National Library of Energy BETA

Sample records for occupancy sensors time

  1. Image-based occupancy sensor

    DOE Patents [OSTI]

    Polese, Luigi Gentile; Brackney, Larry

    2015-05-19

    An image-based occupancy sensor includes a motion detection module that receives and processes an image signal to generate a motion detection signal, a people detection module that receives the image signal and processes the image signal to generate a people detection signal, a face detection module that receives the image signal and processes the image signal to generate a face detection signal, and a sensor integration module that receives the motion detection signal from the motion detection module, receives the people detection signal from the people detection module, receives the face detection signal from the face detection module, and generates an occupancy signal using the motion detection signal, the people detection signal, and the face detection signal, with the occupancy signal indicating vacancy or occupancy, with an occupancy indication specifying that one or more people are detected within the monitored volume.

  2. Wireless Occupancy Sensors for Lighting Controls: An Applications...

    Office of Environmental Management (EM)

    Occupancy Sensors for Lighting Controls: An Applications Guide for Federal Facility Managers Wireless Occupancy Sensors for Lighting Controls: An Applications Guide for Federal ...

  3. Promising Technology: Wireless Lighting Occupancy Sensors

    Broader source: Energy.gov [DOE]

    Occupancy sensors and controls detect human presence, and modulate light settings accordingly. When there is no human presence detected, the system can dim or turn off lights. This technology ensures that lights are not used when there are no occupants present, which can lead to significant energy savings.

  4. Wireless Occupancy Sensors for Lighting Controls: An Applications Guide for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Facility Managers | Department of Energy Occupancy Sensors for Lighting Controls: An Applications Guide for Federal Facility Managers Wireless Occupancy Sensors for Lighting Controls: An Applications Guide for Federal Facility Managers This fact sheet provides federal facility managers with an overview of the energy savings potential of wireless lighting occupancy sensors for room types, cost considerations, key steps to successful installation of wireless sensors, pros and cons of

  5. Wireless Occupancy Sensors for Lighting Controls: An Applications...

    Office of Scientific and Technical Information (OSTI)

    for Lighting Controls: An Applications Guide for Federal Facility Managers Citation Details In-Document Search Title: Wireless Occupancy Sensors for Lighting Controls: An ...

  6. Revealing Occupancy Patterns in Office Buildings Through the use of Annual Occupancy Sensor Data

    SciTech Connect (OSTI)

    Carlos Duarte; Kevin Van Den Wymelenberg; Craig Rieger

    2013-06-01

    Energy simulation programs like DOE-2 and EnergyPlus are tools that have been proven to aid with energy calculations to predict energy use in buildings. Some inputs to energy simulation models are relatively easy to find, including building size, orientation, construction materials, and HVAC system size and type. Others vary with time (e.g. weather and occupancy) and some can be a challenge to estimate in order to create an accurate simulation. In this paper, the analysis of occupancy sensor data for a large commercial, multi-tenant office building is presented. It details occupancy diversity factors for private offices and summarizes the same for open offices, hallways, conference rooms, break rooms, and restrooms in order to better inform energy simulation parameters. Long-term data were collected allowing results to be presented to show variations of occupancy diversity factors in private offices for time of day, day of the week, holidays, and month of the year. The diversity factors presented differ as much as 46% from those currently published in ASHRAE 90.1 2004 energy cost method guidelines, a document referenced by energy modelers regarding occupancy diversity factors for simulations. This may result in misleading simulation results and may introduce inefficiencies in the final equipment and systems design.

  7. Revealing Occupancy Patterns in an Office Building through the Use of Occupancy Sensor Data

    SciTech Connect (OSTI)

    Carlos Duarte; Kevin Van Den Wymelenberg; Craig Rieger

    2013-12-01

    Energy simulation programs like DOE-2 and EnergyPlus are tools that have been proven to aid with energy calculations to predict energy use in buildings. Some inputs to energy simulation models are relatively easy to find, including building size, orientation, construction materials, and HVAC system size and type. Others vary with time (e.g. weather and occupancy) and some can be a challenge to estimate in order to create an accurate simulation. In this paper, the analysis of occupancy sensor data for a large commercial, multi-tenant office building is presented. It details occupancy diversity factors for private offices and summarizes the same for open offices, hallways, conference rooms, break rooms, and restrooms in order to better inform energy simulation parameters. Long-term data were collected allowing results to be presented to show variations of occupancy diversity factors in private offices for time of day, day of the week, holidays, and month of the year. The diversity factors presented differ as much as 46% from those currently published in ASHRAE 90.1 2004 energy cost method guidelines, a document referenced by energy modelers regarding occupancy diversity factors for simulations. This may result in misleading simulation results and may introduce inefficiencies in the final equipment and systems design.

  8. Real-Time Occupancy Change Analyzer

    Energy Science and Technology Software Center (OSTI)

    2005-03-30

    The Real-Time Occupancy Change Analyzer (ROCA) produces an occupancy grid map of an environment around the robot, scans the environment to generate a current obstacle map relative to a current robot position, and converts the current obstacle map to a current occupancy grid map. Changes in the occupancy grid can be reported in real time to support a number of tracking capabilities. The benefit of ROCA is that rather than only providing a vector tomore » the detected change, it provides the actual x,y position of the change.« less

  9. Use of Occupancy Sensors in LED Parking Lot and Garage Applications: Early

    Office of Scientific and Technical Information (OSTI)

    Experiences (Technical Report) | SciTech Connect Technical Report: Use of Occupancy Sensors in LED Parking Lot and Garage Applications: Early Experiences Citation Details In-Document Search Title: Use of Occupancy Sensors in LED Parking Lot and Garage Applications: Early Experiences Occupancy sensor systems are gaining traction as an effective technological approach to reducing energy use in exterior commercial lighting applications. Done correctly, occupancy sensors can substantially

  10. Use of Occupancy Sensors in LED Parking Lot and Garage Applications: Early Experiences

    SciTech Connect (OSTI)

    Kinzey, B. R.; Myer, M. A.; Royer, M. P.; Sullivan, G. P.

    2012-10-01

    Final GATEWAY program report on the early experiences of using occupancy sensors in LED parking lot and garage applications.

  11. Image-based occupancy sensor - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    36,866 Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories Find More Like This Return to Search Image-based occupancy sensor United

  12. Use of Occupancy Sensors in LED Parking Lot and Garage Applications...

    Office of Scientific and Technical Information (OSTI)

    Experiences Kinzey, Bruce R.; Myer, Michael; Royer, Michael P.; Sullivan, Greg P. LED lighting; parking lot lighting; occupancy sensors LED lighting; parking lot lighting;...

  13. Use of Occupancy Sensors in LED Parking Lot and Garage Applications...

    Office of Scientific and Technical Information (OSTI)

    Done correctly, occupancy sensors can substantially enhance the savings from an already efficient lighting system. However, this technology is confronted by several potential ...

  14. Wireless Occupancy Sensors for Lighting Controls: An Applications Guide for Federal Facility Managers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Occupancy Sensor Lighting Energy Savings 2 Breakroom 29% Classroom 40-46% Conference Room Corridor 30-80% Office, Private 13-50% Office, Open Restroom 30-90% Storage Area 45-80% Warehouse 35-54% 45% 10% How Much Can You Expect to Save When You Install Occupancy Sensor Lighting Controls in These Rooms? Occupancy sensors increase lighting energy savings by turning off or turning down the lights when rooms are unoccupied. Lighting energy savings of 10% to 90% are possible depending on room usage.

  15. Use of Occupancy Sensors in LED Parking Lot and Garage Applications: Early Experiences

    SciTech Connect (OSTI)

    Kinzey, Bruce R.; Myer, Michael; Royer, Michael P.; Sullivan, Greg P.

    2012-11-07

    Occupancy sensor systems are gaining traction as an effective technological approach to reducing energy use in exterior commercial lighting applications. Done correctly, occupancy sensors can substantially enhance the savings from an already efficient lighting system. However, this technology is confronted by several potential challenges and pitfalls that can leave a significant amount of the prospective savings on the table. This report describes anecdotal experiences from field installations of occupancy sensor controlled light-emitting diode (LED) lighting at two parking structures and two parking lots. The relative levels of success at these installations reflect a marked range of potential outcomes: from an additional 76% in energy savings to virtually no additional savings. Several issues that influenced savings were encountered in these early stage installations and are detailed in the report. Ultimately, care must be taken in the design, selection, and commissioning of a sensor-controlled lighting installation, else the only guaranteed result may be its cost.

  16. Continuous, real time microwave plasma element sensor

    DOE Patents [OSTI]

    Woskov, P.P.; Smatlak, D.L.; Cohn, D.R.; Wittle, J.K.; Titus, C.H.; Surma, J.E.

    1995-12-26

    Microwave-induced plasma is described for continuous, real time trace element monitoring under harsh and variable conditions. The sensor includes a source of high power microwave energy and a shorted waveguide made of a microwave conductive, refractory material communicating with the source of the microwave energy to generate a plasma. The high power waveguide is constructed to be robust in a hot, hostile environment. It includes an aperture for the passage of gases to be analyzed and a spectrometer is connected to receive light from the plasma. Provision is made for real time in situ calibration. The spectrometer disperses the light, which is then analyzed by a computer. The sensor is capable of making continuous, real time quantitative measurements of desired elements, such as the heavy metals lead and mercury. 3 figs.

  17. Continuous, real time microwave plasma element sensor

    DOE Patents [OSTI]

    Woskov, Paul P.; Smatlak, Donna L.; Cohn, Daniel R.; Wittle, J. Kenneth; Titus, Charles H.; Surma, Jeffrey E.

    1995-01-01

    Microwave-induced plasma for continuous, real time trace element monitoring under harsh and variable conditions. The sensor includes a source of high power microwave energy and a shorted waveguide made of a microwave conductive, refractory material communicating with the source of the microwave energy to generate a plasma. The high power waveguide is constructed to be robust in a hot, hostile environment. It includes an aperture for the passage of gases to be analyzed and a spectrometer is connected to receive light from the plasma. Provision is made for real time in situ calibration. The spectrometer disperses the light, which is then analyzed by a computer. The sensor is capable of making continuous, real time quantitative measurements of desired elements, such as the heavy metals lead and mercury.

  18. Real time sensor for therapeutic radiation delivery

    DOE Patents [OSTI]

    Bliss, Mary; Craig, Richard A.; Reeder, Paul L.

    1998-01-01

    The invention is a real time sensor for therapeutic radiation. A probe is placed in or near the patient that senses in real time the dose at the location of the probe. The strength of the dose is determined by either an insertion or an exit probe. The location is determined by a series of vertical and horizontal sensing elements that gives the operator a real time read out dose location relative to placement of the patient. The increased accuracy prevents serious tissue damage to the patient by preventing overdose or delivery of a dose to a wrong location within the body.

  19. Real time sensor for therapeutic radiation delivery

    DOE Patents [OSTI]

    Bliss, M.; Craig, R.A.; Reeder, P.L.

    1998-01-06

    The invention is a real time sensor for therapeutic radiation. A probe is placed in or near the patient that senses in real time the dose at the location of the probe. The strength of the dose is determined by either an insertion or an exit probe. The location is determined by a series of vertical and horizontal sensing elements that gives the operator a real time read out dose location relative to placement of the patient. The increased accuracy prevents serious tissue damage to the patient by preventing overdose or delivery of a dose to a wrong location within the body. 14 figs.

  20. Genetically encoded sensors enable real-time observation of metabolite...

    Office of Scientific and Technical Information (OSTI)

    Title: Genetically encoded sensors enable real-time observation of metabolite production Authors: Rogers, Jameson K. ; Church, George M. Publication Date: 2016-02-08 OSTI ...

  1. Time Synchronization in Hierarchical TESLA Wireless Sensor Networks

    SciTech Connect (OSTI)

    Jason L. Wright; Milos Manic

    2009-08-01

    Time synchronization and event time correlation are important in wireless sensor networks. In particular, time is used to create a sequence events or time line to answer questions of cause and effect. Time is also used as a basis for determining the freshness of received packets and the validity of cryptographic certificates. This paper presents secure method of time synchronization and event time correlation for TESLA-based hierarchical wireless sensor networks. The method demonstrates that events in a TESLA network can be accurately timestamped by adding only a few pieces of data to the existing protocol.

  2. Time varying voltage combustion control and diagnostics sensor

    DOE Patents [OSTI]

    Chorpening, Benjamin T.; Thornton, Jimmy D.; Huckaby, E. David; Fincham, William

    2011-04-19

    A time-varying voltage is applied to an electrode, or a pair of electrodes, of a sensor installed in a fuel nozzle disposed adjacent the combustion zone of a continuous combustion system, such as of the gas turbine engine type. The time-varying voltage induces a time-varying current in the flame which is measured and used to determine flame capacitance using AC electrical circuit analysis. Flame capacitance is used to accurately determine the position of the flame from the sensor and the fuel/air ratio. The fuel and/or air flow rate (s) is/are then adjusted to provide reduced flame instability problems such as flashback, combustion dynamics and lean blowout, as well as reduced emissions. The time-varying voltage may be an alternating voltage and the time-varying current may be an alternating current.

  3. Development of Real-Time, Gas Quality Sensor Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Real-Time, Gas Quality Sensor Technology Introduction Landfll gas (LFG), composed largely of methane and carbon dioxide, is used in over 645 operational projects in 48 states. These projects convert a large source of greenhouse gases into a fuel that currently provides approximately 51 trillion Btu of electricity and supplies 108 billion cubic feet of LFG annually to direct use applications and natural gas pipelines. However, there is still a signifcant resource base for new projects, with over

  4. Field Evaluation of Real-time Cloud OD Sensor TWST during the...

    Office of Scientific and Technical Information (OSTI)

    Citation Details In-Document Search Title: Field Evaluation of Real-time Cloud OD Sensor ... performance of a real-time cloud optical depth (COD) sensor (dubbed three-waveband ...

  5. Development of Real-Time, Gas Quality Sensor Technology - Fact Sheet 2015

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Real-Time, Gas Quality Sensor Technology - Fact Sheet 2015 Development of Real-Time, Gas Quality Sensor Technology - Fact Sheet 2015 The Gas Technology Institute, in collaboration with several project partners, will bring together real-time, gas quality sensor technology with engine management for opportunity fuels. The project is a unique industry effort that will improve the performance, increase efficiency, raise system reliability, and provide improved project

  6. Real-time combustion controls and diagnostics sensors (CCADS)

    DOE Patents [OSTI]

    Thornton, Jimmy D.; Richards, George A.; Dodrill, Keith A.; Nutter, Jr., Roy S.; Straub, Douglas

    2005-05-03

    The present invention is directed to an apparatus for the monitoring of the combustion process within a combustion system. The apparatus comprises; a combustion system, a means for supplying fuel and an oxidizer, a device for igniting the fuel and oxidizer in order to initiate combustion, and a sensor for determining the current conducted by the combustion process. The combustion system comprises a fuel nozzle and an outer shell attached to the combustion nozzle. The outer shell defines a combustion chamber. Preferably the nozzle is a lean premix fuel nozzle (LPN). Fuel and an oxidizer are provided to the fuel nozzle at separate rates. The fuel and oxidizer are ignited. A sensor positioned within the combustion system comprising at least two electrodes in spaced-apart relationship from one another. At least a portion of the combustion process or flame is between the first and second electrodes. A voltage is applied between the first and second electrodes and the magnitude of resulting current between the first and second electrodes is determined.

  7. Temperature measurement method using temperature coefficient timing for resistive or capacitive sensors

    DOE Patents [OSTI]

    Britton, C.L. Jr.; Ericson, M.N.

    1999-01-19

    A method and apparatus for temperature measurement especially suited for low cost, low power, moderate accuracy implementation. It uses a sensor whose resistance varies in a known manner, either linearly or nonlinearly, with temperature, and produces a digital output which is proportional to the temperature of the sensor. The method is based on performing a zero-crossing time measurement of a step input signal that is double differentiated using two differentiators functioning as respective first and second time constants; one temperature stable, and the other varying with the sensor temperature. 5 figs.

  8. Temperature measurement method using temperature coefficient timing for resistive or capacitive sensors

    DOE Patents [OSTI]

    Britton, Jr., Charles L.; Ericson, M. Nance

    1999-01-01

    A method and apparatus for temperature measurement especially suited for low cost, low power, moderate accuracy implementation. It uses a sensor whose resistance varies in a known manner, either linearly or nonlinearly, with temperature, and produces a digital output which is proportional to the temperature of the sensor. The method is based on performing a zero-crossing time measurement of a step input signal that is double differentiated using two differentiators functioning as respective first and second time constants; one temperature stable, and the other varying with the sensor temperature.

  9. Single photon imaging and timing array sensor apparatus and method

    DOE Patents [OSTI]

    Smith, R. Clayton

    2003-06-24

    An apparatus and method are disclosed for generating a three-dimension image of an object or target. The apparatus is comprised of a photon source for emitting a photon at a target. The emitted photons are received by a photon receiver for receiving the photon when reflected from the target. The photon receiver determines a reflection time of the photon and further determines an arrival position of the photon on the photon receiver. An analyzer is communicatively coupled to the photon receiver, wherein the analyzer generates a three-dimensional image of the object based upon the reflection time and the arrival position.

  10. Applications of time-frequency analysis to signals from manufacturing and machine monitoring sensors

    SciTech Connect (OSTI)

    Atlas, L.E.; Narayanan, S.B.; Bernard, G.D.

    1996-09-01

    Manufacturing industries are now demanding substantial increases in flexibility, productivity and reliability from their process machines as well as increased quality and value of their products. One important strategy to support this goal is sensor-based, on-line, real-time evaluation of key characteristics of both machines and products, throughout the manufacturing process. Recent advances in time-frequency (TF) analysis are particularly well suited to extracting key vibrational characteristics from monitoring sensors. Thus this paper presents applications of TF analysis to several important manufacturing and machine monitoring tasks, to show the value of these forms of digital signal processing applied to manufacturing.

  11. Composition Pulse Time-Of-Flight Mass Flow Sensor

    DOE Patents [OSTI]

    Mosier, Bruce P.; Crocker, Robert W.; Harnett, Cindy K. l

    2004-01-13

    A device for measuring fluid flow rates over a wide range of flow rates (<1 nL/min to >10 .mu.L/min) and at pressures at least as great as 10,000 psi. The invention is particularly adapted for use in microfluidic systems. The device operates by producing compositional variations in the fluid, or pulses, that are subsequently detected downstream from the point of creation to derive a flow rate. Each pulse, comprising a small fluid volume, whose composition is different from the mean composition of the fluid, can be created by electrochemical means, such as by electrolysis of a solvent, electrolysis of a dissolved species, or electrodialysis of a dissolved ionic species. Measurements of the conductivity of the fluid can be used to detect the arrival time of the pulses, from which the fluid flow rate can be determined

  12. Composition pulse time-of-flight mass flow sensor

    DOE Patents [OSTI]

    Harnett, Cindy K.; Crocker, Robert W.; Mosier, Bruce P.; Caton, Pamela F.; Stamps, James F.

    2007-06-05

    A device for measuring fluid flow rates over a wide range of flow rates (<1 nL/min to >10 .mu.L/min) and at pressures at least as great as 2,000 psi. The invention is particularly adapted for use in microfluidic systems. The device operates by producing compositional variations in the fluid, or pulses, that are subsequently detected downstream from the point of creation to derive a flow rate. Each pulse, comprising a small fluid volume, whose composition is different from the mean composition of the fluid, can be created by electrochemical means, such as by electrolysis of a solvent, electrolysis of a dissolved species, or electrodialysis of a dissolved ionic species. Measurements of the conductivity of the fluid can be used to detect the arrival time of the pulses, from which the fluid flow rate can be determined. A pair of spaced apart electrodes can be used to produce the electrochemical pulse. In those instances where it is desired to measure a wide range of fluid flow rates a three electrode configuration in which the electrodes are spaced at unequal distances has been found to be desirable.

  13. Method and computer product to increase accuracy of time-based software verification for sensor networks

    DOE Patents [OSTI]

    Foo Kune, Denis; Mahadevan, Karthikeyan

    2011-01-25

    A recursive verification protocol to reduce the time variance due to delays in the network by putting the subject node at most one hop from the verifier node provides for an efficient manner to test wireless sensor nodes. Since the software signatures are time based, recursive testing will give a much cleaner signal for positive verification of the software running on any one node in the sensor network. In this protocol, the main verifier checks its neighbor, who in turn checks its neighbor, and continuing this process until all nodes have been verified. This ensures minimum time delays for the software verification. Should a node fail the test, the software verification downstream is halted until an alternative path (one not including the failed node) is found. Utilizing techniques well known in the art, having a node tested twice, or not at all, can be avoided.

  14. A REAL-TIME COAL CONTENT/ORE GRADE (C2OC) SENSOR

    SciTech Connect (OSTI)

    Rand Swanson

    2005-04-01

    This is the final report of a three year DOE funded project titled ''A real-time coal content/ore grade (C{sub 2}OG) sensor''. The sensor, which is based on hyperspectral imaging technology, was designed to give a machine vision assay of ore or coal. Sensors were designed and built at Resonon, Inc., and then deployed at the Stillwater Mining Company core room in southcentral Montana for analyzing platinum/palladium ore and at the Montana Tech Spectroscopy Lab for analyzing coal and other materials. The Stillwater sensor imaged 91' of core and analyzed this data for surface sulfides which are considered to be pathfinder minerals for platinum/palladium at this mine. Our results indicate that the sensor could deliver a relative ore grade provided tool markings and iron oxidation were kept to a minimum. Coal, talc, and titanium sponge samples were also imaged and analyzed for content and grade with promising results. This research has led directly to a DOE SBIR Phase II award for Resonon to develop a down-hole imaging spectrometer based on the same imaging technology used in the Stillwater core room C{sub 2}OG sensor. The Stillwater Mining Company has estimated that this type of imaging system could lead to a 10% reduction in waste rock from their mine and provide a $650,000 benefit per year. The proposed system may also lead to an additional 10% of ore tonnage, which would provide a total economic benefit of more than $3.1 million per year. If this benefit could be realized on other metal ores for which the proposed technology is suitable, the possible economic benefits to U.S. mines is over $70 million per year. In addition to these currently lost economic benefits, there are also major energy losses from mining waste rock and environmental impacts from mining, processing, and disposing of waste rock.

  15. Converging Redundant Sensor Network Information for Improved Building Control

    SciTech Connect (OSTI)

    Dale Tiller; D. Phil; Gregor Henze; Xin Guo

    2007-09-30

    This project investigated the development and application of sensor networks to enhance building energy management and security. Commercial, industrial and residential buildings often incorporate systems used to determine occupancy, but current sensor technology and control algorithms limit the effectiveness of these systems. For example, most of these systems rely on single monitoring points to detect occupancy, when more than one monitoring point could improve system performance. Phase I of the project focused on instrumentation and data collection. During the initial project phase, a new occupancy detection system was developed, commissioned and installed in a sample of private offices and open-plan office workstations. Data acquisition systems were developed and deployed to collect data on space occupancy profiles. Phase II of the project demonstrated that a network of several sensors provides a more accurate measure of occupancy than is possible using systems based on single monitoring points. This phase also established that analysis algorithms could be applied to the sensor network data stream to improve the accuracy of system performance in energy management and security applications. In Phase III of the project, the sensor network from Phase I was complemented by a control strategy developed based on the results from the first two project phases: this controller was implemented in a small sample of work areas, and applied to lighting control. Two additional technologies were developed in the course of completing the project. A prototype web-based display that portrays the current status of each detector in a sensor network monitoring building occupancy was designed and implemented. A new capability that enables occupancy sensors in a sensor network to dynamically set the 'time delay' interval based on ongoing occupant behavior in the space was also designed and implemented.

  16. Real-time method for establishing a detection map for a network of sensors

    DOE Patents [OSTI]

    Nguyen, Hung D; Koch, Mark W; Giron, Casey; Rondeau, Daniel M; Russell, John L

    2012-09-11

    A method for establishing a detection map of a dynamically configurable sensor network. This method determines an appropriate set of locations for a plurality of sensor units of a sensor network and establishes a detection map for the network of sensors while the network is being set up; the detection map includes the effects of the local terrain and individual sensor performance. Sensor performance is characterized during the placement of the sensor units, which enables dynamic adjustment or reconfiguration of the placement of individual elements of the sensor network during network set-up to accommodate variations in local terrain and individual sensor performance. The reconfiguration of the network during initial set-up to accommodate deviations from idealized individual sensor detection zones improves the effectiveness of the sensor network in detecting activities at a detection perimeter and can provide the desired sensor coverage of an area while minimizing unintentional gaps in coverage.

  17. Potentiometric Sensor for Real-Time Remote Surveillance of Actinides in Molten Salts

    SciTech Connect (OSTI)

    Natalie J. Gese; Jan-Fong Jue; Brenda E. Serrano; Guy L. Fredrickson

    2012-07-01

    A potentiometric sensor is being developed at the Idaho National Laboratory for real-time remote surveillance of actinides during electrorefining of spent nuclear fuel. During electrorefining, fuel in metallic form is oxidized at the anode while refined uranium metal is reduced at the cathode in a high temperature electrochemical cell containing LiCl-KCl-UCl3 electrolyte. Actinides present in the fuel chemically react with UCl3 and form stable metal chlorides that accumulate in the electrolyte. This sensor will be used for process control and safeguarding of activities in the electrorefiner by monitoring the concentrations of actinides in the electrolyte. The work presented focuses on developing a solid-state cation conducting ceramic sensor for detecting varying concentrations of trivalent actinide metal cations in eutectic LiCl-KCl molten salt. To understand the basic mechanisms for actinide sensor applications in molten salts, gadolinium was used as a surrogate for actinides. The ?-Al2O3 was selected as the solid-state electrolyte for sensor fabrication based on cationic conductivity and other factors. In the present work Gd3+-?-Al2O3 was prepared by ion exchange reactions between trivalent Gd3+ from GdCl3 and K+-, Na+-, and Sr2+-?-Al2O3 precursors. Scanning electron microscopy (SEM) was used for characterization of Gd3+-?-Al2O3 samples. Microfocus X-ray Diffraction (-XRD) was used in conjunction with SEM energy dispersive X-ray spectroscopy (EDS) to identify phase content and elemental composition. The Gd3+-?-Al2O3 materials were tested for mechanical and chemical stability by exposing them to molten LiCl-KCl based salts. The effect of annealing on the exchanged material was studied to determine improvements in material integrity post ion exchange. The stability of the ?-Al2O3 phase after annealing was verified by -XRD. Preliminary sensor tests with different assembly designs will also be presented.

  18. Real-time Bacterial Detection by Single Cell Based Sensors UsingSynchrotron FTIR Spectromicroscopy

    SciTech Connect (OSTI)

    Veiseh, Mandana; Veiseh, Omid; Martin, Michael C.; Bertozzi,Carolyn; Zhang, Miqin

    2005-08-10

    Microarrays of single macrophage cell based sensors weredeveloped and demonstrated for real time bacterium detection bysynchrotron FTIR microscopy. The cells were patterned on gold-SiO2substrates via a surface engineering technique by which the goldelectrodes were immobilized with fibronectin to mediate cell adhesion andthe silicon oxide background were passivated with PEG to resist proteinadsorption and cell adhesion. Cellular morphology and IR spectra ofsingle, double, and triple cells on gold electrodes exposed tolipopolysaccharide (LPS) of different concentrations were compared toreveal the detection capabilities of these biosensors. The single-cellbased sensors were found to generate the most significant IR wave numbervariation and thus provide the highest detection sensitivity. Changes inmorphology and IR spectrum for single cells exposed to LPS were found tobe time- and concentration-dependent and correlated with each other verywell. FTIR spectra from single cell arrays of gold electrodes withsurface area of 25 mu-m2, 100 mu-m2, and 400 mu-m2 were acquired usingboth synchrotron and conventional FTIR spectromicroscopes to study thesensitivity of detection. The results indicated that the developedsingle-cell platform can be used with conventional FTIRspectromicroscopy. This technique provides real-time, label-free, andrapid bacterial detection, and may allow for statistic and highthroughput analyses, and portability.

  19. Sensor Switch's Bright Manufacturing Future

    Broader source: Energy.gov [DOE]

    The switch helps with cost effective energy savings by turning off the lights when an occupancy sensor says the room is empty.

  20. Real-time heterodyne speckle pattern interferometry using the correlation image sensor

    SciTech Connect (OSTI)

    Kimachi, Akira

    2010-12-10

    A real-time method for heterodyne speckle pattern interferometry using the correlation image sensor (CIS) is proposed. The CIS demodulates the interference phase of heterodyned speckle wavefronts pixelwise at an ordinary video frame rate. The proposed method neither suffers loss of spatial resolution nor requires a high frame rate. Interferometers for out-of-plane and in-plane deformation are developed with a 200x200 pixel CIS camera. Experimental results confirm that the proposed method realizes real-time imaging of a rough-surfaced object under deformation. The average standard deviations of demodulated phase-difference images for the out-of-plane and in-plane interferometers are 0.33 and 0.13 rad, respectively.

  1. Use of miniature magnetic sensors for real-time control of the induction heating process

    DOE Patents [OSTI]

    Bentley, Anthony E. (Tijeras, NM); Kelley, John Bruce (Albuquerque, NM); Zutavern, Fred J. (Albuquerque, NM)

    2002-01-01

    A method of monitoring the process of induction heating a workpiece. A miniature magnetic sensor located near the outer surface of the workpiece measures changes in the surface magnetic field caused by changes in the magnetic properties of the workpiece as it heats up during induction heating (or cools down during quenching). A passive miniature magnetic sensor detects a distinct magnetic spike that appears when the saturation field, B.sub.sat, of the workpiece has been exceeded. This distinct magnetic spike disappears when the workpiece's surface temperature exceeds its Curie temperature, due to the sudden decrease in its magnetic permeability. Alternatively, an active magnetic sensor can also be used to measure changes in the resonance response of the monitor coil when the excitation coil is linearly swept over 0-10 MHz, due to changes in the magnetic permeability and electrical resistivity of the workpiece as its temperature increases (or decreases).

  2. A Post-Occupancy Monitored Evaluation of the Dimmable Lighting, Automated Shading, and Underfloor Air Distribution System in The New York Times Building

    SciTech Connect (OSTI)

    Lee, E. S.; Fernandes, L. L.; Coffey, B.; McNeil, A.; Clear, R.; Webster, T.; Bauman, F.; Dickerhoff, D.; Heinzerling, D.; Hoyt, T.

    2013-01-01

    With aggressive goals to reduce national energy use and carbon emissions, the U.S. Department of Energy (DOE) will be looking to exemplary buildings that have already invested in new approaches to achieving the energy performance goals now needed at a national level. The New York Times Building, in New York, New York, incorporates a number of innovative technologies, systems and processes and could become model for widespread replication in new and existing buildings. A year-long monitored study was conducted to verify energy performance, assess occupant comfort and satisfaction with the indoor environment, and evaluate impact on maintenance and operations. Lessons learned were derived from the analysis; these lessons could help identify and shape policy, financial, or supporting strategies to accelerate diffusion in the commercial building market.

  3. Acoustic Source Localization via Time Difference of Arrival Estimation for Distributed Sensor Networks Using Tera-Scale Optical Core Devices

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Imam, Neena; Barhen, Jacob

    2009-01-01

    For real-time acoustic source localization applications, one of the primary challenges is the considerable growth in computational complexity associated with the emergence of ever larger, active or passive, distributed sensor networks. These sensors rely heavily on battery-operated system components to achieve highly functional automation in signal and information processing. In order to keep communication requirements minimal, it is desirable to perform as much processing on the receiver platforms as possible. However, the complexity of the calculations needed to achieve accurate source localization increases dramatically with the size of sensor arrays, resulting in substantial growth of computational requirements that cannot bemore » readily met with standard hardware. One option to meet this challenge builds upon the emergence of digital optical-core devices. The objective of this work was to explore the implementation of key building block algorithms used in underwater source localization on the optical-core digital processing platform recently introduced by Lenslet Inc. This demonstration of considerably faster signal processing capability should be of substantial significance to the design and innovation of future generations of distributed sensor networks.« less

  4. System for detecting operating errors in a variable valve timing engine using pressure sensors

    DOE Patents [OSTI]

    Wiles, Matthew A.; Marriot, Craig D

    2013-07-02

    A method and control module includes a pressure sensor data comparison module that compares measured pressure volume signal segments to ideal pressure volume segments. A valve actuation hardware remedy module performs a hardware remedy in response to comparing the measured pressure volume signal segments to the ideal pressure volume segments when a valve actuation hardware failure is detected.

  5. Performance of a day time star sensor for a stabilized balloon platform

    SciTech Connect (OSTI)

    Rossi, E.; DiCocco, G.; Donati, A.; Traci, A.; Quadrini, M.; Villa, G.; Ashton, T.; Court, A.J.

    1989-02-01

    A modified version of a CCD star tracker originally designed for use on the ROSAT X ray astronomy satellite, has been built for use on a three axis stabilized balloon platform. The first flight of this star sensor was planned for may 1988 from the NASA Balloon base at Palestine, Texas. The expected performance of this instrument is described along with the preflight results.

  6. Embedded Fiber Optic Sensors for Measuring Transient Detonation/Shock Behavior;Time-of-Arrival Detection and Waveform Determination.

    SciTech Connect (OSTI)

    Chavez, Marcus Alexander; Willis, Michael David; Covert, Timothy T.

    2014-09-01

    The miniaturization of explosive components has driven the need for a corresponding miniaturization of the current diagnostic techniques available to measure the explosive phenomena. Laser interferometry and the use of spectrally coated optical windows have proven to be an essential interrogation technique to acquire particle velocity time history data in one- dimensional gas gun and relatively large-scale explosive experiments. A new diagnostic technique described herein allows for experimental measurement of apparent particle velocity time histories in microscale explosive configurations and can be applied to shocks/non-shocks in inert materials. The diagnostic, Embedded Fiber Optic Sensors (EFOS), has been tested in challenging microscopic experimental configurations that give confidence in the technique's ability to measure the apparent particle velocity time histories of an explosive with pressure outputs in the tenths of kilobars to several kilobars. Embedded Fiber Optic Sensors also allow for several measurements to be acquired in a single experiment because they are microscopic, thus reducing the number of experiments necessary. The future of EFOS technology will focus on further miniaturization, material selection appropriate for the operating pressure regime, and extensive hydrocode and optical analysis to transform apparent particle velocity time histories into true particle velocity time histories as well as the more meaningful pressure time histories.

  7. Evaluation of a photoelectric aerosol sensor for real-time PAH monitoring. Project report

    SciTech Connect (OSTI)

    Ramamurthi, M.; Chuang, J.C.

    1997-04-01

    In this study, the performance of a Gossen, GmbH Model PAS 1000i Photoelectric Aerosol Sensors (PAS) was evaluated for monitoring the levels of polycyclic aromatic hydrocarbons (PAH) on airborne find particles. The response of the PAS to PAH vapors and to airborne particles of various sizes were determined. Estimated levels of PAH provided by the PAS were compared to the concentrations of PAH sampled and measured traditionally.

  8. R&D 100: Smart Sensors Mean Energy Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Renewable Energy Laboratory recently developed a new smart occupancy sensor that adds optics to what had only been a motion detection before. The new sensor combines an...

  9. A real-time heart rate analysis for a remote millimeter wave I-Q sensor.

    SciTech Connect (OSTI)

    Bakhtiari, S.; Liao, S.; Elmer, T.; Gopalsami, N.; Raptis, A. C.

    2011-06-01

    This paper analyzes heart rate (HR) information from physiological tracings collected with a remote millimeter wave (mmW) I-Q sensor for biometric monitoring applications. A parameter optimization method based on the nonlinear Levenberg-Marquardt algorithm is used. The mmW sensor works at 94 GHz and can detect the vital signs of a human subject from a few to tens of meters away. The reflected mmW signal is typically affected by respiration, body movement, background noise, and electronic system noise. Processing of the mmW radar signal is, thus, necessary to obtain the true HR. The down-converted received signal in this case consists of both the real part (I-branch) and the imaginary part (Q-branch), which can be considered as the cosine and sine of the received phase of the HR signal. Instead of fitting the converted phase angle signal, the method directly fits the real and imaginary parts of the HR signal, which circumvents the need for phase unwrapping. This is particularly useful when the SNR is low. Also, the method identifies both beat-to-beat HR and individual heartbeat magnitude, which is valuable for some medical diagnosis applications. The mean HR here is compared to that obtained using the discrete Fourier transform.

  10. Sensor response rate accelerator

    DOE Patents [OSTI]

    Vogt, Michael C.

    2002-01-01

    An apparatus and method for sensor signal prediction and for improving sensor signal response time, is disclosed. An adaptive filter or an artificial neural network is utilized to provide predictive sensor signal output and is further used to reduce sensor response time delay.

  11. PIA - Richland Occupational Medicine Contract | Department of...

    Energy Savers [EERE]

    PIA - Richland Occupational Medicine Contract PIA - Richland Occupational Medicine Contract PIA - Richland Occupational Medicine Contract PDF icon PIA - Richland Occupational...

  12. Image Processing Occupancy Sensor - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The global market for intelligent lighting controls will experience steady and robust growth over the rest of this decade, rising from 1.5 billion in 2012 to more than 4.3 ...

  13. IMAGE PROCESSING OCCUPANCY SENSOR - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar...

  14. Acoustic sensor for real-time control for the inductive heating process

    DOE Patents [OSTI]

    Kelley, John Bruce; Lu, Wei-Yang; Zutavern, Fred J.

    2003-09-30

    Disclosed is a system and method for providing closed-loop control of the heating of a workpiece by an induction heating machine, including generating an acoustic wave in the workpiece with a pulsed laser; optically measuring displacements of the surface of the workpiece in response to the acoustic wave; calculating a sub-surface material property by analyzing the measured surface displacements; creating an error signal by comparing an attribute of the calculated sub-surface material properties with a desired attribute; and reducing the error signal below an acceptable limit by adjusting, in real-time, as often as necessary, the operation of the inductive heating machine.

  15. Sensor-based demand controlled ventilation

    SciTech Connect (OSTI)

    De Almeida, A.T.; Fisk, W.J.

    1997-07-01

    In most buildings, occupancy and indoor pollutant emission rates vary with time. With sensor-based demand-controlled ventilation (SBDCV), the rate of ventilation (i.e., rate of outside air supply) also varies with time to compensate for the changes in pollutant generation. In other words, SBDCV involves the application of sensing, feedback and control to modulate ventilation. Compared to ventilation without feedback, SBDCV offers two potential advantages: (1) better control of indoor pollutant concentrations; and (2) lower energy use and peak energy demand. SBDCV has the potential to improve indoor air quality by increasing the rate of ventilation when indoor pollutant generation rates are high and occupants are present. SBDCV can also save energy by decreasing the rate of ventilation when indoor pollutant generation rates are low or occupants are absent. After providing background information on indoor air quality and ventilation, this report provides a relatively comprehensive discussion of SBDCV. Topics covered in the report include basic principles of SBDCV, sensor technologies, technologies for controlling air flow rates, case studies of SBDCV, application of SBDCV to laboratory buildings, and research needs. SBDCV appears to be an increasingly attractive technology option. Based on the review of literature and theoretical considerations, the application of SBDCV has the potential to be cost-effective in applications with the following characteristics: (a) a single or small number of dominant pollutants, so that ventilation sufficient to control the concentration of the dominant pollutants provides effective control of all other pollutants; (b) large buildings or rooms with unpredictable temporally variable occupancy or pollutant emission; and (c) climates with high heating or cooling loads or locations with expensive energy.

  16. Sensors and Controls Reports | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emerging Technologies » Sensors and Controls » Sensors and Controls Reports Sensors and Controls Reports Sensor Characteristics Reference Guide (PNNL, April 2013) Energy Savings for Occupancy-Based Control (OBC) of Variable-Air-Volume (VAV) Systems (PNNL, Jan 2013) Small- and Medium-Sized Commercial Building Monitoring and Controls Needs: A Scoping Study (PNNL, Oct 2012) Buildings Home About Emerging Technologies HVAC, Water Heating, & Appliances Windows and Building Envelope Lighting

  17. PRIVACY IMPACT ASSESSMENT: OCCUPATIONAL MEDICINE- INL OCCUPATIONAL

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    OCCUPATIONAL MEDICINE- INL OCCUPATIONAL MEDICAL SUVEILLANCE SYSTEM (OMSS) PIA Template Version 3 - May, 2009 Department of Energy Privacy Impact Assessment (PIA) Guidance is provided in the template. See DOE Order 206.1, Department of Energy Privacy Program, Appendix A, Privacy Impact Assessments, for requirements and additional guidance for conducting a PIA: http://www.directives.doe.gov/pdfs/doe/doetextlneword/206/o2061.pdf Please complete electronically: no hand-written submissions will be

  18. PRIVACY IMPACT ASSESSMENT: Occupational Safety Health Occupational

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Occupational Safety & Health - Occupational Injury & Illness System PIA Template Version 3 - May, 2009 Department of Energy Privacy Impact Assessment (PIA) Guidance is provided in the template. See DOE Order 206.1 J Department of Energy Privacy Program, Appendix A, Privacy Impact Assessments, for requirements and additional guidance for conducting a PIA: http://www.directives.doe.gov/pdfs/doe/doetextlneword/206/o2061.pdf Please complete electronically: no hand-written submissions will be

  19. Development of a Density Sensor for In-Line Real-Time Process Control and Monitoring of Slurries during Radioactive Waste Retrieval and Transport Operations at DOE Sites

    SciTech Connect (OSTI)

    Bamberger, Judith A.; Greenwood, Margaret S.

    2001-11-19

    A density sensor (densimeter) to monitor and control slurries in-line real-time during radioactive waste retrieval and transport and detect conditions leading to degraded transport and line plugging is described. Benefits over baseline grab samples and off line analysis include: early detection and prevention of pipeline plugging, real-time density through the transfer process, elimination of grab sampling and off-line analysis, and reduced worker radiation exposure. The sensor is small, robust and could be retrofitted into existing pump pit manifolds and transfer lines. The probe uses ultrasonic signal reflection at the fluid-pipe wall interface to quantify density and features include: a non-intrusive sensing surface located flush with the pipeline wall; performance that is not affected by entrained air or by electromagnetic noise from nearby pumps and other equipment and is compact. Components were tested for chemical and radiation resistance and the spool piece was pressure tested in accordance with ASME Process Piping Code B31.3 and approved by the Hanford Site Flammable Gas Equipment Advisory Board for installation. During pipeline tests, the sensor predicted density within + 2% oriented in vertical and horizontal position. The densimeter is installed in the modified process manifold that is installed in the prefabricated pump pit at Hanford tank SY-101 site. In FY-2002 the density sensor performance will be evaluated during transfers of both water and waste through the pipeline. A separate project developed an ultrasonic sensor that: 1) can be attached permanently to a pipeline wall, possibly as a spool piece inserted into the line or 2) can clamp onto an existing pipeline wall and be movable to another location. This method is attractive for radioactive fluids transport applications because the sensors could be applied to existing equipment without the need to penetrate the pipe pressure boundary or to open the system to install new equipment.

  20. Annual DOE Occupational Radiation Exposure | 1997 Report | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 7 Report Annual DOE Occupational Radiation Exposure | 1997 Report The DOE Occupational Radiation Exposure Report, 1997 reports occupational radiation exposures incurred by individuals at U.S. Department of Energy (DOE) facilities during the calendar year 1997. This report includes occupational radiation exposure information for all DOE employees, contractors, subcontractors, and visitors. This information is analyzed and trended over time to provide a measure of DOE's performance in

  1. Use of environmental sensors and sensor networks to develop water and salinity budgets for seasonal wetland real-time water quality management

    SciTech Connect (OSTI)

    Quinn, N.W.T.; Ortega, R.; Rahilly, P.J.A,; Royer, C.W.

    2009-10-01

    Successful management of river salt loads in complex and highly regulated river basins such as the San Joaquin of California presents significant challenges to Information Technology. Models are used as means of simulating major hydrologic processes in the basin which affect water quality and can be useful as tools for organizing basin information in a structured and readily accessible manner. Models can also be used to extrapolate the results of system monitoring since it is impossible to collect data for every point and non-point source of a pollutant in the Basin. Fundamental to every model is the concept of mass balance. This paper describes the use of state-of-the-art sensor technologies deployed in concert to obtain the first water and salinity budgets for a 60,000 hectare tract of seasonally managed wetlands in the San Joaquin Basin of California.

  2. Occupant Safety Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Occupant Safety Assessment and Crash Biomechanics Background During crashes, vehicle occupants may experience a wide variety of injuries that often correspond to their location within the vehicle, their age and gender, and type of vehicle and crash. Current finite-element models that are used to assess the level of injuries employ only 60,000 to 100,000 elements and require 12 hours of computation to assess vehicle structural components. Occupant models mostly represent the "50% adult

  3. Occupational Medicine - Assistant PIA, Idaho National Laboratory...

    Energy Savers [EERE]

    Occupational Medicine - Assistant PIA, Idaho National Laboratory Occupational Medicine - Assistant PIA, Idaho National Laboratory Occupational Medicine - Assistant PIA, Idaho...

  4. Towards improved characterization of high-risk releases using heterogeneous indoor sensor systems

    SciTech Connect (OSTI)

    Sreedharan, Priya; Sohn, Michael D.; Nazaroff, William W.; J. Gadgil, Ashok

    2010-06-30

    The sudden release of toxic contaminants that reach indoor spaces can be hazardous to building occupants. For an acutely toxic contaminant, the speed of the emergency response strongly influences the consequences to occupants. The design of a real time sensor system is made challenging both by the urgency and complex nature of the event, and by the imperfect sensors and models available to describe it. In this research, we use Bayesian modeling to combine information from multiple types of sensors to improve the characterization of a release. We discuss conceptual and algorithmic considerations for selecting and fusing information from disparate sensors. To explore system performance, we use both real tracer gas data from experiments in a three story building, along with synthetic data, including information from door position sensors. The added information from door position sensors is found to be useful for many scenarios, but not always. We discuss the physical conditions and design factors that affect these results, such as the influence of the door positions on contaminant transport. We highlight potential benefits of multisensor data fusion, challenges in realizing those benefits, and opportunities for further improvement.

  5. A Microcantilever Sensor Array for the Detection and Inventory of Desert Tortoises

    SciTech Connect (OSTI)

    Venedam, R. J.; Dillingham, T. R.

    2008-07-01

    Wehavedesignedandtestedaportableinstrumentconsistingofasmallinfraredcameracoupledwithanarrayofpiezoresistivemicrocantileversensorsthatisusedtoprovidereal-time,non-invasive data on desert tortoise den occupancy. The piezoresistive microcantilever (PMC) sensors are used to obtain a chemical signature of tortoise presence from the air deep within the dens, and provide data in cases where the camera cannot extend deep enough into the den to provide visual evidence of tortoise presence. The infrared camera was used to verify the PMC data during testing, and in many cases, such as shallower dens, may be used to provide exact numbers on den populations.

  6. Occupational Safety Performance

    Office of Environmental Management (EM)

    Q1 2012 rates should be considered preliminary as of the date of this report (July 2012). All data has not yet been submitted to CAIRS. 1 Occupational Safety Performance Comparable ...

  7. Sensor readout detector circuit

    DOE Patents [OSTI]

    Chu, Dahlon D.; Thelen, Jr., Donald C.

    1998-01-01

    A sensor readout detector circuit is disclosed that is capable of detecting sensor signals down to a few nanoamperes or less in a high (microampere) background noise level. The circuit operates at a very low standby power level and is triggerable by a sensor event signal that is above a predetermined threshold level. A plurality of sensor readout detector circuits can be formed on a substrate as an integrated circuit (IC). These circuits can operate to process data from an array of sensors in parallel, with only data from active sensors being processed for digitization and analysis. This allows the IC to operate at a low power level with a high data throughput for the active sensors. The circuit may be used with many different types of sensors, including photodetectors, capacitance sensors, chemically-sensitive sensors or combinations thereof to provide a capability for recording transient events or for recording data for a predetermined period of time following an event trigger. The sensor readout detector circuit has applications for portable or satellite-based sensor systems.

  8. Sensor readout detector circuit

    DOE Patents [OSTI]

    Chu, D.D.; Thelen, D.C. Jr.

    1998-08-11

    A sensor readout detector circuit is disclosed that is capable of detecting sensor signals down to a few nanoamperes or less in a high (microampere) background noise level. The circuit operates at a very low standby power level and is triggerable by a sensor event signal that is above a predetermined threshold level. A plurality of sensor readout detector circuits can be formed on a substrate as an integrated circuit (IC). These circuits can operate to process data from an array of sensors in parallel, with only data from active sensors being processed for digitization and analysis. This allows the IC to operate at a low power level with a high data throughput for the active sensors. The circuit may be used with many different types of sensors, including photodetectors, capacitance sensors, chemically-sensitive sensors or combinations thereof to provide a capability for recording transient events or for recording data for a predetermined period of time following an event trigger. The sensor readout detector circuit has applications for portable or satellite-based sensor systems. 6 figs.

  9. Annual DOE Occupational Radiation Exposure | 1999 Report | Department of

    Office of Environmental Management (EM)

    Energy 89 Report Annual DOE Occupational Radiation Exposure | 1989 Report The Twenty-second Annual Report of Radiation Exposures for DOE & DOE Contractor Employees analyzes occupational radiation exposures at the U.S. Department of Energy (DOE) and its contractor employees during 1989. This report includes occupational radiation exposure information for all DOE employees and contractors that are monitored for exposure to radiation. This information has been analyzed and trends over time

  10. Annual DOE Occupational Radiation Exposure | 1989 Report | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 89 Report Annual DOE Occupational Radiation Exposure | 1989 Report The Twenty-second Annual Report of Radiation Exposures for DOE & DOE Contractor Employees analyzes occupational radiation exposures at the U.S. Department of Energy (DOE) and its contractor employees during 1989. This report includes occupational radiation exposure information for all DOE employees and contractors that are monitored for exposure to radiation. This information has been analyzed and trends over time

  11. Annual DOE Occupational Radiation Exposure | 1990 Report | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 90 Report Annual DOE Occupational Radiation Exposure | 1990 Report The Twenty-third Annual Report of Radiation Exposures for DOE & DOE Contractor Employees analyzes occupational radiation exposures at the U.S. Department of Energy (DOE) and its contractor employees during 1990. This report includes occupational radiation exposure information for all DOE employees and contractors that are monitored for exposure to radiation. This information has been analyzed and trends over time

  12. Remote electrochemical sensor

    DOE Patents [OSTI]

    Wang, Joseph; Olsen, Khris; Larson, David

    1997-01-01

    An electrochemical sensor for remote detection, particularly useful for metal contaminants and organic or other compounds. The sensor circumvents technical difficulties that previously prevented in-situ remote operations. The microelectrode, connected to a long communications cable, allows convenient measurements of the element or compound at timed and frequent intervals and instrument/sample distances of ten feet to more than 100 feet. The sensor is useful for both downhole groundwater monitoring and in-situ water (e.g., shipboard seawater) analysis.

  13. Digital Sensor Technology

    SciTech Connect (OSTI)

    Thomas, Ken D.; Quinn, Edward L.; Mauck, Jerry L.; Bockhorst, Richard M.

    2015-02-01

    The nuclear industry has been slow to incorporate digital sensor technology into nuclear plant designs due to concerns with digital qualification issues. However, the benefits of digital sensor technology for nuclear plant instrumentation are substantial in terms of accuracy and reliability. This paper, which refers to a final report issued in 2013, demonstrates these benefits in direct comparisons of digital and analog sensor applications. Improved accuracy results from the superior operating characteristics of digital sensors. These include improvements in sensor accuracy and drift and other related parameters which reduce total loop uncertainty and thereby increase safety and operating margins. An example instrument loop uncertainty calculation for a pressure sensor application is presented to illustrate these improvements. This is a side-by-side comparison of the instrument loop uncertainty for both an analog and a digital sensor in the same pressure measurement application. Similarly, improved sensor reliability is illustrated with a sample calculation for determining the probability of failure on demand, an industry standard reliability measure. This looks at equivalent analog and digital temperature sensors to draw the comparison. The results confirm substantial reliability improvement with the digital sensor, due in large part to ability to continuously monitor the health of a digital sensor such that problems can be immediately identified and corrected. This greatly reduces the likelihood of a latent failure condition of the sensor at the time of a design basis event. Notwithstanding the benefits of digital sensors, there are certain qualification issues that are inherent with digital technology and these are described in the report. One major qualification impediment for digital sensor implementation is software common cause failure (SCCF).

  14. Force sensor

    DOE Patents [OSTI]

    Grahn, A.R.

    1993-05-11

    A force sensor and related method for determining force components is described. The force sensor includes a deformable medium having a contact surface against which a force can be applied, a signal generator for generating signals that travel through the deformable medium to the contact surface, a signal receptor for receiving the signal reflected from the contact surface, a generation controller, a reception controller, and a force determination apparatus. The signal generator has one or more signal generation regions for generating the signals. The generation controller selects and activates the signal generation regions. The signal receptor has one or more signal reception regions for receiving signals and for generating detections signals in response thereto. The reception controller selects signal reception regions and detects the detection signals. The force determination apparatus measures signal transit time by timing activation and detection and, optionally, determines force components for selected cross-field intersections. The timer which times by activation and detection can be any means for measuring signal transit time. A cross-field intersection is defined by the overlap of a signal generation region and a signal reception region.

  15. Force sensor

    DOE Patents [OSTI]

    Grahn, Allen R.

    1993-01-01

    A force sensor and related method for determining force components. The force sensor includes a deformable medium having a contact surface against which a force can be applied, a signal generator for generating signals that travel through the deformable medium to the contact surface, a signal receptor for receiving the signal reflected from the contact surface, a generation controller, a reception controller, and a force determination apparatus. The signal generator has one or more signal generation regions for generating the signals. The generation controller selects and activates the signal generation regions. The signal receptor has one or more signal reception regions for receiving signals and for generating detections signals in response thereto. The reception controller selects signal reception regions and detects the detection signals. The force determination apparatus measures signal transit time by timing activation and detection and, optionally, determines force components for selected cross-field intersections. The timer which times by activation and detection can be any means for measuring signal transit time. A cross-field intersection is defined by the overlap of a signal generation region and a signal reception region.

  16. Occupational Safety Performance | Department of Energy

    Office of Environmental Management (EM)

    Occupational Safety Performance Occupational Safety Performance July 19, 2012 Occupational Safety Performance, DOE Quarterly TRC and DART Case Rates - Corporate Analysis of DOE ...

  17. Annual DOE Occupational Radiation Exposure Reports | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Annual DOE Occupational Radiation Exposure Reports Annual DOE Occupational Radiation Exposure Reports November 17, 2015 Annual DOE Occupational Radiation Exposure | 2014 Report The...

  18. Current sensor

    DOE Patents [OSTI]

    Yakymyshyn, Christopher Paul; Brubaker, Michael Allen; Yakymyshyn, Pamela Jane

    2007-01-16

    A current sensor is described that uses a plurality of magnetic field sensors positioned around a current carrying conductor. The sensor can be hinged to allow clamping to a conductor. The current sensor provides high measurement accuracy for both DC and AC currents, and is substantially immune to the effects of temperature, conductor position, nearby current carrying conductors and aging.

  19. Occupant Emergency Plans

    Broader source: Energy.gov [DOE]

    The collection of Emergency Procedures documents for the Department of Energy, Headquarters buildings, in the Washington, DC, metropolitan area. All of these documents are only available to computers attached to the DOE Network. They are for use only by DOE Headquarters employees. • Building Diagrams and Assembly Areas • Occupant Emergency Plans (OEP's)

  20. Ion mobility sensor

    DOE Patents [OSTI]

    Koo, Jackson C.; Yu, Conrad M.

    2005-08-23

    An ion mobility sensor which can detect both ion and molecules simultaneously. Thus, one can measure the relative arrival times between various ions and molecules. Different ions have different mobility in air, and the ion sensor enables measurement of ion mobility, from which one can identify the various ions and molecules. The ion mobility sensor which utilizes a pair of glow discharge devices may be designed for coupling with an existing gas chromatograph, where various gas molecules are already separated, but numbers of each kind of molecules are relatively small, and in such cases a conventional ion mobility sensor cannot be utilized.

  1. Advancing Sensor Web Interoperability

    SciTech Connect (OSTI)

    Shankar, Mallikarjun; Gorman, Bryan L.; Smith, Cyrus M.

    2005-01-01

    SensorNet is a framework being developed at Oak Ridge National Laboratory to tie together sensor data from all over the country to create a real-time detection and alert system for various threats, whether they are chemical, radiological, biological, nuclear, or explosive.

  2. Working Group Report: Sensors

    SciTech Connect (OSTI)

    Artuso, M.; et al.,

    2013-10-18

    Sensors play a key role in detecting both charged particles and photons for all three frontiers in Particle Physics. The signals from an individual sensor that can be used include ionization deposited, phonons created, or light emitted from excitations of the material. The individual sensors are then typically arrayed for detection of individual particles or groups of particles. Mounting of new, ever higher performance experiments, often depend on advances in sensors in a range of performance characteristics. These performance metrics can include position resolution for passing particles, time resolution on particles impacting the sensor, and overall rate capabilities. In addition the feasible detector area and cost frequently provides a limit to what can be built and therefore is often another area where improvements are important. Finally, radiation tolerance is becoming a requirement in a broad array of devices. We present a status report on a broad category of sensors, including challenges for the future and work in progress to solve those challenges.

  3. Capacitive chemical sensor

    DOE Patents [OSTI]

    Manginell, Ronald P; Moorman, Matthew W; Wheeler, David R

    2014-05-27

    A microfabricated capacitive chemical sensor can be used as an autonomous chemical sensor or as an analyte-sensitive chemical preconcentrator in a larger microanalytical system. The capacitive chemical sensor detects changes in sensing film dielectric properties, such as the dielectric constant, conductivity, or dimensionality. These changes result from the interaction of a target analyte with the sensing film. This capability provides a low-power, self-heating chemical sensor suitable for remote and unattended sensing applications. The capacitive chemical sensor also enables a smart, analyte-sensitive chemical preconcentrator. After sorption of the sample by the sensing film, the film can be rapidly heated to release the sample for further analysis. Therefore, the capacitive chemical sensor can optimize the sample collection time prior to release to enable the rapid and accurate analysis of analytes by a microanalytical system.

  4. The 1986 residential occupant survey

    SciTech Connect (OSTI)

    Ivey, D.L.; Alley, P.K.

    1987-04-01

    In 1986, Pacific Northwest Laboratory developed the Residential Occupant Survey-Spring '86, which was implemented. The overall purpose of the study was to collect demographic, attitudinal, and behavioral data related to the use and conservation of electricity in dwellings participating in the Bonneville Power Administration's End-Use Load and Conservation Assessment Program (ELCAP). Information was collected on the respondents' perceptions of the energy efficiency of their dwelling, temperature the dwelling was kept when people were at home and awake during the last heating season, which rooms, if any, were not heated during the last heating season, number of times the dwelling was unoccupied for at least one week, number of times pets were let out of the dwelling per day, attitudes toward energy use and conservation and several socio-demographic variables such as age, sex, and total household income. The results of the data analyses showed age to be an important factor for reported indoor temperature and perceived energy efficiency of the dwelling. The results also showed that almost 60% of the ELCAP occupants do not heat one or more rooms during the heating season, and almost 45% of the ELCAP dwellings were unoccupied for at least one week during the reporting period. In terms of the reported allocation of household income for household energy expenses, the results showed that the reported dollar amount spent for the expenses remained relatively constant over income levels.

  5. Occupational Medicine | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Occupational Medicine The Occupational Medicine office provides medical surveillance examinations and consultations to Ames Laboratory and university employees according to federal and state regulations. The Occupational Medicine office enhances the efficiency of existing safety and health programs and assists in the reduction of workplace injuries and illnesses.

  6. Energy Employees' Occupational Illness Compensation Program Act...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Database, INL Energy Employees' Occupational Illness Compensation Program Energy Employees' Occupational Illness Compensation Program Act (EEOICPA) Tracking Database, INL ...

  7. FAQS Gap Analysis Qualification Card - Occupational Safety |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Occupational Safety FAQS Gap Analysis Qualification Card - Occupational Safety Functional Area Qualification Standard Gap Analysis Qualification Cards outline the differences ...

  8. Shape memory alloy thaw sensors

    DOE Patents [OSTI]

    Shahinpoor, Mohsen; Martinez, David R.

    1998-01-01

    A sensor permanently indicates that it has been exposed to temperatures exceeding a critical temperature for a predetermined time period. An element of the sensor made from shape memory alloy changes shape when exposed, even temporarily, to temperatures above the Austenitic temperature of the shape memory alloy. The shape change of the SMA element causes the sensor to change between two readily distinguishable states.

  9. Non-intrusive, high-resolution, real-time, two-dimensional imaging of multiphase materials using acoustic array sensors

    SciTech Connect (OSTI)

    Cassiède, M.; Shaw, J. M.

    2015-04-15

    Two parallel multi-element ultrasonic acoustic arrays combined with sets of focal laws for acoustic signal generation and a classical tomographic inversion algorithm are used to generate real-time two-dimensional micro seismic acoustic images of multiphase materials. Proof of concept and calibration measurements were performed for single phase and two phase liquids, uniform polyvinyl chloride (PVC) plates, and aluminum cylinders imbedded in PVC plates. Measurement artefacts, arising from the limited range of viewing angles, and the compromise between data acquisition rate and image quality are discussed. The angle range of scanning and the image resolution were varied, and the effects on the quality of the reproduction of the speed of sound profiles of model solids and liquids with known geometries and compositions were analysed in detail. The best image quality results were obtained for a scanning angle range of [−35°, 35°] at a step size of 2.5° post processed to generate images on a 40 μm square grid. The data acquisition time for high quality images with a 30 mm × 40 mm view field is 10 min. Representation of two-phase solids with large differences in speed of sound between phases and where one phase is dispersed in the form of macroscopic objects (greater than 1 mm in diameter) proved to be the most difficult to image accurately. Liquid-liquid and liquid-vapor phase boundaries, in micro porous solids by contrast, were more readily defined. Displacement of air by water and water by heptane in natural porous limestone provides illustrative kinetic examples. Measurement results with these realistic cases demonstrate the feasibility of the technique to monitor in real time and on the micrometer length scale local composition and flow of organic liquids in inorganic porous media, one of many envisioned engineering applications. Improvement of data acquisition rate is an area for future collaborative study.

  10. Converging Redundant Sensor Network Information for Improved Building Control

    SciTech Connect (OSTI)

    Dale K. Tiller; Gregor P. Henze

    2005-12-01

    This project is investigating the development and application of sensor networks to enhance building energy management and security. Commercial, industrial and residential buildings often incorporate systems used to determine occupancy, but current sensor technology and control algorithms limit the effectiveness of these systems. For example, most of these systems rely on single monitoring points to detect occupancy, when more than one monitoring point would improve system performance. Phase I of the project focused on instrumentation and data collection. In Phase I, a new occupancy detection system was developed, commissioned and installed in a sample of private offices and open-plan office workstations. Data acquisition systems were developed and deployed to collect data on space occupancy profiles. In phase II of the project, described in this report, we demonstrate that a network of several sensors provides a more accurate measure of occupancy than is possible using systems based on single monitoring points. We also establish that analysis algorithms can be applied to the sensor network data stream to improve the accuracy of system performance in energy management and security applications, and show that it may be possible to use sensor network pulse rate to distinguish the number of occupants in a space. Finally, in this phase of the project we also developed a prototype web-based display that portrays the current status of each detector in a sensor network monitoring building occupancy. This basic capability will be extended in the future by applying an algorithm-based inference to the sensor network data stream, so that the web page displays the likelihood that each monitored office or area is occupied, as a supplement to the actual status of each sensor.

  11. Occupational Injury & Illness System (01&15) PIA, Idaho National...

    Energy Savers [EERE]

    Energy Employees' Occupational Illness Compensation Program Act (EEOICPA) Tracking Database, INL Energy Employees' Occupational Illness Compensation Program Occupational Medicine - ...

  12. Remote electrochemical sensor

    DOE Patents [OSTI]

    Wang, J.; Olsen, K.; Larson, D.

    1997-10-14

    An electrochemical sensor is described for remote detection, particularly useful for metal contaminants and organic or other compounds. The sensor circumvents technical difficulties that previously prevented in-situ remote operations. The microelectrode, connected to a long communications cable, allows convenient measurements of the element or compound at timed and frequent intervals and instrument/sample distances of ten feet to more than 100 feet. The sensor is useful for both downhole groundwater monitoring and in-situ water (e.g., shipboard seawater) analysis. 21 figs.

  13. Occupational Medicine - Assistant PIA, Idaho National Laboratory |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Medicine - Assistant PIA, Idaho National Laboratory Occupational Medicine - Assistant PIA, Idaho National Laboratory Occupational Medicine - Assistant PIA, Idaho National Laboratory Occupational Medicine - Assistant PIA, Idaho National Laboratory (268.86 KB) More Documents & Publications Occupational Medical Surveillance System (OMSS) PIA, Idaho National Laboratory Occupational Injury & Illness System (01&15) PIA, Idaho National Laboratory PIA - INL Education

  14. Time

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 4 5 6 7 8 9 10 Time with respect to the BNB Trigger Time [µs] 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 Fractional Flash Count per 0.15 µs with respect to Cosmic Background Measured Cosmic Rate (Beam-Off) BNB Trigger Data (Beam-On) [4.51E18 POT]

  15. Time

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10 15 20 Time with respect to the NuMI Trigger Time [µs] 0.9 1.0 1.1 1.2 1.3 1.4 1.5 Fractional Flash Count per 0.5 µs with respect to Cosmic Background Measured Cosmic Rate (Beam-Off) NuMI Trigger Data (Beam-On) [4.83E18 POT]

  16. DOE HQ Occupational Safety and Health Program | Department of...

    Energy Savers [EERE]

    DOE HQ Occupational Safety and Health Program DOE HQ Occupational Safety and Health Program HQ Occupational Safety and Health Program Procedures PDF icon DOE HQ Occupational Safety...

  17. Occupational Medical Program

    Energy Science and Technology Software Center (OSTI)

    1993-12-08

    The Occupational Medical Program (OMP) oversees all Idaho National Engineering Laboratory (INEL) health care, and provides services to all managing and operating (M&O) contractors at the INEL and for the Department of Energy Idaho Office (DOE-ID). The evolution of the automated OMP at the INEL is guided by the U.S. Department of Energy (DOE) directives and regulations. The OMP is developing a multiyear plan for the computerization of patient and demographics, epidemiology, medical records, andmore » surveillance. This plan will require the following six development phases: Employee Demographic Phase, Patient Surveillance Certification and Restrictions Phase, Electronic Notification Phase, Epidemiology-Industrial Hygiene/Radiation Exposure/OMP Integration Phase, Medical Scheduling Phase, and Medical Records Phase.« less

  18. DOE 2011 occupational radiation exposure

    SciTech Connect (OSTI)

    none,

    2012-12-01

    The U.S. Department of Energy (DOE) Office of Analysis within the Office of Health, Safety and Security (HSS) publishes the annual DOE Occupational Radiation Exposure Report to provide an overview of the status of radiation protection practices at DOE (including the National Nuclear Security Administration [NNSA]). The DOE 2011 Occupational Radiation Exposure Report provides an evaluation of DOE-wide performance regarding compliance with Title 10, Code of Federal Regulations (C.F.R.), Part 835, Occupational Radiation Protection dose limits and as low as reasonably achievable (ALARA) process requirements. In addition, the report provides data to DOE organizations responsible for developing policies for protection of individuals from the adverse health effects of radiation. The report provides a summary and an analysis of occupational radiation exposure information from the monitoring of individuals involved in DOE activities. The occupational radiation exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site over the past five years.

  19. DOE 2012 occupational radiation exposure

    SciTech Connect (OSTI)

    none,

    2013-10-01

    The U.S. Department of Energy (DOE) Office of Analysis within the Office of Health, Safety and Security (HSS) publishes the annual DOE Occupational Radiation Exposure Report to provide an overview of the status of radiation protection practices at DOE (including the National Nuclear Security Administration [NNSA]). The DOE 2012 Occupational Radiation Exposure Report provides an evaluation of DOE-wide performance regarding compliance with Title 10, Code of Federal Regulations (C.F.R.), Part 835, Occupational Radiation Protection dose limits and as low as reasonably achievable (ALARA) process requirements. In addition, the report provides data to DOE organizations responsible for developing policies for protection of individuals from the adverse health effects of radiation. The report provides a summary and an analysis of occupational radiation exposure information from the monitoring of individuals involved in DOE activities. Over the past 5-year period, the occupational radiation exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site.

  20. TH-C-17A-01: Imaging Sensor Comparison for Real-Time Cherenkov Signal Detection From Tissue for Treatment Verification

    SciTech Connect (OSTI)

    Andreozzi, J; Zhang, R; Glaser, A; Pogue, B; Jarvis, L; Gladstone, D

    2014-06-15

    Purpose: To identify the optimum imaging sensor for a clinical system that would provide real-time imaging of the surface beam profile on patients as novel visual information to radiation therapy technologists, and more rapidly collect clinical data for large-scale studies of Cherenkov applications in radiotherapy. Methods: Four camera types, CMOS, CCD, ICCD and EMICCD, were tested to determine proficiency in the detection of Cherenkov signal in the clinical radiotherapy setting, and subsequent maximum supportable frame rate. Where possible, time-gating between the trigger signal from the LINAC and the intensifiers was implemented to detect signal with room lighting conditions comparable to patient treatment scenarios. A solid water phantom was imaged by the EM-ICCD and ICCD to evaluate the minimum number of accumulations-on-chip required for adequate Cherenkov detection, defined as >200% electron counts per pixel over background signal. Additionally, an ICCD and EM-ICCD were used clinically to image patients undergoing whole-breast radiation therapy, to understand the impact of the resolution limitation of the EM-ICCD. Results: The intensifier-coupled cameras performed best at imaging Cherenkov signal, even with room lights on, which is essential for patient comfort. The tested EM-ICCD was able to support single-shot imaging and frame rates of 30 fps, however, the current maximum resolution of 512 512 pixels was restricting. The ICCD used in current clinical trials was limited to 4.7 fps at a 1024 1024 resolution. An intensifier with higher quantum efficiency at the entrance photocathode in the red wavelengths (30% QE vs current 7%) promises 16 fps at the same resolution at lower cost than the EM-ICCD. Conclusion: The ICCD with the better red wavelength QE intensifier was determined to be the best suited commercial-off-the-shelf camera to detect real-time Cherenkov signal and provide the best potential for real-time display of radiation dose on the skin during

  1. Chemical sensors

    DOE Patents [OSTI]

    Lowell, J.R. Jr.; Edlund, D.J.; Friesen, D.T.; Rayfield, G.W.

    1991-07-02

    Sensors responsive to small changes in the concentration of chemical species are disclosed. The sensors comprise a mechanochemically responsive polymeric film capable of expansion or contraction in response to a change in its chemical environment. They are operatively coupled to a transducer capable of directly converting the expansion or contraction to a measurable electrical response. 9 figures.

  2. ORO Energy Employees Occupational Illness Compensation Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Occupational Illness Compensation Program(EEOICPA)PIA, Oak Ridge Operations Office ORO Energy Employees Occupational Illness Compensation Program(EEOICPA)PIA, Oak Ridge...

  3. Nevada Department of Transportation - Occupancy Permits | Open...

    Open Energy Info (EERE)

    Occupancy Permits Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Nevada Department of Transportation - Occupancy Permits Abstract This website gives...

  4. DOE 2013 occupational radiation exposure (Technical Report) ...

    Office of Scientific and Technical Information (OSTI)

    DOE 2013 occupational radiation exposure Citation Details In-Document Search Title: DOE 2013 occupational radiation exposure The Office of Analysis within the U.S. Department of ...

  5. Annual DOE Occupational Radiation Exposure | 2014 Report

    Office of Energy Efficiency and Renewable Energy (EERE)

    The DOE 2014 Occupational Radiation Exposure Report analyzes occupational radiation exposures at U.S. Department of Energy (DOE) facilities during 2014.

  6. Safety & Occupational Health Specialist | Department of Energy

    Energy Savers [EERE]

    & Occupational Health Specialist Safety & Occupational Health Specialist Submitted by admin on Sat, 2015-10-17 00:14 Job Summary Organization Name Department Of Energy Agency...

  7. Annual DOE Occupational Radiation Exposure | 2009 Report

    Broader source: Energy.gov [DOE]

    The DOE 2009 Occupational Radiation Exposure Report analyzes occupational radiation exposures at U.S. Department of Energy (DOE) facilities during 2009.

  8. Annual DOE Occupational Radiation Exposure | 1996 Report

    Broader source: Energy.gov [DOE]

    The DOE Occupational Radiation Exposure Report, 1996 reports occupational radiation exposures incurred by individuals at U.S. Department of Energy (DOE) facilities during the calendar year 1996.

  9. Annual DOE Occupational Radiation Exposure | 2010 Report

    Broader source: Energy.gov [DOE]

    The DOE 2010 Occupational Radiation Exposure Report analyzes occupational radiation exposures at U.S. Department of Energy (DOE) facilities during 2010.

  10. Annual DOE Occupational Radiation Exposure | 2003 Report

    Broader source: Energy.gov [DOE]

    The DOE 2003 Occupational Radiation Exposure Report analyzes occupational radiation exposures at U.S. Department of Energy (DOE) facilities during 2003.

  11. Annual DOE Occupational Radiation Exposure | 1995 Report

    Broader source: Energy.gov [DOE]

    The DOE Occupational Radiation Exposure Report, 1995 reports occupational radiation exposures incurred by individuals at U.S. Department of Energy (DOE) facilities during the calendar year 1995.

  12. Annual DOE Occupational Radiation Exposure | 1998 Report

    Broader source: Energy.gov [DOE]

    The DOE Occupational Radiation Exposure Report, 1998 reports occupational radiation exposures incurred by individuals at DOE facilities during the calendar year 1998.

  13. Magnetic infrasound sensor

    DOE Patents [OSTI]

    Mueller, Fred M. (Los Alamos, NM); Bronisz, Lawrence (Los Alamos, NM); Grube, Holger (Los Alamos, NM); Nelson, David C. (Santa Fe, NM); Mace, Jonathan L. (Los Alamos, NM)

    2006-11-14

    A magnetic infrasound sensor is produced by constraining a permanent magnet inside a magnetic potential well above the surface of superconducting material. The magnetic infrasound sensor measures the position or movement of the permanent magnet within the magnetic potential well, and interprets the measurements. Infrasound sources can be located and characterized by combining the measurements from one or more infrasound sensors. The magnetic infrasound sensor can be tuned to match infrasound source types, resulting in better signal-to-noise ratio. The present invention can operate in frequency modulation mode to improve sensitivity and signal-to-noise ratio. In an alternate construction, the superconductor can be levitated over a magnet or magnets. The system can also be driven, so that time resolved perturbations are sensed, resulting in a frequency modulation version with improved sensitivity and signal-to-noise ratio.

  14. Shape memory alloy thaw sensors

    DOE Patents [OSTI]

    Shahinpoor, M.; Martinez, D.R.

    1998-04-07

    A sensor permanently indicates that it has been exposed to temperatures exceeding a critical temperature for a predetermined time period. An element of the sensor made from shape memory alloy changes shape when exposed, even temporarily, to temperatures above the austenitic temperature of the shape memory alloy. The shape change of the SMA element causes the sensor to change between two readily distinguishable states. 16 figs.

  15. Statistical Analysis and Modeling of Occupancy Patterns in Open-Plan Offices using Measured Lighting-Switch Data

    SciTech Connect (OSTI)

    Chang, Wen-Kuei; Hong, Tianzhen

    2013-01-01

    Occupancy profile is one of the driving factors behind discrepancies between the measured and simulated energy consumption of buildings. The frequencies of occupants leaving their offices and the corresponding durations of absences have significant impact on energy use and the operational controls of buildings. This study used statistical methods to analyze the occupancy status, based on measured lighting-switch data in five-minute intervals, for a total of 200 open-plan (cubicle) offices. Five typical occupancy patterns were identified based on the average daily 24-hour profiles of the presence of occupants in their cubicles. These statistical patterns were represented by a one-square curve, a one-valley curve, a two-valley curve, a variable curve, and a flat curve. The key parameters that define the occupancy model are the average occupancy profile together with probability distributions of absence duration, and the number of times an occupant is absent from the cubicle. The statistical results also reveal that the number of absence occurrences decreases as total daily presence hours decrease, and the duration of absence from the cubicle decreases as the frequency of absence increases. The developed occupancy model captures the stochastic nature of occupants moving in and out of cubicles, and can be used to generate a more realistic occupancy schedule. This is crucial for improving the evaluation of the energy saving potential of occupancy based technologies and controls using building simulations. Finally, to demonstrate the use of the occupancy model, weekday occupant schedules were generated and discussed.

  16. DOE 2010 occupational radiation exposure

    SciTech Connect (OSTI)

    none,

    2011-11-01

    The U.S. Department of Energy (DOE) Office of Analysis within the Office of Health, Safety and Security (HSS) publishes the annual DOE Occupational Radiation Exposure Report to provide an overview of the status of radiation protection practices at DOE.* The DOE 2010 Occupational Radiation Exposure Report provides an evaluation of DOE-wide performance regarding compliance with DOE Part 835 dose limits and as low as reasonably achievable (ALARA) process requirements. In addition, the report provides data to DOE organizations responsible for developing policies for protection of individuals from the effects of radiation. The report provides a summary and an analysis of occupational radiation exposure information from the monitoring of individuals involved in DOE activities. The occupational radiation exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site over the past 5 years.

  17. DOE 2008 occupational radiation exposure

    SciTech Connect (OSTI)

    none,

    2009-10-01

    The U.S. Department of Energy (DOE) Office of Corporate Safety Analysis (HS-30) within the Office of Health, Safety and Security (HSS) publishes the annual DOE Occupational Radiation Exposure Report to provide an overview of the status of radiation protection practices at DOE. The DOE 2008 Occupational Radiation Exposure Report provides an evaluation of DOE-wide performance regarding compliance with DOE Part 835 dose limits and as low as reasonably achievable (ALARA) process requirements. In addition, the report provides data to DOE organizations responsible for developing policies for protection of individuals from the effects of radiation. This report provides a summary and an analysis of occupational radiation exposure information from the monitoring of individuals involved in DOE activities. The occupational radiation exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site over the past 5 years.

  18. DOE occupational radiation exposure. Report 1992--1994

    SciTech Connect (OSTI)

    1997-05-01

    The DOE Occupational Radiation Exposure Report, 1992-1994 reports occupational radiation exposures incurred by individuals at US Department of Energy (DOE) facilities from 1992 through 1994. This report includes occupational radiation exposure information for all DOE employees, contractors, subcontractors, and visitors. This information is analyzed and trended over time to provide a measure of the DOE`s performance in protecting its workers from radiation. Occupational radiation exposure at DOE has been decreasing over the past 5 years. In particular, doses in the higher dose ranges are decreasing, including the number of doses in excess of the DOE limits and doses in excess of the 2 rem Administrative Control Level (ACL). This is an indication of greater attention being given to protecting these individuals from radiation in the workplace.

  19. Occupational Medicine Workshops and Webinars

    Broader source: Energy.gov [DOE]

    The DOE Annual Occupational Medicine Workshop & Webinar (OMWW) is a valuable training opportunity established by the Office of Health, Safety, and Security in support of hundreds of medical and allied health professionals located at over four dozen locations across the Department. Their vital work in the field of Occupational Medicine encompasses medical qualification examinations, injury and illness management, disability management, workers’ compensation, and much more.

  20. Wireless sensor

    DOE Patents [OSTI]

    Lamberti, Vincent E.; Howell, JR, Layton N.; Mee, David K.; Sepaniak, Michael J.

    2016-02-09

    Disclosed is a sensor for detecting a target material. The sensor includes a ferromagnetic metal and a molecular recognition reagent coupled to the ferromagnetic metal. The molecular recognition reagent is operable to expand upon exposure to vapor or liquid from the target material such that the molecular recognition reagent changes a tensile stress upon the ferromagnetic metal. The target material is detected based on changes in the magnetic switching characteristics of the ferromagnetic metal caused by the changes in the tensile stress.

  1. Ultra-wideband impedance sensor

    DOE Patents [OSTI]

    McEwan, Thomas E.

    1999-01-01

    The ultra-wideband impedance sensor (UWBZ sensor, or Z-sensor) is implemented in differential and single-ended configurations. The differential UWBZ sensor employs a sub-nanosecond impulse to determine the balance of an impedance bridge. The bridge is configured as a differential sample-and-hold circuit that has a reference impedance side and an unknown impedance side. The unknown impedance side includes a short transmission line whose impedance is a function of the near proximity of objects. The single-ended UWBZ sensor eliminates the reference side of the bridge and is formed of a sample and hold circuit having a transmission line whose impedance is a function of the near proximity of objects. The sensing range of the transmission line is bounded by the two-way travel time of the impulse, thereby eliminating spurious Doppler modes from large distant objects that would occur in a microwave CW impedance bridge. Thus, the UWBZ sensor is a range-gated proximity sensor. The Z-sensor senses the near proximity of various materials such as metal, plastic, wood, petroleum products, and living tissue. It is much like a capacitance sensor, yet it is impervious to moisture. One broad application area is the general replacement of magnetic sensors, particularly where nonferrous materials need to be sensed. Another broad application area is sensing full/empty levels in tanks, vats and silos, e.g., a full/empty switch in water or petroleum tanks.

  2. Ultra-wideband impedance sensor

    DOE Patents [OSTI]

    McEwan, T.E.

    1999-03-16

    The ultra-wideband impedance sensor (UWBZ sensor, or Z-sensor) is implemented in differential and single-ended configurations. The differential UWBZ sensor employs a sub-nanosecond impulse to determine the balance of an impedance bridge. The bridge is configured as a differential sample-and-hold circuit that has a reference impedance side and an unknown impedance side. The unknown impedance side includes a short transmission line whose impedance is a function of the near proximity of objects. The single-ended UWBZ sensor eliminates the reference side of the bridge and is formed of a sample and hold circuit having a transmission line whose impedance is a function of the near proximity of objects. The sensing range of the transmission line is bounded by the two-way travel time of the impulse, thereby eliminating spurious Doppler modes from large distant objects that would occur in a microwave CW impedance bridge. Thus, the UWBZ sensor is a range-gated proximity sensor. The Z-sensor senses the near proximity of various materials such as metal, plastic, wood, petroleum products, and living tissue. It is much like a capacitance sensor, yet it is impervious to moisture. One broad application area is the general replacement of magnetic sensors, particularly where nonferrous materials need to be sensed. Another broad application area is sensing full/empty levels in tanks, vats and silos, e.g., a full/empty switch in water or petroleum tanks. 2 figs.

  3. Sensor Compendium - A Snowmass Whitepaper-

    SciTech Connect (OSTI)

    Artuso, M.; Battaglia, M.; Bolla, G.; Bortoletto, D.; Caberera, B.; Carlstrom, J E; Chang, C. L.; Cooper, W.; Da Via, C.; Demarteau, M.; Fast, J.; Frisch, H.

    2013-10-01

    Sensors play a key role in detecting both charged particles and photons for all three frontiers in Particle Physics. The signals from an individual sensor that can be used include ionization deposited, phonons created, or light emitted from excitations of the material. The individual sensors are then typically arrayed for detection of individual particles or groups of particles. Mounting of new, ever higher performance experiments, often depend on advances in sensors in a range of performance characteristics. These performance metrics can include position resolution for passing particles, time resolution on particles impacting the sensor, and overall rate capabilities. In addition the feasible detector area and cost frequently provides a limit to what can be built and therefore is often another area where improvements are important. Finally, radiation tolerance is becoming a requirement in a broad array of devices. We present a status report on a broad category of sensors, including challenges for the future and work in progress to solve those challenges.

  4. Lean blowoff detection sensor

    DOE Patents [OSTI]

    Thornton, Jimmy; Straub, Douglas L.; Chorpening, Benjamin T.; Huckaby, David

    2007-04-03

    Apparatus and method for detecting incipient lean blowoff conditions in a lean premixed combustion nozzle of a gas turbine. A sensor near the flame detects the concentration of hydrocarbon ions and/or electrons produced by combustion and the concentration monitored as a function of time are used to indicate incipient lean blowoff conditions.

  5. DOE 2013 occupational radiation exposure

    SciTech Connect (OSTI)

    none,

    2014-11-01

    The Office of Analysis within the U.S. Department of Energy (DOE) Office of Environment, Health, Safety and Security (EHSS) publishes the annual DOE Occupational Radiation Exposure Report to provide an overview of the status of radiation protection practices at DOE (including the National Nuclear Security Administration [NNSA]). The DOE 2013 Occupational Radiation Exposure Report provides an evaluation of DOE-wide performance regarding compliance with Title 10, Code of Federal Regulations (C.F.R.), Part 835, Occupational Radiation Protection dose limits and as low as reasonably achievable (ALARA) process requirements. In addition, the report provides data to DOE organizations responsible for developing policies for protection of individuals from the adverse health effects of radiation. The report provides a summary and an analysis of occupational radiation exposure information from the monitoring of individuals involved in DOE activities. Over the past five-year period, the occupational radiation exposure information has been analyzed in terms of aggregate data, dose to individuals, and dose by site.

  6. Hydrogen sensor (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    Hydrogen sensor Title: Hydrogen sensor A hydrogen sensor for detectingquantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites ...

  7. Small, Inexpensive Combined NOx Sensor and O2 Sensor

    SciTech Connect (OSTI)

    W. N. Lawless; C. F. Clark, Jr.

    2008-09-08

    electronic control units were designed and built. One control unit provides independent constant voltages to the NOx and oxygen sensors and reads the current from them (that is, detects the amount of test gas present). The second controller holds the fully-assembled sensor at the desired operating temperature and controllably pumps excess oxygen from the test chamber. While the development of the sensor body was a complete success, the development of the packaging was only partially successful. All of the basic principles were demonstrated, but the packaging was too complex to optimize the operation within the resources of the program. Thus, no fully-assembled sensors were sent to outside labs for testing of cross-sensitivities, response times, etc. Near the end of the program, Sensata Technologies of Attleboro, MA tested the sensor bodies and confirmed the CeramPhysics measurements as indicated in the following attached letter. Sensata was in the process of designing their own packaging for the sensor and performing cross-sensitivity tests when they stopped all sensor development work due to the automotive industry downturn. Recently Ceramatec Inc. of Salt Lake City has expressed an interest in testing the sensor, and other licensing opportunities are being pursued.

  8. Operating Experience Level 3, DOE Occupational Radiation Exposures...

    Energy Savers [EERE]

    DOE Occupational Radiation Exposures for 2013 Operating Experience Level 3, DOE Occupational Radiation Exposures for 2013 January 29, 2015 OE-3 2015-01: DOE Occupational Radiation...

  9. Sensor apparatus

    DOE Patents [OSTI]

    Deason, Vance A [Idaho Falls, ID; Telschow, Kenneth L [Idaho Falls, ID

    2009-12-22

    A sensor apparatus and method for detecting an environmental factor is shown that includes an acoustic device that has a characteristic resonant vibrational frequency and mode pattern when exposed to a source of acoustic energy and, futher, when exposed to an environmental factor, produces a different resonant vibrational frequency and/or mode pattern when exposed to the same source of acoustic energy.

  10. Gas sensor

    DOE Patents [OSTI]

    Schmid, Andreas K.; Mascaraque, Arantzazu; Santos, Benito; de la Figuera, Juan

    2014-09-09

    A gas sensor is described which incorporates a sensor stack comprising a first film layer of a ferromagnetic material, a spacer layer, and a second film layer of the ferromagnetic material. The first film layer is fabricated so that it exhibits a dependence of its magnetic anisotropy direction on the presence of a gas, That is, the orientation of the easy axis of magnetization will flip from out-of-plane to in-plane when the gas to be detected is present in sufficient concentration. By monitoring the change in resistance of the sensor stack when the orientation of the first layer's magnetization changes, and correlating that change with temperature one can determine both the identity and relative concentration of the detected gas. In one embodiment the stack sensor comprises a top ferromagnetic layer two mono layers thick of cobalt deposited upon a spacer layer of ruthenium, which in turn has a second layer of cobalt disposed on its other side, this second cobalt layer in contact with a programmable heater chip.

  11. Chemical sensors

    DOE Patents [OSTI]

    Lowell, Jr., James R.; Edlund, David J.; Friesen, Dwayne T.; Rayfield, George W.

    1991-01-01

    Sensors responsive to small changes in the concentration of chemical species are disclosed, comprising (a) a mechanochemically responsive polymeric film capable of expansion or contraction in response to a change in its chemical environment, operatively coupled to (b) a transducer capable of directly converting said expansion or contraction to a measurable electrical response.

  12. Occupant radon exposure in houses with basements

    SciTech Connect (OSTI)

    Franklin, E.M.; Fuoss, S.

    1995-12-31

    This study compares basement and main-level radon exposure based on bi-level week-long radon measurements, occupancy and activity data collected in normal use during heating and non-heating seasons in a geographically-stratified random sample of about 600 Minnesota homes, in response to critiques of radon measurement protocol. Basement radon (RN1) (M=4.5, SD=4.5) and main level (Rn2)(M=2.9, SD=3.4) correlation was 0.8 (p=.00), including seasonal variation. In a 101-house subsample where Rn1 >=4.0 pCi/L and Rn2 <=3.9 pCi/L, maximum household exposure in basements was 1162 pCiHrs (M=120, Sd=207), main-level 2486 pCiHrs (M-434, SD=421). In same households, persons with most basement-time maxed 100 hrs (M=13,SD=23), persons with most main-level time maxed 160 hrs (M=79, SD=39). Basement activities show two patterns, (1) member used it for personal domain, e.g. sleeping, and (2) household used it for general activities, e.g. TV or children`s play. Basement occupancy justifies measurement of radon in the lowest livable housing level.

  13. Headquarters Occupational Health Clinics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Headquarters Occupational Health Clinics Headquarters Occupational Health Clinics The Department of Energy recognizes the importance of maintaining a healthy and fit Federal workforce. To that end, our occupational health care professionals at the Headquarters Occupational Health Clinics in Forrestal and Germantown provide the following services: Walk-in care. Assessment, nursing care and follow-up for minor illnesses and injuries on a walk-in basis. First-response. Emergency treatment to any

  14. Pressure sensor

    SciTech Connect (OSTI)

    Mee, David K.; Ripley, Edward B.; Nienstedt, Zachary C.; Nienstedt, Alex W.; Howell, Jr., Layton N.

    2015-09-29

    Disclosed is a passive, in-situ pressure sensor. The sensor includes a sensing element having a ferromagnetic metal and a tension inducing mechanism coupled to the ferromagnetic metal. The tension inducing mechanism is operable to change a tensile stress upon the ferromagnetic metal based on a change in pressure in the sensing element. Changes in pressure are detected based on changes in the magnetic switching characteristics of the ferromagnetic metal when subjected to an alternating magnetic field caused by the change in the tensile stress. The sensing element is embeddable in a closed system for detecting pressure changes without the need for any penetrations of the system for power or data acquisition by detecting changes in the magnetic switching characteristics of the ferromagnetic metal caused by the tensile stress.

  15. Corrosion sensor

    DOE Patents [OSTI]

    Glass, R.S.; Clarke, W.L. Jr.; Ciarlo, D.R.

    1994-04-26

    A corrosion sensor array is described incorporating individual elements for measuring various elements and ions, such as chloride, sulfide, copper, hydrogen (pH), etc. and elements for evaluating the instantaneous corrosion properties of structural materials. The exact combination and number of elements measured or monitored would depend upon the environmental conditions and materials used which are subject to corrosive effects. Such a corrosion monitoring system embedded in or mounted on a structure exposed to the environment would serve as an early warning system for the onset of severe corrosion problems for the structure, thus providing a safety factor as well as economic factors. The sensor array is accessed to an electronics/computational system, which provides a means for data collection and analysis. 7 figures.

  16. Corrosion sensor

    DOE Patents [OSTI]

    Glass, Robert S.; Clarke, Jr., Willis L.; Ciarlo, Dino R.

    1994-01-01

    A corrosion sensor array incorporating individual elements for measuring various elements and ions, such as chloride, sulfide, copper, hydrogen (pH), etc. and elements for evaluating the instantaneous corrosion properties of structural materials. The exact combination and number of elements measured or monitored would depend upon the environmental conditions and materials used which are subject to corrosive effects. Such a corrosion monitoring system embedded in or mounted on a structure exposed to the environment would serve as an early warning system for the onset of severe corrosion problems for the structure, thus providing a safety factor as well as economic factors. The sensor array is accessed to an electronics/computational system, which provides a means for data collection and analysis.

  17. Sensor assembly

    DOE Patents [OSTI]

    Bennett, Thomas E.; Nelson, Drew V.

    2004-04-13

    A ribbon-like sensor assembly is described wherein a length of an optical fiber embedded within a similar lengths of a prepreg tow. The fiber is ""sandwiched"" by two layers of the prepreg tow which are merged to form a single consolidated ribbon. The consolidated ribbon achieving a generally uniform distribution of composite filaments near the embedded fiber such that excess resin does not ""pool"" around the periphery of the embedded fiber.

  18. Chemical sensors

    DOE Patents [OSTI]

    Lowell, J.R. Jr.; Edlund, D.J.; Friesen, D.T.; Rayfield, G.W.

    1992-06-09

    Sensors responsive to small changes in the concentration of chemical species are disclosed, comprising a mechanicochemically responsive polymeric film capable of expansion or contraction in response to a change in its chemical environment, either operatively coupled to a transducer capable of directly converting the expansion or contraction to a measurable electrical or optical response, or adhered to a second inert polymeric strip, or doped with a conductive material. 12 figs.

  19. Chemical sensors

    DOE Patents [OSTI]

    Lowell, Jr., James R.; Edlund, David J.; Friesen, Dwayne T.; Rayfield, George W.

    1992-01-01

    Sensors responsive to small changes in the concentration of chemical species are disclosed, comprising a mechanicochemically responsive polymeric film capable of expansion or contraction in response to a change in its chemical environment, either operatively coupled to a transducer capable of directly converting the expansion or contraction to a measurable electrical or optical response, or adhered to a second inert polymeric strip, or doped with a conductive material.

  20. Pantex Occupational Health System (OHS), National Nuclear Security...

    Energy Savers [EERE]

    Pantex Occupational Health System (OHS), National Nuclear Security Administration Pantex Site Office Pantex Occupational Health System (OHS), National Nuclear Security...

  1. Occupational Medical Surveillance System (OMSS) PIA, Idaho National...

    Energy Savers [EERE]

    (OMSS) PIA, Idaho National Laboratory More Documents & Publications Occupational Medicine - Assistant PIA, Idaho National Laboratory Occupational Injury & Illness System...

  2. A Basic Overview of the Occupational Radiation Exposure Monitoring...

    Energy Savers [EERE]

    Occupational Radiation Exposure: Monitoring, Analysis & Reporting A Basic Overview of OCCUPATIONAL RADIATION EXPOSURE Monitoring, Analysis & Reporting Outreach & Awareness Series ...

  3. Pantex Occupational Health System (OHS), National Nuclear Security...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pantex Occupational Health System (OHS), National Nuclear Security Administration Pantex Site Office Pantex Occupational Health System (OHS), National Nuclear Security ...

  4. Energy Employees' Occupational Illness Compensation Program Act (EEOICPA)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tracking Database, INL Energy Employees' Occupational Illness Compensation Program | Department of Energy Employees' Occupational Illness Compensation Program Act (EEOICPA) Tracking Database, INL Energy Employees' Occupational Illness Compensation Program Energy Employees' Occupational Illness Compensation Program Act (EEOICPA) Tracking Database, INL Energy Employees' Occupational Illness Compensation Program Energy Employees' Occupational Illness Compensation Program Act (EEOICPA) Tracking

  5. Influenza Sensor

    DOE Patents [OSTI]

    Swanson, Basil I.; Song, Xuedong; Unkefer, Clifford; Silks, III, Louis A.; Schmidt, Jurgen G.

    2006-03-28

    A sensor for the detection of tetrameric multivalent neuraminidase within a sample is disclosed, where a positive detection indicates the presence of a target virus within the sample. Also disclosed is a trifunctional composition of matter including a trifunctional linker moiety with groups bonded thereto including (a) an alkyl chain adapted for attachment to a substrate, (b) a fluorescent moiety capable of generating a fluorescent signal, and (c) a recognition moiety having a spacer group of a defined length thereon, the recognition moiety capable of binding with tetrameric multivalent neuraminidase.

  6. Influenza Sensor

    DOE Patents [OSTI]

    Swanson, Basil I.; Song, Xuedong; Unkefer, Clifford; Silks, III, Louis A.; Schmidt, Jurgen G.

    2005-05-17

    A sensor for the detection of tetrameric multivalent neuraminidase within a sample is disclosed, where a positive detection indicates the presence of a target virus within the sample. Also disclosed is a trifunctional composition of matter including a trifunctional linker moiety with groups bonded thereto including (a) an alkyl chain adapted for attachment to a substrate, (b) a fluorescent moiety capable of generating a fluorescent signal, and (c) a recognition moiety having a spacer group of a defined length thereon, the recognition moiety capable of binding with tetrameric multivalent neuraminidase.

  7. Influenza sensor

    DOE Patents [OSTI]

    Swanson, Basil I.; Song, Xuedong; Unkefer, Clifford; Silks, III, Louis A.; Schmidt, Jurgen G.

    2003-09-30

    A sensor for the detection of tetrameric multivalent neuraminidase within a sample is disclosed, where a positive detection indicates the presence of a target virus within the sample. Also disclosed is a trifunctional composition of matter including a trifunctional linker moiety with groups bonded thereto including (a) an alkyl chain adapted for attachment to a substrate, (b) a fluorescent moiety capable of generating a fluorescent signal, and (c) a recognition moiety having a spacer group of a defined length thereon, the recognition moiety capable of binding with tetrameric multivalent neuraminidase.

  8. Hydrogen sensor

    DOE Patents [OSTI]

    Duan, Yixiang; Jia, Quanxi; Cao, Wenqing

    2010-11-23

    A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

  9. Microcantilever sensor

    DOE Patents [OSTI]

    Thundat, T.G.; Wachter, E.A.

    1998-02-17

    An improved microcantilever sensor is fabricated with at least one microcantilever attached to a piezoelectric transducer. The microcantilever is partially surface treated with a compound selective substance having substantially exclusive affinity for a targeted compound in a monitored atmosphere. The microcantilever sensor is also provided with a frequency detection means and a bending detection means. The frequency detection means is capable of detecting changes in the resonance frequency of the vibrated microcantilever in the monitored atmosphere. The bending detection means is capable of detecting changes in the bending of the vibrated microcantilever in the monitored atmosphere coactively with the frequency detection means. The piezoelectric transducer is excited by an oscillator means which provides a signal driving the transducer at a resonance frequency inducing a predetermined order of resonance on the partially treated microcantilever. Upon insertion into a monitored atmosphere, molecules of the targeted chemical attach to the treated regions of the microcantilever resulting in a change in oscillating mass as well as a change in microcantilever spring constant thereby influencing the resonant frequency of the microcantilever oscillation. Furthermore, the molecular attachment of the target chemical to the treated regions induce areas of mechanical strain in the microcantilever consistent with the treated regions thereby influencing microcantilever bending. The rate at which the treated microcantilever accumulates the target chemical is a function of the target chemical concentration. Consequently, the extent of microcantilever oscillation frequency change and bending is related to the concentration of target chemical within the monitored atmosphere. 16 figs.

  10. Microcantilever sensor

    DOE Patents [OSTI]

    Thundat, Thomas G.; Wachter, Eric A.

    1998-01-01

    An improved microcantilever sensor is fabricated with at least one microcantilever attached to a piezoelectric transducer. The microcantilever is partially surface treated with a compound selective substance having substantially exclusive affinity for a targeted compound in a monitored atmosphere. The microcantilever sensor is also provided with a frequency detection means and a bending detection means. The frequency detection means is capable of detecting changes in the resonance frequency of the vibrated microcantilever in the monitored atmosphere. The bending detection means is capable of detecting changes in the bending of the vibrated microcantilever in the monitored atmosphere coactively with the frequency detection means. The piezoelectric transducer is excited by an oscillator means which provides a signal driving the transducer at a resonance frequency inducing a predetermined order of resonance on the partially treated microcantilever. Upon insertion into a monitored atmosphere, molecules of the targeted chemical attach to the treated regions of the microcantilever resulting in a change in oscillating mass as well as a change in microcantilever spring constant thereby influencing the resonant frequency of the microcantilever oscillation. Furthermore, the molecular attachment of the target chemical to the treated regions induce areas of mechanical strain in the microcantilever consistent with the treated regions thereby influencing microcantilever bending. The rate at which the treated microcantilever accumulates the target chemical is a function of the target chemical concentration. Consequently, the extent of microcantilever oscillation frequency change and bending is related to the concentration of target chemical within the monitored atmosphere.

  11. Thin Silicon MEMS Contact-Stress Sensor (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    sensor continuously and accurately measures time-varying, solid interface loads over tens of thousands of load cycles. The contact-stress sensor is extremely thin (150 mum) ...

  12. Zone Level Occupant-Responsive Building Energy Systems at the GSA

    SciTech Connect (OSTI)

    Robinson, Alastair

    2014-03-01

    The General Services Administration (GSA) partnered with the U.S. Department of Energy (DOE) to develop and implement building energy system retrofits, aiming to reduce energy consumption of at least two building systems by a total of 30 percent or more, as part of DOE’s Commercial Building Partnership (CBP) Program. Lawrence Berkeley National Laboratory (LBNL) provided technical expertise in support of this DOE program, working with the GSA and a team of consultants. This case study reports expected energy savings from appropriate energy efficient design and operations modifications to lighting and heating, ventilating and air conditioning (HVAC) systems at the selected study sites. These retrofits comprised installation of new lighting systems with dimming capability and occupancy-sensor control at the individual light fixture level, and utilized lighting system occupancy sensor signals to continually readjust zone-level ventilation airflow according to the number of people present, down to minimum rates when vacant.

  13. Annual DOE Occupational Radiation Exposure | 1974 Report

    Broader source: Energy.gov [DOE]

    The Seventh Annual Report of Radiation Exposures for AEC & AEC Contractor Employees analyzes occupational radiation exposures at the Atomic Energy Commission (AEC) and its contractor employees during 1974.

  14. 2011 DOE Occupational Radiation Exposure Summary poster

    SciTech Connect (OSTI)

    ORAU

    2012-12-12

    This poster graphically presents data pertaining to occupational radiation exposure in terms of total effective dose (TED), primarily, but also collective dose and average measureable dose.

  15. RSF Workshop Session IV: Occupant Behavior

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Design Decisions and Occupant...

  16. Imaging of occupational and environmental lung diseases

    SciTech Connect (OSTI)

    Akira, M.

    2008-03-15

    The chest radiograph is the basic tool for identifying occupational and environmental lung diseases; however, its sensitivity and specificity for the diagnosis of occupational and environmental lung diseases are low. High-resolution CT is the optimal method of recognizing parenchymal abnormalities in occupational and environmental disease. With the exception of pleural plaques, the CT findings of occupational and environmental lung diseases are nonspecific. Therefore, correlation of imaging features with history of exposure, other clinical features, and sometimes pathology is needed for the diagnosis of pneumoconiosis.

  17. Energy Employees Occupational Illness Compensation Program Act...

    Broader source: Energy.gov (indexed) [DOE]

    special tests depending on the individual's work and exposure history. * An occupational medicine physician, independent of DOE, will review the exam results and provide a ...

  18. Energy Employees Occupational Illness Compensation Program Act...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Act (EEOICPA) Tracking System PIA, Office of Business Operations Energy Employees Occupational Illness Compensation Program Act (EEOICPA) Tracking System PIA, Office of ...

  19. Enenrgy Employees Occupational Illness Compensation Program Act...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Act (EEOICPA) Tracking System, PIA, Savannah River Operations Office Enenrgy Employees Occupational Illness Compensation Program Act (EEOICPA) Tracking System, PIA, ...

  20. Deputy Secretary Memo Regarding Energy Employees Occupational...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Act Interviews of Current and Former Workers Deputy Secretary Memo Regarding Energy Employees Occupational Illness Compensation Program Act Interviews of Current and Former Workers ...

  1. Annual DOE Occupational Radiation Exposure Reports | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    employees during 1985. May 19, 2006 Annual DOE Occupational Radiation Exposure | 1984 Report The Seventeenth Annual Report of Radiation Exposures for DOE & DOE Contractor...

  2. DOE 2012 Occupational Radiation Exposure October 2013

    SciTech Connect (OSTI)

    2012-02-02

    occupational radiation exposure records show that in 2012, DOE facilities continued to comply with DOE dose limits and ACLs and worked to minimize exposure to individuals. The DOE collective TED decreased 17.1% from 2011 to 2012. The collective TED decreased at three of the five sites with the largest collective TED. u Idaho Site – Collective dose reductions were achieved as a result of continuing improvements at the Advanced Mixed Waste Treatment Project (AMWTP) through the planning of drum movements that reduced the number of times a container is handled; placement of waste containers that created highradiation areas in a centralized location; and increased worker awareness of high-dose rate areas. In addition, Idaho had the largest decrease in the total number of workers with measurable TED (1,143 fewer workers). u Hanford Site (Hanford) – An overall reduction of decontamination and decommissioning (D&D) activities at the Plutonium Finishing Plant (PFP) and Transuranic (TRU) retrieval activities resulted in collective dose reductions. u Savannah River Site (SRS) – Reductions were achieved through ALARA initiatives employed site wide. The Solid Waste Management Facility used extended specialty tools, cameras and lead shield walls to facilitate removal of drums. These tools and techniques reduce exposure time through improved efficiency, increase distance from the source of radiation by remote monitoring, shield the workers to lower the dose rate, and reduce the potential for contamination and release of material through repacking of waste. Overall, from 2011 to 2012, there was a 19% decrease in the number of workers with measurable dose. Furthermore, due to a slight decrease in both the DOE workforce (7%) and monitored workers (10%), the ratio of workers with measurable doses to monitored workers decreased to 13%. Another primary indicator of the level of radiation exposure covered in this report is the average measurable dose, which normalizes the collective dose over

  3. Online Sensor Calibration Assessment in Nuclear Power Systems

    SciTech Connect (OSTI)

    Coble, Jamie B.; Ramuhalli, Pradeep; Meyer, Ryan M.; Hashemian, Hash

    2013-06-01

    Safe, efficient, and economic operation of nuclear systems (nuclear power plants, fuel fabrication and storage, used fuel processing, etc.) relies on transmission of accurate and reliable measurements. During operation, sensors degrade due to age, environmental exposure, and maintenance interventions. Sensor degradation can affect the measured and transmitted signals, including sensor failure, signal drift, sensor response time, etc. Currently, periodic sensor recalibration is performed to avoid these problems. Sensor recalibration activities include both calibration assessment and adjustment (if necessary). In nuclear power plants, periodic recalibration of safety-related sensors is required by the plant technical specifications. Recalibration typically occurs during refueling outages (about every 18 to 24 months). Non-safety-related sensors also undergo recalibration, though not as frequently. However, this approach to maintaining sensor calibration and performance is time-consuming and expensive, leading to unnecessary maintenance, increased radiation exposure to maintenance personnel, and potential damage to sensors. Online monitoring (OLM) of sensor performance is a non-invasive approach to assess instrument calibration. OLM can mitigate many of the limitations of the current periodic recalibration practice by providing more frequent assessment of calibration and identifying those sensors that are operating outside of calibration tolerance limits without removing sensors or interrupting operation. This can support extended operating intervals for unfaulted sensors and target recalibration efforts to only degraded sensors.

  4. Occupational Medical Surveillance System (OMSS) PIA, Idaho National

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory | Department of Energy Medical Surveillance System (OMSS) PIA, Idaho National Laboratory Occupational Medical Surveillance System (OMSS) PIA, Idaho National Laboratory Occupational Medical Surveillance System (OMSS) PIA, Idaho National Laboratory Occupational Medical Surveillance System (OMSS) PIA, Idaho National Laboratory (295.51 KB) More Documents & Publications Occupational Medicine - Assistant PIA, Idaho National Laboratory Occupational Injury & Illness System

  5. PIA - Richland Occupational Medicine Contract | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Medicine Contract PIA - Richland Occupational Medicine Contract PIA - Richland Occupational Medicine Contract PIA - Richland Occupational Medicine Contract (60.05 KB) More Documents & Publications Occupational Medical Surveillance System (OMSS) PIA, Idaho National Laboratory Occupational Medicine - Assistant PIA, Idaho National Laboratory

  6. DOE HQ Occupational Safety and Health Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Occupational Safety and Health Program DOE HQ Occupational Safety and Health Program HQ Occupational Safety and Health Program Procedures DOE HQ Occupational Safety and Health Program (1.18 MB) More Documents & Publications HQ Confined Space Program, Policy 2010-001 Independent Oversight Review, Department of Energy Contractor - August 2000 FAQS Qualification Card - Occupational Safety

  7. Pulse homodyne field disturbance sensor

    DOE Patents [OSTI]

    McEwan, Thomas E.

    1997-01-01

    A field disturbance sensor operates with relatively low power, provides an adjustable operating range, is not hypersensitive at close range, allows co-location of multiple sensors, and is inexpensive to manufacture. The sensor includes a transmitter that transmits a sequence of transmitted bursts of electromagnetic energy. The transmitter frequency is modulated at an intermediate frequency. The sequence of bursts has a burst repetition rate, and each burst has a burst width and comprises a number of cycles at a transmitter frequency. The sensor includes a receiver which receives electromagnetic energy at the transmitter frequency, and includes a mixer which mixes a transmitted burst with reflections of the same transmitted burst to produce an intermediate frequency signal. Circuitry, responsive to the intermediate frequency signal indicates disturbances in the sensor field. Because the mixer mixes the transmitted burst with reflections of the transmitted burst, the burst width defines the sensor range. The burst repetition rate is randomly or pseudo-randomly modulated so that bursts in the sequence of bursts have a phase which varies. A second range-defining mode transmits two radio frequency bursts, where the time spacing between the bursts defines the maximum range divided by two.

  8. Pulse homodyne field disturbance sensor

    DOE Patents [OSTI]

    McEwan, T.E.

    1997-10-28

    A field disturbance sensor operates with relatively low power, provides an adjustable operating range, is not hypersensitive at close range, allows co-location of multiple sensors, and is inexpensive to manufacture. The sensor includes a transmitter that transmits a sequence of transmitted bursts of electromagnetic energy. The transmitter frequency is modulated at an intermediate frequency. The sequence of bursts has a burst repetition rate, and each burst has a burst width and comprises a number of cycles at a transmitter frequency. The sensor includes a receiver which receives electromagnetic energy at the transmitter frequency, and includes a mixer which mixes a transmitted burst with reflections of the same transmitted burst to produce an intermediate frequency signal. Circuitry, responsive to the intermediate frequency signal indicates disturbances in the sensor field. Because the mixer mixes the transmitted burst with reflections of the transmitted burst, the burst width defines the sensor range. The burst repetition rate is randomly or pseudo-randomly modulated so that bursts in the sequence of bursts have a phase which varies. A second range-defining mode transmits two radio frequency bursts, where the time spacing between the bursts defines the maximum range divided by two. 12 figs.

  9. A Method for Modeling Household Occupant Behavior to Simulate Residential Energy Consumption

    SciTech Connect (OSTI)

    Johnson, Brandon J; Starke, Michael R; Abdelaziz, Omar; Jackson, Roderick K; Tolbert, Leon M

    2014-01-01

    This paper presents a statistical method for modeling the behavior of household occupants to estimate residential energy consumption. Using data gathered by the U.S. Census Bureau in the American Time Use Survey (ATUS), actions carried out by survey respondents are categorized into ten distinct activities. These activities are defined to correspond to the major energy consuming loads commonly found within the residential sector. Next, time varying minute resolution Markov chain based statistical models of different occupant types are developed. Using these behavioral models, individual occupants are simulated to show how an occupant interacts with the major residential energy consuming loads throughout the day. From these simulations, the minimum number of occupants, and consequently the minimum number of multiple occupant households, needing to be simulated to produce a statistically accurate representation of aggregate residential behavior can be determined. Finally, future work will involve the use of these occupant models along side residential load models to produce a high-resolution energy consumption profile and estimate the potential for demand response from residential loads.

  10. Carbon Nanotube Based Sensors

    SciTech Connect (OSTI)

    Jiang, Mian; Lin, Yuehe

    2006-11-01

    This review article provides a comprehensive review on sensors and biosensors based on functionalized carbon nanotubes.

  11. Structure and yarn sensor for fabric

    DOE Patents [OSTI]

    Mee, David K.; Allgood, Glenn O.; Mooney, Larry R.; Duncan, Michael G.; Turner, John C.; Treece, Dale A.

    1998-01-01

    A structure and yarn sensor for fabric directly determines pick density in a fabric thereby allowing fabric length and velocity to be calculated from a count of the picks made by the sensor over known time intervals. The structure and yarn sensor is also capable of detecting full length woven defects and fabric. As a result, an inexpensive on-line pick (or course) density measurement can be performed which allows a loom or knitting machine to be adjusted by either manual or automatic means to maintain closer fiber density tolerances. Such a sensor apparatus dramatically reduces fabric production costs and significantly improves fabric consistency and quality for woven or knitted fabric.

  12. R&D 100: Smart Sensors Mean Energy Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Smart Sensors Mean Energy Savings R&D 100: Smart Sensors Mean Energy Savings July 23, 2013 - 3:04pm Addthis Researchers at the Energy Department's National Renewable Energy Laboratory recently developed a new smart occupancy sensor that adds optics to what had only been a motion detection before. The new sensor combines an inexpensive camera with a high-speed microprocessor and algorithms to detect movement and human presence in a room with an accuracy of more than 90 percent -- an

  13. Occupancy change detection system and method

    DOE Patents [OSTI]

    Bruemmer, David J. [Idaho Falls, ID; Few, Douglas A. [Idaho Falls, ID

    2009-09-01

    A robot platform includes perceptors, locomotors, and a system controller. The system controller executes instructions for producing an occupancy grid map of an environment around the robot, scanning the environment to generate a current obstacle map relative to a current robot position, and converting the current obstacle map to a current occupancy grid map. The instructions also include processing each grid cell in the occupancy grid map. Within the processing of each grid cell, the instructions include comparing each grid cell in the occupancy grid map to a corresponding grid cell in the current occupancy grid map. For grid cells with a difference, the instructions include defining a change vector for each changed grid cell, wherein the change vector includes a direction from the robot to the changed grid cell and a range from the robot to the changed grid cell.

  14. Ripeness sensor development

    SciTech Connect (OSTI)

    Not Available

    1992-11-01

    About 20--25% of the total production of fruits and vegetables in the USA must be discarded after harvest About 25--30% of this loss is the result of over-ripening and this loss represents about 8.39 [times] 10[sup 12] BTU of invested energy every year. This invested energy could be saved by non-destructive ripeness sensing. Sweetness is an important indicator of fruit quality and highly correlated with ripeness in most fruits. Research to develop a non-destructive fruit ripeness sensor has been conducted in the Agricultural Engineering Department at Purdue University. It is based on [sup 1]H-MR (proton Magnetic Resonance). A first generation prototype of the ripeness sensor based on [sup 1]H-MR was built and tested with. Results show that the sensor can discriminate small fruit (0.75 in diameter or smaller) differing in sugar content by 6%. This prototype can separate the fruit into at least two groups: one ripe and the other not ripe. The estimated cost for such a ripeness sensor is around $4,000. The signal sensitivity of the prototype can be improved to enable it to differentiate between fruits varying in sugar content by only 1 or 2% by using water peak suppression techniques to recover relatively weak sugar resonance signals in intact fruits, modifying circuits to eliminate noise, leakage and distortion of input/output signals, improving the magnetic console to get a higher magnetic field and better homogeneity, and designing a probe to achieve a higher signal-to-noise (S/N) ratio. As research continues a second generation ripeness sensor will be developed which will incorporate many of the improvements and which will be suitable for commercial use. Additional research will allow application of the technique to a wider range of fruit sizes (from blueberries to watermelons). This report describes estimated energy savings, feasibility studies, development of the initial prototype, and preliminary evaluation of the first generation prototype.

  15. Occupational Injury & Illness System (01&15) PIA, Idaho National...

    Energy Savers [EERE]

    Tracking Database, INL Energy Employees' Occupational Illness Compensation Program Occupational Medicine - Assistant PIA, Idaho National Laboratory VisitDosimBadgeTrckg-PIA.pdf...

  16. CBEI: Improving Code Compliance with Change of Occupancy Retrofits...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Code Compliance with Change of Occupancy Retrofits - 2015 Peer Review CBEI: Improving Code Compliance with Change of Occupancy Retrofits - 2015 Peer Review Presenter: Jennifer ...

  17. Occupational Medical Surveillance System (OMSS) PIA, Idaho National...

    Energy Savers [EERE]

    More Documents & Publications Occupational Medicine - Assistant PIA, Idaho National Laboratory Occupational Injury & Illness System (01&15) PIA, Idaho National Laboratory PIA - INL ...

  18. Federal Employee Occupational Safety And Health (FEOSH) Program...

    Energy Savers [EERE]

    Federal Employee Occupational Safety And Health (FEOSH) Program Overview Federal Employee Occupational Safety And Health (FEOSH) Program Overview Congress established Public Law ...

  19. Pamphlet, A Basic Overview of Occupational Radiation Exposure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pamphlet, A Basic Overview of Occupational Radiation Exposure Monitoring, Analysis & Reporting Pamphlet, A Basic Overview of Occupational Radiation Exposure Monitoring, Analysis & ...

  20. Stochastic Modeling of Overtime Occupancy and Its Application in Building Energy Simulation and Calibration

    SciTech Connect (OSTI)

    Sun, Kaiyu; Yan , Da; Hong , Tianzhen; Guo, Siyue

    2014-02-28

    Overtime is a common phenomenon around the world. Overtime drives both internal heat gains from occupants, lighting and plug-loads, and HVAC operation during overtime periods. Overtime leads to longer occupancy hours and extended operation of building services systems beyond normal working hours, thus overtime impacts total building energy use. Current literature lacks methods to model overtime occupancy because overtime is stochastic in nature and varies by individual occupants and by time. To address this gap in the literature, this study aims to develop a new stochastic model based on the statistical analysis of measured overtime occupancy data from an office building. A binomial distribution is used to represent the total number of occupants working overtime, while an exponential distribution is used to represent the duration of overtime periods. The overtime model is used to generate overtime occupancy schedules as an input to the energy model of a second office building. The measured and simulated cooling energy use during the overtime period is compared in order to validate the overtime model. A hybrid approach to energy model calibration is proposed and tested, which combines ASHRAE Guideline 14 for the calibration of the energy model during normal working hours, and a proposed KS test for the calibration of the energy model during overtime. The developed stochastic overtime model and the hybrid calibration approach can be used in building energy simulations to improve the accuracy of results, and better understand the characteristics of overtime in office buildings.

  1. Optimization of Occupancy Based Demand Controlled Ventilation in Residences

    SciTech Connect (OSTI)

    Mortensen, Dorthe K.; Walker, Iain S.; Sherman, Max H.

    2011-05-01

    Although it has been used for many years in commercial buildings, the application of demand controlled ventilation in residences is limited. In this study we used occupant exposure to pollutants integrated over time (referred to as 'dose') as the metric to evaluate the effectiveness and air quality implications of demand controlled ventilation in residences. We looked at air quality for two situations. The first is that typically used in ventilation standards: the exposure over a long term. The second is to look at peak exposures that are associated with time variations in ventilation rates and pollutant generation. The pollutant generation had two components: a background rate associated with the building materials and furnishings and a second component related to occupants. The demand controlled ventilation system operated at a low airflow rate when the residence was unoccupied and at a high airflow rate when occupied. We used analytical solutions to the continuity equation to determine the ventilation effectiveness and the long-term chronic dose and peak acute exposure for a representative range of occupancy periods, pollutant generation rates and airflow rates. The results of the study showed that we can optimize the demand controlled airflow rates to reduce the quantity of air used for ventilation without introducing problematic acute conditions.

  2. Sensor Development for PEM Fuel Cell Systems

    SciTech Connect (OSTI)

    Steve Magee; Richard Gehman

    2005-07-12

    This document reports on the work done by Honeywell Sensing and Control to investigate the feasibility of modifying low cost Commercial Sensors for use inside a PEM Fuel Cell environment. Both stationary and automotive systems were considered. The target environment is hotter (100 C) than the typical commercial sensor maximum of 70 C. It is also far more humid (100% RH condensing) than the more typical 95% RH non-condensing at 40 C (4% RH maximum at 100 C). The work focused on four types of sensors, Temperature, Pressure, Air Flow and Relative Humidity. Initial design goals were established using a market research technique called Market Driven Product Definition (MDPD). A series of interviews were conducted with various users and system designers in their facilities. The interviewing team was trained in data taking and analysis per the MDPD process. The final result was a prioritized and weighted list of both requirements and desires for each sensor. Work proceeded on concept development for the 4 types of sensors. At the same time, users were developing the actual fuel cell systems and gaining knowledge and experience in the use of sensors and controls systems. This resulted in changes to requirements and desires that were not anticipated during the MDPD process. The concepts developed met all the predicted requirements. At the completion of concept development for the Pressure Sensor, it was determined that the Fuel Cell developers were happy with off-the-shelf automotive pressure sensors. Thus, there was no incentive to bring a new Fuel Cell Specific Pressure Sensor into production. Work was therefore suspended. After the experience with the Pressure Sensor, the requirements for a Temperature Sensor were reviewed and a similar situation applied. Commercially available temperature sensors were adequate and cost effective and so the program was not continued from the Concept into the Design Phase.

  3. Sensors and Controls Sub-Program Logic Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    technologies, control systems & transactive communication platforms are regularly innovated & widely used to enhance building performance, increase energy savings, facilitate use of distributed renewables, & improve demand response, while lowering overall costs to building owners & occupants. The Sensors and Controls Sub-Program develops cost-effective building energy management solutions to optimize energy performance, increase energy savings and reduce costs, as well as

  4. Annual DOE Occupational Radiation Exposure | 1978 Report

    Broader source: Energy.gov [DOE]

    The Eleventh Annual Report of Radiation Exposures for DOE & DOE Contractor Employees analyzes occupational radiation exposures at the U.S. Department of Energy (DOE) and its contractor employees during 1978.

  5. Annual DOE Occupational Radiation Exposure | 1987 Report

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Twentieth Annual Report of Radiation Exposures for DOE & DOE Contractor Employees analyzes occupational radiation exposures at the U.S. Department of Energy (DOE) and its contractor employees during 1987.

  6. Annual DOE Occupational Radiation Exposure | 1976 Report

    Broader source: Energy.gov [DOE]

    The Ninth Annual Report of Radiation Exposures for DOE & DOE Contractor Employees analyzes occupational radiation exposures at the U.S. Department of Energy (DOE) and its contractor employees during 1976.

  7. Annual DOE Occupational Radiation Exposure | 1986 Report

    Broader source: Energy.gov [DOE]

    The Nineteenth Annual Report of Radiation Exposures for DOE & DOE Contractor Employees analyzes occupational radiation exposures at the U.S. Department of Energy (DOE) and its contractor employees during 1986.

  8. Annual DOE Occupational Radiation Exposure | 1984 Report

    Broader source: Energy.gov [DOE]

    The Seventeenth Annual Report of Radiation Exposures for DOE & DOE Contractor Employees analyzes occupational radiation exposures at the U.S. Department of Energy (DOE) and its contractor employees during 1984.

  9. Annual DOE Occupational Radiation Exposure | 1988 Report

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Twenty-first Annual Report of Radiation Exposures for DOE & DOE Contractor Employees analyzes occupational radiation exposures at the U.S. Department of Energy (DOE) and its contractor employees during 1988.

  10. FAQS Reference Guide – Occupational Safety

    Broader source: Energy.gov [DOE]

    This reference guide has been developed to address the competency statements in the July 2011 version of DOE-STD-1160-2011, Occupational Safety Functional Area Qualification Standard.

  11. DOE 2010 Occupational Radiation Exposure November 2011

    SciTech Connect (OSTI)

    U.S. Department of Energy, Office of Health, Safety and Security, Office of Analysis

    2011-11-11

    This report discusses radiation protection and dose reporting requirements, presents the 2010 occupational radiation dose data trended over the past 5 years, and includes instructions to submit successful ALARA projects.

  12. Annual DOE Occupational Radiation Exposure | 1981 Report

    Broader source: Energy.gov [DOE]

    The Fourteenth Annual Report of Radiation Exposures for DOE & DOE Contractor Employees analyzes occupational radiation exposures at the U.S. Department of Energy (DOE) and its contractor employees during 1981.

  13. Annual DOE Occupational Radiation Exposure | 1983 Report

    Broader source: Energy.gov [DOE]

    The Sixteenth Annual Report of Radiation Exposures for DOE & DOE Contractor Employees analyzes occupational radiation exposures at the U.S. Department of Energy (DOE) and its contractor employees during 1983.

  14. Annual DOE Occupational Radiation Exposure | 1979 Report

    Broader source: Energy.gov [DOE]

    The Twelfth Annual Report of Radiation Exposures for DOE & DOE Contractor Employees analyzes occupational radiation exposures at the U.S. Department of Energy (DOE) and its contractor employees during 1979.

  15. Annual DOE Occupational Radiation Exposure | 1980 Report

    Broader source: Energy.gov [DOE]

    The Thirteenth Annual Report of Radiation Exposures for DOE & DOE Contractor Employees analyzes occupational radiation exposures at the U.S. Department of Energy (DOE) and its contractor employees during 1980.

  16. Annual DOE Occupational Radiation Exposure | 1982 Report

    Broader source: Energy.gov [DOE]

    The Fifteenth Annual Report of Radiation Exposures for DOE & DOE Contractor Employees analyzes occupational radiation exposures at the U.S. Department of Energy (DOE) and its contractor employees during 1982.

  17. Annual DOE Occupational Radiation Exposure | 1977 Report

    Broader source: Energy.gov [DOE]

    The Tenth Annual Report of Radiation Exposures for DOE & DOE Contractor Employees analyzes occupational radiation exposures at the U.S. Department of Energy (DOE) and its contractor employees during 1977.

  18. PRIVACY IMPACT ASSESSMENT: INL Energy Employees' Occupational

    Energy Savers [EERE]

    ... DOL District Claims Office, by the National Institute of Occupational Safety & Health (NIOSH), by the Department of Energy (DOE)-Chicago Office or by the DOE-Grand Junction Office. ...

  19. Annual DOE Occupational Radiation Exposure | 1985 Report

    Broader source: Energy.gov [DOE]

    The Eighteenth Annual Report of Radiation Exposures for DOE & DOE Contractor Employees analyzes occupational radiation exposures at the U.S. Department of Energy (DOE) and its contractor employees during 1985.

  20. Annual DOE Occupational Radiation Exposure | 1975 Report

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Eighth Annual Report of Radiation Exposures for ERDA & ERDA Contractor Employees analyzes occupational radiation exposures at the Energy Research and Development Administration (ERDA) and its contractor employees during 1975.

  1. Occupational Radiation Exposure | Department of Energy

    Office of Environmental Management (EM)

    The Occupational Radiation Exposure Information page on this web page is intended to ... Other Related Sites: Provides links to other DOE and non-DOE web sites for information ...

  2. 2014 DOE Occupational Radiation Exposure Report Appendices

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Labor Category Occupation Code Occupation Name 562 Groundskeepers 570 Forest Workers 580 Misc. Agriculture 610 Mechanics/Repairers 641 Masons 642 Carpenters 643 Electricians 644 Painters 645 Pipe Fitter 650 Miners/Drillers 660 Misc. Repair/Construction Laborers 850 Handlers/Laborers/Helpers 110 Manager - Adminstrator 400 Sales 450 Admin. Support and Clerical 910 Military 990 Miscellaneous 681 Machinists 682 Sheet Metal Workers 690 Operators, Plant/System/Utility 710 Machine Setup/Operators 771

  3. Digital Sensor Technology

    SciTech Connect (OSTI)

    Ted Quinn; Jerry Mauck; Richard Bockhorst; Ken Thomas

    2013-07-01

    The nuclear industry has been slow to incorporate digital sensor technology into nuclear plant designs due to concerns with digital qualification issues. However, the benefits of digital sensor technology for nuclear plant instrumentation are substantial in terms of accuracy, reliability, availability, and maintainability. This report demonstrates these benefits in direct comparisons of digital and analog sensor applications. It also addresses the qualification issues that must be addressed in the application of digital sensor technology.

  4. Secure Sensor Platform

    Energy Science and Technology Software Center (OSTI)

    2010-08-25

    The Secure Sensor Platform (SSP) software provides a framework of functionality to support the development of low-power autonomous sensors for nuclear safeguards. This framework provides four primary functional blocks of capabilities required to implement autonomous sensors. The capabilities are: communications, security, power management, and cryptography. Utilizing this framework establishes a common set of functional capabilities for seamless interoperability of any sensor based upon the SSP concept.

  5. Giant magnetoresistive sensor

    DOE Patents [OSTI]

    Stearns, Daniel G.; Vernon, Stephen P.; Ceglio, Natale M.; Hawryluk, Andrew M.

    1999-01-01

    A magnetoresistive sensor element with a three-dimensional micro-architecture is capable of significantly improved sensitivity and highly localized measurement of magnetic fields. The sensor is formed of a multilayer film of alternately magnetic and nonmagnetic materials. The sensor is optimally operated in a current perpendicular to plane mode. The sensor is useful in magnetic read/write heads, for high density magnetic information storage and retrieval.

  6. Fiber optic geophysical sensors

    DOE Patents [OSTI]

    Homuth, Emil F.

    1991-01-01

    A fiber optic geophysical sensor in which laser light is passed through a sensor interferometer in contact with a geophysical event, and a reference interferometer not in contact with the geophysical event but in the same general environment as the sensor interferometer. In one embodiment, a single tunable laser provides the laser light. In another embodiment, separate tunable lasers are used for the sensor and reference interferometers. The invention can find such uses as monitoring for earthquakes, and the weighing of objects.

  7. Enenrgy Employees Occupational Illness Compensation Program Act (EEOICPA)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tracking System, PIA, Savannah River Operations Office | Department of Energy Enenrgy Employees Occupational Illness Compensation Program Act (EEOICPA) Tracking System, PIA, Savannah River Operations Office Enenrgy Employees Occupational Illness Compensation Program Act (EEOICPA) Tracking System, PIA, Savannah River Operations Office Enenrgy Employees Occupational Illness Compensation Program Act (EEOICPA) Tracking System, PIA, Savannah River Operations Office Enenrgy Employees Occupational

  8. PIA - Savannah River Nuclear Solution (SRNS) Energy Employees Occupational

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Illness Compensation Program Act (EEOICPA) | Department of Energy Energy Employees Occupational Illness Compensation Program Act (EEOICPA) PIA - Savannah River Nuclear Solution (SRNS) Energy Employees Occupational Illness Compensation Program Act (EEOICPA) PIA - Savannah River Nuclear Solution (SRNS) Energy Employees Occupational Illness Compensation Program Act (EEOICPA) PIA - Savannah River Nuclear Solution (SRNS) Energy Employees Occupational Illness Compensation Program Act (EEOICPA)

  9. Pantex Occupational Health System (OHS), National Nuclear Security

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Administration Pantex Site Office | Department of Energy Pantex Occupational Health System (OHS), National Nuclear Security Administration Pantex Site Office Pantex Occupational Health System (OHS), National Nuclear Security Administration Pantex Site Office Pantex Occupational Health System (OHS), National Nuclear Security Administration Pantex Site Office Pantex Occupational Health System (OHS), National Nuclear Security Administration Pantex Site Office (337.13 KB) More Documents &

  10. Energy Employees Occupational Illness Compensation Program Act (EEOICPA) |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tracking System PIA, Office of Business Operations | Department of Energy Employees Occupational Illness Compensation Program Act (EEOICPA) Tracking System PIA, Office of Business Operations Energy Employees Occupational Illness Compensation Program Act (EEOICPA) Tracking System PIA, Office of Business Operations Energy Employees Occupational Illness Compensation Program Act (EEOICPA) Tracking System PIA, Office of Business Operations Energy Employees Occupational Illness Compensation

  11. Energy Employees Occupational Illness Compensation Program Act (EEOICPA)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tracking System PIA, Office of Business Operations | Department of Energy Employees Occupational Illness Compensation Program Act (EEOICPA) Tracking System PIA, Office of Business Operations Energy Employees Occupational Illness Compensation Program Act (EEOICPA) Tracking System PIA, Office of Business Operations Energy Employees Occupational Illness Compensation Program Act (EEOICPA) Tracking System PIA, Office of Business Operations Energy Employees Occupational Illness Compensation

  12. Sensor system scaling issues

    SciTech Connect (OSTI)

    Canavan, G.H.

    1996-07-01

    A model for IR sensor performance is used to compare estimates of sensor cost effectiveness. Although data from aircraft sensors indicate a weaker scaling, their agreement is adequate to support the assessment of the benefits of operating up to the maximum altitude of most current UAVs.

  13. High temperature sensor

    DOE Patents [OSTI]

    Tokarz, Richard D.

    1982-01-01

    A high temperature sensor includes a pair of electrical conductors separated by a mass of electrical insulating material. The insulating material has a measurable resistivity within the sensor that changes in relation to the temperature of the insulating material within a high temperature range (1,000 to 2,000 K.). When required, the sensor can be encased within a ceramic protective coating.

  14. Automotive vehicle sensors

    SciTech Connect (OSTI)

    Sheen, S.H.; Raptis, A.C.; Moscynski, M.J.

    1995-09-01

    This report is an introduction to the field of automotive vehicle sensors. It contains a prototype data base for companies working in automotive vehicle sensors, as well as a prototype data base for automotive vehicle sensors. A market analysis is also included.

  15. Wireless, Passive Ceramic Strain Sensors for Turbine Engine Applications

    SciTech Connect (OSTI)

    An, Linan

    2015-03-31

    The overall objective of this project is to develop a high-temperature wireless passive ceramic strain sensor for online, real-time monitoring turbine blade.

  16. Thin Silicon MEMS Contact-Stress Sensor Kotovksy, J; Tooker,...

    Office of Scientific and Technical Information (OSTI)

    A; Horsley, D 42 ENGINEERING; 42 ENGINEERING; ACCURACY; ACTUATORS; SILICON This thin, MEMS contact-stress sensor continuously and accurately measures time-varying, solid...

  17. Thin Silicon MEMS Contact-Stress Sensor Kotovsky, J; Tooker,...

    Office of Scientific and Technical Information (OSTI)

    ACCURACY; ACTUATORS; CALIBRATION; DIAPHRAGM; SILICON; STABILITY; THICKNESS This thin, MEMS contact-stress (CS) sensor continuously and accurately measures time-varying, solid...

  18. Thin Silicon MEMS Contact-Stress Sensor Kotovsky, J; Tooker,...

    Office of Scientific and Technical Information (OSTI)

    LIFETIME; PACKAGING; PERFORMANCE; SILICON; THICKNESS This work offers the first, thin, MEMS contact-stress (CS) sensor capable of accurate in situ measruement of time-varying,...

  19. Thin Silicon MEMS Contact-Stress Sensor (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Conference: Thin Silicon MEMS Contact-Stress Sensor Citation Details In-Document Search Title: Thin Silicon MEMS Contact-Stress Sensor This thin, MEMS contact-stress (CS) sensor continuously and accurately measures time-varying, solid interface loads in embedded systems over tens of thousands of load cycles. Unlike all other interface load sensors, the CS sensor is extremely thin (< 150 {micro}m), provides accurate, high-speed measurements, and exhibits good stability over time with no loss

  20. Pd conductor for thick film hydrogen sensor

    SciTech Connect (OSTI)

    Felten, J.J.; Hoffheins, B.S.; Lauf, R.J.

    1996-12-31

    Cooperation between a materials developer and sensor designers has resulted in a palladium conductor used ro design and build a new hydrogen sensor that has superior performance characteristics and is also inexpensive to manufacture. Material characteristics give it faster response time and greater thermal/mechanical stability. The thick film palladium conductor paste, which can be fired at 850{degrees}C-950{degrees}C, has provided device designers a practical conductor paste with which to produce the improved sensor. The conductor uses a high surface area Pd powder combined with a binder glass that is chemically very inert, which combination produces a porous conductor that has good adhesion and chemical resistance. The current sensor design consists of three or four thick film Layers. Because of the flexibility of thick film techniques, the sensor element can be configured to any desired size and shape for specific instrument needs.

  1. Multifuctional integrated sensors (MFISES).

    SciTech Connect (OSTI)

    Homeijer, Brian D.; Roozeboom, Clifton

    2015-10-01

    Many emerging IoT applications require sensing of multiple physical and environmental parameters for: completeness of information, measurement validation, unexpected demands, improved performance. For example, a typical outdoor weather station measures temperature, humidity, barometric pressure, light intensity, rainfall, wind speed and direction. Existing sensor technologies do not directly address the demand for cost, size, and power reduction in multi-paramater sensing applications. Industry sensor manufacturers have developed integrated sensor systems for inertial measurements that combine accelerometers, gyroscopes, and magnetometers, but do not address environmental sensing functionality. In existing research literature, a technology gap exists between the functionality of MEMS sensors and the real world applications of the sensors systems.

  2. Occupational Health Manager PIA, Carlsbad Field Office | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Health Manager PIA, Carlsbad Field Office Occupational Health Manager PIA, Carlsbad Field Office Occupational Health Manager PIA, Carlsbad Field Office Occupational Health Manager PIA, Carlsbad Field Office (64.61 KB) More Documents & Publications Occupational Medicine - Assistant PIA, Idaho National Laboratory Integrated Safety Management Workshop Registration, PIA, Idaho National Laboratory Occupational Injury & Illness System (01&15) PIA, Idaho National Laboratory

  3. Sensor mount assemblies and sensor assemblies

    DOE Patents [OSTI]

    Miller, David H.

    2012-04-10

    Sensor mount assemblies and sensor assemblies are provided. In an embodiment, by way of example only, a sensor mount assembly includes a busbar, a main body, a backing surface, and a first finger. The busbar has a first end and a second end. The main body is overmolded onto the busbar. The backing surface extends radially outwardly relative to the main body. The first finger extends axially from the backing surface, and the first finger has a first end, a second end, and a tooth. The first end of the first finger is disposed on the backing surface, and the tooth is formed on the second end of the first finger.

  4. Ultrasonic sensor and method of use

    DOE Patents [OSTI]

    Condreva, Kenneth J.

    2001-01-01

    An ultrasonic sensor system and method of use for measuring transit time though a liquid sample, using one ultrasonic transducer coupled to a precision time interval counter. The timing circuit captures changes in transit time, representing small changes in the velocity of sound transmitted, over necessarily small time intervals (nanoseconds) and uses the transit time changes to identify the presence of non-conforming constituents in the sample.

  5. Six degree of freedom sensor

    DOE Patents [OSTI]

    Vann, C.S.

    1999-03-16

    This small, non-contact optical sensor increases the capability and flexibility of computer controlled machines by detecting its relative position to a workpiece in all six degrees of freedom (DOF). At a fraction of the cost, it is over 200 times faster and up to 25 times more accurate than competing 3-DOF sensors. Applications range from flexible manufacturing to a 6-DOF mouse for computers. Until now, highly agile and accurate machines have been limited by their inability to adjust to changes in their tasks. By enabling them to sense all six degrees of position, these machines can now adapt to new and complicated tasks without human intervention or delay--simplifying production, reducing costs, and enhancing the value and capability of flexible manufacturing. 3 figs.

  6. Six degree of freedom sensor

    DOE Patents [OSTI]

    Vann, Charles S.

    1999-01-01

    This small, non-contact optical sensor increases the capability and flexibility of computer controlled machines by detecting its relative position to a workpiece in all six degrees of freedom (DOF). At a fraction of the cost, it is over 200 times faster and up to 25 times more accurate than competing 3-DOF sensors. Applications range from flexible manufacturing to a 6-DOF mouse for computers. Until now, highly agile and accurate machines have been limited by their inability to adjust to changes in their tasks. By enabling them to sense all six degrees of position, these machines can now adapt to new and complicated tasks without human intervention or delay--simplifying production, reducing costs, and enhancing the value and capability of flexible manufacturing.

  7. DOE occupational radiation exposure 2007 report

    SciTech Connect (OSTI)

    none,

    2007-12-31

    The U.S. Department of Energy (DOE) Office of Corporate Safety Analysis (HS-30) within the Office of Health, Safety and Security (HSS) publishes the annual DOE Occupational Radiation Exposure Report to provide an overview of the status of radiation protection practices at DOE.* The annual DOEOccupational Radiation Exposure 2007 Report provides an evaluation of DOE-wide performance regarding compliance with DOE Part 835 dose limits and ALARA process requirements. In addition the report provides data to DOE organizations responsible for developing policies for protection of individuals from the effects of radiation. This report provides a summary and an analysis of occupational radiation exposure information from the monitoring of individuals involved in DOE activities. The occupational radiation exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site over the past five years.

  8. Clementine sensor suite

    SciTech Connect (OSTI)

    Ledebuhr, A.G.

    1994-11-15

    LLNL designed and built the suite of six miniaturized light-weight space-qualified sensors utilized in the Clementine mission. A major goal of the Clementine program was to demonstrate technologies originally developed for Ballistic Missile Defense Organization Programs. These sensors were modified to gather data from the moon. This overview presents each of these sensors and some preliminary on-orbit performance estimates. The basic subsystems of these sensors include optical baffles to reject off-axis stray light, light-weight ruggedized optical systems, filter wheel assemblies, radiation tolerant focal plane arrays, radiation hardened control and readout electronics and low mass and power mechanical cryogenic coolers for the infrared sensors. Descriptions of each sensor type are given along with design specifications, photographs and on-orbit data collected.

  9. Integrating smart sensors into grid systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    smart sensors into grid systems will enable more complex modeling and adaptation to unknown problems for preventing future catastrophic failures. Passive Microsensor for Autonomous Sensing Grid health and reliability forms the backbone of our Nation's infrastructure. Real time monitoring and fast failure location and identification is critical for electrical grid sustainability. We propose the development of a cheap, fast (µs), fully integrated, passive micro-sensor capable of detecting

  10. DOE Occupational Radiation Exposure, 2001 report

    SciTech Connect (OSTI)

    None, None

    2001-12-31

    The goal of the U.S. Department of Energy (DOE) is to conduct its operations, including radiological, to ensure the safety and health of all DOE employees, contractors, and subcontractors. The DOE strives to maintain radiation exposures to its workers below administrative control levels and DOE limits and to further reduce these exposures to levels that are “As Low As Reasonably Achievable” (ALARA). The 2001 DOE Occupational Radiation Exposure Report provides a summary and analysis of the occupational radiation exposure received by individuals associated with DOE activities. The DOE mission includes stewardship of the nuclear weapons stockpile and the associated facilities, environmental restoration of DOE, and energy research.

  11. Occupational Radiation Exposure During Endovascular Aortic Repair

    SciTech Connect (OSTI)

    Sailer, Anna M.; Schurink, Geert Willem H.; Bol, Martine E. Haan, Michiel W. de Zwam, Willem H. van Wildberger, Joachim E. Jeukens, Cécile R. L. P. N.

    2015-08-15

    PurposeThe aim of the study was to evaluate the radiation exposure to operating room personnel and to assess determinants for high personal doses during endovascular aortic repair.Materials and MethodsOccupational radiation exposure was prospectively evaluated during 22 infra-renal aortic repair procedures (EVAR), 11 thoracic aortic repair procedures (TEVAR), and 11 fenestrated or branched aortic repair procedures (FEVAR). Real-time over-lead dosimeters attached to the left breast pocket measured personal doses for the first operators (FO) and second operators (SO), radiology technicians (RT), scrub nurses (SN), anesthesiologists (AN), and non-sterile nurses (NSN). Besides protective apron and thyroid collar, no additional radiation shielding was used. Procedural dose area product (DAP), iodinated contrast volume, fluoroscopy time, patient’s body weight, and C-arm angulation were documented.ResultsAverage procedural FO dose was significantly higher during FEVAR (0.34 ± 0.28 mSv) compared to EVAR (0.11 ± 0.21 mSv) and TEVAR (0.06 ± 0.05 mSv; p = 0.003). Average personnel doses were 0.17 ± 0.21 mSv (FO), 0.042 ± 0.045 mSv (SO), 0.019 ± 0.042 mSv (RT), 0.017 ± 0.031 mSv (SN), 0.006 ± 0.007 mSv (AN), and 0.004 ± 0.009 mSv (NSN). SO and AN doses were strongly correlated with FO dose (p = 0.003 and p < 0.001). There was a significant correlation between FO dose and procedural DAP (R = 0.69, p < 0.001), iodinated contrast volume (R = 0.67, p < 0.001) and left-anterior C-arm projections >60° (p = 0.02), and a weak correlation with fluoroscopy time (R = 0.40, p = 0.049).ConclusionAverage FO dose was a factor four higher than SO dose. Predictors for high personal doses are procedural DAP, iodinated contrast volume, and left-anterior C-arm projections greater than 60°.

  12. Beam imaging sensor

    DOE Patents [OSTI]

    McAninch, Michael D; Root, Jeffrey J

    2015-03-31

    The present invention relates generally to the field of sensors for beam imaging and, in particular, to a new and useful beam imaging sensor for use in determining, for example, the power density distribution of a beam including, but not limited to, an electron beam or an ion beam. In one embodiment, the beam imaging sensor of the present invention comprises, among other items, a circumferential slit that is either circular, elliptical or polygonal in nature.

  13. Sensors, Instrumentation Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sensors, Instrumentation Systems Sensors, Instrumentation Systems National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. Sensors Los Alamos National Laboratory's Kevin Farinholt holds a prototype rectifying antenna array used in experiments designed to monitor the structural health of bridges around the United States. Overview Charlie

  14. High-temperature sensor

    DOE Patents [OSTI]

    Not Available

    1981-01-29

    A high temperature sensor is described which includes a pair of electrical conductors separated by a mass of electrical insulating material. The insulating material has a measurable resistivity within the sensor that changes in relation to the temperature of the insulating material within a high temperature range (1000 to 2000/sup 0/K). When required, the sensor can be encased within a ceramic protective coating.

  15. Rolamite acceleration sensor

    DOE Patents [OSTI]

    Abbin, J.P.; Briner, C.F.; Martin, S.B.

    1993-12-21

    A rolamite acceleration sensor is described which has a failsafe feature including a housing, a pair of rollers, a tension band wrapped in an S shaped fashion around the rollers, wherein the band has a force-generation cut out and a failsafe cut out or weak portion. The failsafe cut out or weak portion breaks when the sensor is subjected to an excessive acceleration so that the sensor fails in an open circuit (non-conducting) state permanently. 6 figures.

  16. Beam imaging sensor

    DOE Patents [OSTI]

    McAninch, Michael D.; Root, Jeffrey J.

    2016-07-05

    The present invention relates generally to the field of sensors for beam imaging and, in particular, to a new and useful beam imaging sensor for use in determining, for example, the power density distribution of a beam including, but not limited to, an electron beam or an ion beam. In one embodiment, the beam imaging sensor of the present invention comprises, among other items, a circumferential slit that is either circular, elliptical or polygonal in nature.

  17. Contact stress sensor

    DOE Patents [OSTI]

    Kotovsky, Jack

    2012-02-07

    A contact stress sensor includes one or more MEMS fabricated sensor elements, where each sensor element of includes a thin non-recessed portion, a recessed portion and a pressure sensitive element adjacent to the recessed portion. An electric circuit is connected to the pressure sensitive element. The circuit includes a thermal compensator and a pressure signal circuit element configured to provide a signal upon movement of the pressure sensitive element.

  18. Contact stress sensor

    DOE Patents [OSTI]

    Kotovsky, Jack

    2014-02-11

    A method for producing a contact stress sensor that includes one or more MEMS fabricated sensor elements, where each sensor element of includes a thin non-recessed portion, a recessed portion and a pressure sensitive element adjacent to the recessed portion. An electric circuit is connected to the pressure sensitive element. The circuit includes a pressure signal circuit element configured to provide a signal upon movement of the pressure sensitive element.

  19. Rolamite acceleration sensor

    DOE Patents [OSTI]

    Abbin, Joseph P.; Briner, Clifton F.; Martin, Samuel B.

    1993-01-01

    A rolamite acceleration sensor which has a failsafe feature including a housing, a pair of rollers, a tension band wrapped in an S shaped fashion around the rollers, wherein the band has a force-generation cut out and a failsafe cut out or weak portion. The failsafe cut out or weak portion breaks when the sensor is subjected to an excessive acceleration so that the sensor fails in an open circuit (non-conducting) state permanently.

  20. Wireless Sensors and Networks for Advanced Energy Management

    SciTech Connect (OSTI)

    Hardy, J.E.

    2005-05-06

    Numerous national studies and working groups have identified low-cost, very low-power wireless sensors and networks as a critical enabling technology for increasing energy efficiency, reducing waste, and optimizing processes. Research areas for developing such sensor and network platforms include microsensor arrays, ultra-low power electronics and signal conditioning, data/control transceivers, and robust wireless networks. A review of some of the research in the following areas will be discussed: (1) Low-cost, flexible multi-sensor array platforms (CO{sub 2}, NO{sub x}, CO, humidity, NH{sub 3}, O{sub 2}, occupancy, etc.) that enable energy and emission reductions in applications such as buildings and manufacturing; (2) Modeling investments (energy usage and savings to drive capital investment decisions) and estimated uptime improvements through pervasive gathering of equipment and process health data and its effects on energy; (3) Robust, self-configuring wireless sensor networks for energy management; and (4) Quality-of-service for secure and reliable data transmission from widely distributed sensors. Wireless communications is poised to support technical innovations in the industrial community, with widespread use of wireless sensors forecasted to improve manufacturing production and energy efficiency and reduce emissions. Progress being made in wireless system components, as described in this paper, is helping bring these projected improvements to reality.

  1. Intake Air Oxygen Sensor

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ignition can occur at elevated gas temperatures and with aged sensor Next Steps FMEA Study to understand ignition risk for failure modes identified by FMEA Identify...

  2. Fiber optic geophysical sensors

    DOE Patents [OSTI]

    Homuth, E.F.

    1991-03-19

    A fiber optic geophysical sensor is described in which laser light is passed through a sensor interferometer in contact with a geophysical event, and a reference interferometer not in contact with the geophysical event but in the same general environment as the sensor interferometer. In one embodiment, a single tunable laser provides the laser light. In another embodiment, separate tunable lasers are used for the sensor and reference interferometers. The invention can find such uses as monitoring for earthquakes, and the weighing of objects. 2 figures.

  3. Sandia National Laboratories: Sensors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Existing techniques for detecting hydrogen have numerous drawbacks: limited dynamic range; ... such as density and viscosity and to act as in situ chemical sensors for liquids. ...

  4. A Laser Interferometric Miniature Sensor

    SciTech Connect (OSTI)

    Carr, Dustin W., PhD.; Baldwin, Patrick C.; Milburn, Howard; Robinson, David

    2011-09-12

    This is the second year of a Phase II Small Business Innovation Research (SBIR) contract geared towards the development of a new seismic sensor. Ground-based seismic monitoring systems have proven to be very capable in identifying nuclear tests, and can provide somewhat precise information on the location and yield of the explosive device. Making these measurements, however, currently requires very expensive and bulky seismometers that are difficult to deploy in places where they are most needed. A high performance, compact device can enable rapid deployment of large scale arrays, which can in turn be used to provide higher quality data during times of critical need. The use of a laser interferometer-based device has shown considerable promise, while also presenting significant challenges. The greatest strength of this optical readout technique is the ability to decouple the mechanical design from the transducer, thus enabling a miniaturized design that is not accessible with conventional sensing techniques. However, the nonlinearity in the optical response must be accounted for in the sensor output. Previously, we had proposed using a force-feedback approach to position the sensor at a point of maximum linearity. However, it can be shown that the combined nonlinearities of the optical response and the force-feedback curve necessarily results in a significant amount of unwanted noise at low frequencies. Having realized this, we have developed a new approach that eliminates force feedback, allowing the proof mass to move freely at all times. This takes advantage of some advanced optical spatial filtering that was developed at Symphony Acoustics for other types of sensors, and was recently adapted to this work. After processing the signals in real time, the digital output of the device is intrinsically linear, and the sensor can operate at any orientation with the same level of resolution, while instantly adapting to significant changes in orientation. Ultimately, we

  5. Calorimetric gas sensor

    DOE Patents [OSTI]

    Ricco, A.J.; Hughes, R.C.; Smith, J.H.; Moreno, D.J.; Manginell, R.P.; Senturia, S.D.; Huber, R.J.

    1998-11-10

    A combustible gas sensor is described that uses a resistively heated, noble metal-coated, micromachined polycrystalline Si filament to calorimetrically detect the presence and concentration of combustible gases. The filaments tested to date are 2 {micro}m thick {times} 10{micro}m wide {times} 100, 250, 500, or 1000 {micro}m-long polycrystalline Si; some are overcoated with a 0.25 {micro}m-thick protective CVD Si{sub 3}N{sub 4} layer. A thin catalytic Pt film was deposited by CVD from the precursor Pt(acac){sub 2} onto microfilaments resistively heated to approximately 500 C; Pt deposits only on the hot filament. Using a constant-resistance-mode feedback circuit, Pt-coated filaments operating at ca. 300 C (35 mW input power) respond linearly, in terms of the change in supply current required to maintain constant resistance (temperature), to H{sub 2} concentrations between 100 ppm and 1% in an 80/20 N{sub 2}/O{sub 2} mixture. Other catalytic materials can also be used. 11 figs.

  6. Calorimetric gas sensor

    DOE Patents [OSTI]

    Ricco, Antonio J.; Hughes, Robert C.; Smith, James H.; Moreno, Daniel J.; Manginell, Ronald P.; Senturia, Stephen D.; Huber, Robert J.

    1998-01-01

    A combustible gas sensor that uses a resistively heated, noble metal-coated, micromachined polycrystalline Si filament to calorimetrically detect the presence and concentration of combustible gases. The filaments tested to date are 2 .mu.m thick.times.10 .mu.m wide.times.100, 250, 500, or 1000 .mu.m-long polycrystalline Si; some are overcoated with a 0.25 .mu.m-thick protective CVD Si.sub.3 N.sub.4 layer. A thin catalytic Pt film was deposited by CVD from the precursor Pt(acac).sub.2 onto microfilaments resistively heated to approximately 500.degree. C.; Pt deposits only on the hot filament. Using a constant-resistance-mode feedback circuit, Pt-coated filaments operating at ca. 300.degree. C. (35 mW input power) respond linearly, in terms of the change in supply current required to maintain constant resistance (temperature), to H.sub.2 concentrations between 100 ppm and 1% in an 80/20 N.sub.2 /O.sub.2 mixture. Other catalytic materials can also be used.

  7. Safety and Occupational Health Specialist | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Safety and Occupational Health Specialist Safety and Occupational Health Specialist Submitted by admin on Tue, 2016-05-10 18:01 Job Summary Organization Name Department Of Energy ...

  8. Annual DOE Occupational Radiation Exposure | 1992- 1994 Report

    Broader source: Energy.gov [DOE]

    The DOE Occupational Radiation Exposure Report, 1992-1994 reports occupational radiation exposures incurred by individuals at U.S. Department of Energy (DOE) facilities from 1992 through 1994.

  9. MHK ISDB/Sensors/Smart Barometric Pressure Sensor | Open Energy...

    Open Energy Info (EERE)

    Sensor 2810 HWS Barometric Pressure Sensor ... further results Also made by Onset Computer Corporation HOBO RX3000 Remote Monitoring SystemHOBO RX3000 Remote Monitoring...

  10. A Review of High Occupancy Vehicle (HOV) Lane Performance and...

    Open Energy Info (EERE)

    URI: cleanenergysolutions.orgcontentreview-high-occupancy-vehicle-hov-lan Language: English Policies: Deployment Programs DeploymentPrograms: Demonstration & Implementation This...