-04-24T23:59:59.000Z

15

Storage depot for radioactive material  

DOE Patents [OSTI]

Vertical drilling of cylindrical holes in the soil, and the lining of such holes, provides storage vaults called caissons. A guarded depot is provided with a plurality of such caissons covered by shielded closures preventing radiation from penetrating through any linear gap to the atmosphere. The heat generated by the radioactive material is dissipated through the vertical liner of the well into the adjacent soil and thus to the ground surface so that most of the heat from the radioactive material is dissipated into the atmosphere in a manner involving no significant amount of biologically harmful radiation. The passive cooling of the radioactive material without reliance upon pumps, personnel, or other factor which might fail, constitutes one of the most advantageous features of this system. Moreover this system is resistant to damage from tornadoes or earthquakes. Hermetically sealed containers of radioactive material may be positioned in the caissons. Loading vehicles can travel throughout the depot to permit great flexibility of loading and unloading radioactive materials. Radioactive material can be shifted to a more closely spaced caisson after ageing sufficiently to generate much less heat. The quantity of material stored in a caisson is restricted by the average capacity for heat dissipation of the soil adjacent such caisson.

Szulinski, Milton J. (Richland, WA)

1983-01-01T23:59:59.000Z

16

Radiation Awareness TrainingRadiation Awareness Training Radioactive Material &Radioactive Material &  

E-Print Network [OSTI]

quarterly · Radioactive waste retrieval, storage, disposal · Dosimetry exchange · Leak tests of sealedRadiation Awareness TrainingRadiation Awareness Training Radioactive Material &Radioactive Material, Chemistry, Physics, Applied Physiology · Radioactive Material ­ Sealed Sources, Unsealed Sources (liquid

Sherrill, David

17

Radioactive waste material disposal  

DOE Patents [OSTI]

The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide. 3 figs.

Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

1995-10-24T23:59:59.000Z

18

Radioactive waste material disposal  

DOE Patents [OSTI]

The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide.

Forsberg, Charles W. (155 Newport Dr., Oak Ridge, TN 37830); Beahm, Edward C. (106 Cooper Cir., Oak Ridge, TN 37830); Parker, George W. (321 Dominion Cir., Knoxville, TN 37922)

1995-01-01T23:59:59.000Z

19

Naturally occurring crystalline phases: analogues for radioactive waste forms  

SciTech Connect (OSTI)

Naturally occurring mineral analogues to crystalline phases that are constituents of crystalline radioactive waste forms provide a basis for comparison by which the long-term stability of these phases may be estimated. The crystal structures and the crystal chemistry of the following natural analogues are presented: baddeleyite, hematite, nepheline; pollucite, scheelite;sodalite, spinel, apatite, monazite, uraninite, hollandite-priderite, perovskite, and zirconolite. For each phase in geochemistry, occurrence, alteration and radiation effects are described. A selected bibliography for each phase is included.

Haaker, R.F.; Ewing, R.C.

1981-01-01T23:59:59.000Z

20

Storage containers for radioactive material  

DOE Patents [OSTI]

A radioactive material storage system for use in the laboratory having a flat base plate with a groove in one surface thereof and a hollow pedestal extending perpendicularly away from the other surface thereof, a sealing gasket in the groove, a cover having a filter therein and an outwardly extending flange which fits over the plate, the groove and the gasket, and a clamp for maintaining the cover and the plate sealed together, whereby the plate and the cover and the clamp cooperate to provide a storage area for radioactive material readily accessible for use or

Groh, Edward F. (Naperville, IL); Cassidy, Dale A. (Valparaiso, IN); Dates, Leon R. (Elmwood Park, IL)

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "occurring radioactive materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Storage containers for radioactive material  

DOE Patents [OSTI]

A radioactive material storage system is claimed for use in the laboratory having a flat base plate with a groove in one surface thereof and a hollow pedestal extending perpendicularly away from the other surface thereof, a sealing gasket in the groove, a cover having a filter therein and an outwardly extending flange which fits over the plate, the groove and the gasket, and a clamp for maintaining the cover and the plate sealed together. The plate and the cover and the clamp cooperate to provide a storage area for radioactive material readily accessible for use or inventory. Wall mounts are provided to prevent accidental formation of critical masses during storage.

Groh, E.F.; Cassidy, D.A.; Dates, L.R.

1980-07-31T23:59:59.000Z

22

Radioactive material package seal tests  

SciTech Connect (OSTI)

General design or test performance requirements for radioactive materials (RAM) packages are specified in Title 10 of the US Code of Federal Regulations Part 71 (US Nuclear Regulatory Commission, 1983). The requirements for Type B packages provide a broad range of environments under which the system must contain the RAM without posing a threat to health or property. Seals that provide the containment system interface between the packaging body and the closure must function in both high- and low-temperature environments under dynamic and static conditions. A seal technology program, jointly funded by the US Department of Energy Office of Environmental Restoration and Waste Management (EM) and the Office of Civilian Radioactive Waste Management (OCRWM), was initiated at Sandia National Laboratories. Experiments were performed in this program to characterize the behavior of several static seal materials at low temperatures. Helium leak tests on face seals were used to compare the materials. Materials tested include butyl, neoprene, ethylene propylene, fluorosilicone, silicone, Eypel, Kalrez, Teflon, fluorocarbon, and Teflon/silicone composites. Because most elastomer O-ring applications are for hydraulic systems, manufacturer low-temperature ratings are based on methods that simulate this use. The seal materials tested in this program with a fixture similar to a RAM cask closure, with the exception of silicone S613-60, are not leak tight (1.0 {times} 10{sup {minus}7} std cm{sup 3}/s) at manufacturer low-temperature ratings. 8 refs., 3 figs., 1 tab.

Madsen, M.M.; Humphreys, D.L.; Edwards, K.R.

1990-01-01T23:59:59.000Z

23

Laboratory Surveys when Working with Radioactive Materials  

E-Print Network [OSTI]

radioactive materials (RAM) are used or stored, including waste areas. Negative results should be clearlyLaboratory Surveys when Working with Radioactive Materials Procedure: 7.546 Created: 9/25/14 Version: 1.0 Revised: Environmental Health & Safety Page 1 of 6 A. Purpose Radioactive contamination and

Jia, Songtao

24

Spills of Radioactive Materials -Emergency Procedures  

E-Print Network [OSTI]

to radioactive waste container. For surface decontamination, use soap and water and cleansers appropriateSpills of Radioactive Materials - Emergency Procedures Procedure: 7.53 Created: 1/16/2014 Version for injured personnel. B. Applicability/scope This policy applies to all facilities where radioactive

Jia, Songtao

25

Radiation Machines and Radioactive Materials (Iowa)  

Broader source: Energy.gov [DOE]

These chapters describe general provisions and regulatory requirements; registration, licensure, and transportation of radioactive materials; and exposure standards for radiation protection.

26

Radiation Sources and Radioactive Materials (Connecticut)  

Broader source: Energy.gov [DOE]

These regulations apply to persons who receive, transfer, possess, manufacture, use, store, handle, transport or dispose of radioactive materials and/or sources of ionizing radiation. Some...

27

Radioactive materials shipping cask anticontamination enclosure  

DOE Patents [OSTI]

An anticontamination device for use in storing shipping casks for radioactive materials comprising (1) a seal plate assembly; (2) a double-layer plastic bag; and (3) a water management system or means for water management.

Belmonte, Mark S. (Irwin, PA); Davis, James H. (Pittsburgh, PA); Williams, David A. (Pittsburgh, PA)

1982-01-01T23:59:59.000Z

28

Radioactive Material Use at the EMSL Radiochemistry Annex  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Dispersible radioactive material must be placed in rigid, leak- tight inner containers (e.g., durable screw-top sample jars). Non-dispersible radioactive material may...

29

Identifying Mixed Chemical and Radioactive Waste Mixed waste is: any waste material containing both radioactive materials  

E-Print Network [OSTI]

Identifying Mixed Chemical and Radioactive Waste Mixed waste is: any waste material containing both as noted on the list, you do not have a mixed waste and it may be managed as a normal radioactive waste radioactive waste after initially dating the container, the hold for decay time is extended, but you cannot

Straight, Aaron

30

Radioactive Material or Multiple Hazardous Materials Decontamination |  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15,2015 | DepartmentLoansDepartment of Energy Radioactive

31

Completion of the Radioactive Materials Packaging Handbook  

SciTech Connect (OSTI)

The Radioactive Materials Packaging Handbook: Design, Operation and Maintenance, which will serve as a replacement for the Cask Designers Guide (Shappert, 1970), has now been completed and submitted to the Oak Ridge National Laboratory (ORNL) electronics publishing group for layout and printing; it is scheduled to be printed in late spring 1998. The Handbook, written by experts in their particular fields, is a compilation of technical chapters that address the design aspects of a package intended for transporting radioactive material in normal commerce; it was prepared under the direction of M. E. Wangler of the US Department of Energy (DOE) and is intended to provide a wealth of technical guidance that will give designers a better understanding of the regulatory approval process, preferences of regulators on specific aspects of package design, and the types of analyses that should be considered when designing a package to carry radioactive materials.

Shappert, L.B.

1998-02-01T23:59:59.000Z

32

Film Badge Application Radioactive Material Package Receipt Log  

E-Print Network [OSTI]

;RADIOACTIVE MATERIAL PACKAGE RECEIPT LOG DATE: DELIVERED BY: AUTHORIZED BY: Contamination Check DPM/100 cm2APPENDIX A Film Badge Application Radioactive Material Package Receipt Log Radioactive Material Package Receipt Form (Off-Campus Locations) Radiation / Contamination Survey Form #12;PERSONNEL MONITORING

Slatton, Clint

33

Corrosion resistant storage container for radioactive material  

DOE Patents [OSTI]

A corrosion resistant long-term storage container for isolating radioactive waste material in a repository. The container is formed of a plurality of sealed corrosion resistant canisters of different relative sizes, with the smaller canisters housed within the larger canisters, and with spacer means disposed between judxtaposed pairs of canisters to maintain a predetermined spacing between each of the canisters. The combination of the plural surfaces of the canisters and the associated spacer means is effective to make the container capable of resisting corrosion, and thereby of preventing waste material from leaking from the innermost canister into the ambient atmosphere.

Schweitzer, Donald G. (Bayport, NY); Davis, Mary S. (Wading River, NY)

1990-01-01T23:59:59.000Z

34

Corrosion resistant storage container for radioactive material  

DOE Patents [OSTI]

A corrosion resistant long-term storage container for isolating high-level radioactive waste material in a repository is claimed. The container is formed of a plurality of sealed corrosion resistant canisters of different relative sizes, with the smaller canisters housed within the larger canisters, and with spacer means disposed between juxtaposed pairs of canisters to maintain a predetermined spacing between each of the canisters. The combination of the plural surfaces of the canisters and the associated spacer means is effective to make the container capable of resisting corrosion, and thereby of preventing waste material from leaking from the innermost canister into the ambient atmosphere.

Schweitzer, D.G.; Davis, M.S.

1984-08-30T23:59:59.000Z

35

Hanford Site radioactive hazardous materials packaging directory  

SciTech Connect (OSTI)

The Hanford Site Radioactive Hazardous Materials Packaging Directory (RHMPD) provides information concerning packagings owned or routinely leased by Westinghouse Hanford Company (WHC) for offsite shipments or onsite transfers of hazardous materials. Specific information is provided for selected packagings including the following: general description; approval documents/specifications (Certificates of Compliance and Safety Analysis Reports for Packaging); technical information (drawing numbers and dimensions); approved contents; areas of operation; and general information. Packaging Operations & Development (PO&D) maintains the RHMPD and may be contacted for additional information or assistance in obtaining referenced documentation or assistance concerning packaging selection, availability, and usage.

McCarthy, T.L.

1995-12-01T23:59:59.000Z

36

Cask for radioactive material and method for preventing release of neutrons from radioactive material  

SciTech Connect (OSTI)

A cask for radioactive material, such as nuclear reactor fuel or spent nuclear reactor fuel, includes a plurality of associated walled internal compartments for containing such radioactive material, with neutron absorbing material present to absorb neutrons emitted by the radioactive material, and a plurality of thermally conductive members, such as longitudinal copper or aluminum castings, about the compartment and in thermal contact with the compartment walls and with other such thermally conductive members and having thermal contact surfaces between such members extending, preferably radially, from the compartment walls to external surfaces of the thermally conductive members, which surfaces are preferably in the form of a cylinder. The ends of the shipping cask also preferably include a neutron absorber and a conductive metal covering to dissipate heat released by decay of the radioactive material. A preferred neutron absorber utilized is boron carbide, preferably as plasma sprayed with metal powder or as particles in a matrix of phenolic polymer, and the compartment walls are preferably of stainless steel, copper or other corrosion resistant and heat conductive metal or alloy. The invention also relates to shipping casks, storage casks and other containers for radioactive materials in which a plurality of internal compartments for such material, e.g., nuclear reactor fuel rods, are joined together, preferably in modular construction with surrounding heat conductive metal members, and the modules are joined together to form a major part of a finished shipping cask, which is preferably of cylindrical shape. Also within the invention are methods of safely storing radioactive materials which emit neutrons, while dissipating the heat thereof, and of manufacturing the present shipping casks.

Gaffney, M.F.; Shaffer, P.T.

1981-09-29T23:59:59.000Z

37

Radioactive Material Declaration Form Exhibit to the Radioactive Waste Manual (RWM)  

E-Print Network [OSTI]

Radioactive Material Declaration Form Exhibit to the Radioactive Waste Manual (RWM) 12/5/2013 (form Declaration Form Exhibit to the Radioactive Waste Manual (RWM) 12/5/2013 (form date) SLAC-I-760-2A08Z-001 (RWM date) SLAC-I-760-2A08Z-001 (RWM number) Page 1 of 2 RADIOACTIVE MATERIAL DECLARATION FORM For RP use

Wechsler, Risa H.

38

Base Technology for Radioactive Material Transportation Packaging Systems  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish Department of Energy (DOE) policies and responsibilities for coordinating and planning base technology for radioactive material transportation packaging systems.

1992-07-08T23:59:59.000Z

39

RADIOACTIVE MATERIAL PACKAGING TORQUE REQUIREMENTS COMPLIANCE  

SciTech Connect (OSTI)

Shipping containers used to transport radioactive material (RAM) in commerce employ a variety of closure mechanisms. Often, these closure mechanisms require a specific amount of torque be applied to a bolt, nut or other threaded fastener. It is important that the required preload is achieved so that the package testing and analysis is not invalidated for the purpose of protecting the public. Torque compliance is a means of ensuring closure preload, is a major factor in accomplishing the package functions of confinement/containment, sub-criticality, and shielding. This paper will address the importance of applying proper torque to package closures, discuss torque value nomenclature, and present one methodology to ensure torque compliance is achieved.

Watkins, R.; Leduc, D.

2011-03-24T23:59:59.000Z

40

One million curies of radioactive material recovered  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Removal Program and OSRP mission includes removal and disposal of excess, unwanted, abandoned, or orphan radioactive sealed sources that pose a potential risk to national...

Note: This page contains sample records for the topic "occurring radioactive materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

E-Print Network 3.0 - agent-based national radioactive Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The United Nations Scientific... 's Guidelines for Technologically Enhanced Naturally Occurring Radioactive Materials (TENORM). d National... Radioactive Materials Board on...

42

Transporting radioactive materials: Q & A to your questions  

SciTech Connect (OSTI)

Over 2 million packages of radioactive materials are shipped each year in the United States. These shipments are carried by trucks, trains, ships, and airplanes every day just like other commodities. Compliance with Federal regulations ensures that radioactive materials are transported safely. Proper packaging is the key to safe shipment. Package designs for radioactive materials must protect the public and the environment even in case of an accident. As the level of radioactivity increases, packaging design requirements become more stringent. Radioactive materials have been shipped in this country for more than 40 years. As with other commodities, vehicles carrying these materials have been involved in accidents. However, no deaths or serious injuries have resulted from exposure to the radioactive contents of these shipments. People are concerned about how radioactive shipments might affect them and the environment. This booklet briefly answers some of the commonly asked questions about the transport of radioactive materials. More detailed information is available from the sources listed at the end of this booklet.

Not Available

1993-04-01T23:59:59.000Z

43

Distribution of Radioactive Materials in the Absheron Peninsula, Azerbaijan - 13567  

SciTech Connect (OSTI)

The Absheron Peninsula forms the extreme Eastern part of Azerbaijan and juts into the Caspian Sea. The region has a long history of oil and gas exploration, transport, and processing and includes a number of abandoned chemical plants that were used in the separation of iodine from formation waters. As a result of lax environmental standards during the Soviet era, the industrial activity has led to serious contamination from oils residues, heavy metals and naturally occurring radioactive materials (NORM). Radiometric surveys performed over a wide range of the Absheron Peninsula showed generally low NORM concentrations. However, radiation levels two to three orders of magnitude above background levels were detected at two abandoned iodine separation plants near the capital city, Baku. These elevated radiation levels are mainly due to Ra-226 and U-238 with lower contributions from Ra-228 and U-235. (authors)

Vandergraaf, Tjalle T. [Consultant, Pinawa, MB, R0E 1L0 (Canada)] [Consultant, Pinawa, MB, R0E 1L0 (Canada); Mamedov, Gudrat G.; Ramazanov, Mahammadali A.; Badalov, Vatan H. [Baku State University, Baku (Azerbaijan)] [Baku State University, Baku (Azerbaijan); Naghiyev, Jalal A. [Institute of Radiation Problems of ANAS, Baku (Azerbaijan)] [Institute of Radiation Problems of ANAS, Baku (Azerbaijan); Mehdiyeva, Afat A. [National Aerospace Agency of Ministry of Defense Industry, Baku (Azerbaijan)] [National Aerospace Agency of Ministry of Defense Industry, Baku (Azerbaijan)

2013-07-01T23:59:59.000Z

44

Radioactive Samples / Materials at the APS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromising Science for1 20115,PerformanceUsing Radioactive Samples /

45

One million curies of radioactive material recovered  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratorySpeeding access1 TechnicalOil inventoriesquasicrystalsRadioactive

46

Waste minimization for commercial radioactive materials users generating low-level radioactive waste  

SciTech Connect (OSTI)

The objective of this document is to provide a resource for all states and compact regions interested in promoting the minimization of low-level radioactive waste (LLW). This project was initiated by the Commonwealth of Massachusetts, and Massachusetts waste streams have been used as examples; however, the methods of analysis presented here are applicable to similar waste streams generated elsewhere. This document is a guide for states/compact regions to use in developing a system to evaluate and prioritize various waste minimization techniques in order to encourage individual radioactive materials users (LLW generators) to consider these techniques in their own independent evaluations. This review discusses the application of specific waste minimization techniques to waste streams characteristic of three categories of radioactive materials users: (1) industrial operations using radioactive materials in the manufacture of commercial products, (2) health care institutions, including hospitals and clinics, and (3) educational and research institutions. Massachusetts waste stream characterization data from key radioactive materials users in each category are used to illustrate the applicability of various minimization techniques. The utility group is not included because extensive information specific to this category of LLW generators is available in the literature.

Fischer, D.K.; Gitt, M.; Williams, G.A.; Branch, S. (EG and G Idaho, Inc., Idaho Falls, ID (United States)); Otis, M.D.; McKenzie-Carter, M.A.; Schurman, D.L. (Science Applications International Corp., Idaho Falls, ID (United States))

1991-07-01T23:59:59.000Z

47

Waste minimization for commercial radioactive materials users generating low-level radioactive waste. Revision 1  

SciTech Connect (OSTI)

The objective of this document is to provide a resource for all states and compact regions interested in promoting the minimization of low-level radioactive waste (LLW). This project was initiated by the Commonwealth of Massachusetts, and Massachusetts waste streams have been used as examples; however, the methods of analysis presented here are applicable to similar waste streams generated elsewhere. This document is a guide for states/compact regions to use in developing a system to evaluate and prioritize various waste minimization techniques in order to encourage individual radioactive materials users (LLW generators) to consider these techniques in their own independent evaluations. This review discusses the application of specific waste minimization techniques to waste streams characteristic of three categories of radioactive materials users: (1) industrial operations using radioactive materials in the manufacture of commercial products, (2) health care institutions, including hospitals and clinics, and (3) educational and research institutions. Massachusetts waste stream characterization data from key radioactive materials users in each category are used to illustrate the applicability of various minimization techniques. The utility group is not included because extensive information specific to this category of LLW generators is available in the literature.

Fischer, D.K.; Gitt, M.; Williams, G.A.; Branch, S. [EG and G Idaho, Inc., Idaho Falls, ID (United States); Otis, M.D.; McKenzie-Carter, M.A.; Schurman, D.L. [Science Applications International Corp., Idaho Falls, ID (United States)

1991-07-01T23:59:59.000Z

48

Determination of Fire Enviroment in Stacked Cargo Containers with Radioactive Materials Packages  

SciTech Connect (OSTI)

Results from a Fire Test with a three-by-three stack of standard 6 m long International Standards Organization shipping containers containing combustible fuels and empty radioactive materials packages are reported and discussed. The stack is intended to simulate fire conditions that could occur during on-deck stowage on container cargo ships. The fire is initated by locating the container stack adjacent to a 9.8 x 6 m pool fire. Temperatures of both cargoes (empty and simulated radioactive materials packages) and containers are recorded and reported. Observations on the duration, intensity and spread of the fire are discussed. Based on the results, models for simulation of fire exposure of radioactive materials packages in such fires are suggested.

Arviso, M.; Bobbe, J.G.; Dukart, R.D.; Koski, J.A.

1999-05-01T23:59:59.000Z

49

Removal of radioactive and other hazardous material from fluid waste  

DOE Patents [OSTI]

Hollow glass microspheres obtained from fly ash (cenospheres) are impregnated with extractants/ion-exchangers and used to remove hazardous material from fluid waste. In a preferred embodiment the microsphere material is loaded with ammonium molybdophosphonate (AMP) and used to remove radioactive ions, such as cesium-137, from acidic liquid wastes. In another preferred embodiment, the microsphere material is loaded with octyl(phenyl)-N-N-diisobutyl-carbamoylmethylphosphine oxide (CMPO) and used to remove americium and plutonium from acidic liquid wastes.

Tranter, Troy J. (Idaho Falls, ID); Knecht, Dieter A. (Idaho Falls, ID); Todd, Terry A. (Aberdeen, ID); Burchfield, Larry A. (W. Richland, WA); Anshits, Alexander G. (Krasnoyarsk, RU); Vereshchagina, Tatiana (Krasnoyarsk, RU); Tretyakov, Alexander A. (Zheleznogorsk, RU); Aloy, Albert S. (St. Petersburg, RU); Sapozhnikova, Natalia V. (St. Petersburg, RU)

2006-10-03T23:59:59.000Z

50

Management of sewage sludge and ash containing radioactive materials.  

SciTech Connect (OSTI)

Approximately 50% of the seven to eight million metric tonnes of municipal sewage sludge produced annually in the US is reused. Beneficial uses of sewage sludge include agricultural land application, land reclamation, forestry, and various commercial applications. Excessive levels of contaminants, however, can limit the potential usefulness of land-applied sewage sludge. A recently completed study by a federal inter-agency committee has identified radioactive contaminants that could interfere with the safe reuse of sewage sludge. The study found that typical levels of radioactive materials in most municipal sewage sludge and incinerator ash do not present a health hazard to sewage treatment plant workers or to the general public. The inter-agency committee has developed recommendations for operators of sewage treatment plants for evaluating measured or estimated levels of radioactive material in sewage sludge and for determining whether actions to reduce potential exposures are appropriate.

Bachmaier, J. T.; Aiello, K.; Bastian, R. K.; Cheng, J.-J.; Chiu, W. A.; Goodman, J.; Hogan, R.; Jones, A. R.; Kamboj, S.; Lenhart, T.; Ott, W. R.; Rubin, A. B.; Salomon, S. N.; Schmidt, D. W.; Setlow, L. W.; Yu, C.; Wolbarst, A. B.; Environmental Science Division; Middlesex County Utilities Authority; U.S. EPA; N.J. Dept of Environmental Protection; NRC

2007-01-01T23:59:59.000Z

51

A pill to treat people exposed to radioactive materials  

SciTech Connect (OSTI)

Berkeley Lab's Rebecca Abergel discusses "A pill to treat people exposed to radioactive materials" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas. Go here to watch the entire event with all 8 speakers:

Abergel, Rebecca

2013-10-31T23:59:59.000Z

52

A pill to treat people exposed to radioactive materials  

ScienceCinema (OSTI)

Berkeley Lab's Rebecca Abergel discusses "A pill to treat people exposed to radioactive materials" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas. Go here to watch the entire event with all 8 speakers:

Abergel, Rebecca

2014-06-24T23:59:59.000Z

53

Working with Radioactive Materials in Clinical Areas -Documentation  

E-Print Network [OSTI]

Working with Radioactive Materials in Clinical Areas - Documentation Procedure: 7.54 Created: 2008 Documentation A. Purpose This SOP summarizes records that must be maintained as required by the Rules. Responsibility Authorized User, approved technologist or lab manager maintain records of receipt, use, spill

Jia, Songtao

54

The radioactive materials packaging handbook: Design, operations, and maintenance  

SciTech Connect (OSTI)

As part of its required activities in 1994, the US Department of Energy (DOE) made over 500,000 shipments. Of these shipments, approximately 4% were hazardous, and of these, slightly over 1% (over 6,400 shipments) were radioactive. Because of DOE`s cleanup activities, the total quantities and percentages of radioactive material (RAM) that must be moved from one site to another is expected to increase in the coming years, and these materials are likely to be different than those shipped in the past. Irradiated fuel will certainly be part of the mix as will RAM samples and waste. However, in many cases these materials will be of different shape and size and require a transport packaging having different shielding, thermal, and criticality avoidance characteristics than are currently available. This Handbook provides guidance on the design, testing, certification, and operation of packages for these materials.

Shappert, L.B.; Bowman, S.M. [Oak Ridge National Lab., TN (United States); Arnold, E.D. [Lockheed Martin Energy Systems, Oak Ridge, TN (United States)] [and others

1998-08-01T23:59:59.000Z

55

A manual for implementing residual radioactive material guidelines  

SciTech Connect (OSTI)

This manual presents information for implementing US Department of Energy (DOE) guidelines for residual radioactive material at sites identified by the Formerly Utilized Sites Remedial Action Program (FUSRAP) and the Surplus Facilities Management Program (SFMP). It describes the analysis and models used to derive site-specific guidelines for allowable residual concentrations of radionuclides in soil and the design and use of the RESRAD computer code for calculating guideline values. It also describes procedures for implementing DOE policy for reducing residual radioactivity to levels that are as low as reasonably achievable. 36 refs., 16 figs, 22 tabs.

Gilbert, T.L.; Yu, C.; Yuan, Y.C.; Zielen, A.J.; Jusko, M.J.; Wallo, A. III

1989-06-01T23:59:59.000Z

56

RECERTIFICATION OF THE MODEL 9977 RADIOACTIVE MATERIAL PACKAGING  

SciTech Connect (OSTI)

The Model 9977 Packaging was initially issued a Certificate of Compliance (CoC) by the Department of Energys Office of Environmental Management (DOE-EM) for the transportation of radioactive material (RAM) in the Fall of 2007. This first CoC was for a single radioactive material and two packing configurations. In the five years since that time, seven Addendums have been written to the Safety Analysis Report for Packaging (SARP) and five Letter Amendments have been written that have authorized either new RAM contents or packing configurations, or both. This paper will discuss the process of updating the 9977 SARP to include all the contents and configurations, including the addition of a new content, and its submittal for recertification.

Abramczyk, G.; Bellamy, S.; Loftin, B.; Nathan, S.

2013-06-05T23:59:59.000Z

57

Processing of solid mixed waste containing radioactive and hazardous materials  

DOE Patents [OSTI]

Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter.

Gotovchikov, Vitaly T. (Moscow, RU); Ivanov, Alexander V. (Moscow, RU); Filippov, Eugene A. (Moscow, RU)

1998-05-12T23:59:59.000Z

58

Processing of solid mixed waste containing radioactive and hazardous materials  

DOE Patents [OSTI]

Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter. 6 figs.

Gotovchikov, V.T.; Ivanov, A.V.; Filippov, E.A.

1998-05-12T23:59:59.000Z

59

Safe Use of Radioactive Materials Procedure: 7.542 Created: 3/7/2014  

E-Print Network [OSTI]

-level radioactive waste and still provide for ease of decontamination. Trays made of impervious material (iSafe Use of Radioactive Materials Procedure: 7.542 Created: 3/7/2014 Version: 1.0 Revised of radioactive materials (RAM). They are designed to reduce the risk of a significant contamination event

Jia, Songtao

60

August 1999 Radiation Safety Manual Section 12 Shipment of Radioactive Materials  

E-Print Network [OSTI]

August 1999 Radiation Safety Manual Section 12 ­ Shipment of Radioactive Materials UW Environmental Health and Safety Page 12-1 Section 12 Shipment of Radioactive Materials Contents A. Shipping Regulations regulations for the safe transportation of radioactive materials. These regulations are adopted from those

Wilcock, William

Note: This page contains sample records for the topic "occurring radioactive materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

rev September 2003 Radiation Safety Manual Section 11 Procurement of Radioactive Material  

E-Print Network [OSTI]

rev September 2003 Radiation Safety Manual Section 11 ­ Procurement of Radioactive Material Page 11-1 Section 11 Procurement of Radioactive Materials Contents A. Authorization to Order Radioactive Materials. Authorized Investigator Package Monitoring.................................11-3 3. No Contamination Detected

Wilcock, William

62

System for chemically digesting low level radioactive, solid waste material  

DOE Patents [OSTI]

An improved method and system for chemically digesting low level radioactive, solid waste material having a high through-put. The solid waste material is added to an annular vessel (10) substantially filled with concentrated sulfuric acid. Concentrated nitric acid or nitrogen dioxide is added to the sulfuric acid within the annular vessel while the sulfuric acid is reacting with the solid waste. The solid waste is mixed within the sulfuric acid so that the solid waste is substantilly fully immersed during the reaction. The off gas from the reaction and the products slurry residue is removed from the vessel during the reaction.

Cowan, Richard G. (Kennewick, WA); Blasewitz, Albert G. (Richland, WA)

1982-01-01T23:59:59.000Z

63

Radioactive Material Use at the EMSL Radiochemistry Annex The EMSL Radiochemistry Annex, located in the 3410 Material Science and  

E-Print Network [OSTI]

contamination during transportation. Dispersible radioactive material must be placed in rigid, leak- tight inner be sufficient such that EMSL staff will not encounter radioactive contamination when they open the shippingRadioactive Material Use at the EMSL Radiochemistry Annex The EMSL Radiochemistry Annex, located

64

Joining of Advanced Materials: An The revolution which has occurred in materials science  

E-Print Network [OSTI]

science and engineering has not been matched by improve- ments in joining science and technology. 1t.materials require ever higher performance, the number of acceptable joining technologies becomes more re- stricted of the material are useless. Unless the shape and properties can be obtained economically, the product has limited

Eagar, Thomas W.

65

INTRODUCTION In every laboratory where radioactive materials are utilized, it is necessary to maintain a  

E-Print Network [OSTI]

) in their work habits and to minimize the potential for exposures, contamination or release of radioactiveINTRODUCTION In every laboratory where radioactive materials are utilized, it is necessary of Texas the privilege of using large varieties of radioactive materials. Large amounts of activity

66

Best Practices for the Security of Radioactive Materials  

SciTech Connect (OSTI)

This work is funded under a grant provided by the US Department of Health and Human Services, Centers for Disease Control. The Department of Health and Mental Hygiene (DOHMH) awarded a contract to Brookhaven National Laboratory (BNL) to develop best practices guidance for Office of Radiological Health (ORH) licensees to increase on-site security to deter and prevent theft of radioactive materials (RAM). The purpose of this document is to describe best practices available to manage the security of radioactive materials in medical centers, hospitals, and research facilities. There are thousands of such facilities in the United States, and recent studies suggest that these materials may be vulnerable to theft or sabotage. Their malevolent use in a radiological-dispersion device (RDD), viz., a dirty bomb, can have severe environmental- and economic- impacts, the associated area denial, and potentially large cleanup costs, as well as other effects on the licensees and the public. These issues are important to all Nuclear Regulatory Commission and Agreement State licensees, and to the general public. This document outlines approaches for the licensees possessing these materials to undertake security audits to identify vulnerabilities in how these materials are stored or used, and to describe best practices to upgrade or enhance their security. Best practices can be described as the most efficient (least amount of effort/cost) and effective (best results) way of accomplishing a task and meeting an objective, based on repeatable procedures that have proven themselves over time for many people and circumstances. Best practices within the security industry include information security, personnel security, administrative security, and physical security. Each discipline within the security industry has its own 'best practices' that have evolved over time into common ones. With respect to radiological devices and radioactive-materials security, industry best practices encompass both physical security (hardware and engineering) and administrative procedures. Security regimes for these devices and materials typically use a defense-in-depth- or layered-security approach to eliminate single points of failure. The Department of Energy, the Department of Homeland Security, the Department of Defense, the American Society of Industrial Security (ASIS), the Security Industry Association (SIA) and Underwriters Laboratory (UL) all rovide design guidance and hardware specifications. With a graded approach, a physical-security specialist can tailor an integrated security-management system in the most appropriate cost-effective manner to meet the regulatory and non-regulatory requirements of the licensee or client.

Coulter, D.T.; Musolino, S.

2009-05-01T23:59:59.000Z

67

NEW APPROACH TO ADDRESSING GAS GENERATION IN RADIOACTIVE MATERIAL PACKAGING  

SciTech Connect (OSTI)

Safety Analysis Reports for Packaging (SARP) document why the transportation of radioactive material is safe in Type A(F) and Type B shipping containers. The content evaluation of certain actinide materials require that the gas generation characteristics be addressed. Most packages used to transport actinides impose extremely restrictive limits on moisture content and oxide stabilization to control or prevent flammable gas generation. These requirements prevent some users from using a shipping container even though the material to be shipped is fully compliant with the remaining content envelope including isotopic distribution. To avoid these restrictions, gas generation issues have to be addressed on a case by case basis rather than a one size fits all approach. In addition, SARP applicants and review groups may not have the knowledge and experience with actinide chemistry and other factors affecting gas generation, which facility experts in actinide material processing have obtained in the last sixty years. This paper will address a proposal to create a Gas Generation Evaluation Committee to evaluate gas generation issues associated with Safety Analysis Reports for Packaging material contents. The committee charter could include reviews of both SARP approved contents and new contents not previously evaluated in a SARP.

Watkins, R; Leduc, D; Askew, N

2009-06-25T23:59:59.000Z

68

2011 Radioactive Materials Usage Survey for Unmonitored Point Sources  

SciTech Connect (OSTI)

This report provides the results of the 2011 Radioactive Materials Usage Survey for Unmonitored Point Sources (RMUS), which was updated by the Environmental Protection (ENV) Division's Environmental Stewardship (ES) at Los Alamos National Laboratory (LANL). ES classifies LANL emission sources into one of four Tiers, based on the potential effective dose equivalent (PEDE) calculated for each point source. Detailed descriptions of these tiers are provided in Section 3. The usage survey is conducted annually; in odd-numbered years the survey addresses all monitored and unmonitored point sources and in even-numbered years it addresses all Tier III and various selected other sources. This graded approach was designed to ensure that the appropriate emphasis is placed on point sources that have higher potential emissions to the environment. For calendar year (CY) 2011, ES has divided the usage survey into two distinct reports, one covering the monitored point sources (to be completed later this year) and this report covering all unmonitored point sources. This usage survey includes the following release points: (1) all unmonitored sources identified in the 2010 usage survey, (2) any new release points identified through the new project review (NPR) process, and (3) other release points as designated by the Rad-NESHAP Team Leader. Data for all unmonitored point sources at LANL is stored in the survey files at ES. LANL uses this survey data to help demonstrate compliance with Clean Air Act radioactive air emissions regulations (40 CFR 61, Subpart H). The remainder of this introduction provides a brief description of the information contained in each section. Section 2 of this report describes the methods that were employed for gathering usage survey data and for calculating usage, emissions, and dose for these point sources. It also references the appropriate ES procedures for further information. Section 3 describes the RMUS and explains how the survey results are organized. The RMUS Interview Form with the attached RMUS Process Form(s) provides the radioactive materials survey data by technical area (TA) and building number. The survey data for each release point includes information such as: exhaust stack identification number, room number, radioactive material source type (i.e., potential source or future potential source of air emissions), radionuclide, usage (in curies) and usage basis, physical state (gas, liquid, particulate, solid, or custom), release fraction (from Appendix D to 40 CFR 61, Subpart H), and process descriptions. In addition, the interview form also calculates emissions (in curies), lists mrem/Ci factors, calculates PEDEs, and states the location of the critical receptor for that release point. [The critical receptor is the maximum exposed off-site member of the public, specific to each individual facility.] Each of these data fields is described in this section. The Tier classification of release points, which was first introduced with the 1999 usage survey, is also described in detail in this section. Section 4 includes a brief discussion of the dose estimate methodology, and includes a discussion of several release points of particular interest in the CY 2011 usage survey report. It also includes a table of the calculated PEDEs for each release point at its critical receptor. Section 5 describes ES's approach to Quality Assurance (QA) for the usage survey. Satisfactory completion of the survey requires that team members responsible for Rad-NESHAP (National Emissions Standard for Hazardous Air Pollutants) compliance accurately collect and process several types of information, including radioactive materials usage data, process information, and supporting information. They must also perform and document the QA reviews outlined in Section 5.2.6 (Process Verification and Peer Review) of ES-RN, 'Quality Assurance Project Plan for the Rad-NESHAP Compliance Project' to verify that all information is complete and correct.

Sturgeon, Richard W. [Los Alamos National Laboratory

2012-06-27T23:59:59.000Z

69

Priorities for technology development and policy to reduce the risk from radioactive materials.  

SciTech Connect (OSTI)

The Standing Committee on International Security of Radioactive and Nuclear Materials in the Nonproliferation and Arms Control Division conducted its fourth annual workshop in February 2010 on Reducing the Risk from Radioactive and Nuclear Materials. This workshop examined new technologies in real-time tracking of radioactive materials, new risks and policy issues in transportation security, the best practices and challenges found in addressing illicit radioactive materials trafficking, industry leadership in reducing proliferation risk, and verification of the Nuclear Nonproliferation Treaty, Article VI. Technology gaps, policy gaps, and prioritization for addressing the identified gaps were discussed. Participants included academia, policy makers, radioactive materials users, physical security and safeguards specialists, and vendors of radioactive sources and transportation services. This paper summarizes the results of this workshop with the recommendations and calls to action for the Institute of Nuclear Materials Management (INMM) membership community.

Duggan, Ruth Ann

2010-06-01T23:59:59.000Z

70

INSTRUCTIONS FOR OPENING RADIONUCLIDE SHIPMENTS All packages containing radioactive material are physically received at the Department of Environmental  

E-Print Network [OSTI]

are monitored and contamination of the package exterior is assessed. The radioactive stock vialINSTRUCTIONS FOR OPENING RADIONUCLIDE SHIPMENTS All packages containing radioactive material radionuclide packages. GENERAL PROCEDURES 1. Radioactive packages must be opened and inspected as soon

Firestone, Jeremy

71

Albert Einstein College of Medicine Amendment to Non-human Use of Radioactive Material License  

E-Print Network [OSTI]

RSO-2 Rev.0 Albert Einstein College of Medicine Amendment to Non-human Use of Radioactive Material License INSTRUCTIONS: If you wish to make changes to your license to use radioactive material please exposure; Glove box: Mechanical pipettes: Fume hood: Absorbent liner & Tray Shielding: Lead: Lucite: GM

Emmons, Scott

72

SSRL Radioactive Material Sample Holder Catalog 5/30/14 Page 1 of 17  

E-Print Network [OSTI]

SSRL Radioactive Material Sample Holder Catalog 5/30/14 Page 1 of 17 Hazard Class Category finger under vacuum #12;SSRL Radioactive Material Sample Holder Catalog 5/30/14 Page 2 of 17 1.d USGS polyethylene envelopes. Check for no contamination of each envelope. - External envelope glued onto the cell

Wechsler, Risa H.

73

Characterization of Naturally Occurring Radioactive Material (NORM) in Oil and Gas Industry Equipment and Wastes  

SciTech Connect (OSTI)

This Sampling and Analysis (S and A) Plan was developed for the NORM Characterization Program, and describes the information to be gained through the program, how the required information is to be collected, and the anticipated form and content of the final data. The S and A Plan provides detailed procedures describing the work to be performed, how and why the work will be performed, and who will be responsible for conducting the various aspects of the work. The S and A Plan has been prepared with input from all parties involved with the program. Where appropriate, portions of the procedures described in the S and A Plan will be field tested by personnel of the Idaho National Engineering Laboratory (INEL) and the Grand Junction Project Office (GJPO), as well as representatives of the cosponsor organizations prior to their use in the field.

Rood, A.S.; White, G.J.

1999-10-07T23:59:59.000Z

74

RELEASE OF DRIED RADIOACTIVE WASTE MATERIALS TECHNICAL BASIS DOCUMENT  

SciTech Connect (OSTI)

This technical basis document was developed to support RPP-23429, Preliminary Documented Safety Analysis for the Demonstration Bulk Vitrification System (PDSA) and RPP-23479, Preliminary Documented Safety Analysis for the Contact-Handled Transuranic Mixed (CH-TRUM) Waste Facility. The main document describes the risk binning process and the technical basis for assigning risk bins to the representative accidents involving the release of dried radioactive waste materials from the Demonstration Bulk Vitrification System (DBVS) and to the associated represented hazardous conditions. Appendices D through F provide the technical basis for assigning risk bins to the representative dried waste release accident and associated represented hazardous conditions for the Contact-Handled Transuranic Mixed (CH-TRUM) Waste Packaging Unit (WPU). The risk binning process uses an evaluation of the frequency and consequence of a given representative accident or represented hazardous condition to determine the need for safety structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls. A representative accident or a represented hazardous condition is assigned to a risk bin based on the potential radiological and toxicological consequences to the public and the collocated worker. Note that the risk binning process is not applied to facility workers because credible hazardous conditions with the potential for significant facility worker consequences are considered for safety-significant SSCs and/or TSR-level controls regardless of their estimated frequency. The controls for protection of the facility workers are described in RPP-23429 and RPP-23479. Determination of the need for safety-class SSCs was performed in accordance with DOE-STD-3009-94, Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses, as described below.

KOZLOWSKI, S.D.

2007-05-30T23:59:59.000Z

75

Experiences in the field of radioactive materials seizures in the Czech Republic  

SciTech Connect (OSTI)

In recent years, the amount of radioactive materials seizures (captured radioactive materials) has been rising. It was above all due to newly installed detection facilities that were able to check metallic scrap during its collection in scrap yards or on the entrance to iron-mills, checking municipal waste upon entrance to municipal disposal sites, even incineration plants, or through checking vehicles going through the borders of the Czech Republic. Most cases bore a relationship to secondary raw materials or they were connected to the application of machines and installations made from contaminated metallic materials. However, in accordance to our experience, the number of cases of seizures of materials and devices containing radioactive sources used in the public domain was lower, but not negligible, in the municipal storage yards or incineration plants. Atomic Act No. 18/1997 Coll. will apply to everybody who provides activities leading to exposure, mandatory assurance as high radiation safety as risk of the endangering of life, personal health and environment is as low as reasonably achievable in according to social and economic aspects. Hence, attention on the examination of all cases of the radioactive material seizure based on detection facilities alarm or reasonably grounds suspicion arising from the other information is important. Therefore, a service carried out by group of workers who ensure assessment of captured radioactive materials and eventual retrieval of radioactive sources from the municipal waste has come into existence in the Nuclear Research Institute Rez plc. This service has covered also transport, storage, processing and disposal of found radioactive sources. This service has arisen especially for municipal disposal sites, but later on even other companies took advantage of this service like incineration plants, the State Office for Nuclear Safety, etc. Our experience in the field of ensuring assessment of captured radioactive materials and eventual retrieval of radioactive sources will be presented in the paper. (authors)

Svoboda, Karel; Podlaha, Josef; Sir, David; Mudra, Josef [Nuclear Research Institute Rez plc (Czech Republic)

2007-07-01T23:59:59.000Z

76

Albert Einstein College of Medicine Application for Non-human Use of Radioactive Material  

E-Print Network [OSTI]

RSO-1 Rev.0 Albert Einstein College of Medicine Application for Non-human Use of Radioactive pipettes: Fume hood: Absorbent liner & Tray Shielding: Lead: Lucite: GM survey meter: Handling tongs radioactive material is secure against unauthorized access: 9. Please check the type of application below

Emmons, Scott

77

E-Print Network 3.0 - artificial radioactive isotopes Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

from an artificial source or from a radioactive substance containing naturally occurring... . This includes work with radioactive materials and that involving sources of...

78

Materials and Security Consolidation Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables  

SciTech Connect (OSTI)

Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Materials and Security Consolidation Center facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

Not Listed

2011-09-01T23:59:59.000Z

79

Materials and Fuels Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables  

SciTech Connect (OSTI)

Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Materials and Fuels Complex facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

Lisa Harvego; Brion Bennett

2011-09-01T23:59:59.000Z

80

ENVIRONMENTALLY SOUND DISPOSAL OF RADIOACTIVE MATERIALS AT A RCRA HAZARDOUS WASTE DISPOSAL FACILITY  

SciTech Connect (OSTI)

The use of hazardous waste disposal facilities permitted under the Resource Conservation and Recovery Act (''RCRA'') to dispose of low concentration and exempt radioactive materials is a cost-effective option for government and industry waste generators. The hazardous and PCB waste disposal facility operated by US Ecology Idaho, Inc. near Grand View, Idaho provides environmentally sound disposal services to both government and private industry waste generators. The Idaho facility is a major recipient of U.S. Army Corps of Engineers FUSRAP program waste and received permit approval to receive an expanded range of radioactive materials in 2001. The site has disposed of more than 300,000 tons of radioactive materials from the federal government during the past five years. This paper presents the capabilities of the Grand View, Idaho hazardous waste facility to accept radioactive materials, site-specific acceptance criteria and performance assessment, radiological safety and environmental monitoring program information.

Romano, Stephen; Welling, Steven; Bell, Simon

2003-02-27T23:59:59.000Z

Note: This page contains sample records for the topic "occurring radioactive materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Ion-exchange material and method of storing radioactive wastes  

DOE Patents [OSTI]

A new cation exchanger is a modified tobermorite containing aluminum isomorphously substituted for silicon and containing sodium or potassium. The exchanger is selective for lead, rubidium, cobalt, and cadmium and is selective for cesium over calcium or sodium. The tobermorites are compatible with cement and are useful for the long-term fixation and storage of radioactive nuclear wastes.

Komarneni, S.; Roy, D.M.

1983-10-31T23:59:59.000Z

82

Compilation of current literature on seals, closures, and leakage for radioactive material packagings  

SciTech Connect (OSTI)

This report presents an overview of the features that affect the sealing capability of radioactive material packagings currently certified by the US Nuclear Regulatory Commission. The report is based on a review of current literature on seals, closures, and leakage for radioactive material packagings. Federal regulations that relate to the sealing capability of radioactive material packagings, as well as basic equations for leakage calculations and some of the available leakage test procedures are presented. The factors which affect the sealing capability of a closure, including the properties of the sealing surfaces, the gasket material, the closure method and the contents are discussed in qualitative terms. Information on the general properties of both elastomer and metal gasket materials and some specific designs are presented. A summary of the seal material, closure method, and leakage tests for currently certified packagings with large diameter seals is provided. 18 figs., 9 tabs.

Warrant, M.M.; Ottinger, C.A.

1989-01-01T23:59:59.000Z

83

Radioactive material (RAM) transportation accident and incident experience in the U.S.A. (1971--1997)  

SciTech Connect (OSTI)

The Radioactive Materials Incident Report (RMIR) database was developed in 1981 at the Transportation Technology Center of Sandia National Laboratories to support its research and development activities for the US Department of Energy (DOE). This database contains information about radioactive materials transportation incidents that have occurred in the US since 1971. These data were drawn from the US Department of Transportation`s (DOT) Hazardous Materials Incident Report system, from Nuclear Regulatory Commission (NRC) files, and from various agencies including state radiological control offices. Support for the RMIR data base is funded by the National Transportation Program (EM-70) of the US Department of Energy. Transportation events in RMIR are classified in one of the following ways: as a transportation accident, as a handling accident, or as a reported incident. This presentation will provide definitions for these classifications and give examples of each. The primary objective of this presentation is to provide information on nuclear materials transportation accident incident events in the US for the period 1971--1997. Among the areas to be examined are: transportation accidents by mode, package response during accidents and an examination of accidents where release of contents has occurred.

McClure, J.D.; Yoshimura, H.R.; Fagan, H.F. [Sandia National Labs., Albuquerque, NM (United States). Transportation Systems Analysis Dept.; Thomas, T. [Dept. of Energy National Transportation Program (United States)

1997-11-01T23:59:59.000Z

84

Fast Neutron Radioactivity and Damage Studies on Materials  

E-Print Network [OSTI]

Materials We know that binary Sm x Co y compounds are more radi- ation resistant and have better thermal

Spencer, J.; Anderson, S. D.; Wolf, Z.; Volk, J. T.; Pellett, D.; Boussoufi, M.

2007-01-01T23:59:59.000Z

85

Materials performance in a high-level radioactive waste vitrification system  

SciTech Connect (OSTI)

The Defense Waste Processing Facility (DWPF) is a Department of Energy Facility designed to vitrify highly radioactive waste. An extensive materials evaluation program has been completed on key components in the DWPF after twelve months of operation using nonradioactive simulated wastes. Results of the visual inspections of the feed preparation system indicate that the system components, which were fabricated from Hastelloy C-276, should achieve their design lives. Significant erosion was observed on agitator blades that process glass frit slurries; however, design modifications should mitigate the erosion. Visual inspections of the DWPF melter top head and off gas components, which were fabricated from Inconel 690, indicated that varying degrees of degradation occurred. Most of the components will perform satisfactorily for their two year design life. The components that suffered significant attack were the borescopes, primary film cooler brush, and feed tubes. Changes in the operation of the film cooler brush and design modifications to the feed tubes and borescopes is expected to extend their service lives to two years. A program to investigate new high temperature engineered materials and alloys with improved oxidation and high temperature corrosion resistance will be initiated.

Imrich, K.J.; Chandler, G.T.

1996-06-17T23:59:59.000Z

86

Elastomeric optical fiber sensors and method for detecting and measuring events occurring in elastic materials  

DOE Patents [OSTI]

Fiber optic sensing means for the detection and measurement of events such as dynamic loadings imposed upon elastic materials including cementitious materials, elastomers, and animal body components and/or the attrition of such elastic materials are provided. One or more optical fibers each having a deformable core and cladding formed of an elastomeric material such as silicone rubber are embedded in the elastic material. Changes in light transmission through any of the optical fibers due the deformation of the optical fiber by the application of dynamic loads such as compression, tension, or bending loadings imposed on the elastic material or by the attrition of the elastic material such as by cracking, deterioration, aggregate break-up, and muscle, tendon, or organ atrophy provide a measurement of the dynamic loadings and attrition. The fiber optic sensors can be embedded in elastomers subject to dynamic loadings and attrition such as commonly used automobiles and in shoes for determining the amount and frequency of the dynamic loadings and the extent of attrition. The fiber optic sensors are also useable in cementitious material for determining the maturation thereof.

Muhs, Jeffrey D. (Lenoir City, TN); Capps, Gary J. (Knoxville, TN); Smith, David B. (Oak Ridge, TN); White, Clifford P. (Knoxville, TN)

1994-01-01T23:59:59.000Z

87

Ontario Hydro`s transportation of radioactive material and emergency response plan  

SciTech Connect (OSTI)

Ontario Hydro has been transporting radioactive material for almost 30 years without any exposure to the public or release to the environment. However, there have been three accidents involving Hydro`s shipments of radioactive material. In addition to the quality packaging and shipping program, Ontario Hydro has an Emergency Response Plan and capability to deal with an accident involving a shipment of radioactive material. The Corporation`s ability to respond, to effectively control and contain the situation, site remediation, and to provide emergency public information in the event of a road accident minimizes the risk to the public and the environment. This emphasizes their commitment to worker safety, public safety and impact to the environment. Response capability is mandated under various legislation and regulations in Canada.

Karmali, N. [Ontario Hydro, Toronto, Ontario (Canada). Nuclear Operations Branch

1993-12-31T23:59:59.000Z

88

Radioactivity measurements of ITER materials using TFTR D-T neutron field  

SciTech Connect (OSTI)

TFTR successfully initiated trace tritium plasma experiments in mid-November 1993. During the coming year, the TFTR plasma tritium fraction is scheduled to be increased to at least 50%. The availability of larger amounts of D-T fusion neutrons in the high power D-T plasma phase of TFTR provides an useful opportunity to directly measure D-T neutron induced radioactivity in a realistic tokamak-environment in materials of vital interest to ITER. These measurements are invaluable for characterizing short and long lived radioactivity in various ITER candidate materials, for validating complex neutron transport calculations, and for meeting fusion reactor licensing requirements. The radioactivity measurements at TFTR will involve potential ITER materials that include stainless steel 316, vanadium-alloy, copper, iron, nickel, chromium, vanadium, titanium, manganese, cobalt, molybdenum, zinc, niobium, zirconium, tungsten, lead, tin, silicon, etc. Small samples of these materials will be irradiated in varying neutron energy spectra at the vacuum vessel first wall. These irradiated samples will then be counted for {gamma}-radioactivity at different cooling times to get extensive information on as many {gamma}-emitting radioactive products as feasible.

Kumar, A.; Abdou, M.A. [Univ. of California, Los Angeles, CA (United States); Kugel, H.W. [Princeton Univ., NJ (United States)] [and others

1994-12-31T23:59:59.000Z

89

Method for acid oxidation of radioactive, hazardous, and mixed organic waste materials  

DOE Patents [OSTI]

The present invention is directed to a process for reducing the volume of low level radioactive and mixed waste to enable the waste to be more economically stored in a suitable repository, and for placing the waste into a form suitable for permanent disposal. The invention involves a process for preparing radioactive, hazardous, or mixed waste for storage by contacting the waste starting material containing at least one organic carbon-containing compound and at least one radioactive or hazardous waste component with nitric acid and phosphoric acid simultaneously at a contacting temperature in the range of about 140.degree. C. to about 210 .degree. C. for a period of time sufficient to oxidize at least a portion of the organic carbon-containing compound to gaseous products, thereby producing a residual concentrated waste product containing substantially all of said radioactive or inorganic hazardous waste component; and immobilizing the residual concentrated waste product in a solid phosphate-based ceramic or glass form.

Pierce, Robert A. (Aiken, SC); Smith, James R. (Corrales, NM); Ramsey, William G. (Aiken, SC); Cicero-Herman, Connie A. (Aiken, SC); Bickford, Dennis F. (Folly Beach, SC)

1999-01-01T23:59:59.000Z

90

REAL-TIME IDENTIFICATION AND CHARACTERIZATION OF ASBESTOS AND CONCRETE MATERIALS WITH RADIOACTIVE CONTAMINATION  

SciTech Connect (OSTI)

Concrete and asbestos-containing materials were widely used in DOE building construction in the 1940s and 1950s. Over the years, many of these porous materials have been contaminated with radioactive sources, on and below the surface. To improve current practice in identifying hazardous materials and in characterizing radioactive contamination, an interdisciplinary team from Rensselaer has conducted research in two aspects: (1) to develop terahertz time-domain spectroscopy and imaging system that can be used to analyze environmental samples such as asbestos in the field, and (2) to develop algorithms for characterizing the radioactive contamination depth profiles in real-time in the field using gamma spectroscopy. The basic research focused on the following: (1) mechanism of generating of broadband pulsed radiation in terahertz region, (2) optimal free-space electro-optic sampling for asbestos, (3) absorption and transmission mechanisms of asbestos in THz region, (4) the role of asbestos sample conditions on the temporal and spectral distributions, (5) real-time identification and mapping of asbestos using THz imaging, (7) Monte Carlo modeling of distributed contamination from diffusion of radioactive materials into porous concrete and asbestos materials, (8) development of unfolding algorithms for gamma spectroscopy, and (9) portable and integrated spectroscopy systems for field testing in DOE. Final results of the project show that the combination of these innovative approaches has the potential to bring significant improvement in future risk reduction and cost/time saving in DOE's D and D activities.

XU, X. George; Zhang, X.C.

2002-05-10T23:59:59.000Z

91

Regulatory compliance in the design of packages used to transport radioactive materials  

SciTech Connect (OSTI)

Shipments of radioactive materials within the regulatory jurisdiction of the US Department of Energy (DOE) must meet the package design requirements contained in Title 10 of the Code of Federal Regulations, Part 71, and DOE Order 5480.3. These regulations do not provide design criteria requirements, but only detail the approval standards, structural performance criteria, and package integrity requirements that must be met during transport. The DOE recommended design criterion for high-level Category I radioactive packagings is Section III, Division 1, of the ASME Boiler and Pressure Vessel Code. However, alternative design criteria may be used if all the design requirements are satisfied. The purpose of this paper is to review alternatives to the Code criteria and discuss their applicability to the design of containment vessels in packages for high-level radioactive materials. Issues such as design qualification by physical testing, the use of scale models, and problems encountered using a non-ASME design approach are addressed.

Raske, D.T.

1993-06-01T23:59:59.000Z

92

Remediation of a Former USAF Radioactive Material Disposal Site  

SciTech Connect (OSTI)

This paper describes the remediation of a low-level radiological waste burial site located at the former James Connally Air Force Base in Waco, Texas. Burial activities at the site occurred during the 1950's when the property was under the ownership of the United States Air Force. Included is a discussion of methods and strategies that were used to successfully exhume and characterize the wastes for proper disposal at offsite disposal facilities. Worker and environmental protection measures are also described. Information gained from this project may be used at other similar project sites. A total of nine burial tubes had been identified for excavation, characterization, and removal from the site. The disposal tubes were constructed of 4-ft lengths of concrete pipe buried upright with the upper ends flush with ground surface. Initial ground level observations of the burial tubes indicated that some weathering had occurred; however, the condition of the subsurface portions of the tubes was unknown. Soil excavation occurred in 1-foot lifts in order that the tubes could be inspected and to allow for characterization of the soils at each stage of the excavation. Due to the weight of the concrete pipe and the condition of the piping joints it was determined that special measures would be required to maintain the tubes intact during their removal. Special tube anchoring and handling methods were required to relocate the tubes from their initial positions to a staging area where they could be further characterized. Characterization of the disposal tubes was accomplished using a combination of gamma spectroscopy and activity mapping methods. Important aspects of the project included the use of specialized excavation and disposal tube reinforcement measures to maintain the disposal tubes intact during excavation, removal and subsequent characterization. The non-intrusive gamma spectroscopy and data logging methods allowed for effective characterization of the wastes while minimizing disposal costs. In addition, worker exposures were maintained ALARA as a result of the removal and characterization methods employed.

Hoffman, D. E.; Cushman, M; Tupyi, B.; Lambert, J.

2003-02-25T23:59:59.000Z

93

Fluorescent Functionalized Mesoporous Silica for Radioactive Material Extraction  

SciTech Connect (OSTI)

Mesoporous silica with covalently bound salicylic acid molecules incorporated in the structure was synthesized with a one-pot, co-condensation reaction at room temperature. The as-synthesized material has a large surface area, uniform particle size, and an ordered pore structure as determined by characterization with transmission electron microscopy, thermal gravimetric analysis, and infrared spectra, etc. Using the strong fluorescence and metal coordination capability of salicylic acid, functionalized mesoporous silica (FMS) was developed to track and extract radionuclide contaminants, such as uranyl [U(VI)] ions encountered in subsurface environments. Adsorption measurements showed a strong affinity of the FMS toward U(VI) with a Kd value of 105 mL/g, which is four orders of magnitude higher than the adsorption of U(VI) onto most of the sediments in natural environments. The new materials have a potential for synergistic environmental monitoring and remediation of the radionuclide U(VI) from contaminated subsurface environments.

Li, Juan; Zhu, Kake; Shang, Jianying; Wang, Donghai; Nie, Zimin; Guo, Ruisong; Liu, Chongxuan; Wang, Zheming; Li, Xiaolin; Liu, Jun

2012-08-01T23:59:59.000Z

94

Guidance for use of Radiology Devices and Radioactive Materials in Research Protocols  

E-Print Network [OSTI]

Guidance for use of Radiology Devices and Radioactive Materials in Research Protocols Definition preparation, handling, storage, administration, and waste disposal in sufficient detail to permit a radiological hazards evaluation of the proposal, including potential for radiation dose to other health care

Puglisi, Joseph

95

Physical test report for drop test of a 9974 radioactive material shipping packaging  

SciTech Connect (OSTI)

This report presents the drop test results for the 9974 radioactive material shipping package being dropped onto 6-inch diameter, 40-inch long puncture pin. Also reported are the drop test resuls for a 30-foot impact that failed the drum confinement boundary. The purpose of these drops was to show that the package lid would remain attached to the drum.

Blanton, P.S. [Westinghouse Savannah River Company, AIKEN, SC (United States)

1997-10-01T23:59:59.000Z

96

Data collection handbook to support modeling the impacts of radioactive material in soil  

SciTech Connect (OSTI)

A pathway analysis computer code called RESRAD has been developed for implementing US Department of Energy Residual Radioactive Material Guidelines. Hydrogeological, meteorological, geochemical, geometrical (size, area, depth), and material-related (soil, concrete) parameters are used in the RESRAD code. This handbook discusses parameter definitions, typical ranges, variations, measurement methodologies, and input screen locations. Although this handbook was developed primarily to support the application of RESRAD, the discussions and values are valid for other model applications.

Yu, C.; Cheng, J.J.; Jones, L.G.; Wang, Y.Y.; Faillace, E. [Argonne National Lab., IL (United States). Environmental Assessment and Information Sciences Div.; Loureiro, C. [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Escola de Engenharia; Chia, Y.P. [National Taiwan Univ., Taipei (Taiwan, Province of China). Dept. of Geology

1993-04-01T23:59:59.000Z

97

Radcalc: An Analytical Tool for Shippers of Radioactive Material and Waste  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) ships radioactive materials in support of its research and development, environmental restoration, and national defense activities. The Radcalc software program assists personnel working on behalf of DOE in packaging and transportation determinations (e.g., isotopic decay, decay heat, regulatory classification, and gas generation) for shipment of radioactive materials and waste. Radcalc performs: - The U.S. Department of Transportation determinations and classifications (i.e., activity concentration for exempt material Type A or B, effective A1/A2, limited quantity, low specific activity, highway route controlled quantity, fissile quantity, fissile excepted, reportable quantity, list of isotopes required on shipping papers) - DOE calculations (i.e., transuranic waste, Pu-239 equivalent curies, fissile-gram equivalents) - The U.S. Nuclear Regulatory Commission packaging category (i.e., Category I, II, or III) - Dose-equivalent curie calculations - Radioactive decay calculations using a novel decay methodology and a decay data library of 1,867 isotopes typical of the range of materials encountered in DOE laboratory environments - Hydrogen and helium gas calculations - Pressure calculations. Radcalc is a validated and cost-effective tool to provide consistency, accuracy, reproducibility, timeliness, quality, compliance, and appropriate documentation to shippers of radioactive materials and waste at DOE facilities nationwide. Hundreds of shippers and engineers throughout the DOE Complex routinely use this software to automate various determinations and to validate compliance with the regulations. The effective use of software by DOE sites contributes toward minimizing risk involved in radioactive waste shipments and assuring the safety of workers and the public. (authors)

Kapoor, A.K. [U.S. Department of Energy, Office of Transportation, Washington, DC (United States); Stuhl, L.A. [EnergySolutions Federal Services, Inc., Richland, WA (United States)

2008-07-01T23:59:59.000Z

98

Nondestructive NMR technique for moisture determination in radioactive materials.  

SciTech Connect (OSTI)

This progress report focuses on experimental and computational studies used to evaluate nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) for detecting, quantifying, and monitoring hydrogen and other magnetically active nuclei ({sup 3}H, {sup 3}He, {sup 239}Pu, {sup 241}Pu) in Spent nuclear fuels and packaging materials. The detection of moisture by using a toroid cavity NMR imager has been demonstrated in SiO{sub 2} and UO{sub 2} systems. The total moisture was quantified by means of {sup 1}H NMR detection of H{sub 2}O with a sensitivity of 100 ppm. In addition, an MRI technique that was used to determine the moisture distribution also enabled investigators to discriminate between bulk and stationary water sorbed on the particles. This imaging feature is unavailable in any other nondestructive assay (NDA) technique. Following the initial success of this program, the NMR detector volume was scaled up from the original design by a factor of 2000. The capacity of this detector exceeds the size specified by DOE-STD-3013-96.

Aumeier, S.; Gerald, R.E. II; Growney, E.; Nunez, L.; Kaminski, M.

1998-12-04T23:59:59.000Z

99

APPLICATION FO FLOW FORMING FOR USE IN RADIOACTIVE MATERIAL PACKAGING DESIGNS  

SciTech Connect (OSTI)

This paper reports on the development and testing performed to demonstrate the use of flow forming as an alternate method of manufacturing containment vessels for use in radioactive material shipping packaging designs. Additionally, ASME Boiler and Pressure Vessel Code, Section III, Subsection NB compliance along with the benefits compared to typical welding of containment vessels will be discussed. SRNL has completed fabrication development and the testing on flow formed containment vessels to demonstrate the use of flow forming as an alternate method of manufacturing a welded 6-inch diameter containment vessel currently used in the 9975 and 9977 radioactive material shipping packaging. Material testing and nondestructive evaluation of the flow formed parts demonstrate compliance to the minimum material requirements specified in applicable parts of ASME Boiler and Pressure Vessel Code, Section II. Destructive burst testing shows comparable results to that of a welded design. The benefits of flow forming as compared to typical welding of containment vessels are significant: dimensional control is improved due to no weld distortion; less final machining; weld fit-up issues associated with pipes and pipe caps are eliminated; post-weld non-destructive testing (i.e., radiography and die penetrant tests) is not necessary; and less fabrication steps are required. Results presented in this paper indicate some of the benefits in adapting flow forming to design of future radioactive material shipping packages containment vessels.

Blanton, P.; Eberl, K.; Abramczyk, G.

2012-07-11T23:59:59.000Z

100

Decay radioactivity induced in plasma-facing materials by deutrium-tritium neutrons  

SciTech Connect (OSTI)

Deuterium-tritium (D-T) neutron-induced radioactivity constitutes one of the foremost issues in fusion reactor design. Designers have been using radioactivity codes and associated nuclear data libraries for nucleonic designs of fusion reactors. However, in the past, there was hardly any experimental validation of these codes/libraries. An elaborate, experimental program was initiated in 1988 under a U.S. Department of Energy/Japan Atomic Energy Research Institute collaborative program to validate the radioactivity codes/libraries. As many as 14 neutron energy spectra were covered for a number of materials. The analyses of the isotopic activities of the irradiated materials using the activation cross-section libraries of four leading radioactivity codes, i.e., ACT4/THIDA-1, REAC-3. DKR-ICF; and RACC, have shown large discrepancies among the calculations on one hand and between the calculations and the measurements, on the other. Vanadium, Co, Ni, Zn, Zr, Mo, In, Sn, and W each count the largest number of discrepant isotopic activities. In addition to providing detailed results of the status of predictability of individual isotopic activities using the ACT4, REAC-3, DKR-ICF, and RACC activation cross-section libraries, safety factors cum quality factors characterizing each library are presented and discussed. The related issues of confidence level and associated uncertainty are also highlighted. 37 refs., 112 figs., 24 tabs.

Kumar, A.; Abdou, M.A.; Youssef, M.Z. [Univ. of California, Los Angeles, CA (United States); Ikeda, Y.; Konno, C.; Kosako, K.; Oyama, Y.; Nakamura, T.; Maekawa, H. [Japan Atomic Energy Research Inst., Ibaraki (Japan)

1995-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "occurring radioactive materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Romanian Experience for Enhancing Safety and Security in Transport of Radioactive Material - 12223  

SciTech Connect (OSTI)

The transport of Dangerous Goods-Class no.7 Radioactive Material (RAM), is an important part of the Romanian Radioactive Material Management. The overall aim of this activity is for enhancing operational safety and security measures during the transport of the radioactive materials, in order to ensure the protection of the people and the environment. The paper will present an overall of the safety and security measures recommended and implemented during transportation of RAM in Romania. Some aspects on the potential threat environment will be also approached with special referring to the low level radioactive material (waste) and NORM transportation either by road or by rail. A special attention is given to the assessment and evaluation of the possible radiological consequences due to RAM transportation. The paper is a part of the IAEA's Vienna Scientific Research Contract on the State Management of Nuclear Security Regime (Framework) concluded with the Institute for Nuclear Research, Romania, where the author is the CSI (Chief Scientific Investigator). The transport of RAM in Romania is a very sensible and complex problem taking into consideration the importance and the need of the security and safety for such activities. The Romanian Nuclear Regulatory Body set up strictly regulation and procedures according to the Recommendation of the IAEA Vienna and other international organizations. There were implemented the adequate regulation and procedures in order to keep the environmental impacts and the radiological consequences at the lower possible level and to assure the effectiveness of state nuclear security regime due to possible malicious acts in carrying out these activities including transport and the disposal site at the acceptable international levels. The levels of the estimated doses and risk expectation values for transport and disposal are within the acceptable limits provided by national and international regulations and recommendations but can increase, significantly during potential malicious acts. (authors)

Vieru, Gheorghe [Institute for Nuclear Research, P.O.BOX 78, 0300 PITESTI (Romania)

2012-07-01T23:59:59.000Z

102

Radioactive materials released from nuclear power plants: Annual report, 1993. Volume 14  

SciTech Connect (OSTI)

Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1993 have been compiled and reported. The summary data for the years 1974 through 1992 are included for comparison. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1993 release data are summarized in tabular form. Data covering specific radionuclides are summarized.

Tichler, J.; Doty, K.; Lucadamo, K. [Brookhaven National Lab., Upton, NY (United States)

1995-12-01T23:59:59.000Z

103

RADIOACTIVITY 1997 BNL Site Environmental Report 4 -1  

E-Print Network [OSTI]

of a few inches. Naturally occurring radioactive elements such as potassium-40 emit beta radiation. Gamma by materials such as paper and have a range in air of only an inch or so. Naturally occurring radioactive 4.3 Sources of Radiation Radioactivity and radiation are part of the earth's natural environment

104

A Review of Removable Surface Contamination on Radioactive Materials Transportation Containers  

SciTech Connect (OSTI)

This report contains the results of a study sponsored by the U.S. Nuclear Regulatory Commission (NRC) of removable surface contamination on radioactive materials transportation containers. The purpose of the study is to provide information to the NRC during their review of existing regulations. Data was obtained from both industry and literature on three major topics: 1) radiation doses, 2) economic costs, and 3) contamination frequencies. Containers for four categories of radioactive materials are considered including radiopharmaceuticals, industrial sources, nuclear fuel cycle materials, and low-level radioactive waste. Assumptions made in this study use current information to obtain realistic yet conservative estimates of radiation dose and economic costs. Collective and individual radiation doses are presented for each container category on a per container basis. Total doses, to workers and the public, are also presented for spent fuel cask and low-level waste drum decontamination. Estimates of the additional economic costs incurred by lowering current limits by factors of 10 and 100 are presented. Current contamination levels for each category of container are estimated from the data collected. The information contained in this report is designed to be useful to the NRC in preparing their recommendations for new regulations.

Kennedy, Jr, W. E.; Watson, E. C.; Murphy, D. W.; Harrer, B. J.; Harty, R.; Aldrich, J. M.

1981-05-01T23:59:59.000Z

105

A regulatory analysis on emergency preparedness for fuel cycle and other radioactive material licensees: Final report  

SciTech Connect (OSTI)

The question this Regulatory Analysis sought to answer is: should the NRC impose additional emergency preparedness requirements on certain fuel cycle and other radioactive material licensees for dealing with accidents that might have offsite releases of radioactive material. To answer the question, we analyzed potential accidents for 15 types of fuel cycle and other radioactive material licensees. An appropriate plan would: (1) identify accidents for which protective actions should be taken by people offsite; (2) list the licensee's responsibilities for each type of accident, including notification of local authorities (fire and police generally); and (3) give sample messages for local authorities including protective action recommendations. This approach more closely follows the approach used for research reactors than for power reactors. The low potential offsite doses (acute fatalities and injuries not possible except possibly for UF/sub 6/ releases), the small areas where actions would be warranted, the small number of people involved, and the fact that the local police and fire departments would be doing essentially the same things they normally do, are all factors that tend to make a simple plan adequate. This report discusses the potentially hazardous accidents, and the likely effects of these accidents in terms of personnel danger.

McGuire, S.A.

1988-01-01T23:59:59.000Z

106

Apparatus for the processing of solid mixed waste containing radioactive and hazardous materials  

DOE Patents [OSTI]

Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination oaf plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter.

Gotovchikov, Vitaly T. (Moscow, RU); Ivanov, Alexander V. (Moscow, RU); Filippov, Eugene A. (Moscow, RU)

1999-03-16T23:59:59.000Z

107

Regulatory and extra-regulatory testing to demonstrate radioactive material packaging safety  

SciTech Connect (OSTI)

Packages for the transportation of radioactive material must meet performance criteria to assure safety and environmental protection. The stringency of the performance criteria is based on the degree of hazard of the material being transported. Type B packages are used for transporting large quantities of radioisotopes (in terms of A{sub 2} quantities). These packages have the most stringent performance criteria. Material with less than an A{sub 2} quantity are transported in Type A packages. These packages have less stringent performance criteria. Transportation of LSA and SCO materials must be in {open_quotes}strong-tight{close_quotes} packages. The performance requirements for the latter packages are even less stringent. All of these package types provide a high level of safety for the material being transported. In this paper, regulatory tests that are used to demonstrate this safety will be described. The responses of various packages to these tests will be shown. In addition, the response of packages to extra-regulatory tests will be discussed. The results of these tests will be used to demonstrate the high level of safety provided to workers, the public, and the environment by packages used for the transportation of radioactive material.

Ammerman, D.J.

1997-06-01T23:59:59.000Z

108

Apparatus for the processing of solid mixed waste containing radioactive and hazardous materials  

DOE Patents [OSTI]

Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter. 6 figs.

Gotovchikov, V.T.; Ivanov, A.V.; Filippov, E.A.

1999-03-16T23:59:59.000Z

109

Real time method and computer system for identifying radioactive materials from HPGe gamma-ray spectroscopy  

DOE Patents [OSTI]

A real-time method and computer system for identifying radioactive materials which collects gamma count rates from a HPGe gamma-radiation detector to produce a high-resolution gamma-ray energy spectrum. A library of nuclear material definitions ("library definitions") is provided, with each uniquely associated with a nuclide or isotope material and each comprising at least one logic condition associated with a spectral parameter of a gamma-ray energy spectrum. The method determines whether the spectral parameters of said high-resolution gamma-ray energy spectrum satisfy all the logic conditions of any one of the library definitions, and subsequently uniquely identifies the material type as that nuclide or isotope material associated with the satisfied library definition. The method is iteratively repeated to update the spectrum and identification in real time.

Rowland, Mark S. (Alamo, CA); Howard, Douglas E. (Livermore, CA); Wong, James L. (Dublin, CA); Jessup, James L. (Tracy, CA); Bianchini, Greg M. (Livermore, CA); Miller, Wayne O. (Livermore, CA)

2007-10-23T23:59:59.000Z

110

Property Valuation and Radioactive Materials Transportation: A Legal, Economic and Public Perception Analysis  

SciTech Connect (OSTI)

The shipment of transuranic (TRU) radioactive waste to the Waste Isolation Pilot Plant (WIPP) in New Mexico raised a serious socioeconomic issue - the potential devaluation of property values due to the transportation of TRU waste from generator sites to the disposal facility. In 1992, the New Mexico Supreme Court held in City of Santa Fe v. Komis that a loss in value from public perception of risk was compensable. This issue has become an extremely important one for the development of the Yucca Mountain repository in Nevada for disposal of spent nuclear fuel and high-level radioactive waste. Much research has been conducted about the potential impacts of transportation of spent fuel and radioactive waste. This paper examines the pertinent studies conducted since the Komis case. It examines how the public debate on radioactive materials transportation continues and is now focused on transportation of high-level waste and spent nuclear fuel to the proposed Yucca Mountain repository. Finally, the paper suggests a path forward DOE can take to address this issue.

Holm, J. A.; Thrower, A. W.; Widmayer, D. A.; Portner, W.

2003-02-26T23:59:59.000Z

111

CLOSURE WELDING RADIOACTIVE MATERIALS CONTAINERS AT THE DEPARTMENT OF ENERGY (DOE) HANFORD SITE  

SciTech Connect (OSTI)

The Department of Energy's (DOE) responsibility for the disposition of radioactive materials has given rise to several unique welding applications. Many of these materials require packaging into containers for either Interim or long-term storage. It is not uncommon that final container fabrication, i.e., closure welding, is performed with these materials already placed into the container. Closure welding is typically performed remote to the container, and routine post-weld testing and nondestructive examination (NDE) are often times not feasible. Fluor Hanford has packaged many such materials in recent years as park of the Site's cleanup mission. In lieu of post-weld testing and NDE, the Fluor-Hanford approach has been to establish weld quality through ''upfront'' development and qualification of welding parameters, and then ensure parameter compliance during welding. This approach requires a rigor not usually afforded to typical welding development activities, and may involve statistical analysis and extensive testing, including burst, drop, sensitive leak testing, etc. This paper provides an instructive review of the development and qualification activities associated with the closure of radioactive materials containers, including a brief report on activities for closure welding research reactor, spent nuclear fuel (SNF) overpacks at the Hanford Site.

CANNELL, G.R.

2006-09-01T23:59:59.000Z

112

Mixed-layered bismuth-oxygen-iodine materials for capture and waste disposal of radioactive iodine  

DOE Patents [OSTI]

Materials and methods of synthesizing mixed-layered bismuth oxy-iodine materials, which can be synthesized in the presence of aqueous radioactive iodine species found in caustic solutions (e.g. NaOH or KOH). This technology provides a one-step process for both iodine sequestration and storage from nuclear fuel cycles. It results in materials that will be durable for repository conditions much like those found in Waste Isolation Pilot Plant (WIPP) and estimated for Yucca Mountain (YMP). By controlled reactant concentrations, optimized compositions of these mixed-layered bismuth oxy-iodine inorganic materials are produced that have both a high iodine weight percentage and a low solubility in groundwater environments.

Krumhansl, James L; Nenoff, Tina M

2013-02-26T23:59:59.000Z

113

Criteria for cesium capsules to be shipped as special form radioactive material  

SciTech Connect (OSTI)

The purpose of this report is to compile all the documentation which defines the criteria for Waste Encapsulation and Storage Facility (WESF) cesium capsules at the IOTECH facility and Applied Radiant Energy Corporation (ARECO) to be shipped as special form radioactive material in the Beneficial Uses Shipping System (BUSS) Cask. The capsules were originally approved as special form in 1975, but in 1988 the integrity of the capsules came into question. WHC developed the Pre-shipment Acceptance Test Criteria for capsules to meet in order to be shipped as special form material. The Department of Energy approved the criteria and directed WHC to ship the capsules at IOTECH and ARECO meeting this criteria to WHC as special form material.

Lundeen, J.E.

1994-10-01T23:59:59.000Z

114

ELUCIDATING THE DIFFERENCES BETWEEN ONSITE AND OFFSITE SHIPMENT OF RADIOACTIVE MATERIALS  

SciTech Connect (OSTI)

Federal regulations stipulate how radioactive materials are transported within the United States. However, the Department of Energy, under Department of Energy Order, has the authority to operate, within the boundaries of their physical site, to other stipulations. In many cases the DOE sites have internal reviews for onsite transfers that rival reviews performed by the regulatory authorities for offsite shipments. Most of the differences are in the level or type of packaging that is required, but in some cases it may be in the amount and type of material that is allowed to be transferred. This paper will describe and discuss those differences and it will discuss ways to effectively align the onsite rules for transferring materials with those for offsite shipment.

Loftin, B.; Watkins, R.

2013-06-19T23:59:59.000Z

115

Derivation of uranium residual radioactive material guidelines for the Shpack site  

SciTech Connect (OSTI)

Residual radioactive material guidelines for uranium were derived for the Shpack site in Norton, Massachusetts. This site has been identified for remedial action under the Formerly Utilized Sites Remedial Action Program (FUSRAP) of the US Department of Energy (DOE). The uranium guidelines were derived on the basis of the requirement that the 50-year committed effective dose equivalent to a hypothetical individual who lives or works in the immediate vicinity of the Shpack site should not exceed a dose of 100 mrem/yr following decontamination. The DOE residual radioactive material guideline computer code, RESRAD, which implements the methodology described in the DOE manual for implementing residual radioactive material guidelines, was used in this evaluation. Three potential scenarios were considered for the site; the scenarios vary with regard to time spent at the site, sources of water used, and sources of food consumed. The results of the evaluation indicate that the basic dose limit of 100 mrem/yr will not be exceeded for uranium (including uranium-234, uranium-235, and uranium-238) within 1000 years, provided that the soil concentration of combined uranium (uranium-234 and uranium-238) at the Shpack site does not exceed the following levels: 2500 pCi/g for Scenario A (recreationist: the expected scenario); 1100 pCi/g for Scenario B (industrial worker: a plausible scenario); and 53 pCi/g for Scenario C (resident farmer using a well water as the only water source: a possible but unlikely scenario). The uranium guidelines derived in this report apply to the combined activity concentration of uranium-234 and uranium-238 and were calculated on the basis of a dose of 100 mrem/yr. In setting the actual uranium guidelines for the Shpack site, DOE will apply the as low as reasonably achievable (ALARA) policy to the decision-making process, along with other factors, such as whether a particular scenario is reasonable and appropriate. 8 refs., 2 figs., 8 tabs.

Cheng, J.J.; Yu, C.; Monette, F.; Jones, L.

1991-08-01T23:59:59.000Z

116

Experimental determination of the shipboard fire environment for simulated radioactive material packages  

SciTech Connect (OSTI)

A series of eight fire tests with simulated radioactive material shipping containers aboard the test ship Mayo Lykes, a break-bulk freighter, is described. The tests simulate three basic types of fires: engine room fires, cargo fires and open pool fires. Detailed results from the tests include temperatures, heat fluxes and air flows measured during the fires. The first examination of the results indicates that shipboard fires are not significantly different from fires encountered in land transport. 13 refs., 15 figs., 11 tabs.

Koski, J.A.; Bobbe, J.G.; Arviso, M. [and others

1997-03-01T23:59:59.000Z

117

Near-real-time materials accountancy: Use of SITMUF and page's test to detect losses occurring in a complex pattern  

SciTech Connect (OSTI)

It is probably accepted that near-real-time materials accountancy (NRTMA) can lead to a more timely detection of losses. However, there may be some concern that this timeliness can be gained only at the expense of a power reduction to ultimately detect a loss of a given size. It has been demonstrated the NRTMA, using the standardized independent transformed material unaccounted for (MUF) SITMUF values and Page's test, is superior to conventional accountancy in three ways. Further aspects of the performance of NRTMA using Page's test are investigated. Reference 1 did not consider the case of protracted losses occurring at a variable rate or in an intermittent fashion. Both of these aspects are considered. Another factor that might be expected to affect the behavior of Page's test, namely, the frequency with which balances are taken, is studied. These investigations were all carried out using data from a model with characteristics similar to those expected at the new British Nuclear Fuels Thermal Oxide Reprocessing Plant.

Jones, B.J.

1987-01-01T23:59:59.000Z

118

A workshop on developing risk assessment methods for medical use of radioactive material. Volume 1: Summary  

SciTech Connect (OSTI)

A workshop was held at the Idaho National Engineering Laboratory, August 16--18, 1994 on the topic of risk assessment on medical devices that use radioactive isotopes. Its purpose was to review past efforts to develop a risk assessment methodology to evaluate these devices, and to develop a program plan and a scoping document for future methodology development. This report contains a summary of that workshop. Participants included experts in the fields of radiation oncology, medical physics, risk assessment, human-error analysis, and human factors. Staff from the US Nuclear Regulatory Commission (NRC) associated with the regulation of medical uses of radioactive materials and with research into risk-assessment methods participated in the workshop. The workshop participants concurred in NRC`s intended use of risk assessment as an important technology in the development of regulations for the medical use of radioactive material and encouraged the NRC to proceed rapidly with a pilot study. Specific recommendations are included in the executive summary and the body of this report. An appendix contains the 8 papers presented at the conference: NRC proposed policy statement on the use of probabilistic risk assessment methods in nuclear regulatory activities; NRC proposed agency-wide implementation plan for probabilistic risk assessment; Risk evaluation of high dose rate remote afterloading brachytherapy at a large research/teaching institution; The pros and cons of using human reliability analysis techniques to analyze misadministration events; Review of medical misadministration event summaries and comparison of human error modeling; Preliminary examples of the development of error influences and effects diagrams to analyze medical misadministration events; Brachytherapy risk assessment program plan; and Principles of brachytherapy quality assurance.

Tortorelli, J.P. [ed.] [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

1995-08-01T23:59:59.000Z

119

Evaluation of exposure pathways to man from disposal of radioactive materials into sanitary sewer systems  

SciTech Connect (OSTI)

In accordance with 10 CFR 20, the US Nuclear Regulatory Commission (NRC) regulates licensees` discharges of small quantities of radioactive materials into sanitary sewer systems. This generic study was initiated to examine the potential radiological hazard to the public resulting from exposure to radionuclides in sewage sludge during its treatment and disposal. Eleven scenarios were developed to characterize potential exposures to radioactive materials during sewer system operations and sewage sludge treatment and disposal activities and during the extended time frame following sewage sludge disposal. Two sets of deterministic dose calculations were performed; one to evaluate potential doses based on the radionuclides and quantities associated with documented case histories of sewer system contamination and a second, somewhat more conservative set, based on theoretical discharges at the maximum allowable levels for a more comprehensive list of 63 radionuclides. The results of the stochastic uncertainty and sensitivity analysis were also used to develop a collective dose estimate. The collective doses for the various radionuclides and scenarios range from 0.4 person-rem for {sup 137}Cs in Scenario No. 5 (sludge incinerator effluent) to 420 person-rem for {sup 137}Cs in Scenario No. 3 (sewage treatment plant liquid effluent). None of the 22 scenario/radionuclide combinations considered have collective doses greater than 1000 person-rem/yr. However, the total collective dose from these 22 combinations was found to be about 2100 person-rem.

Kennedy, W.E. Jr.; Parkhurst, M.A.; Aaberg, R.L.; Rhoads, K.C.; Hill, R.L.; Martin, J.B. [Pacific Northwest Lab., Richland, WA (United States)

1992-05-01T23:59:59.000Z

120

THERMAL EVALUATION OF DRUM TYPE RADIOACTIVE MATERIAL PACKAGING ARRAYS IN STORAGE  

SciTech Connect (OSTI)

Drum type packages are routinely used to transport radioactive material (RAM) in the U.S. Department of Energy (DOE) complex. These packages are designed to meet the federal regulations described in 10 CFR 71.[1] In recent years, there has been a greater need to use these packagings to store the excess fissile material, especially plutonium for long term storage. While the design requirements for safe transportation of these packagings are well defined, the requirements for safe long term storage are not well established. Since the RAM contents in the packagings produce decay heat, it is important that they are stored carefully to prevent overheating of the containment vessel (CV) seals to prevent any leakage and the impact limiter to maintain the package structural integrity. This paper analyzes different storage arrays for a typical 9977 packaging for thermal considerations and makes recommendations for their safe storage under normal operating conditions.

Gupta, N

2009-04-27T23:59:59.000Z

Note: This page contains sample records for the topic "occurring radioactive materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Development of a computer model for calculation of radioactive materials into the atmosphere after an accident  

SciTech Connect (OSTI)

Secondary atmospheric contamination with radioactive dust and chemical species deposited on the ground and resuspended by wind occur very widely. This process is particularly pronounced in case of extensive contamination of soil and under extreme weather conditions, for example, during dust storms. The mechanism of wind dust generation consists in the following. At low wind speed U=2-3 m/s, which is most common in midlatitude, small radioactive dust particles (diameter of hundredth of a micron to 10-20 microns) are lifted from soil surface due to turbulent vortexes. Under the gravitational force the particles of 1-2 micron diameter practically do not settle. Larger dust particles cannot remain in the air for a long time: they are lifted by turbulent vortexes and settle, their motion in the wind flow is jump-wise and the interaction of particles with the flow is called saltation /I/. Saltation is the main mechanism of dust generation up to the wind velocity at which wind erosion starts. The size of dust particles can be as large as 100 pm. When dropping they can be ricocheting from ground or pass the impulse to other particles which begin rolling over and jumping up. The process of dust transport by wind can be compared to a chain reaction. At the velocity of 10 m/s large particles of about 500 pm stop skipping and roll over only, while particles of more than 1 mm remain stationary. Thus, the fine fraction is blown out from the polydispersed soil particles. The intensity of wind resuspension of radioactive dust from the ground is characterized either by a resuspension factor or a resuspension rate.

Schershakov, V. [Federal Information Analytical Centre, Obinski (Russia)

1997-11-01T23:59:59.000Z

122

Knowledge Management Initiatives Used to Maintain Regulatory Expertise in Transportation and Storage of Radioactive Materials - 12177  

SciTech Connect (OSTI)

The U.S. Nuclear Regulatory Commission (NRC) was established in 1974 with the mission to license and regulate the civilian use of nuclear materials for commercial, industrial, academic, and medical uses in order to protect public health and safety, and the environment, and promote the common defense and security. Currently, approximately half (?49%) of the workforce at the NRC has been with the Agency for less than six years. As part of the Agency's mission, the NRC has partial responsibility for the oversight of the transportation and storage of radioactive materials. The NRC has experienced a significant level of expertise leaving the Agency due to staff attrition. Factors that contribute to this attrition include retirement of the experienced nuclear workforce and mobility of staff within or outside the Agency. Several knowledge management (KM) initiatives have been implemented within the Agency, with one of them including the formation of a Division of Spent Fuel Storage and Transportation (SFST) KM team. The team, which was formed in the fall of 2008, facilitates capturing, transferring, and documenting regulatory knowledge for staff to effectively perform their safety oversight of transportation and storage of radioactive materials, regulated under Title 10 of the Code of Federal Regulations (10 CFR) Part 71 and Part 72. In terms of KM, the SFST goal is to share critical information among the staff to reduce the impact from staff's mobility and attrition. KM strategies in place to achieve this goal are: (1) development of communities of practice (CoP) (SFST Qualification Journal and the Packaging and Storing Radioactive Material) in the on-line NRC Knowledge Center (NKC); (2) implementation of a SFST seminar program where the seminars are recorded and placed in the Agency's repository, Agency-wide Documents Access and Management System (ADAMS); (3) meeting of technical discipline group programs to share knowledge within specialty areas; (4) development of written guidance to capture 'administrative and technical' knowledge (e.g., office instructions (OIs), generic communications (e.g., bulletins, generic letters, regulatory issue summary), standard review plans (SRPs), interim staff guidance (ISGs)); (5) use of mentoring strategies for experienced staff to train new staff members; (6) use of Microsoft SharePoint portals in capturing, transferring, and documenting knowledge for staff across the Division from Division management and administrative assistants to the project managers, inspectors, and technical reviewers; and (7) development and implementation of a Division KM Plan. A discussion and description of the successes and challenges of implementing these KM strategies at the NRC/SFST will be provided. (authors)

Lindsay, Haile; Garcia-Santos, Norma; Saverot, Pierre; Day, Neil; Gambone Rodriguez, Kimberly; Cruz, Luis; Sotomayor-Rivera, Alexis; Vechioli, Lucieann; Vera, John; Pstrak, David [United States Nuclear Regulatory Commission, Mail Stop EBB-03D-02M, 6003 Executive Boulevard, Rockville, MD 20852 (United States)

2012-07-01T23:59:59.000Z

123

Manual for implementing residual radioactive material guidelines using RESRAD, Version 5.0  

SciTech Connect (OSTI)

This manual presents information for implementing US Department of Energy (DOE) guidelines for residual radioactive material. It describes the analysis and models used to derive site-specific guidelines for allowable residual concentrations of radionuclides in soil and the design and use of the RESRAD computer code for calculating doses, risks, and guideline values. It also describes procedures for implementing DOE policy for reducing residual radioactivity to levels that are as low as reasonably achievable. Two new pathways, radon inhalation and soil ingestion, have been added to RESRAD. Twenty-seven new radionuclides have also been added, and the cutoff half-life for associated radionuclides has been reduced to six months. Other major improvements to the RESRAD code include the ability to run sensitivity analyses, the addition of graphical output, user-specified dose factors, updated databases, an improved groundwater transport model, optional input of a groundwater concentration and a solubility constant, special models for tritium and carbon-14, calculation of cancer incidence risk, and the use of a mouse with menus.

Yu, C.; Zielen, A.J.; Cheng, J.J. [and others

1993-09-01T23:59:59.000Z

124

Demonstration of a computer model for residual radioactive material guidelines, RESRAD  

SciTech Connect (OSTI)

A computer model was developed to calculate residual radioactive material guidelines for the US Department of Energy (DOE). This model, called RESRAD, can be run on IBM or IBM-compatible microcomputer. Seven potential exposure pathways from contaminated soil are analyzed, including external radiation exposure and internal radiation exposure from inhalation and food digestion. The RESRAD code has been applied to several DOE sites to derive soil cleanup guidelines. The experience gained indicates that a comprehensive set of site-specific hydrogeologic and geochemical input parameters must be used for a realistic pathway analysis. The RESRAD code is a useful tool; it is easy to run and very user-friendly. 6 refs., 12 figs.

Yu, C.; Yuan, Y.C.; Zielen, A.J.; Wallo, A. III (Argonne National Lab., IL (USA); USDOE, Washington, DC (USA))

1989-01-01T23:59:59.000Z

125

High temperature materials for radioactive waste incineration and vitrification. Revision 1  

SciTech Connect (OSTI)

Incineration or vitrification of radioactive waste subjects equipment to alkaline or acidic fluxing, oxidation, sulfidation, carburization, and thermal shock. It is necessary to select appropriate materials of construction and control operating conditions to avoid rapid equipment failure. Nickel- and cobalt-based alloys with high chromium or aluminum content and aluminum oxide/chromium oxide refractories with high chromium oxide content have provided the best service in pilot-scale melter tests. Inconel 690 and Monofrax K-3 are being used for waste vitrification. Haynes 188 and high alumina refractory are undergoing pilot scale tests for incineration equipment. Laboratory tests indicate that alloys and refractories containing still higher concentrations of chromium or chromium oxide, such as Inconel 671 and Monofrax E, may provide superior resistance to attack in glass melter environments.

Bickford, D F; Ondrejcin, R S; Salley, L

1986-01-01T23:59:59.000Z

126

Modular glovebox connector and associated good practices for control of radioactive and chemically toxic materials  

SciTech Connect (OSTI)

Design and associated good practices are described for a modular glovebox connector to improve control of radioactive and chemically toxic materials. The connector consists of an anodized aluminum circular port with a mating spacer, gaskets, and retaining rings for joining two parallel ends of commercially available or custom-manufactured glovebox enclosures. Use of the connector allows multiple gloveboxes to be quickly assembled or reconfigured in functional units. Connector dimensions can be scaled to meet operational requirements for access between gloveboxes. Options for construction materials are discussed, along with recommendations for installation of the connector in new or retrofitted systems. Associated good practices include application of surface coatings and caulking, use of disposable glovebags, and proper selection and protection of gasket and glove materials. Use of the connector at an inhalation toxicology research facility has reduced the time and expense required to reconfigure equipment for changing operational requirements, the dispersion of contamination during reconfigurations, and the need for decommissioning and disposal of contaminated enclosures.

Hoover, M.D.; Mewhinney, C.J.; Newton, G.J. [Lovelace Respiratory Research Inst., Albuquerque, NM (United States)

1999-01-01T23:59:59.000Z

127

DEVELOPMENT OF A NEW TYPE A(F)RADIOACTIVE MATERIAL PACKAGING FOR THE DEPARTMENT OF ENERGY  

SciTech Connect (OSTI)

In a coordinated effort, the Department of Transportation (DOT) and Nuclear Regulatory Commission (NRC) proposed the elimination of the Specification Packaging from 49 CFR 173.[1] In accordance with the Federal Register, issued on October 1, 2004, new fabrication of Specification Packages would no longer be authorized. In accordance with the NRC final rulemaking published January 26, 2004, Specification Packagings are mandated by law to be removed from service no later than October 1, 2008. This coordinated effort and resulting rulemaking initiated a planned phase out of Specification Type B and Type A fissile (F) material transportation packages within the Department of Energy (DOE) and its subcontractors. One of the Specification Packages affected by this regulatory change is the UN1A2 Specification Package, per DOT 49 CFR 173.417(a)(6). To maintain continuing shipments of DOE materials currently transported in UN1A2 Specification Package after the existing authorization expires, a replacement Type A(F) material packaging design is under development by the Savannah River National Laboratory. This paper presents a summary of the prototype design effort and testing of the new Type A(F) Package development for the DOE. This paper discusses the progress made in the development of a Type A Fissile Packaging to replace the expiring 49 CFR UN1A2 Specification Fissile Package. The Specification Package was mostly a single-use waste disposal container. The design requirements and authorized radioactive material contents of the UN1A2 Specification Package were defined in 49 CFR. A UN1A2 Specification Package was authorized to ship up to 350 grams of U-235 in any enrichment and in any non-pyrophoric form. The design was specified as a 55-gallon 1A2 drum overpack with a body constructed from 18 gauge steel with a 16 gauge drum lid. Drum closure was specified as a standard 12-gauge ring closure. The inner product container size was not specified but was listed as any container that met Specification 7A requirements per 49 CFR 178.350. Specification 7A containers were required to withstand Type A packaging tests required by 49CFR173.465 with compliance demonstrated through testing, analysis or similarity to other containers. The maximum weight of the 7A product container, the radioactive content, and any internal packaging was limited to 200 lbs. The total gross weight for the UN1A2 Specification Package was limited to 350 lbs. No additional restrictions were applied. Authorization for use did not require the UN1A2 Specification Package to be tested to the Normal Conditions of Transport (NCT) and Hypothetical Accident Conditions (HAC) required for performance based, Type A(F) packages certified by the NRC or DOE. The Type A(F) Packaging design discussed in this paper is required to be in compliance with the regulatory safety requirements defined in Code of Federal Regulations (CFR) 10 CFR 71.41 through 71.47 and 10 CFR71.71. Sub-criticality of content must be maintained under the Hypothetical Accident Conditions specified under 10 CFR71.73. These federal regulations, and other applicable DOE Orders and Guides, govern design requirements for a Type A(F) package. Type A(F) packages with less than an A2 quantity of radioactive material are not required to have a leak testable boundary. With this exception a Type A(F) package design is subject to the same test requirements set forth for the design of a performance based Type B packaging.

Blanton, P.; Eberl, K.

2008-09-14T23:59:59.000Z

128

A HOLISTIC APPROACH FOR DISPOSITION OF LONG-LIVED RADIOACTIVE MATERIALS  

SciTech Connect (OSTI)

During the past 45 years, one of the most challenging scientific, engineering, socio-economic, and political tasks and obligations of our time has been to site and develop technical, politically acceptable, solutions to the safe disposition of long-lived radioactive materials (LLRMs). However, at the end of the year 2002, the Waste Isolation Pilot Plant (WIPP) site in the United States of America (USA) hosts the world's only operating LLRM-disposal system, which (1) is based on the LLRM-disposal principles recommended by the National Academy of Sciences (NAS) in 1957, i.e., deep geological disposal in a ''stable'' salt vault/repository, (2) complies with the nation's ''Environmental Radiation Protection Standards for the Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes'', and (3) may receive 175,584 cubic meters (m3) of transuranic radioactive waste (TRUW)a. Pending the scheduled opening of repositories for once-used nuclear fuel (OUNF) in the USA, Sweden, and Finland in the years 2010, 2015, and 2017, respectively, LLRM-disposal solutions remain the missing link in all national LLRM-disposition programs. Furthermore, for a variety of reasons, many nations with nuclear programs have chosen a ''spectator'' stance in terms of enhancing the global nuclear safety culture and the nuclear renaissance, and have either ''slow-tracked'' or deferred their LLRM-disposal programs to allow time for an informed national consensus to evolve based on LLRM-disposition experiences and solutions gained elsewhere. In the meantime, LLRMs will continue to amass in different types and levels of safeguarded storage facilities around the world. In an attempt to contribute to the enhancement of the global nuclear safety culture and the nuclear renaissance, the authors developed the sample holistic approach for synergistic disposition of LLRMs comprising LLRM-disposition components considered either ''proven'' or ''promising'' by the authors. The fundamental principles of the holistic approach are: (1) Risk minimization; (2) Minimization of the LLRM volume requiring deep geological disposal; and (3) LLRM-disposition flexibility. An integral element of these principles is to allow time for LLRM-disposition solutions to evolve/mature technically, financially, and politically. Furthermore, contingent upon the desired outcome(s), available financial, scientific, and technical resources, and political will, these components may be implemented separately or in combinations by one or a group of nations.

Eriksson, Leif G.; Dials, George E.; Parker, Frank L.

2003-02-27T23:59:59.000Z

129

PATRAM '92: 10th international symposium on the packaging and transportation of radioactive materials [Papers presented by Sandia National Laboratories  

SciTech Connect (OSTI)

This document provides the papers presented by Sandia Laboratories at PATRAM '92, the tenth International symposium on the Packaging and Transportation of Radioactive Materials held September 13--18, 1992 in Yokohama City, Japan. Individual papers have been cataloged separately. (FL)

none,

1992-01-01T23:59:59.000Z

130

RADIATION HEAT TRANSFER ENVIRONMENT IN FIRE AND FURNACE TESTS OF RADIOACTIVE MATERIALS PAKCAGES  

SciTech Connect (OSTI)

The Hypothetical Accident Conditions (HAC) sequential test of radioactive materials packages includes a thermal test to confirm the ability of the package to withstand a transportation fire event. The test specified by the regulations (10 CFR 71) consists of a 30 minute, all engulfing, hydrocarbon fuel fire, with an average flame temperature of at least 800 C. The requirements specify an average emissivity for the fire of at least 0.9, which implies an essentially black radiation environment. Alternate test which provide equivalent total heat input at the 800 C time averaged environmental temperature may also be employed. When alternate tests methods are employed, such as furnace or gaseous fuel fires, the equivalence of the radiation environment may require justification. The effects of furnace and open confinement fire environments are compared with the regulatory fire environment, including the effects of gases resulting from decomposition of package overpack materials. The results indicate that furnace tests can produce the required radiation heat transfer environment, i.e., equivalent to the postulated pool fire. An open enclosure, with transparent (low emissivity) fire does not produce an equivalent radiation environment.

Smith, A

2008-12-31T23:59:59.000Z

131

Methods of chemical analysis for organic waste constituents in radioactive materials: A literature review  

SciTech Connect (OSTI)

Most of the waste generated during the production of defense materials at Hanford is presently stored in 177 underground tanks. Because of the many waste treatment processes used at Hanford, the operations conducted to move and consolidate the waste, and the long-term storage conditions at elevated temperatures and radiolytic conditions, little is known about most of the organic constituents in the tanks. Organics are a factor in the production of hydrogen from storage tank 101-SY and represent an unresolved safety question in the case of tanks containing high organic carbon content. In preparation for activities that will lead to the characterization of organic components in Hanford waste storage tanks, a thorough search of the literature has been conducted to identify those procedures that have been found useful for identifying and quantifying organic components in radioactive matrices. The information is to be used in the planning of method development activities needed to characterize the organics in tank wastes and will prevent duplication of effort in the development of needed methods.

Clauss, S.A.; Bean, R.M.

1993-02-01T23:59:59.000Z

132

Method for making a low density polyethylene waste form for safe disposal of low level radioactive material  

DOE Patents [OSTI]

In the method of the invention low density polyethylene pellets are mixed in a predetermined ratio with radioactive particulate material, then the mixture is fed through a screw-type extruder that melts the low density polyethylene under a predetermined pressure and temperature to form a homogeneous matrix that is extruded and separated into solid monolithic waste forms. The solid waste forms are adapted to be safely handled, stored for a short time, and safely disposed of in approved depositories.

Colombo, P.; Kalb, P.D.

1984-06-05T23:59:59.000Z

133

Physical test report to drop test of a 9975 radioactive material shipping packaging  

SciTech Connect (OSTI)

This report presents the drop test results for the 9975 radioactive material shipping package being dropped 30 feet onto a unyielding surface followed by a 40-inch puncture pin drop. The purpose of these drops was to show that the package lid would remain attached to the drum. The 30-foot drop was designed to weaken the lid closure lug while still maintaining maximum extension of the lugs from the drum surface. This was accomplished by angling the drum approximately 30 degrees from horizontal in an inverted position. In this position, the drum was rotated slightly so as not to embed the closure lugs into the drum as a result of the 30-foot drop. It was determined that this orientation would maximize deformation to the closure ring around the closure lug while still maintaining the extension of the lugs from the package surface. The second drop was from 40 inches above a 40-inch tall 6-inch diameter puncture pin. The package was angled 10 degrees from vertical and aligned over the puncture pin to solidly hit the drum lug(s) in an attempt to disengage the lid when dropped.Tests were performed in response to DOE EM-76 review Q5 inquires that questioned the capability of the 9975 drum lid to remain in place under this test sequence. Two packages were dropped utilizing this sequence, a 9974 and 9975. Test results for the 9974 package are reported in WSRC-RP-97-00945. A series of 40-inch puncture pin tests were also performed on undamaged 9975 and 9974 packages.

Blanton, P.S.

1997-11-11T23:59:59.000Z

134

Fate and transport processes controlling the migration of hazardous and radioactive materials from the Area 5 Radioactive Waste Management Site (RWMS)  

SciTech Connect (OSTI)

Desert vadose zones have been considered as suitable environments for the safe and long-term isolation of hazardous wastes. Low precipitation, high evapotranspiration and thick unsaturated alluvial deposits commonly found in deserts make them attractive as waste disposal sites. The fate and transport of any contaminant in the subsurface is ultimately determined by the operating retention and transformation processes in the system and the end result of the interactions among them. Retention (sorption) and transformation are the two major processes that affect the amount of a contaminant present and available for transport. Retention processes do not affect the total amount of a contaminant in the soil system, but rather decrease or eliminate the amount available for transport at a given point in time. Sorption reactions retard the contaminant migration. Permanent binding of solute by the sorbent is also possible. These processes and their interactions are controlled by the nature of the hazardous waste, the properties of the porous media and the geochemical and environmental conditions (temperature, moisture and vegetation). The present study summarizes the available data and investigates the fate and transport processes that govern the migration of contaminants from the Radioactive Waste Management Site (RWMS) in Area 5 of the Nevada Test Site (NTS). While the site is currently used only for low-level radioactive waste disposal, past practices have included burial of material now considered hazardous. Fundamentals of chemical and biological transformation processes are discussed subsequently, followed by a discussion of relevant results.

Estrella, R.

1994-10-01T23:59:59.000Z

135

A workshop on developing risk assessment methods for medical use of radioactive material. Volume 2: Supporting documents  

SciTech Connect (OSTI)

A workshop was held at the Idaho National Engineering Laboratory, August 16--18, 1994 on the topic of risk assessment on medical devices that use radioactive isotopes. Its purpose was to review past efforts to develop a risk assessment methodology to evaluate these devices, and to develop a program plan and a scoping document for future methodology development. This report contains presentation material and a transcript of the workshop. Participants included experts in the fields of radiation oncology, medical physics, risk assessment, human-error analysis, and human factors. Staff from the US Nuclear Regulatory Commission (NRC) associated with the regulation of medical uses of radioactive materials and with research into risk-assessment methods participated in the workshop. The workshop participants concurred in NRC`s intended use of risk assessment as an important technology in the development of regulations for the medical use of radioactive material and encouraged the NRC to proceed rapidly with a pilot study. Specific recommendations are included in the executive summary and the body of this report.

Tortorelli, J.P. [ed.] [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

1995-08-01T23:59:59.000Z

136

Definition of Small Gram Quantity Contents for Type B Radioactive Material Transportation Packages: Activity-Based Content Limitations  

SciTech Connect (OSTI)

Since the 1960's, the Department of Transportation Specification (DOT Spec) 6M packages have been used extensively for transportation of Type B quantities of radioactive materials between Department of Energy (DOE) facilities, laboratories, and productions sites. However, due to the advancement of packaging technology, the aging of the 6M packages, and variability in the quality of the packages, the DOT implemented a phased elimination of the 6M specification packages (and other DOT Spec packages) in favor of packages certified to meet federal performance requirements. DOT issued the final rule in the Federal Register on October 1, 2004 requiring that use of the DOT Specification 6M be discontinued as of October 1, 2008. A main driver for the change was the fact that the 6M specification packagings were not supported by a Safety Analysis Report for Packaging (SARP) that was compliant with Title 10 of the Code of Federal Regulations part 71 (10 CFR 71). Therefore, materials that would have historically been shipped in 6M packages are being identified as contents in Type B (and sometimes Type A fissile) package applications and addenda that are to be certified under the requirements of 10 CFR 71. The requirements in 10 CFR 71 include that the Safety Analysis Report for Packaging (SARP) must identify the maximum radioactivity of radioactive constituents and maximum quantities of fissile constituents (10 CFR 71.33(b)(1) and 10 CFR 71.33(b)(2)), and that the application (i.e., SARP submittal or SARP addendum) demonstrates that the external dose rate (due to the maximum radioactivity of radioactive constituents and maximum quantities of fissile constituents) on the surface of the packaging (i.e., package and contents) not exceed 200 mrem/hr (10 CFR 71.35(a), 10 CFR 71.47(a)). It has been proposed that a 'Small Gram Quantity' of radioactive material be defined, such that, when loaded in a transportation package, the dose rates at external points of an unshielded packaging not exceed the regulatory limits prescribed by 10 CFR 71 for non-exclusive shipments. The mass of each radioisotope presented in this paper is limited by the radiation dose rate on the external surface of the package, which per the regulatory limit should not exceed 200 mrem/hr. The results presented are a compendium of allowable masses of a variety of different isotopes (with varying impurity levels of beryllium in some of the actinide isotopes) that, when loaded in an unshielded packaging, do not result in an external dose rate on the surface of the package that exceeds 190 mrem/hr (190 mrem/hr was chosen to provide 5% conservatism relative to the regulatory limit). These mass limits define the term 'Small Gram Quantity' (SGQ) contents in the context of radioactive material transportation packages. The term SGQ is isotope-specific and pertains to contents in radioactive material transportation packages that do not require shielding and still satisfy the external dose rate requirements. Since these calculated mass limits are for contents without shielding, they are conservative for packaging materials that provide some limited shielding or if the contents are placed into a shielded package. The isotopes presented in this paper were chosen as the isotopes that Department of Energy (DOE) sites most likely need to ship. Other more rarely shipped isotopes, along with industrial and medical isotopes, are planned to be included in subsequent extensions of this work.

Sitaraman, S; Kim, S; Biswas, D; Hafner, R; Anderson, B

2010-10-27T23:59:59.000Z

137

Roadmapping the Resolution of Gas Generation Issues in Packages Containing Radioactive Waste/Materials - A Status Report  

SciTech Connect (OSTI)

Gas generation issues, particularly hydrogen, have been an area of concern for the transport and storage of radioactive materials and waste in the Department of Energy (DOE) Complex. Potentially combustible gases can be generated through a variety of reactions, including chemical reactions and radiolytic decomposition of hydrogen- containing material. Since transportation regulations prohibit shipment of explosives and radioactive materials together, it was decided that hydrogen generation was a problem that warranted the execution of a high-level roadmapping effort. This paper discusses the major gas generation issues within the DOE Complex and the research that has been and is being conducted by the transuranic (TRU) waste, nuclear materials, and spent nuclear fuels (SNF) programs within DOEs Environmental Management (EM) organizations to address gas generation concerns. This paper presents a "program level" roadmap that links technology development to program needs and identifies the probability of success in an effort to understand the programmatic risk associated with the issue of gas generation. This paper also presents the status of the roadmap and follow-up activities.

Luke, Dale Elden; Hamp, S.

2002-02-01T23:59:59.000Z

138

Roadmapping the Resolution of Gas Generation Issues in Packages Containing Radioactive Waste/Materials - A Status Report  

SciTech Connect (OSTI)

Gas generation issues, particularly hydrogen, have been an area of concern for the transport and storage of radioactive materials and waste in the Department of Energy (DOE) Complex. Potentially combustible gases can be generated through a variety of reactions, including chemical reactions and radiolytic decomposition of hydrogen-containing material. Since transportation regulations prohibit shipment of explosives and radioactive materials together, it was decided that hydrogen generation was a problem that warranted the execution of a high-level roadmapping effort. This paper discusses the major gas generation issues within the DOE Complex and the research that has been and is being conducted by the transuranic (TRU) waste, nuclear materials, and spent nuclear fuels (SNF) programs within DOE's Environmental Management (EM) organizations to address gas generation concerns. This paper presents a ''program level'' roadmap that links technology development to program needs and identifies the probability of success in an effort to understand the programmatic risk associated with the issue of gas generation. This paper also presents the status of the roadmap and follow-up activities.

Luke, D.E. (INEEL); Hamp, S. (DOE-Albuquerque Operations Office)

2002-01-04T23:59:59.000Z

139

Modeling most likely pathways for smuggling radioactive and special nuclear materials on a worldwide multimodal transportation network  

SciTech Connect (OSTI)

Nuclear weapons proliferation is an existing and growing worldwide problem. To help with devising strategies and supporting decisions to interdict the transport of nuclear material, we developed the Pathway Analysis, Threat Response and Interdiction Options Tool (PATRIOT) that provides an analytical approach for evaluating the probability that an adversary smuggling radioactive or special nuclear material will be detected during transit. We incorporate a global, multi-modal transportation network, explicit representation of designed and serendipitous detection opportunities, and multiple threat devices, material types, and shielding levels. This paper presents the general structure of PATRIOT, and focuses on the theoretical framework used to model the reliabilities of all network components that are used to predict the most likely pathways to the target.

Saeger, Kevin J [Los Alamos National Laboratory; Cuellar, Leticia [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

140

Modeling most likely pathways for smuggling radioactive and special nuclear materials on a worldwide multi-modal transportation network  

SciTech Connect (OSTI)

Nuclear weapons proliferation is an existing and growing worldwide problem. To help with devising strategies and supporting decisions to interdict the transport of nuclear material, we developed the Pathway Analysis, Threat Response and Interdiction Options Tool (PATRIOT) that provides an analytical approach for evaluating the probability that an adversary smuggling radioactive or special nuclear material will be detected during transit. We incorporate a global, multi-modal transportation network, explicit representation of designed and serendipitous detection opportunities, and multiple threat devices, material types, and shielding levels. This paper presents the general structure of PATRIOT, all focuses on the theoretical framework used to model the reliabilities of all network components that are used to predict the most likely pathways to the target.

Saeger, Kevin J [Los Alamos National Laboratory; Cuellar, Leticia [Los Alamos National Laboratory

2010-10-28T23:59:59.000Z

Note: This page contains sample records for the topic "occurring radioactive materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Waste management facilities cost information for transportation of radioactive and hazardous materials  

SciTech Connect (OSTI)

This report contains cost information on the U.S. Department of Energy (DOE) Complex waste streams that will be addressed by DOE in the programmatic environmental impact statement (PEIS) project. It describes the results of the task commissioned by DOE to develop cost information for transportation of radioactive and hazardous waste. It contains transportation costs for most types of DOE waste streams: low-level waste (LLW), mixed low-level waste (MLLW), alpha LLW and alpha MLLW, Greater-Than-Class C (GTCC) LLW and DOE equivalent waste, transuranic (TRU) waste, spent nuclear fuel (SNF), and hazardous waste. Unit rates for transportation of contact-handled (<200 mrem/hr contact dose) and remote-handled (>200 mrem/hr contact dose) radioactive waste are estimated. Land transportation of radioactive and hazardous waste is subject to regulations promulgated by DOE, the U.S. Department of Transportation (DOT), the U.S. Nuclear Regulatory Commission (NRC), and state and local agencies. The cost estimates in this report assume compliance with applicable regulations.

Feizollahi, F.; Shropshire, D.; Burton, D.

1995-06-01T23:59:59.000Z

142

Radioactive Waste Radioactive Waste  

E-Print Network [OSTI]

#12;Radioactive Waste at UF Bldg 831 392-8400 #12;Radioactive Waste · Program is designed to;Radioactive Waste · Program requires · Generator support · Proper segregation · Packaging · labeling #12;Radioactive Waste · What is radioactive waste? · Anything that · Contains · or is contaminated

Slatton, Clint

143

Assessment of Quality Assurance Measures for Radioactive Material Transport Packages not Requiring Competent Authority Design Approval - 13282  

SciTech Connect (OSTI)

The majority of transports of radioactive materials are carried out in packages which don't need a package design approval by a competent authority. Low-active radioactive materials are transported in such packages e.g. in the medical and pharmaceutical industry and in the nuclear industry as well. Decommissioning of NPP's leads to a strong demand for packages to transport low and middle active radioactive waste. According to IAEA regulations the 'non-competent authority approved package types' are the Excepted Packages and the Industrial Packages of Type IP-1, IP-2 and IP-3 and packages of Type A. For these types of packages an assessment by the competent authority is required for the quality assurance measures for the design, manufacture, testing, documentation, use, maintenance and inspection (IAEA SSR 6, Chap. 306). In general a compliance audit of the manufacturer of the packaging is required during this assessment procedure. Their regulatory level in the IAEA regulations is not comparable with the 'regulatory density' for packages requiring competent authority package design approval. Practices in different countries lead to different approaches within the assessment of the quality assurance measures in the management system as well as in the quality assurance program of a special package design. To use the package or packaging in a safe manner and in compliance with the regulations a management system for each phase of the life of the package or packaging is necessary. The relevant IAEA-SSR6 chap. 801 requires documentary verification by the consignor concerning package compliance with the requirements. (authors)

Komann, Steffen; Groeke, Carsten; Droste, Bernhard [BAM Federal Institute for Materials Research and Testing, Unter den Eichen 44-46, 12203 Berlin (Germany)] [BAM Federal Institute for Materials Research and Testing, Unter den Eichen 44-46, 12203 Berlin (Germany)

2013-07-01T23:59:59.000Z

144

Derivation of residual radioactive material guidelines for uranium in soil at the Middlesex Sampling Plant Site, Middlesex, New Jersey  

SciTech Connect (OSTI)

Residual radioactive material guidelines for uranium in soil were derived for the Middlesex Sampling Plant (MSP) site in Middlesex, New Jersey. This site has been designated for remedial action under the Formerly Utilized Sites Remedial Action Program (FUSRAP) of the US Department of Energy. The site became contaminated from operations conducted in support of the Manhattan Engineer District (MED) and the Atomic Energy Commission (AEC) between 1943 and 1967. Activities conducted at the site included sampling, storage, and shipment of uranium, thorium, and beryllium ores and residues. Uranium guidelines for single radioisotopes and total uranium were derived on the basis of the requirement that the 50-year committed effective dose equivalent to a hypothetical individual living or working in the immediate vicinity of the MSP site should not exceed a dose of 30 mrem/yr following remedial action for the current-use and likely future-use scenarios or a dose of 100 mrem/yr for less likely future-use scenarios. The RESRAD computer code, which implements the methodology described in the DOE manual for establishing residual radioactive material guidelines, was used in this evaluation. Four scenarios were considered for the site. These scenarios vary regarding future land use at the site, sources of water used, and sources of food consumed.

Dunning, D.E. [Argonne National Lab., IL (United States). Environmental Assessment Div.

1995-02-01T23:59:59.000Z

145

Measurements and analyses of decay radioactivity induced in simulated deuterium-tritium neutron environments for fusion reactor structural materials  

SciTech Connect (OSTI)

To meet urgent requirements for data validation, an experimental analysis has been carried out for isotopic radioactivity induced by deuterium-tritium neutron irradiation in structural materials. The primary objective is to examine the adequacy of the activation cross sections implemented in the current activation calculation codes considered for use in fusion reactor nuclear design. Four activation cross-section libraries, namely, JENDL, LIB90, REAC{sup *}63, and REAC{sup *}175 were investigated in this current analysis. The isotopic induced radioactivity calculations using these four libraries are compared with experimental values obtained in the Japan Atomic Energy Research Institute/U.S. Department of Energy collaborative program on fusion blanket neutronics. The nine materials studied are aluminum, silicon, titanium, vanadium, chromium, MnCu alloy, iron, nickel, niobium, and Type 316 stainless steel. The adequacy of the cross sections is investigated through the calculation to experiment analysis. As a result, most of the discrepancies in the calculations from experiments can be explained by inadequate activation cross sections. In addition, uncertainties due to neutron energy groups and neutron transport calculation are considered. The JENDL library gives the best agreement with experiments, followed by REAC{sup *}175, LIB90, and REAC{sup *}63, in this order. 45 refs., 32 figs., 5 tabs.

Ikeda, Y.; Konno, C.; Kosako, K.; Oyama, Y.; Maekawa, F.; Maekawa, H. [Japan Atomic Energy Research Inst., Ibaraki (Japan); Kumar, A.; Youssef, M.Z.; Abdou, M.A. [Univ. of California, Los Angeles, CA (United States)

1995-08-01T23:59:59.000Z

146

DOE Partnerships with States, Tribes and Other Federal Programs Help Responders Prepare for Challenges Involving Transport of Radioactive Materials  

SciTech Connect (OSTI)

DOE Partnerships with States, Tribes and Other Federal Programs Help Responders Prepare for Challenges Involving Transport of Radioactive Materials Implementing adequate institutional programs and validating preparedness for emergency response to radiological transportation incidents along or near U.S. Department of Energy (DOE) shipping corridors poses unique challenges to transportation operations management. Delayed or insufficient attention to State and Tribal preparedness needs may significantly impact the transportation operations schedule and budget. The DOE Transportation Emergency Preparedness Program (TEPP) has successfully used a cooperative planning process to develop strong partnerships with States, Tribes, Federal agencies and other national programs to support responder preparedness across the United States. DOE TEPP has found that building solid partnerships with key emergency response agencies ensures responders have access to the planning, training, technical expertise and assistance necessary to safely, efficiently and effectively respond to a radiological transportation accident. Through the efforts of TEPP over the past fifteen years, partnerships have resulted in States and Tribal Nations either using significant portions of the TEPP planning resources in their programs and/or adopting the Modular Emergency Response Radiological Transportation Training (MERRTT) program into their hazardous material training curriculums to prepare their fire departments, law enforcement, hazardous materials response teams, emergency management officials, public information officers and emergency medical technicians for responding to transportation incidents involving radioactive materials. In addition, through strong partnerships with Federal Agencies and other national programs TEPP provided technical expertise to support a variety of radiological response initiatives and assisted several programs with integration of the nationally recognized MERRTT program into other training venues, thus ensuring consistency of radiological response curriculums delivered to responders. This presentation will provide an overview of the steps to achieve coordination, to avoid redundancy, and to highlight several of the successful partnerships TEPP has formed with States, Tribes, Federal agencies and other national programs. Events, accident scenarios, and training where TEPP was proven to be integral in building the radiological response capabilities for first responders to actual radiological incidents are also highlighted. Participants will gain an appreciation for the collaborative efforts States and Tribes are engaging in with the DOE to ensure that responders all along the DOE transportation corridors are adequately prepared to respond to shipments of radioactive materials through their communities.

Marsha Keister

2001-02-01T23:59:59.000Z

147

CHAPTER 4: CONCEPTS OF RADIOACTIVITY 1998 SITE ENVIRONMENTAL REPORT4-1  

E-Print Network [OSTI]

a range in air of only an inch or so. Naturally occurring radioactive elements such as radon emit alpha by materials such as aluminum foil. They have a range in air of a few inches. Naturally occurring radioactive-rays are essen- tially a form of gamma radiation. Figure 4-1. Typical Annual Radiation Doses from Natural and Man

148

A guide for the ASME code for austenitic stainless steel containment vessels for high-level radioactive materials  

SciTech Connect (OSTI)

The design and fabrication criteria recommended by the US Department of Energy (DOE) for high-level radioactive materials containment vessels used in packaging is found in Section III, Division 1, Subsection NB of the ASME Boiler and Pressure Vessel Code. This Code provides material, design, fabrication, examination, and testing specifications for nuclear power plant components. However, many of the requirements listed in the Code are not applicable to containment vessels made from austenitic stainless steel with austenitic or ferritic steel bolting. Most packaging designers, engineers, and fabricators are intimidated by the sheer volume of requirements contained in the Code; consequently, the Code is not always followed and many requirements that do apply are often overlooked during preparation of the Safety Analysis Report for Packaging (SARP) that constitutes the basis to evaluate the packaging for certification.

Raske, D.T.

1995-06-01T23:59:59.000Z

149

Radiation sensitive devices and systems for detection of radioactive materials and related methods  

DOE Patents [OSTI]

Radiation sensitive devices include a substrate comprising a radiation sensitive material and a plurality of resonance elements coupled to the substrate. Each resonance element is configured to resonate responsive to non-ionizing incident radiation. Systems for detecting radiation from a special nuclear material include a radiation sensitive device and a sensor located remotely from the radiation sensitive device and configured to measure an output signal from the radiation sensitive device. In such systems, the radiation sensitive device includes a radiation sensitive material and a plurality of resonance elements positioned on the radiation sensitive material. Methods for detecting a presence of a special nuclear material include positioning a radiation sensitive device in a location where special nuclear materials are to be detected and remotely interrogating the radiation sensitive device with a sensor.

Kotter, Dale K

2014-12-02T23:59:59.000Z

150

PERFORMANCE TESTING OF SPRING ENERGIZED C-RINGS FOR USE IN RADIOACTIVE MATERIAL PACKAGINGS CONTAINING TRITIUM  

SciTech Connect (OSTI)

This paper describes the sealing performance testing and results of silver-plated inconel Spring Energized C-Rings used for tritium containment in radioactive shipping packagings. The test methodology used follows requirements of the American Society of Mechanical Engineers (ASME) summarized in ASME Pressure Vessel Code (B&PVC), Section V, Article 10, Appendix IX (Helium Mass Spectrometer Test - Hood Technique) and recommendations by the American National Standards Institute (ANSI) described in ANSI N14.5-1997. The tests parameters bound the predicted structural and thermal responses from conditions defined in the Code of Federal Regulations 10 CFR 71. The testing includes an evaluation of the effects of pressure, temperature, flange deflection, surface roughness, permeation, closure torque, torque sequencing and re-use on performance of metal C-Ring seals.

Blanton, P; Kurt Eberl, K

2007-10-23T23:59:59.000Z

151

Calculation of releases of radioactive materials in gaseous and liquid effluents from pressurized water reactors (PWR-GALE Code). Revision 1  

SciTech Connect (OSTI)

This report revises the original issuance of NUREG-0017, ''Calculation of Releases of Radioactive Materials in Gaseous and Liquid Effluents from Pressurized Water Reactors (PWR-GALE-Code)'' (April 1976), to incorporate more recent operating data now available as well as the results of a number of in-plant measurement programs at operating pressurized water reactors. The PWR-GALE Code is a computerized mathematical model for calculating the releases of radioactive material in gaseous and liquid effluents (i.e., the gaseous and liquid source terms). The US Nuclear Regulatory Commission uses the PWR-GALE Code to determine conformance with the requirements of Appendix I to 10 CFR Part 50.

Chandrasekaran, T.; Lee, J.Y.; Willis, C.A.

1985-04-01T23:59:59.000Z

152

COGEMA operating experience in the transportation of spent fuel, nuclear materials and radioactive waste  

SciTech Connect (OSTI)

Were a spent fuel transportation accident to occur, no matter how insignificant, the public outcry could jeopardize both reprocessing operations and power plant operations for utilities that have elected to reprocess their spent fuel. Aware of this possibility, COGEMA has become deeply involved in spent fuel transportation to ensure that it is performed according to the highest standards of transportation safety. Spent fuel transportation is a vital link between the reactor site and the reprocessing plant. This paper gives an overview of COGEMA`s experience in the transportation of spent fuel.

Bernard, H. [COGEMA, Velizy-Villacoublay (France)

1993-12-31T23:59:59.000Z

153

Fundamental properties of monolithic bentonite buffer material formed by cold isostatic pressing for high-level radioactive waste repository  

SciTech Connect (OSTI)

The methods of fabrication, handling, and emplacement of engineered barriers used in a deep geological repository for high level radioactive waste should be planned as simply as possible from the engineering and economic viewpoints. Therefore, a new concept of a monolithic buffer material around a waste package have been proposed instead of the conventional concept with the use of small blocks, which would decrease the cost for buffer material. The monolithic buffer material is composed of two parts of highly compacted bentonite, a cup type body and a cover. As the forming method of the monolithic buffer material, compaction by the cold isostatic pressing process (CIP) has been employed. In this study, monolithic bentonite bodies with the diameter of about 333 mm and the height of about 455 mm (corresponding to the approx. 1/5 scale for the Japanese reference concept) were made by the CIP of bentonite powder. The dry densities: {rho}d of the bodies as a whole were measured and the small samples were cut from several locations to investigate the density distribution. The swelling pressure and hydraulic conductivity as function of the monolithic body density for CIP-formed specimens were also measured. High density ({rho}d: 1.4--2.0 Mg/m{sup 3}) and homogeneous monolithic bodies were formed by the CIP. The measured results of the swelling pressure (3--15 MPa) and hydraulic conductivity (0.5--1.4 x 10{sup {minus}13} m/s) of the specimens were almost the same as those for the uniaxial compacted bentonite in the literature. It is shown that the vacuum hoist system is an applicable handling method for emplacement of the monolithic bentonite.

Kawakami, S.; Yamanaka, Y.; Kato, K.; Asano, H.; Ueda, H.

1999-07-01T23:59:59.000Z

154

USING A RISK-BASED METHODOLOGY FOR THE TRANSFER OF RADIOACTIVE MATERIAL WITHIN THE SAVANNAH RIVER SITE BOUNDARY  

SciTech Connect (OSTI)

Shipment of radioactive materials (RAM) is discussed in the Code of Federal Regulations in parts of both 49 CFR and 10 CFR. The regulations provide the requirements and rules necessary for the safe shipment of RAM across public highways, railways, waterways, and through the air. These shipments are sometimes referred to as in-commerce shipments. Shipments of RAM entirely within the boundaries of Department of Energy sites, such as the Savannah River Site (SRS), can be made using methodology allowing provisions to maintain equivalent safety while deviating from the regulations for in-commerce shipments. These onsite shipments are known as transfers at the SRS. These transfers must follow the requirements approved in a site-specific Transportation Safety Document (TSD). The TSD defines how the site will transfer materials so that they have equivalence to the regulations. These equivalences are documented in an Onsite Safety Assessment (OSA). The OSA can show how a particular packaging used onsite is equivalent to that which would be used for an in-commerce shipment. This is known as a deterministic approach. However, when a deterministic approach is not viable, the TSD allows for a risk-based OSA to be written. These risk-based assessments show that if a packaging does not provide the necessary safety to ensure that materials are not released (during normal or accident conditions) then the worst-case release of materials does not result in a dose consequence worse than that defined for the SRS. This paper will discuss recent challenges and successes using this methodology at the SRS.

Loftin, B.; Watkins, R.; Loibl, M.

2010-06-03T23:59:59.000Z

155

Survey of the degradation modes of candidate materials for high-level radioactive waste disposal containers  

SciTech Connect (OSTI)

Oxidation and atmospheric corrosion data suggest that addition of Cr provides the greatest improvement in oxidation resistance. Cr-bearing cast irons are resistant to chloride environments and solutions containing strongly oxidizing constituents. Weathering steels, including high content and at least 0.04% Cu, appear to provide adequate resistance to oxidation under temperate conditions. However, data from long-term, high-temperature oxidation studies on weathering steels were not available. From the literature, it appears that the low alloy steels, plain carbon steels, cast steels, and cast irons con-ode at similar rates in an aqueous environment. Alloys containing more than 12% Cr or 36% Ni corrode at a lower rate than plain carbon steels, but pitting may be worse. Short term tests indicate that an alloy of 9Cr-1Mo may result in increased corrosion resistance, however long term data are not available. Austenitic cast irons show the best corrosion resistance. A ranking of total corrosion performance of the materials from most corrosion resistant to least corrosion resistant is: Austenitic Cast Iron; 12% Cr = 36% Ni = 9Cr-1Mo; Carbon Steel = Low Alloy Steels; and Cast Iron. Since the materials to be employed in the Advanced Conceptual Design (ACD) waste package are considered to be corrosion allowance materials, the austenitic cast irons, high Cr steels, high Ni steels and the high Cr-Mo steels should not be considered as candidates for the outer containment barrier. Based upon the oxidation and corrosion data available for carbon steels, low alloy steels, and cast irons, a suitable list of candidate materials for a corrosion allowance outer barrier for an ACD waste package could include, A516, 2.25%Cr -- 1%Mo Steel, and A27.

Vinson, D.W.; Nutt, W.M.; Bullen, D.B. [Iowa State Univ. of Science and Technology, Ames, IA (United States)

1995-06-01T23:59:59.000Z

156

Evaluation of geologic materials to limit biological intrusion into low-level radioactive waste disposal sites  

SciTech Connect (OSTI)

This report describes the results of a three-year research program to evaluate the performance of selected soil and rock trench cap designs in limiting biological intrusion into simulated waste. The report is divided into three sections including a discussion of background material on biological interactions with waste site trench caps, a presentation of experimental data from field studies conducted at several scales, and a final section on the interpretation and limitations of the data including implications for the user.

Hakonson, T.E.

1986-02-01T23:59:59.000Z

157

Burnup estimation of fuel sourcing radioactive material based on monitored Cs and Pu isotopic activity ratios in Fukushima N. P. S. accident  

SciTech Connect (OSTI)

After the severe core damage of Fukushima Dai-Ichi Nuclear Power Station, radioactive material leaked from the reactor buildings. As part of monitoring of radioactivity in the site, measurements of radioactivity in soils at three fixed points have been performed for {sup 134}Cs and {sup 137}Cs with gamma-ray spectrometry and for Pu, Pu, and {sup 240}Pu with {alpha}-ray spectrometry. Correlations of radioactivity ratios of {sup 134}Cs to {sup 137}Cs, and {sup 238}Pu to the sum of {sup 239}Pu and {sup 240}Pu with fuel burnup were studied by using theoretical burnup calculations and measurements on isotopic inventories, and compared with the Cs and Pu radioactivity rations in the soils. The comparison indicated that the burnup of the fuel sourcing the radioactivity was from 18 to 38 GWd/t, which corresponded to that of the fuel in the highest power and, therefore, the highest decay heat in operating high-burnup fueled BWR cores. (authors)

Yamamoto, T.; Suzuki, M.; Ando, Y. [Japan Nuclear Energy Safety Organization, Toranomon Towers Office, 14F, 4-1-28, Toranomon, Minato-ku, Tokyo 105-0001 (Japan)

2012-07-01T23:59:59.000Z

158

INMM 55th Annual Meeting, July 2024, 2014, Atlanta Marriott Marquis, Atlanta, Georgia, USA Transport Security for Nuclear and Other Radioactive Materials --A DOE Training Course  

E-Print Network [OSTI]

Laboratory. The course was developed by Argonne for the U.S. Department of Energy Packaging Certification of Energy, Washington, D.C. 20585 ABSTRACT In early December of 2013, a weeklong training course on security Transport Security for Nuclear and Other Radioactive Materials -- A DOE Training Course Ronald B. Pope, Yung

Kemner, Ken

159

Survey of the degradation modes of candidate materials for high-level radioactive waste disposal containers. Final report  

SciTech Connect (OSTI)

One of the most significant factors impacting the performance of waste package container materials under repository relevant conditions is the thermal environment. This environment will be affected by the areal power density of the repository, which is dictated by facility design, and the dominant heat transfer mechanism at the site. The near-field environment will evolve as radioactive decay decreases the thermal output of each waste package. Recent calculations (Buscheck and Nitao, 1994) have addressed the importance of thermal loading conditions on waste package performance at the Yucca Mountain site. If a relatively low repository thermal loading design is employed, the temperature and relative humidity near the waste package may significantly affect the degradation of corrosion allowance barriers due to moist air oxidation and radiolytically enhanced corrosion. The purpose this report is to present a literature review of the potential degradation modes for moderately corrosion resistant nickel copper and nickel based candidate materials that may be applicable as alternate barriers for the ACD systems in the Yucca Mountain environment. This report presents a review of the corrosion of nickel-copper alloys, summaries of experimental evaluations of oxidation and atmospheric corrosion in nickel-copper alloys, views of experimental studies of aqueous corrosion in nickel copper alloys, a brief review of galvanic corrosion effects and a summary of stress corrosion cracking in these alloys.

Vinson, D.W.; Bullen, D.B. [Iowa State Univ. of Science and Technology, Ames, IA (United States)

1995-09-22T23:59:59.000Z

160

FUNCTIONALIZED SILICA AEROGELS: ADVANCED MATERIALS TO CAPTURE AND IMMOBILIZE RADIOACTIVE IODINE  

SciTech Connect (OSTI)

To support the future expansion of nuclear energy, an effective method is needed to capture and safely store radiological iodine-129 released during reprocessing of spent nuclear fuel. Various materials have been investigated to capture and immobilize iodine. In most cases, however, the materials that are effective for capturing iodine cannot subsequently be sintered/densified to create a stable composite that could be a viable waste form. We have developed chemically modified, highly porous, silica aerogels that show sorption capacities higher than 440 mg of I2 per gram at 150 C. An iodine uptake test in dry air containing 4.2 ppm of iodine demonstrated no breakthrough after 3.5 h and indicated a decontamination factor in excess of 310. Preliminary densification tests showed that the I2-loaded aerogels retained more than 92 wt% of I2 after thermal sintering with pressure assistance at 1200 C for 30 min. These high capture and retention efficiencies for I2 can be further improved by optimizing the functionalization process and the chemistry as well as the sintering conditions.

Matyas, Josef; Fryxell, Glen E.; Busche, Brad J.; Wallace, Krys; Fifield, Leonard S.

2011-11-16T23:59:59.000Z

Note: This page contains sample records for the topic "occurring radioactive materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Determination of the radioactive material and plutonium holdup in ducts and piping in the 324 Building  

SciTech Connect (OSTI)

This report describes the measurements Performed to determine the radionuclide content and mass of plutonium in exposed ducts, filters, and piping in the 324 Building at the US Department of Energy Hanford Site in Washington State. This information is needed to characterize facility radiation levels, to verify compliance with criticality safety specifications, and to allow more accurate nuclear material control using nondestructive assay (NDA) methods. Gamma assay techniques typically employed for NDA analysis were used to determine the gamma-emitting isotopes in the ducts, filters, and piping. Passive neutron counting was selected to estimate -the plutonium content because high gamma levels from fission and activation products effectively mask any gamma emissions from plutonium. A high-purity gamma-ray detector Was used to measure the mixed fission and activation radionuclides. A neutron slab detector containing five {sup 3}He proportional counters was used to determine the neutron emission rates and estimate the mass of plutonium present. Both measurement systems followed the methods and procedures routinely used for nuclear waste assay and safeguards measurements.

Haggard, D.L.; Brackenbush, L.W.; Tanner, J.E.

1996-01-01T23:59:59.000Z

162

Regulatory analysis on emergency preparedness for fuel cycle and other radioactive material licensees. Draft report for comment  

SciTech Connect (OSTI)

Potential accidents for 15 types of fuel cycle and other radioactive material licensees were analyzed. The most potentially hazardous accident, by a large margin, was determined to be the sudden rupture of a heated multi-ton cylinder of UF/sub 6/. Acute fatalities offsite are probably not credible. Acute permanent injuries may be possible for many hundreds of meters, and clinically observable transient effects of unknown long term consequences may be possible for distances up to a few miles. These effects would be caused by the chemical toxicity of the UF/sub 6/. Radiation doses would not be significant. The most potentially hazardous accident due to radiation exposure was determined to be a large fire at certain facilities handling large quantities of alpha-emitting radionuclides (i.e., Po-210, Pu-238, Pu-239, Am-241, Cm-242, Cm-244) or radioiodines (I-125 and I-131). However, acute fatalities or injuries to people offsite due to accidental releases of these materials do not seem plausible. The only other significant accident was identified as a long-term pulsating criticality at fuel cycle facilities handling high-enriched uranium or plutonium. An important feature of the most serious accidents is that releases are likely to start without prior warning. The releases would usually end within about half an hour. Thus protective actions would have to be taken quickly to be effective. There is not likely to be enough time for dose projections, complicated decisionmaking during the accident, or the participation of personnel not in the immediate vicinity of the site. The appropriate response by the facility is to immediately notify local fire, police, and other emergency personnel and give them a brief predetermined message recommending protective actions. Emergency personnel are generally well qualified to respond effectively to small accidents of these types.

McGuire, S.A.

1985-06-01T23:59:59.000Z

163

Radioactive waste disposal package  

DOE Patents [OSTI]

A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

Lampe, Robert F. (Bethel Park, PA)

1986-01-01T23:59:59.000Z

164

PAVAN: an atmospheric-dispersion program for evaluating design-basis accidental releases of radioactive materials from nuclear power stations  

SciTech Connect (OSTI)

This report provides a user's guide for the NRC computer program, PAVAN, which is a program used by the US Nuclear Regulatory Commission to estimate downwind ground-level air concentrations for potential accidental releases of radioactive material from nuclear facilities. Such an assessment is required by 10 CFR Part 100 and 10 CFR Part 50. The program implements the guidance provided in Regulatory Guide 1.145, Atmospheric Dispersion Models for Potential Accident Consequence Assessments at Nuclear Power Plants. Using joint frequency distributions of wind direction and wind speed by atmospheric stability, the program provides relative air concentration (X/Q) values as functions of direction for various time periods at the exclusion area boundary (EAB) and the outer boundary of the low population zone (LPZ). Calculations of X/Q values can be made for assumed ground-level releases (e.g., through building penetrations and vents) or elevated releases from free-standing stacks. Various options may be selected by the user. They can account for variation in the location of release points, additional plume dispersion due to building wakes, plume meander under low wind speed conditions, and adjustments to consider non-straight trajectories. It computes an effective plume height using the physical release height which can be reduced by inputted terrain features. It cannot handle multiple emission sources. A description of the main program and all subroutines is provided. Also included as appendices are a complete listing of the program and two test cases with the required data inputs and the resulting program outputs.

Bander, T.J.

1982-11-01T23:59:59.000Z

165

Radioactive Material License.  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545*.MSE Cores"December 2010r* R

166

Radioactive Materials Product Stewardship  

E-Print Network [OSTI]

...................................................................................................26 Low Level Waste (LLW) Disposal Regulations...............................................................................13 4.1 RADIONUCLIDES AND NUCLEAR FIXED GAUGES

167

UW EH&S Radiation Safety Office Box 354400 201 Hall Health Seattle WA 98195-4400 206-543-0463 FORM 160 RADIOACTIVE MATERIAL DELIVERY AND USAGE RECORD (5/00)  

E-Print Network [OSTI]

160 RADIOACTIVE MATERIAL DELIVERY AND USAGE RECORD (5/00) AUI Name PO # AUI # Item # Order Date Order be surveyed if they are labeled with a Radioactive White I, Yellow II or Yellow III label. Swipes CONTAMINATION (WAC 246-221-160(4)): contamination

Wilcock, William

168

Measurements of D-T neutron induced radioactivity in plasma-facing materials and their role in qualification of activation cross-section libraries and codes  

SciTech Connect (OSTI)

USDOE/JAERI collaborative program on induced radioactivity measurements has been spread over last five years and has covered, among others, a large number of plasma facing materials of interest to D-T fusion reactors, including ITER and DEMO. The experiments have consisted of irradiation of high purity material samples in a range of neutron energy spectra in simulated fusion environments of prototypical blanket assemblies driven by D-T neutrons at FNS/JAERI. A typical sample measured 10 mm in diameter by 1 mm thickness, and the neutron fluence ranged from {approximately}10{sup 10} n/cm{sup 2} to {approximately}10{sup 14} n/cm{sup 2}, over an irradiation period of 30 m and 10 h. The irradiated samples were then cooled for varying times, from {approximately}10 m to {approximately}3 weeks, and their activity was derived by counting associated {gamma}-rays with intrinsic germanium detectors.

Kumar, A.; Abdou, M.A.; Youssef, M.Z. [Univ. of California, Los Angeles, CA (United States)] [and others

1994-12-31T23:59:59.000Z

169

Airborne radioactive material collection, measurement, and data storage for the Nuclear Science Center at Texas A&M University  

E-Print Network [OSTI]

REFERENCES AEC73 AEC Regulatory Guide 8. 2, 1973, "Guide for Administrative Practices in Radiation Monitoring". AEC74 AEC Regulatory Guide 1. 21, Rev. 1, 1974, "Measuring, Evaluating, and Reporting Radioactivity in Solid Wastes, and Releases... System at the Nuclear Science Center (Texas AAM University) 38 VITA 66 LIST OF FIGURES FIGURE NUMBER Figure 1: FAM//I and FANF3 Sample Probe Orientation, PAGE Figure 2: FAM42, FAMR4, and FAMt6 Sample Probe Location . . 13 Figure 3; FAMF1 and FAM...

Jones, Melody Louise

1982-01-01T23:59:59.000Z

170

Radioactive Mineral Occurences in Nevada | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColoradosource History ViewRadiance: Synthetic

171

Understanding radioactive waste  

SciTech Connect (OSTI)

This document contains information on all aspects of radioactive wastes. Facts are presented about radioactive wastes simply, clearly and in an unbiased manner which makes the information readily accessible to the interested public. The contents are as follows: questions and concerns about wastes; atoms and chemistry; radioactivity; kinds of radiation; biological effects of radiation; radiation standards and protection; fission and fission products; the Manhattan Project; defense and development; uses of isotopes and radiation; classification of wastes; spent fuels from nuclear reactors; storage of spent fuel; reprocessing, recycling, and resources; uranium mill tailings; low-level wastes; transportation; methods of handling high-level nuclear wastes; project salt vault; multiple barrier approach; research on waste isolation; legal requiremnts; the national waste management program; societal aspects of radioactive wastes; perspectives; glossary; appendix A (scientific American articles); appendix B (reference material on wastes). (ATT)

Murray, R.L.

1981-12-01T23:59:59.000Z

172

Researchers at Montana State University and Idaho National Lab have developed a process to effectively and efficiently clean natural and man-made porous material of radioactive contamination. The system eliminates  

E-Print Network [OSTI]

to effectively and efficiently clean natural and man-made porous material of radioactive contamination. The system eliminates the practice of full demolition and removal of contaminated objects and can address contaminated substrate. Thus, building walls (interior or exterior), floors and ceilings can be remediated

Maxwell, Bruce D.

173

Corrective Action Decision Document/Closure Report for Corrective Action Unit 545: Dumps, Waste Disposal Sites, and Buried Radioactive Materials Nevada Test Site, Nevada, Revision 0  

SciTech Connect (OSTI)

This Corrective Action Decision Document (CADD)/Closure Report (CR) has been prepared for Corrective Action Unit (CAU) 545, Dumps, Waste Disposal Sites, and Buried Radioactive Materials, in Areas 2, 3, 9, and 20 of the Nevada Test Site, Nevada, in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management (1996, as amended February 2008). Corrective Action Unit 545 is comprised of the following eight Corrective Action Sites (CASs): 02-09-01, Mud Disposal Area 03-08-03, Mud Disposal Site 03-17-01, Waste Consolidation Site 3B 03-23-02, Waste Disposal Site 03-23-05, Europium Disposal Site 03-99-14, Radioactive Material Disposal Area 09-23-02, U-9y Drilling Mud Disposal Crater 20-19-01, Waste Disposal Site While all eight CASs are addressed in this CADD/CR, sufficient information was available for the following three CASs; therefore, a field investigation was not conducted at these sites: For CAS 03-08-03, though the potential for subsidence of the craters was judged to be extremely unlikely, the data quality objective (DQO) meeting participants agreed that sufficient information existed about disposal and releases at the site and that a corrective action of close in place with a use restriction is recommended. Sampling in the craters was not considered necessary. For CAS 03-23-02, there were no potential releases of hazardous or radioactive contaminants identified. Therefore, the Corrective Action Investigation Plan for CAU 545 concluded that: Sufficient information exists to conclude that this CAS does not exist as originally identified. Therefore, there is no environmental concern associated with CAS 03-23-02. This CAS is closed with no further action. For CAS 03-23-05, existing information about the two buried sources and lead pig was considered to be sufficient, and safety concerns existed about the stability of the crater component. Therefore, a corrective action of close in place with a use restriction is recommended, and sampling at the site was not considered necessary. The purpose of this CADD/CR is to provide justification and documentation to support the recommendation for closure of CAU 545 with no further corrective action. To achieve this, corrective action investigation (CAI) activities were performed from August 20 through November 02, 2007, as set forth in the CAU 545 Corrective Action Investigation Plan. The purpose of the CAI was to fulfill the following data needs as defined during the DQO process: Determine whether contaminants of concern (COCs) are present. If COCs are present, determine their nature and extent. Provide sufficient information and data to complete appropriate corrective actions. The CAU 545 dataset from the investigation results was evaluated based on the data quality indicator parameters. This evaluation demonstrated the quality and acceptability of the dataset for use in fulfilling the DQO data needs. Analytes detected during the CAI were evaluated against final action levels established in this CADD/CR. The results of the CAI identified no COCs at the five CASs investigated in CAU 545. As a best management practice, repair of the fence enclosing CAS 03-08-03 has been completed. Therefore, the DOE, National Nuclear Security Administration Nevada Site Office provides the following recommendations: Close in place COCs at CASs 03-08-03 and 03-23-05 with use restrictions. No further corrective action for CAU 545. No Corrective Action Plan. Corrective Action Unit 545 should be moved from Appendix III to Appendix IV of the Federal Facility Agreement and Consent Order. A Notice of Completion to the DOE, National Nuclear Security Administration Nevada Site Office is requested from the Nevada Division of Environmental Protection for closure of CAU 545.

Alfred Wickline

2008-04-01T23:59:59.000Z

174

Corrective Action Investigation Plan for Corrective Action Unit 545: Dumps, Waste Disposal Sites, and Buried Radioactive Materials Nevada Test Site, Nevada, Revision 0  

SciTech Connect (OSTI)

Corrective Action Unit 545, Dumps, Waste Disposal Sites, and Buried Radioactive Materials, consists of seven inactive sites located in the Yucca Flat area and one inactive site in the Pahute Mesa area. The eight CAU 545 sites consist of craters used for mud disposal, surface or buried waste disposed within craters or potential crater areas, and sites where surface or buried waste was disposed. The CAU 545 sites were used to support nuclear testing conducted in the Yucca Flat area during the 1950s through the early 1990s, and in Area 20 in the mid-1970s. This Corrective Action Investigation Plan has been developed in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada, the U.S. Department of Energy, and the U.S. Department of Defense. Under the Federal Facility Agreement and Consent Order, this Corrective Action Investigation Plan will be submitted to the Nevada Division of Environmental Protection for approval. Fieldwork will be conducted following approval.

Alfred Wickline

2007-06-01T23:59:59.000Z

175

Waste Isolation Pilot Plant Materials Interface Interactions Test: Papers presented at the Commission of European Communities workshop on in situ testing of radioactive waste forms and engineered barriers  

SciTech Connect (OSTI)

The three papers in this report were presented at the second international workshop to feature the Waste Isolation Pilot Plant (WIPP) Materials Interface Interactions Test (MIIT). This Workshop on In Situ Tests on Radioactive Waste Forms and Engineered Barriers was held in Corsendonk, Belgium, on October 13--16, 1992, and was sponsored by the Commission of the European Communities (CEC). The Studiecentrum voor Kernenergie/Centre D`Energie Nucleaire (SCK/CEN, Belgium), and the US Department of Energy (via Savannah River) also cosponsored this workshop. Workshop participants from Belgium, France, Germany, Sweden, and the United States gathered to discuss the status, results and overviews of the MIIT program. Nine of the twenty-five total workshop papers were presented on the status and results from the WIPP MIIT program after the five-year in situ conclusion of the program. The total number of published MIIT papers is now up to almost forty. Posttest laboratory analyses are still in progress at multiple participating laboratories. The first MIIT paper in this document, by Wicks and Molecke, provides an overview of the entire test program and focuses on the waste form samples. The second paper, by Molecke and Wicks, concentrates on technical details and repository relevant observations on the in situ conduct, sampling, and termination operations of the MIIT. The third paper, by Sorensen and Molecke, presents and summarizes the available laboratory, posttest corrosion data and results for all of the candidate waste container or overpack metal specimens included in the MIIT program.

Molecke, M.A.; Sorensen, N.R. [eds.] [Sandia National Labs., Albuquerque, NM (US); Wicks, G.G. [ed.] [Westinghouse Savannah River Technology Center, Aiken, SC (US)

1993-08-01T23:59:59.000Z

176

Properties of Natural Radiation and Radioactivity  

SciTech Connect (OSTI)

Ubiquitous natural sources of radiation and radioactive material (naturally occurring radioactive material, NORM) have exposed humans throughout history. To these natural sources have been added technologically-enhanced naturally occurring radioactive material (TENORM) sources and human-made (anthropogenic) sources. This chapter describes the ubiquitous radiation sources that we call background, including primordial radionuclides such as 40K, 87Rb, the 232Th series, the 238U series, and the 235U series; cosmogenic radionuclides such as 3H and 14C; anthropogenic radionuclides such as 3H, 14C, 137Cs, 90Sr, and 129I; radiation from space; and radiation from technologically-enhanced concentrations of natural radionuclides, particularly the short-lived decay products of 222Rn ("radon") and 220Rn ("thoron") in indoor air. These sources produce radiation doses to people principally via external irradiation or internal irradiation following intakes by inhalation or ingestion. The effective doses from each are given, with a total of 3.11 mSv y-1 (311 mrem y-1) to the average US resident. Over 2.5 million US residents receive over 20 mSv y-1 (2 rem y-1), primarily due to indoor radon. Exposure to radiation from NORM and TENORM produces the largest fraction of ubiquitous background exposure to US residents, on the order of 2.78 mSv (278 mrem) or about 89%. This is roughly 45% of the average annual effective dose to a US resident of 6.2 mSv y-1 (620 mrem y-1) that includes medical (48%), consumer products and air travel (2%), and occupational and industrial (0.1%). Much of this chapter is based on National Council on Radiation Protection and Measurements (NCRP) Report No. 160, "Ionizing Radiation Exposure of the Population of the United States," for which the author chaired the subcommittee that wrote Chapter 3 on "Ubiquitous Background Radiation."

Strom, Daniel J.

2009-07-13T23:59:59.000Z

177

Radioactive ion detector  

DOE Patents [OSTI]

Apparatus for detecting the presence, in aqueous media, of substances which emit alpha and/or beta radiation and determining the oxidation state of these radioactive substances, that is, whether they are in cationic or anionic form. In one embodiment, a sensor assembly has two elements, one comprised of an ion-exchange material which binds cations and the other comprised of an ion-exchange material which binds anions. Each ion-exchange element is further comprised of a scintillation plastic and a photocurrent generator. When a radioactive substance to which the sensor is exposed binds to either element and emits alpha or beta particles, photons produced in the scintillation plastic illuminate the photocurrent generator of that element. Sensing apparatus senses generator output and thereby indicates whether cationic species or anionic species or both are present and also provides an indication of species quantity. 2 figs.

Bower, K.E.; Weeks, D.R.

1997-08-12T23:59:59.000Z

178

Radioactive ion detector  

DOE Patents [OSTI]

Apparatus for detecting the presence, in aqueous media, of substances which emit alpha and/or beta radiation and determining the oxidation state of these radioactive substances, that is, whether they are in cationic or anionic form. In one embodiment, a sensor assembly has two elements, one comprised of an ion-exchange material which binds cations and the other comprised of an ion-exchange material which binds anions. Each ion-exchange element is further comprised of a scintillation plastic and a photocurrent generator. When a radioactive substance to which the sensor is exposed binds to either element and emits alpha or beta particles, photons produced in the scintillation plastic illuminate the photocurrent generator of that element. Sensing apparatus senses generator output and thereby indicates whether cationic species or anionic species or both are present and also provides an indication of species quantity.

Bower, Kenneth E. (Los Alamos, NM); Weeks, Donald R. (Saratoga, CA)

1997-01-01T23:59:59.000Z

179

Integrated data base report--1996: US spent nuclear fuel and radioactive waste inventories, projections, and characteristics  

SciTech Connect (OSTI)

The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and U.S. Department of Energy (DOE) spent nuclear fuel (SNF) and commercial and U.S. government-owned radioactive wastes. Inventories of most of these materials are reported as of the end of fiscal year (FY) 1996, which is September 30, 1996. Commercial SNF and commercial uranium mill tailings inventories are reported on an end-of-calendar year (CY) basis. All SNF and radioactive waste data reported are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest DOE/Energy Information Administration (EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are SNF, high-level waste, transuranic waste, low-level waste, uranium mill tailings, DOE Environmental Restoration Program contaminated environmental media, naturally occurring and accelerator-produced radioactive material, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through FY 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions.

NONE

1997-12-01T23:59:59.000Z

180

Microsoft Word - EMSL Rad Materials Use.r2.docx  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Dispersible radioactive material must be placed in rigid, leak-tight inner containers (e.g., durable screw-top sample jars). Non-dispersible radioactive material may...

Note: This page contains sample records for the topic "occurring radioactive materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

B-1 2001 SITE ENVIRONMENTAL REPORT APPENDIX B: CONCEPTS OF RADIOACTIVITY  

E-Print Network [OSTI]

such as paper and have a range in air of only an inch or so. Naturally occurring radioactive elements a range in air of several feet. Naturally occurring radioactive elements such as potassium- 40 (K-40) emit: CONCEPTS OF RADIOACTIVITY SOURCES OF RADIATION Radioactivity and radiation are part of the earths natural

Homes, Christopher C.

182

RADIOACTIVE WASTE MANAGEMENT IN THE CHERNOBYL EXCLUSION ZONE - 25 YEARS SINCE THE CHERNOBYL NUCLEAR POWER PLANT ACCIDENT  

SciTech Connect (OSTI)

Radioactive waste management is an important component of the Chernobyl Nuclear Power Plant accident mitigation and remediation activities of the so-called Chernobyl Exclusion Zone. This article describes the localization and characteristics of the radioactive waste present in the Chernobyl Exclusion Zone and summarizes the pathways and strategy for handling the radioactive waste related problems in Ukraine and the Chernobyl Exclusion Zone, and in particular, the pathways and strategies stipulated by the National Radioactive Waste Management Program. The brief overview of the radioactive waste issues in the ChEZ presented in this article demonstrates that management of radioactive waste resulting from a beyond-designbasis accident at a nuclear power plant becomes the most challenging and the costliest effort during the mitigation and remediation activities. The costs of these activities are so high that the provision of radioactive waste final disposal facilities compliant with existing radiation safety requirements becomes an intolerable burden for the current generation of a single country, Ukraine. The nuclear accident at the Fukushima-1 NPP strongly indicates that accidents at nuclear sites may occur in any, even in a most technologically advanced country, and the Chernobyl experience shows that the scope of the radioactive waste management activities associated with the mitigation of such accidents may exceed the capabilities of a single country. Development of a special international program for broad international cooperation in accident related radioactive waste management activities is required to handle these issues. It would also be reasonable to consider establishment of a dedicated international fund for mitigation of accidents at nuclear sites, specifically, for handling radioactive waste problems in the ChEZ. The experience of handling Chernobyl radioactive waste management issues, including large volumes of radioactive soils and complex structures of fuel containing materials can be fairly useful for the entire world's nuclear community and can help make nuclear energy safer.

Farfan, E.; Jannik, T.

2011-10-01T23:59:59.000Z

183

Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 MAG LAB REPORTS Volume 18 No. 1 CONDENSED MATTER SCIENCE Technique development, graphene, magnetism & magnetic materials, topological insulators, quantum fl uids & solids,...

184

Impact of the deployment schedule of fast breeding reactors in the frame of French act for nuclear materials and radioactive waste management  

SciTech Connect (OSTI)

In the frame of the French Act of June 28, 2006 on 'a sustainable management of nuclear materials and radioactive waste' EDF R and D assesses various research scenarios of transition between the actual French fleet and a Generation IV fleet with a closed fuel cycle where plutonium is multi-recycled. The basic scenarios simulate a deployment of 60 GWe of Sodium-cooled Fast Reactors (SFRs) in two steps: one third from 2040 to 2050 and the rest from 2080 to 2100 (scenarios 2040). These research scenarios assume that SFR technology will be ready for industrial deployment in 2040. One of the many sensitivity analyses that EDF, as a nuclear power plant operator, must evaluate is the impact of a delay of SFR technology in terms of uranium consumptions, plutonium needs and fuel cycle utilities gauging. The sensitivity scenarios use the same assumptions as scenarios 2040 but they simulate a different transition phase: SFRs are deployed in one step between 2080 and 2110 (scenarios 2080). As the French Act states to conduct research on minor actinides (MA) management, we studied different options for 2040 and 2080 scenarios: no MA transmutation, americium transmutation in heterogeneous mode based on americium Bearing Blankets (AmBB) in SFRs and all MA transmutation in heterogeneous mode based on MA Bearing Blankets (MABB). Moreover, we studied multiple parameters that could impact the deployment of these reactors (SFR load factor, increase of the use of MOX in Light Water Reactors, increase of the cooling time in spent nuclear fuel storage...). Each scenario has been computed with the EDF R and D fuel cycle simulation code TIRELIRE-STRATEGIE and optimized to meet various fuel cycle constraints such as using the reprocessing facility with long period of constant capacity, keeping the temporary stored mass of plutonium and MA under imposed limits, recycling older assemblies first... These research scenarios show that the transition from the current PWR fleet to an equivalent fleet of Generation IV SFR can follow different courses. The design of SFR-V2B that we used in our studies needs a high inventory of plutonium resulting in tension on this resource. Several options can be used in order to loosen this tension: our results lead to favour the use of axial breeding blanket in SFR. Load factor of upcoming reactors has to be regarded with attention as it has a high impact on plutonium resource for a given production of electricity. The deployment of SFRs beginning in 2080 instead of 2040 following the scenarios we described creates higher tensions on reprocessing capacity, separated plutonium storage and spent fuel storage. In the frame of the French Act, we studied minor actinides transmutation. The flux of MA in all fuel cycle plants is really high, which will lead to decay heat, a and neutron emission related problems. In terms of reduction of MA inventories, the deployment of MA transmutation cycle must not delay the installation of SFRs. The plutonium production in MABB and AmBB does not allow reducing the use of axial breeding blankets. The impact of MA or Am transmutation over the high level waste disposal is more important if the SFRs are deployed later. Transmutation option (americium or all MA) does not have a significant impact on the number of canister produced nor on its long-term thermal properties. (authors)

Le Mer, J.; Garzenne, C.; Lemasson, D. [Electricite de France R and D, 1, Avenue du General De Gaulle, 92141 Clamart (France)

2012-07-01T23:59:59.000Z

185

(Revised May 25, 2012) Radioactivity  

E-Print Network [OSTI]

(Revised May 25, 2012) Radioactivity GOALS (1) To gain a better understanding of naturally-occurring. (3) To measure the amount of "background radiation" from natural sources. (4) To test whether and man-made radiation sources. (2) To use a Geiger-Mueller tube to detect both beta and gamma radiation

Collins, Gary S.

186

4.0 RISK FROM URANIUM MINING WASTE IN BUILDING In general, building materials contain low levels of radioactivity. For example, the range of  

E-Print Network [OSTI]

4.0 RISK FROM URANIUM MINING WASTE IN BUILDING MATERIALS In general, building materials contain low, especially in buildings constructed with materials containing uranium TENORM mine wastes. In the Grand the wastes from uranium mines have been removed from mining sites and used in local and nearby communities

187

Radioactive Waste Management  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish policies and guidelines by which the Department of Energy (DOE) manages tis radioactive waste, waste byproducts, and radioactively contaminated surplus facilities.

1984-02-06T23:59:59.000Z

188

Helpful links for materials transport, safety, etc.  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Helpful links for materials transport, safety, etc. relating to experiment safety at the APS. Internal Reference Material: Transporting Hazardous Materials "Natural" radioactivity...

189

Survey of National Programs for Managing High-Level Radioactive  

E-Print Network [OSTI]

Survey of National Programs for Managing High-Level Radioactive Waste and Spent Nuclear Fuel-Level Radioactive Waste and Spent Nuclear Fuel A Report to Congress and the Secretary of Energy October 2009 #12 Safety (Germany) Peter De Preter: National Agency for Radioactive Waste and Enriched Fissile Materials

190

Radioactive waste processing apparatus  

DOE Patents [OSTI]

Apparatus for use in processing radioactive waste materials for shipment and storage in solid form in a container is disclosed. The container includes a top, and an opening in the top which is smaller than the outer circumference of the container. The apparatus includes an enclosure into which the container is placed, solution feed apparatus for adding a solution containing radioactive waste materials into the container through the container opening, and at least one rotatable blade for blending the solution with a fixing agent such as cement or the like as the solution is added into the container. The blade is constructed so that it can pass through the opening in the top of the container. The rotational axis of the blade is displaced from the center of the blade so that after the blade passes through the opening, the blade and container can be adjusted so that one edge of the blade is adjacent the cylindrical wall of the container, to insure thorough mixing. When the blade is inside the container, a substantially sealed chamber is formed to contain vapors created by the chemical action of the waste solution and fixant, and vapors emanating through the opening in the container.

Nelson, Robert E. (Lombard, IL); Ziegler, Anton A. (Darien, IL); Serino, David F. (Maplewood, MN); Basnar, Paul J. (Western Springs, IL)

1987-01-01T23:59:59.000Z

191

Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challenge fund LasDubey selectedContract Research Material

192

Enhancements to System for Tracking Radioactive Waste Shipments...  

Energy Savers [EERE]

Multiple Users January 30, 2013 - 12:00pm Addthis Transportation Tracking and Communication System users can now track shipments of radioactive materials and access...

193

activity radioactive waste: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

is: not high-level radioactive waste or irradiated nuclear fuel not uranium, thorium or other ore tailings or waste from extraction and concentration for source material...

194

aqueous radioactive waste: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

is: not high-level radioactive waste or irradiated nuclear fuel not uranium, thorium or other ore tailings or waste from extraction and concentration for source material...

195

acidic radioactive waste: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

is: not high-level radioactive waste or irradiated nuclear fuel not uranium, thorium or other ore tailings or waste from extraction and concentration for source material...

196

activities radioactive waste: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

is: not high-level radioactive waste or irradiated nuclear fuel not uranium, thorium or other ore tailings or waste from extraction and concentration for source material...

197

activity radioactive wastes: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

is: not high-level radioactive waste or irradiated nuclear fuel not uranium, thorium or other ore tailings or waste from extraction and concentration for source material...

198

The fate and behaviour of enhanced natural radioactivity with respect to environmental protection  

SciTech Connect (OSTI)

In contrast to the monitoring and prevention of occupational radiation risk caused by enhanced natural radioactivity, relatively little attention has been paid to the environmental impact associated with residues containing enhanced activity concentration of naturally occurring radionuclides. Such materials are often deposited directly into the environment, a practice which is strictly forbidden in the management of other types of radioactive waste. In view of the new trends in radiation protection, the need to consider the occurrence of anthropogenically enhanced natural radioactivity as a particular unique case of environmental hazard is quite apparent. Residues containing high activity concentrations of some natural radionuclides differ from radioactive materials arising from the nuclear industry. In addition, the radiation risk is usually combined with the risk caused by other pollutants. As such and to date, there are no precise regulations regarding this matter and moreover, the non-nuclear industry is often not aware of potential environmental problems caused by natural radioactivity. This article discusses aspects of environmental radiation risks caused by anthropogenically enhanced natural radioactivity stored at unauthorised sites. Difficulties and inconclusiveness in the application of recommendations and models for radiation risk assessment are explored. General terms such as 'environmental effects' and the basic parameters necessary to carry out consistent and comparable Environmental Risk Assessment (ERA) have been developed and defined. - Highlights: Black-Right-Pointing-Pointer Features of environmental impact caused by residues containing high activity concentration of natural radionuclides Black-Right-Pointing-Pointer Definition of an effect of radiation on an ecosystem and novel method for its assessment Black-Right-Pointing-Pointer Radiation protection regulation inconclusiveness in the aspects of enhanced natural radioactivity.

Michalik, B., E-mail: b.michalik@gig.eu [Laboratory of Radiometry, Central Mining Institute (GIG), Plac Gwarkow 1, 40-166 Katowice (Poland); Brown, J., E-mail: Justin.Brown@nrpa.no [Norwegian Radiation Protection Authority (NRPA), Grini naeringspark 13, 1361 Osteras Norway (Norway); Krajewski, P., E-mail: krajewski@clor.waw.pl [Central Laboratory for Radiological Protection (CLOR), ul. Konwaliowa 7, 03-194 Warszawa Poland (Poland)

2013-01-15T23:59:59.000Z

199

Measurement of low radioactivity background in a high voltage cable by high resolution inductively coupled plasma mass spectrometry  

SciTech Connect (OSTI)

The measurement of naturally occurring low level radioactivity background in a high voltage (HV) cable by high resolution inductively coupled plasma mass spectrometry (HR ICP MS) is presented in this work. The measurements were performed at the Chemistry Service of the Gran Sasso National Laboratory. The contributions to the radioactive background coming from the different components of the heterogeneous material were separated. Based on the mass fraction of the cable, the whole contamination was calculated. The HR ICP MS results were cross-checked by gamma ray spectroscopy analysis that was performed at the low background facility STELLA (Sub Terranean Low Level Assay) of the LNGS underground lab using HPGe detectors.

Vacri, M. L. di; Nisi, S.; Balata, M. [Gran Sasso National Laboratory, Chemistry Service, SS 17bis km 18.910, 67100 Assergi (Aq) (Italy)] [Gran Sasso National Laboratory, Chemistry Service, SS 17bis km 18.910, 67100 Assergi (Aq) (Italy)

2013-08-08T23:59:59.000Z

200

B-1 SITE ENVIRONMENTAL REPORT 2000 APPENDIX B: CONCEPTS OF RADIOACTIVITY  

E-Print Network [OSTI]

such as paper and have a range in air of only an inch or so. Naturally occurring radioactive elements a range in air of several feet. Naturally occurring radioactive elements such as potassium- 40 (K-40) emitB-1 SITE ENVIRONMENTAL REPORT 2000 APPENDIX B: CONCEPTS OF RADIOACTIVITY COMMON TYPES OF RADIATION

Homes, Christopher C.

Note: This page contains sample records for the topic "occurring radioactive materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Guidance document for prepermit bioassay testing of low-level radioactive waste  

SciTech Connect (OSTI)

In response to the mandate of Public Law 92-532, the Marine Protection, Research, and Sanctuaries Act (MPRSA) of 1972, as amended, the Environmental Protection Agency (EPA) has developed a program to promulgate regulations and criteria to control the ocean disposal of radioactive wastes. The EPA seeks to understand the mechanisms for biological response of marine organisms to the low levels of radioactivity that may arise from the release of these wastes as a result of ocean-disposal practices. Such information will play an important role in determining the adequacy of environmental assessments provided to the EPA in support of any disposal permit application. Although the EPA requires packaging of low-level radioactive waste to prevent release during radiodecay of the materials, some release of radioactive material into the deep-sea environment may occur when a package deteriorates. Therefore, methods for evaluating the impact on biota are being evaluated. Mortality and phenotypic responses are not anticipated at the expected low environmental levels that might occur if radioactive materials were released from the low-level waste packages. Therefore, traditional bioassay systems are unsuitable for assessing sublethal effects on biota in the marine environment. The EPA Office of Radiation Programs (ORP) has had an ongoing program to examine sublethal responses to radiation at the cellular level, using cytogenetic end points. This technical guidance report represents prepermit bioassay procedures that potentially may be applicable to the assessment of effects from a mixture of radionuclides that could be released from a point source at the ocean bottom. Methodologies along with rationale and a discussion of uncertainty are presented for the sediment benthic bioassay protocols identified in this report.

Anderson, S.L.; Harrison, F.L.

1990-11-01T23:59:59.000Z

202

Radioactive Waste Management Procedures and Guidelines See Radiation Manual 1997 for further details  

E-Print Network [OSTI]

1-24-03 Radioactive Waste Management Procedures and Guidelines See Radiation Manual 1997 PART I. Radioactive Waste A. Dry Waste 1. Labs must request a box from the Radioactive Waste program, and use only this box for accumulating their waste. 2. Place only radioactive material contaminated

203

Radioactive Waste Management (Minnesota)  

Broader source: Energy.gov [DOE]

This section regulates the transportation and disposal of high-level radioactive waste in Minnesota, and establishes a Nuclear Waste Council to monitor the federal high-level radioactive waste...

204

New York State low-level radioactive waste status report for 1997  

SciTech Connect (OSTI)

This report summarizes data on low-level radioactive waste (LLRW) generated in New York State. It is based on reports from generators that must be filed annually with the New York State Energy Research and Development Authority (NYSERDA) and on data from the US Department of Energy (US DOE). The data are summarized in a series of tables and figures. There are four sections in this report. Section 1 covers volume, activity, and other characteristics of waste shipped for disposal in 1997. (Activity is the measure of a material`s radioactivity, or the number of radiation-emitting events occurring each second.) Section 2 summarizes volume, activity, and other characteristics of waste held for storage as of December 31, 1997. Section 3 shows historical LLRW generation and includes generators` projections for the next five years. Section 4 provides a list, by county, of all facilities from which 1997 LLRW reports were received.

NONE

1998-06-01T23:59:59.000Z

205

Radioactive and chemotoxic wastes: Only radioactive wastes?  

SciTech Connect (OSTI)

Radioactive waste arising from Italian Nuclear Power Plants and Research Centers, classified as 1st and 2nd Category wastes, are managed only as radioactive wastes following the Technical Guide No. 26 issued by the Italian Regulatory Body: ENEA DISP on 1987. A very important Regulatory Regime revision for Italian Nuclear Activities started at the end of 1991. This paper considers the need to develop a new strategy dedicated to mixed waste in line with current international trends.

Eletti, G.F.; Tocci, M. [ENEA DISP, Rome (Italy)

1993-12-31T23:59:59.000Z

206

Radioactive Effluents from Nuclear Power Plants Annual Report 2007  

SciTech Connect (OSTI)

This report describes radioactive effluents from commercial nuclear power plants (NPPs) in the United States. This information was reported by the licensees for radioactive discharges that occurred in 2007. The report provides information relevant to the potential impact of NPPs on the environment and on public health.

U.S. Nuclear Regulatory Commission, Office of Nuclear Reactor Regulation

2010-12-10T23:59:59.000Z

207

Radioactive Effluents from Nuclear Power Plants Annual Report 2008  

SciTech Connect (OSTI)

This report describes radioactive effluents from commercial nuclear power plants (NPPs) in the United States. This information was reported by the licensees for radioactive discharges that occurred in 2008. The report provides information relevant to the potential impact of NPPs on the environment and on public health.

U.S. Nuclear Regulatory Commission, Office of Nuclear Reactor Regulation

2010-12-10T23:59:59.000Z

208

Upgrading the Radioactive Waste Management Infrastructure in Azerbaijan  

SciTech Connect (OSTI)

Radionuclide uses in Azerbaijan are limited to peaceful applications in the industry, medicine, agriculture and research. The Baku Radioactive Waste Site (BRWS) 'IZOTOP' is the State agency for radioactive waste management and radioactive materials transport. The radioactive waste processing, storage and disposal facility is operated by IZOTOP since 1963 being significantly upgraded from 1998 to be brought into line with international requirements. The BRWS 'IZOTOP' is currently equipped with state-of-art devices and equipment contributing to the upgrade the radioactive waste management infrastructure in Azerbaijan in line with current internationally accepted practices. The IAEA supports Azerbaijan specialists in preparing syllabus and methodological materials for the Training Centre that is currently being organized on the base of the Azerbaijan BRWS 'IZOTOPE' for education of specialists in the area of safety management of radioactive waste: collection, sorting, processing, conditioning, storage and transportation. (authors)

Huseynov, A. [Baku Radioactive Waste Site IZOTOP, Baku (Azerbaijan); Batyukhnova, O. [State Unitary Enterprise Scientific and Industrial Association Radon, Moscow (Russian Federation); Ojovan, M. [Sheffield Univ., Immobilisation Science Lab. (United Kingdom); Rowat, J. [International Atomic Energy Agency, Dept. of Nuclear Safety and Security, Vienna (Austria)

2007-07-01T23:59:59.000Z

209

Radioactive Waste: 1. Radioactive waste from your lab is  

E-Print Network [OSTI]

Radioactive Waste: 1. Radioactive waste from your lab is collected by the RSO. 2. Dry radioactive waste must be segregated by isotope. 3. Liquid radioactive waste must be separated by isotope. 4. Liquid frequently and change them if contaminated. 5. Use radioactive waste container to collect the waste. 6. Check

Jia, Songtao

210

Radioactive decay data tables  

SciTech Connect (OSTI)

The estimation of radiation dose to man from either external or internal exposure to radionuclides requires a knowledge of the energies and intensities of the atomic and nuclear radiations emitted during the radioactive decay process. The availability of evaluated decay data for the large number of radionuclides of interest is thus of fundamental importance for radiation dosimetry. This handbook contains a compilation of decay data for approximately 500 radionuclides. These data constitute an evaluated data file constructed for use in the radiological assessment activities of the Technology Assessments Section of the Health and Safety Research Division at Oak Ridge National Laboratory. The radionuclides selected for this handbook include those occurring naturally in the environment, those of potential importance in routine or accidental releases from the nuclear fuel cycle, those of current interest in nuclear medicine and fusion reactor technology, and some of those of interest to Committee 2 of the International Commission on Radiological Protection for the estimation of annual limits on intake via inhalation and ingestion for occupationally exposed individuals.

Kocher, D.C.

1981-01-01T23:59:59.000Z

211

Radioactive Waste Management Basis  

SciTech Connect (OSTI)

The purpose of this Radioactive Waste Management Basis is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE Manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

Perkins, B K

2009-06-03T23:59:59.000Z

212

Radioactivity in Food and the Environment, 2005  

E-Print Network [OSTI]

.............................................................................................. 0 .. Radioactive waste disposal from nuclear sites ........................................................................................................................... 9 . Disposals of radioactive waste............................................ .. Radioactive waste disposal at sea

213

E-Print Network 3.0 - artificial radioactive substances Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

from an artificial source or from a radioactive substance containing naturally occurring... : Getting Started: The Legislative Framework, Roles and Responsibilities The...

214

E-Print Network 3.0 - atmospheric radioactivity madrid Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

elements "decay." Decay occurs as an element changes to another element, e... .g. uranium to lead. The parent element is radioactive, the daughter element is ... Source:...

215

The New Orphaned Radioactive Sources Program in the United States International Conference on the Safety of Radiation Sources and the Security of Radioactive  

E-Print Network [OSTI]

of contamination in metals: contaminated metal from foreign countries, and sealed radioactive sources, both1 The New Orphaned Radioactive Sources Program in the United States International Conference on the Safety of Radiation Sources and the Security of Radioactive Materials. September 14-18, 1998 Neil Naraine

216

CRUCIBLE TESTING OF TANK 48 RADIOACTIVE WASTE SAMPLE USING FBSR TECHNOLOGY FOR ORGANIC DESTRUCTION  

SciTech Connect (OSTI)

The purpose of crucible scale testing with actual radioactive Tank 48H material was to duplicate the test results that had been previously performed on simulant Tank 48H material. The earlier crucible scale testing using simulants was successful in demonstrating that bench scale crucible tests produce results that are indicative of actual Fluidized Bed Steam Reforming (FBSR) pilot scale tests. Thus, comparison of the results using radioactive Tank 48H feed to those reported earlier with simulants would then provide proof that the radioactive tank waste behaves in a similar manner to the simulant. Demonstration of similar behavior for the actual radioactive Tank 48H slurry to the simulant is important as a preliminary or preparation step for the more complex bench-scale steam reformer unit that is planned for radioactive application in the Savannah River National Laboratory (SRNL) Shielded Cells Facility (SCF) later in 2008. The goals of this crucible-scale testing were to show 99% destruction of tetraphenylborate and to demonstrate that the final solid product produced is sodium carbonate. Testing protocol was repeated using the specifications of earlier simulant crucible scale testing, that is sealed high purity alumina crucibles containing a pre-carbonated and evaporated Tank 48H material. Sealing of the crucibles was accomplished by using an inorganic 'nepheline' sealant. The sealed crucibles were heat-treated at 650 C under constant argon flow to inert the system. Final product REDOX measurements were performed to establish the REDuction/OXidation (REDOX) state of known amounts of added iron species in the final product. These REDOX measurements confirm the processing conditions (pyrolysis occurring at low oxygen fugacity) of the sealed crucible environment which is the environment actually achieved in the fluidized bed steam reformer process. Solid product dissolution in water was used to measure soluble cations and anions, and to investigate insoluble fractions of the product solids. Radioanalytical measurements were performed on the Tank 48H feed material and on the dissolved products in order to estimate retention of Cs-137 in the process. All aspects of prior crucible scale testing with simulant Tank 48H slurry were demonstrated to be repeatable with the actual radioactive feed. Tetraphenylborate destruction was shown to be >99% and the final solid product is sodium carbonate crystalline material. Less than 10 wt% of the final solid products are insoluble components comprised of Fe/Ni/Cr/Mn containing sludge components and Ti from monosodium titanate present in Tank 48H. REDOX measurements on the radioactive solid products indicate a reducing atmosphere with extremely low oxygen fugacity--evidence that the sealed crucible tests performed in the presence of a reductant (sugar) under constant argon purge were successful in duplicating the pyrolysis reactions occurring with the Tank 48H feed. Soluble anion measurements confirm that using sugar as reductant at 1X stoichiometry was successful in destroying nitrate/nitrite in the Tank 48H feed. Radioanalytical measurements indicate that {approx}75% of the starting Cs-137 is retained in the solid product. No attempts were made to analyze/measure other potential Cs-137 in the process, i.e., as possible volatile components on the inner surface of the alumina crucible/lid or as offgas escaping the sealed crucible. The collective results from these crucible scale tests on radioactive material are in good agreement with simulant testing. Crucible scale processing has been shown to duplicate the complex reactions of an actual fluidized bed steam reformer. Thus this current testing should provide a high degree of confidence that upcoming bench-scale steam reforming with radioactive Tank 48H slurry will be successful in tetraphenylborate destruction and production of sodium carbonate product.

Hammond, C; William Pepper, W

2008-09-19T23:59:59.000Z

217

Recovering Radioactive Materials with ORSP Team  

ScienceCinema (OSTI)

The National Nuclear Security Administration sponsors a program, executed by Los Alamos National Laboratory, to recover radioisotopes used by industry and academia and no longer needed. Called the "Offsite Source Recovery Program (OSRP), it has recovered more than 16,000 orphan sources as of 2008.

LANL

2009-09-01T23:59:59.000Z

218

Recovering Radioactive Materials with OSRP team  

ScienceCinema (OSTI)

The National Nuclear Security Administration sponsors a program, executed by Los Alamos National Laboratory, to recover radioisotopes used by industry and academia and no longer needed. Called the "Offsite Source Recovery Program (OSRP), it has recovered

None

2010-01-08T23:59:59.000Z

219

Emergency Responder Radioactive Material Quick Reference Sheet  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy CooperationRequirementsDraft EnvironmentalRoadDepartment5-CE-14020)BUILDING

220

ETEC - Radioactive Handling Materials Facility (RMHF) Leachfield |  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResources DOE ZeroThreeEnergyDepartment0:Energy 2: ActionsEPActDepartment of

Note: This page contains sample records for the topic "occurring radioactive materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Radioactive Materials Emergencies Course Presentation | Department of  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalancedDepartment ofColumbus HTS1,Geologic Disposal= J .MEASUREMENT

222

Midwestern Radioactive Materials Transportation Committee Agenda |  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | DepartmentEnergyMagna:MasterOffice0RecordsDomestic Natural Gas

223

Midwestern Radioactive Materials Transportation Committee Agenda  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced Scorecard Federal2 to: A DispersionMid-LevelProposed PenaltyDepartment

224

RADIOACTIVE WASTE DISPOSAL IN GRANITE  

E-Print Network [OSTI]

RADIOACTIVE WASTE DISPOSAL IN GRANITE Paul A. WitherspoonRADIOACTIVE WASTE DISPOSAL IN GRANITE Paul A. Wither spoona repository site in granite are to evaluate the suitability

Witherspoon, P.A.

2010-01-01T23:59:59.000Z

225

TRESS: A Transportable Radioactive Effluent Solidification System  

SciTech Connect (OSTI)

This paper describes an attempt to produce a totally new concept for a transportable plant capable of encapsulating radioactive sludges and ion exchange resins, employing recently developed dewatering and mixing techniques. One of the prime aims of the investigation was to produce a plant which could handle both beta/gamma and alpha-bearing materials.

Sims, J. [BBN Environmental Management Ltd., Bramhall (United Kingdom). WasteChem Div.; Schneider, K. [NUKEM GmbH, Alzenau (Germany)

1993-12-31T23:59:59.000Z

226

Radioactive Waste Management and Nuclear Facility Decommissioning Progress in Iraq - 13216  

SciTech Connect (OSTI)

Management of Iraq's radioactive wastes and decommissioning of Iraq's former nuclear facilities are the responsibility of Iraq's Ministry of Science and Technology (MoST). The majority of Iraq's former nuclear facilities are in the Al-Tuwaitha Nuclear Research Center located a few kilometers from the edge of Baghdad. These facilities include bombed and partially destroyed research reactors, a fuel fabrication facility and radioisotope production facilities. Within these facilities are large numbers of silos, approximately 30 process or waste storage tanks and thousands of drums of uncharacterised radioactive waste. There are also former nuclear facilities/sites that are outside of Al-Tuwaitha and these include the former uranium processing and waste storage facility at Jesira, the dump site near Adaya, the former centrifuge facility at Rashdiya and the former enrichment plant at Tarmiya. In 2005, Iraq lacked the infrastructure needed to decommission its nuclear facilities and manage its radioactive wastes. The lack of infrastructure included: (1) the lack of an organization responsible for decommissioning and radioactive waste management, (2) the lack of a storage facility for radioactive wastes, (3) the lack of professionals with experience in decommissioning and modern waste management practices, (4) the lack of laws and regulations governing decommissioning or radioactive waste management, (5) ongoing security concerns, and (6) limited availability of electricity and internet. Since its creation eight years ago, the MoST has worked with the international community and developed an organizational structure, trained staff, and made great progress in managing radioactive wastes and decommissioning Iraq's former nuclear facilities. This progress has been made, despite the very difficult implementing conditions in Iraq. Within MoST, the Radioactive Waste Treatment and Management Directorate (RWTMD) is responsible for waste management and the Iraqi Decommissioning Directorate (IDD) is responsible for decommissioning activities. The IDD and the RWTMD work together on decommissioning projects. The IDD has developed plans and has completed decommissioning of the GeoPilot Facility in Baghdad and the Active Metallurgical Testing Laboratory (LAMA) in Al-Tuwaitha. Given this experience, the IDD has initiated work on more dangerous facilities. Plans are being developed to characterize, decontaminate and decommission the Tamuz II Research Reactor. The Tammuz Reactor was destroyed by an Israeli air-strike in 1981 and the Tammuz II Reactor was destroyed during the First Gulf War in 1991. In addition to being responsible for managing the decommissioning wastes, the RWTMD is responsible for more than 950 disused sealed radioactive sources, contaminated debris from the first Gulf War and (approximately 900 tons) of naturally-occurring radioactive materials wastes from oil production in Iraq. The RWTMD has trained staff, rehabilitated the Building 39 Radioactive Waste Storage building, rehabilitated portions of the French-built Radioactive Waste Treatment Station, organized and secured thousands of drums of radioactive waste organized and secured the stores of disused sealed radioactive sources. Currently, the IDD and the RWTMD are finalizing plans for the decommissioning of the Tammuz II Research Reactor. (authors)

Al-Musawi, Fouad; Shamsaldin, Emad S.; Jasim, Hadi [Ministry of Science and Technology (MoST), Al-Jadraya, P.O. Box 0765, Baghdad (Iraq)] [Ministry of Science and Technology (MoST), Al-Jadraya, P.O. Box 0765, Baghdad (Iraq); Cochran, John R. [Sandia National Laboratories1, New Mexico, Albuquerque New Mexico 87185 (United States)] [Sandia National Laboratories1, New Mexico, Albuquerque New Mexico 87185 (United States)

2013-07-01T23:59:59.000Z

227

Determination of Dose from the Disposal of Radioactive Waste Related with TENORM using Residual Radioactivity (RESRAD) Monte Carlo Code  

SciTech Connect (OSTI)

The working procedures in the RESRAD for specific evaluations of environmental pollutants are briefly mentioned. The risk of human health associated with Naturally Occurring Radioactive Materials (NORM) who are working in the Malaysian oil and gas industry are analyzed. The sources of NORM and Technologically Enhanced NORM (TENORM) in the oil and gas industry are described. Some measurements for the external and internal effective dose equivalent on the workers will be described. These data are entered into the RESRAD software program and the output reports are taken. Long-term effects of TENORM to the industrial workers are also discussed with graphical illustrations. These results are compared with previous research work within the same field to validate and verify.

Lwin, Maung Tin Moe; Kassim, Hassan Abu; Amin, Yusoff Mohd. [Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lampur (Malaysia)

2008-05-20T23:59:59.000Z

228

Radioactive Waste Management Manual  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. The purpose of the Manual is to catalog those procedural requirements and existing practices that ensure that all DOE elements and contractors continue to manage DOE's radioactive waste in a manner that is protective of worker and public health and safety, and the environment. Does not cancel other directives.

1999-07-09T23:59:59.000Z

229

RADIOACTIVE ELEMENT REMOVAL FROM WATER USING GRAPHENE OXIDE (GO)  

E-Print Network [OSTI]

and may release significant amounts of radioactive material into the environment resulting in the potential for widespread exposure. These industries include mining, phosphate processing, metal ore processing, heavy mineral sand processing, titanium...

Concklin, Joshua Paul

2013-12-19T23:59:59.000Z

230

Appraisal of a cementitious material for waste disposal: Neutron imaging studies of pore structure and sorptivity  

SciTech Connect (OSTI)

Cementitious materials are conventionally used in conditioning intermediate and low level radioactive waste. In this study a candidate cement-based wasteform has been investigated using neutron imaging to characterise the wasteform for disposal in a repository for radioactive materials. Imaging showed both the pore size distribution and the extent of the cracking that had occurred in the samples. The rate of the water penetration measured both by conventional sorptivity measurements and neutron imaging was greater than in pastes made from Ordinary Portland Cement. The ability of the cracks to distribute the water through the sample in a very short time was also evident. The study highlights the significant potential of neutron imaging in the investigation of cementitious materials. The technique has the advantage of visualising and measuring, non-destructively, material distribution within macroscopic samples and is particularly useful in defining movement of water through the cementitious materials.

McGlinn, Peter J., E-mail: pjm@ansto.gov.a [Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234 (Australia); Beer, Frikkie C. de [South African Nuclear Energy Corporation (Necsa), Church Street West Extension, Pelindaba, Brits District, Pretoria 0001 (South Africa); Aldridge, Laurence P. [Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234 (Australia); Radebe, Mabuti J.; Nshimirimana, Robert [South African Nuclear Energy Corporation (Necsa), Church Street West Extension, Pelindaba, Brits District, Pretoria 0001 (South Africa); Brew, Daniel R.M.; Payne, Timothy E.; Olufson, Kylie P. [Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234 (Australia)

2010-08-15T23:59:59.000Z

231

Modelling of long-term diffusionreaction in a bentonite barrier for radioactive waste confinement  

E-Print Network [OSTI]

Modelling of long-term diffusion­reaction in a bentonite barrier for radioactive waste confinement in geological disposal facilities for radioactive waste. This material is expected to fill up by swelling transformations; Solute diffusion 1. Introduction The radioactive waste confinement in deep geolo- gical laye

Montes-Hernandez, German

232

Investigations to site a radioactive waste repository in Cumbria: Evidence against proceeding to MRWS Stage 4  

E-Print Network [OSTI]

Investigations to site a radioactive waste repository in Cumbria: Evidence against proceeding to MRWS Stage 4 Radioactive waste repository in Cumbria: Evidence against proceeding to MRWS Stage 4 s the UK radioactive waste legacy comprises difficult material which is complex, of mixed origin

233

Indirect Estimation of Radioactivity in Containerized Cargo  

SciTech Connect (OSTI)

Detecting illicit nuclear and radiological material in containerized cargo challenges the state of the art in detection systems. Current systems are being evaluated and new systems envisioned to address the need for the high probability of detection and extremely low false alarm rates necessary to thwart potential threats and extremely low nuisance and false alarm rates while maintaining necessary to maintain the flow of commerce impacted by the enormous volume of commodities imported in shipping containers. Maintaining flow of commerce also means that primary inspection must be rapid, requiring relatively indirect measurements of cargo from outside the containers. With increasing information content in such indirect measurements, it is natural to ask how the information might be combined to improved detection. Toward this end, we present an approach to estimating isotopic activity of naturally occurring radioactive material in cargo grouped by commodity type, combining container manifest data with radiography and gamma spectroscopy aligned to location along the container. The heart of this approach is our statistical model of gamma counts within peak regions of interest, which captures the effects of background suppression, counting noise, convolution of neighboring cargo contributions, and down-scattered photons to provide physically constrained estimates of counts due to decay of specific radioisotopes in cargo alone. Coupled to that model, we use a mechanistic model of self-attenuated radiation flux to estimate the isotopic activity within cargo, segmented by location within each container, that produces those counts. We demonstrate our approach by applying it to a set of measurements taken at the Port of Seattle in 2006. This approach to synthesizing disparate available data streams and extraction of cargo characteristics holds the potential to improve primary inspection using current detection capabilities and to enable simulation-based evaluation of new candidate detection systems.

Jarman, Kenneth D.; Scherrer, Chad; Smith, Eric L.; Chilton, Lawrence; Anderson, K. K.; Ressler, Jennifer J.; Trease, Lynn L.

2011-01-01T23:59:59.000Z

234

E-Print Network 3.0 - alkaline radioactive liquid Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

with Conventional Uranium Milling Introduction Summary: Radioactive Materials from Uranium Mining. Volume 1: Mining and Reclamation Background" by U.S. EPA (2006... as an...

235

Puncture detecting barrier materials  

DOE Patents [OSTI]

A method and apparatus for continuous real-time monitoring of the integrity of protective barrier materials, particularly protective barriers against toxic, radioactive and biologically hazardous materials has been developed. Conductivity, resistivity or capacitance between conductive layers in the multilayer protective materials is measured by using leads connected to electrically conductive layers in the protective barrier material. The measured conductivity, resistivity or capacitance significantly changes upon a physical breach of the protective barrier material. 4 figs.

Hermes, R.E.; Ramsey, D.R.; Stampfer, J.F.; Macdonald, J.M.

1998-03-31T23:59:59.000Z

236

New York State low-level radioactive waste status report for 1998  

SciTech Connect (OSTI)

This report summarizes data on low-level radioactive waste (LLRW) generated in New York State: it is based on reports from generators that must be filed annually with the New York State Energy Research and Development Authority (NYSERDA) and on data from the US Department of Energy (US DOE). The New York State Low-Level Radioactive Waste Management Act (State Act) requires LLRW generators in the State to submit annual reports detailing the classes and quantities of waste generated. This is the 13th year generators have been required to submit these reports to NYSERDA. The data are summarized in a series of tables and figures. There are four sections in the report. Section 1 covers volume, activity, and other characteristics of waste shipped for disposal in 1998. Activity is the measure of a material`s radioactivity, or the number of radiation-emitting events occurring each second. Section 2 summarizes volume, activity, and other characteristics of waste held for storage as of December 31, 1998. Section 3 shows historical LLRW generation and includes generators` projections for the next five years. Section 4 provides a list, by county, of all facilities from which 1998 LLRW reports were received. 2 figs., 23 tabs.

Voelk, H.

1999-06-01T23:59:59.000Z

237

Dynamic radioactive particle source  

DOE Patents [OSTI]

A method and apparatus for providing a timed, synchronized dynamic alpha or beta particle source for testing the response of continuous air monitors (CAMs) for airborne alpha or beta emitters is provided. The method includes providing a radioactive source; placing the radioactive source inside the detection volume of a CAM; and introducing an alpha or beta-emitting isotope while the CAM is in a normal functioning mode.

Moore, Murray E.; Gauss, Adam Benjamin; Justus, Alan Lawrence

2012-06-26T23:59:59.000Z

238

Radioactive Waste Management Manual  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. Change 1 dated 6/19/01 removes the requirement that Headquarters is to be notified and the Office of Environment, Safety and Health consulted for exemptions for use of non-DOE treatment facilities. Certified 1-9-07.

1999-07-09T23:59:59.000Z

239

C-1 1999 SITE ENVIRONMENTAL REPORT APPENDIX C: CONCEPTS OF RADIOACTIVITY  

E-Print Network [OSTI]

occurring radioactive elements such as radon emit alpha radiation. BETA Beta radiation is composed and Lucite panels. They have a range in air of several feet. Naturally occur- ring radioactive elements and radiation are part of the earth's natural environment. Human beings are exposed to radiation from a variety

240

Concluding Remarks In this work, we have explored in depth many types of radioactive contamination that are  

E-Print Network [OSTI]

Concluding Remarks In this work, we have explored in depth many types of radioactive contamination as radiopurity testing facilities, capable of measuring the radioactivity levels of materials to be used

Note: This page contains sample records for the topic "occurring radioactive materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Radioactive tank waste remediation focus area  

SciTech Connect (OSTI)

EM`s Office of Science and Technology has established the Tank Focus Area (TFA) to manage and carry out an integrated national program of technology development for tank waste remediation. The TFA is responsible for the development, testing, evaluation, and deployment of remediation technologies within a system architecture to characterize, retrieve, treat, concentrate, and dispose of radioactive waste stored in the underground stabilize and close the tanks. The goal is to provide safe and cost-effective solutions that are acceptable to both the public and regulators. Within the DOE complex, 335 underground storage tanks have been used to process and store radioactive and chemical mixed waste generated from weapon materials production and manufacturing. Collectively, thes tanks hold over 90 million gallons of high-level and low-level radioactive liquid waste in sludge, saltcake, and as supernate and vapor. Very little has been treated and/or disposed or in final form.

NONE

1996-08-01T23:59:59.000Z

242

Wide range radioactive gas concentration detector  

DOE Patents [OSTI]

A wide range radioactive gas concentration detector and monitor which is capable of measuring radioactive gas concentrations over a range of eight orders of magnitude. The device of the present invention is designed to have an ionization chamber which is sufficiently small to give a fast response time for measuring radioactive gases but sufficiently large to provide accurate readings at low concentration levels. Closely spaced parallel plate grids provide a uniform electric field in the active region to improve the accuracy of measurements and reduce ion migration time so as to virtually eliminate errors due to ion recombination. The parallel plate grids are fabricated with a minimal surface area to reduce the effects of contamination resulting from absorption of contaminating materials on the surface of the grids. Additionally, the ionization chamber wall is spaced a sufficient distance from the active region of the ionization chamber to minimize contamination effects.

Anderson, David F. (Los Alamos, NM)

1984-01-01T23:59:59.000Z

243

The Use of Energy Information in Plastic Scintillator Material  

SciTech Connect (OSTI)

Plastic scintillator material is often used for gamma-ray detection in many applications due to its relatively good sensitivity and cost-effectiveness compared to other detection materials. However, due to the dominant Compton scattering interaction mechanism, full energy peaks are not observed in plastic scintillator spectra and isotopic identification is impossible. Typically plastic scintillator detectors are solely gross count detectors. In some safeguards and security applications, such as radiation portal monitors for vehicle screening, naturally-occurring radioactive material (NORM) often triggers radiation alarms and results in innocent or nuisance alarms. The limited energy information from plastic scintillator material can be used to discriminate the NORM from targeted materials and reduce the nuisance alarm rate. An overview of the utilization of the energy information from plastic scintillator material will be presented, with emphasis on the detection capabilities and potential limitations for safeguards and security applications. (PIET-43741-TM-490)

Ely, James H.; Anderson, Kevin K.; Bates, Derrick J.; Kouzes, Richard T.; Lopresti, Charles A.; Runkle, Robert C.; Siciliano, Edward R.; Weier, Dennis R.

2008-06-15T23:59:59.000Z

244

Public involvement in radioactive waste management decisions  

SciTech Connect (OSTI)

Current repository siting efforts focus on Yucca Mountain, Nevada, where DOE`s Office of Civilian Radioactive Waste Management (OCRWM) is conducting exploratory studies to determine if the site is suitable. The state of Nevada has resisted these efforts: it has denied permits, brought suit against DOE, and publicly denounced the federal government`s decision to study Yucca Mountain. The state`s opposition reflects public opinion in Nevada, and has considerably slowed DOE`s progress in studying the site. The Yucca Mountain controversy demonstrates the importance of understanding public attitudes and their potential influence as DOE develops a program to manage radioactive waste. The strength and nature of Nevada`s opposition -- its ability to thwart if not outright derail DOE`s activities -- indicate a need to develop alternative methods for making decisions that affect the public. This report analyzes public participation as a key component of this openness, one that provides a means of garnering acceptance of, or reducing public opposition to, DOE`s radioactive waste management activities, including facility siting and transportation. The first section, Public Perceptions: Attitudes, Trust, and Theory, reviews the risk-perception literature to identify how the public perceives the risks associated with radioactivity. DOE and the Public discusses DOE`s low level of credibility among the general public as the product, in part, of the department`s past actions. This section looks at the three components of the radioactive waste management program -- disposal, storage, and transportation -- and the different ways DOE has approached the problem of public confidence in each case. Midwestern Radioactive Waste Management Histories focuses on selected Midwestern facility-siting and transportation activities involving radioactive materials.

NONE

1994-04-01T23:59:59.000Z

245

Radioactivity in food crops  

SciTech Connect (OSTI)

Published levels of radioactivity in food crops from 21 countries and 4 island chains of Oceania are listed. The tabulation includes more than 3000 examples of 100 different crops. Data are arranged alphabetically by food crop and geographical origin. The sampling date, nuclide measured, mean radioactivity, range of radioactivities, sample basis, number of samples analyzed, and bibliographic citation are given for each entry, when available. Analyses were reported most frequently for /sup 137/Cs, /sup 40/K, /sup 90/Sr, /sup 226/Ra, /sup 228/Ra, plutonium, uranium, total alpha, and total beta, but a few authors also reported data for /sup 241/Am, /sup 7/Be, /sup 60/Co, /sup 55/Fe, /sup 3/H, /sup 131/I, /sup 54/Mn, /sup 95/Nb, /sup 210/Pb, /sup 210/Po, /sup 106/Ru, /sup 125/Sb, /sup 228/Th, /sup 232/Th, and /sup 95/Zr. Based on the reported data it appears that radioactivity from alpha emitters in food crops is usually low, on the order of 0.1 Bq.g/sup -1/ (wet weight) or less. Reported values of beta radiation in a given crop generally appear to be several orders of magnitude greater than those of alpha emitters. The most striking aspect of the data is the great range of radioactivity reported for a given nuclide in similar food crops with different geographical origins.

Drury, J.S.; Baldauf, M.F.; Daniel, E.W.; Fore, C.S.; Uziel, M.S.

1983-05-01T23:59:59.000Z

246

Hazardous Material Packaging for Transport - Administrative Procedures  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establ1sh administrative procedures for the certification and use of radioactive and other hazardous materials packaging by the Department of Energy (DOE).

1986-09-30T23:59:59.000Z

247

Radioactive mixed waste disposal  

SciTech Connect (OSTI)

Various types of waste have been generated during the 50-year history of the Hanford Site. Regulatory changes in the last 20 years have provided the emphasis for better management of these wastes. Interpretations of the Atomic Energy Act of 1954 (AEA), the Resource Conservation and Recovery Act of 1976 (RCRA), and the Hazardous and Solid Waste Amendments (HSWA) have led to the definition of radioactive mixed wastes (RMW). The radioactive and hazardous properties of these wastes have resulted in the initiation of special projects for the management of these wastes. Other solid wastes at the Hanford Site include low-level wastes, transuranic (TRU), and nonradioactive hazardous wastes. This paper describes a system for the treatment, storage, and disposal (TSD) of solid radioactive waste.

Jasen, W.G.; Erpenbeck, E.G.

1993-02-01T23:59:59.000Z

248

Radioactive Waste Management Manual  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. Change 1 dated 6/19/01 removes the requirement that Headquarters is to be notified and the Office of Environment, Safety and Health consulted for exemptions for use of non-DOE treatment facilities. Certified 1-9-07. Admin Chg 2, dated 6-8-11, cancels DOE M 435.1-1 Chg 1.

1999-07-09T23:59:59.000Z

249

Radioactive Waste Management  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The objective of this Order is to ensure that all Department of Energy (DOE) radioactive waste is managed in a manner that is protective of worker and public health and safety and the environment. Cancels DOE O 5820.2A

1999-07-09T23:59:59.000Z

250

Sealed Radioactive Source Accountability  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish Department of Energy (DOE) interim policy and to provide guidance for sealed radioactive source accountability. The directive does not cancel any directives. Extended by DOE N 5400.10 to 12-24-93 & Extended by DOE N 5400.12 to 12-24-94.

1991-12-24T23:59:59.000Z

251

Radioactive Waste Management  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The objective of this Order is to ensure that all Department of Energy (DOE) radioactive waste is managed in a manner that is protective of worker and public health and safety and the environment. Cancels DOE O 5820.2A. Chg 1 dated 8-28-01. Certified 1-9-07.

1999-07-09T23:59:59.000Z

252

Sealed Radioactive Source Accountability  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Notice extends DOE N 5400.9, Sealed Radioactive Source Accountability, of 12-24-91, until 12-24-95, unless sooner superseded or rescinded. The contents of DOE N 5400.9 will be updated and incorporated in the revised DOE O 5480.11, Radiation Protection for Occupational Workers.

1994-12-22T23:59:59.000Z

253

Radioactive contamination of the Arctic Region, Baltic Sea, and the Sea of Japan from activities in the former Soviet Union  

SciTech Connect (OSTI)

Contamination of the Arctic regions of northern Europe and Russia, as well as the Sea of Japan, may become a potential major hazard to the ecosystem of these large areas. Widespread poor radioactive waste management practices from nuclear fuel cycle activities in the former Soviet Union have resulted in direct discharges to this area as well as multiple sources that may continue to release additional radioactivity. Information on the discharges of radioactive materials has become more commonplace in the last year, and a clearer picture is emerging of the scale of the contamination. Radioactivity in the Arctic oceans is now reported to be four times higher than would be derived from fallout from weapons tests. Although the characteristics and extent of the contamination are not well known, it has been stated that the contamination in the Arctic may range from 1 to 3.5 billion curies. As yet, no scientific sampling or measurement program has occurred that can verify the amount or extent of the contamination, or its potential impact on the ecosystem.

Bradley, D.J.

1992-09-01T23:59:59.000Z

254

Nanostructured magnetic materials  

E-Print Network [OSTI]

Magnetism and Magnetic Materials Conference, Atlanta, GA (Nanostructured Magnetic Materials by Keith T. Chan Doctor ofinduced by a Si-based material occurs at a Si/Ni interface

Chan, Keith T.

2011-01-01T23:59:59.000Z

255

Radioactive Contamination of Danish Territory  

E-Print Network [OSTI]

Risø-R-462 Radioactive Contamination of Danish Territory after Core-melt Accidents at the Barsebäck;#12;RIS0-R-462 RADIOACTIVE CONTAMINATION OF DANISH TERRITORY AFTER CORE-MELT ACCIDENTS AT THE BARSEBACK. An assessment is made of the radioactive contamination of Danish territory in the event of a core-melt accident

256

Radioactive Contamination of Danish Territory  

E-Print Network [OSTI]

» & Risø-R-462 Radioactive Contamination of Danish Territory after Core-melt Accidents 1982 Risø National Laboratory, DK-4000 Roskilde, Denmark #12;RIS?-R-462 RADIOACTIVE CONTAMINATION. Heikel Vinther, L. Warming and A. Aarkrog Abstract. An assessment is made of the radioactive

257

Low-level radioactive waste regulation: Science, politics and fear  

SciTech Connect (OSTI)

An inevitable consequence of the use of radioactive materials is the generation of radioactive wastes and the public policy debate over how they will be managed. In 1980, Congress shifted responsibility for the disposal of low-level radioactive wastes from the federal government to the states. This act represented a sharp departure from more than 30 years of virtually absolute federal control over radioactive materials. Though this plan had the enthusiastic support of the states in 1980, it now appears to have been at best a chimera. Radioactive waste management has become an increasingly complicated and controversial issue for society in recent years. This book discusses only low-level wastes, however, because Congress decided for political reasons to treat them differently than high-level wastes. The book is based in part on three symposia sponsored by the division of Chemistry and the Law of the American Chemical Society. Each chapter is derived in full or in part from presentations made at these meetings, and includes: (1) Low-level radioactive wastes in the nuclear power industry; (2) Low-level radiation cancer risk assessment and government regulation to protect public health; and (3) Low-level radioactive waste: can new disposal sites be found.

Burns, M.E. (ed.)

1988-01-01T23:59:59.000Z

258

Hanford Double-Shell Tank AY-102 Radioactive Waste Leak Investigation Update - 15302  

SciTech Connect (OSTI)

Tank AY-102 was the first of 28 double-shell radioactive waste storage tanks constructed at the U. S. Department of Energys Hanford Site, near Richland, WA. The tank was completed in 1970, and entered service in 1971. In August, 2012, an accumulation of material was discovered at two sites on the floor of the annulus that separates the primary tank from the secondary liner. The material was sampled and determined to originate from the primary tank. This paper summarizes the changes in leak behavior that have occurred during the past two years, inspections to determine the capability of the secondary liner to continue safely containing the leakage, and the initial results of testing to determine the leak mechanism.

Washenfelder, D. J.; Johnson, J. M.

2014-12-22T23:59:59.000Z

259

Characterization of naturally occurring porous media  

E-Print Network [OSTI]

characteristics of natural occur- ring porous media, The gR /K dimensionless ratio is related to the minimum water saturation in the reverse manner as is permeability. REFERENCES Wyllie, M. R. J. and M. B. Spangler: Application of Electrical Resistivity...: Resistivity of Brine-Saturated Sands in Relation to Pore Seometry. Cornell, D. snd D. L. Kstz: Flow of Sases through Consolidated Porous Media. Industrial and En ineeri hemietr (October 1953) Vo . 5, p. 21 5. Leverett, N, C. : Capillary Behavior...

Riley, Robert Daniel

1965-01-01T23:59:59.000Z

260

THE USE OF POLYMERS IN RADIOACTIVE WASTE PROCESSING SYSTEMS  

SciTech Connect (OSTI)

The Savannah River Site (SRS), one of the largest U.S. Department of Energy (DOE) sites, has operated since the early 1950s. The early mission of the site was to produce critical nuclear materials for national defense. Many facilities have been constructed at the SRS over the years to process, stabilize and/or store radioactive waste and related materials. The primary materials of construction used in such facilities are inorganic (metals, concrete), but polymeric materials are inevitably used in various applications. The effects of aging, radiation, chemicals, heat and other environmental variables must therefore be understood to maximize service life of polymeric components. In particular, the potential for dose rate effects and synergistic effects on polymeric materials in multivariable environments can complicate compatibility reviews and life predictions. The selection and performance of polymeric materials in radioactive waste processing systems at the SRS are discussed.

Skidmore, E.; Fondeur, F.

2013-04-15T23:59:59.000Z

Note: This page contains sample records for the topic "occurring radioactive materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

B-1 2002 SITE ENVIRONMENTAL REPORT APPENDIX B: CONCEPTS OF RADIOACTIVITY  

E-Print Network [OSTI]

such as aluminum foil and Lucite panels. They have a range in air of several feet. Naturally occurring radioactive OF RADIATION Radioactivity and radiation are part of the earths natural environment. Human beings are exposed in the environment, and how they contribute to an individuals radiation dose are provided. Some gen- eral statistical

Homes, Christopher C.

262

Membrane Treatment of Liquid Salt Bearing Radioactive Wastes  

SciTech Connect (OSTI)

The main fields of introduction and application of membrane methods for preliminary treatment and processing salt liquid radioactive waste (SLRW) can be nuclear power stations (NPP) and enterprises on atomic submarines (AS) utilization. Unlike the earlier developed technology for the liquid salt bearing radioactive waste decontamination and concentrating this report presents the new enhanced membrane technology for the liquid salt bearing radioactive waste processing based on the state-of-the-art membrane unit design, namely, the filtering units equipped with the metal-ceramic membranes of ''TruMem'' brand, as well as the electrodialysis and electroosmosis concentrators. Application of the above mentioned units in conjunction with the pulse pole changer will allow the marked increase of the radioactive waste concentrating factor and the significant reduction of the waste volume intended for conversion into monolith and disposal. Besides, the application of the electrodialysis units loaded with an ion exchange material at the end polishing stage of the radioactive waste decontamination process will allow the reagent-free radioactive waste treatment that meets the standards set for the release of the decontaminated liquid radioactive waste effluents into the natural reservoirs of fish-farming value.

Dmitriev, S. A.; Adamovich, D. V.; Demkin, V. I.; Timofeev, E. M.

2003-02-25T23:59:59.000Z

263

Solar Powered Radioactive Air Monitoring Stations  

SciTech Connect (OSTI)

Environmental monitoring of ambient air for radioactive material is required as stipulated in the PNNL Site radioactive air license. Sampling ambient air at identified preferred locations could not be initially accomplished because utilities were not readily available. Therefore, solar powered environmental monitoring systems were considered as a possible option. PNNL purchased two 24-V DC solar powered environmental monitoring systems which consisted of solar panels, battery banks, and sampling units. During an approximate four month performance evaluation period, the solar stations operated satisfactorily at an on-site test location. They were subsequently relocated to their preferred locations in June 2012 where they continue to function adequately under the conditions found in Richland, Washington.

Barnett, J. M.; Bisping, Lynn E.; Gervais, Todd L.

2013-10-30T23:59:59.000Z

264

Radioactive waste management strategy in the Republic of Croatia  

SciTech Connect (OSTI)

Environmental preservation and human health protection have been proclaimed by the Croatian Government as priority actions. Hence, all organized actions toward this aim are expected to be supported by the State. Radioactive waste management plays a significant role in controlling materials that could harm the environment. Strategy in handling radioactive wastes is a prerequisite for well-organized radwaste management. It should be applied to all radioactive wastes that have already been produced in various industries, medical institutions, and scientific laboratories. Additionally, radioactive wastes that are being generated in the Krsko NPP must not be neglected, as well as possible future nuclear program needs in Croatia. For all considered actions, world-wide experiences and safety requirements should be strictly respected.

Subasic, D.; Saler, A.; Skanata, D. [Javno poduzece za zbrinjavanje radioaktivnog otpada, Zagreb (Croatia)

1993-12-31T23:59:59.000Z

265

Astrophysics experiments with radioactive beams at ATLAS  

SciTech Connect (OSTI)

Reactions involving short-lived nuclei play an important role in nuclear astrophysics, especially in explosive scenarios which occur in novae, supernovae or X-ray bursts. This article describes the nuclear astrophysics program with radioactive ion beams at the ATLAS accelerator at Argonne National Laboratory. The CARIBU facility as well as recent improvements for the in-flight technique are discussed. New detectors which are important for studies of the rapid proton or the rapid neutron-capture processes are described. At the end we briefly mention plans for future upgrades to enhance the intensity, purity and the range of in-flight and CARIBU beams.

Back, B. B.; Clark, J. A.; Pardo, R. C.; Rehm, K. E., E-mail: rehm@anl.gov; Savard, G. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States)] [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States)

2014-04-15T23:59:59.000Z

266

E-Print Network 3.0 - alpha radioactivity measurement Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SITE ENVIRONMENTAL REPORT4-1 Summary: a range in air of only an inch or so. Naturally occurring radioactive elements such as radon emit alpha... . This is a measure of the rate at...

267

Nipah virus entry can occur by macropinocytosis  

SciTech Connect (OSTI)

Nipah virus (NiV) is a zoonotic biosafety level 4 paramyxovirus that emerged recently in Asia with high mortality in man. NiV is a member, with Hendra virus (HeV), of the Henipavirus genus in the Paramyxoviridae family. Although NiV entry, like that of other paramyxoviruses, is believed to occur via pH-independent fusion with the host cell's plasma membrane we present evidence that entry can occur by an endocytic pathway. The NiV receptor ephrinB2 has receptor kinase activity and we find that ephrinB2's cytoplasmic domain is required for entry but is dispensable for post-entry viral spread. The mutation of a single tyrosine residue (Y304F) in ephrinB2's cytoplasmic tail abrogates NiV entry. Moreover, our results show that NiV entry is inhibited by constructions and drugs specific for the endocytic pathway of macropinocytosis. Our findings could potentially permit the rapid development of novel low-cost antiviral treatments not only for NiV but also HeV.

Pernet, Olivier; Pohl, Christine; Ainouze, Michelle; Kweder, Hasan [Molecular Basis of Paramyxovirus Entry, INSERM U758 Virologie Humaine IFR 128 BioSciences Gerland-Lyon Sud, 21 Avenue Tony Garnier, 69365 Lyon Cedex 07 (France); Buckland, Robin, E-mail: robin.buckland@inserm.f [Molecular Basis of Paramyxovirus Entry, INSERM U758 Virologie Humaine IFR 128 BioSciences Gerland-Lyon Sud, 21 Avenue Tony Garnier, 69365 Lyon Cedex 07 (France)

2009-12-20T23:59:59.000Z

268

RSSC RADIOACTIVE WASTE DISPOSAL 08/2011 7-1 RADIOACTIVE WASTE DISPOSAL  

E-Print Network [OSTI]

RSSC RADIOACTIVE WASTE DISPOSAL 08/2011 7-1 CHAPTER 7 RADIOACTIVE WASTE DISPOSAL PAGE I. Radioactive Waste Disposal ............................................................................................ 7-2 II. Radiation Control Technique #2 Instructions for Preparation of Radioactive Waste

Slatton, Clint

269

Vibrational Damping of Composite Materials  

E-Print Network [OSTI]

the damping material and epoxy resin. The surface of theinfiltration of the epoxy resin into the damping materialthe damping material and resin (epoxy) is occurring and is

Biggerstaff, Janet M.

2006-01-01T23:59:59.000Z

270

Standard practice for prediction of the long-term behavior of materials, including waste forms, used in engineered barrier systems (EBS) for geological disposal of high-level radioactive waste  

E-Print Network [OSTI]

1.1 This practice describes test methods and data analyses used to develop models for the prediction of the long-term behavior of materials, such as engineered barrier system (EBS) materials and waste forms, used in the geologic disposal of spent nuclear fuel (SNF) and other high-level nuclear waste in a geologic repository. The alteration behavior of waste form and EBS materials is important because it affects the retention of radionuclides by the disposal system. The waste form and EBS materials provide a barrier to release either directly (as in the case of waste forms in which the radionuclides are initially immobilized), or indirectly (as in the case of containment materials that restrict the ingress of groundwater or the egress of radionuclides that are released as the waste forms and EBS materials degrade). 1.1.1 Steps involved in making such predictions include problem definition, testing, modeling, and model confirmation. 1.1.2 The predictions are based on models derived from theoretical considerat...

American Society for Testing and Materials. Philadelphia

2007-01-01T23:59:59.000Z

271

CHERNOBYL DATA BASE ENVIRONMENTAL RADIOACTIVITY  

E-Print Network [OSTI]

MAY 1990 THE NORDIC CHERNOBYL DATA BASE ENVIRONMENTAL RADIOACTIVITY MEASUREMENTS Nordic liaison CHERNOBYL DATA BASE ENVIRONMENTAL RADIOACTIVITY MEASUREMENTS Final Report of the NKA Project AKT 242 Edited the members of the working group. Graphic Systems AB, Malmo 1990 #12;111 ABSTRACT. The NORDIC CHERNOBYL DATA

272

Enclosure 3 DOE Response to EPA Question Regarding "High-Level Liquid Radioactive Waste"  

E-Print Network [OSTI]

to date, which is from the definitions in the Nuclear Waste Policy Act: The term "high-level radioactive waste" means-- (A) the highly radioactive material resulting from the reprocessing of spent nuclear fuel of waste streams as from the applicable definition of HLW in the Nuclear Waste Policy Act. 5/11/20051 #12

273

Bonded carbon or ceramic fiber composite filter vent for radioactive waste  

DOE Patents [OSTI]

Carbon bonded carbon fiber composites as well as ceramic or carbon bonded ceramic fiber composites are very useful as filters which can separate particulate matter from gas streams entraining the same. These filters have particular application to the filtering of radioactive particles, e.g., they can act as vents for containers of radioactive waste material.

Brassell, Gilbert W. (13237 W. 8th Ave., Golden, CO 80401); Brugger, Ronald P. (Lafayette, CO)

1985-02-19T23:59:59.000Z

274

Radioactive waste management in the former USSR  

SciTech Connect (OSTI)

Radioactive waste materials--and the methods being used to treat, process, store, transport, and dispose of them--have come under increased scrutiny over last decade, both nationally and internationally. Nuclear waste practices in the former Soviet Union, arguably the world's largest nuclear waste management system, are of obvious interest and may affect practices in other countries. In addition, poor waste management practices are causing increasing technical, political, and economic problems for the Soviet Union, and this will undoubtedly influence future strategies. this report was prepared as part of a continuing effort to gain a better understanding of the radioactive waste management program in the former Soviet Union. the scope of this study covers all publicly known radioactive waste management activities in the former Soviet Union as of April 1992, and is based on a review of a wide variety of literature sources, including documents, meeting presentations, and data base searches of worldwide press releases. The study focuses primarily on nuclear waste management activities in the former Soviet Union, but relevant background information on nuclear reactors is also provided in appendixes.

Bradley, D.J.

1992-06-01T23:59:59.000Z

275

Radioactivity in Food and the Environment, 2009  

E-Print Network [OSTI]

................................................................................................................22 1.2.1 Radioactive waste disposal from nuclear sites ............................................................................................................................22 1.2 Disposals of radioactive waste ..............................................................................................................27 1.2.5 Solid radioactive waste disposal at sea

276

Radioactivity in Food and the Environment, 2006  

E-Print Network [OSTI]

................................................................................................................22 1.2.1 Radioactive waste disposal from nuclear sites .............................................................................................................................22 1.2 Disposals of radioactive waste.......................................................................................................25 1.2.5 Solid radioactive waste disposal at sea

277

Particle beam generator using a radioactive source  

DOE Patents [OSTI]

The apparatus of the present invention selects from particles emitted by a radioactive source those particles having momentum within a desired range and focuses the selected particles in a beam having at least one narrow cross-dimension, and at the same time attenuates potentially disruptive gamma rays and low energy particles. Two major components of the present invention are an achromatic bending and focusing system, which includes sector magnets and quadrupole, and a quadrupole doublet final focus system. Permanent magnets utilized in the apparatus are constructed of a ceramic (ferrite) material which is inexpensive and easily machined.

Underwood, David G. (Naperville, IL)

1993-01-01T23:59:59.000Z

278

Particle beam generator using a radioactive source  

DOE Patents [OSTI]

The apparatus of the present invention selects from particles emitted by a radioactive source those particles having momentum within a desired range and focuses the selected particles in a beam having at least one narrow cross-dimension, and at the same time attenuates potentially disruptive gamma rays and low energy particles. Two major components of the present invention are an achromatic bending and focusing system, which includes sector magnets and quadrupole, and a quadrupole doublet final focus system. Permanent magnets utilized in the apparatus are constructed of a ceramic (ferrite) material which is inexpensive and easily machined.

Underwood, D.G.

1993-03-30T23:59:59.000Z

279

Summary of radioactive solid waste received in the 200 Areas during calendar year 1992  

SciTech Connect (OSTI)

Westinghouse Hanford Company manages and operates the Hanford Site 200 Area radioactive solid waste storage and disposal facilities for the US Department of Energy, Richland Field Office, under contract DE-AC06-87RL10930. These facilities include radioactive solid waste disposal sites and radioactive solid waste storage areas. This document summarizes the amount of radioactive materials that have been buried and stored in the 200 Area radioactive solid waste storage and disposal facilities since startup in 1944 through calendar year 1991. This report does not include solid radioactive wastes in storage or disposed of in other areas or facilities such as the underground tank farms, or backlog wastes. Unless packaged within the scope of WHC-EP-0063, Hanford Site Solid Waste Acceptance Criteria, (WHC 1988), liquid waste data are not included in this document.

Anderson, J.D.; Hagel, D.L.

1992-05-01T23:59:59.000Z

280

Summary of radioactive solid waste received in the 200 Areas during calendar year 1994  

SciTech Connect (OSTI)

Westinghouse Hanford Company manages and operates the Hanford Site 200 Area radioactive solid waste storage and disposal facilities for the US Department of Energy, Richland Field Office, under contract DE-AC06-87RL10930. These facilities include radioactive solid waste disposal sites and radioactive solid waste storage areas. This document summarizes the amount of radioactive material that has been buried and stored in the 200 Area radioactive solid waste storage and disposal facilities from startup in 1944 through calendar year 1994. This report does not include backlog waste: solid radioactive wastes in storage or disposed of in other areas or facilities such as the underground tank farms. Unless packaged within the scope of WHC-EP-0063, Hanford Site Solid Waste Acceptance Criteria (WHC 1988), liquid waste data are not included in this document.

Anderson, J.D.; Hagel, D.L.

1995-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "occurring radioactive materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Summary of radioactive solid waste received in the 200 Areas during calendar year 1993  

SciTech Connect (OSTI)

Westinghouse Hanford Company manages and operates the Hanford Site 200 Areas radioactive solid waste storage and disposal facilities for the US Department of Energy, Richland Operations Office. These facilities include radioactive solid waste disposal sites and radioactive solid waste storage areas. This document summarizes the amount of radioactive materials that have been buried and stored in the 200 Areas radioactive solid waste storage and disposal facilities since startup in 1944 through calendar year 1993. This report does not include backlog waste, solid radioactive waste in storage or disposed of in other areas, or facilities such as the underground tank farms. Unless packaged within the scope of WHC-EP-0063, ``Hanford Site Solid Waste Acceptance Criteria,`` (WHC 1988), liquid waste data are not included in this document.

Anderson, J.D.; Hagel, D.L.

1994-09-01T23:59:59.000Z

282

Bagless transfer process and apparatus for radioactive waste confinement  

DOE Patents [OSTI]

A process and apparatus is provided for removing radioactive material from a glovebox, placing the material in a stainless steel storage vessel in communication with the glovebox, and sealing the vessel with a welded plug. The vessel is then severed along the weld, a lower half of the plug forming a closure for the vessel. The remaining welded plug half provides a seal for the remnant portion of the vessel and thereby maintains the sealed integrity of the glovebox.

Maxwell, David N. (Aiken, SC); Hones, Robert H. (Evans, GA); Rogers, M. Lane (Aiken, SC)

1998-01-01T23:59:59.000Z

283

Bagless transfer process and apparatus for radioactive waste confinement  

DOE Patents [OSTI]

A process and apparatus are provided for removing radioactive material from a glovebox, placing the material in a stainless steel storage vessel in communication with the glovebox, and sealing the vessel with a welded plug. The vessel is then severed along the weld, a lower half of the plug forming a closure for the vessel. The remaining welded plug half provides a seal for the remnant portion of the vessel and thereby maintains the sealed integrity of the glovebox. 7 figs.

Maxwell, D.N.; Hones, R.H.; Rogers, M.L.

1998-04-14T23:59:59.000Z

284

SIMPLIFIED PROCEDURE FOR CERTAIN USERS OF SEALED SOURCES, SHORT HALF-LIFE MATERIALS,  

E-Print Network [OSTI]

authority with a minimum of: (1) a certification that no residual radioactive contamination attributable, AND SMALL QUANTITIES A large number of users of radioactive materials may use a simplified procedure that qualify for simplified decommissioning procedures are those where radioactive materials have been used

285

Radiation shielding materials and containers incorporating same  

DOE Patents [OSTI]

An improved radiation shielding material and storage systems for radioactive materials incorporating the same. The PYRolytic Uranium Compound ("PYRUC") shielding material is preferably formed by heat and/or pressure treatment of a precursor material comprising microspheres of a uranium compound, such as uranium dioxide or uranium carbide, and a suitable binder. The PYRUC shielding material provides improved radiation shielding, thermal characteristic, cost and ease of use in comparison with other shielding materials. The shielding material can be used to form containment systems, container vessels, shielding structures, and containment storage areas, all of which can be used to house radioactive waste. The preferred shielding system is in the form of a container for storage, transportation, and disposal of radioactive waste. In addition, improved methods for preparing uranium dioxide and uranium carbide microspheres for use in the radiation shielding materials are also provided.

Mirsky, Steven M. (Greenbelt, MD); Krill, Stephen J. (Arlington, VA); Murray, Alexander P. (Gaithersburg, MD)

2005-11-01T23:59:59.000Z

286

Radiation Shielding Materials and Containers Incorporating Same  

DOE Patents [OSTI]

An improved radiation shielding material and storage systems for radioactive materials incorporating the same. The PYRolytic Uranium Compound (''PYRUC'') shielding material is preferably formed by heat and/or pressure treatment of a precursor material comprising microspheres of a uranium compound, such as uranium dioxide or uranium carbide, and a suitable binder. The PYRUC shielding material provides improved radiation shielding, thermal characteristic, cost and ease of use in comparison with other shielding materials. The shielding material can be used to form containment systems, container vessels, shielding structures, and containment storage areas, all of which can be used to house radioactive waste. The preferred shielding system is in the form of a container for storage, transportation, and disposal of radioactive waste. In addition, improved methods for preparing uranium dioxide and uranium carbide microspheres for use in the radiation shielding materials are also provided.

Mirsky, Steven M.; Krill, Stephen J.; and Murray, Alexander P.

2005-11-01T23:59:59.000Z

287

Radioactive and mixed waste - risk as a basis for waste classification. Symposium proceedings No. 2  

SciTech Connect (OSTI)

The management of risks from radioactive and chemical materials has been a major environmental concern in the United states for the past two or three decades. Risk management of these materials encompasses the remediation of past disposal practices as well as development of appropriate strategies and controls for current and future operations. This symposium is concerned primarily with low-level radioactive wastes and mixed wastes. Individual reports were processed separately for the Department of Energy databases.

NONE

1995-06-21T23:59:59.000Z

288

CHAPTER 5-RADIOACTIVE WASTE MANAGEMENT  

SciTech Connect (OSTI)

The ore pitchblende was discovered in the 1750's near Joachimstal in what is now the Czech Republic. Used as a colorant in glazes, uranium was identified in 1789 as the active ingredient by chemist Martin Klaproth. In 1896, French physicist Henri Becquerel studied uranium minerals as part of his investigations into the phenomenon of fluorescence. He discovered a strange energy emanating from the material which he dubbed 'rayons uranique.' Unable to explain the origins of this energy, he set the problem aside. About two years later, a young Polish graduate student was looking for a project for her dissertation. Marie Sklodowska Curie, working with her husband Pierre, picked up on Becquerel's work and, in the course of seeking out more information on uranium, discovered two new elements (polonium and radium) which exhibited the same phenomenon, but were even more powerful. The Curies recognized the energy, which they now called 'radioactivity,' as something very new, requiring a new interpretation, new science. This discovery led to what some view as the 'golden age of nuclear science' (1895-1945) when countries throughout Europe devoted large resources to understand the properties and potential of this material. By World War II, the potential to harness this energy for a destructive device had been recognized and by 1939, Otto Hahn and Fritz Strassman showed that fission not only released a lot of energy but that it also released additional neutrons which could cause fission in other uranium nuclei leading to a self-sustaining chain reaction and an enormous release of energy. This suggestion was soon confirmed experimentally by other scientists and the race to develop an atomic bomb was on. The rest of the development history which lead to the bombing of Hiroshima and Nagasaki in 1945 is well chronicled. After World War II, development of more powerful weapons systems by the United States and the Soviet Union continued to advance nuclear science. It was this defense application that formed the basis for the commercial nuclear power industry.

Marra, J.

2010-05-05T23:59:59.000Z

289

ADMINISTRATIVE AND ENGINEERING CONTROLS FOR THE OPERATION OF VENTILATION SYSTEMS FOR UNDERGROUND RADIOACTIVE WASTE STORAGE TANKS  

SciTech Connect (OSTI)

Liquid radioactive wastes from the Savannah River Site are stored in large underground carbon steel tanks. The majority of the waste is confined in double shell tanks, which have a primary shell, where the waste is stored, and a secondary shell, which creates an annular region between the two shells, that provides secondary containment and leak detection capabilities should leakage from the primary shell occur. Each of the DST is equipped with a purge ventilation system for the interior of the primary shell and annulus ventilation system for the secondary containment. Administrative flammability controls require continuous ventilation to remove hydrogen gas and other vapors from the waste tanks while preventing the release of radionuclides to the atmosphere. Should a leak from the primary to the annulus occur, the annulus ventilation would also serve this purpose. The functionality of the annulus ventilation is necessary to preserve the structural integrity of the primary shell and the secondary. An administrative corrosion control program is in place to ensure integrity of the tank. Given the critical functions of the purge and annulus ventilation systems, engineering controls are also necessary to ensure that the systems remain robust. The system consists of components that are constructed of metal (e.g., steel, stainless steel, aluminum, copper, etc.) and/or polymeric (polypropylene, polyethylene, silicone, polyurethane, etc.) materials. The performance of these materials in anticipated service environments (e.g., normal waste storage, waste removal, etc.) was evaluated. The most aggressive vapor space environment occurs during chemical cleaning of the residual heels by utilizing oxalic acid. The presence of NO{sub x} and mercury in the vapors generated from the process could potentially accelerate the degradation of aluminum, carbon steel, and copper. Once identified, the most susceptible materials were either replaced and/or plans for discontinuing operations are executed.

Wiersma, B.; Hansen, A.

2013-11-13T23:59:59.000Z

290

Wide-range radioactive-gas-concentration detector  

DOE Patents [OSTI]

A wide-range radioactive-gas-concentration detector and monitor capable of measuring radioactive-gas concentrations over a range of eight orders of magnitude is described. The device is designed to have an ionization chamber sufficiently small to give a fast response time for measuring radioactive gases but sufficiently large to provide accurate readings at low concentration levels. Closely spaced parallel-plate grids provide a uniform electric field in the active region to improve the accuracy of measurements and reduce ion migration time so as to virtually eliminate errors due to ion recombination. The parallel-plate grids are fabricated with a minimal surface area to reduce the effects of contamination resulting from absorption of contaminating materials on the surface of the grids. Additionally, the ionization-chamber wall is spaced a sufficient distance from the active region of the ionization chamber to minimize contamination effects.

Anderson, D.F.

1981-11-16T23:59:59.000Z

291

Hazardous Materials Packaging and Transportation Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Order establishes safety requirements for the proper packaging and transportation of Department of offsite shipments and onsite transfers of radioactive and other hazardous materials, and for modal transportation.

2015-04-20T23:59:59.000Z

292

Corrosion of barrier materials in seawater environments  

SciTech Connect (OSTI)

A brief review has been carried out on the performance of barrier materials for low-level radioactive wastes in seawater environments. The environments include those for shallower coastal waters as well as the deep ocean (down to 3800 m). The review is mainly focused on metallic materials since they are the most common for seawater service and they have the largest data base. Information from the literature is usually pertinent to shallower coastal locations, but there is a valuable source of corrosion data obtained from several studies of metallic specimens exposed to ocean-bed conditions. In addition, the corrosion of carbon steel barriers has been evaluated for actual waste containers that were retrieved from previously-used disposal sites in the Atlantic and Pacific Oceans. Of the metallic materials studied, carbon steel showed the least corrosion resistance. Failure by non-uniform attack in a typical waste container could occur in as little as 25 y in some ocean environments ` Penetration by local attack, such as pitting and crevice corrosion resistance was also observed for more expensive materials such as low-alloy steels, stainless steels, titanium alloys, zirconium alloys, copper alloys, nickel alloys, aluminum alloys, and lead alloys.

Heiser, J.H.; Soo, P.

1995-07-01T23:59:59.000Z

293

Radioactive Liquid Waste Treatment Facility Discharges in 2011  

SciTech Connect (OSTI)

This report documents radioactive discharges from the TA50 Radioactive Liquid Waste Treatment Facilities (RLWTF) during calendar 2011. During 2011, three pathways were available for the discharge of treated water to the environment: discharge as water through NPDES Outfall 051 into Mortandad Canyon, evaporation via the TA50 cooling towers, and evaporation using the newly-installed natural-gas effluent evaporator at TA50. Only one of these pathways was used; all treated water (3,352,890 liters) was fed to the effluent evaporator. The quality of treated water was established by collecting a weekly grab sample of water being fed to the effluent evaporator. Forty weekly samples were collected; each was analyzed for gross alpha, gross beta, and tritium. Weekly samples were also composited at the end of each month. These flow-weighted composite samples were then analyzed for 37 radioisotopes: nine alpha-emitting isotopes, 27 beta emitters, and tritium. These monthly analyses were used to estimate the radioactive content of treated water fed to the effluent evaporator. Table 1 summarizes this information. The concentrations and quantities of radioactivity in Table 1 are for treated water fed to the evaporator. Amounts of radioactivity discharged to the environment through the evaporator stack were likely smaller since only entrained materials would exit via the evaporator stack.

Del Signore, John C. [Los Alamos National Laboratory

2012-05-16T23:59:59.000Z

294

1994 annual report on low-level radioactive waste management progress  

SciTech Connect (OSTI)

This report for calendar year 1994 summarizes the progress that states and compact regions made during the year in establishing new low-level radioactive waste disposal facilities. Although events that have occurred in 1995 greatly alter the perspective in terms of storage versus disposal, the purpose of this report is to convey the concerns as evidenced during calendar year 1994. Significant developments occurring in 1995 are briefly outlined in the transmittal letter and will be detailed in the report for calendar year 1995. The report also provides summary information on the volume of low-level radioactive waste received for disposal in 1994 by commercially operated low-level radioactive waste disposal facilities, and is prepared is in response to Section 7(b) of Title I of Public Law 99-240, the Low-Level Radioactive Waste Policy Amendments Act of 1985.

NONE

1995-04-01T23:59:59.000Z

295

Handling Radioactive Waste from the Proton Accelerator Facility at the Paul Scherrer Institut (PSI) - Always Surprising? - 13320  

SciTech Connect (OSTI)

The Paul Scherrer Institut (PSI) is the largest national research centre in Switzerland. Its multidisciplinary research is dedicated to a wide field in natural science and technology as well as particle physics. In this context, PSI is operating, amongst others, a large proton accelerator facility since more than 30 years. In two cyclotrons, protons are accelerated to high speeds and then guided along roughly 100 m of beam line to three different target stations to produce secondary particles like mesons and neutrons for experiments and a separately beam line for UCN. The protons induce spallation processes in the target materials, and also at other beam loss points along the way, with emission of protons, neutrons, hydrogen, tritium, helium, heavier fragments and fission processes. In particular the produced neutrons, due to their large penetration depth, will then interact also with the surrounding materials. These interactions of radiation with matter lead to activation and partly to contamination of machine components and the surrounding infrastructures. Maintenance, operation and decommissioning of installations generate inevitably substantial amounts of radioactive operational and dismantling waste like targets, magnets, collimators, shielding (concrete, steel) and of course secondary waste. To achieve an optimal waste management strategy for interim storage or final disposal, radioactive waste has to be characterized, sorted and treated. This strategy is based on radiation protection demands, raw waste properties (size, material, etc.), and requirements to reduce the volume of waste, mainly for legal and economical reasons. In addition, the radiological limitations for transportation of the waste packages to a future disposal site have to be taken into account, as well as special regulatory demands. The characterization is a task of the waste producer. The conditioning processes and quality checks for radioactive waste packages are part of an accredited waste management process of PSI, especially of the Section Dismantling and Waste Management. Strictly proven and accepted methods needed to be developed and enhanced for safe treatment, transport, conditioning and storage. But in the field of waste from research activities, individual and new solutions have to be found in an increasingly growing administrative environment. Furthermore, a wide variety of components, with a really large inventory of radioactive nuclides, has to be handled. And there are always surprising challenges concerning the unusual materials or the nuclide inventory. In case of the operational and dismantling radioactive accelerator waste, the existing conditioning methods are in the process of a continuous enhancement - technically and administratively. The existing authorized specifications of conditioning processes have to be extended to optimize and fully describe the treatment of the inevitably occurring radioactive waste from the accelerator facility. Additional challenges are the changes with time concerning the legal and regulatory requirements - or do we have to consider it as business as usual? This paper gives an overview of the current practices in radioactive waste management and decommissioning of the existing operational accelerator waste. (authors)

Mueth, Joachim [Paul Scherrer Institute, CH-5232 Villigen (Switzerland)] [Paul Scherrer Institute, CH-5232 Villigen (Switzerland)

2013-07-01T23:59:59.000Z

296

Testing atomic mass models with radioactive beams  

SciTech Connect (OSTI)

Significantly increased yields of new or poorly characterized exotic isotopes that lie far from beta-decay stability can be expected when radioactive beams are used to produce these nuclides. Measurements of the masses of these new species are very important. Such measurements are motivated by the general tendency of mass models to diverge from one another upon excursions from the line of beta-stability. Therefore in these regions (where atomic mass data are presently nonexistent or sparse) the models can be tested rigorously to highlight the features that affect the quality of their short-range and long-range extrapolation properties. Selection of systems to study can be guided, in part, by a desire to probe those mass regions where distinctions among mass models are most apparent and where yields of exotic isotopes, produced via radioactive beams, can be optimized. Identification of models in such regions that have good predictive properties will aid materially in guiding the selection of additional experiments which ultimately will provide expansion of the atomic mass database for further refinement of the mass models. 6 refs., 5 figs.

Haustein, P.E.

1989-01-01T23:59:59.000Z

297

Electrostatics and radioactive aerosol behavior  

SciTech Connect (OSTI)

Radioactive aerosols differ from their nonradioactive counterparts by their ability to charge themselves by emitting charged particles during the radioactive decay process. Evidence that electrostatics, including this charging process, can affect the transport of the aerosols was summarized previously. Charge distributions and the mean charge for a monodisperse radioactive aerosol have been considered in detail. The principal results of theory to calculate charge distributions on a aerosol with a size distribution, changes to Brownian coagulation rates for an aerosol in a reactor containment, and possible changes to aerosol deposition resulting from the charging will be presented. The main purpose of the work has been to improve calculations of aerosol behavior in reactor containments, but behavior in less ionizing environments will be affected more strongly, and some problems remain to be solved in performing reliable calculations.

Clement, C.F.

1994-12-31T23:59:59.000Z

298

Porous Materials Porous Materials  

E-Print Network [OSTI]

1 Porous Materials x Porous Materials · Physical properties * Characteristic impedance p = p 0 e -jk xa- = vej[ ] p x - j ; Zc= p ve = c ka 0k = c 1-j #12;2 Porous Materials · Specific acoustic impedance Porous Materials · Finite thickness ­ blocked p e + -jk (x-d)a p e - jk (x-d)a d x #12

Berlin,Technische Universität

299

Maine State Briefing Book on low-level radioactive waste management  

SciTech Connect (OSTI)

The Maine State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and Federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Maine. The profile is the result of a survey of radioactive material licensees in Maine. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested partices including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant goverment agencies and activities, all of which may impact management practices in Maine.

Not Available

1981-08-01T23:59:59.000Z

300

Biological Information Document, Radioactive Liquid Waste Treatment Facility  

SciTech Connect (OSTI)

This document is intended to act as a baseline source material for risk assessments which can be used in Environmental Assessments and Environmental Impact Statements. The current Radioactive Liquid Waste Treatment Facility (RLWTF) does not meet current General Design Criteria for Non-reactor Nuclear Facilities and could be shut down affecting several DOE programs. This Biological Information Document summarizes various biological studies that have been conducted in the vicinity of new Proposed RLWTF site and an Alternative site. The Proposed site is located on Mesita del Buey, a mess top, and the Alternative site is located in Mortandad Canyon. The Proposed Site is devoid of overstory species due to previous disturbance and is dominated by a mixture of grasses, forbs, and scattered low-growing shrubs. Vegetation immediately adjacent to the site is a pinyon-juniper woodland. The Mortandad canyon bottom overstory is dominated by ponderosa pine, willow, and rush. The south-facing slope was dominated by ponderosa pine, mountain mahogany, oak, and muhly. The north-facing slope is dominated by Douglas fir, ponderosa pine, and oak. Studies on wildlife species are limited in the vicinity of the proposed project and further studies will be necessary to accurately identify wildlife populations and to what extent they utilize the project area. Some information is provided on invertebrates, amphibians and reptiles, and small mammals. Additional species information from other nearby locations is discussed in detail. Habitat requirements exist in the project area for one federally threatened wildlife species, the peregrine falcon, and one federal candidate species, the spotted bat. However, based on surveys outside of the project area but in similar habitats, these species are not expected to occur in either the Proposed or Alternative RLWTF sites. Habitat Evaluation Procedures were used to evaluate ecological functioning in the project area.

Biggs, J.

1995-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "occurring radioactive materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Natural Radioactivity of Boron Added Clay Samples  

SciTech Connect (OSTI)

Clay, consisting fine-grained minerals, is an interesting materials and can be used in a variety of different fields especially in dermatology application. Using clay such a field it is important to measure its natural radioactivity. Thus the purpose of this study is to measure {sup 226}Ra, {sup 232}Th and {sup 40}K concentration in clay samples enriched with boron. Three different types of clay samples were prepared where boron is used in different rate. The measurements have been determined using a gamma-ray spectrometry consists of a 3''x3'' NaI(Tl) detector. From the measured activity the radium equivalent activities (Ra{sub eq}), external hazard index (H{sub ex}), absorbed dose rate in air (D) and annual effective dose (AED) have also been obtained.

Akkurt, I.; Guenoglu, K. [Sueleyman Demirel University, Faculty of Arts and Sciences, Dept. of Physics, Isparta (Turkey); Canakcii, H. [Gaziantep University, Engineering Faculty, Civil Engineering Dept., Gaziantep (Turkey); Mavi, B. [Amasya University, Faculty of Arts and Sciences, Dept. of Physics, Amasya (Turkey)

2011-12-26T23:59:59.000Z

302

Annual radioactive waste tank inspection program -- 1993  

SciTech Connect (OSTI)

Aqueous radioactive wastes from Savannah River Site (SRS) separations processes are contained in large underground carbon steel tanks. Inspections made during 1993 to evaluate these vessels, and evaluations based on data accrued by inspections made since the tanks were constructed, are the subject of this report. The 1993 inspection program revealed that the condition of the Savannah River Site waste tanks had not changed significantly from that reported in the previous annual report. No new leaksites were observed. No evidence of corrosion or materials degradation was observed in the waste tanks. However, degradation was observed on covers of the concrete encasements for the out-of-service transfer lines to Tanks 1 through 8.

McNatt, F.G. Sr.

1994-05-01T23:59:59.000Z

303

Integrated Management Program Radioactive Sealed Sources in Egypt  

SciTech Connect (OSTI)

The radioactive materials in ''public'' locations are typically contained in small, stainless steel capsules known as sealed radiation sources (RS). These capsules seal in the radioactive materials, but not the radiation, because it is the radiation that is needed for a wide variety of applications at hospitals, medical clinics, manufacturing plants, universities, construction sites, and other facilities in the public sector. Radiation sources are readily available, and worldwide there are hundreds of thousands of RS. The IMPRSS Project is a cooperative development between the Egyptian Atomic Energy Authority (EAEA), Egyptian Ministry of Health (MOH), Sandia National Laboratories (SNL), New Mexico Tech University (NMT), and Agriculture Cooperative Development International (ACDI/VOCA). SNL will coordinate the work scope between the participant organizations.

Hasan, A.; Cochran, J. R.; El-Adham, K.; El-Sorougy, R.

2003-02-26T23:59:59.000Z

304

The Radioactive Beam Program at Argonne  

E-Print Network [OSTI]

In this talk I will present selected topics of the ongoing radioactive beam program at Argonne and discuss the capabilities of the CARIBU radioactive ion production facility as well as plans for construction of a novel superconducting solenoid spectrometer.

B. B. Back

2006-06-06T23:59:59.000Z

305

Low Level Radioactive Waste Authority (Michigan)  

Broader source: Energy.gov [DOE]

Federal laws passed in 1980 and 1985 made each state responsible for the low-level radioactive waste produced within its borders. Act 204 of 1987 created the Low-Level Radioactive Waste Authority ...

306

Internal and External Radioactive Backgrounds  

E-Print Network [OSTI]

Chapter 3 Internal and External Radioactive Backgrounds New physics is often discovered by pushing energies. With the current large mixing angle-MSW oscillation parameters, Borexino expects to observe 0.35 neutrino events per day per ton from 7Be in the energy window. Because there are so few events

307

SRP RADIOACTIVE WASTE RELEASES S  

Office of Scientific and Technical Information (OSTI)

. . . . . -- SRP RADIOACTIVE WASTE RELEASES S t a r t u p t h r o u g h 1 9 5 9 September 1 9 6 0 - R E C O R D - W O R K S T E C H N I C A L D E P A R T M E N T 1 J. E. C o l e ,...

308

Reporting of Radioactive Sealed Sources  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish U.S. Department of Energy requirements for inventory reporting, transaction reporting, verification of reporting, and assign responsibilities for reporting of radioactive sealed sources. DOE N 251.86 extends this notice until 5-6-11. No cancellations. Canceled by DOE O 231.1B

2008-02-27T23:59:59.000Z

309

ICPP radioactive liquid and calcine waste technologies evaluation. Interim report  

SciTech Connect (OSTI)

The Department of Energy (DOE) has received spent nuclear fuel (SNF) at the Idaho Chemical Processing Plant (ICPP) for interim storage since 1951 and reprocessing since 1953. Until recently, the major activity of the ICPP has been the reprocessing of SNF to recover fissile uranium; however, changing world events have raised questions concerning the need to recover and recycle this material. In April 1992, DOE chose to discontinue reprocessing SNF for uranium recovery and shifted its focus toward the management and disposition of radioactive wastes accumulated through reprocessing activities. Currently, 1.8 million gallons of radioactive liquid wastes (1.5 million gallons of radioactive sodium-bearing liquid wastes and 0.3 million gallons of high-level liquid waste) and 3,800 cubic meters (m{sup 3}) of calcine waste are in inventory at the ICPP. Legal drivers and agreements exist obligating the INEL to develop, demonstrate, and implement technologies for safe and environmentally sound treatment and interim storage of radioactive liquid and calcine waste. Candidate treatment processes and waste forms are being evaluated using the Technology Evaluation and Analysis Methodology (TEAM) Model. This process allows decision makers to (1) identify optimum radioactive waste treatment and disposal form alternatives; (2) assess tradeoffs between various optimization criteria; (3) identify uncertainties in performance parameters; and (4) focus development efforts on options that best satisfy stakeholder concerns. The Systems Analysis technology evaluation presented in this document supports the DOE in selecting the most effective radioactive liquid and calcine waste management plan to implement in compliance with established regulations, court orders, and agreements.

Murphy, J.A.; Pincock, L.F.; Christiansen, I.N.

1994-06-01T23:59:59.000Z

310

CRAD, Radioactive Waste Management- June 22, 2009  

Broader source: Energy.gov [DOE]

Radioactive Waste Management, Inspection Criteria, Approach, and Lines of Inquiry (HSS CRAD 64-33, Rev. 0)

311

An overview of airborne radioactive emissions at Los Alamos National Laboratory  

SciTech Connect (OSTI)

Strict control is essential over any emissions of radioactivity in the ventilation exhaust from facilities where radioactive materials may become airborne. At Los Alamos National Laboratory there are 87 stacks exhausting ventilation air to the environment from operations with a potential for radioactive emissions. These stacks cover the diverse operations at all Laboratory facilities where radioactive materials are handled and require continuous sampling/monitoring to detect levels of contamination. An overview is presented of the operations, associated ventilation exhaust cleanup systems, and analysis of the emissions. In keeping with the as-low-as-reasonably-achievable concept, emissions of radionuclides are reduced whenever practicable. A specific example describing the reduction of emissions from the linear accelerator beam stop area at the Los Alamos Meson Physics Facility during 1985 by a factor of 8 over previous emissions is presented.

Guevara, F.A.; Dvorak, R.F.

1987-01-01T23:59:59.000Z

312

Environmental Radioactivity in Greenland in 1981  

E-Print Network [OSTI]

Ris-R-471 v Environmental Radioactivity in Greenland in 1981 A. Aarkrog, Henning Dahlgaard, Elis July 1962 #12;Ris-R-471 ENVIRONMENTAL RADIOACTIVITY IN GREENLAND IN 1981 A. Aarkrog, Henning Dahlgaard. Measurements of fallout radioactivity in Greenland in 1981 are reported. Strontium-90 (and Cesium-137 in most

313

Environmental Radioactivity in Greenland in 1978  

E-Print Network [OSTI]

ft I la 0 0 0 0 Risn-R-405 Environmental Radioactivity in Greenland in 1978 A. Aarkrog, Heinz ENVIRONMENTAL RADIOACTIVITY IN GREENLAND IN 1978 A. Aarkrog, Heinz Hansen and J. Lippert Abstract. Heasureaents of fallout radioactivity in Greenland in 1978 are reported. Strontium-90 (and Cesium-137 in most cases

314

Radioactivity in Food and the Environment, 1997  

E-Print Network [OSTI]

Radioactivity in Food and the Environment, 1997 RIFE - 3 1998 SCOTTISH ENVIRONMENT PROTECTION SCOTTISH ENVIRONMENT PROTECTION AGENCY Radioactivity in Food and the Environment, 1997 September 1998 #12 Environment Protection Agency in 1997. Measurements of radioactivity have been carried out in a range

315

Radioactive isotopes in Danish drinking water  

E-Print Network [OSTI]

Radioactive isotopes in Danish drinking water Sven P. Nielsen Risø National Laboratory Working OF INVESTIGATION 11 3 DESCRIPTION OF INVESTIGATION 12 4 RADIOACTIVITY IN DRINKING WATER 13 5 SAMPLING 15 6 27 #12;4 #12;5 Preface This project for investigation of radioactivity in drinking water shall

316

Development of long-term performance models for radioactive waste forms  

SciTech Connect (OSTI)

The long-term performance of solid radioactive waste is measured by the release rate of radionuclides into the environment, which depends on corrosion or weathering rates of the solid waste form. The reactions involved depend on the characteristics of the solid matrix containing the radioactive waste, the radionuclides of interest, and their interaction with surrounding geologic materials. This chapter describes thermo-hydro-mechanical and reactive transport models related to the long-term performance of solid radioactive waste forms, including metal, ceramic, glass, steam reformer and cement. Future trends involving Monte-Carlo simulations and coupled/multi-scale process modeling are also discussed.

Bacon, Diana H.; Pierce, Eric M.

2011-03-22T23:59:59.000Z

317

Appendix II. Calculation of Slope Factors for Naturally Occurring Radionuclides  

E-Print Network [OSTI]

Appendix II. Calculation of Slope Factors for Naturally Occurring Radionuclides In developing calculates the slope factors for the naturally occurring radionuclides under consideration. The Radionuclide products with half-lives of less than 6 months). As explained below, naturally occurring radionuclides

318

WM'05 Conference, February 27 -March 3, 2005, Tucson, AZ TRACKING RADIOACTIVE SOURCES IN COMMERCE  

E-Print Network [OSTI]

Identification [RFID] tags). Preliminary pseudo-random testing results have been very positive. Once we have radiological and nuclear material tracking and monitoring in commerce and is part of a larger program entitled in proximity to radioactive materials. Current candidate technologies include, (1) Satellite, (2) Radio

319

REPORT NO. 5 background material  

E-Print Network [OSTI]

of atmospheric testing of nuclear weapons in 1961 and 1962 the question arose as to the possible need for protec from such events as: (1) an industrial accident, possibly involving a nuclear reactor or a nuclear fuel processing plant, and (2) release of radioactive materials from the detonation of nuclear weapons or other

320

administered radioactive material: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

properties in nuclear terra incognita. It is important to remember that the lesson learned by going to the limits of the nuclear binding is also important for normal nuclei...

Note: This page contains sample records for the topic "occurring radioactive materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Directory of certificates of compliance for radioactive materials packages  

SciTech Connect (OSTI)

This directory provides an information source for packagings approved by the U.S. Nuclear Regulatory Commission. Volumes 1 and 2 of the directory provide an index by model number and corresponding Certificate of Compliance number. Volume 3 includes an alphabetical listing by user name for approved quality assurance programs. The reports include a listing of all users of each package design and approved quality assurance programs.

NONE

1997-10-01T23:59:59.000Z

322

Directory of certificates of compliance for radioactive materials packages  

SciTech Connect (OSTI)

The purpose of this directory is to make available a convenient source of information on packagings approved by the U.S. Nuclear Regulatory Commission. To assist in identifying packaging, an index by Model Number and corresponding Certificate of Compliance Number is included at the front of Volumes 1 and 2. An alphabetical listing by user name is included in the back of Volume 3 for approved Quality Assurance programs. The reports include a listing of all users of each package design and approved Quality Assurance programs prior to the publication date of the directory. Comments to make future revisions of this directory more useful are invited and should be directed to the Spent Fuel Project Office, U.S. Nuclear Regulatory Commission.

NONE

1997-10-01T23:59:59.000Z

323

airborne radioactive materials: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bronchial model; Radiation 1. Introduction Inhalation of airborne short-lived radon progeny in the indoor and outdoor environment yields the greatest amount of natural...

324

Radioactive Materials at SSRL | Stanford Synchrotron Radiation Lightsource  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromising Science for1 20115,Performance

325

NNSA: Securing Domestic Radioactive Material | National Nuclear Security  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | National Nuclearover two years |

326

NNSA: Securing Domestic Radioactive Material | National Nuclear Security  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | National Nuclearover two years |Administration May 29, 2014

327

Safety and Security Technologies for Radioactive Material Shipments |  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September2-SCORECARD-01-24-13 Page 1 of 1 Department of Energy and

328

Applying Risk Communication to the Transportation of Radioactive Materials  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South42.2 (April 2012)Tie Ltd |Line, LLC:LLC |Department ofOpportunity

329

Applying Risk Communication to the Transportation of Radioactive Materials  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartment of4 Federal RegisterPowerPA00133 - March 2011 AppliedStudents|

330

RPR 14 ISU-1 REQUEST FOR SHIPMENT OF RADIOACTIVE MATERIAL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298, and 323 K.OfficeNote:BEAMENV-39658 Revision37045624

331

Safety and Security Technologies for Radioactive Material Shipments  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalancedDepartmentRestrictionsExample Sheet) | Department of EnergySAFETYSafety

332

Emergency Responder Radioactive Material Quick Reference Sheet | Department  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResources DOEElectrical Safety Occurrences5 (04/2015) U.S.1-20, 2006 |of Energy

333

Emergency Responder Radioactive Material Quick Reference Sheet | Department  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResources DOEElectrical Safety Occurrences5 (04/2015) U.S.1-20, 2006 |of Energyof

334

Q A RADIOACTIVE MATERIALS Transportation Emergency Preparedness Program  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalancedDepartment ofColumbus HTS1, 2008 Company Affilation|Pumpkin| Department2 Q

335

Radioactive Materials Transportation and Incident Response | Department of  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalancedDepartment ofColumbus HTS1,Geologic Disposal= J .MEASUREMENTEnergy

336

Radioactive waste treatment technologies and environment  

SciTech Connect (OSTI)

The radioactive waste treatment and conditioning are the most important steps in radioactive waste management. At the Slovak Electric, plc, a range of technologies are used for the processing of radioactive waste into a form suitable for disposal in near surface repository. These technologies operated by JAVYS, PLc. Nuclear and Decommissioning Company, PLc. Jaslovske Bohunice are described. Main accent is given to the Bohunice Radwaste Treatment and Conditioning Centre, Bituminization plant, Vitrification plant, and Near surface repository of radioactive waste in Mochovce and their operation. Conclusions to safe and effective management of radioactive waste in the Slovak Republic are presented. (authors)

HORVATH, Jan; KRASNY, Dusan [JAVYS, PLc. - Nuclear and Decommisioning Company, PLc. (Slovakia)

2007-07-01T23:59:59.000Z

337

3.205 Thermodynamics and Kinetics of Materials, Fall 2003  

E-Print Network [OSTI]

Laws of thermodynamics applied to materials and materials processes. Solution theory. Equilibrium diagrams. Overview of fluid transport processes. Kinetics of processes that occur in materials, including diffusion, phase ...

Allen, Samuel M.

338

Manufactured Home Testing in Simulated and Naturally Occurring High Winds  

SciTech Connect (OSTI)

A typical double-wide manufactured home was tested in simulated and naturally occurring high winds to understand structural behavior and improve performance during severe windstorms. Seven (7) lateral load tests were conducted on a double-wide manufactured home at a remote field test site in Wyoming. An extensive instrumentation package monitored the overall behavior of the home and collected data vital to validating computational software for the manufactured housing industry. The tests were designed to approach the design load of the home without causing structural damage, thus allowing the behavior of the home to be accessed when the home was later exposed to high winds (to 80-mph). The data generally show near-linear initial system response with significant non-linear behavior as the applied loads increase. Load transfer across the marriage line is primarily compression. Racking, while present, is very small. Interface slip and shear displacement along the marriage line are nearly insignificant. Horizontal global displacements reached 0.6 inch. These tests were designed primarily to collect data necessary to calibrate a desktop analysis and design software tool, MHTool, under development at the Idaho National Laboratory specifically for manufactured housing. Currently available analysis tools are, for the most part, based on methods developed for stick built structures and are inappropriate for manufactured homes. The special materials utilized in manufactured homes, such as rigid adhesives used in the connection of the sheathing materials to the studs, significantly alter the behavior of manufactured homes under lateral loads. Previous full scale tests of laterally loaded manufactured homes confirm the contention that conventional analysis methods are not applicable. System behavior dominates the structural action of manufactured homes and its prediction requires a three dimensional analysis of the complete unit, including tiedowns. This project was sponsored by the US Department of Energy, US Department of Housing and Urban Development, and the Manufactured Housing Institute. The results of this research can lead to savings in annual losses of life and property by providing validated information to enable the advancement of code requirements and by developing engineering software that can predict and optimize wind resistance.

W. D. Richins; T. K. Larson

2006-08-01T23:59:59.000Z

339

Nuclear material operations manual  

SciTech Connect (OSTI)

This manual provides a concise and comprehensive documentation of the operating procedures currently practiced at Sandia National Laboratories with regard to the management, control, and accountability of nuclear materials. The manual is divided into chapters which are devoted to the separate functions performed in nuclear material operations-management, control, accountability, and safeguards, and the final two chapters comprise a document which is also issued separately to provide a summary of the information and operating procedures relevant to custodians and users of radioactive and nuclear materials. The manual also contains samples of the forms utilized in carrying out nuclear material activities. To enhance the clarity of presentation, operating procedures are presented in the form of playscripts in which the responsible organizations and necessary actions are clearly delineated in a chronological fashion from the initiation of a transaction to its completion.

Tyler, R.P.

1981-02-01T23:59:59.000Z

340

Ion exchange columns for selective removal of cesium from aqueous radioactive waste using hydrous crystalline silico-titanates  

E-Print Network [OSTI]

conscious society. In Hanford, WA, hundreds of underground storage tanks hold tens of millions of gallons of aqueous radioactive waste. This liquid waste, which has a very high sodium content, contains trace amounts of radioactive cesium 137. Since... the material for batch ion exchange of the nuclear waste solution. More research was needed to investigate the material's effectiveness in a column operation. An ion exchange column system was developed to study column performance. The column design...

Ricci, David Michael

1995-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "occurring radioactive materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Slovak Nuclear Regulatory Body Position in the Transport of Radioactive Waste  

SciTech Connect (OSTI)

This paper describes safety requirements for transport of radioactive waste in Slovakia and the role of regulatory body in the transport licensing and assessment processes. Importance of radioactive waste shipments have been increased since 1999 by starting of NPP A-1 decommissioning and operation of near surface disposal facility. Also some information from history of shipment as well as future activities are given. Legal basis for radioactive waste transport is resulting from IAEA recommendations in this area. Different types of transport equipment were approved by regulatory body for both liquid and solid waste and transportation permits were issued to their shipment. Regulatory body attention during evaluation of transport safety is focused mainly on ability of individual packages to withstand different transport conditions and on safety analyses performed for transport equipment for liquid waste with high frequency of shipments. During past three years no event was occurred in connection with radioactive waste transport in Slovakia.

Homola, J.

2003-02-27T23:59:59.000Z

342

Nuclear materials stewardship: Our enduring mission  

SciTech Connect (OSTI)

The US Department of Energy (DOE) and its predecessors have handled a remarkably wide variety of nuclear materials over the past 50 yr. Two fundamental changes have occurred that shape the current landscape regarding nuclear materials. If one recognizes the implications and opportunities, one sees that the stewardship of nuclear materials will be a fundamental and important job of the DOE for the foreseeable future. The first change--the breakup of the Soviet Union and the resulting end to the nuclear arms race--altered US objectives. Previously, the focus was on materials production, weapon design, nuclear testing, and stockpile enhancements. Now the attention is on dismantlement of weapons, excess special nuclear material inventories, accompanying increased concern over the protection afforded to such materials; new arms control measures; and importantly, maintenance of the safety and reliability of the remaining arsenal without testing. The second change was the raised consciousness and sense of responsibility for dealing with the environmental legacies of past nuclear arms programs. Recognition of the need to clean up radioactive contamination, manage the wastes, conduct current operations responsibly, and restore the environment have led to the establishment of what is now the largest program in the DOE. Two additional features add to the challenge and drive the need for recognition of nuclear materials stewardship as a fundamental, enduring, and compelling mission of the DOE. The first is the extraordinary time frames. No matter what the future of nuclear weapons and no matter what the future of nuclear power, the DOE will be responsible for most of the country`s nuclear materials and wastes for generations. Even if the Yucca Mountain program is successful and on schedule, it will last more than 100 yr. Second, the use, management, and disposition of nuclear materials and wastes affect a variety of nationally important and diverse objectives, from national security to the future of nuclear power in this country and abroad, to the care of the environment. Sometimes these objectives are in concert, but often they are seen as competing or being in conflict. By recognizing the corporate responsibility for these materials and the accompanying programs, national decision making will be improved.

Isaacs, T.H. [Lawrence Livermore National Lab., CA (United States)

1998-12-31T23:59:59.000Z

343

Determining Planes Along Which Earthquakes Occur- Method of Applicatio...  

Open Energy Info (EERE)

Along Which Earthquakes Occur- Method of Application to Earthquakes Accompanying Hydraulic Fracturing Jump to: navigation, search OpenEI Reference LibraryAdd to library...

344

Storage of nuclear materials by encapsulation in fullerenes  

DOE Patents [OSTI]

A method of encapsulating radioactive materials inside fullerenes for stable long-term storage. Fullerenes provide a safe and efficient means of disposing of nuclear waste which is extremely stable with respect to the environment. After encapsulation, a radioactive ion is essentially chemically isolated from its external environment.

Coppa, Nicholas V. (Los Alamos, NM)

1994-01-01T23:59:59.000Z

345

Theoretical Aspects of Science with Radioactive Nuclear Beams  

E-Print Network [OSTI]

Physics of radioactive nuclear beams is one of the main frontiers of nuclear science today. Experimentally, thanks to technological developments, we are on the verge of invading the territory of extreme N/Z ratios in an unprecedented way. Theoretically, nuclear exotica represent a formidable challenge for the nuclear many-body theories and their power to predict nuclear properties in nuclear terra incognita. It is important to remember that the lesson learned by going to the limits of the nuclear binding is also important for normal nuclei from the neighborhood of the beta stability valley. And, of course, radioactive nuclei are crucial astrophysically; they pave the highway along which the nuclear material is transported up in the proton and neutron numbers during the complicated synthesis process in stars.

Jacek Dobaczewski; Witold Nazarewicz

1997-07-28T23:59:59.000Z

346

Theoretical Aspects of Science with Radioactive Nuclear Beams  

E-Print Network [OSTI]

Physics of radioactive nuclear beams is one of the main frontiers of nuclear science today. Experimentally, thanks to technological developments, we are on the verge of invading the territory of extreme N/Z ratios in an unprecedented way. Theoretically, nuclear exotica represent a formidable challenge for the nuclear many-body theories and their power to predict nuclear properties in nuclear terra incognita. It is important to remember that the lesson learned by going to the limits of the nuclear binding is also important for normal nuclei from the neighborhood of the beta stability valley. And, of course, radioactive nuclei are crucial astrophysically; they pave the highway along which the nuclear material is transported up in the proton and neutron numbers during the complicated synthesis process in stars.

Dobaczewski, J; Dobaczewski, Jacek; Nazarewicz, Witold

1997-01-01T23:59:59.000Z

347

Original article Hydraulic conductance of two co-occuring neotropical  

E-Print Network [OSTI]

Original article Hydraulic conductance of two co-occuring neotropical understory shrubs December 1999) Abstract Whole plant hydraulic conductance was measured for two co-occuring neotropical hydraulic con- ductance and leaf specific conducance in the drought-avoiding species, P. trigonum, than

Paris-Sud XI, Universit de

348

Radioactive Waste Management BasisSept 2001  

SciTech Connect (OSTI)

This Radioactive Waste Management Basis (RWMB) documents radioactive waste management practices adopted at Lawrence Livermore National Laboratory (LLNL) pursuant to Department of Energy (DOE) Order 435.1, Radioactive Waste Management. The purpose of this RWMB is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

Goodwin, S S

2011-08-31T23:59:59.000Z

349

Annual Transportation Report for Radioactive Waste Shipments...  

National Nuclear Security Administration (NNSA)

ANNUAL TRANSPORTATION REPORT FY 2008 Radioactive Waste Shipments to and from the Nevada Test Site (NTS) February 2009 United States Department of Energy National Nuclear Security...

350

Office of Civilian Radioactive Waste Management Transportation...  

Broader source: Energy.gov (indexed) [DOE]

Jay Jones Office of Civilian Radioactive Waste Management April 22, 2004 Albuquerque, New Mexico 2 Session Overview * Meeting objectives and expectations * Topic Group...

351

United States Office of Radiation & EPA 402-R-99-002 Environmental Protection Indoor Air (6602J) October 1999  

E-Print Network [OSTI]

) October 1999 Agency Washington, DC 20460 Technologically Enhanced Naturally Occurring Radioactive NATURALLY OCCURRING RADIOACTIVE MATERIALS #12;#12;TECHNICAL REPORT ON TECHNOLOGICALLY ENHANCED NATURALLY as a compilation of existing data on technologically enhanced naturally occurring radioactive materials (TENORM

352

Hydrogen production during processing of radioactive sludge containing noble metals  

SciTech Connect (OSTI)

Hydrogen was produced when radioactive sludge from Savannah River Site radioactive waste containing noble metals was reacted with formic acid. This will occur in a process tank in the Defense Waste Facility at SRS when waste is vitrified. Radioactive sludges from four tanks were tested in a lab-scale apparatus. Maximum hydrogen generation rates varied from 5 {times}10{sup {minus}7} g H{sub 2}/hr/g of sludge from the least reactive sludge (from Waste Tank 51) to 2 {times}10{sup {minus}4} g H{sub 2}/hr/g of sludge from the most reactive sludge (from Waste Tank 11). The time required for the hydrogen generation to reach a maximum varied from 4.1 to 25 hours. In addition to hydrogen, carbon dioxide and nitrous oxide were produced and the pH of the reaction slurry increased. In all cases, the carbon dioxide and nitrous oxide were generated before the hydrogen. The results are in agreement with large-scale studies using simulated sludges.

Ha, B.C.; Ferrara, D.M.; Bibler, N.E.

1992-09-01T23:59:59.000Z

353

Hydrogen production during processing of radioactive sludge containing noble metals  

SciTech Connect (OSTI)

Hydrogen was produced when radioactive sludge from Savannah River Site radioactive waste containing noble metals was reacted with formic acid. This will occur in a process tank in the Defense Waste Facility at SRS when waste is vitrified. Radioactive sludges from four tanks were tested in a lab-scale apparatus. Maximum hydrogen generation rates varied from 5 {times}10{sup {minus}7} g H{sub 2}/hr/g of sludge from the least reactive sludge (from Waste Tank 51) to 2 {times}10{sup {minus}4} g H{sub 2}/hr/g of sludge from the most reactive sludge (from Waste Tank 11). The time required for the hydrogen generation to reach a maximum varied from 4.1 to 25 hours. In addition to hydrogen, carbon dioxide and nitrous oxide were produced and the pH of the reaction slurry increased. In all cases, the carbon dioxide and nitrous oxide were generated before the hydrogen. The results are in agreement with large-scale studies using simulated sludges.

Ha, B.C.; Ferrara, D.M.; Bibler, N.E.

1992-01-01T23:59:59.000Z

354

Cosmic radioactivity and INTEGRAL results  

SciTech Connect (OSTI)

Gamma-ray lines from radioactive decay of unstable isotopes co-produced by nucleosynthesis in massive stars and supernova have been measured since more than thirty years. Over the past ten years, INTEGRAL complemented the first sky survey made by COMPTEL. The {sup 26}A1 isotope with 1 My decay time had been first direct proof of currently-ongoing nucleosynthesis in our Galaxy. This has now become a tool to study the ?My history of specific source regions, such as massive-star groups and associations in nearby regions which can be discriminated from the galactic-plane background, and the inner Galaxy, where Doppler shifted lines add to the astronomical information about bar and spiral structure. Recent findings suggest that superbubbles show a remarkable asymmetry, on average, in the spiral arms of our galaxy. {sup 60}Fe is co-produced by the sources of {sup 26}A1, and the isotopic ratio from their nucleosynthesis encodes stellar-structure information. Annihilation gamma-rays from positrons in interstellar space show a puzzling bright and extended source region central to our Galaxy, but also may be partly related to nucleosynthesis. {sup 56}Ni and {sup 44}Ti isotope gamma-rays have been used to constrain supernova explosion mechanisms. Here we report latest results using the accumulated multi-year database of INTEGRAL observations, and discuss their astrophysical interpretations, connecting to other traces of cosmic radioactivity and to other cosmic messengers.

Diehl, Roland [Max Planck Institut fr Extraterrestrische Physik, D-85748 Garching, Germany and Excellence Cluster Origin and Evolution of the Universe', D-85748 Garching (Germany)

2014-05-02T23:59:59.000Z

355

Performance testing of elastomeric seal materials under low and high temperature conditions: Final report  

SciTech Connect (OSTI)

The US Department of Energy Offices of Defense Programs and Civilian Radioactive Waste Management jointly sponsored a program to evaluate elastomeric O-ring seal materials for radioactive material shipping containers. The report presents the results of low- and high-temperature tests conducted on 27 common elastomeric compounds.

BRONOWSKI,DAVID R.

2000-06-01T23:59:59.000Z

356

Bioindicators for Monitoring Radioactive Pollution of the  

E-Print Network [OSTI]

* IK s Dfc2looX|o Risø-R-443 Bioindicators for Monitoring Radioactive Pollution of the Marine-R-443 BIOINDICATORS FOR MONITORING RADIOACTIVE POLLUTION OF THE MARINE ENVIRONMENT Experiments Dahlgaard Abstract. Mussels (Mytilus edulis) are globally used as bio- indicators for pollution of coastal

357

4. Nuclei and Radioactivity Paradoxes and Puzzles  

E-Print Network [OSTI]

, and Firearms tests wine, gin, whisky, and vodka for radioactivity. If the product does not have sufficient. The key feature of radioactivity that makes it so fascinating is that the energy released is enormous-- at least when compared to typical chemical energies. The typical energy release in the explosion of one

Browder, Tom

358

Radioactivity in Food and the Environment, 2004  

E-Print Network [OSTI]

Radioactivity in Food and the Environment, 2004 RIFE - 10 2005 #12;Food Standards Agency Emergency Planning, Radiation and Incidents Division Aviation House 125 Kingsway London WC2B 6NH RadioactivityinFoodandtheEnvironment,2004 Scottish Environment ProtectionAgency Radioactive Substances Unit Erskine Court The Castle

359

Radioactivity in Food and the Environment, 2002  

E-Print Network [OSTI]

Radioactivity in Food and the Environment, 2002 RIFE - 8 2003 #12;1 ENVIRONMENT AGENCY ENVIRONMENT AND HERITAGE SERVICE FOOD STANDARDS AGENCY SCOTTISH ENVIRONMENT PROTECTION AGENCY Radioactivity in Food and the Environment, 2002 RIFE - 8 October 2003 #12;2 This report was compiled by the Centre for Environment

360

Radioactive waste management in the former USSR. Volume 3  

SciTech Connect (OSTI)

Radioactive waste materials--and the methods being used to treat, process, store, transport, and dispose of them--have come under increased scrutiny over last decade, both nationally and internationally. Nuclear waste practices in the former Soviet Union, arguably the world`s largest nuclear waste management system, are of obvious interest and may affect practices in other countries. In addition, poor waste management practices are causing increasing technical, political, and economic problems for the Soviet Union, and this will undoubtedly influence future strategies. this report was prepared as part of a continuing effort to gain a better understanding of the radioactive waste management program in the former Soviet Union. the scope of this study covers all publicly known radioactive waste management activities in the former Soviet Union as of April 1992, and is based on a review of a wide variety of literature sources, including documents, meeting presentations, and data base searches of worldwide press releases. The study focuses primarily on nuclear waste management activities in the former Soviet Union, but relevant background information on nuclear reactors is also provided in appendixes.

Bradley, D.J.

1992-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "occurring radioactive materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Geological problems in radioactive waste isolation - second worldwide review  

SciTech Connect (OSTI)

The first world wide review of the geological problems in radioactive waste isolation was published by Lawrence Berkeley National Laboratory in 1991. This review was a compilation of reports that had been submitted to a workshop held in conjunction with the 28th International Geological Congress that took place July 9-19, 1989 in Washington, D.C. Reports from 15 countries were presented at the workshop and four countries provided reports after the workshop, so that material from 19 different countries was included in the first review. It was apparent from the widespread interest in this first review that the problem of providing a permanent and reliable method of isolating radioactive waste from the biosphere is a topic of great concern among the more advanced, as well as the developing, nations of the world. This is especially the case in connection with high-level waste (HLW) after its removal from nuclear power plants. The general concensus is that an adequate isolation can be accomplished by selecting an appropriate geologic setting and carefully designing the underground system with its engineered barriers. This document contains the Second Worldwide Review of Geological Problems in Radioactive Waste Isolation, dated September 1996.

Witherspoon, P.A. [ed.

1996-09-01T23:59:59.000Z

362

The Bayo Canyon/radioactive lanthanum (RaLa) program  

SciTech Connect (OSTI)

LANL conducted 254 radioactive lanthanum (RaLa) implosion experiments Sept. 1944-March 1962, in order to test implosion designs for nuclear weapons. High explosives surrounding common metals (surrogates for Pu) and a radioactive source containing up to several thousand curies of La, were involved in each experiment. The resulting cloud was deposited as fallout, often to distances of several miles. This report was prepared to summarize existing records as an aid in evaluating the off-site impact, if any, of this 18-year program. The report provides a historical setting for the program, which was conducted in Technical Area 10, Bayo Canyon about 3 miles east of Los Alamos. A description of the site is followed by a discussion of collateral experiments conducted in 1950 by US Air Force for developing an airborne detector for tracking atmospheric nuclear weapons tests. All known off-site data from the RaLa program are tabulated and discussed. Besides the radiolanthanum, other potential trace radioactive material that may have been present in the fallout is discussed and amounts estimated. Off-site safety considerations are discussed; a preliminary off-site dose assessment is made. Bibliographical data on 33 persons important to the program are presented as footnotes.

Dummer, J.E.; Taschner, J.C.; Courtright, C.C.

1996-04-01T23:59:59.000Z

363

Fate of Brine Applied to Unpaved Roads at a Radioactive Waste Subsurface Disposal Area  

SciTech Connect (OSTI)

Between 1984 and 1993, MgCl2 brine was used to suppress dust on unpaved roads at a radioactive waste subsurface disposal area. Because Cl might enhance corrosion of buried metals in the waste, we investigated the distribution and fate of Cl in the vadose zone using pore water samples collected from suction lysimeters and soluble salt concentrations extracted from sediment samples. The Cl/Br mass ratio and the total dissolved Cl concentration of pore water show that brine contamination occurs primarily within 13 m of treated roads, but can extend as much as 30 m laterally in near-surface sedimentary deposits. Within the deep vadose zone, which consists of interlayered basalt lava flows and sedimentary interbeds, brine has moved up to 110 m laterally. This lateral migration suggests formation of perched water and horizontal transport during periods of high recharge. In a few locations, brine migrated to depths of 67 m within 3 to 5 yr. Elevated Cl concentrations were found to depths of 2 m in roadbed material. In drainage ditches along roads, where runoff accumulates and recharge of surface water is high, Cl was flushed from the sediments in 3 to 4 yr. In areas of lower recharge, Cl remained in the sediments after 5 yr. Vertical brine movement is directly related to surface recharge through sediments. The distribution of Cl in pore water and sediments is consistent with estimates of vadose zone residence times and spatial distribution of surface water recharge from other investigations at the subsurface disposal area.

Larry C. Hull; Carolyn W. Bishop

2004-02-01T23:59:59.000Z

364

Rev August 2006 Radiation Safety Manual Section 14 Radioactive Waste  

E-Print Network [OSTI]

Rev August 2006 Radiation Safety Manual Section 14 ­ Radioactive Waste Page 14-1 Section 14 Radioactive Waste Contents A. Proper Collection, Disposal, and Packaging and Putrescible Animal Waste.........................14-8 a. Non-Radioactive Animal Waste

Wilcock, William

365

Apparatus and method for radioactive waste screening  

DOE Patents [OSTI]

An apparatus and method relating to screening radioactive waste are disclosed for ensuring that at least one calculated parameter for the measurement data of a sample falls within a range between an upper limit and a lower limit prior to the sample being packaged for disposal. The apparatus includes a radiation detector configured for detecting radioactivity and radionuclide content of the of the sample of radioactive waste and generating measurement data in response thereto, and a collimator including at least one aperture to direct a field of view of the radiation detector. The method includes measuring a radioactive content of a sample, and calculating one or more parameters from the radioactive content of the sample.

Akers, Douglas W.; Roybal, Lyle G.; Salomon, Hopi; Williams, Charles Leroy

2012-09-04T23:59:59.000Z

366

Thermal treatment of organic radioactive waste  

SciTech Connect (OSTI)

The organic radioactive waste which is generated in nuclear and isotope facilities (power plants, research centers and other) must be treated in order to achieve a waste form suitable for long term storage and disposal. Therefore the resulting waste treatment products should be stable under influence of temperature, time, radioactivity, chemical and biological activity. Another reason for the treatment of organic waste is the volume reduction with respect to the storage costs. For different kinds of waste, different treatment technologies have been developed and some are now used in industrial scale. The paper gives process descriptions for the treatment of solid organic radioactive waste of low beta/gamma activity and alpha-contaminated solid organic radioactive waste, and the pyrolysis of organic radioactive waste.

Chrubasik, A.; Stich, W. [NUKEM GmbH, Alzenau (Germany)

1993-12-31T23:59:59.000Z

367

LYNX: An unattended sensor system for detection of gamma-ray and neutron emissions from special nuclear materials  

SciTech Connect (OSTI)

This manuscript profiles an unattended and fully autonomous detection system sensitive to gamma-ray and neutron emissions from special nuclear material. The LYNX design specifically targets applications that require radiation detection capabilities but possess little or no infrastructure. In these settings, users need the capability to deploy sensors for extended periods of time that analyze whatever signal-starved data can be captured, since little or no control may be exerted over measurement conditions. The fundamental sensing elements of the LYNX system are traditional NaI(Tl) and 3He detectors. The new developments reported here center on two themes: low-power electronics and computationally simple analysis algorithms capable of discriminating gamma-ray signatures indicative of special nuclear materials from those of naturally occurring radioactive material. Incorporating tripwire-detection algorithms based on gamma-ray spectral signatures into a low-power electronics package significantly improves performance in environments where sensors encounter nuisance sources.

Runkle, Robert C.; Myjak, Mitchell J.; Kiff, Scott D.; Sidor, Daniel E.; Morris, Scott J.; Rohrer, John S.; Jarman, Kenneth D.; Pfund, David M.; Todd, Lindsay C.; Bowler, Ryan S.; Mullen, Crystal A.

2009-01-21T23:59:59.000Z

368

Part of the National Nuclear User Facility Culham Materials  

E-Print Network [OSTI]

Part of the National Nuclear User Facility Culham Materials Research Facility #12;Introduction from Professor Steve Cowley Culham's Materials Research Facility (MRF) is a valuable addition to the UK's suite and fusion ­ with equipment for the processing and micro-characterisation of radioactive materials, for on

369

A Low-Tech, Low-Budget Storage Solution for High Level Radioactive Sources  

SciTech Connect (OSTI)

The need for safe, secure, and economical storage of radioactive material becomes increasingly important as beneficial uses of radioactive material expand (increases inventory), as political instability rises (increases threat), and as final disposal and treatment facilities are delayed (increases inventory and storage duration). Several vendor-produced storage casks are available for this purpose but are often costly due to the required design, analyses, and licensing costs. Thus the relatively high costs of currently accepted storage solutions may inhibit substantial improvements in safety and security that might otherwise be achieved. This is particularly true in areas of the world where the economic and/or the regulatory infrastructure may not provide the means and/or the justification for such an expense. This paper considers a relatively low-cost, low-technology radioactive material storage solution. The basic concept consists of a simple shielded storage container that can be fabricated locally using a steel pipe and a corrugated steel culvert as forms enclosing a concrete annulus. Benefits of such a system include 1) a low-tech solution that utilizes materials and skills available virtually anywhere in the world, 2) a readily scalable design that easily adapts to specific needs such as the geometry and radioactivity of the source term material), 3) flexible placement allows for free-standing above-ground or in-ground (i.e., below grade or bermed) installation, 4) the ability for future relocation without direct handling of sources, and 5) a long operational lifetime . Le mieux est lennemi du bien (translated: The best is the enemy of good) applies to the management of radioactive materials particularly where the economic and/or regulatory justification for additional investment is lacking. Development of a low-cost alternative that considerably enhances safety and security may lead to a greater overall risk reduction than insisting on solutions that remain economically and/or politically out of reach.

Brett Carlsen; Ted Reed; Todd Johnson; John Weathersby; Joe Alexander; Dave Griffith; Douglas Hamelin

2014-07-01T23:59:59.000Z

370

2010 Annual Planning Summary for Civilian Radioactive Waste Management...  

Broader source: Energy.gov (indexed) [DOE]

Civilian Radioactive Waste Management (CRWM) 2010 Annual Planning Summary for Civilian Radioactive Waste Management (CRWM) Annual Planning Summaries briefly describe the status of...

371

Fiscal Year 2007 Civilian Radioactive Waste Management Fee Adequacy...  

Broader source: Energy.gov (indexed) [DOE]

Fiscal Year 2007 Civilian Radioactive Waste Management Fee Adequacy Assessment Report Fiscal Year 2007 Civilian Radioactive Waste Management Fee Adequacy Assessment Report U.S....

372

Office of Civilian Radioactive Waste Management-Quality Assurance...  

Office of Environmental Management (EM)

Office of Civilian Radioactive Waste Management-Quality Assurance Requirements and Description Office of Civilian Radioactive Waste Management-Quality Assurance Requirements and...

373

Lab obtains approval to begin design on new radioactive waste...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

New radioactive waste staging facility Lab obtains approval to begin design on new radioactive waste staging facility The 4-acre complex will include multiple staging buildings...

374

Letter to Congress RE: Office of Civilian Radioactive Waste Management...  

Broader source: Energy.gov (indexed) [DOE]

to Congress RE: Office of Civilian Radioactive Waste Management's Annual Financial Report Letter to Congress RE: Office of Civilian Radioactive Waste Management's Annual Financial...

375

Southwestern Low-Level Radioactive Waste Disposal Compact (South Dakota)  

Broader source: Energy.gov [DOE]

This legislation authorizes the state's entrance into the Southwestern Low-Level Radioactive Waste Disposal Compact, which provides for the cooperative management of low-level radioactive waste....

376

Portsmouth Site Delivers First Radioactive Waste Shipment to...  

Office of Environmental Management (EM)

Portsmouth Site Delivers First Radioactive Waste Shipment to Disposal Facility in Texas Portsmouth Site Delivers First Radioactive Waste Shipment to Disposal Facility in Texas...

377

RESRAD Computer Code- Evaluation of Radioactively Contaminated Sites  

Broader source: Energy.gov [DOE]

The evaluation of sites with radioactive contamination was a problem until the RESidual RADioactivity (RESRAD) Computer Code was first released in 1989.

378

EIS-0200: Managing Treatment, Storage, and Disposal of Radioactive...  

Broader source: Energy.gov (indexed) [DOE]

00: Managing Treatment, Storage, and Disposal of Radioactive and Hazardous Waste EIS-0200: Managing Treatment, Storage, and Disposal of Radioactive and Hazardous Waste SUMMARY This...

379

Statistical Approach to Radioactive Target Detection and Location via Wireless Sensor Networks  

E-Print Network [OSTI]

: tlzhang@purdue.edu Fax: 1-765-4940558 AbstractThe detection of materials or devices for nuclear or radiological weapons of mass destruction is fundamentally important to national safety and security of radioactive target via wireless sensor networks. The statistical approach includes a hypotheses test

Zhang, Tonglin

380

Naturally Occurring Radionuclides of Ash Produced by Coal Combustion. The Case of the Kardia Mine in Northern Greece  

SciTech Connect (OSTI)

West Macedonia Lignite Center (WMLC), located in Northwest Greece, releases into the atmosphere about 21,400 tons/year of fly ash through the stacks of four coal fired plants. The lignite ash contains naturally occurring radionuclides, which are deposited on the WMLC basin. This work investigates the natural radioactivity of twenty six ash samples, laboratory produced from combustion of lignite, which was sampled perpendicularly to the benches of the Kardia mine. The concentrations of radionuclides {sup 40}K, {sup 235}U, {sup 238}U, {sup 226}Ra, {sup 228}Ra and {sup 232}Th, were measured spectroscopically and found round one order of magnitude as high as those of lignite. Subsequently the Radionuclide Partitioning Coefficients of radionuclides were calculated and it was found that they are higher for {sup 232}Th, {sup 228}Ra and {sup 40}K, because the latter have closer affinity with the inorganic matrix of lignite. During combustion up to one third of the naturally occurring radioisotopes escape from the solid phase into the flue gases. With comparison to relative global data, the investigated ash has been found to have relatively high radioactivity, but the emissions of the WMLC radionuclides contribute only 0.03% to the mean annual absorbed dose.

Fotakis, M.; Tsikritzis, L.; Tzimkas, N.; Kolovos, N.; Tsikritzi, R. [Technological Educational Institute (TEI) of West Macedonia, Department of Pollution Control Technologies, Koila, Kozani, 50100 (Greece)

2008-08-07T23:59:59.000Z

Note: This page contains sample records for the topic "occurring radioactive materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Improving Home Automation by Discovering Regularly Occurring Device Usage Patterns  

E-Print Network [OSTI]

Improving Home Automation by Discovering Regularly Occurring Device Usage Patterns Edwin O in an environment can be mined to discover significant patterns, which an intelligent agent could use to automate of two prediction algorithms, thus demonstrating multiple uses for a home automation system. Finally, we

Cook, Diane J.

382

PURDUE EXTENSION Stormwater is the runoff that occurs during  

E-Print Network [OSTI]

PURDUE EXTENSION FNR-256 Stormwater is the runoff that occurs during rainstorms. In natural systems, rainwater is absorbed by the soil or plants on the ground. In a human dominated landscape, impervious surfaces, such as rooftops, driveways, streets, and parking lots, simply divert this rainwater down

383

Integrated data base report - 1994: US spent nuclear fuel and radioactive waste inventories, projections, and characteristics  

SciTech Connect (OSTI)

The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and U.S. Department of Energy (DOE) spent nuclear fuel and commercial and U.S. government-owned radioactive wastes. Except for transuranic wastes, inventories of these materials are reported as of December 31, 1994. Transuranic waste inventories are reported as of December 31, 1993. All spent nuclear fuel and radioactive waste data reported are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest DOE/Energy Information Administration (EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, DOE Environmental Restoration Program contaminated environmental media, commercial reactor and fuel-cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through the calendar-year 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions.

NONE

1995-09-01T23:59:59.000Z

384

Evaluation of beta partical densitometry for determination of self-absorption factors in gross alpha and gross beta radioactivity measurements on air particulate filter samples  

E-Print Network [OSTI]

Alpha and beta particles emitted from radioactive material collected on an air filter may be significantly attenuated by the mass (thickness) of collected dust. In this study, we determined the mass or thickness of the simulated dust deposit...

Breida, Margaret A

2012-06-07T23:59:59.000Z

385

Routine inspection effort required for verification of a nuclear material production cutoff convention  

SciTech Connect (OSTI)

On 27 September 1993, President Clinton proposed {open_quotes}... a multilateral convention prohibiting the production of highly enriched uranium or plutonium for nuclear explosives purposes or outside of international safeguards.{close_quotes} The UN General Assembly subsequently adopted a resolution recommending negotiation of a non-discriminatory, multilateral, and internationally and effectively verifiable treaty (hereinafter referred to as {open_quotes}the Cutoff Convention{close_quotes}) banning the production of fissile material for nuclear weapons. The matter is now on the agenda of the Conference on Disarmament, although not yet under negotiation. This accord would, in effect, place all fissile material (defined as highly enriched uranium and plutonium) produced after entry into force (EIF) of the accord under international safeguards. {open_quotes}Production{close_quotes} would mean separation of the material in question from radioactive fission products, as in spent fuel reprocessing, or enrichment of uranium above the 20% level, which defines highly enriched uranium (HEU). Facilities where such production could occur would be safeguarded to verify that either such production is not occurring or that all material produced at these facilities is maintained under safeguards.

Dougherty, D.; Fainberg, A.; Sanborn, J.; Allentuck, J.; Sun, C.

1996-11-01T23:59:59.000Z

386

Waste gas combustion in a Hanford radioactive waste tank  

SciTech Connect (OSTI)

It has been observed that a high-level radioactive waste tank generates quantities of hydrogen, ammonia, nitrous oxide, and nitrogen that are potentially well within flammability limits. These gases are produced from chemical and nuclear decay reactions in a slurry of radioactive waste materials. Significant amounts of combustible and reactant gases accumulate in the waste over a 110- to 120-d period. The slurry becomes Taylor unstable owing to the buoyancy of the gases trapped in a matrix of sodium nitrate and nitrite salts. As the contents of the tank roll over, the generated waste gases rupture through the waste material surface, allowing the gases to be transported and mixed with air in the cover-gas space in the dome of the tank. An ignition source is postulated in the dome space where the waste gases combust in the presence of air resulting in pressure and temperature loadings on the double-walled waste tank. This analysis is conducted with hydrogen mixing studies HMS, a three-dimensional, time-dependent fluid dynamics code coupled with finite-rate chemical kinetics. The waste tank has a ventilation system designed to maintain a slight negative gage pressure during normal operation. We modeled the ventilation system with the transient reactor analysis code (TRAC), and we coupled these two best-estimate accident analysis computer codes to model the ventilation system response to pressures and temperatures generated by the hydrogen and ammonia combustion.

Travis, J.R.; Fujita, R.K.; Spore, J.W.

1994-07-01T23:59:59.000Z

387

Building 251 Radioactive Waste Characterization by Process Knowledge  

SciTech Connect (OSTI)

Building 251 is the Lawrence Livermore National Laboratory Heavy Elements Facility. Operations that involved heavy elements with uncontained radioisotopes including transuranic elements took place inside of glove boxes and fume hoods. These operations included process and solution chemistry, dissolutions, titrations, centrifuging, etc., and isotope separation. Operations with radioactive material which presently take place outside of glove boxes include storage, assaying, packing and unpacking and inventory verification. Wastes generated inside glove boxes will generally be considered TRU or Greater Than Class C (GTCC). Wastes generated in the RMA, outside glove boxes, is presumed to be low level waste. This process knowledge quantification method may be applied to waste generated anywhere within or around B251. The method is suitable only for quantification of waste which measures below the MDA of the Blue Alpha meter (i.e. only material which measures as Non-Detect with the blue alpha is to be characterized by this method).

Dominick, J L

2002-05-29T23:59:59.000Z

388

Analysis of disposition alternatives for radioactively contaminated scrap metal  

SciTech Connect (OSTI)

Millions of tonnes of slightly radioactive, scrap iron and steel, stainless steel, and copper are likely to become available as nuclear and other facilities and equipment are withdrawn from service. Disposition of this material is an international policy issue under consideration currently. The major alternatives for managing this material are to either develop a regulatory process for decontamination and recycling that will safeguard human health or to dispose of the scrap and replace the metal stocks. To evaluate the alternatives, we estimate quantities of scrap arising from nuclear power plant decommissioning, evaluate potential price impacts of recycling on regional markets, and assess the health and environmental impacts of the management alternatives. We conclude that decontaminating and recycling the scrap is the superior alternative.

Nieves, L.A.; Chen, S.Y.; Kohout, E.J.; Nabelssi, B.; Tilbrook, R.W.; Wilson, S.E.

1997-01-01T23:59:59.000Z

389

Metrological Determination of Natural Radioactive Isotopes {sup 226}Ra, {sup 228}Ra and {sup 210}Pb by Means of Ge Detector  

SciTech Connect (OSTI)

A metrological method to determine the activity per mass unity (activity concentration) of {sup 226}Ra and {sup 210}Pb ({sup 238}U decay series) and {sup 228}Ra ({sup 232}Th series) by gamma-ray spectrometers based on hyper-pure coaxial germanium detector was developed. In the soil the {sup 22}Ra (half-life = 1600 years) exhibits the same level of radioactivity as {sup 238}U (half-life 4.5x10{sup 9} years) because of a natural phenomenon called secular equilibrium. {sup 226}Ra decays into {sup 222}Rn (half-life = 3.8 days), a radioactive inert gas. After several days, the {sup 222}Rn naturally decays to {sup 218}Po (half-life = 3 minutes), where finally {sup 210}Pb (half-life = 22 years) is produced. The metrological capability of high-resolution gamma-ray spectrometry for naturally occurring radionuclides at environmental levels is showed, with emphasis on the use of 2 mL standard sources volume in a glass ampoule. Source preparation and calibration procedures are described. Radionuclide standards in an activity range of 10 to 250 Bq/g were produced which can be applied in a variety of environmental sample analysis (water, plant material, sediment, etc.). Uncertainties for {sup 226}Ra and {sup 210}Pb around 3% (k = 1) were obtained.

Almeida, Maria Candida M. de; Delgado, Jose U.; Poledna, Roberto; Oliveira, Estela Maria de; Silva, Ronaldo L. da [Laboratorio Nacional de Metrologia das Radiacoes Ionizantes, Instituto de Radioprotecao e Dosimetria, Comissao Nacional de Energia Nuclear(SEMRA/LNMRI/IRD/CNEN) Av. Salvador Allende s/n, Recreio, Rio de Janeiro, CEP 22780-160, RJ (Brazil)

2008-08-07T23:59:59.000Z

390

Principles for Sampling Airborne Radioactivity from Stacks  

SciTech Connect (OSTI)

This book chapter describes the special processes involved in sampling the airborne effluents from nuclear faciities. The title of the book is Radioactive Air Sampling Methods. The abstract for this chapter was cleared as PNNL-SA-45941.

Glissmeyer, John A.

2010-10-18T23:59:59.000Z

391

1969 AUDIT OF SRP RADIOACTIVE WASTE  

Office of Scientific and Technical Information (OSTI)

969 AUDIT OF SRP RADIOACTIVE WASTE bY C . Ashley A p r i l 1970 Radiological Sciences Division Savannah River Laboratory E. 1. du Pont de Nemours & Co. Aiken, South Carolina 29801...

392

Radioactivity in man: levels, effects and unknowns  

SciTech Connect (OSTI)

The report discusses the potential for significant human exposure to internal radiation. Sources of radiation considered include background radiation, fallout, reactor accidents, radioactive waste, and occupational exposure to various radioisotopes. (ACR)

Rundo, J.

1980-01-01T23:59:59.000Z

393

Low Level Radioactive Wastes Conditioning during Decommissioning of Salaspils Research Reactor  

SciTech Connect (OSTI)

The decommissioning of Salaspils research reactor is connected with the treatment of 2200 tons different materials. The largest part of all materials ({approx}60 % of all dismantled materials) is connected with low level radioactive wastes conditioning activities. Dismantled radioactive materials were cemented in concrete containers using water-cement mortar. According to elaborated technology, the tritiated water (150 tons of liquid wastes from special canalization tanks) was used for preparation of water-cement mortar. Such approach excludes the emissions of tritiated water into environment and increases the efficiency of radioactive wastes management system for decommissioning of Salaspils research reactor. The Environmental Impact Assessment studies for Salaspils research reactor decommissioning (2004) and for upgrade of repository 'Radons' for decommissioning purposes (2005) induced the investigations of radionuclides release parameters from cemented radioactive waste packages. These data were necessary for implementation of quality assurance demands during conditioning of radioactive wastes and for safety assessment modeling for institutional control period during 300 years. Experimental studies indicated, that during solidification of water- cement samples proceeds the increase of temperature up to 81 deg. C. It is unpleasant phenomena since it can result in damage of concrete container due to expansion differences for mortar and concrete walls. Another unpleasant factor is connected with the formation of bubbles and cavities in the mortar structure which can reduce the mechanical stability of samples and increase the release of radionuclides from solidified cement matrix. The several additives, fly ash and PENETRON were used for decrease of solidification temperature. It was found, that addition of fly ash to the cement-water mortar can reduce the solidification temperature up to 62 deg. C. Addition of PENETRON results in increasing of solidification temperature up to 83 deg. C. Experimental data shows, that water/cement ratio significantly influences on water-cement mortar's viscosity and solidified samples mechanical stability. Increasing of water ratio from 0.45 up to 0.65 decreases water-cement mortar's viscosity from 1100 mPas up to 90 mPas. Significant reduction of viscosity is an important factor, which facilitates the fulfillment all gaps and cavities with the mortar during conditioning of solid radioactive wastes in containers. On the other hand, increase water ratio from 0.45 up to 0.65 decreases mechanical stability of water-cement samples from 23 N/mm{sup 2} to the 12 N/mm{sup 2}. It means that water-cement bulk stability significantly decreases with increasing of water content. Technologically is important to increase the tritiated water content in container with cemented radioactive wastes. It gives a possibility to increase the fulfillment of container with radioactive materials. On the other hand, additional water significantly reduces bulk stability of containers with cemented radioactive wastes, which can result in disintegration of radioactive wastes packages in repository during 300 years. Taking into account the experimental results, it is not recommended to exceed the water/cement ratio more than 0.60. Tritium and Cs{sup 137} leakage tests show, that radionuclides release curves has a complicate structure. Experimental results indicated that addition of fly ash result in facilitation of tritium and cesium release in water phase. This is unpleasant factor, which significantly decreases the safety of disposed radioactive wastes. Despite the positive impact on solidification temperature drop, the addition of fly ash to the cement-water mortar is not recommended in case of cementation of radionuclides in concrete containers. In conclusion: The cementation processes of solid radioactive wastes in concrete containers were investigated. The influence of additives on cementation processes was studied. It was shown, that the increasing of water ratio from 0.45 up to 0.65 decreases water-cement mortar

Abramenkova, G.; Klavins, M. [Faculty of Geographical and Earth Sciences, University of Latvia, 19 Rainis Boulevard, Riga, LV-1586 (Latvia); Abramenkovs, A. [Ministry of Environment, Hazardous Wastes Management State Agency, 31 Miera Street, Salaspils, LV-2169 (Latvia)

2008-01-15T23:59:59.000Z

394

Nondestructive assay of boxed radioactive waste  

SciTech Connect (OSTI)

Solid radioactive waste must be classified before treatment and disposal methods can be chosen. After treatment and before disposal, the radionuclide contents of a container must be certified. This paper describes the problems related to the nondestructive assay (NDA) of boxed radioactive waste at the Hanford Site and how Westinghouse Hanford Company (WHC) is solving the problems. The waste form and radionuclide content are described. The characteristics of the combined neutron and gamma-based measurement system are described.

Gilles, W.P.; Jasen, W.G.; Roberts, R.J. [Westinghouse Hanford Co., Richland, WA (United States)

1993-12-31T23:59:59.000Z

395

Radioactivity and X-rays Applications and health effects  

E-Print Network [OSTI]

as the release of radioactivity from reactor accidents and fallout from nuclear explosions in the atmosphereRadioactivity and X-rays Applications and health effects by Thormod Henriksen #12;Preface ­ 7 Chapter 2. What is radioactivity page 8 ­ 27 Chapter 3. Radioactive decay laws page 28 ­ 35

Sahay, Sundeep

396

Sorting and disposal of hazardous laboratory Radioactive waste  

E-Print Network [OSTI]

Sorting and disposal of hazardous laboratory waste Radioactive waste Solid radioactive waste or in a Perspex box. Liquid radioactive waste collect in a screw-cap plastic bottle, ½ or 1 L size. Place bottles in a tray to avoid spill Final disposal of both solid and radioactive waste into the yellow barrel

Maoz, Shahar

397

The IAEA and Control of Radioactive SourcesThe  

SciTech Connect (OSTI)

This presentation discusses the International Atomic Energy Agency (IAEA) and the control of radioactive sources.

Dodd, B.

2004-10-03T23:59:59.000Z

398

Criteria and Processes for the Certification of Non-Radioactive Hazardous and Non-Hazardous Wastes  

SciTech Connect (OSTI)

This document details Lawrence Livermore National Laboratory's (LLNL) criteria and processes for determining if potentially volumetrically contaminated or potentially surface contaminated wastes are to be managed as material containing residual radioactivity or as non-radioactive. This document updates and replaces UCRL-AR-109662, Criteria and Procedures for the Certification of Nonradioactive Hazardous Waste (Reference 1), also known as 'The Moratorium', and follows the guidance found in the U.S. Department of Energy (DOE) document, Performance Objective for Certification of Non-Radioactive Hazardous Waste (Reference 2). The 1992 Moratorium document (UCRL-AR-109662) is three volumes and 703 pages. The first volume provides an overview of the certification process and lists the key radioanalytical methods and their associated Limits of Sensitivities. Volumes Two and Three contain supporting documents and include over 30 operating procedures, QA plans, training documents and organizational charts that describe the hazardous and radioactive waste management system in place in 1992. This current document is intended to update the previous Moratorium documents and to serve as the top-tier LLNL institutional Moratorium document. The 1992 Moratorium document was restricted to certification of Resource Conservation and Recovery Act (RCRA), State and Toxic Substances Control Act (TSCA) hazardous waste from Radioactive Material Management Areas (RMMA). This still remains the primary focus of the Moratorium; however, this document increases the scope to allow use of this methodology to certify other LLNL wastes and materials destined for off-site disposal, transfer, and re-use including non-hazardous wastes and wastes generated outside of RMMAs with the potential for DOE added radioactivity. The LLNL organization that authorizes off-site transfer/disposal of a material or waste stream is responsible for implementing the requirements of this document. The LLNL Radioactive and Hazardous Waste Management (RHWM) organization is responsible for the review and maintenance of this document. It should be noted that the DOE metal recycling moratorium is still in effect and is implemented as outlined in reference 17 when metals are being dispositioned for disposal/re-use/recycling off-site. This document follows the same methodology as described in the previously approved 1992 Moratorium document. Generator knowledge and certification are the primary means of characterization. Sampling and analysis are used when there is insufficient knowledge of a waste to determine if it contains added radioactivity. Table 1 (page 12) presents a list of LLNL's analytical methods for evaluating volumetrically contaminated waste and updates the reasonably achievable analytical-method-specific Minimum Detectable Concentrations (MDCs) for various matrices. Results from sampling and analysis are compared against the maximum MDCs for the given analytical method and the sample specific MDC to determine if the sample contains DOE added volumetric radioactivity. The evaluation of an item that has a physical form, and history of use, such that accessible surfaces may be potentially contaminated, is based on DOE Order 5400.5 (Reference 3), and its associated implementation guidance document DOE G 441.1-XX, Control and Release of Property with Residual Radioactive Material (Reference 4). The guidance document was made available for use via DOE Memorandum (Reference 5). Waste and materials containing residual radioactivity transferred off-site must meet the receiving facilities Waste Acceptance Criteria (if applicable) and be in compliance with other applicable federal or state requirements.

Dominick, J

2008-12-18T23:59:59.000Z

399

Experiments with radioactive samples at the Advanced Photon Source.  

SciTech Connect (OSTI)

The Advanced Photon Source (APS) at Argonne National Laboratory is a national synchrotron-radiation light source research facility. The 7 GeV electron Storage Ring is currently delivering intense high brilliance x-ray beams to a total of 34 beamlines with over 120 experiment stations to members of the international scientific community to carry out forefront basic and applied research in several scientific disciplines. Researchers come to the APS either as members of Collaborative Access Teams (CATs) or as Independent Investigators (IIs). Collaborative Access Teams comprise large number of investigators from universities, industry, and research laboratories with common research objectives. These teams are responsible for the design, construction, finding, and operation of beamlines. They are the owners of their experimental enclosures (''hutches'') designed and built to meet their specific research needs. Fig. 1 gives a plan view of the location of the Collaborative Access Teams by Sector and Discipline. In the past two years, over 2000 individual experiments were conducted at the APS facility. Of these, about 60 experiments involved the use of radioactive samples, which is less than 3% of the total. However, there is an increase in demand for experiment stations to accommodate the use of radioactive samples in different physical forms embedded in various matrices with activity levels ranging from trace amounts of naturally occurring radionuclides to MBq (mCi) quantities including transuranics. This paper discusses in some detail the steps in the safety review process for experiments involving radioactive samples and how ALARA philosophy is invoked at each step and implemented.

Veluri, V. R.; Justus, A.; Glagola, B.; Rauchas, A.; Vacca, J.

2000-11-01T23:59:59.000Z

400

Materials Scientist  

Broader source: Energy.gov [DOE]

Alternate Title(s):Materials Research Engineer; Metallurgical/Chemical Engineer; Product Development Manager;

Note: This page contains sample records for the topic "occurring radioactive materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Probing New Physics with Underground Accelerators and Radioactive Sources  

E-Print Network [OSTI]

New light, weakly coupled particles can be efficiently produced at existing and future high-intensity accelerators and radioactive sources in deep underground laboratories. Once produced, these particles can scatter or decay in large neutrino detectors (e.g Super-K and Borexino) housed in the same facilities. We discuss the production of weakly coupled scalars $\\phi$ via nuclear de-excitation of an excited element into the ground state in two viable concrete reactions: the decay of the $0^+$ excited state of $^{16}$O populated via a $(p,\\alpha)$ reaction on fluorine and from radioactive $^{144}$Ce decay where the scalar is produced in the de-excitation of $^{144}$Nd$^*$, which occurs along the decay chain. Subsequent scattering on electrons, $e(\\phi,\\gamma)e$, yields a mono-energetic signal that is observable in neutrino detectors. We show that this proposed experimental set-up can cover new territory for masses $250\\, {\\rm keV}\\leq m_\\phi \\leq 2 m_e$ and couplings to protons and electrons, $10^{-11} new physics component to the neutrino and nuclear astrophysics programs at underground facilities.

Eder Izaguirre; Gordan Krnjaic; Maxim Pospelov

2014-05-19T23:59:59.000Z

402

Switchable radioactive neutron source device  

DOE Patents [OSTI]

This invention is a switchable neutron generating apparatus comprised of a pair of plates, the first plate having an alpha emitter section on it and the second plate having a target material portion on it which generates neutrons when its nuclei absorb an alpha particle. In operation, the alpha portion of the first plate is aligned with the neutron portion of the second plate to produce neutrons and brought out of alignment to cease production of neutrons. 3 figs.

Stanford, G.S.; Rhodes, E.A.; Devolpi, A.; Boyar, R.E.

1987-11-06T23:59:59.000Z

403

Packaging and transportation of radioactive liquid at the U.S. Department of Energy Hanford Site  

SciTech Connect (OSTI)

Beginning in the 1940`s, radioactive liquid waste has been generated at the US Department of Energy (DOE) Hanford Site as a result of defense material production. The liquid waste is currently stored in 177 underground storage tanks. As part of the tank remediation efforts, Type B quantity packagings for the transport of large volumes of radioactive liquids are required. There are very few Type B liquid packagings in existence because of the rarity of large-volume radioactive liquid payloads in the commercial nuclear industry. Development of aboveground transport systems for large volumes of radioactive liquids involves institutional, economic, and technical issues. Although liquid shipments have taken place under DOE-approved controlled conditions within the boundaries of the Hanford Site for many years, offsite shipment requires compliance with DOE, US Nuclear Regulatory Commission (NRC), and US Department of Transportation (DOT) directives and regulations. At the present time, no domestic DOE nor NRC-certified Type B packagings with the appropriate level of shielding are available for DOT-compliant transport of radioactive liquids in bulk volumes. This paper will provide technical details regarding current methods used to transport such liquids on and off the Hanford Site, and will provide a status of packaging development programs for future liquid shipments.

Smith, R.J.

1995-02-01T23:59:59.000Z

404

Effect of geometrical configuration of radioactive sources on radiation intensity in beta-voltaic nuclear battery system: A preliminary result  

SciTech Connect (OSTI)

It is known that one main problem in the application of beta-voltaic nuclear battery system is its low efficiency. The efficiency of the beta-voltaic nuclear battery system mainly depends on three aspects: source of radioactive radiation, interface between materials in the system and process of converting electron-hole pair to electric current in the semiconductor material. In this work, we show the effect of geometrical configuration of radioactive sources on radiation intensity of beta-voltaic nuclear battery system.

Basar, Khairul, E-mail: khbasar@fi.itb.ac.id; Riupassa, Robi D., E-mail: khbasar@fi.itb.ac.id; Bachtiar, Reza, E-mail: khbasar@fi.itb.ac.id; Badrianto, Muldani D., E-mail: khbasar@fi.itb.ac.id [Nuclear Physics and Biophysics Research Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung (Indonesia)

2014-09-30T23:59:59.000Z

405

Results of the material screening program of the NEXT experiment  

E-Print Network [OSTI]

The 'Neutrino Experiment with a Xenon TPC (NEXT)', intended to investigate neutrinoless double beta decay, requires extremely low background levels. An extensive material screening and selection process to assess the radioactivity of components is underway combining several techniques, including germanium gamma-ray spectrometry performed at the Canfranc Underground Laboratory; recent results of this material screening program are presented here.

T. Dafni; V. Alvarez; I. Bandac; A. Bettini; F. I. G. M. Borges; M. Camargo; S. Carcel; S. Cebrian; A. Cervera; C. A. N. Conde; J. Diaz; R. Esteve; L. M. P. Fernandes; M. Fernandez; P. Ferrario; A. L. Ferreira; E. D. C. Freitas; V. M. Gehman; A. Goldschmidt; H. Gomez; J. J. Gomez-Cadenas; D. Gonzalez-Diaz; R. M. Gutierrez; J. Hauptman; J. A. Hernando Morata; D. C. Herrera; F. J. Iguaz; I. G. Irastorza; L. Labarga; A. Laing; I. Liubarsky; D. Lorca; M. Losada; G. Luzon; A. Mari; J. Martin-Albo; A. Martinez; G. Martinez-Lema; T. Miller; F. Monrabal; M. Monserrate; C. M. B. Monteiro; F. J. Mora; L. M. Moutinho; J. Munoz Vidal; M. Nebot-Guinot; D. Nygren; C. A. B. Oliveira; J. Perez; J. L. Perez Aparicio; J. Renner; L. Ripoll; A. Rodriguez; J. Rodriguez; F. P. Santos; J. M. F. dos Santos; L. Segui; L. Serra; D. Shuman; A. Simon; C. Sofka; M. Sorel; J. F. Toledo; J. Torrent; Z. Tsamalaidze; J. F. C. A. Veloso; J. A. Villar; R. C. Webb; J. T. White; N. Yahlali

2014-11-05T23:59:59.000Z

406

Geological problems in radioactive waste isolation - A world wide review  

SciTech Connect (OSTI)

The problem of isolating radioactive wastes from the biosphere presents specialists in the earth sciences with some of the most complicated problems they have ever encountered. This is especially true for high-level waste (HLW), which must be isolated in the underground and away from the biosphere for thousands of years. The most widely accepted method of doing this is to seal the radioactive materials in metal canisters that are enclosed by a protective sheath and placed underground in a repository that has been carefully constructed in an appropriate rock formation. Much new technology is being developed to solve the problems that have been raised, and there is a continuing need to publish the results of new developments for the benefit of all concerned. Table 1 presents a summary of the various formations under investigation according to the reports submitted for this world wide review. It can be seen that in those countries that are searching for repository sites, granitic and metamorphic rocks are the prevalent rock type under investigation. Six countries have developed underground research facilities that are currently in use. All of these investigations are in saturated systems below the water table, except the United States project, which is in the unsaturated zone of a fractured tuff.

Witherspoon, P.A. [Lawrence Berkeley Lab., CA (United States)

1991-06-01T23:59:59.000Z

407

Walk the Line: The Development of Route Selection Standards for Spent Nuclear Fuel and High-level Radioactive Waste in the United States - 13519  

SciTech Connect (OSTI)

Although storage facilities for spent nuclear fuel (SNF) and high-level radioactive waste (HLRW) are widely dispersed throughout the United States, these materials are also relatively concentrated in terms of geographic area. That is, the impacts of storage occur in a very small geographic space. Once shipments begin to a national repository or centralized interim storage facility, the impacts of SNF and HLRW will become more geographically distributed, more publicly visible, and almost certainly more contentious. The selection of shipping routes will likely be a major source of controversy. This paper describes the development of procedures, regulations, and standards for the selection of routes used to ship spent nuclear fuel and high-level radioactive waste in the United States. The paper begins by reviewing the circumstances around the development of HM-164 routing guidelines. The paper discusses the significance of New York City versus the Department of Transportation and application of HM-164. The paper describes the methods used to implement those regulations. The paper will also describe the current HM-164 designated routes and will provide a summary data analysis of their characteristics. This analysis will reveal the relatively small spatial scale of the effects of HM 164. The paper will then describe subsequent developments that have affected route selection for these materials. These developments include the use of 'representative routes' found in the Department of Energy (DOE) 2008 Supplemental Environmental Impact Statement for the formerly proposed Yucca Mountain geologic repository. The paper will describe recommendations related to route selection found in the National Academy of Sciences 2006 report Going the Distance, as well as recommendations found in the 2012 Final Report of the Blue Ribbon Commission on America's Nuclear Future. The paper will examine recently promulgated federal regulations (HM-232) for selection of rail routes for hazardous materials transport. The paper concludes that while the HM 164 regime is sufficient for certain applications, it does not provide an adequate basis for a national plan to ship spent nuclear fuel and high-level radioactive waste to centralized storage and disposal facilities over a period of 30 to 50 years. (authors)

Dilger, Fred [Black Mountain Research, Henderson, NV 81012 (United States)] [Black Mountain Research, Henderson, NV 81012 (United States); Halstead, Robert J. [State of Nevada Agency for Nuclear Projects, Carson City, NV 80906 (United States)] [State of Nevada Agency for Nuclear Projects, Carson City, NV 80906 (United States); Ballard, James D. [Department of Sociology, California State University, Northridge, CA 91330 (United States)] [Department of Sociology, California State University, Northridge, CA 91330 (United States)

2013-07-01T23:59:59.000Z

408

Determination of the elemental distribution and chemical speciation in highly heterogeneous cementitious materials using  

E-Print Network [OSTI]

-barrier concepts developed worldwide for the safe disposal of hazardous and radioactive waste [e.g., 1 and to construct the engineered barrier systems (container, backfill and liner materials) of repositories for radioactive waste. Thus, hardened cement paste (HCP) is an important component of the engineered barrier

409

To the best of my knowledge, the following hazardous materials are/were  

E-Print Network [OSTI]

surfaces must be performed with an appropriate instrument. If radioactive contamination is detected Chemicals (Poisons|Toxics) Radioactive Materials 9/30/2010 #12;GUIDELINES FOR LABORATORY EQUIPMENT. Resurvey to assure contamination has been removed to less than 100 counts per minute per 100 cm2

Washington at Seattle, University of

410

Pump station for radioactive waste water  

DOE Patents [OSTI]

A pump station for transferring radioactive particle containing waste water, includes: (a.) an enclosed sump having a vertically elongated right frusto conical wall surface and a bottom surface and (b.) a submersible volute centrifugal pump having a horizontally rotating impeller and a volute exterior surface. The sump interior surface, the bottom surface and the volute exterior surface are made of stainless steel having a 30 Ra or finer surface finish. A 15 Ra finish has been found to be most cost effective. The pump station is used for transferring waste water, without accumulation of radioactive fines.

Whitton, John P.; Klos, Dean M.; Carrara, Danny T.; Minno, John J.

2003-11-18T23:59:59.000Z

411

weapons material  

National Nuclear Security Administration (NNSA)

2%2A en Office of Weapons Material Protection http:nnsa.energy.govaboutusourprogramsnonproliferationprogramofficesinternationalmaterialprotectionandcooperation-1

412

Radioactivity and health: A history  

SciTech Connect (OSTI)

This book is designed to be primarily a history of research facts, measurements, and ideas and the people who developed them. ''Research'' is defined very broadly to include from bench-top laboratory experiments to worldwide environmental investigations. The book is not a monograph or a critical review. The findings and conclusions are presented largely as the investigators saw and reported them. Frequently, the discussion utilizes the terminology and units of the time, unless they are truly antiquated or potentially unclear. It is only when the work being reported is markedly iconoclastic or obviously wrong that I chose to make special note of it or to correct it. Nevertheless, except for direct quotations, the language is mine, and I take full responsibility for it. The working materials for this volume included published papers in scientific journals, books, published conferences and symposia, personal interviews with over 100 individuals, some of them more than once (see Appendix A), and particularly for the 1940--1950 decade and for the large government-supported laboratories to the present day, ''in-house'' reports. These reports frequently represent the only comprehensive archive of what was done and why. Unfortunately, this source is drying up because of storage problems and must be retrieved by ever more complex and inconvenient means. For this reason, special efforts have been taken to review and document these sources, though even now some sections of the field are partially inaccessible. Nevertheless, the volume of all materials available for this review was surprisingly large and the quality much better than might have been expected for so complex and disparate a fields approached under conditions of considerable urgency.

Stannard, J.N.; Baalman, R.W. Jr. (ed.)

1988-10-01T23:59:59.000Z

413

Low Radioactivity Crystals for Neutrinoless Double Beta Decay Detectors  

SciTech Connect (OSTI)

The production of crystals needed for rare events physics represent a relatively new, exciting challenge in the field of materials science and engineering. Extremely low concentration of radioactive impurities and very high crystal perfection is required for the crystals to be used in experiments in which the main concerns are the reduction of the background and the use of high sensitivity detectors. A further complication is the fact that for an experiment with a significant discovery potential, relatively large quantities of crystals are needed. The present work makes a review of the general problems related to the production of crystals for rare events physics and gives details related to the production of the TeO{sub 2} crystals needed for the major experiment in this field using bolometric technique, namely the CUORE experiment. The potential use of crystals for future double beta decay experiments is also discussed.

Dafinei, Ioan [Sezione INFN di Roma, P-le Aldo Moro 2, Roma I-00185 (Italy)

2011-04-27T23:59:59.000Z

414

Radioactive Waste Management and Environmental Contamination Issues at the Chernobyl Site  

SciTech Connect (OSTI)

The destruction of the Unit 4 reactor at the Chernobyl Nuclear Power Plant resulted in the generation of radioactive contamination and radioactive waste at the site and in the surrounding area (referred to as the Exclusion Zone). In the course of remediation activities, large volumes of radioactive waste were generated and placed in temporary near surface waste-storage and disposal facilities. Trench and landfill type facilities were created from 1986 to 1987 in the Chernobyl Exclusion Zone at distances 0.5 to 15 km from the NPP site. This large number of facilities was established without proper design documentation, engineered barriers, or hydrogeological investigations and they do not meet contemporary waste-safety requirements. Immediately following the accident, a Shelter was constructed over the destroyed reactor; in addition to uncertainties in stability at the time of its construction, structural elements of the Shelter have degraded as a result of corrosion. The main potential hazard of the Shelter is a possible collapse of its top structures and release of radioactive dust into the environment. A New Safe Confinement (NSC) with a 100-years service life is planned to be built as a cover over the existing Shelter as a longer-term solution. The construction of the NSC will enable the dismantlement of the current Shelter, removal of highly radioactive, fuel-containing materials from Unit 4, and eventual decommissioning of the damaged reactor. More radioactive waste will be generated during NSC construction, possible Shelter dismantling, removal of fuel containing materials, and decommissioning of Unit 4. The future development of the Exclusion Zone depends on the future strategy for converting Unit 4 into an ecologically safe system, i.e., the development of the NSC, the dismantlement of the current Shelter, removal of fuel containing material, and eventual decommissioning of the accident site. To date, a broadly accepted strategy for radioactive waste management at the reactor site and in the Exclusion Zone, and especially for high-level and long-lived waste, has not been developed.

Napier, Bruce A.; Schmieman, Eric A.; Voitsekhovitch, Oleg V.

2007-11-01T23:59:59.000Z

415

SciTech Connect: Radioactive decay data tables  

Office of Scientific and Technical Information (OSTI)

Radioactive decay data tables Citation Details In-Document Search Title: Radioactive decay data tables You are accessing a document from the Department of Energy's (DOE) SciTech...

416

DOEE A-1059 Environmental Assessment Radioactive Source Recovery...  

Broader source: Energy.gov (indexed) [DOE]

unwanted radioactive sources cannot be disposed as waste because of restrictions in the Low-Level Radioactive Waste Policy Amendments Act of 1985 (Title I of Public Law 99-240);...

417

MARSAME Appendix B B. SOURCES OF BACKGROUND RADIOACTIVITY  

E-Print Network [OSTI]

: · The Nuclear Regulatory Commission (NRC) provides information concerning background radioactivity in Background as a Residual Radioactivity Criterion for Decommissioning NUREG-1501 (NRC 1994). · The United Nations Scientific

418

High-level radioactive wastes. Supplement 1  

SciTech Connect (OSTI)

This bibliography contains information on high-level radioactive wastes included in the Department of Energy's Energy Data Base from August 1982 through December 1983. These citations are to research reports, journal articles, books, patents, theses, and conference papers from worldwide sources. Five indexes, each preceded by a brief description, are provided: Corporate Author, Personal Author, Subject, Contract Number, and Report Number. 1452 citations.

McLaren, L.H. (ed.)

1984-09-01T23:59:59.000Z

419

Annual radioactive waste tank inspection program - 1996  

SciTech Connect (OSTI)

Aqueous radioactive wastes from Savannah River Site (SRS) separations processes are contained in large underground carbon steel tanks. Inspections made during 1996 to evaluate these vessels, and evaluations based on data accrued by inspections performed since the tanks were constructed, are the subject of this report.

McNatt, F.G.

1997-04-01T23:59:59.000Z

420

Annual Radioactive Waste Tank Inspection Program - 1998  

SciTech Connect (OSTI)

Aqueous radioactive wastes from Savannah River Site separations processes are contained in large underground carbon steel tanks. Inspections made during 1998 to evaluate these vessels and auxiliary appurtenances, along with evaluations based on data accrued by inspections performed since the tanks were constructed, are the subject of this report.

McNatt, F.G.

1999-10-27T23:59:59.000Z

Note: This page contains sample records for the topic "occurring radioactive materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Annual radioactive waste tank inspection program - 1999  

SciTech Connect (OSTI)

Aqueous radioactive wastes from Savannah River Site (SRS) separations processes are contained in large underground carbon steel tanks. Inspections made during 1999 to evaluate these vessels and auxiliary appurtenances along with evaluations based on data accrued by inspections performed since the tanks were constructed are the subject of this report.

Moore, C.J.

2000-04-14T23:59:59.000Z

422

Chapter 25: Radioactivity, Nuclear Processes, and Applications  

E-Print Network [OSTI]

Chapter 25: Radioactivity, Nuclear Processes, and Applications 1 The discovery of nuclear chain only must do everything in our power to safeguard against its abuse. ~ Albert Einstein Did you read Contains positively charged protons. Held together by the Nuclear Strong ForceNuclear Strong Force. James

Hart, Gus

423

Physics with energetic radioactive ion beams  

SciTech Connect (OSTI)

Beams of short-lived, unstable nuclei have opened new dimensions in studies of nuclear structure and reactions. Such beams also provide key information on reactions that take place in our sun and other stars. Status and prospects of the physics with energetic radioactive beams are summarized.

Henning, W.F.

1996-12-31T23:59:59.000Z

424

Method for decontamination of radioactive metal surfaces  

DOE Patents [OSTI]

Disclosed is a method for removing radioactive contaminants from metal surfaces by applying steam containing an inorganic acid and cerium IV. Cerium IV is applied to contaminated metal surfaces by introducing cerium IV in solution into a steam spray directed at contaminated metal surfaces. Cerium IV solution is converted to an essentially atomized or vapor phase by the steam.

Bray, L.A.

1996-08-13T23:59:59.000Z

425

Hazardous and Radioactive Mixed Waste Program  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish Department of Energy (DOE) hazardous and radioactive mixed waste policies and requirements and to implement the requirements of the Resource Conservation and Recovery Act (RCRA) within the framework of the environmental programs established under DOE O 5400.1. This directive does not cancel any directives.

1989-02-22T23:59:59.000Z

426

Canister arrangement for storing radioactive waste  

DOE Patents [OSTI]

The subject invention relates to a canister arrangement for jointly storing high level radioactive chemical waste and metallic waste resulting from the reprocessing of nuclear reactor fuel elements. A cylindrical steel canister is provided with an elongated centrally disposed billet of the metallic waste and the chemical waste in vitreous form is disposed in the annulus surrounding the billet.

Lorenzo, Donald K. (Knoxville, TN); Van Cleve, Jr., John E. (Kingston, TN)

1982-01-01T23:59:59.000Z

427

Canister arrangement for storing radioactive waste  

DOE Patents [OSTI]

The subject invention relates to a canister arrangement for jointly storing high level radioactive chemical waste and metallic waste resulting from the reprocessing of nuclear reactor fuel elements. A cylindrical steel canister is provided with an elongated centrally disposed billet of the metallic waste and the chemical waste in vitreous form is disposed in the annulus surrounding the billet.

Lorenzo, D.K.; Van Cleve, J.E. Jr.

1980-04-23T23:59:59.000Z

428

Method for decontamination of radioactive metal surfaces  

DOE Patents [OSTI]

Disclosed is a method for removing radioactive contaminants from metal surfaces by applying steam containing an inorganic acid and cerium IV. Cerium IV is applied to contaminated metal surfaces by introducing cerium IV in solution into a steam spray directed at contaminated metal surfaces. Cerium IV solution is converted to an essentially atomized or vapor phase by the steam.

Bray, Lane A. (Richland, WA)

1996-01-01T23:59:59.000Z

429

Device Assembly Facility (DAF) Glovebox Radioactive Waste Characterization  

SciTech Connect (OSTI)

The Device Assembly Facility (DAF) at the Nevada Test Site (NTS) provides programmatic support to the Joint Actinide Shock Physics Experimental Research (JASPER) Facility in the form of target assembly. The target assembly activities are performed in a glovebox at DAF and include Special Nuclear Material (SNM). Currently, only activities with transuranic SNM are anticipated. Preliminary discussions with facility personnel indicate that primarily two distributions of SNM will be used: Weapons Grade Plutonium (WG-Pu), and Pu-238 enhanced WG-Pu. Nominal radionuclide distributions for the two material types are included in attachment 1. Wastes generated inside glove boxes is expected to be Transuranic (TRU) Waste which will eventually be disposed of at the Waste Isolation Pilot Plant (WIPP). Wastes generated in the Radioactive Material Area (RMA), outside of the glove box is presumed to be low level waste (LLW) which is destined for disposal at the NTS. The process knowledge quantification methods identified herein may be applied to waste generated anywhere within or around the DAF and possibly JASPER as long as the fundamental waste stream boundaries are adhered to as outlined below. The method is suitable for quantification of waste which can be directly surveyed with the Blue Alpha meter or swiped. An additional quantification methodology which requires the use of a high resolution gamma spectroscopy unit is also included and relies on the predetermined radionuclide distribution and utilizes scaling to measured nuclides for quantification.

Dominick, J L

2001-12-18T23:59:59.000Z

430

Low sintering temperature glass waste forms for sequestering radioactive iodine  

DOE Patents [OSTI]

Materials and methods of making low-sintering-temperature glass waste forms that sequester radioactive iodine in a strong and durable structure. First, the iodine is captured by an adsorbant, which forms an iodine-loaded material, e.g., AgI, AgI-zeolite, AgI-mordenite, Ag-silica aerogel, ZnI.sub.2, CuI, or Bi.sub.5O.sub.7I. Next, particles of the iodine-loaded material are mixed with powdered frits of low-sintering-temperature glasses (comprising various oxides of Si, B, Bi, Pb, and Zn), and then sintered at a relatively low temperature, ranging from 425.degree. C. to 550.degree. C. The sintering converts the mixed powders into a solid block of a glassy waste form, having low iodine leaching rates. The vitrified glassy waste form can contain as much as 60 wt % AgI. A preferred glass, having a sintering temperature of 500.degree. C. (below the silver iodide sublimation temperature of 500.degree. C.) was identified that contains oxides of boron, bismuth, and zinc, while containing essentially no lead or silicon.

Nenoff, Tina M.; Krumhansl, James L.; Garino, Terry J.; Ockwig, Nathan W.

2012-09-11T23:59:59.000Z

431

Radioactive Waste Management in Central Asia - 12034  

SciTech Connect (OSTI)

After the collapse of the Soviet Union the newly independent states in Central Asia (CA) whose regulatory bodies were set up recently are facing problems with the proper management of radioactive waste and so called 'nuclear legacy' inherited from the past activities. During the former Soviet Union (SU) period, various aspects of nuclear energy use took place in CA republics of Kazakhstan, Kyrgyzstan, Tajikistan and Uzbekistan. Activities range from peaceful use of energy to nuclear testing for example at the former Semipalatinsk Nuclear Test Site (SNTS) in Kazakhstan, and uranium mining and milling industries in all four countries. Large amounts of radioactive waste (RW) have been accumulated in Central Asia and are waiting for its safe disposal. In 2008 the Norwegian Radiation Protection Authority (NRPA), with the support of the Norwegian Ministry of Foreign Affairs, has developed bilateral projects that aim to assist the regulatory bodies in Kazakhstan, Kyrgyzstan Tajikistan, and Uzbekistan (from 2010) to identify and draft relevant regulatory requirements to ensure the protection of the personnel, population and environment during the planning and execution of remedial actions for past practices and radioactive waste management in the CA countries. The participating regulatory authorities included: Kazakhstan Atomic Energy Agency, Kyrgyzstan State Agency on Environmental Protection and Forestry, Nuclear Safety Agency of Tajikistan, and State Inspectorate on Safety in Industry and Mining of Uzbekistan. The scope of the projects is to ensure that activities related to radioactive waste management in both planned and existing exposure situations in CA will be carried out in accordance with the international guidance and recommendations, taking into account the relevant regulatory practice from other countries in this area. In order to understand the problems in the field of radioactive waste management we have analysed the existing regulations through the so called 'Threat assessment' in each CA country which revealed additional problems in the existing regulatory documents beyond those described at the start of our ongoing bilateral projects in Kazakhstan, Kirgizistan Tajikistan and Uzbekistan. (authors)

Zhunussova, Tamara; Sneve, Malgorzata; Liland, Astrid [Norwegian Radiation Protection Authority (Norway)

2012-07-01T23:59:59.000Z

432

1 INSTRODUCTION In the concept of geological radioactive waste disposal,  

E-Print Network [OSTI]

1 INSTRODUCTION In the concept of geological radioactive waste disposal, argillite is being of the radioactive waste disposal, the host rock will be subjected to various thermo-hydro-mechanical loadings, thermal solicitation comes from the heat emitting from the radioactive waste packages. On one hand

Boyer, Edmond

433

MANAGEMENT OF SOLID RADIOACTIVE WASTE Revised August 2008  

E-Print Network [OSTI]

k MANAGEMENT OF SOLID RADIOACTIVE WASTE Revised August 2008 Safety Services #12;MANAGEMENT OF SOLID RADIOACTIVE WASTES Page Minimisation 1 Streaming 2 Procedures 2 Keeping track of the activities placed for Appendices 4 and 5 22 Appendix 10 Flow chart of waste-streaming 23 #12;1 MANAGEMENT OF SOLID RADIOACTIVE

Davidson, Fordyce A.

434

WM'05 Conference, February 27 March 3, 2005, Tucson, AZ WM-5278 IDENTIFYING RADIOACTIVE SOURCES AT THE DEMOLITION SITE  

E-Print Network [OSTI]

), in a cooperative partnership with the scrap metal industry, developed a CD ROM based training program to provide's scrap metal supply. In order to prevent this unwanted radioactive material from entering metal will be detected in scrap metal loads. Shielding of the sources by the metal scrap, location of the source within

435

Routing of radioactive shipments in networks with time-varying costs and curfews  

SciTech Connect (OSTI)

This research examines routing of radioactive shipments in highway networks with time-dependent travel times and population densities. A time-dependent least-cost path (TDLCP) algorithm that uses a label-correcting approach is adapted to include curfews and waiting at nodes. A method is developed to estimate time-dependent population densities, which are required to estimate risk associated with the use of a particular highway link at a particular time. The TDLCP algorithm is implemented for example networks and used to examine policy questions related to radioactive shipments. It is observed that when only Interstate highway facilities are used to transport these materials, a shipment must go through many cities and has difficulty avoiding all of them during their rush hour periods. Decreases in risk, increased departure time flexibility, and modest increases in travel times are observed when primary and/or secondary roads are included in the network. Based on the results of the example implementation, the suitability of the TDLCP algorithm for strategic nuclear material and general radioactive material shipments is demonstrated.

Bowler, L.A.; Mahmassani, H.S. [Univ. of Texas, Austin, TX (United States). Dept. of Civil Engineering

1998-09-01T23:59:59.000Z

436

Scintillator material  

DOE Patents [OSTI]

An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

Anderson, D.F.; Kross, B.J.

1992-07-28T23:59:59.000Z

437

Scintillator material  

DOE Patents [OSTI]

An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

Anderson, D.F.; Kross, B.J.

1994-06-07T23:59:59.000Z

438

Scintillator material  

DOE Patents [OSTI]

An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

Anderson, David F. (Batavia, IL); Kross, Brian J. (Aurora, IL)

1992-01-01T23:59:59.000Z

439

Scintillator material  

DOE Patents [OSTI]

An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

Anderson, David F. (Batavia, IL); Kross, Brian J. (Aurora, IL)

1994-01-01T23:59:59.000Z

440

Overview of DOE-NE Structural Materials Research, Materials Challenges and Operating Conditions  

SciTech Connect (OSTI)

This presentation summarized materials conditions for application of nanomaterials to reactor components. Material performance is essential to reactor performance, economics, and safety. A modern reactor design utilizes many different materials and material systems to achieve safe and reliable performance. Material performance in these harsh environments is very complex and many different forms of degradation may occur (often together in synergistic fashions). New materials science techniques may also help understand degradation modes and develop new manufacturing and fabrication techniques.

Maloy, Stuart A. [Los Alamos National Laboratory; Busby, Jeremy T. [ORNL

2012-06-12T23:59:59.000Z

Note: This page contains sample records for the topic "occurring radioactive materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Critical Materials:  

Broader source: Energy.gov (indexed) [DOE]

lighting. 14 (bottom) Criticality ratings of shortlisted raw 76 materials. 15 77 2. Technology Assessment and Potential 78 This section reviews the major trends within...

442

Integrated Data Base for 1992: US spent fuel and radioactive waste inventories, projections, and characteristics. Revision 8  

SciTech Connect (OSTI)

The Integrated Data Base (IDB) Program has compiled current data on inventories and characteristics of commercial spent fuel and both commercial and US government-owned radioactive wastes through December 31, 1991. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest US Department of Energy/Energy Information Administration (DOE/EIA) projections of US commercial nuclear power growth and the expected DOE-related and private industrial and institutional (I/I) activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, environmental restoration wastes, commercial reactor and fuel cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through the year 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous radioactive materials that may require geologic disposal.

Not Available

1992-10-01T23:59:59.000Z

443

Integrated Data Base report--1993: U.S. spent nuclear fuel and radioactive waste inventories, projections, and characteristics. Revision 10  

SciTech Connect (OSTI)

The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and DOE spent nuclear fuel; also, commercial and US government-owned radioactive wastes through December 31, 1993. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest US Department of Energy/Energy Information Administration projections of US commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, DOE Environmental Restoration Program wastes, commercial reactor and fuel-cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given the calendar-year 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous radioactive materials that may require geologic disposal. 256 refs., 38 figs., 141 tabs.

Not Available

1994-12-01T23:59:59.000Z

444

Integrated data base for 1993: US spent fuel and radioactive waste inventories, projections, and characteristics. Revision 9  

SciTech Connect (OSTI)

The Integrated Data Base (IDB) Program has compiled historic data on inventories and characteristics of both commercial and DOE spent fuel; also, commercial and U.S. government-owned radioactive wastes through December 31, 1992. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest U.S. Department of Energy/Energy Information Administration (DOE/EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional (I/I) activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste (HLW), transuranic (TRU), waste, low-level waste (LLW), commercial uranium mill tailings, environmental restoration wastes, commercial reactor and fuel-cycle facility decommissioning wastes, and mixed (hazardous and radioactive) LLW. For most of these categories, current and projected inventories are given through the calendar-year (CY) 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous radioactive materials that may require geologic disposal.

Klein, J.A.; Storch, S.N.; Ashline, R.C. [and others

1994-03-01T23:59:59.000Z

445

EMSP Final Report: Electrically Driven Technologies for Radioactive Aerosol Abatement  

SciTech Connect (OSTI)

The purpose of this research project was to develop an improved understanding of how electrically driven processes, including electrocoalescence, acoustic agglomeration, and electric filtration, may be employed to efficiently treat problems caused by the formation of aerosols during DOE waste treatment operations. The production of aerosols during treatment and retrieval operations in radioactive waste tanks and during thermal treatment operations such as calcination presents a significant problem of cost, worker exposure, potential for release, and increased waste volume. There was anecdotal evidence in the literature that acoustic agglomeration and electrical coalescence could be used together to change the size distribution of aerosol particles in such a way as to promote easier filtration and less frequent maintenance of filtration systems. As such, those electrically driven technologies could potentially be used as remote technologies for improved treatment; however, existing theoretical models are not suitable for prediction and design. To investigate the physics of such systems, and also to prototype a system for such processes, a collaborative project was undertaken between Oak Ridge National Laboratory (ORNL) and the University of Texas at Austin (UT). ORNL was responsible for the larger-scale prototyping portion of the project, while UT was primarily responsible for the detailed physics in smaller scale unit reactors. It was found that both electrical coalescence and acoustic agglomeration do in fact increase the rate of aggregation of aerosols. Electrical coalescence requires significantly less input power than acoustic agglomeration, but it is much less effective in its ability to aggregate/coalesce aerosols. The larger-scale prototype showed qualitatively similar results as the unit reactor tests, but presented more difficulty in interpretation of the results because of the complex multi-physics coupling that necessarily occur in all larger-scale system tests. An additional finding from this work is that low-amplitude oscillation may provide an alternative, non-invasive, non-contact means of controlling settling and/or suspension of solids. Further investigation would be necessary to evaluate its utility for radioactive waste treatment applications. This project did not uncover a new technology for radioactive waste treatment. While it may be possible that an efficient electrically driven technology for aerosol treatment could be developed, it appears that other technologies, such as steel and ceramic HEPA filters, can suitably solve this problem. If further studies are to be undertaken, additional fundamental experimentation and modeling is necessary to fully capture the physics; in addition, larger-scale tests are needed to demonstrate the treatment of flowing gas streams through the coupling of acoustic agglomeration with electrocoalescence.

DePaoli, D.W.

2003-01-22T23:59:59.000Z

446

Porous material neutron detector  

DOE Patents [OSTI]

A neutron detector employs a porous material layer including pores between nanoparticles. The composition of the nanoparticles is selected to cause emission of electrons upon detection of a neutron. The nanoparticles have a maximum dimension that is in the range from 0.1 micron to 1 millimeter, and can be sintered with pores thereamongst. A passing radiation generates electrons at one or more nanoparticles, some of which are scattered into a pore and directed toward a direction opposite to the applied electrical field. These electrons travel through the pore and collide with additional nanoparticles, which generate more electrons. The electrons are amplified in a cascade reaction that occurs along the pores behind the initial detection point. An electron amplification device may be placed behind the porous material layer to further amplify the electrons exiting the porous material layer.

Diawara, Yacouba (Oak Ridge, TN); Kocsis, Menyhert (Venon, FR)

2012-04-10T23:59:59.000Z

447

Cermet materials  

DOE Patents [OSTI]

A self-cleaning porous cermet material, filter and system utilizing the same may be used in filtering particulate and gaseous pollutants from internal combustion engines having intermetallic and ceramic phases. The porous cermet filter may be made from a transition metal aluminide phase and an alumina phase. Filler materials may be added to increase the porosity or tailor the catalytic properties of the cermet material. Additionally, the cermet material may be reinforced with fibers or screens. The porous filter may also be electrically conductive so that a current may be passed therethrough to heat the filter during use. Further, a heating element may be incorporated into the porous cermet filter during manufacture. This heating element can be coated with a ceramic material to electrically insulate the heating element. An external heating element may also be provided to heat the cermet filter during use.

Kong, Peter C. (Idaho Falls, ID)

2008-12-23T23:59:59.000Z

448

Conditioning and Repackaging of Spent Radioactive Cs-137 and Co-60 Sealed Sources in Egypt - 13490  

SciTech Connect (OSTI)

Radioactive Sealed sources (RSSs) are widely use all over the world in medicine, agriculture, industry, research, etc. The accidental misuse and exposure to RSSs has caused significant environmental contamination, serious injuries and many deaths. The high specific activity of the materials in many RSSs means that the spread of as little as microgram quantities can generate significant risk to human health and inhibit the use of buildings and land. Conditioning of such sources is a must to protect humans and environment from the hazard of ionizing radiation and contamination. Conditioning is also increase the security of these sources by decreasing the probability of stolen and/or use in terrorist attacks. According to the law No.7/2010, Egyptian atomic energy authority represented in the hot laboratories and waste management center (centralized waste facility, HLWMC) has the responsibility of collecting, conditioning, storing and management of all types of radioactive waste from all Egyptian territory including spent radioactive sealed sources (SRSSs). This paper explains the conditioning procedures for two of the most common SRSSs, Cs{sup 137} and Co{sup 60} sources which make up more than 90% of the total spent radioactive sealed sources stored in our centralized waste facility as one of the major activities of hot laboratories and waste management center. Conditioning has to meet three main objectives, be acceptable for storage, enable their safe transport, and comply with disposal requirements. (authors)

Hasan, M.A.; Selim, Y.T.; El-Zakla, T. [Hot Labs and Waste Management Center, Atomic Energy Authority, 3 Ahmed El-Zomor St., El-Zohour District, Naser City, 11787, Cairo (Egypt)] [Hot Labs and Waste Management Center, Atomic Energy Authority, 3 Ahmed El-Zomor St., El-Zohour District, Naser City, 11787, Cairo (Egypt)

2013-07-01T23:59:59.000Z

449

Handbook of high-level radioactive waste transportation  

SciTech Connect (OSTI)

The High-Level Radioactive Waste Transportation Handbook serves as a reference to which state officials and members of the general public may turn for information on radioactive waste transportation and on the federal government`s system for transporting this waste under the Civilian Radioactive Waste Management Program. The Handbook condenses and updates information contained in the Midwestern High-Level Radioactive Waste Transportation Primer. It is intended primarily to assist legislators who, in the future, may be called upon to enact legislation pertaining to the transportation of radioactive waste through their jurisdictions. The Handbook is divided into two sections. The first section places the federal government`s program for transporting radioactive waste in context. It provides background information on nuclear waste production in the United States and traces the emergence of federal policy for disposing of radioactive waste. The second section covers the history of radioactive waste transportation; summarizes major pieces of legislation pertaining to the transportation of radioactive waste; and provides an overview of the radioactive waste transportation program developed by the US Department of Energy (DOE). To supplement this information, a summary of pertinent federal and state legislation and a glossary of terms are included as appendices, as is a list of publications produced by the Midwestern Office of The Council of State Governments (CSG-MW) as part of the Midwestern High-Level Radioactive Waste Transportation Project.

Sattler, L.R.

1992-10-01T23:59:59.000Z

450

Standard Model tests with trapped radioactive atoms  

E-Print Network [OSTI]

We review the use of laser cooling and trapping for Standard Model tests, focusing on trapping of radioactive isotopes. Experiments with neutral atoms trapped with modern laser cooling techniques are testing several basic predictions of electroweak unification. For nuclear $\\beta$ decay, demonstrated trap techniques include neutrino momentum measurements from beta-recoil coincidences, along with methods to produce highly polarized samples. These techniques have set the best general constraints on non-Standard Model scalar interactions in the first generation of particles. They also have the promise to test whether parity symmetry is maximally violated, to search for tensor interactions, and to search for new sources of time reversal violation. There are also possibilites for exotic particle searches. Measurements of the strength of the weak neutral current can be assisted by precision atomic experiments using traps of small numbers of radioactive atoms, and sensitivity to possible time-reversal violating electric dipole moments can be improved.

J. A. Behr; G. Gwinner

2009-03-04T23:59:59.000Z

451

Radioactive hot cell access hole decontamination machine  

DOE Patents [OSTI]

Radioactive hot cell access hole decontamination machine. A mobile housing has an opening large enough to encircle the access hole and has a shielding door, with a door opening and closing mechanism, for uncovering and covering the opening. The housing contains a shaft which has an apparatus for rotating the shaft and a device for independently translating the shaft from the housing through the opening and access hole into the hot cell chamber. A properly sized cylindrical pig containing wire brushes and cloth or other disks, with an arrangement for releasably attaching it to the end of the shaft, circumferentially cleans the access hole wall of radioactive contamination and thereafter detaches from the shaft to fall into the hot cell chamber.

Simpson, William E. (Richland, WA)

1982-01-01T23:59:59.000Z

452

Results of Self-Absorption Study on the Versapor 3000 Filters for Radioactive Particulate Air Sampling  

SciTech Connect (OSTI)

Since the mid-1980s the Pacific Northwest National Laboratory (PNNL) has used a value of 0.85 as a correction factor for the self absorption of activity of particulate radioactive air samples. More recently, an effort was made to evaluate the current particulate radioactive air sample filters (Versapor 3000) used at PNNL for self absorption effects. There were two methods used in the study, 1) to compare the radioactivity concentration by direct gas-flow proportional counting of the filter to the results obtained after acid digestion of the filter and counting again by gas-flow proportional detection and 2) to evaluate sample filters by high resolution visual/infrared microscopy to determine the depth of material loading on or in the filter fiber material. Sixty samples were selected from the archive for acid digestion in the first method and about 30 samples were selected for high resolution visual/infrared microscopy. Mass loading effects were also considered. From the sample filter analysis, large error is associated with the average self absorption factor, however, when the data is compared directly one-to-one, statistically, there appears to be good correlation between the two analytical methods. The mass loading of filters evaluated was <0.2 mg cm-2 and was also compared against other published results. The microscopy analysis shows the sample material remains on the top of the filter paper and does not imbed into the filter media. Results of the microscopy evaluation lead to the conclusion that there is not a mechanism for significant self absorption. The overall conclusion is that self-absorption is not a significant factor in the analysis of filters used at PNNL for radioactive air stack sampling of radionuclide particulates and that an applied correction factor is conservative in determining overall sample activity. A new self absorption factor of 1.0 is recommended.

Barnett, J. M.

2008-08-22T23:59:59.000Z

453

Electrically Driven Technologies for Radioactive Aerosol Abatement  

SciTech Connect (OSTI)

The purpose of this research project was to develop an improved understanding of how electriexecy driven processes, including electrocoalescence, acoustic agglomeration, and electric filtration, may be employed to efficiently treat problems caused by the formation of aerosols during DOE waste treatment operations. The production of aerosols during treatment and retrieval operations in radioactive waste tanks and during thermal treatment operations such as calcination presents a significant problem of cost, worker exposure, potential for release, and increased waste volume.

David W. DePaoli; Ofodike A. Ezekoye; Costas Tsouris; Valmor F. de Almeida

2003-01-28T23:59:59.000Z

454

Future radioactive liquid waste streams study  

SciTech Connect (OSTI)

This study provides design planning information for the Radioactive Liquid Waste Treatment Facility (RLWTF). Predictions of estimated quantities of Radioactive Liquid Waste (RLW) and radioactivity levels of RLW to be generated are provided. This information will help assure that the new treatment facility is designed with the capacity to treat generated RLW during the years of operation. The proposed startup date for the RLWTF is estimated to be between 2002 and 2005, and the life span of the facility is estimated to be 40 years. The policies and requirements driving the replacement of the current RLW treatment facility are reviewed. Historical and current status of RLW generation at Los Alamos National Laboratory are provided. Laboratory Managers were interviewed to obtain their insights into future RLW activities at Los Alamos that might affect the amount of RLW generated at the Lab. Interviews, trends, and investigation data are analyzed and used to create scenarios. These scenarios form the basis for the predictions of future RLW generation and the level of RLW treatment capacity which will be needed at LANL.

Rey, A.S.

1993-11-01T23:59:59.000Z

455

Geological problems in radioactive waste isolation  

SciTech Connect (OSTI)

The problem of isolating radioactive wastes from the biosphere presents specialists in the fields of earth sciences with some of the most complicated problems they have ever encountered. This is especially true for high level waste (HLW) which must be isolated in the underground and away from the biosphere for thousands of years. Essentially every country that is generating electricity in nuclear power plants is faced with the problem of isolating the radioactive wastes that are produced. The general consensus is that this can be accomplished by selecting an appropriate geologic setting and carefully designing the rock repository. Much new technology is being developed to solve the problems that have been raised and there is a continuing need to publish the results of new developments for the benefit of all concerned. The 28th International Geologic Congress that was held July 9--19, 1989 in Washington, DC provided an opportunity for earth scientists to gather for detailed discussions on these problems. Workshop W3B on the subject, Geological Problems in Radioactive Waste Isolation -- A World Wide Review'' was organized by Paul A Witherspoon and Ghislain de Marsily and convened July 15--16, 1989 Reports from 19 countries have been gathered for this publication. Individual papers have been cataloged separately.

Witherspoon, P.A. (ed.)

1991-01-01T23:59:59.000Z

456

DEVELOPMENT OF A ROTARY MICROFILTER FOR RADIOACTIVE WASTE APPLICATIONS  

SciTech Connect (OSTI)

The processing rate of Savannah River Site (SRS) high-level waste decontamination processes are limited by the flow rate of the solid-liquid separation. The baseline process, using a 0.1 micron cross-flow filter, produces {approx}0.02 gpm/sq. ft. of filtrate under expected operating conditions. Savannah River National Laboratory (SRNL) demonstrated significantly higher filter flux for actual waste samples using a small-scale rotary filter. With funding from the U. S. Department of Energy Office of Cleanup Technology, SRNL personnel are evaluating and developing the rotary microfilter for radioactive service at SRS. The authors improved the design for the disks and filter unit to make them suitable for high-level radioactive service. They procured two units using the new design, tested them with simulated SRS wastes, and evaluated the operation of the units. Work to date provides the following conclusions and program status: (1) The authors modified the design of the filter disks to remove epoxy and Ryton{reg_sign}. The new design includes welding both stainless steel and ceramic coated stainless steel filter media to a stainless steel support plate. The welded disks were tested in the full-scale unit. They showed good reliability and met filtrate quality requirements. (2) The authors modified the design of the unit, making installation and removal easier. The new design uses a modular, one-piece filter stack that is removed simply by disassembly of a flange on the upper (inlet) side of the filter housing. All seals and rotary unions are contained within the removable stack. (3) While it is extremely difficult to predict the life of the seal, the vendor representative indicates a minimum of one year in present service conditions is reasonable. Changing the seal face material from silicon-carbide to a graphite-impregnated silicon-carbide is expected to double the life of the seal. Replacement of the current seal with an air seal could increase the lifetime to 5 years and is undergoing testing in the current work. (4) The bottom bushing showed wear due to a misalignment during the manufacture of the filter tank. Replacing the graphite bushing with a more wear resistant material such as a carbide material will increase the lifetime of the bushing. This replacement requires a more wear resistant part or coating to prevent excessive wear of the shaft. The authors are currently conducting testing with the more wear resistant bushing. (5) The project team plans to use the rotary microfilter as a filter in advance of an ion exchange process under development for potential deployment in SRS waste tank risers.

Poirier, M; David Herman, D; Samuel Fink, S

2008-02-25T23:59:59.000Z

457

REMOTE DETECTION OF RADIOACTIVE PLUMES USING MILLIMETER WAVE TECHNOLOGY  

SciTech Connect (OSTI)

The reprocessing of spent nuclear fuel, a common method for manufacturing weapons-grade special nuclear materials, is accompanied by the release of fi ssion products trapped within the fuel. One of these fi ssion products is a radioactive isotope of Krypton (Kr-85); a pure ?- emitter with a half-life of 10.72 years. Due to its chemical neutrality and relatively long half life, nearly all of the Kr-85 is released into the surrounding air during reprocessing, resulting in a concentration of Kr-85 near the source that is several orders of magnitude higher than the typical background (atmospheric) concentrations. This high concentration of Kr-85 is accompanied by a proportionately high increase in air ionization due to the release of beta radiation from Kr-85 decay. Millimeter wave (MMW) sensing technology can be used to detect the presence of Kr-85 induced plumes since a high concentration of ions in the air increases the radar cross section due to a combination of atmospheric phenomena. Possible applications for this technology include the remote sensing of reprocessing activities across national borders bolstering global anti-proliferation initiatives. The feasibility of using MMW radar technology to uniquely detect the presence of Kr-85 can be tested using commercial ion generators or sealed radioactive sources in the laboratory. In this paper we describe our work to derive an ion dispersion model that will describe the spatial distribution of ions from Kr-85 and other common lab sources. The types and energies of radiation emitted by isotopes Co-60 and Cs-137 were researched, and these parameters were incorporated into these dispersion models. Our results can be compared with the results of MMW detection experiments in order to quantify the relationship between radar cross section and air ionization as well as to further calibrate the MMW detection equipment.

Barnowski, R.; Chien; H.; Gopalsami, N.

2009-01-01T23:59:59.000Z

458

Fifty years of federal radioactive waste management: Policies and practices  

SciTech Connect (OSTI)

This report provides a chronological history of policies and practices relating to the management of radioactive waste for which the US Atomic Energy Commission and its successor agencies, the Energy Research and Development Administration and the Department of Energy, have been responsible since the enactment of the Atomic Energy Act in 1946. The defense programs and capabilities that the Commission inherited in 1947 are briefly described. The Commission undertook a dramatic expansion nationwide of its physical facilities and program capabilities over the five years beginning in 1947. While the nuclear defense activities continued to be a major portion of the Atomic Energy Commission`s program, there was added in 1955 the Atoms for Peace program that spawned a multiplicity of peaceful use applications for nuclear energy, e.g., the civilian nuclear power program and its associated nuclear fuel cycle; a variety of industrial applications; and medical research, diagnostic, and therapeutic applications. All of these nuclear programs and activities generated large volumes of radioactive waste that had to be managed in a manner that was safe for the workers, the public, and the environment. The management of these materials, which varied significantly in their physical, chemical, and radiological characteristics, involved to varying degrees the following phases of the waste management system life cyc