National Library of Energy BETA

Sample records for obtain information critical

  1. Only critical information was scanned

    Office of Legacy Management (LM)

    Only critical information was scanned. Entire document is available upon request - Click here to email a

  2. Terra-Gen Powers Coso Geothermal Facility Obtains Critical Federal...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Terra-Gen Powers Coso Geothermal Facility Obtains Critical Federal Permit to Increase Its...

  3. Critical current of the dispersion superconducting phase, obtained during aging

    SciTech Connect (OSTI)

    Romanov, Y.P.; Smirnov, L.V.; Sadovskiy, V.D.; Volkenshteyn, N.V.

    1983-12-01

    High critical parameters of plastic superconductors on a base of solid solutions are obtained as a result of plastic deformation and heat treatment. At the same time, the critical current and field of monocrystalline samples turn out to be significantly lower. The preservation of superconducting in high magnetic fields is conditioned by the presence of a dense network of very thin intersecting filaments, which remain superconducting during the conversion of the main mass of the material into the normal state with the help of an electron microscope. A lamellar threddike structure was determined which was conditioned by plastic deformation and the breakdown of a solid solution.

  4. New Request for Information to Inform Department of Energy Critical

    Energy Savers [EERE]

    Materials Strategy | Department of Energy New Request for Information to Inform Department of Energy Critical Materials Strategy New Request for Information to Inform Department of Energy Critical Materials Strategy February 10, 2016 - 12:00pm Addthis Diana Bauer Office Director for Energy Systems Analysis and Integration In today's energy economy, many advanced technologies rely on high performing materials with unique chemical and physical properties. In some cases, these materials are at

  5. Request for Information (RFI) for Updated Critical Materials Strategy |

    Energy Savers [EERE]

    Department of Energy Request for Information (RFI) for Updated Critical Materials Strategy Request for Information (RFI) for Updated Critical Materials Strategy PDF icon Request for Information (RFI) for Updated Critical Materials Strategy More Documents & Publications RFI U.S. Department of Energy - Critical Materials Strategy Request for Information RFI: DOE Materials Strategy Microsoft Word - FINAL Materials Strategy Request for Information May 5 2010

  6. T-707: Apache Tomcat AJP Protocol Processing Bug Lets Remote Users Bypass Authentication or Obtain Information

    Broader source: Energy.gov [DOE]

    Apache Tomcat AJP protocol processing bug lets remote users bypass authentication or obtain information.

  7. DOE Releases Request for Information on Critical Materials, Including Fuel

    Energy Savers [EERE]

    Cell Platinum Group Metal Catalysts | Department of Energy Request for Information on Critical Materials, Including Fuel Cell Platinum Group Metal Catalysts DOE Releases Request for Information on Critical Materials, Including Fuel Cell Platinum Group Metal Catalysts February 17, 2016 - 3:03pm Addthis The U.S. Department of Energy (DOE) has released a Request for Information (RFI) on critical materials in the energy sector, including fuel cell platinum group metal catalysts. The RFI is

  8. U-017: HP MFP Digital Sending Software Lets Local Users Obtain Potentially Sensitive Information

    Broader source: Energy.gov [DOE]

    A vulnerability was reported in HP MFP Digital Sending Software. A local user can obtain potentially sensitive information.

  9. U-118: Adobe Flash Player Bugs Let Remote Users Execute Arbitrary Code and Obtain Information

    Broader source: Energy.gov [DOE]

    Two vulnerabilities were reported in Adobe Flash Player. A remote user can cause arbitrary code to be executed on the target user's system. A remote user can obtain potentially information.

  10. Analysis of the Quality of Information Obtained About Uterine Artery Embolization From the Internet

    SciTech Connect (OSTI)

    Tavare, Aniket N.; Alsafi, Ali Hamady, Mohamad S.

    2012-12-15

    Purpose: The Internet is widely used by patients to source health care-related information. We sought to analyse the quality of information available on the Internet about uterine artery embolization (UAE). Materials and Methods: We searched three major search engines for the phrase 'uterine artery embolization' and compiled the top 50 results from each engine. After excluding repeated sites, scientific articles, and links to documents, the remaining 50 sites were assessed using the LIDA instrument, which scores sites across the domains of accessibility, usability, and reliability. The Fleisch reading ease score (FRES) was calculated for each of the sites. Finally, we checked the country of origin and the presence of certification by the Health On the Net Foundation (HONcode) as well as their effect on LIDA and FRES scores.ResultsThe following mean scores were obtained: accessibility 48/60 (80%), usability 42/54 (77%), reliability 20/51 (39%), total LIDA 110/165 (67%), and FRES 42/100 (42%). Nine sites had HONcode certification, and this was associated with significantly greater (p < 0.05) reliability and total LIDA and FRES scores. When comparing sites between United Kingdom and United States, there was marked variation in the quality of results obtained when searching for information on UAE (p < 0.05). Conclusion: In general, sites were well designed and easy to use. However, many scored poorly on the reliability of their information either because they were produced in a non-evidence-based way or because they lacking currency. It is important that patients are guided to reputable, location-specific sources of information online, especially because prominent search engine rank does not guarantee reliability of information.

  11. Areas of Critical Environmental Concern | Open Energy Information

    Open Energy Info (EERE)

    Concern Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleAreasofCriticalEnvironmentalConcern&oldid612082" Feedback Contact needs...

  12. U-163: PHP Command Parameter Bug Lets Remote Users Obtain Potentially Sensitive Information and Execute Arbitrary Code

    Broader source: Energy.gov [DOE]

    A vulnerability was reported in PHP. A remote user can obtain potentially sensitive information. A remote user can execute arbitrary code on the target system.

  13. Title 50 CFR 226 Designated Critical Habitat | Open Energy Information

    Open Energy Info (EERE)

    26 Designated Critical Habitat Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- Federal RegulationFederal Regulation: Title 50 CFR 226 Designated...

  14. Petroleum and geothermal production technology in Russia: Summary of information obtained during informational meetings with several Russian Institutes

    SciTech Connect (OSTI)

    Schafer, D.M.; Glowka, D.A.; Teufel, L.W.

    1995-04-01

    Russian scientists and engineers have drilled the deepest holes in the world. It is recognized that this experience has given them an expertise in drilling superdeep holes, as well as other aspects of drilling, completions, and geophysics. More and more US oil and gas companies are vigorously expanding their exploration and development into Russia. It is important for them to identify and use Russian technology in drilling, completion, logging, and reservoir characterization to the extent possible, in order to both reduce drilling costs and help support the Russian economy. While these US companies are interested in becoming involved in and/or sponsoring research in Russia, they have been unsure as to which scientists and institutes are working on problems of interest. It was also important to determine in which areas Russian technology is farther advanced than in the West. Such technology could then be commercialized as part of the Industrial Partnering Program. In order to develop a clear understanding of these issues, two Sandia engineers with drilling and completions expertise and a geophysicist with expertise in reservoir analysis traveled to Russia to meet with Russian scientists and engineers to discuss their technologies and areas of interest. This report contains a summary of the information obtained during the visit.

  15. U-006:Cisco Network Admission Control Manager Directory Traversal Flaw Lets Remote Users Obtain Potentially Sensitive Information

    Broader source: Energy.gov [DOE]

    An unauthenticated attacker could exploit this vulnerability to access sensitive information, including password files and system logs, that could be leveraged to launch subsequent attacks.

  16. Nanostructure of Solid Precipitates Obtained by Expansion of Polystyrene-block-Polybutadiene Solutions in Near Critical Propane: Block Ratio and Micellar Solution Effects

    SciTech Connect (OSTI)

    Green, Jade; Tyrrell, Zachary; Radosz, Maciej; Hong, Kunlun; Mays, Jimmy

    2011-01-01

    In contrast to incompressible liquid solutions, compressible near-critical solutions of block copolymers allow for controlling rapid structure transformations with pressure alone. For example, when dissolved in near-critical propane, polystyrene-block-polybutadiene can form a random molecular solution at high pressures, a micellar solution at moderate pressures, and a solvent-free precipitate at low pressures. In contrast to the unstructured virgin copolymer, such a propane-treated precipitate rapidly self-assembles toward structures characteristic of equilibrated block copolymers, such as lamellae, spheres, or cylinders, which depend on the block ratio rather than on the decompression rate or temperature, at least within the rate and temperature ranges investigated in this work. At lower temperatures, however, say below 40 C, glass transition of the styrene-butadiene diblocks can inhibit independent structure formation, while crystallization of their hydrogenated-butadiene analogues can preserve the micellar-solution structure.

  17. Critical Materials Workshop

    Broader source: Energy.gov [DOE]

    AMO hosted a public workshop on Tuesday, April 3, 2012 in Arlington, VA to provide background information on critical materials assessment, the current research within DOE related to critical...

  18. Reference handbook: Nuclear criticality

    SciTech Connect (OSTI)

    Not Available

    1991-12-06

    The purpose for this handbook is to provide Rocky Flats personnel with the information necessary to understand the basic principles underlying a nuclear criticality.

  19. Critical Materials Workshop

    Broader source: Energy.gov [DOE]

    AMO hosted a public workshop on Tuesday, April 3, 2012 in Arlington, VA to provide background information on critical materials assessment, the current research within DOE related to critical materials, and the foundational aspects of Energy Innovation Hubs. Additionally, the workshop solicited input from the critical materials community on R&D gaps that could be addressed by DOE.

  20. About Critical Materials | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Critical Materials Critical materials are found in many commonly used tools, including batteries, cell phones and vehicles. 10 things you didn't know about critical materials Rare Earths -- The Fraternal Fifteen CMI factsheet What would we do without rare earths? The Ames Laboratory channel on YouTube Timelines related to rare earth elements and materials Other sources of information about rare earths: GE: Understanding rare earth metals, includes links to a whitepaper "Understanding

  1. Improving the Availability and Delivery of Critical Information for Tight Gas Resource Development in the Appalachian Basin

    SciTech Connect (OSTI)

    Mary Behling; Susan Pool; Douglas Patchen; John Harper

    2008-12-31

    To encourage, facilitate and accelerate the development of tight gas reservoirs in the Appalachian basin, the geological surveys in Pennsylvania and West Virginia collected widely dispersed data on five gas plays and formatted these data into a large database that can be accessed by individual well or by play. The database and delivery system that were developed can be applied to any of the 30 gas plays that have been defined in the basin, but for this project, data compilation was restricted to the following: the Mississippian-Devonian Berea/Murrysville sandstone play and the Upper Devonian Venango, Bradford and Elk sandstone plays in Pennsylvania and West Virginia; and the 'Clinton'/Medina sandstone play in northwestern Pennsylvania. In addition, some data were collected on the Tuscarora Sandstone play in West Virginia, which is the lateral equivalent of the Medina Sandstone in Pennsylvania. Modern geophysical logs are the most common and cost-effective tools for evaluating reservoirs. Therefore, all of the well logs in the libraries of the two surveys from wells that had penetrated the key plays were scanned, generating nearly 75,000 scanned e-log files from more than 40,000 wells. A standard file-naming convention for scanned logs was developed, which includes the well API number, log curve type(s) scanned, and the availability of log analyses or half-scale logs. In addition to well logs, other types of documents were scanned, including core data (descriptions, analyses, porosity-permeability cross-plots), figures from relevant chapters of the Atlas of Major Appalachian Gas Plays, selected figures from survey publications, and information from unpublished reports and student theses and dissertations. Monthly and annual production data from 1979 to 2007 for West Virginia wells in these plays are available as well. The final database also includes digitized logs from more than 800 wells, sample descriptions from more than 550 wells, more than 600 digital photos in 1-foot intervals from 11 cores, and approximately 260 references for these plays. A primary objective of the research was to make data and information available free to producers through an on-line data delivery model designed for public access on the Internet. The web-based application that was developed utilizes ESRI's ArcIMS GIS software to deliver both well-based and play-based data that are searchable through user-originated queries, and allows interactive regional geographic and geologic mapping that is play-based. System tools help users develop their customized spatial queries. A link also has been provided to the West Virginia Geological Survey's 'pipeline' system for accessing all available well-specific data for more than 140,000 wells in West Virginia. However, only well-specific queries by API number are permitted at this time. The comprehensive project web site (http://www.wvgs.wvnet.edu/atg) resides on West Virginia Geological Survey's servers and links are provided from the Pennsylvania Geological Survey and Appalachian Oil and Natural Gas Research Consortium web sites.

  2. Only critical information was scanned

    Office of Legacy Management (LM)

  3. Criticality Model

    SciTech Connect (OSTI)

    A. Alsaed

    2004-09-14

    The ''Disposal Criticality Analysis Methodology Topical Report'' (YMP 2003) presents the methodology for evaluating potential criticality situations in the monitored geologic repository. As stated in the referenced Topical Report, the detailed methodology for performing the disposal criticality analyses will be documented in model reports. Many of the models developed in support of the Topical Report differ from the definition of models as given in the Office of Civilian Radioactive Waste Management procedure AP-SIII.10Q, ''Models'', in that they are procedural, rather than mathematical. These model reports document the detailed methodology necessary to implement the approach presented in the Disposal Criticality Analysis Methodology Topical Report and provide calculations utilizing the methodology. Thus, the governing procedure for this type of report is AP-3.12Q, ''Design Calculations and Analyses''. The ''Criticality Model'' is of this latter type, providing a process evaluating the criticality potential of in-package and external configurations. The purpose of this analysis is to layout the process for calculating the criticality potential for various in-package and external configurations and to calculate lower-bound tolerance limit (LBTL) values and determine range of applicability (ROA) parameters. The LBTL calculations and the ROA determinations are performed using selected benchmark experiments that are applicable to various waste forms and various in-package and external configurations. The waste forms considered in this calculation are pressurized water reactor (PWR), boiling water reactor (BWR), Fast Flux Test Facility (FFTF), Training Research Isotope General Atomic (TRIGA), Enrico Fermi, Shippingport pressurized water reactor, Shippingport light water breeder reactor (LWBR), N-Reactor, Melt and Dilute, and Fort Saint Vrain Reactor spent nuclear fuel (SNF). The scope of this analysis is to document the criticality computational method. The criticality computational method will be used for evaluating the criticality potential of configurations of fissionable materials (in-package and external to the waste package) within the repository at Yucca Mountain, Nevada for all waste packages/waste forms. The criticality computational method is also applicable to preclosure configurations. The criticality computational method is a component of the methodology presented in ''Disposal Criticality Analysis Methodology Topical Report'' (YMP 2003). How the criticality computational method fits in the overall disposal criticality analysis methodology is illustrated in Figure 1 (YMP 2003, Figure 3). This calculation will not provide direct input to the total system performance assessment for license application. It is to be used as necessary to determine the criticality potential of configuration classes as determined by the configuration probability analysis of the configuration generator model (BSC 2003a).

  4. Critical Materials:

    Office of Environmental Management (EM)

    Critical Materials: 1 Technology Assessment 2 Contents 3 1. Introduction to the Technology/System ............................................................................................... 2 4 2. Technology Assessment and Potential ................................................................................................. 5 5 2.1 Major Trends in Selected Clean Energy Application Areas ........................................................... 5 6 2.1.1 Permanent Magnets for Wind

  5. Criticality safety basics, a study guide

    SciTech Connect (OSTI)

    V. L. Putman

    1999-09-01

    This document is a self-study and classroom guide, for criticality safety of activities with fissile materials outside nuclear reactors. This guide provides a basic overview of criticality safety and criticality accident prevention methods divided into three parts: theory, application, and history. Except for topic emphasis, theory and history information is general, while application information is specific to the Idaho National Engineering and Environmental Laboratory (INEEL). Information presented here should be useful to personnel who must know criticality safety basics to perform their assignments safely or to design critically safe equipment or operations. However, the guide's primary target audience is fissile material handler candidates.

  6. Critical function and success path summary display

    DOE Patents [OSTI]

    Scarola, Kenneth; Jamison, David S.; Manazir, Richard M.; Rescorl, Robert L.; Harmon, Daryl L.

    1995-01-01

    The content of and hierarchical access to three levels of display pages containing information on critical function monitoring and success path monitoring.

  7. A primer for criticality calculations with DANTSYS

    SciTech Connect (OSTI)

    Busch, R.D.

    1997-08-01

    With the closure of many experimental facilities, the nuclear safety analyst has to rely on computer calculations to identify safe limits for the handling and storage of fissile materials. Although deterministic methods often do not provide exact models of a system, a substantial amount of reliable information on nuclear systems can be obtained using these methods if the user understands their limitations. To guide criticality specialists in this area, the Nuclear Criticality Safety Group at the University of New Mexico (UNM) in cooperation with the Radiation Transport Group at Los Alamos National Laboratory (LANL) has designed a primer to help the analyst understand and use the DANTSYS deterministic transport code for nuclear criticality safety analyses. DANTSYS is the new name of the group of codes formerly known as: ONEDANT, TWODANT, TWOHEX, TWOGQ, and THREEDANT. The primer is designed to teach bu example, with each example illustrating two or three DANTSYS features useful in criticality analyses. Starting with a Quickstart chapter, the primer gives an overview of the basic requirements for DANTSYS input and allows the user to quickly run a simple criticality problem with DANTSYS. Each chapter has a list of basic objectives at the beginning identifying the goal of the chapter and the individual DANTSYS features covered in detail in the chapter example problems. On completion of the primer, it is expected that the user will be comfortable doing criticality calculations with DANTSYS and can handle 60--80% of the situations that normally arise in a facility. The primary provides a set of input files that can be selective modified by the user to fit each particular problem.

  8. Imaging systems and methods for obtaining and using biometric information

    DOE Patents [OSTI]

    McMakin, Douglas L [Richland, WA; Kennedy, Mike O [Richland, WA

    2010-11-30

    Disclosed herein are exemplary embodiments of imaging systems and methods of using such systems. In one exemplary embodiment, one or more direct images of the body of a clothed subject are received, and a motion signature is determined from the one or more images. In this embodiment, the one or more images show movement of the body of the subject over time, and the motion signature is associated with the movement of the subject's body. In certain implementations, the subject can be identified based at least in part on the motion signature. Imaging systems for performing any of the disclosed methods are also disclosed herein. Furthermore, the disclosed imaging, rendering, and analysis methods can be implemented, at least in part, as one or more computer-readable media comprising computer-executable instructions for causing a computer to perform the respective methods.

  9. Critical Materials Institute

    Broader source: Energy.gov (indexed) [DOE]

    A N E N E R G Y I N N O V A T I O N H U B Alex King, Ames Laboratory 2015 AMO Peer Review - May 28, 2015 This presentation does not contain any proprietary, confidential, or otherwise restricted information. Materials criticality is affecting us today * The target date for transition to high-output T5 fluorescent lamps has been delayed by two years because manufacturers claim that there is a shortage of Eu and Tb for the phosphors. * Utility-scale wind turbine installations are overwhelmingly

  10. Computing Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    here you can find information relating to: Obtaining the right computer accounts. Using NIC terminals. Using BooNE's Computing Resources, including: Choosing your desktop....

  11. Critical Materials Institute

    ScienceCinema (OSTI)

    Alex King

    2013-06-05

    Ames Laboratory Director Alex King talks about the goals of the Critical Materials Institute in diversifying the supply of critical materials, developing substitute materials, developing tools and techniques for recycling critical materials, and forecasting materials needs to avoid future shortages.

  12. First Responders and Criticality Accidents

    SciTech Connect (OSTI)

    Valerie L. Putman; Douglas M. Minnema

    2005-11-01

    Nuclear criticality accident descriptions typically include, but do not focus on, information useful to first responders. We studied these accidents, noting characteristics to help (1) first responders prepare for such an event and (2) emergency drill planners develop appropriate simulations for training. We also provide recommendations to help people prepare for such events in the future.

  13. Component Repair Times Obtained from MSPI Data

    SciTech Connect (OSTI)

    Eide, Steven A.

    2015-05-01

    Information concerning times to repair or restore equipment to service given a failure is valuable to probabilistic risk assessments (PRAs). Examples of such uses in modern PRAs include estimation of the probability of failing to restore a failed component within a specified time period (typically tied to recovering a mitigating system before core damage occurs at nuclear power plants) and the determination of mission times for support system initiating event (SSIE) fault tree models. Information on equipment repair or restoration times applicable to PRA modeling is limited and dated for U.S. commercial nuclear power plants. However, the Mitigating Systems Performance Index (MSPI) program covering all U.S. commercial nuclear power plants provides up-to-date information on restoration times for a limited set of component types. This paper describes the MSPI program data available and analyzes the data to obtain median and mean component restoration times as well as non-restoration cumulative probability curves. The MSPI program provides guidance for monitoring both planned and unplanned outages of trains of selected mitigating systems deemed important to safety. For systems included within the MSPI program, plants monitor both train UA and component unreliability (UR) against baseline values. If the combined system UA and UR increases sufficiently above established baseline results (converted to an estimated change in core damage frequency or CDF), a white (or worse) indicator is generated for that system. That in turn results in increased oversight by the US Nuclear Regulatory Commission (NRC) and can impact a plants insurance rating. Therefore, there is pressure to return MSPI program components to service as soon as possible after a failure occurs. Three sets of unplanned outages might be used to determine the component repair durations desired in this article: all unplanned outages for the train type that includes the component of interest, only unplanned outages associated with failures of the component of interest, and only unplanned outages associated with PRA failures of the component of interest. The paper will describe how component repair times can be generated from each set and which approach is most applicable. Repair time information will be summarized for MSPI pumps and diesel generators using data over 2003 2007. Also, trend information over 2003 2012 will be presented to indicate whether the 2003 2007 repair time information is still considered applicable. For certain types of pumps, mean repair times are significantly higher than the typically assumed 24 h duration.

  14. CRITICALITY SAFETY TRAINING AT FLUOR HANFORD (FH)

    SciTech Connect (OSTI)

    TOFFER, H.

    2005-05-02

    The Fluor Hanford Criticality Safety engineers are extensively trained. The objectives and requirements for training are derived from Department of Energy (DOE) and American National Standards Institute/American Nuclear Society Standards (ANSI/ANS), and are captured in the Hanford Criticality Safety Program manual, HNF-7098. Qualification cards have been established for the general Criticality Safety Engineer (CSE) analyst, CSEs who support specific facilities, and for the facility Criticality Safety Representatives (CSRs). Refresher training and continuous education in the discipline are emphasized. Weekly Brown Bag Sessions keep the criticality safety engineers informed of the latest developments and historic perspectives.

  15. Critical Infrastructure Modeling System

    Energy Science and Technology Software Center (OSTI)

    2004-10-01

    The Critical Infrastructure Modeling System (CIMS) is a 3D modeling and simulation environment designed to assist users in the analysis of dependencies within individual infrastructure and also interdependencies between multiple infrastructures. Through visual cuing and textual displays, a use can evaluate the effect of system perturbation and identify the emergent patterns that evolve. These patterns include possible outage areas from a loss of power, denial of service or access, and disruption of operations. Method ofmore » Solution: CIMS allows the user to model a system, create an overlay of information, and create 3D representative images to illustrate key infrastructure elements. A geo-referenced scene, satellite, aerial images or technical drawings can be incorporated into the scene. Scenarios of events can be scripted, and the user can also interact during run time to alter system characteristics. CIMS operates as a discrete event simulation engine feeding a 3D visualization.« less

  16. New Request for Information to Inform Department of Energy Critical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of supply disruption of materials used in wind turbines, photovoltaic (PV) thin films, electric vehicles, and ... DOE is also a co-chair of the National Science and Technology ...

  17. Nuclear Criticality Safety Guide for Fire Protection

    Broader source: Energy.gov [DOE]

    This guide is intended to provide information for use by fire protection professionals in the application of reasonable methods of fire protection in those facilities where there is a potential for nuclear criticality.

  18. PRECLOSURE CRITICALITY ANALYSIS PROCESS REPORT

    SciTech Connect (OSTI)

    A.E. Danise

    2004-10-25

    This report describes a process for performing preclosure criticality analyses for a repository at Yucca Mountain, Nevada. These analyses will be performed from the time of receipt of fissile material until permanent closure of the repository (preclosure period). The process describes how criticality safety analyses will be performed for various configurations of waste in or out of waste packages that could occur during preclosure as a result of normal operations or event sequences. The criticality safety analysis considers those event sequences resulting in unanticipated moderation, loss of neutron absorber, geometric changes, or administrative errors in waste form placement (loading) of the waste package. The report proposes a criticality analyses process for preclosure to allow a consistent transition from preclosure to postclosure, thereby possibly reducing potential cost increases and delays in licensing of Yucca Mountain. The proposed approach provides the advantage of using a parallel regulatory framework for evaluation of preclosure and postclosure performance and is consistent with the U.S. Nuclear Regulatory Commission's approach of supporting risk-informed, performance-based regulation for fuel cycle facilities, ''Yucca Mountain Review Plan, Final Report'', and 10 CFR Part 63. The criticality-related criteria for ensuring subcriticality are also described as well as which guidance documents will be utilized. Preclosure operations and facilities have significant similarities to existing facilities and operations currently regulated by the U.S. Nuclear Regulatory Commission; therefore, the design approach for preclosure criticality safety will be dictated by existing regulatory requirements while using a risk-informed approach with burnup credit for in-package operations.

  19. The Critical Materials Institute | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Critical Materials Institute Director Alex King, Operations Manager Cynthia Feller, Jenni Brockpahler and Melinda Thach. Photo left to right: CMI Director Alex King, Operations Manager Cynthia Feller, Jenni Brockpahler and Melinda Thach. Not pictured: Carol Bergman. CMI staff phone 515-296-4500, e-mail CMIdirector@ameslab.gov The Critical Materials Institute focuses on technologies that make better use of materials and eliminate the need for materials that are subject to supply disruptions.

  20. Critical Point Finder

    Energy Science and Technology Software Center (OSTI)

    2007-03-15

    The program robustly finds the critical points in the electric field generated by a specified collection of point charges.

  1. Information Security

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-06-20

    The protection and control of classified information is critical to our nations security. This Order establishes requirements and responsibilities for Department of Energy (DOE) Departmental Elements, including the National Nuclear Security Administration (NNSA), to protect and control classified information as required by statutes, regulation, Executive Orders, government-wide policy directives and guidelines, and DOE policy and directives. Cancels DOE M 470.4-4A Chg except for Section D.

  2. Computing Criticality of Lines in Power Systems

    SciTech Connect (OSTI)

    Pinar, Ali; Reichert, Adam; Lesieutre, Bernard

    2006-10-13

    We propose a computationally efficient method based onnonlinear optimization to identify critical lines, failure of which cancause severe blackouts. Our method computes criticality measure for alllines at a time, as opposed to detecting a single vulnerability,providing a global view of the system. This information on criticality oflines can be used to identify multiple contingencies by selectivelyexploring multiple combinations of broken lines. The effectiveness of ourmethod is demonstrated on the IEEE 30 and 118 bus systems, where we canvery quickly detect the most critical lines in the system and identifysevere multiple contingencies.

  3. CHP: Enabling Resilient Energy Infrastructure for Critical Facilities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CHP: Enabling Resilient Energy Infrastructure for Critical Facilities - Report, March 2013 ... This report provides information on the design and use of CHP for reliability purposes, as ...

  4. Vulnerability of critical infrastructures : identifying critical nodes.

    SciTech Connect (OSTI)

    Cox, Roger Gary; Robinson, David Gerald

    2004-06-01

    The objective of this research was the development of tools and techniques for the identification of critical nodes within critical infrastructures. These are nodes that, if disrupted through natural events or terrorist action, would cause the most widespread, immediate damage. This research focuses on one particular element of the national infrastructure: the bulk power system. Through the identification of critical elements and the quantification of the consequences of their failure, site-specific vulnerability analyses can be focused at those locations where additional security measures could be effectively implemented. In particular, with appropriate sizing and placement within the grid, distributed generation in the form of regional power parks may reduce or even prevent the impact of widespread network power outages. Even without additional security measures, increased awareness of sensitive power grid locations can provide a basis for more effective national, state and local emergency planning. A number of methods for identifying critical nodes were investigated: small-world (or network theory), polyhedral dynamics, and an artificial intelligence-based search method - particle swarm optimization. PSO was found to be the only viable approach and was applied to a variety of industry accepted test networks to validate the ability of the approach to identify sets of critical nodes. The approach was coded in a software package called Buzzard and integrated with a traditional power flow code. A number of industry accepted test networks were employed to validate the approach. The techniques (and software) are not unique to power grid network, but could be applied to a variety of complex, interacting infrastructures.

  5. Critical Materials Workshop

    Broader source: Energy.gov (indexed) [DOE]

    Critical Materials Workshop U.S. Department of Energy April 3, 2012 eere.energy.gov Dr. Leo Christodoulou Program Manager Advanced Manufacturing Office Energy Efficiency and...

  6. Critical Materials Workshop Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Critical Materials Workshop Sheraton Crystal City 1800 Jefferson Davis Highway, Arlington, VA April 3, 2012, 8 am - 5 pm Time (EDT) Activity Speaker 8:00 am - 9:00 am Registration and Continental Breakfast Welcome and Overview of 9:00 am - 9:05 am Workshop Welcome and Overview of Energy 9:05 am - 9:35 am Innovation Hubs 9:35 am - 9:45 am DOE and Critical Materials National Academies Criticality 9:45 am - 9:55 am Methodology and Assessment Department of Energy Critical 9:55 am - 10:10 am

  7. Resources | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources The Critical Materials Institute offers connections to resources, including: List of resources U.S. Rare Earth Magnet Patents Table Government agency contacts CMI unique...

  8. U-053: Linux kexec Bugs Let Local and Remote Users Obtain Potentially

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sensitive Information | Department of Energy 53: Linux kexec Bugs Let Local and Remote Users Obtain Potentially Sensitive Information U-053: Linux kexec Bugs Let Local and Remote Users Obtain Potentially Sensitive Information December 7, 2011 - 7:30am Addthis PROBLEM: Linux kexec Bugs Let Local and Remote Users Obtain Potentially Sensitive Information . PLATFORM: Red Hat Enterprise Linux Desktop (v. 6) Red Hat Enterprise Linux HPC Node (v. 6) Red Hat Enterprise Linux Server (v. 6) Red Hat

  9. 2011 Annual Criticality Safety Program Performance Summary

    SciTech Connect (OSTI)

    Andrea Hoffman

    2011-12-01

    The 2011 review of the INL Criticality Safety Program has determined that the program is robust and effective. The review was prepared for, and fulfills Contract Data Requirements List (CDRL) item H.20, 'Annual Criticality Safety Program performance summary that includes the status of assessments, issues, corrective actions, infractions, requirements management, training, and programmatic support.' This performance summary addresses the status of these important elements of the INL Criticality Safety Program. Assessments - Assessments in 2011 were planned and scheduled. The scheduled assessments included a Criticality Safety Program Effectiveness Review, Criticality Control Area Inspections, a Protection of Controlled Unclassified Information Inspection, an Assessment of Criticality Safety SQA, and this management assessment of the Criticality Safety Program. All of the assessments were completed with the exception of the 'Effectiveness Review' for SSPSF, which was delayed due to emerging work. Although minor issues were identified in the assessments, no issues or combination of issues indicated that the INL Criticality Safety Program was ineffective. The identification of issues demonstrates the importance of an assessment program to the overall health and effectiveness of the INL Criticality Safety Program. Issues and Corrective Actions - There are relatively few criticality safety related issues in the Laboratory ICAMS system. Most were identified by Criticality Safety Program assessments. No issues indicate ineffectiveness in the INL Criticality Safety Program. All of the issues are being worked and there are no imminent criticality concerns. Infractions - There was one criticality safety related violation in 2011. On January 18, 2011, it was discovered that a fuel plate bundle in the Nuclear Materials Inspection and Storage (NMIS) facility exceeded the fissionable mass limit, resulting in a technical safety requirement (TSR) violation. The TSR limits fuel plate bundles to 1085 grams U-235, which is the maximum loading of an ATR fuel element. The overloaded fuel plate bundle contained 1097 grams U-235 and was assembled under an 1100 gram U-235 limit in 1982. In 2003, the limit was reduced to 1085 grams citing a new criticality safety evaluation for ATR fuel elements. The fuel plate bundle inventories were not checked for compliance prior to implementing the reduced limit. A subsequent review of the NMIS inventory did not identify further violations. Requirements Management - The INL Criticality Safety program is organized and well documented. The source requirements for the INL Criticality Safety Program are from 10 CFR 830.204, DOE Order 420.1B, Chapter III, 'Nuclear Criticality Safety,' ANSI/ANS 8-series Industry Standards, and DOE Standards. These source requirements are documented in LRD-18001, 'INL Criticality Safety Program Requirements Manual.' The majority of the criticality safety source requirements are contained in DOE Order 420.1B because it invokes all of the ANSI/ANS 8-Series Standards. DOE Order 420.1B also invokes several DOE Standards, including DOE-STD-3007, 'Guidelines for Preparing Criticality Safety Evaluations at Department of Energy Non-Reactor Nuclear Facilities.' DOE Order 420.1B contains requirements for DOE 'Heads of Field Elements' to approve the criticality safety program and specific elements of the program, namely, the qualification of criticality staff and the method for preparing criticality safety evaluations. This was accomplished by the approval of SAR-400, 'INL Standardized Nuclear Safety Basis Manual,' Chapter 6, 'Prevention of Inadvertent Criticality.' Chapter 6 of SAR-400 contains sufficient detail and/or reference to the specific DOE and contractor documents that adequately describe the INL Criticality Safety Program per the elements specified in DOE Order 420.1B. The Safety Evaluation Report for SAR-400 specifically recognizes that the approval of SAR-400 approves the INL Criticality Safety Program. No new source requirements were released in 2011. A revision to LRD-18001 is

  10. AGING FACILITY CRITICALITY SAFETY CALCULATIONS

    SciTech Connect (OSTI)

    C.E. Sanders

    2004-09-10

    The purpose of this design calculation is to revise and update the previous criticality calculation for the Aging Facility (documented in BSC 2004a). This design calculation will also demonstrate and ensure that the storage and aging operations to be performed in the Aging Facility meet the criticality safety design criteria in the ''Project Design Criteria Document'' (Doraswamy 2004, Section 4.9.2.2), and the functional nuclear criticality safety requirement described in the ''SNF Aging System Description Document'' (BSC [Bechtel SAIC Company] 2004f, p. 3-12). The scope of this design calculation covers the systems and processes for aging commercial spent nuclear fuel (SNF) and staging Department of Energy (DOE) SNF/High-Level Waste (HLW) prior to its placement in the final waste package (WP) (BSC 2004f, p. 1-1). Aging commercial SNF is a thermal management strategy, while staging DOE SNF/HLW will make loading of WPs more efficient (note that aging DOE SNF/HLW is not needed since these wastes are not expected to exceed the thermal limits form emplacement) (BSC 2004f, p. 1-2). The description of the changes in this revised document is as follows: (1) Include DOE SNF/HLW in addition to commercial SNF per the current ''SNF Aging System Description Document'' (BSC 2004f). (2) Update the evaluation of Category 1 and 2 event sequences for the Aging Facility as identified in the ''Categorization of Event Sequences for License Application'' (BSC 2004c, Section 7). (3) Further evaluate the design and criticality controls required for a storage/aging cask, referred to as MGR Site-specific Cask (MSC), to accommodate commercial fuel outside the content specification in the Certificate of Compliance for the existing NRC-certified storage casks. In addition, evaluate the design required for the MSC that will accommodate DOE SNF/HLW. This design calculation will achieve the objective of providing the criticality safety results to support the preliminary design of the Aging Facility. As the ongoing design evolution remains fluid, the results from this design calculation should be evaluated for applicability to any new or modified design. Consequently, the results presented in this document are limited to the current design. The information contained in this document was developed by Environmental and Nuclear Engineering and is intended for the use of Design and Engineering in its work regarding the various criticality related activities performed in the Aging Facility. Yucca Mountain Project personnel from Environmental and Nuclear Engineering should be consulted before the use of the information for purposes other than those stated herein or use by individuals other than authorized personnel in Design and Engineering.

  11. Critical review of studies on atmospheric dispersion in coastal regions

    SciTech Connect (OSTI)

    Shearer, D.L.; Kaleel, R.J.

    1982-09-01

    This study effort was required as a preliminary step prior to initiation of field measurements of atmospheric dispersion in coastal regions. The Nuclear Regulatory Commission (NRC) is in the process of planning an extensive field measurement program to generate data which will serve as improved data bases for licensing decisions, confirmation of regulations, standards, and guides, and for site characterizations. The study being reported here is an effort directed to obtaining as much information as is possible from existing studies that is relevant toward NRC's objectives. For this study, reports covering research and meteorological measurements conducted for industrial purposes, utility needs, military objectives, and academic studies were obtained and critically reviewed in light of NRC's current data needs. This report provides an interpretation of the extent of existing usable information, an indication of the potential for tailoring existing research toward current NRC information needs, and recommendations for several follow-on studies which could provide valuable additional information through reanalysis of the data. Recommendations are also offered regarding new measurement programs. Emphasis is placed on the identification and acquisition of data from atmospheric tracer studies conducted in coastal regions. A total of 225 references were identified which deal with the coastal atmosphere, including meteorological and tracer measurement programs, theoretical descriptions of the relevant processes, and dispersion models.

  12. Criticality Safety Basics for INL Emergency Responders

    SciTech Connect (OSTI)

    Valerie L. Putman

    2012-08-01

    This document is a modular self-study guide about criticality safety principles for Idaho National Laboratory emergency responders. This guide provides basic criticality safety information for people who, in response to an emergency, might enter an area that contains much fissionable (or fissile) material. The information should help responders understand unique factors that might be important in responding to a criticality accident or in preventing a criticality accident while responding to a different emergency.

    This study guide specifically supplements web-based training for firefighters (0INL1226) and includes information for other Idaho National Laboratory first responders. However, the guide audience also includes other first responders such as radiological control personnel.

    For interested readers, this guide includes clearly marked additional information that will not be included on tests. The additional information includes historical examples (Been there. Done that.), as well as facts and more in-depth information (Did you know …).

    INL criticality safety personnel revise this guide as needed to reflect program changes, user requests, and better information. Revision 0, issued May 2007, established the basic text. Revision 1 incorporates operation, program, and training changes implemented since 2007. Revision 1 increases focus on first responders because later responders are more likely to have more assistance and guidance from facility personnel and subject matter experts. Revision 1 also completely reorganized the training to better emphasize physical concepts behind the criticality controls that help keep emergency responders safe. The changes are based on and consistent with changes made to course 0INL1226.

  13. Critical Materials Hub

    Broader source: Energy.gov [DOE]

    Critical materials, including some rare earth elements that possess unique magnetic, catalytic, and luminescent properties, are key resources needed to manufacture products for the clean energy economy. These materials are so critical to the technologies that enable wind turbines, solar panels, electric vehicles, and energy-efficient lighting that DOE's 2010 and 2011 Critical Materials Strategy reported that supply challenges for five rare earth metals—dysprosium, neodymium, terbium, europium, and yttrium—could affect clean energy technology deployment in the coming years.1, 2

  14. RFI U.S. Department of Energy - Critical Materials Strategy Request...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    RFI U.S. Department of Energy - Critical Materials Strategy Request for Information RFI U.S. Department of Energy - Critical Materials Strategy Request for Information U.S....

  15. Information Security

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-06-20

    The protection and control of classified information is critical to our nations security. This Order establishes requirements and responsibilities for Department of Energy (DOE) Departmental Elements, including the National Nuclear Security Administration (NNSA), to protect and control classified information as required by statutes, regulation, Executive Orders, government-wide policy directives and guidelines, and DOE policy and directives. Cancels DOE M 470.4-4A Chg except for Section D. Admin Chg 1, dated 11-23-2012, cancels DOE O 471.6. Canceled by Admin Chg 2 dated 5-15-15.

  16. Treatment of biomass to obtain ethanol

    DOE Patents [OSTI]

    Dunson, Jr., James B. (Newark, DE); Elander, Richard T. (Evergreen, CO); Tucker, III, Melvin P. (Lakewood, CO); Hennessey, Susan Marie (Avondale, PA)

    2011-08-16

    Ethanol was produced using biocatalysts that are able to ferment sugars derived from treated biomass. Sugars were obtained by pretreating biomass under conditions of high solids and low ammonia concentration, followed by saccharification.

  17. Resources | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Notice of intent to issue FOA (December 2013) Energy Department Announces 3 Million to Lower Cost of Geothermal Energy and Boost U.S. Supply of Critical Materials, February 14,...

  18. CRITICAL MATERIALS MUSEUM DISPLAY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 04-01-2015 Introduction The Critical Materials display was initiated by the Outreach and Education Coordinator for the Critical Materials Institute (CMI) and the Director of the Colorado School of Mines (CSM) Geology Museum as an opportunity to leverage the relationship between CSM's very successful museum outreach and CMI's desire to reach audiences of all ages across the nation. The display will be designed to provide a visual outreach opportunity with visitors and guests to the Colorado

  19. Critical Materials Strategy Summary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Critical Materials Strategy Summary 2010 T he United States is on the cusp of a clean energy rev- olution. In its first Critical Materials Strategy, the U.S. Department of Energy (DOE) focuses on materials used in four clean energy technologies: wind turbines, elec- tric vehicles, solar cells and energy-efficient lighting (Table 1). The Strategy evaluates the extent to which widespread deployment of these technologies may increase worldwide demand for rare earth elements and certain other

  20. HANFORD NUCLEAR CRITICALITY SAFETY PROGRAM DATABASE

    SciTech Connect (OSTI)

    TOFFER, H.

    2005-05-02

    The Hanford Database is a useful information retrieval tool for a criticality safety practitioner. The database contains nuclear criticality literature screened for parameter studies. The entries, characterized with a value index, are segregated into 16 major and six minor categories. A majority of the screened entries have abstracts and a limited number are connected to the Office of Scientific and Technology Information (OSTI) database of full-size documents. Simple and complex searches of the data can be accomplished very rapidly and the end-product of the searches could be a full-size document. The paper contains a description of the database, user instructions, and a number of examples.

  1. Critical Materials Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Critical Materials Workshop U.S. Department of Energy April 3, 2012 eere.energy.gov Dr. Leo Christodoulou Program Manager Advanced Manufacturing Office Energy Efficiency and Renewable Energy U.S. Department of Energy eere.energy.gov Critical Materials Workshop 8:00 am - 9:00 am Registration and Continental Breakfast Time (EDT) Activity Speaker Dr. Leo Christodoulou 9:00 am - 9:05 am Welcome and Overview of Workshop Program Manager EERE Advanced Manufacturing Office 9:05 am - 9:35 am Welcome and

  2. Fuel Cells for Critical Communications Backup Power

    Broader source: Energy.gov [DOE]

    This presentation provides information about using fuel cells for emergency backup power for critical communications. It was given by Greg Moreland at the Association of Public Communications Officials Annual Conference in August 2008. Posted on this Web site with permission from the author.

  3. invention disclosures | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Critical Materials Institute will be defined by how well it meets its mission to assure supply chains of materials critical to clean energy technologies. To enable innovation in...

  4. AVLIS Criticality risk assessment

    SciTech Connect (OSTI)

    Brereton, S.J., LLNL

    1998-04-29

    Evaluation of criticality safety has become an important task in preparing for the Atomic Vapor Laser Isotope Separation (AVLIS) uranium enrichment runs that will take place during the Integrated Process Demonstration (IPD) at Lawrence Livermore National Laboratory (LLNL). This integrated operation of AVLIS systems under plant-like conditions will be used to verify the performance of process equipment and to demonstrate the sustained integrated enrichment performance of these systems using operating parameters that are similar to production plant specifications. Because of the potential criticality concerns associated with enriched uranium, substantial effort has been aimed towards understanding the potential system failures of interest from a criticality standpoint, and evaluating them in detail. The AVLIS process is based on selective photoionization of uranium atoms of atomic weight 235 (U-235) in a vapor stream, followed by electrostatic extraction. The process is illustrated in Figure 1. Two major subsystems are involved: the uranium separator and the laser system. In the separator, metallic uranium is fed into a crucible where it is heated and vaporized by an electron beam. The atomic U-235/U-238 vapor stream moves away from the molten uranium and is illuminated by precisely tuned beams of dye laser light. Upon absorption of the tuned dye laser light, the U-235 atoms become excited and eject electrons (become photoionized), giving them a net positive charge. The ions of U-235 are moved preferentially by an electrostatic field to condense on the product collector, forming the enriched uranium product. The remaining vapor, which is depleted in U-235 (tails), passes unaffected through the photoionization/extractor zone and accumulates on collectors in the top of the separator. Tails and product collector surfaces operate at elevated temperatures so that deposited materials flow as segregated liquid streams. The separated uranium condensates (uranium enriched in U-235 and uranium depleted in U-235) are cooled and accumulated in solid metallic form in canisters. The collected product and tails material is weighed and transferred into certified, critically safe, shipping containers (DOT specification 6M with 2R containment vessel). These will be temporarily stored, and then shipped offsite either for use by a fuel fabricator, or for disposal. Tails material will be packaged for disposal. A criticality risk assessment was performed for AVLIS IPD runs. In this analysis, the likelihood of occurrence of a criticality was examined. For the AVLIS process, there are a number of areas that have been specifically examined to assess whether or not the frequency of occurrence of a criticality is credible (frequency of occurrence > 10-6/yr). In this paper, we discuss only two of the areas: the separator and canister operations.

  5. Critical Skills Master's Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Skills Master's Program (CSMP): The Critical Skills Master's Program (CSMP) provides exceptional bachelor's-level candidates with the opportunity to pursue a fully funded Master's of Science degree. Successful applicants will become regular full-time Sandia employees and join multidisciplinary teams that are advancing the frontiers of science and technology to solve the world's greatest challenges. Program Requirements: * Apply to a minimum of 3 nationally accredited universities. * Successfully

  6. Careers | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Careers The Critical Materials Institute at the The Ames Laboratory, a Department of Energy national laboratory affiliated with Iowa State University, offers a variety of career opportunities. These include: Postdoctoral Research Associate Also, The Ames Laboratory participates in federal programs that help develop the research workforce. These include the following programs with the U.S. Department of Energy: Graduate Student Research Program (new in 2014) Science Undergraduate Laboratory

  7. Critical Materials Institute |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CMI outreach at Colorado School of Mines for National Engineer Week 2016 Tour at Colorado School of Mines Geology Musuem for National Engineers Week CMI education and outreach efforts reach students and professionals CMI exhibit opens at Mines museum People view Critical Materials Institute exhibit at Colorado School of Mines Geology Museum. First license granted for a CMI invention Signing ceremony for the first license for a CMI invention. Factsheet outlines expectations for CMI, progress of

  8. Criticality Safety | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Services » Nuclear Safety » Criticality Safety Criticality Safety Nuclear Safety Basis The Nuclear Facility Safety Program establishes and maintains the DOE requirements for nuclear criticality safety. The DOE detailed requirements for criticality safety are contained in Section 4.3 of the DOE Order 420.1,Facility Safety. Criticality safety requirements are based on the documented safety analysis required by 10 CFR 830, Subpart B. Related Links 10 CFR 830, Nuclear Safety Management American

  9. Utah Water Right Information Webpage | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Utah Water Right Information Webpage Abstract Provides information about obtaining a water rights...

  10. How to obtain the National Energy Modeling System (NEMS)

    Reports and Publications (EIA)

    2013-01-01

    The National Energy Modeling System (NEMS) NEMS is used by the modelers at the U. S. Energy Information Administration (EIA) who understand its structure and programming. NEMS has only been used by a few organizations outside of the EIA, because most people that requested NEMS found out that it was too difficult or rigid to use. NEMS is not typically used for state-level analysis and is poorly suited for application to other countries. However, many do obtain the model simply to use the data in its input files or to examine the source code.

  11. CMI Social Media | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Social Media Facebook: Critical Materials Institute Twitter: CMI_hub LinkedIn: Critical Materials Institute Flickr: Critical Materials Institute

  12. Thermal fluctuations and critical behavior in a magnetized, anisotropic plasma

    SciTech Connect (OSTI)

    Hazeltine, R. D.; Mahajan, S. M. [Department of Physics, University of Texas at Austin, Austin, Texas 78712 (United States)] [Department of Physics, University of Texas at Austin, Austin, Texas 78712 (United States)

    2013-12-15

    Thermal fluctuations in a magnetized, anisotropic plasma are studied by applying standard methods, based on the Einstein rule, to the known thermodynamic potential of the system. It is found in particular that magnetic fluctuations become critical when the anisotropy p{sub ?}?p{sub ?} changes sign. By examining the critical region, additional insight on the equations of state for near-critical anisotropic plasma is obtained.

  13. CHP: Enabling Resilient Energy Infrastructure for Critical Facilities -

    Office of Environmental Management (EM)

    Report, March 2013 | Department of Energy CHP: Enabling Resilient Energy Infrastructure for Critical Facilities - Report, March 2013 CHP: Enabling Resilient Energy Infrastructure for Critical Facilities - Report, March 2013 Critical infrastructure collectively refers to those assets, systems, and networks that, if incapacitated, would have a substantial negative impact on national or regional security, economic operations, or public health and safety. This report provides information on the

  14. CMI Webinar: Energy Materials and Criticality, 2015-2030 | Critical...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CMI Webinar: Energy Materials and Criticality, 2015-2030 The CMI Webinar series includes a CMI-only presentation "CMI Webinar: Energy Materials and Criticality, 2015-2030" by Rod...

  15. Covariance matrices for use in criticality safety predictability studies

    SciTech Connect (OSTI)

    Derrien, H.; Larson, N.M.; Leal, L.C.

    1997-09-01

    Criticality predictability applications require as input the best available information on fissile and other nuclides. In recent years important work has been performed in the analysis of neutron transmission and cross-section data for fissile nuclei in the resonance region by using the computer code SAMMY. The code uses Bayes method (a form of generalized least squares) for sequential analyses of several sets of experimental data. Values for Reich-Moore resonance parameters, their covariances, and the derivatives with respect to the adjusted parameters (data sensitivities) are obtained. In general, the parameter file contains several thousand values and the dimension of the covariance matrices is correspondingly large. These matrices are not reported in the current evaluated data files due to their large dimensions and to the inadequacy of the file formats. The present work has two goals: the first is to calculate the covariances of group-averaged cross sections from the covariance files generated by SAMMY, because these can be more readily utilized in criticality predictability calculations. The second goal is to propose a more practical interface between SAMMY and the evaluated files. Examples are given for {sup 235}U in the popular 199- and 238-group structures, using the latest ORNL evaluation of the {sup 235}U resonance parameters.

  16. The Critical Mass Laboratory at Rocky Flats

    SciTech Connect (OSTI)

    Rothe, Robert E

    2003-10-15

    The Critical Mass Laboratory (CML) at Rocky Flats northwest of Denver, Colorado, was built in 1964 and commissioned to conduct nuclear experiments on January 28, 1965. It was built to attain more accurate and precise experimental data to ensure nuclear criticality safety at the plant than were previously possible. Prior to its construction, safety data were obtained from long extrapolations of subcritical data (called in situ experiments), calculated parameters from reactor engineering 'models', and a few other imprecise methods. About 1700 critical and critical-approach experiments involving several chemical forms of enriched uranium and plutonium were performed between then and 1988. These experiments included single units and arrays of fissile materials, reflected and 'bare' systems, and configurations with various degrees of moderation, as well as some containing strong neutron absorbers. In 1989, a raid by the Federal Bureau of Investigation (FBI) caused the plant as a whole to focus on 'resumption' instead of further criticality safety experiments. Though either not recognized or not admitted for a few years, that FBI raid did sound the death knell for the CML. The plant's optimistic goal of resumption evolved to one of deactivation, decommissioning, and plantwide demolition during the 1990s. The once-proud CML facility was finally demolished in April of 2002.

  17. COMMON VULNERABILITIES IN CRITICAL INFRASTRUCTURE CONTROL SYSTEMS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    COMMON VULNERABILITIES IN CRITICAL INFRASTRUCTURE CONTROL SYSTEMS Jason Stamp, John Dillinger, and William Young Networked Systems Survivability and Assurance Department Jennifer DePoy Information Operations Red Team & Assessments Department Sandia National Laboratories Albuquerque, NM 87185-0785 22 May 2003 (2 nd edition, revised 11 November 2003) Copyright © 2003, Sandia Corporation. All rights reserved. Permission is granted to display, copy, publish, and distribute this document in its

  18. CMI Unique Facilities | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CMI Unique Facilities The Critical Materials Institute has created several unique facilities that are available for additional research and collaboration. These include: Pilot-Scale Separations Test Bed Facility Filtration Test Facility Bulk Combinatoric Materials Synthesis Facility Rapid Analysis of Combinatoric Sample Arrays Ferromagnetic Materials Characterization Facility Thermal Analysis in High Magnetic Fields Each link provides information about the unique facility, where it was developed

  19. Disclaimers | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Disclaimers NOTICE: Information from this server resides on a computer system funded by the U. S. Department of Energy. Anyone using this system consents to monitoring of this use by system or security personnel. DISCLAIMER OF LIABILITY: With respect to documents available from this server, neither the United States Government nor Iowa State University nor any of their employees, makes any warranty, express or implied, including warranties of merchantability and fitness for a particular purpose,

  20. CMI Offers Webinars on Critical Materials and Rare Earths | Critical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Institute Offers Webinars on Critical Materials and Rare Earths CMI at Mines offers webinars about critical materials at no charge. These began in March 2015: December 9: Alex King, CMI, and Stacy Joiner, Ames Laboratory, discuss the updates to the CMI Affiliates Membership Program. A recording of the webinar is available. October 28: Bruce Moyer, Oak Ridge National Laboratory, Challenges in Diversifying Supply of Critical Materials for Clean Energy. A recording of the webinar is

  1. CMI Factsheet | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CMI Factsheet 3D printer uses laser and metals to build new combinations of materials What is the Energy Innovation Hub for Critical Materials? Created by the U.S. Department of Energy, the Energy Innovation Hub is operated under the name the Critical Materials Institute. CMI is led by the DOE's Ames Laboratory, and managed by DOE's Advanced Manufacturing Office. It brings together the expertise of DOE national laboratories, universities, and industry partners to eliminate materials criticality

  2. Criticality Safety Basics for INL FMHs and CSOs

    SciTech Connect (OSTI)

    V. L. Putman

    2012-04-01

    Nuclear power is a valuable and efficient energy alternative in our energy-intensive society. However, material that can generate nuclear power has properties that require this material be handled with caution. If improperly handled, a criticality accident could result, which could severely harm workers. This document is a modular self-study guide about Criticality Safety Principles. This guide's purpose it to help you work safely in areas where fissionable nuclear materials may be present, avoiding the severe radiological and programmatic impacts of a criticality accident. It is designed to stress the fundamental physical concepts behind criticality controls and the importance of criticality safety when handling fissionable materials outside nuclear reactors. This study guide was developed for fissionable-material-handler and criticality-safety-officer candidates to use with related web-based course 00INL189, BEA Criticality Safety Principles, and to help prepare for the course exams. These individuals must understand basic information presented here. This guide may also be useful to other Idaho National Laboratory personnel who must know criticality safety basics to perform their assignments safely or to design critically safe equipment or operations. This guide also includes additional information that will not be included in 00INL189 tests. The additional information is in appendices and paragraphs with headings that begin with 'Did you know,' or with, 'Been there Done that'. Fissionable-material-handler and criticality-safety-officer candidates may review additional information at their own discretion. This guide is revised as needed to reflect program changes, user requests, and better information. Issued in 2006, Revision 0 established the basic text and integrated various programs from former contractors. Revision 1 incorporates operation and program changes implemented since 2006. It also incorporates suggestions, clarifications, and additional information from readers and from personnel who took course 00INL189. Revision 1 also completely reorganized the training to better emphasize physical concepts behind the criticality controls that fissionable material handlers and criticality safety officers must understand. The reorganization is based on and consistent with changes made to course 00INL189 due to a review of course exam results and to discussions with personnel who conduct area-specific training.

  3. CMI Webinar: Critical Elements in Phosphate | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Critical Elements in Phosphate The CMI Webinar series began with a presentation on Critical Elements in Phosphate by Patrick Zhang, Florida Industrial and Phosphate Research Institute (FIPR), on March 24, 2015. The recording of the webinar runs nearly 38 minutes (37:54

  4. General Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    General Information JLF Contacts Request a Tour

  5. History of critical experiments at Pajarito Site

    SciTech Connect (OSTI)

    Paxton, H.C.

    1983-03-01

    This account describes critical and subcritical assemblies operated remotely at the Pajarito Canyon Site at the Los Alamos National Laboratory. Earliest assemblies, directed exclusively toward the nuclear weapons program, were for safety tests. Other weapon-related assemblies provided neutronic information to check detailed weapon calculations. Topsy, the first of these critical assemblies, was followed by Lady Godiva, Jezebel, Flattop, and ultimately Big Ten. As reactor programs came to Los Alamos, design studies and mockups were tested at Pajarito Site. For example, nearly all 16 Rover reactors intended for Nevada tests were preceded by zero-power mockups and proof tests at Pajarito Site. Expanded interest and capability led to fast-pulse assemblies, culminating in Godiva IV and Skua, and to the Kinglet and Sheba solution assemblies.

  6. T-583: Linux Kernel OSF Partition Table Buffer Overflow Lets Local Users Obtain Information

    Broader source: Energy.gov [DOE]

    A local user can create a storage device with specially crafted OSF partition tables. When the kernel automatically evaluates the partition tables, a buffer overflow may occur and data from kernel heap space may leak to user-space.

  7. Charge division using carbon filaments for obtaining coordinate information from detection of single electrons

    SciTech Connect (OSTI)

    Bird, F.; Shapiro, S.; Ashford, V.; McShurley, D.; Reif, R.; Lirth, D.W.G.S.; Williams, S.

    1985-09-01

    Seven micron diameter Carbon filaments forming the anode of a multiwire proportional chamber have been used to detect single electrons. Charge division techniques applied to the 5 cm long wire resulted in a position resolution of sigma/L < 2% for a collected signal charge of 30 fC.

  8. Review of Yucca Mountain Disposal Criticality Studies

    SciTech Connect (OSTI)

    Scaglione, John M [ORNL] [ORNL; Wagner, John C [ORNL] [ORNL

    2011-01-01

    The U.S. Department of Energy (DOE), Office of Civilian Radioactive Waste Management, submitted a license application for construction authorization of a deep geologic repository at Yucca Mountain, Nevada, in June of 2008. The license application is currently under review by the U.S. Nuclear Regulatory Commission. However,on March 3, 2010 the DOE filed a motion requesting withdrawal of the license application. With the withdrawal request and the development of the Blue Ribbon Commission to seek alternative strategies for disposing of spent fuel, the status of the proposed repository at Yucca Mountain is uncertain. What is certain is that spent nuclear fuel (SNF) will continue to be generated and some long-lived components of the SNF will eventually need a disposition path(s). Strategies for the back end of the fuel cycle will continue to be developed and need to include the insights from the experience gained during the development of the Yucca Mountain license application. Detailed studies were performed and considerable progress was made in many key areas in terms of increased understanding of relevant phenomena and issues regarding geologic disposal of SNF. This paper reviews selected technical studies performed in support of the disposal criticality analysis licensing basis and the use of burnup credit. Topics include assembly misload analysis, isotopic and criticality validation, commercial reactor critical analyses, loading curves, alternative waste package and criticality control studies, radial burnup data and effects, and implementation of a conservative application model in the criticality probabilistic evaluation as well as other information that is applicable to operations regarding spent fuel outside the reactor. This paper summarizes the work and significant accomplishments in these areas and provides a resource for future, related activities.

  9. Presidential Proclamation: Critical Infrastructure Security and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presidential Proclamation: Critical Infrastructure Security and Resilience Month, 2013 Presidential Proclamation: Critical Infrastructure Security and Resilience Month, 2013 A ...

  10. Guide to Critical Infrastructure Protection Cyber Vulnerability...

    Energy Savers [EERE]

    Critical Infrastructure Protection Cyber Vulnerability Assessment Guide to Critical Infrastructure Protection Cyber Vulnerability Assessment This document describes a customized...

  11. Collisional energy loss above the critical temperature in QCD (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | DOE PAGES Published Article: Collisional energy loss above the critical temperature in QCD « Prev Next » Title: Collisional energy loss above the critical temperature in QCD Authors: Lin, Shu ; Pisarski, Robert D. ; Skokov, Vladimir V. Publication Date: 2014-03-01 OSTI Identifier: 1209788 Grant/Contract Number: AC02-98CH10886 Type: Published Article Journal Name: Physics Letters. Section B Additional Journal Information: Journal Volume: 730; Journal Issue: C; Journal ID: ISSN

  12. Critical condition in gravitational shock wave collision and heavy ion

    Office of Scientific and Technical Information (OSTI)

    collisions (Journal Article) | DOE PAGES Critical condition in gravitational shock wave collision and heavy ion collisions « Prev Next » Title: Critical condition in gravitational shock wave collision and heavy ion collisions Authors: Lin, Shu ; Shuryak, Edward Publication Date: 2011-02-23 OSTI Identifier: 1099912 Type: Publisher's Accepted Manuscript Journal Name: Physical Review D Additional Journal Information: Journal Volume: 83; Journal Issue: 4; Journal ID: ISSN 1550-7998 Publisher:

  13. Critical condition in gravitational shock wave collision and heavy ion

    Office of Scientific and Technical Information (OSTI)

    collisions (Journal Article) | SciTech Connect SciTech Connect Search Results Journal Article: Critical condition in gravitational shock wave collision and heavy ion collisions Citation Details In-Document Search Title: Critical condition in gravitational shock wave collision and heavy ion collisions Authors: Lin, Shu ; Shuryak, Edward Publication Date: 2011-02-23 OSTI Identifier: 1099912 Type: Publisher's Accepted Manuscript Journal Name: Physical Review D Additional Journal Information:

  14. CRITICAL INFRASTRUCTURE PROTECTION Multiple Efforts to Secure Control

    Energy Savers [EERE]

    Systems Are Under Way, but Challenges Remain | Department of Energy CRITICAL INFRASTRUCTURE PROTECTION Multiple Efforts to Secure Control Systems Are Under Way, but Challenges Remain CRITICAL INFRASTRUCTURE PROTECTION Multiple Efforts to Secure Control Systems Are Under Way, but Challenges Remain GAO is making recommendations to the Department of Homeland Security (DHS) to develop a strategy for coordinating control systems security efforts and to enhance information sharing with relevant

  15. Human Resources at Critical Materials Institute | Critical Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Institute Human Resources at Critical Materials Institute Each partner within the Critical Materials Institute manages its own hiring. Use these links to find key contacts for CMI partners that are most likely to hire for CMI research projects: The Ames Laboratory | Careers at Iowa State University Oak Ridge National Laboratory | Careers Idaho National Laboratory | Careers Lawrence Livermore National Laboratory | Careers Colorado School of Mines | Employment

  16. Use of a Web Site to Enhance Criticality Safety Training

    SciTech Connect (OSTI)

    Huang, S T; Morman, J

    2003-08-04

    Currently, a website dedicated to enhancing communication and dissemination of criticality safety information is sponsored by the U.S. Department of Energy (DOE) Nuclear Criticality Safety Program (NCSP). This website was developed as part of the DOE response to the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 97-2, which reflected the need to make criticality safety information available to a wide audience. The website is the focal point for DOE nuclear criticality safety (NCS) activities, resources and references, including hyperlinks to other sites actively involved in the collection and dissemination of criticality safety information. The website is maintained by the Lawrence Livermore National Laboratory (LLNL) under auspices of the NCSP management. One area of the website contains a series of Nuclear Criticality Safety Engineer Training (NCSET) modules. During the past few years, many users worldwide have accessed the NCSET section of the NCSP website and have downloaded the training modules as an aid for their training programs. This trend was remarkable in that it points out a continuing need of the criticality safety community across the globe. It has long been recognized that training of criticality safety professionals is a continuing process involving both knowledge-based training and experience-based operations floor training. As more of the experienced criticality safety professionals reach retirement age, the opportunities for mentoring programs are reduced. It is essential that some method be provided to assist the training of young criticality safety professionals to replenish this limited human expert resource to support on-going and future nuclear operations. The main objective of this paper is to present the features of the NCSP website, including its mission, contents, and most importantly its use for the dissemination of training modules to the criticality safety community. We will discuss lessons learned and several ideas for future development in the area of web-based training for criticality safety professionals. Our effort is intended to stimulate a discussion of ideas and solicit participation in the development of the next generation of a web-based criticality training site that can be used to assist the training of newcomers to this important safety discipline.

  17. Autoclave nuclear criticality safety analysis

    SciTech Connect (OSTI)

    D`Aquila, D.M.; Tayloe, R.W. Jr.

    1991-12-31

    Steam-heated autoclaves are used in gaseous diffusion uranium enrichment plants to heat large cylinders of UF{sub 6}. Nuclear criticality safety for these autoclaves is evaluated. To enhance criticality safety, systems are incorporated into the design of autoclaves to limit the amount of water present. These safety systems also increase the likelihood that any UF{sub 6} inadvertently released from a cylinder into an autoclave is not released to the environment. Up to 140 pounds of water can be held up in large autoclaves. This mass of water is sufficient to support a nuclear criticality when optimally combined with 125 pounds of UF{sub 6} enriched to 5 percent U{sup 235}. However, water in autoclaves is widely dispersed as condensed droplets and vapor, and is extremely unlikely to form a critical configuration with released UF{sub 6}.

  18. News Archive | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2015 newswise: Need rare-earths know-how? The Critical Materials Institute offers lower-cost access to experts and research, December 1, 2015 newswise: Get Schooled in Rare-Earth...

  19. News Releases | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases Need rare-earths know-how? The Critical Materials Institute offers lower-cost access to experts and research, December 1, 2015 Get schooled in rare-earth metals: CMI, Iowa...

  20. My Account | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    My Account Primary tabs Log in(active tab) Request new password Username * Enter your Critical Materials Institute username. Password * Enter the password that accompanies your username. Log in

  1. Sensitivity analysis of coupled criticality calculations

    SciTech Connect (OSTI)

    Perko, Z.; Kloosterman, J. L.; Lathouwers, D.

    2012-07-01

    Perturbation theory based sensitivity analysis is a vital part of todays' nuclear reactor design. This paper presents an extension of standard techniques to examine coupled criticality problems with mutual feedback between neutronics and an augmenting system (for example thermal-hydraulics). The proposed procedure uses a neutronic and an augmenting adjoint function to efficiently calculate the first order change in responses of interest due to variations of the parameters describing the coupled problem. The effect of the perturbations is considered in two different ways in our study: either a change is allowed in the power level while maintaining criticality (power perturbation) or a change is allowed in the eigenvalue while the power is constrained (eigenvalue perturbation). The calculated response can be the change in the power level, the reactivity worth of the perturbation, or the change in any functional of the flux, the augmenting dependent variables and the input parameters. To obtain power- and criticality-constrained sensitivities power- and k-reset procedures can be applied yielding identical results. Both the theoretical background and an application to a one dimensional slab problem are presented, along with an iterative procedure to compute the necessary adjoint functions using the neutronics and the augmenting codes separately, thus eliminating the need of developing new programs to solve the coupled adjoint problem. (authors)

  2. Preliminary Criticality Safety Evaluation for In Situ Grouting in the Subsurface Disposal Area

    SciTech Connect (OSTI)

    Slate, L.J.; Taylor, J.T.

    2000-08-31

    A preliminary criticality safety evaluation is presented for in situ grouting in the Subsurface Disposal Area (SDA) at the Idaho National Engineering Laboratory. The grouting materials evaluated are cement and paraffin. The evaluation determines physical and administrative controls necessary to preclude criticality and identifies additional information required for a final criticality safety evaluation. The evaluation shows that there are no criticality concerns with cementitious grout but a neutron poison such as boron would be required for the use of the paraffin matrix.

  3. Preliminary Criticality Safety Evaluation for In Situ Grouting in the Subsurface Disposal Area

    SciTech Connect (OSTI)

    Slate, Lawrence J; Taylor, Joseph Todd

    2000-08-01

    A preliminary criticality safety evaluation is presented for in situ grouting in the Subsurface Disposal Area (SDA) at the Idaho National Engineering Laboratory. The grouting materials evaluated are cement and paraffin. The evaluation determines physical and administrative controls necessary to preclude criticality and identifies additional information required for a final criticality safety evaluation. The evaluation shows that there are no criticality concerns with cementitious grout but a neutron poison such as boron would be required for the use of the paraffin matrix.

  4. Lecture notes for criticality safety

    SciTech Connect (OSTI)

    Fullwood, R.

    1992-03-01

    These lecture notes for criticality safety are prepared for the training of Department of Energy supervisory, project management, and administrative staff. Technical training and basic mathematics are assumed. The notes are designed for a two-day course, taught by two lecturers. Video tapes may be used at the options of the instructors. The notes provide all the materials that are necessary but outside reading will assist in the fullest understanding. The course begins with a nuclear physics overview. The reader is led from the macroscopic world into the microscopic world of atoms and the elementary particles that constitute atoms. The particles, their masses and sizes and properties associated with radioactive decay and fission are introduced along with Einstein's mass-energy equivalence. Radioactive decay, nuclear reactions, radiation penetration, shielding and health-effects are discussed to understand protection in case of a criticality accident. Fission, the fission products, particles and energy released are presented to appreciate the dangers of criticality. Nuclear cross sections are introduced to understand the effectiveness of slow neutrons to produce fission. Chain reactors are presented as an economy; effective use of the neutrons from fission leads to more fission resulting in a power reactor or a criticality excursion. The six-factor formula is presented for managing the neutron budget. This leads to concepts of material and geometric buckling which are used in simple calculations to assure safety from criticality. Experimental measurements and computer code calculations of criticality are discussed. To emphasize the reality, historical criticality accidents are presented in a table with major ones discussed to provide lessons-learned. Finally, standards, NRC guides and regulations, and DOE orders relating to criticality protection are presented.

  5. 2010 Critical Materials Strategy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2010 Critical Materials Strategy 2010 Critical Materials Strategy This report examines the role of rare earth metals and other materials in the clean energy economy. PDF icon U.S. Department of Energy - Critical Materials Strategy PDF icon 10_Critical_Materials_Strategy_Exec_Summary_final.pdf More Documents & Publications 2011 Critical Materials Strategy Peter Dent, Electron Energy Corporation, Strategies for More Effective Critical Materials Use Critical_Materials_Summary.pdf

  6. Critical Experiments Facility and Harold Cofers perspective

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Critical Experiments Facility and Harold Cofer's perspective When my research began into the history of Building 9213, I soon learned that much more had gone on there than I had known. Several people have helped by providing information. Joe Lenhard suggested that an important element of our history is tied to that building. He also made the initial contact that uncovered the research information. Harold Cofer, retired Y-12 Maintenance General Supervisor, also provided a unique perspective from

  7. Latest News | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News News releases CMI in the news News archive CMI social media Latest News News about CMI: How true is conventional wisdon about price volatility of tech metals?, Feb. 11, 2016 Need rare-earths know-how? The Critical Materials Institute offers lower-cost access to experts and research, Dec. 1, 2015 Get schooled in rare-earth metals, Nov. 30, 2015 Speciality Metal Recycling Firm Teams Up with US Critical Materials Institute, Nov. 17, 2015 American Manganese Inc. Enters NDA with U.S.

  8. National Critical Infrastructure Security and Resilience Month...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power lines like these make up our nation's power grid -- a critical component of our national critical infrastructure. Patricia A. Hoffman Patricia A. Hoffman Assistant Secretary, ...

  9. Nuclear criticality safety: 2-day training course

    SciTech Connect (OSTI)

    Schlesser, J.A.

    1997-02-01

    This compilation of notes is presented as a source reference for the criticality safety course. At the completion of this training course, the attendee will: be able to define terms commonly used in nuclear criticality safety; be able to appreciate the fundamentals of nuclear criticality safety; be able to identify factors which affect nuclear criticality safety; be able to identify examples of criticality controls as used as Los Alamos; be able to identify examples of circumstances present during criticality accidents; have participated in conducting two critical experiments; be asked to complete a critique of the nuclear criticality safety training course.

  10. DOE and Critical Materials Video (Text Version)

    Broader source: Energy.gov [DOE]

    This is a text version of the "DOE and Critical Materials" video presented at the Critical Materials Workshop, held on April 3, 2012 in Arlington, Virginia.

  11. Managing Critical Management Improvement Initiatives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2003-10-01

    Provides requirements and responsibilities for planning, executing and assessing critical management improvement initiatives within DOE. DOE N 251.59, dated 9/27/2004, extends this Notice until 10/01/2005. Archived 11-8-10. Does not cancel other directives.

  12. Criticality assessment of LLRWDF closure

    SciTech Connect (OSTI)

    Sarrack, A.G.; Weber, J.H.; Woody, N.D.

    1992-10-06

    During the operation of the Low Level Radioactive Waste Disposal Facility (LLRWDF), large amounts (greater than 100 kg) of enriched uranium (EU) were buried. This EU came primarily from the closing and decontamination of the Naval Fuels Facility in the time period from 1987--1989. Waste Management Operations (WMO) procedures were used to keep the EU boxes separated to prevent possible criticality during normal operation. Closure of the LLRWDF is currently being planned, and waste stabilization by Dynamic Compaction (DC) is proposed. Dynamic compaction will crush the containers in the LLRWDF and result in changes in their geometry. Research of the LLRWDF operations and record keeping practices have shown that the EU contents of trenches are known, but details of the arrangement of the contents cannot be proven. Reviews of the trench contents, combined with analysis of potential critical configurations, revealed that some portions of the LLRWDF can be expected to be free of criticality concerns while other sections have credible probabilities for the assembly of a critical mass, even in the uncompacted configuration. This will have an impact on the closure options and which trenches can be compacted.

  13. High critical current superconducting tapes

    DOE Patents [OSTI]

    Holesinger, Terry G. (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM); Foltyn, Stephen R. (Los Alamos, NM)

    2003-09-23

    Improvements in critical current capacity for superconducting film structures are disclosed and include the use of a superconducting RE-BCO layer including a mixture of rare earth metals, e.g., yttrium and europium, where the ratio of yttrium to europium in the RE-BCO layer ranges from about 3 to 1 to from about 1.5 to 1.

  14. Critical Amounts of Uranium Compounds

    DOE R&D Accomplishments [OSTI]

    Konopinski, E.; Metropolis, N.; Teller, E.; Woods, L.

    1943-03-19

    The method of calculation of critical masses of oxides and fluorides of U is given. The geometry assumed is a sphere and the calculations hold only in the absence of hydrogenous materials. Calculations are carried out which are applicable to materials containing form 20 to 100% U{sup 235}. (T.R.H.)

  15. Whistleblower Information | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Whistleblower Information Whistleblower Information OVERVIEW Whistleblowers play a critical role in keeping our government honest, efficient and accountable. In recognition of this role, Federal laws outline the duty of Federal employees to disclose wrongdoing, and they are to do so in an environment free from the threat of retaliation. This page, and the linked information accessible from this page, is designed to help educate DOE employees, contractors and grantees about whistleblower

  16. Policy Flash 2013-24 Fee Determinations: Requirement to Obtain...

    Broader source: Energy.gov (indexed) [DOE]

    Requirement to Obtain Acquisition Executive's Input. Questions concerning this policy flash should be directed to Michael Righi of the Contract and Financial Assistance...

  17. A Review of Criticality Accidents 2000 Revision

    SciTech Connect (OSTI)

    Thomas P. McLaughlin; Shean P. Monahan; Norman L. Pruvost; Vladimir V. Frolov; Boris G. Ryazanov; Victor I. Sviridov

    2000-05-01

    Criticality accidents and the characteristics of prompt power excursions are discussed. Sixty accidental power excursions are reviewed. Sufficient detail is provided to enable the reader to understand the physical situation, the chemistry and material flow, and when available the administrative setting leading up to the time of the accident. Information on the power history, energy release, consequences, and causes are also included when available. For those accidents that occurred in process plants, two new sections have been included in this revision. The first is an analysis and summary of the physical and neutronic features of the chain reacting systems. The second is a compilation of observations and lessons learned. Excursions associated with large power reactors are not included in this report.

  18. Contact Information | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Information Contact Information

  19. Ordering Information

    Gasoline and Diesel Fuel Update (EIA)

    coal industry Natural gas trade (Table 4.3) Ordering Information This publication and other Energy Information Administration (EIA) publications may be purchased from the...

  20. Applicant Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applicant Information General Information for Applicants Bringing together top, space science students with internationally recognized researchers at Los Alamos in an educational...

  1. Hotel Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rockville Pike, Rockville, Maryland, 20852. The hotel is about 27 miles from Dulles Airport. Hotel Information Home Page Maps and Transportation Area Information Sleeping Room...

  2. Rate Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases Rate Information Current Power Rates Current Transmission Rates...

  3. Critical Materials Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Critical Materials Workshop Critical Materials Workshop PDF icon critical_materials_workshop_presentations.pdf More Documents & Publications Critical Materials Workshop EV Everywhere Workshop: Traction Drive Systems Breakout Group Report Advanced Power Electronics and Electric Motors (APEEM) R&D Program Overview

  4. Los Alamos Critical Assemblies Facility

    SciTech Connect (OSTI)

    Malenfant, R.E.

    1981-06-01

    The Critical Assemblies Facility of the Los Alamos National Laboratory has been in existence for thirty-five years. In that period, many thousands of measurements have been made on assemblies of /sup 235/U, /sup 233/U, and /sup 239/Pu in various configurations, including the nitrate, sulfate, fluoride, carbide, and oxide chemical compositions and the solid, liquid, and gaseous states. The present complex of eleven operating machines is described, and typical applications are presented.

  5. Developing Substitutes | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Developing Substitutes diagram for focus area 2, developing substitutes (A click on the org chart image will lead to a pdf version that includes hotlinks for the e-mail addresses of the leaders.) The Critical Materials Institute uses the Materials Genome approach to accelerate rare-earth replacement. CMI has invented two new phosphors in one year of research, demonstrating the power of the Materials Genome Initiative method in a collaborative public-private approach to innovation

  6. Generator for gallium-68 and compositions obtained therefrom

    DOE Patents [OSTI]

    Neirinckx, Rudi D. (Medfield, MA); Davis, Michael A. (Westwood, MA)

    1981-01-01

    A generator for obtaining radioactive gallium-68 from germanium-68 bound in a resin containing unsubstituted phenolic hydroxyl groups. The germanium-68 is loaded into the resin from an aqueous solution of the germanium-68. A physiologically acceptable solution of gallium-68 having an activity of 0.1 to 50 millicuries per milliliter of gallium-68 solution is obtained. The solution is obtained from the bound germanium-68 which forms gallium-68 in situ by eluting the column with a hydrochloric acid solution to form an acidic solution of gallium-68. The acidic solution of gallium-68 can be neutralized.

  7. Critical Materials Hub | Department of Energy

    Office of Environmental Management (EM)

    Facilities » Critical Materials Hub Critical Materials Hub Green light reflection from a low-oxygen environment 3D printer laser deposition of metal powder alloys. Photo courtesy of The Critical Materials Institute, Ames Laboratory Green light reflection from a low-oxygen environment 3D printer laser deposition of metal powder alloys. Photo courtesy of The Critical Materials Institute, Ames Laboratory Critical materials, including some rare earth elements that possess unique magnetic,

  8. The baryonic susceptibility near critical temperature (Journal Article) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect The baryonic susceptibility near critical temperature Citation Details In-Document Search Title: The baryonic susceptibility near critical temperature We discuss the role of quarks and baryons near the QCD phase transition. The former is modelled in the spirit of PNJL model, while the latter is splitted into two classes: 'stringy' and 'non-stringy' baryons. We represent the non-stringy baryons by a sum over the resonance on equal footing, and obtain the density of states of

  9. What is a CriticalMaterial?Ž

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A N E N E R G Y I N N O V A T I O N H U B This presentation does not contain any proprietary, confidential, or otherwise restricted information. What is a "Critical Material?" * Any substance used in technology that is subject to supply risks, and for which there are no easy substitutes. * Or, in plain English - stuff you really need but can't always get. * The list of materials that are considered critical depends on who, where and when you ask. * CMI focuses on clean energy

  10. Privacy Notice | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Privacy Notice We collect no personal information about you when you visit a DOE Web site, unless otherwise stated, unless you choose to provide this information to us. However, we collect and store certain information automatically. What we collect and store automatically is: the Internet Protocol (IP) address of the domain from which you access the Internet (i.e. 123.456.789.012) whether yours individually or provided as a proxy by your Internet Service Provider (ISP). the date and time you

  11. An important challenge in magnetic fusion research is to obtain...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    control of edge transport barriers on Alcator C-Mod A crucial challenge in magnetic fusion is to obtain high energy confinement in a stationary plasma that is compatible with...

  12. Treatment of biomass to obtain a target chemical

    DOE Patents [OSTI]

    Dunson, Jr., James B. (Newark, DE); Tucker, III, Melvin P. (Lakewood, CO); Elander, Richard T. (Evergreen, CO); Hennessey, Susan Marie (Avondale, PA)

    2010-08-24

    Target chemicals were produced using biocatalysts that are able to ferment sugars derived from treated biomass. Sugars were obtained by pretreating biomass under conditions of high solids and low ammonia concentration, followed by saccharification.

  13. Common Approach to Obtaining Experimental Data for Developing Predictive

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NOx Absorber Models | Department of Energy Common Approach to Obtaining Experimental Data for Developing Predictive NOx Absorber Models Common Approach to Obtaining Experimental Data for Developing Predictive NOx Absorber Models 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters PDF icon 2005_deer_currier.pdf More Documents & Publications Pt-free, Perovskite-based Lean NOx Trap Catalysts Lean NOx Traps - Microstructural Studies of Real World and Model

  14. Microsoft Word - FINAL Materials Strategy Request for Information May 5

    Office of Environmental Management (EM)

    2010 | Department of Energy FINAL Materials Strategy Request for Information May 5 2010 Microsoft Word - FINAL Materials Strategy Request for Information May 5 2010 PDF icon Microsoft Word - FINAL Materials Strategy Request for Information May 5 2010 More Documents & Publications RFI: DOE Materials Strategy RFI U.S. Department of Energy - Critical Materials Strategy Request for Information Request for Information (RFI) for Updated Critical Materials Strategy

  15. Critical_Materials_Summary.pdf | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CriticalMaterialsSummary.pdf CriticalMaterialsSummary.pdf PDF icon CriticalMaterialsSummary.pdf More Documents & Publications RFI U.S. Department of Energy - Critical...

  16. Critical Materials Institute Affiliates Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Critical Materials Institute Affiliates Program MEMBER AGREEMENT ("Agreement") WHEREAS, The Ames Laboratory ("AMES"), a U.S. Department of Energy ("DOE") National Laboratory operated by Iowa State University of Science and Technology ("ISU") under the authority of its Contract DE-AC02-07CH11358, with administrative offices at 311 TASF, Ames, IA 50011-3020, is the recipient of funding from the U.S. Department of Energy's Office of Energy Efficiency and

  17. Subtask 4.24 - Field Evaluation of Novel Approach for Obtaining Metal

    Office of Scientific and Technical Information (OSTI)

    Emission Data (Technical Report) | SciTech Connect Technical Report: Subtask 4.24 - Field Evaluation of Novel Approach for Obtaining Metal Emission Data Citation Details In-Document Search Title: Subtask 4.24 - Field Evaluation of Novel Approach for Obtaining Metal Emission Data × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit

  18. Accelerator driven sub-critical core

    DOE Patents [OSTI]

    McIntyre, Peter M; Sattarov, Akhdiyor

    2015-03-17

    Systems and methods for operating an accelerator driven sub-critical core. In one embodiment, a fission power generator includes a sub-critical core and a plurality of proton beam generators. Each of the proton beam generators is configured to concurrently provide a proton beam into a different area of the sub-critical core. Each proton beam scatters neutrons within the sub-critical core. The plurality of proton beam generators provides aggregate power to the sub-critical core, via the proton beams, to scatter neutrons sufficient to initiate fission in the sub-critical core.

  19. Western Wind Strategy: Addressing Critical Issues for Wind Deployment

    SciTech Connect (OSTI)

    Douglas Larson; Thomas Carr

    2012-03-30

    The goal of the Western Wind Strategy project was to help remove critical barriers to wind development in the Western Interconnection. The four stated objectives of this project were to: (1) identify the barriers, particularly barriers to the operational integration of renewables and barriers identified by load-serving entities (LSEs) that will be buying wind generation, (2) communicate the barriers to state officials, (3) create a collaborative process to address those barriers with the Western states, utilities and the renewable industry, and (4) provide a role model for other regions. The project has been on the forefront of identifying and informing state policy makers and utility regulators of critical issues related to wind energy and the integration of variable generation. The project has been a critical component in the efforts of states to push forward important reforms and innovations that will enable states to meet their renewable energy goals and lower the cost to consumers of integrating variable generation.

  20. General Information

    National Nuclear Security Administration (NNSA)

    Site Waste Profile Sheet - Revision 0 - February 27, 2012 (Log No. 2012-048) A. Generator Information 1. Company name: ...

  1. Critical Materials Institute UPDATE | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Critical Materials Institute UPDATE An error occurred. Try watching this video on www.youtube.com, or enable JavaScript if it is disabled in your browser. The Critical Materials...

  2. Using corresponding state theory to obtain intermolecular potentials to calculate pure liquid shock Hugoniots

    SciTech Connect (OSTI)

    Hobbs, M.L.

    1997-12-01

    Determination of product species, equations-of-state (EOS) and thermochemical properties of high explosives and pyrotechnics remains a major unsolved problem. Although, empirical EOS models may be calibrated to replicate detonation conditions within experimental variability (5--10%), different states, e.g. expansion, may produce significant discrepancy with data if the basic form of the EOS model is incorrect. A more physically realistic EOS model based on intermolecular potentials, such as the Jacobs Cowperthwaite Zwisler (JCZ3) EOS, is needed to predict detonation states as well as expanded states. Predictive capability for any EOS requires a large species data base composed of a wide variety of elements. Unfortunately, only 20 species have known JCZ3 molecular force constants. Of these 20 species, only 10 have been adequately compared to experimental data such as molecular scattering or shock Hugoniot data. Since data in the strongly repulsive region of the molecular potential is limited, alternative methods must be found to deduce force constants for a larger number of species. The objective of the present study is to determine JCZ3 product species force constants by using a corresponding states theory. Intermolecular potential parameters were obtained for a variety of gas species using a simple corresponding states technique with critical volume and critical temperature. A more complex, four parameter corresponding state method with shape and polarity corrections was also used to obtain intermolecular potential parameters. Both corresponding state methods were used to predict shock Hugoniot data obtained from pure liquids. The simple corresponding state method is shown to give adequate agreement with shock Hugoniot data.

  3. Information Science & Technology Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ISTI Information Science & Technology Institute Providing connection to program management for capability needs, as well as IS&T integration and support for mission-critical centers and activities. Contact Leader Francis Alexander (505) 665-4518 Email Deputy Carolyn Connor (505) 665-9891 Email Professional Staff Assistant Josephine Olivas (505) 663-5725 Email Enhancing capabilities in information science and technology by fostering science, technology, and engineering to address LANL,

  4. Information Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Resources Information Resources Wind Vision Wind Vision The new Wind Vision Report quantifies the economic, environmental, and social benefits of a robust wind energy future through 2050. Read more The Inside of a Wind Turbine The Inside of a Wind Turbine See a detailed view of the inside of a wind turbine, its components, and learn about its functionality. Read more WINDExchange WINDExchange WINDExchange is a nationwide initiative to educate, engage, and enable critical stakeholders

  5. Critical Materials Workshop Final Participant List

    Broader source: Energy.gov [DOE]

    List of participants who attended the Critical Materials Workshop held on April 3, 2012 in Arlington, VA

  6. Crosscutting Research | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Crosscutting Research diagram for focus area four, crosscutting research (A click on the org chart image will lead to a pdf version that includes hotlinks for the e-mail addresses of the leaders.) The Ames Laboratory offers more information about the rapid assessment project in this news release and video

  7. Critical heat flux test apparatus

    DOE Patents [OSTI]

    Welsh, Robert E.; Doman, Marvin J.; Wilson, Edward C.

    1992-01-01

    An apparatus for testing, in situ, highly irradiated specimens at high temperature transients is provided. A specimen, which has a thermocouple device attached thereto, is manipulated into test position in a sealed quartz heating tube by a robot. An induction coil around a heating portion of the tube is powered by a radio frequency generator to heat the specimen. Sensors are connected to monitor the temperatures of the specimen and the induction coil. A quench chamber is located below the heating portion to permit rapid cooling of the specimen which is moved into this quench chamber once it is heated to a critical temperature. A vacuum pump is connected to the apparatus to collect any released fission gases which are analyzed at a remote location.

  8. Wireless System Considerations When Implementing NERC Critical

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure Protection Standards | Department of Energy Wireless System Considerations When Implementing NERC Critical Infrastructure Protection Standards Wireless System Considerations When Implementing NERC Critical Infrastructure Protection Standards Energy asset owners are facing a monumental challenge as they address compliance with the North American Electric Reliability Corporation (NERC) Critical Infrastructure Protection (CIP) Standards (CIP-002 through CIP-009). The increased

  9. CMI Education and Outreach in 2015 | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 CMI education and outreach staff talk to some of the hundreds of middle and high school students at the Colorado Energy Expo. CMI education and outreach in 2015: CMI webinar: Alex King, CMI, and Stacy Joiner, Ames Laboratory, discussed updates to the CMI Affiliates Membership Program. A recording of the webinar is available, Dec. 9 CMI Director Alex King presented a guest lecture entitled "Critical information for your career (or: megatrends that you need to watch)" for 100

  10. CRITICAL ISSUES IN HIGH END COMPUTING - FINAL REPORT

    SciTech Connect (OSTI)

    Corones, James

    2013-09-23

    High-End computing (HEC) has been a driver for advances in science and engineering for the past four decades. Increasingly HEC has become a significant element in the national security, economic vitality, and competitiveness of the United States. Advances in HEC provide results that cut across traditional disciplinary and organizational boundaries. This program provides opportunities to share information about HEC systems and computational techniques across multiple disciplines and organizations through conferences and exhibitions of HEC advances held in Washington DC so that mission agency staff, scientists, and industry can come together with White House, Congressional and Legislative staff in an environment conducive to the sharing of technical information, accomplishments, goals, and plans. A common thread across this series of conferences is the understanding of computational science and applied mathematics techniques across a diverse set of application areas of interest to the Nation. The specific objectives of this program are: Program Objective 1. To provide opportunities to share information about advances in high-end computing systems and computational techniques between mission critical agencies, agency laboratories, academics, and industry. Program Objective 2. To gather pertinent data, address specific topics of wide interest to mission critical agencies. Program Objective 3. To promote a continuing discussion of critical issues in high-end computing. Program Objective 4.To provide a venue where a multidisciplinary scientific audience can discuss the difficulties applying computational science techniques to specific problems and can specify future research that, if successful, will eliminate these problems.

  11. Hydrodesulfurization and hydrodenitrogenation catalysts obtained from coal mineral matter

    DOE Patents [OSTI]

    Liu, Kindtoken H. D. (Newark, DE); Hamrin, Jr., Charles E. (Lexington, KY)

    1982-01-01

    A hydrotreating catalyst is prepared from coal mineral matter obtained by low temperature ashing coals of relatively low bassanite content by the steps of: (a) depositing on the low temperature ash 0.25-3 grams of an iron or nickel salt in water per gram of ash and drying a resulting slurry; (b) crushing and sizing a resulting solid; and (c) heating the thus-sized solid powder in hydrogen.

  12. Material to Efficiently and Economically Obtain Microorganism and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Microalgae - Energy Innovation Portal Biomass and Biofuels Biomass and Biofuels Advanced Materials Advanced Materials Find More Like This Return to Search Material to Efficiently and Economically Obtain Microorganism and Microalgae Ames Laboratory Contact AMES About This Technology Technology Marketing SummaryTechnology provides an economical and efficient process to harvest microorganisms like microalgae from its growth media.Description The interest in using algae as feedstock for biofuel

  13. Security Notice | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User login Username * Password * Request new password Log in Forgot Your Password? Security Notice This computer system is operated on a U.S. Federal Government network (unclassified information only). This system is for the use of authorized users only. Unauthorized access is prohibited and makes you liable to civil and criminal penalties. Individuals using this computer system without authority, or in excess of their authority, are subject to having all of their activities monitored and

  14. SmartGrid Information | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SmartGrid Information SmartGrid Information Smart Grid Information This web page provides information and resources on several policy issues critical to the continued development of the Smart Grid, as identified in reports released by the Department of Energy's Office of the General Counsel (links to the reports are provided below). The reports set forth policy recommendations on issues including smart meter data access and privacy, priority of service, wireless spectrum, and network

  15. Applicant Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applicant Information General Information for Applicants Bringing together top, space science students with internationally recognized researchers at Los Alamos in an educational and collaborative atmosphere. Contacts Director Misa Cowee Email Administrative Assistant Mary Wubbena Email Request more information Email Acceptance into the program Application packages are reviewed by a panel of experts and acceptance into the program is based primarily on the student's academic record, list of

  16. Hotel Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Logistics Hotel Information Location The workshop was held at the Hilton Washington DC/Rockville Executive Meeting Center. Address is 1750 Rockville Pike, Rockville, Maryland, 20852. The hotel is about 27 miles from Dulles Airport. Hotel Information Home Page Maps and Transportation Area Information Sleeping Room Block A block of rooms at the federal per diem rate of $226++ per night (single or double) has been reserved for the nights of September 10 & 11, 2012. As a courtesy, this rate will

  17. Hotel Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Logistics Hotel Information Location The review was held at the Hilton Washington DC/Rockville Executive Meeting Center. Address is 1750 Rockville Pike, Rockville, Maryland, 20852. Hotel Information Home Page Maps and Transportation Area Information Sleeping Room Block A block of rooms at $183 + 15% tax per night (single or double) has been reserved for the nights of November 26 & 27, 2012. Making Your Reservation To reserve your room, please call 1-800-HILTONS (445-8667) and refer to the

  18. Local Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Local Information Local Information Bringing together top, space science students with internationally recognized researchers at Los Alamos in an educational and collaborative atmosphere. Contacts Director Misa Cowee Email Administrative Assistant Mary Wubbena Email Request more information Email Housing, transportation Every year several hundred students come to Los Alamos to work and live here. Housing can get quite scarce, and options will be more expensive and less attractive than you expect

  19. Technical information

    U.S. Energy Information Administration (EIA) Indexed Site

    addresses some of the difficulties encountered in trying to obtain meaningful energy data on questionnaire items in the 1995 survey. The section "Nonresponse" presents...

  20. Center for Nanophase Materials Sciences (CNMS) - Obtaining Entry to CNMS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Obtaining Entry to CNMS Facilities Photo Identification - Effective March 30, 2015, ORNL has become fully compliant with the REAL ID Act of 2005. This Act requires that anyone accessing a Federal Facility, which ORNL is, must present a compliant form of identification. State-issued driver's licenses that are not REAL ID compliant will no longer be accepted as proof of identity at ORNL. If you are from one of the noncompliant states, you will need to provide another form of

  1. Hotel Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Hilton Washington DCRockville Executive Meeting Center. Address is 1750 Rockville Pike, Rockville, Maryland, 20852. Hotel Information Home Page Maps and Transportation Area...

  2. Informal Report

    Office of Scientific and Technical Information (OSTI)

    W- LA-8034-MS - - Informal Report "c o O o -*-* "co > Specific Heat and Thermal Conductivity of Explosives, Mixtures, and Plastic-Bonded Explosives Determined...

  3. Information Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Information Science and Technology (ASIS&T) American Society for Indexing (ASI) Digital Library Federation (DLF) National Archives and Records Administration (NARA) Special...

  4. Technical information

    Gasoline and Diesel Fuel Update (EIA)

    Home> Commercial Buildings Home> Technical Information > Estimation of Standard Errors Estimation of Standard Errors Sampling error is the difference between the survey estimate...

  5. Freedom of Information Act Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    information because it does not shed any light on how BPA has performed its statutory duties. Due to the size of the responsive documents they cannot be posted. To obtain a...

  6. Information Management and Supporting Documentation

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Paperwork Reduction Act (PRA) of 1995 requires each Federal agency to seek and obtain approval from the Office of Management and Budget (OMB) before undertaking a collection of information...

  7. Contact Information | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Information

  8. CMI Values | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Values CMI Values -- we listen, we are safe, we collaborate, we respect, we move fast, we are agile, we are responsible, and we deliver. We Listen: We are driven by the needs of technology and our best information comes from our industry partners. We Are Safe: We conduct all of our work in a manner that protects our workers, the public and the environment. We Collaborate: We bring together the best available expertise to solve the problems at hand. We Respect: We treat each other well and value

  9. Hybrid nuclear reactor grey rod to obtain required reactivity worth

    DOE Patents [OSTI]

    Miller, John V. (Munhall, PA); Carlson, William R. (Scott Township, Allegheny County, PA); Yarbrough, Michael B. (Hempfield Township, Westmoreland County, PA)

    1991-01-01

    Hybrid nuclear reactor grey rods are described, wherein geometric combinations of relatively weak neutron absorber materials such as stainless steel, zirconium or INCONEL, and relatively strong neutron absorber materials, such as hafnium, silver-indium cadmium and boron carbide, are used to obtain the reactivity worths required to reach zero boron change load follow. One embodiment includes a grey rod which has combinations of weak and strong neutron absorber pellets in a stainless steel cladding. The respective pellets can be of differing heights. A second embodiment includes a grey rod with a relatively thick stainless steel cladding receiving relatively strong neutron absorber pellets only. A third embodiment includes annular relatively weak netron absorber pellets with a smaller diameter pellet of relatively strong absorber material contained within the aperture of each relatively weak absorber pellet. The fourth embodiment includes pellets made of a homogeneous alloy of hafnium and a relatively weak absorber material, with the percentage of hafnium chosen to obtain the desired reactivity worth.

  10. SILENE Benchmark Critical Experiments for Criticality Accident Alarm Systems

    SciTech Connect (OSTI)

    Miller, Thomas Martin; Reynolds, Kevin H.

    2011-01-01

    In October 2010 a series of benchmark experiments was conducted at the Commissariat a Energie Atomique et aux Energies Alternatives (CEA) Valduc SILENE [1] facility. These experiments were a joint effort between the US Department of Energy (DOE) and the French CEA. The purpose of these experiments was to create three benchmarks for the verification and validation of radiation transport codes and evaluated nuclear data used in the analysis of criticality accident alarm systems (CAASs). This presentation will discuss the geometric configuration of these experiments and the quantities that were measured and will present some preliminary comparisons between the measured data and calculations. This series consisted of three single-pulsed experiments with the SILENE reactor. During the first experiment the reactor was bare (unshielded), but during the second and third experiments it was shielded by lead and polyethylene, respectively. During each experiment several neutron activation foils and thermoluminescent dosimeters (TLDs) were placed around the reactor, and some of these detectors were themselves shielded from the reactor by high-density magnetite and barite concrete, standard concrete, and/or BoroBond. All the concrete was provided by CEA Saclay, and the BoroBond was provided by Y-12 National Security Complex. Figure 1 is a picture of the SILENE reactor cell configured for pulse 1. Also included in these experiments were measurements of the neutron and photon spectra with two BICRON BC-501A liquid scintillators. These two detectors were provided and operated by CEA Valduc. They were set up just outside the SILENE reactor cell with additional lead shielding to prevent the detectors from being saturated. The final detectors involved in the experiments were two different types of CAAS detectors. The Babcock International Group provided three CIDAS CAAS detectors, which measured photon dose and dose rate with a Geiger-Mueller tube. CIDAS detectors are currently in use at Y-12 in the newly constructed Highly Enriched Uranium Materials Facility. The second CAAS detector used a {sup 6}LiF TLD to absorb neutrons and a silicon detector to count the charge particles released by these absorption events. Lawrence Livermore National Laboratory provided four of these detectors, which had formerly been used at the Rocky Flats facility in the United States.

  11. User Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Information User Information Print ALSHub User Portal User Guide A step-by-step guide for users about how to apply and prepare for beam time at the ALS. Experiment Safety Upon receiving beam time, complete an Experiment Safety Sheet Prospective Users Users from Industry Contacts for Users User Policy Data Management Users' Executive Committee (UEC) User Meeting

  12. Critical Decision Handbook | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Critical Decision Handbook Critical Decision Handbook This Handbook is designed as a practical tool for the Office of Environmental Management (EM) Federal Project Directors (FPDs), Integrated Project Teams (IPTs), Technical Authority Board (TAB), and senior management to ensure that issues and risks that could challenge the success of EM projects are identified early and proactively addressed. PDF icon Critical Decision Handbook More Documents & Publications Standard Review Plan - Overview

  13. News about CMI Partners | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    joins the Critical Materials Institute Reverse mining: Scientists extract rare earth materials from consumer products, March 7, 2013 UCDavis: Navrotsky Participates in DOE-funded...

  14. General Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    General Information General Information As a premier national research and development laboratory, LANL seeks to do business with qualified companies that offer value and high quality products and services. Contact Small Business Office (505) 667-4419 Email Are you a good fit for LANL? Need to find out more? LANL and its Small Business Program is only a phone call or email away. (See contact information, at left.) We want to be sure you can find a good fit with our procurement opportunities and

  15. OBTAINING POTENTIAL FIELD SOLUTIONS WITH SPHERICAL HARMONICS AND FINITE DIFFERENCES

    SciTech Connect (OSTI)

    Toth, Gabor; Van der Holst, Bart; Huang Zhenguang

    2011-05-10

    Potential magnetic field solutions can be obtained based on the synoptic magnetograms of the Sun. Traditionally, a spherical harmonics decomposition of the magnetogram is used to construct the current- and divergence-free magnetic field solution. This method works reasonably well when the order of spherical harmonics is limited to be small relative to the resolution of the magnetogram, although some artifacts, such as ringing, can arise around sharp features. When the number of spherical harmonics is increased, however, using the raw magnetogram data given on a grid that is uniform in the sine of the latitude coordinate can result in inaccurate and unreliable results, especially in the polar regions close to the Sun. We discuss here two approaches that can mitigate or completely avoid these problems: (1) remeshing the magnetogram onto a grid with uniform resolution in latitude and limiting the highest order of the spherical harmonics to the anti-alias limit; (2) using an iterative finite difference algorithm to solve for the potential field. The naive and the improved numerical solutions are compared for actual magnetograms and the differences are found to be rather dramatic. We made our new Finite Difference Iterative Potential-field Solver (FDIPS) a publicly available code so that other researchers can also use it as an alternative to the spherical harmonics approach.

  16. Visitor Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Visitor Info Visitor Information NERSC is located in Shyh Wang Hall-also known as the computational research and theory (CRT) building (Bldg. 59)-on the campus of Lawrence Berkeley...

  17. Information Request

    Energy Savers [EERE]

    November 25, 2008 TO: Sue Tierney, Phil Niedzielski-Eichner, Skila Harris FROM: Chris Kouts SUBJECT: Information Request As requested, enclosed is the additional information you requested yesterday. 1. Testimony: * September 24, 2008 before the Senate Committee on Commerce, Science and Transportation, * July 15, 2008 before the House Committee on Energy and Commerce * October 4, 2007 before the House Committee on the Budget and Chairman Spratt 2. Proposed Legislation "Nuclear Fuel

  18. Project Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Project Information Slider award map The REE Program funds projects focused on developing economically feasible and environmentally benign technologies for recovering REEs from coal and/or coal by-products. Project Information The listed projects represent the current REE program portfolio. Agreement Number Project Title Performer Name FWP-ORD REE FY2016-2020 Rare Earth Elements (REE) from Coal and Coal By-Products National Energy Technology Laboratory

  19. Fire Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources » Emergency Communication » Fire Information Fire Information Focusing on fire prevention and protection. Contact Fire Management Officer Manuel J. L'Esperance Emergency Management (505) 667-6211 Email Wildfire Precautions Tips for Dry Conditions Never flick cigarette butts outdoors under any circumstances. If you smoke in your vehicle, use the ashtray. Keep vehicles off dry grass to prevent accidental fires caused by exhaust systems or catalytic converters on vehicles other

  20. Information Repository

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Information Repository Index Permit Renewal Application (Parts A and B) Submissions, September 2009, Department of Energy CBFO/Washington TRU Solutions Administrative Completeness Determination of the Amended Permit Renewal Application WIPP Hazardous Waste Facility Permit, JP Bearzi, NMED dated, November 25, 2009 Hazardous Waste Facility Permit effective January 2016 New Mexico Environment Department as modified by the Permittees on February 18, 2016 2016 Information Repository Documents 2015

  1. Visitor Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Visitor Info Visitor Information NERSC is located in Shyh Wang Hall-also known as the computational research and theory (CRT) building (Bldg. 59)-on the campus of Lawrence Berkeley National Laboratory in Berkeley, California. You can find information about visiting the lab, including an interactive campus map, transportation and lodging suggestions at http://www.lbl.gov/visit/. Your host must arrange site access prior to your visit. Last edited: 2016-01-06 16:48:46

  2. Information Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 Information Sciences Uncovering actionable knowledge and generating insight into exascale datasets from heterogeneous sources in real time Leadership Group Leader Patrick M. Kelly Email Deputy Group Leader Amy Larson Email Contact Us Administrator Yvonne McKelvey Email Conceptual illustration of futuristic data stream processing. Developing methods and tools for understanding complex interactions and extracting actionable information from massive data streams. Basic and applied research

  3. Abrasion Testing of Critical Components of Hydrokinetic Devices

    SciTech Connect (OSTI)

    Worthington, Monty; Ali, Muhammad; Ravens, Tom

    2013-12-06

    The objective of the Abrasion Testing of Critical Components of Hydrokinetic Devices (Project) was to test critical components of hydrokinetic devices in waters with high levels of suspended sediment – information that is widely applicable to the hydrokinetic industry. Tidal and river sites in Alaska typically have high suspended sediment concentrations. High suspended sediment also occurs in major rivers and estuaries throughout the world and throughout high latitude locations where glacial inputs introduce silt into water bodies. In assessing the vulnerability of technology components to sediment induced abrasion, one of the greatest concerns is the impact that the sediment may have on device components such as bearings and seals, failures of which could lead to both efficiency loss and catastrophic system failures.

  4. Noise correction of turbulent spectra obtained from Acoustic Doppler Velocimeters

    SciTech Connect (OSTI)

    Durgesh, Vibhav; Thomson, Jim; Richmond, Marshall C.; Polagye, Brian

    2014-03-02

    Accurately estimated auto-spectral density functions are essential for characterization of turbulent flows, and they also have applications in computational fluid dynamics modeling, site and inflow characterization for hydrokinetic turbines, and inflow turbulence generation. The Acoustic Doppler Velocimeter (ADV) provides single-point temporally resolved data, that are used to characterize turbulent flows in rivers, seas, and oceans. However, ADV data are susceptible to contamination from various sources, including instrument noise, which is the intrinsic limit to the accuracy of acoustic velocity measurements. Due to the presence of instrument noise, the spectra obtained are altered at high frequencies. The focus of this study is to develop a robust and effective method for accurately estimating auto-spectral density functions from ADV data by reducing or removing the spectral contribution derived from instrument noise. For this purpose, the Noise Auto-Correlation (NAC) approach was developed, which exploits the correlation properties of instrument noise to identify and remove its contribution from spectra. The spectra estimated using the NAC approach exhibit increased fidelity and a slope of -5/3 in the inertial range, which is typically observed for turbulent flows. Finally, this study also compares the effectiveness of low-pass Gaussian filters in removing instrument noise with that of the NAC approach. For the data used in this study, both the NAC and Gaussian filter approaches are observed to be capable of removing instrument noise at higher frequencies from the spectra. However, the NAC results are closer to the expected frequency power of -5/3 in the inertial sub-range.

  5. Enhancing critical current density of cuprate superconductors

    DOE Patents [OSTI]

    Chaudhari, Praveen

    2015-06-16

    The present invention concerns the enhancement of critical current densities in cuprate superconductors. Such enhancement of critical current densities include using wave function symmetry and restricting movement of Abrikosov (A) vortices, Josephson (J) vortices, or Abrikosov-Josephson (A-J) vortices by using the half integer vortices associated with d-wave symmetry present in the grain boundary.

  6. U.S. Department of Energy - Critical Materials Strategy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 December 2010 CRITICAL MATERIALS STRATEGY 2 CRITICAL MATERIALS STRATEGY 3 Table of Contents FOREWORD ............................................................................................................................................ 4 ACKNOWLEDGEMENTS ........................................................................................................................... 5 EXECUTIVE SUMMARY

  7. U.S. Department of Energy - Critical Materials Strategy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 December 2010 CRITICAL MATERIALS STRATEGY 2 CRITICAL MATERIALS STRATEGY 3 Table of Contents FOREWORD ............................................................................................................................................ 4 ACKNOWLEDGEMENTS ........................................................................................................................... 5 EXECUTIVE SUMMARY

  8. Hotel Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hotel Information Hotel Information Los Alamos National Laboratory is situated on a mesatop on the eastern side of the Jemez Mountains, an impressive series of ancient volcanoes with extensive views of the Sangre de Cristo Mountains in the east, where sunsets turn the western slopes a vibrant red. We hope you enjoy your stay in the Land of Enchantment. Contacts Mike Rogers (505) 665-2513 Email Chandra Savage Marsden (505) 664-0183 Email Lodging A block of rooms has been reserved under the name

  9. Electrorecycling of Critical and Value Metals from Mobile Electronics

    SciTech Connect (OSTI)

    Lister, Tedd E.; Wang, Peming; Anderko, Andre

    2014-09-01

    Mobile electronic devices such as smart phones and tablets are a significant source of valuable metals that should be recycled. Each year over a billion devices are sold world-wide and the average life is only a couple years. Value metals in phones are gold, palladium, silver, copper, cobalt and nickel. Devices now contain increasing amounts of rare earth elements (REE). In recent years the supply chain for REE has moved almost exclusively to China. They are contained in displays, speakers and vibrators within the devices. By US Department of Energy (DOE) classification, specific REEs (Nd, Dy, Eu, Tb and Y) are considered critical while others (Ce, La and Pr) are deemed near critical. Effective recycling schemes should include the recovery of these critical materials. By including more value materials in a recovery scheme, more value can be obtained by product diversification and less waste metals remains to be disposed of. REEs are mined as a group such that when specific elements become critical significantly more ore must be processed to capture the dilute but valuable critical elements. Targeted recycling of items containing the more of the less available critical materials could address their future criticality. This presentation will describe work in developing aqueous electrochemistry-based schemes for recycling metals from scrap mobile electronics. The electrorecycling process generates oxidizing agents at an anode while reducing dissolved metals at the cathode. E vs pH diagrams and metals dissolution experiments are used to assess effectiveness of various solution chemistries. Although several schemes were envisioned, a two stages process has been the focus of work: 1) initial dissolution of Cu, Sn, Ag and magnet materials using Fe+3 generated in acidic sulfate and 2) final dissolution of Pd and Au using Cl2 generated in an HCl solution. Experiments were performed using simulated metal mixtures. Both Cu and Ag were recovered at ~ 97% using Fe+3 while leaving Au and Ag intact. REE were extracted from the dissolved mixture using conventional methods. A discussion of future research directions will be discussed.

  10. : The Resumption of Criticality Experiments Facility Operations at the Nevada National Security Site

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Resumption of Criticality Experiments Facility Operations at the Nevada National Security Site OAS-M-13-09 September 2013 Department of Energy Washington, DC 20585 September 30, 2013 MEMORANDUM FOR THE PRINCIPAL DEPUTY ADMINISTRATOR, NATIONAL NUCLEAR SECURITY ADMINISTRATION FROM: George W. Collard Assistant Inspector General for Audits Office of Inspector General SUBJECT: INFORMATION: Audit Report on "The Resumption of Criticality Experiments Facility Operations at the Nevada National

  11. Emerging critical issues and technology needs

    SciTech Connect (OSTI)

    Arvizu, D.E.; Baker, A.B.

    1997-08-01

    In April 1997, a panel of experts representing private sector electricity companies met to identify emerging critical issues in the electricity sector and to ascertain how technology can help with these issues. Sandia National laboratories sponsored and conducted the meeting. The panel determined the top eight issues that will be critically important over the next five to ten years, when the electricity sector is expected to undergo a major transition in its market and the regulations that govern it. This report presents a discussion of the selection and ranking of critical issues identified by the panel and the research priorities that were identified.

  12. WIPP Stakeholder Information Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WIPP Stakeholder Information Index 2016 WIPP Stakeholder Information Documents 2015 WIPP Stakeholder Information Documents 2014 WIPP Stakeholder Information Documents 2013 WIPP Stakeholder Information Documents 2012 WIPP Stakeholder Information Documents 2011 WIPP Stakeholder Information Documents 2010 WIPP Stakeholder Information Documents 2009 WIPP Stakeholder Information Documents 2008 WIPP Stakeholder Information Documents 2007 WIPP Stakeholder Information Documents 2006 WIPP Stakeholder

  13. News About CMI | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About CMI 2015 Need rare-earths know-how? The Critical Materials Institute offers lower-cost access to experts and research, Dec. 1, 2015 Get schooled in rare-earth metals, Nov....

  14. Neutron absorbing coating for nuclear criticality control

    DOE Patents [OSTI]

    Mizia, Ronald E.; Wright, Richard N.; Swank, William D.; Lister, Tedd E.; Pinhero, Patrick J.

    2007-10-23

    A neutron absorbing coating for use on a substrate, and which provides nuclear criticality control is described and which includes a nickel, chromium, molybdenum, and gadolinium alloy having less than about 5% boron, by weight.

  15. FEATURES, EVENTS, AND PROCESSES: SYSTEM-LEVEL AND CRITICALITY

    SciTech Connect (OSTI)

    D.L. McGregor

    2000-12-20

    The primary purpose of this Analysis/Model Report (AMR) is to identify and document the screening analyses for the features, events, and processes (FEPs) that do not easily fit into the existing Process Model Report (PMR) structure. These FEPs include the 3 1 FEPs designated as System-Level Primary FEPs and the 22 FEPs designated as Criticality Primary FEPs. A list of these FEPs is provided in Section 1.1. This AMR (AN-WIS-MD-000019) documents the Screening Decision and Regulatory Basis, Screening Argument, and Total System Performance Assessment (TSPA) Disposition for each of the subject Primary FEPs. This AMR provides screening information and decisions for the TSPA-SR report and provides the same information for incorporation into a project-specific FEPs database. This AMR may also assist reviewers during the licensing-review process.

  16. The Use of Catalysts in Near-Critical Water Processing

    SciTech Connect (OSTI)

    Elliott, Douglas C.

    2005-06-26

    The use of heterogeneous catalysts in near-critical water processing provides many challenges of material stability in addition to the normal questions of chemical activity. Conventional catalyst materials developed in traditional organic chemistry or petroleum chemistry applications provide a source of information of materials with the required activities but often without the required stability when used in hot liquid water. The importance of the use of catalysts in near-critical water processing plays a particularly crucial role for the development of renewable fuels and chemicals based on biomass feedstocks. Stability issues include both those related to the catalytic metal and also to the catalyst support material. In fact, the stability of the support is the most likely concern when using conventional catalyst formulations in near-critical water processing. Processing test results are used to show important design parameters for catalyst formulations for use in wet biomass gasification in high-pressure water and in catalytic hydrogenations in water for production of value-added chemical products from biomass in the biorefinery concept. Analytical methods including powder x-ray diffraction for crystallite size and composition determination, surface area and porosity measurements, and elemental analysis have all been used to quantify differences in catalyst materials before and after use. By these methods both the chemical and physical stability of heterogeneous catalysts can be verified.

  17. CMI Grand Challenge Problems | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CMI Grand Challenge Problems Time is the biggest issue. Materials typically become critical in a matter of months, but solutions take years or decades to develop and implement. Our first two grand challenges address this discrepancy. Anticipating Which Materials May Go Critical In an ideal world, users of materials would anticipate supply-chain disruptions before they occur. They would undertake activities to manage the risks of disruption, including R&D to diversify and increase supplies or

  18. CMI Education and Outreach | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Outreach The Critical Materials Institute offers a variety of educational opportunities through several partners, including the Colorado School of Mines and Iowa State University. In addition, CMI experts are available to speak at research conferences, as well as to students of all ages. CMI Educational Opportunities: The following educational opportunities are offered by CMI TEAM members: Colorado School of Mines CMI at Mines offers webinars about critical materials at no charge. Recordings are

  19. CMI Invention Disclosures | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CMI Invention Disclosures Success for the Critical Materials Institute will be defined by how well it meets its mission to assure supply chains of materials critical to clean energy technologies. To enable innovation in U.S. manufacturing and to enhance U.S. energy security, CMI must develop, demonstrate, and deploy clean energy technology. To direct research in a way to minimize the time to discovery and the time between discovery and deployment, the CMI team includes both research and

  20. Complete Project List | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Complete Project List Researchers at the Critical Materials Institute work to find ways to diversify supplies of critical materials, develop substitutes, improve reuse and recycling, enable research, sustain the environment, study the supply chain and analyze economics. The institute started with more than 30 projects. Over time, some have merged or ended and others have been added. This page provides a list of the current CMI projects, which can be sorted by clicking on a column header. Project

  1. 2011 Critical Materials Strategy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2011 Critical Materials Strategy 2011 Critical Materials Strategy This report examines the role that rare earth metals and other key materials play in clean energy technologies such as wind turbines, electric vehicles, solar cells and energy-efficient lighting. The report found that several clean energy technologies use materials at risk of supply disruptions in the short term, with risks generally decreasing in the medium and long terms. Supply challenges for five rare earth metals (dysprosium,

  2. Information Security

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-06-29

    This Order establishes requirements and responsibilities for Department of Energy (DOE) Departmental Elements, including the National Nuclear Security Administration (NNSA), to protect and control classified information as required by statutes, regulation, Executive Orders, government-wide policy directives and guidelines, and DOE policy and directives. (The original DOE O 471.6 canceled DOE M 470.4-4A, except for Section D). Admin Chg 2, dated 5-15-15, supersedes Admin Chg 1. Certified 5-21-2015.

  3. Visitor Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Visitor Information Visiting the Transportation Research and Analysis Computing Center For guests who wish to visit and meet with the technical staff, please contact the TRACC service desk or the Technical Point of Contact assigned to you for registration, scheduling, and confirmation, including Foreign Visits and Assignments. Registration with your host is required for entry into the TRACC facilities. A photo I.D., such as a driver's license or passport, is also required for facility access. If

  4. Bibliography for nuclear criticality accident experience, alarm systems, and emergency management

    SciTech Connect (OSTI)

    Putman, V.L.

    1995-09-01

    The characteristics, detection, and emergency management of nuclear criticality accidents outside reactors has been an important component of criticality safety for as long as the need for this specialized safety discipline has been recognized. The general interest and importance of such topics receives special emphasis because of the potentially lethal, albeit highly localized, effects of criticality accidents and because of heightened public and regulatory concerns for any undesirable event in nuclear and radiological fields. This bibliography lists references which are potentially applicable to or interesting for criticality alarm, detection, and warning systems; criticality accident emergency management; and their associated programs. The lists are annotated to assist bibliography users in identifying applicable: industry and regulatory guidance and requirements, with historical development information and comments; criticality accident characteristics, consequences, experiences, and responses; hazard-, risk-, or safety-analysis criteria; CAS design and qualification criteria; CAS calibration, maintenance, repair, and testing criteria; experiences of CAS designers and maintainers; criticality accident emergency management (planning, preparedness, response, and recovery) requirements and guidance; criticality accident emergency management experience, plans, and techniques; methods and tools for analysis; and additional bibliographies.

  5. U.S. Department of Energy Critical Materials Strategy

    SciTech Connect (OSTI)

    Bauer, D.; Diamond, D.; Li, J.; Sandalow, D.; Telleen, P.; Wanner, B.

    2010-12-01

    This report examines the role of rare earth metals and other materials in the clean energy economy. It was prepared by the U.S. Department of Energy (DOE) based on data collected and research performed during 2010. Its main conclusions include: (a) Several clean energy technologies -- including wind turbines, electric vehicles, photovoltaic cells and fluorescent lighting -- use materials at risk of supply disruptions in the short term. Those risks will generally decrease in the medium and long term. (b) Clean energy technologies currently constitute about 20 percent of global consumption of critical materials. As clean energy technologies are deployed more widely in the decades ahead, their share of global consumption of critical materials will likely grow. (c) Of the materials analyzed, five rare earth metals (dysprosium, neodymium, terbium, europium and yttrium), as well as indium, are assessed as most critical in the short term. For this purpose, 'criticality' is a measure that combines importance to the clean energy economy and risk of supply disruption. (d) Sound policies and strategic investments can reduce the risk of supply disruptions, especially in the medium and long term. (e) Data with respect to many of the issues considered in this report are sparse. In the report, DOE describes plans to (i) develop its first integrated research agenda addressing critical materials, building on three technical workshops convened by the Department during November and December 2010; (ii) strengthen its capacity for information-gathering on this topic; and (iii) work closely with international partners, including Japan and Europe, to reduce vulnerability to supply disruptions and address critical material needs. DOE will work with other stakeholders -- including interagency colleagues, Congress and the public -- to shape policy tools that strengthen the United States' strategic capabilities. DOE also announces its plan to develop an updated critical materials strategy, based upon additional events and information, by the end of 2011.DOE's strategy with respect to critical materials rests on three pillars. First, diversified global supply chains are essential. To manage supply risk, multiple sources of materials are required. This means taking steps to facilitate extraction, processing and manufacturing here in the United States, as well as encouraging other nations to expedite alternative supplies. In all cases, extraction and processing should be done in an environmentally sound manner. Second, substitutes must be developed. Research leading to material and technology substitutes will improve flexibility and help meet the material needs of the clean energy economy. Third, recycling, reuse and more efficient use could significantly lower world demand for newly extracted materials. Research into recycling processes coupled with well-designed policies will help make recycling economically viable over time.The scope of this report is limited. It does not address the material needs of the entire economy, the entire energy sector or even all clean energy technologies. Time and resource limitations precluded a comprehensive scope. Among the topics that merit additional research are the use of rare earth metals in catalytic converters and in petroleum refining. These topics are discussed briefly in Chapter 2.

  6. Critical surface for explosions of rotational core-collapse supernovae

    SciTech Connect (OSTI)

    Iwakami, Wakana; Nagakura, Hiroki [Yukawa Institute for Theoretical Physics, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto, 606-8502 (Japan); Yamada, Shoichi, E-mail: wakana@heap.phys.waseda.ac.jp [Advanced Research Institute for Science and Engineering, Waseda University, 3-4-1, Okubo, Shinjuku, Tokyo, 169-8555 (Japan)

    2014-09-20

    The effect of rotation on the explosion of core-collapse supernovae is investigated systematically in three-dimensional simulations. In order to obtain the critical conditions for explosion as a function of mass accretion rate, neutrino luminosity, and specific angular momentum, rigidly rotating matter was injected from the outer boundary with an angular momentum, which is increased every 500 ms. It is found that there is a critical value of the specific angular momentum, above which the standing shock wave revives, for a given combination of mass accretion rate and neutrino luminosity, i.e., an explosion can occur by rotation even if the neutrino luminosity is lower than the critical value for a given mass accretion rate in non-rotational models. The coupling of rotation and hydrodynamical instabilities plays an important role in characterizing the dynamics of shock revival for the range of specific angular momentum that are supposed to be realistic. Contrary to expectations from past studies, the most rapidly expanding direction of the shock wave is not aligned with the rotation axis. Being perpendicular to the rotation axis on average, it can be oriented in various directions. Its dispersion is small when the spiral mode of the standing accretion shock instability (SASI) governs the dynamics, while it is large when neutrino-driven convection is dominant. As a result of the comparison between two-dimensional and three-dimensional rotational models, it is found that m ? 0 modes of neutrino-driven convection or SASI are important for shock revival around the critical surface.

  7. Information Security

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2007-06-29

    Establishes security requirements for the protection and control of information and matter required to be classified or controlled by statutes, regulations, or Department of Energy directives. Section E, Technical Surveillance Countermeasures Program, is Official Use Only. Please contact the DOE Office of Health, Safety and Security at 301-903-0292 if your official duties require you to have access to this part of the directive. Cancels: DOE M 471.2-1B, DOE M 471.2-1C, DOE M 471.2-4, and DOE O 471.2A

  8. Information Security

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-08-26

    This Manual establishes security requirements for the protection and control of information and matter required to be classified or controlled by statutes, regulations, or Department of Energy directives. Attachment E, Technical Surveillance Countermeasures Program, is for Official Use Only. Contact the Office of Security and Safety Performance Assurance at 301-903-3653 if your official duties require you to have access to this part of the directive. Cancels: DOE M 471.2-1B, DOE M 471.2-1C, DOE M 471.2-4, and DOE O 471.2A.

  9. Historical. Information.

    Office of Legacy Management (LM)

    Historical. Information. ~ H.. 1 . General Project Rulison Manager' s Report, April. 1973 DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. PROJECT RULISON MANAGER'S R E P O R T APRIL 197.3 UNITED STATES ATOMIC ENERGY COMMISSION NEVADA OPERATIONS OFFICE Las Vegas, Nevada PREFACE , The R u l i s o n ' p r o j e c t , d e t o n a t e d September 1 0 , 1969, 'was t h e second n u c l e a r . d e t o n a

  10. Geneial Information

    Office of Legacy Management (LM)

    --- _____ ii3 ' 6 f Geneial Information su-u+./ I The Commission maintains a residue storage area known as the Airport Site at Robertson, l Missouri. This site is located immediately north of the St. Louis Municipal Airport and east of the McIknnell Aircraft Corporation Plant on Rr~wn Road in St. Louis County. Consent to use and occupy the 21.7 acre tract was obtalned by the Manhattan Dlstrlot on Marsh 2, 19&6. T!ltle uas auqubed to the property on Janwry 3, 1947 by condemnation proceeding8

  11. Header Information

    National Nuclear Security Administration (NNSA)

    NRC 741 Crosswalk to SAMS 741 Field Number 741 Field Name SAMS 8.0 Field Header Information 1 Shipper's RIS ShipperRIS 2 Receiver's RIS ReceiverRIS 3 Transaction No. TransferNumber 4 Correction No. CorrectionNumber 5a Processing Code - Shipper * not entered 5b Processing Code - Receiver * not entered 6a Action Code - Shipper ActionCode 6b Action Code - Receiver ActionCode 8a Name and Address of Shipper * not entered 9a Name and Address of Receiver * not entered 10 No. of Data Lines NumberofLines

  12. Supplemental information source document : socioeconomics.

    SciTech Connect (OSTI)

    Sedore, Lora Jeannette

    2010-08-01

    This document provides information on expenditures and staffing levels at Sandia National Laboratories/New Mexico (SNL/NM). This report is based on the best available information obtained from Sandia Corporation for Fiscal Years 2008 and 2009, and was prepared in support of future analyses, including those that may be performed as part of the SNL/NM Site-Wide Environmental Impact Statement.

  13. Mercury Information Clearinghouse

    SciTech Connect (OSTI)

    Chad A. Wocken; Michael J. Holmes; Dennis L. Laudal; Debra F. Pflughoeft-Hassett; Greg F. Weber; Nicholas V. C. Ralston; Stanley J. Miller; Grant E. Dunham; Edwin S. Olson; Laura J. Raymond; John H. Pavlish; Everett A. Sondreal; Steven A. Benson

    2006-03-31

    The Canadian Electricity Association (CEA) identified a need and contracted the Energy & Environmental Research Center (EERC) to create and maintain an information clearinghouse on global research and development activities related to mercury emissions from coal-fired electric utilities. With the support of CEA, the Center for Air Toxic Metals{reg_sign} (CATM{reg_sign}) Affiliates, and the U.S. Department of Energy (DOE), the EERC developed comprehensive quarterly information updates that provide a detailed assessment of developments in the various areas of mercury monitoring, control, policy, and research. A total of eight topical reports were completed and are summarized and updated in this final CEA quarterly report. The original quarterly reports can be viewed at the CEA Web site (www.ceamercuryprogram.ca). In addition to a comprehensive update of previous mercury-related topics, a review of results from the CEA Mercury Program is provided. Members of Canada's coal-fired electricity generation sector (ATCO Power, EPCOR, Manitoba Hydro, New Brunswick Power, Nova Scotia Power Inc., Ontario Power Generation, SaskPower, and TransAlta) and CEA, have compiled an extensive database of information from stack-, coal-, and ash-sampling activities. Data from this effort are also available at the CEA Web site and have provided critical information for establishing and reviewing a mercury standard for Canada that is protective of environment and public health and is cost-effective. Specific goals outlined for the CEA mercury program included the following: (1) Improve emission inventories and develop management options through an intensive 2-year coal-, ash-, and stack-sampling program; (2) Promote effective stack testing through the development of guidance material and the support of on-site training on the Ontario Hydro method for employees, government representatives, and contractors on an as-needed basis; (3) Strengthen laboratory analytical capabilities through analysis and quality assurance programs; and (4) Create and maintain an information clearinghouse to ensure that all parties can keep informed on global mercury research and development activities.

  14. Assessing Vulnerabilities, Risks, and Consequences of Damage to Critical Infrastructure

    SciTech Connect (OSTI)

    Suski, N; Wuest, C

    2011-02-04

    Since the publication of 'Critical Foundations: Protecting America's Infrastructure,' there has been a keen understanding of the complexity, interdependencies, and shared responsibility required to protect the nation's most critical assets that are essential to our way of life. The original 5 sectors defined in 1997 have grown to 18 Critical Infrastructures and Key Resources (CIKR), which are discussed in the 2009 National Infrastructure Protection Plan (NIPP) and its supporting sector-specific plans. The NIPP provides the structure for a national program dedicated to enhanced protection and resiliency of the nation's infrastructure. Lawrence Livermore National Laboratory (LLNL) provides in-depth, multi-disciplinary assessments of threat, vulnerability, and consequence across all 18 sectors at scales ranging from specific facilities to infrastructures spanning multi-state regions, such as the Oil and Natural Gas (ONG) sector. Like many of the CIKR sectors, the ONG sector is comprised of production, processing, distribution, and storage of highly valuable and potentially dangerous commodities. Furthermore, there are significant interdependencies with other sectors, including transportation, communication, finance, and government. Understanding the potentially devastating consequences and collateral damage resulting from a terrorist attack or natural event is an important element of LLNL's infrastructure security programs. Our work began in the energy sector in the late 1990s and quickly expanded other critical infrastructure sectors. We have performed over 600 physical assessments with a particular emphasis on those sectors that utilize, store, or ship potentially hazardous materials and for whom cyber security is important. The success of our approach is based on building awareness of vulnerabilities and risks and working directly with industry partners to collectively advance infrastructure protection. This approach consists of three phases: The Pre-Assessment Phase brings together infrastructure owners and operators to identify critical assets and help the team create a structured information request. During this phase, we gain information about the critical assets from those who are most familiar with operations and interdependencies, making the time we spend on the ground conducting the assessment much more productive and enabling the team to make actionable recommendations. The Assessment Phase analyzes 10 areas: Threat environment, cyber architecture, cyber penetration, physical security, physical penetration, operations security, policies and procedures, interdependencies, consequence analysis, and risk characterization. Each of these individual tasks uses direct and indirect data collection, site inspections, and structured and facilitated workshops to gather data. Because of the importance of understanding the cyber threat, LLNL has built both fixed and mobile cyber penetration, wireless penetration and supporting tools that can be tailored to fit customer needs. The Post-Assessment Phase brings vulnerability and risk assessments to the customer in a format that facilitates implementation of mitigation options. Often the assessment findings and recommendations are briefed and discussed with several levels of management and, if appropriate, across jurisdictional boundaries. The end result is enhanced awareness and informed protective measures. Over the last 15 years, we have continued to refine our methodology and capture lessons learned and best practices. The resulting risk and decision framework thus takes into consideration real-world constraints, including regulatory, operational, and economic realities. In addition to 'on the ground' assessments focused on mitigating vulnerabilities, we have integrated our computational and atmospheric dispersion capability with easy-to-use geo-referenced visualization tools to support emergency planning and response operations. LLNL is home to the National Atmospheric Release Advisory Center (NARAC) and the Interagency Modeling and Atmospheric Assessment Center (IMAAC). NA

  15. Critical Magnetic Field Determination of Superconducting Materials

    SciTech Connect (OSTI)

    Canabal, A.; Tajima, T.; Dolgashev, V.A.; Tantawi, S.G.; Yamamoto, T.; /Tsukuba, Natl. Res. Lab. Metrol.

    2011-11-04

    Superconducting RF technology is becoming more and more important. With some recent cavity test results showing close to or even higher than the critical magnetic field of 170-180 mT that had been considered a limit, it is very important to develop a way to correctly measure the critical magnetic field (H{sup RF}{sub c}) of superconductors in the RF regime. Using a 11.4 GHz, 50-MW, <1 {mu}s, pulsed power source and a TE013-like mode copper cavity, we have been measuring critical magnetic fields of superconductors for accelerator cavity applications. This device can eliminate both thermal and field emission effects due to a short pulse and no electric field at the sample surface. A model of the system is presented in this paper along with a discussion of preliminary experimental data.

  16. Vibrations Raise the Critical Temperature for Superconductivity | U.S. DOE

    Office of Science (SC) Website

    Office of Science (SC) Vibrations Raise the Critical Temperature for Superconductivity Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: Email Us More Information » 12.14.15

  17. INFORMAL REPORT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    q?% LA-5031 -MS INFORMAL REPORT krs $ 1 0 s N o t e on Inverse Bremsstrahlung in Strong E!ect:omGgnetic c;alPl I j a l a m o s scientific laboratory of the University of California LOS A L A M O S , NEW MEXICO 8 7 5 4 4 U N I T E D S T A T E S A T O M I C E N E R G Y C O M M I S S I O N a This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their

  18. Quality Assurance for Critical Decision Reviews RM

    Office of Environmental Management (EM)

    Quality Assurance for Critical Decision Reviews Module March 2010 CD-0 O 0 OFFICE OF Q C CD-1 F ENVIRO Standard R Quality A Rev Critical Decis CD-2 M ONMENTAL Review Plan Assuranc view Module sion (CD) Ap CD March 2010 L MANAGE n (SRP) e (QA) e pplicability D-3 EMENT CD-4 Post Ope eration Standard Review Plan, 2 nd Edition, March 2010 i FOREWORD The Standard Review Plan (SRP) 1 provides a consistent, predictable corporate review framework to ensure that issues and risks that could challenge the

  19. CMI Industry Survey | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CMI Industry Survey Thank you for your interest in Critical Materials Institute Education, Training and Outreach. Please share how you are interested in education and training about critical materials. There are additional comment boxes below to allow for any additional ideas you may have. My name is: * I would like to be contacted by telephone, so I am providing a phone number: I would like to be contacted by e-mail; please use this e-mail address: My role in education and outreach about

  20. Critical Masses for Unreflected Metal Spheres

    SciTech Connect (OSTI)

    Westfall, Robert Michael; Wright, Richard Q

    2009-01-01

    Calculated critical masses of bare metal spheres for 28 actinide isotopes, using the SCALE/XSDRNPM one-dimensional, discrete-ordinates system, are presented. ENDF/B-VI, ENDF/B-VII, and JENDL-3.3 cross sections were used in the calculations. Results are given for isotopes of uranium, neptunium, plutonium, americium, curium, californium, and for one isotope of einsteinium. Calculated k values for these same nuclides are also given. We show that, for non-threshold or low-threshold fission nuclides, a good approximation for the nuclide k is the value of nubar at 1 MeV. A plot of the critical mass versus k values is given for 19 nuclides with A-numbers between 232 and 250. The peaks in the critical mass curve (for seven nuclides) correspond to dips in the k curve. For the seven cases with the largest critical mass, six are even-even nuclides. Neptunium-237, with a critical mass of about 62.7 kg (ENDF/B-VI calculation), has an odd number of protons and an even number of neutrons. However, two cases with quite small critical masses, 232U and 236Pu, are also even-even. These two nuclides do not exhibit threshold fission behavior like most other even-even nuclides. The largest critical mass is 208.8 kg for 243Am and the smallest is 2.44 kg for 251Cf. The calculated k values vary from 1.5022 for 234U to 4.4767 for 251Cf. A correlation between the calculated critical mass (kg) and the fission spectrum averaged value of is given for the elements U, Np, Pu, Am, Cm, and Cf. For each of the five elements, a fit to the data for that element is provided. In each case the fit employs a negative exponential of the form mass = exp(A + B ~ ln( ) The values of A and B are element dependent and vary slightly for each of the five elements. The method described here is mainly applicable for non-threshold fission nuclides (15 of the 28 nuclides considered in this paper). There are three exceptions, 238Pu, 244Cm, and 250Cf, which all exhibit threshold fission behavior.

  1. Nuclear criticality safety experiments, calculations, and analyses: 1958 to 1982. Volume 1. Lookup tables

    SciTech Connect (OSTI)

    Koponen, B.L.; Hampel, V.E.

    1982-10-21

    This compilation contains 688 complete summaries of papers on nuclear criticality safety as presented at meetings of the American Nuclear Society (ANS). The selected papers contain criticality parameters for fissile materials derived from experiments and calculations, as well as criticality safety analyses for fissile material processing, transport, and storage. The compilation was developed as a component of the Nuclear Criticality Information System (NCIS) now under development at the Lawrence Livermore National Laboratory. The compilation is presented in two volumes: Volume 1 contains a directory to the ANS Transaction volume and page number where each summary was originally published, the author concordance, and the subject concordance derived from the keyphrases in titles. Volume 2 contains - in chronological order - the full-text summaries, reproduced here by permission of the American Nuclear Society from their Transactions, volumes 1-41.

  2. V-136: Oracle Critical Patch Update Advisory - April 2013 | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6: Oracle Critical Patch Update Advisory - April 2013 V-136: Oracle Critical Patch Update Advisory - April 2013 April 17, 2013 - 1:46am Addthis PROBLEM: Oracle Critical Patch...

  3. Critical-field theory of the Kondo lattice model in two dimensions

    SciTech Connect (OSTI)

    Kim, Ki-Seok

    2005-05-15

    In the context of the U(1) slave-boson theory we derive a critical-field theory near the quantum-critical point of the Kondo lattice model in two spatial dimensions. First, we argue that strong gauge fluctuations in the U(1) slave-boson theory give rise to confinement between spinons and holons, thus causing 'neutralized' spinons in association with the slave-boson U(1) gauge field. Second, we show that critical fluctuations of Kondo singlets near the quantum-critical point result in a new U(1) gauge field. This emergent gauge field has nothing to do with the slave-boson U(1) gauge field. Third, we find that the slave-boson U(1) gauge field can be exactly integrated out in the low-energy limit. As a result we find a critical-field theory in terms of renormalized conduction electrons and neutralized spinons interacting via the new emergent U(1) gauge field. Based on this critical-field theory we obtain the temperature dependence of the specific heat and the imaginary part of the self-energy of the renormalized electrons. These quantities display non-Fermi-liquid behavior near the quantum-critical point.

  4. Information Collection Management | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Collection Management Information Collection Management Forms44.jpg The Paperwork Reduction Act (PRA) of 1995 requires federal agencies and government-owned, contractor-operated facilities to obtain approval from the Office of Management and Budget (OMB) before requesting most types of information from the public, including forms, interviews, and record-keeping requirements, among others. DOE's Chief Information Officer (CIO) is the Senior Official responsible for DOE PRA compliance.

  5. Analysis of Godiva-IV delayed-critical and static super-prompt-critical conditions

    SciTech Connect (OSTI)

    Mosteller, Russell D; Goda, Joetta M

    2009-01-01

    Super-prompt-critical burst experiments were conducted on the Godiva-IV assembly at Los Alamos National Laboratory from the 1960s through 2005. Detailed and simplified benchmark models have been constructed for four delayed-critical experiments and for the static phase of a super-prompt-critical burst experiment. In addition, a two-dimensional cylindrical model has been developed for the super-prompt-critical condition. Criticality calculations have been performed for all of those models with four modern nuclear data libraries: ENDFIB-VI, ENDF/8-VII.0, JEFF-3.1 , and JENDL-3.3. Overall, JENDL-3.3 produces the best agreement with the reference values for k{sub eff}.

  6. Secretary Chu Announces Completion of Critical Energy Conservation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Completion of Critical Energy Conservation Appliance Standards Secretary Chu Announces Completion of Critical Energy Conservation Appliance Standards September 1, 2009 - 12:00am ...

  7. Advanced Critical Advanced Energy Retrofit Education and Training...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Critical Advanced Energy Retrofit Education and Training and Credentialing - 2014 BTO Peer Review Advanced Critical Advanced Energy Retrofit Education and Training and...

  8. Department of Energy Critical Materials Strategy Video (Text Version)

    Broader source: Energy.gov [DOE]

    This is a text version of the "Department of Energy Critical Materials Strategy" video presented at the Critical Materials Workshop, held on April 3, 2012 in Arlington, Virginia.

  9. Critical Materials Research in DOE Video (Text Version)

    Office of Energy Efficiency and Renewable Energy (EERE)

    This is a text version of the "Critical Materials Research in DOE" video presented at the Critical Materials Workshop, held on April 3, 2012 in Arlington, Virginia.

  10. Dynamic trapping near a quantum critical point (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    Dynamic trapping near a quantum critical point Citation Details In-Document Search Title: Dynamic trapping near a quantum critical point Authors: Kolodrubetz, Michael ; Katz, ...

  11. Collisional energy loss above the critical temperature in QCD...

    Office of Scientific and Technical Information (OSTI)

    Collisional energy loss above the critical temperature in QCD Citation Details In-Document Search Title: Collisional energy loss above the critical temperature in QCD Authors: Lin, ...

  12. CNG, Hydrogen, CNG-Hydrogen Blends - Critical Fuel Properties...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CNG, Hydrogen, CNG-Hydrogen Blends - Critical Fuel Properties and Behavior CNG, Hydrogen, CNG-Hydrogen Blends - Critical Fuel Properties and Behavior Presentation given by Jay ...

  13. V-004: Oracle Critical Patch Update Advisory- October 2012

    Broader source: Energy.gov [DOE]

    October 2012 Critical Patch Update, security vulnerability fixes for proprietary components of Oracle Linux will be announced in Oracle Critical Patch Updates.

  14. A Critical Step Toward Sustainable Nuclear Fuel Disposal | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Critical Step Toward Sustainable Nuclear Fuel Disposal A Critical Step Toward Sustainable Nuclear Fuel Disposal January 26, 2012 - 2:30pm Addthis Secretary Chu Secretary Chu...

  15. The Department of Energy Releases Strategy on Critical Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Department of Energy Releases Strategy on Critical Materials The Department of Energy Releases Strategy on Critical Materials December 15, 2010 - 12:00am Addthis The Department...

  16. U-019: Oracle Critical Patch Update Advisory- October 2011

    Broader source: Energy.gov [DOE]

    October 2011 Critical Patch Update, security vulnerability fixes for proprietary components of Oracle Linux will be announced in Oracle Critical Patch Updates.

  17. National Academies Criticality Methodology and Assessment Video (Text Version)

    Broader source: Energy.gov [DOE]

    This is a text version of the "National Academies Criticality Methodology and Assessment" video presented at the Critical Materials Workshop, held on April 3, 2012 in Arlington, Virginia.

  18. President's 2015 Budget Proposal Makes Critical Investments in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 Budget Proposal Makes Critical Investments in All-of-the-Above Energy Strategy and National Security President's 2015 Budget Proposal Makes Critical Investments in ...

  19. President's 2014 Budget Proposal Makes Critical Investments in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    President's 2014 Budget Proposal Makes Critical Investments in Innovation, Clean Energy and National Security Priorities President's 2014 Budget Proposal Makes Critical Investments ...

  20. Seismic Monitoring a Critical Step in EGS Development | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Seismic Monitoring a Critical Step in EGS Development Seismic Monitoring a Critical Step in EGS Development December 3, 2013 - 1:33pm Addthis The Energy Department's Sandia ...

  1. Critical point analysis of phase envelope diagram

    SciTech Connect (OSTI)

    Soetikno, Darmadi; Siagian, Ucok W. R.; Kusdiantara, Rudy Puspita, Dila Sidarto, Kuntjoro A. Soewono, Edy; Gunawan, Agus Y.

    2014-03-24

    Phase diagram or phase envelope is a relation between temperature and pressure that shows the condition of equilibria between the different phases of chemical compounds, mixture of compounds, and solutions. Phase diagram is an important issue in chemical thermodynamics and hydrocarbon reservoir. It is very useful for process simulation, hydrocarbon reactor design, and petroleum engineering studies. It is constructed from the bubble line, dew line, and critical point. Bubble line and dew line are composed of bubble points and dew points, respectively. Bubble point is the first point at which the gas is formed when a liquid is heated. Meanwhile, dew point is the first point where the liquid is formed when the gas is cooled. Critical point is the point where all of the properties of gases and liquids are equal, such as temperature, pressure, amount of substance, and others. Critical point is very useful in fuel processing and dissolution of certain chemicals. Here in this paper, we will show the critical point analytically. Then, it will be compared with numerical calculations of Peng-Robinson equation by using Newton-Raphson method. As case studies, several hydrocarbon mixtures are simulated using by Matlab.

  2. Evolution of toxicology information systems

    SciTech Connect (OSTI)

    Wassom, J.S.; Lu, P.Y.

    1990-12-31

    Society today is faced with new health risk situations that have been brought about by recent scientific and technical advances. Federal and state governments are required to assess the many potential health risks to exposed populations from the products (chemicals) and by-products (pollutants) of these advances. Because a sound analysis of any potential health risk should be based on the use of relevant information, it behooves those individuals responsible for making the risk assessments to know where to obtain needed information. This paper reviews the origins of toxicology information systems and explores the specialized information center concept that was proposed in 1963 as a means of providing ready access to scientific and technical information. As a means of illustrating this concept, the operation of one specialized information center (the Environmental Mutagen Information Center at Oak Ridge National Laboratory) will be discussed. Insights into how toxicological information resources came into being, their design and makeup, will be of value to those seeking to acquire information for risk assessment purposes. 7 refs., 1 fig., 4 tabs.

  3. Upper critical fields in liquid-quenched metastable superconductors

    SciTech Connect (OSTI)

    Wong, K.M.; Cotts, E.J.; Poon, S.J.

    1984-08-01

    A systematic and quantitative study of upper critical fields in alloys with increasing atomic number is carried out. The alloys are prepared by the technique of liquid (splat) quenching. They include the metastable body-centered-cubic (..beta..) phase of Ti-Pd, Zr-Mo, Zr-Pd, and Hf-Mo, amorphous phase of Zr-Rh, and the stable ..beta.. phase of Ti-Mo and Ta-Hf. Measurements are made in magnetic fields up to 90 kG and in temperatures down to 0.5 K. The results are analyzed within the framework of the dirty-limit theory of Werthamer, Helfand, Hohenberg, and Maki (WHHM). A least-squares fitting routine is performed using all the data (weighted equally) for a given sample. It is emphasized that the visual critical-field gradient near the transition temperature cannot be taken as the actual gradient in the presence of Pauli paramagnetic limitation. The main findings are the following: (i) Even without including renormalization corrections due to electron-phonon and electron-electron interactions, very good fits to the WHHM theory are obtained; (ii) critical-field data for all our samples (with minor exceptions in Hf-Mo)= are found to fall below or on the Maki curve (i.e., when the spin-orbit scattering parameter lambda/sub s.o./ goes to infinity); (iii) values of lambda/sub s.o./ are observed to range from 0.28 to 2.51 for the 3d and 4d alloys; (iv) the spin-orbit scattering rates 1/tau/sub s.o./ are found to compare well with theoretical estimation using results from band-structure calculation. The effect of sample inhomogeneity on the value of lambda/sub s.o./ in Zr-Mo alloys is also illustrated.

  4. 10 Things You Didn't Know About Critical Materials | Critical Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Institute 10 Things You Didn't Know About Critical Materials The U.S. Department of Energy included these in its "Top things you didn't know about" series. The energy.gov webpage includes a video of the Google+ Hangout on Jan. 18, 2013 The video runs nearly 42 minutes and features several rare earth experts, including Alex King, director of the Critical Materials Institute. 10. What are critical materials? Many clean energy technologies -- from wind turbines and energy-efficient

  5. Understanding Bulk Power Reliability: The Importance of Good Data and A Critical Review of Existing Sources

    SciTech Connect (OSTI)

    Fisher, Emily; Eto, Joseph H.; LaCommare, Kristina Hamachi

    2011-10-19

    Bulk power system reliability is of critical importance to the electricity sector. Complete and accurate information on events affecting the bulk power system is essential for assessing trends and efforts to maintain or improve reliability. Yet, current sources of this information were not designed with these uses in mind. They were designed, instead, to support real-time emergency notification to industry and government first-responders. This paper reviews information currently collected by both industry and government sources for this purpose and assesses factors that might affect their usefulness in supporting the academic literature that has relied upon them to draw conclusions about the reliability of the US electric power system.

  6. Photovoltaic Geographical Information System | Open Energy Information

    Open Energy Info (EERE)

    Information System Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Photovoltaic Geographical Information System Focus Area: Renewable Energy Topics: Opportunity...

  7. AUDIT REPORT The Energy Information Administration's Information...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Information Administration's Information Technology Program DOE-OIG-16-04 November 2015 U.S. Department of ... plants, and proposed electricity generators were not part of ...

  8. Reactor Testing and Qualification: Prioritized High-level Criticality Testing Needs

    SciTech Connect (OSTI)

    S. Bragg-Sitton; J. Bess; J. Werner; G. Harms; S. Bailey

    2011-09-01

    Researchers at the Idaho National Laboratory (INL) were tasked with reviewing possible criticality testing needs to support development of the fission surface power system reactor design. Reactor physics testing can provide significant information to aid in development of technologies associated with small, fast spectrum reactors that could be applied for non-terrestrial power systems, leading to eventual system qualification. Several studies have been conducted in recent years to assess the data and analyses required to design and build a space fission power system with high confidence that the system will perform as designed [Marcille, 2004a, 2004b; Weaver, 2007; Parry et al., 2008]. This report will provide a summary of previous critical tests and physics measurements that are potentially applicable to the current reactor design (both those that have been benchmarked and those not yet benchmarked), summarize recent studies of potential nuclear testing needs for space reactor development and their applicability to the current baseline fission surface power (FSP) system design, and provide an overview of a suite of tests (separate effects, sub-critical or critical) that could fill in the information database to improve the accuracy of physics modeling efforts as the FSP design is refined. Some recommendations for tasks that could be completed in the near term are also included. Specific recommendations on critical test configurations will be reserved until after the sensitivity analyses being conducted by Los Alamos National Laboratory (LANL) are completed (due August 2011).

  9. Reversibility and criticality in amorphous solids

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Regev, Ido; Weber, John; Reichhardt, Charles; Dahmen, Karin A.; Lookman, Turab

    2015-11-13

    The physical processes governing the onset of yield, where a material changes its shape permanently under external deformation, are not yet understood for amorphous solids that are intrinsically disordered. Here, using molecular dynamics simulations and mean-field theory, we show that at a critical strain amplitude the sizes of clusters of atoms undergoing cooperative rearrangements of displacements (avalanches) diverges. We compare this non-equilibrium critical behaviour to the prevailing concept of a ‘front depinning’ transition that has been used to describe steady-state avalanche behaviour in different materials. We explain why a depinning-like process can result in a transition from periodic to chaoticmore » behaviour and why chaotic motion is not possible in pinned systems. As a result, these findings suggest that, at least for highly jammed amorphous systems, the irreversibility transition may be a side effect of depinning that occurs in systems where the disorder is not quenched.« less

  10. Guide to Critical Infrastructure Protection Cyber Vulnerability Assessment

    Energy Savers [EERE]

    | Department of Energy Critical Infrastructure Protection Cyber Vulnerability Assessment Guide to Critical Infrastructure Protection Cyber Vulnerability Assessment This document describes a customized process for cyber vulnerability assessment in compliance with the Critical Infrastructure Protection standards adopted by the North American Electric Reliability Corporation in 2006. This guide covers the planning, execution, and reporting process. PDF icon Guide to Critical Infrastructure

  11. Presidential Proclamation: Critical Infrastructure Security and Resilience Month, 2013

    Broader source: Energy.gov [DOE]

    A proclamation from President Barack Obama declaring November 2013 Critical Infrastructure Security and Resilience Month.

  12. FAQS Reference Guide - Criticality Safety | Department of Energy

    Office of Environmental Management (EM)

    Safety FAQS Reference Guide - Criticality Safety This reference guide addresses the competency statements in the April 2009 edition of DOE-STD-1173-2009, Criticality Safety Functional Area Qualification Standard. PDF icon Criticality Safety Qualification Standard Reference Guide, April 2011 More Documents & Publications DOE-STD-1173-2009 FAQS Reference Guide - Criticality Safety (NNSA) DOE-HDBK-1019/2-93

  13. Older Public Presentations | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Older Public Presentations CMI leaders and scientists have given public presentations about rare earths and critical materials. Here are a few of their older presentations. CMI Kickoff Meeting Plenary Sessions, September 2013: Alex King, director: CMI Welcome Karl Gschneidner, chief science officer: CMI Overview Bruce Moyer, leader for Diversifying Supply Adam Schwartz, leader for Developing Substitutes Eric Peterson, leader for Improving Reuse and Recycling Tom Lograsso, leader for Crosscutting

  14. National Criticality Experiments Research Center (NCERC) capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NCERC capabilities National Criticality Experiments Research Center (NCERC) capabilities WHEN: Feb 20, 2015 6:00 PM - 8:00 PM WHERE: Courtyard by Marriott Santa Fe, NM CONTACT: Evelyn Mullen 505-665-7576 CATEGORY: Science INTERNAL: Calendar Login Event Description This talk will provide an overview of the capabilities and machines of NCERC followed by a description of the process of restarting Godiva in a new location as presented at the 2014 ANS Winter Meeting. Los Alamos National Laboratory

  15. Fuel Cells for Critical Communications Backup Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Critical Communications Backup Power Greg Moreland SENTECH, Inc. Supporting the U.S. Department of Energy August 6, 2008 APCO Annual Conference and Expo 2 2 Fuel cells use hydrogen to create electricity, with only water and heat as byproducts Fuel Cell Overview * An individual fuel cell produces about 1 volt * Hundreds of individual cells can comprise a fuel cell stack * Fuel cells can be used to power a variety of applications -Bibliographic Database * Laptop computers (50-100 W) *

  16. Critical Materials Workshop Final Participant List

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Critical Materials Workshop April 3, 2012 ■ Arlington, VA Final Participant Listing Georg Abakumov ADMA Products Inc. Anderson Ames Laboratory Julie Anderson Golden Field Office Gretchen Baier The Dow Chemical Company Suresh Baskaran Pacific Northwest National Laboratory James Beals UTRC Bianca Beeks ITECS Innovative Steven Boyd DOE Vehicle Technologies Richard Brotzman Argonne National Laboratory Matt Brown McBee Strategic Consulting Gordon Brown SLAC National Accelerator Laboratory Stephanie

  17. Architecture for high critical current superconducting tapes

    DOE Patents [OSTI]

    Jia, Quanxi (Los Alamos, NM); Foltyn, Stephen R. (Los Alamos, NM)

    2002-01-01

    Improvements in critical current capacity for superconducting film structures are disclosed and include the use of, e.g., multilayer YBCO structures where individual YBCO layers are separated by a layer of an insulating material such as CeO.sub.2 and the like, a layer of a conducting material such as strontium ruthenium oxide and the like or by a second superconducting material such as SmBCO and the like.

  18. Approval of the Critical Decision 4.

    Office of Legacy Management (LM)

    SUBJECT: ACTION: Approval of the Critical Decision 4 for the Closeout of the General Atomics (GA) Hot Cell Facility (HCF) Decontamination and Decommissioning (D&D) Project, Project Baseline Summary VL-GA-0012, and the Transfer for the GA Project Files to the Office of Legacy Management (LM) ISSUE: None BACKGROUND: Activities associated with the cleanup of the GA HCF and surrounding site were completed on September 28,2003. The GA site has been remediated to negotiated cleanup standards and

  19. Apparatus and method for critical current measurements

    DOE Patents [OSTI]

    Martin, Joe A. (Espanola, NM); Dye, Robert C. (Los Alamos, NM)

    1992-01-01

    An apparatus for the measurement of the critical current of a superconductive sample, e.g., a clad superconductive sample, the apparatus including a conductive coil, a means for maintaining the coil in proximity to a superconductive sample, an electrical connection means for passing a low amplitude alternating current through the coil, a cooling means for maintaining the superconductive sample at a preselected temperature, a means for passing a current through the superconductive sample, and, a means for monitoring reactance of the coil, is disclosed, together with a process of measuring the critical current of a superconductive material, e.g., a clad superconductive material, by placing a superconductive material into the vicinity of the conductive coil of such an apparatus, cooling the superconductive material to a preselected temperature, passing a low amplitude alternating current through the coil, the alternating current capable of generating a magnetic field sufficient to penetrate, e.g., any cladding, and to induce eddy currents in the superconductive material, passing a steadily increasing current through the superconductive material, the current characterized as having a different frequency than the alternating current, and, monitoring the reactance of the coil with a phase sensitive detector as the current passed through the superconductive material is steadily increased whereby critical current of the superconductive material can be observed as the point whereat a component of impedance deviates.

  20. Critical Masses for Unreflected Metal Spheres

    SciTech Connect (OSTI)

    Westfall, Robert Michael; Goluoglu, Sedat; Wright, Richard Q

    2009-01-01

    Critical masses of bare metal spheres for 33 actinide isotopes, using the SCALE/XSDRNPM one-dimensional, discrete-ordinates system, are presented. ENDF/B-VI, ENDF/B-VII, and JENDL-3.3 cross sections were used in the calculations. Results are given for isotopes of U, Np, Pu, Am, Cm, and Cf and for one isotope of Es. Calculated k-infinity values for 41 actinides are also given. For the nonthreshold or low-threshold fission nuclides, a good approximation for the nuclide k-infinity is the value of nubar at 1 MeV. A correlation between the calculated critical mass (kg) and the fission spectrum averaged value of F is given for the elements U, Np, Pu, Cm, and Cf as CM (kg) = exp (A + B ln( F)).(1) The values of A and B are element dependent and vary slightly for each of the five elements. The method described here is mainly applicable for nonthreshold fission nuclides (15 of the 31 nuclides considered in this paper). We conclude that equation (1) is useful for predicting the critical mass for nonthreshold fission nuclides if we have accurate values of the fission spectrum averaged F.

  1. FUEL HANDLING FACILITY CRITICALITY SAFETY CALCULATIONS

    SciTech Connect (OSTI)

    C.E. Sanders

    2005-06-30

    The purpose of this design calculation is to perform a criticality evaluation of the Fuel Handling Facility (FHF) and the operations and processes performed therein. The current intent of the FHF is to receive transportation casks whose contents will be unloaded and transferred to waste packages (WP) or MGR Specific Casks (MSC) in the fuel transfer bays. Further, the WPs will also be prepared in the FHF for transfer to the sub-surface facility (for disposal). The MSCs will be transferred to the Aging Facility for storage. The criticality evaluation of the FHF features the following: (I) Consider the types of waste to be received in the FHF as specified below: (1) Uncanistered commercial spent nuclear fuel (CSNF); (2) Canistered CSNF (with the exception of horizontal dual-purpose canister (DPC) and/or multi-purpose canisters (MPCs)); (3) Navy canistered SNF (long and short); (4) Department of Energy (DOE) canistered high-level waste (HLW); and (5) DOE canistered SNF (with the exception of MCOs). (II) Evaluate the criticality analyses previously performed for the existing Nuclear Regulatory Commission (NRC)-certified transportation casks (under 10 CFR 71) to be received in the FHF to ensure that these analyses address all FHF conditions including normal operations, and Category 1 and 2 event sequences. (III) Evaluate FHF criticality conditions resulting from various Category 1 and 2 event sequences. Note that there are currently no Category 1 and 2 event sequences identified for FHF. Consequently, potential hazards from a criticality point of view will be considered as identified in the ''Internal Hazards Analysis for License Application'' document (BSC 2004c, Section 6.6.4). (IV) Assess effects of potential moderator intrusion into the fuel transfer bay for defense in depth. The SNF/HLW waste transfer activity (i.e., assembly and canister transfer) that is being carried out in the FHF has been classified as safety category in the ''Q-list'' (BSC 2003, p. A-6). Therefore, this design calculation is subject to the requirements of the ''Quality Assurance Requirements and Description'' (DOE 2004), even though the FHF itself has not yet been classified in the Q-list. Performance of the work scope as described and development of the associated technical product conform to the procedure AP-3.124, ''Design Calculations and Analyses''.

  2. Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling

    SciTech Connect (OSTI)

    Liu, Yonghao; Chadha, Arvinder; Zhao, Deyin; Shuai, Yichen; Menon, Laxmy; Yang, Hongjun; Zhou, Weidong; Piper, Jessica R.; Fan, Shanhui; Jia, Yichen; Xia, Fengnian; Ma, Zhenqiang

    2014-11-03

    We demonstrate experimentally close to total absorption in monolayer graphene based on critical coupling with guided resonances in transfer printed photonic crystal Fano resonance filters at near infrared. Measured peak absorptions of 35% and 85% were obtained from cavity coupled monolayer graphene for the structures without and with back reflectors, respectively. These measured values agree very well with the theoretical values predicted with the coupled mode theory based critical coupling design. Such strong light-matter interactions can lead to extremely compact and high performance photonic devices based on large area monolayer graphene and other twodimensional materials.

  3. Reversal of the Upper Critical Field Anisotropy and Spin-Locked

    Office of Scientific and Technical Information (OSTI)

    Superconductivity in K2Cr3As3 (Technical Report) | SciTech Connect Reversal of the Upper Critical Field Anisotropy and Spin-Locked Superconductivity in K2Cr3As3 Citation Details In-Document Search Title: Reversal of the Upper Critical Field Anisotropy and Spin-Locked Superconductivity in K2Cr3As3 × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a

  4. GAO-04-354, CRITICAL INFRASTRUCTURE PROTECTION: Challenges and Efforts to Secure Control Systems

    Office of Environmental Management (EM)

    Report to Congressional Requesters United States General Accounting Office GAO March 2004 CRITICAL INFRASTRUCTURE PROTECTION Challenges and Efforts to Secure Control Systems GAO-04-354 www.gao.gov/cgi-bin/getrpt?GAO-04-354. To view the full product, including the scope and methodology, click on the link above. For more information, contact Robert F. Dacey at (202) 512-3317 or daceyr@gao.gov. Highlights of GAO-04-354, a report to congressional requesters March 2004 CRITICAL INFRASTRUCTURE

  5. The DOE Information Center | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The DOE Information Center The DOE Information Center The DOE Information Center provides citizens a consolidated facility to obtain information and records related to the Department of Energy's various programs in Oak Ridge and abroad. Employees at the Information Center are available to assist with your requests and searches from 8:00 a.m. to 5:00 p.m. (EST), Monday through Friday, except for federal holidays. It's current collection has more than 45,000 documents consisting of technical

  6. Freedom of Information Act | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    You are here Home » Operational Management » Freedom of Information Act Freedom of Information Act The Office of Information Resources is responsible for administering policies, programs, and procedures to ensure DOE compliance with the Freedom of Information Act (FOlA), 5 U.S.C. 552. The resources on these pages are provided to aid in finding answers to questions about programs of the Department of Energy and to obtain information that is publicly available without submitting a FOlA request.

  7. Validation and Comparison of Carbon Sequestration Project Cost Models with Project Cost Data Obtained from the Southwest Partnership

    SciTech Connect (OSTI)

    Robert Lee; Reid Grigg; Brian McPherson

    2011-04-15

    Obtaining formal quotes and engineering conceptual designs for carbon dioxide (CO{sub 2}) sequestration sites and facilities is costly and time-consuming. Frequently, when looking at potential locations, managers, engineers and scientists are confronted with multiple options, but do not have the expertise or the information required to quickly obtain a general estimate of what the costs will be without employing an engineering firm. Several models for carbon compression, transport and/or injection have been published that are designed to aid in determining the cost of sequestration projects. A number of these models are used in this study, including models by J. Ogden, MIT's Carbon Capture and Sequestration Technologies Program Model, the Environmental Protection Agency and others. This report uses the information and data available from several projects either completed, in progress, or conceptualized by the Southwest Regional Carbon Sequestration Partnership on Carbon Sequestration (SWP) to determine the best approach to estimate a project's cost. The data presented highlights calculated versus actual costs. This data is compared to the results obtained by applying several models for each of the individual projects with actual cost. It also offers methods to systematically apply the models to future projects of a similar scale. Last, the cost risks associated with a project of this scope are discussed, along with ways that have been and could be used to mitigate these risks.

  8. RAPID/Roadmap/17-HI-a | Open Energy Information

    Open Energy Info (EERE)

    Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools Contribute Contact Us Noise Permit (17-HI-a) A developer may need to obtain a...

  9. Special Undergraduate Informations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Special Undergraduate Information Special Undergraduate Information for SAGE A National Science Foundation Research Experiences for Undergraduates program Contacts Institute...

  10. ARM - Public Information Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govPublicationsPublic Information Materials Publications Journal Articles Conference Documents Program Documents Technical Reports Publications Database Public Information...

  11. WIPP Recovery Information

    Broader source: Energy.gov [DOE]

    At the March 26, 2014 Board meeting J. R. Stroble CBFO, Provided Information on Locations to Access WIPP Recovery Information.

  12. Undercompensated Kondo Impurity with Quantum Critical Point

    SciTech Connect (OSTI)

    Schlottmann, P.

    2000-02-14

    The low-temperature properties of a magnetic impurity of spin S interacting with an electron gas via anisotropic spin exchange are studied via Bethe's ansatz. For S>1/2 the impurity is only partially compensated at T=0 , leaving an effective spin that is neither integer nor half integer. The entropy has an essential singularity at H=T=0 , and the susceptibility and the specific heat follow power laws of H and T with nonuniversal exponents, which are the consequence of a quantum critical point. The results for the generalization to an arbitrary number of channels are also reported. (c) 2000 The American Physical Society.

  13. FA 4: Crosscutting Research | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4: Crosscutting Research Focus Area 4 - Lograsso, Schwegler CMI Org Chart with Hotlinks: Focus Area 4 File: Read more about CMI Org Chart with Hotlinks: Focus Area 4 CMI Org Chart with Hotlinks: Research Overview File: Read more about CMI Org Chart with Hotlinks: Research Overview CMI org chart for FA4 File: Read more about CMI org chart for FA4 CMI org chart for research with hotlinks (pdf) File: Read more about CMI org chart for research with hotlinks (pdf) Critical Materials Institute

  14. Approaches to acceptable risk: a critical guide

    SciTech Connect (OSTI)

    Fischhoff, B.; Lichtenstein, S.; Slovic, P.; Keeney, R.; Derby, S.

    1980-12-01

    Acceptable-risk decisions are an essential step in the management of technological hazards. In many situations, they constitute the weak (or missing) link in the management process. The absence of an adequate decision-making methodology often produces indecision, inconsistency, and dissatisfaction. The result is neither good for hazard management nor good for society. This report offers a critical analysis of the viability of various approaches as guides to acceptable-risk decisions. This report seeks to define acceptable-risk decisions and to examine some frequently proposed, but inappropriate, solutions. 255 refs., 22 figs., 25 tabs.

  15. REACT: Alternatives to Critical Materials in Magnets

    SciTech Connect (OSTI)

    2012-01-01

    REACT Project: The 14 projects that comprise ARPA-Es REACT Project, short for Rare Earth Alternatives in Critical Technologies, are developing cost-effective alternatives to rare earths, the naturally occurring minerals with unique magnetic properties that are used in electric vehicle (EV) motors and wind generators. The REACT projects will identify low-cost and abundant replacement materials for rare earths while encouraging existing technologies to use them more efficiently. These alternatives would facilitate the widespread use of EVs and wind power, drastically reducing the amount of greenhouse gases released into the atmosphere.

  16. CANISTER HANDLING FACILITY CRITICALITY SAFETY CALCULATIONS

    SciTech Connect (OSTI)

    C.E. Sanders

    2005-04-07

    This design calculation revises and updates the previous criticality evaluation for the canister handling, transfer and staging operations to be performed in the Canister Handling Facility (CHF) documented in BSC [Bechtel SAIC Company] 2004 [DIRS 167614]. The purpose of the calculation is to demonstrate that the handling operations of canisters performed in the CHF meet the nuclear criticality safety design criteria specified in the ''Project Design Criteria (PDC) Document'' (BSC 2004 [DIRS 171599], Section 4.9.2.2), the nuclear facility safety requirement in ''Project Requirements Document'' (Canori and Leitner 2003 [DIRS 166275], p. 4-206), the functional/operational nuclear safety requirement in the ''Project Functional and Operational Requirements'' document (Curry 2004 [DIRS 170557], p. 75), and the functional nuclear criticality safety requirements described in the ''Canister Handling Facility Description Document'' (BSC 2004 [DIRS 168992], Sections 3.1.1.3.4.13 and 3.2.3). Specific scope of work contained in this activity consists of updating the Category 1 and 2 event sequence evaluations as identified in the ''Categorization of Event Sequences for License Application'' (BSC 2004 [DIRS 167268], Section 7). The CHF is limited in throughput capacity to handling sealed U.S. Department of Energy (DOE) spent nuclear fuel (SNF) and high-level radioactive waste (HLW) canisters, defense high-level radioactive waste (DHLW), naval canisters, multicanister overpacks (MCOs), vertical dual-purpose canisters (DPCs), and multipurpose canisters (MPCs) (if and when they become available) (BSC 2004 [DIRS 168992], p. 1-1). It should be noted that the design and safety analyses of the naval canisters are the responsibility of the U.S. Department of the Navy (Naval Nuclear Propulsion Program) and will not be included in this document. In addition, this calculation is valid for the current design of the CHF and may not reflect the ongoing design evolution of the facility. However, it is anticipated that design changes to the facility layout will have little or no impact on the criticality results and/or conclusions presented in this document. This calculation is subject to the ''Quality Assurance Requirements and Description'' (DOE 2004 [DIRS 171539]) because the CHF is included in the Q-List (BSC 2005 [DIRS 171190], p. A-3) as an item important to safety. This calculation is prepared in accordance with AP-3.12Q, ''Design Calculations and Analyses'' [DIRS 168413].

  17. Criticality Safety Functional Area Qualification Standard

    Office of Environmental Management (EM)

    DOE-STD-1173-2009 April 2009 DOE STANDARD CRITICALITY SAFETY FUNCTIONAL AREA QUALIFICATION STANDARD DOE Nuclear Facilities Technical Personnel U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-1173-2009 ii This document is available on the Department of Energy Technical Standards Program Web Page at http://www.hss.energy.gov/nuclearsafety/techstds/ DOE-STD-1173-2009 iii APPROVAL The Federal

  18. CriTi-CAL: A computer program for Critical Coiled Tubing Calculations

    SciTech Connect (OSTI)

    He, X.

    1995-12-31

    A computer software package for simulating coiled tubing operations has been developed at Rogaland Research. The software is named CriTiCAL, for Critical Coiled Tubing Calculations. It is a PC program running under Microsoft Windows. CriTi-CAL is designed for predicting force, stress, torque, lockup, circulation pressure losses and along-hole-depth corrections for coiled tubing workover and drilling operations. CriTi-CAL features an user-friendly interface, integrated work string and survey editors, flexible input units and output format, on-line documentation and extensive error trapping. CriTi-CAL was developed by using a combination of Visual Basic and C. Such an approach is an effective way to quickly develop high quality small to medium size software for the oil industry. The software is based on the results of intensive experimental and theoretical studies on buckling and post-buckling of coiled tubing at Rogaland Research. The software has been validated by full-scale test results and field data.

  19. Weak phase stiffness and nature of the quantum critical point in underdoped cuprates

    SciTech Connect (OSTI)

    Yildirim, Yucel; Ku, Wei

    2015-11-02

    We demonstrate that the zero-temperature superconducting phase diagram of underdoped cuprates can be quantitatively understood in the strong binding limit, using only the experimental spectral function of the “normal” pseudogap phase without any free parameter. In the prototypical (La1–xSrx)2CuO4, a kinetics-driven d-wave superconductivity is obtained above the critical doping δc ~ 5.2%, below which complete loss of superfluidity results from local quantum fluctuation involving local p-wave pairs. Near the critical doping, an enormous mass enhancement of the local pairs is found responsible for the observed rapid decrease of phase stiffness. Lastly, a striking mass divergence is predicted at δc that dictates the occurrence of the observed quantum critical point and the abrupt suppression of the Nernst effects in the nearby region.

  20. Weak phase stiffness and nature of the quantum critical point in underdoped cuprates

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yildirim, Yucel; Ku, Wei

    2015-11-02

    We demonstrate that the zero-temperature superconducting phase diagram of underdoped cuprates can be quantitatively understood in the strong binding limit, using only the experimental spectral function of the “normal” pseudogap phase without any free parameter. In the prototypical (La1–xSrx)2CuO4, a kinetics-driven d-wave superconductivity is obtained above the critical doping δc ~ 5.2%, below which complete loss of superfluidity results from local quantum fluctuation involving local p-wave pairs. Near the critical doping, an enormous mass enhancement of the local pairs is found responsible for the observed rapid decrease of phase stiffness. Lastly, a striking mass divergence is predicted at δc thatmore » dictates the occurrence of the observed quantum critical point and the abrupt suppression of the Nernst effects in the nearby region.« less

  1. Transfer matrix computation of critical polynomials for two-dimensional Potts models

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jacobsen, Jesper Lykke; Scullard, Christian R.

    2013-02-04

    We showed, In our previous work, that critical manifolds of the q-state Potts model can be studied by means of a graph polynomial PB(q, v), henceforth referred to as the critical polynomial. This polynomial may be defined on any periodic two-dimensional lattice. It depends on a finite subgraph B, called the basis, and the manner in which B is tiled to construct the lattice. The real roots v = eK — 1 of PB(q, v) either give the exact critical points for the lattice, or provide approximations that, in principle, can be made arbitrarily accurate by increasing the size ofmore » B in an appropriate way. In earlier work, PB(q, v) was defined by a contraction-deletion identity, similar to that satisfied by the Tutte polynomial. Here, we give a probabilistic definition of PB(q, v), which facilitates its computation, using the transfer matrix, on much larger B than was previously possible.We present results for the critical polynomial on the (4, 82), kagome, and (3, 122) lattices for bases of up to respectively 96, 162, and 243 edges, compared to the limit of 36 edges with contraction-deletion. We discuss in detail the role of the symmetries and the embedding of B. The critical temperatures vc obtained for ferromagnetic (v > 0) Potts models are at least as precise as the best available results from Monte Carlo simulations or series expansions. For instance, with q = 3 we obtain vc(4, 82) = 3.742 489 (4), vc(kagome) = 1.876 459 7 (2), and vc(3, 122) = 5.033 078 49 (4), the precision being comparable or superior to the best simulation results. More generally, we trace the critical manifolds in the real (q, v) plane and discuss the intricate structure of the phase diagram in the antiferromagnetic (v < 0) region.« less

  2. Criticality safety evaluation report for K Basin filter cartridges

    SciTech Connect (OSTI)

    Schwinkendorf, K.N.

    1995-01-01

    A criticality safety evaluation of the K Basin filter cartridge assemblies has been completed to support operations without a criticality alarm system. The results show that for normal operation, the filter cartridge assembly is far below the safety limit of k{sub eff} = 0.95, which is applied to plutonium systems at the Hanford Site. During normal operating conditions, uranium, plutonium, and fission and corrosion products in solution are continually accumulating in the available void spaces inside the filter cartridge medium. Currently, filter cartridge assemblies are scheduled to be replaced at six month intervals in KE Basin, and at one year intervals in KW Basin. According to available plutonium concentration data for KE Basin and data for the U/Pu ratio, it will take many times the six-month replacement time for sufficient fissionable material accumulation to take place to exceed the safety limit of k{sub eff} = 0.95, especially given the conservative assumption that the presence of fission and corrosion products is ignored. Accumulation of sludge with a composition typical of that measured in the sand filter backwash pit will not lead to a k{sub eff} = 0.95 value. For off-normal scenarios, it would require at least two unlikely, independent, and concurrent events to take place before the k{sub eff} = 0.95 limit was exceeded. Contingencies considered include failure to replace the filter cartridge assemblies at the scheduled time resulting in additional buildup of fissionable material, the loss of geometry control from the filter cartridge assembly breaking apart and releasing the individual filter cartridges into an optimal configuration, and concentrations of plutonium at U/Pu ratios less than measured data for KE Basin, typically close to 400 according to extensive measurements in the sand filter backwash pit and plutonium production information.

  3. Montana Geographic Information Library | Open Energy Information

    Open Energy Info (EERE)

    Montana Geographic Information Library Jump to: navigation, search OpenEI Reference LibraryAdd to library Map: Montana Geographic Information LibraryInfo GraphicMapChart Abstract...

  4. LTS Information Management - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Site maintenance information Community relations and public involvement information Health and safety information Permits Waste management and disposal information Technical...

  5. Critical condition in gravitational shock wave collision and...

    Office of Scientific and Technical Information (OSTI)

    We find the critical condition is insensitive to the depth of the source closer to the AdS boundary. To understand the origin of the critical condition, we compute the ...

  6. T-537: Oracle Critical Patch Update Advisory- January 2011

    Broader source: Energy.gov [DOE]

    A Critical Patch Update is a collection of patches for multiple security vulnerabilities. It also includes non-security fixes that are required because of interdependencies by those security patches. Critical Patch Updates are cumulative.

  7. T-605: Oracle Critical Patch Update Advisory- April 2011

    Broader source: Energy.gov [DOE]

    A Critical Patch Update is a collection of patches for multiple security vulnerabilities. It also includes non-security fixes that are required because of interdependencies by those security patches. Critical Patch Updates are cumulative.

  8. Hydrogen Fuel Cells Providing Critical Backup Power | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells Providing Critical Backup Power Hydrogen Fuel Cells Providing Critical Backup Power April 9, 2010 - 3:43pm Addthis Customers of AT&T Wireless and Pacific Gas & Electric...

  9. T-651: Blue Coat ProxySG Discloses Potentially Sensitive Information in Core Files

    Broader source: Energy.gov [DOE]

    A vulnerability was reported in Blue Coat ProxySG. A local user can obtain potentially sensitive information

  10. Nanotubes open new path toward quantum information technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanotubes open new path toward quantum information Nanotubes open new path toward quantum information technologies In optical communication, critical information ranging from a credit card number to national security data is transmitted in streams of laser pulses. September 3, 2015 A solitary oxygen dopant (red sphere) covalently attached to the sidewall of the carbon nanotube (gray) can generate single photons (red) at room temperature when excited by laser pulses (green). A solitary oxygen

  11. The Information Role of Spot Prices and Inventories

    Gasoline and Diesel Fuel Update (EIA)

    Information Role of Spot Prices and Inventories James L. Smith, Rex Thompson, and Thomas Lee June 24, 2014 Independent Statistics & Analysis www.eia.gov U.S. Energy Information Administration Washington, DC 20585 This paper is released to encourage discussion and critical comment. The analysis and conclusions expressed here are those of the authors and not necessarily those of the U.S. Energy Information Administration. WORKING PAPER SERIES June 2014 James L. Smith, Rex Thomas, and Thomas K.

  12. Waste and Materials Disposition Information | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste and Materials Disposition Information Waste and Materials Disposition Information Waste and Materials Disposition Information As the Office of Environmental Management (EM) fulfills its mission, waste and materials disposition plays a vital role in the cleanup of radioactive waste and the environmental legacy of nuclear weapons production and nuclear energy research. Disposal of waste frequently falls on the critical path of cleanup projects. Significant planning resources are spent to

  13. Critical Materials Institute uses the Materials Genome approach to

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    accelerate rare-earth replacement | Critical Materials Institute Critical Materials Institute uses the Materials Genome approach to accelerate rare-earth replacement CMI research team at a light manufacturing facility Critical Materials Institute uses the Materials Genome approach to accelerate rare-earth replacement The Critical Materials Institute, led by the U.S. Department of Energy's (DOE's) Ames Laboratory, has invented two new phosphors in one year of research, demonstrating the power

  14. Electric Motors and Critical Materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Motors and Critical Materials Electric Motors and Critical Materials Presentation given at the EV Everywhere Grand Challenge … Electric Drive (Power Electronics and Electric Machines) Workshop on July 24, 2012 held at the Doubletree O'Hare, Chicago, IL. PDF icon 7b_electric_motors-and_critical_materials_ed.pdf More Documents & Publications EV Everywhere Workshop: Power Electronics and Thermal Management Breakout Session Report EV Everywhere Workshop: Electric Motors and Critical Materials

  15. Quality Assurance for Critical Decision Reviews RM | Department of Energy

    Energy Savers [EERE]

    Assurance for Critical Decision Reviews RM Quality Assurance for Critical Decision Reviews RM The purpose of this Quality Assurance for Capital Project Critical Decision Review Module (QA RM) is to identify, integrate, and clarify the QA performance objectives, criteria, and guidance needed to review project documents and activities. PDF icon Quality Assurance for Critical Decision Reviews RM More Documents & Publications Line Management Understanding of QA and Oversight Facility Software

  16. FAQS Reference Guide - Criticality Safety (NNSA) | Department of Energy

    Office of Environmental Management (EM)

    Safety (NNSA) FAQS Reference Guide - Criticality Safety (NNSA) This reference guide has been developed to address the competency statements in DOE-STD-1173-2009, Criticality Safety Functional Area Qualification Standard. PDF icon Criticality Safety Qualification Standard Reference Guide, September 2010 More Documents & Publications FAQS Qualification Card - Criticality Safety DOE-STD-1173-2009 Application of Engineering and Technical Requirements for DOE Nuclear Facilities Standard Review

  17. National Critical Infrastructure Security and Resilience Month: Improving

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Security and Resilience of the Nation's Grid | Department of Energy Critical Infrastructure Security and Resilience Month: Improving the Security and Resilience of the Nation's Grid National Critical Infrastructure Security and Resilience Month: Improving the Security and Resilience of the Nation's Grid November 3, 2015 - 2:30pm Addthis Power lines like these make up our nation's power grid -- a critical component of our national critical infrastructure. Power lines like these make up

  18. Reducing Cyber Risk to Critical Infrastructure: NIST Framework | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Reducing Cyber Risk to Critical Infrastructure: NIST Framework Reducing Cyber Risk to Critical Infrastructure: NIST Framework Recognizing that the national and economic security of the United States depends on the reliable functioning of critical infrastructure, the President under Executive Order (EO) 13636 "Improving Critical Infrastructure Cybersecurity" of February 2013 directed the National Institute of Standards and Technology (NIST) to work with stakeholders to

  19. The Department of Energy's Critical Materials Strategy | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy The Department of Energy's Critical Materials Strategy The Department of Energy's Critical Materials Strategy The U.S. Department of Energy (DOE) supports a proactive and comprehensive approach to address the challenges associated with the use of rare earth elements and other critical materials in clean energy technologies. In 2010 the Department developed its first-ever Critical Materials Strategy based on three strategic pillars: 1) diversifying global supply chains to mitigate

  20. Microsoft Word - Critical Infrastructure Security and Resilience Month.docx

    Office of Environmental Management (EM)

    White House Office of the Press Secretary For Immediate Release October 31, 2013 Presidential Proclamation -- Critical Infrastructure Security and Resilience Month, 2013 CRITICAL INFRASTRUCTURE SECURITY AND RESILIENCE MONTH, 2013 - - - - - - - BY THE PRESIDENT OF THE UNITED STATES OF AMERICA A PROCLAMATION Over the last few decades, our Nation has grown increasingly dependent on critical infrastructure, the backbone of our national and economic security. America's critical infrastructure is

  1. Fuzzy architecture assessment for critical infrastructure resilience

    SciTech Connect (OSTI)

    Muller, George

    2012-12-01

    This paper presents an approach for the selection of alternative architectures in a connected infrastructure system to increase resilience of the overall infrastructure system. The paper begins with a description of resilience and critical infrastructure, then summarizes existing approaches to resilience, and presents a fuzzy-rule based method of selecting among alternative infrastructure architectures. This methodology includes considerations which are most important when deciding on an approach to resilience. The paper concludes with a proposed approach which builds on existing resilience architecting methods by integrating key system aspects using fuzzy memberships and fuzzy rule sets. This novel approach aids the systems architect in considering resilience for the evaluation of architectures for adoption into the final system architecture.

  2. Investigation of criticality safety control infraction data at a nuclear facility

    SciTech Connect (OSTI)

    Cournoyer, Michael E.; Merhege, James F.; Costa, David A.; Art, Blair M.; Gubernatis, David C.

    2014-10-27

    Chemical and metallurgical operations involving plutonium and other nuclear materials account for most activities performed at the LANL's Plutonium Facility (PF-4). The presence of large quantities of fissile materials in numerous forms at PF-4 makes it necessary to maintain an active criticality safety program. The LANL Nuclear Criticality Safety (NCS) Program provides guidance to enable efficient operations while ensuring prevention of criticality accidents in the handling, storing, processing and transportation of fissionable material at PF-4. In order to achieve and sustain lower criticality safety control infraction (CSCI) rates, PF-4 operations are continuously improved, through the use of Lean Manufacturing and Six Sigma (LSS) business practices. Employing LSS, statistically significant variations (trends) can be identified in PF-4 CSCI reports. In this study, trends have been identified in the NCS Program using the NCS Database. An output metric has been developed that measures ADPSM Management progress toward meeting its NCS objectives and goals. Using a Pareto Chart, the primary CSCI attributes have been determined in order of those requiring the most management support. Data generated from analysis of CSCI data help identify and reduce number of corresponding attributes. In-field monitoring of CSCI's contribute to an organization's scientific and technological excellence by providing information that can be used to improve criticality safety operation safety. This increases technical knowledge and augments operational safety.

  3. Investigation of criticality safety control infraction data at a nuclear facility

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cournoyer, Michael E.; Merhege, James F.; Costa, David A.; Art, Blair M.; Gubernatis, David C.

    2014-10-27

    Chemical and metallurgical operations involving plutonium and other nuclear materials account for most activities performed at the LANL's Plutonium Facility (PF-4). The presence of large quantities of fissile materials in numerous forms at PF-4 makes it necessary to maintain an active criticality safety program. The LANL Nuclear Criticality Safety (NCS) Program provides guidance to enable efficient operations while ensuring prevention of criticality accidents in the handling, storing, processing and transportation of fissionable material at PF-4. In order to achieve and sustain lower criticality safety control infraction (CSCI) rates, PF-4 operations are continuously improved, through the use of Lean Manufacturing andmore » Six Sigma (LSS) business practices. Employing LSS, statistically significant variations (trends) can be identified in PF-4 CSCI reports. In this study, trends have been identified in the NCS Program using the NCS Database. An output metric has been developed that measures ADPSM Management progress toward meeting its NCS objectives and goals. Using a Pareto Chart, the primary CSCI attributes have been determined in order of those requiring the most management support. Data generated from analysis of CSCI data help identify and reduce number of corresponding attributes. In-field monitoring of CSCI's contribute to an organization's scientific and technological excellence by providing information that can be used to improve criticality safety operation safety. This increases technical knowledge and augments operational safety.« less

  4. Thermal criticality in a repository environment

    SciTech Connect (OSTI)

    Morris, E.E.

    1995-11-01

    This report explores a scenario in which burial containers fail and fissile material is transported through the tuff by water to some location, away from the burial site, where an over-moderated critical mass gradually accumulates. Because of the low solubilities of plutonium and uranium, and the low ground water velocities, the analysis shows that such a scenario with {sup 239}Pu is probably impossible because the time required to accumulate a critical mass is large compared with the half-life of the {sup 239}Pu. In the case of {sup 235}U, the analysis indicates that the accumulation rates are so low that relatively small fission power levels would consume the {sup 235}U as fast as it accumulates, and that the thermal conductivity of the tuff is large enough to prevent a significant increase in temperature. Thus, the conditions for the removal of water by boiling and the associated autocatalytic increase in reactivity are not met in the case of {sup 235}U. An explosive release of energy does not appear to be possible. A simple water voiding model, which allows water removal at about the fastest possible rate, was used to explore a scenario in which the fuel accumulation rate was arbitrarily increased enough to cause water boiling and the associated dryout of the tuff. Calculations for this case indicate that disruption of the tuff, leading to a neutronic shutdown, would probably occur before an explosive energy release could be generated. Additional scenarios, which should be investigated in future work are identified.

  5. Critical Decision 4 (CD-4) Approval Template | Department of Energy

    Office of Environmental Management (EM)

    Critical Decision 4 (CD-4) Approval Template Critical Decision 4 (CD-4) Approval Template Template for the approval of CD-4, start of operations / project completion. File Template More Documents & Publications Example BCP Template SOW and Key Performance Parameters (KPP) Handbook Final Version 9-30-2014 Critical Decision 2 (CD-2) Approval Template

  6. Guidelines for Preparing Criticality Safety Evaluations at Department of Energy Nonreactor Nuclear Facilities

    Office of Environmental Management (EM)

    STD-3007-2007 February 2007 DOE STANDARD GUIDELINES FOR PREPARING CRITICALITY SAFETY EVALUATIONS AT DEPARTMENT OF ENERGY NONREACTOR NUCLEAR FACILITIES U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE This document has been reproduced from the best available copy. Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge,

  7. DOE-STD-1158-2002; Self-Assessment Standard for DOE Contractor Criticality Safety Programs

    Office of Environmental Management (EM)

    02 November 2002 DOE STANDARD SELF-ASSESSMENT STANDARD FOR DOE CONTRACTOR CRITICALITY SAFETY PROGRAMS U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE This document has been reproduced from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the

  8. DOE-STD-1173-2003; Criticality Safety Functional Area Qualification Standard

    Office of Environmental Management (EM)

    73-2003 December 2003 DOE STANDARD CRITICALITY SAFETY FUNCTIONAL AREA QUALIFICATION STANDARD DOE Defense Nuclear Facilities Technical Personnel U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE DOE-STD-1173-2003 ii This document has been reproduced from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of

  9. Government Agency Contacts | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Government Agency Contacts U.S. White House executive order National Defense Resources Preparedness U.S. White House Office of Science and Technology Policy (OSTP) U.S. Department of Energy (DOE) DOE Office of Scientific and Technical Information (OSTI) DOE Public Access Gateway for Energy and Science (DOE PAGESBeta) DOE Blog Joules of Wisdom Energy Efficiency and Renewable Energy (EERE) Advanced Manufacturing Office (AMO)

  10. Working with CMI: Associates | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Associates CMI Associates work with CMI researchers to define a scope of work, budget and timeline for the work. Once internally approved, the entity must execute either a CRADA or SPP with Ames or another Team national laboratory before work may begin. For more information, contact Stacy Joiner: joiner@ameslab.gov, 515-294-5932 CMIaffiliates@ameslab.gov CMI Membership Program, The Ames Laboratory, 311 TASF, Ames, IA, 50011-3020

  11. CMI Organizational Interactions | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CMI Organizational Interactions CMI Affiliates: CMI Affiliates will be informed about CMI research outcomes and provide intput to CMI. Affiliates pay an annual fee based on the organization type, and sign a Membership Agreement. CMI Affiliates may become Team members or sponsor research in other ways with different levels of financial commitment and ownership of intellectual property. CMI Associates: CMI Associates may use the unique capabilities and expertise of CMI via DOE-approved contractual

  12. Energy information sheets

    SciTech Connect (OSTI)

    1995-07-01

    The National Energy Information Center (NEIC), as part of its mission, provides energy information and referral assistance to Federal, State, and local governments, the academic community, business and industrial organizations, and the public. The Energy Information Sheets was developed to provide general information on various aspects of fuel production, prices, consumption, and capability. Additional information on related subject matter can be found in other Energy Information Administration (EIA) publications as referenced at the end of each sheet.

  13. ARM - People Contact Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govPeople DirectoryReports ARM People Database Reports Email List Owner Information Email List Membership Information (password required) CategoryProgram List Membership...

  14. Utilities | Open Energy Information

    Open Energy Info (EERE)

    historic, in human and machine readable formats. See also the NREL System Advisor Model (SAM) and NREL's BEOpt. Utility Outage Information dataset - Information and resources...

  15. Background Information on CBECS

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Information on CBECS The following topics provide detailed information on survey methodology, the kinds of errors associated with sample surveys, estimation of standard errors,...

  16. Takigami | Open Energy Information

    Open Energy Info (EERE)

    ENERGYGeothermal Home Takigami General Information Name Takigami Sector Geothermal energy Location Information Address 2862-12 Kokonoe, Kusu District, Oita Prefecture 879-4802...

  17. Policy Flash 2013-24 Fee Determinations: Requirement to Obtain Acquisition

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Executive's Input | Department of Energy 4 Fee Determinations: Requirement to Obtain Acquisition Executive's Input Policy Flash 2013-24 Fee Determinations: Requirement to Obtain Acquisition Executive's Input Attached is Policy Flash 2013-24 Fee Determinations: Requirement to Obtain Acquisition Executive's Input. Questions concerning this policy flash should be directed to Michael Righi of the Contract and Financial Assistance Policy Division, Office of Policy, Office Acquisition and Project

  18. Transient critical heat flux and blowdown heat-transfer studies

    SciTech Connect (OSTI)

    Leung, J.C.

    1980-05-01

    Objective of this study is to give a best-estimate prediction of transient critical heat flux (CHF) during reactor transients and hypothetical accidents. To accomplish this task, a predictional method has been developed. Basically it involves the thermal-hydraulic calculation of the heated core with boundary conditions supplied from experimental measurements. CHF predictions were based on the instantaneous ''local-conditions'' hypothesis, and eight correlations (consisting of round-tube, rod-bundle, and transient correlations) were tested against most recent blowdown heat-transfer test data obtained in major US facilities. The prediction results are summarized in a table in which both CISE and Biasi correlations are found to be capable of predicting the early CHF of approx. 1 s. The Griffith-Zuber correlation is credited for its prediction of the delay CHF that occurs in a more tranquil state with slowly decaying mass velocity. In many instances, the early CHF can be well correlated by the x = 1.0 criterion; this is certainly indicative of an annular-flow dryout-type crisis. The delay CHF occurred at near or above 80% void fraction, and the success of the modified Zuber pool-boiling correlation suggests that this CHF is caused by flooding and pool-boiling type hydrodynamic crisis.

  19. Critical infrastructure systems of systems assessment methodology.

    SciTech Connect (OSTI)

    Sholander, Peter E.; Darby, John L.; Phelan, James M.; Smith, Bryan; Wyss, Gregory Dane; Walter, Andrew; Varnado, G. Bruce; Depoy, Jennifer Mae

    2006-10-01

    Assessing the risk of malevolent attacks against large-scale critical infrastructures requires modifications to existing methodologies that separately consider physical security and cyber security. This research has developed a risk assessment methodology that explicitly accounts for both physical and cyber security, while preserving the traditional security paradigm of detect, delay, and respond. This methodology also accounts for the condition that a facility may be able to recover from or mitigate the impact of a successful attack before serious consequences occur. The methodology uses evidence-based techniques (which are a generalization of probability theory) to evaluate the security posture of the cyber protection systems. Cyber threats are compared against cyber security posture using a category-based approach nested within a path-based analysis to determine the most vulnerable cyber attack path. The methodology summarizes the impact of a blended cyber/physical adversary attack in a conditional risk estimate where the consequence term is scaled by a ''willingness to pay'' avoidance approach.

  20. Breckinridge Project, initial effort. Report XI, Volume V. Critical review of the design basis. [Critical review

    SciTech Connect (OSTI)

    1982-01-01

    Report XI, Technical Audit, is a compendium of research material used during the Initial Effort in making engineering comparisons and decisions. Volumes 4 and 5 of Report XI present those studies which provide a Critical Review of the Design Basis. The Critical Review Report, prepared by Intercontinental Econergy Associates, Inc., summarizes findings from an extensive review of the data base for the H-Coal process design. Volume 4 presents this review and assessment, and includes supporting material; specifically, Design Data Tabulation (Appendix A), Process Flow Sheets (Appendix B), and References (Appendix C). Volume 5 is a continuation of the references of Appendix C. Studies of a proprietary nature are noted and referenced, but are not included in these volumes. They are included in the Limited Access versions of these reports and may be reviewed by properly cleared personnel in the offices of Ashland Synthetic Fuels, Inc.

  1. Alaska - CPCN General Information | Open Energy Information

    Open Energy Info (EERE)

    CPCN General Information Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - Instructions: Alaska - CPCN General...

  2. Geographic Information System | Open Energy Information

    Open Energy Info (EERE)

    Exploration, Tracers Data Analysis, And Enhanced Data Distribution, Visualization, And Management Geographic Information System At Brady Hot Springs Area (Laney, 2005) Brady Hot...

  3. Nevada Transmission Siting Information | Open Energy Information

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Nevada Transmission Siting InformationPermittingRegulatory GuidanceGuide...

  4. Information Technology and Community Restoration Studies/Task 1: Information Technology

    SciTech Connect (OSTI)

    Upton, Jaki F.; Lesperance, Ann M.; Stein, Steven L.

    2009-11-19

    Executive Summary The Interagency Biological Restoration Demonstrationa program jointly funded by the Department of Defense's Defense Threat Reduction Agency and the Department of Homeland Security's (DHS's) Science and Technology Directorateis developing policies, methods, plans, and applied technologies to restore large urban areas, critical infrastructures, and Department of Defense installations following the intentional release of a biological agent (anthrax) by terrorists. There is a perception that there should be a common system that can share information both vertically and horizontally amongst participating organizations as well as support analyses. A key question is: "How far away from this are we?" As part of this program, Pacific Northwest National Laboratory conducted research to identify the current information technology tools that would be used by organizations in the greater Seattle urban area in such a scenario, to define criteria for use in evaluating information technology tools, and to identify current gaps. Researchers interviewed 28 individuals representing 25 agencies in civilian and military organizations to identify the tools they currently use to capture data needed to support operations and decision making. The organizations can be grouped into five broad categories: defense (Department of Defense), environmental/ecological (Environmental Protection Agency/Ecology), public health and medical services, emergency management, and critical infrastructure. The types of information that would be communicated in a biological terrorism incident include critical infrastructure and resource status, safety and protection information, laboratory test results, and general emergency information. The most commonly used tools are WebEOC (web-enabled crisis information management systems with real-time information sharing), mass notification software, resource tracking software, and NW WARN (web-based information to protect critical infrastructure systems). It appears that the current information management tools are used primarily for information gathering and sharingnot decision making. Respondents identified the following criteria for a future software system. It is easy to learn, updates information in real time, works with all agencies, is secure, uses a visualization or geographic information system feature, enables varying permission levels, flows information from one stage to another, works with other databases, feeds decision support tools, is compliant with appropriate standards, and is reasonably priced. Current tools have security issues, lack visual/mapping functions and critical infrastructure status, and do not integrate with other tools. It is clear that there is a need for an integrated, common operating system. The system would need to be accessible by all the organizations that would have a role in managing an anthrax incident to enable regional decision making. The most useful tool would feature a GIS visualization that would allow for a common operating picture that is updated in real time. To capitalize on information gained from the interviews, the following activities are recommended: Rate emergency management decision tools against the criteria specified by the interviewees. Identify and analyze other current activities focused on information sharing in the greater Seattle urban area. Identify and analyze information sharing systems/tools used in other regions.

  5. Developing measurement indices to enhance protection and resilience of U.S. critical infrastructure and key resources.

    SciTech Connect (OSTI)

    Fisher, R. E.; Norman, M.

    2010-07-01

    The US Department of Homeland Security (DHS) is developing indices to better assist in the risk management of critical infrastructures. The first of these indices is the Protective Measures Index - a quantitative index that measures overall protection across component categories: physical security, security management, security force, information sharing, protective measures and dependencies. The Protective Measures Index, which can also be recalculated as the Vulnerability Index, is a way to compare differing protective measures (eg fence versus security training). The second of these indices is the Resilience Index, which assesses a site's resilience and consists of three primary components: robustness, resourcefulness and recovery. The third index is the Criticality Index, which assesses the importance of a facility. The Criticality Index includes economic, human, governance and mass evacuation impacts. The Protective Measures Index, Resilience Index and Criticality Index are being developed as part of the Enhanced Critical Infrastructure Protection initiative that DHS protective security advisers implement across the nation at critical facilities. This paper describes two core themes: determination of the vulnerability, resilience and criticality of a facility and comparison of the indices at different facilities.

  6. Method and apparatus for obtaining enhanced production rate of thermal chemical reactions

    DOE Patents [OSTI]

    Tonkovich, Anna Lee Y.; Wang, Yong; Wegeng, Robert S.; Gao, Yufei

    2003-09-09

    Reactors and processes are disclosed that can utilize high heat fluxes to obtain fast, steady-state reaction rates. Porous catalysts used in conjunction with microchannel reactors to obtain high rates of heat transfer are also disclosed. Reactors and processes that utilize short contact times, high heat flux and low pressure drop are described. Improved methods of steam reforming are also provided.

  7. Method and apparatus for obtaining enhanced production rate of thermal chemical reactions

    DOE Patents [OSTI]

    Tonkovich, Anna Lee Y.; Wang, Yong; Wegeng, Robert S.; Gao, Yufei

    2006-05-16

    Reactors and processes are disclosed that can utilize high heat fluxes to obtain fast, steady-state reaction rates. Porous catalysts used in conjunction with microchannel reactors to obtain high rates of heat transfer are also disclosed. Reactors and processes that utilize short contact times, high heat flux and low pressure drop are described. Improved methods of steam reforming are also provided.

  8. Contractor Past Performance Information

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7.2 (May 2014) 2 2014 Critical Few Performance Measures * Policy Flash 2013-73 dated ... Strategic sourcing is a branch and tenet of Supply Chain Management; strategic sourcing ...

  9. WIPP - Joint Information Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Joint Information Center is located at 4021 National Parks Highway in Carlsbad, N.M. Joint Information Center In the unlikely event of an emergency, the WIPP Joint Information Center (JIC) serves as a central control point to coordinate multi-agency efforts to issue timely and accurate information to the public, news media and project employees. Emergency contact information: The public If the JIC is activated, members of the general public, including family members, may call (575) 234-7380

  10. Additive Manufacturing Meets the Critical Materials Shortage | Department

    Broader source: Energy.gov (indexed) [DOE]

    of Energy Green light reflection from a low-oxygen environment, 3D-printer laser deposition of metal powder alloys. | Photo courtesy of Critical Materials Institute, Ames Laboratory Green light reflection from a low-oxygen environment, 3D-printer laser deposition of metal powder alloys. | Photo courtesy of Critical Materials Institute, Ames Laboratory Dr. Mike McKittrick Advanced Manufacturing Office lead for the Critical Materials Institute MORE ON THIS STORY Learn more about AMO's work and

  11. Secretary Chu Announces Completion of Critical Energy Conservation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Appliance Standards | Department of Energy Completion of Critical Energy Conservation Appliance Standards Secretary Chu Announces Completion of Critical Energy Conservation Appliance Standards September 1, 2009 - 12:00am Addthis Washington, DC - U.S. Energy Secretary Steven Chu announced today that the Department of Energy has completed energy efficiency standards for a critical group of appliances that will together save up to 1.1 billion metric tons of carbon dioxide once in effect. In

  12. Department of Energy Releases its 2011 Critical Materials Strategy |

    Energy Savers [EERE]

    Department of Energy its 2011 Critical Materials Strategy Department of Energy Releases its 2011 Critical Materials Strategy December 22, 2011 - 12:33pm Addthis Washington, D.C. - The U.S. Department of Energy (DOE) today released the 2011 Critical Materials Strategy. The report examines the role that rare earth metals and other key materials play in clean energy technologies such as wind turbines, electric vehicles, solar cells and energy-efficient lighting. The report found that several

  13. Critical condition in gravitational shock wave collision and heavy ion

    Office of Scientific and Technical Information (OSTI)

    collisions (Journal Article) | SciTech Connect Critical condition in gravitational shock wave collision and heavy ion collisions Citation Details In-Document Search Title: Critical condition in gravitational shock wave collision and heavy ion collisions In this paper, we derive a critical condition for matter equilibration in heavy ion collisions using a holographic approach. Gravitational shock waves with infinite transverse extension are used to model an infinite nucleus. We construct the

  14. The Department of Energy Releases Strategy on Critical Materials |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy The Department of Energy Releases Strategy on Critical Materials The Department of Energy Releases Strategy on Critical Materials December 15, 2010 - 12:00am Addthis The Department of Energy today released its Critical Materials Strategy. The strategy examines the role of rare earth metals and other materials in the clean energy economy, based on extensive research by the Department during the past year. The report focuses on materials used in four technologies - wind

  15. Providing Nuclear Criticality Safety Analysis Education through Benchmark Experiment Evaluation

    SciTech Connect (OSTI)

    John D. Bess; J. Blair Briggs; David W. Nigg

    2009-11-01

    One of the challenges that today's new workforce of nuclear criticality safety engineers face is the opportunity to provide assessment of nuclear systems and establish safety guidelines without having received significant experience or hands-on training prior to graduation. Participation in the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and/or the International Reactor Physics Experiment Evaluation Project (IRPhEP) provides students and young professionals the opportunity to gain experience and enhance critical engineering skills.

  16. Microsoft Word - TRILATERAL CRITICAL MATERIALS WORKSHOP Summary Report final 20111129

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    TRILATERAL EU-JAPAN-U.S. CONFERENCE ON CRITICAL MATERIALS FOR A CLEAN ENERGY FUTURE Washington DC, 4-5 October 2011 Summary Report Introduction The conference convened officials and experts from the European Union, Japan and the United States, as well as guests from Australia and Canada, to discuss how best to ensure an adequate supply of critical materials for a clean energy future and how best to cooperate toward this end. A plenary seminar focused on strategic approaches to assuring critical

  17. CMI Education and Outreach in 2013 | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 CMI education and outreach in 2013: Hardin Valley Academy in Knoxville, Tennessee, December: CMI Director Alex King talked to sophomores Materials Research Society, Dec. 2: Karl Gschneidner, chief scientist for the Critical Materials Institute, talked with critical materials with materials science and engineering students at the MRS Fall conference TEDxDes Moines, Sept. 8: CMI Director Alex King presented "The Dawn of the Age of Critical Materials"

  18. Critical Materials Workshop Plenary Session Videos | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Critical Materials Workshop Plenary Session Videos Critical Materials Workshop Plenary Session Videos Welcome and Overview of Workshop and Energy Innovation Hubs Speakers * Dr. Leo Christodoulou, Program Manager, Advanced Manufacturing Office (AMO) * The Honorable Steven Chu, Secretary, U.S. DOE View the text version of the video. DOE and Critical Materials Speaker * David Sandalow, Assistant Secretary, Office of Policy and International Affairs View the text version of the video. National

  19. US-EU-Japan Working Group on Critical Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    US-EU-Japan Working Group on Critical Materials 4 th Annual Meeting Iowa State University Hosted by The Critical Materials Institute The Ames Laboratory September 8, 2014 AGENDA 8:30 Registration 9:00 Welcome Alex King, Director, Critical Materials Institute Opening Remarks 9:10 Akito Tani, Deputy Director-General, Manufacturing Industries Bureau, MET 9:20 Gwenole Cozigou, Director, DG Enterprise and Industry 9:30 Mark Johnson, Director, Advanced Manufacturing Office, DOE Session 1: Anticipating

  20. Reversibility and criticality in amorphous solids (Journal Article) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Reversibility and criticality in amorphous solids Citation Details In-Document Search Title: Reversibility and criticality in amorphous solids The physical processes governing the onset of yield, where a material changes its shape permanently under external deformation, are not yet understood for amorphous solids that are intrinsically disordered. Here, using molecular dynamics simulations and mean-field theory, we show that at a critical strain amplitude the sizes of

  1. Universal Entanglement Entropy in 2D Conformal Quantum Critical Points

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Universal Entanglement Entropy in 2D Conformal Quantum Critical Points Citation Details In-Document Search Title: Universal Entanglement Entropy in 2D Conformal Quantum Critical Points We study the scaling behavior of the entanglement entropy of two dimensional conformal quantum critical systems, i.e. systems with scale invariant wave functions. They include two-dimensional generalized quantum dimer models on bipartite lattices and quantum loop models, as

  2. CRAD, NNSA - Criticality Safety (CS) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Criticality Safety (CS) CRAD, NNSA - Criticality Safety (CS) CRAD for Criticality Safety (CS). Criteria Review and Approach Documents (CRADs) that can be used to conduct a well-organized and thorough assessment of elements of safety and health programs. CRADs consist of a Performance Objective that identifies the expectation(s) or requirement(s) to be verified, which reflect the complete scope of the assessment; Criteria that provide specifics by which the performance objectives are measured,

  3. Track B - Critical Guidance for Peak Performance Homes | Department of

    Energy Savers [EERE]

    Energy B - Critical Guidance for Peak Performance Homes Track B - Critical Guidance for Peak Performance Homes Presentations from Track B, Critical Guidance for Peak Performance Homes of the U.S. Department of Energy Building America program's 2012 Residential Energy Efficiency Stakeholder Meeting are provided below as Adobe Acrobat PDFs. These presentations for this track covered the following topics: Ventilation Strategies in High Performance Homes; Combustion Safety in Tight Houses;

  4. Facility Software Quality Assurance (SQA) for Captal Project Critical

    Energy Savers [EERE]

    Decisions RM | Department of Energy Software Quality Assurance (SQA) for Captal Project Critical Decisions RM Facility Software Quality Assurance (SQA) for Captal Project Critical Decisions RM The purpose of this Software Quality Assurance for Capital Project Critical Decision Review Module (SQA RM) is to identify, integrate, and clarify, in one EM document, the SQA performance objectives, criteria, and guidance needed to review project documents and activities. PDF icon Facility Software

  5. Energy Department Releases New Critical Materials Strategy | Department of

    Office of Environmental Management (EM)

    Energy New Critical Materials Strategy Energy Department Releases New Critical Materials Strategy December 15, 2010 - 1:30pm Addthis | Department of Energy Illustration | | Department of Energy Illustration | David Sandalow David Sandalow Former Under Secretary of Energy (Acting) and Assistant Secretary for Policy & International Affairs The Department of Energy released a strategy on critical materials at an event this morning at the Center for Strategic & International Studies. The

  6. FAQS Job Task Analyses - Criticality Safety | Department of Energy

    Office of Environmental Management (EM)

    Criticality Safety FAQS Job Task Analyses - Criticality Safety FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies. PDF icon FAQS JTA - Criticality

  7. Increasing Access to Materials Critical to the Clean Energy Economy |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Access to Materials Critical to the Clean Energy Economy Increasing Access to Materials Critical to the Clean Energy Economy January 9, 2013 - 12:30pm Addthis Europium, a rare earth element that has the same relative hardness of lead, is used to create fluorescent lightbulbs. With no proven substitutes, europium is considered critical to the clean energy economy. | Photo courtesy of the Ames Laboratory. Europium, a rare earth element that has the same relative hardness

  8. Category:Geographic Information System | Open Energy Information

    Open Energy Info (EERE)

    Geographic Information System Jump to: navigation, search Geothermalpower.jpg Looking for the Geographic Information System page? For detailed information on Geographic Information...

  9. Criticality Safety Evaluation of Hanford Tank Farms Facility

    SciTech Connect (OSTI)

    WEISS, E.V.

    2000-12-15

    Data and calculations from previous criticality safety evaluations and analyses were used to evaluate criticality safety for the entire Tank Farms facility to support the continued waste storage mission. This criticality safety evaluation concludes that a criticality accident at the Tank Farms facility is an incredible event due to the existing form (chemistry) and distribution (neutron absorbers) of tank waste. Limits and controls for receipt of waste from other facilities and maintenance of tank waste condition are set forth to maintain the margin subcriticality in tank waste.

  10. President's 2016 Budget Proposal Makes Critical Investments in...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for the Energy Department. This Budget continues the Administration's efforts to invest in America's future, making critical investments in research, energy and...

  11. Scientists propose a solution to a critical barrier to producing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientists propose a solution to a critical barrier to producing fusion By John Greenwald ... solution to a mystery that has long baffled researchers working to harness fusion. ...

  12. Review of Nevada Site Office Criticality Safety Assessments at the Criticality Experiments Facility and Training Assembly for Criticality Safety and Appraisal of the Criticality Experiments Facility Startup Plan, October 2011

    Broader source: Energy.gov [DOE]

    This report provides the results of an independent oversight review of criticality safety assessment activities conducted by the Department of Energy's (DOE) Nevada Site Office

  13. Identifying and Overcoming Critical Barriers to Widespread Second...

    Office of Scientific and Technical Information (OSTI)

    Overcoming Critical Barriers to Widespread Second Use of PEV Batteries Neubauer, J.; Smith, K.; Wood, E.; Pesaran, A. 25 ENERGY STORAGE; 29 ENERGY PLANNING, POLICY AND ECONOMY...

  14. Guidelines for Preparing Criticality Safety Evaluations at Department...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7-2007, Guidelines for Preparing Criticality Safety Evaluations at Department of Energy Non-Reactor Nuclear Facilities by Diane Johnson This standard provides a framework for...

  15. Criticality Safety Controls Implementation, May 31, 2013 (HSS...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to provide preventive andor mitigative functions for specific potential accident scenarios. There are additional expectations for criticality safety controls that are also...

  16. Security Risk Assessment Methodologies (RAM) for Critical Infrastructu...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Building Energy Efficiency Find More Like This Return to Search Security Risk Assessment Methodologies (RAM) for Critical Infrastructures Sandia National Laboratories...

  17. Universal Entanglement Entropy in 2D Conformal Quantum Critical...

    Office of Scientific and Technical Information (OSTI)

    Title: Universal Entanglement Entropy in 2D Conformal Quantum Critical Points We study the scaling behavior of the entanglement entropy of two dimensional conformal quantum ...

  18. Approaches for Developing Uniform Hazard Spectra at Critical...

    Office of Environmental Management (EM)

    Presentation from the May 2015 Seismic Lessons-Learned Panel Meeting. PDF icon Approaches for Developing Uniform Hazard Spectra at Critical Facilities More Documents & Publications...

  19. The Future of Absorption Technology in America: A Critical Look...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Future of Absorption Technology in America: A Critical Look at the Impact of Building, Cooling, Heating, and Power (BCHP) and Innovation, June 2000 The Future of Absorption...

  20. Critical Materials Institute signs new member United Technologies...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    signs new member United Technologies Research Center Contacts: For release: Aug. 18, 2015 Alex King, Director, Critical Materials Institute, (515) 296-4505 Laura Millsaps, Ames...

  1. Universal Entanglement Entropy in 2D Conformal Quantum Critical...

    Office of Scientific and Technical Information (OSTI)

    the properties of the conformal structure of the wave function of these quantum critical systems. The calculation of the universal term reduces to a problem in boundary conformal...

  2. Picture of the Week: Laser probe for critical subcriticals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    03 Laser probe for critical subcriticals This specialized laser instrument allows Los Alamos scientists to perform sophisticated nuclear experiments and gather significant amounts...

  3. Quantum critical scaling and superconductivity in heavy electron...

    Office of Scientific and Technical Information (OSTI)

    This content will become publicly available on November 16, 2016 Title: Quantum critical ... become publicly available on November 16, 2016 Publisher's Version of Record 10.1103...

  4. Chu: President's 2013 Energy Budget Makes Critical Investments...

    Energy Savers [EERE]

    Chu: President's 2013 Energy Budget Makes Critical Investments in Innovation, Clean Energy, ... national security by reducing nuclear dangers and maintaining a safe, secure ...

  5. EERE Announces Up to $4 Million for Critical Materials Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EERE Announces Up to 4 Million for Critical Materials Recovery from Geothermal Fluids Timothy Patrick Reinhardt Program Manager, Systems Analysis & Low Temperature and Coproduced ...

  6. Mines Welcomes Middle School Students | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Science and Technology. The students spent the day at Mines to learn about Earth, energy, the environment, critical materials and mining. The students enjoyed a chemistry show ...

  7. A Web-Based Nuclear Criticality Safety Bibliographic Database

    SciTech Connect (OSTI)

    Koponen, B L; Huang, S

    2007-02-22

    A bibliographic criticality safety database of over 13,000 records is available on the Internet as part of the U.S. Department of Energy's (DOE) Nuclear Criticality Safety Program (NCSP) website. This database is easy to access via the Internet and gets substantial daily usage. This database and other criticality safety resources are available at ncsp.llnl.gov. The web database has evolved from more than thirty years of effort at Lawrence Livermore National Laboratory (LLNL), beginning with compilations of critical experiment reports and American Nuclear Society Transactions.

  8. Reducing Cyber Risk to Critical Infrastructure: NIST Framework...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    directed the National Institute of Standards and Technology (NIST) to work with stakeholders to develop a voluntary Framework for reducing cyber risks to critical...

  9. Meet CMI Researcher Corby Anderson | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Corby Anderson Image of Corby Anderson, researcher at Critical Materials Institute CMI researcher Dr. Corby Anderson has more than 34 years of global experience in industrial...

  10. Meet CMI Leader Iver Anderson | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Leader Iver Anderson Iver Anderson Iver E. Anderson leads the Critical Materials Institute Industry Council and efforts in Technology Deployment. Iver is a Senior Metallurgist at...

  11. Energy: Critical Infrastructure and Key Resources Sector-Specific...

    Office of Environmental Management (EM)

    of the National Infrastructure Protection Plan (NIPP) Base Plan, a comprehensive risk management framework that defines critical infrastructure protection (CIP) roles and...

  12. Annular Core Research Reactor - Critical to Science-Based Weapons...

    National Nuclear Security Administration (NNSA)

    - Critical to Science-Based Weapons Design, Certification | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile ...

  13. T-652: Mozilla Thunderbird Bugs Let Remote Users Obtain Cookies and Execute Arbitrary Code

    Broader source: Energy.gov [DOE]

    Multiple vulnerabilities were reported in Mozilla Thunderbird. A remote user can cause arbitrary code to be executed on the target user's system. A remote user can obtain cookies from another domain in certain cases.

  14. Title 43 CFR 3204.5 How Can I Obtain a Noncompetitive Lease?...

    Open Energy Info (EERE)

    5 How Can I Obtain a Noncompetitive Lease? Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- Federal RegulationFederal Regulation: Title 43 CFR...

  15. Energy Information Directory, April 1986

    SciTech Connect (OSTI)

    Not Available

    1986-04-01

    The National Energy Information Center (NEIC), as part of its mission, provides energy information and referral assistance to federal, state, and local governments, the academic community, business and industrial organizations, and the general public. The two principal functions related to this task are (1) operating a general access telephone line and (2) responding to energy-related correspondence addressed to the Energy Information Administration (EIA). To assist the NEIC staff, as well as other Department of Energy (DOE) staff, in directing inquiries to the proper office within DOE or other federal agencies, the Energy Information Directory was developed. This directory is a list of many of the government offices that are involved in energy matters. The offices are classified according to their specialities. For the purposes of this publication, each office has been given an alphanumeric identification symbol (A-01, A-02, etc.). The subject index uses these identification symbols instead of page numbers in referring the reader to relevant entries. If you should encounter difficulties in reaching anyone listed in the directory or if you are requesting information from EIA, call the NEIC at (202) 252-8800. The DOE employee locator number is (202) 252-5000. If you encounter a problem in receiving a timely or responsive answer to an inquiry, please contact John E. Daniels, Director, National Energy Information Center, (202) 252-2363. This directory is published semiannually, with each issue superseding the previous issue. The publication is free and can be obtained from NEIC. We welcome your comments on the appropriateness and accuracy of the entries in this publication.

  16. Subtask 4.24 - Field Evaluation of Novel Approach for Obtaining Metal

    Office of Scientific and Technical Information (OSTI)

    Emission Data (Technical Report) | SciTech Connect Technical Report: Subtask 4.24 - Field Evaluation of Novel Approach for Obtaining Metal Emission Data Citation Details In-Document Search Title: Subtask 4.24 - Field Evaluation of Novel Approach for Obtaining Metal Emission Data Over the past two decades, emissions of mercury, nonmercury metals, and acid gases from energy generation and chemical production have increasingly become an environmental concern. On February 16, 2012, the U.S.

  17. Energy information sheets

    SciTech Connect (OSTI)

    Not Available

    1993-12-02

    The National Energy Information Center (NEIC), as part of its mission, provides energy information and referral assistance to Federal, State, and local governments, the academic community, business and industrial organizations, and the general public. Written for the general public, the EIA publication Energy Information Sheets was developed to provide information on various aspects of fuel production, prices, consumption and capability. The information contained herein pertains to energy data as of December 1991. Additional information on related subject matter can be found in other EIA publications as referenced at the end of each sheet.

  18. Supervisory Information Technology Specialist (Information Security)

    Broader source: Energy.gov [DOE]

    The Office of the Chief Information Officer is seeking a motivated and highly-qualified candidate to serve as the Director of the Cybersecurity Operations Office and oversee development and...

  19. SOURCE SELECTION INFORMATION -

    Broader source: Energy.gov (indexed) [DOE]

    an action described in Section 311 of P.L. 112-74 in excess of 1,000,000. This information is source selection information related to the conduct of a Federal agency...

  20. Office of Information Management

    Broader source: Energy.gov [DOE]

    The Office of Information Management provides a broad range of information technology services in support of the Associate Under Secretary for the Office of Environment, Health, Safety and Security (AU).

  1. Physics Informed Machine Learning

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Informed Machine Learning Physics Informed Machine Learning WHEN: Jan 19, 2016 8:00 AM - Jan 22, 2016 4:00 PM WHERE: Inn at Loretto, Santa Fe CATEGORY: Science TYPE: ...

  2. Information Technology Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-12-23

    The Order identifies the objectives, components, and responsibilities for implementing processes to ensure the effective management of information and information systems within the Department. Supersedes DOE O 200.1.

  3. Physics Informed Machine Learning

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Informed Machine Learning Physics Informed Machine Learning WHEN: Jan 19, 2016 8:00 AM - Jan 22, 2016 4:00 PM WHERE: Inn at Loretto, Santa Fe CATEGORY: Science TYPE:...

  4. Critical Decision 2 (CD-2) Approval Template | Department of Energy

    Office of Environmental Management (EM)

    Critical Decision 2 (CD-2) Approval Template Critical Decision 2 (CD-2) Approval Template Template for the approval of performance baseline CD-2. File Template More Documents & Publications Example BCP Template External Independent Review (EIR) Report Template External Independent Review (EIR) Standard Operating Procedure (SOP) September 2010

  5. Confidential Business Information

    Office of Environmental Management (EM)

    Confidential Business Information Pursuant to 10 CFR 1004.11, any person submitting information that he or she believes to be confidential and exempt by law from public disclosure should submit via email, postal mail, or hand delivery/courier two well-marked copies: One copy of the document marked ''confidential'' including all the information believed to be confidential, and one copy of the document marked ''non-confidential'' with the information believed to be confidential deleted. Submit

  6. Controlled Unclassified Information

    Office of Environmental Management (EM)

    3-1 Chapter 13 Controlled Unclassified Information This chapter describes the security procedures adopted by DOE HQ to implement the requirements of the following DOE regulations and directives: 10 CFR Part 1017, Identification and Protection of Unclassified Controlled Nuclear Information DOE Order 471.1B, Identification and Protection of Unclassified Controlled Nuclear Information DOE Order 471.3, Identifying and Protecting Official Use Only Information DOE Manual 471.3-1, Manual for

  7. Identifying Classified Information

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-06-03

    The Order establishes the program to identify information classified under the Atomic Energy Act [Restricted Data (RD), Formerly Restricted Data (FRD), and Transclassified Foreign Nuclear Information (TFNI)]or Executive Order (E.O.) 13526 [National Security Information (NSI)], so that it can be protected against unauthorized dissemination.

  8. Information Security Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-27

    Establishes an Information Security Program for the protection and control of classified and sensitive information. Extended until 5-11-06 by DOE N 251.63, dated 5-11-05. DOE O 471.2A, Information Security Program, dated 3/27/1997, extended by DOE N 251.57, dated 4/28/2004. Cancels: DOE O 471.2

  9. Identifying Classified Information

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-02-01

    The Order establishes the program to identify information classified under the Atomic Energy Act [Restricted Data (RD), Formerly Restricted Data (FRD), and Transclassified Foreign Nuclear Information (TFNI)] or Executive Order (E.O.) 13526 [National Security Information (NSI)], so that it can be protected against unauthorized dissemination. Cancels DOE O 475.2 and DOE M 475.1-1B.

  10. Information Security Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1992-10-19

    To establish the Department of Energy (DOE) Information Security Program and set forth policies, procedures and responsibilities for the protection and control of classified and sensitive information. The Information Security Program is a system of elements which serve to deter collection activities, This directive does not cancel another directive. Canceled by DOE O 471.2 of 9-28-1995.

  11. Energy information directory 1995

    SciTech Connect (OSTI)

    1995-10-01

    The National Energy Information Center provides energy information and referral assistance to Federal, State, and local governments, the academic community, business and industrial organizations, and the general public. This Energy Information Directory is used to assist the Center staff as well as other DOE staff in directing inquires to the proper offices.

  12. Identifying Classified Information

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-10-03

    To establish the program to identify information classified under the Atomic Energy Act [Restricted Data (RD), Formerly Restricted Data (FRD), and Transclassified Foreign Nuclear Information (TFNI)] or Executive Order (E.O.) 13526 [National Security Information (NSI)], so that it can be protected against unauthorized dissemination. Supersedes DOE O 475.2A.

  13. Building America Technology-to-Market Roadmaps - Request for Information

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Technology-to-Market Roadmaps - Request for Information Building America Technology-to-Market Roadmaps - Request for Information April 3, 2015 - 4:22pm Addthis This funding opportunity is closed. The Building Technologies Office is developing a new research-to-market plan, focused on substantially solving three key technical challenges in the next five years. Successfully meeting these critical challenges will help transform the market for new zero energy ready homes

  14. Development of a structural health monitoring system for the life assessment of critical transportation infrastructure.

    SciTech Connect (OSTI)

    Roach, Dennis Patrick; Jauregui, David Villegas; Daumueller, Andrew Nicholas

    2012-02-01

    Recent structural failures such as the I-35W Mississippi River Bridge in Minnesota have underscored the urgent need for improved methods and procedures for evaluating our aging transportation infrastructure. This research seeks to develop a basis for a Structural Health Monitoring (SHM) system to provide quantitative information related to the structural integrity of metallic structures to make appropriate management decisions and ensuring public safety. This research employs advanced structural analysis and nondestructive testing (NDT) methods for an accurate fatigue analysis. Metal railroad bridges in New Mexico will be the focus since many of these structures are over 100 years old and classified as fracture-critical. The term fracture-critical indicates that failure of a single component may result in complete collapse of the structure such as the one experienced by the I-35W Bridge. Failure may originate from sources such as loss of section due to corrosion or cracking caused by fatigue loading. Because standard inspection practice is primarily visual, these types of defects can go undetected due to oversight, lack of access to critical areas, or, in riveted members, hidden defects that are beneath fasteners or connection angles. Another issue is that it is difficult to determine the fatigue damage that a structure has experienced and the rate at which damage is accumulating due to uncertain history and load distribution in supporting members. A SHM system has several advantages that can overcome these limitations. SHM allows critical areas of the structure to be monitored more quantitatively under actual loading. The research needed to apply SHM to metallic structures was performed and a case study was carried out to show the potential of SHM-driven fatigue evaluation to assess the condition of critical transportation infrastructure and to guide inspectors to potential problem areas. This project combines the expertise in transportation infrastructure at New Mexico State University with the expertise at Sandia National Laboratories in the emerging field of SHM.

  15. Nuclear Regulatory Commission Information Digest, 1991 edition

    SciTech Connect (OSTI)

    Olive, K L

    1991-03-01

    The Nuclear Regulatory Commission Information Digest provides a summary of information about the US Nuclear Regulatory Commission (NRC), NRC's regulatory responsibilities, and the areas NRC licenses. This digest is a compilation of NRC-related data and is designed to provide a quick reference to major facts about the agency and the industry it regulates. In general, the data cover 1975 through 1990, with exceptions noted. For operating US commercial nuclear power reactors, information on generating capacity and average capacity factor is obtained from Monthly Operating Reports submitted to the NRC directly by the licensee. This information is reviewed for consistency only. No independent validation and/or verification is performed by the NRC. For detailed and complete information about tables and figures, refer to the source publications. This digest is published annually for the general use of the NRC staff and is available to the public. 30 figs., 12 tabs.

  16. Process For Cutting Polymers Electrolyte Multi-Layer Batteries And Batteries Obtained Thereby

    DOE Patents [OSTI]

    Gauthier, Michel (La Prairie, CA); Lessard, Ginette (Longueuil, CA); Dussault, Gaston (St-Benoit-de-Mirabel, CA); Rouillard, Roger (Beloeil, CA); Simoneau, Martin (Montreal, CA); Miller, Alan Paul (Woodbury, MN)

    2003-09-09

    A stacking of battery laminate is prepared, each battery consisting of anode, polymer electrolyte, cathode films and possibly an insulating film, under conditions suitable to constitute a rigid monoblock assembly, in which the films are unitary with one another. The assembly obtained is thereafter cut in predetermined shape by using a mechanical device without macroscopic deformation of the films constituting the assembly and without inducing permanent short circuits. The battery which is obtained after cutting includes at least one end which appears as a uniform cut, the various films constituting the assembly having undergone no macroscopic deformation, the edges of the films of the anode including an electronically insulating passivation film.

  17. T-723:Adobe Flash Player Multiple Bugs Let Remote Users Obtain Information, Conduct Cross-Site Scripting Attacks, and Execute Arbitrary Code

    Broader source: Energy.gov [DOE]

    An attacker can exploit this issue by enticing an unsuspecting victim into visiting a malicious website.

  18. ARPA-E Workshop on Rare Earth and Critical Materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ARPA-E Workshop on Rare Earth and Critical Materials ARPA-E Workshop on Rare Earth and Critical Materials ARPA-E Workshop on Rare Earth and Critical Materials, December 6, 2010 PDF icon ARPA-E_RareEarth_Workshop_Overview.pdf More Documents & Publications Critical Materials Workshop Critical Materials Workshop Iowa lab gets critical materials research center

  19. Multichannel Pseudogap Kondo Model: Large-N Solution and Quantum-Critical Dynamics

    SciTech Connect (OSTI)

    Vojta, Matthias

    2001-08-27

    We discuss a multichannel SU(N) Kondo model which displays nontrivial zero-temperature phase transitions due to a conduction electron density of states vanishing with a power law at the Fermi level. In a particular large-N limit, the system is described by coupled integral equations corresponding to a dynamic saddle point. We exactly determine the universal low-energy behavior of spectral densities at the scale-invariant fixed points, obtain anomalous exponents, and compute scaling functions describing the crossover near the quantum-critical points. We argue that our findings are relevant to recent experiments on impurity-doped d -wave superconductors.

  20. Supplementary neutron-flux calculations for the ORNL Pool Critical Assembly Pressure Vessel Facility

    SciTech Connect (OSTI)

    Maudlin, P.J.; Maerker, R.E.

    1982-01-01

    A three-dimensional Monte Carlo calculation using the MORSE code was performed to validate a procedure previously adopted in the ORNL discrete ordinate analysis of measurements made in the ORNL Pool Critical Assembly Pressure Vessel Facility. The results of these flux calculations agree, within statistical undertainties of about 5%, with those obtained from a discrete ordinate analysis employing the same procedure. This study therefore concludes that the procedure for combining several one- and two-dimensional discrete ordinate calculations into a three-dimensional flux is sufficiently accurate that it does not account for the existing discrepancies observed between calculations and measurements in this facility.

  1. ERDA Critical Review Series ERD> S'of HtSTER

    Office of Scientific and Technical Information (OSTI)

    ERDA Critical Review Series ERD> S'of HtSTER The Chemistry of A M E R I C I U M Wallace W. Schulz Technical Information Center, Energy Research and Deyelqpment Adminis^atioJl. , OTSTR1BUT1QN QF THIS D O C U M t N l U a l i N L i l v i r i L ^ DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes

  2. DOE-STD-1134-99 Review Guide for Criticality Safety Evaluations

    Office of Environmental Management (EM)

    4-99 September 1999 DOE STANDARD REVIEW GUIDE FOR CRITICALITY SAFETY EVALUATIONS U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. TS This document has been reproduced from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce,

  3. DOE-STD-1135-99 Guidance for Nuclear Criticality Safety Engineer Training and Qualification

    Office of Environmental Management (EM)

    5-99 September 1999 DOE STANDARD GUIDANCE FOR NUCLEAR CRITICALITY SAFETY ENGINEER TRAINING AND QUALIFICATION U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. TS This document has been reproduced from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the

  4. Long term nuclear criticality potential in waste packages

    SciTech Connect (OSTI)

    Thomas, D.A.; Doering, T.W.

    1994-12-31

    Title 10 CFR 60.131.(b).(7) requires that the radioactive waste disposed of in the Mined Geologic Disposal System (MGDS) remain subcritical during the period of isolation. The period of waste isolation, approximately 10,000 years, represents a time period greater than any previously examined for criticality control of spent fuel. Change in the criticality potential over long time periods for the Multi-Purpose Canister (MPC) waste package conceptual design has been examined and methods of criticality control over this time have been investigated.

  5. Critical speed measurements in the Tevatron cold compressors

    SciTech Connect (OSTI)

    DeGraff, B.; Bossert, R.; Martinez, A.; Soyars, W.M.; /Fermilab

    2006-01-01

    The Fermilab Tevatron cryogenic system utilizes high-speed centrifugal cold compressors, manufactured by Ishikawajima-Harima Heavy Industries Co. Ltd. (IHI), for high energy operations. Nominal operating range for these compressors is 43,000 to 85,000 rpm. Past foil bearing failures prompted investigation to determine if critical speeds for operating compressors fall within operating range. Data acquisition hardware and software settings will be discussed for measuring liftoff, first critical and second critical speeds. Several tests provided comparisons between an optical displacement probe and accelerometer measurements. Vibration data and analysis of the 20 Tevatron ring cold compressors will be presented.

  6. Information geometry of Gaussian channels

    SciTech Connect (OSTI)

    Monras, Alex; Illuminati, Fabrizio

    2010-06-15

    We define a local Riemannian metric tensor in the manifold of Gaussian channels and the distance that it induces. We adopt an information-geometric approach and define a metric derived from the Bures-Fisher metric for quantum states. The resulting metric inherits several desirable properties from the Bures-Fisher metric and is operationally motivated by distinguishability considerations: It serves as an upper bound to the attainable quantum Fisher information for the channel parameters using Gaussian states, under generic constraints on the physically available resources. Our approach naturally includes the use of entangled Gaussian probe states. We prove that the metric enjoys some desirable properties like stability and covariance. As a by-product, we also obtain some general results in Gaussian channel estimation that are the continuous-variable analogs of previously known results in finite dimensions. We prove that optimal probe states are always pure and bounded in the number of ancillary modes, even in the presence of constraints on the reduced state input in the channel. This has experimental and computational implications. It limits the complexity of optimal experimental setups for channel estimation and reduces the computational requirements for the evaluation of the metric: Indeed, we construct a converging algorithm for its computation. We provide explicit formulas for computing the multiparametric quantum Fisher information for dissipative channels probed with arbitrary Gaussian states and provide the optimal observables for the estimation of the channel parameters (e.g., bath couplings, squeezing, and temperature).

  7. Office of Information Resources

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Form EIA-457AlG Residential Energy Consumption Survey Bureau: U.S. Department of EnergyIEnergy Information Administration Project Unique ID: Date: May 30,2008 A. CONTACT INFORMATION 1. Who is the person completing this document? Jacob Bournazian Statistics & Methods Group Energy Information Administration Ernail: Jacob.bournazian@,eia.doe.~?;ov Phone number: (202) 586-5562 2. Who is the system owner? Stephanie Battles Director, Energy Consumption Division, Office of Energy Markets and End

  8. Disposal Information - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Us Hanford Site Wide Programs Hanford Site Solid Waste Acceptance Program Tools Disposal Information About Us Hanford Site Solid Waste Acceptance Program What's New Acceptance Criteria Acceptance Process Tools Approved High Integrity Containers Approved Sorbents, Stabilizers, and Void Fillers Disposal Information Points of Contact Disposal Information Email Email Page | Print Print Page |Text Increase Font Size Decrease Font Size Disposal of Radioactive Waste at Hanford The Hanford Site

  9. Identifying Classified Information

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-02-26

    This Manual provides requirements for managing the Department of Energy (DOE) classification and declassification program, including details for classifying and declassifying information, documents, and material. This Manual also supplements DOE O 200.1, INFORMATION MANAGEMENT PROGRAM, which combines broad information management topics under a single Order. Specific requirements for each topic are issued in separate Manuals. Cancels DOE M 475.1-1. Canceled by DOE M 475.1-1B

  10. Contractor Past Performance Information

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    February 2015) 1 Contractor Performance Information This chapter is updated to incorporate OFPP Memorandum dated July 10, 2014, "Making Better Use of Contractor Performance Information" which provides instruction to Contracting Officers and other members of the acquisition workforce in the pre-award phase of acquisition actions by making better use of contractor performance information. This chapter also incorporates the Office of Federal Procurement Policy (OFPP) policy that became

  11. Biofuels Information Center

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuels Information Center BETO 2015 Peer Review Kristi Moriarty March 24, 2015 2 Goal Statement * The purpose of the Biofuels Information Center (BIC) task is to increase deployment of biofuels production facilities and infrastructure by providing essential biofuels data, tools, and information to all stakeholders * The Bioenergy Atlas tools provide interactive maps and analysis of all relevant biomass data with the purpose of growing the domestic bioenergy market for biofuels and biopower

  12. SRT | Open Energy Information

    Open Energy Info (EERE)

    freely available Dictionary.png SRT: The Shuttle Radar Topography Mission (SRTM) was an international research effort that obtained digital elevation models on a near-global...

  13. Personally Identifiable Information

    Broader source: Energy.gov [DOE]

    Websites and applications that collect data on individuals are gathering personally identifiable information (PII). PII is also often collected for customer surveys or user experience (UX) research.

  14. Envinity | Open Energy Information

    Open Energy Info (EERE)

    Envinity Jump to: navigation, search Name: Envinity Place: State College, PA Website: www.envinity.com References: Envinity Website1 Information About Partnership with NREL...

  15. IBACOS | Open Energy Information

    Open Energy Info (EERE)

    IBACOS Jump to: navigation, search Name: IBACOS Place: Pittsburgh, PA Website: www.ibacos.com References: IBACOS1 Information About Partnership with NREL Partnership with NREL...

  16. Value of Information spreadsheet

    SciTech Connect (OSTI)

    Trainor-Guitton, Whitney

    2014-05-12

    This spreadsheet represents the information posteriors derived from synthetic data of magnetotellurics (MT). These were used to calculate value of information of MT for geothermal exploration. Information posteriors describe how well MT was able to locate the "throat" of clay caps, which are indicative of hidden geothermal resources. This data is full explained in the peer-reviewed publication: Trainor-Guitton, W., Hoversten, G. M., Ramirez, A., Roberts, J., Jlusson, E., Key, K., Mellors, R. (Sept-Oct. 2014) The value of spatial information for determining well placement: a geothermal example, Geophysics.

  17. Information Exchange management site

    Energy Science and Technology Software Center (OSTI)

    2012-08-01

    Django site used to manage the approved information exchanges (content models) after creation and public comment at https://github.com/usgin-models.

  18. Information Exchange development forums

    Energy Science and Technology Software Center (OSTI)

    2012-08-01

    GitHub repositories for creating and managing information exchanges (content models) for use in the NGDS and larger USGIN systems.

  19. CAES Contact Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    View all events >> x CAES Home Home About Us Contact Information Our CAES Building FAQs Affiliated Centers Research Core Capabilities Laboratories and Equipment Technology Transfer...

  20. Emergency Public Information

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-08-21

    This volume defines elements of providing information to the public during and following emergencies. Canceled by DOE G 151.1-4.

  1. Supervisory Information Technology Specialist

    Broader source: Energy.gov [DOE]

    A successful candidate in this position will be responsible for providing Information Technology (IT) infrastructure, capabilities and technical support to the Department of Energy (DOE),...

  2. SOURCE SELECTION INFORMATION -

    Broader source: Energy.gov (indexed) [DOE]

    SOURCE SELECTION INFORMATION - SEE FEDERAL ACQUISITION REGULATION (FAR) 2.101 AND 3.104 Department of Energy Washington, DC 20585 (enter date here, centered revised template...

  3. Information Sciences and Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    file systems Bioinformatics Infectious disease surveillance Climate change and energy security Smart grids Learn more about our Information Science and Technology capabilities

  4. SOURCE SELECTION INFORMATION -

    Energy Savers [EERE]

    disseminating this predecisional information, we respectfully request that you consult with the Department prior to making such a decision. The action, in support of the...

  5. SOURCE SELECTION INFORMATION -

    Office of Environmental Management (EM)

    disseminating this predecisional information, we respectfully request that you consult with the Department prior to making such a decision. This (if it is a multi-year...

  6. Caterpillar | Open Energy Information

    Open Energy Info (EERE)

    Caterpillar Jump to: navigation, search Name: Caterpillar Place: Peoria, IL Website: www.cat.com References: NREL News Release: Reduce Truck Idling1 Information About Partnership...

  7. Service | Open Energy Information

    Open Energy Info (EERE)

    Building Types 1 References EIA CBECS Building Types U.S. Energy Information Administration (Oct 2008) Retrieved from "http:en.openei.orgwindex.php?titleService&oldid27...

  8. Secure Information Sharing

    Energy Science and Technology Software Center (OSTI)

    2005-09-09

    We are develoing a peer-to-peer system to support secure, location independent information sharing in the scientific community. Once complete, this system will allow seamless and secure sharing of information between multiple collaborators. The owners of information will be able to control how the information is stored, managed. ano shared. In addition, users will have faster access to information updates within a collaboration. Groups collaborating on scientific experiments have a need to share information and data.more » This information and data is often represented in the form of files and database entries. In a typical scientific collaboration, there are many different locations where data would naturally be stored. This makes It difficult for collaborators to find and access the information they need. Our goal is to create a lightweight file-sharing system that makes it’easy for collaborators to find and use the data they need. This system must be easy-to-use, easy-to-administer, and secure. Our information-sharing tool uses group communication, in particular the InterGroup protocols, to reliably deliver each query to all of the current participants in a scalable manner, without having to discover all of their identities. We will use the Secure Group Layer (SGL) and Akenti to provide security to the participants of our environment, SGL will provide confldentiality, integrity, authenticity, and authorization enforcement for the InterGroup protocols and Akenti will provide access control to other resources.« less

  9. Nxegen | Open Energy Information

    Open Energy Info (EERE)

    Zip: 6457 Sector: Services Product: Intelligent energy management company. Provides real-time energy information and load management services to municipal, commercial, and...

  10. WVCP | Open Energy Information

    Open Energy Info (EERE)

    Information About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Electricity Resources & Building...

  11. Masco | Open Energy Information

    Open Energy Info (EERE)

    Masco Jump to: navigation, search Name: Masco Place: Taylor, MI Website: www.masco.com References: Masco1 Information About Partnership with NREL Partnership with NREL Yes...

  12. Wattstopper | Open Energy Information

    Open Energy Info (EERE)

    Wattstopper Jump to: navigation, search Name: Wattstopper Place: Santa Clara, CA Website: www.wattstopper.com References: Wattstopper1 Information About Partnership with NREL...

  13. Unclassified Controlled Nuclear Information

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-09-25

    To prevent unauthorized dissemination of Unclassified Controlled Nuclear Information (UCNI). Cancels DOE 5635.4 and DOE 5650.3A

  14. Trane | Open Energy Information

    Open Energy Info (EERE)

    NJ Information About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Electricity Resources & Building...

  15. NIST | Open Energy Information

    Open Energy Info (EERE)

    CO Information About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Electricity Resources & Building...

  16. SUPERVALU | Open Energy Information

    Open Energy Info (EERE)

    MN Information About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Electricity Resources & Building...

  17. Transformations | Open Energy Information

    Open Energy Info (EERE)

    Information About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Electricity Resources & Building...

  18. Synergy | Open Energy Information

    Open Energy Info (EERE)

    MA Information About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Electricity Resources & Building...

  19. Roxul | Open Energy Information

    Open Energy Info (EERE)

    ON Information About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Electricity Resources & Building...

  20. NYSERDA | Open Energy Information

    Open Energy Info (EERE)

    NY Information About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Electricity Resources & Building...

  1. Enterprise | Open Energy Information

    Open Energy Info (EERE)

    Information About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Electricity Resources & Building...

  2. Pulte | Open Energy Information

    Open Energy Info (EERE)

    MI Information About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Electricity Resources & Building...

  3. Samsung | Open Energy Information

    Open Energy Info (EERE)

    Information About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL National Wind Technology Center...

  4. SEMCO | Open Energy Information

    Open Energy Info (EERE)

    OH Information About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Electricity Resources & Building...

  5. Panasonic | Open Energy Information

    Open Energy Info (EERE)

    Information About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Electricity Resources & Building...

  6. Ford | Open Energy Information

    Open Energy Info (EERE)

    search Name: Ford Place: Dearborn, MI Website: www.ford.com References: FORD-NREL CRADA1 Information About Partnership with NREL Partnership with NREL Yes Partnership...

  7. Icynene | Open Energy Information

    Open Energy Info (EERE)

    Name: Icynene Place: Mississauga, Canada Website: www.icynene.com References: New American Home 20061 Information About Partnership with NREL Partnership with NREL Yes...

  8. Transmission - Contact Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact-Information-Transmission Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects & Initiatives Expand Projects &...

  9. Transmission Contact Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact-Information Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects & Initiatives Expand Projects & Initiatives Finance &...

  10. Safety Staff Contact Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety Staff Contact Information Print Contact Extension Location CONTROL ROOM (247) 4969 80-140 Floor Operations Floor Operators 7464 (RING) 80-159 Building Manager Jeff Troutman...

  11. Coolerado | Open Energy Information

    Open Energy Info (EERE)

    Coolerado Jump to: navigation, search Name: Coolerado Place: Denver, CO Website: www.coolerado.com References: Coolerado1 Information About Partnership with NREL Partnership with...

  12. Biofuels Information Center

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuels Information Center BETO 2015 Peer Review Kristi Moriarty March 24, 2015 2 Goal ...docsfy06osti39181.pdf Electricity rates (residential, commercial, ...

  13. Energy Information Administration

    U.S. Energy Information Administration (EIA) Indexed Site

    EIA-64A SURVEY YEAR 2015 GENERAL INSTRUCTIONS PURPOSE The collection of basic, verifiable information on the Nation's ... type of fuel, such as electricity, report 0 (zero) and ...

  14. Dark matter and dark energy: The critical questions (Conference...

    Office of Scientific and Technical Information (OSTI)

    The critical questions are: (1) What form do the dark baryons take? (2) What is (are) the constituent(s) of the cold dark matter? (3) What is the nature of the mysterious dark ...

  15. NSS 18.1 Criticality Safety 5/26/95

    Broader source: Energy.gov [DOE]

    The objective of this surveillance is to ensure that effective programs have been developed and implemented to protect the public and DOE's workers from unplanned criticality. The programs should...

  16. PNNL Results from 2009 Silene Criticality Accident Dosimeter Intercomparison Exercise

    SciTech Connect (OSTI)

    Hill, Robin L.; Conrady, Matthew M.

    2010-06-30

    This document reports the results of testing of the Hanford Personnel Nuclear Accident Dosimeter (PNAD) during a criticality accident dosimeter intercomparison exercise at the CEA Valduc Center on October 13, 14, and 15, 2009.

  17. Transport signatures of quantum critically in Cr at high pressure.

    SciTech Connect (OSTI)

    Jaramillo, R.; Feng, Y.; Wang, J.; Rosenbaum, T. F.

    2010-08-03

    The elemental antiferromagnet Cr at high pressure presents a new type of naked quantum critical point that is free of disorder and symmetry-breaking fields. Here we measure magnetotransport in fine detail around the critical pressure, P{sub c} {approx} 10 GPa, in a diamond anvil cell and reveal the role of quantum critical fluctuations at the phase transition. As the magnetism disappears and T {yields} 0, the magntotransport scaling converges to a non-mean-field form that illustrates the reconstruction of the magnetic Fermi surface, and is distinct from the critical scaling measured in chemically disordered Cr:V under pressure. The breakdown of itinerant antiferromagnetism only comes clearly into view in the clean limit, establishing disorder as a relevant variable at a quantum phase transition.

  18. Zero Energy Buildings: A Critical Look at the Definition; Preprint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Zero Energy Buildings: A Critical Look at the Definition Preprint P. Torcellini, S. Pless, and M. Deru National Renewable Energy Laboratory D. Crawley U.S. Department of Energy To ...

  19. Getting It Right: Accurate Testing and Assessments Critical to...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Deploying the Next Generation of Auto Fuels Getting It Right: Accurate Testing and Assessments Critical to Deploying the Next Generation of Auto Fuels May 16, 2012 - 9:20am ...

  20. Critical Materials for a Clean Energy Future | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    For this purpose, "criticality" was a measure that combined importance to the clean energy economy and the risk of supply disruption. With the world on the cusp of a clean energy ...

  1. Alarm guided critical function and success path monitoring

    DOE Patents [OSTI]

    Scarola, Kenneth; Jamison, David S.; Manazir, Richard M.; Rescorl, Robert L.; Harmon, Daryl L.

    1994-01-01

    The use of alarm indication on the overview (IPSO) display to initiate diagnosis of challenges to critical functions or unavailability of success paths, and further alarm-based guidance toward ultimate diagnosis.

  2. Nonmonotonic pressure evolution of the upper critical field in...

    Office of Scientific and Technical Information (OSTI)

    of the upper critical field, Hc2,c, of single crystalline FeSe was studied using measurements of the interplane resistivity, c, in magnetic fields parallel to tetragonal c axis. ...

  3. MicroBooNE Project Critical Decision Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Critical Decisions for MicroBooNE Documents CD-0 Mission Need CD-1 Selection of Alternatives CD-2/3a Performance Baseline and Long Lead Procurements CD-3b Start of Construction

  4. Meet CMI Researcher Bob Fox | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bob Fox Image of Bob Fox, researcher with Critical Materials Institute CMI researcher Robert V. Fox, Ph.D., a distinguished senior chemical research scientist, joined INL in 1989...

  5. CMI hosts EU, Japan to discuss global critical materials strategy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CMI hosts EU, Japan to discuss global critical materials strategy Submitted by mlthach on Wed, 09102014 - 18:00 Finding ways to ensure the planet's supply of rare earths and...

  6. Applicability of reactor code WIMS for nuclear criticality safety studies

    SciTech Connect (OSTI)

    Matausek, M.V.; Marinkovic, N.

    1995-12-31

    The purpose of this paper is to examine applicability of the reactor code WIMS for calculating criticality parameters of nonreactor configurations containing fissile materials. Results are given and discussed for some typical configurations containing {sup 235}U.

  7. Critical Question #7: What are the Best Practices for Single...

    Energy Savers [EERE]

    7: What are the Best Practices for Single-Family Ventilation in All Climate Regions? Critical Question 7: What are the Best Practices for Single-Family Ventilation in All Climate...

  8. Technical Data to Justify Full Burnup Credit in Criticality Safety Licensing Analysis

    SciTech Connect (OSTI)

    Enercon Services, Inc.

    2011-03-14

    Enercon Services, Inc. (ENERCON) was requested under Task Order No.2 to identify scientific and technical data needed to benchmark and justify Full Burnup Credit, which adds 16 fission products and 4 minor actinides1 to Actinide-Only burnup credit. The historical perspective for Full Burnup Credit is discussed, and interviews of organizations participating in burnup credit activities are summarized as a basis for identifying additional data needs and making recommendation. Input from burnup credit participants representing two segments of the commercial nuclear industry is provided. First, the Electric Power Research Institute (EPRI) has been very active in the development of Full Burnup Credit, representing the interests of nuclear utilities in achieving capacity gains for storage and transport casks. EPRI and its utility customers are interested in a swift resolution of the validation issues that are delaying the implementation of Full Burnup Credit [EPRI 2010b]. Second, used nuclear fuel storage and transportation Cask Vendors favor improving burnup credit beyond Actinide-Only burnup credit, although their discussion of specific burnup credit achievements and data needs was limited citing business sensitive and technical proprietary concerns. While Cask Vendor proprietary items are not specifically identified in this report, the needs of all nuclear industry participants are reflected in the conclusions and recommendations of this report. In addition, Oak Ridge National Laboratory (ORNL) and Sandia National Laboratory (SNL) were interviewed for their input into additional data needs to achieve Full Burnup Credit. ORNL was very open to discussions of Full Burnup Credit, with several telecoms and a visit by ENERCON to ORNL. For many years, ORNL has provided extensive support to the NRC regarding burnup credit in all of its forms. Discussions with ORNL focused on potential resolutions to the validation issues for the use of fission products. SNL was helpful in ENERCON's understanding of the difficult issues related to obtaining and analyzing additional cross section test data to support Full Burnup Credit. A PIRT (Phenomena Identification and Ranking Table) analysis was performed by ENERCON to evaluate the costs and benefits of acquiring different types of nuclear data in support of Full Burnup Credit. A PIRT exercise is a formal expert elicitation process with the final output being the ranking tables. The PIRT analysis (Table 7-4: Results of PIRT Evaluation) showed that the acquisition of additional Actinide-Only experimental data, although beneficial, was associated with high cost and is not necessarily needed. The conclusion was that the existing Radiochemical Assay (RCA) data plus the French Haut Taux de Combustion (HTC)2 and handbook Laboratory Critical Experiment (LCE) data provide adequate benchmark validation for Actinide-Only Burnup Credit. The PIRT analysis indicated that the costs and schedule to obtain sufficient additional experimental data to support the addition of 16 fission products to Actinide-Only Burnup Credit to produce Full Burnup Credit are quite substantial. ENERCON estimates the cost to be $50M to $100M with a schedule of five or more years. The PIRT analysis highlights another option for fission product burnup credit, which is the application of computer-based uncertainty analyses (S/U - Sensitivity/Uncertainty methodologies), confirmed by the limited experimental data that is already available. S/U analyses essentially transform cross section uncertainty information contained in the cross section libraries into a reactivity bias and uncertainty. Recent work by ORNL and EPRI has shown that a methodology to support Full Burnup Credit is possible using a combination of traditional RCA and LCE validation plus S/U validation for fission product isotopics and cross sections. Further, the most recent cross section data (ENDF/B-VII) can be incorporated into the burnup credit codes at a reasonable cost compared to the acquisition of equivalent experimental data. ENERCON concludes that even with the cos

  9. Magnetocaloric properties and critical behavior of high relative cooling power FeNiB nanoparticles

    SciTech Connect (OSTI)

    Chaudhary, V. [Interdisciplinary Graduate School, Nanyang Technological University, Singapore 639798 (Singapore); Energy Research Institute @NTU, Nanyang Technological University, Singapore 637553 (Singapore); School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Maheswar Repaka, D. V.; Chaturvedi, A.; Ramanujan, R. V., E-mail: ramanujan@ntu.edu.sg [School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Sridhar, I. [School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798 (Singapore)

    2014-10-28

    Low cost magnetocaloric nanomaterials have attracted considerable attention for energy efficient applications. We report a very high relative cooling power (RCP) in a study of the magnetocaloric effect in quenched FeNiB nanoparticles. RCP increases from 89.8 to 640?J kg{sup ?1} for a field change of 1 and 5?T, respectively, these values are the largest for rare earth free iron based magnetocaloric nanomaterials. To investigate the magnetocaloric behavior around the Curie temperature (T{sub C}), the critical behavior of these quenched nanoparticles was studied. Detailed analysis of the magnetic phase transition using the modified Arrott plot, Kouvel-Fisher method, and critical isotherm plots yields critical exponents of ??=?0.364, ??=?1.319, ??=?4.623, and ??=??0.055, which are close to the theoretical exponents obtained from the 3D-Heisenberg model. Our results indicate that these FeNiB nanoparticles are potential candidates for magnetocaloric fluid based heat pumps and low grade waste heat recovery.

  10. Burst wait time simulation of CALIBAN reactor at delayed super-critical state

    SciTech Connect (OSTI)

    Humbert, P.; Authier, N.; Richard, B.; Grivot, P.; Casoli, P.

    2012-07-01

    In the past, the super prompt critical wait time probability distribution was measured on CALIBAN fast burst reactor [4]. Afterwards, these experiments were simulated with a very good agreement by solving the non-extinction probability equation [5]. Recently, the burst wait time probability distribution has been measured at CEA-Valduc on CALIBAN at different delayed super-critical states [6]. However, in the delayed super-critical case the non-extinction probability does not give access to the wait time distribution. In this case it is necessary to compute the time dependent evolution of the full neutron count number probability distribution. In this paper we present the point model deterministic method used to calculate the probability distribution of the wait time before a prescribed count level taking into account prompt neutrons and delayed neutron precursors. This method is based on the solution of the time dependent adjoint Kolmogorov master equations for the number of detections using the generating function methodology [8,9,10] and inverse discrete Fourier transforms. The obtained results are then compared to the measurements and Monte-Carlo calculations based on the algorithm presented in [7]. (authors)

  11. Critical Dimensions of Water-tamped Slabs and Spheres of Active Material

    DOE R&D Accomplishments [OSTI]

    Greuling, E.; Argo, H.: Chew, G.; Frankel, M. E.; Konopinski, E.J.; Marvin, C.; Teller, E.

    1946-08-06

    The magnitude and distribution of the fission rate per unit area produced by three energy groups of moderated neutrons reflected from a water tamper into one side of an infinite slab of active material is calculated approximately in section II. This rate is directly proportional to the current density of fast neutrons from the active material incident on the water tamper. The critical slab thickness is obtained in section III by solving an inhomogeneous transport integral equation for the fast-neutron current density into the tamper. Extensive use is made of the formulae derived in "The Mathematical Development of the End-Point Method" by Frankel and Goldberg. In section IV slight alterations in the theory outlined in sections II and III were made so that one could approximately compute the critical radius of a water-tamper sphere of active material. The derived formulae were applied to calculate the critical dimensions of water-tamped slabs and spheres of solid UF{sub 6} leaving various (25) isotope enrichment fractions. Decl. Dec. 16, 1955.

  12. Approach for Validating Actinide and Fission Product Compositions for Burnup Credit Criticality Safety Analyses

    SciTech Connect (OSTI)

    Radulescu, Georgeta; Gauld, Ian C; Ilas, Germina; Wagner, John C

    2014-01-01

    This paper describes a depletion code validation approach for criticality safety analysis using burnup credit for actinide and fission product nuclides in spent nuclear fuel (SNF) compositions. The technical basis for determining the uncertainties in the calculated nuclide concentrations is comparison of calculations to available measurements obtained from destructive radiochemical assay of SNF samples. Probability distributions developed for the uncertainties in the calculated nuclide concentrations were applied to the SNF compositions of a criticality safety analysis model by the use of a Monte Carlo uncertainty sampling method to determine bias and bias uncertainty in effective neutron multiplication factor. Application of the Monte Carlo uncertainty sampling approach is demonstrated for representative criticality safety analysis models of pressurized water reactor spent fuel pool storage racks and transportation packages using burnup-dependent nuclide concentrations calculated with SCALE 6.1 and the ENDF/B-VII nuclear data. The validation approach and results support a recent revision of the U.S. Nuclear Regulatory Commission Interim Staff Guidance 8.

  13. SPECKLE INTERFEROMETRY AT THE USNO FLAGSTAFF STATION: OBSERVATIONS OBTAINED IN 2008 AND NINE NEW ORBITS

    SciTech Connect (OSTI)

    Hartkopf, William I.; Mason, Brian D. E-mail: bdm@usno.navy.mil

    2011-08-15

    Results are presented for 299 speckle interferometric observations of double stars, obtained in 2008 at the USNO Flagstaff Station using the 1.55 m Kaj Strand Astrometric Reflector. Separations range from 0.''15 to 9.''88, with a median of 2.''22. This observing run concentrated on neglected systems, as well as systems in need of improved orbital elements; new orbital solutions have been determined for nine systems as a result.

  14. Electron beam method and apparatus for obtaining uniform discharges in electrically pumped gas lasers

    DOE Patents [OSTI]

    Fenstermacher, Charles A. (Los Alamos, NM); Boyer, Keith (Los Alamos, NM)

    1986-01-01

    A method and apparatus for obtaining uniform, high-energy, large-volume electrical discharges in the lasing medium of a gas laser whereby a high-energy electron beam is used as an external ionization source to ionize substantially the entire volume of the lasing medium which is then readily pumped by means of an applied potential less than the breakdown voltage of the medium. The method and apparatus are particularly useful in CO.sub.2 laser systems.

  15. Lab obtains approval to begin design on new radioactive waste staging

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    facility New radioactive waste staging facility Lab obtains approval to begin design on new radioactive waste staging facility The 4-acre complex will include multiple staging buildings plus an operations center and a concrete pad for mobile waste characterization equipment. September 1, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience,

  16. Hydrodynamic equations for electrons in graphene obtained from the maximum entropy principle

    SciTech Connect (OSTI)

    Barletti, Luigi

    2014-08-15

    The maximum entropy principle is applied to the formal derivation of isothermal, Euler-like equations for semiclassical fermions (electrons and holes) in graphene. After proving general mathematical properties of the equations so obtained, their asymptotic form corresponding to significant physical regimes is investigated. In particular, the diffusive regime, the Maxwell-Boltzmann regime (high temperature), the collimation regime and the degenerate gas limit (vanishing temperature) are considered.

  17. Method for making graded I-III-VI.sub.2 semiconductors and solar cell obtained thereby

    DOE Patents [OSTI]

    Devaney, Walter E. (Seattle, WA)

    1987-08-04

    Improved cell photovoltaic conversion efficiencies are obtained by the simultaneous elemental reactive evaporation process of Mickelsen and Chen for making semiconductors by closer control of the evaporation rates and substrate temperature during formation of the near contact, bulk, and near junction regions of a graded I-III-VI.sub.2, thin film, semiconductor, such as CuInSe.sub.2 /(Zn,Cd)S or another I-III-VI.sub.2 /II-VI heterojunction.

  18. Approaches for Developing Uniform Hazard Spectra at Critical Facilities |

    Office of Environmental Management (EM)

    Department of Energy Approaches for Developing Uniform Hazard Spectra at Critical Facilities Andrew Maham, Tom Houston, Carl J. Costantino DOE NPH Meeting, Germantown, MD October 2014 PDF icon Approaches for Developing Uniform Hazard Spectra at Critical Facilities More Documents & Publications Verification Method for SSI Problems with Extended Parameter Ranges A Study of SSI Effects Incorporating Seismic Wave Incoherence within the DOE Complex Wind Forecast Improvement Project Southern

  19. Advanced Critical Advanced Energy Retrofit Education and Training and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Credentialing - 2014 BTO Peer Review | Department of Energy Critical Advanced Energy Retrofit Education and Training and Credentialing - 2014 BTO Peer Review Advanced Critical Advanced Energy Retrofit Education and Training and Credentialing - 2014 BTO Peer Review Presenter: David Riley, Penn State Targeting professionals, employers, and education program leaders in selected advanced energy retrofit (AER) project fields (including energy auditors, building operators, energy managers, and

  20. Getting It Right: Accurate Testing and Assessments Critical to Deploying

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Next Generation of Auto Fuels | Department of Energy Getting It Right: Accurate Testing and Assessments Critical to Deploying the Next Generation of Auto Fuels Getting It Right: Accurate Testing and Assessments Critical to Deploying the Next Generation of Auto Fuels May 16, 2012 - 9:20am Addthis The Energy Department's all-of-the-above approach to American energy is driven by cutting-edge research and innovation from our world-class national laboratories, leading universities, small

  1. Investigation of critical parameters in Li-ion battery electrodes |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy critical parameters in Li-ion battery electrodes Investigation of critical parameters in Li-ion battery electrodes 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon es070_cabana_2011_o.pdf More Documents & Publications Positive and Negative Electrodes: Novel and Optimized Materials Novel and Optimized Materials Phases for High Energy Density Batteries FY 2012 Annual Progress Report for Energy

  2. Determination of the critical micelle concentration in simulations of

    Office of Scientific and Technical Information (OSTI)

    surfactant systems (Journal Article) | SciTech Connect Determination of the critical micelle concentration in simulations of surfactant systems Citation Details In-Document Search This content will become publicly available on January 29, 2017 Title: Determination of the critical micelle concentration in simulations of surfactant systems Authors: Santos, Andrew P. [1] ; Panagiotopoulos, Athanassios Z. [1] Search SciTech Connect for author "Panagiotopoulos, Athanassios Z." Search

  3. Anne de Guibert, SAFT, Critical Materials and Alternatives for Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Batteries | Department of Energy Anne de Guibert, SAFT, Critical Materials and Alternatives for Storage Batteries Anne de Guibert, SAFT, Critical Materials and Alternatives for Storage Batteries Office presentation icon Session_B6_Anne_de_Guibert.ppt More Documents & Publications Overview of the Batteries for Advanced Transportation Technologies (BATT) Program Vehicle Technologies Office Merit Review 2014: Overview of the DOE Advanced Battery R&D Program Vehicle Technologies Office:

  4. Chu: President's 2013 Energy Budget Makes Critical Investments in

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation, Clean Energy, and National Security 3, 2012 Chu: President's 2013 Energy Budget Makes Critical Investments in Innovation, Clean Energy, and National Security Washington, D.C. � U.S. Secretary of Energy Steven Chu today detailed President Barack Obama's $27.2 billion Fiscal Year 2013 budget request for the Department of Energy, emphasizing the President�s commitment to an all-of-the-above energy strategy that includes critical investments in innovation, in the job-creating

  5. Critical Oxidation Reactions Optimized with Solvent Swap | The Ames

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Critical Oxidation Reactions Optimized with Solvent Swap By simply changing the solvent, organic reactions vital for producing the starting materials for many major industrial processes have been found to be faster and able to yield the desired product with close to 100% selectivity. In solution, the critical reaction between an iron(II) catalyst with ozone in the presence of one of a number of alcohols and ethers generates various useful products. Importantly, the active species

  6. Meet CMI Researcher Patrice Turchi | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Patrice Turchi Image of Patrice Turchi, researcher at Critical Materials Institute For the Critical Materials Institute, Patrice Turchi is leading a project entitled "Materials Design Simulator - Efficient Prototyping of Rare Earth-Based Alloys from ab initio Electronic Structure and Thermodynamics." That is about the development of a Materials Design Simulator (MDS) for guiding the search for solute replacements to Rare Earth Elements that provide materials stability and performance.

  7. Meet CMI Researcher Rod Eggert | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rod Eggert Image of Rod Eggert, researcher at Critical Materials Institute CMI researcher Rod Eggert is a geochemist turned economist. More formally, he is professor and former director of the Division of Economics and Business at the Colorado School of Mines, where he has taught since 1986. As deputy director of the Critical Materials Institute, he works with the director and the rest of the leadership team to guide and manage CMI, oversee the supply-chain and economic analysis that provides

  8. Seismic Monitoring a Critical Step in EGS Development | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Seismic Monitoring a Critical Step in EGS Development Seismic Monitoring a Critical Step in EGS Development December 3, 2013 - 12:00am Addthis MagiQ and Sandia National Laboratory developed a high-temperature wellbore deployment system, which comprises a housing package equipped with a latching arm that mechanically clamps the tool system to the borehole wall. The middle section is the arm that swings out and clamps to the wellbore. The ability to accurately locate and characterize

  9. Identifying and Overcoming Critical Barriers to Widespread Second Use of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PEV Batteries (Technical Report) | SciTech Connect Identifying and Overcoming Critical Barriers to Widespread Second Use of PEV Batteries Citation Details In-Document Search Title: Identifying and Overcoming Critical Barriers to Widespread Second Use of PEV Batteries Both the market penetration of plug-in electric vehicles (PEVs) and deployment of grid-connected energy storage systems are presently restricted by the high cost of batteries. Battery second use (B2U) strategies--in which a

  10. Critical Performance and Durability Parameters of an Integrated

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Aftertreatment System used to Meet Tier II Emission Standards | Department of Energy Critical Performance and Durability Parameters of an Integrated Aftertreatment System used to Meet Tier II Emission Standards Critical Performance and Durability Parameters of an Integrated Aftertreatment System used to Meet Tier II Emission Standards Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by

  11. NQA-1 Commercial Grade Dedication Critical Characteristics | Department

    Energy Savers [EERE]

    of Energy NQA-1 Commercial Grade Dedication Critical Characteristics NQA-1 Commercial Grade Dedication Critical Characteristics May 5, 2015 Presenter: Randy P. Lanham, PE, CSP, Fire Protection Chief Engineer Consolidated Nuclear Solutions - Pantex, LLC Topics Covered: CGD Definition Safety Function / DSA Requirements Example of CGD for items Example form Questions Commercial-Grade Dedication (CGD) for acceptance of commercial grade items procured under an ASME NQA-1 Quality Program. PDF icon

  12. EV Everywhere Workshop: Electric Motors and Critical Materials Breakout

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Group Report | Department of Energy Electric Motors and Critical Materials Breakout Group Report EV Everywhere Workshop: Electric Motors and Critical Materials Breakout Group Report Presentation given at the EV Everywhere Grand Challenge … Electric Drive (Power Electronics and Electric Machines) Workshop on July 24, 2012 held at the Doubletree O'Hare, Chicago, IL. PDF icon 8b_power_electronics_ed.pdf More Documents & Publications EV Everywhere Workshop: Power Electronics and Thermal

  13. Effects of Ignition Quality and Fuel Composition on Critical Equivalence

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ratio | Department of Energy Effects of Ignition Quality and Fuel Composition on Critical Equivalence Ratio Effects of Ignition Quality and Fuel Composition on Critical Equivalence Ratio Our research shows that fuel can be blended to have a low ignition quality, which is desirable for high-efficiency advanced combustion, and with a high n-paraffin content to reduce CO and THC. PDF icon deer12_lilik.pdf More Documents & Publications Vehicle Technologies Office Merit Review 2014: Fuel

  14. Meet CMI Leader Barry Martin | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Barry Martin Barry Martin CMI leader Barry Martin helped develop the early concept of what the Critical Materials Institute's education and outreach could be, beginning with the proposal writing team and Nigel Middleton. Beginning in May 2014, Martin leads the education and outreach for CMI. Sharing the Story of Critical Materials was featured in The Ames Laboratory magazine Inquiry, Issue 1 2013. It describes the community outside CMI, including students and researchers at government,

  15. Testing Subgroup Workshop on Critical Property Needs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing Subgroup Workshop on Critical Property Needs Testing Subgroup Workshop on Critical Property Needs Objectives: Develop an action plan that details the necessary tests to measure and compare the physical properties of metallic materials relevant to high pressure hydrogen service PDF icon pipeline_group_armstrong_ms.pdf More Documents & Publications American Society of Mechanical Engineers/Savannah River National Laboratory (ASME/SRNL) Materials and Components for Hydrogen

  16. Energy Critical Infrastructure and Key Resources Sector-Specific

    Office of Environmental Management (EM)

    Energy Critical Infrastructure and Key Resources Sector-Specific Plan as input to the National Infrastructure Protection Plan (Redacted) May 2007 Department of Energy Energy Sector Government Coordinating Council Letter of Support i ii Energy Sector-Specific Plan (Redacted) Energy Sector Coordinating Councils Letter of Concurrence The National Infrastructure Protection Plan (NIPP) provides the unifying structure for the integration of federal critical infrastructures and key resources (CI/KR)

  17. President's 2014 Budget Proposal Makes Critical Investments in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovation, Clean Energy and National Security Priorities | Department of Energy President's 2014 Budget Proposal Makes Critical Investments in Innovation, Clean Energy and National Security Priorities President's 2014 Budget Proposal Makes Critical Investments in Innovation, Clean Energy and National Security Priorities April 10, 2013 - 10:38am Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - Today, U.S. Deputy Secretary of Energy Daniel Poneman detailed President Barack Obama's $28.4

  18. Simulations of liquid ribidium expanded to the critical density

    SciTech Connect (OSTI)

    Ross, M; Yang, L H; Pilgrim, W

    2006-05-16

    Quantum molecular dynamic simulations were used to examine the change in atomic and electronic structure in liquid rubidium along its liquid-vapor coexistence curve. Starting from the liquid at the triple point, with increasing expansion we observe a continuous increase in the electron localization leading to ion clustering near the metal-nonmetal transition at about twice the critical density, in agreement with electrical measurements, and to the presence of dimers near and below the critical density.

  19. A fast route to obtain manganese spinel nanoparticles by reduction of K-birnessite

    SciTech Connect (OSTI)

    Giovannelli, F.; Chartier, T.; Autret-Lambert, C.; Delorme, F.; Zaghrioui, M.; Seron, A.

    2009-05-15

    The K-birnessite (K{sub x}MnO{sub 2}.yH{sub 2}O) reduction reaction has been tested in order to obtain manganese spinel nanoparticles. The addition of 0.25 weight percent of hydrazine hydrate, the reducing agent, during 24 hours is efficient to transform the birnessite powder in a hausmanite Mn{sub 3}O{sub 4} powder. Well crystallised square shape nanoparticles are obtained. Different birnessite precursors have been tested and the reaction kinetics is strongly correlated to the crystallinity and granulometry of the precursor. The effects of aging time and hydrazine hydrate amount have been studied. Well crystallised Mn{sub 3}O{sub 4} is obtained in one hour. The presence of feitknechtite (MnO(OH)) and amorphous nanorods has been detected as an intermediate phase during birnessite conversion into hausmanite. The conversion mechanism is discussed. - Graphical abstract: TEM image showing Mn{sub 3}O{sub 4} particle after treatment of birnessite with an addition of hydrazine during 24 hours.

  20. Two new frameworks of potassium saccharate obtained from acidic and alkaline solution

    SciTech Connect (OSTI)

    Lv, Yao-Kang; Feng, Yun-Long; Liu, Ji-Wei; Jiang, Zhan-Guo

    2011-05-15

    Two chiral K(I) complexes based on D-saccharic acid (H{sub 2}sac), [K(Hsac)]{sub n} (1) and [K{sub 2}(sac)]{sub n} (2) were obtained from acidic and alkaline solution. The 3D framework of 1 includes K(I) polyhedral rods and typical pairwise coaxial right- and left-handed helical chains, and displays binodal 6-connected pcu topology. 2 contains 2D polyhedral sheets consisting of left-handed helical chains, and generates 3D network with an unprecedented (7,11)-connected net. Cyclic voltammetry tests and charge-discharge tests indicate that the addition of complex 2 to the electrolyte could improve the electrochemical properties of the nickel hydroxide electrode. -- Graphical abstract: Two K(I) complexes based on D-saccharic acid (H{sub 2}sac), [K(Hsac)]{sub n} (1) and [K{sub 2}(sac)]{sub n} (2) were obtained and characterized. Electrochemical studies indicate the potential use of 2 in Ni-MH battery. Display Omitted highlights: > Two novel chiral K(I) frameworks based on D-saccharic acid were obtained. > The structure of 1 includes K(I) polyhedral rods and typical helical chains. > 2 contains 2D polyhedral sheets and generates an unprecedented (7,11)-connected net. > Addition of 2 to electrolyte could improve the nickel hydroxide electrode's property.